
Prediction of Software Execution Time Based on Software Metrics

By

Ying N. Li

B .A .Sc, University of British Columbia, 1995

A thesis submitted in partial fulfillment of the requirements for the

degree of

Master of Applied Science

In

The Faculty of Graduate Studies

Department of Electrical and Computer Engineering

We accept this thesis as conforming to the required standard:

The University of British Columbia

December 1998

©Ying N.Li, 1998

In presenting this thesis in partial fulfilment of the requirements for an advanced
degree at the University of British Columbia, I agree that the Library shall make it
freely available for reference and study. I further agree that permission for extensive
copying of this thesis for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is understood that copying or
publication of this thesis for financial gain shall not be allowed without my written
permission.

Department of 4 j b & £ ^ ^ / C e n ^ Z t - , £ U ^ e ^ ^ c ,

The University of British Columbia
Vancouver, Canada

Date

DE-6 (2/88)

Abstract

A method to estimate the execution time of software based on static metrics is proposed in

this thesis. The ability to produce an accurate estimate of execution times as early as

possible in the development phase is highly desirable. For hard real-time systems, an

extremely slow function may require an entire system to be redesigned. In the proposed

method, principal components and linear regression modeling are used to formulate a

model from a given set of representative functions. It is assumed that all functions are

programmed in a structured manner. The final result is a model that can be used to

generate decent first approximations of execution times. Once the model is established, it

is used to predict the execution times of other test functions. The major problem

encountered in the modeling is the indeterminate nature of loops in a function. The

number of times a loop structure is executed is dependent on the input parameters. It is a

dynamic characteristic and is impossible to measure with static metrics. Our solution is to

expand the source code by the number of times the loop is expected to execute. Then, the

metrics are taken from the expanded code. Extremely high correlations were observed

between the actual and the predicted execution times with the exception of fast functions.

It appears that the metrics used were insufficient for fast functions. This method seems to

work even across different execution platforms and languages. Though, this claim is

requires further investigation.

ii

Table of Contents

Abstract ii

List of Figures vi

List of Tables vii

Acknowledgements viii

Chapter 1: Introduction • 1

1.1 Background and Motivation 1

1.2 Review of Existing Work 2

1.2.1 Low Level Techniques 2

1.2.2 Complexity Analysis 3

1.2.3 Tempus Project 4

1.3 Thesis Objective 5

1.4 Thesis Organization 6

Chapter 2: Software Metrics 7

2.1 Lines of Code 7

2.2 Software Science Metrics 8

2.2.1 Basic Tokens 9

2.2.2 Length Equation 10

2.2.3 Program Volume 10

2.2.4 Effort 11

2.3 Cyclomatic Complexity 12

2.4 Miscellaneous Metrics 13

iii

2.5 Hybrid Metrics 13

2.6 Software Metrics and Execution Times 14

2.7 Summary 15

Chapter 3: Proposed Approach to Time Estimation 16

3.1 Proposed Approach 16

3.2 Model Formulation 19

3.2.1 Principal Component Analysis 20

3.2.2 Multiple Linear Regression 21

3.3 Model Verification 23

3.3.1 Significance of the Whole Regression Model 24

3.3.2 Test for Individual Regression Coefficients 25

3.3.3 Coefficient of Multiple Determination 26

3.4 Limitations of the Approach 27

3.5 Summary 28

Chapter 4: Results and Discussion 29

4.1 Software Tools 29

4.2 Test Programs 31

4.3 Model Formulation 33

4.3.1 Finding the Normalized Z matrix 33

4.3.2 Finding the Principal Components 33

4.3.3 Finding the Useful Principal Components 35

4.3.4 The Sim2 Model 36

4.4 The Sim2 Model Predicting the Expanded Code 38

iv

4.4.1 Category One Programs 39

4.4.2 Category Two Programs..... 41

4.4.3 Category Three Program 44

4.5 Model Robustness 46

4.6 Summary 47

Chapter 5: Conclusion 48

References 50

v

List of Figures

Figure 4-1: Sim2 Model 38

Figure 4-2: Sim2 Predicting B E N 40

Figure 4-3: Sim2 Predicting Fast Functions 40

Figure 4-4: Sim2 Predicting FFT 41

Figure 4-5: Sim2 Predicting Siml 42

Figure 4-6: Sim2 Predicting Siml without the Slowest Function 43

Figure 4-7: Sim2 Predicting Xboard : 43

Figure 4-8: Sim2 Predicting Program X 44

Figure 4-9: Sim2 Predicting Program X without the Slowest Function 45

vi

List of Tables

Table 4-1: UX-Metrics supported metrics : 30

Table 4-2: The Data Set 31

Table 4-3: Standardization of Sim2 Metrics •••34

Table 4-4: Sim2 Eigenvectors 34

Table 4-5: Correlation between P c and Time 35

Table 4-6: Regression Model Summary 37

Table 4-7: Regression Model Significance 37

Table 4-8: Regression Model Coefficient Significance 37

Table 4-9: Summary of Predictions 39

vii

Acknowledgements

I like to thank my father who started me on the long road of learning. Also, I wish to

express my appreciation to my professors at the University of British Columbia for their

patience and thought provoking ideas. In researching this thesis, I have received invaluable

assistance from Dr. H . Jin throughout the past few years. Additionally, special thanks is

due to Dr. G. Bond for his constant advice and guidance.

Financial support from Nortel and the BC Advanced Systems Institute is acknowledged

with gratitude.

viii

Chapter 1: Introduction

The objective of this work is to estimate the execution time of a structured function. The

capability of predicting the execution time prior to compiling and running a program is a

valuable tool in software development. It helps software developers to identify the slow

modules of a program. The performance of these bottleneck modules can then be

improved. This is particularly important in real time systems where timing is critical. The

proposed technique can be used at a very early stage of development. Not only wil l the

results pinpoint problem modules, it can also aid in determining the hardware needs of the

system.

1.1 Background and Motivation

Prior research has shown that efforts directed at preventing, detecting, and correcting

software defects could significantly reduce the total software development costs [Basili

84, Boehm 81]. This is not surprising as the earlier an error can be found and corrected,

the less effect it has on the rest of the system. This applies equally to real-time systems. In

addition to the above, in real-time systems, timing is an important component of the

requirements. For example, failure to meet timing requirements in hard real-time systems

may result in the failure of a project or even be life threatening. As companies are striving

to improve product performance while reducing the development cost and time to market,

there have been great interest and research activities in the general area of software

1

performance evaluation. This explains the interest in time estimation, which is a part of

performance evaluation.

1.2 Review of Existing Work

Many techniques exist for predicting the execution time of programs at the assembly or

object code level. However, very few techniques are available at the structured source

code level. In many cases, having a high level technique is important and useful since

compilers and/or platforms may not be accessible or available when needed. However,

once source code is available, it is possible to extract information from the code using

software metrics. Then, this information can be used to estimate the execution time of the

source code. Although various software code metrics have been applied in areas such as

quality control and error detection, with the exception of Tempus Project [Tempus 97],

we are not aware of any other work in progress attempting to relate metrics to the running

time of programs. This work proposes to use software code metrics to predict the

execution time of functions.

1.2.1 Low Level Techniques

L o w level techniques are prediction methods based on the machine or object code. Almost

all the techniques are based on the idea that each operation takes a certain amount of time

and the execution time for a function is calculated by summing up the execution time of

each instructions in that function. The question of which instruction wil l be executed is

answered either by static annotations [Puschner 89] or by dynamic profiling of the code

2

[Gupta 94]. Also, there are many papers, such as [Arnold 94], that examine the effect of

pipelining and caches on the prediction.

There are both advantages and disadvantages with low level techniques. The main

advantage is that very accurate results can be achieved with these techniques. The more

information that is used in forming the model, the better is the prediction. However, errors

are still introduced into the models from several sources. Cache hits and misses are one

source of error. The processor is another source of error. Manufacturers are not always

willing to provide all the details needed to determine the exact time for an operation.

Furthermore, with pipeline flushes and dynamic branch prediction in the processor, it is

not possible to have an exact time for a given operation. The main disadvantage of these

models is the amount of information that is required. Generally, the entire system is

modeled right down to the microinstructions used by the CPU. In addition, this can only

be accomplished after the code is compiled and all the hardware is finalized. This is very

late in the product cycle relative to code development.

1.2.2 Complexity Analysis

Work has been done in software complexity analysis using metrics. It is self-evident that

programs that are more complex will contain more faults and will be more difficult to

maintain. For example, the number of lines in a program is commonly used as one

indication of program complexity. One would view a program with a thousand lines

differently from one containing a million lines of code.

3

Munson and Khoshgoftaar proposed the creation of a complexity measure for use in

reliability modeling [Munson 92]. They used the statistical technique of factor analysis,

which is an elaborate form of principal component analysis, on various software metrics.

Factor analysis is used to determine the major components of the metrics that are

correlated with reliability. In other works, the authors show that complexity measure is

strongly predictive of the number of faults in a software system.

While software metrics have been successfully used for complexity analysis, we believe

that these metrics also contain information about the execution time of the structured

code. For example, code that contains many branches, as indicated by the cyclomatic

complexity metrics, would execute faster than code of the same size that does not contain

branching instructions.

1.2.3 Tempus Project

Software Productivity Solutions, Inc. has developed a software measure, T, that is claimed

to predict the execution time of real-time systems [Tempus 97]. The dimensional unit for r

is number of run-time operations, which makes it a counting metric. The source code is

translated into a machine independent op-code format. Every op-code is assigned a value

and the final metric value equals the sum of the op-code along the execution path. The

final metric is again weighted by the executing architecture. They have computed a

Coefficient of Determination, R2, between execution time and the software measure T to

4

be 0.9511. The Coefficient of Determination measures the closeness of the relationship

between the two values with a maximum value of unity. Therefore, their result of 0.9511

shows a strong relationship between execution time and the software measure.

However, there is a lack of information to evaluate this approach, as is this a commercial

product. For instance, little information is given about the test data except in one of the

graphics. In [Tempus 97], six series are labeled in a diagram: odd, factorial, term, sin, cos,

and tan. Although it is claimed that these procedures are for real-time systems, it appears

to us that these are mathematical functions with regular predictable execution patterns

thus making these particular functions easier to predict. For example, reducing the

acceptable error when calculating sin x would increase the execution time. Given the

algorithm used to find sin x, the increased execution time can be easily predicted.

1.3 Thesis Objective

The objective of this thesis is to develop a method of predicting the execution time of

structured functions based on static software metrics. This is the earliest stage in which a

quantitative prediction can be done. Before the source code is produced, there exist only a

timing requirement that has to be meet. Only after the source code is produced can

quantitative measures be taken.

In many situations, software code is not ready to be executed. This can be due to many

factors. For example, the hardware and the compilers might not be determined or

5

available, or other software modules are not ready for integration. Yet, the timing

information is needed as soon as possible. The combined timing information of several

modules can be used to insure that the whole system meets all of its timing requirements.

If a module goes over its timing limit, it must be optimized or the system must be

rescheduled.

To accomplish this, it is necessary to have some quantitative measures of the source code,

and software metrics can be used for this purpose. The objectives of this work are,

therefore, to determine the correlation between the software metrics and the execution

time, to develop the methodology of predicting the execution time of source code, and to

validate the proposed technique.

1.4 Thesis Organization

This thesis will be organized in the following way. Chapter 2 examines the basic concept

of software metrics in detail. Chapter 3 explains our approach. In Chapter 4 the results are

presented and discussed, and the conclusions are summarized in Chapter 5.

6

Chapter 2: Software Metrics

Software metrics grew out of the need in software engineering for quantitative

measurements of software code. These quantitative measurements or metrics are used in

answering several important questions such as the differences in complexity, error rate,

maintainability, production time, and testability between two software programs. At the

beginning, simple metrics like lines of code dominated. In 1977, Halstead published

[Halstead 77] and introduced the software science metrics. A year before that, McCabe

wrote [McCabe 76], which defined the cyclomatic complexity metrics. Now various

hybrid metrics exist. This chapter introduces the basics of the commonly used metrics, and

those that are the used in our work to predict the execution time of functions.

2.1 Lines of Code

The first set of simple metrics involved counting the number of lines in a function. The

simplest metric is lines of code (LOC) . It is claimed in literature that, based on L O C , it is

possible to predict the reliability and maintainability of code. Due largely to its simplicity,

this metric is widely used with several variances.. The variances differ in what is considered

a line of code. Some measure only source statements and others include comment and

blank lines. One problem with L O C is its dependency on individual programmers.

Programmers differ in how they format their code. Each has an individual style to writing

source code. L O C is also dependent on the language used. Some languages are more

7

expressive than others are. The same thing can be accomplished in one line in one

language that would take several tens of lines in another.

In UX-Metrics, a software used in our work to collect metrics from C and C++ programs,

there are four metrics that relate to the number of lines of code. They are lines of code,

physical source statements, logical source statements, and executable semi colons. In this

case, a line of code is defined as a count of every physical line of code from the start of the

function to the end of the function, including comments and blanks. Physical source

statements are similar but exclude comments and blanks. Logical source statements are

counted in only two cases. It is increased when executable statements end with a semi

colon and for all control statements, like "else." Lastly, executable semi colon is a count of

the number of executable semi colons in the code. Therefore, the "for" statement would

have two executable semi colons. As discussed, all four variant metrics are very similar.

2.2 Software Science Metrics

In 1977, Maurice Halstead of Purdue University published his work on software metrics

[Halstead 77]. He recognized that LOC is not accurate and developed a different theory to

model program size. Based on his theory, programs consist of the manipulation of tokens:

operators and operands. Operands are variables and constants. On the other hand,

operators are the actions on the operands. From these basic tokens, he derived a large

number of metrics.

8

2.2.1 Basic Tokens

Halstead formulated several metrics based on the number of operators and operands in a

program based on four parameters:

7]i. number of unique operators

772: number of unique operands

NT. total number of operators

N2: total number of operands

The program vocabulary, 77, is defined as:

f] = TJi + T]2 (2.1)

The program length, N, is defined as:

N = N1+N2 (2.2)

Originally, Halstead did not include precise definition of operators and operands and relied

on intuitive understanding. In many cases, what is counted as operators and operands are

dependent on the user. For example, "goto x" can be taken as one operator and one

operand, or it can be viewed as only a single operator. However, most work in the area

suggests that minor differences are immaterial as long as the counting procedures are

9

consistent [Currans 86]. Also, Halstead felt only the executed part of the code is important

and therefore did not include function declarations in his metrics.

2.2.2 Length Equation

The predicted length of the program (TV) is defined as:

N = TJi l0g2(77;) + 772 l0g 2 (772) (2.3)

This interesting relationship is available before the code is completed since it depends only

on 7]i and r)2. Usually, the number of unique operators in a language is constant and the

number of unique operands can be obtained from the design specifications. High

correlations have been shown between the actual measured length, N, and the predicted

length, N. Correlations above 0.90 are common. Halstead suggested that the differences

between N and N are due to impurities in the coding. Impurities are due to poorly written

algorithms and is measured with the purity ratio defined as:

PR = N/N (2.4)

2.2.3 Program Volume

Another interesting metric is the program volume, V that is defined as:

10

V = Nlog2(77) (2.5)

Halstead gave two reasons for this metric. First, given that a program has 77 unique

tokens, it would take log2(?7) bits to represent them all. With N as the total number of

operators and operands, it would take V bits to represent the whole program.

Alternatively, to understand a program with a program length of N and a vocabulary of 77,

it would take one mental look-up for each N. Assuming the look-up is done in a binary

manner (log2 77), the total time to understand the program would be given by the volume

metric, V.

2.2.4 Effort

This metric is based on the Volume metric, V. However, it is adjusted based on the

abstraction level of the program, X. Unfortunately, the abstraction level of a program is

difficult to determine. It is usually estimated with: -

A =2/77; • rj2/N2 ' (2.6)

The highest possible value for A is unity. The abstraction level depends on two terms. The

first term, 2/77;, decreases as the number of unique operators increases. Fewer operators

imply a more abstract program. The two in the expression 2/77; comes from the fact that, a

minimum of two operators are required to implement a function, the function call and its

11

argument. The second term, rjrfW, is the average of the number of operands, inverted.

Again, each time the operand is used, the abstraction level decreases. This leads to the

definition of effect as:

E = VI X (2.7)

2.3 Cyclomatic Complexity

The idea of cyclomatic complexity was first presented by Tom McCabe in 1976 [McCabe

76]. Whereas the Software Science metrics measure the size of the code, cyclomatic

complexity measures control flows. The metric itself is extracted from the control flow

graph. This graph is built with basic blocks of code being represented with nodes, /?, and

branch statements with directed edges, e. A basic block is a section of sequentially

executed code. There is no branching within the block. Decision points or branch

statements are represented with directed edges. These would include conditional

statements and loop structures. The directed edges connect one basic block to another

depending on which block is executed if that branch is taken in the code. Cyclomatic

complexity, V(g), is defined as:

V(g) = e-n+2 [2.8]

Only a year after McCabe published his paper, Glenford Myers suggested an extension on

this metric. The extended cyclomatic complexity is defined similar to McCabe's. Instead of

12

having each branch statement represented with one edge, each edge represents only one

simple predicate. A predicate is a condition without the AND/OR operators. Therefore,

for every AND/OR operators, the extended cyclomatic complexity is increased by one.

Thus, depending on the complexity of the conditional statement, each branch can be

represented with more than one directed edge. This is claimed to be a more accurate

metric than the standard cyclomatic complexity.

2.4 Miscellaneous Metrics

In addition to the above defined metrics, UX-Metrics uses three other metrics: span of

reference, nesting depth, and average nesting depth. Span of reference is defined as the

average of the maximum number of lines between variable references. A reference can be

either the definition or the use of a variable. The maximum number of lines between

references for each variable is calculated. These are then averaged for a function and

reported as the metric. Nesting depth is the,number of nesting control structures. Every

nesting control structure increases this metric by one. Finally, the average nesting depth is

the depth of each logical statement divided by the number of logical statements.

2.5 Hybrid Metrics

Hybrid metrics are those that combine one or more basic metrics. There are well over 100

distinct metrics of software complexity in the research literature [Zuse 90]. Each is slightly

different and has its own proponents proclaiming its predictive abilities. In essence, they

combine some aspect of Halstead's orv McCabe's metrics. One of the most notable

variants of hybrid metrics is presented by Munson and Koshgoftaar [Munson 89, 90a, 90b,

92, 93]. Using a form of principal component analysis, they combine various commonly

used metrics into a relative complexity metric. They consider these combined metrics to be

more reflective of software complexity.

2.6 Software Metrics and Execution Times

It is evident that some metric can contribute to estimating the execution time of functions.

The LOC metrics show how many lines are in each function. Functions with many lines

will tend to take longer to execute. A similar statement can be made about the metrics that

Halstead defined, even though, the exact relationship between his metrics and the

execution time of each function is difficult to determine. Similarly, cyclomatic complexities

are branch points in the code. The more branch points there are in the code, the faster the

code will execute since branching causes the code to execute fewer statements.

The most interesting idea is presented by the hybrid metrics. As stated before, the exact

relationship between the software metrics and the execution time of a function is

unknown. However, by using Munson's idea, it is possible to generate principal

components that are more predictive of execution time than the individual metrics. In

addition, it would be simpler to define and reason with the few domains that are

represented by the principal components than with the raw metrics. This approach is

adopted in this thesis.

14

2.7 Summary

In this chapter, many of the basic software metrics have been examined. It starts with lines

of code then more advanced metrics, such as the software science metrics and cyclomatic

complexity, are discussed. Munson and Koshgoftaar presented a method of combining

these metrics into a relative complexity metric using a form of principal components.

Though they primarily used the principal component method in complexity analysis, we

adopt the statistic method in our proposed approach to predicting execution time at the

function level.

15

Chapter 3: Proposed Approach to Time Estimation

The proposed approach to time estimation is presented in this chapter. It uses software

metrics as discussed in the previous chapter, to formulate a linear regression model. This

model can be used for predicting the execution time of other functions. The first section of

this chapter outlines the basic approach. This is followed by more information of how the

model is formed and verified. Section 3.4 explains the limitations of this method.

3.1 Proposed Approach

The proposed approach is to predict execution time of structured functions based on the

static software metrics of those functions. This is carried out in two steps. First, a model is

formulated, by linear regression, from a standard program with both the metrics and

execution time information already available. This will determine the regression

coefficients of the metrics versus the execution time. Once the coefficients are determined,

they are used to predict the execution time of other functions based on their metric values.

When the model is formulated from the standard program, there are two main problems if

the raw metrics are used in the regression. First, there is a large difference in scale of the

different metrics. Secondly, collinearity exists in many of the metrics. Collinearity happens

when metrics measure similar properties. The scale problem is solved by standardization of

the raw metrics. To standardize individual metric values, each is subtracted from the mean

16

and then divided by the standard deviation for that particular metric type. The second

problem of collinearity is solved using principal components analysis. After the raw

metrics are transformed, first by standardization and then by principal component analysis,

they can be used in linear regression.

Once the measured execution times are provided and the principal components are

calculated for the standard program, the linear regression can be carried out. One

condition for selecting the standard program is that the functions in the standard program

should be representative of the other functions that the resulting model will be used to

predict. This is, different types of programs have different metric characteristics and this

fact must be taken into account. For example, computational based programs have more

intensively executed loops as compared to real-time programs. The other requirement for

the standard program is that the execution times of each function must be known. The

requirement can be met by selecting the standard program from previously completed

projects, or from benchmark cases if available.

After the model is formed, other functions can be easily predicted. First, raw metrics are

extracted from the functions. Then, the exact same procedures of standardization and

principal component transformation are applied. This means that both the standard

functions and the functions to be predicted are the same statistically, since the same

operations are applied to both in order. Once the transformations are applied, predictions

are generated by multiplying the result of the transformations by the regression coefficient

obtained from the model.

17

To summarize, the proposed procedure to calculate the regression model is:

• Choose an existing set of functions as a standard. The standard functions

should be representative of the type of programs to be tested. Extract and

standardized the metrics for each function and stored the values in matrix

defined as Z. For the convenience of discussion, assume that the program has

75 functions and 16 metrics are extracted, Z would be a 75x16 matrix.

• Calculate the correlation matrix p of the matrix Z. The matrix p will be 16x16.

• Calculate the 16x16 normalized eigenvector matrix E from the matrix p. Each

column of the matrix E is a normalized eigenvector of the matrix p.

• The principal component matrix P c is calculated based on:

P C = Z-E (3,1)

Pc has a dimension of 75x16.

• Given the actual execution time of each function in the program in a column

vector, x, calculate the regression coefficients P using linear regression

techniques.

Once the regression coefficients (3 are found, we can use them to estimate the time of

other programs following these procedures:

• Extract the metrics of the functions to be tested, and standardize these metrics.

This would be the same transformation applied to matrix Z above. Then record

18

the standardized values in matrix Z i . The number of rows of Zi is the same as

the number of functions being tested.

Z i is transformed into principal components by

Pci = Zi • E (3.2)

• The estimated time Y i is calculated as in (3.3). A column vector of ones is

added for the intercept term.

3.2 Model Formulation

This section will present the statistical techniques used in this thesis to formulate the

model: principal component analysis and multiple linear regression. These can be found in

most statistical text such as [Johnson 92]. The primary goal in principal component

analysis is to find the appropriate variables, that is, to represent the entire set of variables

by only a few variable domains. On the other hand, multiple linear regression is concerned

with finding the relationship between a response variable, the execution time, and multiple

predictor variables, the transformed metrics. Both will be used to formulate the model for

the prediction of execution time.

Yi = [llPci]-P (3.3)

19

3.2.1 Principal Component Analysis

Principal component analysis is a data transformation technique that provides the

transformed variables with useful statistical properties. In this case, it is use to reduce

collinearity and reduce the number of predictor variables for multiple linear regression.

Collinearity happens when two variables are closely related in the linear sense. After the

transformation, the variables have the property of being uncorrelated with each other.

They will be used in multiple linear regression to predict the execution time of functions.

Principal component analysis can be done with either the covariance or correlation

matrices. The results are two completely different solutions, one from using the covariance

and another from using the correlation matrix. This is due to the scale sensitivity of the

covariance matrix. When the data set is in different units, as in software metrics, the

correlation matrix is generally employed. In addition, with standardized data, the

covariance matrix is identical to the correlation matrix. In the treatment below, correlation

matrices will be use. However, identical procedures also work for the covariance matrices.

The correlation matrix is defined as:

1 P12 _ _ Pip

P21 \ p2p

Ppl Pp2 1

(3.4)

Where p,j is the simple correlation between metrics / and j. The eigenvector and

20

eigenvalue is then extracted from p. Assuming the standardized data is in Z with data

points are represented in rows with columns representing different metrics then the

transformed data, P c , is defined as:

P c = Z [e i e 2 ... ek] (3.5)

Where ej is the /* eigenvector of p. If the rank of p is p then the maximum value for k is p.

However, a few eigenvectors of p is usually dropped because they are insignificant.

Therefore, k is usually less than p. One rule of thumb is to drop all eigenvectors when its

corresponding eigenvalue is below unity. There is no hard justification for this except that

an eigenvalue of less than unity implies the transformed variable explains less variance than

one of the original variables.

3.2.2 Multiple Linear Regression

Multiple linear regression is concerned with finding a relationship between a response

(independent) variable and multiple predictor (dependent) variables. It will be used here to

find the relationship between the execution time of functions and software metrics. In this

case, only one response variable is needed to represent time for each function. Therefore,

the linear regression model for the I t h function is:

y,- = PoXi.o + & xitl + ... + p\xuh + G (3-6)

21

Where y,- is the actual execution time, Po to p\ are the regression coefficients, x-,,o is the

constant 1, x,-,; to are the principal component values, and £,• is the error. In other

words, the response equals to the sum of some factor of each predictor variable and error.

The term linear is used because the parameters Po, Pi, p\ are linear. In matrix form

(3.6) is:

y = xp + e (3.7)

Where P = ...,#].

The method of least square error is usually employed to find the value of the parameters p\

The least square function is:

S(Po,p},..., = (3-8)

The summation is done over all the functions used in the model formation. The idea is find

Po, Pi, p\ which minimizes the total square error of all the data points. Taking the

partial derivative of (3.8) and setting it to zero will achieve this. The result is the least

square estimation for the parameters p0, Pi,p\. In matrix form:

S(P) = £T£ = (y-xP)T(y-xP) (3.9)

22

Rearranging (3.9) gives:

S(P) = y T y-p T x T y-y T xP + p T x T xP

= y T y-2p T x T y + p Tx Txp (3 . 1 0)

Taking the derivative of (3.10) with respect to (3 and setting to zero gives:

-2xTy + 2xTxp = 0 (3.11)

Solving (3.11) for P gives:

' P = (x1x)-1x1y (3.12)

In this case, (3.12) gives the parameters of the regression model based on the metrics and

execution times of the standard functions.

3.3 Model Verification

After a model is obtained, it is necessary to check if the model is valid. The best way is to

examine the results graphically. Any patterns in the residual plots would indicate if a

systematic error exists. Residual is the difference between the predicted and actual value.

Besides the residual plots, there are various numerical tests that indicate the validity of the

model.

23

3.3.1 Significance of the Whole Regression Model

This test determines if (3.7) is a valid model for the data being studied. The correct

hypotheses are:

H 0 : p=0

• H i : (3*0 (3.13)

If the null hypothesis, Ho, is rejected, then at least one of po, Pi, A is n o t zero. In other

words, at least one of the parameters is useful. On the other hand, if Hi is rejected in favor

of the null hypothesis then none of the parameters are useful and the model is meaningless.

The null hypothesis is rejected if the value of F0, defined below, is greater than the F-

value. The F-value can be obtained from a chart at a significance level of a and degrees of

freedom £+1 and n-k-2, where the number of predictor variables is k and the total number

of data points is n, and a is the confidence or tolerance level. The value F0 is defined as

below:

F0=MSR/MSE (3.14)

F0 is a ratio of MSR (mean square of regression) and MSE (mean square error). MSR is

the sum of square due to regression and MSE is the sum of square of the residual each

divided by its corresponding degrees of freedom.

24

MSR = SSR/(fc+l)

M S E = SSE/(/i-fc-2)

(3.15)

(3.16)

The sums of squares for the analysis of variance are:

SSR = pTxTy - nY2 (3.17)

SSE = eTe = yTy - pTxTy (3.18)

SST = SSR + SSE = yT y - nY1 (3.19)

Where Y2 is the square of the mean of the response variable, SST is the sum of square of

total variance and is composed of two parts, SSR and SSE. It is the sum of all the

observed values of the response variable squared and corrected for the mean value.

3.3.2 Test for Individual Regression Coefficients

It is generally necessary to test individual predictor variables to determine whether they

contribute to the regression model. A model could be more or less efficient with the

inclusion or exclusion of one of the predictor variables. The appropriate hypotheses for

testing an individual is:

H 0 : Bj = 0

A*0 (3.20)

25

If the null hypothesis is not rejected then it suggests that the j predictor variable can be

removed from the model. The test for this is:

(3.21)

Where 8 2 is (£Te)/(n-£-l) and Q is the diagonal element of (xTx) _ 1 corresponding to Bj.

Basically, the t-value is found by dividing each p) by its corresponding standard error. If

\to\ > t(cx/2>n.k-i) then H 0 can be rejected in favor of H i . It is more accurate to use the

simultaneous confidence interval and the F-test. Namely, if \t0\ > (k+l)-F((X,k+i,n-k-i), then

H 0 can be rejected in favor of Hi . However, most practitioners use the t-test for checking

individual regression coefficients.

3.3.3 Coefficient of Multiple Determination

The coefficient of multiple determination, denoted R2, measures

variability of the prediction obtained by using the predictor variables

R2 = SSR/SST = 1 - (SSE/SST) (3.22)

SSR, SSE, and SST are defined in (3.17) to (3.19). Clearly, R2 will always fall between

zero and one inclusively. This is the same R2 that was obtained from the correlation

between the observed and predicted values of the response variable. Unfortunately, R2

26

the reduction in the

. It is defined as:

near unity does not necessarily imply that the model is good. Adding more predictor

variables always increases R2 and never reduces it. This is because SST is constant for

given set of responses and-SSR always increases with additional predictor variables.

Therefore, an adjusted coefficient of multiple determination is also defined as:

adjusted R2 = 1 - (rc-l)/(/i-M)(SSE/SST) [3.21]

3.4 Limitations of the Approach

The main limitation with predicting the execution time of a structured program from

source code alone is loop structures. It is impossible to determine the number of times a

loop is executed without executing the whole program. At present, the metrics used do

not take into account loop structures. To test our hypothesis, we remove each loop

structure and replace it with equivalent code. With the equivalent code used for testing,

the prediction errors are dramatically reduced. This is referred to as expanding the code.

Some programming languages require a loop bound on each loop structure. This can be an

explicit part of each loop structure or a type bound on the index variable. Therefore, to

apply our technique, either the upper bounds or the average number of times a loop is

executed must be provided.

Unlike loop structures, branching instructions present little problems. It appears that the

various metrics like cyclomatic complexity account nicely for the branching effect. Of

27

course, the programmer could supply some information concerning each branch, for

example, the percentage that the true branch of an if statement is taken. Fortunately, this

does not appear necessary, since the majority of the error in the prediction is from loop

structures.

3.5 Summary

This chapter describes the technique and procedure of predicting the execution time of a

structured program using software metrics. Software metrics are problematic from a

statistical viewpoint since many exhibit large differences in scale and have collinearity.

Therefore, it is necessary to transform the data with standardization and then principal

component analysis. After the transformation, the principal components are used in linear

regression. The resulting model can be used to predict the execution time of other

structured functions. Equation (3.7) givens the general regression model and (3.12) shows

how the parameters are chosen. As discussed, the model can be validated in a number of

ways. Prediction on other functions can be made by applying the same transformations and

then applying the regression model, as shown in (3.3).

28

Chapter 4: Results and Discussion

In this chapter, the technique proposed in Chapter 3 is applied to a number of test cases.

First, the software tools employed are examined. Then, detail on the test data is given.

Following the proposed method outlined, a model is formulated. Finally, various aspects

of the modeling are discussed, and the results presented.

4.1 Software Tools

Three major software packages are used to extract the various metrics from the test

programs. They are GCT, UX-Metrics, and Quantify.

Brian Marick of the Testing Foundation wrote the generic coverage tool, GCT for C

programs. It is a C preprocessor. It inserts tags into.each possible branch of the program.

When the instrumented program is executed, the path taken by the program is recorded by

the tags along the execution path. Note that the instrumented program runs significantly

slower than uninstrumented versions of the program. By examining the tags after a test

program runs to completion, it is possible to reconstruct how many times a loop structure

is executed. This information is used to expand the source to remedy the loop effect

discussed in section 3.4.

UX-Metrics is a commercially available program from Set Laboratories Inc. It was used to

2 9

extract the following metrics from the test data:

Table 4-1: UX-Metrics supported metrics

L O C Halstead Cyclomatic Misc. Metrics
Lines of Code, L O C

Physical source
statements, PSS

Logical source
statements, LSS

Executable semi
colons (;)

r|i,ri2, N i , N 2

Predicted length, N

Volume, V

Effort, E

Cyclomatic
complexity, V G 1

Extended cyclomatic
complexity, V G 2

Average maximum
span of reference of
variable, SP

Nesting depth, Dpth

Average nesting
depth, AvgDp

Lastly, Quantify too is a commercially available program from Pure Software Inc. Again,

it is basically a C preprocessor. It is used to record the number of cycles various parts of a

program take to execute. It is interesting to note that most system calls are not included

during timing measurements.

These three programs are used to gather all the test data. The execution time of all the

functions is measured using Quantify. GCT serves as a dynamic tracer. It traces the

execution path of the test programs. Using the information from GCT, the source code is

expanded. Finally, UX-Metrics is used to gather the metrics information from the

expanded code.

30

4.2 Test Programs

A total of seven software programs were used in the experiments. They can be roughly

divided into three categories shown in Table 4-2. The number of functions, the language,

whether expanded code is available, and whether the expanded code contains timing

overhead for each program are also listed.

Table 4-2: The Data Set

Category Program Functions Language Expanded Code Timing Overhead

1
B E N 7 C Yes No

1
FFT 5 C Yes No

2

Siml 60 c Yes No

2 Sim2 75 > c Yes . No 2

Xboard 145 c Yes Yes

3
Program X 24 c Yes No

3
Program Y 100 C++ No N / A

The first category of programs consists of the two small programs. They are the burst

error network simulator (BEN) and the fast Fourier transform (FFT) calculation program.

These are locally written programs.

The second class of programs contains Siml and Sim2, which originated from the

Rochester Connectionist Simulator, and Xboard. The Rochester Connectionist Simulator

31

is a system tool designed to simulate network programs. Data was collected from two

runs of this program, Siml and Sim2. Siml is a network program that tries to color a map

with four colors so that no two neighboring regions have the same color. Sim2 is a

simulation program for a three-layer neural network containing eight, three, and eight

cells. The task is to learn to reproduce the input pattern at the output. Essentially the cells

must learn to binary encode the input, and the output layer needs to binary decode.

Finally, Xboard is a graphical X windows user interface program for playing chess. The

Xboard client uses TCP/IP to connect to a chess server over the Internet and the user can

play chess with other opponents connected to the same server. Due to the interactive

nature of Xboard, it was not possible to execute it with a predetermined set of inputs like

the rest of the data. Consequently, Xboard contains the timing overhead from GCT since a

separate run to collect timing information might have a different execution path. A l l three

test programs in this category were downloaded from the Internet.

The third category of programs is made up of Program X and Program Y . Both are

proprietary programs used in Nortel. Both were prototype programs to simulate switching

telephone networks. Because Program Y was written in C++, the expanded code is not

available for it. They were written to determine if timing requirements could be satisfied.

The programs in category 1 and 2 were tested on a Unix Sun workstation running SunOS

Release 4.1.1. However, category three programs were executed on a HP UNIX machine

at Nortel.

32

4.3 Model Formulation

In this section, the Sim2 model formulation is investigated. The ideas from the Chapter 3

will be applied. Various other models were tried but Sim2 seems to be the best. However,

other models were formed in a similar way and tested. This should serve as an example.

4.3.1 Finding the Normalized Z matrix

The first step is to find the normalized Z matrix. The raw metrics are extracted by U N -

Metrics from Sim2. Table 4-3 lists the mean and standard deviation for each metric. To

form the matrix Z, each metric value is subtracted by its corresponding mean in the table.

The result is then divided by its corresponding standard deviation value, also given in

Table 4-3. The reason for standardization is clear from the different scales of the metrics.

For example, E is extremely large when compared to AvgDp. In linear regression, such

large-scale difference would produce models that are heavily weighted towards E as the

dominant predictor. By standardization, this effect is eliminated.

4.3.2 Finding the Principal Components

The first step to finding the eigenvectors is to produce the correlation matrix p. Using a

numerical program, the eigenvalues and eigenvectors of p is found. Table 4-4 listed only

the first seven eigenvectors (ei . . . e7). They have the largest eigenvalues of the 16

eigenvectors. Finally, the matrix Z is multiplied by ei ... e7 to give Pc, as shown in (3.5).

33

Table 4-3: Standardization of Sim2 Metrics

Metric Mean So-
19 lO

20 16

N, 409 1495
N 2

272 992
N A 178 142
V 4115 15682
E 7672800 43504000

VG1 25 111
VG2 32 125
L O C 121 431

> 62 220
SP 11 42

Dpth 2 4
AvgDpth 1 1

PSS 115 413
LSS 57 192

Table 4-4: Sim2 Eigenvectors

Metric ei e2 e3 e4 e5 e6 e7

Til 0.151 -0.388 0.151 -0.570 -0.077 -0.302 0.097

T|2 0.141 -0.468 0.141 0.466 0.101 0.259 -0.091
Ni 0.289 0.091 0.289 0.064 0.168 -0.212 -0.172
N 2 • 0.287 0.099 0.287 0.121 0.105 -0.433 -0.020
N A 0.156 -0.461 0.156 0.147 0.052 0.120 -0.011
V 0.291 0.085 0.291 0.077 0.110 -0.110 -0.131
E 0.281 0.152 0.281 -0.174 0.012 0.391 0.126

VG1 0.285 0.109 0.285 -0.128 -0.076 0.468 0.176
VG2 0.273 0.114 0.273 -0.236 0.656 -0.025 0.279
L O C 0.290 0.086 0.290 0.002 -0.007 0.174 -0.187

0.288 0.092 0.288 0.175 -0.131 -0.339 -0.096
SP 0.275 0.095 0.275 0.055 -0.634 -0.101 0.490

Dpth 0.125 -0.409 0.125 0.224 0.109 -0.119 0.479
AvgDp 0.146 -0.378 0.146 -0.448 -0.176 0.043 -0.391

PSS 0.291 0.087 0.291 -0.008 -0.016 . 0.199 -0.054
LSS 0.289 0.054 0.289 0.158 -0.177 -0.011 -0.375

34

4.3.3 Finding the Useful Principal Components

Table 4-5 lists the correlation between the principal components and the execution time of

the functions in Sim2. As shown, the components most strongly associated with execution

time are ê e4, es, e6, and e7. These were used in the regression as the predictor variables.

The meaning of each component can be identify with Table 4-4 by examining the relatively

large values, in absolute terms, in the corresponding vector. Component 1 seems be to an

overall average of the various raw metrics. Component 4 is a measure of the function's

complexity. Component 5 measures the number of boolean literals in the function. This is

strongly correlated with the case statement. Component 6 measures the size of the

function and compares it to the number of possible branches. Component 7 measures

variable use, how far between references and how deep into nested structures.

Table 4-5: Correlation between P c and Time

Pc r Pc r
e i 0.9088 e9 -0.0137
e 2

0.0995 e i o 0.0179
e 3 -0.0029 e n 0.0213
e 4

0.1671 e n -0.0146
e 5

0.1342 e-13 -0.0005
e 6

-0.2348 e-14 0.0007
e 7

-0.2248 e i s 0.0248
e g -0.0726 e i 6 -0.0303

35

4.3.4 The Sim2 Model

The model is formulated as outlined above. In this case, the standard program used is the

expanded code for Sim2. The 16 metrics, obtained using UX-Metrics, were first

standardized. Each would average to zero and have a standard deviation of one. Using

(3.5), the raw metrics were transformed into 16 principal components. For the 16 principal

components, the five with the strongest correlation to the execution time were used in the

linear regression.

Tables 4-6, 4-7, and 4-8 all show that the regression used to formulate this model is

reasonable. The regression model is highly significant as suggested by the F of over 600 as

shown in Table 4-7. Since this means that the significance level of F almost zero, the

model is highly accurate. Also, the individual coefficients are significant as evidence by the

t-values and the corresponding almost zero p-values in Table 4-8. The p-values are the

significance level for the t-test. As well, both the adjusted and normal coefficient of

multiple determination is near unity. The extremely low significant level for both the F-test

and the t-test as well as the near unity of the correlation coefficients are all consistent with

a very accurate model.

Figure 4-1 shows the regression scatter plot of the predicted and actual execution times.

Although some values were predicted as negative, this is normal behavior when predicting

small values with normalized data. The plot shows that the predicted execution times are

very close to the actual execution times. Again, this points to a very strong model.

36

Table 4-6: Regression Model Summary

REGRESSION STATIS1 ncs
Multiple R 0.988710
R Square 0.977548
Adjusted R Square 0.975921
Standard Error 129.9329
Observations 75

Table 4-7: Regression ModelSignificance

DF SS MS F Significance F

Regression 5 50719844 10143969 600.8551 2.04E-55
Residual 69 1164896 16882.55
Total 74 51884740

Table 4-8: Regression Model Coefficient Significance

Coefficients Standard Error t Stat P-value
Intercept 277.403 15.00336 18.48940 1.94E-28

PC 1 224.483 4.45556 50.38266 3.7E-56
PC 4 297.640 32.12460 9.26518 9.85E-14
PC 5 264.273 35.51869 7.44039 2.1E-10
PC 6 -604.866 46.47531 -13.01480 3E-20
PC 7 -651.674 52.29414 -12.46170 2.48E-19

37

Figure 4-1: Sim2 Model

(/>
0)
u >. u

•a

6000

5000

4000

3000

2000

1000

»m «r.„

1000 2000 3000
11 4-
4000 5000 6000

Time (cycles)

4.4 The Sim2 Model Predicting the Expanded Code

The sim2 model is used to predict five test programs: B E N , FFT, Siml, Xboard and

Program X . Table 4-9 summarizes the result of the predictions. The R2 is the square of the

correlation between the prediction and the actual value of the functions in each of the

expanded source code program. It ranges from 0 to 1 and is a summary of the strength of

the relationship between the predicted and actual values of the execution time. Program Y

was not expanded and therefore not listed. Overall, an excellent correlation is shown

between the actual and the predicted execution times.

38

Table 4-9: Summary of Predictions

Category Program R 2

1
B E N 1.0000

1 FFT 0.9843

2
Siml 0.9684.

2 Xboard 0.6538

3 Program X 1.0000

4.4.1 Category One Programs

The prediction results of B E N and FFT are shown in Figures 4-2 to 4-4. Figure 4-3 is the

same as Figure 4-2 with the slowest function in B E N removed. The behavior of both the

B E N and FFT predictions is similar. Both programs are characterized by a dominant

function that takes the majority of the execution time. These dominate points lead to an

overstatement of the R2 value. This accounts for the near unity values for these two tests

programs. Yet, Figure 4-3 shows that the R2 value listed for the category one programs in

Table 4-9 is misleading.

Figure 4-3 demonstrates an important weakness in the theory even given these

computationally based programs. Because linear regression is disproportionally affected by

the larger values, regression models based on large values are poor predictors of extremely

fast functions. Fortunately, in most situations, the fast functions are not of interest in

scheduling real-time systems and the slow functions are ones that are important.

39

X
(A
U
>.

c o

TJ
9>

1.51

1-

Figure 4-2: Sim2 Predicting BEN

o -f-
10

Time (cycles x 10)

o >.

c o

~u
0)

40 n..

30

20

10

-10 JL

-20

Figure 4-3: Sim2 Predicting Fast Functions

4

" T

J8>

-30

-40

Time (cycles)

40

w _o
o >»
c o

3 r -

2.5

1.5

1-

0.5-

0 4

Table 4-4: Sim2 Predicting FFT

Time (cycles x 10)

10

4.4.2 Category Two Programs

Figures 4-5 and 4-7 show the prediction of Siml and Xboard using the Sim2 model.

Figure 4-6 is the same as Figure 4-5 but has the. slowest function removed. Three

functions in Xboard (main, FindFont, and yylex) were treated as outliners and removed

from the calculations. Outlines is a term that means "bad values" for data points that fall

outside the line implied by the rest of the data. The main function is removed because it

contains the bulk of the GCT path tracing overhead, making the actual time slower than

the time without GCT overhead. The function FindFont could have been executed

without Quantify configured properly to catch its system call. The function yylex is

removed because it contains "go to" statements. Our approach to time estimation cannot

account for the irregular control flows generated using "go to" statements. The

assumption is that only structured programs will be involved.

41

As shown in Table 4-9, the square of the correlation between the predicted and actual

execution times for S iml is near unity. It implies that the prediction model explained about

97% of the variance. The actual execution times of the Xboard functions are slower than

the predictions. However, all the functions seem to be at a constant factor of four times

slower and Figure 4-7 does shows a linear relationship. This four-times slower prediction

is due to the G C T overhead resulting in a constant speed reduction. Xboard was the only

function that contains the G C T probes while data was collected by Quantify. Nevertheless,

the R2 in Table 4-9 shows that over 65% of the variance in the actual execution time is

explained with this prediction. Taking this into account, both of the programs in category

two are well modeled.

Figure 4-5: Sim2 Predicting Siml

30000

25000

.2 20000 u
>»

15000
o

I 10000
T J
CL 5000

10000 20000 3GQ00 40000
!

50000 60000

Time (cycles)

42

Figure 4-6: Sim2 Predicting Siml without the Slowest Function

6000

^ 5000

| 4000
>>

~ . 3000 c o
2000

£ 1000

.mm _3000

Time (cycles)

Figure 4-7: Sim2 Predicting Xboard

2500

2000

u 1500

c
o 1000
o

500 500
Q.

0

J L

*-f\ { f ; 1 j , < :

1000 2000 3000 4000 5000 6000 7000 8000 9000

Time (cycles)

43

4.4.3 Category Three Program

The only program in category three that had expanded code available is Program X .

Figure 4-8 shows the predictions from the regression model on Program X ' s functions.

Similar to category one programs, Program X is dominated by one slow function. This is

the main reason for the R2 value of unity. Figure 4-9 is the same graph with a reduced

scale. The only point not show in 4-9 is the slowing function in Program X . Excluding the

slowest function, the R2 value is 0.7417. Even with the R2 value at 0.7417, this is still a

strong prediction.

Figure 4-8: Sim2 Predicting Program X

X
V) 0)
o
>»

c
o

"D
9>

16-

14-

12-

10-

8-

6-

4-

2-

0-4-

-0

T i m e (c y c l e s x 106)

44

Figure 4-9: Sim2 Predicting Program X without the
Slowest Functions

TJ
cu

2500

2000 w
o

~ 15001

100O

500

cm1*-
200 400 600 800 1000

Time (cycles)

1200 1400

Figure 4-9 shows that the predicted value is about twice as slow as the actual values. This

is caused by the model being formed on older Sun machine while Program X was tested

on a more advanced HP machine. To reduce the error in this prediction, it would be

necessary to formulate the model from a standard program tested on the HP machine.

Nevertheless, there is clearly a linear relationship between the. two. This strongly supports

the idea that source code can be used to predict execution times. The error in the

prediction is only due to cross platform differences.

Note that two functions in Program X xfer and sendmesg were treated as outliners and

were removed. They contain eight and nine lines of logical statements respectively. Since

only the metric values and not the source code were available, it is assumed that these

45

functions only contained irregular loop structures, for example "goto" statements that

were not expanded.

4.5 Model Robustness

Three points suggest that the theory is sound. First, similar models formulated with the

other test programs resulted in similar predictions. Second, the programming language

does not effect the overall theory. Finally, the computing environment has little effect on

the results. Though, the last two claims require further investigation.

The theory does not depend on either the data or the model presented in this chapter. A

different data set would produced similar predictive results provided that the standard

program used to formulate the model is representative. This is to say that some care must

be taken to produce the model. Sim2 was used as the standard because it produced the

best regression results with the rest of the data. However, a similar model based on Siml

had comparable results. A third model based on Xboard was also produced. Its predictive

ability was the worst of the three. The other programs were considered of an insignificant

size to generate a reasonable model due to the limited number of functions in each

program.

A comparison was done between Program X and Program Y. Program X was written in C

and Program Y in C++ (See Table 4-2). Principal component analysis was done to

examine the raw metrics form the C and C++ code. Interestingly, they mapped to the same

46

domain. This supports the intuitive notion that C and C++ are similar at least with respect

to their metrics. Both have a similar distribution of control and data statements. To predict

C++ code, a model should be generated from a C++ standard program. That being said,

the same modeling seems applicable to C++ as well as C source code.

As stated in before, all but the category three programs were executed on Sun machines.

The category three programs were tested with HP machines. Since machine cycles ignore

the clock speed of a particular machine type, all the data is taken in terms of machine

cycles and not actual time units. Although Program X was tested on a HP and the model is

formulated on a Sun machine, there is not an effect on Program X 's predictions. It still

appears as a linear relationship even though they are executed over two completely

different architectures. This suggests that the model is machine type independent.

4.6 Summary

This chapter discusses the results of the proposed approach to time estimation. GCT, U X -

Metrics, and Quantify are the software used to gather metrics and timing information from

the test programs. The sim2 model is formulated as outlined in Chapter 3. It is validated

and shown to be extremely significant by the various statistical tests. Then, the model is

used to predict the execution times of the other test programs. The results for the slow

functions are very good. One can see a clear linear relationship between the predicted and

actual execution times. However, there is a large error when it comes to the fast functions.

We believe the main reason for this error is due to the metrics chosen. They were unable

to quantify the specialized nature of the fast functions.

47

Chapter 5: Conclusion

This work is focused on the development of a method to predict the execution time of

structured programs based on their static source code metrics. Since source code is

available early in the development cycle, these predictions can be made to spot potential

future problems in meeting timing requirements. Various software metrics are analyzed.

The most interesting are the relative complex metrics generated by the principal

component method. Using this idea of principal component metrics, a linear regression

model is formulated to predict the execution time of functions. The resulting model is

shown capable of predicting the execution time of other functions.

There are a few things to note about our approach to timing estimation. To solve the

indeterminate nature of loop structures in the source code, a bound is placed on each

individual loop and the code inside is expanded. Then, principal component analysis was

used both to reduce the number of metrics used and to produce predictor variables for

linear regression. This prediction is reasonable for the slow functions. However, extremely

fast functions are problematic for the model to predict. Fortunately, it is the slow functions

that are of interest in most cases. This method is meant to be a first approximation of the

execution times, to be used as soon as the source code is available. It is also relatively

robust, being insensitive to changes in computing language and environment.

48

The main contributions of this thesis are:

• A systematic method of predicting the software execution time is proposed. It

predicts the execution times of structured functions based on the source code.

Modeling is carried out using principal component analysis and linear

regression. Since source code prediction is one of the earliest quantitative

information available, it can be used to detect possible areas where tuning

requirements are not met. This can result in reduced overall system production

cost.

• Though meant only for first approximation, this method seems relatively

robust, being insensitive to changes in computing language and architecture.

Though this claim required further examination since it is based only on a few

test cases.

• Results show that the functions selected from the standard program have to be

representative of the other functions to be tested. That is, the program types

must be similar. This leads to the conclusion that the prediction models are

different for different types of programs.

• We have found that although branch structures do not present a problem, loop

structures are problematic. The proposed technique can not handle programs

with loops. One solution to the loop structure problem is to expand the code

inside the loop according to the number of times that loop is executed. It is

also found from the test cases that only about 30% of functions in real-time

programs have loops. Therefore, this technique can be applied without a large

amount of additional effort.

• We have found from the test cases that this technique can predict slow

functions better than fast functions. We believe a partition method, that is, to

group the functions into fast and slow categories will improve the prediction

since a different prediction model can be made for each of the two categories.

• The 16 metrics that were used can be mapped to only five domains represented

by principal components: an overall average component, a complexity

component, a case-statement component, a size versus branching component,

and lastly, a variable/nesting depth component.

Future research can be extended from the current work into such areas as:

• Developing new metrics. The current procedure uses raw metrics that were not

originally designed for timing estimation. New metrics that are design to measure

some aspect of execution timing can replace the raw metrics and should give a better

prediction.

• Using higher order models. Currently, only linear transformations and regression is

used in the modeling. Moving away from a linear model could improve the prediction.

• Checking the assumption that the model is insensitive to changes in languages and

computing environments. Only one test case was examined for each of these and they

may be abnormal cases. More testing is needed to solidify the conclusion.

• Distinguishing between fast and slow function. This would allow a partition method to

be employed. The current method predicts slow functions well, however fast functions

are not well modeled. Partition would allow the fast functions to be model differently

from the slow functions.

50

Extending this research to unstructured programs. The assumption throughout is that

only structured programs are involved. It may be possible to apply this method to

unstructured programs as well.

Integrating this approach to timing estimation into existing software. It should be

possible to gather all the needed metrics automatically. Then, after the estimation is

accomplished, the data is transferred into a scheduling software to determine if a

system meets timing requirements. Such an automated system would save both time

and money in the development of real-time systems.

51

References

[Arnold 94] R. Arnold, F. Mueller, D. Whalley, M . Harmon, "Bounding Worst-Case
Instruction Cache Performance," Proceedings of the IEEE Real-Time Systems
Symposium, Los Alamitos, California: IEEE Computer Society Press, December 1994, pp.
172-181.

[BasiJi 84] V . Basili, D. Weiss, " A Methodology for Collecting Valid Software
Engineering Data," IEEE Transactions on Software Engineering, SE-10 No. 6, New
York, New York: Institute of Electrical and Electronics Engineers, November 1984, pp.
728-738.

[Boehm 81] B. Boehm, Software Engineering Economics, Englewood Cliffs, New Jersey:
Prentice-Hall, 1981.

[Currans 86] N . Currans, Fourth Annual Pacific Northwest Software Quality Conference,
Portland, Oregon: Lawrence & Craig, 1986.

[Gupta 94] R. Gupta, P. Gopinath, "Correlation Analysis Techniques for Refining
Execution Time Estimates of Real-Time Applications," Proceedings of the ll"1 IEEE
Workshop on Real-Time Operating Systems and Software, Los Alamitos, California:
IEEE Computer Society Press, 1994, pp.54-58.

[Halstead 77] M . Halstead, Elements of Software Science, New York, New York:
Elsevier, 1977.

[Johnson 77] R. Johnson, D. Wichern, Applied Multivariate Statistical Analysis (3 r d ed.),
Englewood Cliffs, New Jersey: Prentice Hall, 1992.

[Puschner 89] P. Puschner, C. Koza, "Calculating the Maximum Execution Time of Real-
Time Programs," Journal of Real-Time Systems, 1(2), 1989, pp. 159-176.

[McCabe 76] T. McCabe, " A Complexity Measure," IEEE Transactions on Software
Engineering, SE-2 No. 4, New York, New York: Institute of Electrical and Electronics
Engineers, December 1976, pp. 308-320.

[Munson 89] J. Munson, T. Khoshgoftaar, 'The Dimensionality of Program Complexity,"
Proceedings of the 11th International Conference on Software Engineering, Washington,
D.C.: IEEE Computer Society Press, 1989, pp. 245-253.

[Munson 90a] J. Munson, T. Khoshgoftaar, "Applications of a Relative Complexity

52

Metric for Software Project Management," The Journal of Systems and Software, 12 No.
3, New York, New York, Elsevier North Holland, July 1990, pp. 283-291.

[Munson 90b] J. Munson, T. Khoshgoftaar, "Regression Modelling of Software Quality:
Empirical Investigation," Information and Software Technology, Vol . 32 No. 2, London,
England: Butterworths, March 1990, pp. 106-114.

[Munson 92] J. Munson, T. Khoshgoftaar, "The Detection of Fault-Prone Programs,"
IEEE Transactions on Software Engineering, SE-18 No. 5, New York, New York:
Institute of Electrical and Electronics Engineers, May 1992, pp. 423-433.

[Munson 93] J. Munson, T. Khoshgoftaar, "Measurement of Data Structure Complexity,"
The Journal of Systems and Software, 20, New York, New York: Elsevier North Holland,
1993, pp.217-225.

[Tempus 97] Tempus Project, "Real-Time Performance Measurement: A White Paper,"
Software Productivity Solutions Inc., March 11, 1997.

[Zuse 90] H . Zuse, Software Complexity: Measures and Methods, Berlin: Walter de
Gruyter, 1990.

53

