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Abstract 

This thesis proposes an optimally rate allocated image transmission system that uses 

Vector Quantization (VQ) for source coding, and a family of variable rate Punctured Convolu-

tional Codes (PCCs) for channel coding. At the receiver, we apply the source aided channel 

decoding technique known as Markov Model Aided Decoding (MMAD). Our optimality criterion 

is to maximize the average end-to-end Reconstruction Signal-to-Noise Ratio (RSNR) under the 

constraints of a fixed information rate (in pixels per second) and a fixed transmission bandwidth. 

For a given channel SNR, this joint source-channel coder design achieves the optimal rate alloca­

tion between the source coding and the channel coding operations. Compared with the conven­

tional rate allocated system (the analogous system that does not use MMAD), the proposed 

system gives significant performance improvement. This is due to the fact that M M A D increases 

the strength of the channel codes, thus allowing the system to allocate more rate to the source 

coder, which results in a higher resolution image. 

In the course of our study, we first investigate MMAD without explicit channel coding for 

VQ image transmission over the noisy memoryless channels comprising the Binary Symmetric 

Channel (BSC) and the Additive White Gaussian Noise (AWGN) channel. In order to evaluate the 

effects of the order of the Markov model of the data, we consider two types of decoding 

algorithms. One is based on the Viterbi sequence decoding algorithm, the other is based on the 

Bahl, Cocke, Jelinek and Raviv (BCJR) decoding algorithm. The former is computationally less 

complex, and is optimal (in the sense of minimizing the Bit Error Rate (BER)) for decoding with 

a first order (O(l)) model; while the latter allows an efficient, but slightly sub-optimal, decoding 

algorithm for decoding with a second order (0(2)) model. We find that most of the M M A D 
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coding gain is already achieved by using the 0(1) model, and therefore in the remainder of the 

study consider it only. 

We go on to analyze two types of O(l) M M A D with Convolutional Codes (CCs) 

employed for explicit channel coding. We call the decoders Markov Model Aided Convolutional 

Decoders (MMACDs), and show via simulation that the performance benefits attained by using 

the Markov model are similar to the large gains found for M M A D without explicit channel 

coding. One type of MMACD is based on the Viterbi algorithm, and applies a trellis merging 

technique. This decoder has an optimal BER performance, but has the constraint that the length of 

the source codewords be less than the memory of the CC. The other MMACD is a concatenation 

of a soft-output channel decoder followed by an MMAD without channel coding. This decoder 

does not have the constraint on the length of the source codewords, but has less coding gain than 

the trellis merged decoder. 

Finally, we investigate the problem of optimal rate allocation between the source coding 

and the channel coding for VQ/PCC transmission systems that employ MMAD. Our simulation 

results over the AWGN channel show that the optimal rate allocated system is superior in RSNR 

performance to the optimally rate allocated system without M M A D . The M M A D coding gain 

depends on the image, but is typically 2 dB in channel SNR. We find that for the conventional 

system, the point of optimal rate allocation is fairly independent of the image; while for the 

MMAD system the allocation depends strongly on the image characteristics. Because of this, the 

rate allocation calculation is significantly more complicated when using M M A D . The rate 

allocated systems require an estimate of the channel SNR. Because in practice there will always 

be some inaccuracy in estimating this, to conclude our study we investigate the sensitivity of the 
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rate allocated systems to channel mismatch, and find them to be fairly robust. 
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Chapter 1 Introduction 

1.1 Motivation and Objectives 

A conventional end-to-end digital transmission system is composed of a source encoder, a 

channel encoder, a channel, a channel decoder and a source decoder. Source coding, or source 

compression, reduces the symbol throughput requirement upon the transmitter by removing the 

redundancy in the source data. Channel coding, also called error control coding, introduces con­

trolled redundancy into the transmitted information stream to protect it from channel noise. A 

basic result of Shannon's information theory states that nearly optimal communication of an 

information source over a noisy channel can be accomplished by separately optimizing the source 

coding and the channel coding operations [1]. However, this result is true only when there is no 

constraint on the source code dimension and the channel code block length. 

Based on this result, a conventional source encoder removes as much redundancy in the 

source as possible in order to deliver a source encoded bit-stream of statistically independent and 

equally probable bits. However, the more the source data is compressed, the more vulnerable to 

the channel noise the coded data will be. Therefore, we need more bits for error protection, but it 

is expensive to design a good channel code over a very noisy channel in terms of bandwidth, delay 

and complexity. The Shannon theory does not give an algorithm to design good channel codes 

with finite block length. On the other hand, in practice, due to the lack of exact information about 

the source, it is not possible to design a source encoder which can remove all the redundancy -

some residual redundancy always exists in the source coder output sequence. Shannon mentions 

that any redundancy in the source will usually help to combat noise if it is utilized at the receiving 

point [2]. Thus, for a practical system, the source and channel codes should not be treated sepa-
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Chapter 1 Introduction 2 

rately. 

If one wishes to perform near the Shannon limit with moderate delay or channel coding 

block lengths, it is necessary to consider the design of the source and the channel codes jointly. It 

may not actually be necessary to combine the source and channel codes, but simply to jointly 

design them. The systems in which the source coding and channel coding operations are jointly 

designed are called Joint Source/Channel Coding (JSCC) systems. It has been shown by investi­

gations [3]-[9] that JSCC systems reduce the distortion as well as complexity and delay. 

JSCC systems have been divided into three broad classes [5]: joint source/channel coders, 

where the source and channel coding operations are truly integrated; constrained joint source 

channel coders, where channel coders use some knowledge of the properties of the output of a tra­

ditional source coder to mitigate the effects of the noisy channel; and concatenated source /chan­

nel coders, which allocate a fixed bit rate between a cascaded source coder and a channel coder. In 

this thesis, a system combining the latter two schemes is proposed and analyzed. Because entropy 

encoded data is very sensitive to noise, it has been found that for very noisy channels, that it is 

better to use fixed length source codes which result in substantial residual redundancy, rather than 

use variable length codes which effectively remove the redundancy [7]. Markov Model Aided 

Decoding (MMAD) is a source-aided channel decoding technique whereby the residual redun­

dancy in the source is encapsulated in the form of a Markov Model which provides a priori infor­

mation about the source to the channel decoder. 

This thesis provides an extensive investigation into joint source-channel coding design 

with Vector Quantization (VQ) and Convolutional Codes (CCs), both of which are used widely in 

wireless image transmission systems. VQ is an efficient compression algorithm for removing 
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redundancy in the data source in order to maximize bandwidth utilization. Though MMAD has 

been investigated for Differential Pulse Code Modulation (DPCM) transmission over the Binary 

Symmetric Channel (BSC) and the Additive White Gaussian Noise (AWGN) channels [4][5], an 

extensive investigation into MMAD for VQ transmission has riot been performed. This thesis con­

tributes to this effort through the following: 

• Reviewing the VQ design method including the LBG algorithm and two index assign­

ment methods. 

• Applying MMAD techniques using a first order or a second order model for the VQ 

transmission systems without explicit channel coding. These are based on the Viterbi 

and the Bahl, Cocke, Jelinek and Raviv (BCJR) algorithms. We also consider iterative 

model recovery techniques which allow the receiver to recover the model of the source 

data from the noise corrupted channel data. 

• Applying the Viterbi algorithm with the trellis merging technique to develop a trellis 

merged Markov Model Aided Convolutional Decoder (MMACD) for VQ and CC 

transmission systems, and proposing an alternate concatenated MMACD based on the 

BCJR algorithm. 

Many authors, including the present, find large Markov Model Aided Decoding gains, but 

this is usually because the large gain is usually in a region where the channel code is not effective. 

There is no M M A D gain for very high channel Signal-to-Noise Ratio (SNR). How can we 

evaluate M M A D more fairly? The third generation wireless systems allow multi-rate transmis­

sion, making rate-allocated systems possible. We believe that a fair system forjudging the perfor­

mance improvements attainable by employing M M A D techniques would be a rate allocated 
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system. 

Therefore, in this thesis we propose and analyze an optimally rate allocated image 

transmission system that uses VQ for source coding, and a family of variable rate Punctured 

Convolutional Codes (PCCs) for channel coding. We consider the rate allocation problem for both 

MMAD and conventional channel decoding. The combination of source and channel coding used 

maximizes the end-to-end Reconstruction Signal-to-Noise-Ratio (RSNR) under the constraints of 

a fixed channel bandwidth, and a fixed information transmission rate. More specifically, this thesis 

contributes through the following: 

• Finding the best PCCs for our system requirements. 

• Proposing a rate allocated system with MMAD. Applying model simulation to study 

the optimal rate allocation for the rate allocated systems with and without MMAD. 

Comparing the performance of the proposed system with that of the conventional rate 

allocated system without MMAD. 

• Examining the channel mismatch effect for the optimal rate allocated systems with or 

without MMAD. 

1.2 Thesis Outline 

This thesis is composed of the following: 

Chapter 2 presents the background necessary for a basic understanding of VQ. The LBG 

algorithm is introduced. We investigate the performance of two index assignment algorithms and 

choose one for our later investigations. 



Chapter 1 Introduction 5 

Chapter 3 focuses on the basic VQ transmission system over the memoryless channels 

BSC and AWGN without explicit channel coding. We consider both symbol-by-symbol and 

sequence decoding algorithms. As well we consider using both first order (0(1)) and second 

(0(2)) Markov models. The symbol-by-symbol decoding algorithms, as well as the sequence 

decoding algorithms that use the 0(2) model, require feedback of previous decoding decisions. 

We consider two types of feedback: feedback of hard decoding decisions, and feedback of a pos­

teriori symbol probabilities. These are called Hard-Decision-Feedback (HDF) and Soft-Decision-

Feedback (SDF), respectively. The HDF sequence decoders are based on the Viterbi algorithm, 

while the SDF sequence decoders are based on the BCJR algorithm. In the last part, an iterative 

source recovery technique is applied to obtain the source model without a priori source informa­

tion. 

In Chapter 4, the investigation is continued to MMACDs for VQ data transmission with 

CCs. One type of MMACD uses a trellis merging technique, which allows one to efficiently use a 

Markov model while employing the Viterbi decoding algorithm. Another type of MMACD pro­

posed is a concatenated decoder, which uses the BCJR algorithm in a pure channel decoder, fol­

lowed by the Viterbi based MMAD for no channel coding. The former is computationally simpler, 

and is optimal in the sense of minimizing the bit error rate. However, it has a restriction (that the 

length of the source codewords be less than the channel code memory) that the latter decoder does 

not have. 

In Chapter 5, we propose an optimally rate allocated MMAD system for VQ with PCC 

transmission over the AWGN channel. The model simulation scheme is used to determine the 

optimal rate allocation between VQ and PCC for the systems with and without MMAD. Their 
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optimal rate allocation for the different images is studied. We compare the RSNR performance of 

the proposed system with that of the conventional rate allocated non-MMAD system. Also, their 

sensitivity to channel mismatch is examined. 

In Chapter 6, we make concluding remarks and present suggestions for future work. 



Chapter 2 Vector Quantization 

In this thesis, all our image transmission systems are based on Vector Quantization [10]-

[20] as the source coding technique. VQ provides two attractive features: high compression ratio 

and simple decoder structure; thus, it has aroused wide attention for many years. It has been 

extensively used for source coders in digital transmission of analog signals. Whether or not the 

source output values are correlated or uncorrected, for a given rate in bits per pixel (bpp), prop­

erly designed vector quantizers will always perform better (less distortion) than scalar quantizers 

[10]. 

VQ is like scalar quantization except that all components of Q, successive source samples, 

are quantized simultaneously. Normally these Q. successive source samples are formed by group­

ing a block of pixels (quantization block) together in a vector. As such, a vector quantizer is char­

acterized by a Q. -dimensional partition, a Q -dimensional codebook (containing Q -dimensional 

points, reproduction codewords or codevectors), and an assignment of binary codewords (called 

indices) to the cells of the partition (equivalently, to the codevectors). 

For Q -dimensional VQ, image vectors are formed by dividing an image into non-overlap­

ping blocks of Q. pixels. Each input vector is compared with the codevectors of the codebook. 

The index of the nearest codevector is sent to the decoder. The decoder has a codebook identical 

to the encoder, and decoding can be implemented by a simple table look-up operation. The picto­

rial representation of this procedure is shown in Figure 2.1 [10]. 

There are the two main problems in VQ design. One of the problems is how to generate 

the reproduction vectors, or the codebook over the source; the other is how to choose the binary 

7 



Chapter 2 Vector Quantization 8 

representation of the reproduction codevectors (or the indices), so that the effect of channel errors 

is not too degrading on the performance. 

"J 

image 
source 

#• • • • 

Block 
into 

Vectors 

VQ Encoder 

Find closest! 
r l Codevector 
codebook index 

VQ Decoder 

Table 
Look-up 

index codebook 

reconstructed 
image 

Unblock 

Figure 2.1: Diagram of Vector Quantizer 

2.1 The LBG Design Algorithm 

The popularly known Linde-Buzo-Gray (LBG) algorithm or the generalized Lloyd algo­

rithm (GLA) [14] forms the basis of most vector quantizer designs. There exists various VQ 

design algorithms, and although each has found its adherents, none convincingly yields significant 

benefits over the LBG algorithm and its variations in terms of trading off rate and distortion [15]. 

In this paper we use the LBG algorithm as our VQ codebook design algorithm due to its simplic­

ity and its effectiveness in the compression of various source inputs [10] [16]. 

Before we talk about the LBG algorithm, let us define some terminology first. The amount 

of compression will be described by the rate, in bpp. Assume we have a codebook of size M, and 

the input vector is of dimension Q. Each possible codevector is mapped to an index in order to 
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inform the decoder which codevector was selected. The index can be a fixed length (fixed-rate 

VQ) or a variable length (variable-rate VQ). In our system we only consider fixed rate V Q , 

because variable-rate VQ, though it has better compression performance, results in data that is 

more sensitive to the channel noise. Thus, each codevector is represented by an index with 

q=riog2M"| bits. For simplicity, we call this V Q a q-bit VQ. As each codevector represents the 

reconstruction values for Q, source output samples, the rate for a Q. -dimensional vector quantizer 

riog 2M] 
with a codebook size M would be R s = •———• bpp. 

Define a £1 -dimensional vector quantizer as a mapping function y=q(x), where x repre­

sents a source vector, y represents the corresponding reproduction codevector. Each time it 

assigns a typical source vector (a block of Q. source symbols) xn = (x°, x\, ..., x^ ~ 1 ) to a code-

vector y=q(x), yn = (y°, y 1 , ') drawn from a finite reproduction codebook 

C = {c 0 , Cp cM_ j } , where Cj is a reproduction codevector. The vector quantizer q is com­

pletely described by the codebook C with the quantization regions R = {RQ, Rlt R M - l } . 

q(x) = Cj, if x e Rt , Ri= {x: d(x, ci) <d(x, Cj) = 0, 1, M- 1. Normally we mea­

sure the distortion between a source vector and the reproduction codevector by the mean squared 

error. 

£2-1 

d{x,y) = \\x-yf= ^(x'-y')2 (2.1) 
( = 0 

this is also called Euclidean distance. 
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We assume to use the image source data as the training set for the codebook design. Sup­

pose the total number of the source symbols in one image is N t . Then, for Q -dimensional VQ, the 

total number of source vectors is Nv = N/Q.. The LBG or GLA algorithm proceeds as follows 

[10]: 

1: Start with an initial set of reconstruction values or an initial codebook [y,}^°\ 

y. = (yP, yj, yp~ l ) , i = 0, 1, . . . , M - 1 and a set of source vector {x„}, 

n = 0, 1, ..., M - 1 . Set the repeating time variable k=0 and the original average dis­

tortion D ( 0 )=0. Select threshold e. 

2: Calculate the quantization regions {R./k^}, i = 0, 1, M - 1 by: 

R/ k>={x n:d(x n, y /)<d(xM,y ;-) V i * ; } i = 0, 1 , . . . ,M-1 (2.2) 

3: Compute the average distortion between the source vectors and the reproduction 

codevectors. 

K-l 

YJd(xn-q(xn)) 

D(*)) = n^o _ ( 2.3) 

DW_D(k-i) 
4: If — < e stop; otherwise, continue. 

D{ ' '. 

5: k=k+l. Obtain new reconstruction values {y,-}^, i = 0, 1, ...,M- 1 by calculating 

the average value of the elements of each of the quantization regions R ^ . Go to Step 

2. 

The selection of the initial codebook is very important. Linde, Buzo, and Gray described 

the splitting algorithm in their original paper [14]. It starts by designing a codebook of size one, or 
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a one level vector quantizer. For the one-level quantizer, the output point of the codebook is the 

average value of the entire source vectors. From this point, one can obtain the initial codebook for 

a two-level vector quantizer by including the reproduction codevector of the one-level quantizer 

and a second codevector, obtained by adding a perturbation vector 8, which can be a fixed or a 

random vectors. Then the LBG algorithm is applied to get the final reproduction codevectors of 

the two-level VQ. In the same way, one can obtain the initial codebook of a four level quantizer by 

splitting the final output points of the two-level quantizer. Then the LBG algorithm is used to get 

the final codebook for the four-level VQ. In this manner, we keep doubling the number of quanti­

zation levels until we reach the desired number of levels [10]. 

After the final reconstruction values {VJ}^, i = 0, 1, M - 1 are obtained, we can 

form the final codebook C = {cQ, cp cM_,}, where c; represents one of these reconstruction 

codevectors. Then these codevectors are represented by q-bit indices, q = [~log2M~|, which are the 

most efficient way to represent source information. 

Suppose we sent these indices into a noisy channel. Because essential information of 

source data is extracted and source redundancy is removed by VQ, the vector quantized data are 

very sensitive to channel noise. Proper assignment of binary indices to VQ codewords can reduce 

the distortion due to the channel noise without an increase in bit rate or decoding complexity. If 

the index mapping function is y ( c ) , for 2 q quantization levels, there are q! possible ways to map a 

code vector Cj onto an index y ( c ( ) . Index assignment is an important topic in VQ design. In recent 

years, some iterative index assignment algorithms like the pseudo-Gray coding [17] and the simu­

lated annealing [18] have been reported. However, these iterative procedures are quite computa-
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tionally intensive. In the next section, we consider two computationally efficient index assignment 

algorithms: the Growth algorithm [19] and the Natural Binary Codes (NBCs) [18] from the split­

ting algorithm. The performance of each is compared. 

2.2 Index Assignment 

Consider the design of a Q-dimensional, q-bit VQ with the codebook 

C = {c 0, C j , ..., cM_ j} , where M = 2 q. Let the index set be denoted by / = {0, 1, ..., M - 1} . 

We define a one-to-one index mapping as y: C —> / , which assigns the indices to the codevectors. 

Suppose C j is represented by the index i = 0, 1, M - 1. The indices of the quantized vectors 

are transmitted over a noisy memoryless channel. Figure 2.2 shows the VQ transmission system 

without explicit channel coding. 

X 

VQ 
Cj Index I Noisy J 

VQ" 1 

x = 

W VQ w Mapping W Channel 
VQ" 1 

w 

Figure 2.2: VQ data transmission system 

Due to the channel noise, index i may become index j at the VQ decoder, 

j = 0, 1, ..., M - 1. Let p(j\i), i , j = 0,1,...,M-1, denote the probability that j is received given that 

i is actually sent over the noisy channel. The overall distortion per source sample of the communi­

cation system is as follows: 

M - 1 M - 1 

D(q,j) = ^ J p{j\i)\p{x)d[x,Cj]dx (2.4) 

i = 0 j = 0 R, 

where d(x,y) is the distortion measure between codevector x and y given by (2.1), and R; is the 
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quantization region of the codevector Cj. When the distortion is measured by mean square error 

(2.1) and the codevectors are the centroid of their respective quantization region, (2.4) can be 

written as [18]: 

M-l M - 1 M - 1 

D(q,j) = ̂  X \p(x)d[x,ci]dx + ± X X PWpUWdlCpCj] (2.5) 

where the first term is the average quantization distortion per source sample. We use D$(q) to 

denote it, and call it the source distortion. We also note that the value of the second term will be 

influenced by the source information, the index assignment and the channel characteristic. This 

term is denoted by Dc(y) and is called the channel distortion. Thus we have 

D(q,y) = Ds(q)+Dc(q,y) (2.6) 

It has been shown that a substantial reduction in channel distortion can be obtained 

through an appropriate index assignment rather than a random assignment [20]. Recently, H-S Wu 

and J. Barba developed an efficient index scheme called the Growth Algorithm [19] which is sim­

ple computationally and which has excellent performance compared with the average random 

assignment. In what follows we will present this algorithm and another algorithm called the NBCs 

from the splitting algorithm. 

2.2.1 The Growth Algorithm 

The Growth index assignment technique [19] was published in 1993. The channel is 

assumed to be memoryless with bit error probability e. Accordingly, p(i\j) = e m ( l -e)^~m, 

where m is the Hamming distance of the index i and j . For simplicity, assume that no more than 
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one bit is in error for any one received binary index. Let h(i,j) denote the Hamming distance 

between index i and j . H^i j ) represents those indices i and j whose Hamming distance between 

them is 1; Hi(ij) = { (i,j) I h(i,j)=l }. Thus, the channel error transition probability can be 

described as 

P(i\j) = 

1 - ql fori = j 
8 for(i, j) e Hx(i, j) 

0 otherwise 

Thus, the second term in (2.5), the channel distortion, can be rewritten as: 

M - 1 

Dc(q,j)= ^ I P(<) X d[Ci,Cj] (2.7) 
, = 0 («'.y')e H\(iJ) 

To reduce the channel distortion, one should try to assign the codevectors with smaller Euclidean 

distance onto the indices with Hamming distance equal to one. When the indices are represented 

by q bits, there are 2 q indices in total. The Growth algorithm is explained as follows [19]: 

This algorithm starts to establish a q+1 multilevel index structure. The structure begins 

with the top level which contains only one node. Any indices whose Hamming distance is 1 from 

the index on the top node is allocated on the first level. Any indices whose Hamming distance is 1 

from any index on the (m-l) t h level, except those which have been assigned to 0 t h ~ (m-2)th level, 

is assigned to the m t h level. There are — —— nodes on the m t h level, where 0 < m < q, 
[{q-m)\m\\ 

there are 2 q nodes in the structure in total. Figure 2.3 shows an example of the multilevel structure 

for q=4. Any indices which are separated by Hamming distance 1, are connected by a straight line 
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directly. The number shown at each node is the index representing the code word at the node. 

After assigning the indices on the structure nodes, we assign the codevectors from the 

codebook on the according nodes. To make the Dc(y) smaller, two codevectors with small 

Euclidean distance between them tend to be assigned as neighboring nodes linked by a straight 

line; and a centroid with large a priori probability tends to be assigned to the high levels so that 

this centroid has more freedom to be chosen as a neighbor of those codes. Thus, each node is 

assigned one index code and one codevector. A one-to-one mapping can be established by map­

ping the index in each node to the codevector in the same position corresponding to the identical 

multilevel structure created based on the Hamming distance of indices. 

This algorithm is computationally very simple and it has to consider the Euclidean 

distance between the codevectors, the probability of the codevectors and the Hamming distance 

between the indices. Its performance is much better than the average performance attained by 

random index assignments. It is not the optimal assignment, but it comes close to an optimal 

assignment [19]. 

Figure 2.3: Multilevel structure for index assignment for q=4 V Q 
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2.2.2 Natural Binary Codes from the Splitting Algorithm 

Suppose the splitting algorithm is used to initialize the vector quantization procedure. To 

design a Q -dimensional vector quantizer, first we compute the average of the entire input as the 

output codevector of a one-level vector quantizer, say y 0 . We put it on the top node of a tree. After 

splitting y 0 into yo and y0(l+8), we apply the LBG algorithm to get the two codevectors, called 

y 1 0 and y n , as the output of the two-level vector quantizer. We put them on the second level of the 

tree and label them 0 and 1 respectively. In the same manner, we will get the four output codevec­

tors called y2r> y2i> y22> v23> labelled as 00, 01, 10, 11 respectively. As we continue splitting and 

building the tree, we are also building binary strings with the desired codevectors having binary 

codes called Natural Binary Codes (NBCs). Figure 2.4 shows an example of a decision tree for a 

8-level VQ with the 3-bit NBC indices. The leaves of the tree are the output codevectors and the 

label inside each node leaf is the index corresponding to the output codevector. 

We have applied the NBC and the Growth algorithms respectively in the system of Figure 

2.2 with the 512 by 512 standard monochrome Lena image. For our simulations, in order to keep 

the required side information low, we use a low dimension 2 by 2, Q = 4, LBG VQ then forms a 

Figure 2.4: Decision tree for Natural Binary Codes, 3-bit V Q 
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codebook composed of 16 codevectors. After compressing the image into the indices, we transmit 

sends these indices over the BSC channel. The VQ decoder decodes these noise affected indices 

to reconstruct the image according to the codebook. In this paper, we suppose the codebook is 

known perfectly by the VQ decoder. The performance is measured in terms of the Reconstruction 

Signal-to-Noise Ratio (RSNR). 

RSNR = 101og10 ^ ; (2.8) 

r, c 

where x r c is original image source value at the point of row r and column c and x' is the 

reconstructed value at the same position. 

The RSNR performance for 4-bit VQ using the Growth algorithm and the NBC is shown 

in Figure 2.5. It is interesting to find that the NBC performs about 2 dB better than the growth 

algorithm. We also tried other rate VQs. In most cases the NBCs from the splitting algorithm 

performs very well. The reason is that the codevectors will be concentrated on a thin ellipsoid in 

the -dimensional space, and the binary partitions obtained by the splitting algorithm are such 

that "most" vectors in the same region are closer to one another than to those in other regions; and 

therefore, to a great extent, binary codewords of small Hamming distance will be assigned to the 

codevectors of small Euclidean distance [18]. Also due to the NBC algorithm's simplicity, in the 

latter, we use it as our index assignment algorithm. 
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0.02 0.04 0.06 0.08 0.1 
Error Probabil i ty of B S C Channe l 

0.12 

Figure 2.5: RSNR performance of different index assignment schemes 

Figure 2.6 shows the original Lena image and the applied 3-bit, 4-bit, 5-bit VQ 

reconstructed images without noise influence. Their rates are 8 bpp, 0.75 bpp, 1.00 bpp, 1.25 bpp 

and 1.50 bpp respectively. Figure 2.7 shows the original 256 by 256 Sena image and 3, 4, 5-bit 

VQ reconstructed images. Note that fairly high quality is already achieved at the source coding 

rate of 1.00 bpp. 
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Original Image RSNR=23.13dB using 0.75bpp 

RSNR=25.04dB using 1 .OObpp RSNR=26.80dB using 1.25bpp 

Figure 2.6: Original 512 by 512 Lena image and VQ reconstructed images 
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RSNR=23.40dB using 1 .OObpp RSNR=25.75dB using 1.25bpp 

Figure 2.7: Original 256 by 256 Sena image and VQ reconstructed images 



Chapter 3 Markov Model Aided Decoding without Explicit 
Channel Coding 

It was shown in Chapter 2 that a good index assignment can reduce the end-to-end distor­

tion. In addition to that, we will exploit another way to protect VQ data against the channel errors 

without increasing the bit rate. It is known that the residual redundancy in the source encoded data 

can and should be exploited for channel error protection [21]. Although VQ removes much 

redundancy, there is still some statistical dependency existing among spatially neighboring VQ 

encoded symbols, especially when the dimension of the vector quantizer is low. It is known that 

Markov Model Aided Decoding (MMAD) techniques can make good use of residual redundancy 

to help error protection [4][5]. In this chapter, we will study M M A D techniques for vector 

quantized image data transmission without explicit channel codes. 

Although M M A D techniques as described below can be used in conjunction with any 

fixed length source code, in this paper we consider only images encoded by a vector quantizer. In 

MMAD one models the source data set as a finite-state Markov sequence, and integrates it into the 

channel decoding process. Therefore, the MMADs require that the receiver have the model of the 

source. There are two ways for the receiver to obtain the source model parameters. One method is 

to measure the model parameters at the transmitter and then sent them as side information. 

Alternatively, it is possible for the receiver to recover the source model without a priori informa­

tion, as we will discuss in the latter part of this chapter. 

Suppose an image is quantized by a VQ with codebook size 2 q , and that the corresponding 

index is q-bit. These indices are represented by a symbol, sr c , of a Q-ary alphabet, defined at each 

point (r, c) of the VQ encoded image; where r is the row index and c is the column index, Q = 2 q . 

21 
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Here we will compare the RSNR performance between the M M A D and the non-source aided 

decoding. 

We consider the decoding of the sequence of received symbols resulting from the row-by-

row transmission over the noisy memoryless channels BSC or AWGN. For the AWGN channel, 

each bit 0 or 1 is BPSK modulated into ±1 before transmission over the channel. The block 

diagrams of the conventional systems without source aided decoding are shown in Figure 3.1. 

VQ Encoder BSC VQ Decoder b» 

• 
VQ Encoder 

W 
BSC 

w 
VQ Decoder 

w 

(a) 

VQ Encoder BPSK AWGN fe. BPSK"1 VQ Decoder 
- — • VQ Encoder •w 

BPSK 
~ "  1 W 

AWGN 
W 

BPSK"1 VQ Decoder 
w 

(b) 

Figure 3.1: Non-source aided V Q transmission systems (a) B S C (b) A W G N 

The block diagrams of the system with M M A D are shown in Figure 3.2, in which we 

assume for now that the knowledge of the source is known perfectly by the receiver. The sequence 

of q-bit symbols is modeled as a finite order Markov sequence. The RSNR performance between 

the two systems will be compared. 
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VQ Encoder 1 • 
BSC • MM AX) • VQ Decoder 

a priori probabilities 

(a) 

VQ Encoder BPSK AWGN MMAD 

1 

VQ Decoder VQ Encoder —w 
BPSK 

W 
AWGN MMAD 

1 

VQ Decoder 

a priori probabilities! I 

(b) 

Figure 3.2: VQ/MMAD transmission systems (a) BSC (b) AWGN 

In Section 3.1 and 3.2, we will review the MMAD principles which are modified based on 

the Viterbi algorithm or the BCJR algorithm. Two different types of Markov Model will be con­

sidered and compared. One is the first order (0(1)) Markov model, the other is the second order 

(0(2)) Markov model. In section 3.3, an iterative model recovery technique is applied to allow, the 

receiver to recover the source model parameters without any a prior information. Here we assume 

that the VQ used in our simulations is a 4-dimensional LBG VQ with NBCs indices. 
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3.1 MMAD Based on the Viterbi Algorithm 

The Viterbi algorithm is normally a Maximum Likelihood (ML) sequence decoder [22] 

(refer to Section 4.1), which selects the sequence s that maximizes XX^^r c\sr c) > where 
r c 

P^r,c\sr,c^ is the probability of the receiving symbol sr c given that sr c was transmitted; and 

depends only on the channel. Note that the Viterbi algorithm is not limited to convolutional codes 

because one can still form the source symbols into a two dimensional trellis (time forming one 

dimension, the states forming the other). Here the value of a state is the value of a VQ symbol. We 

apply the Viterbi decoding algorithm in a block decoding mode where each block is a row of VQ 

image data. We use the term depth to refer to the decoder memory in a particular direction. 

MMAD based on the Viterbi algorithm takes advantage of a priori source statistics information in 

such a manner that MAP sequence coding is achieved (refer to section 4.1). 

Here two different types of the Markov model (O(l) and 0(2)) are considered and their 

performance is compared. The necessary modification to the Viterbi algorithm for M M A D is 

shown in the following. 

3.1.1 Viterbi Based O(l) MMAD 

In O(l) M M A D , one models the VQ source data as a first order Markov model. This 

model is defined by the a priori probability of a symbol given that the symbol previous in the row 

is known, for all Q symbols in the code alphabet. It is assumed that the a priori conditional 

probabilities (Markov model) of the VQ source data are exactly known to the receiver. Since the 

rows are independent, each may be decoded separately. The horizontal depth of the decoder is the 

row size, the vertical depth is 0. It is shown that using Viterbi based 0(1) M M A D to decode the 
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received sequence optimally in the sense of minimizing the probability of sequence error, the 

receiver must choose the sequence s which maximizes [4][5]: 

UP(K,c\^c)P^r,c\^c-0 (3-D 
c 

where P(sr c\sr c _ j) is the priori probability of sr c given that sr c_x was previous symbol, 

which depends only on the source and defines the Markov model. 

The most computationally efficient way to decode this sequence is to form a trellis, by 

indexing the states with both a state index and a time index, and apply the Viterbi algorithm to 

decode one row (with fixed row index r) at a time. The example of a 4-state trellis is shown in 

Figure 3.3. 

Assume that the number of symbols per row is L, of that there are Q states at each time c, 

corresponding to the symbols sr c of the Q-array symbol alphabet. There is a branch metric 

calculated between every pair of states consecutive in time whose value is given by: 

teSP(K,c\sr,c)+tegP(Sr,c\Sr,c-0 (3-2) 

Among the paths terminating on a given state, the one having the largest cumulative metric is 

stored, resulting in Q paths at any given time. Of these, the path with the largest cumulative metric 

is the decoder's best estimate of the transmitted sequence of symbols up to the current time. 

When the channel is the BSC, the channel transition probability is: 

p(K,c\sr,c) = e r f ( l - e ) * - d (3.3) 
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where e is the channel bit error probability, d is the hamming distance between the transmitted 

symbol sIC and the received symbol s r c . 

When the channel is the AWGN, define the channel SNR = E b / N 0 , where E b is the 

received energy of per bit, N 0 is noise spectral density, then we have: 

q-l 

P(Sr,c\h,c) = X ^ J . c K c ) ( 3 - 4 ) 

i = 0 

P&,e\H,c) = 7 = • e x p { - ( < c ; ^ c ) 2 l (3-5) 

state 
index 

00 

01 

10 

11 

r • 
best path a t time r 

candidate paths 

Figure 3.3: 4 state trellis for 2-bit VQ 
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3 . 1 . 2 Viterbi Based 0 ( 2 ) MMAD 

For optimal decoding when source is modeled as a 0(2) Markov sequence, the decoder 

must choose the sequence s that maximizes [4]: 

llP(K,c\^c)P^r,c\Sr,c-l^r-Uc) (3-6) 
r c 

where P(sr c\sr c_\, sr_l c) is the probability of s r c given that src_i was previous in the row and 

sr.i c was previous in the column. These Q 3 second order transition probabilities define the 0(2) 

model at the receiver. Since the rows are no longer independent, they can no longer be decoded 

separately. In principle, for optimality with respect to the second order Markov model, all the 

rows must be decoded simultaneously. 

Here we only consider the case that a decoded row is used to aid the decoding of the sub­

sequent row. This is referred to as vertical depth 1 sheet decoding in reference [4]. The decoding 

of a row proceeds just the same as the Viterbi 0(1) MMAD decoding, except that the decoder 

selects the sequence which maximizes: 

n P < 3 r , c K c ) ^ r , c K c ^ - l , c ) ( 3 - 7 ) 
c 

where sr_ j c are the decoded symbols for the previous row and are referred to as the Hard-Deci­

sion-Feedback (HDF). The log likelihood function for the branch metric: 

l 0 g ^ c | ^ c ) + 1 0 g ^ , C | ^ c - l ^ r - l ) C ) (3-8) 

depends on the previously decoded row via the decoded symbols sr_ { c . Obviously, the perfor-
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mance depends on the correctness of the previously decoded sequence. 

The RSNR performance of the different decoders for 3-bit VQ transmission over BSC and 

AWGN is shown in Figure 3.4. We use the 512 by 512 Lena image. Compared with the non-

MMAD decoders which are labelled non-source aided, the Viterbi based MMAD decoders which 

are labelled Viterbi + O(l) MMAD or Viterbi + 0(2) MMAD, give significant improvement for 

VQ transmission for high channel error rates - about 5dB for the BSC channel, and 6dB for the 

AWGN channel. The two curves converge when channels become cleaner. 

The reconstructed Lena images of the non-source aided decoding and the Viterbi O(l) 

MMAD for 3-bit VQ transmission over the BSC and AWGN channels are shown on in Figure 3.7. 

These images are obtained using the same channel Bit Error Rate (BER). The BSC channel cross­

over error probability is 0.0768; while the AWGN channel SNR which results in the same bit 

error probability or BER of 0.0768 for the system without MMAD is OdB. For the BPSK signal 

over the A W G N channel, the BER is calculated by BER BPSK 
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t i I 

- • - . <> 

0 non source aided 
e Viterbi+0(1) MMAD 
•+• Viterbi+0(2) MMAD 

I 
o' ' ' ' ' ' • 

0 0.02 0.04 0.06 0.08 0.1 0.12 
Bit Error Probability of B S C Channel 

(a) 3-bit VQ transmission over the BSC channel, 512 Lena 

1 1 

-

I 

—0— non source aided 
e Viterbi+0(1) MMAD 

•+• Viterbi+Q(2) MMAD 
o'1 ' =̂ -> ' ' ' ' 
- 3 - 2 - 1 0 1 2 3 

channel SNR of A W G N (dB) 

(b) 3-bit VQ transmission over the AWGN channel, 512 Lena 

Figure 3.4: Viterbi based M M A D decoders without explicit channel coding 

For the same MMAD system, we find that VQ using MMAD for the AWGN channel gives 

higher MMAD gain than for the BSC channel. Because MMAD for the AWGN channel uses the 
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unquantized signal level representing the transmitted bit; this unquantized signal has more 

channel information than the BSC quantized signal, thus allowing the source statistics to weight 

the decision more accurately. 

Because of that, for the AWGN channel, the 0(2) MMAD is a little better than the 0(1) 

MMAD, but opposite for the BSC channel. This poor performance of the 0(2) M M A D decoder 

relative to the 0(1) MMAD decoder is due to error propagation from row to row. We find in the 

next section that this error propagation can be mitigated by using Soft-Decision-Feedback (SDF) 

information from the previously decoded row. 

3.2 MMAD Based on MAP Algorithms with SDF 

The 0(2) M M A D based on the Viterbi algorithm uses HDF values. Here we use SDF 

instead of HDF to give the 0(2) MMAD more correct knowledge [23]. The Viterbi based MMAD 

algorithm is a MAP sequence decoding method which minimizes the probability of the sequence 

error. However, this algorithm does not minimize the probability of symbol error. We apply two 

other MAP decoders which minimize the probability of symbol error. One uses a symbol-by-

symbol Modified M A P (MMAP) decoding algorithm and the other uses a sequence MAP 

decoding algorithm known as the BCJR algorithm using the modified, numerically stable vision 

[8] [24]. These decoders provide the a posterior probability (app) which can be exploited by 

M M A D decoders as SDF. We will see that M M A D based on the BCJR algorithm with SDF 

achieves a better performance than the Viterbi based 0(2) MMAD. 

3.2.1 Symbol-by-Symbol MMAD 

The MMAP receiver proposed [4], for data obeying a 0(1) Markov model, is a symbol-
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by-symbol decoder whose decoding rule is to choose the symbol sr c which maximizes 

31 

P(K.c\Sr.c)P(Sr,c\*r,c-0 (3-9) 

where sr c _ j is the previously decoded symbol in the row. 

Similarly, for data obeying a 0(2) Markov model, the MMAP decoding rule is to select the 

symbol sr c which maximizes 

P(K,c\Sr,c)P(\,c\Sr,c-l>-Sr_hc) (3.10) 

where sr_l c is the previously decoded symbol in the column. sr c_l and sr_l are the HDF 

symbols. The performance of a decoder using the decision variables in (3.9) (3.10) will depend on 

these feedback values. A error in the HDF value might cause further errors for the present decod­

ing. For 3-bit VQ transmission over the BSC channel, from Figure 3.5 (a), we can see that the 

O(l) MMAP with HDF is not better than the non-source aided decoding; and the performance of 

0(2) MMAP with HDF decreases quickly when the channel becomes worse. 

Consider using n(sr c_ j ) , n(sr_} c) instead of sr c_ j , sr_l c . where iz(sr c) is the a 

posteriori probability of sr c . The a posteriori probabilities of the previously decoded symbols are 

used as Soft-Decision-Feedback for decoding the current symbol. The MMAP decision variables 

for the O(l) SDF are [23]: 

s' 

where s is the symbol state and itr c_l(s) = Papp(sr^ c_l = s) is the a posteriori probability that 
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the state at position (r, c-1) is equal to s. The computation of nr c(s) is given by the normalized 

product: 

s' 

The optimal decision rule is to choose the symbol s r c = s that maximizes hrc(s). Note for the 

first symbol, the decoding variable is "kr c(s) = p(src\src= s)P(src = s). Similarly for 

MMAP with 0(2) SDF, the decision variables are [23]: 

s" s' 

where 7tr c(^) has the same normalization equation as (3.12). 

The performance of the symbol-by-symbol MMADs with SDF is shown in Figure 3.5. We 

find that for 3-bit VQ transmission over the BSC channel, the 0(1) MMAP with SDF gives about 

3dB improvement over the non-source aided decoder; and the 0(2) MMAP with SDF gives about 

3dB gain over the 0(1) MMAP with SDF. Compared with Figure 3.4, the 0(2) MMAP with SDF 

has a similar MMAD gain as the Viterbi based O(l) MMAD. This is because that the former is a 

symbol-by-symbol decoder, while the latter is a sequence decoder. We conclude that using SDF or 

a posteriori symbol probabilities, is far superior than using HDF in terms of performance for the 

symbol-by-symbol decoding. In the next section, we will find that the same is true for sequence 

decoding. 
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Bit Error Probabi l i ty of B S C Channe l 

(a) 3-bit VQ transmission over the BSC channel 

0 Non Source A ided 
- O - 0(1) M M A P with S D F 
— I — 0 ( 2 ) M M A P with S D F 

-1 0 1 
channel S N R of A W G N (dB) 

(b) 3-bit VQ transmission over the AWGN channel 

Figure 3.5: M M A P decoders with SDF without explicit channel coding 
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3.2.2 Sequence MMAD Based on the BCJR Algorithm 

In this part, we develop a row-by-row M A P decoding method based on the BCJR 

algorithm [25] with SDF. The BCJR algorithm was derived for decoding discrete time finite state 

Markov sequence over noisy memoryless channels. As in the case of the Viterbi algorithm, the 

BCJR algorithm can be used for any linear code by forming a trellis [25]. Unlike the Viterbi 

algorithm, the BCJR algorithm minimizes the probability of symbol error. The decoder estimates 

the a posteriori probabilities of the states which we exploit for SDF. 

Based on the algorithm [25], we develop a row-by-row BCJR decoding method with SDF 

using the modified numerically stable version [8][24]. Suppose the number of source symbols in a 

row is x; then the input VQ data sequence for each row to a noisy memory-less channel is 

denoted by s\= sls2...sx; and the received sequence is denoted by sj= slss sx. Define the 

state of the Markov sequence at one time as the value of the corresponding source symbol. 

Considering one row, the optimal decision rule is to choose the symbol S; = s, that maximizes the 

a posteriori probability P(s~ s\sj) which is given by a normalized product: 

n(s) = lK w ' y . (3.14) 

where a^s) is the joint probability of state at time i, a^s) = P(s,- = s, s\); while p\(.s) is the 

probability of the received sequence from time i+1 to time i given that the state is s at time i , 

p,-(5) = P(3? + 1 k- = *). 
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To calculate a and (3, define a probability function: y^s^s) = P(s~ s;sl\s._l = s'), 

0 < s, s' < Q, Q = 2q, then as shown in [25], a is given by the forward recursion [25] of the 

modified numerically stable version [8] [24]: 

with boundary condition al(s)= y^O, s). Similarly, (3 is determined by the backward recursion: 

XP,-+i(*')-Y,- + 

p » = ^ (3.16) 
IXP«(*')-Y,- + i ( />*") 

with the boundary condition PT(.s)= ^ . Where y depends on the channel transition probability 

P(sr,c\sr,c)> t n e a Priori source transition probabilities of the second order Markov model 

- l ' ^ r - i . c ) a n < ^ the posteriori probability of the previously decoded row (SDF) 

nr_lc(s): 

yr>c(s',s) = P(src\src= s)^P(srtC= s\src_= s\sr_lc= s")nr_lc(s") (3.17) 
s" 

Figure 3.6 shows that the 0(2) sequence MMAD with SDF based on the BCJR algorithm 

is better than the 0(2) sequence MMAD with HDF based on the Viterbi algorithm for 3-bit VQ 

data transmission over the BSC or AWGN channel. 
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(a) 3-bit VQ transmission over the BSC channel 

(b) 3-bit VQ transmission over the AWGN channel 

Figure 3.6: 0(2) sequence M M A D with H D F and SDF 

Figure 3.7 also shows the reconstructed images decoded by the 0(2) M M A D with SDF 

(BCJR) for the 3-bit VQ 512 by 512 Lena image over an AWGN channel of OdB SNR, which 
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corresponds to the B S C channel of cross-over probability 0.0786. Although the advantage of the 

0(2) M M A D with S D F ( B C J R ) over the O ( l ) M M A D (Viterbi) is relatively small by image 

R S N R measure, the image decoded with the 0(2) M M A D with S D F (BCJR) is visually much 

better in the high detail regions of the image. 

Non Source Aided 
RSNR=13.17dB 

0 ( 1) M M A D (Viterbi) 0(2) M M A D with S D F (BCJR) 
RSNR=18.24dB RSNR=19.00dB 

(a) 3-bit V Q over B S C 
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Non Source Aided 
RSNR=13.19dB 

0(1)MMAD (Viterbi) 
RSNR=19.84dB 

0(2) MMAD with SDF (BCJR) 
RSNR=20.53dB 

(b) 3-bit VQ over AWGN 

Figure 3.7: M M A D s at channel SNR=0dB for A W G N , £ = 0.0786 for B S C 

3.3 Iterative Source Model Recovery 

In the above we assumed that the a priori source information is perfectly known by the 

receiver as the side information. Obviously this will increase the transmission overhead. Also, the 
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transmitter must be modified to measure and encode the source model. If the images are time 

variant, using a prior knowledge may lead to inaccuracy. We will consider a recently published 

iterative decoding method to recover the source model form the noise corrupted channel data [26]. 

The MMAD will first decode the received data without a priori knowledge; it then measures the 

statistics of the decoded data as the source model for the next decoding iteration. The convergence 

to the ideal MMAD is achieved after repeating the above steps a few times. 

We apply this method to the 3-bit VQ data transmission over the AWGN channel with the 

Viterbi based O(l) MMAD. The curves in Figure 3.8 show that the process converges the remark­

ably quickly to the result that a receiver which has perfect a priori knowledge of the source 

model. The source model is recovered well enough at the end of 2nd iteration. Further iterations 

yield minor or negligible improvement. This means that by using the iterative source model 

recovery algorithm, we can reconstruct the noisy damaged image without a prior source informa­

tion. In the iterative MMAD system structure of the conventional transmitter is unchanged; but 

there is the drawback of a processing time delay at the receiver. 

In this chapter, we have found substantial performance gains by using the various kinds of 

MMADs for the VQ data transmission over the memoryless noisy channels. In the next chapter, 

we will continue to investigate MMADs for systems with channel convolutional codes. Among 

the various MMADs, we choose the O(l) sequence MMAD for our latter research because the 

following reasons: The sequence MMADs have superior performance than the symbol-by-symbol 

decoders. Although the symbol-by-symbol 0(2) with SDF MMAD performs as well as the 0(1) 

sequence M M A D , the O(l) sequence M M A D is easier to incorporate into the convolutional 

codes. The performance gain attained by using the 0(2) sequence M M A D instead of the 0(1) 
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sequence MMAD is small. Moreover, the former is significantly more complex than the latter. 

Figure 3.8: Iterative Source Model Recovery, 3-bit VQ over AWGN 
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In Chapter 3 we found that M M A D without explicit channel coding gives significant 

coding gain for VQ transmission at high channel error rates, but provides little improvement at 

low channel error rates. On the other hand, conventional Forward Error Correcting (FEC) codes 

provide excellent error protection at low error rates, so that the combination of conventional FEC 

codes with MMAD can give good performance at all channel error rates. In this chapter, we will 

continue the development by incorporating Convolutional Codes (CCs) for VQ data transmission 

over the AWGN channel. Convolutional codes are selected as our FEC codes due to their 

pervasiveness in existing systems. We call source aided channel decoding, which uses the source 

statistics information in the form of a Markov Model to aid the convolutional channel decoding, 

Markov Model Aided Convolutional Decoding (MMACD). 

Convolutional Codes were first introduced by Eli [27] in 1955. He proved that redundancy 

introduced into a data stream through the use of a linear shift register [22] can give substantial 

error protection ability. He also showed that the resulting codes were very good even when 

randomly chosen. This result correlated to Shannon's theory that there exist randomly selected 

codes that, on average, can provide high levels of error protection ability, given data transmission 

at a rate less than the channel capacity [28]. 

Let us start with the standard definition of a convolutional code [22] [29] [30]. A rate kJn 

convolutional encoder takes k input bits and generates n output bits. The input bit stream is fed 

into a shift register circuit consisting of a series of memory elements. Normally, an input data 

stream is fed into a shift register with memory mv The total memory is M = Xmj> 

41 
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i = 0, ..., k - 1. The constraint length K of a convolutional code is the maximum number of bits 

in a single output stream that can be affected by any input bit. The maximal memory m of the 

convolutional code is the length of the longest input shift register. In practice, the constraint length 

is usually taken to be the length of the longest input register plus one. 

K = 1 +m (4.1) 

A (n, k) convolutional code with memory m is said to be an (n, k, m) CC. The minimum 

free distance, denoted d f r e e is the minimum Hamming distance between all pairs of complete 

convolutional code words. The convolution operation can be described by the delay transform, or 

D-transform, 

X(D) = U(D)xG(D) (4.2) 

The transfer-function matrix G(D) is a k x n matrix with polynomial entries for an (n, k, 

m) CC. U(D) is the D-transform of the input code words. X(D) is the D-transform of the output 

code words of the convolutional code. For example: 

JC = (xQ, xvx2, ...)<-» X(D) = XQ + xxD + x2D2 + ... 

m, 

G(D) elements are the generator polynomials g- •(£)). = ^ 8ljDm, where i = 1 , k ; j = 1, 
m = 0 

n. It is simple to use octal codes to represent gij(D). For example, Figure 4.1 shows an (2, 1, 2) 

CC with G(D) = (1+D+D2, 1+D2). We can represent it by the generator polynomials gj = 78, g 2 = 

4g-
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Figure 4.1: Rate 1/2, memory 2 C C 

With a CC, the block diagram of the end-to-end system for q-bit VQ transmission over the 

AWGN channel is shown in Figure 4.2. 

VQ 
u r 

• CC • BPSK AWGN y 

—• CC" 1 
u' 

• VQ" 1 

L 

Figure 4.2: VQ with C C over A W G N 

In this chapter, we will develop two different kinds of MMACD techniques. One is based 

on the Viterbi algorithm; the other is based on the BCJR algorithm. Their performance and 

computation complexity is compared and analyzed. In our simulations, we use a (3,1,5) convolu­

tional code with the generator polynomials gj = 748, g 2 = 538, g 3 = 378 for the 3-bit VQ encoded 

Lena image transmitted over the AWGN channel. 

As mentioned previously, the source model can be made known to the receiver in several 

ways. One is by transmitting the model parameters as side information with stronger error protec-
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tive codes. Another is by estimating the model information by the iterative source model recover­

ing technique used in Section 3.3. In the simulations discussed in the following, we assume that 

the source information is known perfectly by the receiver. 

4.1 MMACD Based on the Viterbi Algorithm 

4.1.1 The Viterbi Algorithm for Convolutional Codes 

In 1976, Viterbi discovered a practical decoding algorithm for convolutional codes [28]. 

The Viterbi decoding algorithm has been known for at least ten years in various forms in the field 

of operations research due to its simplicity and low decoding complexity. 

Consider the decoding problem presented in Figure 4.2. An information VQ sequence u is 

encoded by a CC and modulated into the sequence x, which is transmitted over an AWGN 

channel. The Viterbi decoder takes the received sequence y and generates an estimated u'. The 

decision rule for the conventional Viterbi decoder is to select the sequence u' that maximizes the 

probability P(y I u). 

We know that MAP decoder maximizes P(«ly); and M L decoder maximizes P(yl«). If the 

distribution of the source words u is uniform, then according to Baye's rule, we have: 

P(u\y) • P(y) = P(y\u) • P(u) (4.3) 

then the two decoders are identical. In the conventional Viterbi algorithm, the term p(u), the a 

priori probability of the information sequence, is not known and is assumed the same for every 

sequence u. Thus the Viterbi decoder is a ML decoder. 

Suppose that we have an input sequence u composed of L q-bit symbols u 0 , U i , . . . uL_i; Lq 
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is the decoding block length. Then the source bit stream to the encoder is, 

u = ( u 0 ° , u 0 \ . . . , u o ^ " 1 ) , U L . ! 0 , U L . / , . . . , U L . J (q-D) 

where u^ represents the j t h bit of the i t h source symbol. For a rate 1/n code, the encoder output bit 

sequence x and received bit sequence y wi l l consist of Lqn bits: 

x = ( x 0 ° ( 0 > , x 0

0 ^ ) , x L . / q - 1 ) ( 0 ) , . . . . X L . ^ " 1 ^ ) 

y=(yo 
0(0) 

> - , y o 
0(n-l) 

. — y n 
(q-D(O) 

where x(W e ±1 is the k t h bit of the channel encoded word which corresponds to the j bit of 

the i t n V Q source input symbol, and y^( m) is the corresponding received bit. Because the A W G N 

channel is a memoryless channel, that the noise process affecting a given bit in the received word 

y is independent of the noise process affecting all of the other received bits. The decision rule is to 

choose the u with the largest path metric computed by: 

L-\q-\ 
p{y\u) = n n c 4 - 4 ) 

i = 0 j = 0 

Then the log likelihood function known as the branch metric is calculated by: 

n-l 

\ogP(yJ\uJ) = X l o g P ( y / W | * / W ) (4.5) 

k = 0 

For the A W G N channel, we define E s as the received energy per channel codeword bit, and the 

channel S N R = E s / N 0 . We have: 
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P{ym\xm) = - 1 . exp - ( y< ' ) (4.6) 

then (4.5) can be expressed as: 

n- 1 
log/>(y/|u/) = £ (y/W-Jcp)) 2 + C (4.7) 

0 fc = 0 

where C is an irrelevant constant value. 

In the Viterbi algorithm, the code trellis is used for the computation of P(y I u). A trellis 

diagram shows the encoder states as a function of the time. Each stage in the trellis corresponds an 

input bit. The state of the encoder is simply the contents of its shift registers. For an encoder with 

total memory m, the number of states is 2 m . For CCs, the initial state is normally chosen to be 0. 

After inputting the bit sequence of length L, m 0s are input to cause the last state of the sequence 

to be 0. The branches of the trellis diagram are labeled with the output bits corresponding to the 

associated state transitions. Among the paths terminating on a given node, the one which has the 

largest cumulative metric is stored, where the cumulative branch metric for a path is the sum of 

the branch metrics along a path. Therefore, at each time there will be 2 m survivor paths. After 

calculating for all of the stages, we trace back from the last node (zero state) to find the one path 

with the maximum-likelihood probability called ML path. According to this path, we can get the 

input bit on every stage. Then we obtain the decoded source symbols u' by combining consecu­

tive q decoded bits into symbols. Figure 4.3 shows the trellis diagram for the rate 1/2 encoder of 

Figure 4.1. 
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11 

M L path 

Figure 4.3: Rate 1/2, memory 2 C C trellis diagram 

4.1.2 Trellis Merging MMACD Based on the Viterbi Algorithm 

Suppose that we use a q-bit VQ source and its bit stream is encoded with a convolutional 

encoder, modulated and sent over an AWGN channel. Here we will apply a technique called 

trellis merging [26] which allows the correlation in the source codeword stream to be utilized 

when decoding a trellis-based channel code. The system block diagram is shown in Figure 4.4. 

VQ 
u 

CC fe. BPSK AWGN y 
hi 

MMACD u' VQ" 1 

w VQ 
1 V 

BPSK 
1 ' 

AWGN 
w 

MMACD 
W 

VQ" 1 

Figure 4.4: V Q / M M A C D using trellis merging 

Let the length of the source symbol sequence block be L. Each q-bit source symbol will be 

encoded into q • n channel bits by a rate 1/n convolutional code with memory m. Each block of n 

bits corresponding to one source information bit is called a channel codeword. If we block q 
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channel codewords into a single block, the block will correspond to a single source codeword 

(symbol). The trellis merging algorithm is shown in the following [26]: 

We model the source by a first order, Q state Markov model, with Q = 2 q. The model is 

defined by the Q 2 a priori transition probabilities PO^Iw,.;). For a 0(1) Markov sequence, it can be 

shown that 

p(u) = n p K h - i ) <4-8) 
i 

i = 0, ..., L - 1. Since the channel is memoryless, we have 

L-1 

p(y\u) = n p ( ^ h ) <4"9) 
; = o 

where y; is the block of q channel codewords which corresponds to the source symbol uj. 

Therefore, using the source statistics to aid the conventional channel decoding, MMACD selects 

the estimate u that maximizes: 

n ^ N - ^ l " , - , . ) (4-10) 
i 

This decoding algorithm proceeds in the same manner as the conventional Viterbi algorithm 

except that it has a modified branch metric: 

logP(y,. | « I) + logP( «,•!«,•_!) (4.1.1) 

where 
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7 = Ok = 0 

The first term in (4.11) is the usual term for M L decoding, and depends only upon the channel, 

while the second term depends on the source statistics. Inclusion of the source term in the branch 

metric causes the decoding to become MAP sequence decoding. 

In the trellis diagram, this (blocking q channel codewords into one) corresponds to 

merging q branches into one which is connected by the two remaining end nodes directly. Then 

every stage of the new trellis corresponds to an input source symbol rather than an input bit. The 

decoding proceeds as the conventional Viterbi algorithm except that the trellis length will be 

reduced by a factor q, but the number of branches is increased by the factor 2 q _ 1 and the branch 

metric will be modified. Therefore, the computational complexity of decoding in a merged trellis 

is in proportional to 2 q "Vq. When q is increased from 1 to 2, the computational complexity does 

not increase. An example of trellis merging for the CC with memory m=2 and 2-bit VQ is shown 

in Figure 4.5. 

Figure 4.5: Regular Trellis and Two-Stage Merged Trellis of memory 2 C C 



Chapter 4 Markov Model Aided Convolutional Decoding 50 

In Figure 4.6 we show the simulation result for transmission of 512 monochrome Lena 

encoded with a 3-bit VQ and a (3, 1, 5) convolutional code. The result shown in the figure tells us 

that Viterbi based trellis merging gives significant Markov model coding gain compared with 

conventional Viterbi decoding for the transmission of VQ image data over a AWGN channel. At 

the BER of 10 the coding gain due to use of the Markov Model is approximately 1.6dB. Similar 

to the M M A D without explicit channel coding, MMAD for the convolutional channel codes or 

MMACD gives less coding gain for the low error rate channel. Because in a clean channel, the 

channel term of the branch metric is strong enough to correct almost all channel errors; and the 

source term has a relatively weak influence on biasing the metric. But for a noisy channel, the 

source model is more effective at biasing the branch metric. We can see that the two curves will 

converge when the channel SNR becomes high. The comparison of the reconstructed Lena images 

at the channel SNR=-6dB and -4dB is shown in Figure 4.7. The improvement obtained by 

MMACD is about 9.44dB in RSNR when the channel SNR is -6dB. 

Conventional Viterbi 
Viterbi Trellis Merged MMACD 

-4.5 - 4 -3.5 
A W G N channel SNR = Es/NO (dB) 

Figure 4.6: Viterbi decoding with and without an 8-State Markov Model for 3-bit V Q 
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Viterbi only at SNR = -6dB 

RSNR = 9.2 ldB 

Viterbi only at SNR = -4dB 
RSNR = 16.65dB 

Viterbi MMACD at SNR = -6dB 
RSNR = 18.65dB 

Viterbi MMACD at SNR = -4dB 
RSNR = 22.20dB 

Figure 4.7: Viterbi decoding with or without MMAD for 3-bit VQ over AWGN 

Trellis merging is an efficient algorithm to make use of the VQ source information to aid 

the channel decoding, but it is necessary that the memory m of the convolutional code be greater 

or equal to the number q of bits per VQ symbol. 
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4.2 Concatenated MMACD Based on the BCJR Algorithm 

In this section, we will be considering an alternate technique to trellis merging that does 

not have the restriction q<m. This would be useful for systems in which the source encoder 

produces long source words or in which a low memory channel code is used. This proposed 

decoding technique is called the concatenated MMACD. The conventional non-source aided 

channel decoder based on the BCJR algorithm decodes the received sequence in the first stage, 

then passes the a posteriori source bit probabilities to a cascaded MMAD without explicit channel 

coding which decodes the noise effected source bit stream using the Markov model in the second 

stage. Here we will discuss the BCJR algorithm for convolutional codes first. 

4.2.1 The BCJR Algorithm for Convolutional Codes 

In Chapter 3, we developed the BCJR decoding algorithm with SDF for the system 

without an explicit channel code. Here we will develop the BCJR [25] decoding algorithm for a 

convolutional code using the modified numerically stable version [8] [24]. 

Assume we use a 1/n CC with memory m. The BCJR algorithm considers the source as a 

discrete-time finite-state Markov process. Suppose the q-bit VQ source is encoded bit-by-bit, and 

that the data bit stream is u = ); here U j is a bit 0 or 1, x is the decoding block 

length T = L • q + m and L is the total number of VQ source symbols in one block. Let 

JC = (xp x2, ..., x T ) be the encoded channel code word sequence, and let y = (yj, y2, yx) be 

the corresponding received sequence of a noisy channel transmission, xj = ( \^°\ x^1^,..., x/""1^), 

y-j = (y i ( 0 ) , y j ( 1 ) , y i ( n _ 1 ) ) . Let S refer to the state of the Markov process. Unlike the BCJR 

decoding without explicit channel coding, the state here refers to the state of the convolutional 
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code instead of the VQ symbol value, which is the content of the shift registers. For a code with 

memory m, the total number of the states is 2 m . 

We also know that the state of a convolutional code normally starts in the initial state SQ = 

0, and that the last state is forced to be 5T = 0 by adding a tail sequence of zeros. The objective 

of the B C J R convolutional decoding is to examine y and estimate the a posteriori bit probabilities 

1. e. P(« ( | y ) , 0 < i < i, which can be obtained from the a posteriori probabilities of.the state 

P(Sly), 

p,<. , Pis*y) W 
P m = ~P(yj~ = XjO) 

(4.13) 

where X{(s) = P(ST = s, y) . P(y) is a constant P(y) = A,T(0). Let Sj = (sj0, sj1,..., S i ( m _ 1 ) ) , so the 

input bit uj = S j 0 at time i. Define A, be the set of states S; such that s,0 = 0 which means that the 

input bit at time i is 0. After getting a posteriori probabilities of the state P(Sly), calculate [25]: 

P("i = 0\y)= X W W = 5T7m I Xi{s) ( 4 - 1 4 ) 

Then the decoder can decode u, = 0 if P(w( = 0|y) > 0.5; otherwise u, = 1. 

Similar to Chapter 3, X is calculated by: 

Xt(s) = a , . ( 5 ) • B.(j) (4.15) 

The calculation of a and [3 uses the same equations as (3.15) and (3.16), except that s or s' is now 
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the state of the convolutional code, 0 < s, s' < 2m instead of the VQ symbol value. For the BCJR 

convolutional decoding, the initial boundary conditions for a become a 0(0) = 1 and 

aQ(s * 0) = 0, corresponding to the encoder initial state 0; and the final boundary conditions for 

P are P t ( 0 ) = 1 and P x ( j * 0) = 0, corresponding to the encoder ending in state 0. 

The transition probability y^s', s) is defined as y^s'/s) = P(si = s, y^s^ { = s') and is 

easily shown to be 

y.(s',5) = Piu^Piy^) (4.16) 

The first term P(uj) is the a priori probability of the bit u t that causes the transition 

(si_l = s') —> (s( = s) which results in the encoder output xj. Now it assumes all input sequences 

equally likely for i<Lq. For i> Lq, the input to the CC is m 0s, so P(Uj) is equal to 1. The 

second term P(yjlXj) is the probability that code word y; is received given that code word Xj is sent 

and this depends on the channel. Because the input bit ui e 0, 1, then we have: 

1 TI/ i \ . 0 / 1 • ^ r 

- • P ( y , . | x . ) s'^s,i<Lq 
P(yi\Xi) s'^s,i>Lq ( 4 - 1 7 ) 

0 else 

where s' A s means that the transition (s-_ j = s') -4 (s- = s) exists, because S; is decided by 

SJ.J and input bit u,. For a memoryless A W G N channel: 
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n-l 
P(yi\Xi) = UP(y\k)\x\k)) (4.18) 

• k = 0 

For the bit transition probability of AWGN channel see (4.6). 

Using the stable renormalization version, we can see that the complexity of the computa­

tion will increase with the state number. Due to the relationship between the previous state, the 

current state and the current input bit, we can simplify the calculation of a and P in (3.15) and 

(3.16) by: 

Xrx«-i(''Cs,fc)) • Y,.(fCs, *) 
aAs) = 

b s' 

^ i + 1(t(s,b))-yi+1(s, t(s,b)) 

p..(j) = : 
X l P ^ ' ) - Y , + i ( ^ t(s',b)) 
b s' 

t'(s, b) is the function to get the previous state value if we know the current state value s and the 

current input bit b. t(s', b) is the function to get the current state value given the previous state 

value and the current input bit b = 0 or 1. There are 2 m states in total. Thus, using (4.19) and 

(4.20) we can reduce the computation by the factor of 2 m _ 1 . 

The BER of this algorithm is shown in Figure 4.9. Compared with Figure 4.6, we see that 

the BCJR decoding algorithm has the same error protection ability as the Viterbi algorithm. The 

computation of the algorithm becomes considerable when the constraint length of the convolu­

tional code becomes large. But the advantage of this algorithm is that it can provide the soft 

(4.19) 

(4.20) 
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output of a posteriori probability (app); we will exploit this character to propose a concatenated 

MMACD which does not have the restriction q < m in next section. 

On the other hand, we can apply the trellis merging method of Section 4.1.2 to a soft-

output trellis merged (BCJR trellis merged) MMACD. It would be useful for constructing source-

aided turbo decoding systems [31][8], and we used it to check the concatenated MMACD that we 

will propose. We find that the BCJR trellis merged decoder also has the same BER as the Viterbi 

trellis merged decoder. The detailed information about the BCJR trellis merged decoding 

algorithm is shown in the Appendix. 

4.2.2 A Concatenated MMACD Based on the BCJR Algorithm 

It is true that these trellis merging techniques combine the channel transition term and the 

source statistics term together in the calculation of the branch metric. However, these trellis 

merged MMACDs have to satisfy the condition that q<m. Can we calculate the channel term 

first and combine the source term later? Thus, in the case that g > m, we could have an alternative 

way to take advantage of the Markov model. 

Consequently we propose a concatenated MMACD which is composed of two decoders. 

The first decoder is a conventional channel decoder and the second decoder is the Viterbi based 

M M A D without explicit channel coding. First, the conventional channel decoder decodes the 

received sequence y, then passes its output into the MMAD which can bias the decision using the 

source information. The output of the first decoder can be hard output or soft output. Our analysis 

and simulations showed that the second decoder can not give help if the first decoder gives the 

hard output decision. Therefore, we would like to use a decoder which can generate soft output 
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information. 

The B C J R algorithm is optimum in the sense that it estimates the exact value for a soft 

output {app of source bit) P(ujJ|y), where uj is the j t h bit of the i t h source symbol. Because of this, 

we would like to use the B C J R decoder as the first decoder in the concatenated M M A C D . The 

structure of a concatenated M M A C D is in Figure 4.8. 

y | Soft in / Soft out app 
M M A D 

1 u ' 
1—^ B C J R . 

P{uj\y) 

M M A D 
. 

P{uj\y) 

J 

Figure 4.8: Concatenated M M A C D 

Fo r M M A D without exp l i c i t channel cod ing , the branch metr ic is ca lcula ted by 

logp (M-p- ) + logP(M- |w-_ j ) , where Uj is the V Q source symbol, and ui is the received symbol. 

For q-bit V Q transmission with a convolutional code over the memoryless A W G N channel, the 

B C J R decoder gives the app of a input bit P(uj\y), j=0, 1 , q - 1 , and y is the received sequence. 

The M M A D without explicit channel coding in the proposed concatenated M M A C D 

decoder uses the channel transition probabilities for the branch metric. 

q-\ 

P(«,.|fi,.) = Y[P(uj\y) (4.21) 
7 = 0 
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which is based on P((M/|U/) = P(M / |y)) , and that the q conditional bit probabilities P(M/|W/) 

are independent. 

The simulation result shown in Figure 4.9 shows that this decoding gives some improve­

ment over the conventional B C J R or Viterbi decoding, but much less improvement over the trellis 

merged decoding. To investigate this further, we use the B C J R trellis merged decoder (see the 

Appendix) without using the source statistics in the y calculation to generate the app of the input 

symbol P(M,IV) instead of the app of the input bit P(M/|V) ; and we pass this soft output to the 

MMAD. From the simulation result in Figure 4 .9, we find that the performance using the app of 

the input bit P(w/|y) is different from the one using the app of the input symbol P(«,ly), which 

means that conditional bit probabilities P(u/|w/) are not quite independent. Also, the B C J R 

concatenated decoder using the app of symbol cannot outperform the trellis merging MMAD. 

Although there is no loss of information when we pass the soft output of the convolutional 

decoder to the M M A D , we do find a performance penalty with respect to the trellis merged 

decoder. This is because in the trellis merged decoder the source information is used to bias the 

decision based on the received channel data. In the concatenated decoder, the convolutional 

decoder increases the reliability of the received channel data. The source information in the 

second decoding stage cannot bias a decision based on this more reliable information as 

effectively. 

The B C J R is not computationally efficient for large memory convolutional codes, also that 

the computational complexity of the MMAD without explicit channel codes grows exponentially 
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with the number q of bits per VQ symbol. Therefore this decoding method is practical only for 

short constraint lengths and long VQ symbols. It should only be used when the restriction q < m 

is not satisfied so that the trellis merging cannot be applied. 

10 
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Figure 4.9: B C J R and Concatenated M M A C D s 

From the above discussion, it can be concluded that the Viterbi based trellis merging is the 

most efficient method with which to take advantage of the Markov source model. In the following, 

we will use the Viterbi based decoder with trellis merging to construct in the rate allocated 

systems. 



Chapter 5 Rate Allocated Image Transmission Systems 

In this chapter, we will continue by investigating the problem of rate allocation between 

the source encoder and the channel encoder for VQ image transmission over the AWGN channel, 

given that the system information rate and channel transmission rate are fixed. Here we will use 

Punctured Convolutional Codes (PCCs) as the channel codes. We have shown that M M A D convo­

lutional decoders give little improvement at low error rates. Some authors including the present, 

found that at most times the bit error probability becomes very low when the source and channel 

rate is optimally allocated [3]. That would indicate that MMAD may be not useful for the rate 

allocated systems. However, MMAD does extend the SNR rage over which a channel code cor­

rects most of the channel errors; and we will find that this does impact the rate allocation. 

In this chapter, we will compare the two rate allocated systems: system A is the conven­

tional rate allocated system without MMAD; system B is the proposed rate allocated system with 

MMAD. We will apply the model simulation scheme to determine the optimal rate allocation for 

the two systems and examine the difference of the optimal rate allocation between the two sys­

tems. Performance comparisons are made in terms of the end-to-end RSNR as a function of chan­

nel bit SNR. We conclude the study with comparative analysis of the sensitivity to channel 

mismatch of the two systems. 

First, we will discuss the system model and look for good PCCs for our systems. The 

distortion calculation scheme for determining the optimal rate allocation is discussed as well. 

5.1 System Model 

Figure 5.1 shows the block diagram of the end-to-end communication system. 

60 
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Figure 5.1: System model 

Let Rs be the source rate, which means bits per pixel (bpp), for the Q. -dimension fixed 

rate VQ - each encoded symbol is composed of Q.RS bits. The channel encoder will add the con­

trolled redundant bits for these source encoded bits, which will result in £l(Rs + Rc) bpp. Define 

the total rate R = R s + R c, where Rc is the channel rate. Then, the channel coding rate r c is given 

by: 

R„ 
r° R„ + R, 

(5.1) 

The channel coded bits (channel symbols) are then modulated into the channel symbols and trans­

mitted over an AWGN channel at a rate of one channel symbol per T second, where T is the chan­

nel symbol time. Define the information transmission rate I r of the system as the number of the 

source symbols (pixels) transmitted per second. Given the channel symbol transmission rate 1/T, 

we have: 

1 
r T(RS + RC) 

(5.2) 
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Thus given a fixed source information rate I r and a fixed channel symbol transmission rate 1 / T , 

the total rate R= R s+Rc is fixed too. In that case the rate allocation problem is reduced to finding 

the best combination of R s and R c for a given fixed R. 

We suppose a discrete-time, real-valued, stationary source encoded with the VQ source 

coder and the PCC channel coder. Each possible Q -dimensional source vector y is mapped to a 

binary code (index) s with fixed length. After the channel coding, the binary code s becomes the 

channel symbol vector x. These channel symbols are modulated by BPSK and are sent to the 

AWGN channel. Due to the channel noise, the received channel symbol vector y might not be the 

same as the transmitted symbol vector x. After passing into the channel decoder, which may cor­

rect some of channel errors, one obtains the decoded binary code s' corresponding to the original 

binary code s. Finally, the noisy reproduction y' is obtained after s' is passed through the source 

decoder. 

We calculate the total end-to-end distortion of the system as the squared error between the 

source vector v and the source reconstructed vector v': d(y, y') = ||y - y'|| 2. The total distortion 

is normally composed of the channel errors or distortion and the source quantization errors or dis­

tortion. Given a fixed total rate R, if one uses the high R s, then there are fewer bits used for R c . 

This will occur at the high channel code rate (large rc) at the expense of the high probability of bit 

error. In that case, the source coding or quantization distortion is small, but since the channel 

decoding error probability is relatively high, the end-to-end distortion may also be unacceptably 

high. On the other hand, if we give more bits for the channel rate R c , the low channel coding rate 

r c occurs at the cost of low source coding resolution. In this case, the channel decoding error prob-
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ability is small, but the source coding distortion is relatively high; thus again possibly yielding a 

large total distortion. 

Between those two extremes there should exist the optimum combination of the source 

rate R s and the channel rate R c which minimizes the distortion. The optimal rate allocation for the 

conventional system depends on the channel SNR = E s / N 0 , the source statistics, channel coding 

and modulation [3]. Usually, R s corresponding to the optimal bit allocation, will increase when 

the channel SNR is increased. Because the less noise there is in the channel, the less bits are 

needed for error protection, and the more bits can be used by the source code. 

For the various source rates R s, the system needs the various rate channel codes rc. We 

choose a family of PCCs as the variable rate channel codes that are generated from the same con­

volutional code. This allows relatively simple implementation of the transmitter and the receiver. 

For our systems, we use a 4-dimensional VQ, and consider the total rate R = 2bpp over the 

range of channel SNRs -3dB < Es/NQ<3dB. We choose these values for the parameters 

because, we will see from the following numerical results, that there is little distortion reduction 

for R s > 2bpp or E Q / N 0 > 3dB. For each R s 0 < Rs < R, there is a corresponding Rc = R-Rs.We 

assume all the redundant bits are used for the channel code, and that the codes are equal weight 

channel codes, which means that there is the same error protection for each bit of the source 

encoded data. Previous research has found that there is not much difference between using equal 

weight channel codes and using unequal weight channel codes when the system is optimally rate 

allocated [3][32]. 
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For example, if we use a 3-bit.4-dimensional VQ, the source rate R s is 0.75 bpp, and using 

(5.1), the channel coding rate required r c is 3/8. Al l the variable rate codes that our systems 

require are shown in Table 5.1. In the next section we will discuss PCCs and the way to search for 

the best PCCs we need. 

Table 5.1: Combination of R s and R c 

R s 
q-bit V Q R c r c 

0.25 1 1.75 1/8 

0.50 2 1.50 2/8 

0.75 3 1.25 3/8 

1.00 4 1.00 4/8 

1.25 5 0.75 5/8 

1.50 6 0.50 6/8 

1.75 7 0.25 7/8 

2 8 0 1 

5.2 Punctured Convolutional Codes (PCCs) 

5.2.1 PCC Encoding and Decoding 

PCCs [31]-[37] have drawn considerable attention in recent years, because one would like 

to build a system with more flexible rate channel codes when the channel states or characteristics 

change very often. PCCs were first introduced by Cain, Clark, and Geist [34]. They used a fixed 

CC (n, k, m) to generate high-rate PCCs by periodically deleting (puncturing) bits with period p 

from one or more of the encoder output streams. The resulting high-rate codes are defined by the 

low-rate code used, called the original code, and by the nx p perforation matrixes which show 

the pattern (the number and specific positions) of the punctured bits. For example, for the rate 1/2 

code (2, 1, 2) in Figure 3.2, the perforation matrix of rate 2/3 punctured code is given by 
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where 0 means the corresponding bit symbol will not be transmitted, and 1 means the correspond­

ing bit symbol will be kept to transmit. The trellis of the rate 2/3 punctured code from the 1/2 

original code is shown in Figure 5.2, where the symbol x indicates the punctured bit. Every 

period, with 2 bits input, the fourth coded bit is not transmitted and 3 bits are transmitted instead 

of 4 bits, so the rate of this PCC is 2/3. 

The decoding of PCC is similar to the Viterbi decoding algorithm for the original code. 

The decoding is performed on the trellis of the original low-rate code by inserting a dummy data 

bit into the position corresponding to the punctured bit symbol. In the decoding process this 

dummy data bit is discarded by assigning it the same metric value (usually zero) regardless of the 

code bit symbol, 0 or 1 [33]. 

state 

OQ 00 Ox 00 

01 

10 

11 

Figure 5.2: Trellis for R = 2/3 PCC based on (2,1, 2) code 
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5.2.2 Search for Good PCCs 

Let the number of ones in the perforation matrix be /. The rate of generated PCC from a 1/ 

n original code with puncturing period p will be rc = y . By changing the value of p or /, vari­

able-rate codes of all punctured rates of interest are readily obtained from the same low-rate 

encoder. 

Unlike the search for the usual convolutional codes, the search for punctured codes is 

often based on intuition and trial rather than on a strict mathematical construction [36]. We choose 

the (3, 1, 8) convolutional code as the original code with the generator polynomial g!=5578, 

g2=6638, and g3=7718 because it has powerful error protection ability. Our research is based on 

the intuition that "good codes generate good codes". We apply the following process to look for 

the best variable rate PCC from this 1/3 rate original code: 

In practice we only consider PCCs at the reasonable allocation 0.75 < Rs < 2 due to the 

corresponding VQs' high source distortion when R s is small. For R s = 2 or r c = 1, all bits are allo­

cated to the source encoder, which means no channel coding. So the variable channel coding rates 

required for our system are 3/8, 4/8, 5/8, 6/8, and 7/8. To generate a punctured code with rate r c = 

j/8, 3 < 7^7 , we choose the perforation matrix period p = j . With j input bits in a period, the 

encoder should have 8 output bits for the rate j/8 code. Thus in the pattern of the perforation 

matrix 3 x y, 3 < y' < 7, 8 positions are assigned to 1, and the other positions are assigned to 0. 

o 

Consequently there are C, . possible perforation matrixes for the rate j/8 codes, where C is the 
j X J 

combination function; in another words, we have C® x • possible codes with rate j/8. 
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Then, among these same rate codes, we will select the best code which has the best perfor­

mance over the AWGN channel. It is known that an upper bound on the bit error probability P b of 

a PCC with a period p is given by [34] [37]: 

where d f r e e is the free distance of the code and Cj is the total number of bit errors in all the incor­

rect paths of Hamming weight i , i > dj-ree. Pi is the probability that one such incorrect path is 

selected in the Viterbi decoding process. For the AWGN channel and BPSK modulation, 

where r c is the channel coding rate, and E b / N 0 is the energy per bit-to-noise density ratio, 

Thus, the criterion for searching the best punctured code is to select one with the maxi­

mum d f r e e and the minimum C j . After obtaining all the possible perforation matrixes, we calculate 

the corresponding d f r e e and Cj of each code. The codes with maximum d f r e e are picked out first, 

then among these codes, we select one with the minimum Cj as the best code. Of course, we have 

to check if the resulting code is not catastrophic code which may translate a small number of 

errors in the received codeword to an unlimited number of data error. 

In the above way, we obtain the required best variable-rate PCCs, which have the follow-

(5.3) 

(5.4) 



Chapter 5 Rate Allocated Image Transmission Systems 68 

ing perforation matrixes: 

3/8 PCC: P = 

0 1 1 

1 1 1 

1 1 1 
, 4/8 PCC: P = 

O O O O 
1 1 1 1 

1 1 1 1 
, 5/8 PCC: P = 

1 1 0 1 0 

1 0 1 0 0 

10 1 0 1 1 

6/8 PCC: P = 

0 0 0 0 0 0 

1 1 0 1 1 0 

1 0 1 1 0 1 
7/8 PCC: P = 

1 1 1 0 0 0 0 

0 0 0 0 0 1 1 

1 0 0 1 1 0 0 

Their B E R performance is shown in Figure 4.3. 
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Figure 5.3: BER performance of the various rate PCCs based on (3,1,8) code 

In a practical encoding implementation, the original channel encoder is followed by a 

puncturing table, which is used to store the perforation matrixes corresponding to the different 

rates. The output streams of the original coder are punctured according to the puncturing table 
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associated with the selected rate. 

69 

5.2.3 MMAD for PCCs 

After obtaining the variable rate codes we need, and their B E R performance, similarly as 

in Chapter 4 for C C decoding, we apply the M M A D technique to the P C C decoding. In this chap­

ter, we only consider the Viterbi based trellis merging M M A D technique for our rate allocated 

systems because the memory of our channel codes is greater than the longest source code word 

length. The B E R performance of the 3/8 P C C decoding with and without M M A D for the 3-bit 

V Q encoded 512 by 512 Lena image is shown in Figure 5.4. We see that M M A D improves the 

conventional P C C Viterbi decoding at noisy channel by taking advantage of the source statistics. 

When the channel S N R becomes high, the performance of two decoders converges. 

O 10 
o 

•0 3bit V Q + 3/8 P C C 
• 3bit V Q + 3/8 P C C + M M A d 

10 • 

10"' 

10 

- 4 - 3 . 5 - 3 
Es/NO of channel 

Figure 5.4: BER performance of PCC decoding with or without M M A D , 512 Lena 

For the latter rate allocated systems, we simulate the B E R of the various rate P C C s using 



Chapter 5 Rate Allocated Image Transmission Systems 70 

MMAD with the corresponding source rate VQ for the Lena image. The results for the R=2 fam­

ily are shown in Figure 5.5. 
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Figure 5.5: BER performance of VQ/PCC family at R=2 with M M A D , 512 Lena 

Because MMAD uses the source statistics to aid the channel decoding, the BER perfor­

mance of PCC using MMAD should be a function of the source statistics which will be related to 

the source characteristics and the source encoder. We use a discreet event simulation to obtain the 

BER of the 3-bit VQ with 3/8 PCC using MMAD for the 512 by 512 Lena image and the 256 by 

256 Sena image. In Figure 5.6, as expected, we see that PCC plus MMAD for the Sena image is 

different from that for the Lena image. 
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• "~ci~:::: 

-€> MMAD for 512 Lena 3bit V Q 
e MMAD for 256 Sena 3bit V Q 

-4.5 - 4 -3.5 
Es/No of channel 

Figure 5.6: B E R performance of P C C with M M A D for different images 

5.3 Distortion Calculation for Rate Allocated Systems 

The calculation of the end-to-end distortion is used to determine the optimal rate alloca­

tion for rate allocated systems [3][38], which select the rate with the minimum distortion as the 

optimal rate. 

For the system in Figure 5.1, we define the total distortion D t of the system as 

Dt = E[d(V, V')], where V is the source input vector, and its reproduction V' is the output of 

the receiver. When the channel errors are independent of the source, and the source encoder is 

designed to meet the centroid condition, which means the reproduction codevector corresponding 

to the binary code s is the centroid of the quantization region R s: r\(s) = E[V\ v e Rs], the total 

distortion D t is the sum of source distortion D s and channel distortion D c [3][38]; therefore: 
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Dt = Ds + Dc (5.5) 

Ds = £v[||V-ri(^(y))||2] (5.6) 

Dc = £ 4 > 4 . [ | | T I ( 5 ) - ? - 1 ( 3 , ) I I 2 ] (5.7) 

where D s is the distortion-rate performance of the vector quantizer and is known or precomputed 

for the chosen VQ. D c is determined by the channel encoder, decoder and source statistics. We 

have: 

where P(s) is the source coded data statistics which can be precomputed if the source encoder is 

fixed. P(s'|s) is called the index crossover probability, which is a function of the channel encod­

ing, modulation, channel decoding and the channel character. When the bit errors of the channel 

decoder output are independent, the bit error probability P b , the index crossover probability is cal­

culated as 

where n is the Hamming distance between index s and index s'. 

In addition to P(s'|s), we need to know the source encoder codebook; using (5.8), D c is 

easily calculated. Thus, having D s and D c , the total distortion D t is obtained staightforwardly. 

After calculating all possible D t for each possible rate, we choose the R s with the minimum D t as 

the optimal rate which is sent to the transmitter. 

Dc = J^n^Pi^h^-q-Hs^2 (5.8) 

P(s'\s) = Pn

b-(l-Pb) ClRs-n (5.9) 
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We can see that the bit error probability P b of the channel coding is an essential term 

which may be more complicated for the calculation of the total distortion (5.5)-(5.9) than the 

other terms. 

For the system using PCCs, the bit error probability P b of the PCC Viterbi decoding is not 

related to the source statistics and can be efficiently computed, so this scheme was used to deter­

mine the optimal rate allocation for the rate allocated systems using the Viterbi decoding only 

When considering the system with MMAD, this method can be also used to determine the 

rate allocation for a MMAD system. However since the decoding decision of PCC with MMAD is 

influenced by the source statistics and source coders, it is difficult to get the bit error probability 

P b. Because of this, it will be computationally complicated to determine the optimal rate alloca­

tion for the MMAD system. 

Because we do not want to worry about the calculation of P b and its preciseness, we 

choose an alternative scheme, model simulation, to determine the optimal rate allocation for our 

systems. Our optimality criterion is to maximize the average end-to-end RSNR. At the same chan­

nel SNR, we simulate every model in the system and calculate the end-to-end RSNR for each R s; 

the rate with the maximum RSNR is selected as the optimal rate. 

It is true that at the rate with the smallest distortion, the RSNR = 10 • log — will be the 

largest, where D is the total end-to-end distortion, and a 2 is the image variance. Therefore, the 

two schemes are actually same for calculating the optimal rate allocation. Compared with the dis-

[3][38]. 
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tortion calculation, the model simulation scheme can be done off-line, too, with the similar simu­

lation complexity. The result of the model simulation scheme is more straightforward. In the next 

sections we will use this scheme to determine the optimal rate allocation for non-MMAD and 

MMAD systems. First we will simulate the non-MMAD system. 

5.4 Optimal Rate Allocation without MMAD 

According to Figure 5.1, we simulate each model in the following way: with all the 

required PCCs, we combine the VQ source encoder, the PCC channel encoder, the AWGN chan­

nel with the corresponding PCC decoder and VQ decoder. Given a certain channel SNR, if one 

selects R s as the VQ source encoding rate, the corresponding PCC channel coding rate should be 

r c = R s/R. At the receiver, the final RSNR is calculated. Then, according to the result of RSNRs, 

we select the R s with the largest RSNR and decree it to be the optimal rate for this channel SNR. 

This process will be repeated for each R s 0.75 < Rs < 2. Then we repeat the above process for 

other channel SNRs. Then we plot these results on one graph. 

The result of the optimal rate allocation for the 512 by 512 Lena is shown in Figure 5.7. It 

is seen from this figure that the improper choice of R s can reduce the RSNR by 10-20 dB. As 

expected, with the channel SNR increasing, the value of the optimal rate R s is increased, too, since 

less bits are needed for the channel coding when the channel becomes cleaner. The optimal rate 

result obtained by the model simulation scheme is the same as that obtained by the distortion cal­

culation in [3]. 

The solid line with the symbol "+" shows the simulation result of the transmission of the 

rate R s VQ encoded data only over the noiseless channel. We will use it to compare with the per-
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formance of VQ with PCC over the AWGN channel at the different channel SNRs. We see that 

RSNR increases monotonically as the channel SNR increases. It is a fact that with the certain rate 

R s VQ, when all the channel errors are corrected by the corresponding rate PCC, the final RSNR 

value should be equal to the RSNR value corresponding to the same rate R s on the solid line. In 

these cases, the total distortion is contributed by the source distortion. 

We choose the rate with the highest RSNR as the optimal rate for the certain channel SNR. 

The figure shows that the optimal bit rate R s is often at the point that the RSNR is approximately 

the same as the value on the solid line associated with the same rate R s, except in the worst chan­

nel situation SNR = -3dB. This also means that most of the total distortion at the optimal rate allo­

cation (Rs, R c) is determined by the source distortion. It is due to the fact that at the optimal rate 

allocation, the channel bit error-probabilities of the PCC decoding are approximately zero, that 

channel errors are almost all corrected. Refer to the bit error probability or bit error rate (BER) of 

the PCC decoders based on the Viterbi algorithm in Figure 5.3. 

Our simulation found the deviation, rj, of the RSNR result to be less than 0.2 dB, by using 

10 different seed numbers to retransmit the same image. So to save simulation time, the reported 

RSNRs for the curves of this chapter are obtained by using only one seed number. 
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Figure 5.7: Optimal rate allocation for the conventional system without M M A D 

Following this, we select other images with different variance, correlation and size, and 

apply the non-MMAD system to see if the optimal rate allocation is changed with image. From 

our results in Table 5.2, the optimal rate allocation turns out to be fairly independent of the image. 

We find that in the few cases, when the optimal allocation differs from our reported image inde­

pendent allocation, that the price in RSNR is very small (always less than 0.5 dB). The point of 

optimal rate allocation always is the allocation where most the channel errors are corrected and 

this does not depend on the image. It is known that the BER performance of the PCC decoding 

without MMAD does not relate to the source statistics, but to the channel codes' character and 

channel SNR. 
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Table 5.2: Optimal R s for non-MMAD systems for the various images 

Es/No 
(dB) 

Lena 512 
Pepper51 

2 
Couple 

512 Lena 256 Sena 256 
Couple 

256 

-3 0.75 0.75 0.75 0.75 0.75 0.75 

-2 0.75 0.75 0.75 0.75 0.75 0.75 

-1 1.00 1.00 1.00 1.00 1.00 1.00 

0 1.00 1.00 1.00 1.00 1.00 1.00 

1 1.25 1.25 1.25 1.25 1.25 1.25 

2 1.25 1.25 1.25 1.50 1.25 1.50 

3 1.50 1.50 1.50 1.50 1.50 1.50 

This result is very useful for the design of the rate allocation for the conventional non-

MMAD system. The optimal rate allocation non-MMAD system associated with the channel 

SNR can be calculated off-line only once. If we store the result into a mapping table, the system 

can use a table look-up to determine the rate. 

5.5 Optimal Rate Allocation with MMAD 

Here we continue to use the model simulation to study the optimal rate allocation for the 

system with MMAD. The simulation process is the same as the above, except it uses the MMAD 

PCC decoders instead of PCC conventional decoders. We obtain the optimal rate allocation of the 

MMAD system with the 512 by 512 Lena image using the curves shown in Figure 5.8. 

Comparing the optimal rate allocation of the conventional non-MMAD system with that 

of the MMAD system, there are some similarities and some differences. One similarity is that the 

optimal rate R s is increased as the channel SNR is increased. Similarly, the improper choice of the 
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optimal rate R s can reduce the system RSNR by 4-10 dB; this value is less than that of the con­

ventional non-MMAD system. It is also true for the M M A D system that at the optimal rate, the 

total distortion is mostly determined by the source distortion; the B E R of PCC with M M A D is 

approximately zero. 

However, an interesting result is found in that the optimal rate allocation for V Q using 

PCC with M M A D is not always the same as that for V Q using PCC only. For the same channel 

SNR, the increased channel error protection capability offered by including M M A D results in an 

optimal rate allocation which gives more rate to the source coding operation. 

Figure 5.8: Optimal rate allocation for the system with M M A D 

We continue to investigate the optimal rate allocation of the M M A D system for various 
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other images. For the same channel SNR, the optimal rate of the M M A D system is often higher 

than that of the non-MMAD system. Unlike the conventional system, the optimal rate allocation is 

not always the same for different images. See Table 5.3. 

Table 5.3: Optimal R s for MMAD systems for the various images 

Es/No 

(dB) 
Lena 512 

Pepper 
512 

Couple 
512 Lena 256 Sena 256 Couple 

256 

-3 0.75 1.00 0.75 0.75 1.00 0.75 

-2 1.00 1.00 1.00 1.00 1.25 1.25 

-1 1.25 1.50 1.00 1.25 1.75 1.25 

0 1.50 1.50 1.25 1.75 1.75 1.75 

1 1.75 1.75 1.25 1.75 1.75 1.75 

2 1.75 1.75 1.75 2.00 2.00 2.00 

3 2.00 2.00 1.75 2.00 2.00 2.00 

To make this result clearer, we define ARS as the difference of the optimal rate allocation 

between the two systems 

ARS = RM-RN (5.10) 

where the R** is the optimal rate allocation R s for the system using M M A D , and is the 

optimal rate allocation R s for the non-MMAD system. From Table 5.4, we see that ARss are not 

always same for the different images, though ARS s are almost always greater than zero. 

Because the BER of the PCC using MMAD is a function of image statistics and the source 

VQ encoder and channel character, and that the optimal rate is often occurred at the BER equal to 

zero, the optimal rate allocation for the system with MMAD will depend on the image variance, 
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VQ encoder and the channel SNR. That is why ARss in Table 5.4 is not often the same for the 

different images at the same channel SNR. 

Table 5.4: ARS between the two systems for the various images 

Es/No 
(dB) 

512 
Lena 

512 
Pepper 

512 
Couple 

256 
Lena 

256 Sena 
256 

Couple 

-3 0.00 0.25 0.00 0.00 0.25 0.00 

-2 0.25 0.25 0.25 0.25 0.50 0.50 

-1 0.25 0.50 0.00 0.25 0.75 0.75 

0 0.50 0.50 0.25 0.75 0.75 0.75 

1 0.50 0.50 0.00 0.50 0.50 0.50 

2 0.50 0.50 0.50 0.50 0.75 0.50 

3 0.50 0.50 0.25 0.50 0.50 0.50 

After determining the optimal rate allocation for the VQ with PCC transmission systems, 

here we propose a rate-allocated MMAD system B, which always uses the optimal rate allocation 

for the system applying MMAD. System B will be compared with the conventional rate-allocated 

non-MMAD system A, which always uses the optimal rate allocation for the system without 

MMAD. 

We apply the two systems for the following images: 512 by 512 Lena, Peppers, Couple 

and 256 by 256 Sena. Figure 5.9. shows that when the source and the channel coding are opti­

mally rate allocated, system B often gives a superior performance to the conventional rate allo­

cated system A. The average improvement in RSNR of the rate allocated MMAD system is about 

2.4 dB for the 512 Lena image, 2.85 dB for the 512 Peppers image, 4.5 dB for the 512 Couple 

image, and 4.1 dB for the 256 Sena image. 
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This significant improvement is because that for the same channel SNR, system B often 

selects the larger optimal rate R s than that system A, which will make the source distortion 

smaller. Even when it chooses the same R s, MMAD has stronger error protection ability than the 

conventional PCC decoding which will make the channel distortion smaller. 

30 

<̂ >- " ' 

< 
s 

y " ' 

• •O- A: optimum rate allocated non-MMAD —e— B: optimally rate allocated MMAD 
0 1 Es/No of AWGN channel 

(a) 512 by 512 Lena 

-1 0 1 Es/No of AWGN channel 
(b) 512 by 512 Peppers 
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(d) 256 by 256 Sena 

Figure 5.9: Optimally rate allocated systems with and without MMAD 

The reconstructed images are shown in Figures 5.10 and Figure 5.11. They compare the 

performance of the two systems at the channel SNR OdB for the 512 Lena image and that of the 
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channel S N R -2dB for 256 for the Sena image. The original Lena and Sena images are shown in 

Chapter 2. The difference in the clarity of these images is much more evident on a high-resolution 

computer monitor than the shown low-resolution printer output. 

For the Lena image when the channel S N R = OdB, system A chooses the higher optimal 

rate R s = l.Obpp, and system B applies R s = 1.50bpp. Their respective R S N R s are 24.96 dB, and 

27.30 dB. The gain of the optimally rate allocated M M A D system is 2.46 dB. For Sena at channel 

S N R = -2dB, the gain of the optimally rate allocated M M A D system is 3.34 dB. These results 

show that the improvement of optimally rate allocated M M A D is very significant. 

(a) System A , R S N R = 24.96 dB ( b ) S y s t e m B , R S N R = 27.30 dB 

R s =1.00bpp R s =1.50bpp 

Figure 5.10: Performance of the two rate allocated systems at channel SNR = 0 dB 
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(a) System A, RSNR = 20.93 dB (b) System B, RSNR = 24.27dB 
R s = 0.75bpp Rs=1.25bpp 

Figure 5.11: Performance of the two rate allocated systems at channel SNR = -2dB 

5.6 Sensitivity to Channel Mismatch 

Because the optimal rate allocation depends on the channel SNR E s /N 0 , the performance 

of the rate allocated systems will suffer if the channel SNR is estimated in error. Here we will 

make a channel mismatch sensitivity analysis. Suppose we calculate the optimal allocation when 

the channel SNR is estimated as, for example, 2 dB, but when we send the data the channel SNR 

is actually 1.5 dB. How much performance will we lose? 

Figures 5.12 shows the effect of channel mismatch for the systems A and B. In each of 

these figures, we show the RSNR versus channel SNR curve for the system designed with perfect 

knowledge of the channel SNR, as well as three curves, each of which is obtained by using the 

allocation determined to be the best at a particular SNR, and using this allocation for transmission 

at any channel SNR. For example, the curve labeled "designed at SNR = 0 dB Rs=1.50 bpp" 
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shows the performance attained over the entire range of channel SNRs when we transmit using 

the allocation which is only optimal at the one channel SNR of 0 dB. The difference between this 

curve and the ideal design curve at the channel SNR 1 dB (-1 dB) gives the performance loss 

when the channel SNR has been under-estimated (over-estimated) by 1 dB. For system A a 1 dB 

mismatch can cause a 1.2 dB loss in RSNR; while for system B a 1 dB mismatch can cause a 2.0 

dB loss in RSNR. However, system B still achieves the higher absolute RSNR value than system 

A in the same case of channel mismatch. The slightly greater noise sensitivity of system B is due 

to the fact that Markov-model aided decoding requires an estimate of the channel SNR, while 

non-Markov-model aided decoding does not. 

The curves designed for a particular channel SNR fall off more rapidly from the ideal 

result at decreasing channel SNR, indicating that the loss is greater when the channel SNR is over 

estimated. Therefore, the main conclusion to draw from the noise sensitivity analysis curves is 

that for both systems, when the channel SNR is imperfectly known, it is better to design the 

source and channel code for a pessimistic estimate of the channel SNR. 
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(a) Non-MMAD rate allocated system A 

(b) MMAD rate allocated system B 

Figure 5.12: Effect of channel mismatch for the two rate allocated systems 
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6.1 Summary 

In this thesis, we have investigated joint source-channel code design for Vector Quantized 

image transmission systems. We reviewed the LBG algorithm for VQ codebook design, and have 

considered two methods for assigning binary codewords (indices) to the resulting quantizer output 

points in the codebook. Of the two index assignment schemes we have found the natural binary 

code from the splitting algorithm to be the more noise robust, and have used it in the remainder of 

our study. 

A noise robust source coder such as the one that we use has substantial residual 

redundancy in its output stream. In our approach, the channel decoder makes use of this residual 

redundancy by the technique known as Markov Model Aided Decoding. MMADs can be symbol-

by-symbol decoders, or can be sequence decoders. As well, they can use a Markov Model of any 

finite order. In order to choose among the various MMAD options, we first considered M M A D 

without explicit channelcoding. We found the O(l) sequence decoders to significantly outper­

form the O(l) symbol-by-symbol decoders. However, the 0 (2 ) symbol-by-symbol decoder with 

Soft Decision Feedback performs almost as well as the 0 (2 ) sequence decoder with Soft Decision 

Feedback. For the symbol-by-symbol decoders with SDF, increasing the order of the Markov 

model from one to two significantly improves the performance. For the sequence decoders, the 

performance gain attained by increasing the order of the Markov model from one to two is slight 

by RSNR measure. Because the 0 (1 ) sequence MMAD method is easily incorporated into the 

convolutional codes, in the ensuing investigation we considered only the O(l) sequence decoders. 

We went on to consider MMAD with explicit channel coding, taking the channel codes to 
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be convolutional codes. To make optimal use of the source statistics in the decoding process the 

technique called trellis merging was found to be necessary. However, this technique is restricted to 

the cases in which the source codewords are shorter in length than the memory of the channel 

code. We proposed a concatenated system in which a pure (non-model aided) channel decoder 

based on the BCJR algorithm passed the a posteriori source bit probabilities to a cascaded 

MMAD which sequence decodes the noise corrupted source bit stream using the Markov model 

(i.e. the second stage consists of an MMAD without channel coding). Even though the passing of 

soft-information insures that there is no information loss incurred by breaking up the decoding 

into two stages, we find that the performance of the concatenated decoder is inferior to that of the 

integrated, merged trellis decoder. This is because in the concatenated system the reliability of the 

channel information is increased before the source information is applied to bias the decoding 

decision. In the integrated decoder, the source information biases a decision based on the raw 

channel data, and provides a more effective bias at this point in the decoding process. 

We found very large gains - up to 9 dB in RSNR - by using MMAD. However, these large 

gains are attained in a region of low channel SNR where the channel code is no longer effective. 

To make a more fair evaluation of MMAD, we considered applying MMAD in a rate allocated 

system. Given a fixed information transmission rate (in pixels per second), and a fixed transmis­

sion channel bandwidth, the total distortion of the image transmission is significantly reduced by 

optimally allocating the overall coding rate between the source coding and the channel coding 

operations. Authors, including the present, have found that in an optimally rate allocated system 

the bit error probability is usually very low. Since the MMAD techniques give little improvement 

when the error rate is low, this would indicate that MMAD is not useful for rate-allocated systems. 

However, by comparing with the analogous the conventional rate allocated non-MMAD system, 
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we found the interesting result that indeed M M A D can improve a conventional rate-allocated 

system; and in fact the coding gain is typically around 2 dB in channel SNR. This is because 

MMAD does increase the SNR range over which the channel code provides a low probability of 

bit error. This increased strength in the channel code results in a rate allocation that gives more of 

the overall fixed rate to the source coder, thus resulting in a higher quality image even when the 

bit error rate is low. 

Because the optimal rate allocation is always at the point where the channel code is just 

strong enough to correct almost all the errors, for non-MMAD the optimal rate allocation is 

almost independent of the image. This means that a system can be simply implemented by 

employing a table look-up for the rate allocation to use at a particular channel SNR. However, for 

MMAD the BER depends on the image, and therefore the rate allocation must be determined for 

each image by an off-line calculation before the image can be formatted for transmission. We did 

the calculation by employing a discreet event simulation. This calculation could be done more 

efficiently if one could find an analytic expression for the BER of a Markov-model aided channel 

code. Our results give strong motivation to solve this open problem. 

Because the point of optimal rate allocation depends on the channel SNR, inaccurate 

channel SNR estimation generally decreases the performance of the rate allocated systems 

whether or not they employ MMAD. Our experiments indicate that MMAD and non-MMAD rate 

allocated systems have similar sensitivity to channel SNR mismatch, and both are fairly robust. 

Based on the performance results, one is better off selecting the optimal rate for a pessimistic 

channel SNR if the value cannot be known precisely. 

The MMAD applied to the rate allocated systems is the 0(1) sequence MMAD. Because 
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the 0(2) sequence MMAD with SDF gives better performance than the 0(1) sequence MMAD, 

we could also improve the performance of the rate-allocated systems by using the 0(2) sequence 

M M A D with SDF. However, this would increase the computational complexity significantly 

because the channel decoder would have to be changed from Viterbi-based to BCJR based. 

6.2 Proposed Future Work 

Suggestions for future study of MMAD for VQ image transmission are as follows: 

• Find an analytic expression for the BER of MMAD, so the rate allocation can be cal­

culated more efficiently. 

• Evaluate the MMAD rate-allocated system performance over fading channels. 

• Consider other VQ techniques, channel codes, and modulation methods. 

• Study ways to obtain an accurate channel SNR estimate. 



Glossary 

app a posteriori probability 

AWGN Additive White Gaussian Noise 

BER Bit Error Rate 

BSC Binary Symmetric Channel 

CC Convolutional Code 

bpp bits per pixel 

GLA Generalized Lloyd Algorithm 

HDF Hard Dicision Feedback 

LBG Linde-Buzo-Gray 

JSCC Joint Souce/Channel Coding 

MMAD Markov Model Aided Decoding or Markov Model Aided Decoder 

MMACD Markov Model Aided Convolutional Decoding or Markov Model Aided 

Convolutional Decoder 

NBC Natural Binary Code 

O(l) first order 

0(2) second order 

PCC Punctured Convolutional Code 

RSNR Reconstruction Signal-to-Noise Ratio 

SNR Signal-to-Noise Ratio 

VQ Vector Quantization 

91 



Bibliography 

[I] C E . Shannon. "Coding Theorems for a Discrete Source with a Fidelity Criterion.", IRE 
National Convention Record, Part 4, pp. 142-163, 1959. 

[2] C.E.Shannon, Collected papers, N. J. A. Sloane and A. Wyner, Eds. New York, IEEE 
Press, pp. 40, 1993. 

[3] Andrea J. Goldsmith, Michelle Effros, "Joint Design of Fixed-Rate Source Codes and 
Multiresolution Channel Codes", IEEE Transaction on Communication, vol. 46, pp. 1301-
1312, Oct. 1998. 

[4] S. Emami and S. Miller, "DPCM Picture Transmission over Noisy Channels with the Aid 
of a Markov Models,", IEEE Transaction on Image Processing, vol. 4, no. 11, pp. 1473-
1481, Nov. 1995. 

[5] Robert Link and Samir Kallel, "Optimal Use of Markov Models for DPCM Picture 
Transmission over Noisy Channels", submitted to IEEE Transaction on Communication, 
Feb. 1999. 

[6] K. Sayhood,' F. Liu and J.D. Gibson, "A Constrained Joint Source/Channel Coder Design", 
IEEE Journal Selected Areas Communication, vol.12, no. 9, pp. 1584-1592, Dec. 1994. 

[7] W. Xu, J. Hagenauer, and J. Hollman, "Joint Source-channel Decoding Using the Residual 
Redundancy in Compressed Image", ICC/SUPERCOMM'96, pp. 142-148, June 1996. 

[8] Rober. Link, Norman C. Lo and Samir Kallel, "Source-Aided Turbo Decoding of Serially 
Concatenated Codes", submitted to IEEE Transaction on Communication, May 1999. 

[9] Retrand Hochwald, "Trade-off Between Source and Channel Coding on a Gaussian 
Channel", IEEE Transaction on Information. Theory, vol. 44, pp. 3044-3055, Nov. 1998. 

[10] Khalid Sayhood, "Introduction to Data Compression", Morgan Kaufman Publishers, Inc., 
1992. 

[II] T.M. Cover and J.A. Thomas, "Elements of Information Theory", IEEE Transaction on 
Information Theory, vol. 29, pp. 820-824, Nov. 1983. 

92 



93 

[12] T. Berger, "Rate Distortion Theory: A Mathematical Basis for Data Compression", 
Englewood Cliffs, NJ: Prentice Hall, 1971. 

[13] R.M. Gray, "Entropy and Information Theory", New York: Springer-Verlag, 1990. 

[14] LINDE Y., BUZO A., and GRAY R.M., "An Algorithm for Vector Quantizer Design", 
IEEE Transaction on Communication, vol. 28, pp.84-95, Jan. 1980. 

[15] Robert M . Gray, David L. Neuhoff, "Quantization", IEEE Transaction on Information 
Theory, vol. 44, no. 6, pp. 2325-2383, Oct. 1998. 

[16] "Global Convergence and Empirical Consistency of the generalized Lloyd algorithm", 
IEEE Transaction on Information Theory, vol. 32, pp. 148-155, Mar. 1986. 

[17] K. Zeger and A. Gersho, "Pseudo-Gray Coding.", IEEE Transaction on Communication, 
vol. 38, no. 12, pp. 2147-2158, Dec. 1990. 

[18] Farvardin, N. , "A Study of Vector Quantization for Noisy Channels", IEEE Transaction on 
Information Theory, vol. 36, no. 4, pp. 799-809, 1990. 

[19] H-S. Wu and J. Barba, "Index Allocation in Vector Quantization for Noisy Channels", 
Electron Letter, vol. 29, no. 15, pp. 1317-1319, July 1993. 

[20] J. R. B. De Marca and N. S. Jayant, "An Algorithm for Assigning Binary Indices to The 
Codevectors of a Multidimensional Quantizer", IEEE International. Communication 
Conference, Seattle, WA, pp.1128-1132, June 1987. 

[21] J. Hagenauer, "Source-Controlled Channel Decoding", IEEE Transaction on 
Communication, vol. 43, no. 9, pp. 2449-2457, Sept. 1995. 

[22] Stephen Bryant Wicker, "Convolutional Codes", chapter in the book of Error Control 
Coding, pp. 268-271. 

[23] Robert Link and Samir Kallel, "Markov Model Aided Decoding for Image Transmission 
using Soft-Decision-Feedback", submitted to IEEE Transaction on Communication, Mar. 
1999. 

[24] W.E. Ryan. "A Turbo Code Tutorial", http://telsat.nmsu.edu/~wryan/turbo2c.ps. 

http://telsat.nmsu.edu/~wryan/turbo2c.ps


94 

[25] L.R.Bahl, J.Cocke, F.Jelinek, and J. Raviv, "Optimal Decoding of Linear Codes for 
Minimizing Symbol Error Rate", IEEE Transaction on Information Theory, vol. 20, no. 2, 
pp. 284-287, Mar. 1974. 

[26] Samir Kallel, Norman C. Lo, and Robert Link, "Markov Model Aided Channel 
Decoding", report, Nov. 1998. 

[27] P.Elia, "Coding for Noisy Channels", IRE Convention Record, Part 4, pp. 37-47, 1995. 

[28] A.J. Viterbi, "Error Bounds for Convolutional Codes and an Asymptotically Optimum 
Decoding Algorithm", IEEE Transaction on Information Theory, vol. 13, pp. 260-269, 
Apr. 1967. 

[29] G. D. Forney, Jr. "Convolutional Codes: Algebraic structure", IEEE Transaction on 
Information Theory, vol. 16, no.6, pp. 268-278, Nov. 1970. 

[30] "The Algebraic Theory of Convolutional Codes", Handbook of Coding Theory, in 
preparation. 

[31] Norman C. Lo, "The Application of Source-aided Turbo Decoding to IS-95 CDMA 
Systems", master thesis, University of British Columbia, Dept. E E . , Apr. 1999. 

[32] Amin Alavi, "An Adaptive Subband-Based Joint Source-Channel Coder for Image 
Transmission", master thesis, University of British Columbia, Dept. E.E., June 1999. 

[33] David Haccoun, Guy Begin, "High-Rate Punctured Convolutional Codes for Viterbi and 
Sequential Decoding", IEEE Transaction on Communication, vol. 37, no. 11, pp. I l l 3-
1125,. Nov. 1989. 

[34] J. Bibb Cain and George C. Clark, JR., "Punctured Convolutional Codes of Rate (n-l)/n 
and Simplified Maximum Likelihood Decoding", IEEE, Transaction on Information 
Theory, vol. 25, no. 1, pp. 97-100, Jan. 1979. 

[35] Joachim Hagenauer, "Rate-Compatible Punctured Convolutional Codes and Their 
Applications", IEEE Transaction on Communication, vol. 36, no. 4, pp. 389-400, April 
1988. 

[36] G. Begin and D. Haccoun, "High Rate Punctured Convolutional Codes: Structure 
Properties and Construction Techniques", IEEE Transaction on Communication, vol. 37, 
no. 12, pp. 1381-1200, Dec. 1989. 



95 

[37] Yutaka Yasuda, Kanshiro Kashiki and Yasuo Hirata, "High Rate Punctured Convolutional 
Codes for Soft Decision Viterbi Decoding", IEEE Transaction on Communication, vol. 
32, no. 3, pp. 315-319, March 1984. 

[38] Hamid Jafarkhami, Paschalis Ligddas, and Nariman Farvardin, "Adaptive Rate Allocation 
in a Joint Source/Channel Coding Framework for Wireless Channels", IEEE Transaction 
on Communication, pp 492-495, 1996. 



Appendix 

A.l. BCJR Based Trellis Merging MMACD 

A s in the Viterbi based M M A C D , trellis merging techniques can be used in the B C J R 

algorithm. Let L be the number of V Q source symbols in a block, an input sequence u composed 

m , where Uj = (uj°, of Lq-bit symbols and a few q-bit zeros u — (wj, . . . , u^, ..., u^), x — L + 

U j 1 , . . . , U ( / Q ~ ^ ) , composed of q bits represents one symbol instead of one bit, where U j J represents 

j t h bit in the i t h V Q source symbol. If we use a qn-bit channel codeword instead of a n-bit channel 

codeword, then the encoded channel codeword sequence wi l l be x = (JC,, xL, xx), where 

xj = (x;°, X ; 1 . . . , X j q _ 1 ) corresponding to the source symbol u i ; x ^ x ^ 0 ) , . . . ^ ^ 1 1 " 1 ) ) refers to the n-bit 

channel codeword corresponding to the source bit ur1 and xjW e ±1 . From the trellis diagram, 

the output of a branch w i l l be qn bits codeword. S imi la r ly , the received qn-bit codeword 

sequence y = (yv ...,yL, y T ) , y{ = ( y i ° , y j 1 , . . . , y ^ " 1 ) , y J = ( y ^ , y ^ 1 ) , . . , , y ^ ) . The 

equations in Section 4.21 needn't change except that the value of u, is from 0 to 2 q instead of 0,1. 

The transition probability (4.16) becomes: 

yi(s', s) = PiuAu^Piy^) ( A . l ) 

where P ^ J I U J . J ) is the a priori probability of the source symbol u, which cause the transition 

(st_ j = s') —> (5- = s) which results in the encoded qn-bit codeword x^ and P ( y j l X j ) is the 

channel transition probability of the qn-bit channel codeword: 

9 6 
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q - \ n - \ 

p(yi\xi) = n n p w w K w ) (a-2) 
/ = Ok = 0 

Y,-0, s) = \ 1 1 (A.3) 
I 0 else 

s' — » 5 means that the transition (J,-_ j = s') —> (s; = 5) exists because both encoder inputs u, and 

Uj.j have to be determined by the states SJ.J, Sj at times i-1 and i . This algorithm requires that q 

should be less or equal to the memory m of the code, too, because of using the merged trellis. 

For decoding, define AjJ as the set of state Sj corresponding to the current input u, = j , j= 0. 

1 , 2 q - l , which means that from Sj = (SJ0, Sj1,..., S i ( n > 1 ) ) , we can see that u ^ " ^ 0 , u ^ s ^ " 1 . 

The decoder to choose Uj=j which maximizes: 

P("i = J\y) = j T T o x X hi*) (A-4> 

where j = 0, 1 , 2 q - l . In practice, we use (4.19) and (4.20) to calculate a and (3 except that b 

represents a symbol input, b = 0, 1 , 2 q - l instead of a bit input 0 or 1. If q< m, we can see that 

(4.18) (4.18) still can reduce the complexity of the computation. 

Our simulation result shows that the BCJR based trellis merging M M A C D gives 

essentially the same BER performance as the Viterbi algorithm with the Viterbi based trellis 

merging MMACD. On the whole, the trellis merging MMACD techniques can give better error 

protection when the channel SNR is low. Trellis merging reduces the overall length of the trellis 

by a factor of q, but increases the number of branches by a factor of 2 q _ 1 . When q is increased 
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from 1 to 2, the computation complexity can be ignored. 

The BCJR based trellis merging algorithm is more complicated than the Viterbi based 

trellis merging algorithm. It suggests that one had better use the Viterbi trellis merging algorithm 

if q<m. However the BCJR based trellis merging is useful for constructing source-aided turbo 

decoding systems[8] [31] or will be useful to other concatenated source-aided systems in the 

future. In this paper, we used the BCJR trellis merging without Markov model to generate the a 

posteriori symbol probabilities in order to compare with the concatenated decoding using the a 

posteriori bit probabilities. 


