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Abstract 

A method to estimate the execution time of software based on static metrics is proposed in 

this thesis. The ability to produce an accurate estimate of execution times as early as 

possible in the development phase is highly desirable. For hard real-time systems, an 

extremely slow function may require an entire system to be redesigned. In the proposed 

method, principal components and linear regression modeling are used to formulate a 

model from a given set of representative functions. It is assumed that all functions are 

programmed in a structured manner. The final result is a model that can be used to 

generate decent first approximations of execution times. Once the model is established, it 

is used to predict the execution times of other test functions. The major problem 

encountered in the modeling is the indeterminate nature of loops in a function. The 

number of times a loop structure is executed is dependent on the input parameters. It is a 

dynamic characteristic and is impossible to measure with static metrics. Our solution is to 

expand the source code by the number of times the loop is expected to execute. Then, the 

metrics are taken from the expanded code. Extremely high correlations were observed 

between the actual and the predicted execution times with the exception of fast functions. 

It appears that the metrics used were insufficient for fast functions. This method seems to 

work even across different execution platforms and languages. Though, this claim is 

requires further investigation. 
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Chapter 1: Introduction 

The objective of this work is to estimate the execution time of a structured function. The 

capability of predicting the execution time prior to compiling and running a program is a 

valuable tool in software development. It helps software developers to identify the slow 

modules of a program. The performance of these bottleneck modules can then be 

improved. This is particularly important in real time systems where timing is critical. The 

proposed technique can be used at a very early stage of development. Not only wil l the 

results pinpoint problem modules, it can also aid in determining the hardware needs of the 

system. 

1.1 Background and Motivation 

Prior research has shown that efforts directed at preventing, detecting, and correcting 

software defects could significantly reduce the total software development costs [Basili 

84, Boehm 81]. This is not surprising as the earlier an error can be found and corrected, 

the less effect it has on the rest of the system. This applies equally to real-time systems. In 

addition to the above, in real-time systems, timing is an important component of the 

requirements. For example, failure to meet timing requirements in hard real-time systems 

may result in the failure of a project or even be life threatening. As companies are striving 

to improve product performance while reducing the development cost and time to market, 

there have been great interest and research activities in the general area of software 
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performance evaluation. This explains the interest in time estimation, which is a part of 

performance evaluation. 

1.2 Review of Existing Work 

Many techniques exist for predicting the execution time of programs at the assembly or 

object code level. However, very few techniques are available at the structured source 

code level. In many cases, having a high level technique is important and useful since 

compilers and/or platforms may not be accessible or available when needed. However, 

once source code is available, it is possible to extract information from the code using 

software metrics. Then, this information can be used to estimate the execution time of the 

source code. Although various software code metrics have been applied in areas such as 

quality control and error detection, with the exception of Tempus Project [Tempus 97], 

we are not aware of any other work in progress attempting to relate metrics to the running 

time of programs. This work proposes to use software code metrics to predict the 

execution time of functions. 

1.2.1 Low Level Techniques 

L o w level techniques are prediction methods based on the machine or object code. Almost 

all the techniques are based on the idea that each operation takes a certain amount of time 

and the execution time for a function is calculated by summing up the execution time of 

each instructions in that function. The question of which instruction wil l be executed is 

answered either by static annotations [Puschner 89] or by dynamic profiling of the code 
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[Gupta 94]. Also, there are many papers, such as [Arnold 94], that examine the effect of 

pipelining and caches on the prediction. 

There are both advantages and disadvantages with low level techniques. The main 

advantage is that very accurate results can be achieved with these techniques. The more 

information that is used in forming the model, the better is the prediction. However, errors 

are still introduced into the models from several sources. Cache hits and misses are one 

source of error. The processor is another source of error. Manufacturers are not always 

willing to provide all the details needed to determine the exact time for an operation. 

Furthermore, with pipeline flushes and dynamic branch prediction in the processor, it is 

not possible to have an exact time for a given operation. The main disadvantage of these 

models is the amount of information that is required. Generally, the entire system is 

modeled right down to the microinstructions used by the CPU. In addition, this can only 

be accomplished after the code is compiled and all the hardware is finalized. This is very 

late in the product cycle relative to code development. 

1.2.2 Complexity Analysis 

Work has been done in software complexity analysis using metrics. It is self-evident that 

programs that are more complex will contain more faults and will be more difficult to 

maintain. For example, the number of lines in a program is commonly used as one 

indication of program complexity. One would view a program with a thousand lines 

differently from one containing a million lines of code. 
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Munson and Khoshgoftaar proposed the creation of a complexity measure for use in 

reliability modeling [Munson 92]. They used the statistical technique of factor analysis, 

which is an elaborate form of principal component analysis, on various software metrics. 

Factor analysis is used to determine the major components of the metrics that are 

correlated with reliability. In other works, the authors show that complexity measure is 

strongly predictive of the number of faults in a software system. 

While software metrics have been successfully used for complexity analysis, we believe 

that these metrics also contain information about the execution time of the structured 

code. For example, code that contains many branches, as indicated by the cyclomatic 

complexity metrics, would execute faster than code of the same size that does not contain 

branching instructions. 

1.2.3 Tempus Project 

Software Productivity Solutions, Inc. has developed a software measure, T, that is claimed 

to predict the execution time of real-time systems [Tempus 97]. The dimensional unit for r 

is number of run-time operations, which makes it a counting metric. The source code is 

translated into a machine independent op-code format. Every op-code is assigned a value 

and the final metric value equals the sum of the op-code along the execution path. The 

final metric is again weighted by the executing architecture. They have computed a 

Coefficient of Determination, R2, between execution time and the software measure T to 
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be 0.9511. The Coefficient of Determination measures the closeness of the relationship 

between the two values with a maximum value of unity. Therefore, their result of 0.9511 

shows a strong relationship between execution time and the software measure. 

However, there is a lack of information to evaluate this approach, as is this a commercial 

product. For instance, little information is given about the test data except in one of the 

graphics. In [Tempus 97], six series are labeled in a diagram: odd, factorial, term, sin, cos, 

and tan. Although it is claimed that these procedures are for real-time systems, it appears 

to us that these are mathematical functions with regular predictable execution patterns 

thus making these particular functions easier to predict. For example, reducing the 

acceptable error when calculating sin x would increase the execution time. Given the 

algorithm used to find sin x, the increased execution time can be easily predicted. 

1.3 Thesis Objective 

The objective of this thesis is to develop a method of predicting the execution time of 

structured functions based on static software metrics. This is the earliest stage in which a 

quantitative prediction can be done. Before the source code is produced, there exist only a 

timing requirement that has to be meet. Only after the source code is produced can 

quantitative measures be taken. 

In many situations, software code is not ready to be executed. This can be due to many 

factors. For example, the hardware and the compilers might not be determined or 
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available, or other software modules are not ready for integration. Yet, the timing 

information is needed as soon as possible. The combined timing information of several 

modules can be used to insure that the whole system meets all of its timing requirements. 

If a module goes over its timing limit, it must be optimized or the system must be 

rescheduled. 

To accomplish this, it is necessary to have some quantitative measures of the source code, 

and software metrics can be used for this purpose. The objectives of this work are, 

therefore, to determine the correlation between the software metrics and the execution 

time, to develop the methodology of predicting the execution time of source code, and to 

validate the proposed technique. 

1.4 Thesis Organization 

This thesis will be organized in the following way. Chapter 2 examines the basic concept 

of software metrics in detail. Chapter 3 explains our approach. In Chapter 4 the results are 

presented and discussed, and the conclusions are summarized in Chapter 5. 
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Chapter 2: Software Metrics 

Software metrics grew out of the need in software engineering for quantitative 

measurements of software code. These quantitative measurements or metrics are used in 

answering several important questions such as the differences in complexity, error rate, 

maintainability, production time, and testability between two software programs. At the 

beginning, simple metrics like lines of code dominated. In 1977, Halstead published 

[Halstead 77] and introduced the software science metrics. A year before that, McCabe 

wrote [McCabe 76], which defined the cyclomatic complexity metrics. Now various 

hybrid metrics exist. This chapter introduces the basics of the commonly used metrics, and 

those that are the used in our work to predict the execution time of functions. 

2.1 Lines of Code 

The first set of simple metrics involved counting the number of lines in a function. The 

simplest metric is lines of code (LOC) . It is claimed in literature that, based on L O C , it is 

possible to predict the reliability and maintainability of code. Due largely to its simplicity, 

this metric is widely used with several variances.. The variances differ in what is considered 

a line of code. Some measure only source statements and others include comment and 

blank lines. One problem with L O C is its dependency on individual programmers. 

Programmers differ in how they format their code. Each has an individual style to writing 

source code. L O C is also dependent on the language used. Some languages are more 
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expressive than others are. The same thing can be accomplished in one line in one 

language that would take several tens of lines in another. 

In UX-Metrics, a software used in our work to collect metrics from C and C++ programs, 

there are four metrics that relate to the number of lines of code. They are lines of code, 

physical source statements, logical source statements, and executable semi colons. In this 

case, a line of code is defined as a count of every physical line of code from the start of the 

function to the end of the function, including comments and blanks. Physical source 

statements are similar but exclude comments and blanks. Logical source statements are 

counted in only two cases. It is increased when executable statements end with a semi 

colon and for all control statements, like "else." Lastly, executable semi colon is a count of 

the number of executable semi colons in the code. Therefore, the "for" statement would 

have two executable semi colons. As discussed, all four variant metrics are very similar. 

2.2 Software Science Metrics 

In 1977, Maurice Halstead of Purdue University published his work on software metrics 

[Halstead 77]. He recognized that LOC is not accurate and developed a different theory to 

model program size. Based on his theory, programs consist of the manipulation of tokens: 

operators and operands. Operands are variables and constants. On the other hand, 

operators are the actions on the operands. From these basic tokens, he derived a large 

number of metrics. 
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2.2.1 Basic Tokens 

Halstead formulated several metrics based on the number of operators and operands in a 

program based on four parameters: 

7]i. number of unique operators 

772: number of unique operands 

NT. total number of operators 

N2: total number of operands 

The program vocabulary, 77, is defined as: 

f] = TJi + T]2 (2.1) 

The program length, N, is defined as: 

N = N1+N2 (2.2) 

Originally, Halstead did not include precise definition of operators and operands and relied 

on intuitive understanding. In many cases, what is counted as operators and operands are 

dependent on the user. For example, "goto x" can be taken as one operator and one 

operand, or it can be viewed as only a single operator. However, most work in the area 

suggests that minor differences are immaterial as long as the counting procedures are 
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consistent [Currans 86]. Also, Halstead felt only the executed part of the code is important 

and therefore did not include function declarations in his metrics. 

2.2.2 Length Equation 

The predicted length of the program (TV) is defined as: 

N = TJi l0g2(77;) + 772 l0g 2 ( 772) (2.3) 

This interesting relationship is available before the code is completed since it depends only 

on 7]i and r)2. Usually, the number of unique operators in a language is constant and the 

number of unique operands can be obtained from the design specifications. High 

correlations have been shown between the actual measured length, N, and the predicted 

length, N. Correlations above 0.90 are common. Halstead suggested that the differences 

between N and N are due to impurities in the coding. Impurities are due to poorly written 

algorithms and is measured with the purity ratio defined as: 

PR = N/N (2.4) 

2.2.3 Program Volume 

Another interesting metric is the program volume, V that is defined as: 
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V = Nlog2(77) (2.5) 

Halstead gave two reasons for this metric. First, given that a program has 77 unique 

tokens, it would take log2(?7) bits to represent them all. With N as the total number of 

operators and operands, it would take V bits to represent the whole program. 

Alternatively, to understand a program with a program length of N and a vocabulary of 77, 

it would take one mental look-up for each N. Assuming the look-up is done in a binary 

manner (log2 77), the total time to understand the program would be given by the volume 

metric, V. 

2.2.4 Effort 

This metric is based on the Volume metric, V. However, it is adjusted based on the 

abstraction level of the program, X. Unfortunately, the abstraction level of a program is 

difficult to determine. It is usually estimated with: -

A =2/77; • rj2/N2 ' (2.6) 

The highest possible value for A is unity. The abstraction level depends on two terms. The 

first term, 2/77;, decreases as the number of unique operators increases. Fewer operators 

imply a more abstract program. The two in the expression 2/77; comes from the fact that, a 

minimum of two operators are required to implement a function, the function call and its 
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argument. The second term, rjrfW, is the average of the number of operands, inverted. 

Again, each time the operand is used, the abstraction level decreases. This leads to the 

definition of effect as: 

E = VI X (2.7) 

2.3 Cyclomatic Complexity 

The idea of cyclomatic complexity was first presented by Tom McCabe in 1976 [McCabe 

76]. Whereas the Software Science metrics measure the size of the code, cyclomatic 

complexity measures control flows. The metric itself is extracted from the control flow 

graph. This graph is built with basic blocks of code being represented with nodes, /?, and 

branch statements with directed edges, e. A basic block is a section of sequentially 

executed code. There is no branching within the block. Decision points or branch 

statements are represented with directed edges. These would include conditional 

statements and loop structures. The directed edges connect one basic block to another 

depending on which block is executed if that branch is taken in the code. Cyclomatic 

complexity, V(g), is defined as: 

V(g) = e-n+2 [2.8] 

Only a year after McCabe published his paper, Glenford Myers suggested an extension on 

this metric. The extended cyclomatic complexity is defined similar to McCabe's. Instead of 
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having each branch statement represented with one edge, each edge represents only one 

simple predicate. A predicate is a condition without the AND/OR operators. Therefore, 

for every AND/OR operators, the extended cyclomatic complexity is increased by one. 

Thus, depending on the complexity of the conditional statement, each branch can be 

represented with more than one directed edge. This is claimed to be a more accurate 

metric than the standard cyclomatic complexity. 

2.4 Miscellaneous Metrics 

In addition to the above defined metrics, UX-Metrics uses three other metrics: span of 

reference, nesting depth, and average nesting depth. Span of reference is defined as the 

average of the maximum number of lines between variable references. A reference can be 

either the definition or the use of a variable. The maximum number of lines between 

references for each variable is calculated. These are then averaged for a function and 

reported as the metric. Nesting depth is the,number of nesting control structures. Every 

nesting control structure increases this metric by one. Finally, the average nesting depth is 

the depth of each logical statement divided by the number of logical statements. 

2.5 Hybrid Metrics 

Hybrid metrics are those that combine one or more basic metrics. There are well over 100 

distinct metrics of software complexity in the research literature [Zuse 90]. Each is slightly 

different and has its own proponents proclaiming its predictive abilities. In essence, they 



combine some aspect of Halstead's orv McCabe's metrics. One of the most notable 

variants of hybrid metrics is presented by Munson and Koshgoftaar [Munson 89, 90a, 90b, 

92, 93]. Using a form of principal component analysis, they combine various commonly 

used metrics into a relative complexity metric. They consider these combined metrics to be 

more reflective of software complexity. 

2.6 Software Metrics and Execution Times 

It is evident that some metric can contribute to estimating the execution time of functions. 

The LOC metrics show how many lines are in each function. Functions with many lines 

will tend to take longer to execute. A similar statement can be made about the metrics that 

Halstead defined, even though, the exact relationship between his metrics and the 

execution time of each function is difficult to determine. Similarly, cyclomatic complexities 

are branch points in the code. The more branch points there are in the code, the faster the 

code will execute since branching causes the code to execute fewer statements. 

The most interesting idea is presented by the hybrid metrics. As stated before, the exact 

relationship between the software metrics and the execution time of a function is 

unknown. However, by using Munson's idea, it is possible to generate principal 

components that are more predictive of execution time than the individual metrics. In 

addition, it would be simpler to define and reason with the few domains that are 

represented by the principal components than with the raw metrics. This approach is 

adopted in this thesis. 

14 



2.7 Summary 

In this chapter, many of the basic software metrics have been examined. It starts with lines 

of code then more advanced metrics, such as the software science metrics and cyclomatic 

complexity, are discussed. Munson and Koshgoftaar presented a method of combining 

these metrics into a relative complexity metric using a form of principal components. 

Though they primarily used the principal component method in complexity analysis, we 

adopt the statistic method in our proposed approach to predicting execution time at the 

function level. 
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Chapter 3: Proposed Approach to Time Estimation 

The proposed approach to time estimation is presented in this chapter. It uses software 

metrics as discussed in the previous chapter, to formulate a linear regression model. This 

model can be used for predicting the execution time of other functions. The first section of 

this chapter outlines the basic approach. This is followed by more information of how the 

model is formed and verified. Section 3.4 explains the limitations of this method. 

3.1 Proposed Approach 

The proposed approach is to predict execution time of structured functions based on the 

static software metrics of those functions. This is carried out in two steps. First, a model is 

formulated, by linear regression, from a standard program with both the metrics and 

execution time information already available. This will determine the regression 

coefficients of the metrics versus the execution time. Once the coefficients are determined, 

they are used to predict the execution time of other functions based on their metric values. 

When the model is formulated from the standard program, there are two main problems if 

the raw metrics are used in the regression. First, there is a large difference in scale of the 

different metrics. Secondly, collinearity exists in many of the metrics. Collinearity happens 

when metrics measure similar properties. The scale problem is solved by standardization of 

the raw metrics. To standardize individual metric values, each is subtracted from the mean 
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and then divided by the standard deviation for that particular metric type. The second 

problem of collinearity is solved using principal components analysis. After the raw 

metrics are transformed, first by standardization and then by principal component analysis, 

they can be used in linear regression. 

Once the measured execution times are provided and the principal components are 

calculated for the standard program, the linear regression can be carried out. One 

condition for selecting the standard program is that the functions in the standard program 

should be representative of the other functions that the resulting model will be used to 

predict. This is, different types of programs have different metric characteristics and this 

fact must be taken into account. For example, computational based programs have more 

intensively executed loops as compared to real-time programs. The other requirement for 

the standard program is that the execution times of each function must be known. The 

requirement can be met by selecting the standard program from previously completed 

projects, or from benchmark cases if available. 

After the model is formed, other functions can be easily predicted. First, raw metrics are 

extracted from the functions. Then, the exact same procedures of standardization and 

principal component transformation are applied. This means that both the standard 

functions and the functions to be predicted are the same statistically, since the same 

operations are applied to both in order. Once the transformations are applied, predictions 

are generated by multiplying the result of the transformations by the regression coefficient 

obtained from the model. 
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To summarize, the proposed procedure to calculate the regression model is: 

• Choose an existing set of functions as a standard. The standard functions 

should be representative of the type of programs to be tested. Extract and 

standardized the metrics for each function and stored the values in matrix 

defined as Z. For the convenience of discussion, assume that the program has 

75 functions and 16 metrics are extracted, Z would be a 75x16 matrix. 

• Calculate the correlation matrix p of the matrix Z. The matrix p will be 16x16. 

• Calculate the 16x16 normalized eigenvector matrix E from the matrix p. Each 

column of the matrix E is a normalized eigenvector of the matrix p. 

• The principal component matrix P c is calculated based on: 

P C = Z-E (3,1) 

Pc has a dimension of 75x16. 

• Given the actual execution time of each function in the program in a column 

vector, x, calculate the regression coefficients P using linear regression 

techniques. 

Once the regression coefficients (3 are found, we can use them to estimate the time of 

other programs following these procedures: 

• Extract the metrics of the functions to be tested, and standardize these metrics. 

This would be the same transformation applied to matrix Z above. Then record 
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the standardized values in matrix Z i . The number of rows of Zi is the same as 

the number of functions being tested. 

Z i is transformed into principal components by 

Pci = Zi • E (3.2) 

• The estimated time Y i is calculated as in (3.3). A column vector of ones is 

added for the intercept term. 

3.2 Model Formulation 

This section will present the statistical techniques used in this thesis to formulate the 

model: principal component analysis and multiple linear regression. These can be found in 

most statistical text such as [Johnson 92]. The primary goal in principal component 

analysis is to find the appropriate variables, that is, to represent the entire set of variables 

by only a few variable domains. On the other hand, multiple linear regression is concerned 

with finding the relationship between a response variable, the execution time, and multiple 

predictor variables, the transformed metrics. Both will be used to formulate the model for 

the prediction of execution time. 

Yi = [llPci]-P (3.3) 
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3.2.1 Principal Component Analysis 

Principal component analysis is a data transformation technique that provides the 

transformed variables with useful statistical properties. In this case, it is use to reduce 

collinearity and reduce the number of predictor variables for multiple linear regression. 

Collinearity happens when two variables are closely related in the linear sense. After the 

transformation, the variables have the property of being uncorrelated with each other. 

They will be used in multiple linear regression to predict the execution time of functions. 

Principal component analysis can be done with either the covariance or correlation 

matrices. The results are two completely different solutions, one from using the covariance 

and another from using the correlation matrix. This is due to the scale sensitivity of the 

covariance matrix. When the data set is in different units, as in software metrics, the 

correlation matrix is generally employed. In addition, with standardized data, the 

covariance matrix is identical to the correlation matrix. In the treatment below, correlation 

matrices will be use. However, identical procedures also work for the covariance matrices. 

The correlation matrix is defined as: 

1 P12 _ _ Pip 

P21 \ p2p 

Ppl Pp2 1 

(3.4) 

Where p,j is the simple correlation between metrics / and j. The eigenvector and 
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eigenvalue is then extracted from p. Assuming the standardized data is in Z with data 

points are represented in rows with columns representing different metrics then the 

transformed data, P c , is defined as: 

P c = Z [ e i e 2 ... ek] (3.5) 

Where ej is the /* eigenvector of p. If the rank of p is p then the maximum value for k is p. 

However, a few eigenvectors of p is usually dropped because they are insignificant. 

Therefore, k is usually less than p. One rule of thumb is to drop all eigenvectors when its 

corresponding eigenvalue is below unity. There is no hard justification for this except that 

an eigenvalue of less than unity implies the transformed variable explains less variance than 

one of the original variables. 

3.2.2 Multiple Linear Regression 

Multiple linear regression is concerned with finding a relationship between a response 

(independent) variable and multiple predictor (dependent) variables. It will be used here to 

find the relationship between the execution time of functions and software metrics. In this 

case, only one response variable is needed to represent time for each function. Therefore, 

the linear regression model for the I t h function is: 

y,- = PoXi.o + & xitl + ... + p\xuh + G (3-6) 
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Where y,- is the actual execution time, Po to p\ are the regression coefficients, x-,,o is the 

constant 1, x,-,; to are the principal component values, and £,• is the error. In other 

words, the response equals to the sum of some factor of each predictor variable and error. 

The term linear is used because the parameters Po, Pi, p\ are linear. In matrix form 

(3.6) is: 

y = xp + e (3.7) 

Where P = ...,#]. 

The method of least square error is usually employed to find the value of the parameters p\ 

The least square function is: 

S(Po,p},..., = (3-8) 

The summation is done over all the functions used in the model formation. The idea is find 

Po, Pi, p\ which minimizes the total square error of all the data points. Taking the 

partial derivative of (3.8) and setting it to zero will achieve this. The result is the least 

square estimation for the parameters p0, Pi,p\. In matrix form: 

S(P) = £T£ = (y-xP)T(y-xP) (3.9) 
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Rearranging (3.9) gives: 

S(P) = y T y-p T x T y-y T xP + p T x T xP 

= y T y-2p T x T y + p Tx Txp ( 3 . 1 0 ) 

Taking the derivative of (3.10) with respect to (3 and setting to zero gives: 

-2xTy + 2xTxp = 0 (3.11) 

Solving (3.11) for P gives: 

' P = (x1x)-1x1y (3.12) 

In this case, (3.12) gives the parameters of the regression model based on the metrics and 

execution times of the standard functions. 

3.3 Model Verification 

After a model is obtained, it is necessary to check if the model is valid. The best way is to 

examine the results graphically. Any patterns in the residual plots would indicate if a 

systematic error exists. Residual is the difference between the predicted and actual value. 

Besides the residual plots, there are various numerical tests that indicate the validity of the 

model. 
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3.3.1 Significance of the Whole Regression Model 

This test determines if (3.7) is a valid model for the data being studied. The correct 

hypotheses are: 

H 0 : p=0 

• H i : (3*0 (3.13) 

If the null hypothesis, Ho, is rejected, then at least one of po, Pi, A is n o t zero. In other 

words, at least one of the parameters is useful. On the other hand, if Hi is rejected in favor 

of the null hypothesis then none of the parameters are useful and the model is meaningless. 

The null hypothesis is rejected if the value of F0, defined below, is greater than the F-

value. The F-value can be obtained from a chart at a significance level of a and degrees of 

freedom £+1 and n-k-2, where the number of predictor variables is k and the total number 

of data points is n, and a is the confidence or tolerance level. The value F0 is defined as 

below: 

F0=MSR/MSE (3.14) 

F0 is a ratio of MSR (mean square of regression) and MSE (mean square error). MSR is 

the sum of square due to regression and MSE is the sum of square of the residual each 

divided by its corresponding degrees of freedom. 
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MSR = SSR/(fc+l) 

M S E = SSE/(/i-fc-2) 

(3.15) 

(3.16) 

The sums of squares for the analysis of variance are: 

SSR = pTxTy - nY2 (3.17) 

SSE = eTe = yTy - pTxTy (3.18) 

SST = SSR + SSE = yT y - nY1 (3.19) 

Where Y2 is the square of the mean of the response variable, SST is the sum of square of 

total variance and is composed of two parts, SSR and SSE. It is the sum of all the 

observed values of the response variable squared and corrected for the mean value. 

3.3.2 Test for Individual Regression Coefficients 

It is generally necessary to test individual predictor variables to determine whether they 

contribute to the regression model. A model could be more or less efficient with the 

inclusion or exclusion of one of the predictor variables. The appropriate hypotheses for 

testing an individual is: 

H 0 : Bj = 0 

A*0 (3.20) 
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If the null hypothesis is not rejected then it suggests that the j predictor variable can be 

removed from the model. The test for this is: 

(3.21) 

Where 8 2 is (£Te)/(n-£-l) and Q is the diagonal element of (xTx) _ 1 corresponding to Bj. 

Basically, the t-value is found by dividing each p) by its corresponding standard error. If 

\to\ > t(cx/2>n.k-i) then H 0 can be rejected in favor of H i . It is more accurate to use the 

simultaneous confidence interval and the F-test. Namely, if \t0\ > (k+l)-F((X,k+i,n-k-i), then 

H 0 can be rejected in favor of Hi . However, most practitioners use the t-test for checking 

individual regression coefficients. 

3.3.3 Coefficient of Multiple Determination 

The coefficient of multiple determination, denoted R2, measures 

variability of the prediction obtained by using the predictor variables 

R2 = SSR/SST = 1 - (SSE/SST) (3.22) 

SSR, SSE, and SST are defined in (3.17) to (3.19). Clearly, R2 will always fall between 

zero and one inclusively. This is the same R2 that was obtained from the correlation 

between the observed and predicted values of the response variable. Unfortunately, R2 

26 

the reduction in the 

. It is defined as: 



near unity does not necessarily imply that the model is good. Adding more predictor 

variables always increases R2 and never reduces it. This is because SST is constant for 

given set of responses and-SSR always increases with additional predictor variables. 

Therefore, an adjusted coefficient of multiple determination is also defined as: 

adjusted R2 = 1 - (rc-l)/(/i-M)(SSE/SST) [3.21] 

3.4 Limitations of the Approach 

The main limitation with predicting the execution time of a structured program from 

source code alone is loop structures. It is impossible to determine the number of times a 

loop is executed without executing the whole program. At present, the metrics used do 

not take into account loop structures. To test our hypothesis, we remove each loop 

structure and replace it with equivalent code. With the equivalent code used for testing, 

the prediction errors are dramatically reduced. This is referred to as expanding the code. 

Some programming languages require a loop bound on each loop structure. This can be an 

explicit part of each loop structure or a type bound on the index variable. Therefore, to 

apply our technique, either the upper bounds or the average number of times a loop is 

executed must be provided. 

Unlike loop structures, branching instructions present little problems. It appears that the 

various metrics like cyclomatic complexity account nicely for the branching effect. Of 
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course, the programmer could supply some information concerning each branch, for 

example, the percentage that the true branch of an if statement is taken. Fortunately, this 

does not appear necessary, since the majority of the error in the prediction is from loop 

structures. 

3.5 Summary 

This chapter describes the technique and procedure of predicting the execution time of a 

structured program using software metrics. Software metrics are problematic from a 

statistical viewpoint since many exhibit large differences in scale and have collinearity. 

Therefore, it is necessary to transform the data with standardization and then principal 

component analysis. After the transformation, the principal components are used in linear 

regression. The resulting model can be used to predict the execution time of other 

structured functions. Equation (3.7) givens the general regression model and (3.12) shows 

how the parameters are chosen. As discussed, the model can be validated in a number of 

ways. Prediction on other functions can be made by applying the same transformations and 

then applying the regression model, as shown in (3.3). 

28 



Chapter 4: Results and Discussion 

In this chapter, the technique proposed in Chapter 3 is applied to a number of test cases. 

First, the software tools employed are examined. Then, detail on the test data is given. 

Following the proposed method outlined, a model is formulated. Finally, various aspects 

of the modeling are discussed, and the results presented. 

4.1 Software Tools 

Three major software packages are used to extract the various metrics from the test 

programs. They are GCT, UX-Metrics, and Quantify. 

Brian Marick of the Testing Foundation wrote the generic coverage tool, GCT for C 

programs. It is a C preprocessor. It inserts tags into.each possible branch of the program. 

When the instrumented program is executed, the path taken by the program is recorded by 

the tags along the execution path. Note that the instrumented program runs significantly 

slower than uninstrumented versions of the program. By examining the tags after a test 

program runs to completion, it is possible to reconstruct how many times a loop structure 

is executed. This information is used to expand the source to remedy the loop effect 

discussed in section 3.4. 

UX-Metrics is a commercially available program from Set Laboratories Inc. It was used to 
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extract the following metrics from the test data: 

Table 4-1: UX-Metrics supported metrics 

L O C Halstead Cyclomatic Misc. Metrics 
Lines of Code, L O C 

Physical source 
statements, PSS 

Logical source 
statements, LSS 

Executable semi 
colons (;) 

r|i,ri2, N i , N 2 

Predicted length, N 

Volume, V 

Effort, E 

Cyclomatic 
complexity, V G 1 

Extended cyclomatic 
complexity, V G 2 

Average maximum 
span of reference of 
variable, SP 

Nesting depth, Dpth 

Average nesting 
depth, AvgDp 

Lastly, Quantify too is a commercially available program from Pure Software Inc. Again, 

it is basically a C preprocessor. It is used to record the number of cycles various parts of a 

program take to execute. It is interesting to note that most system calls are not included 

during timing measurements. 

These three programs are used to gather all the test data. The execution time of all the 

functions is measured using Quantify. GCT serves as a dynamic tracer. It traces the 

execution path of the test programs. Using the information from GCT, the source code is 

expanded. Finally, UX-Metrics is used to gather the metrics information from the 

expanded code. 
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4.2 Test Programs 

A total of seven software programs were used in the experiments. They can be roughly 

divided into three categories shown in Table 4-2. The number of functions, the language, 

whether expanded code is available, and whether the expanded code contains timing 

overhead for each program are also listed. 

Table 4-2: The Data Set 

Category Program Functions Language Expanded Code Timing Overhead 

1 
B E N 7 C Yes No 

1 
FFT 5 C Yes No 

2 

Siml 60 c Yes No 

2 Sim2 75 > c Yes . No 2 

Xboard 145 c Yes Yes 

3 
Program X 24 c Yes No 

3 
Program Y 100 C++ No N / A 

The first category of programs consists of the two small programs. They are the burst 

error network simulator (BEN) and the fast Fourier transform (FFT) calculation program. 

These are locally written programs. 

The second class of programs contains Siml and Sim2, which originated from the 

Rochester Connectionist Simulator, and Xboard. The Rochester Connectionist Simulator 
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is a system tool designed to simulate network programs. Data was collected from two 

runs of this program, Siml and Sim2. Siml is a network program that tries to color a map 

with four colors so that no two neighboring regions have the same color. Sim2 is a 

simulation program for a three-layer neural network containing eight, three, and eight 

cells. The task is to learn to reproduce the input pattern at the output. Essentially the cells 

must learn to binary encode the input, and the output layer needs to binary decode. 

Finally, Xboard is a graphical X windows user interface program for playing chess. The 

Xboard client uses TCP/IP to connect to a chess server over the Internet and the user can 

play chess with other opponents connected to the same server. Due to the interactive 

nature of Xboard, it was not possible to execute it with a predetermined set of inputs like 

the rest of the data. Consequently, Xboard contains the timing overhead from GCT since a 

separate run to collect timing information might have a different execution path. A l l three 

test programs in this category were downloaded from the Internet. 

The third category of programs is made up of Program X and Program Y . Both are 

proprietary programs used in Nortel. Both were prototype programs to simulate switching 

telephone networks. Because Program Y was written in C++, the expanded code is not 

available for it. They were written to determine if timing requirements could be satisfied. 

The programs in category 1 and 2 were tested on a Unix Sun workstation running SunOS 

Release 4.1.1. However, category three programs were executed on a HP UNIX machine 

at Nortel. 
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4.3 Model Formulation 

In this section, the Sim2 model formulation is investigated. The ideas from the Chapter 3 

will be applied. Various other models were tried but Sim2 seems to be the best. However, 

other models were formed in a similar way and tested. This should serve as an example. 

4.3.1 Finding the Normalized Z matrix 

The first step is to find the normalized Z matrix. The raw metrics are extracted by U N -

Metrics from Sim2. Table 4-3 lists the mean and standard deviation for each metric. To 

form the matrix Z, each metric value is subtracted by its corresponding mean in the table. 

The result is then divided by its corresponding standard deviation value, also given in 

Table 4-3. The reason for standardization is clear from the different scales of the metrics. 

For example, E is extremely large when compared to AvgDp. In linear regression, such 

large-scale difference would produce models that are heavily weighted towards E as the 

dominant predictor. By standardization, this effect is eliminated. 

4.3.2 Finding the Principal Components 

The first step to finding the eigenvectors is to produce the correlation matrix p. Using a 

numerical program, the eigenvalues and eigenvectors of p is found. Table 4-4 listed only 

the first seven eigenvectors (ei . . . e7). They have the largest eigenvalues of the 16 

eigenvectors. Finally, the matrix Z is multiplied by ei ... e7 to give Pc, as shown in (3.5). 
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Table 4-3: Standardization of Sim2 Metrics 

Metric Mean So-
19 lO 

20 16 

N, 409 1495 
N 2 

272 992 
N A 178 142 
V 4115 15682 
E 7672800 43504000 

VG1 25 111 
VG2 32 125 
L O C 121 431 

> 62 220 
SP 11 42 

Dpth 2 4 
AvgDpth 1 1 

PSS 115 413 
LSS 57 192 

Table 4-4: Sim2 Eigenvectors 

Metric ei e2 e3 e4 e5 e6 e7 

Til 0.151 -0.388 0.151 -0.570 -0.077 -0.302 0.097 

T|2 0.141 -0.468 0.141 0.466 0.101 0.259 -0.091 
Ni 0.289 0.091 0.289 0.064 0.168 -0.212 -0.172 
N 2 • 0.287 0.099 0.287 0.121 0.105 -0.433 -0.020 
N A 0.156 -0.461 0.156 0.147 0.052 0.120 -0.011 
V 0.291 0.085 0.291 0.077 0.110 -0.110 -0.131 
E 0.281 0.152 0.281 -0.174 0.012 0.391 0.126 

VG1 0.285 0.109 0.285 -0.128 -0.076 0.468 0.176 
VG2 0.273 0.114 0.273 -0.236 0.656 -0.025 0.279 
L O C 0.290 0.086 0.290 0.002 -0.007 0.174 -0.187 

0.288 0.092 0.288 0.175 -0.131 -0.339 -0.096 
SP 0.275 0.095 0.275 0.055 -0.634 -0.101 0.490 

Dpth 0.125 -0.409 0.125 0.224 0.109 -0.119 0.479 
AvgDp 0.146 -0.378 0.146 -0.448 -0.176 0.043 -0.391 

PSS 0.291 0.087 0.291 -0.008 -0.016 . 0.199 -0.054 
LSS 0.289 0.054 0.289 0.158 -0.177 -0.011 -0.375 
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4.3.3 Finding the Useful Principal Components 

Table 4-5 lists the correlation between the principal components and the execution time of 

the functions in Sim2. As shown, the components most strongly associated with execution 

time are ê  e4, es, e6, and e7. These were used in the regression as the predictor variables. 

The meaning of each component can be identify with Table 4-4 by examining the relatively 

large values, in absolute terms, in the corresponding vector. Component 1 seems be to an 

overall average of the various raw metrics. Component 4 is a measure of the function's 

complexity. Component 5 measures the number of boolean literals in the function. This is 

strongly correlated with the case statement. Component 6 measures the size of the 

function and compares it to the number of possible branches. Component 7 measures 

variable use, how far between references and how deep into nested structures. 

Table 4-5: Correlation between P c and Time 

Pc r Pc r 
e i 0.9088 e9 -0.0137 
e 2 

0.0995 e i o 0.0179 
e 3 -0.0029 e n 0.0213 
e 4 

0.1671 e n -0.0146 
e 5 

0.1342 e-13 -0.0005 
e 6 

-0.2348 e-14 0.0007 
e 7 

-0.2248 e i s 0.0248 
e g -0.0726 e i 6 -0.0303 
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4.3.4 The Sim2 Model 

The model is formulated as outlined above. In this case, the standard program used is the 

expanded code for Sim2. The 16 metrics, obtained using UX-Metrics, were first 

standardized. Each would average to zero and have a standard deviation of one. Using 

(3.5), the raw metrics were transformed into 16 principal components. For the 16 principal 

components, the five with the strongest correlation to the execution time were used in the 

linear regression. 

Tables 4-6, 4-7, and 4-8 all show that the regression used to formulate this model is 

reasonable. The regression model is highly significant as suggested by the F of over 600 as 

shown in Table 4-7. Since this means that the significance level of F almost zero, the 

model is highly accurate. Also, the individual coefficients are significant as evidence by the 

t-values and the corresponding almost zero p-values in Table 4-8. The p-values are the 

significance level for the t-test. As well, both the adjusted and normal coefficient of 

multiple determination is near unity. The extremely low significant level for both the F-test 

and the t-test as well as the near unity of the correlation coefficients are all consistent with 

a very accurate model. 

Figure 4-1 shows the regression scatter plot of the predicted and actual execution times. 

Although some values were predicted as negative, this is normal behavior when predicting 

small values with normalized data. The plot shows that the predicted execution times are 

very close to the actual execution times. Again, this points to a very strong model. 
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Table 4-6: Regression Model Summary 

REGRESSION STATIS1 ncs 
Multiple R 0.988710 
R Square 0.977548 
Adjusted R Square 0.975921 
Standard Error 129.9329 
Observations 75 

Table 4-7: Regression ModelSignificance 

DF SS MS F Significance F 

Regression 5 50719844 10143969 600.8551 2.04E-55 
Residual 69 1164896 16882.55 
Total 74 51884740 

Table 4-8: Regression Model Coefficient Significance 

Coefficients Standard Error t Stat P-value 
Intercept 277.403 15.00336 18.48940 1.94E-28 

PC 1 224.483 4.45556 50.38266 3.7E-56 
PC 4 297.640 32.12460 9.26518 9.85E-14 
PC 5 264.273 35.51869 7.44039 2.1E-10 
PC 6 -604.866 46.47531 -13.01480 3E-20 
PC 7 -651.674 52.29414 -12.46170 2.48E-19 
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Figure 4-1: Sim2 Model 
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4.4 The Sim2 Model Predicting the Expanded Code 

The sim2 model is used to predict five test programs: B E N , FFT, Siml, Xboard and 

Program X . Table 4-9 summarizes the result of the predictions. The R2 is the square of the 

correlation between the prediction and the actual value of the functions in each of the 

expanded source code program. It ranges from 0 to 1 and is a summary of the strength of 

the relationship between the predicted and actual values of the execution time. Program Y 

was not expanded and therefore not listed. Overall, an excellent correlation is shown 

between the actual and the predicted execution times. 
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Table 4-9: Summary of Predictions 

Category Program R 2 

1 
B E N 1.0000 

1 FFT 0.9843 

2 
Siml 0.9684. 

2 Xboard 0.6538 

3 Program X 1.0000 

4.4.1 Category One Programs 

The prediction results of B E N and FFT are shown in Figures 4-2 to 4-4. Figure 4-3 is the 

same as Figure 4-2 with the slowest function in B E N removed. The behavior of both the 

B E N and FFT predictions is similar. Both programs are characterized by a dominant 

function that takes the majority of the execution time. These dominate points lead to an 

overstatement of the R2 value. This accounts for the near unity values for these two tests 

programs. Yet, Figure 4-3 shows that the R2 value listed for the category one programs in 

Table 4-9 is misleading. 

Figure 4-3 demonstrates an important weakness in the theory even given these 

computationally based programs. Because linear regression is disproportionally affected by 

the larger values, regression models based on large values are poor predictors of extremely 

fast functions. Fortunately, in most situations, the fast functions are not of interest in 

scheduling real-time systems and the slow functions are ones that are important. 
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Figure 4-3: Sim2 Predicting Fast Functions 
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Table 4-4: Sim2 Predicting FFT 
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4.4.2 Category Two Programs 

Figures 4-5 and 4-7 show the prediction of Siml and Xboard using the Sim2 model. 

Figure 4-6 is the same as Figure 4-5 but has the. slowest function removed. Three 

functions in Xboard (main, FindFont, and yylex) were treated as outliners and removed 

from the calculations. Outlines is a term that means "bad values" for data points that fall 

outside the line implied by the rest of the data. The main function is removed because it 

contains the bulk of the GCT path tracing overhead, making the actual time slower than 

the time without GCT overhead. The function FindFont could have been executed 

without Quantify configured properly to catch its system call. The function yylex is 

removed because it contains "go to" statements. Our approach to time estimation cannot 

account for the irregular control flows generated using "go to" statements. The 

assumption is that only structured programs will be involved. 
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As shown in Table 4-9, the square of the correlation between the predicted and actual 

execution times for S iml is near unity. It implies that the prediction model explained about 

97% of the variance. The actual execution times of the Xboard functions are slower than 

the predictions. However, all the functions seem to be at a constant factor of four times 

slower and Figure 4-7 does shows a linear relationship. This four-times slower prediction 

is due to the G C T overhead resulting in a constant speed reduction. Xboard was the only 

function that contains the G C T probes while data was collected by Quantify. Nevertheless, 

the R2 in Table 4-9 shows that over 65% of the variance in the actual execution time is 

explained with this prediction. Taking this into account, both of the programs in category 

two are well modeled. 

Figure 4-5: Sim2 Predicting Siml 
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Figure 4-6: Sim2 Predicting Siml without the Slowest Function 
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Figure 4-7: Sim2 Predicting Xboard 
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4.4.3 Category Three Program 

The only program in category three that had expanded code available is Program X . 

Figure 4-8 shows the predictions from the regression model on Program X ' s functions. 

Similar to category one programs, Program X is dominated by one slow function. This is 

the main reason for the R2 value of unity. Figure 4-9 is the same graph with a reduced 

scale. The only point not show in 4-9 is the slowing function in Program X . Excluding the 

slowest function, the R2 value is 0.7417. Even with the R2 value at 0.7417, this is still a 

strong prediction. 

Figure 4-8: Sim2 Predicting Program X 
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Figure 4-9: Sim2 Predicting Program X without the 
Slowest Functions 
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Figure 4-9 shows that the predicted value is about twice as slow as the actual values. This 

is caused by the model being formed on older Sun machine while Program X was tested 

on a more advanced HP machine. To reduce the error in this prediction, it would be 

necessary to formulate the model from a standard program tested on the HP machine. 

Nevertheless, there is clearly a linear relationship between the. two. This strongly supports 

the idea that source code can be used to predict execution times. The error in the 

prediction is only due to cross platform differences. 

Note that two functions in Program X xfer and sendmesg were treated as outliners and 

were removed. They contain eight and nine lines of logical statements respectively. Since 

only the metric values and not the source code were available, it is assumed that these 
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functions only contained irregular loop structures, for example "goto" statements that 

were not expanded. 

4.5 Model Robustness 

Three points suggest that the theory is sound. First, similar models formulated with the 

other test programs resulted in similar predictions. Second, the programming language 

does not effect the overall theory. Finally, the computing environment has little effect on 

the results. Though, the last two claims require further investigation. 

The theory does not depend on either the data or the model presented in this chapter. A 

different data set would produced similar predictive results provided that the standard 

program used to formulate the model is representative. This is to say that some care must 

be taken to produce the model. Sim2 was used as the standard because it produced the 

best regression results with the rest of the data. However, a similar model based on Siml 

had comparable results. A third model based on Xboard was also produced. Its predictive 

ability was the worst of the three. The other programs were considered of an insignificant 

size to generate a reasonable model due to the limited number of functions in each 

program. 

A comparison was done between Program X and Program Y. Program X was written in C 

and Program Y in C++ (See Table 4-2). Principal component analysis was done to 

examine the raw metrics form the C and C++ code. Interestingly, they mapped to the same 
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domain. This supports the intuitive notion that C and C++ are similar at least with respect 

to their metrics. Both have a similar distribution of control and data statements. To predict 

C++ code, a model should be generated from a C++ standard program. That being said, 

the same modeling seems applicable to C++ as well as C source code. 

As stated in before, all but the category three programs were executed on Sun machines. 

The category three programs were tested with HP machines. Since machine cycles ignore 

the clock speed of a particular machine type, all the data is taken in terms of machine 

cycles and not actual time units. Although Program X was tested on a HP and the model is 

formulated on a Sun machine, there is not an effect on Program X 's predictions. It still 

appears as a linear relationship even though they are executed over two completely 

different architectures. This suggests that the model is machine type independent. 

4.6 Summary 

This chapter discusses the results of the proposed approach to time estimation. GCT, U X -

Metrics, and Quantify are the software used to gather metrics and timing information from 

the test programs. The sim2 model is formulated as outlined in Chapter 3. It is validated 

and shown to be extremely significant by the various statistical tests. Then, the model is 

used to predict the execution times of the other test programs. The results for the slow 

functions are very good. One can see a clear linear relationship between the predicted and 

actual execution times. However, there is a large error when it comes to the fast functions. 

We believe the main reason for this error is due to the metrics chosen. They were unable 

to quantify the specialized nature of the fast functions. 
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Chapter 5: Conclusion 

This work is focused on the development of a method to predict the execution time of 

structured programs based on their static source code metrics. Since source code is 

available early in the development cycle, these predictions can be made to spot potential 

future problems in meeting timing requirements. Various software metrics are analyzed. 

The most interesting are the relative complex metrics generated by the principal 

component method. Using this idea of principal component metrics, a linear regression 

model is formulated to predict the execution time of functions. The resulting model is 

shown capable of predicting the execution time of other functions. 

There are a few things to note about our approach to timing estimation. To solve the 

indeterminate nature of loop structures in the source code, a bound is placed on each 

individual loop and the code inside is expanded. Then, principal component analysis was 

used both to reduce the number of metrics used and to produce predictor variables for 

linear regression. This prediction is reasonable for the slow functions. However, extremely 

fast functions are problematic for the model to predict. Fortunately, it is the slow functions 

that are of interest in most cases. This method is meant to be a first approximation of the 

execution times, to be used as soon as the source code is available. It is also relatively 

robust, being insensitive to changes in computing language and environment. 
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The main contributions of this thesis are: 

• A systematic method of predicting the software execution time is proposed. It 

predicts the execution times of structured functions based on the source code. 

Modeling is carried out using principal component analysis and linear 

regression. Since source code prediction is one of the earliest quantitative 

information available, it can be used to detect possible areas where tuning 

requirements are not met. This can result in reduced overall system production 

cost. 

• Though meant only for first approximation, this method seems relatively 

robust, being insensitive to changes in computing language and architecture. 

Though this claim required further examination since it is based only on a few 

test cases. 

• Results show that the functions selected from the standard program have to be 

representative of the other functions to be tested. That is, the program types 

must be similar. This leads to the conclusion that the prediction models are 

different for different types of programs. 

• We have found that although branch structures do not present a problem, loop 

structures are problematic. The proposed technique can not handle programs 

with loops. One solution to the loop structure problem is to expand the code 

inside the loop according to the number of times that loop is executed. It is 

also found from the test cases that only about 30% of functions in real-time 

programs have loops. Therefore, this technique can be applied without a large 

amount of additional effort. 



• We have found from the test cases that this technique can predict slow 

functions better than fast functions. We believe a partition method, that is, to 

group the functions into fast and slow categories will improve the prediction 

since a different prediction model can be made for each of the two categories. 

• The 16 metrics that were used can be mapped to only five domains represented 

by principal components: an overall average component, a complexity 

component, a case-statement component, a size versus branching component, 

and lastly, a variable/nesting depth component. 

Future research can be extended from the current work into such areas as: 

• Developing new metrics. The current procedure uses raw metrics that were not 

originally designed for timing estimation. New metrics that are design to measure 

some aspect of execution timing can replace the raw metrics and should give a better 

prediction. 

• Using higher order models. Currently, only linear transformations and regression is 

used in the modeling. Moving away from a linear model could improve the prediction. 

• Checking the assumption that the model is insensitive to changes in languages and 

computing environments. Only one test case was examined for each of these and they 

may be abnormal cases. More testing is needed to solidify the conclusion. 

• Distinguishing between fast and slow function. This would allow a partition method to 

be employed. The current method predicts slow functions well, however fast functions 

are not well modeled. Partition would allow the fast functions to be model differently 

from the slow functions. 
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Extending this research to unstructured programs. The assumption throughout is that 

only structured programs are involved. It may be possible to apply this method to 

unstructured programs as well. 

Integrating this approach to timing estimation into existing software. It should be 

possible to gather all the needed metrics automatically. Then, after the estimation is 

accomplished, the data is transferred into a scheduling software to determine if a 

system meets timing requirements. Such an automated system would save both time 

and money in the development of real-time systems. 
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