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Abs t r a c t 

Two-pass synthetic aperture radar (SAR) interferometry (InSAR) is a technique 

for processing the phase difference between coincident SAR images to obtain the 

range difference from the two radars to a common point on the earth's surface. The 

accuracy of the range difference measurement is in the order of one millimeter, and 

this range information can be processed to obtain digital elevation models (DEMs) 

of the surface topography. 

The digital processing required to make the DEM is quite complicated, 

mainly due to two factors. Firstly, the phase information is obtained from complex-

valued data and therefore lies between — n and + 7 T whereas the complete phase 

information is needed. To obtain this, the phase must be "unwrapped" where the 

missing integer number of 2n are estimated for each data sample. Secondly, the 

geometry of the satellite passes relative to each other must be known to an accuracy 

of a few millimeters in order to obtain the surface height values to the required 

accuracy (about 10 m). 

Both of these steps require supplemental information and manual guidance 

to be performed correctly. Phase unwrapping is difficult because of noise and un-

dersampling inherent in the measurements. The geometry estimates are difficult 

to make because the orbit is only known to an accuracy of a few meters, and the 

received phase data is a non-linear function of the satellite geometry. In the past, 
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the geometry estimates have been made using known ground control points (GCPs), 

which requires a considerable manual effort, and has its own set of errors. 

The objective of this thesis is to use supplemental information in the form of a 

coarse DEM to make the InSAR processing more accurate and more automatic. We 

achieve this objective by developing a new algorithm which incorporates the coarse 

DEM directly into the processing stream, with the result that phase unwrapping 

and geometry estimation are performed accurately and reliably. In effect, the input 

DEM points serve as a large, dense set of GCPs. While the accuracy of each input 

DEM point is not very high, the large number of them provide adequate geometric 

accuracy, particularly as an automatic algorithm can register them directly to the 

radar data. 

There are two key steps in the new algorithm, which are interwoven in an 

iterative framework. First of all, the satellite geometry is estimated from the DEM 

and interferometric phase. This is done with a non-linear, iterative optimization 

algorithm without having to unwrap the phase. Avoiding phase unwrapping is im­

portant, as phase unwrapping errors can significantly bias the geometry estimates. 

Second, the input DEM along with the refined satellite geometry are used to create 

a model of the unwrapped interferogram phase that should be received from the 

two satellite passes. When this phase is wrapped, and compared with the measured 

phase, a differential interferogram is obtained which represents the difference be­

tween the coarse input DEM and the topography as measured by the satellite. This 

differential interferogram has a relatively low bandwidth, which means that it can 

be filtered and unwrapped reliably and accurately. Finally, the information in the 

unwrapped interferogram is used to refine the grid spacing and vertical accuracy of 

the coarse DEM. 

We have used mathematical analysis and simulation to develop the algorithm, 

to obtain statistical quality measures and to understand what system parameters 
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affect the accuracy of the DEM results. We find that the main factors affecting 

accuracy are the interferometer's sensitivity of phase to height and the number of 

available DEM points, including the size and variability of the input DEMs' errors. 

We have successfully applied the DEM refinement algorithm to ERS Tan­

dem Mission and RADARS AT-1 data. The generated InSAR DEMs had standard 

deviations of 12 to 20 meters compared to a control DEM with approximately 3 

meters standard deviation. The output InSAR-enhanced DEMs had two to four 

times improvement in height accuracy compared with the input DEMs. In this way 

we have demonstrated that one can generate reliable estimates of topography for 

standard SAR scenes without having access to precision orbit data. 

Thus we have shown that the processing bottlenecks in dealing with repeat-

pass satellite InSAR data can be overcome, and useful topographic information can 

be obtained from the vast supply of existing InSAR data sets. 
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C h a p t e r 1 

I n t roduct ion 

1.1 M o t i v a t i o n f o r R e s e a r c h 

Synthetic aperture radar interferometry (InSAR) is a technique for deriving dig­

ital elevation models (DEMs) or surface motion maps (differential InSAR). The 

technique is based on processing the phase difference between coincident synthetic 

aperture radar (SAR) images and can yield accurate digital elevation models (for 

stable ground targets) [4, 7]. Digital elevation models are useful products for those 

dealing with topography such as urban planners, foresters, and remote sensing re­

searchers. In SAR remote sensing, DEMs are used to resample the SAR images to 

well known coordinate systems and to correct for the distortions of the SAR imaging 

sensor [8]. 

There are many sources of InSAR data coming from a variety of sensor 

configurations (see [9, 10, 11, 12] for example). However, we focus on two-pass 

satellite interferometers as they are sensors with the most ground coverage and 

number of scenes currently available. In this form of interferometry, the scene of 

interest is imaged at least twice by the interferometer system at different times. 
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Despite the large amount of data, much of the two-pass satellite SAR data 

remains unexploited due to two major problems: 

1. low SNR, 

2. lack of precise interferometer geometry estimates. 

The low SNR is due mostly to temporal change between the two separate imaging 

passes [13] which adds noise to the interferometric phase. System limitations due 

to the need for operation in space (i.e. relatively low bandwidth compared with 

airborne InSAR sensors) also limit the utility of the data. In addition, two-pass 

satellite InSAR data can suffer from atmospheric artifacts [14, 15] that can be filtered 

if enough images are available [16]. 

The generally poor signal to noise ratio of two-pass satellite InSAR data can 

complicate the data processing significantly. One technique used to pre-condition 

the data for filtering is to "flatten" the data by removing a phase trend which 

models the response of the flat Earth in the interferogram phase. The resulting 

phase difference image looks much like a height contour map. Flattening the data 

facilitates low-pass filtering and subsampling of the interferogram to increase the 

SNR of the interferogram phase. 

In addition, the relative position of the two sensors during the imaging passes 

needs to be known precisely to produce accurate topographic data [4]. Currently, 

no satellite SAR system is equipped with sufficiently precise orbit data to produce 

accurate topography estimates directly [17]. In particular, Canada's RADARSAT-

1 SAR has.poor orbit data [18] which precludes accurate topographic estimation 

without further processing. Most production systems for topographic mapping rely 

on manually "tieing" selected identifiable points in the SAR image to points of 

accurately known position and height to estimate the interferometer geometry [4, 

19, 20]. The requirement for manual matching of SAR image features and accurate 

2 



height control points and collection of elevation height control points themselves 

limits the feasibility of producing topographic maps in a production setting. 

Recently, a coarse, low-quality DEM has become available with coverage over 

most of the Earth's land surface. The GTOPOP30 [21]1 is currently available pub­

licly at minimal cost from the United States Geological Survey (USGS). GTOPO30 

has low resolution with nominal data posting of 1 km and nominal 90% significance 

level of 160 meters. Further testing the accuracy of the GTOPO30 data set [21] 

suggests that the global RMSE accuracy of the dataset is actually « 70 meters; 

better than the nominal standard deviation of w 100 meters. However, the local 

quality of the GTOPO30 dataset varies as a function of the underlying data source 

and may be subject to outliers and local error trends [21]. 

The main theme of the thesis research is investigating the use of coarse, low-

quality DEMs such as GTOPO30 in two-pass satellite InSAR data processing when 

there is no accurate satellite position data available. We want to take advantage 

of the large amount of low-quality DEM data available to ease the difficulties in 

two-pass satellite InSAR data processing as suggested in [22] and to minimize the 

need for manual intervention in the processing stream. 

1.2 Problem Definition 

There are two obvious places where the input coarse D E M can be included in the 

processing: 

• "flattening", where a model of the interferogram phase derived from the coarse 

DEM is removed from the interferogram phase [23, 3]; 

• "updating", where the final estimate of InSAR DEM is made. 

'See http://edcwww.cr.usgs.gov/landdaac/gtopo30/gtopo30.html. 
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The key to inclusion of DEM data in the processing stream is estimation of the 

geometry of the interferometric system (i.e. the baseline parameters) as the inter­

ferometer geometry defines the transformation between topography and measured 

interferogram phase. This problem is often complicated because of the lack of good 

orbit data and the low-quality of the input DEMs. 

It is important to note that in the flattening stage, we are dealing with the 

raw interferogram phase and do not have access to the unwrapped phase. In the 

updating step we must use the unwrapped interferogram phase in concert with the 

whole DEM to produce the output InSAR DEM. 

1.3 T h e s i s S c o p e 

The purpose of this thesis is to develop, analyze, and test "flattening" and "updat­

ing" algorithms for inclusion of coarse low-quality DEM in the InSAR processing 

stream. 

The specific objectives are: 

• Develop a model of measured interferometric phase. 

• Review current methods of two-pass satellite interferometric SAR processing 

with emphasis on methods of baseline estimation. Develop the requirements 

for the baseline estimate accuracies. 

• Develop algorithms for "flattening" interferograms and "updating" DEMs. 

• Analyze the proposed algorithms' performances. 

• Implement the algorithms and apply them to simulated data, ERS Tandem 

mission data, and to RADARSAT-1 data. 
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• Analyze the results of the tests with SAR data and draw conclusions about 

the performance of the proposed algorithms with real data. 

1.4 M e t h o d o l o g y 

The "flattening" and "updating" algorithms were developed by expressing the ge­

ometry of the interferometer in terms of measurable parameters available at the 

time of processing. The baseline parameters are estimated in both the flattening 

and updating algorithm using a non-linear optimization scheme that fits measured 

InSAR data to geometrical models that are a function of baseline parameters. 

After establishing the algorithms, we analyzed the algorithms' performances 

in terms of baseline accuracy and height accuracy. The analysis was performed by 

examining the effects of parameter errors on the estimated baseline and topographic 

height. Special attention was paid to the effect that mean offsets and bi-linear trend 

errors in the input DEMs have on the output InSAR DEMs. Simulations were 

performed to verify the algorithms' analyses under controlled conditions. 

Finally, the whole D E M refinement algorithm was tested on satellite InSAR 

datasets from RADARSAT-1 and the ERS Tandem mission using three different 

input DEMs of varying qualities. The RADARSAT-1 dataset is an example of a 

poor satellite InSAR data set with relatively low SNR on average and some areas 

where there is no interferometric phase data at all. The RADARSAT-1 data also 

presents the additional difficulty of lack of accurate orbit data. In contrast, the ERS 

dataset has relatively good SNR and relatively precise orbit data. 

1.5 T h e s i s C o n t r i b u t i o n s 

The contributions of this thesis are: 
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• The development of a novel algorithm for two-pass satellite interferometric 

SAR processing using coarse, low-quality DEMs that consists of two sub-

algorithms: 

- A new algorithm for "flattening" the phase of an interferogram using the 

input low-quality DEM in the absence of accurate orbit data. 

- An algorithm for accurately "updating" the input low-quality DEM. 

• An analysis of the algorithms' performances which yielded 

- A method for determining when the baseline parameters used in the 

flattening algorithm are accurate. 

- An analysis of the effect of DEM errors on the determination of the 

interferometer geometry. 

- A better understanding of the aspects of parameter errors (including 

baseline parameter errors) with respect to the accuracy of output InSAR 

DEMs. 

- A method for calculating phase unwrapping group offsets to equalize 

independently unwrapped groups of interferogram phase. 

- A method for predicting the lower bound on topographic error due to 

baseline error when using coarse low-quality DEMs in the processing. 

• An analysis of the algorithm results for RADARSAT-1 and ERS Tandem in­

terferometric SAR data and possible areas for improvement. 

1.6 O r g a n i z a t i o n o f t h e T h e s i s 

The thesis is organized as follows: 

Chapter 2 gives detailed background information for the developed algorithm in­

cluding 
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• mathematical relations between InSAR geometry and interferogram phase, 

• current difficulties with standard InSAR processing that would be allevi­

ated by processing with a coarse low-quality DEM, 

• a review of baseline estimation techniques. 

Chapter 3 defines a method for incorporating coarse DEMs in the InSAR algorithm. 

A detailed analysis of the algorithm performance is presented. 

Chapter 4 reports the results of simulations that are used to verify the expected 

performance of the algorithms. 

Chapter 5 provides examples of the D E M refinement algorithm applied to ERS 

Tandem and RADARSAT-1 interferometric SAR data. The results are ana­

lyzed and discussed with respect to the performance predictions generated in 

Chapter 3. 

Chapter 6 concludes the thesis and summarizes the results of the work. Some 

possible directions for future work are given. 

Background material is given in the appendices as follows: 

• Appendix A describes the spectral shift phenomenon of InSAR data. 

• Appendix B gives an overview of conventional satellite interferometric 

SAR systems. 

• Appendix C describes the need for phase unwrapping and some of the 

common algorithms for performing it. 

• Appendix D gives detailed mathematical developments for the DEM re­

finement algorithm. 

• Appendix E gives a concise description of the DEM refinement algorithm. 

• Appendix F and Appendix G provide histograms of the errors of the 

DEMs generated during the experiments. 
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C h a p t e r 2 

Interferometr ic S A R 

Backg round 

This chapter gives a detailed review of the InSAR data model and current methods 

of InSAR processing. After giving an overview of SAR interferometry in Section 2.1, 

a mathematical model of InSAR data is reviewed in Section 2.2. The geometrical 

relationship between interferogram phase and topography is then derived in Section 

2.3. Since the unwrapped phase to height conversion depends on the baseline pa­

rameters, we discuss the required accuracy for the parameters in Section 2.4. InSAR 

processing has been the focus of very active research in recent years and there is a 

number of different processing strategies used. These strategies are reviewed in Sec­

tion 2.5. Special emphasis is placed on baseline estimation in this section. Finally, 

we summarize the background information from the view of using coarse DEMs in 

the interferometric SAR processing chain. 
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2.1 O v e r v i e w o f S A R I n t e r f e r o m e t r y 

SAR interferometry (InSAR) is a technique for exploiting the phase difference be­

tween two registered SAR images generated from data collected from nearly the 

same or the same antenna phase center positions. Two types of information can be 

extracted from the images directly: 

• phase difference or interferogram phase, 

• magnitude of complex-valued correlation or coherence magnitude. 

The interferogram phase (assuming the images are registered and well correlated) is 

directly related to the difference in slant range distance from the two radar systems 

to the common ground patch imaged by the radar. The coherence magnitude is 

a sensitive indicator of the "similarity" of the two SAR images which takes into 

account both magnitude and phase information. In the following subsections, a 

brief overview of interferogram phase and coherence magnitude and the information 

they provide is given. 

2.1.1 InSAR Phase Data 

The phase of a single SAR images also contains useful information which is not 

directly evident unless another correlated SAR image is available. Well-focused 

complex-valued SAR images contain phase and magnitude components due to the 

ground reflectivity and also a travel time phase component related to the distance of 

closest approach of the SAR platform and the ground patch. If a second correlated 

image which is coincident with the initial image is available, the travel time phase 

difference between the two images can be extracted by differencing their phases. 

An example of the SAR image phases is shown in Figure (2.1). Without 

more analysis, the phase of each image appears to be random noise. However, the 
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smoothed phase difference between these two SAR images shown in Figure (2.2) a) 

has a striking pattern which is directly related to topographic height (see Section 

2.3). Because SAR amplitude images are sometimes sensitive to topography, one can 

also observe some similarity between interferogram phase and amplitude as shown 

in Figure (2.2). 

Graham [24] published the first well known work defining InSAR as a method 

for estimating topography from the phase difference between two SAR images. SAR 

interferometry can be used to create a digital elevation model (DEM) which enhances 

SAR image exploitation by facilitating: 

• correction of SAR imaging geometry by projecting the data to the ground 

range plane, 

• correction for radiometric variation in SAR images due to terrain slope, 

• geocoding of data sets for same and multi-sensor processing. 

Differential SAR interferometry [11] is an extension to SAR interferometry. 

In differential interferometry, the phase difference between two coincident inter­

ferograms is compared. If the target has changed positions between the two SAR 

imaging passes without significantly reducing the correlation of the two SAR images, 

the interferogram phase contains a term related to the amount of target motion. If 

the topographic interferogram phase can be subtracted from the interferogram, then 

the residual phase is related to the amount of target motion. The second interfer­

ogram may either be generated from an external DEM or another interferometric 

pair. Differential interferometry is extremely sensitive to terrain movement because 

the measuring stick is a fraction of the wavelength of the center frequency of the 

SAR. For current satellite SAR systems, this length is on the order of a centimeter. 

The sensitivity of differential interferometry coupled with the dense coverage of SAR 

data is providing new insights into geophysical processes [23]. This technique has 
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been successfully applied to observing earthquake displacement [25] and ice flow in 

ice streams and glaciers [26, 27]. 

(a) Phase of reference SAR image in rads (Sep. 24/96) 

(b) Phase of candidate SAR image in rads (Oct. 18/96) 

Figure 2.1: Phase data for the Death Valley RADARSAT-1 SAR image data. 
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(a) "Flattened", smoothed phase difference or interferogram 
between the phase images of Figure (2.1) in rads 

(b) Interferogram magnitude. 

Figure 2.2: RADARSAT-1 Death Valley interferogram and SAR image magnitude. 
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2.1.2 Interferometric SAR Coherence Magnitude 

Coherence is essentially a measure of the complex valued correlation coefficient be­

tween two datasets [28]. The maximum likelihood estimate of coherence magnitude 

assuming constant interferogram phase is [29]: 

fie-j* = !<=i (2.1) 
I N N 

where: 

p = the coherence magnitude, 

ip = the maximum likelihood estimate of interferogram phase, 

h,k e^''* = complex amplitude of the kth pixel of the ith image. 

The numerator of the coherence expression is a coherent sum of the interferogram 

data while the denominator is a measure of standard deviation of the two images 

when the images are assumed to have different standard deviations. The numera­

tor may be represented as a vector sum as shown in Figure (2.3). Low coherence 

data tends to have vectors oriented in widely varying direction leading to a smaller 

magnitude of the complete sum and smaller numerator in the coherence magnitude 

calculation. For high coherence magnitude data the vectors tend to be oriented in 

the same direction leading to a larger net sum in the numerator of the coherence 

magnitude calculation. 

The coherence magnitude is a useful measure of sources of decorrelation such 

as: 

system noise [30, 31] Additive system noise is a cause of phase noise in the esti­

mates. The majority of additive noise is usually receiver noise. 
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Figure 2.3: Schematic diagram of the numerator sum of coherence magnitude cal-

temporal decorrelation [13] To date in two-pass satellite SAR interferometry, 

the minimum time lapse between successive coincident data collections is one 

day. For changing landscapes such as forests, high correlation between the re­

turns in the focused data is not likely. Some degradation of the interferometric 

phase estimates will occur over changing targets. 

spectral decorrelation [32, 33, 34] Spectral decorrelation is a function of the 

two-dimensional spectral overlap of the two coincident SAR images. In az­

imuth, the degree of overlap is controlled by the beam pointing directions of 

the radar systems. In range, the different cross-track positions of the two plat­

forms also causes spectral mis-match between the SAR images. See Appendix 

A for more information. 

quality of focusing and registration [31, 35] The precision of registration and 

the quality of the SAR processing used to produce the SAR images for the 

interferogram affects the coherence magnitude. 

The variance of the interferogram phase estimate is a function of the coherence 

culation. 
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magnitude of the data [32, 29] Thus, an estimate of coherence magnitude yields 

an estimate of interferogram phase variance. Since interferogram phase is related 

directly to InSAR height, the estimated coherence magnitude can serve as a quality 

control check on the terrain height estimates. The connection between coherence 

magnitude and the system parameters above can also be used to optimize interfer­

ometric SAR processing [35]. In addition, coherence magnitude has been shown to 

be useful for terrain classification [36]. 

2.1.3 Summary 

SAR interferometry produces two useful quantities: interferogram phase and co­

herence magnitude. The unwrapped interferogram phase can be related through 

trigonometry and some external parameters to terrain height assuming reasonable 

data quality and stability of the scene. Such elevation models are a useful product 

for rectifying SAR images as well as for processing other remote sensing data. If the 

scene is slowly moving in a cohesive manner as in a glacier or an area where tectonic 

movement has taken place, the interferometric phase contains a component due to 

the surface motion which may be extracted to measure the surface velocity. 

Coherence magnitude is a measure of the correlation of the images used to 

estimate the interferogram phase. Coherence magnitude can be used as an input 

to a classifier as well as a data quality measure. The data quality can be used to 

estimate the accuracy of an interferometric SAR DEM. 

2 .2 I n t e r f e r o m e t r i c S A R D a t a M o d e l 

A complex-valued SAR image (commonly called a single look complex or SLC image) 

can be modeled as the convolution between the system impulse response function 
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and the ground backscatter function: 

I(v,r)eK= f q(V-r)',T-T{p))b{p)e-^foT^dV' (2.2) 
Jv 

where: 

I = the complex-valued SAR image, 

/ ... dV' = volume integral over the scattering elements, 
Jv 

q(r), T) = SAR impulse response in range r and azimuth 77, 

f0 = SAR center frequency, 

b(p) = ground backscatter coefficient, and 

p = scatterer coordinates. 

An interferogram is formed by a complex conjugate multiplication of two coincident 

SAR images. The expected value (E [•]) of the interferogram assuming statistically 

independent and identically distributed targets in the target volume is [37] 

E [7(77, r)ej< /2(r;2, T2) e~K2 = 

f q(n - 77', T - Hp)) ?*(T?2 - T?', r2 - r2(p)) a(p) e ^ / ( r 2 ( p ) - T ( P ) ) d T / / ^ 
Jv 

where: 

.72(772, r2) e~^2 = the second or candidate SAR image, 

a(p) = E[6(p)6(p)T, 

the effective volume scattering coefficient. 

Assuming a constant propagation velocity c, one can convert the time delays (r, r2) 

into slant range (r, r2) from the antenna phase center to the common imaged ground 

patch: 

E [/(T?, r)e~jt /2(772, r2)e_*2] = 

/ q{n - r/, r - Hp)) q*{v2 - 77', r2 - r2 (p ) ) a(p) e]2k ( r 2<P)- r(p)W , (2.4) 
Jv 
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where: 

T 2r / c , 

2r2 / c , 

c speed of light, 

k 2TT/X, and 

A radar wavelength. 

The complex-valued interferogram is therefore an average of all scatterer responses 

weighted by the scatterer strength and the SAR impulse response function. The 

phase of the interferogram is the weighted difference of the travel time phase com­

ponents in the two images, weighted by the impulse response. 

2 .3 I n t e r f e r o m e t r i c S A R G e o m e t r i c P h a s e M o d e l 

The interferometric SAR data model has two different interpretations which depend 

on whether or not a finite bandwidth (Appendix A) or single frequency approach is 

taken to characterize the InSAR data. The single frequency approach that directly 

connects the geometry of the satellite SAR systems used to collect the data with 

the interferogram phase is discussed below. The finite bandwidth approach reveals 

some of the inherent properties of InSAR data which lead to algorithmic steps in 

the InSAR processing algorithm and is discussed in detail in Appendix A. 

In this section, we develop a two-dimensional model of the connection be­

tween InSAR geometry and interferogram phase and then show how one can go from 

unwrapped phase to topography. 

One can model the interferogram phase as a function of the slant range 

difference between the two images. If we consider a single effective scatterer at some 

sampled slant range from the reference SAR antenna phase center (r) with a (most 
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scatterer 

B baseline magnitude 

0 baseline orientation 

e off-nadir angle 

<i> interior angle 

r reference slant range 

r2 second slant range 

h ground radial distance 

a satellite radial distance 

S reference satellite 

S2 second satellite 

Origin (center of earth) 

Figure 2.4: Two dimensional projection of interferometer geometry. 

likely) different slant range (r2) from the scatterer to the second SAR antenna phase 

center, the phase difference between these two images is: 

(2.5) 

where 

= the absolute value of unwrapped phase. 

For a simple two-dimensional satellite geometry (see Figure (2.4)) 5(r) is 
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defined through the Law of Cosines as: 

6(r) = r2 — r, 

= yV2 + B2 -2rB cos(#(r)) - r, 

= ^/r 2 + B2 - 2 r B cos(0 - 0(r)) - r, (2.6) 

where, for spherical geometry: 

r — the slant range of the reference image, 

r2 = the slant range of the second image, 

= the baseline length, 

0 = the baseline orientation with respect to nadir 

9(r) 
fa2 + r 2 - h 2 \ 

= arccos , 
\ 2ar )' 

a = the satellite radius, 

h(r) = the ground patch radius. 

The measured interferogram phase (ift) is a nonlinear function of the slant range 

difference S(r) from both sensors to the common imaged ground patch: 

-0 = arg(exp(jy5(r))). (2.7) 

where: 

ip = the wrapped interferogram phase, TT > tp > — w, 

A = the SAR wavelength. 

The arg(-) function maps the value of ^ S(r) to the principal values of (—7r,7r] and 

therefore defines the requirement for estimating the absolute number of 27T "wraps" 

or phase unwrapping. 

Under the assumption of no clock errors or atmospheric perturbations, 8(r) 

can be recovered from the phase difference between the two images after phase 
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unwrapping, scaling, and addition of a constant: 

S(r) = A[^(r) + m ( r )27r+V 0 ], (2-8) 
477 

= - ^ ( r ) ; (2.9) 

where: 

m(r) = an integer number accounting for the number of 27T wraps, 

ip0 = phase offset, 

ip(r) — wrapped phase (TT, TT], 

<J/(r) = unwrapped phase. 

Inverting the above relationships, 5(r) can be used in turn to calculate the topo­

graphic radial distance h(r). 

Firstly, the interior angle <f> is calculated using the Law of Cosines (see Figure 

(2.4)): 

r 2 + B2 _ r 2 2 
C O S < ^ > 

substituting for r2 yields 

expanding and simplifying 

2rB 
r 2 + B 2- (r + 5) 2  

2rB 

Since 

h 

cos, = (,10, 

= (r 2 + a 2 -2racos6y / 2 , (2.11) 

6 = Q-4, (2.12) fB 2-2rS-S 2\ ,010, 
(f> = arccos I 2~rB~— j ' ^ ' 

the topographic height can be calculated as: 

'B 2-2rS-S2\]Y/2 

h = \ r2 + a2 — 2ra cos 
0 — arccos . „ \ 2rB (2.14) 
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This final equation relates the unwrapped interferogram phase (\J/) through S(r) to 

the terrain height (h) of the target area and is the basis for cross-track interferometry. 

Note that the ground range position (x) of the target patch can also be calculated 

as 

x = r cos# = r cos(@ — S). (2.15) 

The along-track position of the satellite defines the other coordinate of the geometry. 

The derivative of the S(r) in range is interesting as the local interferogram 

frequency is a scalar multiple of it. This derivative allows one to relate height 

change to interferogram phase change. Evaluating the derivative with respect to 

the reference slant range r yields: 

o_m = _ ( 2 . 1 6 ) 
or or 

Expanding r2(r) and evaluating the derivative yields 

8S(r) r — r2 — B cos S(r) r B sin S(r) dO(r) 
dr r2 r2 dr 

(2.17) 

The value of B cos <j>(r) is the projection of the baseline to the reference slant range 

direction and is very nearly equal to the difference r - r2. Cancelling the first term 

in the equation yields 
dS(r) r B sin S(r) dO(r) 
dr r2 dr 

Substituting for the derivative of 6(r) and simplifying yields 

dS(r) B sin S(r) 
dr r2 (1 - cos2 0{r))1/2 

which may be re-written as 

h(r) dh{r) 
w w + cos d(r) 

dr 

(2.18) 

(2.19) 

J- ' « B sin Sir) 
dr 

h(r) dh{r) 1_ 
(2.20) 

Lar2sin (̂r) dr r2tan#(r). 

The unwrapped phase derivative is a scalar multiple of this equation. An important 

parameter from the geometry is the baseline magnitude projected to the direction 
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normal to the radar line of sight: B1 = B sin (j>(r); called the normal or perpendic­

ular baseline. This value multiplies two other terms: the scaled height derivative in 

the range direction and an approximately constant term. 

The approximately constant term comes from the increase in differential slant 

range as one moves along the Earth's surface. For a topographically flat scene, the 

raw interferogram phase is approximately a phase ramp with the alternating phase 

function of a single sinusoid. The nearly constant term is like the center frequency 

component of the interferogram signal. It is common practice for this term to be 

modeled and removed as part of the InSAR data processing algorithm; a process 

called flattening. In its simplest form, flattening uses an estimate of the predominant 

range frequency component in the interferogram to shift the center frequency of the 

interferogram to zero frequency. 

The scaled height derivative term contains information about topographic 

variation with respect to the "flat-earth" term. This term provides the "bandwidth" 

of the interferometric signal and acts to modulate the approximately constant fre­

quency of the flat earth term. The spectral width of this term is a function of the 

variability of the topography and the size of the normal baseline. 

Generally speaking, larger perpendicular baselines mean more sensitivity to 

inter-pixel topographic height change and less sensitivity of estimated height to 

phase noise. For estimation of topography, it is generally desirable to have larger 

normal baselines. However, processing interferograms with larger normal baselines 

is generally more difficult than the smaller normal baseline case because the data 

is in general noisier (see Appendix A) and because the interferogram phase changes 

more rapidly requiring more work in the phase unwrapping processing (see Appendix 

C). For differential interferometry, small normal baselines are the norm. 

The sensitivity of a particular perpendicular baseline is usually described 

in terms of the ambiguity or half-ambiguity height. The height change causing ir 
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rads change in the measured phase is the half-ambiguity height. See Figure (2.5) 

for some sample half-ambiguity heights for different normal baselines for ERS and 

RADARSAT data. 

i ! :::!:::::::::!:::::::::i::::::::i:::: ....i j J 

n e a r r a n g e " ; 

\ . . . . . [ rrr-^r. m i d - r a n g e . 

• : ; - far r a n g e 
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J l i i i i I 1 . i 1 1 

0 50 100 150 200 250 300 350 400 450 500 
Normal Baseline in meters 

(a) ERS Tandem Mission 

0 100 200 300 400 500 600 700 800 900 1000 
Norma! Baseline in meters 

(b) RADARSAT Fine 3 Beam 

Figure 2.5: Half-ambiguity height in meters as a function of normal baseline for 
ERS and RADARSAT. 
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2.4 Baseline Accuracy Requirements 

The desired performance of the baseline estimation algorithm depends on the appli­

cation of the data. For differential InSAR using ERS data for earthquake and glacier 

measurement/monitoring, the accuracy of the ERS precision orbit product for esti­

mation of the baseline is sufficient [17]. For higher accuracy differential applications 

such as tidal loading or monitoring of land subsidence where sub-centimeter accuracy 

is required, accurate external estimates of the baseline must be provided. Probably 

the most demanding application is estimation of topography because small errors in 

the baseline magnitude or orientation can result in substantial terrain height errors 

which vary with ground range [4]. In the following we calculate the sensitivity of 

the height estimates to baseline parameter errors to define the required accuracy of 

the baseline parameters for topographic mapping. 

The height error at any point may be calculated by taking a dot product 

between the gradient of the height function (see eqn. (2.14)) and the perturbations 

of the baseline magnitude (B), baseline orientation (0), altitude (a) and unwrapped 

phase (5) variables: 

Ah 
dh dh dh dh 
d~B <90 ~da, ~dS 

AB 

A 0 

Aa 

AS 

(2.21) 

(2.22) 

Neglecting the cases where Sill d) rZi 0 as these cases have small perpendicular base­

lines which are more suited to differential interferometry as opposed to topographic 

mapping, the expression for the height error due to an error in the parameters is 

Ah = 
asm(d)(-B + cos(<f>)r) ^ rasin(fl) A Q 

h y/1 - c o s ( ^ ) a J 3 h 
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+ ^ s w A „ + ; s i " W ; 2
 AS. (2.23) 

h h - cos(6)2B 

The expression for each error source can be simplified somewhat using the following 

approximations: 

• a/h ?s 1: the fractional difference between the satellite altitude a and the 

topographic height is on the order of 800 kms for satellite sensors while the 

radius of the Earth is on the order of 6600 kms. 

• y/1 — cos( 6)2 B = | B x |: some of the error terms vary inversely with the 

modulus of the normal baseline. 

Using these approximations, one can get a better appreciation for the height error 

sensitivities of the Q, a, S variables as 

• ©: The error in the baseline orientation is approximately scaled by the ground 

. range variable [4] 

H«*(r). (2-24) 
Since the ground range distance is on the order of several hundreds of kilome­

ters for satellite InSAR systems, the height error sensitivity to errors in the 

baseline orientation is large and requires precise calibration. 

• a: The error in altitude translates almost directly into errors in topography 

( 2 . 2 5 ) 

as the numerator of expression is equal to the topography projected to the 

satellite radial direction. 

• 6: The differential for 5 is 

The sensitivity to errors in S varies across the swath as a function of the ground 

range variable scaled by the inverse of the normal baseline. 
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It is informative to consider the height errors generated for different combinations 

of AB errors for different combinations of 0 and B parameters. Graphs of these 

height errors are shown in Figure (2.6) for a baseline magnitude (B) of 1000 me­

ters and baseline orientations (©) which produces normal baseline (fi x) values of 

approximately 0, 707, and 1000 meters respectively. The interferometer parameters 

were modeled after the parameters of RADARSAT-l's Fine 3 beam. For B1- fa 0, 

the height errors are very large, ranging between -40 km and -90 km from near to 

far range. For B1- fa 707 meters, the height errors are more reasonable, ranging 

from approximately -307 meters to -309 meters. For B1- fa 1000 meters, the errors 

vary from approximately 1 to -1 meters from near to far range. The plotted errors 

suggest that height errors due to errors in B produce approximately linear trends 

and offsets in the output height. 

Given that the height errors due to baseline parameter errors are linear trends 

and biases across the swath, one must analyze the limits on baseline parameter errors 

by estimating the error in terrain at near and far ranges. One can start estimating 

the required accuracy of the baseline parameters under the assumption that the 

output mean error in height across the range swath is 0. 
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Figure 2.6: Effects of parameter errors on height estimates for different interferom­
eter geometries (normal baselines). The interferometry model was generated for a 
flat scene using RADARSAT-1 Fine 3 beam parameters for A S = 5 centimeters. 
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. Assuming that the a and 6 variables are specified accurately and that the 

output height error is zero mean, the residual height error across the range swath 

of the data is approximately (see Appendix D.2): 

sin 6 (r2 - B2) a sin 6 „ „ A , ,n 

Ahswath » - IX £ — — AB Aj>swath, 2.27 
2 (sin^ (j))3'2 (r - B cos <t>) B h 

where A<f>swath is the elevation angle subtended by the range swath and the range 

varying parameters (8, <f>, r) are evaluated at the far range of the range swath. Given 

a desired error in height across the swath, the limits on baseline error can be calcu­

lated from this relation. 

The baseline magnitude error limits are shown in Figure (2.7) for ERS data 

and Figure (2.8) for RADARSAT-1 data using eqn. (2.27). The baseline error is 

calculated to limit the error across the swath to ± 5 meters. The results plotted are 

restricted to normal baselines between 50 meters and 500 meters for the ERS case 

and 50 and 2500 meters for the RADARSAT-1 case. These maximum perpendicular 

baselines are calculated as approximately half the maximum perpendicular baseline 

[10] for flat terrain. Generally the requirements on the baseline magnitude accuracy 

are more stringent for the ERS case than for the RADARSAT-1 case. 

The previous analysis of height error due to baseline parameter error allowed 

us to eliminate one error variable because of the assumed condition of zero mean 

height error. However, a more complete characterization of the limits on baseline 

parameter accuracy can be constructed by considering the range of baseline param­

eters which give a DEM which falls within a specified range of both mean error and 

error across the swath. One can analyze the general case using the height error at 

near and far ranges respectively: Ahfar, Ahnear. 
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Figure 2.7: Baseline length estimation requirements in meters as a function of base­
line length and baseline orientation for nominal ERS parameters. Output DEM has 
zero mean height error and a maximum height error of ± 5 meters across 100 km 
ground range swath. 
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Figure 2.8: Baseline length estimation requirements in meters as a function of base­
line length and baseline orientation for nominal RADARSAT-1 Fine 3 beam param­
eters. Output DEM has zero mean height error and a maximum height error of ± 
5 meters across 55 km ground range swath. 
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We can define two performance criterion: 

• error across the swath, 

Ahswath — Ahjar Ahnear 

which is a measure of the slope error of the output InSAR DEM, and 

• mean DEM error 
» , _ Ahfar + Ahnear 

^"-mean — 2 ' 

which approximates the mean DEM error with average of the two swath errors. 

Given a specified range of mean height errors and slope errors across the swath, 

a region of the baseline parameter space where the output InSAR D E M has the 

desired quality can be defined and then plotted. 

Figures 2.7 and 2.8 are examples of this type of plot for ERS standard images 

and RADARSAT-1 Fine 3 beam images. Both simulations assumed a normal base­

line of approximately 200 meters with nominal parameters for each type of images 

(see Table 5.2 and Table 5.5). The dark region of these plots denotes the acceptable 

baseline parameter errors to limit the across swath error (Ahswath) to ± 5 meters 

and the mean error (Ahmean) to less than 1 meter. Roughly speaking, the baseline 

magnitude errors for the ERS data set are limited to ± 0.05 meters while the ori­

entation errors are limited to ± 10 /̂ rads for this set of D E M error constraints. For 

the RADARSAT-1 data, the range of valid parameters is at least twice as large but 

is much "thinner". 
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Figure 2.9: Range of baseline parameter errors for maximum 5 meter error between 
far and near range and maximum mean error of 1 meter for ERS parameters. 

Figure 2.10: Range of baseline parameter errors for maximum 5 meter error between 
far and near range and maximum mean error of 1 meter for RADARSAT-1 Fine 3 
beam parameters. 
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The differences in the size and shape of the areas of valid baseline parameters 

come from the different range of off-nadir angles and hence ground ranges that 

parameterize the two instruments RADARSAT-1 Fine 3 beam interferometry is 

about four times as sensitive to baseline orientation errors as the ERS data because 

the ground range distances are much larger. For a given baseline magnitude error 

in the RADARSAT-1 dataset, the feasible range of baseline orientation errors are 

smaller than that of the ERS data which leads to "thinner" area of valid baseline 

parameters. However, the RADARSAT-1 swath width is half that of the ERS data 

so the the swath error criterion is less restrictive for the RADASAT-1 parameters. 

Consequently the range of valid parameters is larger though more tightly constrained 

in the RADARSAT-1 case than for the ERS case. 

2 .5 S a t e l l i t e I n S A R A l g o r i t h m s 

The basic processing for SAR interferometry can be described as follows (a concise 

description for topographic estimation is given in Appendix B): 

1. Identify suitable correlated SAR signal data sets. 

2. Process the SAR data to yield complex images with good phase fidelity. 

3. Register the overlapping imagery to an accuracy of about 1/8 or 1/10 pixel. 

4. Form the interferometric image by multiplying one image pixel for pixel with 

the complex conjugate of the other registered image. 

5. Remove a model of the flat Earth interferogram phase. 

6. Generate coherence magnitude estimates. 

7. Process the interferometric phase to yield the desired data product: topo­

graphic height or surface motion estimates. 
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The removal of the flat Earth model of interferometric phase can be performed in 

a number of different ways (e.g. orbit modeling [23, 3] or demodulation by largest 

frequency component). In general, it is an approximate correction which reduces the 

local phase variability in the interferogram to facilitate processing such as coherence 

magnitude estimation, filtering (and hence phase unwrapping) and visualization 

of the topographic phase. These first stages of processing are standard and have 

been implemented in Matlab for research purposes. The last stage of information 

extraction is where the bulk of the recent research in SAR interferometry is on-going. 

For differential SAR interferometry, processing the interferogram phase tends 

to be simpler compared to the topographic height estimation problem. Generation 

of the surface velocity map involves: 

1. Removal of topographic phase. 

2. Filtering the residual interferogram phase. 

3. Projection of unwrapped interferogram phase to surface motion vectors. 

Usually, though not always, differential InSAR datasets are chosen with a small 

normal baseline to minimize the interferometric data's sensitivity to topographic 

height variation. In this case, the flattening procedure above in the basic processing 

model yields phase fringes due to motion. If the test site happens to be flat, removal 

of the topographic fringes again can also performed by the flat Earth correction. 

However if an existing DEM is available and the topography is variable, the DEM 

can be used to model the geometric phase based on precision orbit data [17] or 

using other post-processing techniques [3]. Finally, since the radar interferometer 

only observes data in the range dimension, the data must be transformed to put the 

data in the ground coordinate system [27]. 

To generate InSAR topographic maps, the following steps must be imple­

mented: 
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1. Unwrapping the interferogram phase. 

2. Estimating the baseline parameters or geometry of the interferometer. 

3. Resampling the computed heights to a standard cartographic representation. 

The effects of local interferometric fringe frequency, system and decorrelation noise 

and terrain discontinuities in the interferometric observations require fairly sophis­

ticated processing to maintain the phase fidelity of the data for successful phase 

unwrapping. Phase unwrapping is a field of active research and there are currently 

many possible phase unwrapping methods (see Appendix C for a short review). 

Some methods combine the filtering and phase unwrapping procedure [38] while 

others use multiple interferograms [39, 40]. It has been noted that reducing the lo­

cal frequency content in the interferogram [22, 41] reduces the difficulties with phase 

unwrapping by reducing the number of residues (see Appendix C). In addition, the 

step of pre-processing with an existing D E M is also seen as one way to reduce phase 

unwrapping difficulties [22, 3]. 

2 .6 B a s e l i n e E s t i m a t i o n 

There are a number of different strategies for estimating the interferometric SAR 

baseline parameters. The strategy used depends on the data available (i.e. DEM 

or height ground control points), application and required accuracy (i.e. differential 

InSAR or topographic InSAR), and variability of the terrain. In some implemen­

tations, the baseline estimation procedure is a part of the overall processing while 

in others it is distinct stage of processing. In the following, we review the main 

implementations of baseline parameter estimation methods. After reviewing the 

methods, we discuss them in the context of low-quality DEM data and poor orbit 

data. 
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2.6.1 Baseline Estimation By Identification of Flat Areas 

For a flat area of terrain, the local interferogram fringe frequency rate may be 

calculated as [42]: 
_ 2Bsin<?!> Ar 

^ ~ A#tan6> ' 
where: 

fr = the range fringe frequency term, 

Bsmcf) = the normal baseline, 

0 = the ofT-nadir angle, 

A = the wavelength of the center frequency of the SAR, 

H = the satellite altitude above a reference plane, 

Ar = the slant range sampling interval. 

This method relies on the assumption that areas of flat topography exist and that 

they are identifiable in the image. In general, these are not good assumptions to 

make so this particular method is an approximation that is usually made for the 

initial flat Earth correction procedure. 

2.6.2 Calibration Using Registration Parameters [1] 

At Politecnico di Milano (POLIMI), the registration parameters of the scene along 

with a local spherical model of the earth are used to estimate the baseline orien­

tation and magnitude by considering the difference in ofT-nadir angle between the 

two data acquisitions. The look angle difference is a function of normal baseline 

and slant range distance. Because this method's baseline parameter accuracy is 

dependent on the accuracy of the registration, orbit accuracy and knowledge of the 

local topography, it is useful only for preliminary baseline parameter estimates that 

must be refined by other means. 
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2.6.3 DIAPASON [2, 3] 

CNES's DIAPASON InSAR processor is designed to perform differential InSAR 

images automatically but does not perform phase unwrapping. It implements the 

following procedure: 

1. The external DEM and the SAR image orbit data are used along with inter-

image offsets estimated by image chip correlation to define the resampling grid 

required to make the initial interferogram. This provides an initial estimate 

of the baseline parameters for the scene through modeling the orbits of the 

satellites. 

2. One of the radar images is registered to an absolute geographic reference by 

simulating a radar image from the input DEM as a function of the D E M slope. 

The simulated image is then correlated with the SAR image to register the 

SAR data with a known output grid. 

3. Spectral shift filtering (see Appendix A). 

4. Subtraction of the DEM based model of the interferogram phase. 

5. Resampling of the interferogram into a usual geographic coordinate system. 

Running automatically, the DIAPASON'S output DEM will have residual fringes due 

to the accuracy limits of the initial orbit modeling attempt [2]. A post-processing 

step is then required to complete the modeling of the baseline geometry. However, 

CNES has developed a tool external to DIAPASON that positions the satellite tracks 

precisely using four ground control points and a "count" of the number of fringes 

between the pairs of points [2]. 

The focus of CNES's work has been on differential InSAR so their processing 

algorithm naturally includes an accurate DEM and accurate orbit data as part of the 
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processing stream. It is not clear what topographic accuracies are achievable with 

this processing method and how well the method works when the input DEM is of 

poor quality. In particular, there is the implied requirement for phase unwrapping 

in the fringe counting procedure and manual intervention in the choice of control 

points. 

Note that CNES did publish a method of simplifying phase unwrapping that 

used the DIAPASON processor [40]. The method uses integer interferometric com­

bination (IIC) of interferograms and involves differencing flattened interferograms 

that have had their phase values multiplied by integers. The net effect is to create an 

interferogram with a large ambiguity height that is (subject to noise considerations) 

easier to unwrap. 

2.6.4 JPL's Baseline Estimation Method [4] 

JPL's approach to baseline estimation algorithm is an empirical method that re­

quires ground control points and unwrapped interferometric phase. They start from 

the expression relating unwrapped phase to topography for parallel orbits. How­

ever, in general satellite orbits converge or diverge slightly so that the interferogram 

phase appears to have a component that varies with azimuth position. They then 

modeled the slant range difference due to topography as 

6 = ^[y-m^ + Ve]] (2.28) 

where 

mn = orbit convergence rate. 

(2.29) 

They then fixed the vertical component of the baseline based on knowledge of ERS-

l's vertical decay rate and performed an optimization using height ground control 
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points for the cross-track component of the baseline, the baseline orientation, and 

the constant phase offset. Using this technique, they were able to generate fairly 

accurate spot heights (four errors in the region of 1 to 5 m and one large outlier at 

31 m). Small [43] reports that with 18 ground control points, an InSAR DEM with 

RMS error of 8.2 meters was attained for a standard ERS quarter scene. 

A similar procedure was reported for a SIR-C differential InSAR experiment 

in [23]. In this experiment, an orbit model was used to firstly to flatten the in­

terferogram phase using an external DEM. The residual interferogram phase was 

filtered, downsampled, unwrapped and used to refine the orbital baseline estimate 

to estimate the local scene displacement velocity. 

2.6.5 Image Modeling Approach [5] 

In the image modeling technique, the conversion from unwrapped phase to height 

is assumed to be a quadratic function: 

h = k1 + k2{V + V0) + k3{V + * 0 ) 2 . (2.30) 

The coefficients for the quadratic function are estimated by fitting the quadratic 

relation to a calculation of the unwrapped phase based on orbit models alone. In 

principle, this method can provide reasonably accurate height estimates with only 

one ground control point that establishes the unwrapped phase offset (^0)- In 

practice, more ground control points are needed to compensate for the orbit data 

errors. About 30 ground control points per full frame were required for a mapping 

exercise performed for the Czech Republic [44]. 

2.6.6 Review of Baseline Estimation 

The methods for baseline estimation reviewed above vary in their complexity and 

how exactly they are applied. One common element is that the methods for gen-
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erating accurate height estimates require using unwrapped phase and some sort of 

explicit manual interaction to generate accurate baseline parameters. If the only 

information that is available is a coarse low-quality DEM, identification of individ­

ual ground control points is unlikely. In addition, a small number of low-quality 

ground control points are unlikely to provide accurate topography estimates. An­

other consideration is the need for unwrapped phase in the estimation problem. 

Phase unwrapping errors [23] also have the potential to cause biases in the output 

height estimates. It is therefore useful to consider estimating baseline parameters 

by other means not using unwrapped phase. 

2 . 7 S u m m a r y 

We have reviewed an InSAR data model and data processing at a high level to 

describe the technology and current state of the art. The baseline magnitude and 

orientation parameters are important for InSAR processing because they relate the 

measured interferogram phase to topography. They must be accurately estimated to 

provide reliable accurate topographic height estimates. To date, the only thoroughly 

tested method to obtain accurate baseline estimates for topographic estimation is 

the method using existing height control points. Existing height control points 

must be identified in the reference SAR image to calculate the baseline [4, 44, 3] 

using the unwrapped phase of the interferogram. Orbit data provides baselines 

which are generally not accurate enough for topographic height calculation [17, 18] 

for both RADARSAT-1 and ERS data. The CNES and POLIMI methods yield 

reasonable estimates of the interferometer geometry which give (with some manual 

intervention) interferograms with no residual phase trends. In the next chapter we 

present algorithms for flattening and baseline estimation that do not depend on 

accurate orbit data or manually choosing height ground control points for baseline 

estimation. 
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C h a p t e r 3 

D E M Ref inement A l g o r i t h m 

This chapter describes the DEM refinement algorithm and analyzes the algorithm 

performance. We start by giving an overview of the method in Section 3.1. The 

method has two novel sub-algorithms: DEM flattening and D E M updating. The 

DEM flattening algorithm is developed in Section 3.2 followed by the DEM updating 

algorithm in Section 3.3. Some implementation details of the algorithm are discussed 

in Section 3.4 (a concise and complete algorithm description is given in Appendix 

E). Section 3.5 discusses issues affecting the algorithm's performance. We predict 

the accuracy limits of the topographic estimate in Section 3.5.4. Some concluding 

remarks are given in Section 3.6. 

3.1 O v e r v i e w o f t h e D E M R e f i n e m e n t a l g o r i t h m 

The algorithm for DEM improvement using InSAR techniques consists of three parts 

(see Figure (3.1)): 

1. DEM "flattening" using a coarse, low-quality DEM; 

2. Phase unwrapping of the flattened phase signal; 
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3. D E M "updating" using the unwrapped flattened phase. 

The main focus of this research is the first and third stages of the DEM refinement 

algorithm that are described in detail in Section 3.2 and Section 3.3 respectively. 

In the flattening algorithm, we attempt to generate an interferogram model from 

the input coarse DEM that is as close as possible to the input interferogram (see 

Figure (3.2)). The residual interferogram formed by the difference between the input 

interferogram and interferogram model can be filtered and downsampled to facilitate 

phase unwrapping processing. Finally, the unwrapped residual interferogram phase 

is then used by the DEM updating algorithm to find the best fit InSAR DEM with 

respect to the input DEM (see Figure (3.3)). 

Both the flattening and updating algorithms rely on estimation of the base­

line parameters as these parameters relate topography and interferogram phase. In 

the flattening algorithm, the interferogram phase is generated from the input DEM 

using baseline parameters. In the updating algorithm, the InSAR D E M is generated 

from the unwrapped phase using the baseline parameters. In both algorithms, the 

baseline parameters are estimated using non-linear optimization. In the following 

two sections, we develop the two algorithms in detail. 
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Figure 3.1: Algorithm for updating DEMs. 
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Interferogram Low-quality DEM 

Figure 3.2: Overview of the DEM "flattening" algorithm. 
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Unwrapped Phase Low-quality DEM 

Figure 3.3: Overview of the DEM "updating" algorithm, following phase unwrap­
ping. 
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3 .2 D e v e l o p m e n t o f t h e D E M F l a t t e n i n g A l g o r i t h m 

The DEM flattening algorithm tries to create an accurate model of the interferogram 

phase using the input DEM. Calculation of the interferogram phase model using the 

input DEM requires several parameters (see eqn. (2.6)): 

• slant range (r), 

• baseline orientation ( 0 ) , 

• baseline magnitude (B), and 

• reference sensor altitude (a). 

The reference slant range is given by the reference SAR sensor sampling times and 

for the moment, we assume that the sensor altitude is accurate and available. There­

fore generating the interferogram phase model requires estimation of the baseline 

orientation ( 0 ) and baseline magnitude (B). 

The baseline parameter estimation algorithm uses a non-linear least-squares 

fit between a geometric model of the interferogram phase and a parametric approx­

imation to the interferogram phase itself. This fit proceeds without phase unwrap­

ping and therefore avoids biases due to possible phase unwrapping errors [23] and 

facilitates further processing of the interferogram such as straight forward lowpass 

filtering. It is an iterative procedure whereby erroneous phase trends in the residual 

interferogram are used to update the interferogram model of phase. 

The general idea of the baseline estimation algorithm is to fit S((B, 0 , a, h, r) = 

r2(J3, 0 , a, h,r) — r calculated from the input DEM, satellite altitude and the base­

line parameters to an estimate of 6(r) derived from the interferogram: 

min(B, 0 ) £ > ( r ) f c - (r2k{B, 0 , a, h, r) - rk))\ (3.1) 
k 
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where k is an index running over all available samples. By applying this minimiza­

tion equation, we are implicitly assuming Gaussian independent statistics for the 

differences in the fitted terms. This approach tries to capture the global informa­

tion of the DEM rather than looking at local values of the unwrapped interferogram 

phase as with most of the baseline parameter estimation methods. The values of B 

and 0 which minimize eqn. (3.1) are found using the Levenburg-Marquardt algo­

rithm [45] (see Appendix D.l). For the case of topographic estimation, we do not 

know the value of 5(r) a-priori. We are therefore reduced to using an approximation 

to S(r) which is updated as the algorithm progresses. 

As a starting point, 8{r) is estimated from the registration relation between 

the two SAR images used to form the interferogram. One can usually register 

the images assuming that there is slight rotation of the image (a range dependent 

azimuth shift) as well as a linear or quadratic range stretch. The range stretch 

component gives an approximation of S(r) which can be used in eqn. (3.1) to give 

initial estimates of the baseline parameters: B and 0 . 

The baseline parameters estimated from the minimization algorithm are used 

to form a residual interferogram (igresidUal) which is (neglecting the interferogram 

amplitude and interferogram noise): 

igreMval = e * * *> e ~* * ^(B,%^)-r), ( 3 . 2 ) 

where: 

B,Q = values from the optimization algorithm. 

Assuming correct estimation of baseline parameters and a reasonable quality 

input DEM, the residual interferogram spectra will be centered at zero frequency as 

the constant range frequency term of the original interferogram is removed (see page 

22). In addition to shifting the spectrum of the interferogram to lower frequencies 

as conventional flattening does, removing the geometric phase model also makes 
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the residual interferogram's bandwidth smaller than the original interferogram as a 

function of the input DEM's quality. If the input DEM had no errors, all of the 

energy in the bandwidth of the original interferogram would be concentrated at 0 

frequency. However usually, there are both baseline parameter errors and DEM 

errors to contend with in the residual interferogram. 

The ideal noise free residual interferogram consists of two phase terms: 

igresidual = J*"™ J**™; (3.3) 

where: 

^dem comes from height errors in the input DEM (Ah) and is approximately given 

by: 
An B1 Ah ,„ A. 

^dem « 7 , (3.4) 
A x 

where J3X is the normal baseline and x is the ground range distance. In 

general, ^dem are correlated variables due to interpolation of the input coarse 

DEM and correlation in the topographic samples under scrutiny. 

tygeom is the residual phase term due to errors in the baseline parameters and is 

approximately 

47T 
Vgeom « — (-cos <f>(r) AB + B sin <f>(r) A G ) , 

« y (~~p~^B + BXAQJ . (3.5) 

Since the off-nadir angle subtended by the range swath is quite small for satellite 

SAR systems ( only « 6° for both RADARSAT and ERS standard beam images), 

one can model geometric phase error term as the sum of two distinct linear trends; 

one from the change in cos<f>(r) across range, and the other from the change in 

sin^>(r). Therefore, the geometric phase error term may be approximated by: 

^geom ~ Wr,a(V ~ Vo) {r ~ T0) + Wr(r - T0) + Wa(t] - T}0) + Vo, (3-6) 
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where: 

wr, wa,wrta = range, azimuth, and cross fringe frequency terms in radians/s, 

T — T0 = range pixel time centered at 0, 

7] — T]0 = azimuth pixel time centered at 0, 

ip0 — constant phase value, (—7r,7r]. 

An example of residual phase after estimation of geometry using only the 

registration relation is shown in Figure (3.4) (a constant baseline was used in this 

simulation). Note that for this example, the phase variations are quite small in 

large parts of the residual interferogram - corresponding to areas where the DEM 

fits the gentle topography well. Areas where the topography has higher frequency 

or steep components are not fitted as well by the DEM (or layover is present), and 

large phase fluctuations are noted. The residual phase trends and phase offset of the 

residual interferogram therefore contain information about the error in the estimate 

of <5(r) derived from the interferogram registration relations. 

The slope of the ramp or frequency of the residual interferogram may be 

efficiently estimated using a DFT followed by a golden section search to accurately 

estimate the location of the peak. Note that the baseline geometry usually varies in 

azimuth so care must be taken to estimate the trend in range or azimuth frequency 

as a function of range or azimuth to estimate residual phase. The geometry phase 

term can then be added to the initial estimate of the geometry to provide a more 

accurate 8{r) term for the fitting procedure: 

S{r~) = (r2(B,Q,a,h,r)-r) + 

T- (wr,a(v ~ Vo)(r - r0) + wr(r - T0) + wa(n - Vo) + i>o)- (3.7) 

The next estimate of the geometry is made by solving the minimization problem eqn. 

(3.1) using the updated estimate of 6(r). The process is iterated until the frequency 

estimates converge to values of 0 or a maximum number of iterations is reached. 
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In practice, we have found that five or six iterations provides good estimates of the 

baseline geometry for reasonable quality (i.e. DTED-1) DEMs. 

Range Index 

Figure 3.4: Example of residual phase term after initial estimate of geometry for 
25m data set. 
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3.3 D e v e l o p m e n t o f t h e D E M U p d a t i n g A l g o r i t h m 

After filtering and unwrapping the residual phase from the DEM flattening algo­

rithm, a refined estimate of S(r) can be made by adding the scaled unwrapped phase 

to the estimate of S(r) derived in the DEM flattening portion of the algorithm S(r): 

6$) = 6$) + (3.8) 

where: 

* = the unwrapped phase . 

The updated value of S(r) can be used with the baseline parameters derived during 

the DEM flattening process (5,0) and eqn. (2.14) to derive refined topographic 

heights. 

However, the baseline parameters derived from the DEM flattening algorithm 

most likely will need to be re-estimated1. One can re-estimate the baseline param­

eters by minimizing the difference between the input coarse D E M and the DEM 

computed from the unwrapped phase as a function of the baseline parameters [46]: 

mintB, O) ^ ( / j ( O E M ) - h(B, 0 | 6(7), a, r))2. (3.9) 

where: 

h(DEM) = the input coarse DEM, 

h(B,Q | S(r),a,r) — the DEM calculated from the unwrapped phase. 

This function also assumes that the errors between the estimated and DEM height 

are also independent and Gaussian as with eqn. (3.1). The nonlinear minimization 

in this baseline estimation problem is handled using the Levenburg-Marquardt al­

gorithm as with D E M flattening procedure. Here, we take advantage of the dense 

'See Section 3.5.1 for details. 
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network of height ground control points afforded by the input coarse DEM to con­

strain the InSAR topographic height estimate. An analysis of the performance of 

this iteration is given in Section 3.5.2. 

3.4 D E M R e f i n e m e n t A l g o r i t h m I m p l e m e n t a t i o n 

The previous section's development of the DEM refinement algorithm omitted some 

implementation details for clarity. We review implementation details specific to the 

DEM Flattening algorithm, the phase unwrapping processing, and the DEM updat­

ing algorithm in Section 3.4.1 through Section 3.4.3 respectively. Implementation 

details including a summary of the computational requirements of the algorithm are 

given in Section 3.4.4. See Appendix E for a concise overview of the entire algorithm. 

3.4.1 D E M Flattening Algorithm Implementation Issues 

There is a requirement to resample the existing coarse DEM into radar coordinates. 

If accurate orbit data were available, this procedure could be performed in a well-

known fashion [8]. In the absence of accurate orbit data, an initial registration 

step between the DEM and the SAR data must be completed. For RADARSAT-1 

data, where the accuracy of the orbit data is not sufficient to register the input 

DEM data to SAR data, we have found that a registration step which maximizes 

the coherence magnitude of the interferogram as a function of baseline parameter 

estimate provides reasonable registration between the InSAR data and the DEM. 

3.4.2 Phase Unwrapping Implementation Issues 

We use standard phase unwrapping algorithms (see Appendix C and Chapter 5). 

However, we also assign each valid unwrapped phase value to a group. Unwrapped 
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phase values with a common group number represent phase values which are mem­

bers of the same continuous unwrapped phase surface. The phase unwrapping groups 

are useful when processing data that cannot be unwrapped into one contiguous phase 

surface as they allow one to process each group independently. 

3.4.3 D E M Updating Implementation Issues 

Each unwrapped phase group is checked to ensure that it has the correct absolute 

phase ambiguity. The ambiguity is checked by comparing the input DEM mean 

altitude and the output DEM mean altitude for each group. Mean D E M values 

which are inconsistent are a sign that the unwrapped phase is in error by at least 

one half-wavelength. The unwrapped phase can be re-corrected and the baseline 

estimation procedure can be redone with the input coarse DEM to yield a refined 

height estimate. 

3.4.4 Computational Resource Requirements 

We implemented the DEM refinement algorithm in Matlab [47]. Our system was 

constrained by 

• system memory, 

• disk space, and 

• amount of computation. 

In the following paragraphs, we discuss these resource requirements in the context 

of the D E M refinement algorithm. 

The largest memory requirement occurs during the phase unwrapping pro­

cessing. The weighted least squares phase unwrapping algorithm we implemented 
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Bytes per Number of Number of 
Data store sample range samples azimuth samples 
input coarse DEM 8 Nr Na-
input interferogram 8 Nr Na 
residual interferogram 8 Nr Na 
second slant range data (r2) 8 Nr Na 
filtered, residual interferogram 8 Nr/3 Na/3 
unwrapped phase 8 Nr/3 Na/3 
phase unwrapping mask 1 Nr/3 Na/3 
phase unwrapping groups 4 ' iVr/3 Na/3 
output refined DEM 8 Nr/3 Na/3 

Table 3.1: Data stores required for the DEM refinement algorithm. See Section 
3.4.4 for discussion of the table values. 

requires all the wrapped phase data to be in memory. Because of the typically large 

size of input interferogram, Matlab's choice to represent all numbers internally as 

doubles, and a system memory limit (including swap space) of 1 Gigabyte; we were 

required to subsample the residual interferogram before phase unwrapping. How­

ever, the subsampling was easily implemented on the residual interferogram because 

of the filtering facilitated by the DEM flattening. Note that the initial generation 

and filtering of the interferogram are performed on a small number of contiguous 

range lines (typically less than 25) out of the whole whole data set so that very large 

interferograms can conceivably be generated. 

A large amount of disk space (on the order of 1/2 gigabyte per input in­

terferogram for the data processed in this thesis) was required as different data 

components were all written to disk for each input DEM during processing. The 

data stores of significant size are described in Table 3.1. Assuming the original 

interferometric SAR data size was Nr range samples by Na azimuth samples, and 

a nominal subsampling ratio of 3 in both range and azimuth was applied, the net 

amount of disk space required is on the order of 35 Na Nr bytes. 

The computational complexity (sometimes called the "work") of the DEM 

refinement algorithm was dominated in our implementation by the computation of 
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the range-azimuth frequencies estimated during the DEM flattening algorithm. This 

is because the range-azimuth spectrum was calculated using a DFT-like calculation 

that has 0(n 4) computations. The number of operations was limited for this calcu­

lation by subsampling the residual interferogram aggressively in range and azimuth 

to give a square array of data with approximately 512 samples to a side and limiting 

the number of sample frequencies investigated in the spectrum. The peak frequency 

of the residual interferogram spectra was estimated by fitting the output spectra 

parametrically to determine the peak location. A similar approach using an F F T 

for coarse frequency estimation followed by a fitting procedure using a small number 

of DFT coefficients was used for the range and azimuth frequencies. Because of the 

0(n log n) operations requirement for the FFTs, these calculations were performed 

far quicker than the range-azimuth frequency component calculations. 

There are two other stages in the algorithm that require more than linear 

amounts of calculations: 

• Producing the input coarse DEM in slant range coordinates requires an initial 

triangulation phase which is 0(npts log npts) work where npts is the number 

of samples in the input coarse DEM. These points were gridded as a function 

of the triangulation at a grid spacing commensurate with the input DEM data 

and then oversampled to the slant range grid spacing of the interferogram 

data. The gridding and oversampling functions require approximately linear 

number of operations that varies with the required number of output points. 

• The DEM flattening algorithm and DEM updating algorithm both minimize 

functions using the Levenburg-Marquardt algorithm (see Section D.l) to deter­

mine the optimal baseline parameters. The Levenburg-Marquardt algorithm 

requires an approximation to the Hessian matrix calculated using the Jacobian 

at each iteration. The Jacobian matrix has size Ndat by Nvars where Ndat 

is the number of sample points of the problem and Nvars are the number 
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of parameters. The Hessian matrix approximation requires 0(Nvars2 Ndat) 

computations. Because low order models of the baseline parameters generally 

suffice to characterize the baseline, this computation is dominated by the num­

ber of DEM data points investigated. For example, for a 100 square kilometer 

scene, a linear model suffices for each baseline parameter (i.e. Nvars = 4) and 

there are approximately 100 • 100 independent GTOPO30 data points that 

could be used for the minimization problem. 

In the processing examples, we subsampled the input DEM in range and az­

imuth to decorrelate errors in the original input coarse DEM data and to 

decrease the amount of computations required for these stages of the pro­

cessing. Generally, we attempted to maintain the data at a sample spacing 

consistent with the input coarse D E M sample spacing. 

3 . 5 A l g o r i t h m P e r f o r m a n c e I s s u e s 

In the following subsections, we analyze the performance of the two novel stages of 

the DEM refinement algorithm. In Section 3.5.1 we discuss the factors which impact 

the flattening procedure. In Section 3.5.2 we discuss the issues affecting the DEM 

updating procedure. Both algorithms are sensitive to mean offsets, linear trends 

in range and azimuth, and bi-linear trends in the input coarse DEM as discussed 

in Section 3.5.3. A performance bound for the output InSAR DEM is derived in 

Section 3.5.4. 

3.5.1 D E M Flattening Algorithm Performance Issues 

The effect of error in the initial estimate of S(r) is discussed in Section 3.5.1.1. 

We discuss the residual phase ramp estimate in Section 3.5.1.2. We analyze the 

spectrum of the residual interferogram in Section 3.5.1.3. 
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3.5.1.1 Errors in the Initial S(r) Estimate 

The function of the initial estimate of 8(r) used in the DEM flattening algorithm 

is to provide an accurate estimate of the mean value of S(r) that is to be fitted2. 

If the mean value of 5(r) is specified accurately, the requirement for absolute phase 

unwrapping in the algorithm is eliminated. In addition, least squares fits preserve the 

mean value of the target function if the noise errors are well-behaved (see Appendix 

D.4). Therefore one must assess the accuracy of the mean from the initial estimates 

of 6{r). 

One procedure for registering satellite SAR images for interferometry is to 

estimate the offset between image chips of the two images used to form the interfero­

gram. These offsets are then modeled and a fit is made to determine the resampling 

between the reference and candidate images. A tradeoff must be made between the 

accuracy of the estimated offsets and the number of chips that are processed. 

We would like to calculate the number of chips required so that most of the 

time, the error in the mean of the calculated S(r) corresponds to less than ir error 

in the output phase: 

2^(r) < ^ , (3-10) 

where G$(r) 1 S the standard deviation of the <5(r) estimates. Assuming that the errors 

in the offsets estimates are distributed as independent zero mean Gaussian random 

variables, the factor of 2 limits one to achieving accurate estimates of the mean of 

S(r) 95% of the time. One can calculate a numerical approximation for the mean of 

the average assuming independent samples with constant standard deviation as 

" M - < (3.1D 
\JNreg u 

where Nreg is the number of image chips examined. From [1] 

2 _ 1 - M 3p 2 . . 
*'<••> - — ^ A T ' ( 3 - 1 2 ) 

2 The slopes of the fitted function are calculated using the frequency estimates. 
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where 

H — coherence magnitude, 

pr — the slant range sampling interval, 

Ns = the number of samples in the image chips. 

The condition for registration becomes 

p n2Ns Nreg < 64- [ 6 A 6 ) 

Rearranging eqn. (3.13) gives the required number of chips on the basis of coherence 

magnitude (fi) and samples in the image chips as 

This function is plotted for different chip sizes in Figure (3.5) for ERS standard beam 

data. In general in satellite InSAR, one is interested in processing interferograms 

of reasonable coherence (fi > 0.3) which implies that a tradeoff between number of 

chips and chip sizes must be made to keep Nreg to a reasonable number. See Section 

3.5.3 for more discussion of the effect of mean S(r) errors. 

3.5.1.2 Estimation of Residual Phase Ramp 

The maximum likelihood (ML) estimates of the residual interferogram phase amount 

to maximizing the DFT magnitude in the range and azimuth directions indepen­

dently and then together and and calculating the phase of the sum of the residuals. 

The asymptotically best performance for the estimation process is defined by the 

Cramer-Rao (CR) bounds for the process (see Appendix D.3). Referring to the 

variables of eqn. (3.6),the CR bounds assuming independent samples are 

72(l-/x 2 ) 
(wrA - Wr<a)2 

E \(wa - wa)2 

p2 Nr Na (Na2 - 1) (Nr2 - 1)' 

6(1-M 2 ) 

> 

- n2NaNr(Na2 - 1) 
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Figure 3.5: Number of chips required to ensure that no absolute phase unwrapping 
is required versus coherence magnitude and chip sizes of 16, 32, 64, 128, and 256 for 
ERS standard beam data. 

where 

(wr - WrY 

[(1>o - &y 

Nr 

Na 

EN 

> 

> 

6 (1-M 2 ) 
H2NaNr(Nr'2 - 1)' 

(1 ~ M2) 
2iJ?NaNr' 

the number of range samples, 

the number of azimuth samples, 

the expectation operation, 

the mean value of the estimate. 

(3.17) 

(3.18) 

These functions are plotted in Figure (3.6). It is clear that for interferometric 

applications where one assumes that the coherence magnitude (fx) is greater than 

about 0.3, one should in theory always be able to estimate the residual phase term 
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accurately. These values are analogous to those found for the single tone in additive 

white noise case [48, 41]. 

However, CR bounds are derived using asymptotic arguments. In general, the 

performance of maximum-likelihood estimates will undergo a sudden sharp decrease 

in performance from the CR bound at some specific SNR, called the threshold. This 

effect has been well documented for the single tone frequency estimation problem [48, 

49, 50] and could play a role in the residual interferogram phase estimation problem 

also. James [50] proposed a semi-empirical method to determine the threshold SNR 

based on an indicator function that is a function of the mean-squared phase error. 

The onset of threshold can be approximately estimated for the one-dimensional 

sinusoid as occurring when the phase variance of the ML estimate is 0.0625 rads2. 

We can use this indicator function for the residual phase estimation problem as 

well since essentially the same process (a DFT) is being used to determine the 

frequencies. For our use then, the threshold is defined by 

^o'J^lr = 0.0625. (3.19) 
2/j,2NaNr v ' 

The threshold coherence magnitude can be derived from this relation if Na and Nr 

are defined. A plot of the threshold value of fi assuming Na = Nr is shown in 

Figure (3.7). The receiver noise should not be a limiting factor because of the large 

number of samples in the interferogram which may be used to make the frequency 

estimate [48, 49, 50, 41]. In addition there is an implicit assumption that the SNR 

of the interferogram is sufficient to exhibit phase fringes, which implies that some 

useful frequency estimates may be extracted from the interferogram. 
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(c) CR Bound for ip0 

Figure 3.6: Cramer-Rao bounds calculated for Nr = Na for the model paramet 
of the residual interferogram phase. 
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3.5.1.3 Spectrum of the Residual Interferogram 

A critical step in the flattening algorithm is the estimation of the residual phase 

ramps from the maximum spectral peaks of the residual interferogram. In the 

following we discuss the possibility of error in this process. 

The simplified model for the interferogram used to develop the DEM flat­

tening algorithm in Section 3.2 neglected one important component of InSAR data: 

the noise signal. Noise in the interferogram is generated by system noise in the two 

SAR images and by the uncorrelated portions of the SAR signal data spectrum (see 

Appendix A). Assuming that the noise level in both images is constant and that 

no weighting is applied during SAR processing, the spectrum of the resulting noise 

in the interferogram will be a triangle function in range and azimuth because of 

the multiplication of the oversampled SAR images used to form the interferogram. 

When forming the residual interferogram, the constant (flat-earth) part of the geo­

metrical phase model tends to shift the peak of the noise spectrum away from zero in 

the same manner as the interferogram signal data is shifted towards zero. Normally, 

one minimizes the contribution of interferogram noise to errors by halfband filtering 

the data (see Appendix B). 

Atmospheric disturbances are another source of noise in the interferogram 

phase. These disturbances tend to be low-frequency, large area disturbances. They 

are more likely to distort the peak location but not the existence of a peak. Errors 

of this sort are discussed in Section 3.5.3. 

One can view the spectrum of the residual interferogram as the convolution 

of the spectra of the geometry error phase term (approximately a sinusoid) with the 

DEM error term. A necessary condition for the residual interferogram spectral peak 

to correspond to the geometric phase ramp is that the spectrum of the DEM error 

term / eJ*d e m have a significant maximum at zero frequency. Statistical character­

ization of the spectrum of /e J * d e m is difficult because of the unknown topography 
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and the impact of interpolation of noisy DEM data from the D E M sample positions 

( e.g. a U T M grid ) to the radar data grid. However we can make some observations 

about the impact of this noise source on the algorithm's performance. 

The deviation of ^dem from zero depends on the normal baseline of the data 

in concert with the distribution of DEM errors (Ah) and the ground range (x) (see 

eqn. (3.4)). In general, one expects that the mean of the DEM error will be at or 

close to 0 so the distribution of ^dem will have a local peak at zero frequency. If this 

peak at zero frequency is the only peak in the spectrum due to D E M error, then 

the spectrum of the residual interferogram will be directly related to the geometry 

error. If there is a larger peak at non-zero frequency in the spectrum of eJ*d e m, the 

phase ramp estimated as a correction to the second slant range will be in error and 

the flattening algorithm's results will be unreliable. 

For a given set of DEM errors, the normal baseline essentially determines 

how broad the spectrum of the DEM error signal becomes. As the normal baseline 

becomes larger and hence the altitude of ambiguity becomes smaller, the energy 

in the spectrum of the residual interferogram spreads and the possibility of having 

multiple peaks near zero frequency increases. 

We illustrate this effect diagrammatically in Figure (3.8). For the DEM 

errors shown in Figure (3.8) (a), the spectrum of the complex valued D E M error 

phase term was plotted for altitudes of ambiguity of 500 m, 250 m, and 50 m 

respectively as shown in Figure (3.8) (b). For the 500 m case, the DEM phase 

error spectrum has a sharp peak at 0 frequency. A geometry error could therefore 

be recognized easily from the residual spectrum of the interferogram during the 

unwrapping processing with this data. When the altitude of ambiguity is 250 m, 

the magnitude of the peak at 0 frequency is less prominent and one of the sidelobes 

has become significantly larger. This is likely a marginal case for recognition of 

the geometrical error frequency component. At an altitude of ambiguity of 50 m, 

63 



the spectrum of the residual interferogram is very broad with no prominent peaks 

and no chance of recognizing a particular frequency component as the frequency 

associated with the geometry error. 

The spectrum of the residual interferogram indicates how well the algorithm 

has performed. If there are a large number of discrete peaks near zero frequency, 

then it is likely that an error exists in the geometrical phase, and the baseline 

parameters will also likely be in error. The baseline parameters can be re-estimated 

after phase unwrapping to ensure accurate height estimates are generated. However, 

if the spectrum contains only a single peak at zero frequency, then we know that 

the input DEM matches the structural information in the interferogram to sufficient 

detail so that the geometrical phase errors can be correctly recognized. The baseline 

parameters generated from such a process will likely be reasonably accurate subject 

to trends and biases in the input DEM (see Section 3.5.3). Note that in general, it 

is always useful to refine the baseline estimates by fitting the InSAR topography to 

the input coarse DEM (see Section 4.1.2). 
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(b) Spectrum of DEM error term. 

Figure 3.8: Sample spectra for DEM errors. 
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3.5.2 D E M Updating Performance Issues 

In the final stages of processing, the baseline parameters may have to be re-estimated 

using the input coarse DEM as a template function. The errors that can specifically 

affect this calculation are 

• Random phase noise. 

Random phase noise lies between — ir and TT. It contributes to the variance of 

the baseline parameter estimates and therefore also the output terrain height 

estimates. Usually there is an abundance of InSAR data points so that aver­

aging may be taken advantage of to ensure good quality baseline parameter 

estimates and hence height estimates are achieved. 

• Phase unwrapping errors. 

Phase unwrapping errors can either be local (an isolated pixel or small number 

of pixels) or global in the sense of a group of pixels unwrapped to the wrong 

ambiguity. Unwrapping errors tend to occur at multiples of the ambiguity 

height of the interferometer and tend to create long "tails" in the error distri­

bution of the topographic height estimates. Both local and global unwrapping 

errors tend to bias the estimate of the baseline parameters with the global 

errors causing severe errors in the output height estimates. By checking that 

the average height of contiguously unwrapped groups of pixels is consistent 

with the input coarse DEM mean, one can eliminate the unwrapping errors 

for large groups. 

• Random input DEM errors. 

Input DEM errors cause similar problems to the random phase noise. Again, 

we can take advantage of the large number of data points available to us to 

minimize the impact of DEM errors on the output topographic heights. 
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One other source of noise is trend and offset errors in the DEM. These errors are 

discussed in the next section as they affect both the DEM flattening and DEM 

updating algorithms. 

3.5.3 Effects of D E M Trend Errors 

Considering the bi-linear nature of an error in h (input DEM height) or r2 — r (slant 

range difference) due to baseline parameter errors, the DEM refinement algorithm is 

sensitive to any error sources which have a similar linear character. Possible sources 

of this type of error include: 

• a, the satellite altitude, 

• interferogram phase, 

• mean value of S(r) estimated from the SAR image registration parameters, 

• coarse DEM model. 

The satellite altitude is used as a parameter for the geometry calculation. Errors 

in a result in bias and some slight error trends in the output DEM. Errors in the 

interferogram phase are caused by atmospheric artifacts [51, 15] for example. Lin­

ear errors in the interferogram phase are wrongly identified as geometry errors by 

both baseline estimation algorithms, leading to maladjustment of the estimated in­

terferometer geometry. Finally, linear trends and offsets in the D E M used for the 

geometry calculation also lead to errors in the estimated geometry. In general, for 

the algorithm to arrive at the correct value of B and 0, there should be no linear or 

constant trends either in the DEM or <5(r) derived from the interferogram or from 

an error in the satellite altitude. 

However, if the eventual goal of the baseline parameter estimation exercise 

is to estimate topography from the unwrapped interferogram phase, the error in 

67 



the baseline estimate can be beneficial. In particular, trends in the interferogram 

phase, error in the estimate of the mean value of S(r), and altitude errors can all be 

compensated by estimating the "incorrect" baseline geometry. Because the height 

error terms due to baseline parameter errors are linear functions they "absorb" 

systematic errors such mean offsets and error trends in the satellite altitude and 

S(r). Note that trends in the input DEM used to calculate 6(r) are not compensated 

by improper baseline parameter estimates in the height calculation. The trends and 

mean values (see Appendix D.4) of the input DEM are conserved in any DEM 

calculated from the unwrapped phase. This is important because it means that the 

proposed method of DEM refinement is not suited to removing trend and mean 

errors in existing DEMs. However, fine details of the topography which are present 

in the interferogram may be used to update the existing biased coarse DEM even 

though it may have linear bias terms. These effects are demonstrated in Section 4.2. 

3.5.4 Expected Baseline and Height Accuracy-

Prediction of the accuracy of the baseline parameter estimates and height estimates 

for the DEM refinement algorithm is hampered by the nonlinear nature of the mini­

mization problem, and the interpolation of the DEM values to the slant range radar 

grid, and in the case of the flattening algorithm, the dependence of algorithm per­

formance on estimation of peak frequencies in the residual interferogram. Following 

the discussion of Section 3.5.1.3, we do not expect the baseline parameters derived 

during the DEM flattening algorithm to be accurate because of the likelihood of 

extraneous peaks in the cases where the normal baseline is suitable for topographic 

estimation (i.e. the altitude of ambiguity is small). 

For the DEM updating algorithm, the net effect of errors in B and 0 is to 

create an approximate bilinear trend and possibly an offset in the InSAR output 

DEM. For the output InSAR DEM to match the input coarse DEM in the mean-
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squared error sense, the output InSAR DEM must have the same mean and slope 

characteristics as the input DEM. Therefore, analyzing the mean and slope errors 

of a bilinear function fit to the input DEM errors will give some indication of the 

best possible accuracy of the output InSAR D E M estimates. 

It can be shown under the assumption of zero mean, Gaussian distributed, 

uncorrelated errors in the N by N element input coarse DEM (see Appendix D.5), 

that 

the standard deviation of the mean error of the output plane fit is 

_ °~DEM (o 9 f 1N 
Pmean — — > 

the standard deviation of the output plane fit is 

0~out = , (6.2L) 

the standard deviation of the maximum error across the swath is 

Ahswath = ^ JV ( ivVl ) ^ ° D E M - (3.22) 

These functions establish lower bounds on predicted output D E M accuracies as a 

function of input DEM errors. They are tabulated for GTOPO30, DTED, and 

TRIM DEMs in Table 3.2 for Nr = Na = 100. From the table, it is clear that In­

SAR DEMs derived from reasonable quality interferograms using DTED and TRIM 

DEMs can potentially be very accurate. DTED-1 and DTED-2 quality DEMs can 

potentially be derived from a full 100 km by 100 km input GTOPO30 DEM. Fur­

ther improvements in accuracy for GTOPO30 case could be achieved by processing 

larger amounts of data. 

Following Section 2.4, the error bound defined above can be used to define 

a range of baseline magnitude and orientation errors which yield InSAR DEMs 

consistent with the error properties of the fitted plane. Due to errors from additional 
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input output std. output output 
Source DEM &DEMm of mean in m std. in m Ahswaf}i 

GTOPO30 86 0.9 2.6 5.9 
DTED 18 0.2 0.5 1.2 
TRIM 3.0 0.03 0.09 0.2 

Table 3.2: Estimated mean and across swath height errors in planar fit to DEM 
errors for Nr = Na = 100. For the GTOPO30 DEM this corresponds to a standard 
ERS scene. For the DTED and TRIM DEMs this corresponds to ground coverage 
of about 10 kms. 

sources such as independent phase noise in the unwrapped phase, phase unwrapping 

errors, and the assumption of uniform independent error statistics, the InSAR DEM 

error must be greater than or equal to the possible error of the plane fit to the DEM 

errors: 

Ahswath (InSAR) > Ahswath (DEM). (3.23) 

The mean height error in the output DEM is difficult to derive analytically but one 

can use the proxy estimate of the average of the height errors across the swath: 

Akmm{I«SAR) = ^ ( A B . A e ) + A / w ( A f i . A 9 ) ( J J J 4 ) 

to set a lower bound for the mean InSAR DEM height error which must be consistent 

with the standard deviation of the mean of the input DEM: 

6hmean(InSAR) > ODEMmean- (3.25) 

Using the above equations and Appendix D.2, the range of possible values of baseline 

parameter errors can be found which produce InSAR DEM errors within the same 

range as the possible errors in the input DEM. An example of a plot of the range 

of valid errors for the GTOPO30 parameters for a standard ERS scene are shown 

Figure (3.9). 

Finally, one can write an expression for the output height accuracy of the 

InSAR DEM including parameter errors and random independent phase noise but 
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Figure 3.9: Range of baseline parameter errors for GTOPO30 input DEM for a 
standard ERS scene with B fa BL fa 250 meters. The mean and swath errors are 
shown in Table 3.2. 

excluding the effect of phase unwrapping errors as 

2 _ 2 , 2 
°~h — apars + Otf, (3.26) 

where: 

a\ = the output height standard deviation, 

J2 

pars 
< 7 - „ „ c = the standard deviation due to the cumulative effect of parameter errors, 

_2 
0 $ 

the standard deviation of the phase noise. 

All of the parameters for the InSAR topography problem (a, mean S(r), B, and 

0 ) combine to give biases and linear trend errors in the output DEM. Using our 

approach, these errors can be reduced by adjusting the values of B and 0 to provide 

a minimum least squares fit to the input coarse DEM. The second independent error 
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term depends on the amount of phase noise which can be considered to be an additive 

independent error term. Note that phase unwrapping offset errors affecting a single 

large unwrapped phase group will cause significant errors in the baseline parameter 

estimates and hence the output height estimates. 

3.6 S u m m a r y 

We have presented and analyzed an algorithm for estimating topography using 

coarse DEMs. Key to the algorithm's formulation is estimating the baseline both 

before the interferogram phase is unwrapped and after the interferogram phase is 

unwrapped. Estimating the baseline before the phase is unwrapped allows us to 

flatten the interferogram by removing the topographic model of the interferogram 

phase. Estimating the baseline parameters after the phase is unwrapped allows the 

baseline parameters to be refined for topographic height estimation. Lower bounds 

on the algorithm performance were derived using a hypothetical experiment involv­

ing plane fits to random noise. 

Flattening with an existing DEM facilitates phase unwrapping and can pro­

vide an accurate estimate of the interferometer geometry. One can check whether 

the algorithm has succeeded or not by examining the spectra of the residual inter­

ferogram. Multiple peaks near zero frequency suggest that the baseline parameter 

estimates will be in error. The performance of the DEM flattening algorithm is 

determined by the quality of the input DEM relative to the variability of the terrain 

and the sensitivity of InSAR geometry to height errors. Large height errors coupled 

with large normal baseline will not likely give reliable baseline parameter estimates. 

Even if the baseline parameter estimates are poor, the resulting residual interfero­

gram can be post-processed (filtered and downsampled) to reduce the possibilities 

of problems in phase unwrapping processing. 
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In the DEM updating algorithm, baseline parameters can be mis-estimated 

to compensate for errors in other parameters such as satellite altitude errors and 

absolute phase unwrapping errors. The baseline estimation algorithm is sensitive to 

linear trends and biases in the input coarse DEM. Processing as large an area as 

possible will minimize the likelihood of the coarse DEM having spurious bias and 

trend errors. 

It is tempting to suggest an iterative approach to processing whereby the 

output InSAR height estimates are used as the input "coarse" DEM for another ap­

plication of the DEM refinement algorithm. However, since the updating algorithm 

conserves trends in the input DEMs, application of the algorithm a second time 

will not lead to significant improvement in the output InSAR heights. In addition, 

the noise in the output InSAR D E M will be correlated with the phase noise in the 

interferogram so the improvement through filtering the residual interferogram will 

be minimal. 
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C h a p t e r 4 

S imulat ions of D E M Ref inement 

A l g o r i t h m 

Simulated datasets were generated and processed to investigate the D E M refine­

ment algorithm's performance. Two different scenarios were investigated: random 

DEM errors in Section 4.1 and low-frequency trend errors in Section 4.2. Summary 

remarks are given in Section 4.3. Experimental results for an ERS interferometric 

pair and a RADARSAT interferometric pair are presented in Chapter 5. 

4.1 R a n d o m D E M E r r o r S i m u l a t i o n s 

For the random DEM simulations, we synthesized a noise free interferogram from an 

approximately 10 by 40 km sample of TRIM [52] data from Canadian map sheet 92-

O (Taseko Lakes). Using a noise free interferogram allows us to isolate the efficiency 

of the flattening and updating algorithms in estimating the baseline parameters. 

Nominal ERS SAR parameters were used to generate an interferogram with 2000 

range by 350 azimuth samples for a succession of normal baseline values. 
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The TRIM data lies on an irregular grid with nominal sample spacing of 100 

m in relatively flat terrain and 75 m in areas with significant slope [52]. The synthetic 

interferogram phase was obtained by interpolating the scattered TRIM height points 

to a slant-range/azimuth SAR grid. To test the effects of different D E M accuracies, 

lower resolution and quality DEMs were created by deleting selected points from the 

TRIM data [53]. When the pruned DEMs are interpolated to the slant range grid 

of the interferogram, random (but locally correlated) errors result from the missing 

data points because of the undersampling in the pruned DEM. 

Reduced-posting DEMs were generated with nominal 2a interpolated height 

errors of 15, 25, 45 and 80 meters. The error statistics of the D E M after interpo­

lating to slant range are shown in Table 4.1. GTOPO30 data points [21] were also 

interpolated to generate a coarse DEM for processing. The GTOPO30 slant range 

interpolated DEM had errors roughly three times that of the 80 m simulated DEM. 

In addition, Table 4.1 also includes a prediction of the minimum output InSAR 

DEM standard deviation in the accuracy column using the analysis of Section 3.5.4. 

A graphical example of the DEM pruning algorithm is shown in Figure (4.1) 

for the 25 m and 80 m DEMs. The top row of sub-figures in Figure (4.1) applies to 

the 25 m dataset while the bottom row of sub-figures applies to the 80 m data set. 

Each row shows the input DEM sample locations, the interpolated slant range DEM, 

and the interpolated DEMs' errors with respect to a dataset generated using all the 

available TRIM samples. The 80 m dataset was generated from approximately 0.5% 

of the TRIM DEMs' samples while the 25 m data set required approximately 5% 

of the samples. The difference in the number of input data samples is reflected 

visually in the lack of detail in the 80 m interpolated dataset with respect to the 25 

m dataset and quantitatively in the increased RMS height error of the 80 m data 

set compared with the 25 m data set (40 m versus 12 m, see Table 4.1). 

From the analysis of Section 3.5 one expects that the error performance of 
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the algorithm depends both on the baseline magnitude and orientation. We simu­

lated data with a wide variety of baseline magnitudes and orientations and found 

roughly the same performance in terms of number of iterations to convergence and 

topographic accuracy of the final estimates in all cases. To illustrate the dominant 

effect of the perpendicular component of baseline magnitude, we chose one repre­

sentative case of orientation with mean (f> « TT/4, which tended to have the largest 

number of iterations to convergence. The simulations were performed with mean 

baseline magnitudes of 70, 170, 270, 370 and 470 meters at this orientation. For a 

more realistic simulation, the baseline magnitude was allowed to vary by 10 cm and 

the baseline orientation was allowed to vary by 100 /xrads in the azimuth direction. 

Lower bounds on the accuracy predictions for the output InSAR DEMs are given 

in Table 4.1 also. 

DEM Mean Std. 90% Max Min 
Output 
mean 

Output 
std. 

15 m 0.1 7.6 8.2 246.3 -305.1 0.1 0.2 
25 m 0.8 12.0 16.0 231.9 -344.1 0.2 0.3 
45 m 1.2 22.5 32.0 235.3 -405.3 0.3 0.5 
80 m 7.6 40.1 65.0 367.2 -409.7 0.5 0.9 

GTOPO30 2.9 116.5 194.9 847.5 -375.4 1.5 2.7 

Table 4.1: Statistics and lower bound on output DEM accuracy for degraded DEM 
height errors in meters after interpolating the DEM samples to the simulated slant 
range grid. 
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Figure 4.1: Example of interpolated DEMs in slant range for the 25 m and 80 m 
data set. See page 75 for more information. 
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4.1.1 D E M Flattening Simulations 

The results of the DEM flattening algorithm are summarized in Table 4.2. The 

following factors are reported in the table for each combination of input coarse 

DEM and baseline magnitude: 

• mean error of the baseline magnitude, B; 

• mean error of the baseline orientation, 0; 

• the state of spectrum of the residual interferogram, either single peaks (y/) in 

all the residual interferogram spectra or multiple peaks (x) in one or more of 

the residual interferogram spectra; and 

• the error of the height estimate using the algorithm baseline parameters and 

ideal unwrapped interferogram phase. 

The DEM height errors give concrete values for the DEM error caused by the given 

baseline parameter error and calculated with respect to the accurate D E M used to 

create the interferogram. 

From Table 4.2, we see that the algorithm works well with the higher quality 

input DEMs (the 15 m and 25 m data sets), where the refined baseline estimates are 

accurate to within a few millimeters. The flattening algorithm produces baseline 

parameter estimates yielding relatively accurate DEMs for the 15 m, 25 m, and 45 m 

case. These output InSAR DEMs have accuracy statistics on the same order as the 

predictions made in Table 4.1 but in general the errors in output InSAR DEMs are 

larger than predicted using the input DEM error statistics. For the 80 m simulated 

DEM (when the input DEM has 40 m standard deviation errors), the baseline 

parameters are not estimated correctly when the baseline magnitude becomes larger 

than 70 meters. As the baseline magnitude and hence the normal baseline increases, 

the residual interferogram's phase errors due to DEM errors become large enough 
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to make an accurate estimate of the required frequencies due to geometry errors 

unlikely. The far coarser and higher error GTOPO30 data set did not provide the 

correct baseline estimates for any baseline length. In further experiments we found 

that the normal baseline had to be less than 20 m for the algorithm to work with 

the GTOPO30 data. This is likely due to one large outlier in the original DEM 

which distorts the geometrically estimated S(r) significantly from the true value 

Baseline B Error Q Error Spectrum Mean h Std. h 
in m Dataset in m in mrads check in m in m 

15 m 0.001 0.009 V 0.2 0.2 
25 m -0.003 -0.036 V 0.9 0.5 

70 45 m 0.009 0.130 V 1.3 1.6 
80 m 0.009 0.144 V 6.0 2.4 

GTOPO30 -2.171 -32.776 X -62.0 299.7 
15 m 0.002 0.010 V 0.3 0.2 
25 m -0.006 -0.032 V 1.0 0.4 

170 45 m 0.010 0.060 V 1.3 1.1 
80 m 0.508 2.932 X 2.6 66.3 

GTOPO30 -0.653 -3.932 X -10.9 81.2 
15 m 0.003 0.010 V 0.3 0.2 
25 m -0.008 -0.026 V 1.0 0.3 

270 45 m -0.007 -0.024 V 1.1 0.8 
80 m 0.418 1.493 X -18.0 28.3 

GTOPO30 -0.856 -3.155 X 12.9 38.4 
15 m 0.004 0.011 V 0.3 0.2 
25 m -0.007 -0.016 V 0.9 0.3 

370 45 m 0.032 0.090 V 1.1 1.5 
80 m -0.260 -0.702 X 0.9 9.0 

GTOPO30 -1.318 -3.554 X 12.0 41.9 
15 m 0.005 0.012 V 0.2 0.2 
25 m -0.002 -0.002 V 0.7 0.3 

470 45 m 0.101 0.214 -0.1 2.6 
80 m -0.642 -1.307 X 21.8 15.4 

GTOPO30 -2.382 -5.056 X 19.0 47.9 

Table 4.2: DEM flattening simulation results. The spectral check column refers 
to the condition of the residual interferogram spectrum. Residual interferograms 
having strong single peaks at 0 frequency are denoted by sj while interferograms 
with multiple peaks near zero frequency are denoted by X . 
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(see Figure (5.4)). 

From our analysis in Section 3.5 and more particularly Section 3.5.1.3, we 

expect that the spectrum of the residual interferogram in the range, azimuth, and 

range/azimuth directions will be useful quality measures for assessing the accuracy 

of the baseline parameter estimates. To demonstrate the utility of examining the 

spectra of the residual interferogram, we examine the 470 m baseline case in Figure 

(4.2). The left hand sub-figures in Figure (4.2) show the spectra of the residual 

interferograms generated from the flattening algorithm's estimate of the baseline 

parameters and the associated input DEM. The right hand sub-figures show the 

spectra of the residual interferogram generated with the true baseline parameters 

and the same DEMs as used in the flattening algorithm. Each one of the sub-figures 

shows the spectrum in the sub-figure's labeled direction (i.e. range, azimuth or 

range/azimuth) for all input DEMs and the ground truth (TRIM) DEM. The spec­

tral estimates were made for each input DEM in the desired direction independently 

and then the spectra were plotted with the same vertical scale in a stack-like con­

figuration to facilitate comparison of the different results. In each sub-figure, input 

DEM quality decreases (i.e. DEM errors increase) as one goes from the bottom plot 

to the top plot. The input DEM associated with each plot within each sub-figure is 

shown as a label to the left of the plots. 

Firstly considering the spectra generated using the true baseline parameters 

(i.e. the right hand plots of Figure (4.2)), we note that as the D E M quality decreases 

the spectra of these residual interferogram tends to "spread" across a larger range 

of frequencies. In the "0 m" data set (the lowest rows of each plot), the dominance 

of the DC term is apparent. At the correct baseline and with no input DEM errors, 

the "flattened" interferogram is a constant real value and the spectrum are therefore 

sine functions. As DEM errors are progressively introduced, the dominance of 

the DC term vanishes, and significant distortion enters the spectra of the residual 

interferogram. As the energy in the residual interferograms spectra spreads due to 
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the decrease in DEM quality, an increasing number of local peaks become apparent 

near zero frequency. 

In the development of the DEM flattening algorithm (see Section 3.2), it was 

assumed that the DEM errors contributed only one significant peak to the residual 

interferogram spectra that was convolved with the nearly linear baseline parameter 

phase error terms. As we see in the right-hand plots of Figure (4.2), this assumption 

is not valid when the DEM errors start to become large. Predictably, this results in 

poor algorithm performance for large DEM errors as shown in Table 4.2. 

Transferring our attention to the left-hand side plots of Figure (4.2) with 

the results of Table 4.2 in mind, the DEM flattening's algorithm goal of driving a 

significant spectral peak to zero frequency is realized for most input D E M data sets 

except for the GTOPO30 data set where the iterations were in general stopped after 

reaching a maximum number of iterations. It is evident that the flattening algorithm 

performs well when the spectra of the residual interferogram is dominated by its DC 

term but fails to yield correct baseline parameters when the spectra shows significant 

peaks at non-zero frequencies. The extra peaks in the residual interferogram spectra 

correspond to the input DEM height errors as shown in the right-hand plots of Figure 

(4.2) and are not introduced by the DEM flattening algorithm. These extra peaks 

confound the D E M flattening algorithm, which uses the frequency associated with 

the largest peak to calculate the refinement to 5(r) in the fitting algorithm. 
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(a) Azimuth: D E M flattening results. 

(c) Range: D E M flattening results. 

(e) Range/Azimuth: D E M flattening results. 

(b) Azimuth: true baseline parameters. 

(d) Range: true baseline parameters. 

(f) Range/Azimuth: true baseline parameters. 

Figure 4.2: Comparison of residual interferogram spectra plotted in dB for az­
imuth,range, and azimuth range frequency components. See page 80. 
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4.1.2 D E M Updating Simulations 

The DEM updating simulations processed the output of the DEM flattening algo­

rithm to generate refined DEM estimates. The D E M updating simulations encom­

pass both both the phase unwrapping processing and re-estimation of the baseline 

parameters using the procedure of Section 3.3. 

The phase unwrapping processing was performed in two stages. In the first 

stage, weighted-least squares phase unwrapping was performed using binary weight­

ing. An initial weight mask was computed for all data sets based on the small 

number of zones of radar shadow throughout the image. This initial weighting was 

augmented by a mask that was set to zero when the magnitude of the range phase 

derivative of the 470 meter dataset exceeded n rads. The second mask was applied 

as an approximation for zones of low coherence magnitude associated with terrain 

effects. The 470 meter data set was used to calculate the second mask as it is the 

worst case for all the simulations. The same mask was used for all data sets to get a 

uniform basis of comparison. For each data set, this initial weighting was then aug­

mented by the residues produced by the current residual interferogram phase. After 

the initial weighted least squares unwrapped phase estimate, the phase residual was 

unwrapped using Flynn's Minimum Discontinuity method [54, 55]. The unwrapped 

phase was then used to update the DEM flattening algorithm's estimate of <5(r) for 

estimation of the final baseline parameters and refined D E M estimate. Results of 

the experiment are shown in Table 4.3, Table 4.4, and Table 4.5. 

Table 4.3 reports the error statistics of the input coarse D E M pixels corre­

sponding to the output refined DEM pixels. This ensures that we compare input 

and output DEM quality over the same pixels. These values are different from the 

values reported in Table 4.1 because the updating simulations only produces results 

for a subset (about 90 %) of the input coarse D E M values. The binary mask tends to 

discriminate against pixels in steeply varying terrain where height errors are likely 
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larger. The DEM error statistics are consistent with the input DEM error statistics 

in Table 4.1 but with smaller standard deviation in general. 

Table 4.4 reports the error statistics of the refined InSAR DEM along with 

the errors of the baseline parameters, the number of phase unwrapping errors, and 

improvement in the DEM quality with respect to the input coarse DEM. The im­

provement in the DEM quality is expressed as the ratio of the input coarse DEM 

standard deviation to the output InSAR D E M standard deviation. The perfor­

mance statistic is greater than 1.0 for all input DEMs except for the GTOPO30 

DEM which generally demonstrates the improvement due to phase unwrapping and 

re-estimation of the baseline parameters. Note that when checking for offset phase 

errors of unwrapped phase groups, the GTOPO30 dataset often failed because the 

mean topographic height calculation relied on too few input D E M points to establish 

an accurate estimate of the mean height of the group. 

The percentage of phase unwrapping errors is generally correlated with the 

decrease in output DEM quality. Unwrapping errors bias the baseline parameter 

estimates as unwrapping errors produce topographic heights which are centered at 

height error values corresponding to the 2n ambiguity height of the interferogram. 

The process of least squares fitting generally tries to drive the mean error of the 

fitted parameter towards 0 (see Appendix D.4). Phase unwrapping errors therefore 

tend to bias and inject error trends into the output height estimates. 

The mean values of the output InSAR D E M are approximately the same 

as the input mean DEM values shown in Table 4.3. This demonstrates the DEM 

updating algorithm's tendency to conserve the mean of the input data. In general, 

the baseline errors from the DEM updating procedure are either approximately equal 

or larger than the same errors for the DEM flattening procedure as the baseline 

parameters adjust to compensate for the mean value of the input coarse DEM. 

To assess whether or not the DEM updating procedure increased the output 
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InSAR DEM product quality, we calculated the error statistics of the DEM gen­

erated using the DEM flattening baseline parameters and the output unwrapped 

phase and compared them with the height errors of the input DEMs also. The 

statistics are reported in Table 4.5. Again, the ratio of input to output DEM errors 

using the DEM flattening estimate of the baseline parameters are reported using 

the unwrapped phase estimates. The performance ratio is smaller than the same 

ratio for the DEM updating algorithm in general although the baseline errors are in 

general equal or smaller than the baseline parameter errors from the DEM updating 

algorithm. Note also the effect of wrong baseline parameters because of multiple 

peaks in the residual interferogram spectra that generates output DEMs with large 

output errors. 

The improvement in output InSAR DEM quality with the DEM updating 

baseline parameters is unsurprising because the updating algorithm minimizes the 

output DEM variance with respect to the input coarse DEM. In contrast, the DEM 

flattening algorithm minimizes a fit of an estimate of the slant range difference 

between the two images. The two problems are not identical but are close enough 

to yield similar results. 
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Baseline Mean h Std. h 
in m Dataset in m in m 

15 m 0.3 3.8 
25 m 1.2 8.5 

70 45 m 1.5 17.5 
80 m 8.2 36.1 

GTOPO30 -2.8 108.3 
15 m 0.3 3.7 
25 m 1.3 8.4 

170 45 m 1.6 17.5 
80 m 8.3 35.9 

GTOPO30 -4.2 105.7 
15 m 0.3 3.7 
25 m 1.3 8.3 

270 45 m 1.6 17.4 
80 m 8.5 35.9 

GTOPO30 -2.8 104.3 
15 m 0.3 3.7 
25 m 1.3 8.3 

370 45 m 1.6 17.4 
80 m 8.8 35.7 

GTOPO30 -2.7 101.3 
15 m 0.3 3.6 
25 m 1.4 8.3 

470 45 m 1.7 17.5 
80 m 9.3 35.4 

GTOPO30 -2.5 98.1 

Table 4.3: Input DEM error statistics for DEM updating experiments. 
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% 
Baseline B Error 0 Error Mean h Std. h o(in) Unwrapping 

in m Dataset in m in mrads in m in m a(out) Errors 
15 m 0.001 0.010 0.3 0.3 12.3 0 
25 m -0.003 -0.035 1.3 0.5 15.7 0 

70 45 m 0.011 0.161 1.5 1.8 9.9 0 
80 m 0.017 0.262 8.1 4.3 8.4 0 

GTOPO30 -0.265 -4.439 -2.9 47.8 2.3 49 
15 m 0.002 0.010 0.3 0.4 8.7 0 
25 m -0.007 -0.035 1.3 0.5 17.2 0 

170 45 m 0.027 0.165 1.6 1.9 9.2 0 
80 m 0.041 0.267 8.3 5.0 7.3 0 

GTOPO30 -2.247 -13.492 -3.9 112.6 0.9 45 
15 m 0.003 0.011 0.3 0.4 9.2 0 
25 m -0.010 -0.034 1.3 0.6 14.3 0 

270 45 m 0.044 0.167 1.6 6.3 2.8 1 
80 m -0.347 -1.305 8.5 12.6 2.8 11 

GTOPO30 -2.090 -7.646 -2.9 80.5 1.3 79 
15 m 0.004 0.012 0.3 0.5 7.4 0 
25 m 0.186 0.518 1.3 7.7 1.1 4 

370 45 m -0.212 -0.584 1.6 9.9 1.8 5 
80 m -0.888 -2.338 8.8 18.7 1.9 40 

GTOPO30 -1.198 -3.035 -2.8 68.2 1.5 75 
15 m 0.005 0.012 0.3 0.9 4.3 0 
25 m 0.166 0.364 1.4 5.8 1.4 4 

470 45 m 0.237 0.522 1.7 7.9 2.2 4 
80 m -0.515 -1.019 9.3 14.3 2.5 34 

GTOPO30 -3.260 -6.848 -2.4 67.2 1.5 46 

Table 4.4: Output DEM error statistics for DEM updating experiments. 
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Baseline Mean h Std. h a(in) 
in m Dataset in m in m a (out) 

15 m 0.2 1.3 2.9 
25 m 0.9 1.6 5.3 

70 45 m 1.2 3.0 5.9 
80 m 5.8 5.5 6.6 

GTOPO30 161.8 302.2 0.4 
15 m 0.3 1.6 2.3 
25 m 1.0 1.9 4.5 

170 45 m 1.1 3.8 4.6 
80 m 2.8 67.3 0.5 

GTOPO30 -21.3 136.9 0.8 
15 m 0.2 1.9 2.0 
25 m 0.9 2.2 3.7 

270 45 m 1.8 7.4 2.3 
80 m -4.1 34.3 1.0 

GTOPO30 -58.0 99.6 1.0 
15 m 0.2 1.6 2.4 
25 m -2.4 10.7 0.8 

370 45 m 5.5 13.3 1.3 
80 m -16.5 29.9 1.2 

GTOPO30 -66.6 101.5 1.0 
15 m 0.2 1.7 2.1 
25 m -1.5 8.1 1.0 

470 45 m -3.7 10.9 1.6 
80 m 3.4 22.0 1.6 

GTOPO30 -39.2 91.3 1.1 

Table 4.5: Output DEM error statistics using unwrapped phase with D E M flattening 
baseline parameters. 
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4 . 2 E f f e c t o f T r e n d E r r o r s 

As noted in Section 3.5.3, errors in certain parameters result in low frequency error 

trends in 8(r) which may cause errors in the baseline estimate. However, in some 

cases the algorithm can converge upon an incorrect baseline which counterbalances 

errors in the parameters, resulting in reasonable quality InSAR terrain height es­

timates. To demonstrate this feature of the algorithm, we consider four types of 

errors: 

• a satellite altitude error of 100 meters, as might be experienced when ERS 

predicted orbit data are used for estimating the satellite position, 

• (5(r) errors consisting of a linear trend of two phase cycles in the interferogram 

(modeling an atmospheric artifact) and an offset of 2 A (modeling an error in 

estimating the constant offset between the two SAR image slant ranges), 

• linear errors on the input DEM consisting of an offset of 15 meters with a 5 

meter slope in range and a 2 meter slope in azimuth consistent with errors 

observed between two different DEMs we have processed, 

• zero mean quadratic errors on the input DEM consisting of quadratic func­

tions in range and azimuth directions with maximum amplitude of 5 meters 

corresponding to a topographic error with standard deviation of « 2 meters. 

The baseline estimation algorithm was applied to a noise-free synthetic inter­

ferogram with baseline of B = 270 m and 0 = 1.15390 f» 37r/8. The results from the 

DEM flattening algorithm and the DEM updating algorithm are reported below. 

Terrain heights were generated with the true unwrapped phase using the 

baseline parameters generated by the DEM flattening and DEM updating algo­

rithms. The results are summarized in Table 4.6 and Table 4.7. Height errors are 
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reported for both the algorithms' baseline parameter estimates (denoted "Algorithm 

Baseline" in the table) and the true baseline parameters (denote "True Baseline" 

in the table) for both algorithms. The DEM error statistics are the same for both 

algorithms to within the number of significant figures reported in the table. 

On comparing the height error statistics of the DEMs derived using the 

algorithm parameter estimates and the true baseline parameters, we see that the 

baseline estimates for the altitude and slant range errors, despite being in error, 

can eliminate some of these errors in the terrain height estimate. For example, the 

altitude error and <5(r) error simulations show an improvement in the quality of the 

output DEM by using the algorithm estimate of the baseline parameters instead of 

the true baseline. In these cases the flattening and updating algorithms' baseline 

parameter estimates are in error, but the baseline error compensates for the error 

of the other parameters yielding an improved quality output DEM. 

The quadratic DEM error does not effect the baseline estimate of the algo­

rithm - the correct baseline estimate is produced by the flattening algorithm and 

almost exactly by updating algorithm. Note, however, that the input D E M error 

standard deviation was approximately 2 m while the output D E M error using the 

unwrapped phase from the residual interferogram have standard deviation of about 

0.2 meters — a ten-fold improvement. The lack of improvement in the linear DEM 

error cases demonstrates the both the flattening and updating algorithm's sensitivity 

to biases and linear trends in the DEM errors. 
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Height Errors 
Estimated Geometry 

Algorithm Baseline True Baseline 

Type of error B e mean stdev mean stdev 

Act = 100 meters 269.88 1.15317 0.0 0.2 99.9 0.0 

f5(r)errors 270.73 1.15776 0.0 1.2 -410.5 8.2 

Linear D E M errors 269.97 1.15384 15.0 1.6 0.0 0.0 

Quadratic DEM errors 270.00 1.15390 0.0 0.2 0.0 0.2 

Table 4.6: Baseline estimates and height errors in the trend error experiments. 

Height Errors 
Estimated Geometry 

Algorithm Baseline True Baseline 

Type of error B e mean stdev mean stdev 

Aa = 100 meters 269.88 1.15317 0.0 0.2 99.9 0.0 

<5(r)errors 270.73 1.15776 0.0 1.2 -410.5 8.2 

Linear DEM errors 269.97 1.15384 15.0 1.5 0.0 0.0 

Quadratic DEM errors 270.00 1.15389 -0.0 0.2 0.0 0.2 

Table 4.7: Baseline estimates and height errors in the trend error experiments. 
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4.3 S u m m a r y 

We have simulated an algorithm for refining DEMs using SAR interferometry. Sub­

stantial improvement in terms of DEM errors was made using the baseline pa­

rameters estimated during the DEM flattening and DEM updating portion of the 

algorithm. The DEM quality improvement was always greater when the baseline 

parameters were updated by fitting the InSAR DEM to the input D E M (subject 

to lack of phase unwrapping errors). This procedure should always be applied in 

practice to ensure the best possible output DEM quality. 

The DEM flattening procedure facilitates phase unwrapping by reducing the 

phase variability and can provide a reasonably accurate estimate of the interfer­

ometer geometry. One can check whether the algorithm has succeeded or not by 

examining the spectra of the residual interferogram. Multiple spectral peaks near 

zero frequency in the DEM flattened interferogram suggest that the baseline parame­

ter estimates will be in error. Note also that for variable topography and low-quality 

DEMs, the DEM flattening algorithm will likely not produce accurate DEMs. In 

addition, the coarse DEM can be used to equalize the phase offsets between differ­

ent unwrapped phase groups. The accuracy of this procedure is dependent on the 

accuracy of the mean estimated from coarse input DEM samples coming from the 

same pixels as the unwrapped phase group. 

Baseline parameters can be mis-estimated to compensate for errors in other 

parameters such as satellite altitude errors and absolute phase unwrapping errors. 

Precision orbit data or manual ground control point selection are therefore not 

required to perform accurate InSAR processing if a reasonably accurate coarse DEM 

is available to calibrate the interferometer. 

The baseline estimation algorithm is sensitive to linear trends and biases in 

the input coarse DEM. Processing as large an area as possible will minimize the 
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likelihood of the coarse DEM having spurious bias and trend errors. 
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Chapter 5 

D E M Refinement Processing 

Experiments 

We report on experiments performed with two interferograms using the proposed 

technique: one generated from ERS Tandem Mission data and the other from a 

RADARSAT interferometric pair1. The ERS Tandem Mission data has high coher­

ence with a mean coherence magnitude of approximately 0.7 and a (relatively) small 

normal baseline that makes this data set marginal for topographic height estimation 

and more suitable for differential interferometry. The RADARSAT interferogram 

has low coherence magnitude with mean value of approximately 0.35 and a larger 

normal baseline. The ERS data is in some respects an easier test case than the 

RADARSAT data because there are likely to be less phase unwrapping problems 

due to low coherence areas in the image. In addition, the RADARSAT interferogram 

has a much smaller (about five times) ambiguity height than the ERS data. When 

one models the interferogram using the coarse input DEM, DEM errors impact the 

DEM flattening algorithm more in the RADARSAT data case than in the ERS data 

'We have also generated elevation data for another ERS test site, Sardegna, [46] characterized by 
high coherence magnitude but very difficult terrain. Lack of a complete reference DEM prevented 
full analysis of the results. 
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case. We therefore expect that the ERS dataset will respond better to the flattening 

algorithm than the RADARSAT data. However, note that the ERS InSAR heights 

will be more sensitive to phase noise because of the larger ambiguity height of the 

ERS dataset. 

Section 5.1 contains a description of the test site while Section 5.2 reviews 

the DEM data used during the processing. The experimental procedure is detailed 

in Section 5.3. The ERS results are reported in Section 5.4 and results for the 

RADARSAT-1 data are discussed in Section 5.5. Finally, conclusions drawn from 

the experimental results are given in Section 5.6. 

5 . 1 T e s t S i t e O v e r v i e w 

The Chilcotin area of British Columbia was chosen as a test-site because DEMs of 

3 different qualities were available (TRIM, DTED-1, and GTOPO30 ) and because 

the topography is very challenging with large height variations and some layover 

in the ERS case. A collage of air-photos2 over the test site is shown in Figure 

(5.1). The white rectangles on the collage show the approximate location of the 

SAR data investigated. Despite the rather low contrast of the scanned images, 

several features of the scene are clearly visible. The data covers a portion of the 

Fraser Canyon with elevation variation of about 1400 meters between the top of 

the canyon and the Fraser River below. The Chilcotin River flows in from the west 

to meet the Fraser River which flows from north to south. The darker areas of 

the figure likely correspond to forest or bush. This area is usually dry and there 

is limited vegetation so some portions of the scene can provide good repeat-pass 

interferometric coherence. 

2 © 1 9 6 6 , 1 9 6 7 British Columbia Provincial Government 
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Figure 5.1: Aerial photos of the Chilcotin test site. The larger polygon shows 
the approximate boundaries of the ERS data set while the dashed lines show the 
approximate boundaries of the RADARSAT-1 data set. 
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5.2 D E M D a t a O v e r v i e w 

The three DEMs used in this experiment were: 

TRIM D E M [52] The TRIM digital dataset is a recent product (1997) of the gov­

ernment of the province of British Columbia that consists of a DEM and possi­

bly other cartographic information such as planimetric features and landcover. 

The TRIM DEM data were generated using photogrammetric techniques. El­

evation data were captured manually in an approximate grid pattern with 

nominal data spacing of 100 m in flat areas and 75 meters in areas of higher 

relief. The height accuracy of the sampled data points is 5 m linear error at 

90 % confidence (LE90) and 12 m circular error at 90 % confidence (CE90). 

DTED-1 DEM[56] The DTED-1 DEM is a discontinued product from the Gov­

ernment of Canada which was generated using 1950's era mapping technology. 

It is a gridded data set with sample spacing of 3 arcseconds or approximately 

90 m. The accuracy goal of DTED-1 data is 30 m LE90 and 50 m CE90. 

Note that the quality of these discontinued Canadian DTED-1 data is known 

to vary widely. 

GTOPO30 DEM[21] The GTOPO30 DEM is a project of the United States 

Geological Survey (USGS)3 to provide a publicly available (via ftp) coarse, 

low-resolution data set suitable for modeling large-scale processes. A similar 

data set is available from the GLOBE project4. This DEM was generated 

by combining various sources of DEM data to generate a composite DEM 

with data postings of 30 arc-seconds (approximately 1 km). Where possible, 

the GTOPO30 data set was generated from higher resolution DEM data. In 

this case the data was carefully processed to ensure that drainage patterns 
3See http://edcwww.cr.usgs.gov/landdaac/gtopo30/gtopo30.html 
4See http://www.ngdc.noaa.gov/seg/topo/globe.shtml 
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in the GTOPO30 DEM were consistent with drainage patterns in the higher 

resolution data. 

The nominal accuracy according to the GTOPO30 D E M documentation is 

• ± 650 meters absolute linear error (vertical) at 90% confidence, 

• 2000 meters circular error (horizontal), 

which is quite poor. However, recent investigations to characterize the accu­

racy of the data have found that the average vertical accuracy of the whole 

data set is much better with an RMSE of approximately 70 meters [21]. The 

accuracy of the GTOPO30 varies with the underlying data sources and has an 

estimated RMSE of approximately 86 meters for the Chilcotin area[21]. 

The resolution and accuracy properties of the DEMs are summarized in Table 5.1. 

The three DEM data sets are plotted in Figure (5.2), Figure (5.3), and Fig­

ure (5.4). The DTED-1 and GTOPO30 datasets are plotted at their respective full 

resolutions while the scattered data points of the TRIM data were interpolated to a 

regular grid of approximately 75 m. The two rectangles on the figures denote the ap­

proximate coverage of the RADARSAT-1 and ERS 1/2 interferograms investigated. 

The larger rectangle shows the approximate location of ERS data processed while 

the smaller dashed line rectangle shows the approximate location of the RADARSAT 

data. Note the topographic variation of the terrain, especially in the main canyon 

of the Fraser River and the smaller canyon of the Chilcotin River. The difference 

in resolution and hence detail between the DEMs is clearly shown by these figures. 

We could only procure a small number of TRIM datasets so the TRIM data has 

limited coverage compared with the other two DEMs. 

Closer examination of a small area of the DEMs gives an idea of the relative 

magnitude of error characteristics of the data. For example, the region centered at 

51.75° N and -122.3° W has three different characteristics depending on which DEM 
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DEM Sample Spacing 
Vertical Accuracy 

(meters) 
Horizontal Accuracy 

(meters) 
TRIM [52] « 100 meters in flat 

terrain,m 75 meters 
in rough terrain 

5 (LE 90%) 12 (CE 90%) 

DTED[56] 3 arc-seconds grid-
ded ( « 90 m) 

30 (LE 90%) 50 (CE 90%) 

GTOPO30[21] 30 arc-seconds grid-
ded ( « 1 km) 

86 (RMSE) N/A 

Table 5.1: Summary of DEM characteristics for the Chilcotin test site. 

is examined (see Figure (5.5) through Figure (5.7)). In the TRIM data, it is evident 

that there is a small "hill" centered at this location. In the DTED data, the hill 

appears to be partially missing. Errors of this type can occur at the edges of areas 

processed in separate stages of the map production. In the GTOPO30 data, there is 

a large spike in the DEM values. It has a magnitude nearly 650 meters larger than 

the TRIM data. Since GTOPO30 are derived in part from DTED data, it is possible 

that the missing portion of the hill in the DTED data forces the GTOPO30 DEM 

to have this large value to keep the hydrology consistent with the higher resolution 

data. 
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Figure 5.2: TRIM DEM of the Chilcotin test site. 
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Figure 5.3: DTED-1 DEM of the Chilcotin test site. 
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Figure 5.4: GTOPO30 DEM of the Chilcotin test site. 
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Figure 5.5: Zoomed plot of TRIM data. 
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Figure 5.6: Zoomed plot of DTED data. 
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Figure 5.7: Zoomed plot of GTOPO30 data. 
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5.3 E x p e r i m e n t a l P r o c e d u r e 

The experiments implemented the algorithm defined in Appendix E. The baseline 

magnitude and baseline orientation were estimated using a linear model in azimuth. 

The TRIM, DTED, and GTOPO30 data sets were each used in turn as the reference 

DEM for the interferogram calibration. Baseline parameters were also calculated 

from the orbit data of the satellites to provide another reference for comparison. 

The DEM and radar data were registered coarsely by matching the river in the SAR 

images and the bottom of the river valley in the resampled DEM. The registration 

between the DEM and SAR imagery was optimized by maximizing the coherence 

magnitude as a function of location and estimated baseline magnitude and ori­

entation. The DEM flattening algorithm was then used to produce the residual 

interferograms. 

A four stage procedure was used to unwrap the filtered and subsampled 

residual phase of the interferogram: 

1. Weighted least-squares phase unwrapping [57], 

2. Unwrapping the residual phase from the least-squares procedure using either 

region-growing[58] or Flynn's minimum discontinuity procedure[54], 

3. Phase offset checking by checking mean height offsets of unwrapped phase 

groups. 

4. Interpolation of small "holes" in the unwrapped phase surface. 

The first two stages of the phase unwrapping procedure are necessary to deal with 

the bias problems of weighted least squares phase unwrapping (see Appendix C). 

Depending on the imaged scene content, the phase may be unwrapped into dis­

connected groups of unwrapped phase and phase offset errors may be introduced 

during the previous two phase unwrapping steps. These phase offset errors must be 
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corrected to generate a contiguous output unwrapped phase surface. Finally, small 

residual holes in the unwrapped interferogram phase are interpolated to generate a 

continuous output height estimate. "Larger" holes in the unwrapped phase map are 

indicative of areas of invalid data which are not likely to be successfully interpolated; 

these are filled with "NaNs" in the output height mask. 

For the initial weighted least-squares phase unwrapping we use a binary mask 

to eliminate unreliable areas from the phase unwrapping processing. We generate 

the unwrapping mask by "or-ing" masks generated using the following criterion: 

Residues are generally indicative of local inhomogeneities in the interferogram 

phase which should be avoided during the phase unwrapping process. If there 

is an area where the residue density is locally very high, this mask serves to 

minimize the influence the area has on the weighted least squares unwrapped 

phase. 

Magnitude thresholds are used to eliminate areas of low magnitude (i.e. lowest 

5 %) and high magnitude (i.e. highest 5%) backscatter from the unwrapping 

procedure. Areas of low backscatter correspond to areas with low coherence 

magnitude or radar shadow zones. Shadows are areas of invalid data that 

may be interpolated or calculated using SAR data collected from the opposite 

side of the target scene. Areas of high magnitude backscatter generally corre­

spond to areas of steep slope or layover and should be avoided during phase 

unwrapping as the likelihood of phase unwrapping errors increases in these 

regions. 

Coherence magnitude is used to discriminate between low and high SNR data. 

A threshold is set to eliminate areas of low coherence from the data that 

are not already masked by the magnitude threshold mask. Low coherence 

in areas of reasonable backscatter generally corresponds to target areas that 

have changed significantly between the imaging passes. The interferogram 
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phase from such areas is not reliable and should be avoided during.phase 

unwrapping processing. 

For the ERS-1 data, the coherence magnitude is high enough that not many 

areas were masked out of the phase unwrapping processing with the exception of 

the rivers. The residual phase after weighted least-squares phase unwrapping for the 

ERS-1 data was almost always within an ambiguity of the data so that generation 

of the final unwrapped phase data was easily performed using a region-growing 

approach [58]. However, the RADARSAT-1 data has lower coherence magnitude in 

general due to the 24 day repeat orbit period. Note that there is an area in the 

lower right middle of the RADARSAT-1 data that has substantially lower coherence 

magnitude than the rest of the data. We found that the region growing approach 

was extremely slow so we applied Flynn's minimum cutline approach [54, 55] to 

unwrap the residual phase for this dataset. 

Finally, the DEM updating algorithm was performed including checks for 

missed ambiguities in the unwrapped phase. In the following subsections, we discuss 

the results of the DEM refinement algorithm applied to the ERS and RADARSAT 

data sets. 

105 



Incidence Angle: 
near swath 20° 
far swath 26° 

Slant Range: 
near range 833 km 
far range 873 km 

Swath Width: 
ground range 100 km 
slant range 40 km 

Wavelength: 0.0566 m 
altitude: 782 km 

Table 5.2: Nominal ERS SAR parameters [6]. 

5.4 E R S D E M R e f i n e m e n t E x p e r i m e n t s 

The reference SAR image, the interferogram phase, and the coherence magnitude 

of the ERS dataset are shown in Figure (5.8). All images are oriented with north 

approximately at the top of the page. The ERS Tandem mission data are an ERS-1 

SAR image (orbit 21730) and a co-located ERS-2 SAR image (orbit 2057), collected 

on September 10, 1995 and September 11, 1995 respectively at a local time of 

approximately 10 A M PST. The ERS parameters are given in Table 5.2. The SAR 

data was collected.on track 199 at frame 2565 for both satellites. The ERS InSAR 

baseline listing [42] estimates the normal baseline to be -42 meters, well within the 

desirable range for SAR interferometry. The estimated contribution of the baseline 

parameter errors to the output InSAR DEM error are shown in Table 5.3 while the 

estimated baseline parameter accuracies are shown in Figure (5.9). 
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#of #of 
Azimuth Range 0~mean ^trend 

DEM Samples Samples in m in m in m 
TRIM 330 147 0.01 0.02 0.1 
DTED-1 367 233 0.06 0.1 0.43 
GTOPO30 34 23 3.3 5.7 21.2 

Table 5.3: Summary of estimated baseline parameter errors contributions to output 
InSAR DEM accuracy for ERS data. The accuracy of an output InSAR DEM 
estimated using the input coarse DEM was calculated using statistics of the input 
DEMs. 
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(a) ERS SAR image (b) Raw ERS phase 

(c) ERS coherence magnitude (d) Conventional "flattened" ERS phase 

Figure 5.8: Summary of ERS Tandem mission processed data set. The "flattened" 
interferogram phase was generated by removing the dominant range frequency from 
the raw interferogram phase. 
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(a) TRIM DEM parameter errors. 

(b) DTED-1 DEM parameter errors. 

(c) GTOPO30 DEM parameter errors. 

£ure 5.9: Expected parameter errors for input DEMs for ERS data. 
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5 . 4 . 1 ERS D E M Flattening Experiments 

The slant range registered DEMs for the ERS data are shown in Figure (5.10). 

These DEMs were each used with the full interferogram shown in Figure (5.8) '(b), 

to generate the baseline parameters summarized in Figure (5.11). The interferogram 

models generated using the baseline parameters and the initial coarse DEMs are 

shown in Figure (5.12). The filtered residual interferograms representing the filtered 

differences between the interferogram models and the full interferogram phase are 

shown in Figure (5.14)5. 

The residual interferograms are consistent with the quality of the input 

DEMs. The higher quality TRIM and DTED-1 data sets have less residual phase 

signals than the GTOPO30 input DEM. We examined the spectra of the residual 

interferograms and found that the DTED-1 and TRIM data sets could provide ac­

curate baseline estimates. However, the GTOPO30 dataset had several significant 

peaks near zero frequency so we did not expect the GTOPO30 dataset to yield 

accurate baseline parameter estimates. 

The TRIM residual interferogram has minimal residual phase compared with 

the DTED-1 and GTOPO30 residual interferograms. There is an obvious correlation 

between the features in the input TRIM DEM and the residual interferogram. The 

question is whether or not the features in the residual interferogram come from the 

DEM or from the interferometric SAR data? To investigate this, we plotted the 

full resolution DEMs and residual interferograms for the TRIM and DTED-1 data 

in Figure (5.16) and Figure (5.17) respectively. The pixel sample along the ground 

down the page (in the azimuth direction) is constant and approximately 4 meters. 

The pixel spacing across the page (the slant range direction) varies as a function of 

surface slope. Going down into the canyon (passing from the right middle to the 
5 The raw differences between the interferogram models and the interferometry data are shown 

in the appendix in Figure (5.13). 
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left hand side of the page), the pixel sample spacing is on the order of 10-12 meters 

while in the flatter regions it is on the order of 22 meters. 

From comparing the TRIM residual DEM and the DTED-1 D E M it is clear 

that the input TRIM DEM is having an effect on the residual interferogram; par­

ticularly going down into the canyon. Features are in general much broader in the 

TRIM residual interferogram than the DTED-1 residual interferogram. The input 

DTED-1 DEM lacks the detail of the input TRIM DEM so the DTED-1 residual in­

terferogram is a better indicator of the information coming from the interferometric 

SAR data. The raw TRIM data sample spacing sloping regions is approximately 75 

meters which is far larger than the sample spacing of the interferograms. Therefore, 

the correlation between the TRIM DEM features and the TRIM residual interfero­

gram is likely caused by the smearing of topographic features sampled at a coarser 

sample spacing than the interferometric SAR data. There is also evidence of a slight 

mis-registration between the SAR data and the input TRIM D E M as the residual 

interferogram phase signatures which are correlated to the D E M features tend to 

negative to the top of the page and positive to the bottom. In any case, it is clear 

that the DEM features are much larger (have smaller bandwidth) than the residual 

interferogram phase features. 

Note the detail visible in the DTED-1 and GTOPO30 residual interfero­

grams in Figure (5.14) which is not clear in the original DEMs. The InSAR data 

has roughly four times finer resolution than the DTED-1 D E M and far more im­

provement relative to the GTOPO30 DEM. Topographic features not present in the 

reference DEM are present in the residual interferogram. The residual interferogram 

is easy to unwrap, and can be used to improve the resolution and accuracy of the 

coarser DEMs as long as the phase noise is moderate. 

The baselines estimated by the algorithm are shown in Figure (5.11), as a 

function of azimuth sample number. The normal baseline is approximately 45 meters 
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which gives a 2ir ambiguity of approximately 200 m for the ERS Tandem data. The 

accuracy of the algorithms' baseline estimates were estimated using the predicted 

error of a bilinear fit to errors of the given data as shown in Table 5.3. These 

height estimation errors were converted to equivalent baseline errors as shown in 

Figure (5.9). The baseline error for the precision orbit data was estimated from the 

consistency of successive precision orbit estimates [17] as approximately 0.7 m [17]. 

The baselines estimated from each of the three DEMs differ from the precision orbit 

data by up to 1 meter and differ from each other by more than the predicted error 

shown in Table 5.3. The failure of the GTOPO30 result to match the other results 

comes from the existence of many peaks near zero frequency for the GTOPO30 

residual interferogram. 

For the ERS test case, the disagreement between the DTED-1 and TRIM 

based results for the ERS Tandem mission data set was puzzling. Both the DTED-1 

and TRIM data sets are fairly good quality DEMs (DTED-1 90 % significance level 

is 30 meters [56], TRIM 90 % significance level is 5 meters [52]). The disagree­

ment is attributable to a significant trend in range in the difference between the 

DTED-1 and TRIM DEMs. Because the TRIM data were generated relatively re­

cently (1997) under stringent accuracy constraints, the error trend is more likely in 

the DTED-1 data which was produced during cold-war era mapping. The average 

difference between the DEMs varied from -4 meters to -22 meters across the range 

swath. This "tilt" is likely due to errors in the DTED-1 data set as well as some 

misregistration in range between the DEMs. In addition, the difference between the 

input DTED-1 and TRIM data (after the error trend was removed) had standard 

deviation of approximately 34 meters. This is far larger than the approximately 18 

meters standard deviation expected assuming that the DEMs are uncorrelated and 

can be modeled as independent Gaussian random variables. 

Further investigation of the difference in the results was performed on a patch 

of the interferogram with complete coverage in both DTED-1 and TRIM DEMs for 
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the ERS data. After correcting for the offsets, range trends, azimuth trends, and the 

range-azimuth trends in the difference between the TRIM and DTED-1 DEMs, the 

estimates were significantly closer as shown in Figure (5.15). The slight lingering 

difference in the results can be traced to the slight difference in sample mean of the 

subset of the DEM data actually processed. 

To double-check the modified baseline estimates, S(r) derived from the TRIM 

DEM data with the TRIM baseline parameters was used with the DTED-1 and 

corrected DTED-1 baseline parameters to calculate topographic heights. Using the 

modified DTED baseline parameter estimates yielded a DEM which had a mean 

difference of 0.4 meters and a standard deviation of 0.8 meters compared to the 

TRIM DEM. Using the unmodified DTED-1 baseline parameters yielded a DEM 

with a mean difference of -15 meters and standard deviation of 12 meters compared 

to the TRIM DEM. 
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(a) Input TRIM DEM. (b) Input DTED-1 DEM. 

(c) Input GTOPO30 DEM. 

Figure 5.10: Input DEMs for ERS interferograms in SAR coordinates. The data are 
approximately 33 km in azimuth (down the page) and 21 km in range (across the 
page from right to left). 
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Figure 5.11: Results of the baseline estimation algorithm applied with GTOPO30, 
DTED-1, and TRIM data over the Chilcotin test site for ERS Tandem mission data. 
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(a) TRIM data used for reference DEM. (b) DTED-1 data used for reference DEM. 

(c) GTOPO30 data used for reference DEM. 

Figure 5.12: Model interferograms using estimated baseline parameters from ERS 
processing. 

116 



(c) GTOPO30 data used for reference DEM. 

Figure 5.13: Raw residual interferograms from ERS processing. 
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(a) TRIM data used for reference DEM. (b) DTED-1 data used for reference DEM. 

(c) GTOPO30 data used for reference DEM. 

Figure 5.14: Filtered residual interferograms from ERS processing. 
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Figure 5.15: Comparison between DTED, trend corrected DTED, and TRIM base­
line estimates for the ERS dataset. 

119 



TRIM input DEM. Flattened residual interferogram 

Figure 5.16: Full resolution comparison of input TRIM DEM and filtered residual 
interferogram phase. 
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DTED-1 input DEM. Flattened residual interferogram 

Figure 5.17: Full resolution comparison of input DTED-1 DEM and filtered residual 
interferogram phase. 
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5.4.2 ERS D E M Updating Results 

The input and output refined DEMs for the ERS-1 data based on TRIM, DTED-1, 

modified DTED-1, GTOPO30, and modified GTOPO30 are shown in Figure (5.19) 

through Figure (5.23). The "modified" D E M trials were performed after removing 

biases and error trends with respect to the input TRIM DEM from the input DTED-

1 and GTOPO30 DEMs. In the case of the GTOPO30 input DEM, the modified 

DEM also includes a correction for a group phase unwrapping error. The gray scale 

for all the DEM images goes from -50 meters to 1350 meters. The light areas in the 

output DEMs are areas where valid height samples could not be calculated. 

The baseline parameter estimates for all input DEMs (including the modified 

ones) are shown in Figure (5.18). The baseline parameters are consistent with the 

analysis and results of previous chapters whereby baseline parameters depend on the 

bias and trend errors in the input DEM. The modified D E M baseline parameters 

are much closer to the TRIM baseline parameters except for the GTOPO30 baseline 

parameters. The residual differences of the GTOPO30 baseline parameters seem to 

be a result of a combination of the correlation of D E M errors with position and 

phase unwrapping errors. The GTOPO30 errors are not uniformly distributed with 

a large outlier at the center of the DEM and a bias to large negative errors in the 

lower left portion of the DEM. 

The height errors of each of the input and output InSAR DEMs are sum­

marized in Table 5.46. The error statistics were calculated from the difference of 

the D E M of interest with the TRIM input DEM. The height error statistics were 

accumulated on all the valid pixels in the DEMs; including output DEM values that 

were interpolated. The 90th percentile error is the mean corrected D E M error that 

was greater than 90% of the absolute mean error corrected DEM errors. All DEMs 

are labeled as being input or output. The input DEMs are the DEMs used in the 
6 The histograms are in Appendix F from Figure (F.l) to Figure (F.9) 
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flattening processing of the data. 

The InSAR TRIM result of approximately 26 meters represents the noise 

threshold of the InSAR height estimation procedure as the baseline parameter errors 

for this input DEM should be negligible (see Table 5.3). The relatively high height 

error is because of the small baseline and hence large ambiguity height which makes 

the interferogram DEM sensitive to phase noise. The two modified output DEMs 

are close to the 26 meter result from the TRIM data set. The GTOPO30 results 

in Table 5.4 demonstrate that substantial improvement in DEM quality can be 

gained by InSAR processing subject to presence of biases in the input coarse DEM. 

Bias errors in the input coarse DEM are represented in the output InSAR DEM as 

expected. This is most clearly seen in the 90% error which tends to be roughly the 

same order of magnitude for the uncorrected input DEMs and the output InSAR 

DEMs derived from them. 

The algorithm for equalizing the constant phase offset between different un­

wrapped groups of pixels failed for the GTOPO30 dataset as shown in Figure (5.24) 

(b). The errors on the left hand side of the river all tend to be much lower than the 

rest of the DEM in the original input DEM shown in Figure (5.24) (a). When the 

equalization process takes place, the locally low bias for the errors on left hand side 

of the river provoke an error in the relative phase offset in the output DEM that is 

clearly shown in the error image7. 

The effect of the baseline parameter differences is shown graphically in Fig­

ure (5.25) where the differences between the InSAR-TRIM output DEM and the 

modified DTED-l-InSAR and GTOPO30-InSAR output DEMs is shown. The only 

differences here are differences due to the baseline parameters and also values of the 

unwrapped phase. The gray scale for these plots goes from -50 to 50 meters. The 

InSAR DTED-1 DEM is relatively close to the output TRIM DEM over most of 
7See the double peak in the histogram in the appendix figure Figure (F.7) also. 
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DEM Input/Output mean error (m) a (m) 90*"% (m) 

InSAR TRIM Output -0.83 26.1 42.1 
DTED-1 Input -18.58 34.3 61.2 
InSAR DTED-1 Output -16.67 29.1 52.9 
Modified DTED-1 Input -1.1 32.0 52.6 
InSAR Modified DTED Output -1.25 26.9 . 43.2 
GTOPO30 Input 9.72 115.8 158.6 
InSAR GTOPO30 Output 3.85 60.9 104.8 
Modified GTOPO30 Input -0.9 108.6 156.0 
InSAR Modified GTOPO30 Output -0.9 29.3 48. 3 

Table 5.4: Summary of results for ERS topography estimation. 

the image with some small differences due to phase unwrapping errors (the darkest 

and brightest pixels). However, the output InSAR-GTOPO30 D E M shows signs of 

significant differences across the swath, on the order of 35 meters which is larger 

than the predictions made in Table 5.3. Even after correcting for the bias and trend 

errors in the whole GTOPO30 DEM, the errors are across the D E M are correlated 

by location with large errors along the vertical centerline of the D E M and large 

negative errors to the left hand (west) side of the river. 
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Figure 5.18: Summary of baseline parameter estimates 
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(a) Input TRIM DEM. (b) Output InSAR-TRIM DEM. 

Figure 5.19: Results of InSAR-TRIM DEM Experiment with ERS Tandem data. 
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(a) Input DTED-1 DEM. (b) Output InSAR-DTED-1 DEM. 

Figure 5.20: Results of InSAR-DTED-1 DEM experiment with ERS Tandem data. 

(a) Input Modified DTED-1 DEM. (b) Output InSAR-Modified DTED-1 DEM. 

Figure 5.21: Results of InSAR-Modified DTED-1 DEM experiment with ERS Tan­
dem data. 

127 



(a) Input GTOPO30 DEM. (b) Output InSAR-GTOPO30 DEM. 

Figure 5.22: Results of InSAR-GTOPO30 DEM experiment with ERS Tandem 
data. 

(a) Input Modified GTOPO30 DEM. (b) Output InSAR-Modified GTOPO30 DEM. 

Figure 5.23: Results of InSAR-Modified GTOPO30 DEM experiment with ERS 
Tandem data. 
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(a) Input GTOPO30 DEM Errors, (b) Output InSAR GTOPO30 DEM Errors. 

Figure 5.24: Errors of input and output GTOPO30 DEMs 



Incidence Angle: 
near swath 41.6° 
far swath 44.2° 

Slant Range: 
near range 1020 km 
far range 1060 km 

Swath Width: 
ground range 50 km 
slant range 40 km 

Wavelength: 0.056 m 
altitude: 807 km 

Table 5.5: Nominal RADARSAT Fine Beam 3 SAR parameters. 

5.5 R A D A R S A T D E M R e f i n e m e n t E x p e r i m e n t s 

The reference SAR image, the interferogram phase, and the coherence magnitude of 

the RADARSAT dataset is shown in Figure (5.26). The RADARSAT data covers ap­

proximately 10 km in range and 30 km in azimuth (or about 12% of a RADARSAT-1 

Fine beam dataset) All images are oriented with north approximately at the top of 

the page. The RADARSAT processing example was taken from data collected in 

"FINE 3" beam mode, with the parameters given in Table 5.5. The two passes were 

collected on April 24, 1997 (orbit 7675) and May 18, 1997 (orbit 8018) respectively 

at a local time of approximately 6 A M PST. The normal baseline was calculated 

geometrically from RADARSAT's orbit data to be approximately 200 meters which 

is well within the preferred range for RADARSAT fine beam data. The estimated 

contribution of the baseline parameter errors to the output InSAR DEM error are 

shown in Table 5.6 while the estimated baseline parameter accuracies are shown in 

Figure (5.27). 
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#of #of 
Azimuth Range &mean &trend 

DEM Samples Samples in m in m in m 
TRIM 300 100 0.02 0.03 0.12 
DTED 333 111 0.1 0.3 0.65 
GTOPO30 30 10 5.0 8.6 30.9 

Table 5.6: Summary of estimated baseline parameter errors' contributions to output 
InSAR DEM accuracy for RADARSAT data. The error estimates were calculated 
using the error statistics of Table 5.1. 

131 



(a) RADARSAT-1 SAR Image (b) Raw RADARSAT-1 phase. 

(c) RADARSAT-1 Coherence Magnitude (d) Conventional "flattened" 
RADARSAT-1 phase. 

Figure 5.26: Summary of RADARSAT processed data sets. The "flattened" inter­
ferogram phase was generated by removing the dominant range frequency from the 
raw interferogram phase. 
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Figure 5.27: Estimated parameter errors for input DEMs for RADARSAT data. 
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5.5.1 RADARSAT D E M Flattening Experiment 

The slant range registered DEMs for the RADARSAT data are shown in Figure 

(5.28). These DEMs were used with the raw interferogram phase shown in Figure 

(5.26) (c), to generate the baseline parameters summarized in Figure (5.29). The 

interferogram models generated using the baseline parameters and the initial coarse 

DEMs are shown in Figure (5.30). The raw differences between the interferogram 

models and the interferometry data are shown in Figure (5.31). Finally, the filtered 

residual interferograms are shown in Figure (5.32). 

There is a wide spread between the baseline parameters estimated using 

the different DEMs and the orbit data. Both the DTED and GTOPO30 baseline 

parameter estimates can be considered invalid because there is no dominant peak 

at zero frequency in both the range and azimuth spectra (see Figure (5.33) for the 

azimuth spectrum). The TRIM DEM baseline parameter estimates are expected to 

be accurate based on the absence of any sizeable peaks at non-zero frequencies in 

the spectrum of the residual interferogram. 

Despite the failure of the algorithm to converge using the DTED and GTOPO30 

reference DEMs, these DEMs allow a substantial "flattening" of the interferogram 

which can benefit further InSAR processing. For example, because the DEM-

flattened interferogram has a reduced bandwidth compared to the original inter­

ferogram, a greater degree of phase smoothing (band-pass filtering) can be applied 

to make phase unwrapping more reliable. This is illustrated in Figure (5.31) and 

Figure (5.32), where residual interferograms, before and after band-pass filtering, 

are shown. Compared with the flat-earth flattened interferogram in Figure (5.26), 

it can be seen how the interferograms in Figure (5.32) are much easier to unwrap. 

Note however, that bandpass filtering may also eliminate detail so the amount of 

filtering must be optimized to suppress noise while conserving detail. 
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(c) GTOPO30 DEM. 

Figure 5.28: Input DEMs for RADARSAT data in SAR coordinates. 
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Figure 5.29: Results of the flattening algorithm applied with GTOPO30, DTED-1, 
and TRIM data over the Chilcotin test site for RADARSAT data. 
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(a) TRIM data used for ref- (b) DTED data used for 
erence DEM. reference DEM. 

(c) GTOPO30 data used 
for reference DEM. 

Figure 5.30: Model interferograms using estimated baseline parameters from 
RADARSAT-1 processing. 
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(a) TRIM residual interfer­
ogram. 

(c) GTOPO30 residual in­
terferogram 

(b) DTED residual inter­
ferogram. 

Figure 5.31: Residual interferograms from processed RADARSAT data. 
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(a) Filtered TRIM residual (b) Filtered DTED resid-
interferogram. ual interferogram. 

(c) Filtered GTOPO30 
residual interferogram 

Figure 5.32: Filtered residual interferograms from processed RADARSAT data. 
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(a) TRIM reference DEM 

(b) DTED reference DEM 

(c) GTOPO30 reference DEM 

Figure 5.33: Azimuth spectra of residual RADARSAT interferograms from each of 
the processed input DEM datasets. 
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5.5.2 RADARSAT D E M Updating Results 

The input and output refined DEMs for the RADARSAT-1 data based on TRIM, 

DTED-1, modified DTED-1, GTOPO30, and modified GTOPO30 are shown in 

Figure (5.35) through Figure (5.39). As with the ERS data, the "modified" DEM 

trials were performed after removing biases and error trends with respect to the input 

TRIM DEM from the input DTED-1 and GTOPO30 DEMs and also correcting for 

some phase unwrapping errors in the GTOPO30 case. The gray scale for all the 

DEM images goes from -50 meters to 1100 meters. The dark areas in the InSAR 

DEMs are areas for which valid height samples could not be calculated. 

The height errors are summarized in Table. 5.78. The error statistics were 

calculated from the difference of the DEM of interest with the TRIM input DEM. 

The DEM error statistics were accumulated on all the valid pixels in the DEMs; 

including output DEM values that were interpolated. The 90th percentile error is 

the mean corrected DEM error that was greater than 90% of the absolute mean 

error corrected DEM errors. All DEMs are labeled as being input or output. The 

input DEMs are the DEMs used in the flattening processing of the data. 

The DTED-1 results for the RADARSAT data have similar characteristics 

to the DTED-1 results of the ERS Tandem Mission data set in that the majority of 

the data was unwrapped correctly and reasonable improvement to the initial input 

DEM was possible. After removing the biases and error trends in the results, it 

is apparent that the output DEM approaches the TRIM data quality and agrees 

with TRIM data to within DTED-2 standards. Note that the compared to the 

ERS results, there are more phase unwrapping errors in the RADARSAT-1 data 

as compared with the ERS data. In particular, there is one area in the lower left 

of the output InSAR D E M shown in the error plot of Figure (5.40) (b) that is not 

8 The histograms for each of the input and output InSAR DEMs are shown in Figure (G.l) 
through Figure (G.9) 
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unwrapped correctly although it is part of a larger contiguous group on the left 

hand (west) side of the river canyon. However, this area actually has a large error in 

the input DEM as shown in Figure (5.40) (a) also. Furthermore, the mask used to 

exclude noisy pixels from the phase unwrapping process actually isolates the error 

from the surrounding pixels on three sides so there is no path to take to unwrap 

this area correctly. 

The GTOPO30 dataset does not perform as well. There are a number of 

different phase groups which are not unwrapped contiguously. These errors are 

due to the coarse nature of the input DEM which generates correlated errors that 

are biased low on the left (west) side of the Fraser River. After removing the phase 

unwrapping errors and the biases and trend errors in the initial DEM, we get results 

which are reasonably close to those of the input TRIM DEM. 

The baseline parameter estimates for all input DEMs (including the modified 

ones) are shown in Figure (5.34). The baseline parameters are consistent with 

the results of the analysis of the previous chapters whereby baseline parameters 

depend on the bias and trend errors in the input DEM. The modified DEM baseline 

parameters are much closer to the TRIM baseline parameters. The effect of the 

baseline parameter differences is shown graphically in Figure (5.41). The differences 

between the InSAR-TRIM output DEM and the modified DTED-l-InSAR and 

modified GTOPO30-InSAR output DEMs is shown. The only differences here are 

differences due to the baseline parameters and also values of the unwrapped phase. 

The gray scale for these plots goes from -20 to 20 meters. The InSAR DTED-1 DEM 

is relatively close to the output TRIM DEM over most of the image with some 

small differences due phase unwrapping errors (the darkest and brightest pixels). 

However, the output InSAR-GTOPO30 DEM shows signs of significant differences 

across the swath, on the order of 20 meters which is within reasonable agreement 

with the predictions made in Table 5.6. As with the ERS case, the differences for 

the GTOPO30 DEM seem to come from the large outlier in the center of the DEM 
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and the area of negative large DEM errors on the left side (west) of the river. The 

distribution of the DEM errors in the GTOPO30 input D E M are not Gaussian 

and they appear to be correlated with position. We therefore do not expect to get 

reliable height estimates from the DEM updating algorithm. 

DEM Input/Output mean error (m) cr (m) 90th% (m) 

InSAR TRIM Output -0.4 12.2 18.6 
DTED-1 Input -16.4 35.6 61.3 
InSAR DTED-1 Output -17.0 18.8 37.0 
Modified DTED-1 Input -0.1 34.5 56.9 
InSAR Modified DTED-1 Output -0.6 14.3 19.7 
GTOPO30 Input 7.83 98.3 143.7 
InSAR GTOPO30 Output 6.8 63.8 112.2 
Modified GTOPO30 Input 0.1 91.1 134.2 
InSAR Modified GTOPO30 Output -0.8 19.0 20.8 

Table 5.7: Input DEM and InSAR output DEM error statistics (m) derived from 
comparison of DEMs with the reference TRIM dataset. 
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figure 5.34: Summary of baseline parameter estimates for RADARSAT-1 data. 
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(a) Input T R I M D E M . (b) Output I n S A R - T R I M D E M . 

Figure 5.35: Results of I n S A R - T R I M D E M Experiment with R A D A R S A T - 1 data. 
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(a) Input DTED-1 DEM. (b) Output InSAR-DTED-1 DEM. 

Figure 5.36: Results of InSAR-DTED-1 DEM experiment with RADARSAT-1 data. 

(a) Modified Input DTED-1 DEM. (b) Output InSAR-DTED-1 (Modified) DEM. 

Figure 5.37: Results of InSAR-Modified DTED-1 DEM experiment with 
RADARSAT-1 data. 
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(a) Input GTOPO30 DEM. (b) Output InSAR-GTOPO30 DEM. 

Figure 5.38: Results of InSAR-GTOPO30 DEM experiment with RADARSAT-1 
data. 

(a) Input GTOPO30 Modified DEM. (b) Output InSAR-GTOPO30 (modified) DEM. 

Figure 5.39: Results of InSAR-Modified GTOPO30 DEM experiment with 
RADARSAT-1 data. 
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(a) Input DTED-1 DEM Errors, (b) Output DTED-1 DEM Errors. 

Figure 5.40: Errors of input and output DTED DEMs 

(a) InSAR DTED-1 output. (b) InSAR GTOPO30 output. 

Figure 5.41: Difference of output DTED-1 and GTOPO30 InSAR DEMS with re­
spect to the output InSAR-TRIM DEMs. Gray sale goes from -20 m to +20 m. 
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5 . 6 S u m m a r y o f E x p e r i m e n t a l R e s u l t s 

The DEM refinement algorithm was applied to ERS and RADARSAT-1 inter­

ferometric data sets using good (TRIM), moderate (DTED-1) and poor quality 

(GTOPO30) DEMs. Results for the DEM flattening algorithm and DEM updating 

algorithm were analyzed separately for each of the two datasets. 

In all cases, the DEM flattening algorithm was able to provide a residual 

interferogram with substantially less phase variability than the original data which 

facilitated phase unwrapping through filtering and subsampling of the original data. 

The accuracy of the estimated baseline parameters was strongly dependent on the 

input DEM quality versus the sensitivity of the interferometer to height changes. 

From the spectra of the residual interferogram, we saw that the ERS experiments 

with the GTOPO30 data and the RADARSAT experiments with the DTED and 

GTOPO30 data could not yield valid baseline parameter estimates because of the 

large number of spectral peaks. The sensitivity of the D E M flattening algorithm 

to input DEM bias and trend errors was demonstrated in the ERS results for the 

DTED and TRIM DEMs. The DTED DEM used in the experiments differed from 

the TRIM D E M by an approximately linear trend which in the ERS case led to 

substantially different baseline estimates although the algorithm converged for both 

input DEMs. After removing the relative trend from the DTED DEM, the baseline 

estimates were much closer to the TRIM parameter values as expected. 

Uncorrelated noise in the DEM or interferogram is not a significant problem 

for the flattening algorithm if the data is suitable for interferometry because of the 

large number of samples available for estimating each term in the residual phase 

eqn. (3.6). For the RADARSAT dataset which has relatively low SNR, the DEM 

flattening algorithm converged to a stable estimate of the baseline and provided 

a flattened residual interferogram for TRIM data set. The flattening algorithm is 

robust in the sense that it will always give a flattened DEM that can be demodulated 
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and filtered in preparation for phase unwrapping. However, the baseline estimates 

derived from the flattening algorithm are likely to be in error and should be improved 

by fitting the InSAR DEM to the coarse low-quality input DEM. 

The DEM updating algorithm was successfully applied to most datasets 

except for the GTOPO30 data applied to the RADARSAT SAR data. For the 

RADARSAT-1 data, we were able to substantially improve the quality of the input 

DTED-1 (roughly halving the input standard deviation) in both the modified and 

unmodified DEM cases. For the GTOPO30 dataset, there were phase unwrapping 

discontinuities between different unwrapped phase groups which caused a major 

failure in the algorithm's operations. After the phase unwrapping errors had been 

corrected and the input DEM compensated for bias and trend errors, the results 

were on the order of a factor of 4 better than in the input DEM. For the ERS 

Tandem mission data, the results were similar though less impressive because of 

the small normal baseline which makes the ERS data very sensitive to noise. DEM 

quality improvement was marginal for the DTED-1 data and about a factor of five 

for the GTOPO30 data. 
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C h a p t e r 6 

Conclusions 

We have developed an algorithm for including coarse, relatively low quality DEMs 

in the InSAR processing stream. The algorithm consists of 3 parts: 

1. "Flattening" using a coarse, low-quality DEM. 

2. Phase unwrapping of residual phase signal. 

3. DEM updating of the coarse, low-quality DEM. 

In the first stage, the algorithm estimates the topographic phase associated with the 

coarse DEM without phase unwrapping by manipulating the baseline parameter 

estimates using non-linear optimization. The phase "flattening" afforded by this 

operation reduces the complexity of the phase unwrapping operation by minimizing 

the variation in the residual interferogram phase as a function of the coarse DEM 

data quality. In addition, this procedure facilitates simple filtering of the residual 

interferogram to ease the difficulties with phase unwrapping processing. In the last 

stage of the algorithm, the coarse input DEM is used as a template to re-estimate 

the baseline parameters using the unwrapped phase. In this way, the residual phase 

of the interferogram can be used to refine the quality of the input DEM by adding 
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detail at some small integer multiple of the SAR sample spacing. 

The accuracy of the topographic estimates of the algorithm are a function 

of the input DEM's quality. In particular the two baseline parameter estimation 

algorithms (one for D E M flattening, the other for D E M updating) are both sensitive 

to linear trends and biases in the input DEM. As the input D E M becomes coarser 

and of lower and lower quality, the likelihood of developing a spurious error trend in 

the output DEM becomes higher for a given data extent. It is therefore advantageous 

to process as large an input DEM area as possible. 

The performance of the DEM refinement algorithm was investigated for two 

data sets: one with high SNR (the ERS Tandem Mission data), the other with 

low SNR (the RADARSAT-1 data). The initial baseline parameter estimation 

without phase unwrapping facilitated aggressive lowpass filtering of the low SNR 

RADARSAT-1 data which resulted in DTED-2 quality topographic height accura­

cies as compared to the TRIM ground truth dataset. Substantial improvement in 

the InSAR DEM quality was demonstrated for input DTED-1 and GTOPO30 DEMs 

for modified input DEMs which had spurious trends removed. It is worthwhile not­

ing that the ERS Tandem Mission data set is about 7% of a standard ERS scene 

(100 km by 100 km) while the RADARSAT data set was about 12% of a standard 

Fine beam scene (50 km by 50 km). There is substantial room for improvement in 

the algorithm results by processing larger data sets. 

Note that the baseline parameters can be mis-estimated to compensate for 

errors in other parameters such as phase offset and satellite position (altitude). We 

do not need accurate orbit data or accurate phase offset estimates to produce good 

quality topographic height estimates as shown by the RADARSAT-1 experiments. 

The baseline parameters can absorb the other errors to provide a good quality 

topographic estimate. 
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6.1 T h e s i s C o n t r i b u t i o n s 

The contributions of this thesis are: 

• a method of baseline parameter estimation to facilitate using coarse, low qual­

ity DEMs for interferogram flattening, 

• a method for determining when the baseline parameters used in the flattening 

algorithm are accurate, 

• an analysis of the effect of DEM errors on the determination of the interfer­

ometer geometry, 

• an analysis of the effects of baseline parameter errors combined with other 

system errors on the output InSAR DEM, 

• a method for refining the estimate of the geometry of the interferometer after 

unwrapping the interferogram phase, 

• a method for calculating phase unwrapping group offsets to equalize indepen­

dently unwrapped groups of interferogram phase, and 

• a method for predicting the lower bound on topographic accuracy of InSAR 

DEMs derived from coarse low-quality DEMs. 

6.2 F u t u r e W o r k 

There are many possible directions to take with this work: 

• Testing with large datasets. 

The performance measured with the processed datasets was limited by com­

putational resources. Better allocation of system resources and more use of 

disks for intermediate results would facilitate processing larger datasets. 
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Phase unwrapping using the DEM as a constraint. 

If the DEM is of fairly good quality (DTED-1), the DEM could act as a con­

straint on the unwrapped phase value. The results of this study used a crude 

method for defining relative phase offsets after phase unwrapping processing 

had been performed. Using the DEM to constrain the phase unwrapping pro­

cessing itself might lead to better unwrapped phase estimates. 

Adaptive interferogram filtering using the input DEM as prior information. 

If the DEM is of good quality but not of high resolution, the interferomet­

ric SAR data can be used to sharpen the detail of the input DEM. In this 

case, simple low-pass filtering to minimize noise may actually smear some to­

pographic details. A better approach might be to design adaptive bandpass 

filters with the input DEM determining the filter bandwidth. 

Investigating other optimization schemes such as absolute value minimization 

to minimize the effects of outliers in the input coarse DEM or due to phase 

unwrapping errors. 

Least-squares minimization was used to estimate the baseline parameters based 

on a model of independent, Gaussian errors. However, least-squares minimiza­

tion is sensitive to outliers as it tends to fit to the mean value of all variables 

including outliers. An improvement on the technique implemented for this 

study would be using weighted least squares or minimization by absolute val­

ues in concert with a noise model more suited for coarse, low-quality DEM 

errors. 

Geocoding testing. 

The current software does not tie the SAR coordinate system to a well known 

cartographic reference system (i.e. geocoding). To perform geocoding an as­

sessment of the placement accuracy of the SAR derived topographic map with 

respect to the existing input DEM would have to be performed. 
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• Addition of other information. 

Other information such as hydrologic maps showing the locations of rivers, 

lakes, and streams, coastal boundary maps, and thematic maps showing the 

scene cover could also be integrated into the DEM refinement algorithm to aid 

in constraining the optimization algorithm to areas of good data and also to 

aid in the geo-location accuracy of the output InSAR DEM product. 
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A p p e n d i x A 

Spectral Shift Theorem 

The monochromatic approach used to derive the relationship between interferogram 

phase and topography in Section 2.3 hides an important aspect of InSAR image data. 

SAR data spectra correspond to a finite bandwidth portion of the ground range data. 

When two sets of SAR image data are collected from spatially separated antennas, 

the ground range spectra corresponding to the SAR data will be shifted [33]. The 

degree of shift is controlled by the the normal baseline (B-1). 

Interferograms are formed by complex-conjugate multiplication of two SAR 

images. Since conjugate-multiplication in the time/space domains corresponds to 

correlation in the frequency/wavenumber domains, forming an interferogram corre­

sponds to correlating the two SAR image spectra. It is informative to examine a 

one-dimensional slant range model of the SAR image formation process as a func­

tion of sampled ground wavenumber [33]. The SAR system transfer function can 

be modeled in range as a demodulation followed by convolution with an impulse 

response function: 

J(r) = b(x(r))e-jw°***w(r), (A.l) 

= b(x(r)) e~juj°^ * *w(r), (A.2) 
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= b(x(r)) e j k r r * * w(r); (A.3) 

where: 

b(x(r)) — ground backscattering coefficient, 

x(r) — ground range location, 

u0 = 2TT f0, SAR center frequency in radians/s, 

2u>0 4TT , 
kr = = — , slant range wavenumber 

c A 

** = the convolution operator, 

w(r) = impulse response function. 

We assume that the ground backscattering function has no extent in the vertical 

direction. Physically, this corresponds to an arrangement of surface scatterers on 

the ground plane. 

The ground wavenumber (kx) sampled is (see Figure (A.l)) 

sin 6. (A.4) 

In cross-track SAR interferometry, the second pass image is collected from a slightly 

different track which means that the off-nadir angle 9 is also slightly different. Dif­

ferentially, one can compute the change in kx as 

8k 
Akx = A6 = kr cos 9 A9. (A.5) 

89 

One can project this change into the slant range frequency domain to calculate the 

equivalent range frequency shift as 

A / = - A - A 0 . (A.6) 
tan 0 

Although both SAR images are collected at the same slant-range center frequency 

(f0), the ground range wavenumber sampled is different due to the change in off-

nadir angle. In the InSAR community, this concept is known as the spectral-shift 
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phenomenon [33]. Note that the change in look angle also "stretches" the ground 

range spectra in a slightly different manner for both SAR images. However, satellite 

SAR systems generally have a small system bandwidth (10's of MHz) compared 

with a microwave center frequency (1 to 10 GHz). Therefore one can consider the 

shift in ground wavenumber to be constant over the SAR system bandwidth. 

When forming an interferogram, the portion of the SAR image data in the 

two SAR images that correspond to the same ground wavenumber spectra con­

tributes an impulse in the interferogram spectra at the local interferogram frequency. 

The non-overlapping portions of the two image spectra contribute noise to the in­

terferogram phase. The noise contributed to the interferogram in this manner is 

known as baseline decorrelation because it is a function of the normal baseline size. 

With an estimate of the interferogram phase frequency one can effectively reduce 

the noise by prefiltering the SAR images before forming the interferogram. 

From geometry, one can derive the change in off-nadir angle as a function of 

the normal baseline magnitude: 

(A.7) 
r 

As the separation between the SAR images tracks increases, the spectral-shift in 

ground range frequency also increases until the point where the spectra are no longer 

correlated. This occurs when the spectral shift is equal to the system bandwidth 

(W) and the baseline at this point is known as the critical baseline. One can derive 

the critical baseline for SAR interferometry as 

j_ M^rtanf? Artanf? 
Bmax ~ ~f = 7T • ( A - 8 ) 

Jo *Pr 

The "spectral shift" approach arises because of the different mapping from 

ground range to slant range depending on the relative position of the SAR antennas. 

For areas of uniform slope, one can reduce the effects of baseline decorrelation by 

prefiltering the SAR images to eliminate the uncorrelated parts of the SAR image 
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Ground range 

Figure A . l : Diagram showing geometrical relation between ground wavenumbers 
and slant range wavenumbers. For a fixed set of ground scatterers and ground 
wavenumbers (kx), the slant range wavenumber (kr) is a function of angle of inci­
dence. 

spectra as a function of the local frequency. Furthermore, volume scattering effects 

also contribute to a loss in coherence between the images [33] in a similar fashion 

because the vertical wavenumbers sampled by the SAR images used to form the 

interferogram are also shifted relative to one another by the different cross-track 

trajectories of the SAR systems. 
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A p p e n d i x B 

Outline of Satellite I n S A R 

Algor i thm to Obtain 

Topography 

Although the basic principles of SAR interferometry can be concisely described, the 

algorithm is complicated by the effect of noise and terrain discontinuities in the 

interferometric observations. There are many different implementations of InSAR 

processors available [3, 44, 23, 20, 19] which we synthesize into a representative 

satellite InSAR processing algorithm in the following subsections. 

Detailed InSAR Processing Algorithm Description 

1. Identify suitable datasets. 

One requirement of successful InSAR processing is that the two SAR images 

used to make the interferogram are correlated. In general this means that the 

images must satisfy two constraints: 
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• the normal baseline constraint as in Appendix A, 

• temporal decorrelation, i.e. the SAR data must not be decorrelated due 

to temporal changes in the backscatter, e.g. due to plants growing. 

2. Process SAR signal (raw) data to SLC images. 

Careful SAR data processing is required to ensure that the interferometric 

phase is not compromised during the SAR image generation processing. The 

general requirement is that the SAR processor be "phase preserving" [59]. A 

study of the effect of processor errors on InSAR data is presented by Just and 

Bamler in [32]. 

3. Oversample the SAR images. 

To avoid spectral wrap-around when forming the interferogram, it is necessary 

to oversample both SAR images. 

4. Pre-filter images in azimuth. 

In two-pass interferometry, there is a high likelihood that the Doppler centroid 

of the two images will not be the same for both passes. This implies that the 

two SAR images have sampled different portions of the azimuth spectra. Un-

correlated spectral components generate noise in the interferogram. Azimuth 

filtering based on the Doppler centroids and antenna patterns of SAR system 

can be applied to increase the coherence magnitude of the data [34]. 

5. Register the SAR images. 

For two pass satellite interferometry, the SAR images must be well-registered 

to ensure good coherence magnitude in the output interferogram. Because 

the data for the two SAR images are collected from nearly the same location 

in space, the main differences in relative pixel location for the two images 

is a range offset, a slight range stretch, and a slight rotation in the azimuth 

direction [1]. The SAR image registration can be effected by a linear stretch 

in the range direction followed by a range dependent azimuth shift. 
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The interferogram sensitivity to misregistration can be analyzed by investi­

gating coherence magnitude as a function of misregistration in pixels (A) [1]: 

= (B.l) 

Generally, the images must be registered within 1/10 of an oversampled pixel 

to avoid significantly degrading the interferogram phase quality. 

There are a number of different methods of achieving the required accuracy. 

Except for the orbit data approach, the methods extract offset estimates be­

tween different chips extracted across the image and use these chips to create 

a registration model. The methods for registration are: 

Precision Orbit Data Approach [43] 

Precision orbit data are available for ERS 1/2 satellites from DLR 1 or 

TUDelft2 usually with time lags on the order of a few days. These data 

are accurate enough to derive the relative position of the satellites using 

scene centers positions as a reference. 

Maximizing Correlation The image chip magnitudes are correlated to es­

timate the local chip offsets. This method is useful when the coherence 

magnitude is low. 

Maximizing Coherence Magnitude Mini-interferograms are formed at dif­

ferent offsets between the image chips. The offset with the maximum 

coherent sum is used to determine the chip offset. This method works 

well for interferograms without large frequency trends. 

Maximizing Fringe Frequency [11] 

Mini-interferograms are formed at different offsets between the image 

chips. The maximum peak spectra of each of the mini-interferograms 

is used to determine the chip offset. Performing the spectral estimation 

'http://nng. esoc.esa.de/ers/ers.html 
2http://deos.lr.tudelft.nl/orbits/ 
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is equivalent to compensating for the local phase trend in the data for 

coherence magnitude estimates. This method gives reasonable results in 

most cases but it is time-consuming. 

6. Pre-filter the SAR images in range. 

Following the spectral-shift approach (Appendix A), the SAR images must 

be pre-filtered in range as a function of local interferogram range frequency 

to suppress uncorrelated parts of the image spectrum. In general, this is an 

iterative process which requires formation of the initial interferogram. One 

usual simplification is to filter the data to eliminate the positive or negative 

frequencies according to the average interferogram range frequency. 

7. Form the interferogram. 

The interferometric image is formed by multiplying one image, pixel for pixel, 

with the complex conjugate of the other registered image: 

Ik nk tJ'Ki."-^*), (B.2) 

8. "Flatten" the interferogram. 

Flattening the interferograms corresponds to removing phase trends which 

come from the increase in slant range across the range swath of the image (see 

eqn. (2.20)). The phase trend is removed by multiplying the interferogram 

with a complex phase function. The term flattening comes from the use of a 

model based on locally flat terrain used to derive the phase multiply function. 

The precise form for the flattening function depends on whether a reasonable 

estimate of the baseline is available or not. If the baseline is not available, 

demodulating the interferogram using the largest frequency component will 

perform the same task. 

Flattening the interferogram is useful for two reasons. Firstly, the "flattened" 

phase approximately represents the difference between the actual topography 
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and the reference level used for the flattening function. The residual phase af­

ter the flattening function therefore looks very much like a topographic contour 

plot. Secondly, flattening moves the interferogram phase derivatives to lower 

values which helps to minimize phase unwrapping problems. See Appendix C 

and Section 2.6 for more details. 

9. Calculate coherence magnitude. 

The maximum likelihood estimate of coherence magnitude is calculated by co­

herently summing the interferogram values and normalizing by the geometric 

mean of the average squared image amplitude. Care must be taken to demod­

ulate the interferogram data to remove underlying phase trends which tend to 

bias the estimate of coherence magnitude low [29]. In addition, the coherence 

magnitude is biased in general. Correction for this bias may be calculated by 

spatially averaging the estimated coherence [60]. 

10. Filter/subsample the interferogram. 

Filtering and/or subsampling are usually performed on the raw interferogram 

to: 

• eliminate phase trends associated with layover data by halfband filtering 

• increase the SNR of the interferogram by filtering in azimuth, 

• reduce the amount of data for further processing stages. 

The interferogram phase is a noisy estimate of the slant range travel time phase 

difference. Phase smoothing or some estimation process is required to reduce 

the effects of the noise. The usual processing scheme is coherent averaging of 

the interferometric image amplitudes over some local region of the image: 

[1], 
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where: 

arg(z) = the phase of the complex number z, 

ij) = the smoothed interferogram phase, 

N = the number of image samples averaged. 

This is a maximum likelihood estimate of interferogram phase assuming that 

the interferogram phase is constant over the area of summation [61, 29]. If local 

frequency modulation is present, band-pass filtering centered at the estimated 

local phase frequency is required. 

11. Unwrap the interferometric phase. 

One of the most challenging parts of interferometric SAR processing for topo­

graphic applications is phase unwrapping. This process is extremely difficult 

for two-pass satellite InSAR and is discussed in detail in Appendix C. Phase 

unwrapping starts from the assumption that the phase is well-behaved and 

well-sampled and tries to drive the inter-pixel phase derivative to lie in the 

range (—7r,+7r] by using the following decision rule: 

= tffc-i + (ipk ~ V'ifc-i) + 2?r if ipk - ibk-i < - 7T , 

= + (ipk - tf>k-l) if X>lhk- i)k-l > - 7 T . 

(B.4) 

In actual InSAR processing, blindly applying this rule will not result in rea­

sonable unwrapped phase for most two-pass interferograms. See Appendix 

C. 

12. Calibrate the interferometer geometry. 

The baseline parameters B and O are needed to convert the unwrapped phase 

to height. See Section 2.6 for more details. 
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13. Convert unwrapped phase to height. 

Conversion of unwrapped phase to height is a simple numerical calculation 

using trigonometry (see eqn. (2.14)). 

14. Resample SAR image D E M to mapping coordinates. 

The InSAR DEM natural coordinate system is the slant-range/along-track 

coordinate system of the SAR. For the DEM to be useful to end-users, the 

DEM samples must be placed into a well-defined reference coordinate system 

including Earth spheroid and geoid models. 
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A p p e n d i x C 

Phase Unwrapping 

Transformation of the smoothed interferogram phase to terrain height estimates is 

not straightforward because of the requirement for phase unwrapping or recovering 

the multiples of 2TT that are lost in the arg(z) calculation. In the absence of noise and 

phase aliasing, one could unwrap the interferogram phase by adding or subtracting 

2ir as needed to keep the phase derivative between adjacent phase samples less than 

7T rads/sample. However, there are two complications: 

1. phase unwrapping for SAR interferometry is fundamentally a two dimensional 

process, 

2. noise and abrupt terrain changes such as cliffs can introduce discontinuities of 

magnitude greater than n rads into the interferometric phase. 

One expects that a closed contour integral of phase differences along any 

valid path in a properly unwrapped interferogram phase image should result in a 

net value of zero residual phase. Zero residual phase from a closed path integral 

corresponds to returning to the same location and hence terrain height. This is 

a natural constraint on the two-dimensional phase unwrapping problem for SAR 
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Al = 9/10 7i - 7/10 TC = 2/10 TC 

7/10 TC 9/10 TC 
1 

A4 = 7/10 TC - -2/10 TC = 9/10 TC 4 2TC 2 A2 = -2/10 TC - 9/10 TC + 2 TC = 9/10 TC 

-2/10 TC 
3 -2/10 TC 

A3 =-2/10 .n- -2/10 7t = 0 

Figure C. l : Example of residue calculation. 

interferometry that ensures that the same unwrapped phase (to within a constant) 

is calculated no matter what path is taken during the phase unwrapping process. 

However discontinuities in the image phase can yield anomalous paths for which the 

residual integrated phase difference will not be zero. 

The existence of anomalous paths in the interferogram phase is shown by 

"residues" [62]. Residues denote the ends of lines of continuous phase in the inter­

ferogram. They are identified by performing a "contour integration" of unwrapped 

phase derivatives around the intersection of four adjacent pixels. If there is an in­

consistency in the phase present, the sum of unwrapped phase difference will not be 

zero but ±27r. Typically, positive residues are assigned for positive residuals while 

negative residues are assigned for negative residuals. 

A residue computation is illustrated diagrammatically in Figure (C.l) where 

a positive residue is detected between four adjacent pixel values of 7/10 TT, 9/10 TC, 

—2/10 TC, and — 2/10 TC rads respectively. One calculates the derivative between 

the samples enforcing the rule that the magnitude of the phase change between 

adjacent pixels should be'less than TC rads. This gives unwrapped phase derivatives 

of 2/10 TC,9/10 7r,0 and 9/10 TC rads. Summing up the unwrapped phase derivatives 

gives a residual phase of 27r around the four pixels or a positive residue. 
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Residues can occur because of structural discontinuities as shown in Figure 

(C.2) and Figure (C.3). In Figure (C.2), a simulated smooth unwrapped phase 

surface is shown with a discontinuity. In Figure (C.3), the wrapped phase values 

between ±7r are shown. A positive and negative residue pair are shown as text in 

the figure. Any phase unwrapping path that encircles only one of the residues will 

be inconsistent. 

2 0 v • ' 

Figure C.2: Absolute phase surface with phase inconsistency. 

There are several different algorithms for dealing with phase inconsistencies1: 

cutline mapping The discontinuities in interferogram phase can be dealt with by 

cut-line mapping [62, 63]. Cut-lines limit the choice of paths that can be taken 

during the phase unwrapping process to create consistency in the unwrapped 

phase. One strategy used to define cutline locations is to place them between 

residues of opposite sign which are "close". This ensures that no isolated 

residues can be encircled during phase unwrapping. 

' A fairly extensive review of the state of the art in InSAR phase unwrapping was published by 
Ghiglia and Pritt in 1998 [55]. 
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However in practice, there are many sets of equally valid cutline positions 

which yield consistent but possibly incorrect unwrapped phase images. Man­

ual intervention is usually required to make a reasonable set of cut-lines for an 

entire image. Even with manual intervention, areas with high residue density 

cannot be unwrapped sensibly. These areas are masked, to be interpolated 

after the well behaved areas of phase have been unwrapped or defined by a 

differently oriented data set. Areas of unwrapped phase can become isolated 

by unfortunate combinations of cutlines and masked out areas [63]. Again, 

manual intervention is also required to offset the isolated areas of phase cor­

rectly. 

least squares phase unwrapping The problem of minimizing the sum of un­

wrapped phase derivatives and the reconstructed phase surface is referred to as 

least squares phase unwrapping [64] This problem may be rewritten as Poissons 

equation with von Neumann boundary conditions (i.e. zero values outside the 

10 20 30 40 50 60 70 60 
x index 

Figure C.3: Wrapped phase and residues for the absolute phase image of Figure 
(C.2). Note the positive (+) and negative (-) residues which are signs of an incon­
sistency in the wrapped phase due to the discontinuity. 
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boundary) [57]. Solving Poisson's equation is a well studied numerical prob­

lem with many different techniques available. Ghiglia and Romero present a 

fast transform method in [57]. This is an interesting method because it avoids 

the troublesome question of which unwrapping path to choose as with the 

cutline method. However, it is well known that the least squares solution will 

be biased because the distribution of phase wrapping errors is not generally 

zero mean [65]. Practically, this means that the residual phase difference be­

tween the least-squares unwrapped phase and the original phase difference has 

a locally smooth bias which must be post-processed to reconstruct the true 

unwrapped phase. 

weighted least squares phase unwrapping Weighted least squares methods are 

an improvement on least-squares phase unwrapping methods that allow one to 

weight the importance of different phase derivatives in the processing scheme. 

Weighted least-squares phase unwrapping problems are more difficult to solve 

and they generally require iterative methods [57, 66]. The main problem 

in weighted least squares phase unwrapping is the choice of weights as the 

influence of the chosen weights on the unwrapped phase is difficult to de­

fine. Weighted least-squares phase unwrapping still suffers from the same bias 

problems as unweighted least squares (although the severity of the problem is 

reduced). 

region growing phase unwrapping The region growing technique unwraps the 

phase into regions from a set of seed pixels according to some criterion such 

as coherence magnitude[58] or local phase variance. When two regions start 

to overlap, they are merged if their overlap regions agree to within some con­

fidence. The process continues until no more regions can be merged. The 

merging process is controlled by relaxing a criterion based on data quality; 

the aim being to unwrap and join high quality regions initially. This algo­

rithm tends to be slow and somewhat sensitive to algorithm parameters [58]. 
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m i n i m u m cost f l o w phase u n w r a p p i n g The minimum cost flow algorithm is a 

novel approach to phase unwrapping which maps the phase unwrapping prob­

lem to the problem of minimizing the flow through a connected network [67]. 

This algorithm will be used by the X-SAR team during the Shuttle Radar To­

pography Mission (SRTM). Minimizing the flow is equivalent to minimizing h 

norm with respect to unwrapped phase differences. The minimum cost flow 

algorithm requires the use of weight terms to guide the unwrapping process. 

Again the choice of applied weights is somewhat arbitrary. Another algorithm 

which minimizes the weighted l\ norm is Flynn's minimum discontinuity algo­

rithm [54]. This algorithm works by minimizing the weighted phase differences 

between adjacent pixels. 

m u l t i - r e s o l u t i o n phase u n w r a p p i n g Davidson and Bamler present a method 

for phase unwrapping which focuses on the phase derivative estimation prob­

lem [38]. Rather than making a pixel by pixel estimate of the phase deriva­

tive, they use a multiresolution approach to capture information from coarse 

to progressively finer resolution. They discontinue the multiresolution recon­

struction of the phase derivative when the local phase derivatives' variability 

exceeds a certain threshold. The unwrapped phase is then reconstructed using 

the smoothed unwrapped phase estimates. Usually this method also requires 

some manual intervention to complete the phase unwrapping processing as 

there are generally some residual phase signals after removing the smooth 

estimate of the phase derivatives. 

Generally speaking, removing as much of the existing interferogram phase 

variability as possible increases the likelihood of successful phase unwrapping [40]. 

Because residue density varies with local interferogram frequency[41], reducing the 

interferogram frequency reduces the number of residues and hence the complexity of 

the phase unwrapping problem. The simplest approach as discussed in the InSAR 

180 



processing algorithm is to "flatten" the interferogram phase using a flat earth model. 

This type of flattening demodulates the interferogram globally and therefore reduces 

the average phase difference from having some non-zero mean to having a zero or 

close to zero mean. 

Another approach to reducing interferogram phase variance is demodulat­

ing one interferogram by an integer multiple of another interferogram's phase val­

ues [40]. This pre-processing methodology subtracts an integer multiple of one 

wrapped interferogram phase from the other interferogram which effectively reduces 

the interferogram phase variability without phase unwrapping. Although the idea 

is straightforward, practical application of this technique appears to require accu­

rate orbit data in concert with accurate baseline parameter estimates. The authors 

mention the idea of using an existing DEM in the manner of differential interferom­

etry before the integer multiplication process but do not discuss the algorithm for 

inclusion of coarse DEMs in detail. 
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A p p e n d i x D 

D E M Refinement Algor i thm 

Details 

D . l M i n i m i z a t i o n A l g o r i t h m 

The basic premise of workable iterative minimization algorithms is that the function 

is relatively well behaved [45]. If so, then a small change in the function parameters 

given by the kth step of magnitude ak in the direction pk will give a new function 

value fk+i by Taylor series approximation with the value 

fk+i = fk{*k + Oik Pk) ~ A(xfe) + cxk V T fk(pk), ( D . l ) 

where: 

x = the parameters of the model, 

V/(-) = gradient of the function at the current position, 

If the step reduces the value of F then it is clear that V T jh Pk < 0. If one were to 

perform an exact search to define the optimum value of a, then one can show [45] 
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that 

V T / f c + l P f c = 0, (D.2) 

or i. e. that the gradient vector at x^+i is orthogonal to the search direction. In 

Newton's method [45], the function is assumed to be locally quadratic so that one 

can predict the future gradient as 

V / f c + i = V/fc + Dpjfe. (D.3) 

Since at a minima, V fk+i = 0, The exact step direction is given by 

Pfe = - D - 1 V / f c ) (D.4) 

where D is the Hessian matrix. Most non-linear minimization methods apply this 

equation in some form with approximations made in the definition of the Hessian 

(D ) or in the step magnitude (a^). 

In practise with non-linear function minimization, the quadratic approxima­

tion may not hold and the algorithm must be iterated to reach the minimum. A 

number of practical problems with numerical stability and other implementation 

issues have stimulated development of numerous algorithms [45]. One standard al­

gorithm for dealing with minimization of non-linear quadratic functions when the 

first and second derivatives are available is the Levenburg-Marquardt (LM) algo­

rithm (see section 14.4 of [68]). The basic premise behind the algorithm is that one 

can use either of two methods to determine where next to move the estimated values 

of the minima: 

• if the function is locally quadratic, than the minimum parameter values can 

be found as above from 

X m in = ^-current D Vf(x c u r rent) i 

where: 

x = the parameters of the model, 
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D = the matrix of second derivatives at the current parameters, 

V/(-) = gradient of the function at the current position, 

• if the function is not locally quadratic, the next best procedure is to a take a 

step in the "best" downwards direction using the gradient direction 

Xnerct — ^-current 

- constantsf(x.current) 

where constant is chosen to not exhaust the downhill direction. 

The Levenburg-Marquardt method combines these two choices by solving a 

related equation at each step of the iteration: 
ro 

J2^k,iSxi = (3k, (D.5) 
i=i 

where 

Sxi = the perturbation in the Ith parameter, 

k = 1.. .m, 

m = the number of parameters in the model, 

I \ / = ^Dk,i, if k ^ /, 

Tfc,fc = (1 + A), 

fik = 2̂ '̂ fa-cur rent) k-

(D.6) 

The value of A is varied to change between the two steps noted above. If A is 

small, the matrix T tends to mimic D. Conversely, if A is large, the matrix V is 

diagonally dominant and we get a gradient step scaled by the magnitude of the 

diagonal elements. The algorithm is: 

1. Initialize A to some small value such as 0.001 
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2. Compute f{-),T,/3. 

3. Solve eqn. (D.5) for the value of the optimal step <5x. 

4. Evaluate /(x + <5x). 

5. If the value of / (x+ 6"x) > /(x) then increase A by a factor of 10 and return 

to Step 3. 

6. If the value of /(x+5x) < /(x) update x and compute /(•), T,/3. Set A = A/10 

and return to Step 3. 

Note that if one is close enough to the minima and if the function is nearly quadratic, 

one can step to the minima in one iteration using Newton's method. 

D . 2 B a s e l i n e A c c u r a c y R e q u i r e m e n t s 

The most stringent constraints for baseline estimation come from topographic esti­

mation so we shall consider the impact of baseline estimation errors on estimation 

of terrain height in terms of height error across the ground swath. 

If we consider the two dimensional problem of a range line of data, the terrain 

height h can be estimated as 

Making the substitution of 6 = 0 - <j> where <f> is the angle estimated using the 

interferometric SAR data yields 

(D.7) 

(D.8) 

Substituting for the interferometric angle <f> yields: 

h = a ? + r2 - 2 r a cos 0 - arccos 
1 r 2 + B2 - r22 

2 Vb ) (D.9) 
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To estimate the magnitude of height errors due to baseline length and orientation 

errors, consider the gradient with respect to all the parameters: a, S(r), B and O: 
dh dh dh dh 
dB 90 9a' 9r2 ~ 

asin( 9) ( —B + cos( cj>) r) r asin( 9) a - rcos(9) a sin(9) r2 
. (D.10) 

h ^ l - c o s ( < p ) 2 B h h h y / 1 - cos{(f>y2B 

The perturbation at any point in the data can be evaluated using the error values 

and the gradient. For the moment we consider the errors in a and S(r) to be zero 

which leaves: 

asin(9) ( —B + cos( <ft) r) AB rasin(9) A 0 

h ~ ~ h ^/l-cos( 4>)2B + h ' [ ' ' 

One can choose to zero the height error at any point in the swath to eliminate one 

or the other of the perturbations: 

Q _ _ «sin ( 9 m i d ) {-B + cos (4>mid) rmid) AB + r m i d a s m {9mid) AQ 

hyjl - COS {4>mid)2 B k 

We eliminate A 0 to get 

( a sin (9mid) AB ^ a sin (9 m i d ) AB cos (<f>mid) rmjd \ ^ 

V hy/l - COS ((f)midf h^Jl - COS (4>mid)2 B . 
A 0 — :—j2 v • (D.ldJ 

rmid asm [9mid) 

Substituting this relation into eqn. (D.ll) snd simplifying shows that there are two 

terms which contribute to the perturbation in height measurement: 

h A h ( 1 1 
« s i n ( 0 ) r \r^l-cos(<f>)2

 r m . d ^ _ c o s t ( f > 

AB 
2 

mid j 

COs(<j>) | COS (<l>mid) . A B 

Vl-cos(^)' 2 A _ c o s u y 
+ - 1 K ' ' . (D.14) 

We can approximate the two differences using derivatives as 

h A h I d 1 
asin(9)r \d<f> r y/1 - cos( <f>)2

 y 
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Evaluating the derivatives and simplifying yields: 

A _ , „ = J . ( e - » ) ( - t f + r » ) . . i . ( » fi 

( s in (6-0) 2 ) 3 / 2 ( r - c o s ( 9 - 9 ) B ) B h 

D.3 Cramer-Rao Bounds for 2-D Frequency Estimates 

The Cramer-Rao (CR) bound gives a lower bound on the variance of any unbiased 

estimate [69, 70]. One can calculate the CR bounds from the Fisher information 

matrix J, with elements: 

~d2\nf(z\q) 
Jij — E 

where: 

dqidqj 
(D.17) 

q = a vector of parameters to be estimated. (D.18) 

The minimum error variance or error covariance of the estimates is the corresponding 

element of the inverse of the Fisher information matrix: 

E[<?; Qj] > J»~/- (D.19) 

In the following, we review these calculations for interferometric SAR data. 

Complex valued focused SAR images of distributed target scenes are charac­

terized as circular Gaussian random variables: variables with independent real and 

imaginary parts, each drawn from a Gaussian distribution with zero mean and the 

same variance [28, 8]. We assume the samples in each image are uncorrelated but 

individual returns in one image are correlated with the corresponding returns in the 

other image. We also assume that the same coherence magnitude, local frequencies, 

interferogram phase, and variance values apply to the pixels being considered in a 
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particular local area of the image. The probability density function (PDF) of the 

correlated returns can then be modeled as the product of the PDF of individually 

correlated values between the two images [28]: 

f(...I1(x,y),I2{x,y),Ci{x,y),C2{x,y)...) = 

N 

II fkih{x, y),Ci(»,y),h{x,y),y), I ^>M> C T2> (D.20) 

where: 

y/li(x,y)t 

2 2 

x = 

constant interferogram phase, 

the coherence magnitude, 

variance of the images, 

complex amplitude of the x, y pixel of the ith image, 

-(Nx - l ) /2 . . .+ (Nx - l)/2, 

- ( A y - l ) / 2 . . . + (JVy-l)/2, 

(D.21) 

(D.22) 

M^l_2 V J i ( « ; » M a , o . ( C l («,»)-ca(», y)+«»« ,+«.,,, , ,+»)' 

2 (1-M2) 

AO exp 
167r2cT2cr|(l - fi2) 

After some tedious algebra, it can be shown that the inverse of Fishers information 

matrix for this data model is 

7 2 a-**2) n 0 C 

0 t 
NxNy(l+Nx2 Ny2-Nx2-Ny2) 

n 6(i- / i 2 ) 
u Nx Ny (Nx2-1) 
n n 6(i-»2) 0 

U U ..7 AT— i\r.. / sr..2 TT <J 

0 0 

/i2 NxNy(Ny2-l) 

0 2NxNyfj,2 J 
(D.23) 

Therefore the Cramer-Rao lower bounds for the frequency terms in the residual 

interferogram are 

72 (1 - fi2) 
w > „2 li2 Nx Ny (1 + Nx2 Ny2 - Nx2 - Ny2)' 

(D.24) 
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""•1 " ^ W s i V ^ W - l ) ' ( D ' 2 5 ) 

:•*] * ̂ i v ' ^ w - D - ( D - 2 6 ) 

D . 4 C o n s e r v a t i o n o f M e a n V a l u e s i n L S P r o b l e m s 

The general least squares problem is 

min £ ( / ( * ! , . . . , z P ) - z z ) 2 . (D.28) 

The solution to the least squares problem is obtained by solving the set of equations: 

£(/,(*!,...,xP) - z,) d ^ - - " x r ) = o i = 1,...,P. (D.29) 

If the <7t/l derivative is constant and non-zero over the / samples, clearly one can 

make an equation: 

Y,(fl(x1,...,xP)-zl) = 0 (D.30) 

which implies that the mean of /(•) at the solution and the mean of the function to 

which we are fitting are equal. 

In the more general case, the derivatives are not likely to be constant over all 

/ samples. However the same result can hold if some combination of the derivatives 

at the solution can yield a non-zero constant. In other words if 

}^}^{fi{xi,---,xp) - zi) a -r = 0 (D.31) 
i=i / ° { 

at the solution such that 

P 
C{ ^ ^ 1 ' —— = constant, (D.32) 

i=i d x i 
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then the equality between the fitted function (27) and the output estimate holds. 

For baseline parameter minimizations in the DEM flattening or updating 

problems, the errors in the fitted function due to errors in B in 0 are approximately 

linear functions. The functions are not co-linear so they form a non-orthogonal basis 

for any linear or constant function. As such, they fulfill the requirements of eqn. 

(D.32) for maintaining the mean of the fitting function (z{) in the fitting process. 

D . 5 P l a n e F i t s t o R a n d o m N o i s e 

One way to derive the best possible topographic accuracy achievable for an input 

DEM is to analyze the experiment of fitting a linear model of the DEM errors 

due to baseline parameter errors to a set of random, zero-mean, independent, and 

identically distributed random variables with variance a2. This models the ideal 

case of DEM fitting. 

The problem is to minimize: 

^2(a + b y + cx + dx y - Ah)2 = 11 A 

where: 

a models the constant error of the output D E M , 

6 models the range slope error of the output DEM , 

c models the azimuth slope error of the output DEM , 

d models the bilinear trend error of the output DEM , 

Ah models the errors of the input coarse DEM , 

A = the matrix of fitting coefficients, 
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h = the DEM errors in a vector. 

and 

V = 
(Ny - 1) 

,k = 0...Ny - 1, 

x = i_ l\l = Q...Nx-l. 

(D.34) 

(D.35) 

The solution to the minimization problem is the usual least squares solution: 

a 

b 

c 

d 

= (A T A) 1 A T h. (D.36) 

Since we have taken care to choose our fitting coefficients to be orthogonal, ^A T A^ 

takes a simple diagonal form: 

-l 

( A - A ) - 1 = 
12 

NxNy(N-£-l) 

12 
NyN,(N2-l) 

144 
AT| N*-NZ Ny-N* Nx+Nx Ny J 

(D.37) 

The values of the cofficients are therefore: 

A = ]TVEA/IM> 
, 12 V - . , Ny-1 

1 2 j ; ^ ! - ^ ) , 

d = 

NyNx(N2-l)^ 

144 
iVj N* — N% Ny — N3 Nx + Nx N 

o A , , , Ny-1.. N - l 

y k,i 
(D.38) 
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If the noise variables are independent and zero mean, then it is clear that the 

expected value of all the fitted variables is 0, ie 

E [a] = 0, E [b] = 0, E [c] = 0, E[d] = 0. 

A corollary of this result is that the output D E M will not (in the mean sense) have 

any trends. In addition, because the basis functions that are being fitted to are 

orthogonal, there is no correlation between the parameters, i.e. E [ab] = 0. 

The variance of the parameters may be calculated by taking the expectation 

of the above expressions. After some tedious algebra it can be shown that: 

E 
L 

E[& 2I = 

E 

NXNy-

12 a2 

NxNy(N*-iy 
12 a2 

NxNy{N2-\y 
144 cr2 

N2 JV3 - 7Y3 Nx -N%Ny + Nx Ny 

The variance of the output plane also establishes bounds on what the best 

fitting interferometric D E M could achieve. Because the fitted plane has zero mean, 

one must evaluate 

N~Ny~E [ E E ( ^ + " + ( l ^ ) ; 

Again after some algebra, one can show that 

L - E p r y ^ y + ca + dsy)2' 
NXNy 

3a2 

NX Ny 

(D.39) 

(D.40) 

The variance of the height difference across the data set is of interest because it 

gives an idea of the possible output trends in the InSAR D E M . One can calculate 

this as 

E[(h(x2,y2 | a,b,c,d) - h(xuyi \ a,b,c,d))2] = 

[a + b y2 + c x2 + d x2 y2 - [a + b y2 + c x2 + d x2 y2)}' (D.41) 
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Simplifying this expression by substituting for the differences yields 

[b (j/2 - + c (x2 - zi) + d (x2 y2 - xi yi)f E ^[bAy + cAx + d Axy]2 , 

(D.42) 

where Ay = y2 - yi, Ax = x2 - xi, and Axy = x2y2- x\ y\. Expanding and using 

the orthogonality of the basis functions yields 

[6 Ay + c Ax + dAxyf Ay2 + E Ax2 + E d? Axy2. (D.43) 

Substituting for the expectation operators yields: 

E [(h(x2, y2 I a, b, c, d) - h(xuyi \ a, b, c, d))2} = 

12 CT2

 A o 12<r2 

NxNy(N2-l) * Ny Nx (A 2 - 1) 
Ax' 

+ 
144 a 2 

m N?, — N% Nv — A, 3 Nx + Nx N, 
•Axy2 (D.44) 

The maximum error possible occurs as a function of the relative position 

of the two points examined. There are six possible directions that could have the 

maximum values, (four directions from one corner to the next along an edge, and 

two differences diagonally). However one need only check diagonal direction and 

one edge to edge direction to get the form of the error. 

For the difference across the fitted DEM diagonally we have: 

Ax = Nx- 1, 

Ay = Ny-l, 

Axy = 0, 

and 

(h(x2, y2 I a, b, c, d) - h(xuyi | a, 6, c, d))' 
_ 12 a2 (Ny - 1) 12cr2 (Nx - 1) 

diag ' NX Ny(Ny + 1 ) + Ny NX(NX + l) " 
(D.45) 
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For the DEM difference across an edge we will evaluate the along the right 

edge of the DEM where we have: 

Ax = 0, 

Ay 

Axy = 

Ny-l, 

A ^ - l A r _ 1 2 _ (Nx-l)-(Ny-l) = (Nx-1) ( N y - 1 ) { B A 6 ) 

and 

E [(h(x2,y2 | a,b,c,d) - h(xl,yl \ a,b,c,d))2]right 

12 a2 (Ny - 1) 
+ 

144 a2 

Nx Ny(Ny + 1) ' NiJV3 - Ni Ny - JV3 iV* + TV, Ny 4 ^ " ' 

This simplifies to E [(h(x2, y2 I a, b, c, d) - h(xlt yx | a, b, c, d))2]right = 

12 a2 (Ny - 1) 36a2 (iVy - 1) (A^ - 1) 
NxNy(Ny + 1) A^iV,, ( A ^ y + JVy + iV* + 1)" 

(D.48) 

For JVj, = Nx = iV, the edge difference will be more than the difference 

diagonally which suggest that the bounds for error performance of the estimate are 

really set along the edge of the DEM as 

_ 24a 2 (2N-1) (N-l) 
(h(x2, y2 | a, b, c, d) - h(xu y1 | a, b, c, d))' 

J right (N + 1)2N2 

(D.49) 
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A p p e n d i x E 

D E M Refinement Algor i thm 

Definition 

The required inputs for the DEM refinement algorithm are 

• I eJ ~5(r(r'?'))) the raw interferogram (i.e. unflattened) at the range time r and 

the azimuth time 77, 

• /J(T, 77), the coherence magnitude at each interferogram sample, 

• s(rj), the estimated spacecraft position in meters at each azimuth time in ECR 

coordinates, 

• r(r), the slant range in meters at each range sample, 

• A, the radar wavelength in meters, 

• h(x,y,z), the input DEM positions in meters in ECR coordinates, 
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DEM Flattening 
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Figure E . l : Top level block diagram for the DEM refinement algorithm. 

The algorithm proceeds in three stages: 

1. D E M flattening, 

2. phase unwrapping, and 

3. DEM updating, 

as described in Chapter 3 and shown in Figure (E.l). The following list gives a 

concise description of the processing at each stage. 

• D E M Flattening Algorithm 

1. Prepare the DEM data (h(x,y,z)) for use: 

(a) Convert the DEM sample positions to preliminary along-track time 

coordinates by finding the satellite position that minimizes the dis­

tance to DEM sample position. 
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(b) Grid the height data along lines of constant azimuth time and at 

azimuth increments that conserve the information in the input DEM 

data. 

(c) Search along each constant azimuth line to identify and discard lay­

over points. Layover points are DEM samples where the derivative 

of the estimated slant range becomes negative. 

(d) Produce the input coarse DEM for processing, h(DEM), by gridding 

the DEM data at constant azimuth positions at the same azimuth 

time and slant range increments as the input interferogram data. 

2. Register the DEM data to the interferogram by maximizing coherence 

magnitude over small regions of the input interferogram with distinctive 

features. The coherence is maximized as a function of the baseline pa­

rameters using the DEM flattening algorithm described in the next step. 

3. Estimate the baseline parameters for the entire scene and compute resid­

ual interferogram. 

(a) Calculate/set the following values for the input coarse DEM in slant 

range coordinates: 

J(r), the target slant range difference for the fitting problem; 

B, the initial estimate of the baseline magnitude; 

0#, the initial estimate of the baseline orientation; 

(b) while not converged and maximum number of iterations unreached 

do: 

i. Estimate B and 0g by solving: 

min(fl, 9) £ > f ) f c - (r2k(B, 0, a, h, r) - rk))\ 
k 

ii. Form the residual interferogram: 
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iii. Estimate the frequency components: wr, wa,wria and constant 

phase offset ip0 from the residual interferogram, 

iv. If the frequency components are all close to zero then the itera­

tion has converged otherwise update S(r) as: 

5{?) = (r2(B,Q,a,h,r) - r) + ^ (wr,a(n - r]0)(T - T0) + 

wR(T-T0) + wa(r)-r]0) + Vo)-

and return to Step i. 

4. Filter the residual interferogram to prepare for phase unwrapping. 

Phase Unwrapping 

1. Generate a phase unwrapping mask to eliminate low coherence, low backscat­

ter, and high magnitude areas (i.e. layover areas) from the phase unwrap­

ping processing. 

2. Generate group labels (groups) for the unwrapped interferogram phase. 

groups is generated so that unwrapped phase values with the same group 

number can be identified. 

3. Unwrap the residual interferogram phase. 

(a) Unwrap the bulk of the residual interferogram phase using weighted 

least-squares processing [57]. 

(b) Unwrap the residual from the weight least-squares phase unwrapping 

using region growing [71] or minimum discontinuity processing [54]. 

D E M Updating Algorithm 

1. Generate an estimate of the total slant range difference using the un­

wrapped phase and the calulated 5(r) from the flattening algorithm as: 

^ = %) + ! _ * . (E.l) 
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where: 

\I> = the unwrapped phase . 

2. Redo the baseline parameter estimation by minimizing: 

min(B,0) J 2 ( h ( D E M ) ~ M s > 0 I <*F),a ,r))2. (E-2) 

where: 

h(DEM) = the input coarse DEM, 

h(B,Q | S(r),a,r) = the DEM calculated from the unwrapped phase. 

3. Calculate terrain height for all processed data using the unwrapped flat­

tened interferogram phase and the estimated baseline parameters from 

the minimization above. 

4. Validate the phase unwrapping ambiguity for all contiguous groups of 

unwrapped phase. For each group of data 

(a) Compute the mean difference between the output height and the 

input DEM over the same pixels. 

(b) If the mean difference of a unwrapped phase group corresponds to 

greater than the half-ambibuity height for the interferometer, add/subtract 

the appropriate number of half wavelengths to/from the slant range 

difference estimate and return to step 2 of the D E M updating algo­

rithm. 
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A p p e n d i x F 

ERS DEM Histograms 
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(a) Height differences between input TRIM and output InSAR-TRIM DEMs. 

-250 -200 -150 -100 -50 0 50 100 150 200 250 
Height difference in meters 

(b) Histogram of InSAR-TRIM and TRIM DEM differences. 

Figure F . l : InSAR-TRIM DEM error analysis for ERS Tandem data. 
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Height difference in meters 

(b) Histogram of input DTED-1 and input TRIM DEM differences. 

Figure F.2: Input DTED-1 DEM error analysis. 
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(a) Height differences between output DTED-1 and input TRIM DEMs. 

-250 -200 -150 -100 -50 0 50 100 150 200 250 
Height difference in meters 

(b) Histogram of output InSAR-DTED-1 DEM and input TRIM DEM differences. 

Figure F.3: Output InSAR-DTED-1 DEM error analysis for ERS Tandem Mission 
data. 
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(a) Height differences between modified DTED-1 DEM and input TRIM DEM. 
x 1 0 4 

10 j 1 1 1 1 1 1 1 1 1 

9 - '• s \ • ; -

-250 -200 -150 -100 -50 0 50 100 150 200 250 
Height difference in meters 

(b) Histogram of modified DTED-1 DEM and input TRIM DEM differences. 

Figure F.4: Modified DTED-1 DEM error analysis. 
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(a) Height differences between modified InSAR-DTED-1 DEM and input TRIM DEM. 
x 10 4 

meai i : - 1 . 2 5 n l 

o : 26.9 m 

9 0 * % of I A h : : 43.2 m 

-250 -200 250 -150 -100 -50 0 50 100 150 200 
Height difference in meters 

(b) Histogram of modified InSAR-DTED-1 DEM and input TRIM DEM differences. 

Figure F.5: InSAR-Modified DTED-1 DEM error analysis. 
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(a) Height differences between input GTOPO30 and input TRIM DEMs. 
x 10* 

6 m 

-250 -200 -150 -100 -50 0 50 100 
Height difference in meters 

150 200 250 

(b) Histogram of input GTOPO30 and input TRIM DEM differences. 

Figure F.6: Input GTOPO30 DEM error analysis. 
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(a) Height differences between output GTOPO30 and output InSAR-TRIM DEMs. 

-250 -200 -150 -100 -50 0 50 100 150 200 250 
Height difference in meters 

(b) Histogram of output InSAR-GTOPO30 DEM and input TRIM DEM differences. 

Figure F.7: Output InSAR-GTOPO30 DEM error analysis. 
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(a) Height differences between modified GTOPO30 and output InSAR-TRIM DEMs. 

-250 -200 -150 -100 -50 0 50 100 150 200 250 
Height difference in meters 

(b) Histogram of modified GTOPO30 DEM and input TRIM DEM differences. 

Figure F.8: Modified GTOPO30 DEM error analysis. 
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(a) Height differences between modified GTOPO30 and output InSAR-TPJM DEMs. 

-250 -200 -150 -100 -50 0 50 100 150 200 250 
Height difference in meters 

(b) Histogram of modified InSAR-GTOPO30 DEM and input TRIM DEM differences. 

Figure F.9: InSAR-Modified GTOPO30 DEM error analysis. 
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A p p e n d i x G 

R A D A R S A T D E M H i s tog rams 
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(a) Height differences between input TRIM and output InSAR-TRIM DEMs. 
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(b) Histogram of InSAR-TRIM and TRIM DEM differences. 

Figure G. l : Output InSAR-TRIM DEM error analysis for RADARSAT-1 data. 
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(a) Height differences between input DTED-1 and input TRIM DEMs. 
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(b) Histogram of input DTED-1 and input TRIM DEM differences. 

Figure G.2: Input DTED-1 DEM error analysis. 
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(a) Height differences between output DTED-1 and input TRIM DEMs. 
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(b) Histogram of output InSAR-DTED-1 DEM and input TRIM DEM differences. 

Figure G.3: Output InSAR-DTED-1 DEM error analysis for RADARSAT-1 data. 
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(a) Height differences between input modified DTED-1 DEM and input TRIM DEM. 
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(b) Histogram of input modified DTED-1 DEM and input TRIM DEM differences. 

Figure G.4: Modified DTED-1 input DEM error analysis. 
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(b) Histogram of modified InSAR-DTED-1 DEM and input TRIM DEM differences. 

Figure G.5: Output InSAR-Modified DTED-1 DEM error analysis for RADARSAT-
1 data. 
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(a) Height differences between input GTOPO30 and input TRIM DEMs. 
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(b) Histogram of input GTOPO30 and input TRIM DEM differences. 

Figure G.6: Input GTOPO30 DEM error analysis. 
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(a) Height differences between output GTOPO30 and output InSAR-TRIM DEMs. 
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(b) Histogram of output InSAR-GTOPO30 DEM and input TRIM DEM differences. 

Figure G.7: Output InSAR-GTOPO30 DEM error analysis for RADARSAT-1 data. 
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(a) Height differences between input modified GTOPO30 and input TRIM DEMs. 
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(b) Histogram of modified input GTOPO30 DEM and input TRIM DEM differences. 

Figure G.8: Modified input GTOPO30 DEM error analysis. 
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(a) Height differences between modified GTOPO30 and output InSAR-TRIM DEMs. 
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(b) Histogram of modified InSAR-DTED-1 DEM and input TRIM DEM differences. 

Figure G.9: Output InSAR-Modified GTOPO30 DEM error analysis for 
RADARSAT-1 data. 
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