
A MINIMUM-WORK WEIGHTED FAIR QUEUING
ALGORITHM FOR GUARANTEED END-TO-END
QUALITY-OF-SERVICE IN PACKET NETWORKS

by

H A I T H A M FAHMI T A Y Y A R

B.Sc. (Electrical Engineering and Mathematics), K F U P M , 1993
M.Sc. (Electrical Engineering), K F U P M , 1997

A THESIS SUBMITTED IN PARTIAL F U L F I L L M E N T OF
T H E REQUIREMENTS FOR T H E D E G R E E OF

DOCTOR OF PHILOSOPHY

in

T H E FACULTY OF G R A D U A T E STUDIES

Department of Electrical and Computer Engineering

We accept this thesis as conforming to the required standard

T H E UNIVERSITY ©fc BRITISH COLUMBIA

October 2002

©Haitham Fahmi Tayyar, 2002

UBC Rare Books and Special Collections - Thesis Authorisation Form Page 1 of 1

In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements
f o r an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I
agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference
and study. I f u r t h e r agree that permission f o r extensive copying of
t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the head of my
department or by h i s or her r e p r e s e n t a t i v e s . I t i s understood that
copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l gain s h a l l not
be allowed without my w r i t t e n permission.

Department of

The U n i v e r s i t y of B r i t i s h Columbia
Vancouver, Canada

http://www.library.ubc.ca/spcoll/thesauth.html 09/10/2002

http://www.library.ubc.ca/spcoll/thesauth.html

A B S T R A C T

Emerging applications in multimedia communications and Virtual Private Net

works (VPNs) require data networks to provide Quality-of-Service (QoS) guaran

tees, such as delay and/or jitter bounds, to individual packet flows. Providing such

guarantees can be achieved by link scheduling mechanisms along the path of these

packets.

Among the many packet-scheduling techniques proposed for this problem, Weighted

Fair Queuing (WFQ) offers the best delay and fairness guarantees. However, all pre

vious work on WFQ has been focused on developing inefficient approximations of

the scheduler because of perceived scalability problems in the W F Q computation.

This thesis proves that the previously well accepted O(N) time-complexity for

WFQ implementation, where N is the number of active flows handled by the sched

uler, is not true. The other key contribution of the thesis is a novel Minimum-

Work Weighted Fair Queuing (MW-WFQ) algorithm which is an 0(1) algorithm

for implementing WFQ. In addition, the thesis presents several performance stud

ies demonstrating the power of the proposed algorithm in providing precise delay

bounds to a large number of sessions with diverse QoS requirements, whereas other

well known scheduling techniques have failed to provide the same guarantees for the

same set of sessions.

ii

Contents

Abstract i i

Table of Contents i i i

List of Tables v i i

List of Figures ix

Acknowledgments x i

1 Introduction and Mot ivat ion 1

1.1 Introduction 1

1.2 Main Contributions 6

1.3 Thesis Organization 7

2 Introduction to Per-flow Scheduling 9

2.1 Introduction 9

2.2 Generalized Processor Sharing (GPS) 12

iii

2.3 Implementation of GPS in a Packet System 14

2.4 GPS Emulation 17

2.4.1 Weighted Fair Queuing (WFQ) 17

2.4.2" Self-Clocked Fair Queuing (SCFQ) 19

2.4.3 VirtualClock (VC) 20

2.4.4 Start-time Fair Queuing (SFQ) 21

2.4.5 Rate-Proportional Server techniques (RPS) 21

2.4.6 Other Techniques based on Potential Functions 31

3 Analysis of Virtual Time Complexity in Weighted Fair Queuing 32

3.1 Introduction 32

3.2 GPS Revisited 34

3.3 The Problem of Simultaneous Departures 41

3.3.1 Assumptions and Terminology 43

3.3.2 Theorem 1 44

3.3.3 Corollary 1 47

3.3.4 Examples 49

3.3.5 Theorem 2 51

4 A Scalable Minimal-Work Algorithm for Computing the Virtual

Time in GPS 55

4.1 Introduction 55

iv

4.2 A Standard WFQ Implementation 56

4.3 GPS Simulation 61

4.4 Minimum-Work Weighted Fair Queuing 63

4.5 Timing Issues in WFQ Implementations 67

4.5.1 Fixed Clock vs. Variable Clock 70

4.5.2 Priority Queue Implementation 71

4.5.3 Clock and Timestamp Selection 72

4.5.4 WFQ Implementation Based on New Data Structure 75

4.5.5 WF2Q Implementation 77

4.5.6 Software Implementations of WFQ 77

Experimental Results of the Minimum-Work Per-Flow Packet Sched

uler 83

5.1 Introduction 83

5.2 Delay Guarantees 85

5.2.1 Test setup 85

5.2.2 Results 88

5.3 Scheduler Speed 90

5.3.1 Performance Profiling Test 90

5.3.2 Results 91

5.4 Timestamp Validation 92

v

6 Conclusion and Future Work 95

BIBLIOGRAPHY 97

vi

List of Tables

4.1 True departure times under GPS and WFQ 80

4.2 Departure times when system clock = l l l e - 3 , time resolution = 0

and timestamp resolution = 0 80

4.3 Departure times when system clock = l l l e - 3 and time resolution =

20e - 3 and timestamp resolution = 0 80

4.4 Departure times when system clock = l l l e - 3 and time resolution =

20e - 3 and timestamp resolution = 2e~3 81

4.5 Departure times when system clock = 200e - 3 and time resolution =

0 and timestamp resolution = 0 81

5.1 System specifications 86

5.2 Traffic Sources (Token-Bucket Shaped) 89

5.3 MW-WFQ: Measured Packet Delays over 10 Mbps Link 89

5.4 FIFO Queuing: Measured Packet Delays over 10 Mbps Link 89

5.5 SCFQ: Measured Packet Delays over 10 Mbps Link 89

vii

5.6 Maximum Measured Packet Delay over 10 Mbps Link 89

5.7 Maximum Measured Packet Delay-Jitter (At receiver, 10 Mbps Link). 90

5.8 WFQ Per-Packet Processing Delay As Function Of Processor Cycles

(STRONGARM SA-110 RISC Processor - 200Mhz) 92

viii

List of Figures

1.1 Per-flow scheduling 3

1.2 Aggregate scheduling 4

3.1 A model for the serialization of inputs that are destined to the same

output 36

3.2 Virtual time function between two consecutive newly backlogged ses

sion events T\ and r 2 39

3.3 Virtual time function between two consecutive newly backlogged ses

sion events T\ and r 2 when two newly idled departure events occur at

times 771 and rj2 40

4.1 Flowchart of a standard W F Q implementation 60

4.2 Timestamp groups 63

4.3 Flowchart of the MW-WFQ algorithm 65

4.4 The components of a WFQ implementation 76

4.5 Arrivals for both sessions 79

• -ix

5.1 Test setup. 86

x

ACKNOWLEDGEMENTS

My sincere thanks to The University of British Columbia and The Department

of Electrical and Computer Engineering for providing me with a friendly atmosphere

of research and knowledge. Also, I would like to acknowledge NSERC, ASI and all

government agencies that supported my research.

I would like to extend a warm thank you to my advisor and close friend Dr.

Hussein Alnuweiri. His endless patience, generous support and insight has made

this thesis possible. I would also like to thank Dr. Victor Leung for his continued

support and funding of my research.

My love and appreciation goes out to my parents, my brothers and my sister,

whom were a constant source of motivation and support. Their love and care car

ried me through some difficult moments in my life. Their prayers, guidance and

inspiration lead to this accomplishment.

1 would like to express my profound gratitude and appreciation to my thesis com

mittee for their valuable time, constructive criticism, and stimulating discussions.

The many friends I have made throughout my stay here in Vancouver made it a

wonderful experience. I especially would like to thank Zoheir, Ahmed, Wesam (aka

W), Tamer, Ayman, Amr, Awad and Anwar for being such good friends and role

models. I would also like to thank my gym partners and friends Dan and Kamal for

putting up with me for all these years.

My thanks to the city of Vancouver and the people of Canada for their hospitality

xi

and for giving me the opportunity to call this place home.

I extend my love and deep appreciation to the person who has stood beside me

and made this dream a reality, my wife Iman. I thank her for her patience and for

giving me a lovely family. I also thank her parents and sisters for embracing me as

one of their own.

Last but not least, all praise and thanks is due to almighty god, for his limitless

blessing and guidance.

xii

Dedicated with Love

to

my parents Fahmi and Farida,

my wife Iman, and my son Yamin.

x i i i

Chapter 1

Introduction and Motivation

1.1 Introduction

Applications with strict Quality-of-Service (QoS) guarantees, such as bounded delay

and/or jitter, require the enforcement of some form of scheduling discipline along

the path of packets generated by these applications. Scheduling methods play a

key role in providing QoS guarantees in packet networks. They allow packets with

strict delay deadlines to move ahead of packets with looser deadline requirements,

independent of when these packets arrived. Scheduling methods vary in methodology

and assumptions. In general, there are two classes of scheduling methods: (a) per-

flow scheduling, and (b) aggregate scheduling.

In per-flow scheduling, a stream is assumed to have its own separate queue which

contains only its packets. When the link becomes idle and there are packets in the

1

queues, the scheduler arbitrates between the different stream queues choosing the

packet that is to leave the link next (depending upon delay deadlines). In aggregate

scheduling on the other hand, streams are aggregated and per-flow-scheduling is

applied to these aggregates.

Both per-flow and aggregate scheduling methods deal with "streams" or "flows".

A flow can be viewed as a sequence of packets having a set of common characteristics.

These characteristics vary depending on the way flows are classified and where in

the network they are being classified. For example, a common way to classify flows

is a combination of the source and destination IP address, the source and destina

tion port number and possibly the application generating the packets. The reason

behind such classification is that, traffic generated by a particular application from

a given host and destined to another host usually has similar QoS requirements. For

example, packets of a Telnet session from one host to another require the same kind

of treatment and can be considered a single session. Figures 1.1 and 1.2 show the

basic differences between per-flow and aggregate scheduling.

A potentially large number of flows can be active during any period of time in the

Internet. It is assumed that the core part of a large network, such as the Internet,

cannot handle such a large number of flows. Therefore, individual flows may need

to be merged into larger ones inside the core. This scalability issue led people to

investigate new techniques capable of providing flows in the Internet with a service

that is better than the current "Best-effort" but does not require maintenance of

2

Session Queues

Figure 1.1: Per-flow scheduling

Session
Queues

Class
Queues

Output
Link

Figure 1.2: Aggregate scheduling

4

per-flow information. This was the motivation for the Differentiated Services or

Diffserv framework [1]. In this framework, traffic is classified according to its per-

hop behavior and placed into a finite set of priority classes. Traffic in a class is

serviced using FIFO scheduling. If there are packets in the higher priority classes,

they are serviced first before packets of lower priority classes. In Diffserv, the highest

priority traffic is aggregated into a class called the Expedited Forwarding (EF) class.

People have proposed many different kinds of per-flow and aggregate scheduling

techniques to handle the problem of providing end-to-end guarantees for traffic with

strict QoS requirements. Although some delay bounds have been defined for different

aggregate scheduling methods, they are either weak or based on some strict shaping

assumptions that may not be enforceable in large-scale networks [2]. On the other

hand, per-flow techniques provide more strict guarantees but are challenged by the

scalability problem in managing a large number of flows in the network.

The importance of per-flow scheduling lies in the fact that these techniques pro

vide strict end-to-end delay and fairness guarantees to individual flows or sessions.

In the framework of Multiprotocol Label Switching (MPLS), this provides a sure

way of choosing the end-to-end paths during Label Switched Path (LSP) setup [3].

Currently, most implementations of MPLS use Diffserv to aggregate flows into LSPs

which are then mapped to a certain per-hop behavior. The nodes in the MPLS

domain are then expected to schedule these aggregates based purely on the Diffserv

classification of these aggregates. However, if the nodes along the path do not im-

5

plement per-flow scheduling, then the LSPs will not receive strict end-to-end delay

guarantees.

From this point on, when discussing per-flow techniques, a flow may be either

an individual session or an aggregate.

1.2 Main Contributions

In this Thesis, the algorithm proposed enables Weighted Fair Queuing (WFQ), one

of the most important per-flow schedulers, to scale to large systems where link speeds

are high and a potentially large number of sessions is active at any given time. Pre

vious approaches for implementing WFQ have O(N) time complexity, where JV is

the number of sessions sharing a link, because of which these techniques cannot be

implemented in practice. This led people to consider alternatives to WFQ which

have reduced QoS guarantees but are less complex to implement. In this thesis,

five main contributions are presented; the first is a clear identification of the three

main potential causes of O(N) time complexity in standard W F Q implementation.

The second is a theoretical analysis that shows that one of these causes is due to an

event which cannot be avoided even under the most relaxed conditions. The third

is an algorithm which enables the calculation of the virtual time needed to imple

ment standard WFQ. The fourth and the most fundamental contribution of this

thesis is an algorithm called Minimum-Work Weighted Fair Queuing (MW-WFQ)

6

that is based on the standard WFQ implementation but has 0 (1) time complexity

and hence enables the implementation of WFQ. The fifth contribution is extensive

experimental testing of the proposed MW-WFQ algorithm that shows clearly that

it is able to provide strict end-to-end delay guarantees in packet networks at a low

implementation cost.

The work presented in this thesis has a strong impact on the state-of-the-art

design of high-speed networking routers and switches. The results of this work show

clearly that the reluctance towards using per-flow scheduling in high-speed networks

is no longer justifiable on the basis of implementation cost. This thesis forces the

networking community to reconsider per-flow scheduling as a viable and efficient

solution to the end-to-end QoS problem in the Internet. It is now possible to use

MW-WFQ to provide the thousands of LSP's of an MPLS network with precise QoS

guarantees that can never be met using simple aggregation techniques like the ones

used in Diffserv.

1.3 Thesis Organization

Chapter 2 presents a survey of the most common per-flow scheduling techniques.

In particular, Weighted Fair Queuing (WFQ), having the best properties among all

the other per-flow methods, will be shown to have 0(N) computational complexity,

where N is the number of sessions sharing the link. In Chapter 3, it is proven that

7

this high computational complexity cannot be avoided even under the most relaxed

conditions. Chapter 4 covers the proposed algorithm for overcoming the problem of

O(N) computational complexity. In Chapter 5, experimental results based on the

implementation of the proposed algorithm on a Linux router are presented. And

finally, Chapter 6 presents the conclusion and opens directions for future work.

8

Chapter 2

Introduction to Per-flow

Scheduling

2.1 Introduction

Packet scheduling as a tool for providing per-flow or per traffic-class Quality-of-

Service (QoS) guarantees in packet networks is well-understood and strongly sup

ported by both fundamental theoretical arguments [4, 5], as well as practical tests.

The current Internet is based on a best-effort service model that does not provide

any QoS assurances to different applications. This lack of service differentiation has

serious impact on the type of applications that require end-to-end QoS assurance

over the Internet. For example, real-time communications and/or interactive ap

plications over the Internet require resource reservation and scheduling at involved

9

hosts and intermediate nodes. For such applications, the networks must provide

guaranteed rates, bounded end-to-end delays, restricted packet loss, fairness, etc.,

to individual flows.

With the proper dimensioning of network resources, the most important per

formance attributes of a packet-scheduling algorithm become its delay and fairness

bounds for each flow. Delay bounds are important for a wide range of time-sensitive

or real-time services. Fairness bounds are important for providing a sufficient degree

of isolation to a flow of packets, so that the service guaranteed to that flow is not

affected by the behavior or misbehavior of other packet flows, sharing the same link.

To provide such guarantees, it is normally assumed that packet flows have been

conditioned using an appropriate traffic shaper, such as a leaky-bucket conditioner,

and that the policing is in effect at the network edges.

Providing end-to-end delay bounds to individual flows in a packet network, such

as the Internet, requires the use of schedulers that can guarantee packet service rates

as well as fair allocation of excess bandwidth. Generalized Processor Sharing (GPS)

is an ideal scheduler that provides every flow its guaranteed bit-rate and distributes

excess bandwidth fairly among flows according to their relative bandwidth weights.

As a result, GPS can provide end-to-end delays and fairness guarantees to packet

flows that are shaped by leaky bucket traffic conditioners. GPS works by assigning

a distinct queue to each flow (or session), then servicing an infinitesimally small

amount from each session according to a weighted cyclical schedule. Unfortunately,

10

GPS is un-realizable in practice because it services a small part of a packet at a time.

A real scheduler must complete the service of an entire packet from a session before

it moves to the next session. Packet-by-packet GPS, commonly known as Weighted

Fair Queuing (WFQ), is one of the GPS emulation algorithms that transmits packets

according to their finish order under GPS [6, 7]. WFQ simulates a GPS fluid-model

in parallel with the actual packet-based scheduler in order to calculate the virtual

finish number (used as a timestamp) for packets arriving to the scheduler. To

calculate the finish number, WFQ maintains the state of the system by means of

a Virtual Time function V(t) which is a piecewise linear function of real time t,

and whose slope changes depending on the number of backlogged sessions and their

service rates. To perform scheduling in real-time, WFQ must update the virtual time

before any packet arrival, so that every arriving packet gets the proper virtual finish

number (as if it will be departing under GPS). The virtual-time function is impacted

by arrivals (to empty queues), as well as departures of packets (that result in empty

session queues). The problem is that, an undetermined (and possibly large) number

of session queues can become empty at the same time, because under GPS many

packets can end up having the same virtual finish time. Therefore, updating the

virtual time function in between two consecutive packet arrivals may incur a large

number of computations. In particular, if a link is shared by up to iV active sessions,

then updating the virtual time can incur a computation on O(N) sessions or queues.

This problem is usually referred to as iterated deletion [6], and is the main reason

11

why WFQ has not been implemented in practice. The number of active sessions on a

Gigabit link can reach several tens or even hundreds of thousands, which translates

into a proportional number of computations per packet arrival. Because of the high

complexity associated with simulating the GPS system, W F Q has attracted a lot

of attention over the past decade [8, 9, 10, 7, 11, 12, 13, 14, 15, 16, 6], and many

techniques have been proposed to simplify the virtual time calculations. Some of the

key proposals are reviewed in this chapter. In general, such simplifying approaches

suffer from either a decrease in fairness (or flow isolation) or an increase in the delay

bound.

2.2 Generalized Processor Sharing (GPS)

In GPS, it is assumed that the traffic satisfies a fluid model that assumes that every

packet is infinitely divisible. Suppose that there are N sessions sharing an outgoing

link of capacity C. The share of bandwidth reserved by session i is represented by

a real number at. The a's are chosen such that the fraction

12

corresponds to the desired bandwidth reservation of the session. That is, if pi is the

desired bandwidth reservation of session i, then

where the quantity

% r - > Pi (2-2)

ctiC
n =

is called the guaranteed rate for session i and is the minimum bandwidth available

to session i at any given instance of time. Also,

_ ri di
Cti = — =

C a,

is the normalized share of session i.

Let B(T, t) be the set of sessions that are backlogged in the interval (r, t). Then,

under GPS, the service Wi(r,t) offered to a session i that belongs in B(r,t) is

proportional to a*. That is

Wi(r,t) = — ^ C(t-r) (2.3)
2^jeB(T,t) aj

GPS attains its bandwidth guarantees by servicing an infinitesimal amount from

each backlogged session in proportion to each session's reservation [6]. As a result,

13

GPS provides perfect isolation, ideal fairness and low end-to-end session delays.

Perfect isolation in GPS is due to the fact that when a sessions sends traffic beyond

its reserved rate, only that session's packets will experience an increase in delay;

the packets from other sessions will continue to receive their fair share. The GPS

scheduler provides ideal fairness in the sense that any unused bandwidth which

belongs to the idle sessions is distributed fairly among the backlogged sessions in

proportion to their shares. Also, because a backlogged session is serviced at least

at the minimum guaranteed rate, its packets will receive delay guarantees. It has

been shown in [5] that if the inputs to a GPS scheduler are shaped by a token-

bucket shaper, then these sessions will experience low end-to-end delay bounds which

depend only on their reserved (guaranteed) rate. However, because GPS is based

on the fluid model, it is un-implementable, since a scheduling technique will have

to serve packets as a whole. In the following section, the most important emulation

of GPS is described. In general, all these emulations aim at ordering packets for

transmission according to their finish or start times in the ideal GPS system.

2.3 Implementation of GPS in a Packet System

It has been seen before that the GPS scheduler is un-implementable since no packet

can be partitioned into infinitesimal quantities. As a result, people decided to use

the service order of packets in GPS to.schedule packets in a packet system. This

14

leads to two GPS emulation policies, the Smallest Finish-time First (SFF) and the

Smallest Start-time First (SSF). In the SFF techniques, packets are serviced in the

order in which they finish under GPS. A SSF technique, on the other hand, services

packets according to the starting order under GPS. Weighted Fair Queuing (WFQ)

is an example of a SFF scheduler while Start-time Fair Queuing (SFQ) is an example

of a SSF scheduler.

In GPS, it is possible for more than one packet to finish at the same time even

if they arrive at different times. Hence, at a given time there may be as many as N

packets leaving the system. As a result, people have assumed that a GPS system is

un-implementable since it requires knowledge of at most N events at a given instance

of time [6]. As a result, it was argued that the implementation complexity of any

exact GPS emulation is O(N). However, it will be shown later that this is not true

since the system states can be updated in 0(1) although as many as N events can

occur simultaneously. This is achieved by creating a priority queue data structure

that keeps track of the finish order of packets in the system. Arrivals and departures

only effect this data structure. The time it takes to update the data structure, based

on arrivals, is dependent on the time it takes to insert into this data structure. Such

an insertion operation can be performed in at most O(logiV) operations when the

priority queue is implemented as a heap. The effect of departures on the data

structure can be updated in 0(1) since it involves only a removal from the head of

the data structure. In both cases, it is seen that the complexity of implementing

15

GPS is at most 0(log N) and not 0(N). If a data structure with a faster insertion

time is found, it will reduce the complexity of GPS emulation even further. One

such data structure is the Calendar Queue [17] which has 0(1) insertion and deletion

time.

16

2.4 GPS Emulation

In the following subsections, the most common GPS emulation techniques are dis

cussed.

2.4.1 Weighted Fair Queuing (WFQ)

Packet-by-packet GPS, or WFQ as it is known, is one of the GPS emulations that

transmits packets according to their finish order under GPS. In WFQ, a GPS fluid-

model system is simulated in parallel with the actual packet-based system in order

to identify the set of sessions backlogged Lat each instant of time and their service

rates. Based on this information, a timestamp is calculated for each arriving packet,

and the packets are inserted into a priority queue based on their timestamp values

and transmitted in order of increasing timestamps. The timestamp specifies the

finish number of the packet. The finish number of a packet represents the round

number at which the arriving packet will depart the system if the scheduler is a

bit-by-bit round-robin scheduler. To calculate the finish number, WFQ keeps track

of a virtual time function V(t) which is a piecewise linear function of real time t,

and whose slope changes depending on the number of busy sessions in GPS and

their service rates. More precisely, if B(t) represents the set of backlogged sessions

in the GPS scheduler at time t, then the slope of the virtual time function at time

'From now on, whenever backlogged or idle sessions are mentioned, it means those in the
corresponding GPS scheduler and not in the actual packet scheduler.

17

t is given by

^ 7 (2.4)

The virtual time function keeps track of the "normalized" service provided by the

system to all backlogged sessions. At the arrival of a new packet, the virtual time

must first be calculated. Then, the timestamp TS!f associated with the kth packet

of session i that arrives at time t is calculated as

Lk

TS* = max(TSM, V(t)) + (2.5)

Where L\ is the length of the arrived packet and r; is the guaranteed link share of

session i.

It has been shown that if arrivals from session i are token bucket shaped with a

token bucket rate of r, and a token bucket depth of cr*, then the maximum queuing

delay a packet of session i experiences in a WFQ scheduler is bounded [4, 8] and

equals

- + - + (2.6)

where Li is the maximum packet size of session i , and Lmax the maximum packet

size among all the sessions sharing the link.

The advantage of WFQ is that, it is able to provide the same latency bound

of GPS, with a maximum discrepancy equal to the transmission time of one maxi-

18

mum length packet. However, it has been argued, that this technique has a serious

limitation due to the computational complexity arising from the simulation of the

fluid-model GPS scheduler [6]. In particular, it has been mentioned that if there

are a total of N sessions sharing the outgoing link, a maximum of N events may

be triggered in the simulation during the transmission time of single packet. Thus,

the time for completing a scheduling decision was considered to be O(N) [6]. As a

result, when the number of sessions sharing the outgoing link is large, the simula

tion of GPS was considered to be prohibitively expensive. In contemporary Internet

routers, N can reach several tens of thousands of sessions. However, it will be shown

later that in practice the implementation of WFQ is not as complex as previously

assumed.

To solve the problem of this perceived computational complexity, several vari

ants of WFQ were proposed, all of which attempt to reduce the computational

complexity of the timestamps. However, the true cost of computing the timestamp

in these algorithms is equivalent to that of WFQ and there are no apparent savings

in computational time by performing such approximations.

2.4.2 Self-Clocked Fair Queuing (SCFQ)

In SCFQ, an approximation of the virtual time function V(t) is calculated using

the timestamp of the packet currently in service [12]. Thus, if TScur denotes the

timestamp of the packet currently in service, the virtual time V(t) is taken as TScur.

19

SCFQ calculates the timestamp of an arriving packet, say the k packet of session

i, as
Tk

TSf = max(T5f- 1, TScur) + (2.7)

This approach reduces the complexity of the algorithm greatly. However, the price

paid is a reduced level of isolation among the sessions, causing the end-to-end delay

bounds to grow linearly with the number of sessions that share the outgoing link.

2.4.3 VirtualClock (VC)

The VirtualClock scheduling algorithm provides the same end-to-end delay bound

as WFQ with a simple timestamp computation algorithm. The virtual time function

in this algorithm is the real time and hence the timestamp becomes [11],

jk

TS? = max(TSt\ 0 + — (2-8)
1 i

The disadvantage of this algorithm is that a backlogged session can be starved for an

arbitrary period of time as a result of excess bandwidth it received from the server

when other sessions were idle.

20

2.4.4 Start-time Fair Queuing (SFQ)

Another variant of WFQ is the Start-time Fair Queuing (SFQ) [16]. This technique

tries to schedule packets according to start time in GPS. The virtual time is ap

proximated by the virtual start time of the packet currently in service. Packets are

scheduled in order of start-time with ties broken by the toss of a coin. The virtual

finish time of a packet is calculated as the sum of the virtual start time plus the

ratio of length to session share. When a packet arrives to a backlogged session, its

virtual start time is set equal to the virtual finish time of the previous packet of that

session. Although SFQ is easier to implement than WFQ, it has a delay bound well

above that of WFQ.

2.4.5 Rate-Proportional Server techniques (RPS)

To solve these problems, three new variants of WFQ, namely Frame -Based Fair

Queuing (FFQ) [10], Starting Potential-Based Fair Queuing (SPFQ) [10] and Minimum-

Delay Self-Clocked Fair Queuing (MD-SCFQ) [14] have been proposed. These algo

rithms have the delay bounds of WFQ, bounded unfairness and simple timestamp

computation. These three algorithms can be understood through the theory of

Rate-Proportional Servers (RPS) and the concept of Potential Function (which is

a generalization of virtual time in GPS.) The RPS can be described in terms of

Latency-Rate (LR) Servers [8].

21

In RPS schedulers, a potential is associated with every session and is incremented

in such a way as to provide a fair service to each session based on its associated rate.

Assume that N sessions share the outgoing link, each with an associated rate 7\, and

that the total bandwidth assigned to the sessions does not exceed the link capacity

C or:

! > < C 7 (2.9)

When a session i is backlogged, its potential increases exactly by the normalized

service it receives. That is, if Pi(t) denotes the potential of session i at time t, then,

during any interval (r, t] within a backlogged period for session i

Pi(t)-Pi(T) = ^ ^ (2.10)

Where Wi(r, t) denotes the amount of service received by session i during the interval

(T,t\.

A server is defined to be a Rate-Proportional Server (RPS) if it attempts to

equalize the potential of all backlogged sessions at every instance of time. This is

achieved in the fluid server as follows: at any instant t, the scheduler services only

the subset of sessions with the minimum potential, and each session in this subset

receives service in proportion to its reserved rate Vi. In this way the scheduler

increases the potentials of the sessions in this subset at the same rate. When a

session becomes backlogged, its potential is updated based on a system potential

22

function that keeps track of the progress of the total work done by the scheduler.

The system potential P(t) is a nondecreasing function of time. When an idle session

i becomes backlogged at time t, its potential P^t) is set to:

Pi(t) = max[Pi(t-),P{t)] (2.11)

to account for the service it has missed [8]. The difference between RPS schedulers is

in the way they update the system potential. This gives rise to scheduling techniques

with varying delay and fairness behaviors.

The general requirements for a function to be a system potential is that it never

exceeds the potential of any backlogged session

Where B(t) denotes the set of sessions that are backlogged in the server at time t.

If this requirement is relaxed, then a session with a potential less than the system

potential may get exclusive control of the server for a period of time which violates

the fairness requirement. In the RPS system, a system potential function must

satisfy the additional requirement that during any interval (£j, t2] within a system

busy period, the system potential function must be increased with a rate of at least

P(t) < Pi(t) : Vi e B(t) (2.12)

23

one, that is

P{t2)-P(ti) > (* 2 - * i) (2.13)

An RPS server is a Latency-Rate (LR) Server with zero latency.

Since RPS assumes a fluid model which is not true in packet servers, a version of

RPS for packet systems is defined and is called Packet-By-Packet RPS (PRPS) [8].

In these servers the timestamp calculation is as follows: Let us assume that when

the kth packet from session i finishes service in the fluid server, the potential of

session i is TS*. This finishing potential can be used to timestamp packets and

schedule them in increasing order of their timestamps. It can be shown that the

service offered by the PRPS to a session can never lag behind that of the fluid RPS

by more than one packet. As a result, the latency bound of any PRPS is identical

to that of WFQ.

The fundamental difficulty in designing a practical PRPS is the need to maintain

the system potential function. In order to avoid simulating the fluid-model RPS in

parallel and maintaining its system potential function, the system potential function

can be an approximation of this fluid-model system potential and only needs to be

updated when a packet departs from the system. One way of doing this is to

define a reference potential function Sp(t) called the base potential, and calibrate

the system potential according to this function at the instances when a packet

departs the system [9]. The system potential function is maintained as a piecewise

24

linear function with a slope of 1 for each linear segment, but calibrated periodically.

When the system is not busy the system potential function is equal to zero. During

a system busy period, the function is a piecewise linear function of time t. Let r 0

be the beginning of the current system busy period, then:

1. At times T I , T 2 , • • •, with T\ < T2 < ... < rjt, a re-calibration is performed by

updating P(t) to the base potential Sp(t) at that instant, if the system po

tential is lower than the base potential. That is, P(TJ) = m a x (P (T ~) , SP(TJ)),

where 7 j denotes the instant of time just before the update.

2. At any time t between updates, the system potential increases linearly with

time. That is, P(t) = P(r i) + (t - TJ),T7 < t < r j + l .

The base potential function SP is a non-decreasing function of time with the follow

ing two properties. First, its value at any time is never higher than the potential

of any backlogged session at that instant. Second, the difference between the base

potential and the potential of any backlogged session is bounded at any time. As a

result, this system will be a PRPS and consequently have the same latency bound

of WFQ.

Frame-Based Fair Queuing (FFQ)

ff the interval between successive re-calibrations is bounded, the scheduler will have

bounded unfairness by bounding the difference between the system potential and the

25

potentials of backlogged sessions. By choosing different base potential functions and

re-calibration intervals, we can have different algorithms, all with a latency bound

equal to that of WFQ. One such algorithm is FFQ that updates the system potential

at regular intervals [10]. It has an upper bound on the period of calibration defined

in terms of an internal parameter of the system called the frame size F. The frame

size F is defined such that exactly F bits can be transmitted during a frame period

T. That is

where, ai is the normalized share of session i and $j defines the maximum amount

of session i traffic that can be serviced during one frame. When a session remains

backlogged, its potential increases by the normalized service offered to it. Thus,

when $j bits are serviced from session i , its potential will increase by

(2.14)

<&i is defined as

$i = cZiF = r{F (2.15)

(2.16)

26

A restriction that the largest packet of a session can be transmitted during a frame

period is imposed. That is, if L™ax is the maximum packet size for session i, then

L™ax < $ i (2.17)

In FFQ the base potential function Sp(t) is defined as follows: Sp(t) is a step

function whose value is zero when the server is idle and increases by T on every

frame update instant. Therefore, at the kth frame update instant r^, Sp(t) assumes

a value of kT.

Now, defining the starting potential of a packet j of session i as the potential of

session i when packet j starts being serviced in the corresponding fluid server, the

scheduler can keep track of all the sessions that are backlogged and have packets

with starting potential in the next frame. When the starting potentials of the

packets at the head of the queues of all backlogged sessions have crossed the frame

boundary, the potentials of the sessions in the fluid system have also crossed the

frame boundary. Therefore, the crossing time of the last session is a valid time to

update the frame and system potential function. On the arrival of a packet, the

current system potential is obtained by adding to P the elapsed real time since the

current packet in service started transmission. The starting potential of the newly

arrived packet is then computed as the maximum of the finishing potential of the

previous packet from the same session and the system potential. The packet is then

27

time stamped with its finishing potential based on its length and the reserved rate.

If the starting and finishing potentials of the packet belong to different frames, the

current packet is one that crosses over to the next frame. Therefore, the packet is

marked to indicate that this is the first packet of the session to cross over to the next

frame. The algorithm maintains one counter per frame to keep track of the number

of sessions whose packets cross into the next frame. Later, when a marked packet

is scheduled for transmission, the corresponding counter is decremented; when the

counter reaches zero, the potentials of all the backlogged sessions have crossed over

to the next frame, and a frame update can be performed.

When a packet finishes transmission, the system potential is first increased by

the transmission time of the packet just serviced. The packet with the minimum

timestamp is then selected for transmission. If the transmitted packet was marked,

the counter corresponding to the current frame is decremented. If the counter be

comes zero, the session that was serviced is the last to cross the current frame.

If in addition, the timestamps of none of the queued packets fall in the current

frame, a frame update is then performed by incrementing the frame number and

re-calibrating the system potential to the corresponding base potential.

Starting Potential-Based Fair Queuing (SPFQ)

Alternatively, the system potential function can be updated every time a packet

departs the system. This variant of FFQ is called Starting Potential-Based Fair

28

Queuing (SPFQ) [10]. In this algorithm, the base potential function Sp(i) is defined

as:

Sp{t)= min Si(t) (2.18)

where Bp(t) denotes the set of backlogged sessions in the packet server at time t and

Si(t) the starting potential of the first packet in the queue of a backlogged session

i in the packet server. The algorithm executed after packet arrival and departure

in SPFQ is similar to that of FFQ except that no counters are used and the base

potential function is maintained by keeping track of the minimum starting potential

of all head packets of queues of backlogged sessions. Because SPFQ updates the

system potential more frequently, it has better fairness properties than that of FFQ.

Mininmum-Delay Self Clocked Fair Queuing (M D - S C F Q)

This algorithm is similar to SPFQ but with the base potential function Sp(t) defined

as:

S P (T ,) = T b { T j) " L e { T]) (2-19)
TB(Tj)

where

ieB(tj)

is the weighted sum of the timestamps of all sessions that are backlogged at time

Tj with each timestamp weighted according to the reserved service rate of the cor-

29

responding sessions.

LB(rj) = Yl li

i€B{Tj)

is the sum of the lengths of the packets at the head of each session queue at time Tj

including the packet that is currently being transmitted. Also,

i€B(rj)

is the cumulative service rate of all the sessions that are backlogged at time Tj where

Tj is the jth re-calibration time of the system potential function [10].

FFQ, SPFQ and MD-SCFQ all have the same delay bound of W F Q under leaky

bucket traffic. Their fairness properties can be made close to that of WFQ. The

only difference is that the timestamp computation in MD-SCFQ is a lot easier since

it does not require any calculation of session potentials and starting-time potentials.

However, MD-SCFQ still requires maintaining a sorted priority queue and inserting

and deleting an element into this queue every time a packet arrives or departs.

In reality, however, the computational simplification in timestamp calculation is

not significant when compared with WFQ. The reason is that the quantities FB(TJ)I

LB{TJ) a n d R B (T j) need to be maintained whenever a packet arrives to an idle session or

a packet departs from the system. This requires similar computations as calculating

the timestamps in WFQ. Both WFQ and MD-SCFQ need to maintain a system

potential function. However, WFQ does not need to maintain individual potentials

30

as in MD-SCFQ. In WFQ, the system potential function (virtual time) is maintained

in a few steps whenever a session becomes newly backlogged or a departure from

a session occurs. This means that a packet can get its timestamp quickly. The

only time-consuming operation in WFQ is the insertion into the priority queue

of timestamps. However, this is required in all sorted-priority schedulers including

MD-SCFQ. Thus, both WFQ and MD-SCFQ have comparable implementation costs

with WFQ having the advantage of being the most accurate GPS-emulation method.

Therefore, if a GPS-based scheduler that provides fairness is to be implemented, then

WFQ itself, and not an approximation of it, should be implemented.

2.4.6 Other Techniques based on Potential Functions

Discrete-Rate scheduling [15] is a technique that aggregates all the flows with a

given rate or whose rate is a multiple of a given rate into a single flow. Discrete-rate

scheduling assumes that the basic rates are finite and hence all the flow rates in

the system are either equal to these rates or are multiples of them. The aggregated

flows are then serviced using a GPS-emulation technique such as MD-SCFQ. This

technique is applicable mainly to A T M systems and has the advantage of reducing

the system states. However, the main disadvantage of this technique is the assump

tion that a set of basic rates exists for all the flows in the system. Also, it should

be noted that this technique uses a GPS-approximation and hence results in higher

delay and reduced fairness compared to WFQ.

31

Chapter 3

Analysis of Virtual Time

Complexity in Weighted Fair

Queuing

3.1 Introduction

It was generally accepted that GPS calculations have 0(N) complexity [8, 12], with

out an actual proof of how one can achieve the worst case scenario in the simple

case of no simultaneous arrivals. It has been mentioned previously in [6] that, if

a link is shared by up to iV active sessions, then updating the virtual time can

incur a computation on a substantial subset of the N sessions or queues, which

requires O(N) time complexity. The O(N) complexity was attributed to the so-

32

called iterated deletion [18] problem, and was the main reason why ideal WFQ has

been replaced in practice with simplified approximations such as self-clocked [12]

and start-time [16] WFQ algorithms. In this chapter, two fundamental theorems

are presented that show that the O(N) complexity for updating the virtual time

in a WFQ scheduler with N sessions is caused mainly by simultaneous departures

of packets, not by iterated deletion. Iterated deletion is caused by an "avalanche"

of consecutive, but not simultaneous, departures that incur more departures due

to increments in available bandwidth from idling sessions. Iterated deletion poten

tially leads to large numbers of consecutive departures within a time period. The

number of departures is, however, a function of the resolution of the timestamp and

the scheduler clock. Therefore, the number of consecutive departures within a time

period can be made arbitrarily small, by using a finer-resolution virtual time update

operation. In real software implementations, iterated deletion is avoided by consid

ering only departures that have the same timestamp. In the case where iterated

deletion is unavoidable, our proposed MW-WFQ algorithm can solve this problem

as will be discussed in Chapter 4. On the other hand, the problem of simultaneous

timestamps can not be solved by any increase in the time resolution of virtual time

update. Essentially, all equal timestamps must be processed during a single virtual

time update operation. In this chapter, a proof which shows that this is the real

cause of the O(N) complexity for virtual time update will be presented. Also, it

will be shown that this is a fundamental property of WFQ that holds even under

33

the most severe restrictions, viz. all packets arrive serially to the scheduler, and the

input bit-rate is equal to the output bit-rate.

3.2 G P S Revisited

As previously mentioned, WFQ simulates GPS in the background to produce times

tamps for newly arriving packets. The timestamp is a sum of two components, a

constant part and a variable part. The constant part is the ratio of the length of

an arriving packet to its session link share (i.e. jL). The variable part is the virtual

start time which is the virtual time at which the packet will begin service under

GPS. If a packet arrives in GPS to an idle session, then its virtual start time is

simply the virtual time at arrival. If, on the other hand, a packet arrives to a back-

logged session in GPS, then its virtual start time is exactly the virtual finish time of

the previous packet which is simply the timestamp of the previous packet. There

fore, we do not need to calculate the virtual time for packets arriving to backlogged

sessions in GPS. Only newly backlogged sessions in GPS require knowledge of the

virtual time at the time of packet arrival. Note that we need to keep track of the

set of backlogged sessions at all times in GPS to calculate the correct timestamps

for WFQ.

Recall that the virtual time function in GPS is a piecewise linear function of

time whose value at the start of a busy period equals zero and whose slope changes

34

according to:

E J L i a j (3 1 }

where £?(£) is the set of backlogged sessions at time t and N is the total number of

sessions. There are only two events that affect the slope of the virtual time function,

one is the arrival of a packet to an idle session and the other is the departure of the

last packet of a session (after which the session becomes idle). In between these two

events, the slope of the virtual time remains fixed, because the set of backlogged

sessions is fixed. The question now becomes, how frequent are these two events?

Before answering this question, we must make certain assumptions on the arrival

process to a router's output link. In a router with m inputs, if all inputs simultane

ously forward packets to the same output link, then these packets enter the output

scheduler in a certain order. In other words, packet arrivals are serialized so that

the scheduler sees arriving packets one at a time (Figure 3.1). This packet "serial

ization" process introduces a small fixed delay in a packet path that can be easily

accounted for in delay calculations. Furthermore, since in many switch and router

designs, an output buffer usually runs at several times the input link speed, there

fore the fixed serialization delay becomes insignificantly small. Also, the maximum

number of session arrivals to a router in a sufficiently small interval of time is at

most m (this interval can be taken as the transmission time of the smallest packet

of all the sessions).

35

Fi gure 3.1: A model for the serialization of inputs that are destined to the same
output.

3G

Although the departure of the last packet of a backlogged session in GPS (hence

forth, referred to as the event of a newly idled session) affects the slope of virtual

time, we only need to consider this event when the next arrival to an idle session in

GPS takes place. This is because, we only need the virtual time when calculating

the timestamp of newly backlogged sessions. However, we need to remember the

time at which the event of newly idle sessions took place. Therefore, the main events

in our analysis will be arrivals to idle sessions in GPS. Although, only departure of

the last packet of a session affects the slope of virtual time, we will consider any

departure to represent an event that can affect the slope of virtual time. Conse

quently, we are concerned with only two types of events, arrivals to idle sessions

and departures from GPS. When any of these events occurs, we need to recompute

the value of virtual time. To do this, we start with the value of virtual time at the

previous event and modify the slopes according to the two types of events. Initially,

when the scheduler busy period starts and time is set to zero, the first packet to

arrive at the output buffer will be an event of a newly backlogged session. Because

the virtual time starts initially with the value zero, the initial timestamp will simply

LK

equal the constant part which is the ratio of packet length to link share (which is

in equation 2.5). If the next arrival to the output buffer is for the same session, we

can simply use the timestamp of the first packet. If, on the other hand, the second

arrival is for a different session, we need the value of the virtual time at the time of

packet arrival to the output buffer. So the problem of determining the time stamp
37

of a packet is reduced to the question of what happens to the virtual time between

two consecutive packet arrivals to two idle sessions.

After a packet arrival to an idle session and before the next arrival to an idle

session, two possible scenarios could happen. The first is that no packet departure

takes place. The second is that one or more departures take place. In the first case,

the set of backlogged sessions remains fixed between the two arrivals to the idle

sessions. In the second case, the set of backlogged sessions may change between the

event points. As an example, assume that we have two time instances, Ti and T 2,

where consecutive events of newly backlogged sessions take place. If no departures

occur in between times T\ and r 2 , we have the virtual time case shown in Figure 3.2.

When there are two departure events at times 771 and 772, between the two arrivals

(events r\ and T2) resulting in newly idled sessions, we have the virtual time case

depicted in Figure 3.3.

In Figure 3.2, during the interval (TI,T 2) the set of backlogged sessions remains

fixed and the slope remains constant. However, in Figure 3.3, the slope changes in

each of the three intervals shown in bold. Note that the slope of the virtual time

in the interval (71,771) is the same as that of Figure 3.2 in the interval (TI,T 2). At

time 771 some of the sessions that were backlogged in the interval (71,771) become

idle and are removed from the set of backlogged sessions. This causes the slope of

the virtual time to increase in the interval (771,772). Similarly, some sessions that

were backlogged in the interval (771,772) become idle, causing a further increase in

38

39

Figure 3.3: Virtual time function between two consecutive newly backlogged session
events T\ and r 2 when two newly idled departure events occur at times r)X and 772-

40

the slope of the virtual time in the interval (772, T 2) .

3.3 The Problem of Simultaneous Departures

In WFQ the most computationally expensive operation is maintaining the GPS

virtual time function. The value of the virtual time function is inversely proportional

to the sum of shares of backlogged sessions at any given instance of time. The

set of backlogged sessions can change drastically from one instance of time to the

next. This could happen due to either one of two reasons: simultaneous arrivals or

simultaneous departures of packets to the scheduler.

Simultaneous arrivals can be the result of packets arriving from different input

ports such that they are all destined to the same output link. If these arrivals are

from sessions that were previously idle in GPS, then the slope of the virtual time

will change after these packets arrive. Simultaneous departures are the result of

several packets finishing their service in GPS at the same time. When this happens,

it means that the value of the virtual time function in W F Q has just exceeded the

timestamp value of these packets (that have equal timestamps). If some of these

simultaneous departures cause some sessions to become idle, then this will cause the

slope of the virtual time function to change. The amount of change in the slope

of the virtual time in WFQ is controlled by the frequency of occurrence in GPS of

both arrivals to idle sessions and equal finish times (departures).

41

It may be argued that if the input port traffic is properly multiplexed, such

that no more than a single arrival takes place at a given time instance, then that

would eliminate the simultaneous arrival problem. This type of "serialization" of

input traffic does not solve the second problem of equal timestamps, i.e. equal

departure times according to GPS. It was generally accepted that GPS calculations

have O(N) complexity, without an actual proof of how the worst-case complexity

can be achieved in the simple case of no simultaneous arrivals to the scheduler. In

fact, we will show in this work that WFQ can produce as many equal timestamp

packets as the total number of active sessions. We will prove that the case of equal

timestamps can occur even when the input and output link speeds are equal.

Now we present two fundamental theorems that establish sufficient conditions

for WFQ to have a large number of packets with equal timestamps during a busy

period, and assuming no simultaneous arrivals. Theorem 1 shows that it is possible

to have up to N equal-timestamp packets starting at the beginning of a busy period

of a WFQ scheduler. Theorem 2 shows that at an arbitrary point during the busy

period of a WFQ scheduler, it is possible to have equal-timestamp packets equal to

the number of idle sessions at that instance in time. In both Theorems, a relationship

between the packet length and its session share and those of other sessions is shown.

We can use Theorem 1 and Theorem 2 to create real scenarios where we can have

up to N equal timestamps at different points in time.

42

3.3.1 Assumptions and Terminology

In the following two theorems we will find sufficient conditions under which WFQ

will produce equal timestamps. Although WFQ can produce equal timestamps

without them, we will make a few assumptions to help us find simple closed form

expressions for the relationship between packet length and session share.

In these two theorems, packets arrive in a back-to-back manner, with no inter-

packet gaps, and belong to unique sessions. The first packet arrives at the start of

the busy period. In the second theorem, we assume that the busy period has already

started. In this case, we are interested in generating equal timestamps for packets

arriving at or after that moment in time. We also assume in both theorems that the

input link is at least as fast as the output link.

Let U be the arrival time of the ith packet to the GPS system such that its session

number is also i, Li is the length of the ith packet, dn is the input rate, and C is

the output link rate such that Cin > C. Assume that t\ = 0, L\ — L, and assume

that packets arrive in back-to-back manner with no inter-packet gaps, i.e.

_ Ln_

Assume also, that at time t = 0, the virtual time V(0) = 0 and that the share of

session i is ojj, where a\ — 1, > 0, i > 2.

Note that the above assumptions imply that only one packet arrives to each

43

session and therefore all packet arrivals are to idle (empty) session queues.

3.3.2 Theorem 1

Assuming that m packets arrive to m idle session queues, one packet to each queue

(indexed from 1 torn), such that the packet lengths satisfy the relation:

Ln oJSi* _ , 2<n<m<N (3.2)

where 3 = dn/C, then all the m packets will have the same timestamp value as

that of the first packet.

Proof: According to the assumptions, the guaranteed rate r$ of session i accord

ing to GPS is Ti = our where r = C/ J2iLi ai- When packet 1 arrives at time t\ = 0,

it receives a timestamp equal to

TS(t{\ = TS(0) = V{0) + ^ - = 0 + - = -
air r r

(Since c*i = 1 and L\ = L). Using the fact that, between times tn-\ and tn only

sessions 1,2, • • • n — 1 are active, we conclude that the virtual time slope during the

same period of time is

C

44

Therefore, we have:

V{tn) = V(« n _i) + Zl (*n - *n-l) (3-3)

From which we get:

Since each packet arrives to an idle session, the timestamp of the nth packet is:

TS(tn) = V(tn) + ^ (3.5)

Substituting 3.4 into 3.5 we get:

TSfc.) = V ^) + - (— - ^ r —) - V ^) + ^ - 7 (^)

(3.6)

Substituting 3.2 into 3.6 we get:

TS(tn) = V(*n_!) + i = V(t„-i) + ^ = r5 (t „_ !) (3.7)
ctn-ir Ln

45

Using induction, it is simple to show that all the timestamps will be equal to ^

which is the timestamp of the first packet, i.e.

TS(tn) = T5 (i „_x) = • • • = TS(t2) = TS(h) = -

The above proof assumed that when a packet arrives, all the previous packets

are still in the GPS system. To prove that this is indeed the case, we will show

that the arrival time tn is small enough to prevent all previous packets in GPS from

departing. We do this by showing that i/imS/j, the predicted finish time at time t n _ i

of all packets in the GPS system which have the same timestamp L/r, is greater

than tn and therefore the nth packet will arrive and further increase the finish time

of these n — 1 equal timestamp packets. In calculating tfinish we assume that the

slope of the virtual time does not change in the interval (tn-\, tfinish)-

Using the fact that the timestamp of the nth packet is L/r, and using equation 3.7,

we get

(j - V(tn-l))
slope of virtual time in interval (tn-i, tfinish)

rVr(<„_i) = L - =fc.L-rV(i„_i)
L; 'n-1 r , 1

= Ln{— +
1

a, •n-1 a. • n - 1

46

And we get:

1 C[an 8

~C an CQ

> t, '71

therefore, t f i n i s h > t n .

Theorem 1 proved that it is possible to have up to N simultaneous departures in

GPS. The following Corollary shows that even when the input rate is equal to the

output rate and packet arrivals are serialized, a GPS system can still have up to N

simultaneous departures.

3.3.3 Corollary 1

Given the same assumptions of Theorem 1 and assuming that m packets arrive to m

idle session queues, one packet to each queue (1 to ro), such that L > Ln,l < n < m

and the packet lengths and shares are related by:

a „ = 7nn£ = 2

1(7i + 1), P = 1,3 < n < m, and a2 = 72 (3.8)

47

or equivalently,

-yn = =^—, 0 = 1,2 <n<m (3.9)

where B = ĵip- and 7„ = (jf— l) - 1 , then all the m packets will have the same

timestamp value as that of the first packet.

Proof: In 3.2, by assuming 8 = 1:

Ln

Ln-1

Ln Ln Ln-i
Ln-2 Ln-1 Ln-2

w h e r e 0 = 1

/ . &n E j = l ^ i w ^ n - l E j = l \

And:

Ln an YJt=ia

Ln-2 0in-2 E ™ = 1 ai

Hence by induction:

Ln Ln

Ll L ai E " = l ai « 1 E " = l «i E " = l < * i

From 3.10:

r n-1 k y 1 - ^ .

a n = " 7 " (2^ a * + a ") « n = — " 7 -
L i=l L

(3.10)

48

And:

, B = \,n>2 (3.11)

Substituting 7 „ = (jf— 1) 1 in Equation 3.11, Equation 3.9 is obtained:

n-1

«„ = 7 n E a » B = l,n>2
i=i

Using induction:

n-2 n-2 n-2
C*n = 7 n (O n - l + ^ «i) = 7 n (7 n - l Y ai + Y ai)

i=l i=l i=l
n-2

= 7 n (7 n - l + l)Yai
i=l

n—3 n—3

7n(7n-l + l)(ttn-2 + Y a0 = 7n(7n-l + l)(7n-2 + 1) ^ « i
i=l i=l

- 7 n (7 n - l + l)(7n-2 + l)(7n-3 + 1) ' " ' (72 + l)c*l

= 7n(7n-l + l) (7 n - 2 + l) (7 n - 3 + 1) • " ' (72 + 1)

Which is exactly Equation 3.8.

3.3 .4 Examples

E x a m p l e 1: Let us look at the case when 3 = ^ = 1. Assuming that the

packet lengths are as follows: L\ = L and Lt = \ L , i > 2. This means that

49

% = — 1) 1 = 1, n > 2 and from 3.8 we have a2 = 72 = 1 and for n > 3:

a« = 7 ^ (7 , + 1) = n- 2

1(2) = 2"" 2

Thus, if shares are chosen as follows:

ct\ — a2 = 1, a 3 = 2, a 4 = 4, a 5 = 8, a 6 = 16 • •

then all the arriving packets receive the same timestamp in GPS.

Example 2: Consider the case when B = ^f- = 1 and assume that all the

sessions have the same share a. Then, using Equation 3.9

1 « n l ^ o

which means

L
— = n, n > 2
J-tn.

Thus, if packet lengths are chosen as follows:

1 1 1 1 1
L\ = L,L2 — -L, L 3 = - L , L 4 = -L, L 5 = -L, Le = -L

50

then all the arriving packets receive the same timestamp in GPS.

To complete the theoretical analysis of virtual time the following theorem is

presented which shows that at an arbitrary point during the busy period of a WFQ

scheduler, it is possible to have many packets from different sessions with equal

timestamps. Furthermore, the number of such packet can equal to the number of

idle sessions at that instance in time.

Before stating the theorem, some assumptions are made; (a) the system consists

of N sessions having shares ai,i = 1,2, - • • ,N, such that at time t, sessions 1,2, • • •, fc

are backlogged while sessions k + 1, k + 2, • • •, N are idle at time t~, (b) a single

packet arrives to each of the idle sessions in back-to-back fashion, starting at time

t, and in order of increasing session number. Let the arrival times of these packets

be tk+i, tk+i, • • • ,tN, respectively, and tk+i = t such that these arrivals have lengths

Li, i = fc + 1, k + 2, • • •, N. Then t i + 1 - U = 7*!, i = fc, fc + 1, • • •, iV - 1.

3.3.5 Theorem 2

If none of the backlogged sessions at time t~, namely sessions 1, 2, • • •, fc, become

idle during the interval [tk+i, t ^) 1 , then by choosing the lengths Lk+i, £fc+2> • • • > LN

^ o t e that sessions which are backlogged at time t~ but are idle at time t+ are not included in
the set of sessions 1,2, • • •, k.

51

to satisfy

1^=/?—flJSr1 0! > n = k + 2,k + 3,.-.,N (3.12)

the timestamps of the packets belonging to sessions k + l,k + 2, • • •, N will all be

equal to V(t) + where V(t) is the virtual time at time t and r = — .

Proof: The timestamp of the packet arriving at time tn,n = k + 2, k + 3, • • •, N

is

TS(tn) = V(tn) + = V(tn-i) + (tn - i„_i)(slope of virtual time at tn-i) + ^

TS(tn) = V(* n _ x) + ^ z r - [/ 3 X ; « j + <*„] = V(t n_i) + = T5(tn_i)

by induction, we get that TS(tk+i) = TS(tk+2) = • • • = TS^fjv)-

Note that in this proof it was assumed that the k sessions that are backlogged

at time t, remain backlogged during the interval [tk+i, £ J V) to justify that the virtual

time slope during the interval f i n _ i , i n) is ^n-i—•
rEi=l Q i

It can be proved that if the conditions of Theorem 2 are true, then when a packet

arrives at time tn, the packet that arrived at time tn-i has not yet departed. The

proof is similar to that of Theorem 1. The real question is how to guarantee that

52

none of sessions 1,2, • • •, k become idle during the interval (tk+i, ijv)? To answer

this question, it is first necessary to understand what can cause one of the first k

sessions to become idle during the interval (£fc+i,tjv)? It is easy to prove that this

will happen if the largest timestamp of one of these k sessions has a value that lies

between the value of virtual time at times tk+i and t^.

If none of the first k sessions becomes idle during the interval (tn-i,tn), then

the slope of the virtual time decreases from „ ^ L t — to — at time tn for

n = k + l,k + 2, ••• ,N. Also, at time tk+\ the virtual time V(tk+\) is less than the

maximum timestamp of each of the k backlogged sessions. To know whether or not

one of the sessions 1,2, • • •, k will become idle in (tk+i, ijv), V(t^) is calculated on

the assumption that none of the sessions becomes idle in (ifc+i, r.jv). Since T£(£JV) =

TS(tk+i), we have that:

V(tN) + ^ - = V(tk+1) + L k + 1

V{tN) = V(tk+1) +

aNr ak+ir

ak+ir aNr

Let the largest timestamp of all packets belonging to session i at time t be TS™ax(t).

Define

TS(t) = min{TSr x(t)}
l<i<k

If TS(tk+i) > V(tk+i) and TS(tk+i) > V(tjv), then the assumption will be valid. In

53

general, it is required that

TS(t)>V(t), te(tk+utN) (3.13)

Condition 3.13 allows arrivals to sessions 1,2, during the interval (tk+i,t^)

and guarantees that all of these k backlogged sessions will remain backlogged until

time ijy. One way to guarantee that 3.13 is satisfied is to choose either Lk+\ or ak+\

such that

TS(tk+1) < TS(tk+1) (3.14)

but in general Equation 3.13 is less restrictive than Equation 3.14.

54

Chapter 4

A Scalable Minimal-Work

Algorithm for Computing the

Virtual Time in GPS

4.1 Introduction

This chapter introduces a novel algorithm called Minimum-Work Weighted Fair

Queuing (MW-WFQ) [19] for implementing WFQ that eliminates the 0(N) compu

tational complexity problem in standard WFQ implementations. The algorithm rep

resents a significant advancement in per-flow scheduling and solves the long standing

scalability problem that was associated with such algorithms. As a starting point,

we will discuss how the standard WFQ algorithm is implemented. Once the prob-

55

lems with the standard WFQ implementation are understood, it will be shown how

the algorithm deals with the O(N) complexity problem.

Recall from the previous chapter that the O(N) computational complexity can

occur during the computation of the timestamp of a single packet, and it is thus the

main cause of the WFQ scalability problem.

In this chapter, an implementation of a standard WFQ algorithm is first pre

sented, then a novel Minimum-Work WFQ algorithm is proposed.

4.2 A Standard WFQ Implementation

In WFQ, the timestamp of a packet is determined upon arrival and based on whether

or not it arrives to an idle session in GPS [7]. If the arrival is to a backlogged session,

then the virtual time is not important in calculating the timestamp. If, on the other

hand, the arrival is to an idle session, the value of virtual time at that instance

must be computed. If describing how the virtual time function changes between

two consecutive events of arrivals to idle sessions is possible, then calculating a

packet's timestamp becomes easy. In what follows, a simple algorithm is proposed

for calculating the virtual time between any two consecutive times where packets

arrive to idle sessions. Let and Tj+i denote the times of two consecutive newly

backlogged session events, i.e. packet arrivals to two different idle sessions. Also,

let V(t) denote the virtual time at time t, and let TSi be the smallest timestamp

56

of all the packets belonging to session i in GPS. Then the algorithm for calculating

the virtual time can be formulated as follows:

Begin:

1. Calculate the minimum timestamp TSmin at time r^the "+" after TV indicates

that any departure have been considered first before calculating the minimum

timestamp) :

TSmin = mmTSj,Vj E B{T?)

2. Calculate the finish time tfinish for this minimum timestamp as follows:

tfinish = Ti + [TSmin ~ V {ji)] * Sj

j e f l (r +)

3. If tfinish = Tj+i then V(tfinish) = V(ri+i) = TSmin, done.

4. Else if tfinish < Ti+u then all the sessions whose head packets have timestamps

equal to TSmin will exit the GPS scheduler at time tfinish- Subsequently, it

may be necessary to adjust the slope of the virtual time after time tfinish as a

result of some sessions becoming idle. The virtual time at time tfinish becomes:

inish} — TSmin

5. Find the new value of minimum timestamp TSmin at time tfinish after packets

57

exit the GPS scheduler:

TS'min = minTSj,Vj e Bit*^)

6. Find the value of the new finish time ffinish corresponding to this new minimum

timestamp TS'min:

^'finish = tfinish + [TS'min — V(tfinish)] * 2\2 ai b finish
- V - Dl

finish

7. If t'f^ish < Ti+ii then like in steps 3-6 packets will exit the GPS scheduler at

this new finish time. The new finish time will have a virtual time equal to the

new minimum timestamp:

^(t'finish) = TS'min

8. The minimum timestamp TS'^in and next finish time t'finish are calculated for

the new finish time t'finish. This process is repeated until we reach a value

of time (call it t) such that the next calculated finish time is greater than or

equal to Tj+i.

58

9. If t < T j + i , we calculate the virtual time at time ri+\ as follows:

V (T I + 1) = V(t) + [ri+1-t]/
jeB{t)

End

Note that this algorithm is able to find the value of virtual time at the next event

of newly backlogged sessions given the value of virtual time at the previous event of

newly backlogged sessions. The algorithm is initiated at time zero with virtual time

set equal to zero. This algorithm can be used as a basis for implementing a standard

WFQ scheduler. Figure 4.1 is a flow chart that shows such an implementation of

WFQ which calculates the timestamp of an arriving packet based on this proposed

algorithm.

In the flow chart of Figure 4.1 an arriving packet is given a timestamp equal to

the virtual time at the instance it leaves the GPS scheduler. The chart has four main

cycles. Cycle 1, which traverses the branches {8,9,5,6,3,10,12,13}, corresponds to

the case of a newly backlogged session event. Cycle 2, which traverses the branches

{10,11,5,6,3}, corresponds to the case of an arrival to a backlogged session. Cycle 3,

which traverses the branches {7,8,9,5,6}, corresponds to departures in GPS. Cycle

4, which traverses the branches {3,4, 5,6}, corresponds to the case of no arrivals and

no departures in which time is simply advanced. There are only two calculations

needed, one to find the finish time and the other to calculate the virtual time. Note

59

Find minimum timestamp
TSvlB=wmTSl,ieB(fUl)

Calculate predicted finish time

Packets with timestamp
TSmin exit GPS

<,' TSini, = TS^

START

Give timestamp
and advance •

Time

TS,ni,=TSinil+[Time- -tin,,]' ZZ",

tini, = T i m e

Figure 4.1: Flowchart of a standard WFQ implementation.

60

that the algorithm requires access to the minimum timestamp which requires the

use of a suitable priority queue realization. The top of the routine begins with a

minimum timestamp discovery among all the heads of the queues of backlogged

sessions. Note that the routine begins at the "START" point.

4.3 G P S Simulation

To investigate the feasibility of GPS simulation it is necessary to address the follow

ing issues. The first issue is how frequent the two types of events are. This helps

in determining the amount of time available to perform the computations between

events. At the start of a busy period, there is a high likelihood that most of the

arrivals will correspond to one of the two events, especially the event of newly back-

logged sessions. As mentioned earlier, such an event incurs a heavy computation,

but at the same time may require as little as a packet transmission time to be exe

cuted. The, second issue is the time it takes to determine the minimum timestamp of

all backlogged sessions. This step will be the crucial part in determining the execu

tion time of the algorithm cycles. If this search time can be reduced then the cycles

can be completed in time. It might be useful to keep a sorted list of timestamps

so that we can determine the minimum timestamps quickly and be able to decide

promptly the next departure time.

Up to this moment, only continuous time and discrete arrival processes were

61

considered. These arrival processes are discrete because a packet arrives only when

its last bit reaches the output buffer. In a practical packet system, both time and

arrivals are discrete. Therefore, a "scheduling clock" is needed during which the

system reads input packets, calculates their timestamps and queues them appro

priately. Note that we do not mean here the actual hardware clock driving the

router or switch hardware. Rather, we mean a "task clock" that executes the task

of scheduling regularly. The shorter the scheduling clock period, the more accurate

the algorithm will be. This is due to the fact that an arrival that takes place dur

ing a clock cycle is not considered until the beginning of the next clock. In effect,

this results in a delay in the packet transmission time which is proportional to the

scheduling clock period. Ideally, a scheduling clock with infinitesimally small pe

riod is needed. This is not practical of course, but a suitable compromise can be

found that adds a small delay to packet transmission times. Delay is not the only

side-effect of a discrete clock; packet reordering is another. If two packets arrive

one after the other during a clock period, they will both be treated as simultaneous

arrivals. This may cause them to receive timestamps that order them upon trans

mission differently from what would happen if the clock were continuous. However,

these effects result in very small delay and negligible "local" reordering of packets.

62

TS, < TS2 < TS3 < TS4

TS4 TS3 TS2 TS t

Figure 4.2: Timestamp groups.

4.4 Minimum-Work Weighted Fair Queuing

The algorithm of Figure 4.1 performs only two significant computations, one for

computing the finish time (tfinish) a n d the other for computing the virtual time

(TSinit). Both of these computations contain the quantity YlieB(t)®ii which, for

convenience, will be called the Backlog Sum at time t. Calculating this quantity

requires accumulating the shares of all backlogged sessions at any given time. The

naive approach of computing this value at packet arrivals incurs a computation time

proportional to the number of backlogged sessions which can be quite long (O(N)

where N is the number of sessions sharing the output link). What is needed is a

way of reducing the time it takes to calculate this sum. The key to the proposed

solution is to build up the backlog-rate incrementally so that only a fixed number

of operations is required to maintain this sum after any event. A data structure

63

that keeps all the timestamps in the system in sorted order (by increasing times

tamp value) is proposed. Figure 4.2 depicts part of this data structure. The figure

shows 13 packets with four distinct groups of packets sorted by increasing order of

timestamps from TSi to TS4. Note that each group may contain several packets

with same timestamp TSi. To reduce memory requirements, the data structure uses

small records to represent packets. Each record will have a pointer to the packet it

represents. The actual packet will remain in the packet memory. In a given group,

the rightmost record is used to represent the first packet to arrive with a timestamp

equal to the group timestamp. The packets are listed, within a group, in an in

creasing order of arrival. For example, the minimum timestamp group is TS\ and

contains three packets. The packet at the top is the first packet to arrive to the

system with a timestamp equal to TSi. The packet beneath it and to its left is the

second packet to arrive to the system with a timestamp equal to TS\. Because all

the timestamps in the GPS system are enqueued in this sorted queue, two packets

belonging to the same session will necessarily belong to different timestamp groups.

In other words, all packets belonging to the same timestamp group must belong to

different sessions.

To calculate the timestamps quickly, it is necessary to maintain the following

three sums: One is the Backlog Sum, discussed before, which is the sum of the

shares of all backlogged sessions at a given time. The second and third sums are

local sums maintained for each timestamp group. The second sum is called Share

64

Find minimum timestamp

rem,„ = min 75,., Vi

9
•

^finish

Calculate predicted finish time

= tu, + [TSmi„ - TSini,] * Backlog Sum

14

Give timestamp,
advance Time,
and update data

structure

Time < T, EXIT

Timestamp group TSmin is
removed and Backlog Sum

updated
/ =t TK — TC
' i n / I 1 finish' A uinil 1 u m i n

START

13

Give timestamp,
advance Time,
and update data

structure

Yes

12
•

TSini,=TSMl+[Time - tMl] 1 Backlog Sum
T M , = T I M E

Figure 4.3: Flowchart of the MW-WFQ algorithm.

/

65

Sum and is the sum of the shares of all the sessions that have a timestamp equal to

TS{. The third sum, called Next Sum, is the sum of the shares of all the sessions

that have packets with timestamp TSi and which are not the last packets in their

respective sessions (i.e. each of these sessions has packets with timestamp greater

than TSi). With Backlog Sum maintained for the entire system and Share Sum

and Next Sum maintained for each timestamp group, an optimized algorithm for

calculating WFQ timestamps can be defined as in Figure 4.3. This new algorithm

is called Minimum-Work Weighted Fair Queuing or MW-WFQ. In this algorithm

EieB(t) i s replaced with Backlog Sum. The main idea of the algorithm is the

observation that, whenever a timestamp group TSi leaves the GPS system, its Next

Sum gives the sum of rates of all sessions that remain backlogged after their packets

(with timestamp TSi) leave the GPS system. This is equivalent to finding which

sessions remain backlogged after the transmission of the packets with timestamp

TSi. The algorithm subtracts Share Sum and adds Next Sum to Backlog Sum to

determine the new value of]CieB(t) ^ «
 &&er the departure of a TS group. Notice

that all the fields in the data structure are updated every time a packet arrives to

or leaves GPS. Therefore, our data structure allows incremental updates of all the

values that are needed to compute the virtual and finish time.

The calculated timestamp of a backlogged or newly backlogged session may result

in a new value of timestamp and hence a new timestamp group. This new value has

to be queued in its proper place in the timestamp structure. This requires the use of

66

a priority queue structure. The delay encountered in inserting into a priority queue

is a problem that is not limited to WFQ but is rather a problem with all sorted

priority schedulers. In particular, all GPS emulations, such as WFQ, SCFQ, SPQ,

V T , SPFQ and MD-SCFQ, face this problem. If this insertion into a sorted queue

problem can be achieved in a constant small amount of time which is independent of

the number of backlogged sessions i.e. 0(1), then updating the timestamp structure

can be done in 0(1) time. In the worst case, 0(\ogN) is achievable using well-

known balanced heap data structures. In that case, the implementation cost of

WFQ is equivalent to any approximation of WFQ. Hence, there are no computational

advantages to approximating WFQ using any technique such as SCFQ or MD-SCFQ.

In the following section, further ways of reducing the implementation costs of WFQ

are discussed.

4.5 Timing Issues in WFQ Implementations

Practical timing considerations when simulating a true GPS system have not been

addressed adequately in the literature. Most of the literature deals with ways to

approximate the virtual time function and does not cover the effects of discrete

time on the implementation of WFQ or any of its variants. Because the proposed

algorithm performs true GPS simulation, these timing issues must be carefully an

alyzed. One major issue is how GPS events relate to the scheduling clock on which

67

GPS is simulated. For example, GPS packet arrivals and departures can occur at

arbitrary points in time. In a practical system, however, such events are normally

synchronized with the beginning of a clock period (assuming a synchronous system).

In that case, we do not allow "interrupts" of a scheduling cycle to take place. In

this section, a detailed account of the impact of system timing on WFQ algorithm

is provided. Implementations that use a variable clock vs. a fixed clock are also

considered.

It has been shown in the previous section that maintaining the virtual time can

be accomplished by keeping track of the three sums Backlog Sum, Share Sum and

Next Sum. It is also mentioned that any practical realization of a packet scheduler

must have a finite scheduling clock. This means that input and output events take

place only at clock boundaries. It is, therefore, appropriate to assume that all

inputs arriving during a clock period are delayed until the beginning of the next

clock period. In other words, the decisions made about departures and arrivals are

based on the value of time at the start of the scheduling clock period as follows:

At the beginning of a scheduling clock period, the departures are examined to

see whether any timestamp group (or groups) should depart GPS. Observe that,

within one clock period more than one timestamp group can depart the system.

This is due to the fact that a timestamp group departs whenever its TS field is

equal to virtual time. However, since the system is finite, it is possible that more

than one timestamp exits GPS within the same clock period (iterated-deletion).

68

This occurs when the increasing value of virtual time during a clock period becomes

equal to more than one timestamp queued in the timestamp queue. In this case,

time is not advanced before clearing all the existing timestamp groups and obtaining

the correct value of virtual time at the end of that clock period. As a result, the

departure cycle may be executed more than once within a clock period. This may

lead to the scheduling clock period becoming larger than originally assumed. It

must be guaranteed, that no matter how many timestamp groups depart in a single

clock period, the length of the cycle remains the same. Note that this problem

does not exist in continuous-time GPS since only one timestamp group is eligible

for departure at any given time. This iterated-deletion problem is easily solved by

MW-WFQ by doing a simple modification to the basic algorithm to allow us to

search for the group that will depart last. Once this group is identified, we can

update the system in 0(1) steps. In our patent document, further details of our

algorithm to solve this potential problem are discussed [19].

After packet (group) departures are processed, the algorithm checks for arrivals.

The appropriate timestamp is calculated and inserted into a sorted priority queue

of timestamps. This part is the most computationally expensive in the algorithm

and a good implementation of the priority queue leads to smaller clock periods and

hence more accuracy. It has been assumed all along that there is at most a single

arrival in a clock period. This assumption can be justified by ensuring that the clock

is smaller than the smallest packet inter-arrival time. Note that the lower bound on

69

the inter-arrival time is the transmission time of the smallest possible packet length.

4.5.1 Fixed Clock vs. Variable Clock

Choosing the appropriate length for the scheduling clock is crucial to the proposed

algorithm because only 0(1) operations are to be performed during one clock period.

The scheduling clock duration can be either fixed or variable. To use a scheduling

clock with fixed duration, two requirements need to be satisfied; (a)the length of the

clock period is smaller than the smallest inter-arrival time between two packets, and

(b)the period is long enough to enable the algorithm to finish all the calculations

needed in that period. These calculations deal with departures and arrivals as

described before. The longest of the two calculations is the departure, due to the

fact that more than one timestamp group may depart in one clock period.

Another more efficient implementation of the WFQ algorithm is to have a vari

able clock period. The length of the period is the time it takes to fully execute

an arrival or departure calculation. Hence, the cycle is started by finishing all the

calculations involved in determining what timestamp groups should depart since the

last cycle was executed. Since these calculations depend on the length of the previ

ous cycle, we may end up with a longer or shorter current cycle. For example, if the

previous cycle had no arrivals or departures and the present cycle has an arrival,

then the present cycle can be longer than the previous one. As a result, the cycles

will vary with time depending on the arrival and departure pattern. The variable

70

scheduling clock has the same two requirements as does the fixed-period scheduling

clock.

4.5.2 Priority Queue Implementation

As mentioned previously, a good priority queue implementation leads to shorter

algorithm cycles and hence faster scheduling clocks. This, in turn, leads to less

scheduling delay for arriving packets since an arriving packet does not wait long till

the start of the next system clock cycle.

The packet enqueue/dequeue from a priority queue is the most time consuming

operation that has to be completed within one scheduling clock cycle, especially

when the number of distinct timestamps is large (e.g. N > 64000). In fact, be

cause all other operations require 0(1) time only, the time complexity of virtual

time/timestamp computations are lower bounded by the time to enqueue/dequeue

from a priority queue structure. Specifically, the time complexity of computing vir

tual time/timestamp following an arrival or departure event in GPS is 0(Q(M)),

where Q(M) is the time required to enqueue/dequeue a packet (header) in a priority

queue with M distinct TS groups. Now Q(M) depends on the particular implemen

tation of priority queue used. For example, a typical sequential realization of a

priority with M elements can be based on a balanced heap data , with insert/delete

time of O(logM). However, more efficient realizations based on a Calendar queue

data structure [17] can result in 0(1) time access in most cases. Finally, efficient

71

hardware realizations of a priority queue based on systolic operation are proven to

require 0(1) time for priority queue read (or delete),however, insert operations can

require a longer time [20].

In our case, even a sequential 0(log M) time access priority queue is adequate for

attaining very high packet forwarding speeds. Indeed, a software-only realization can

achieve a forwarding rate of a few hundred thousand packets per second on a typical

300MHz processor, based on a straightforward software implementation. Therefore,

the proposed scheduler is able to forward packets at wire speed for high-speed links

using software-only implementations.

4 .5 .3 Clock and Timestamp Selection

The success of the WFQ implementation depends on the correct choice of a schedul

ing clock period. Three factors influence the length of the scheduling clock. One of

these factors is the amount of queuing delay we are willing to tolerate given that an

arriving packet cannot be serviced except at the start of a scheduling clock. Basi

cally, the longer the scheduling clock is, the longer a packet is delayed. The second

consideration in choosing the scheduling clock period is the service order. With a

longer clock, it is more likely that the actual service order will be different from the

ideal service order in the continuous-time model. This is due to the fact that arrivals

within a period are assumed to happen all at the start of the next period. Although

one can keep track of the exact arrival time of a packet, it is difficult to calculate

72

the virtual time at the time of its arrival. To see why this is the case, consider the

following scenario. When a packet arrives during a scheduling clock period in which

the finish times are being calculated, that packet could be arriving to an idle session

and hence can affect the finish time calculations. Although it is known that there

is a single arrival at any given time, it is not known when that arrival will occur

relative to the scheduling clock, and therefore it is assumed that such arrivals are

aligned with the scheduling clock event. The scheduling clock represents the time it

takes to update information about the virtual time. The proposed algorithm always

starts by updating information pertaining to departures that took place during the

past clock period, then it deals with arrivals in the present period.

The third factor that affects the length of the scheduling clock is the time it takes

to execute the longest cycle in the algorithm. This time is dependent on the time

it takes to update the timestamp data structure. The faster we can insert a record

into this structure, the shorter the cycles of the algorithm are, and consequently the

shorter the clock period can become. This reduction in the length of the clock period

leads to a reduction in the number of simultaneous timestamp group departures.

Therefore, we need to make sure that we choose the clock period to be short enough

to finish the calcuations in time, but long enough to enable the calculation of multiple

timestamp departures. If we want to guarantee that few timestamps are eligible at

the same time, we can choose the timestamps from a set that keeps the distance

between different timestamp values large enough to prevent them from becoming

73

eligible at the same time.

We have been assuming all along single arrivals in a period by forcing the period

size to be smaller than the inter-arrival times. However, it is feasible to allow

multiple packet arrivals in the same clock period. In this case, we need to calculate

more than one timestamp. The value of virtual arrival time will be the same for

all the packets arriving within the same clock period. If one of the packets belongs

to an idle session, we compute the virtual time and give each packet a timestamp.

After that, we start the departure calculations. The main problem with multiple

arrivals is the need to insert more than one item into the timestamp structure. If

such a delay is affordable, the system clock period can be made large enough to

accept more than a single arrival.

The selection of timestamp accuracy has a strong impact on the implementation

of WFQ. The more accurate the values of timestamps are, the less likely there

will be multiple departures in a single cycle. However, this might be expensive to

realize given the word length required to achieve good accuracy. Choosing a coarser

accuracy for the timestamps, on the other hand, leads to a higher likelihood of

multiple departures in a single clock period. Therefore, the choice of timestamp

accuracy is a trade-off between having extensive calculations and better fairness

properties.

74

4.5.4 WFQ Implementation Based on New Data Structure

Three entities are required for implementing the MW-WFQ algorithm. One entity

is the TS group data structure, the second is the GPS session queues, and the

third is the packet scheduler that schedules the output link according to the WFQ

mechanism. The relationship between the three entities is shown in Figure 4.4. The

GPS queues is only required for maintaining the state of a session, i.e., whether it is

backlogged or idle. It is not necessary for every packet be accounted for in the GPS

queues.

Upon arrival of a packet, a timestamp is calculated using the state of both the

TS group data structure and the GPS session queues. Both the TS groups and GPS

queues are interdependent. Once the timestamp of the arriving packet is determined,

both the TS group and GPS queues are updated. The timestamp is also placed into

the packet scheduler's priority queue. The scheduler then chooses for transmission

the packet with the minimum timestamp.

The WFQ priority queue uses only values of timestamps and does not queue

actual packets. In addition to the timestamp of a packet, the W F Q priority queue

typically maintains a pointer to the position of the packet in the packet memory to

enable immediate access to the packet once it becomes eligible for transmission.

When a packet departs the WFQ scheduler, it can be deleted from the packet

memory, as it serves no purpose for either the WFQ scheduler or the GPS simulation.

75

Departure

Figure 4.4: The components of a WFQ implementation.

76

4.5.5 WF2Q Implementation

Worst-case Fair Weighted Fair Queueing (WF2Q) is a modification of WFQ that

improves the worst-case fairness of WFQ [21]. The worst-case fairness is an indi

cation of how close the service a session receives in a packet scheduler is to that

provided by GPS in any interval of time. To implement WF2Q, we use a packet

regulator that queues packets and only chooses for transmission the packet with the

minimum timestamp among the set of all eligible packets. A packet is eligible if

its virtual start time is greater or equal to the present value of virtual time. The

virtual start time of a packet can be calculated from its timestamp by subtracting

the ratio of packet length to product of server rate and session share:

Virtual start time = timestamp - Length / (rate of server * session share)

To implement WF2Q, we can use the same implementation of WFQ with the

addition of a regulator that verifies that a packet is eligible before allowing it to be

transmitted. If a packet is not eligible, the next packet in the WFQ priority queue

is checked for eligibility and so on.

4.5.6 Software Implementations of WFQ

Different C-language-based implementations of the scheduler have been written and

tested. The tests have shown that the newly proposed WFQ implementation pro

duces the correct output. Two different versions of the algorithm have been im-

77

plemented; one with a fixed system clock and the other with a variable one. The

variable clock implementation will be discussed later in Chapter 5. In the fixed clock

implementation, the purpose was to implement a WFQ simulator. This simulator

accepts any arrival traffic pattern and produces the correct W F Q output to any

degree of accuracy. This simulator uses a scheduling clock that synchronizes packet

arrivals with the start of a clock period. The shorter the clock period is, the closer

the simulations are to the ideal GPS scheduler. There are two parameters that are

provided in addition to the scheduling clock period. One parameter is the time unit

(or clock period) resolution, the other parameter is the timestamp resolution. The

time unit resolution controls how accurate our time values are. The larger the value

of the time unit resolution is, the more events are assumed to occur in the same

time instance. Similarly, the timestamp resolution controls the degree to which two

timestamp values are assumed to be equal with higher values, indicating a bigger

range of values of timestamps taken to be equal.

In the following, we will show the effects of finite scheduling clock on the per

formance of our WFQ simulator in order to determine the optimum values for the

scheduling clock period. In addition to the scheduling clock, we will investigate the

effects of time unit and timestamp resolutions on the performance of the scheduler.

To illustrate the effects of scheduling clock, time resolution and timestamp resolu

tion, we present the following example [4]: Assume that we have two sessions having

equal shares of an output link whose rate is 1. Let the arrivals to the scheduler be

78

Packet Length

0 1 2 3 5 9 11 Time

Figure 4.5: Arrivals for both sessions.

79

Session 1 Session 2
Arrival 1 2 3 11 0 5 9

Size 1 1 2 2 3 2 2
GPS 3 5 9 13 5 9 11
WFQ 4 5 7 13 3 9 11

Table 4.1: True departure times under GPS and WFQ.

Session 1 Session 2
Arrival 1 2 3 11 0 5 9

Size 1 1 2 2 3 2 2
GPS 3.11 5 8.894 13 4.89 9 11
WFQ 4 5 7 13 3 9 11

Table 4.2: Departure times when system clock = l l l e 3 , time resolution = 0 and
timestamp resolution = 0.

as in Figure 4.5. The departure times according to both GPS and WFQ are shown

in Table 4.1. To show the effect of time and timestamp resolutions on the simula

tion output, we set the scheduling clock to a value that is not a divisor of any of

the arrival times. This means that the actual arrivals to the system are within a

scheduling clock period value of the true arrival times but not really equal to any of

them. Table 4.2 shows the resulting departure times.

Note that in Table 4.2 we seem to no longer have any simultaneous departures

in GPS. This is due to the fact that the arrivals have been shifted a little to reflect

Session 1 Session 2
Arrival 1 2 3 11 0 5 9

Size 1 1 2 2 3 2 2
GPS 2.999 4.999 8.999 13 5.001 9 11
WFQ 4 5 7 13 3 9 11

Table 4.3: Departure times when system clock = l l l e 3 and time resolution = 20e
and timestamp resolution = 0.

80

Session 1 Session 2
Arrival 1 2 3 11 0 5 9

Size 1 1 2 2 3 2 2
GPS 2.999 4.999 8.999 12.999 4.999 8.999 10.999
WFQ 4 5 7 13 3 9 11

Table 4.4: Departure times when system clock = l l l e 3 and time resolution = 20e
and timestamp resolution = 2e - 3 .

Session 1 Session 2
Arrival 1 2 3 11 0 5 9

Size 1 1 2 2 3 2 2
GPS 3 5 9* 13 5 g** 11
WFQ 4 5 7 13 3 9 11

Table 4.5: Departure times when system clock = 200e 3 and time resolution = 0
and timestamp resolution = 0.

the scheduling clock value. However, this has no impact on WFQ departure times,

as can be seen from the table. To make the GPS simulation more accurate we

can increase the time and timestamp resolution. By choosing a time resolution

= 20e - 3 , we obtain the results in Table 4.3. We notice from Table 4.3 that the

accuracy of GPS departures improved a lot by choosing a nonzero value for the time

resolution. Also, the WFQ departure times are still correct. However, we still have

the case of very close departure times being considered distinct. What we need to

do is to modify the timestamp resolution to enable such close departure times to

be "lumped together". By choosing a timestamp accuracy = 2e~3, we obtain the

departure times of Table 4.4. We cannot achieve any better GPS simulation results

due to the problem of arrival times being non-multiple values of the scheduling clock.

However, this has no effect on the departure times of the WFQ scheduler. What

81

we seek to improve is our GPS simulation. One way of achieving a better GPS

simulation is to choose the scheduling clock to be a divisor of all of the arrival times.

Table 4.5 shows the departure times when the scheduling clock is equal to 200e - 3.

In Table 4.5, we have shown two different GPS departure times 9* and 9** to

indicate that they are both very close to the value 9 but are not equal. Again the

WFQ departure times are correct despite the GPS simulation inaccuracy. To solve

the problem of close departure times, we increase the value of timestamp resolution

to l e - 6 . The results are exactly equal to those in Table 4.1. Note that in all cases

the inaccuracies in the GPS simulations do not affect the WFQ scheduler results.

82

Chapter 5

Experimental Results of the

Minimum-Work Per-Flow Packet

Scheduler

5.1 Introduction

This chapter provides a summary of results obtained from validation and perfor

mance tests for a base-line per-flow packet scheduler currently implemented as a

software module in Linux OS. When used with traffic shapers, the scheduler provides

precise bandwidth and delay quality-of-service (QoS) guarantees to each flow inde

pendently. The scheduler uses the Minimum-Work Weighted Fair Queuing (MW-

WFQ) technique described in this thesis, which offers a scalable and significantly

83

faster implementation of the well-established weighted fair-queuing algorithm.

Test Highlights:

1. Comparison to Other Schedulers: Test results show that MW-WFQ provides

the required QoS guarantees for each shaped flow. The other two schedulers

tested (FIFO, and Self-Clocked Fair Queuing) fail to provide similar guaran

tees, even when the number of flows is small and each flow is strictly shaped

by a token-bucket traffic regulator.

2. Performance Profiling and Scalability: Profiling results show that MW-WFQ

has a fixed and very short per-packet computation interval. This shows that

the maximum throughput (packets-per-second) achieved by MW-WFQ over a

link is independent of the number of flows. Profiling also shows that typical

implementations of ideal WFQ suffer from variable processing delays propor

tional to the number of flows in the scheduler. For the cases considered in this

profiling, MW-WFQ per-packet processing can be as much as 90 folds faster

than a typical implementation of ideal WFQ.

3. Time-Stamp Correctness: Test results show that the MW-WFQ scheduler

produces timestamps identical to those produced by the ideal WFQ algorithm

for all packets from all participating sessions. Stated differently, MW-WFQ

dispatches packets from different sessions in precisely the same order as the

ideal WFQ scheduler.

84

5.2 Delay Guarantees

5.2.1 Test setup

The test setup is comprised of a real-time load generator and tester feeding packets

to PC-based software Linux router. The load generator and tester is the Adtech

AX/4000 from Spirent Communications. The PC rack module uses an Intel 533MHz

Celeron chip running Linux OS, version 2.4.2.1 (included in Redhat Linux 7.1). The

specifications of the equipment and software are given in Table 5.1.

The test bed configuration is shown in Figure 5.1. The connection between the

Adtech AX/4000 tester and the PC-based Linux router is asymmetric to emulate the

effect of converging traffic at the output line card of the router. The AX/4000 sends

packets to the Linux router using a 100Base-T Fast Ethernet connection (100 Mbps),

while the Linux router sends scheduled packets back to the Adtech tester through

lOBase-T Ethernet connection (10 Mbps). This emulates the effect of having the

equivalent of up to ten lOBase-T Ethernet ports concurrently sending packets to the

output port.

The traffic profile was set up such that total traffic reaching the Linux router

has a long-term average rate of 10 Mbps. During a traffic burst, however, all the

packets in the burst are transmitted back-to-back to the router at the full 100 Mbps

rate. The MW-WFQ packet scheduler is implemented in the output line-card that

forwards packets at a maximum rate of 10 Mbps rate.

85

Equipment / Software Description / Usage
Rack Module (Soft Router)

Line Cards
Linux Software

Packet Scheduler

Load Generator / Tester

Intel ISP1100 with a 533 MHz Celeron processor,
440BX chipset, PC100 R A M , and 82559 Ethernet
controllers
100Base-TX and lOBase-TX
Linux OS, version 2.4.2.1 included in
Redhat Linux 7.1
MW-WFQ scheduler embedded as a Linux
kernel module
Adtech AX/4000 from Spirent Communications

Table 5.1: System specifications.

100Base -T

Adtech
AX/4000

I I
P C R a c k
M o d u l e

l O B a s e - T

Figure 5.1: Test setup.

86

The Adtech AX/4000 was used to generate, multiplex, then send packets from 3

flows each having its own token-bucket shape to the Linux router through a 100Base

T X line. The Adtech AX/4000 device also captures the scheduled packets that are

sent out of the Linux router through the lOBase-T line. For additional verification

and delay analysis, the arrival time and departure time computed by the scheduler

for each packet are dumped into a log file.

For verification and performance comparison, four types of schedulers were im

plemented in the Linux Kernel, and the tests were repeated with the same traffic

scenarios for each scheduler. The schedulers are:

1. MW-WFQ (Minimum-Work Weighted Fair Queuing).

2. WFQ (Weighted Fair Queuing): Full implementation of the ideal WFQ sched

uler. The time stamps it produced are compared against MW-WFQ to ensure

full conformance.

3. SCFQ (Self-Clocked Fair Queuing): An approximation of WFQ that uses

highly simplified time-stamp calculations to speed up processing time.

4. FIFO (First-In First-Out): a very common and very simple scheduling method.

Used also with multi-priority schedulers to service the packets within each

class.

Remark: We assume that all three flows belong to the same highest priority QoS

class on the output link.

87

5.2.2 Results

Table 5.2 provides a description of the traffic sources used in the test. The constant

bit-rate (CBR) source for flow 1 represents a typical voice-over-IP flow, mixed with

other higher-rate flows such as a video stream (flow 2), and an "aggregated" flow

with a much higher rate (flow 3).

Table 5.3, compares the maximum queuing delays achieved by the MW-WFQ

scheduler against the theoretical delay bounds in equation 2.6, obtained by applying

the ideal WFQ to each of the flows. The table also shows the average packet delay. It

is clear that MW-WFQ achieves precisely the theoretical delay bounds for all flows.

Tables 5.4 and 5.5 show similar comparisons for the FIFO and SCFQ schedulers,

respectively.

Table 5.4 clearly shows that even with such a small number of flows, FIFO

queuing violates the delay bounds for two of the three flows. The delay bound

violation is particularly large for flow 1, the low-bandwidth C B R flow. SCFQ also

violates the delay bound for flow 1 as evident from Table 5.5. This result is significant

in that it shows that approximations of WFQ, such as SCFQ, can fail to provide

delay guarantees even with a very small number of flows.

Table 5.6 compares all three schedulers against the theoretical delay bounds, and

Table 5.7 compares FIFO with MW-WFQ in terms of inter-packet delay variation (or

jitter). Maintaining a small inter-packet jitter is important for real-time continuous

88

Flow Flow Aug. Rate) Packet Size Max. Burst)
number Description (kbps) (Bytes) (Packets)
1 Constant Bit-Rate 32 80 1
2 Bursty 968 1000 50
3 Bursty 9000 (9 Mbps) 1500 100

Table 5.2: Traffic Sources (Token-Bucket Shaped).

Flow Aug. Rate) Max. Theoretical Max. Measured Average Delay
number (kbps) Delay (ms) Delay (ms) (ms)
1 32 41.2 41.7 28.5
2 968 414.7 280.7 78.4
3 9000 (9 Mbps) 134.9 132.4 69.7

Table 5.3: MW-WFQ: Measured Packet Delays over 10 Mbps Link.

Flow Aug. Rate) Max. Theoretical Max. Measured Average Delay
number (kbps) Delay (ms) Delay (ms) (ms)
1 32 41.2 142.9 65.8
2 968 414.7 53.7 22.0
3 9000 (9 Mbps) 134.9 145.6 75.7

Table 5.4: FIFO Queuing: Measured Packet Delays over 10 Mbps Link.

Flow Avg. Rate) Max. Theoretical Max. Measured Average Delay
number (kbps) Delay (ms) Delay (ms) (ms)
1 32 41.2 109.6 58.0
2 968 414.7 280.7 83.3
3 9000 (9 Mbps) 134.9 132.6 69.0

Table 5.5: SCFQ: Measured Packet Delays over 10 Mbps Link.

Flow Max. Theoretical MW-WFQ FIFO SCFQ
number Delay (ms) Delay (ms) Delay (ms) Delay (ms)
1 41.2 41.7 142.9 109.6
2 414.7 280.7 53.7 280.7
3 134.9 132.4 145.6 132.6

Table 5.6: Maximum Measured Packet Delay over 10 Mbps Link.

89

Flow Avg. Rate Max. Theoretical MW-WFQ FIFO
number (kbps) Delay (ms) Max. Jitter (ms) Max. Jitter (ms)
1 32 41.2 61.6 162.8
2 968 414.7 259.1 378.9
3 9000 (9 Mbps) 134:9 28.2 41.3

Table 5.7: Maximum Measured Packet Delay-Jitter (At receiver, 10 Mbps Link),

multimedia traffic.

5.3 Scheduler Speed

5.3.1 Performance Profiling Test

To show the effect of equal timestamps on the performance of WFQ implementation,

we profiled a standard implementation on a RISC processor. The goal of perfor

mance profiling test is to measure the maximum speed of the MW-WFQ scheduler on

a specific processor platform. The scheduler speed, measured in packets-per-second,

gives an indication of the number of flows that can be handled simultaneously by

the scheduler. We have chosen to profile the scheduler speed on a simulator of a

200 MHz StrongArm SA-110 RISC processor, a core engine for a number of network

processors. The scheduler speed is determined by measuring the maximum number

of processor cycles used to calculate the timestamp of a packet, plus the time it

takes to place the packet in the correct position in the packet queue. Note that the

time a packet spends in the packet queue before being sent on the output link is

part of the queuing delay and therefore is not included in the processing delay.

90

Precise WFQ computations are normally slowed down considerably by time-

stamp computations for packets arriving during busy (backlog) system periods. The

processing delay problem is caused by accumulation of simultaneous departures in

the ideal "fluid" GPS scheduler. Ideal WFQ schedulers simulate GPS to obtain

their timestamps.

5.3.2 Results

Table 5.8 shows the number of cycles required to compute the time for a new packet

arrival, assuming that 1, 10, 50, and 200 simultaneous departures can occur in the

fluid GPS scheduler. It also reports the speedup achieved by the MW-WFQ sched

uler over standard implementation of the ideal WFQ algorithm. Two types of cycles

are compared for each GPS-departure category: instructions and core cycles. The

advantage of MW-WFQ increases as the probability of more GPS departures in

creases. While MW-WFQ processing remains essentially constant, the processing

time of ideal WFQ increases linearly with the number of simultaneous GPS depar

tures. For example, with 200 simultaneous departures, WFQ requires 129190 core

cycles to compute the timestamp for a single packet arrival, while MW-WFQ com

putes the same timestamp in 1414 core cycles achieving a speedup of 91 over the

standard WFQ.

91

Simultaneous Cycle MW-WFQ Standard WFQ Speedup
Departures Type (No. of Cycles) (No. of cycles) (MW-WFQ)
200 Instructions 619 85157 138

Core Cycles 1414 129190 91
50 Instructions 627 21907 35

Core Cycles 1424 33591 26
1 Instructions 626 673 1.07

Core Cycles 1460 1668 1.14

Table 5.8: WFQ Per-Packet Processing Delay As Function Of Processor Cycles
(STRONGARM SA-110 RISC Processor - 200Mhz).

5.4 Timestamp Validation

This section presents the method used to verify that the MW-WFQ scheduler assigns

timestamps to packets from participating sessions in full accordance with the ideal

WFQ algorithm. The purpose is to show that MW-WFQ orders packet departures

in the same exact order as the ideal WFQ while using a much shorter computation

time than any standard implementation of WFQ.

Traffic input: Three shaped flows having a total average bit rate equal to

10Mbps are applied as input as follows:

1. Flow 0: 32kbps, 80 Bytes/packet, constant bit rate.

2. Flow 1: 968kbps, 1000 Bytes/packet, maximum burst size is 50 packets.

3. Flow 2: 9Mbps, 1500 Bytes/packet, maximum burst size is 100 packets.

Traffic output: Packets are scheduled according to their timestamps by trans

mitting the packet with the smallest timestamp first.

92

V a l i d a t i o n p r o c e d u r e : Using the known arrival times of all the packets in the

test, we can compute the timestamps of each packet as follows:

1. If the arrival is to an idle flow A; in the GPS system, then it receives a timestamp

of:

™ = V(ta) + £

g

Where ta is the packet's arrival time, V(ta) is the virtual time at time of arrival

of packet, L is the packet length and is the flow's guaranteed rate (in this

test it equals to the average rate of the kth flow).

V(t) is a piecewise linear function of time that starts from a value of zero

at time zero and has a slope S equal to the ratio of total link bandwidth C

(10Mbps) to the sum of guaranteed rates of all active flows at time t, as follows:

s= c

^2jeA(t) r9

Where A(t) is the set of active flows at time t.

2. If the arrival is to an active flow in GPS, then the timestamp is:

TS — T' Sprevious
T9

where TSpreviOUS is the timestamp of the previous packet to arrive to that flow.

93

3. The GPS system services all active flows simultaneously such that active flow

k receives an instantaneous bit rate of:

L,j€A(t) 'a

The above formulas were used to verify that the timestamps, produced by the soft

ware implementing MW-WFQ, are identical to the timestamps resulting from ap

plying the ideal WFQ scheduler. The results obtained from applying the verification

procedure on a trace of over 16,000 packets from the three flows listed above show

that the calculated and measured timestamps agreed perfectly for each packet from

every flow.

94

Chapter 6

Conclusion and Future Work

The importance of per-flow schedulers lies in the fact that they provide strict delay

and fairness guarantees. In particular, it is well-known that WFQ has the best

characteristics among all the well know per-flow scheduling techniques. However,

for some time now, it has been accepted, without proof, that W F Q requires O(N)

computational complexity where TV is the number of sessions sharing a link. When N

is large, such as the case in a metropolitan or wide-area network, the computational

cost becomes too high. This thesis showed that the cause of this high computational

complexity is not the "iterated-deletion" as was commonly accepted, but rather the

simultaneous departures that may take place in GPS. A new algorithm that solves

this problem of O(N) complexity was presented. This enabled the implementation

of WFQ as a real-time traffic scheduler on a Linux box. Test results were presented

to show that the new algorithm enables WFQ to meet all delay requirements of the

95

scheduled flows.

Future work related to this thesis include the following:

• Finding a meaningful translation between the QoS requirements of applications

and those of WFQ. This enables Service Level Agreements (SLA's) to be

translated into token-bucket parameters.

• Investigating the effect of dynamic shares on the delay and fairness properties

of a Weighted Fair Queuing (WFQ) Scheduler. This helps us to deal with ses

sions that have time-varying token-bucket parameters. In addition, we expect

the set of active sessions to change over time as new sessions are created and

old ones terminate.

• Studying the effect of aggregation on WFQ

• Proposing a new Label Distribution Protocol in MPLS, based on WFQ rather

than Diffserv.

• Studying the effects on the end-to-end guarantees of flows when certain nodes

along the path of these flows are not QoS-aware

96

Bibliography

[1] D. Black, M . Carlson, E. Davies, Z. Wang, and W. Weiss. An Architecture for

Differentiated Services. Technical Report RFC 2475, IETF, Dec. 1998.

[2] Anna Charny and J. Y . Le Boudec. Delay bounds in a network with aggregate

scheduling. Proc. QOFIS, October 2000.

[3] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching

Architecture. Technical Report RFC 3031, IETF, Jan. 2001.

[4] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to

flow control in integrated services networks: The singlenode case. IEEE/ACM

Trans. Networking, l(3):344-357, June 1993.

[5] A. K. Parekh and R. G. Gallager. A generalized processor sharing ap

proach to flow control in integrated services networks: The multiple node case.

IEEE/ACM Trans. Networking, 2(2): 137-150, April 1994.

97

[6] A. Demers, S. Keshav, and S. Shenkar. Analysis and simulation of a fair queue-

ing algorithm. Internetworking Res. and Experience, 1, 1990.

[7] A. K. Parekh and R. G. Gallager. A Generalized Processor Sharing Approach

to Flow Control- The Single Node Case. Proc. IEEE INFOCOM '92, 2:915-24,

May 1992.

[8] D. Stiliadis and A. Varma. Latency-Rate Servers: A General Model for Analysis

of Traffic Scheduling Algorithms. Proc. IEEE INFOCOM '96, pages 111-19,

April 1996.

[9] D. Stiliadis and A. Varma. Rate-Proportional Servers: A Design Methodology

for Fair Queuing Algorithms. IEEE/ACM Trans. Networking, 6(2): 164-74,

April 1998.

[10] D. Stiliadis and A. Varma. Efficient Fair-Queuing Algorithms for Packet-

switched Networks. IEEE/ACM Trans. Networking, 6(2):175-85, April 1998.

[11] L. Zhang. VirtualClock: A New Traffic Control Algorithm for Packet Switching

Networks. ACM Trans. Comp. Sys., 9:101-24, May 1991.

[12] S. Golestani. A Self-Clocked Fair Queuing Scheme for Broadband Applications.

Proc. IEEE INFOCOM '94, pages 636-46, April 1994.

[13] J. R. Bennett and H. Zhang. Hierarchical Packet Fair Queuing Algorithms.

Proc. ACM SIGCOMM '96, pages 143-56, Sept. 1996.

98

[14] F. M . Chiussi and A. Francini. Minimum-Delay Self Clock Fair Queueing Algo

rithm for Packet-Switched Networks. Proc. IEEE INFOCOM '98, pages 1112-

21, March 1998.

[15] F. M . Chiussi and A. Francini. Implementing Fair Queueing in A T M Switches:

The Discrete-Rate Approach. Proc. IEEE INFOCOM '98, pages 272-81, March

1998.

[16] P. Goyal, H. M . Vin, and H. Haichen. Start-Time Fair Queueing: A Scheduling

Algorithm for Integrated Services Packet Switching Networks. IEEE/ACM

Trans. Networking, 5(5):690-704, Oct. 1997.

[17] R. Brown. Calendar Queues: A Fast 0(1) Priority Queue Implementaion for the

Simulation Event Set Problem. Communications of the ACM, 31(10):1220-27,

Oct. 1988.

[18] S. Keshav. An Engineering Approach to Computer Networking. AddisonWesley

Publishing Company, 1997.

[19] H. Tayyar and H. Alnuweiri. Weighted Fair Queuing Scheduler, world-wide

patent WO0143347A, June 2001. http://wo.espacenet.com.

[20] M . Kazemi-Nia and H. Alnuweiri. A Systolic Parallel Priority Queue (PPQ)with

Output Rate-Control for High Speed Networks, submitted for publication in

the IEEE Transactions on VLSI Systems, June 1999.

99

http://wo.espacenet.com

[21] J. R. Bennett and H. Zhang. WF2Q: Worstcase fairweighted fair queueing.

Proc. IEEE INFOCOM96, pages 120-128, March 1996.

[22] J.Wroklawski. The Use of RSVP with IETF Integrated Services. Technical

Report RFC 2210, IETF, Sept. 1997.

[23] J.Wroklawski. Specification of the Controlled-Load Network Element Service.

Technical Report RFC 2211, IETF, Sept. 1997.

[24] S.Shenker, C.Partridge, and R.Guerin. Specification of Guaranteed Quality of

Service. Technical Report RFC 2212, IETF, Sept. 1997.

[25] R. Cruz. Service burstiness and dynamic burstiness measures: A framework.

Journal of High Speed Networks, 1(2):105-127, 1992.

[26] R. Cruz. Quality of service guaranteed in virtual circuit switched network.

IEEE Journal on Selected Areas in Communications, 13(6):1048-1056, August

1995.

[27] L. Georgiadis, R. Guerin, , and V. Peris. Efficient network QoS provisioning

based on per node traffic shaping. Proc. IEEE INFOCOM96, March 1996.

[28] P. Goyal and H. M.Vin. Fair airport scheduling algorithms. Proc. NOSSDAV97,

May 1997.

100

[29] A. Parekh. A Generalized Processor Sharing Approach to Flow Control in In

tegrated Services Networks. Phd dissertation, Massachusetts Institute of Tech

nology, February 1992.

[30] H. Sariowan, R.L. Cruz, and G.C. Polyzos. Scheduling for quality of service

guarantees via service curves. Proc. Intl. Conf. on Computer Communications

and Networks (ICCCN), pages 512-520, September 1995.

[31] I. Stoica and H. AbdelWahab. Earliest eligible virtual deadline first: A flexible

and accuratemechanismfor proportional share resource allocation. Technical

Report TR9522, Old Dominion University, November 1995.

[32] I. Stoica, H. AbdelWahab, K. Jeffay, S. Baruah, J. Gehrke, and G. Plaxton.

Aproportional share resource allocation for realtime, timeshared systems. Proc.

IEEE RTSS'96, pages 288-289, December 1996.

[33] I. Stoica, H. Zhang, and T.S.E. Ng. A hierarchical fair service curve algorithm

for link sharing, realtime and priority services. Technical Report CMUCS97154,

Carnegie Mellon University, July 1997.

[34] Z.Liu, Z.L. Zhang, and D. Towsley. Closed form deterministic performance

bounds for the generalized processor sharing scheduling discipline. To appear

journal of Combinatorial Optimaization, 1997.

101

[35] H. Zhang. Service disciplines for guaranteed performance service in packet

switching networks. Proc. IEEE, 83(10):1374-1399, October 1995.

[36] H. Zhang and D. Ferrari. Rate controlled service disciplines. Journal of High

Speed Networks, 3(4):389-412, 1994.

[37] J. Bennett and H. Zhang. Worst-case Fair Weighted Fair Queuing. Proc.

INFOCOM'95, 1995.

[38] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT

Press, 1990.

[39] N . Figuera and J. Pasquale. Leave-in-time: A new service discipline for real

time communication in a packet switching data network. Proc. Sigcomm 95,

September 1995.

[40] P. Goyal, S. S. Lam, , and H. M . Vin. Determining End-to-End Delay Bounds

in Heterogeneous Networks. Proc. Workshop on Network and OS Support for

Audio- Video, pages 287-298, April 1995.

[41] D. Stiliadis and A. Varma. A general methodology for designing efficient traffic

scheduling and shaping algorithms. Proc. IEEE INFOCOM97, pages 326-335,

April 1997.

[42] B. H. Choi and H. S. Park. Rate Proportional SCFQ Algorithm for High-Speed

Packet-Switched Networks. ETRI Journal, 22(3), Sept. 2000.

102

[43] J. C. R. Bennett, K. Benson, A. Charny, W. F. Courtney, and J.-Y. Le Boudec.

Delay jitter bounds and packet scale rate guarantee for expedited forwarding.

In ACM/IEEE Transactions on Networking, 2002.

[44] P. Mannersalo and I. Norros. GPS schedulers and Gaussian traffic. In Proc.

Infocom, 2002.

[45] N. Christin and J. Liebeherr. The QoSbox: A PC-router for quantitative service

differentiation in IP networks. Technical Report CS-2001-28, University of

Virginia, November 2001. ftp://ftp .cs.virginia.edu/pub/techreports/CS-2001-

28.pdf. In submission.

[46] A. Stamoulis and G. B. Giannakis. Deterministic Time-Varying Packet Fair

Queueing for Integrated Services Networks. VLSI Signal Processing, 2002.

[47] Nan Ni Laxmi. Fair Scheduling and Buffer Management in Internet Routers.

INFOCOM 2002.

[48] Robert Denda, Albert Banchs, and Wolfgang Effelsberg. The Fairness Challenge

in Computer Networks. In QofIS, pages 208-220, 2000.

103

ftp://ftp
http://cs.virginia.edu

