Prediction of Software_Execution Time Based on Software Metrics
By
| Ying N. Li
‘ B.A.Sc., University of British Columbia, 1995

A thesis submitted in partial fulfillment of the requirements for the
degree of

Master of Applied Science
In
The Faculty of Graduate Studies

‘ _ Department of Electrical and Computer Engineering

We accept this thesis as conforming to the required standard:

The University of British Columbia

December 1998

® o © Ying N. Li, 1998

In presenting this thesis in partial fulfilment of the requirements for an advanced
degree at the University of British Columbia, | agree that the Library shall make it
freely available for reference and study. 1 further agree that permission for extensive
copying of this thesis for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written
permission.

Department of M\fo Waz;a»m,ﬁ,, Wy\:}
/

The University of British Columbia
Vancouver, Canada

Date /@c/ /)7/75

DE-6 (2/88)

Abstract

A method to estimate the execution time of software based on stat‘ic metrics is pfoposed in
this thesis. The ability to produce an accurate estimate of execution times as early as
possible in the development phase is highly desirable. For hard real-time systems, an
extremely slow function may require an entire system to be redesigned. In the proposed
method, principal components and linear regression modeling are used to formulate a
model from a given set of repre_sentativé functions. It is assumed that all functions are
prograinmed in a structured manner. The final result is a model that can be used to
generate decent first approximations of execution times. Once the model is established, it
is used to predict the execution times of other test functions. The major problem
encountered m the modeling is the indeterminate nature of loops in"a function. The
. number of times a loop Structure is executed is dependent on the input parameters. It is a
dynamic characteristic and is impossible to measure with s-tétic metrics. Our solution is to
expand the source code by the number of times the loop is expected to execute. Then, the
metrics are taken from the expanded code. Extremely high correlations were observed
between the actual and the predicted execution times with the exception of fast functions.
It appears that the metrics used were insufficient for fast functions. This method seems to

work even across different execution platforms and languages. Though, this claim is

requires further investigation.

Table of Contents

AADSITACT. ...ttt et et sttt ettt e be b e e e e ne e et s eteebeeabeennseeneeeneean i
LSt Of FAGUIES ...vtetiittciteeee ettt ettt reene e eneas e VA
LASE OF TabIes...ccuiiiiiiiit ettt ! vii
ACKNOWIEAZEMENLScvvovivrnrivsiisiie e viii
Chapter 1: INtroQUCHIONeeecuieiieciie ettt reeeeen 1
1.1 Background and MOtivatiOneeovivveeeieeeeececireee e 1

1.2 Review of EXiSting WOrK......cccooiiiiiiiiiiiciee et 2

1.2.1 Low Level Techniqugs e et 2

1.2.2 Complexity Analysis et 3

1.2.3 Tempus Project......cocvieiiriienieeieeeieeceesee e e 4

1.3 ThesiS ODJECLIVE ...evvvvriiiiiiiieeeeciteeeicreeeeesirree s esnre e e e e e e esenreee e e s enanreneeas 5

1.4 Thesis Organization................... e et 6

Chapter 2: SOIWAre MELTICS ...ccueeieriieiieieitcie sttt eav e e eebeenee e e 7
2.1 LINES OF COAC.uuiiiiiiieiiieeee ettt 7

2.2 Software SCIENCE MELTICS ...co.vvivierierriiineeiiienteetee st seeeeaeeseteeereeseneeens 8

2.2.1 BaSic TOKENS cvvvvvvveeereeeeeeeseeseeee e S 9
2.2.2 Length EQUALION ..cocveiiuieeiiiieeciieeie sttt see e erve e esveesvnesaneeens 10‘

2.2.3 Program VOIUIMEcvvveeeeviieiecciree e ecree e cevree e e eennneee e eeeannes 10

2.2 4 BIOTL.....oooo oo 11

2.3 Cyclomatic Complexity................... eteeeetee et e —eeeabteearaeeetateearraesannes 12

2.4 Miscellaneous MELTICSc.eevvierieerririiieeiie et e eee ettt 13

2.6 Software Metrics and Execution Times...........ccccevvevveeerieeeecveeseneeee e 14
2.7 SUIMIMATY ...ttt sttt eee e e reessaesseeseseesaaeessseessneesssenseens 15
Chapter 3: Proposed Approach to Time Estimation .. 16
3.1 Proposed ApPProach.......ccccccoviiiiiiiiiniiiieit e 16
3.2 Model FOrmulation......c.cccocuiiviierieniiiiie et seve e sve e v 19
3.2.1 Principal Component ANalysis...........cccceeeeeiuveeeeirenrereeeeeiinreereeeeennnns 20
3.2.2 Multiple Linear REgIesSiOnccvvvererveniierieis e esieereeveeseeeeeens 21
3.3 Model VErifiCationccueeiiiiviiiiierieeieeeee et 23
3.3; 1 Significance of the Whole Regression Model...........ccccvvveniininnnn. 24
3.3.2 Test for Individual Regression Coefficientscccceeeveveeeiinnennn. 25
3.3.3 Coefficient of Multiple Determinationcccecvveeevveevineeeeeieeennns 26
3.4 Limitations of the APProachcccoeeevieiiviiiiiiiiiieec e 27
3.5 SUMMALY...covviienieieieeeree e et e e e e e batae e s 28
Chapter 4: Results and DiSCUSSIONocvvevieiiiuieeieiiecte et e 29
4.1 SOftWare TOOIS.....c.cueviiiiiiiniiici s 29
4.2 Test Programs........ccceeveveeveveecveeneennnn. | 31
4.3 Model Fo‘rmulation ... 33 |
4.3.1 Finding the Normalized Z matrix.......... oo 33
4.3.2 Finding the Principal COMPONents.......c..cccvevvvievieeirieeieeeiie e 33
4.3.3 Finding the Useful Principal Components............cccoveveeeecnerenenenn. 35
4.3.4 The SIm2 MOdEl........cooiriiiiiiiiiiiiert et 36
4.4 The Sim2 Model Predicting the Expanded Code..........coovvvevvveeerreeennnen. 38

2.5 Hybrid MELIICS ..vveiiiieiiiieeie ettt 13

iv

4.4.1 Category One Programs..........ceeevvereeeevineeeereerieeeeeeee e 39

4.4.2 Category TWO Programs..........ccoveoeeeeeiiceeiieiiee e 41

4.4.3 Category Three Programccoooveevieiiciiciiiceeeeceeee e 44

4.5 Model Robustness................. e 46

4.6 SUMIMATYeotirieteenieitente ettt eeteeteetteste e e eteeeaeeaeesaesreeeseeeeeeaeeeeen 47

Chapter 5: CONCIUSIONc..eiiiiieiiieeeieieeteee ettt et et esaeeeene 48

References....ccccovvevveeeeecnienenn, .. 50
v

Figure 4-1:
" Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4—6:
Figure 4-7:
Figure 4-8:

Figure 4-9:

List of Figures

SIM2 MOAEL ..ottt 38
Sim2 Predicting BENoociiiiiiiiiiee e 40
Sim?2 Predicting Fast FUNCtioNS.........cccveveeevveeeiiiiiecceeiee e [N 40
Sim2 Predicting FET ..ot 41
Sim?2 Predicting Simi .. R 42
Sim?2 Predicting Sim1 without the Slowest Function.............cccoovveeeieeenea. 43
Sim2 Predicting Xboard’ ettt 43
Sim2 Predicting Program Xcocoviiiiiiiiiiiiie e 44
Simi Predicting Program X without the Slo§vest Function.......ccooccveviiiinnne. 45

Vi

Table 4-1:

Table 4-2:

Table 4-3:

Table 4-4:

Table 4-5:

Table 4-6:

Table 4-7:

Table 4-8:

Table 4-9:

List of Tables

UX-Metrics supported MEtriCs..........ovvviiiiiiiiiieciiie, teereenien 30
The Data Set.....c.covvvveeiiieiiiiiiieennns e 31
Standardization of Sim2 Metrics e s 34
Sim?2 Eigenvectors......... e 34
Correlation between Pc and Timé .. 35
Regression Model SUMMALYoiviieeiiiiiriiiiieeeiies e eniieceeseeiinreeessieraeraeens 37
Regression Model Significance...........oocvveveniieeiiniveeeninieeeennnnes e ee——— 37
Regression Model Coefficient Significance.............cocceeevvveveeeviieevieceeee, 37
Summary of Predictions.........c.ccccvveevrunnnn. ettt et e e e e e s eeeee e nnee 39

Acknowledgements

I like to thank my father who started me on the long road of learning. Also, I wish to
express my appreciation to my professors at the University of British Columbia for their
patience and thought provoking ideas. In researching this thesis, I have received invaluable
assistance from Dr. H. Jin throughout the past few years. Additionally, special thanks is -

due to Dr. G. Bond for his constant advice and guidance.

Financial support from Nortel and the BC Advanced Systems Institute is acknowledged

with gratitude.

viil

Chapter 1: Introduction

The objective of this work is to estimate the execution time of a structured function. The
capability of predicting the execution time prior to compiling and running a program is a
valuable tool in software development. It helps software developers to identify the slow
modules of a program. The performance of these bottleneck modules can then be
improved. This is particularly important in real time systems where timing is critical. The
proposed technique can be used at a very early stage of development. Not only will the
results pinpoint problem modules, it can also aid in determining the hardware needs of the

system.

1.1 Background and Motivation

Prior research has shown that efforts directed at preventing, detecting, and correcting
software defects could significantly reduce the total software development costs [Basili
84, Boehm 81]. This is not surprising as the earh’ér an error can be found and corr¢cted,
the less effect it has on the rest of the system. This applies equally to real-time systems. In
addition to the above, in real-time systemé, timing is an important component of the
require‘.ments. For example, failure to meet timing requirements in hard real-time systems
may result in the failure of a project or even be life threatening. As companies: are striving
to improve product performance while reducing the development cost and time to market,

there have been great interest and research activities in the general area of software

performance evaluation. This explains the interest in time estimation, which is a part of

performance evaluation.

1.2 Review of Existing Work

Many techniques exist for predicting the execution time of programs at the assembly or
object code level. However, very few techniques are available at the structured source
code level In many cases, having a high level technique is important and usefullsince
compilers and/or platforms may not be accessible or available when needed. However,
once source code is available, it is possible to extract information from'the code using
software metrics. Then, this information can be used to estimate the execution time of the
source code. Although various software code metrics have been applied in areas such as
quality control and error detection, with the exception of Tempus Project [Tempus 97],
we are not aware of any other work in progress attempting to relate metrics to the running
time of programs. This work proposes to use software code metrics to predict the

execution time of functions.

1.2.1 Low Level Techniques.

Low level techniques are prediction methods based on the machine or object code. Almost
all the techniques are based on the idea that each operation takes a certain amount of time
and the execution time for a function is calculated by summing up the execution time of
each instructions in that function. The question of which instruction will be éxecuted is

answered either by static annotations [Puschner 89] or by dynamic profiling of the code

2

[Gupta 94]. Also, there are many papers, such as [Arnold 94], that examine the effect of

pipelining and caches on the prediction.

There are both advantages and disadvantages with low level techniques. The main
advantage is that very accurate results can be achieved with these techniques. The more
information that is used in forming the model, the better is the prediction. However, errors
are still introduced into the models from several sources. Cache »hits and miéses are one
source of error. The processor is another s_oﬁrce of error. Manufacturers are not always
willing to provide all the details needed to determine the exact time for an operation.
Furthermore, with pipeline flushes and dynamic branch prediction in the processor, it is
not possible to have an exact time for a given operation. The main disadvantage of these
modelsv is the amount of information that is required. Generatlly, the entire system is
modeled right down to the microinstructions used by the CPU. In addition, this can only
be accomplished after the code is compiled and all the hardware is finalized. This is v.ery

late in the product cycle relative to code development.

1.2.2 Complexity Analysis

Work has been done in software complexity analysis using metrics. It is self-evident that
programs that are more complex will contain more faults and will be more difficult to
maintain. For example, the number of lines in a program is commonly used as one
indication of program complexity. One would view a program witﬁ a thousand lines

differently from one containing a million lines of code.

Munson and Khoshgoftaar proposed the creation of a complexity measure for use in
‘reliabi]ity.modeljng [Munson 92]. They psed the statistical technique of factor analysis,
Whiéh is an elaborate form of principal coinponent analysis, on various software metrics.
Factor analysis is used to determine the major components of the metrics that are
correlated with reliability. In other works, the authors show that complexity measure is

strongly predictive of the number of faults in a software system.

While software metrics have been successfully used for complexity analysis, we believe
that these metrics also contain information about the execution time of the structured
code. For example, code that contains many branches, as indicated by the cyélomatic
complexity metrics, would execute faster than code of the same size that does not contain

branching instructions.

1.2.3 Tempus Project
Software Productivity Solutions, Inc. has developed a software measure, 7, that is claimed

to predict the execution time of real-time systems [Tempus 97]. The dimensional unit for
is number of run-time operations, which makes.it a counting metric. The source code is
translated into a machine independent op-code format. Every op-code is assigned a value
and the final metric value equals the sum of the op-code along the execution path. The
final ﬁetric 1s again weighted by the executing architecture. They have computed a

Coefficient of Determination, R?, between execution time and the software measure 7 to

4

be 0.9511. The Coefficient of Determination measures the closeness of the relationship

between the two values with a maximum value of unity. Therefore, their result of 0.9511

shows a strong relationship between execution time and the software measure.

However, there is a lack of information to evaluate this approach, as is this a commercial
product. For instance, little information is given about the test data except in one of the
graphics. In [Tempus 97], six series are labeled in a diagram: odd, factorial, term, sin, cos,
and tan. Although it is claimed that these procedures are for real-time systems, it appears
to us that these are mathematical functions with regular predictable execution patterns
thus making these particular functions easier to pfedict. For example, reducing the
acceptable error when calculating sin x would increase the execution time. Given the

algorithm used to find sin x, the increased execution time can be easily predicted.

1.3 Thesis Objective

The objective of this thesis is to develop a method of predicting the exeélltion time of
structured functions based on static software metrics. This is the earliest stage in which a
quantitative prediction can be done. Before the source code is produced, there exist only a
timing requirement that has to be meet. Only after the source code is produced can

quantitative measures be taken.

In many situations, software code is not ready to be executed. This can be due to many

factors. For example, the hardware and the compilers might not be determined or

available, or other software modules are not_réady for integration. Yet, the timing
information is needed as soon as possible. The combined timing information of several
modules can be used to insure that the whole system meets all of its timing requirements.
If a modul¢ goes over its timing limit, it must be optimized or the system must be

rescheduled.

To accomplish this, it is necessary to have some quantitative measures of the source code,
and software metrics can be used for this purpose. The objectives of this work are,
therefore, to determine the co.rrelation between the software métrics and the execution
time, to develop the methodology of predicting the execution time of source code, and to

validate the proposed technique.

1.4 Thesis Organization

This thesis will be organized in the following way. Chapter 2 examines the basic concept
of software metrics in detail. Chapter 3 explains our approach. In Chapter 4 the results are

presented and discussed, and the conclusions are summarized in Chapter 5.

Chapter 2: Software Metrics

Software metrics grew out c\)f the need in software engineering for quantitative
measurements of software code. These quantitative measurements or metrics are used in
answering several important quéstions such as the differences in complexity, error rate,
maintainability, production time, and testability between two software programs. At the
beginning, simple metrics like lines of code dominated. In 1977, Halstead published
[Halstead 77] and introduced the software science metrics. A year before that, McCabe
wrote [McCabe 76], which defined the cyclomatic complexity metrics. Now various
hybrid metrics exist. This chapter introduces the basics of the commonly used metrics, and

those that are the used in our work to predict the execution time of functions.

2.1 Lines of Code

The first set of simple metrics involved counting the number of lines in a function. The
simplest metric is lines of code (LOC). It is claimed in literature that, based on LOC, it is
possible to predict the reliability and maintainability of code. Due largely to its simplicity,
this metric is widely used with several variances. The variances differ in what is considered
a line of code. Some measure only source statements and others include comment and
blank lines. One problem with LOC is its dependency on individual programmers.
Programmers differ in how they format their code. Each has an individual style to writing

source code. LOC is also dependent on the language used. Some languages are more

expressive than others are. The same thihg can be accomplished in one line in one

language that would take several tens of lines in another.

In UX-Metrics, a software used in our work to cbllect metrics from C and C++ programs,
there are four metrics that relate to the number of lines of code. They are lines of code,
physical source statements, logical source statements, and executable semi colons. In this
case, a line of code is defined as a count of every physical line of code from the start of the
function to the end of the function, including comments and blanks. Physical source
statements are similar but exclude comments and blanks. Lo gical source statements are.
counted in only two cases. It is increased when executable statements end with a semi
colon and for all control statements, like _“else.” Lastly, executable semi colon is a count of
the number of executable semi colons in the code. Therefore, the “for” statement would

have two executable semi colons. As discussed, all four variant metrics are very similar.

~

2.2 Software Science Metrics

In 1977, Maurice Halstead of Purdue University published his work on software metrics
[Halstead 77]. He recognized that LOC is not accurate and developed a different theory to
model program size. Based on his theory, programs consist of the manipulation of tokens:
operators and operands. Operands are variables and constants. On the other hand,
operators are the actions on the operands. From these basic tokens, he derived a large

number of metrics.

2.2.1 Basic Tokens

Halstead formulated several metrics based on the number of operators and operands in a

program based on four parameters: i

n: number of unique operators
12 number of unique operands
Np: total number of operators
N;: total number of operands

The program vocabulary, 7, is defined as:

n=m+r: ' 2.1

The prograln length, N, is defined as:

N = Nj+N, (22)

Originally, Halstead did not include precise definition of operators and operands and relied

on intuitive understanding. In many cases, what is counted as operators and operands are

b

dependent on the user. For example, “goto x” can be taken as one operator and one

operand, or it can be viewed as only a single operator. However, most work in the area

suggests that minor differences are immaterial as long as the counting procedures are

consistent [Currans 86]. Also, Halstead felt only the executed part of the code is important

and therefore did not include function declarations in his metrics.

2.2.2 Length Equation

The predicted length of the program (V) is defined as:
N = 1 loga(m1) + m21oga(172) 2.3)

This interesting relationship is available before ’the code is completed since it depends only
on 77; and 77,. Usually, the number of unique Operators m a language is constant and the
number of unique operands can be obtained from the design specifications. High
correlations have been shown between the actual measured length, N, and the predicted
length, N. Correlations above 0.90 are common. Halstead suggested that the differences
between N and N are due to impurities in the coding. Impurities are due to poorly written

algorithms and is measured with the purity ratio defined as:

Pe=NI/N ' ' 2.4)

2.2.3 Program Volume

Another interesting metric is the program volume, V that is defined as:

V=Nlog,(1) 2.5)

Halstead gave two reasons for this metric. First, given that a program has 77 unique

tokens, it would take log,(7) bits to represent them all. With N as the total number of
operators and operands, it would take V bits to represent the whole program.
Alternatively, to understand a program with a program length of N and a vocabulary of 7,
it would take one mental look-up for each N. Assuming the look-up is done in a binary
manner (logy 77), the total time to understand the program would be given by the volume

metric, V.

2.2.4 Effort

This ‘metric is based on the Volume metric, V. However, it is adjusted based on the

abstraction level of the program, A. Unfortunately, the abstraction level of a program is

difficult to determine. It is usually estimated with:

A=2In « MIN; . (2.6)

The highest possible value for A4 is unity. The abstraction level depends on two terms. The
first term, 2/7;, decreases as the number of unique operators incréases. Fewer operators
imply a more abstract program. The two in the expression 2/77; comes from the fact that, a

minimum of two operators are required to implement a function, the function call and its

11

argument. The second term, 77/, is the average of the number of operands, inverted.

Again, each time the operand is used, the abstraction level decreases. This leads to the

definition of effect as:

E=V/A 2.7

2.3 Cyclomatic Complexity

The idea of cyclomatic complexity was first presented by Tom McCabe in 1976 [McCabe
76]. Whereas the Software Science ‘metrics measure the size of the code, cyclomatic
complexity measures control flows. The metric itself is extracted from the control flow
graph. This graph is built with basic blocks of code being represented with nodes, n, and
branch statemenﬁ with directed edges, e. A basic block is a section of sequentially
executed code. There is no branching within the block. Decision points or branch
statements are represented with directed Vedges. These would include |conditiona1
statements and loop structures. The directed edges connect one basic block to anothe;r
depending on which block is executed if that branch is taken in the code. Cyclomatic

complexity, V(g), is defined as:
Vig)=e—n+2 | [2.8]

Only a year after McCabe published his paper, Glenford Myers suggested an extension on

this metric. The extended cyclomatic complexity is defined similar to McCabe’s. Instead of

12

having each branch statement repregented with one edge, each edge represents only bne
simple predicatet A predicate is a condition without the AND/OR operators. Therefore,
for every AND/OR operators, the extended cyclomatic complexity is increased by on.e;
Thus,' depending on the/complexity of the conditional statement, each branch can be
represented with more than one directed edge. This is claimed to be a more accurate

metric than the standard cyclomatic complexity.

2.4 Miscellaneous Metrics ‘ \

In addition to the above deﬁned metrics, UX-Metrics uses three other metrics: span of
reference, nesting depth, and average nesting depth. Span of reference is defined as the
average of the maximum numbt;r of lines be;tween variable references. A reference can be
either the definition or the use of a variable. The maximum number of lines between
references for each variable is qalculated. These are then averaged for a function and
reported as the metric. Nesting depth is fhe,number of nesting control structures. Every
nesting control structure increases this metric by one. Finally, the average nestiflg dépth is

the depth of each logical statement divided by the number of logical statements.

2.5 Hybrid Metrics

Hybrid metrics are those that combine one or more basic metrics. There are well over 100
distinct metrics of software complexity in the research literature [Zuse 90]. Each is slightly

different and has its own proponents proclaiming its predictive abilities. In essence, they

13

\

coinbine some aspect of Halstead’s or" McCabe’s metrics. One of the most notable
\l/ariants of hybrid metrics is presented by Munson and Koshgoftaar [Munson 89, 90a, 90b,
92, 93]. Using a form of principal component analysis, they combine various commonly
used metrics into a relative complexity metric. They consider these combined metrics to be

more reflective of software complexity.

2.6 Software Metrics and Execution Times

It is evident that some metric can contribute to estimating the execution time of functions.
The LOC metrics show how many lines are in each function. Functions with many lines
will tend to take longer to execute. A similar statement can be made about the metrics that
Halstead dveﬁned, ieven though, the exact relationship between his metrics and the
execution time of each function is difficult to determine. Similarly, cyclomatic complexities
are branch points in the code. The more branch points there are in the code, the faster the

code will execute since branching causes the code to execute fewer statements.

The most interesting idea is presented by the hybrid metrics. As stated before, the exact
relationship between the software metrics and the execution time of a function is
unknown. HoWever, by using Munson’s idea, it is possible to generate principal
components that are more predictive of execution time than the individual metriés. In
addition, it would be simpler to define and reason with the few domains that are
represented by the principal components than with the raw metrics. This approach is

adopted in this thesis.

14

2.7 Summary

In this chapter, many of the basic software metrics have been examined. It starts with lines
of code then more advanced metrics, such as the software science metrics and cyclomatic
complexity, are discussed. Munson and Késhgoftaar presented a method of combining
these metrics into a relative comp/lexity metric using a form of principal components.
Though they prilvnarily used the principal component method in complexity analysis, we
adopt the statistic method in our proposed approach to predicting execution time at the

function level.

15

Chapter 3: Proposed Approach to Time Estimation

The proposed approach to time estimation is presented in this chapter. It uses software
metrics as discussed in the previous chapter, to formulate a linear regression' model. This
model can be used for predicting the execution time of other functions. The first section of
this chapter outlines the basic approach. This is followed by more information of how the

model is formed and verified. Section 3.4 explains the limitations of this method.

3.1 Proposed Approach

The proposed approach is to predict execution time of structured functions based on the |
static software metrics of those functions. This 1s carried out in two steps. First, a model is
formulated, by linear regression, from a standard program with both the metrics and
execution time information already available. - This will determine the regression
coefficients of the metricé versus the execution time. Once the coefficients are determined,

they are used to predict the execution time of other functions based on their metric values.

When the quel is formulated from the standard prd gram, there are two main problems if
the raw metrics are used in the regression. First, there is a large difference in scale of the
different metrics. Secondly, collinearity exists in many of the metrics. Collinearity happehs
when metrics measure similar properties. The scale problem is solved by standardization of

the raw metrics. To standardize individual metric valubes, each is subtracted from the mean

16

and then divided by the standard deviation for that particular metric type. The second
problem of collinearity is solved using principal components analysis. After the raw
metrics are transformed, first by standardization and then by principal component analysis,

they can be used in linear regression.

Once the measured execution times are provided and the principal components are
calculated for the standard program, the linear regression can be carried out. One
condition for selecting the standard program is that the functions in the standard program
should be representative of the other functions that the resulting model will be used to
predict. This is, different types of programs havé different metric characteristics and this
fact must be taken into account. For example, computational based programs have 1ﬁore
intensively executed loéps as compared.to real-time programs. The other requirement for
the standard program is that the execution times of each function must be known. The
requirement can be met by selecting the standard program from previously completed

projects, or from benchmark cases if available.

After the model is formed, other functions can be easily predicted. First, raw metrics are
extracted from the functions. Then, the exact same procedures of standardization.and
principal component transformation are applied. This means that both the standard
functions and the functior;s'to be predicted are the same statistically, since the same
operations are applied to both in order. Once the .transformations are applied, predictions

are generated by multiplying the result of the transformations by the regression coefficient

obtained from the model.

To summarize, the proposed procedure to calculate the regression model is:

Choose an existing set of functions as a standard. The standard functions
should bé representative of the type of programs to be tested. Extract and
standardized the metrics for each function and stored the values in matrix
defined as Z. For the convenience of discussion, assume that the program has

75 functions and 16 metrics are ‘extracted, Z would be a 75x16 matrix.
Calculate the correlation matrix p of the matrix Z. The matrix p will Be 16x16.
Calculate the 16x16 normalized eigenvector matrix E from the matrix p. Each
column of the matrix E is a normalized eigenvector of the matrix p.

The principal component matrix Pc is calculated based on:
Pc=2.E (3.1)

Pc has a dimension of 75x16.

Given the actual execution time of each function in the program in a column
vector, X, calculate the regression coefficients B -using linear regression

techniques.

Once the regression coefficients [are found, we can use them to estimate the time of

other programs following these procedures:

e Extract the metrics of the functions to be tested, and standardize these metrics.

This would be the same transformation applied to matrix Z above. Then record

18

the standardized values in matrix Z;. The number of rows of Z; is the same as
the number of functions being tested.

o Z,is transformed into principal components by
PCl =Z1°E (32)

e The estimated time Y is calculated as in (3.3). A column vector of ones is

added for the intercept term.

Yi=[11Pg]-B ‘_ (3.3)

3.2 Model Formulation

This section will present the statistical techniques used in this thesis to formulate the
model: principal component analysis and multiple linear regression. These can be found in
most statistical text such as [Johnson 92]. The primary goal in principal component
analysis is to find the appropriate variables, thzit 1S, to represent the entire set of variables
by only a few variable domains. On the other hand, multiple linear regression is concerned
with finding the relationship between a response variable, the execution time, and multiple

predictor variables, the transformed metrics. Both will be used to formulate the model for

the prediction of execution time.

3.2.1 Principal Component Analysis

Principal component -analysis is a data transformation technique that provides the
transformed variables with useful statistical properties. In this case, it is use to reduce
collinearity and reduce the number of predictor variables for multiple linear regression.
Collinearity happens when two variables are closely related in the linear sense. After the
transformation, the variables have the property of being uncorrelated with each other.

They will be used in multiple linear regression to predict the execution time of functions.

Principal component analysis can be done with either the covariance or correlation
matrices. The results are two completely different soluﬁons, one from using the covariance
and another from using‘ thé correlation matrix. This is due to the scale sensitivity of the
covariance matrix. When the data set is in - different units, as in software metrics, the
correlation matrix is generally employed. In addition, with standardized data, the’
covariance matrix is identical to the correlation matrix. In the treatment below, correlation
matrices will be use. However, identical procedures also work for the covariance matrices.

The correlation matrix is defined as:

1 Pz P
P _ P21 1 ... P (3.4)
| Ppz Ppz - 1 |

Where p; is the simple correlation between metrics i and j. The eigenvector and

20.

eigenvalue is then extracted from p. Assuming the standardized data is in Z with data
points are represented in rows with columns representing different metrics then the

transformed data, Pc, is defined as:
PC=Z[e1e2...ek] (35)

Where e; is the i eigenvector of p. If the rank of p is p then the maximum value for & is p.
However, a few eigenvectors of p is usually dropped because they are insignificant.
Therefore, k is usually less than p. One rule of thumb is to drop all eigenvectors when its
cvorrespondjng eigenvalue is below unity. There is no hard justification for this except that
an eigenvalue of less than unity implies the transformed variable explains less variance than

one of the original variables.

3.2.2 Multiple Linear Regression

Multiple linear regression is c;)ncerned with finding a relationship between a. response
(independent) variable and multiple predictor (dependent) variables. It will be used here to
find the relationship between the execution time of functions and software metrics. In this
case, only one response variable is needed to represent time fdr each function. Therefore,

the linear regression model for the i function is:

Yi =ﬁoxi,o + ﬁIxi,I + ...+ ,kai,k + & (3.6)

21

Where y; is the actual execution time, [to f are the regression coefficients, Xio is the
constant 1, x;; to x;x are the principal component values, and & is the error. In other
words, the response-equals to the sum of some faqtor of each predictor variable and error.
The term linear is used because the parameters [, S, ..., [are linear. In matrix form

(3.6) is:
y=xp +¢ : (3.7
Where B=[4 B, &].

The method of least square error is usually employed to find the value of the parameters .

The least square function is:

SWBo, Bry .oy B) =X & (3.8)

The summation is done over all the functions used in the model formation. The idea is find
B, B, ..., [which minimizes the total square error of all the data points. Taking the
partial derivative of (3.8) and setting it to zero will achieve this. The result is the least

square estimation for the parameters [, i, ..., B In matrix form:
SB)=¢"e = (y - xB)"(y - xB) (3.9)

22

Rearranging (3.9) gives:

SE) =y y-B'xy-y xB+B"x"xP

=yTy-2[3TXTy+BTxTx _ (3.10)
Taking the derivative of (3.10) with respect to § and settiné to zero gives:
2%y + 2xTxB =0 | 3.11)
Solving (3.11) for B gives:
B = %)Xy | (3.12)

In this case, (3.12) gives the parameters of the regression model based on the metrics and

execution times of the standard functions.

3.3 Model Verification

After a model is obtained, it is necessary to check if the model is v‘alid. The best way is to
examine the results graphically. Any patterns in the residual plots would indicate if a
systematic error exists. Residual is the difference ‘between the predicted and actual value.
Besides the reéidual plots, there are various numerical tests that indicate the validity of the

model.

23

3.3.1 Significance of the Whole Regression Model

This test determines if (3.7) is a valid model for the data being studied. The correct

hypotheses are:

-Ho: B=0

Hi: B=0 (3.13)

If the null hypothesis, Ho, is rejected, then at least one of /3, /i, ..., Bcis not zero. In other
words, at least one of the parameters is useful. On the other hand, if H; is rejected in favor
of the null hypothesis then none of the parameters are useful and the model is meaningless.
The null hypothesis is rejected if the value of Fy, defined below, is greater than the F-
value. The F-value can be obtained from a chart at a signliﬁcance level of ¢ and degrees of
freedom k+1 and n-k-2, where the number of predictor vﬁriables is k and the tbtal number
of data points is n, and « is tﬁe confidence or tolerance level. The value Fyis defined as

below:
Fo= MSR/MSE “ (3.14)
F, is a ratio of MSR (mean square of regression) and MSE (mean square error). MSR is

the sum of square due to regression and MSE is the sum of square of the residual each

divided by its corresponding degrees of freedom.

24

MSR =SSR/ (k+1) ' (3.15)

MSE = SSE / (n-k-2) ' (3.16)

The sums of squares for the analysis of variance are:

‘SSR=B"x"y - nY? (3.17)
SSE=e'e=y'y - BTx"y (3.18)
SST=SSR+SSE=y'y - n¥ (3.19)

Where ¥ is the square of the mean of the response variable, SST is the sum of square of
total variance and is composed of two parts, SSR and SSE. It is the sum of all the

observed values of the response variable squared and corrected for the mean value.

3.3.2 Test for Individual Regression Coefficients

It is generally necessary to test individual predictor variables to determine whether they
contribute to the regression model. A model could be more or less efficient with the

inclusion or exclusion of one of the predictor variables. The appropriate hypotheses for

testing an individual £ is:

If the null hypothesis is not rejected then it suggests that the j* predictor variable can be

removed from the model. The test for this is:

fy= ' (3.21)
" sk,

Where & % is (e'e)/(n-k-1) and C; is the diagonal element of (x'x) corresponding to f3.
Basically, the t-value is found by dividing each 3 by its corresponding standard error. If
ltol > t;0y2,n1y then Ho can be rejected in favor of H;. It is more accurate to use the
simultaneous confidence interval and the F-test. Namely, if ltl > (k+1) « &% 41, n41y, then '

Ho can be rejected in favor of Hy. However, most practitioners use the t-test for checking

individual regression coefficients.

3.3.3 Coefficient of Multiple Determination

The coefficient of multiple determination, denoted R%, measures the reduction in the

variability of the prediction obtained by using the predictor variables. It is defined as:
R*=SSR/SST =1 — (SSE/SST) (3.22)
SSR, SSE, and SST are defined in (3.17) to (3.19). Clearly, R* will always fall between

zero and one inclusively. This is the same R® that was obtained from the correlation

between the observed and predicted values of the response variable. Unfortunately, R

26

near unity does not necessarily imply that the model is good. Adding more predictor
variables always increases R” and never reduces it. This is because SST is constant for
given set of responses and-SSR always increases with additional predictor variables.

Therefore, an adjusted coefficient of multiple determination is also defined as:

adjusted R? = 1 — (n-1)/(n-k-1)(SSE/SST) [3.21]

3.4 Limitations of the Approach

The main limitation with predicting fhe execution time of a structured progrgrh from
source code alone is loop structures. It is impossible to determine the number of times a
loop is executed without executing the whole program. At present, the metrics used do
not take into account loop structures. To test our hypothesis, we remove each loop
structure and replace it with equivalent code. With the equivalent code used for testing,

the prediction errors are dramatically reduced. This is referred to as expanding the code.

Some programming languages require a loop bound on each loop structure. This can be an -
explicit part of each loop structure or a type bound on the index variable. Therefore, to
apply our technique, either the upper bounds or the average number of times a loop is

executed must be provided.

Unlike loop structures, branching instructions present little problems. It-appears that the

various metrics like cyclomatic complexity account nicely for the branching effect. Of

27

course, the programmer could supply some information concerning each branch, for
example, the percentage that the true branch of an if statement is taken. Fortunately, this
does not appear necessary, since the majority of the error in the prediction is from loop

structures.

This chapter describes the technique and procedure of predicting thg execution time of a -
structured program using software metrics. Software metrics are problematic from a
statistical viewpoint since many exhibit large differences in scale and have coHinea;ity.
Therefore, it is necessary to transform the data with standardizatién and then principal
component analysis. After the transformétion, the principal combonents are used in linear
regression. The resulting model can be used to predict the execution time of other
structured functions. Equation (3.7) givens the general regression model and (3.12) shows
how the parameters are chosen. As discussed, the model can be validated in a number of
ways. Prediction 01; other functions can be made by applying the same transformations and

then applying the regression model, as shown in (3.3).

3.5 Summary
|
|
|

28

Chapter 4: Results and Discussion

In this chapter, the technique proposed in Chapter 3 is applied to a number of test cases.
First, the software tools employed are examined. Then, detail on the test data is given.
Following the proposed method outlined, a model is formulated. Finally, various aspects

of the modeling are discussed, and the results presented.

4.1 Software Tools

Three major software packages are used to extract the various metrics from the test

programs. They are GCT, UX-Metrics, and Quantify.

Brian Marick of the Testing Foundation wrote the generic coverage tool, GCT for C
programs. It is a C preprocessor. It inserts tags into.each possible branch of the program.
When the instrumented program is executed, the path taken by the program is recorded by
the tags along the execution path. Note that the instrumented program runs significantly
slower than uninstrumented versions of the program. By examining the tags after a test
program runs to completion, it is possible to reconstruct how many times a loop structure
is executed. This information is used to expand the source to remedy the loop effect

discussed in section 3.4,

UX-Metrics is a commercially available program from Set Laboratories Inc. It was used to

29

extract the following metrics from the test data:

| _ Table 4-1: UX-Metrics supported metrics

LOC Halstead Cyclomatic Misc. Metrics
Lines of Code, LOC | 1y, M2, N1, Ny Cyclomatic Average maximum
complexity, VG1 span of reference of
Physical source | Predicted length, ¥ variable, SP
statements, PSS Extended cyclomatic :
Volume, V complexity, VG2 Nesting depth, Dpth

Logical source A
statements, LSS Effort, E Average nesting
depth, AvgDp

Executable semi
colons (;)

Lastly, Quantify too is a commercially available program from Pure Software Inc. Again,
it is basically a C preprocessor. It is used to record the number of cycles various parts of a
program take to execute. It is interesting to note that most system calls are not included

during timing measurements.

These three programs are used to gather all the test data. The execution time of all the
functions is measured using Quantify. GCT serves as a dynamic tracer. It traces the
_execution path of the test programs. Using the information from GCT, the source code is

expanded. Finally, UX-Metrics is used to gather the metrics information from the

expanded code.

4.2 Test Programs

A total of seven software programs were used in the experiments. They can be roughly
divided into three categories shown in Table 4-2. The number of functions, the language,
whether expanded code is available, and whether the expanded code contains timing

overhead for each program are also listed.

Table 4-2: The Data Set

Category | Program Functions | Language | Expanded Code | Timing Overhead

BEN 7 C Yes - No

! FFT , 5 C Yes No
Sim1 60 C Yes No

2 Sim2 7\5 C Yes | No
Xboard 145 C Yes Yes
Program X 24 C Yes No

. Program Y 100 C++ No N/A

The first category of programs consists of the two small programs. They are the burst
error network simulator (BEN) and the fast Fourier transform (FFT) calculation program.

~ These are locally written programs.

The second class of programsv contains Siml and Sim2, which originated from the

Rochester Connectionist Simulator, and Xboard. The Rochester Connectionist Simulator

31

is a system tool designed to simulate network programs. Data was collected from two
runs of this program, Sim1 and Sim2. Sim1 .is a network program that tries to color a map
with four colors so that no two neighboring regions have the same color. Sim2 is a
simulation program for a three-layer neural network containing eight, three, and eight
cells. The task is to learn to reproduce the input pattern at the output. Essentially the cells
must learn to binary encode the input, and the output layer needs to binary decode.
Finally, Xboard is a graphical X wmdqws user interface program for playing chess. The
Xboard client uses TCP/IP to connect to a chess server over the Internet and the user can
play chess with other opponents connected to the same server. Due to the interactive
nature of Xboard, it was not possible to execute it with a predetermined set of inputs like
| the rest of the data. Consequently, Xboard contains the timing overhead from GCT since a
separate run to collect timing information might have a different execution path. All three

test programs in this category were downloaded from the Internet.

The third category of programs is made up of Program X and Program Y. Both are
proprietary programs used in Nortel. Both were prototype programs to simulate switching
telephone networks. Because Program Y was written in C++, the expanded code is not

available for it. They were written to determine if timing requirements could be satisfied.
The programs in category 1 and 2 were tested on a Unix Sun workstation running SunOS

Release 4.1.1. However, category three programs were executed on a HP UNIX machine

at Nortel.

32

4.3 Model Formulation

In this section, the Sim2 model formulation is investigated. The ideas from the Chapter 3
will be applied. Various other models were tried but Sim2 seems to be the best. However,

other models were formed in a similar way and tested. This should serve as an example.

4.3.1 Finding the Normalized Z matrix

The first step is to find the normalized Z matrix. The raw metrics are extracted by UN-
Metrics from Sim2. Table 4-3 lists the mean and standard deviation for each metric. To

form the matrix Z, each metric value is subtracted by its corresponding mean in the table.

- The result is then divided by its corresponding standard deviation value, also given in

Table 4-3. The reason for standardization is clear from the different scales of the metrics.
For example, E is extremely large when compared to AvgDp. In linear regression, such
large-scale difference would produce models that are heavily weighted towards E as the

dominant predictor. By standardization, this effect is eliminated.

4.3.2 Finding the Principal Components

The first step to finding the eigeﬁvectors is to produce the correlation matrix p. Using a
numerical program, the eigenvalues and eigenvectors of p is found. Table 4-4 listed only
the first seven €igenvectors (e; ... e). Théy have the largest eigenvalues of the 16

eigenvectors. Finally, the matrix Z is multiplied by ey ... e; to give Pc, as shown in (3.5).

33

Table 4-3: Standardization of Sim2 Metrics

Metric Mean Sd
™M 19 10
N2 20 16
N, 409 1495
N, 272 992,
NA 178 142,
\ 4115 15682
E 7672800| 43504000
VGl 25 111
VG2 32 125
'LOC 121 431
g 62 220
SP 11 42
Dpth 2 4
AvgDpth 1 1
PSS 115 413
LSS 57 192

Table 4-4: Sim2 Eigenvectors

Metric e e €3 e4 . es e €
ul 0.151} -0.388{ 0.151{ -0.570| -0.077| -0.302 0.097
M2 0.141| -0.468 | 0.141 0.466 0.101 0.259 | -0.091
N; 0.289 0.091 | 0.289 0.064] 0.168| -0.212| -0.172
N, - 0.287| 0.099| 0.287 0.121 0.105 | -0.433| -0.020
N~ 0.156 | -0.461| 0.156 0.147 0.052 0.120 { -0.011
\ 0.291 0.085 | 0.291 0.077 0.110| -0.110] -0.131
E 0.281 0.152] 0.281{ -0.174 0.012 0.391 0.126

VGlI 0.285] 0.109] 0.285| -0.128| -0.076| 0.468(0.176
VG2 0273 | 0.114] 0.273} -0.236| 0.656| -0.025] 0.279
LOC 0.290] 0.086| 0.290] 0.002| -0.007) 0.174| -0.187
; 0.288 | 0.092| 0.288| 0.175| -0.131] -0.339| -0.096
SP 0.275]| 0.095] 0.275| 0.055| -0.634| -0.101| 0.490
Dpth 0.125| -0.409| 0.125| 0.224| 0.109| -0.119| 0.479
AvgDp 0.146 | -0378 | 0.146| -0.448| -0.176 | 0.043| -0.391
PSS 0.291| 0.087| 0.291| -0.008| -0.016| 0.199| -0.054

LSS 0.289| 0.054] 0.289| 0.158| -0.177| -0.011[-0.375

4.3.3 Finding the Useful Principal Components

Table 4-5 lists the correlation between the principal components and the execution time of
the functions in Sim2. As shown, the components most strongly associated with execution

time are ey, €4, €s, €, and e;. These were used in the regression as the predictor variables.

The meaning of each component can be identify with Table 4-4 by examining the relatively
large values, in absolute terms, in the corresponding vector. Component 1 seems be to an
‘overall average of the various raw metrics. Component 4 is a measure of the function’s
complexity. Compdnent 5 measures the number of boolean literals in the function. This is
strongly correlated with the case statement. Component 6.measures the size of the
function and compares it to the number of possible branches. Component 7 measures

variable use, how far between references and how deep into nested structures.

Table 4-5: Correlation between P and Time

PC r . PC r

el 0.9088 | e -0.0137
) 0.0995 | eo 0.0179
C3 -0.0029 €11 0.0213
€4 0.1671 €12 -0.0146
es 0.1342] e | -0.0005
€6 -0.2348 | e 0.0007
€7 -0.2248 | e;s 0.0248 ||
es | -0.0726 | e | -0.0303 |

4.3.4 The Sim2 Model

The model is formulated as outlined above. In this case, the standard program used is the
expandc;d code for Sim2. The 16 metricsv, obtained -using UX-Metrics, were first
sfandardized; Each would average to zero and have a standard deviation of one. Using
(3.5), the raw metrics were transformed into 16 principal components. For the 16 principal
components, the five with the strongést correlation to the execution time were used in the

linear regression.

Tables 4-6, 4-7, and 4-8 all show that the regression used to formulate this model is
reasonable. The regression model is highly significant as suggested by the F of over 600 as -
shown in Table 4-7. Since this means that the significance level of F almost zero, the
model is highly accurate. Also, the individual coefficients are significant as evidence by the
t-values and the corresponding almost zero p-values in Table 4-8. The p-values are the
significance level for the t-test. As well, both the adjusted and normal coefficient of
multiple detérmination is near unity. The extremely low significant level for both the F-test
and the t-test as well as tﬁe near unity of the correlation coefficients are all consistent with

a very accurate model.

Figure 4-1 shows the regression scatter plot of the predicted and actual execution times.
Although some values were predicted as negative, this is normal behavior when predicting
small values with normalized data. The plot shows that the predicted execution times are

very close to the actual execution times. Again, this points to a very strong model.

36

Table 4-6: Regression Model Summary

| REGRESSION STATISTICS |
Multiple R (0.988710
R Square 0.977548
Adjusted R Square 0.975921
Standard Error 129.9329
Observations 75

Table 4-7: Regression Model Significance

DF SS MS F Significance F
Regression | 5 | 50719844 | 10143969 | 600.8551 2.04E-55
Residual 69 | 1164896 | 16882.55
Total 74 | 51884740

Table 4-8: Regression Model Coefficient Significance

~ Coefficients Standard Error t Stat P-value
Intercept 277.403 15.00336| 18.48940| 1.94E-28
PC 1 224.483 4.45556| 50.38266] 3.7E-56
PC 4 297.640 32.12460] 9.26518] 9.85E-14
PC5 264.273 35.51869| 7.44039] 2.1E-10
' PC6 -604.866 46.47531| -13.01480 3E-20|
PC 7 -651.674 52.29414|-12.46170| 2.48E-19)

37

Figure 4-1: Sim2 Model

6000

5000

4000

3000

2000

Prediction (cycles)

1000

Time (cycles)

4.4 The Sim2 Model Predicting the Expanded Code

The sim2 mode\l is used to predict five test programs: BEN, FFT, Siml, Xboard and
Program X. Table 4-9 summarizes the result of the predictions. The_ R?is the square of the
correlation between the prediction and the actual value of the functions in each of the
expanded source code program. It ranges from 0 to 1 and is a summary of the strength of
the relationship between the predicted and actual values of the execution time. Program Y
was not expanded and therefore not Hsted. Ovefall, an excellent correlation is shown

between the actual and the predicted execution times.

38

Table 4-9: Summary of Predictions

Category | Program R?
\ BEN 1.0000
b TFrT 0.9843
Sim1 | 0.9684.
2 [Xboard | 0.6538
3 Program X | 1.0000

4.4.1 Category One Programs

The prediétion results of BEN and FFT are shown in Figures 4-2 to 4-4. Figure 4-3 is the
same as Figure 4-2 with the slowest function in BEN removed. The behavior of both the
BEN and FFT predictions is similar. Both programs are characterized by a dominant
function that takes the majority of the execution time. These dominate points lead to an
overstatement of the R? value. This accounts for the near unity values for these two tests
programs. Yet, Figure 4-3 shows that the R? value .listed for the category one programs in

Table 4-9 is misleading.

Figure 4-3 demonstrates an important weakness in the theory even given these
computationaﬂy based programs. Because linear regression is disproportionally affected by
the larger values, regression models based on large values are poor predictors of extremely

fast functiong Fortunately, in most situations, the fast functions are not of interest in

scheduling real-time systems and the slow functions are ones that are important.

Prediction (cycles x 10%)

Figure 4-2: Sim2 Predicting BEN

Time (cycles x 10°)

Prediction (cycles)

Figure 4-3: Sim2 Predicting Fast Functions

Time (cycles)

40

Table 4-4: Sim2 Predicting FFT

Prediction (cycles x 10°)

Time (cycles x 105)

4.4.2 Category Two Programs

Figures 4-5 and 4-7 .show the .prediction of Siml and Xboard using the Sim2 model.
Figure 4-6 is the same as Figure 4-5 but has the slowest function removed. Three
functions in Xboard (main, FindFont, and yylex) were treated as outliners and removed
from the calculations. Outlines is a term that means “bad values” for data points that fall
outside the line implied by the rest of the data. The main function is removed because it
contains the bulk of the GCT path tracing overhead, making the actual time slower than

the time without GCT overhead. The function FindFont could have been executed

without Quantify configured properly to catch its system call. The function yylex is

removed because it contains "go to" statements. Our approach to time estimation cannot
account for the irregular control flows generated using “go to” statements. The

assumption is that only structured programs will be involved.

41

As shown in Table 4-9, the square of the correlation between the predicted and actual
execution times for Sim1 is near unity. It implies that the prediction model explained about
97% of the variance. The actuai execution times of the Xboard functions are slower than
the predictions. However, all the functions seem to be at a constant factor of four times
slower and Figure 4-7 does shows a linear relationship. This four-times slower prediction
is due to the GCT overhead resulting in a constant speed reduction. Xboard was the only
function that contains the GCT probes while data was collected by Quantify. Nevertheless,
the R in‘ Table 4-9 shows that over 65% of the variance in the actual execution time is
explained with this prediction. Taking this into account, both of the programs in category

two are well modeled.

Figure 4-5: Sim2 Predicting Sim1

30000
25000
20000
15000

10000

Prediction (cycles)

5000

Time (cycles)

42

Prediction (cycles)

6000
5000
4000

- 3000

2000
1000

Figure 4-6: Sim2 Predicting Sim1 without the Slowest Function

Time (cycles)

Prediction (cycles)

2500

2000

1500

1000

500

Figure 4-7: Sim2 Predicting Xboard

Time (cycles)

43

4.4.3 Category Three Program

The only program in category three that had‘ exi)anded code available is Program X.
Figure 4-8 shows the predictions from the regression model on Program X’s functions.
Similar to category one pro grams, Program X is dominated by one slow function. This is
the main reason for the R? value of unity. Figure 4-9 is the same graph with a reduced
scale. The only point not show in 4-9 is the slowihg function in Program X. Excluding the
slowest function, the R® value is 0.7417. Even with the R? value at 0.7417, this is still a

strong prediction.

Figure 4-8: Sim2 Predicting Program X

Prediction (cycles x 10°)

Time (cycles x 10°

44

Figure 4-9: Sim2 Predicting Program X without the
- Slowest Functions

Prediction (cycles)

0 200 400 600 800 1000 1200 ©~ 1400

Time (cycles)

Figure 4-9 shows that the predicted value is-about twice as slow as the actual values. This
is caused by the model being formed on older Sun machine while Program X was tested
on a more advanced HP machine. To reduce the error in this prediction, it would be
necessary to formulate the model from a sfandard program tested on the HP machine.
Nevertheless, there is clearly a linear relationship between the two. This strongly supports
the idea that source code can be used to predict execution times. The error in the »

prediction is only due to cross platform differences.

Note that two functions in Program X xfer and sendmesg were treated as outliners and
were removed. They contain eight and nine lines of logical statements respectively. Since

only the metric values and not the source code were available, it is assumed that these

45

functions only contained irregular loop structures, for example “goto” statements that

were not expanded.

4.5 Model Robustness

Three points suggest that the theory is sound. First, similar models formulated with the
other test programs resulted in similar predictions. Second, the programming language
does not effect the overall theory. Finally, the computing environment has little effect on

the results. Though, the last two claims require further investigation.

The theory does not depend on either the data or the model presented in this chapter. A
different data set would produced similar predictive results pfovided that the standard
program' used to formulate the model is representative. This is to say that some care must
be taken to produce the model. Sim2 was used as the standard because it produced the
best regression results with the rest of the data. However, a similar model based on Sim1
had comparable results. A third model based on Xboard was also produced. Its predictive
ability was the worst of the three. The other programs were considered of an insignificant
size to generate a reasonable model due to the limited number of functions in each

program.

A comparison was done between Program X and Program Y. Program X was written in C

and Program Y in C++ (See Table 4-2). Principal component analysis was done to

. examine the raw metrics form the C and C++ code. Interestingly, they mapped to the same

46

domain. This supports the intuitive notion that C and C++ are similar at least with respect
to their metrics. Both have a similar distribution of control and data statements. To predict
C++ code, a model should be generated from a C++ standard program. That being said,

the same modeling seems applicable to C++ as well as C source code.

As stated in before, all but the category three programs were executed on Sun machines.
The category three programs were tested with HP machines. Since machine cycles ignore
the clock speed of a particular machine type, all the data is taken in terms of machine
cycles and not actual time units. Althdugh Program X was tested on a HP and the model is
formulated on a Sun machine, there is not an effect on Program X’s predictioﬁs. It stﬂl
appears as a linear relationship even though they are executed over two completely

different architectures. This suggests that the model is machine type independent.

4.6 Summary

This chapter discusses the results of the proposed approach to time estimation. GCT, UX-
Metrics, and Quantify are the software used to gather metrics and timing information from
the test programs. The sim2 model is formulated as outlined in Chapter 3. It is validated
and ;hown to be extremely significant by the various statistical tests. Then, the model is
used to predict the execution times of the other test programs. rThe results for the slow
functions are very good. One can see a clear linear relationship between the predicted and
actual execution times. However, there is a large error when it comes to the fast functions.
We believe the main reason for this error is dué to the metrics chosen. They were unable
to quantify the specialized nature of the fast functions.

47

Chapter 5: Conclusion

This work is focused on the development of a method to pfedict the ekecution time of
structured programs based on their static source code metrics. Since source code is
available early in the development cycle, these predictions can be madé to spot potential
future problems in meeting timing requirements. Various software metrics are analyzed.
The most interesting are the relative complex metrics generated by the principal
component method. Using this idea of principal component metrics, a linear regrgssion
model is formulated to predict the execution time of functions. The resulting model is

shown capable of predicting the execution time of other functions.

There are a few things to note about our approach to timing estimation. To solve the

indeterminate nature of loop structures in fhe source code, a’bound is plac‘_ed on each
individual loop and the code inside is expanded. Then, principal component analysisl was
used both to reduce the number of metrics used and to produce predictor variables for
linear regression. This prediction is reasonable for the slow functions. However, extremely
fast functions are problematic for the model to prédict. Fortunately, it is the slow functions
that are of interest in most cases. This method is meant to bev a first approximation of the
execution times, to be used as soon as thé source code is available. It is aléo relatively

robust, being insensitive to changes in computing language and environment.

48 -

The main contributions of this thesis are:

¢ A systematic method of predicting the software execution time is proposed. It
predicts the execution times of structured functions based on the source code.
Modeljng: is carried out using principal component analysis and linear
regression. Since source code prediction is one of the earliest quantitative
information available, it can be used to detect possible areas where timing
requirements are not met. This can result in redﬁced overall system production
cost.

e Though meant only for first apprpximation, this method seems re!atively

_robust, being insensitive to changes in computing language and architecture.
Though this claim required further examination since it is based only on a few
test cases.

e Results show that the functions sélected from the standard program have to be
representative of the other functions to be tested. That is, the program types
must be similar. This leads to the conclusion that the prediction models are
different for different types of programs.

e We have found that although branch structures do not present a problem, loop
structures are problematic. The proposed technique can not handle programs
with loops. One solution to the loop structure problem is to expand the code
inside the loop according to the number of times that loop is executed. It is
also found from the test cases that only about 30% of functions in real-time
programs ha\'/e loops. Therefore, this technique can be applied without a large

amount ‘of additional effort.

49

e We have found from the test cases that this technique can predict slpw
f,uﬁctions bettgr than fast functions. We believe a partition method, that is, to
group the functions into fast and slow categories will improve the prediction
since a different prediction model can be made for each of the fwo categories.

e The 16 metrics that were used can be mabped to only five domains represented
by principal components: an overall average component, a complexity
component, a case-statement component, a size versus branching component,

and lastly, a variable/nesting depth component.

Future _reseafchcan be extended from the current work into such areas as:

e Developing new metrics. The current procedure uses raw metrics that were not
originally designed for timing estimation. New metrics that are design to measure
some aspect of execution timing can replace the raw metrics and should give a better
prediction.

e Using higher order models. Currently, o‘nly linear transformations and regression is
used in the modeling. Moving away from a linear model could improve the prediction.

e Checking the assumptioﬂ that the model is insensitive to changes in languages and
computing environments. Only one test case was examined for each of these and they
may be abnormal cases.‘ More testing is needed to solidify the conclusion.

¢ Distinguishing between fast and slow function. This would allow a partition method t(;
ybe employed. The current method predicts slow functions well, however fast functions

are not well modeled. Partition would allow the fast functions to be model differently

from the slow functions.

Extending this research to unsfructured pfo grams. The assumption throughout is that
only structured programs are involved. It may be possible to apply this method to
unstructured programs as well.

Integrating this approach to timing estimation into existing software. It should be
possible to gather all the needed metrics automatically. Then, after the estimation is
accomplished, the data is transferred into a scheduling software to determine if a
system meets timing requirements. Such an automated system' would save both time

and money in the development of real-time systems.

51

References

. [Arnold 94] R. Arnold, F. Mueﬂef, D. Whalley, M. Harmon, “B’ounding Worst-Case
Instruction Cache Performance,” Proceedings of the IEEE Real-Time Systems

Symposium, Los Alamitos, Cahforma IEEE Computer Society Press, December 1994, pp.
172-181.

[Basili 84] V. Basili, D. Weiss, “A Methodology for Collecting Valid Software
Engineering Data,” IEEE Transactions on Software Engineering, SE-10 No. 6, New

York, New York: Institute of Electmcal and Electronics Engineers, November 1984, pp.
728-738.

[Boehm 81] B. Boehm, Software Engineering Economics, Englewood Cliffs, New Jersey
Prentice-Hall, 1981.

[Currans 86] N. Currans, Fourth Annual Pacific Northwest Software Quality Conference,
Portland, Oregon: Lawrence & Craig, 1986.

[Gupta 94] R. Gupta, P. Gopmath, “Correlation Analysis Techniques for Refining
Execution Time Estimates of Real-Time Applications,” Proceedings of the 11™ IEEE
Workshop on Real-Time Operating Systems and Software, Los Alamitos, California:
IEEE Computer Society Press, 1994, pp.54-58.

[Halstead 77] M. Halstead, Elements of Software Science, New York, New York:
Elsevier, 1977.

[Johnson 77] R. Johnson, D. Wichern, Applied Multivariate Statistical Analysis (3" ed.),
Englewood Cliffs, New Jersey: Prentice Hall, 1992.

[Puschner §9] P. Puschner, C. Koza, “Calculating the Maximum Execution Time of Real-‘
Time Programs,” Journal of Real-Time Systems, 1(2), 1989, pp. 159-176.

[McCabe 76] T. McCabe, “A Complexity Measure,” IEEE Transactions on Software
Engineering, SE-2 No. 4, New York, New York: Institute of Electrlcal and Electronics
Engineers, December 1976, pp. 308-320. '

[Munson 891 J. Munson, T. Khoshgoftaar, “The Dimensionality of Program Complexity,”
Proceedings of the 11th International Conference on Software Engineering, Washington,

D.C.: IEEE Computer Society Press, 1989, pp. 245-253.

[Munson 90a] J. Munson, T. Khoshgoftaar, “Applications of a Relative Complexity

52

Metric for Software Project Management,” The Journal of Systems and Software, 12 No.
3, New York, New York, Elsevier North Holland, July 1990, pp. 283-291.

[Munson 90b} J. Munson, T. Khoshgoftaar, “Regression Modelling of Software Quality:
Empirical Investigation,” Information and Software Technology, Vol. 32 No. 2, London,
England: Butterworths, March 1990, pp. 106-114.

[Munson 92] J. Munson, T. Khoshgoftaar, “The Detection of Fault-Prone Programs,”
IEEE Transactions on Software Engineering, SE-18 No. 5, New York, New York:
Institute of Electrical and Electronics Engineers, May 1992, pp. 423-433.

[Munson 93] J. Munson, T. Khoshgoftaar, “Measurement of Data Structure Complexity,”
The Journal of Systems and Software, 20, New York, New York: Elsevier North Holland,
1993, pp. 217-225.

[Tempus 97] Tempus Project, “Real-Time Performance Measurement: A White Paper,”
Software Productivity Solutions Inc., March 11, 1997.

[Zuse 90] H. Zuse, Software Complexity: Measures and Methods, Berlin: Walter de
Gruyter, 1990.

53

