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ABSTRACT 

The objective of this thesis is to develop a simplified high-frequency model for 

three-phase, two- and three-winding transformers. The model is an extension of the 

classical 60 Hz model which includes two important factors prevailing in transformers 

under transient conditions: stray capacitances which cause transformers to resonate and 

frequency dependent characteristics of the leakage flux and winding resistances due to 

skin effects. The model is not aimed to represent internal details of the transformer and 

only lumped circuit parameters are used in order to simulate terminal behaviours of the 

transformer. However, it is different from other terminal models in that it is not just an 

impedance or admittance black box derived from measured transfer functions. Only the 

meaningful parameters which correspond to the physical components in the real trans

former are included in the model. 

The short-circuit impedances T-form of the classical model is retained which 

makes it possible to separate the frequency-dependent series branch form the constant-

valued capacitances. In addition, it enables the model to be built at the coil level which is 

independent of winding connections. The model stray capacitances are placed at the 

corresponding coils terminals. If they link two coils they will be split into two halves with 

one half connected at the upper ends and the other half at the lower ends. The frequency 
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dependent series branch is divided into sections corresponding to various sections in the 

transformer coil which can be assumed uniform. An RL equivalent network is used to 

synthesise the frequency dependent behaviour of each section. The values of R's and L's 

are calculated from minimum-phase-shift approximations which guarantees numerical sta

bility of the resulting network. With the use of symmetrical components, mathematical 

complications of fitting mutual impedance functions are avoided and also the number of 

impedance functions to be fitted by rational functions is reduced. 

A number of short-circuit tests on the actual power transformers installed in the 

Thailand 's power system were performed to determine the parameters of the model. The 

frequency responses calculated from the model are compared with the tests. Also, a time-

domain test was conducted and the result was used for comparison with the simulation 

from the model. 
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Chapter One 

INTRODUCTION 

Switching transients have been a concern in most power utilities. They could cause 

damages to various equipment in the power system. The problem may be prevented or 

avoided if simulations on the power system under various transient conditions can be con

ducted with sufficient accuracy so that the effects of the transient can be predicted in ad

vance. However, simulation studies need good models of the electrical equipment 

including power transformers which are very common in the power system. Unfortunately, 

a mathematical model of the power transformer is not common, and a general model is 

being under research by many interested people. 

When the power transformer is in operation, it will be subject to both steady-state 

and transient conditions. At steady state, the coupling in the transformer is primarily due 

to the inductive interaction of various coils. Under this circumstance, the transformer may 

be accurately modelled with inductances and resistances without the need to include any 

capacitances. The low frequency model is good for an electromagnetic transients study if 

the frequency components under consideration are below a certain frequency limit. For 

example, the low frequency model of the 50 MVA, 115/23 kV power transformer whose 

data are used in this thesis will be good to about 5 kHz, as shown in fig. 1.1. At a higher 
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Fig. 1.1 Ampitude frequency response of a 50 MVA 115/23 KV transformer versus 
the calculated impedance from its 60 Hz model. 

frequency range, such as switching frequencies, the low frequency model should be modi

fied so as to improve its accuracy. 

In recent years, many authors have presented a number of good transformer mo

dels. Nonetheless, some of these models are limited to single phase transformer while 

some others are "black box" representations. The problems which are mostly encountered 

in transformer modelling are numerical stability, difficulty in data acquisition to realise 

parameters for the model, size of the matrix to describe the model, and complexity of the 

model itself which requires sophisticated knowledge of electromagnetic theory. This 

implies that further improvements are still required before satisfactory models finally 
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become available. The proposed model in this thesis is designed to be simple, easy to im

plement and requires minimum understanding of electromagnetic theory, yet it is suffi

ciently accurate. The model can be used in various analyses associated with switching 

transients such as surge arresters selection, insulation level evaluation, etc. In addition, the 

model may be used to carry out simulations under different transient conditions to investi

gate causes of problems which already occurred or are expected to take place without the 

need to conduct the actual field tests. Before further details of the proposed model are 

discussed, it is helpful to look back at some of the previous works in transformer 

modelling. 

1. Previous Work 

It may be accurate to say that there are hundreds of transformer models which 

have been proposed for transient simulation studies. However, the objective of this thesis 

is on improving EMTP models. Therefore, transformer models will be grouped into 

EMTP models and models belonging to other sources. 

1.1 EMTP 

A high frequency model for EMTP has been recently developed by Ontario Hydro, 

Canada [1] . This model was derived from the nodal admittance matrix equation which re

lates transformer currents and voltages at its external terminals. For example, a wye-delta-

wye transformer in which the delta winding has no accessible terminals is modelled by a 
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[6x6] matrix equation. This representation is in contrast with the proposed model in this 

thesis in which the modelling of transformers begins at the coil level. 

In Ontario Hydro's model, the coupling between different windings of the same 

phase is averaged so as to make use of the symmetrical components transformation. The 

distinct elements of the admittance matrix after transformation which are needed to be 

fitted by rational functions are reduced to m(m+l) from 3m(3m+l)/2, where m is the no. 

of windings. Comparison of the no. of impedance functions required by the proposed 

model and Ontario Hydro's model is given in table 1.1 below. 

Table 1.1—Comparison of the no. of impedance functions required by the proposed 
model and Ontario Hydro's model for a three-phase transformer 

No. of windings 

2 

3 

Proposed model 

2 

6 

Ontario Hydro's 

6 

12 

Times 

3 

2 

Even though it is required to fit only m(m+l) elements, the total number of 

measurements required is still 3m(3m+l)/2. Therefore, the transformation only saves fit

ting time not the time spent for measurements. 

In terms of time-domain solution costs, the differences are even greater. For 

example, for a three-phase two-winding transformer, only 3 history terms are needed to be 
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updated in the proposed model. Whereas in Ontario's Hydro model, 12 history terms must 

be updated due to the use of a pi-equivalent circuit which requires 12 impedances for the 

complete three-phase two winding transformer. The savings of simulation time in the pro

posed model is clearly demonstrated in table 1.2. 

Table 1.2~No. of history terms to be updated in the proposed model and in Ontario 
Hydro's model 

No. of windings 

2 

3 

Proposed model 

3 

9 

Ontario Hydro's 

12 

27 

Times 

4 

3 

1.2 Other Models 

There are a number of models developed by other sources. However, they may be 

classified into 2 major groups: the terminal models and the detailed models. 

1.2.1 Terminal Models 

Most of the previous works in transformer modelling fall into this type. Some of 

these works are: 

(a) M. D'Amore, et al., [2] modelled a transformer as a two port network consist

ing of a series impedance Z(s) and a parallel capacitance connected at the output port, as 
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Fig 1.2 Transformer model developed by [2]. 

shown in fig. 1.2. A number of networks for Z(s), made up of R, L and C's were used to 

reproduce the voltage gain functions of single and double resonance transformers. There 

was no restriction in the sign of the R, L, C parameters used. Consequently, there is no 

guarantee of numerical stability in the model. Furthermore, the choice of Z(s) which would 

produce more than two resonances was not shown in the work. 

(b) P. T. M. Vaessen [3] also constructed a transformer model from the voltage 

function. He used a two-port network consisting of two ideal transformers to duplicate 

each peak in the voltage gain function. Many such two-port networks were connected in 

parallel if multiple peaks were to be matched. The diagram of Vaessen's model is shown in 

fig. 1.3. 

(c) R. C. Degeneff [4] proposed a transformer model which was made of RL par

allel components as the basic building block. The model was constructed by joining a pair 

of transformer terminals with one RL parallel block and also from each terminal to 
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Fig. 1.3 P. T. M. Vaessen's high frequency transformer model. 

ground. In his paper, he demonstrated the model for a 250 MVA single phase auto-trans

former with tertiary winding. For this single phase transformer where the common winding 

was grounded, there were a total of five terminals including ground to be considered. The 

total number of RL parallel branches required to build the model was ten, or 0.5(n-l)n -

where n is the number of terminals in the model. This type of model would be almost im

possible to realise for the three-phase transformer because the number of branches re

quired would be too many. Furthermore, losses were not included in the model. 

(d) T. Adielson et al. [5] developed a transformer model from a matrix equation 

which describes a multi-winding transformer as n magnetically coupled coils. The model 

was designed for transient studies within the frequency range of tens of kHz. Adielson 



proposed the separate modelling of stray capacitances from the frequency dependent part 

of the transformer model. However, he used an RLC equivalent circuit to represent the 

frequency dependent part without consideration on numerical stability. He stated in his 

paper that he encountered many cases of numerical problems in the time-domain 

simulations. 

(e) CIGRE WG 33.02 Report [6] presented several models for transient studies. 

Each model was designed to serve the study within a particular frequency range. The ef

fects of stray capacitances, frequency dependency of the windings and leakage flux were 

introduced. These models, therefore, were more accurate for transient studies than the 60 

Hz model. However, the frequency dependent effect of the winding was represented by 

only RL parallel branches which is not sufficient to represent a transformer with multi-re

sonance characteristics. 

The models described in (a) to (e) above were developed for the single phase 

transformer. Most of them, except in (e), were based on the concept of the black box, 

without paying attention to the internal conditions of the transformer under transients. We 

believe the transformer model should be more representative of the real transformer. It 

should be general and every parameter constituting the model should be included only if it 

is related to what it would represent in the real transformer. This is the core idea of the 

model proposed in this thesis. 
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1.2.2 Detailed Model 

Not many works are devoted to modelling the transformer in detail. Two of these 

works are reviewed here: 

(a) R. C. DegenefF [7] has worked at modelling a transformer at the turn level. 

Each turn of the coil was represented with a loss resistance, a turn-to-turn capacitance and 

an inductance with loss. Also the capacitive coupling of the turn to ground was taken into 

account and was represented with a capacitance with loss. The parameters for the model 

were obtained from measurements. 

(b) Francisco de Leon and Adam Semlyen [8, 18], instead of finding the trans

former parameters from measurements, applied electromagnetic field theory to calculate 

the winding leakage inductance and capacitance on a turn basis from the knowledge of the 

physical layout of the transformer. Not only was the leakage impedance modelled in detail, 

the iron core was also mathematically represented and included in the overall model. 

Models of this type are good for the study of internal winding stresses. The diffi

culty which may be encountered is that detailed transformer data are not normally made 

available by the manufacturers. Also, the size of the matrices involved is too large to make 

it practical to interface the transformer model with the EMTP. 
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Fig. 1.4 The proposed transformer model which consists of the non-frequency dependent 
stray capacitances (outside the dotted frame ) and the frequency dependent part (inside 
the dotted frame). 

2. Proposed Model 

The proposed transformer model could be classified as belonging to the group of 

"terminal models" but the principles upon which the model is developed are totally differ

ent. The model is not a direct translation from the admittance matrix equation nor a black 

box. On the contrary, the admittance matrix equation could be derived from the model. 

The model is made to be representative of the real transformer in a simplified way. That is, 

the real physical components in a transformer under transient conditions are incorporated 

into the model with the use of lumped R, L and C components. The two main factors in

fluencing the behaviour of the transformer at high frequencies which are - 1) the stray 
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capacitances and 2) the frequency dependence of the leakage flux and losses due to skin 

effect are taken into consideration. These two components are separately treated in the 

proposed model which can be seen in fig. 1.4. 

The magnetising effects such as saturation and hysteresis in the core are not con

sidered. Under switching frequencies, these effects have a lesser influence and can be 

disregarded [5]. 

Stray capacitances are assumed to be constant and are represented in the model by 

non-frequency dependent capacitances connected between the outside terminals of the 

model. Unlike other previous models in which "mathematically equivalent" capacitances 

are connected between any two terminals possible, only the physical capacitances are con

sidered in the proposed model. No fictitious capacitances are then present to complicate 

the model. 

Leakage fluxes and losses are represented in the same way as it is found in the 

traditional transformer model. They constitute a series branch of resistances and induc

tances but both elements are now frequency dependent. In the model, this frequency de

pendent branch is subdivided into a number of sections, each associated with a resonance 

region in the transformer response. Each frequency dependent section is approximated 

with a rational function of the minimum-phase-shift type. With the use of symmetrical 

components to decouple the model into three sequence-models, direct fitting of the mu

tual impedances is avoided. The mutual impedances are non-minimum-phase-shift func

tions and very strict conditions regarding the location of poles and zeroes of 
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approximating rational functions would have to be satisfied to prevent numerical stability 

problems [13]. RLC equivalent networks, each consisting of a capacitance connected in 

parallel with a branch of a resistance connected in series with an RL parallel circuit, are 

used to synthesise the rational functions. The resistance of the series branch of the RLC 

equivalent network corresponds to the dc resistance of each coil section the network is 

representing. 

For the frequency range up to the first resonance peak, several RL parallel circuits 

are used in the section so as to reproduce the transition from low frequency to the first 

resonance peak more effectively. 

In the real transformer, there are capacitances between each turn and between 

turns on one coil to the others. The former are lumped at the coil terminals and the latter 

are lumped across each section in the model. Detailed discussion on this issue will be pres

ented later in chapter 2. 

Modelling the transformer this way has the following advantages: 

1) The model is simple yet representative of the real transformer. 

2) The model is numerically stable because only minimum-phase-shift functions are 

considered. 

3) The number of impedances to be synthesised is minimal. Only two impedances 

are required to be fit in a three-phase, two-winding transformer and only six for a 

three-winding transformer. This can be accomplished with the use of symmetrical 

components. 

12 



4) The representation is independent of the particular external connection among 

windings (wye, delta, etc.) The connection is taken care of by node labelling at the EMTP 

level. 

In the proposed model, short-circuit tests and capacitance measurements are 

needed for calculations of the model parameters. For this thesis, the experiments were 

carried out at the high-voltage laboratory of the Electricity Generating Authority of Thai

land. The type of experiments needed for the model were proposed by the author. 
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Chapter Two 

NON-FREQUENCY DEPENDENT PART 

1. Stray Capacitances in Three-Phase Transformer 

The non-frequency dependent parts of the proposed transformer model are the 

stray capacitances which exist in every transformer. Fig. 2.1 shows a simplified cutaway 

view of a single-phase, two-winding transformer. The high voltage and the low voltage 

windings are shown as two concentric cylinders. In this arrangement, there is capacitive 

coupling between the high voltage and the low voltage coils as there would be between 

Low Voltage 

High Voltage 

Fig. 2.1 A cutaway view of a single phase, two-winding transformer. 
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any two concentric metallic cylinders. Also, the cylinders and the ground (core and tank) 

act as capacitors and there will be capacitances from transformer coils to ground. There is 

another type of stray capacitance which is not shown in fig. 2.1. This capacitance is the 

turn-to-turn capacitance which is distributed throughout each transformer coil. In the case 

of three phase transformers, there are also capacitances between outer windings on differ

ent phases. Ideally, the stray capacitances for a three-phase, three-winding transformer 

will be as shown in fig. 2.2 which is drawn to represent a transformer with three-limb 

core. In each phase, there exist capacitances between the inside winding to the core, the 

Phase 1 

=F Phase 2 

=J= Phase 3 

"^(Tank) (Core) 

Fig. 2.2 Stray capacitances in a three-phase, three-winding transformer. 
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middle winding to the inside and the outside windings, and between the outside winding 

and the transformer tank, as well as between the outside coil on the middle limb to the 

corresponding coils on the other two outer limbs. In addition, there exists additional ca

pacitances which are not shown in fig. 2.2. For example, there are some small capaci

tances from the outside coil to the inside coil of the same phase and also between the 

outside coils of phase 1 and phase 3 as well. 

2. Types of Stray Capacitances 

Within the scope of this thesis, the capacitances will be lumped into the following 

four groups: 

(1) Capacitances between windings on the same limb (phase) or "interwinding 

capacitances" ( numbered 2 in fig. 2.2), 

(2) Capacitances between windings and the tank and between windings and the 

core or "winding-to-ground capacitances" (numbered 1 in fig. 2.2), 

(3) Capacitances between turns of the same coil or "turn-to-turn capacitances" 

(numbered 3 in fig. 2.2), 

(4) Capacitances among the outer coils on different limbs (phases) to the 

windings on the other two limbs or "phase-to-phase capacitances" (numbered 4 in fig. 

2.2). 

The turn-to-turn capacitances are modelled as a single lumped capacitance con

nected between the two ends of the coil. The rest of the capacitances are split into two 
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equal parts. As shown in fig. 2.7, the winding-to-winding capacitances are connected be

tween each pair of coils, while the winding-to-ground capacitances are connected from 

each end of the coil to ground. An alternative way of splitting the winding-to-ground ca

pacitances has been worked out by Allan Greenwood [9]. He has shown that if one end of 

the coils is grounded, the effective winding-to-ground capacitance will be reduced to only 

one-third of the total value instead of one half. This idea was implemented in the software 

developed for the model. If, at any instant in time, a transformer coil is grounded, the 

Fig. 2.3 Stray capacitances in any phase of a three-phase, three-winding transformer 
(turn-to-turn capacitances not shown). 

winding-to-ground capacitances of that coil, which were previously composed of two 

equal parts of value one-half each, will both be changed to one-third. 
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If the three windings of a three-phase transformer are labelled as the high-voltage, 

the tertiary-voltage and the low-voltage windings, denoted by H, T and L respectively, 

the averaged stray capacitances which are formed between H, T, L and ground in any of 

the three phases will be as shown in fig. 2.3. Even though they belong to different phases, 

these capacitances are assumed to be equal (to their averaged values) so as to achieve a 
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Fig. 2.4 Impedance of stray capacitances in a 115/23 kV, 50 MVA transformer. 

balanced condition. For the same reason, the phase-to-phase capacitances, shown in fig. 

2.5, are assumed also to be equal among each other. 
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(a) (b) (c) 

Fig. 2.5 Phase-to-phase capacitances in a three-phase transformer, (a) unconnected 
windings, (b) delta-connected windings and (c) wye-connected windings. 

In the proposed model, all stray capacitances are assumed to be constant within 

the frequency range of interest (which is sufficiently high to cover switching transients). 

Although capacitance is frequency dependent to some extent, the idea of modelling stray 

capacitances as constant is not overly simplified. An analysis of the measured frequency 

response of stray capacitances shows that they are basically constant over a wide fre

quency range. Figure 2.4 shows an experimental measurement of the combined 

winding-to-ground and the winding-to-winding capacitances of a 115/23 kV, 50 MVA 

transformer. As can be seen in this graph, the capacitance is constant to about 100 kHz. 

The irregularities beyond 100 kHz may probably be due to inaccuracies in the measure

ments or to local resonances in the winding at high frequencies. 
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Fig. 2.6 Discrete-time representation of a capacitance. 

Stray capacitances are modelled directly in the phase domain without the use of 

symmetrical components. Although, there is mutual coupling of stray capacitances be

tween the three phases due to the phase-to-phase capacitances, it is not necessary to de

couple them. Each of these capacitances can be represented as two equal capacitances 

and connected as shown in fig. 2.5 for wye or delta configuration of the outermost 

windings. 

3. Discrete-Time Model 

In the electromagnetic transient program, such as the EMTP, capacitances must 

be represented in discrete time form for a numerical step-by-step solution of the power 

system network with digital computers. The discrete-time model of a capacitance, shown 

in fig. 2.6, consists of a resistance and a current source connected in parallel. The values 

of the resistance and the current source depend on the integration rule used to discretize 
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the capacitance. If the trapezoidal rule is used, the resistance and the current source will 

be given by 

Req-C -
A*. 
2C 

(2.1) 

(a) 
-HL 

N, N, 

© =r 

-LG 

cL 

-LG 

(b) 

-HL 

-HL 

Fig. 2.7 Stray capacitances in a single phase, two-winding transformer, (a) Continuous 
time model, and (b) Discrete time model. 
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and, 

In-cit-At) = -2£.v c( /-A/)-»c(f-A/) (2.2) 

where, 

vc(t) and icO) = voltages across the capacitance and current flowing 

into the capacitance, respectively, 

Req-c = equivalent internal resistance of the current source, 

Ih-cif - At) = known current source. 

If the backward Euler is used, the parameters for the discretized capacitance will be, 

Req-C = -g (2.3) 

and, 

7*-c(/-A/) = _£ .v c ( / -A*) (2.4) 

An admittance matrix equation for the entire stray capacitances network can be 

formulated in the regular manner. Each diagonal element of the admittance matrix comes 

from the sum of all the admittances connected to that node and the off-diagonal elements 

are the negative of the admittances joining a pair of nodes. The external current entering 

a node will be added to the current vector on the right-hand side of the equation. Figure 

2.7 illustrates the discrete-time model for the stray capacitances of a single phase, two 

winding transformer. C^is half the total winding-to-winding capacitance, CHGis half the 
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total winding-to-ground capacitance for the high-voltage winding and so is C ^ for the 

low-voltage winding. CH and CL are the total turn-to-turn capacitances for the high and 

low-voltage winding, respectively. The model of fig. 2.7 is used to show how a nodal 

equation for stray capacitances can be formulated. An equation for the more complicated 

stray capacitances configuration of a three-phase transformer can be worked out in a 

similar fashion. The admittance matrix for the network of fig. 2.7, using the trapezoidal 

rule of integration, is as follows: 

2_ 
At 

CHG + CHL + CH -CHL -CH 0 
-CHL CHL + CLG + CL 0 -CL 

-CH 0 CHL + CHG + CH -CHL 

0 -CL -CHL CHL+CLG + CL 

-Ihi-oit - At) - Ihx-^it - At) - Ihi-i.it - At) 
Ih\-i(t - At) - Ih2-4(t - At) - Ih2-G(t - At) 
Ih\-zif-At) - Ihi-G(t-At) - Ifa-4(t-At) 
Ihi-A^t - At) + Ih3-4(t - At) - Ih^-oit - At) 

where, 

VI© 

vifl) 
v2(t) 

V3© 
V40 

IhH(f-At) 

At 

(2.5) 

= voltage at terminal i of the transformer at the present 
time step, 

= current source at the previous time step resulting form 
discretizing the capacitance joining nodes / and j , 

= duration of the time step. 

4. Capacitance Model for Multi-Resonance Transformer 

It should be noted that the capacitance model shown in fig. 2.7 produces only a 

single resonance during the short-circuit tests. In the short-circuit test, the transformer 

23 

http://Ihi-i.it


-HL 
(a) 

0>) 

Hx 

BL 

-'leak 

N I : N 2 

'HL 

Hx 
O l 

5 C H L 

H P P ^ 2 'leak 

^-HL 

N . 

Jt!) 

'HL 

n = - » 
N , 

-HL 

Fig. 2.8 Representation of interwinding capacitances for a two-winding transformer, (a) 
Original model and (b) The proposed modification. 

model is reduced to an equivalent network consisting of a capacitance in parallel with the 

leakage impedance, R(a))+j©L(w), which has only one resonance. It is more likely, how

ever, for a transformer to have multiple resonances. These are due to non-uniform wind

ing parts produced, for instance, by the presence of auxiliary tap changing windings [19] 
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and by voltage grading schemes [20], therefore, modifications are required to take this ef

fect into consideration. In the two-winding transformer, the capacitances between the 

high voltage and low voltage winding can be moved to the side where Zleak is located 

without altering the terminal characteristics of the model. The transferred capacitance 

can then be combined with the leakage impedance and treated as a single unit. This pro

cess is illustrated in fig. 2.8b. 

4.1 Two-Winding Transformer 

A matrix equation to describe the transformer of fig. 2.8a, in which the interwind-

ing capacitance between the two coils is represented as two equal parts - each with half of 

the total capacitance value, is 

" / * , " 
hx 

IH2 

.*** . 

= 

1 
Zhak 

+JG>CHL J*--J®CHL ZUak 

5r>c^ i + > c ^ 
- i 

Zleak 
n 

Zltak 

-1 
Zhak 

n 
ZUak 

n 
zu<* 
-rP-

n 
Zleak ^h+JnCHL TTZ-JVCHL Zleak Zuak 

zh. ztl TZ-J^HL -jh+jaCHL Zleak Zltak Zleak 

VH2 

(2.6) 

where, 

I Hi, I Hi, hi a n d / i j 

VHx, VH2, VLi and VL2 

CHL 

Similarly, from fig. 2.8b, 

= currents entering nodes Hi, H2, Li and L2, 
respectively, 

= voltages at nodes Hi, H2, Li and L2 , respectively, 

= half of the interwinding capacitance between the high 
and low-voltage windings. 
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" / * . ~ 

hx 

IH2 

I Li 

^ + - / ( ° — 2 ^ - ^ C ^ Z ^ - ^ — ZZ+JOC** 

-zh-J®CHL £:+J(onC«L zz+JaCu. £-JmCHL 

£-•** i+>c- i+>^ e->c-
£-J®"CHL ^-J^CHL £+M>CHL . ^ + > < ^ 

^ 2 

VL2 

+ J® 

CHL-J;CHL 0 »CHL -CHL 

0 C//£ - TICHL -CHL »CHL 

T;CHL -CHL CHL-^CHL 0 

-CHL nCHL 0 CHL-HCHL 

VHX 

VLX 

VH2 

VL2 

' 1 

-w 
Zleak 

+j®CHL 

-JG>CHL 

-1 
Zfco* 

Zfca* 

-n 
Zleak 

n2 

Zkak 

-JG>CHL 

+j®CHL 
n 

Zkak 
n 

Zleak 

1 
Zfca* 
-W 

-1 

Zfra* 

+j®CHL 

-J®CHL 

-n 
Zltak 

JL. 
Zleak 

n 
2leak 

-n2 

Zkak 

-J(OCHL 

+JG>CHL 

VLX 

VH2 

VL2 

(2.7) 

Equation 2.7 is exactly the same as equation 2.6. This indicates that the transformer 

model of fig. 2.8b is identical to that of fig. 2.8a with parameters as shown. Next, C^/n 

and Zleak, which are now connected in parallel, will be combined into a new frequency 

dependent impedance which consists of R, L and C and will be, thereafter, referred to as 

117 ii 
winding • 

4.2 Three-Winding Transformer 

The same idea can be applied to a three-winding transformer but it takes more 

steps to get to the final result. The transformer without stray capacitances, which is 
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(a) 

(b) 

(c) I 

Fig. 2.9 Transformation of a three-winding transformer into a delta representation, (a) 
Transformer is modelled as three coupled coils, (b) Leakage impedances are referred to 
the VH side, (c) Leakage impedances are transformed into a delta representation consisting 
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initially modelled as a "T-circuit", must be transformed into a delta representation. The 

transformation process is shown in fig. 2.9. The model in fig. 2.9c can be described by a 

matrix equation, where all voltages and currents are associated with the winding, as 

follows: 

IH 
•IT 

1 + l 

ZffT ZHL 
1 

ZHT 
1 

1_ 
ZHT 

L + 1 

•<HL 

ZHT ZTL 
1 

ZTL 

1 
ZHL 

1 
ZTL 

- J - + J -
ZHL ZTL 

VH 

%-VT 

%'VL 

(2.8) 

or. 

IH 

IT 

II 

J_ + J _ »»_ 1 
ZHT ZHL "T ZHT 

"T ZHT "T \-ZHT ZTL-' 
"H 

~"L 7 

na 1 

'"L ' ZHL 
4 1 

nTnL • ^ 

I (i . n 
HL ~"T"L'ZTL 4'^ZHL+ZTLJ 

VH 

VT 

VL 

(2.9) 

where, 

IH, IT and II 

VH, VT and VL 

ZHT, ZTL and ZHL 

rtH, nT and nL 

= currents in high, tertiary and low-voltage windings, 
respectively, 

= terminal voltages of high, tertiary and low-voltage 
windings, respectively, 

= leakage impedance of high, tertiary and low-voltage 
windings, as represented in the delta configuration (fig. 
2.9c), 

= no. of turns of high, tertiary and low-voltage windings, 
respectively. 
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Equation 2.9 is not the nodal admittance matrix equation, therefore, it cannot be 

combined with the nodal equation indicated previously to describe the interwinding 

capacitances. However, a change in variables to express all the voltages and currents as 

node quantities takes only a small additional effort. Based on equation 2.9, the nodal 

admittance matrix equation for a three-winding transformer can be written as: 

where, 

[YD] 

1 and 2 

/ * , 
ITX 

IH2 

h2 

l1^ J 

= 

[YD] 

-[YD] 

-[YD] 

[YD] 

VHX 

VTl 

vHl 

VL2 

(2.10) 

= admittance matrix of size [3 x 3 ] in equation 2.9, 

designate variables associated with node 1 and node 2 
of each winding. For example, /# , and IH2 are the cur
rents entering nodes Hi and H 2 , where /# , = IH, 
IH2 = -IH- Note that after the interwinding capaci
tances have been included, IHX is no longer equal to the 
negative of IM2 . 

The interwinding capacitances can be added to the transformer in fig. 2.9c in a similar 

fashion. This is shown in fig. 2.8a_ where half of the capacitance is connected from "node 

1" of one winding to "node 1" of the other winding, and the other half is connected 

between their corresponding "node 2". After the interwinding capacitances are included, 

equation 2.10 becomes 
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/*, 
IT, 

K 
IH2 

h2 

J* -

[YD] 

-[YD] 

-[YD] 

[YD] 

vTl 

VH2 

VT2 

VL2 

CHT + CHL 

-CHT 

—CHL 

0 
0 
0 

vhere, 

CHT, CTL 

-CHT 

CHT + CTL 

-CTL 

0 
0 
0 

and CHL 

—CHL 

-CTL 

CHL + CJL 

0 
0 
0 

0 
0 
0 

CHT + CHL 

-CHT 

—CHL 

0 
0 
0 

—CHT 

CHT + CTL 

—CTL 

one half of the high 

0 
0 
0 

—CHL 

-CTL 

CHL + CTL 

-to-tertiar 

vTi 
vLl 
VH2 

vTl 
vrj. 

(2.11) 

high-to-low interwinding capacitances, respectively. 

We consider now taking a portion of the interwinding capacitances and lumping 

them with the delta-equivalent leakage impedance, as shown in fig. 2.10a. In so doing, 

some extra capacitances are generated as by-products which must also be included in the 

equivalent circuit in order to retain similarity between the modified and original network 

(as shown in fig. 2.10b). All these fictitious capacitances can be chosen properly to be as 

follows: 

C' 
^HT 

r' 
^HL 

r' 
^TL 

"T r 

»L r 

nTnL r, 
2 (-TL 

and, 
nH 
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According to this choice of capacitances, a matrix equation describing the transformer of 

fig. 2.10a can be expressed as: 

(a) 

(b) 
H, 

H, 

Fig. 2.10 Equivalent circuit after the interwinding capacitances have been moved to 
the same side as the leakage impedances, (a) Capacitances which will be lumped with 
the leakage impedances and (b) Additional capacitances resulting from the modification. 

31 



1HX 

IT. 

IL, 

IH2 

IT2 

J* . 

[YD] 

-[YD] 

-[YD] 

[YD] 

VT, 
VLX 

VH2 

VT2 

VL2 

+ j® 

[YD] 

-[Y'D] 

-[Yo] 

[YD] 

VTX 

VH2 

VT2 

VL2 

+ > 

[YCl] [Yc2] 

[Yc2] [YCl] 

VTl 

VHl 
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(2.12) 

where, 

[YD] 

CHT + CHL 

HT 

—fiJ^HT 
n2 

~T(CHT + CTL) 

HL TL 

-CH -CHT -CHL 

-CHT -CT -CTL 

-CHT -CTL -CL 

-HZ^HL 

nTnL *- TL 

„2 (PHL
 +

 CTL) 
"L 
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[YCl] 
c'H+cHL+cHT o 0 

0 CT + CTL + CHT 0 
0 0 C'L+CTL + CHL 

and 

[Yc2] 

-CH -CHT —CHL 

-CHT CT -CTL 

-CHL -CTL -CL 

The first term on the right-hand side of equation 2.12 comes from the leakage impedances 

Zjjp Z ^ and Z^ and is identical to the first term on the right-hand side of equation 2.11. 

The second and third terms on the right-hand side of equation 2.12 come from the 

interwinding capacitances. Equation 2.12 will be identical to equation 2.11 only if the sum 

of these two terms is the same as the second term on the right-hand side of equation 2.11, 

which also comes from the interwinding capacitances. The sum of the second and third 

terms on the right-hand side of equation 2.12 is 

[Yc] = 
WDIHYCA -[Y'DIHYCA 

-[Y'D] + [YC2] [ ^ 1 + ^ C , ] 
(2.13) 

There are only two distinct elements in the above matrix, i.e. the diagonal and 

off-diagonal blocks. By substitution, each of the matrices in the diagonal position of 

equation 2.13 becomes 
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-CH -CHT -CHL 

-CHT -CT -CTL 

-CHT -CTL -CL 

CH + CHL+CHT 0 0 

0 CT + CTL + CHT 0 
0 0 C'L + CTL + CHL 

CHL + CHT -CHT -CHL 

-CHT CHT + CTL -CTL 

—CHT -CTL CHL + CTL 

and each of the off-diagonal matrices is 

-CH -CHT -CHL 

-CHT -CT —CTL 

-CHT -CTL -CL 

+ 
-CH -CHT 

-CHT CT 

-CHL -CTL 

-CHL 

-CTL 

-C'L . 

= 

0 0 0 
0 0 0 
0 0 0 

Substituting the diagonal matrices and the off-diagonal matrices into [Yc] makes it exactly 

the same as the matrix in the right-hand side of equation 2.11. Therefore, it can be 

concluded that the representation in fig. 2.10 is also the valid model for a transformer 

when interwinding capacitances are included. The impedances in delta of fig. 2.10a are 

transformed back to the T-circuit and then back to the original circuit of fig. 2.9a. The 

only difference now is that the leakage impedance of each winding has a part of the 

interwinding capacitance in it. This makes it consistent to synthesise each of them with a 

number of RLC blocks, each block for each resonance to be matched. 

5. Implementation of Interwinding Capacitance Modification 

In the model, modification of interwinding capacitance connection is done in the 

nodal decoupled domain. The capacitance value in the decoupled mode is the same as 

that in the coupled mode because the interwinding capacitance exists only between 
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windings of the same phase. Only the part of the interwinding capacitance which is com

bined with the decoupled leakage impedance is modelled in the decoupled mode. All 

other capacitances resulting form the modification process will be additionally entered 

into equation 2.5 in the phase domain as other stray capacitances are treated. Therefore, 

there will be either four (two-winding) or nine (three-winding) more capacitances to be 

included in each phase. Eventually, equation 2.5 can be written symbolically as: 

^[Cstray\[Vnode(i)] = [Ihist-c(t - M)} (2.14) 

Equation 2.14 describes the model for stray capacitances in phase co-ordinates and, along 

with the model built from the frequency dependent part, (to be explained next in 

chapter 4) constitute the complete frequency dependent model for the transformer. 
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Chapter Three 

MODELLING OF FREQUENCY DEPENDENT COMPONENTS 

It was mentioned briefly in the previous chapter that the frequency dependent 

components in the proposed transformer model consist of the leakage impedance in com

bination with part of the interwinding capacitances. Also included in the measured para

meters are the hidden effects arising from the simplified modelling of the actual stray 

capacitances with constant capacitances. In this chapter, the detailed modelling of the fre

quency dependent part will be discussed at length. The objective in the modelling of the 

frequency dependent part is to find a representative network consisting of a combination 

of constant parameter components, which are basically resistances, inductances and ca

pacitances. The parameters will be chosen such that the network produces frequency re

sponses which closely match the actual data obtained from laboratory measurements. 

1. Short-Circuit Responses of Transformers 

The measurements required to determine the characteristics of the frequency de

pendent branch of the transformer model are short-circuit tests. These tests need to be 

performed with a device which is capable of generating a signal of variable frequency so 

that the measurements can be taken in a broad frequency range, extending from a few Hz 
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up to a few MHz. Most transformers will exhibit their frequency dependent behaviour 

clearly in this frequency range. Figure 3.1 shows a frequency response of a distribution 

transformer under a short-circuit test. This type of response is typical for most power 

transformers [16, 17]. This measurement was taken at the high voltage laboratory of the 

Electricity Generating Authority of Thailand (EGAT). The measuring device available at 

EGAT was a network analyser model HP4192A which has a working frequency range 

between 5 Hz and 13 MHz. The four-terminal pair measuring technique (known as "Kel

vin connection") was used in order to achieve a wide range of impedance measurements 

(1 mQ to 10 MQ) and to minimise measuring errors due to parasitic coupling with the test 
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leads. The network analyser was connected to a personal computer (PC). Variation of 

frequency in discrete steps, either on a linear scale or a log scale, can be accomplished 

via a software installed in the personal computer. The network analyser measures the 

magnitude and phase angle of the device under test (DUT) at each discrete frequency and 

transmits the measured data to the PC to be stored. The data can then be retrieved for 

plotting or can be transferred to a diskette for later processing. 

The short-circuit test data so obtained are not yet in a form useful for transformer 

modelling. In order to obtain the data for the frequency dependent branch of the model, 

the value of stray capacitances (known from prior measurements and/or calculations) 

must be deducted from the raw data. Under short-circuit condition, the measured impe

dance is 

where, 

Zshorti®) = Measured short-circuit impedance, 

Cext = Sum of all capacitances except part of the interwinding 
capacitance which becomes combined with the leakage 
impedance. 

Zwindingio) = Impedance of the frequency dependent series branch, 

and 

co = 2%i 

Then , Zww,ng(co) can b e c o m p u t e d as 
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£>winthng\f&) — 
1 

Zshorti®) 
j(0Ce 

(3.2) 

The stray capacitances ( Q J that is deducted must not include the part of the in-

terwinding capacitance (Cm/n in fig. 2.8b) which has been combined with the leakage 

impedance to make 2YtMs^ 

2. Equivalent Network Representation for ZvjMStlg 

The magnitude of ZwMtn^ is similar in shape to the magnitude of the measured 

short-circuit response. It possesses many portions with sharp peaks, these portions are 

not symmetrical around their peak and there are many peaks clustering together, 
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especially in the high frequency region. Due to this nature, it is somewhat difficult to di

rectly apply the pole-zero approximation method [10] to find a rational function repre

senting Z^^g. However, it has been found that the real part of 2 ^ ^ reveals more 

recognisable information. It displays more clearly the resonance characteristics which 

consist of several peaks superimposed on each other, similar to those shown in fig. 3.2. 

The peaks of the real parts are almost symmetrical around their resonance frequencies 

which are similar to the response of the real part of a parallel RLC network. This suggests 

a simple solution to the problem which otherwise could have been significantly hard to 

solve. As a first approximation, those peaks in the real part of Zw/ldnir to be duplicated are 

each fitted with a parallel RLC network. The resistance of this network can be viewed as 

representing ohmic losses in the windings and parasitic losses in the metallic parts 

caused by leakage fluxes. The inductance represents the leakage fluxes and the capaci

tance represents part of the interwinding capacitance. Therefore, all the circuit elements 

have associated physical meaning. The resonance frequency of the block is can be read off 

from the plot of ZwbuSng at the peak it duplicates. For an RLC parallel block, its real part is 

Re{Z(a>)} = ^ ^ (3.3) 
R2(l-®2LC)2+a>2L2 

where, 

Re{Z(&) = Real part of the impedance of an R L C parallel block, 

co = angular frequency in radian/second, 
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L, R and C = inductance, resistance and capacitance respectively of 
the RLC parallel block. 

The product LC in equation 3.3 is known, it is the inverse of the square of the resonance 

frequency (angular frequency). Therefore, it is only necessary to estimate two more vari

ables: R and L . If the real part of each resonance peak is expressed as in equation 3.3, 

the sum of all these functions will, approximately, represent the real part of the entire 

series branch. If there are n peaks, the expression for the desired function will be 

Re{Zynn<ti„g{Gi)} 
;=1 

<Q2L2Rt 

ti 1 - ^ r 
\ 2 (3.4) 

CI2) 
+ <o2L2 

where, 

Re{Zwi„dmg(G))} 

n 

Rt and Lt 

= Function representing the real part of the frequency de

pendent impedance (Zwmfi ) of the transformer model, 

= no. of peaks to be matched, 

= R and L of the block representing peak i, 

= angular frequency corresponding to the resonant fre
quency of peak /'. 

In equation 3.4, there are 2 x n unknown variables, namely, Ri and Lt. The variable Q, is 

known, and the capacitance for each block can be calculated from Q, after the inductance 

Li has been found. The variables Rt and Lt are estimated by fitting the function 

ReiZwindingi®)} t 0 t h e r e a l P ^ o f Ending • s i n c e Reizwinding^)) ls a non-linear function, a 
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non-linear curve fitting method must be used to find the unknown variables. In this thesis, 

a non-linear least-squares fit with the Levenberg-Marquardt method [11] has been ap

plied. Even though the effort is spent entirely on fitting the real part of the function, the 

imaginary part of the function will automatically be matched. As explained in [1], the im

aginary part of any analytical function is uniquely determined by its real part. 

The result from the first approximation technique described above will match the 

response of Z^^ moderately well except in the neighbourhood of the "major peak". The 

major peak is the one with maximum amplitude, usually occurring as the first peak in the 

frequency response, and contains most of the information available from the short-circuit 

tests. Because only one RL block is used for the major peak in the first approximation, 

the fitting will not match this region properly and will need to be fine tuned. The asymp

totic pole-zero approximation method of [1,10] is used to find more RL blocks (series 

Foster) for the major peak region. Capacitance of this section (known from the first ap

proximation) is first removed from the frequency response (as in equation 3.2) leaving a 

non-resonant response which can be fitted with simple poles and zeroes. The rational 

function used to approximate the impedance after extracting the C is 

(s +p0)(s +Pl)(s +P3).(S +/?„) 

where, 
Ffirsti®) - rational function to approximate the remaining magni

tude of the first peak after its capacitance has been 
removed, 
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K = a constant, 

s = j®, 

z. and p. = zeroes and poles of the function, 

m and n = no. of zeroes and poles, respectively, m < n. 

The poles and zeroes in equation 3.5 can be taken from the plot of the magnitude func

tion ( / R 2 ( G ) ) + © 2 Z 2 ( © ) ) on a log-log scale. Applying partial fractions to equation 3.5 

yields 

or, 

fi"tK (S+Pl) (S+P2) (S+P3) 

[>+t) ("^ (s+a 
L\iJ \ L\i 

Equation 3.7 gives all the desired parameters for the first peak. Using these RL blocks in

stead of a single RL block will improve the approximation a great deal especially in the 

region from dc to the first peak of the frequency response. However, due to the fact that 

parameters for the first peak and the remaining peaks are obtained at different stages in 

the optimisation process, the resulting combination will not be globally optimised. Further 

improvement is required to increase the quality of the fitting. The previous results from 

the first optimisation and the fine-tuning will be used as initial condition for another opti

misation. This time, the model function is based on the real part of the circuit shown in fig 
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3.3. Resistances Rw, R^...., representing dc resistances for each peak are inserted be

cause in reality each coil section will have a small dc resistance. Insertion of those resis

tances makes it possible to satisfy the dc response of the network. Examples of how 

C, 

' i i '12 

A/WC)W 
'21 

1 1 R 12 

R2o ^ T P h 

R21 

L31 

R3O / m 

R 31 

Fig. 3.3 RLC synthesis network to approximate Z, 'winding' 

% winding1S realised from the test data will be given in chapter 6. Next, the parameters of the 

equivalent network for Z^^ must be discretized. This can be done in the normal, 

straightforward manner. 

3. Discretization of Equivalent Network for Zwjn£ng 

The equivalent network for ZyitnA consists of a number of constant R, L and C's. In spite 

of the fact that all the R, L and C's are constant, the overall characteristics of the net

work is frequency dependent and follows that of the impedance Z^.^ it represents. In 

the EMTP, as well as in other electromagnetic transient programs based on time domain 

simulation, all circuit elements must be represented in a discrete time form. The discrete-

time representation of L and C depends on the integration rule used in performing the 
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discretiztion [10]. Table 3.1 summarises the discrete-time representations for a capaci

tance and an inductance with respect to trapezoidal and backward Euler rules. 

Table 3.1—Summary of discrete-time models for inductances and capacitances using 
the trapezoidal and backward Euler integration rules. 

Circuit Element Integration 

Rule 

Difference Equation 

w«-At> -e-

Trapezoidal Kt) = ^••v{t)+^-vit-At) + Kt-At) 

Keq ~ At 
At IUt-At) = ^-vit-AD + Kt-At) 

Backward 

Euler 

Kt) = f-v(t) + Kt-At) 

R eq 
L_ 
At 

IuM-At) = i(t-At) 

Kt) 

-v(t; 

W 1 - ^ 

•e 
"eq 

Trapezoidal Kt) = ?£•*)-?£•*-At)-i(t-*t) 

p - M. 
eq ~ 2C 

Ihistit-At) = 
2C 
At v(t-Af)-i(t-At) 

Backward 

Euler 

Kt) = £ - [v ( r ) -v ( f -A / ) ] 

R e 9 
AT 
C 

htstit-At) = -±.v(t-At) 

Figure 3.4 shows one of the blocks used to model the frequency dependent 

branch. This block has to be transformed into its corresponding discrete time 
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c, 
(a) 
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R, R,; 

U*) ct 

(b) 

Ht) 

ut) W W W W W W 
Rii R« R« 

Ut) 
(c) 

Kt) 

vt(t) 

r ^ ^ , ^ 
ut>WW 4 W W W 

RLR-II RLR-U RLR-13 

V4(t) 

(d) 

i(t) 

(e) Ihist-l 

Kt) 
-o o-

woLAAAd 
KLR-I 

eq-1 
vi(t) 

Fig. 3.4 Discretization of a section of the equivalent network for Z^^ . This section 
represents a general network used to duplicate a resonant peak. 
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representation. Each block of the approximating network has a single C regardless of 

how many RL parallel blocks the section contains. Parameters of the network in fig. 3.4a 

are found from non-linear fitting and/or from the pole-zero approximation described 

earlier in this chapter. This general network can also include the case of a section contain

ing a dc resistance: an R can be regarded as an RL block without an L. The discretization 

process can be carried out as outlined in fig. 3.4. Initially, each inductance is replaced by 

its discrete time equivalent (fig. 3.4b). After that the equivalent resistance of the discrete-

time inductance is combined with the physical resistance of the RL block (fig. 3.4c), re

sulting in a combined circuit which has the same form as that of a single C or L (table 

3.1). Subsequently, all these circuits can be added mathematically leading to a final equiv

alent current source connected in parallel with its source resistance. At this point, the ca

pacitance C, is replaced with its discretized form to produce the circuit of fig. 3.4d. After 

another combination, the network becomes again one dc current source with its internal 

resistance as shown in fig. 3.4e. 

The sequence described above is repeated for all blocks of the approximating net

work. After the process has been completed, all the equivalent circuits (which are con

nected in series) are again combined into a single equivalent similar to the one shown in 

fig. 3.4^ If the equivalent resistance of L, • is R^,. and its current source (or history term) 

is I, j(t-At), j = 1, n, where n is the number of RL parallel blocks, the following equations 

can be written (with reference to figs. 3.4b and 3.4c), 
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and, 

RLR-U = !t1J'Ri~lJ , / J V * 0 , Z V * 0 , (3.8) 
Aly + ./U-l/ 

Rv , Ly = 0, (3.9) 

/fc.v , Rv = 0, (3.10) 

/L-V = h , Lv*0, (3.11) 

0 , Lu = 0 (3.12) 

and with reference to fig. 3.4-c, 

or, 

vi(0 = (iB-i(i) -IL-U) • RLR-U + (iB-i(t)-IL-n) • /?ZR-I2 

+ ( J w ( d - / w j ) • ̂ - 1 3 + • • • 

= *B-I(0 • (RLR-U + RLR-U +RLR-U + •••) 

- (JL-U • RLR-U +IL-U • RLR-U +IL-I3 • RLR-U H — ) 

= h-\ (t) • S RLR-U - S IL-U • RLR-U 

n 

/A £ / t - i ; ' RLR-U 

iB-iKt) - -s + s 

RLR-

with reference to fig. 3.4d, 

V l ( / ) + / « - ! (3.13) 
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i(t) = ic-i(t) + iB-i(i) 

-T 4. V l ^ ) 4. A 4. ^ 
-•/C-l + — + lLR-i + — 

Rc-i KLR-I 

=vi(0 • ( ^ - + -^— J + /c-i + /L/M 
VKC-1 KLR-l S 

= £ & + / W l M ( f _ A / ) (3.14) 
Keq-l 

In deriving equation 3.13 and equation 3.14, the term (t-Af) was omitted from the history 

terms for simplicity. 

Equations 3.8 to 3.14 can be used to compute the equivalent resistance and the 

history term for peaks no. 2, 3, and so on. If Req and I^Jt-M) denote the equivalent re

sistance and history term of the discrete time representation of the entire frequency de

pendent branch, the computations needed for Req and IMst(t-At) will be the same as those 

needed for the corresponding terms in equation 3.14, which are as follows: 

m 
Req = TsReq-i , /' = 1, JW (315) 

1=1 

m 
2-i ihist-i ' K-eq-i 

hist(t-At) = &—- , / = 1 , m (3.16) 
ts-ea 

where, 

m = no. of peaks to be fitted. 
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Rc-i Rm-i 

The process described must be implemented three times - once for the zero-sequence 

network and repeated for the positive- and negative-sequence networks. Since the para

meters of the positive-sequence network are identical to those of the negative-sequence 

network, R^ are the same for both networks. The history terms, though, must be calcu

lated independently. 

The next and the last action to be taken in modelling Zvllndllv is to update the his

tory terms of its discrete time representation so that the simulation can proceed to the 

next time step (t+At). 

4. Updating History Terms 

To update the history terms for a capacitance or an inductance, the voltage across 

its terminals and the currents flowing through it must be known before any calculations 

can be performed. From the power network solution, the voltage at every node in the sys

tem in phase co-ordinates is known at each particular time step. Terminal voltages of the 

transformer are, therefore, known at the current time step in phase co-ordinates. These 

values have to be transformed into sequence co-ordinates in order to update the history 

currents of the model discrete-time circuits. The steps to update the history terms are as 

follows: 

and, 

R, eq-i 
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(1) Calculate vi(0 (fig. 3.4e), 

Vl(0 = VW-hisMt-AW-Req-! (3.17) 

(2) Compute iC-i(i) and/5-i(0 (fig. 3.4d), 

ic-xif) = Ic-i(t-At) + %@- (3.18) 

iB-i(t) = lLR-i(t-At) + £@- (3.19) 

(3) Evaluate the voltage of each RL block, v^iy(f) (fig. 3.4c), 

VRL-u(i) = [iB-iW-h-yit-AfyRLR-u (3.20) 

4) Find the current of the element Ly (fig. 3.4-b), 

ii-yit) = iB-i(t)-^Q (3.21) 
Ky 

(5) Determine the history term of each individual L and C at the current time 

step, h-y(t) and Ic-i (0, using the formulas given in table 3.1. 

(6) Combine the history terms of all inductances, 

n 

2 h-y(t) • RLR-IJ 

/ « - I © = ^ — p (322) 
where, 

n = no. of RL parallel blocks in the section for peak no. 1. 

(7) Finally, add Ic-iO) and ILR-IQ) together to obtain history terms associated 

with peak no. 1. 

51 



The history terms for the blocks associated with the other peaks are calculated in 

the same manner. In the end, all the history terms can be combined together to get the 

total equivalent history term which will be used along with R to formulate the nodal ad

mittance matrix at the next time step t+At, 
m 
£ 'hist-i\f) " Req-i 

hiM = ^ (3.23) 
Reg 

where, 

m = no. of peaks to be fitted, 

m 
ty-eq la K-eq—i 

The history term in equation 3.23 need to be computed three times for the three sym

metrical component networks. Although the equivalent networks for ZYlitMni in the positive 

and negative sequences are identical, the transformer voltages and currents are different 

in all the three sequences. 

The discrete-time model for the frequency dependent part of the transformer de

scribed in this chapter will be used subsequently to construct the full transformer model. 

Details will be found in the next chapter. 
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Chapter Four 

THE COMPLETE MODEL 

All the component parts of the transformer model were discussed in the previous 

chapters. The equivalent circuits for these components were also developed for both the 

frequency domain and the discrete-time domain. In this chapter, all the pieces are put to

gether to form the full transformer model. Equivalent networks for the leakage impe

dances and lumped terminal capacitances, together with ideal transformers, are the basic 

building blocks for the full transformer model. In the derivation of the full three-phase 

model, it will be assumed that the transformer is physically symmetrical so that symmetri

cal components can be applied. This eliminates the need to model directly the mutual 

coupling between phases, which may cause numerical stability problems [13]. The pro

posed approach not only does make the modelling simple but also reduces the number of 

elements to be mathematically synthesised. Although there are no transformers in exist

ence which are truly symmetrical, tests performed on actual power transformers show 

that there are no significant errors in making such an assumption [1]. 
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1. Discrete-Time Model in Sequence Domain 

Following the discretization procedure described in section 3 of chapter 3, the 

discrete-time model for a three-winding three-phase transformer in either of the three se-

Fig. 4.1 Discrete-time equivalent circuit for a sequence model of a transformer. 

quences [14] (positive, negative, or zero sequence) is depicted in fig. 4.1. The trans

former is visualised as three coupled windings [15]. This representation is also know as a 

T-circuit [21]. The magnetising branch is not shown in the model of fig. 4. As an approx

imation, this branch can be added externally to the model. The exact placement of the 

magnetising branch is not critical in switching transient studies in which the frequencies 
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are beyond the kHz. At these frequencies, the transformer core behaves close to ideal 

since the core flux is inversely proportional to the frequency and the incremental values 

for these high frequency harmonics will be very small. However, if the magnetising branch 

model at the power frequency is available, it can be incorporated to the proposed model 

in the same way as it is implemented in the conventional model. (The particular modelling 

of the magnetising branch is beyond the scope of this thesis). 

The models for the positive and negative sequence circuits will be exactly the 

same in the frequency domain but they will be different in the discrete time representation 

due to the history terms. Terminal capacitances are not shown in the network of fig. 4.1 

because it is more convenient to model the capacitances directly in phase co-ordinates. 

Once the circuits of fig. 4.1 are transferred to the phase domain, the capacitance can be 

added to obtain the complete model. With reference to fig. 4.1, the following equations 

can be written: 

ii(i)-Ri+ei(i) = vi(J) + /Ai(*-A/)-tfi (4.1) 

h(t)R2+e2(t) = v2(f) + ih2(t-Af)R2 (4.2) 

h(t)R3+e3(t) = v3(t) + ih3(t-At)R3 (4.3) 

niii(t)+n2i2(t) + n3h(t) = 0 (4.4) 

»2-«i ( / ) -« i -ea(0 = 0 (4.5) 
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m-ei(t)-m-e3(f) = 0 (4.6) 

where, 

hit) 

ihiit-At) 

= current in winding /, 

= history terms of frequency dependent part for winding 

R, 

nt 

etit) 

v,(0 

= equivalent resistance of frequency dependent part for 
winding /', 

= no. of turns of winding /', 

= voltage at the ideal transformer terminal on the side of 
winding /', 

= terminal voltage of winding i. 

The terminal voltage vft) in equations 4.1 to 4.3 becomes known after the system 

of equations has been solved at the time step t. Therefore, there are only two unknowns, 

/\(f) and et(t), in equations 4.1 to 4.6. The unknown variables can be found systematically 

if equations 4.1 to 4.6 are rewritten as matrix equation as follows: 

Ri 0 0 1 0 
0 R2 0 0 1 
0 0 R3 0 0 

«1 «2 «3 0 0 
0 0 0 n2 -Tii 
0 0 0 «3 o 

0 
0 
1 
0 
0 

- M l 

hit) 
hit) 
hit) 
exit) 
e2it) 
e>it) 

1 0 0 Ri 0 0 
0 1 0 0 R2 0 
0 0 1 0 0 R3 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

vi(0 
v2(f) 
v3(0 

ihiit-At) 
ih2it-At) 
ih3it-At) 

(4.7) 

or, in a more compact form, 
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[R] U\ 
Wi] [N2] 

POM 
Ht)] 

U] [R] 
[*] [*] 

MO] 
[ih(t-At)) 

where, 

[R] 

Wi\ 

and 

[N2] 

[Km 

MM 

MO] 

Mt-At)) 

[7] and [<D] 

Ri 0 0 
0 i?2 0 
0 0 R3 

« i n 2 H3 

0 0 0 
0 0 0 

0 0 0 

H2 -Hi 0 

m 0 -HI 

= [ hit) hit) hit) l^, 

= [ *i(0 e2(0 e3(0 J^, 

= [ V!0 V2(0 V3(0 J , 

= [/Hi(r-AO ih2(t-At) ihiit-At) ] , 

= unity matrix and zero matrix, respectively. 

(4.8) 

Equation 4.8 is also valid for the two winding transformer. In this case, subma-

trices [R], [NJ and [N2] will be of order 2 and their elements will not contain the third 

row and third column of the submatrices for the three winding transformer. Also, [i(t)], 

M0L 1X0] a n^ Vhit-At)] wi^ contain only the first and second elements. Expanding 

equation 4.8 gives the following two equations: 
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[R][Kt)} + [e(i)] = Ht)] + [R][ih(t-At)] (4.9) 

and, 

[Nx][Kt)] + [N2][e(t)] = [0] (4.10) 

Multiplying equation 4.9 by [N2] and subtracting equation 4.10 yields 

[N2][R][Kt)]-[NrUKt)] = [N2][v(t)] + [N2][R][ih(t-At)] (4.11) 

or, 

BOM = m MO] + [h(t- At)] (4.12) 

where, 

m = W2][R]-m]\-i[N2], 

[h(t-Aty\ = [Y\[R][W-Aty\. 

Equation 4.12 relates the currents of each transformer winding to the terminal 

voltages and the history terms of all three windings for any of the three sequences. Matrix 

[Y] is the admittance matrix for the corresponding sequence and its order is equal to the 

number of transformer windings. Three equations similar to equation 4.12 will be re

quired to construct the complete model in the sequence domain, for the zero, positive and 

negative sequences. The full model in symmetrical components representation is 
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[izero(t)] 

[iposit)] 

{inegii)] 

[Yzer0] [0] [0] 

[0] [Ypos] [0] 

[0] [0] [Y„eg] 

[Vzero(t)] 
[VposV)] 

[vneg(0] 

[ihzero{t-At)] 
[ihpos(t-ti)\ 
[ih„egif-kt)] 

(4.13) 

where, 

zero, pos and neg 

[0] 

signify the variables for zero, positive and negative 
sequences, respectively, and 

= zero matrix (all elements are zeroes). 

If ['«,(0L [Yseq], [v„,(0] and {ih^t-At)] denote the currents, the admittance matrix, the 

terminal voltages and the history terms in equation 4.13, then the transformer model in 

the sequence domain can be expressed as 

[iseq(t)] = [Yseq] [vseq(t)] + [ihseq(t - At)] (4.14) 

2. Discrete-Time Model in Phase Co-ordinates 

Equation 4.14 is not yet ready to be used in transient simulation programs, such as 

the EMTP, in which all the voltages and currents must be expressed in phase co-ordi

nates. Equation 4.14 can be transformed into phase co-ordinates by means of a transform

ation matrix. For a balanced systems, the transformation matrix is not unique. Due to the 

fact that the symmetrical components transformation involves complex numbers, other 

transformations with real matrix elements, such as the one given by Edith Clarke [12], 

will be used for the numerical transformation procedure. Clarke's transformation matrix 

for a three-phase system is 
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1 

73 
1 
73 
1 

. V3 

1 

72 
-1 

72 
o 

1 
76 
1 
76 
-2 
76 _ 

[r 3 x 3] = (4.15) 

and, 

i - i 
[^3x3]" = [7^3x3] (4.16) 

Matrix [r3x3] given in equation 4.15 can be modified to fit the transformer problem by 

replacing each of its scalar elements with a diagonal submatrix. The order of the subma-

trix is determined by the number of windings of the transformer, i.e., two for a two-wind

ing transformer and three for a three-winding transformer. All the diagonal elements in 

these submatrices are identical and equal to the corresponding scalar value of the original 

transformation matrix. For example, the transformation matrix for a three-phase, 

three-winding transformer is the following [9x9] matrix 

m = 

0 0 0 0 -±r 0 0 -± „ „ j . 
7? 72 J6 
0 - ^ 0 0 - ^ 0 0 -pv 0 

71 72 76 

JJ J2 J6 

- ^ 0 0 - ^ 0 0 - ^ 0 0 
JJ Jf J6 

0 

1 

76 

0 ~=r 0 

0 0 

0 

1 

73" 

0 

0 

-1 
72 

0 

0 

-1 

72 

0 

0 

1 
76 

0 

- ^ 0 0 0 0 0 ^ 0 0 

1 
73-
0 -7=- 0 0 0 0 

0 0 -=W 
71 

76 

0 4 0 
76 

0 0 0 0 0 ^pr 
7? 

(4.17) 
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[7]-1 = [T\T (4.18) 

The voltages and currents of each transformer winding in phase co-ordinates are 

related to the corresponding sequence voltages and currents by [14] 

[vpka,.®] = [7][v^(0] (4.19) 

and, 

[iphaseii)] = [T\[iseq(t)] (4.20) 

where, 

[v/*fl«(0] ^ d [iphase(t)] = voltages and currents in phase co-ordinates, 

[v (f)] and [^eg(01 = voltages and currents in sequence co-ordinates. 

Applying equations 4.19 and 4.20 to equation 4.14 yields 

[iphaseW] = [T\[Yseq]Urx{vphase{t)\ + [T\[ihseq(t-Ai)] (4.21) 

or, 

[iphaseif)] = [Yphase][Vphase(t)] + [ikphaseif - At)] (4.22) 

where, 

[YPhase] = mt^im-1, 
and 

[ihphase(t-At)] = [T][ihseq(t-At)]. 

In full matrix form, equation 4.22 for a three-winding transformer is 
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/11(f) 

/12(f) 
in(t) 

/21(f) 

122(f) 

/'23(f) 

'31(f) 

/32(f) 

. /'33(f) . 

= 

[ iy 

[Ym] 

[Ym] 

-

where, 

i«(t) 

vyit) 

[Ys ] and [Y„ .] = 

[Ym] [Ym] 

[Ys] [Ym] 

[Ym] [Ys] 

-

Vll(f) 

vi2(f) 

vi3(f) 

V2l(f) 

V22(f) 

v23(f) 

V3l(0 

v32(f) 
. v33(f) _ 

+ 

///n(f-Af) 
Ihn(t-M) 

Ihn(t-M) 
Ih2\(t-At) 
Ih22(t-At) 
Ihnit-At) 
7/j 3 i ( f -Af) 

Ihn(t-At) 
Ihn(t-At) 

current of phase /', windings, 

terminal voltage of phase /', winding j , 

[3x3] submatrices (or [2x2] for a two-windii 

(4.23) 

Ihijit-At) 

former) for the self and mutual terms of the admittance 
matrix [Yphase] in equation 4.22, 

element of history vector associated with phase i, wind
ing/ 

In the actual implementation of the model, there are only two transformations in

volved. Phase voltages need to be transformed into sequence voltages in order to calcu

late and update the history terms. After that, the history terms are transformed from 

sequence co-ordinates back into phase co-ordinates and are entered into the right hand 

side of the system equations. There is no need to calculate [Yphase ] in equation 4.23 di

rectly from [ritl^Jt?]"1 because it is already known that 

and, 
[Ys] = J • ([Yzero] + 2[Ypos]) 

[Ym] = \-([Yzero] -[Ypos]) 

Also, from equation 4.19, [vMg(f)] = U\ 1[vPhase(t)], or in a full matrix form 
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Vzero-\if) 

Vzero-lif) 

V zero-l{j) 

Vpos-l(t) 

Vpos-2(t) 

Vpos-sit) 

V„eg-l(t) 

V„eg-2(t) 

vweg-3(0 

= 

1 
75-

0 

0 

I 

0 

0 

1 
76 

0 

0 

0 

1 
73" 

0 

0 

1 
72 

0 

0 

1 
76 

0 

0 

0 

1 
73-

0 

0 

1 

J2 

0 

0 

1 
76 

I 

73" 

0 

0 

- l 

0 

0 

i 
76 

0 

0 

0 

1 
73-

0 

0 

- l 
72" 

0 

0 

I 

76 

0 

0 

0 

1 
73" 

0 

0 

-1 
72 

0 

0 

1 
76 

I 

7T 

0 

0 

0 

0 

0 

-2 
76 

0 

0 

0 

1 
73" 

0 

0 

0 

0 

0 

-2 
76 

0 

0 

0 

1 
73" 

0 

0 

0 

0 

0 

-2 
76 

Vll(0 

V12C) 

Vl3(0 

V2l(0 

V22W 

V23W 

V3l(0 

V32(0 

V33W 

(4.24) 

If the elements of the sequence voltage vector [vseq(t)] in equation 4.24 are arranged in 

the order of windings, instead of sequences, equation 4.24 becomes 
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where, 

Vzero-i(f), Vpos-tii), V„eg_,(0 : Zero-, positive- and negative-sequence voltages for 
winding /' respectively. 

Equation 4.25 can be further simplified, if the voltages are rearranged into matrices in

stead of vectors. Now, the sequence voltages can be computed with a single matrix multi

plication, which is more efficient, as follows: 

( 0 V'zero-2{t) Vzero-3(t) 

Vpos-l(t) VpoS-2(fy Vpos-3(t) 

rneg-1 ( 0 Vneg-2(t) vneg_3(0 

1 1 1 

yr yy yj 
-J- ^ - 0 

_J 1 -2 
JZ J6 J6 

vn(/) vi2(0 vn(t) 
V2l(t) v22(t) v23(0 
v3i(f) v32(0 v33(0 

(4.26) 

The sequence voltages in equation 4.26 can be reshuffled into a vector as in equation 

4.24, which is in the desired order in sequence co-ordinates. The sequence currents can 

be calculated likewise. For the history terms, transformation from sequence variables to 

phase variables are also required. A similar implementation to that used to derive equa

tion 4.26 can be applied to obtain the history terms in phase co-ordinates. But the trans

formation matrix [r3x3] is used in this case. 

3. Nodal Admittance Matrix 

Equation 4.22, however, is not yet of the right form for an electromagnetic 

transient program solution because the variables are associated with voltages and currents 

in the transformer windings. It must be further modified so that voltages and currents are 
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Winding 2 

Winding 1 

1 o-

10 o-

4 o-

13 o-

7 »-

16 o-

Winding 3 
o 3 

-o 12 

-o 6 

-° 15 

-o 9 

-o 18 

Phase 1 

Phase 2 

Phase 3 

Fig. 4.2 Transformer node labelling for external network connection. 

the node voltages and the currents flowing into the node of the transformer. This involves 

labelling of the nodes in a certain way, as shown in fig. 4.2. Since the terminal voltage is 

the difference of the voltages of the two nodes at both ends of the winding, it follows that 

Vll(/) = Vl(/)-Vio(fl 

V12O) - v2(f)-vn(f) 

Vl3(0 = V3(*)-V,2(*) 
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(4.27) 

(4.28) 

(4.29) 



V2l(t) = V4( /)-Vi3(0 

V220 = V5(/)-V1 4(0 

V23(0 = V6(/)-Vi3(d 

V3l(0 = V7(0~Vl6(0 

V32O) = v8(r) - vn(i) 

V33<0 = V9(0 - Vig(f) 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

where, 

vi(0 = node voltage with respect to fig. 4.2. 

In addition, it is also true that /10(0, 'u(0> i\$)>—> 'i$)> a r e e c l u a l t o the negative of i^t), 

/2(f), /3(0,--, '9(0> respectively. Arranging the node voltages and currents in this manner 

makes it possible to construct the final equation in phase co-ordinates without much 

work. It is just an extension of equation 4.22, which is as follows, 

[tnodeO)] 
I phase J- phase 

~ I phase * phase 
[v„ode(t)] + 

ihphaseit-At) 

-ihphaseif - At) 
(4.36) 

where, 

['«*(01 vector of currents flowing into node 1, node 2, node 
3,..., node 18, 

66 



[vno(fe(f)] = vector of voltages of node 1, node 2, node3,..., node 

18, 

[^*aJi = admittance matrix in equation 4.22, 

[ihphase(t - At)] = history terms in equation 4.22. 

Equation 4.36 is the nodal equation without terminal capacitances. The complete 

frequency dependent model for the three-phase transformer comprises equations 4.36 and 

2.14 combined. Elements of the admittance matrices from both models can be added alge

braically to the corresponding elements of the system admittance matrix. The history 

terms in equation 4.36, though, must be subtracted from the right hand side of the system 

nodal equation because the history terms are considered known and must, therefore, be 

on the opposite side of the equation. 
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Chapter Five 

MEASUREMENT OF THE MODEL PARAMETERS 

This chapter describes the techniques used to measure the transformer parameters 

and to claculate the circiut parameters from these measurements. As explained earlier, 

there are two types of parameters in the model - stray capacitances, represented by con

stant capacitances, and the leakage impedances represented by branches of constant 

RLC sections. Numerical examples on the network synthesis realization of the model pa

rameters will be presented in chapter 6. 

1. Measurement of the Frequency Dependent Leakage Impedance 

The measurements required to obtain the leakage impedances are the short-circuit 

frequency response tests. Measurements must be conducted such that both the zero-

sequence and the positive-sequence impedances can be determined. The measuring device 

used in the present research work for impedance measurements was an "Impedance Ana

lyzer", which produces a low voltage signal with variable frequencies. The signal voltage 

energizes the transformer under test. At the same time the Analyzer senses the current 

that flows into the transformer. Voltages and currents are then used by the device to cal

culate the magnitude and phase angle of the transformer impedance within a band of 
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frequencies specified by the users. The results are both displayed and stored in a diskette. 

The "single-phase" Impedance Analyzer can be used to measure both the zero-sequence 

and the positive sequence impedances. Details of the measurement technique are ex

plained next, with special note on transformers with delta-connected windings. 

1.1 Transformer without Delta Windings 

The zero-sequence tests can be performed as usual. However, since the Im

pedance Analyzer is a single phase source, the positive-sequence tests cannot be con

ducted directly. In this case, the positive-sequence information will be calculated from the 

zero-sequence data and some additional data obtained from separated measurements. 

A three-phase, three-winding transformer (without terminal capacitances) can be 

described by the following matrix equation [14]: 

IA-I 

IA-2 

IA-3 

IB-X 

IB-2 

IBS 

IC-I 

Ic-2 
Ic-3 

[Ys] [Ym] [Ym] 

[Ym] [Ys] [Ym] 

[Ym] [Ym] [Ys] 

VA-\ 

VA-2 
VA-s 

VB-i 

VB-2 
VB-3 

Vc-x 

Vc-2 

Vc-3 

(5.1) 

where. 

IA-J, IB-J and IC-j transformer currents in winding j of phases A, B and C 
respectively, at a particular frequency. 
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VA-J, VB-J and VQ-J = terminal voltages of winding j of phases A, B and C 
respectively, at a particular frequency. 

[Ys] and [Ym] = [3x3] self and mutual submatrices of the transformer 
admittance matrix. Both [Ys] and [Ym] are symmetric. 

From the zero-sequence short-circuit test, a zero-sequence admittance matrix is obtained. 

This matrix is related to [FJ and (YJ by 

[Yzero] = [Ys]+2[Ym] (5.2) 

If either [Ys ] or [Ym] is available, it can also be used to compute the positive-sequence ad

mittance matrix. Suppose that [Ys ] is available from the measurement. The positive-

sequence admittance matrix can then be calculated form the zero-sequence admittance as 

[Ypos] = ±0[Ys]-[Yzero]) (5.3) 

In fact, it is not necessary to know all the elements of the matrix [Ys]. Only the diagonal 

elements are sufficient for the calculation of [Y^]. The diagonal elements of [Ys ] can be 

measured easily with the impedance analyzer. The readings will be taken at one coil while 

all the other coils are short-circuited at their terminals. The measured admittance can be 

expressed, for example for phase A, as: 

jV* = !±L f vA_iMj = 0, VB-I = 0, Fc_, = 0; / = 1,3. (5.4) 
*A-j 

where, 
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IA-j and VA-j = current and voltage measured at the terminals of coil j , 
7=1,3 . 

Measurement of ys_M should be taken for phases A, B and C and the averaged values of 

the three measurements should be used. The diagonal elements of [Y ] can be computed 

now with equation 5.3. If the actual measurements could be performed, these values 

would correspond to the positive-sequence impedances obtained from the short-circuit 

tests measured on one winding while the other two windings are shorted. If all stray ca

pacitances are not taken into account ( modelled seperately), the positive-sequence short 

circuit admittances can be related to the winding impedances as follows (circuit represen

tation similar to fig. 2.9b) : 

1 = z + T'^L 

YH ZT+ZL 

TA*> - *T + z77FL - ¥T
 (5'6) 

where, 

YH, YT and YL = diagonal elements of the positive-sequence admittance 
matrix when measurements are taken on the high, low 
and tertiary voltage windings, respectively. The wind
ings where measurements are not taken are all shorted, 

Z'TmdZ'L = ( ^ ) 2 Z r and (V) 2 Z L 
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ZH - positive-sequence frequency dependent impedance for 
high-, tertiary- and low-voltage windings, respectively, 

nH, w^and nL = no. of turns for high-, tertiary- and low-voltage wind
ings, respectively. 

Since Ym YT and YL can be taken from the corresponding diagonal elements of [Y^], ZH, 

Z\ and Z'L , or, alternatively, ZH+Z'T , Z'T+Z'L and ZH+ Z'L can be found by solving equa

tions 5.5, 5.6 and 5.7. Rearranging terms in equation 5.5 gives 

ZT + ZL = YH • (ZH • ZL + ZH • ZT + ZL • ZT) (5.8) 

Similarly, from equation 5.6 and equation 5.7, 

ZH + Z'L = Y'T-<ZH-Z'L+ZH-Z,
T + Z,

L-Z'T) (5.9) 

Z'T + ZH = YiiZH-Zi + ZH-Z'r + Zi.Z'r) (5.10) 

If ZJJZ'T +ZHZ'L + Z'JZ'J is denoted by Zn, then Equations 5.8, 5.9 and 5.10 can be solved 

for ZH, Z'T and Z'L, which are given by 

ZH = \(-Y„+rT+rL)-Zn (5.11) 

Z'T = \(YH-fT+rL)-Zn (5.12) 

Z'L = \{YH+Y,
r-Y'L)-ZTl (5.13) 
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However, Zn is still unknown. From direct multiplication, the following equations 

follows: 

ZHZfT = \Zl\-Y2
H-Y2

T+Y2
L+2YH-YT) (5.14) 

Z'TZ[ = \ZI.{Y2
H-Y2

T-Y2
L+2YL.YT) (5.15) 

ZHZ!L = \ZI-(-Y2
H + Y2

T-Y2
L+2YH-YL) (5.16) 

Adding equations 5.14, 5.15 and 5.16 together yields 

Z% = \Zl-[-Y2
H-Y2

T-Yl+2(YH-YT + YT-YL + YH-YL)~\ (5.17) 

Dividing equation 5.17 by Zn * 0 and rearranging terms results in 

Z„ = —5 4 (5.18) 
-Y\ -Y2

T-Y2
L + HJH-YT + YT• YL + YHYL) 

In conclusion, the positive-sequence impedances for the transformer without del

ta windings can be obtained in the following manner: 

1) Find the zero-sequence impedance in the usual way from the short-circuit 

tests. 

2) Measure the diagonal elements of the admittance matrix in phase coordinates 

for the three phases. 
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3) Average the corresponding measurements from the three phases to obtain the 

diagonal element of the self-admittance sub-matrix. 

4) Calculate the diagonal elements of the positive-sequence admittance matrix 

with equation 5.3. 

5) Compute Zw with equation 5.18. 

6) Substitute Zn back into Equations 5.8, 5.9 and 5.10 to obtain the short-circuit 

impedances for the positive sequence. In this case, the short-circuit impedances are those 

which would be obtained if the short-circuit tests were conducted between pairs of wind

ings at a time. Equations 5.11,5.12 and 5.13 can also be used to calculate the impedances 

of the individual windings of the "T" circuit. If this was done, however, one or more of 

the individual impedances might not be minimum-phase-shift. This problem can be 

avoided if the combined impedance of every two windings is fitted instead. 

By applying the above outlined steps, it is only necessary to measure nine func

tions for a three-winding transformer and six functions for a two-winding transformer in 

order to get the positive-sequence data for a transformer without delta windings. The to

tal number of measurements to obtain both the positive and zero-sequence data for the 

three and two-winding transformers comes, therefore, to a total of twelve and eight, re

spectively. This indicates a dramatic reduction in the number of tests which would nor

mally amount to ninety-one for a three-winding transformer and to thirty-six for a 

two-winding transformer if all the elements of the admittance matrix were to be 

74 



Winding 1 Winding 2 

Fig. 5.1 Measurement of positive-sequence impedance in a Yd transformer. 

measured. This latter case is, for instance, where the transformer is modeled directly from 

the [Y] matrix. 

1.2 Transformer with Delta Winding 

If one of the windings of a three-phase transformer is connected in delta and all 

the delta terminals are accessible from the outside, the positive-sequence test can be con

ducted with a short-cut. It is very common for a power transformer to have one of the 

windings connected in delta, but the delta winding might have just one accessible terminal 

to be grounded. If all the delta winding terminals are accessible, measurements can be 

taken on one winding while the other windings are either shorted or open. 
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1.2.1 Two-Winding Transformer 

A two-winding transformer (without terminal capacitances) can be described by 

the following matrix equation: 

" IA-X ' 

IA-2 

h-l 

IB-2 

Ic-x 

. !c-x . 

)>sXX )>sX2 ymXX )>mX2 )>mXX )>mX2 

)>s2X )>s22 ym2\ JV22 ^ J 2 1 ,V»I22 

ymu ymxi y*w ysYl ym\\ ym\2 
y&x ym22 y m y$22 yax yntn 
ymXX ymX2 ymlX ymX2 ySXX ysX2 

y m ym22 yS2x yna% yS2\ y*22 

VA-x 

VA-2 

VB-X 

VB-2 

Vc-x 
Vc-2 

(5.19) 

where, 

IA-i, Is-i and Ic- Currents entering terminals i, i = 1,2 of phase A, phase 
B and phase C, respectively, 

VA-U VB-I and Vc-t = Terminal voltages of terminals i, i = 1,2 of phase A, 
phase B and phase C, respectively, 

Assume a short-circuit test is performed on this transformer and that the measure

ment is taken on winding 1, which is delta-connected, while winding 2 is shorted. Under 

this condition, VA.2 = VB_2 = Vc_2 = 0. Consequently, the measured currents in winding 1 

are 

IA-X 

IB-I 

Ic-x 

ysu ymu ymu 
ymXX ysll ymXX 

ymXX ymXX ysXX 

VA-X 

VB-X 

Vc-x 

(5.20) 
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If VA_, , Vĝ  and Vc., are in positive sequence, i.e., having equal magnitude and 120 

degrees apart in phase angles, the ratio of IA_, to VA_, would give the positive-sequence 

admittance of the transformer. This could be accomplished if a variable frequency, three-

phase source were available. However, a single-phase source with variable frequency 

such as an impedance analyzer can be used also to obtain the same result. Suppose phase 

C of winding 1 is shorted to ground, as shown in the arrangement of fig. 5.1. Because 

phase C is shorted, VCA is zero. VBA is connected to the source in its nornal polarity while 

VAA is in the reverse polarity. We then have that VAA = -Vs, VBA = +VS, IAA = (-ysU
+ymU) 

and IBA = (+ysU-ymu)- The measured current Is flowing from the source is 

h = IB-I — IA-I 

= 2-(ysn-ymn)-Vs 

or, 

| r = 2-(ym-ymii) (5.21) 

Equation 5.21 is, in fact, an admittance which is twice as much the short-circuit admit

tance of a two-winding transformer in the positive sequence mode. The model's series im

pedance is then twice the impedance measured in the way described. The measured 

impedance contains both the leakage impedance and stray capacitances. The stray capaci

tances can be obtained from short-circuit measurements in the high frequency spectrum 

where they become the dominant factor. What remains after removing these capacitances 
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can be combined with part of the interwinding capacitance to become the frequency 

dependent series impedance of the model, as explained in chapter 4. 

1.2.2 Three-Winding Transformer 

The measurement technique explained in the previous section for the two-winding 

transformer can be applied to the three-winding transformer as well, but the measure

ments will involve two or three winding at a time. For example, if a transformer is con

nected in YYd (high-voltage, low-voltage and tertiary-windings are connected in wye, 

wye, and delta, respectively), the zero-sequence measurements can be performed on the 

wye-connected windings while the other two windings are either both shorted or only one 

of them is shorted. Two tests can be conducted to measure the short-circuit impedances 

between each of the two wye-connected windings with the delta winding shorted while 

the other wye-connected winding is left open. The third measurement will be taken on ei

ther of the wye-connected winding while the two other windings are shorted. 

A positive-sequence measurement can be taken on the delta winding by first 

shorting one of the wye-connected windings. A second measurement may then be con

ducted with the previously open winding short-circuited and the previously short-

circuited winding open. The third measurement should be taken on the delta winding 

while the other two wye-connected windings are short-circuited. 
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From these measurements, the leakage impedances for each individual winding or 

the sum of two of them can be computed as follows (assuming that the tertiary winding is 

connected in delta and the equivalent circuit is similar to that of fig. 2.9b): 

1.2.2.1 Zero-Sequence Tests 

There are a few possible combinations of ways to perform short-circuit tests for 

the three-winding transformer. The following combination involves two complete short-

circuit tests and one partial short-circuit test: 

(a) Perform a short-circuit test by shorting the high-voltage and low-voltage 

windings to ground. The impedance ZA seen from the low-voltage side (after the termi

nal capacitances have been removed) is: 

or, 

©* = ^frf <522> 
(b) Perfor short-circuit test with high-voltage winding open. The measured im

pedance ZB on the low-voltage side (after removing the terminal capacitances) is 

* = fe)Vr + 2t) 
or, 
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{jjffzB = Z'T + Z'L (5.23) 

(c) Perform a short-circuit test with both tertiary and low-voltage windings 

shorted. The measured impedance Zc on the high-voltage side (after removing terminal 

capacitances) is 

Zc = ^ + 5 - 4 (5-24) 

All the symbols used in equations 5.22, 5.23 and 5.24 have the same meanings as 

those in equations 5.5, 5.6 and 5.7. Equations 5.22, 5.23 and 5.24 can be solved for Z'T 

as follows: 

(1) Multiply equation 5.22 and 5.24 by (ZH+Z'T) and (Z'L+Z'T) respectively, 

ZTZH + ZTZL + ZHZL = (ZH + ZT) ZA • {jfrj 

and 

ZJZH + ZTZi + ZHZL — (Zf+Zi) Zc 

which, together with equation 5.23, results in 

(ZH + Z'T)ZA-(%f)2 = (Z'T + Z'L)ZC = {j^)2zBZc 

or 

ZH+Z'T = % ^ (5.25) 
ZA 
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(2) Subtract equation 5.22 from equation 5.23, 

&)'<*-*> = z - S -•& <»* 

(3) Solve equation 5.25 with equation 5.26, 

ZT = ±{w)rZc(z
7
B~ZA) (5-2?> ZA 

Then, ZHand Z'L can be solved by substituting Z'T into equations 5.23 and 5.25 which are, 

Z£ = intY2*-2* (5-28) 
and, 

ZH = ^—Zff (5.29) 

1.2.2.2 Positive-Sequence Tests 

For the positive-sequence tests, all measurements are taken on the delta winding. 

The tests may be carried out as follows: 

(a) Perform a the short-circuit test with the low-voltage winding shorted. The 

measured impedance (after the terminal capacitances have been removed) is: 

= ZT + Z'L (5.30) 
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(b) Perform a short-circuit test with both high-voltage and low-voltage windings 

shorted. The measured impedance (after removing the terminal capacitances) is 

\JIH) \nT) ZT + 
zH+(%)2zL 

= ZT + 
* • & ) ' & 

* + ( & ) * * • 

ZT + ZT + 
7' .7' 

Z'H + Z'L 
(5.31) 

(c) Perform a short-circuit test with only the high-voltage windings shorted. The 

measured impedance (after removing the terminal capacitances) is 

* - &)T(&r*+z„ = zT + z'H (5.32) 

Equations 5.30, 5.31 and 5.32 can be solved simultaneously for ZT . By subtract

ing equation 5.30 from equation 5.3, and equation 5.32 from equation 5.31, the following 

two equations are obtained: 
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Zb - Za = 
-(zj)2 

z'„ + z'L 

and 

(5.33) 

Zh — Zc — 
Z'H+Z'L 

(5.34) 

Multiplying equation 5.33 with equation 5.34 one obtains: 

{Zb - Za)(Zb - Zc) -
7'7' 

z'H + z'L\ 

"12 

(5.35) 

From equation 5.31, it follows that 

7'7' 

Z'H + Z'L] 
(zb - zTy (5.36) 

or 

(Zb-ZT) = ± J(Zb - Za)(Zb - Zc) (5.37) 

which gives 

ZT - Zb ± JiZb - Za)(Zb - Zc) (5.38) 

The leakage impedances for both zero and positive-sequences for the three-

winding transformer are next converted into delta, as shown in fig 2.9c. The interwinding 
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capacitances are then added (fig. 2.10a) so that in the network synthesis procedure they 

from part of the RLC equivalent networks. 

2. Measurement of Stray Capacitances 

Some of the stray capacitances of the model can be directly measured but some of 

them must be calculated from the short-circuit test data. The method on how these stray 

capacitances are obtained is described next. 

2.1 Direct Measurement 

Stray capacitances which can be directly measured with a capacitance measuring 

device are the capacitance-to-ground and the interwinding capacitances. The device used 

at the high voltage lab of EGAT is the "Capacitance and D.F Bridge", model CB100. The 

device has three connection leads marked CL, CH and G which should be connected to the 

high-voltage, low-voltage windings of the transformer and ground respectively to ensure 

correct measurements. When the device is adjusted until a balanced condition is achieved, 

the values of capacitances can be read off the meter dial. Fig. 5.2 depicts a connection of 

the device to the transformer under test for a standard measurement of capacitances be

tween the high-voltage and low voltage windings (C^) and capacitances between the 

high-voltage winding and ground (CHG ) of a two-winding, three-phase transformer. In 

the measurements, all six terminals of the high voltage winding are connected together 

(terminal H in fig. 5.2) and so are all terminals of the low-voltage winding (terminal L in 
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APPLICATION 

Measurement taken is 

CH-L + CH-G. CB100 

internally grounds CL 

in mis configuration, 

thus effectively 

shorting out CL-G. 

Fig. 5.2 Application of the Capacitance & D.F. Bridge to measure stray capacitances in 
a transformer. The configuration shown is for the measurement of Cm plus CHG. 

fig. 5.2). Two more standard measurements are required to get C^ and CHG . From 

these measurements, the capacitances to ground and the interwinding capacitances of the 

transformer can be found. For a three winding transformer, the interwinding and winding-

to-ground capacitances present in the transformer are as shown in fig 2.3, chapter 2. In 

this case, the measureing device CB100 is connected to a pair of the windings at a time 

while the third winding is grounded. An illustrative arrangement for measuring stray ca

pacitances associated with the high-voltage and low-voltage windings of a three-winding 

transformer is shown in fig. 5.3. 
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Fig. 5.3 Measurment of the sum of interwinding and winding-to-ground capacitances 
in a three-winding, three-phase transformer with CB100. 

2.2 Stray Capacitances Calculated from Short-Circuit Tests 

Stray capacitances for the model which are not available from direct measure

ments can be calculated from the short-circuit frequency responses. At the high end of the 

frequency range, the behavior of the short-circuit impedance becomes close to that of a 

capacitance. In this frequency range, all the inductive elements have very high im

pedances and can be considered open-circuited. The stray capacitances that can be ob

tained from the short-circuit tests data are the turn-to-turn and the phase-to-phase 

capacitances. The turn-to-turn capacitance are always present in the short-circuit tests but 

the phase-to-phase capacitance will be present only when the measurements are taken 

from the outermost winding on each transformer limb. 
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2.2.1 Turn-To-Turn Capacitances 

In the proposed transformer model, the turn-to-turn capacitance is lumped as a 

single element and is connected across the two terminals of each transformer coil. Firstly, 

suppose that the winding where the short-circuit test is conducted is not the outermost 

winding so that the phase-to-phase capacitance is not present (the case in which the mea

surement is made on the outermost winding will be addressed next in the Phase-to-Phase 

Capacitance section). 

In practice, the zero-sequence measurement is taken on the wye-connected wind

ing because it is not possible to conduct the test on the delta winding with a single power 

source. In making the measurement, all three terminals of the wye are joined together. As 

a result, the measured turn-to-turn capacitance is three times that of a single coil. At the 

high end of the frequency response, a value of capacitance can be calculated from the 

magnitude of the impedance. By subtracting the known values of winding-to-ground ca

pacitances and interwinding capacitances, which were previously obtained from the direct 

measurements, the value of the turn-to-turn capacitance of the winding under test can be 

determined. 

The turn-to-turn capacitance of a delta winding, on the other hand, can be ob

tained from a positive-sequence test conducted on the delta winding, as explained earlier. 

The turn-to-turn capacitance obtained in the measurement is two times that of a single 

winding because two coils are connected in parallel while the third coil is shorted. With 
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simple subtraction, as in the case of the wye winding, the turn-to-turn capacitance for the 

model can be determined. 

For a three winding transformer, the measurements should be taken while the oth

er two windings are simultaneously short-circuited. This simplifies the calculation of the 

turn-to-turn capacitance because all apacitances in the model that are not shorted become 

connected in parallel. 

2.2.2 Phase-To-Phase Capacitance 

The phase-to-phase capacitance which exists between the outermost windings of 

the transformer legs are schematically shown in fig. 2.5. Figure 2.5a shows the case in 

which the windings are not connected, fig. 2.5b corresponds to the case in which the 

windings are connected in delta, and fig. 2.5c corresponds to the case in which the wind

ings are connected in wye. Phase-to-phase capacitances of full value are present across 

each coil in the delta configuration, while only halves are effectively present between the 

wye terminals. In the positive-sequence tests (which are conducted on the delta wind

ings), the phase-to-phase capacitances are combined with the turn-to-turn capacitances. 

For the delta connection, the phase-to-phase capacitance has to be modeled together with 

the turn-to-turn capacitance with both connected across the winding terminals, as shown 

in fig. 2.5b, because there is not enough information from the tests to separate them. For 

the wye connection, on the contrary, the phase-to-phase capacitance will not be present in 

the zero-sequence test even though the winding is the outermost one. This has the 
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advantage that it makes it possible to isolate the turn-to-turn capacitances form the test 

results. With reference to fig. 2.5c, if a short-circuit test is carried out with all the other 

coils short-circuited, the phase-to-phase capacitance will be the only unknown capaci

tance present in the test. The phase-to-phase capacitance can then be isolated and mod

eled as in fig. 2.5a. 
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Chapter Six 

NUMERICAL EXAMPLES 

The proposed method to calculate all the parameters required for the proposed 

frequency dependent transformer model was presented in chapter 5. This chapter is aimed 

at putting the method into practice. It covers some examples on how the model para

meters are realised from the information gathered from the various short-circuit tests. The 

frequency responses calculated from the model are compared to those obtained from the 

tests. In addition, time-domain simulations with the model using the estimated parameters 

are verified by comparison with the results recorded in the laboratory. Examples are given 

for both two- and three-winding transformers. 

1. Two-Winding Transformer 

The numerical data for a two-winding transformer is based on measurements 

taken on a power transformer rated 30/40/50 MVA. The transformer is a two-winding 

transformer with the high-voltage winding connected in delta and the low-voltage wind

ing connected in wye. The voltage rating is 115A/23Y kV. The transformer was manu

factured by Asia Brown Boveri (ABB). 
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1.1 Capacitances 

The capacitances which can be directly measured with the Capacitance & D. F. 

Bridge for the tested transformer are listed in table 6.1. 

Table 6.1—Measured values of capacitances for the tested transformer 

Type of capacitance 

Winding-to-ground 

-High-voltage (CHG) 

-Low-voltage (CLG) 

Winding-to-winding 

-High-voltage to low-voltage (C^) 

Capacitance for 3 phases (pF) 

3,418 

12,395 

6,441 

To reassure that stray capacitances can be assumed to be constant within a spe

cific range of frequencies, a frequency response test was carried out by shorting all the 

high-voltage terminals (delta) to ground and connecting the three terminals of the 

low-voltage terminals (wye) to the wye neutral. The measurement was taken between the 

low-voltage terminals and ground from which the sum of C^ and CLG was obtained. The 

result of this test is shown in fig. 6.1 together with the equation Z = 8.10x106 f0994 which 

resulted from fitting the straight line portion of the capacitance curve to a function 

Z = afb. As expected, the power of the frequency (f) is close to -1.0 because the 
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Fig. 6.1 Transformer capacitance impedance measured with the impedance analyser 



magnitude of the impedance of a capacitance is inversely proportional to the frequency. 

The coefficient of f gives an estimate of (27CC)'1 and C is found to be 19.644e-09 farad. 

The sum of C^ and CLG taken from table 6.1 is 18.836e-09 farad which is relatively close 

to C. Therefore, the values of the stray capacitances taken from the two different 

measurements agree with each other. 

Other capacitances which must be calculated from the short-circuit frequency re

sponses will be given later. 

1.1.1 Capacitances Determined from Zero-Sequence Test 

A zero-sequence short-circuit test was carried out with the circuit configuration 

shown in fig. 6.2a. Only one test is sufficient to get the zero-sequence data of a 

two-winding transformer. The test result was fitted with the network of fig. 3.3. The 

graphs in fig. 6.4 show the measured and fitted responses. The circuit parameters for the 

equivalent network are given in table 6.2. Numbers in table 6.2, and in other similar 

tables, are shown to five significance digits since sufficient accuracy in these values is 

needed for the correct placement of poles and zeroes of the fitting function. For the tested 

transformer, the capacitances which are present in the zero-sequence test are the turn-to-

turn capacitance of the low-voltage winding, the interwinding capacitance, and the ca

pacitance of the low-voltage winding to ground. The purpose of fitting the test results is 

to find out how much capacitance is included in the measured impedance. The measured 

short-circuit impedance was fitted up to the frequency at which the data are believed to 
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Table 6.2— Parameters of the zero-sequence short-circuit equivalent network for 

the tested two-winding transformer 

Peak No. 

1 

2 

3 

4 

5 

6 

7 

Capacitance 

(farad) 

2.96201e-08 

9.54346e-06 

1.59905e-07 

3.64525e-08 

3.90087e-08 

7.71330e-08 

3.52545e-08 

RL parallel block 

Resistance (ohms) 

4.69634e-05 

1.02500e+04 

2.21436e-01 

1.66978e+00 

1.61492e+00 

7.79935e+02 

1.18106e-02 

7.54854e+00 

2.10021e-07 

1.94427e+01 

2.00860e-05 

2.22654e+02 

9.79614e-05 

7.46147e+01 

3.86791e-05 

2.47888e+01 

4.31114e-05 

5.09657e+01 

Inductance (henry) 

6.52899e-05 

6.46047e-06 

6.36733e-05 

3.80926e-05 

1.63820e-04 

7.97444e-06 

8.13311e-06 

1.65258e-05 

4.72049e-06 

1.38830e-06 

1.97948e-06 

High-frequency equivalent capacitance = 7.43398e-09 farad 
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be reliable, which is about 1 MHz. This capacitance is subtracted from the short-circuit 

impedance to obtain the leakage impedance of the transformer. This impedance is later 

combined with part of the interwinding capacitance (^- CHL) to form the frequency de-
2n 

pendent series branch of the transformer model (Z^^ ). The combined impedance is 

then fitted once more to obtain the RLC network of fig. 3.3. 

From the previous procedure, the turn-to-turn capacitance of the low-voltage 

winding can be calculated as follows: 

Total capacitance from table 6.2 = 7.434e-09 farad 
;*-CH-L = 3.220e-09 farad 

iCL-o = 4.132e-09 farad 

Turn-to-turn capacitance = 0.082e-09 farad 

The factor 1/3 is used instead of 1/2 for C ^ is because the low-voltage winding 

was grounded while the measurement was carried out. When the winding is grounded, 

the effective winding-to-ground capacitance of the winding is reduced to 1/3, as sug

gested by Allan Greenwood [9]. 

1.1.2 Capacitance Determined from Positive-Sequence Tests 

Three tests were conducted to determine the positive-sequence short-circuit impe

dance of the transformer. Each test is performed with one of the coils of the delta winding 

shorted, as shown in fig. 2b. Results of the tests are shown in fig. 6.5 in which all the 

three tests are superimposed. It can be seen in fig. 6.5 that there is no significant differ

ence between results of the three tests. The average of the three tests is used as input data 
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Table 6.3~Parameters of the positive-sequence short-circuit equivalent network for 

the tested two-winding transformer 

Peak No. 

1 

2 

3 

4 

5 

6 

Capacitance 

(farad) 

2.34919e-08 

1.36025e-08 

1.91069e-08 

6.27161e-09 

1.48156e-07 

1.27424e-07 

RL parallel block 

Resistance (ohms) 

5.21162e-01 

1.74892e+03 

0.0 

2.17093e+04 

0.0 

3.63068e+03 

0.0 

7.71918e+02 

0.0 

5.72532e+02 

0.0 

7.35160e+01 

Inductance (henry) 

2.70085e-02 

2.94064e-02 

2.73908e-03 

1.06217e-04 

1.83790e-04 

-

1.17626e-05 

High frequency equivalent capacitance = 2.91999e-09 farad 

to find the circuit parameters. The same process implemented for the zero-sequence test 

described earlier is applied to the positive-sequence test to obtain the capacitances to be 

subtracted from the short-circuit branch. In this case these capacitances are the phase-to-

phase capacitances and the turn-to-turn capacitance of the high-voltage winding. The 
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result of the RLC synthesis procedure are shown in fig. 6.6 and fig. 6.7, while the circuit 

parameters are listed in table 6.3. Since, for the positive-sequence test, only two phases 

are involved, the capacitance values shown in table 6.1 must be multiplied by a factor of 

two thirds. The calculation of the unknown capacitances is as follows: 

Total capacitance from table 6.3 = 2.920e-09 farad 

; k f c H . L ) = 2.147e-09 farad 

J ( | C H - G ) = 0.760e-09 farad 

Turn-to-turn plus phase-to-phase capacitances = 0.013e-09 farad 

0.020e-09 (3 phases) 

1.2 The Series Branch Impedance (Z^^ 

Each short-circuit impedance is composed of two components of the transformer 

model, i.e., the leakage impedance and the short-circuit capacitance. The short-circuit ca

pacitance can be obtained from the test result with the procedure described earlier in sec

tions 1.1.1 and 1.1.2. The short-circuit capacitance will be subtracted from the measured 

impedance to obtain the leakage impedance. The leakage impedance is combined with 

part of the interwinding capacitance which is transferred to the side of the leakage impe

dance to become the series branch impedance used in the model. 

For the zero-sequence, this capacitance is 

Ul x o.5 x 6 4 4 1 x 10~9 = 5.367xl0-9 farad/phase. 
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Table 6.4~Parameters of the zero-sequence ZytinAm impedance for the tested 

two-winding transformer (per phase values referred to high-voltage side) 

Peak No. 

1 

2 

3 

4 

5 

6 

7 

8 

Capacitance 

(farad) 

4.76059e-10 

1.27529e-07 

2.92333e-09 

1.00064e-09 

1.34472e-09 

3.60143e-09 

9.50437e-09 

2.67993e-09 

RL parallel block 

Resistance (ohms) 

9.02003e-03 

2.81494e+04 

3.44792e+01 

2.3675 le+02 

5.59907e+05 

7.78905e-01 

6.12763e+02 

7.50465e-02 

1.30156e+03 

1.04837e-03 

1.00262e+04 

1.50116e-04 

2.56361e+03 

7.55318e-04 

6.08895e+02 

2.80912e-03 

2.57767e+02 

3.21350e-03 

5.25896e+02 

Inductance (henry) 

8.64570e-03 

1.91425e-03 

6.28649e-03 

1.00467e-02 

5.96037e-04 

4.54154e-04 

7.35136e-04 

1.57439e-04 

3.18966e-05 

8.18850e-06 

2.98555e-05 

High-frequency equivalent capacitance = 2.02039e-10 farad 
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And for the positive-sequence, the capacitance is 

After the calculated amount of capacitances have been added to the leakage impe

dances, they are fitted with the synthesis RLC network. Figures 6.8 and 6.9 show the fit

ting results for the zero-sequence winding impedance. It is seen from these results that 

the calculated winding impedance of the tested transformer can be matched very well to 

1MHz. The circuit parameters that resulted from the fitting are given in table 6.4. Five 

sections are used to simulate the response for the first peak and a total of eight peaks are 

matched all together. The parameters given in table 6.4 were converted to per phase va

lues and transferred to the high-voltage side so that they can be used in the transients pro

gram directly. 

The positive-sequence winding impedance is treated the same way as the zero-se

quence winding impedance. The fitting results for the real part are shown in fig. 6.10. 

Five sections were used to fit the five dominant peaks of the real part and two RL parallel 

blocks were used to refine the fitting for the principal peak which occurred in the vicinity 

of 10 kHz. The calculated results for the magnitude and phase angle of the positive-se

quence Z ^ ^ are plotted in fig. 6.11. The fitted and measured results agree very well 

from 50 Hz to about 0.5 MHz. Even though the fitting results over 0.5 MHz are not as 

good as in the case of the zero-sequence impedance, the overall outcome can be con

sidered sufficiently good. The circuit parameters for the network producing the response 

107 



100,000 

10,000 

1,000 

100 

10 

0.1 

Estimated 

Measured 

100,000 

10,000 

1,000 

100 

10 

0.01 J I L I I I I I I I I I I I I I I I I I I I I I I 

0.1 

0.01 
10 100 1,000 10,000 100,000 

Frequency (Hz) 

1,000,000 10,000,000 

Fig. 6.10 Fitting of the real part of the Z^ding impedance for the positive sequence circuitsequence circuit 

of the two winding transformer. 



100,000 

10,000 

1,000 

100 

10 
10 

Phase angle 

j i i i i 

100 

Estimated 

Measured 

180 

135 

90 

45 

i i i 1 1 1 1 i i i i i i i i i i i 1 1 1 1 i i i i 1 1 1 1 

-45 

-90 

CO 

S-H 

C 

D 
a 

- -135 

-180 
1,000,000 10,000,000 1,000 10,000 100,000 

Frequency (Hz) 

Fig. 6.11 Fitting of the magnitude and phase angle of the frequency dependent Z winding impedance 
for the positive-sequence circuit of the two-winding transformer. 



Table 6.5~Parameters of the positive-sequence Z^^ impedance for the tested 

two-winding transformer (per phase values referred to high-voltage side) 

Peak No. 

1 

2 

3 

4 

5 

Capacitance 

(farad) 

3.83689e-09 

6.63480e-08 

4.24785e-09 

1.38289e-08 

8.29235e-10 

RL parallel block 

Resistance (ohms) 

9.66480e-01 

2.14788e+02 

7.79506e+04 

0.0 

2.08566e+03 

0.0 

1.50852e+04 

0.0 

4.09054e+03 

0.0 

1.01916e+03 

Inductance (henry) 

1.58297e-02 

7.16340e-02 

1.15472e-02 

1.03526e-02 

1.90603e-03 

4.51872e-04 

High-frequency equivalent capacitance = 5.58860e-10 farad 

shown in fig. 6.11 are given in table 6.5. The numbers in the table are the per phase va

lues which are ready to be used in the transformer model software. 

1.3 Time-Domain Simulation 

An impulse response test was also performed on the 50 MVA, 115/23 kV trans

former from which the two-winding model data are derived. A standard 1.2/50 us voltage 
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impulse with a magnitude of 550 kV was applied to the delta winding while the wye 

winding was shorted. The schematic of the impulse test is shown in fig. 6.12a. The cur

rent in the 1 Q-resistor was recorded. Figure 6.12b shows the measured current response 

of the tested transformer against the model response using the parameters given in tables 

6.4 and 6.5. The agreement between measured and computed results is reasonably good. 

2. Three-Winding Transformer 

The three-winding transformer which was available for short-circuit tests was 

rated 25 MVA and 115/22/11 kV. The tertiary winding was connected in delta and the 

high and low-voltage windings were connected in wye. The transformer was manufac

tured by "Volta-Werke". The high-voltage winding is the outermost winding and the ter

tiary winding is located next to the core. Zero and positive-sequence tests were 

conducted on this transformer as explained in chapter 5. 

2.1 Stray Capacitances 

Similar to the two-winding transformer case, the stray capacitances that can be di

rectly measured with the capacitance meter are the winding-to-winding capacitances and 

the capacitances from windings to ground. The terminals of the windings belonging to the 

same phase are connected together, therefore, the capacitance values obtained are the 

sum of the three phases. The measured capacitances are as shown in table 6.6 below. 
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Table 6.6~Measured values of capacitances for the three-winding transformer 

Type of capacitance 

Winding-to-ground 

-High-voltage (CHG) 

-Low-voltage (CLG) 

-Tertiary-voltage (CTG) 

Winding-to-winding 

-High-voltage to low-voltage (C^) 

-High-voltage to tertiary-voltage (Cm) 

-Low-voltage to tertiary-voltage (CLT) 

Capacitance for 3 phases (pF) 

531.5 

394.4 

3.7 

5,400.0 

87.5 

7,900.0 

In performing the short-circuit tests, one of the terminals of each winding is 

grounded. Therefore, half of the winding-to-winding capacitance and one-third of the 

stray capacitance to ground will appear in the tests. The capacitances that correspond to 

the short-circuit condition are shown in fig. 6.13. The turn-to-turn capacitances included 

in fig. 6.13 can be calculated from the measured short-circuit impedances. 

Since the tertiary-winding, which is connected in delta, is not the outermost wind

ing, the phase-to-phase capacitances will not be present in the positive-sequence tests. 

Therefore, the phase-to-phase capacitances cannot be calculated from the positive-se

quence results and the identification of those capacitances requires some additional tests. 

Due to the fact that these tests were not carried out for the tested transformer, calculation 
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Fig. 6.13 Effective stray capacitances of a three-winding transformer during the 
short-circuit tests. 

of the phase-to-phase capacitance will not be demonstrated here (an explanation on how 

to obtain the phase-to-phase capacitance is given in section 2.2.2 of chapter 5). 

The turn-to-turn capacitances CH, CL and CT in fig. 6.13 for the high-voltage, 

low-voltage and tertiary-voltage windings of the three-winding transformer can be calcu

lated from the short-circuit tests. Six tests were conducted as follows: 

Zero-sequence 

ZoL HT 

ZoH LT: 

ZoL T: 

impedance measured on the low-voltage winding with 
both high-voltage and tertiary-voltage windings 
short-circuited. 
impedance measured on the high-voltage winding with 
both low-voltage and tertiary-voltage windings 
short-circuited. 
impedance measured on the low-voltage winding with 
only the tertiary-voltage winding short-circuited. 
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tertiary-voltage windings short-circuited (zero-sequence). 
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Table 6.7 — Parameters of the zero-sequence short-circuit equivalent network for the tested three-winding transformer 
(per phase values) 

Case: ZoL_HT 

Peak no. 

1 

2 

3 

4 

5 

C (farad) 

7.0913e-9 

8.4926e-8 

2.6750e-8 

1.3775e-8 

8.3690e-9 

K.(Q) 

6.7400e-5 

1.3492e-l 

1.8318e-4 

3.5086e-2 

4.2042e-2 

R,(Q) 

9.0443e-l 

2.8359e+l 

4.2490e+4 

3.7518e+2 

8.6748e+2 

8.0248e+2 

4.7543e+2 

L,(G) 

2.4790e-3 

5.8812e-4 

5.5459e-4 

2.9200e-4 

2.685 le-4 

2.1U6e-4 

7.5667e-5 

Higji-frequency equivalent capacitance = 2.61602e-9 farad 

Case: ZoH_LT 

Peak no. 

1 

2 

3 

4 

5 

C (farad) 

2.2592e-9 

9.6098e-8 

9.5892e-8 

2.2672e-8 

7.6848 e-9 

* * ( Q ) 

2.1720e+0 

1.4946e+0 

0.0000e+0 

1.8869 e-2 

1.2863e+0 

R,(G) 

1.7950e+l 

1.2652e+3 

2.4716e+5 

4.6004e+2 

3.1787e+2 

7.5099 e+2 

1.0750 e+3 

L, (henry) 

8.7832e-2 

4.4174e-2 

1.6921e-l 

8.1353e-4 

1.9087 e-4 

2.4447 e-4 

2.6704 e-4 

High-frequency equivalent capacitance = 1.56810e-9 farad 

Case: ZoLT 

Peak no. 

1 

2 

3 

4 

5 

6 

C (farad) 

3.5442e-9 

9.7392e-7 

1.0361e-7 

2.8894 e-8 

1.7176e-8 

1.0580e-8 

R*(n) 

2.9224e-l 

5.8695e-l 

2.1972e+0 

5.4405e-l 

1.9244 e-3 

2.4801e-4 

R,(Q) 

3.8500e+l 

7.1257e+0 

2.1473e+4 

2.0642e+2 

4.7329e+2 

5.3471e+2 

2.2344e +3 

5.8732e+2 

L, (henry) 

3.8599e-4 

5.1101e-4 

7.6706e-4 

9.6540e-4 

2.2034 e-4 

1.8971 e-4 

2.0885e-4 

9.0962e-5 

High-frequency equivalent capacitance = 2.08256e-9 farad 



Table 6.8 — Parameters of the positive-sequence short-circuit equivalent network for the tested three-winding transformer 
(per phase values) 

Case: ZpT_HL 

Peak no. 

1 

2 

3 

4 

5 

6 

C (farad) 

5.8024e-9 

1.2704e-7 

8.0675e-9 

1.2732e-8 

7.1573e-8 

4.8523e-9 

R*(") 

2.3667e-3 

4.0226e-3 

5.4044e-3 

5.4202e-3 

3.1479e-3 

5.3440e-3 

R,(Q) 

3.4367e-2 

4.4709e+0 

2.7302e+0 

3.3721e-H) 

1.2007e+3 

1.4424e+2 

4.1702e+2 

1.8349e+2 

5.7049e+l 

2.0570e+2 

L,(Q) 

3.7188e-5 

5.7350e-5 

8.4852e-5 

4.6749e-6 

1.5906e-4 

2.3170e-5 

2.0476e-5 

8.4803e-6 

8.7374e-7 

8.0285e-6 

High-frequency equivalent capacitance = 1.65901e-9 farad 

Case: ZpTH 

Peak no. 

1 

2 

3 

4 

5 

6 

7 

8 

C (farad) 

3.2324e-8 

2.7388e-8 

7.1427e-8 

6.3884e-9 

5.0629 e-9 

1.0616e-8 

1.2366e-8 

3.0125e-9 

R*(") 

4.8274e-3 

1.0324e-2 

2.2936e-5 

7.4689e-3 

1.1541e-2 

1.4553e-2 

8.2188e-6 

8.8793e-7 

R,(G) 

1.4251e+4 

1.2728e+4 

8.7523e-2 

3.2372e+l 

1.0783e+3 

1.2219e+3 

1.773 le+2 

5.6647e+2 

5.9023e+2 

3.0960e+2 

2.8295e+2 

2.4023e+2 

L, (henry) 

2.2247e-13 

5.1797e-4 

6.3950e-5 

8.0960e-4 

6.5569e-4 

5.0313e-4 

8.2175e-5 

1.3138e-4 

3.1310e-5 

1.0052e-5 

4.3123e-6 

U952e-5 

High-frequency equivalent capacitance = 1.06100e-9 farad 

Case: ZpT_L 

Peak no. 

1 

2 

3 

4 

5 

6 

7 

C (farad) 

6.7837e-8 

6.1203e-8 

1.2609e -7 

7.9259e-9 

5.7841e-9 

1.651 le-8 

5.3568e-9 

»*(Q> 

1.0602e-2 

3.0982e-3 

3.0937e-3 

3.4538e-3 

3.2588 e-3 

2.9264e-3 

3.2541e-3 

R,(Q) 

1.0058e-l 

4.2487e-K) 

2.9290e-2 

1.0878e+l 

6.6783e+3 

5.5532e+2 

8.0822e+l 

4.2665e+2 

2.6653e +2 

1.2482e+2 

1.7151e+2 

L, (henry) 

6.8052e-6 

1.0914e-4 

3.5993e-5 

2.7954e-4 

5.5477e-4 

2.2484e-4 

4.5678e-5 

1.0958 e-4 

2.4716e-5 

3.1629e-6 

6.7650e-6 

High-frequency equivalent capacitance = 1.70849e-9 farad 



Positive-sequence 

ZpTHL: impedance measured on the tertiary-voltage winding 
with both high-voltage and low-voltage windings 
short-circuited. 

Z p T H : impedance measured on the tertiary-voltage winding 
with only high-voltage winding short-circuited. 

ZpT_L: impedance measured on the tertiary-voltage winding 
with only low-voltage winding short-circuited. 

To determine the capacitances included in the measured short-circuit impedances, 

the impedances are fitted by an RLC synthesis network. The results of this fitting for the 

six measured cases are shown in figs. 6.14 to 6.19. The parameters of the RLC networks 

are indicated in tables 6.7 and 6.8. All quantities in fig. 6.14 through fig. 6.19 and in 

tables 6.7 and 6.8 has been converted to per phase values. 

To determine the turn-to-turn capacitances from the short-circuit tests, it prefer

able to use those tests in which the remaining tow windings are both shorted. These 

correspond to cases :ZoL_HT, ZoHLT and ZpTHL. Using the total capacitances given 

in figs. 6.20, 6.21 and 6.24, together with the measured capacitances from table 6.6 and 

the capacitance diagram of fig. 6.13, CH, CL and CT are found to be: 

CH (from case:ZoH_LT) = 1.56810e-09 - J ( J C H L + JCHT + }CHG) 

= 5.94461 e-10 farad (per phase) 

CL(fromcase:ZoL_HT) = 2.61602e-09-±(jC 

= 3.5553le-10 farad (per phase). 

CT (from case:ZpT_HL) = 1.65901e-09 - j ( j C H T + jCL T + }CTG 

= 3.27349e-10 farad (per phase). 
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Fig. 6.20 Fitting of the sum of the high and low-voltage winding impedances (zero-sequence). 
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Fig. 6.21 Fitting of the sum of the high and tertiary-voltage winding impedances (zero-sequence). 
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Fig. 6.22 Fitting of the sum of the low and tertiary-voltage winding impedances (zero-sequence). 
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Fig. 6.23 Fitting of the sum of the high and low-voltage winding impedances (positive-sequence). 
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Fig. 6.24 Fitting of the sum of the high and tertiary-voltage winding impedances (positive-sequence). 
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Fig. 6.25 Fitting of the sum of the low and tertiary-voltage winding impedances (positive-sequence). 



Table 6.9 ~ Parameters of the zero-sequence Z , ^ ^ impedance for the tested three-winding transformer 
(per phase values referred to high-voltage side) 

Case: Zo_HL 

Peak no. 

1 

2 

3 

4 

5 

6 

7 

C (farad) 

5.5878e-10 

2.6048e-9 

1.1945e-9 

3.4651e-9 

4.8565e-10 

9.1151e-10 

4.7763e-10 

R*W 

5.2597e+2 

-

-

-

-

-

-

R,(Q) 

1.7928e+2 

3.8902e+3 

3.0746e+7 

-

5.8748e+4 

2.0818e+4 

1.3832e+4 

2.9141e+4 

2.0995e+4 

4.9790e+3 

L,(") 

2.2965e-l 

9.4942e-2 

2.1162e-l 

-

3.5960e-l 

2.0708e-2 

3.1728e-3 

1.5505e-2 

4.5676e-3 

2.3018e-4 

High-frequency equivalent capacitance = 1.16971e-10 farad 

Case: Zo_HT 

Peak no. 

1 

2 

3 

4 

5 

-

-

C (farad) 

7.3880e-lO 

6.8965e-9 

2.5250e-8 

3.6330e-9 

3.0130e-9 

-

-

R*(n) 

1.0235e+2 

2.4032e-2 

5.1643e-2 

3.0161e+0 

4.4105e+l 

-

-

R,(Q) 

6.8885e+l 

1.9761e+2 

4.3893e+3 

1.4622e+7 

2.5810e+4 

2.1409e+3 

7.6270e+3 

4.8946e+3 

-

-

L, (henry) 

8.6127e-l 

3.7134e-2 

5.3395e-2 

1.4181e-l 

1.4326e-l 

3.1125e-4 

1.1210e-3 

4.3305e-4 

-

-

High-frequency equivalent capacitance = 4.66133e-10 farad 

Case: Zo_LT 

Peak no. 

1 

2 

3 

4 

5 

6 

7 

C (farad) 

3.1390e-8 

9.7171e-9 

1.4427e-9 

6.9580e-9 

3.9650e-10 

1.4772e-9 

8.9075e-10 

R*(") 

2.1268e+0 

2.8105e+l 

6.6190e+l 

-

-

-

-

R,(«) 

9.3466e+l 

1.1302e+l 

8.005 le+1 

8.4193e+4 

1.4079e+3 

1.7237e+4 

2.3692e+4 

4.5959e+4 

5.1015e+4 

4.2739e+3 

L,(henry) 

5.2827e-3 

6.1356e-3 

5.4825e-3 

2.8075e-2 

1.2851e-2 

1.7146e-2 

1.580U-3 

1.8990e-2 

2.8185e-3 

1.2343e-4 

High-frequency equivalent capacitance = 1.88918e-10 farad 



Table 6.10 — Parameters of the positive-sequence Z ^ ^ impedance for the tested three-winding transformer 
(per phase values referred to high-voltage side) 

Case : Zp_HL 

Peak no. 

1 

2 

3 

4 

5 

6 

C (farad) 

2.3803e-10 

3.0289e-9 

1.8657e-8 

2.3904e-9 

2.1355e-8 

7.1496e-9 

R*(S) 

7.3622e+0 

2.3280e-l 

2.4717e-l 

-

-

-

R,(Q) 

5.5878e+l 

1.5984e+4 

4.8474e+8 

1.201 le+4 

1.2502e+3 

1.1097e+3 

5.3334e+2 

9.5134e+2 

I i (") 

1.6394e-2 

2.9495e-l 

5.2870e-l 

7.0971e-3 

3.5098e-4 

1.1774e-4 

3.2948e-6 

5.8233e-6 

High-frequency equivalent capacitance = 1.92682e-10 farad 

Case: Zp_HT 

Peak no. 

1 

2 

3 

4 

5 

6 

7 

C (farad) 

7.1241e-10 

5.9693e-9 

6.7571e-10 

5.2252e-ll 

7.4005e-ll 

2.9646e-10 

4.4640e-ll 

R*(n) 

3.5828e+0 

5.1206e-3 

1.3907e+0 

2.0532e-l 

4.7657e-2 

7.9113e-2 

2.1277e-4 

R,(Q) 

7.0207e+0 

1.9539e+3 

1.1581e+5 

3.0797e+3 

1.6622e+4 

1.2672e+5 

5.0967e+4 

1.1106e+4 

1.5070e+4 

L, (henry) 

6.4685e-3 

6.3287e-2 

2.0989e-l 

3.5707e-3 

4.3464e-3 

2.3163e-2 

2.5542e-3 

3.8644e-4 

1.0495e-3 

High-frequency equivalent capacitance = 1.62664e-l 1 farad 

Case: Zp_LT 

Peak no. 

1 

2 

3 

4 

5 

6 

7 

C (farad) 

1.0879e-9 

6.0227e-9 

7.3699e-10 

5.6698e-ll 

8.0709e-ll 

3.2834e-10 

4.7813e-ll 

RdcW 

2.3638e+0 

7.766 le-3 

1.8220e+0 

1.3792e-l 

2.2096e-2 

4.8720e-2 

2.1277e-4 

R,(Q) 

5.5462e+0 

1.3610e+3 

7.9797e+4 

1.7928e+3 

1.6196e+4 

1.2584e+5 

4.8214e+4 

9.6409e+3 

1.2842e+4 

L, (henry) 

5.5567e-3 

4.4632e-2 

1.3632e-l 

3.5436e-3 

3.9964e-3 

2.1392e-2 

2.3490e-3 

3.4997e-4 

9.9546e-4 

High-frequency equivalent capacitance = 1.77211e-l 1 farad 



2.2 Series Branch Impedance (Z^^) 

Before the measured impedances are used in the computation of the leakage impe

dances, the total capacitances derived from the fitting given in tables 6.7 and 6.8 have to 

be deducted from each of them. Equations 5.27, 5.28, 5.29 and 5.38 can then be applied 

to calculate the individual leakage impedance for each winding. After this, the three leak

age impedances for the transformer model can be transformed into delta connection, as 

shown in fig. 2.9c. Part of the winding-to-winding capacitances can then be combined 

with the leakage impedances (as shown in fig. 2.10) to obtain the 2yihlSng impedance to be 

synthesized with multiple RLC equivalent blocks. When this is done, the delta-connected 

winding impedances can then be converted back to their original configuration ( fig. 

9.2a). 

The manipulations explained above, however, do not always result in winding 

impedances which are minimum-phase-shift functions. An alternative way was sought so 

that only minimum-phase-shift functions are dealt with in the fitting of impedances. It was 

found that the sum of two individual leakage impedances produces a minimum-phase-shift 

function. Physically, this may correspond to the fact that it is always possible to measure 

the sum of two leakage impedances of a transformer (if the windings can be discon

nected) while it is not possible to directly measure the individual branches of the T circuit. 

The sum of two winding impedances (for both the zero and positive sequence) were fitted 

with RLC equivalent networks. The corresponding results are shown in figs. 6.20 to 6.25 
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and tables 6.9 and 6.10. For the reference purposes, the fitted results are named as 

follows: 

Zero-sequence 

Zo_HL: 

Zo_HT: 

Zo LT: 

Positive-sequence 

Zp_HL: 

Zp_HT: 

Zp_LT: 

Sum of the high-voltage and low-voltage winding 
impedances. 
Sum of the high-voltage and tertiary-voltage winding 
impedances. 
Sum of the low-voltage and tertiary-voltage winding 
impedances. 

Sum of the high-voltage and low-voltage winding 
impedances. 
Sum of the high-voltage and tertiary-voltage winding 
impedances. 
Sum of the low-voltage and tertiary-voltage winding 
impedances. 

Impedances for both the zero-sequence and the positive-sequence are referred to 

the high-voltage winding side. 

The sum of the Z^^ of two windings cannot be used right away since the model 

requires a seperate series branch impedance for each winding. However, further fitting is 

not necessary because Zy/in£ for each winding is related directly to those fitted results 

explained earlier. In terms of equations, the relationship can be written as follows: 

Zo HL = Zo H+Zo L (6.1) 

Zo HT = Zo H+Zo T (6.2) 
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ZoLT = Zo_L+Zo_T (6.3) 

where, 

Zo_H, Zo T and Zo_L = the zero-sequence Z^^^ impedances for the high, ter
tiary and low-voltage windings, respectively. The impe
dances are referred to the high-voltage winding side. 

Then, it can be shown that 

Zo_H = \(Zo_HL + Zo_HT+ Zo_LT) - Zo_LT 

= \Zo_HL + \Zo_HT-\Zo_LT (6.4) 

Similarly, 

ZoJ = \Zo_HT+\Zo_LT-\Zo_HL (6.5) 

and 

Zo_L = \Zo_HL + \Zo_LT-\Zo_HT (6.6) 

In terms of circuit representation, one-half impedance can be realised from the 

original impedance by simply reducing the constituent resistances and inductances to half 

their values and increasing the capacitances to double their values. Likewise, a negative 

impedance can be accomplished by replacing each and every parameter of the fitted result 

with a negative value of an equal magnitude. 

The winding impedances for the positive-sequence model can be constructed 

exactly in the same manner. 
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However, if it happens that one of the winding impedances is a minimum-phase-

shift function, it can be fitted and used to obtain the other two winding impedances by 

simple subtraction. For instance, it was found that the winding impedance for the 

high-voltage winding in the positive sequence of the tested three-winding transformer was 

a minimum-phase-shift function, as shown in fig. 6.26. Zp_T and Zp L can be found as 

follows: 

Zp_T = Zp_HT-Zp_H (6.7) 

Zp_L = Zp_HL-Zp_H (6.8) 

where, 

ZpTand Zp_L = the winding impedances of the tertiary and low-voltage 
windings, respectively. 

Zp_H = the winding impedance of the high-voltage winding 
which was found to be minimum-phase-shift and was 
previously fitted. 

It is obvious that equations 6.7 and 6.8 are simpler than equations 6.5 and 6.6. 

Only two impedances are required to be connected in series to make up the winding 

impedances. Therefore, it is advantageous to use equations 6.7 and 6.8 whenever it is 

possible. 

Figures 6.27 and 6.28 show the fitting results for the low-voltage and the tertia

ry-voltage Z ^ ^ of the positive sequence model computed with equations 6.7 and 6.8, 

respectively. 
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Fig. 6.26 Fitting of the winding impedance of the high-voltage winding (positive-sequence). 



From the numerical examples for both the two-winding and the three-winding 

transformers presented in this chapter, it can be clearly seen that the proposed technique 

of impedance derivation to process the experimental data leads to very accurate results. 

Furthermore, it can be concluded that the developed transformer model is capable of pro

ducing satisfactory simulation results both in the frequency-domain and in the time-

domain (experimental data was not available for the three-winding transformer in the 

time-domain). 

3. Simulation of Transient Recovery Voltage 

To compare the proposed frequency dependent transformer model with the con

stant-parameter model, a fault interruption case (Fig. 6.29) was simulated. The plots in 

Fig. 6.29 compare the voltage across contancts of the circuit breaker obtained with the 

proposed frequency dependent model (with parameters derived from the tested 50 MVA 

115/23 kV transformer) and with a constant parameters model in which the short-circuit 

impedance i represented with the 60-Hz resistance and inductance. The same external ca

pacitances network is used for both models. The difference in the results illustrate the im

portance of more accurate transformer modelling in fast switching transients. 
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Chapter Seven 

PROPOSED FUTURE WORK 

Although much effort has been put into the research work for this thesis to make 

it as complete as possible, there are still a number of issues missing which might be con

sidered worthwhile for continued future research. Three possible areas of further research 

are envisioned: 

(1) Modeling of stray capacitances. Stray capacitances in the present model are 

assumed to be non-frequency dependent and lossless. It might be possible to model stray 

capacitances in more detailed by introducing dielectric losses into the model, as shown in 

fig. 7.1. In addition, some of the aspects in the measurement of stray capacitance may 

need to be improved. Since capacitances are modeled as separate entities from the rest of 

the model, balanced conditions for stray capacitances may not need to be assumed. 

Rn 

R. 
AA/V 

-o 

Fig. 7.1 Capacitance model with dielectric losses. 
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(2) Calculation of model parameters. As an alternative to measurements, it might 

be possible to determine the model parameters from the transformer physical dimension 

and construction. These data would have to be obtained from the manufacturer. Although 

most of the transformer data may be confidential, some manufacturers might still be will

ing to provide some useful information for educational purposes. 

(3) Extend the capability of the model to cover any number of windings. It may 

not require much extra work to make the model valid for transformers having more than 

three windings. In this more general case, the concept of a T-equivalent circuit to model 

the coupling among N-coils (N > 3) may have to be abandoned in favor of "delta" 

branches connected among all nodes (similar to the connection in fig. 2.9c). 
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Chapter Eight 

CONCLUSIONS 

A wide-band general-purpose model has been developed for three-phase power 

transformer in the two and three windings per phase. Instead of using a [Y(G>)] matrix for

mulation for the transformer as seen from its external terminals, the model uses the classi

cal 60-Hz T-circuit to represent the electric and magnetic interaction among coils 

belonging to the same phase. For three-phase common-core units, the mutual interaction 

among different phases is decoupled through a modal transformation matrix. Even though 

the concept is general, a balanced-system transformation matrix is assumed in order to 

simplify the modelling and the test data requirements. The decoupled sequence networks 

consist of a frequency dependent short-circuit branch and constant-valued terminal ca

pacitances. These parameters were measured experimentally on a two-winding and a 

three-winding, three-phase core-type transformers. The two-winding transformer is rated 

at 50 MVA, 115/23 kV and the three-winding transformer is rated at 25 MVA , 

115/22/11 kv. A technique was suggested that allows positive sequence impedance 

measurements to be made with a single-phase impedance analyser. 

The model has been shown to give good results for both two-winding and 

three-winding transformers. Although the calculation of the series impedances from the 
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test data for the three-winding transformer is more complicated than for the two-winding 

case, the resulting impedances can still be synthesised with RLC networks with a high de

gree of accuracy. 

As a result of the simplified topology, the frequency dependence modelling prob

lem is reduced to the fitting of simple minimum-phase-shift impedances (the short-circuit 

impedances). Therefore, the possible numerical stability problems associated with the syn

thesis of the mutual terms in the [Y(©)] formulation have been eliminated. Also, the 

model has fewer and simpler frequency dependent functions to synthesise, making it much 

faster than other models in time domain simulations. 

Although the model presented in this thesis depends upon data obtained from 

measurements, the underlying concepts of the model are not limited to how the data is 

obtained. Once the data is available, regardless of its source, it can be processed in the 

same way explained in this thesis to get the parameters of the proposed model. 
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Appendix 1 

FITTING OF THE IMPEDANCE FUNCTION 

The frequency dependent part of the proposed transformer model is approximated 

with a series connection of several RLC network sections. One such section is shown in 

fig. 1. Each of the sections is used to duplicate one peak of the frequency response. The 

RL blocks can be viewed as representing the leakage inductance and associated losses, 

(a) 

R„ 

AA/V 
,-onhs r^rirs 
^vA/V ^\A/V 

R. R2 

(b) 

R(G>) 

AA/V 
L(oo) 

Fig. Al. 1 Equivalent network representation of the frequency dependent branch of the 
sequence model, (a) A section representing any peak, (b) The frequency dependent 
resistance and inductance equivalent of (§). 
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which are both frequency dependent in nature due to skin effects in the transformer wind

ings and associated physical enclosure. The capacitances of the synthesis blocks represent 

the interwinding capacitances which become reflected into the leakage impedance for 

modeling purposes. The combined impedance of the network of fig. 1 can be expressed 

as: 

where, 

and, 

Pi 

Z ( Q ) = 
[R{&) + jd)L(G>)]/JG)C 

R(G>) +JG)L(6)) + - ^ 

i?((o) +j(oL((o) 

[1-G>2CZ(0))] +JG>R(G>)C 
(1) 

R(.®) = Ro+t^-t 
1=1 ffl2 +pf 

Z((D) = i RiPi 

/ = 1 ( 0 2 + p 2 ' 

EL 
L,' 

n > 1 = no. of RL parallel blocks for the principal peak, 

= 1 for remaining peaks. 

The overall impedance of the frequency dependent branch is the sum of each block's 

impedance, as expressed in equation 1. To realize the parameters Rff Rf P. and C of each 

block, it is equally valid to fit either the magnitude or only the real part of the function 
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[1]. Since the impedance is a complex number, finding its magnitude involves operations 

of both squares and square roots of the real and imaginary parts. Furthermore, the magni

tudes of two impedance functions cannot be added directly in order to get the total mag

nitude, while real parts of two functions can be combined by simple addition. Therefore, 

it is less complicated to fit the real part of the impedance function than it is to fit its mag

nitude. The real part of the combined frequency dependent impedance branch can be ex

pressed as the sum of the real part of each impedance block. Multiplying both the 

denominator and numerator of equation 1 by the complex conjugate of the denominator, 

the real part of Z(co) is found to be 

XeiZfa)} = ^ ; 
[1 - (Q2CL((0)f + [(Di?(G))Cr 

fiCo) (2) 

where, 

Q(G>) = [1 - ©2CZ(©)]2 + [G>R(G>)Q2. 

The Levenberg-Marquardt method (also called Marquardt method) for nonlinear 

functions [11] is used in the fitting of the real part of the impedance function. This meth

od has been put forth by Marquardt based on an earlier suggestion by Levenberg. This 

method works very well in practice and has become the standard in nonlinear least-

squares routines. The algorithm requires, at each iteration, an evaluation of partial deriv

atives of the model function with respect to each and every parameter on which the model 
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is dependent. The model function for the present problem is simply the sum of the real 

parts of all the blocks, which may be expressed as 

F(<o) = £/te{Z,(o>) (3) 
/ = i 

where, 

m = no. of RLC impedance blocks or no. of peaks to be fit. 

Although F((Q) contains variables which come from all the impedance blocks, the partial 

derivatives of F(<o) with respect to the variables of one block will not include any vari

ables from other blocks because all the blocks are independent of each other. The follow

ing are the partial derivatives of F((o) with respect to R9 Rp Pt and C which are 

applicable to any block (from block # 1 to block # m) of the frequency dependent im

pedance of the transformer model: 

' dRo 

2 ) dFM 

1 
0(G>) 

1 
0(G>) 

1 

3R(G>) R(G>) 

dRo Q2(a>) 

2R2(®)o>2C2 

02(o>) 

dR((o) 7?(to) 

32(co 
dRo 

dQ(e>) 
BRi 0(co) dRi e2((o) dRt 

2 
or 

Qfa) ®2+P2 

••jgpr- {2[1 - (02CZ(o) ]r_ f l )2C_l^ ] 
Q2(G>) <a2 + P2 
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+ 2 < B 2 C 2 / ? ( C O ) - ^ - I } 

CO2 +P* 

3F((o) _ _ j _ dRja) R(&) dQ((o) 

1 -ItfRtPi 

3 ) dPt Q((o) dPt g » dPt 

where, 

Q(a) (CO2+P2)2 

. ^ . { 2 I l - ^ C t ( a , ) ] [ H D » C ^ ] 

+2(D2C2i?(Q)-~, f ; } , 
-2(D2fl,P, 

(co2 +P2)2 

az(co) = /;, 2J?,P2 

aP/ co2+/>2 (co2+P2)2 

4v aF(co) = _ J _ 8R(G>) _ R(<a) a(9(cp) 
' 5C (9(co)' dC (92(co)' 5C 

^ - • {2©2I(co)[l -co2CI(©)] + 2Cco2/?2(©)} 
Q 2(o) 

In implementing the algorithm, all the peaks are initially approximated with simple 

blocks of RLC elements. The dc resistance R0 is not initially included. The purpose of 

this simplification is to find a set of circuit parameters which will be used as an initial 

guess for further detailed fitting. For these simple blocks, there are only two unknown pa

rameters to be fitted for each block: although there are three variables, i.e., R, L and C, 

the variables L and C can be assumed to be dependent. They are related to the resonant 
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frequency of the block, ©0, by the well known relationship co0
2 = (LC)'1. The resonant fre

quency of each block is readily obtainable from the test data. Therefore, the real part of 

each block can be reduced from the full expression 

Re{Z((o)} = ^ ^ (4) 

R2(1-<Q2LQ2 +<o2L2 

down to 

<o2RL2 

Re{Z(<o)} = 

R 
f 2^ 

(5) 

+ <Q2L2 

which contains only two parameters to be fitted, R and L. The initial value of R is as

sumed to be the peak value of the real part at the frequency where the resonance of the 

block occurs. The initial value for L is chosen from the Z(s) function as follow. Let 

Z(s) = S-^—~. (6) 
s2 + — + — 

RC LC 

Then, in order for Z(co) to have a resonant peak, the roots of the denominator of Z(s) 

must be complex, or equivalently 

2 4 iw) - - < ° <.RC; LC 
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which is the same as 

RC JIc 

At resonance, it is already known that 

©o = . and, 
JLC 

and 

1 < -h= (7) 

1 _ „2, 
C 
— = co 0 ^ 

Substituting into equation 7, one obtains 

- £ - < 2©o 

which implies that 

Tlfo 

Based on equation 8, an initial value of L is taken as 

L < 4 (8) 

O.li? 
••initial Tlfo 

(9) 

After the initial fit, the low frequency region before the principal peak is fiirther 

refined by adding several RL parallel blocks. After removing the capacitance of the first 
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peak (obtained from the initial global fitting procedure), the asymptotic approximation 

technique of [1, 10] is used to fit the magnitude rather than the real part of the im

pedance function. 

The RL parameter of the initial frequency region, together with the parameter for 

the peaks from the initial global fitting procedure are combined together as an initial 

guess for a re-optimization. This second optimization will now include dc resistances for 

all the impedance blocks. The initial values for these R0 's can be any small numbers and 

are arbitrarily chosen to be 0.1 ohm each. The correct values will be given by the opti

mization result. 

Since numerical stability is an important issue for the electromagnetic transients 

simulation program, the least-square fits must be constrained so that the result is numer

ically stable. At the same time, the result must be compatible with the test data. One of 

the advantages of parameters realization by fitting the real part of the impedance function 

is that the real part is always positive for a minimum-phase-shift function. Referring to 

equation 2, it is seen that Q(G>) is always positive due to the square operations. If the 

whole function is to be positive, then R{&) must be positive too. One way that this condi

tion can be satisfied, as indicated by equation 1, is to select all i?, as positive numbers. 

Since the synthesis impedance block consists of two branches, namely, the capacitance 

branch and the RL branch, the total network will be numerically stable if both branches 

are numerically stable themselves. The RL parallel network will be numerically stable if its 

pole (P) is positive. Keeping P. positive and using only positive C 's makes the poles of 
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the rational function approximation positive, therefore guaranteeing that the overall func

tion is numerically stable. The result of keeping P. and Rt positive automatically leads to 

positive L(. Having C and Lt positive makes it certain that Q((o) has a minimum 

(equation 2) which will in turn cause the function Re{Z((o)} to possess a maximum which 

is the objective of performing the fitting. 
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