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ABSTRACT 

Chemicals are added in the wet end of a paper machine to control operability and/or quality 

measures such as retention, drainage, sheet strength, etc. Current understanding of the effects 

of such additives in a mill environment is generally restricted to either qualitative or empirical 

descriptions. This is primarily due to the large number of interacting factors present in the 

aqueous papermaking environment as well as variations in furnish properties. Furthermore, 

the existence of large time constants and recycle flows in the white water system leads to 

complex mixing dynamics. This inability to quantitatively predict process performance inhibits 

development of closed-loop control schemes. 

This thesis is an attempt to bridge the gap between development of fundamental papermaking 

chemistry models in the laboratory and application of these models in a mill environment.. A 

dynamic simulation approach is used to model the interactions between chemical additives and 

furnish particles. Detailed descriptions of the polymer adsorption, flocculation and wire 

retention and drainage processes are developed. Consistencies of all furnish particles, in 

particular fines, are faithfully tracked throughout the wet end. The effects of operating 

variables such as polymer addition rates, furnish composition, degree of stock refining and 

applied vacuum can be directly assessed in a simulated operating environment. Results are 

compared against on-line data from a fine paper mill in Canada are shown to be accurate. 

Identification tools are also developed as part of the overall goal of identifying a model suitable 

for controller design. A method is first proposed for specifying a confidence interval on the 

anticipated controller robustness at the identification stage. This is accomplished through 

optimization of a controller robustness measure with the constraint that the model parameters lie 

within a (l-a)% confidence interval. Parametric nonlinearity is accounted for by this method 
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and the efficacy of the method is shown to be, in part, a function of the degree of this 

nonlinearity. Input test signals can be chosen which minimize this uncertainty and a method is 

developed for this purpose. 

Identification techniques are applied to the High Molecular Weight Anionic Polymer Flowrate 

White Water Filler Consistency loop. Significant nonlinear behaviour is found to exist in 

the higher order dynamics of this pairing. While the control relevant identification techniques 

developed in this thesis are not effective due to the nonlinearities present the value of an 

accurate dynamic simulation is highlighted. 
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Chapter 7. Introduction 

C h a p t e r 1 

I n t r o d u c t i o n 

1.1 Motivation 

Although the process of manufacturing paper is centuries old, experience and rules of 

thumb for successfully operating a papermaking process are often used rather than 'hard' 

rules derived from phenomenological models. This is a direct result of the number and 

complexity of interacting papermaking phenomena. An excellent introductory perspective 

of many important aspects of papermaking is given by Roberts (1996a). 

This thesis concerns itself with the surface chemistry of papermaking. Chemistry 

phenomena are of fundamental importance to the papermaking process as they affect both 

final paper sheet properties and operability of the paper machine. Both the papermaking 

furnish, comprised of fibrous and mineral filler materials, and the surrounding aqueous 

medium affect this chemistry. Furthermore, chemicals are added to affect sheet properties 

and machine operability. Because the surface area to mass ratio of particles involved in 

papermaking is large, the study of chemical interactions in papermaking involves a branch 

of chemistry known as colloidal chemistry (Scott (1996)). 

Modelling of chemical papermaking phenomena is complicated by variations in furnish 

properties and the surrounding aqueous environment which arise in the processing of a 

naturally derived raw material. As well, stringent paper machine performance requirements 

are placed on any model of the system as papermakers strive for higher quality products, 

more flexible processes and greater production rates. When coupled with the above 
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Chapter I. Introduction 

imprecise knowledge of many papermaking chemistry phenomena, the goal of developing 

models and control schemes for this system is very challenging indeed. 

Kaunonen (1988) stated that there are two approaches to studying the wet end (stock 

preparation plus sheet forming sections) of a paper machine. The first is to conduct 

laboratory experiments under carefully controlled conditions and elucidate basic chemical 

mechanisms. The other is to measure the operating process on-line and build models and 

control schemes in an essentially empirical manner. Here, a possibly third distinct 

approach is followed. This is the application of fundamental papermaking chemistry 

models developed in the laboratory in a simulated operating environment. In this way the 

interactions between the basic chemical mechanisms and the hydrodynamics of the paper 

machine wet end can be explored. Hence, the present approach can be regarded as a bridge 

between those identified by Kaunonen. Indeed, this approach follows the suggestion of 

Odberg et al. (1993) that "in mathematical dynamic simulation of paper machines, 

chemicals should also be included". 

An additional incentive for approaching the problem in the above manner was due to the 

proliferation of literature describing reliable on-line measurement techniques for key wet 

end operating variables. These measurements provide a means for studying the dynamic 

behaviour of the wet end which is known to have a broad range of time constants. 

Furthermore, the various recycle streams present in the wet end can be easily handled in a 

simulation environment. 

Identification of a model for prediction and eventual control of wet end chemistry 

phenomena must proceed in several steps. These steps reflect the state of a priori 

knowledge about the system and are shown in Figure 1.1. Initially, development of a 

first-principles simulation model is undertaken in order to be able to accurately predict 
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Chapter!. Introduction 

process phenomena. Both previous operating knowledge about the process and more 

general results reported in the literature are used in development of the simulation model. 

At the next stage on-line identification experiments can be performed using the knowledge 

gained from development of the simulation model. These experiments can be used to 

'calibrate' the simulation model. Since the simulation model is not in a convenient form for 

design or implementation of an eventual control scheme simpler, often linear, models are 

identified from process input/output data generated on-line. Also at the identification step, 

techniques for the mathematical design of experiments can be employed to ensure that the 

resulting simplified model is optimal for the purposes of control. From these steps and 

with a suitable model, a control scheme can be design for the wet end chemistry process 

and implemented. 

Previous Chemistry 
Studies 

Sensors 

Simulation Model 

Mathematical Design 
of Experiments 

Identification 
Experiments 

Process 
Model 

Controller 
Design 

F i g u r e 1.1: Thesis organization flow diagram 

Clearly the above model building process involves a great many areas any of which could 

form a significant project. For this reason, and due to the fact that this approach has not 

been previously applied to a complete papermaking operation, emphasis has been placed on 

the development of a reliable simulation model. The other area of concentration is 

devilment of identification techniques which accurately describe and minimize the 
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Chapter 1. Introduction 

uncertainty in models identified from noisy data. The emphasis here is on producing 

models which have desirable properties when they are to be used in a closed-loop control 

scheme. 

1.2 Thesis Objectives and Approach 

The main objective of this project is to produce a reliable model for prediction of first-pass 

retention and wire drainage effects on an operating paper machine. Furthermore, the 

model is required to be suitable for design of control schemes. 

The layout of this thesis follows accordingly. Chapter 2 reviews some fundamental aspects 

of the physical and chemical interactions present in wet end chemistry. As well, the current 

state of on-line sensor measurement in the fine paper mill under study is discussed along 

with current wet end control practices. The main tool for identification of development of 

the wet end chemistry model in this thesis is dynamic process simulation. In Chapter 3 

both the methodology of dynamic simulation in general and the specific implementation of 

wet end chemistry models is discussed. Details of the specific first-principles chemistry 

models are given here. The validity of this simulation model is demonstrated in Chapter 4 

by comparison against on-line data. At this point it is assumed that the simulation model is 

directionally correct but may not necessarily be able to produce precise predictions of 

retention and drainage phenomena. Accordingly, tools are developed in Chapter 5 which 

characterize and minimize the uncertainty associated with conducting identification 

experiments using on-line data. Parameters in approximate linear (in the inputs) dynamic 

models derived from the first-principles simulation can be identified from such 

identification experiments with the resulting models used for controller design purposes. 

As well, by appropriate selection of applied input signals the experiments can yield models 
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Chapter 1. Introduction 

which are most appropriate for eventual closed-loop implementation. These techniques are 

implemented in Chapter 6 using the verified simulation model as the 'true' process. The 

objectives here are two fold. First, the linear control relevant identification techniques are 

tested in a more challenging environment. Secondly, identification of the filler retention 

control loop dynamics can be carried out in a noise free environment. 

1.3 Contributions of Thesis 

To the knowledge of the author, this work develops the first large scale dynamic simulation 

of a paper machine wet end which incorporates chemical phenomena. Where possible, 

fundamental physical and chemical models have been employed. As part of the simulation, 

careful tracking of chemistries in white water recirculation loops was undertaken. It has 

been shown that the simulation model provides reliable predictions of retention and 

drainage phenomena when validated against on-line data. In addition, the fundamental 

nature of the simulation model allows further confirmation of these responses through 

observation of wet end mechanisms. Through the simulation model, quantitative rather 

than qualitative predictions of wet end responses can be made avoiding the limitations of 

empirical model building. 

A technique for producing (l-ct)% confidence bounds on anticipated controller robustness 

at the identification stage is proposed. The constrained optimization solution represents 

application of a general technique introduced by Chen (1993). The same technique is also 

used to produce frequency domain bounds on the process uncertainty. A control relevant 

input signal design procedure is proposed which accounts for the fact that the identified 

model is to be used in a closed-loop control scheme. These techniques represent 

improvements over the existing ones for producing uncertainty bounds in that 1) they 
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Chapter 1. Introduction 

account for parametric nonlinearity and 2) the confidence level can be explicitly specified. 

The above work on identification techniques for linear dynamic systems was carried out in 

collaboration with Dr. Tom Harris, Dr. David Bacon and Shannon Quinn of Queen's 

University (Ontario, Canada) whose contributions are acknowledged. 

Finally, control relevant identification techniques are applied to the wet end chemistry 

system for the first time. While limitations of the input test signals procedure are exposed, 

the nonlinear behaviour of the wet end chemistry system is also elucidated. 
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Chapter 2. Review of Paper Machine Wet End Chemistry 

C h a p t e r 2 

R e v i e w o f P a p e r M a c h i n e W e t E n d C h e m i s t r y 

This chapter provides a general overview of papermaking chemistry phenomena as well as 

their measurement and control. First, a description of the fine papermaking process used in 

this study is given. Chemical aspects of this process are then discussed with particular 

emphasis on retention of fine particles and drainage. The last ten years have seen the 

emergence of a number of sensors for on-line measurement of key wet end variables. 

Those that are pertinent to this project will be reviewed. Finally, the current practice of wet 

end chemistry control will be discussed along with the role of the present simulation model 

in furthering the stability of the wet end through control system improvement. 

2.1 Process Description 

The papermaking system is aqueous with between 0 and 12% by mass of wood fibres, 

which is referred to as the fibre furnish. Chemicals are normally added at a level of 0-5% 

by mass of the furnish while filler may comprise up to 20% by mass of the final paper 

sheet. The aim in the papermaking process is to transform the dilute furnish into a 

continuous paper web. The success of this process is dependent upon both 

(hydro)mechanical and chemical factors with interactions between the two. Mechanical 

factors such as process and equipment design will not be discussed in this thesis. In this 

section the physical layout of the papermaking wet end process will be discussed followed 

by a qualitative discussion of the effect of chemical additions. 
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Chapter 2. Review of Paper Machine Wet End Chemistry 

2.1.1 Physical Process 

Figure 2.1 shows a simplified flow diagram of the wet end of the fine papermaking mill at 

Prince Albert, Saskatchewan. This mill has been used to study and implement concepts 

developed in this thesis. Softwood, hardwood and machine broke at approximately 5.0% 

consistency (% wood fibre by mass) are combined at the mix tank. It is assumed 

throughout that softwood comes from never-dried slush pulp and that hardwood furnish 

has been repulped from bale form. In practice, the reverse could also be true. Machine 

broke is comprised of repulped fibres from paper machine sheet breaks and edge trimmings 

which, together with other internally reclaimed fibres, account for approximately 1/3 of the 

total incoming fibre. The ratio of hardwood to softwood is approximately 70:30 and each 

of these streams is individually refined. The combined stream is controlled to a consistency 

of approximately 4.0% and further refined in the "tickler" refiner. A tickler refiner is 

designed to fibrillate fibres rather than cut them. 

HWD 
Pulp 

HD LD HD LD 

SWD 
Pulp 

T 

HD LD HD LD 

Refiner 
Energy 

LMW 
Cationic 
Polymer 

Figure 2.1: Simplified process flow diagram 



Chapter 2. Review of Paper Machine Wet End Chemistry 

This combined stream, or thick stock, is diluted to less than 1% consistency by recirculated 

water from the headbox. Mineral fillers, such as precipitated calcium carbonate (PCC) are 

added at this point. After cleaning, deaeration and screening, the thin stock is pumped at 

constant head to the headbox at approximately 0.65% consistency. The function of the 

headbox is to deliver a uniform amount of stock onto a moving mesh, called the wire, 

where paper fibres are retained and water is able to drain through. Most of this water is 

recirculated to the White Water Silo where it is used to dilute incoming stock. By the end 

of the wire a contiguous paper sheet has formed having approximately 20% consistency. 

This sheet passes through presses and steam dryers before being placed on reels for 

shipping or coating. The moisture content of the final sheet is approximately 5%. Primary 

products from the mill are copy and offset grade fine paper. There are approximately two 

grade changes per day. 

Water which is not used for short circulation dilution of incoming stock is sent to dilution 

points further back in the process. This is termed long circulation and its various 

components are discussed by Ryti and Paulapuro (1991). It is used for consistency control 

at various points as well as rejects dilution water for the cleaners and screens. A saveall 

disk filter is installed between the white water and filtrate chests in order to capture fines 

particles and return them to the stock mixing area. Operation principles of saveall filters are 

reviewed by Doucette (1988). Cloudy filtrate from the saveall and broke thickening 

screens is used for dilution of stock while clean filtrate is used for machine showers. 

The broke system collects discarded product and repulps furnish during a paper machine 

web break. The collected furnish must be diluted so that it can be pumped back to into the 

stock preparation area. Excess water is removed by passing the diluted broke over 

thickening screen with the filtrate going to the Cloudy Filtrate Tank. Since the occurrence 

10 



Chapter 2. Review of Paper Machine Wet End Chemistry 

of breaks is discontinuous (approximately 1-2 breaks per day on the Prince Albert machine) 

large hold-up tanks are required, namely the Broke High and Low Density storage tanks. 

Broke is diluted to 4% consistency before being mixed with virgin and reclaimed fibre. 

2.1.2 Chemical Processes 

Chemicals are added to the papermaking furnish in order to accomplish a number of goals 

related to machine operability and sheet quality. Among these are: 

• Better first-pass retention of fine particles in the sheet 

• Faster drainage of water from the sheet 

• Dry sheet strength 

• Water penetration resistance (sizing) 

• Biological activity control 

This thesis is concerned with only the factors which affect the first two of these objectives, 

namely retention and drainage. 

First-pass retention (FPR) is defined as, 

FPR* - 1Q(/ M a S S ° f ' X ' r e t a i n e d i n P a P e r w e b ^ (2 1) 
I Mass of' x' delivered to wire ) 

Since it is easiest to measure the consistency, C , of components in the headbox stock and 

the white water, first-pass retention is most commonly defined as, 

FPRX = 100 ̂ _ ^ w ) ( 2 . 2 ) 
CUT -HBX -

where it is assumed that the mass flowrate of stock drained from the wire is approximately 

equal to that in the headbox. Following Unbehend (1991), a retention aid will be defined 

as any chemical which is added to improve first-pass retention while a drainage aid is added 
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to improve sheet drainage. This section discusses general characteristics of such additives 

and the effect of the surrounding chemical environment on their effectiveness. 

The theory behind chemical binding of particles in papermaking has received considerable 

attention and is described in detail elsewhere (Roberts (1996), Unbehend (1991)). In 

short, there are two basic chemical mechanisms by which particles may be brought 

together: coagulation and flocculation. The goal of each is to bind particles together so that 

floes are formed which are less likely to pass through the wire. 

Due to dissociation of surface acid groups during pulping, wood fibre particles are 

generally negatively charged at their surfaces (Roberts (1996), Lindstrom (1992)). Thus 

they have a tendency to repel one another. A tightly bound layer of positively charged ions 

forms next to the fibre surface and beyond this is a more diffuse region of counter-ions. 

This phenomenon is described by the Electrical Double layer model which has been detailed 

elsewhere (Roberts (1996), Eklund and Lindstrom (1991)). The electrical potential 

between the particle surface and the surrounding solution decreases as one moves away 

from the particle surface. Addition of positively charged species which adsorb onto the 

fibre surface, such as cationically charged polymers, will decrease the repulsive energy 

between particles thereby allowing them to approach one another more closely. Attractive 

van der Waal's forces also exist between particles as a the result of electrostatic interactions 

between electron rich and deficient regions of adjacent molecules. The net potential energy 

of interaction between two fibre particles is the sum of the attractive and repulsive forces. If 

sufficient amounts of cationic polymer retention aid are available in solution, particles may 

approach each other sufficiently closely and a stable net attraction will be achieved. This 

phenomenon is known as aggregation. 
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Zeta potential is defined as the net electrical potential of a particle measured at the 

hydrodynamic plane of shear between the bound layer of counter-ions and the solution 

(Roberts (1996)). Measured values of zeta potential indicate an average potential over all 

particles as the actual distribution of potentials has been found to be quite broad (Sanders 

and Schaefer (1991)). Clearly the amount and charge of adsorbed polymers directly 

influences the zeta potential. This quantity is generally used as an indication of the 

aggregation potential of particles and in this way can be related to retention and drainage 

phenomena. 

A second mechanism whereby particles may be bonded together is flocculation. In the 

bridging model, long chain polymers adsorb simultaneously onto two furnish particles 

thereby forming an interparticle bridge (Gregory (1988)). Either cationic or anionic 

polymers have been used for this purpose. When a high molecular weight (HMW) anionic 

polymer is used in conjunction with previously added low molecular weight (LMW) 

cationic polymer and/or cationic starch a patch/bridge mechanism is thought to result. In it, 

the cationic materials are believed to form regions of positive charge which function as 

anchoring sites for the HMW anionic 'bridge' molecule. This process is illustrated in 

Figure 2.2. 
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Wood Fiber LMW Cationic Polymer 

Figure 2.2: Mechanism of Dual Polymer Retention Aid System 

The rate at which water drains from the fibre mat is also of critical importance as it limits 

the speed at which the paper machine can operate as well as affecting the structure of the 

sheet. Generally, the water removed is categorized into "free" and "bound" water 

(Unbehend (1991)). Free water is held between the individual furnish particles and is 

relatively easily removed by application of vacuum and pressing. Bound water is held on 

or within particles by capillary or osmotic forces and is primarily removed by evaporation. 

The problem of draining free water is one of flow through a porous medium, specifically 

the forming fibre mat. Figure 2.3 illustrates this viewed as a filtration process. 
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Figure 2.3: Illustration of mat formation on the wire and filtration model 

With this model, the flow of water through the fibre mat can be expressed as (Branion 

(1978)), 

Flow Rate Driving Force ^ 

Area Resistance to Flow 

The controlling driving force is generally vacuum suction or changes in momentum applied 

to the sheet. The resistance to flow is a function of the mat structure and thickness, furnish 

particle and wire characteristics, amongst other factors. It is believed that retention of fine 

particles through floe formation improves drainage by immobilizing and removing fines 

from drainage pathways (Unbehend (1991)). Refining of fibre furnish creates fibrils and 

fines which retard drainage on the wire. Mathematical models for these effects will be 

developed in Chapter 3. 

The effect of papermaking chemistry on the degree to which water is chemically bound to 

fibres has been recently reviewed by Lindstom (1992). The mechanism which causes 

swelling of fibres is believed to be osmotic pressure resulting from the presence of counter-

ions in the neighbourhood of negatively charged fibre surfaces. This is illustrated in Figure 

2.4 where cations present in solution, such as Na + and Ca 2 + , interact with the fibre surface 

creating a concentration gradient. 
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Water 
Counter Ions 

Figure 2.4: Counter-ion concentration gradient causing fibre swelling. 

The amount of "bound" water associated with the furnish is a function of the furnish 

composition, fibre surface charge density and cell wall cohesion, number and valency of 

counterions in solution as well as charged substances adsorbed onto furnish surfaces. 

Thus degree of stock refining, pH and conductivity are variables around the paper machine 

which will impact on fibre swelling. Polyvalent cationic polymers will function as drainage 

aids in that they will adsorb onto fibre surfaces thereby displacing counter-ions (Swerin et 

al. (1990)). The lower concentration of these high charge density polyelectrolytes reduces 

the driving force for fibre swelling. Such polymers need to have sufficiently low molecular 

weight in order to be able to reach fibre pores. This is illustrated in Figure 2.5. 
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Figure 2.5: Counter-ion displacement by polyelectrolyte adsorption onto fibre surfaces 

One concept that pervades the wet end chemistry literature is that of a "fines" component of 

the papermaking furnish which possesses properties distinct from those of larger furnish 

components. Fines are most often defined as the furnish fraction which passes through a 

200 mesh screen (Tappi Test Methods (1996)), thereby including both fibre fines and 

mineral filler particles. Fines are present in incoming pulp (primary fines) and are 

generated through refining (secondary fines) and broke repulping (tertiary fines). As 

discussed by Marton (1974) the most important characteristic of fines is the 

disproportionately large amount of surface area per unit mass that they possess. Although 

fines are normally a relatively small (mass) fraction of the furnish, their large surface area 

has profound effects on paper machine operating variables and sheet quality. Thus, any 

model of chemical effects in the wet end must be capable of tracking fines variations 

throughout the wet end. 

The presence of aqueous charged substances other than retention aids may interfere with 

the efficiency of the retention and mechanisms. Of note are dissolved organic substances 

that enter with the pulp which are commonly referred to as anionic trash (Lindstrom 

(1989)). These negatively charged substances may interact with retention/drainage aids 
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thereby reducing their activity. Non-organic ions such as Na+ and Ca 2 + may also interfere 

with retention aids (Eklund and Lindstrom (1991)). Finally, the pH of the system affects 

the activity of fibres, dissolved organic species and the concentration of non-organic ions 

which, in turn, all can affect retention. 

2.2 On-line Sensors for Wet End Chemistry 

Until the early part of this decade, the wet end of the paper machine lacked sensors related 

to chemistry with only flow and pH measurements available in most mills (Kaunonen 

(1989)). Over the past 15 years there has been considerable development of sensors for 

monitoring key papermaking chemistry variables and this activity has been reviewed by 

Onabe (in Roberts (1991)) and Kortelainen (1992). 

On-line retention measurement appears to have received the greatest attention. This is 

achieved by measurement of total solids and filler consistencies at the headbox and in the 

wire pit. These measurements are then used in Equation 2.2 to calculate first-pass 

retention. Solids and filler consistencies are also measured in the top wire flume in twin 

wire machines. Again, the approximation assumes that the mass flowrates in the headbox 

and drained white water are equal. In practice a correction factor may be introduced to 

compensate for inaccuracies in this assumption. More detailed formulations to this 

equation have been proposed by Kaunonen (1988). 

With the particular retention sensor system in place at the Prince Albert Paper Mill, it is 

possible to measure both total solids and filler consistencies between 0-1.5% and 0-0.8% 

respectively. The measurement principle is based on the fact that wood fibres polarize and 

fillers scatter light. Detailed discussions of optical consistency measurement principles can 

be found in Kaunonen (1988) and Kortelainen (1989). Calibration against consistencies 
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measured in the laboratory must be carried out on installation and at periodic intervals to 

maintain calibration. The most advanced models are able to operate with different furnish 

compositions including mechanical pulps. However, significant furnish variations would 

lead to measurement inaccuracies if recalibration were not performed. The Kajaani RM-

200 unit is capable of providing a reading every four seconds and is thus suitable for on­

line control. 

Industrial application of such sensors is, by now, widespread with successful applications 

reported in the literature (Bernier and Begin (1994)). The experience with low consistency 

sensors at the Prince Albert Mill has also been generally good. They are used as 

monitoring tools by operators and technical staff for consistency trends but are not believed 

to report reliable absolute values. 

Obtaining a reliable and industrially proven on-line measurement to quantitatively 

characterize machine drainage performance still eludes the papermaker. A traditional 

method commonly used by operators is to monitor the dry line on the fourdrinier section of 

the paper machine. This is not possible with modern twin wire machines as the dry line is 

not visible. Other qualitative indicators include monitoring of water released at wire 

direction/momentum changes and draws (i.e. sheet sagging) in the steam dryers. 

To obtain a qualitative drainage indication, both direct measurements of stock on the wire 

and indirect indicators of stock and white water fines contents have been used. A gamma 

backscatter gauge has been used to monitor the mass of stock (plus forming fabric) at any 

point along the wire (Woodard and Wheeler (1992)). By subtracting the mass of the wire 

and with knowledge of the dry end basis weight, one can calculate the mass of water 

retained at that point. This technique is used quite often to obtain drainage "profiles" at 

several points along the wire. Such a profile provides a snapshot look at the performance 
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for each of the drainage elements. Indeed, such studies will provide the starting point for a 

drainage model in Chapter 3. Hawes and Buck (1992) have noted that wire wear and 

water trapped in the wire fabric will affect results using this technique. On-line 

measurement is accomplished by fixing a gamma gauge at a point along the wire. 

However, it is important that the gauge is in contact with the underside of the wire so that 

water does not collect between these two surfaces. This was thought by operations 

personnel at the Prince Albeit mill to pose too high a risk of causing undue wear on the 

wire fabric at a particular point. Hence its use was discontinued. 

The most commonly used on-line indicator of drainage is the 4th dryer section steam 

demand. This indicates the dryer work required to keep the final sheet at its moisture target 

of approximately 5%. While this signal does appear to respond to most expected drainage 

variations it suffers from two main drawbacks. First, it is a combined indication of both 

free and bound water drainage. A single measurement cannot separate these two effects. 

Secondly, it is essentially a qualitative measure as the relationship between steam demand 

and water drained on the wire involves complex factors in both the press and steam drying 

section. Despite these drawbacks, it is used as the main indicator of drainage during the 

course of this study. 

Indirect indications of drainage potential on the wire include batch filtration type freeness 

analyzers on the hardwood and softwood stock lines as well as a combined stock 

permeability type or "drainage" sensor. General principles of these two types of sensors 

were reviewed by Brewster and Rogers (1985). The former measures the time to extract a 

given volume of filtrate at constant head (<10 psi). Permeation devices first form a pad of 

pulp and then measure the volume of water drained through the pad in a certain time at 

constant pressure (>50 psi). The measurements give indications of both the amount of 

fines in the stock and the degree of fibre fibrillation. However, such measurements cannot 
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be regarded as direct indicators of anticipated wire drainage performance as they operate at 

pressures much lower than those experienced on the machine and thereby underestimate 

compressibility of the fibre mat. 

One possibility of obtaining an independent indication of drainage from the wire is by direct 

measurement of drained white water flows via a weir. Sensodec Ltd., a division of 

Valmet, has designed specialized weirs for this purpose which are sensitive to small 

variations in a large flow. These are inserted into the top and bottom wire flumes. Such 

weir based systems are also available for measuring drainage around the press section. 

Several techniques exist for obtaining a measurement of the charge characteristics of pulps 

and these have been reviewed by Scott (1996). However, few have been reliably applied 

on-line. Of note are the efforts of Penniman (1993) who has developed a device based on 

streaming potential. The principle of measurement involved forming a pad of fibres, 

pumping white water through it and measuring the electrical potential across the pad. A 

measurement is available approximately every minute. Miyanishi (1995) has conducted 

several studies with on-line zeta potential instruments and observed the effects of charged 

polymer additions and refining in fine paper mills. Kortelainen (1992) notes that at high 

ionic concentrations zeta potential measurements are not representative of cationic polymer 

adsorption levels due to the adsorption of ions (e.g. Ca 2 +) onto particle surfaces. Two 

further practical problems have prevented the use of on-line zeta potential measurement in 

this study. First, in prior trials, the screen on which the fibre pad formed was subject to 

plugging due to an inadequate backwashing cycle. Secondly, the instrument manufacturer 

indicated problems in replating of the silver oxide electrodes. Thus an accurate calibration 

could not be guaranteed. 
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Two other readily available on-line measurements are conductivity and pH. Conductivity 

indicates the total concentration of ions in the white water system and may be useful for 

interpreting other measurements such as zeta potential. It can also indicate the presence of 

non-organic carryover from pulp mill operations. pH is measured on-line in many paper 

mills and is fundamental to most papermaking chemistry phenomena. However, pH 

sensors require regular maintenance when exposed to white water systems. 

2.3 Current Control Practices 
Several papers have proposed schemes aimed at controlling retention or white water 

consistency. Early attempts to control retention found that it resulted in individual 

consistencies varying too much (Rantala et al. (1993)). Thus, individual consistencies are 

controlled separately. Industrial applications have used single input, single output (SISO) 

control of white water consistency through manipulation of retention aid flowrate (Bernier 

and Begin (1994), Rantala et al. (1994)). Significant reductions were reported in the 

variation of white water consistency and retention. 

More advanced implementations of white water consistency control have also been reported 

based on MISO modelling of a number factors on a pilot scale paper machine. In Rantala et 

al. (1993), the significant terms in a MISO ARX model fitted to experimental data were 

retained indicating four significant input variables: retention aid, % chemical pulp, % 

groundwood pulp and % coated broke. A multivariable PID controller based on this model 

was designed for white water solids total consistency disturbance rejection. Open-loop and 

closed-loop performance were compared in the face of induced disturbances by dilution of 

the retention aid. Headbox total solids and filler consistencies were also controlled by 

manipulation of the basis weight valve and fresh filler flowrate. Set-points for each loop 

were provided by the basis weight and filler measurements at the reel . Reported results 
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showed significant improvements over open-loop operation for all three schemes. The 

tests were also performed in a self-tuning PID mode but slightly worse performance was 

observed. Scott (1996) has commented that such thin stock control systems have 

limitations in terms of the types of disturbances they can handle. Larger and longer term 

disturbances occurring due to such factors as stock fines variations, interfering anionic 

substances and fibre surface characteristics should be taken care of in the stock preparation 

area where they first appear. 

Control of pH in papermaking systems has received little attention in the literature. Spriggs 

(1992) cites the difficulty of reliably measuring pH on-line as well as poor understanding 

of pH chemistry as reasons for this lack of attention. In his paper, Spriggs proposes active 

pH control at several points in the paper machine wet end. Conversely, for systems 

employing calcium carbonate as filler, the buffering effect of the carbonate ion has been 

noted as providing excellent stability in the pH range 7.8-8.2 (Laufmann (1992)). Indeed, 

the desire to avoid active pH control has been cited as a reason for conversion from acid to 

alkaline conditions (Casey (1981)). 

Some initial work was undertaken at Island Paper Mills (New Westminister, B.C.) to 

determine 1) the pH sensitivity of the white water system and 2) the factors which influence 

pH variations. Titration curves were generated for several points in the white water 

system by addition of increasing amounts of sodium hydroxide and (separately) 

hydrochloric acid to a process sample. Figure 2.6 shows a typical curve for flume white 

water as well as that for the slurried PCC. Clearly the buffering in the white water system 

is not as strong as the PCC stream and is quite sensitive in the operating region. Since the 

white water system was highly closed, the same shape of titration curve was obtained for 

all points in the system. 
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Figure 2.6: Titration curves for white water and precipitated calcium carbonate streams 

Data was also gathered from two TMP newsprint mills regarding the variability of pH in 

incoming pulp streams. Both mills operated at pH's of approximately 4.5-4.8 and were in 

open-loop operation. In both cases, data showed very stable pH operation even with no 

closed-loop control. Laufmann (1992) reported similar pH stability for three European 

mills producing light, medium and high weight coated grades of paper from TMP pulps. 

The conclusions from these observations were: 

1. The presence of calcium carbonate in fine paper making systems does not 

guarantee good buffering of the white water system. 

2. Good control of pH in pulp mill operations and fresh water make-up will likely 

ensure good pH stability in the paper machine. 

3. If serious pH variations do occur in the white water system then process 

solutions should be found to the problem rather than compensation by on-line 

control. 

pH 
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In the Prince Albert fine paper mill, first-pass retention control is not practiced. Periodic 

adjustments are made in retention aid flow in order to correct large consistency deviations 

or during grade changes. Other chemical additives are also in open-loop operation. Dry 

end basis weight, sheet ash and reel moisture are all under closed-loop control. Basis 

weight manipulates the thick stock flow while sheet ash adjusts fresh filler flow. The reel 

moisture and basis weight loops are decoupled. The speed at which the white water saveall 

operates is controlled by the slurry level which is a function of the amount of fines present 

in the white water. Consistency control exists at many points throughout the wet end. 

2.4 Summary 

While closed-loop control of certain variables is clearly possible the impact of such control 

actions on other interacting variables is not yet clear. This is due to a lack of reliable 

models capable of predicting wet end chemistry effects. Such a lack of quantitative process 

information inhibits the further development of control schemes which account for the 

multivariable, interacting nature of the wet end. Accordingly, one of the main objectives of 

this project is to develop a model which will be able to predict retention and drainage 

responses to various operational moves and disturbances. As a minimum requirement the 

predictions must be directionally correct. 

In order to both calibrate and validate the simulation, on-line data of process variables will 

be required from sensors such as those discussed above. Despite the Prince Albert mill's 

extensive experience with on-line sensors, in some cases problems have arisen which 

prevent their, continuous implementation. Such problems may or may not be 

insurmountable but usually do require considerable time and effort on the part of mill 
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personnel and/or sensor suppliers for their resolution. Ultimately, the commitment 

required for successful implementation and maintenance of advanced sensors arises from 

their potential to provide information resulting in a net economic benefit to papermakers. 

Most often this incentive is garnered by observing the response of a single (trial) sensor 

and attempting to relate its response to previously unexplained variation. However, in 

systems which are inherently multivariable, results of such trials are often inconclusive due 

to interactions amongst various phenomena. Through accurate dynamic simulation of a 

process based on fundamental physical and chemical phenomena, improved justification for 

on-line measurements can be made since it becomes possible to predict exactly how the 

variable(s) in question affect the process. There does still exist, however, the paradox that 

in order to be certain of the simulation's accuracy, good process information is required. 

This can be partially resolved by a stage-wise approach to sensor implementation and 

process improvements through modelling and control. 
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C h a p t e r 3 

D y n a m i c S i m u l a t i o n o f W e t E n d C h e m i s t r y 

The goal of this chapter is to describe the methodology used to develop a large scale dynamic 

simulation of paper machine wet end chemistry. This includes both the computational 

techniques involved in simulation as well as the models which have been implemented. The 

first section reviews mathematical techniques and previous simulations of paper machine 

modelling. Specifics of the simulation platform used in this study are given. The physical and 

chemical models which are implemented in the simulation are then described in detail. Physical 

models include mass and momentum balances in process units such as tanks, valves, and 

valves as well as wire drainage and refining. Chemical effects discussed consist of adsorption 

of polymer additives onto furnish particles and flocculation amongst others. This separation 

into physical and chemical effects is for presentation purposes only; the fundamental nature of 

the models fully accounts for interactions between the two. 

3.1 Simulation Methodology 

The development of a large scale dynamic simulation usually involves two steps: 

• development of a steady-state balance 

• addition of dynamics 

Mill wide steady state balances are usually carried out using a process simulator, although 

rough initial calculations can be performed by hand. A steady state balance, in turn, provides 

initial conditions from which the dynamic process is started. Most modern dynamic simulation 
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packages allow the developer to conduct steady-state balances and then expand the simulation 

to include dynamics on the same platform. 

Both steady state and dynamic simulation use many similar mathematical techniques. The 

primary additional requirement placed on dynamic simulators is that of solving systems of 

differential equations. The success of any simulation depends on both the mathematical 

techniques and the quality of the process models used. The ease with which the necessary 

process information can be implemented and the speed at which the software performs the 

calculations are also critical. These issues are magnified in importance with increasing size and 

complexity of the process phenomena being modelled. 

3.1.1 Mathematical Techniques in Process Simulation 

Over the past thirty years, both steady-state and dynamic simulation techniques have found 

widespread application in process design and control. In the processing industries the problem 

consists of solving the relationships amongst numerous interconnected process units and 

considering inter-vessel effects, such as pipes, valves and pumps. These relationships are 

usually quite complex due to nonlinearities and the presence of recycle streams. For this 

reason, and the fact that most process simulations involve many units with potentially hundreds 

of stream variables, specifically designed computer simulation packages are used. Furthermore 

the simulation package can be specific to a particular industry (e.g. pulp and paper) reflecting 

the material property information and processing unit libraries required. 

The mathematical techniques discussed here are of three types: 

1. Numerical integration of systems of differential equations 
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2. Solution of systems of nonlinear equations 

3. Reduction of the complexity of large sets of equations 

Each of these will be discussed in turn. The purpose here is to highlight some of the main 

issues associated with these problems rather than to provide a comprehensive review. 

Numerical Integration 

Processes involving the conservation of mass, energy or momentum in a control volume are 

described by equations of the form, 

Rate of Accumulation! 

of 

Conserved Quantity 

[Rate of Conserved] [Rate of Conserved] 

j" | Quantity In j j Quantity Out J 

Each of these conservation equations leads to either a differential or algebraic equation. 

However, solution of the set of (interdependent) conservation equations for a process is not 

generally possible by analytical means. Therefore numerical integration techniques are applied. 

Consider the following first-order ordinary differential equation (ODE), 

^ = f(y,u,t) (3.2) 
dt 

where y is the state variable and u is the forcing function. One of the simplest methods of 

numerical integration is Euler's method. It is derived by first approximating the derivative in 

(3.2) by forward differences, 

y ' + A ' " y ' = f ( y „ u t , t ) (3.3) 
At 

and therefore, 

y t + A t =y t +Aff (y t , u t , t ) (3.4) 
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Higher order methods, such as Runge-Kutta, use more sophisticated approximations for the 

derivative term. These are based on a Taylor series expansion of y(t+At), 

y< e + A , ) . y ( . ) + A , . y T O + ( f l . y » ( 0 + . . . (3.5) 

where usually the first four terms in the expansion are retained. In addition to methods which 

predict one time step ahead (e.g. Euler, Runge-Kutta) multistep methods make use of previous 

values of the state variables in order to improve predictions. Details of these methods can be 

found elsewhere (Boyce and DiPrima (1992)). 

For a set of n first-order linear ordinary differential equations the ratio of the largest to smallest 

eigenvalue determines the stiffness of the system. Eigenvalues are computed as the n roots of 

the characteristic equation. The response of the system is given by the following equation: 

y1, = b,erit + b2er2' +... + bner , , t + forcing function terms (3.6) 

where 

y\ is the i t h state variable at time t, 

bj are parameters determined by the system and forcing function, 

Tj are eigenvalues of the system. 

For system stability the real parts of all the eigenvalues must be negative. The larger the 

magnitude of the negative real part the quicker is the decay of that term. The dominant system 

eigenvalue is that which controls the time it takes for the system to reach steady state, (i.e. the 

smallest eigenvalue). 

The stiffness of the system imposes requirements on the maximum integration interval, At, 

otherwise numerical instability will result. However, a larger integration interval will 

obviously result in faster simulation. Consider the simple first order system, 

30 



Chapter 3. Dynamic Simulation of Wet End Chemistry 

dy 
- f = ry (3.7) 
dt 

It can be shown that the values of At for which the numerical solution by the Euler method is 

stable are (Smith and Corripio (1985)), 

At < — (3.8) 

M 
More importantly, a large integration interval can also lead to inaccuracies, particularly when 

using low order methods such as Euler's. Thus there is an efficiency trade-off between ease of 

computation with low order methods and reducing the integration interval with higher order 

methods. It is not surprising that divergent views exist amongst practitioners (Luyben (1990), 

Press et al. (1988)) regarding the efficacy of Euler's method for complex integration problems. 

Explicit integration schemes use only previous values of the state variables to approximate 

future values. Implicit schemes incorporate estimates of the current state variable into the 

update formula. For example, the implicit modified Euler update formula for the simple system 

of Equation 3.7 would be, 

Atr -, 
yt+At = yt + y [ r y t + ry,+Atj (3.9) 

or 

yt+At 

Stability is satisfied if 

l + - rAt 
2 

l - - r A t 
2 

1 1 A 
l + - rAt 

2 
l - - r A t 

2 

(3.10) 

<1 (3.11) 

which holds for all positive values of At when Real(r)<0. In this case, the upper bound on At 

is governed only by consideration of accuracy. 
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Systems of Nonlinear Equations 

Systems of nonlinear equation often arise in flowsheeting problems due to application of 

conservation equations when there is no accumulation within the control term (i.e. dynamics). 

In particular, when the piping network between process units is considered in conjunction with 

solution of the flowsheet, the dynamics of process units may be considered slow in 

comparison to those of the network. This is the approach adopted by the dynamic simulator 

used in this work. In this way, process units serve as boundary objects during solution of the 

pressure/flow network. Here, a brief review of some important features of two well 

established algorithms is given by their application to a simple piping network example. 

First, it is necessary to distinguish between two forms of the equations, explicit and implicit. 

If x is the set of independent variables and e is a calculated error then, 

x(Calc) = f ( x(Gue S s ) ) Explicit 
(3.12) 

e = g(x(Guess)) Implicit 

The first type is most commonly encountered in solving recycle streams and the second occurs 

in solving piping networks or in process modules where conservation laws are encountered. 

Explicit loops have more flexibility in the way in which they may be solved as information is 

provided about the 'x' value(s) which can be used in the next iteration. Explicit loops may be 

converted to implicit form by writing, 

e = x ( C a l c ) - x ( G u e s s ) (3.13) 

Consider the piping network shown in Figure 3.1 which is taken from Jeppson (1977). There 

are three nodes with the head specified at Node 1 and flowrates at Nodes 2 and 3. Thus we 

need to solve for the heads at Nodes 2 and 3. The Hazen-Williams equation is used to calculate 

friction factors in an exponential head-flow relationship which gives rise to the following form 

of the two continuity equations: 
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H , - F U / n / H 2 - H 3 / n 

e, = - | — 2-1 + 
K, \ K23 / 

e3 = " 
V

 K13 / 

+ 1.5 

+ 3.0 

(3.14) 

where e2, e3 represent errors at nodes [2| and [3] while H p H 2 and H 3 are the node pressure 

heads. Values used for the parameters of this example are H,=100 feet, Kl2=1.622, 

K13=2.432,1^23=0.667 and n=1.85 where the K y's and n are experimentally determined from 

head loss versus flowrate experiments using water. The objective is to drive e2 and e3 to zero. 

Two different methods are now considered for solving this problem. 

Figure 3.1: Piping network example of Jeppson (1977, p.117) 

Method 1: Newton-Raphson 

Consider a general nonlinear function of one variable e(x) which we want to solve by finding x 

such that e(x)=0. If the derivative of e(x) is available then we can take a first-order Taylor 

series expansion about the current point x(l), 

e * ( x ) « e ( x ( i ) ) + (—) (x -x ( i ) ) (3.15) 
\dx/ x ( i ) 

Since this approximate e*(x) is linear, we can find its solution x( l) by setting e(x)=0 resulting in, 
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x ( i + 1 ) x ( i ) - f ^ _ 1 e(x<'>) (3.16) 
\dx/ x ( i ) 

This procedure may be generalized to the multivariable case as follows: 

x a + i ) = x ( i ' _ ( j ( i ) ) - 1 E ( x ( i ) ) (3.17) 

where J is the Jacobian matrix of the error functions E . Iterations are continued until either 

x(i+o x(o o r E(x ( ' + 1 ))-E(x ( l )) are sufficiently close to zero. Since it is computationally 

expensive to compute the inverse of a possibly large matrix J , a vector z is computed as the 

solution to the linear system, 

J ( i ) z ( i ) = E ( i ) (3.18) 

and then it is subtracted from the current estimate to provide the next estimate of x, 

X(i +D = x 0) _ Z(D ( 3 1 9 ) 

Given good enough initial estimates of x so that the solution converges, the Newton-Raphson 

(NR) method has quadratic convergence which means that the number of significant digits of 

accuracy doubles as one approaches the solution. The main requirement is the need for 

analytical derivatives or, alternatively, numerical determination of derivatives at each step by 

perturbation methods. 

For the above pipe network example, analytical derivatives are supplied in Jeppson (1977) and 

the NR routine was implemented in M A T L A B . The problem was initialized at H = | H 2 H 3] = 

[95 85]. Results of the first 10 iterations are shown in Table 3.1 where it is seen that the H 

values converged to 4 decimal place accuracy in 8 iterations. Results agreed with those given 

by Jeppson. 
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Iteration H2 H3 
0 95 0000 85 0000 
1 90 6580 94 0357 
2 93 5716 89 0259 
3 91 0457 91 7828 
4 91 9862 90 2291 
5 91 3591 90 9859 
6 91 4404 90 8549 
7 91 451 1 90 8405 
8 91 4512 90 8404 
9 91 4512 90 8404 

1 0 91 4512 90 8404 

Table 3.1: Newton-Raphson method iterations 

Pipe Flow Example: Newton-Raphson Method 

Figure 3.2: Contours of piping network showing convergence path of Newton-Raphson 

method. 

Figure 3.2 gives a graphical representation of how the NR procedure converged. The contour 

lines are constant Sum([Abs(f2) Abs(f3)]), the sum of the error functions. This vector norm 

was chosen instead of Max([Abs(f2) Abs(f3)]) as it gave a better behaved surface, although 

the maximum error is often given as an indication of convergence (e.g. this is reported in the 

IDEAS software). Two features of this surface are worth noting. First, there is obviously a 
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very strong degree of interaction between H 2 and H 3 indicated by the orientation of the lines. 

Secondly there is a very strong nonlinearity in the surface around the point where H 2 = H 3 . 

Physically this is the point where the flow from Node 2 to Node 3 changes direction. Care had 

to be taken in the algorithm to accommodate such changes in direction. Note that this surface 

does not change with the particular algorithm used to solve the equations. 

The NR algorithm appears to oscillate somewhat around the converged solution (indicated by 

an asterix). However, the improved convergence with each step is evident. It was possible to 

make the algorithm diverge by selecting starting points along the H 2 = H 3 line but this situation 

was encountered with all other algorithms tried. 

Method 2: Wegstein Acceleration 

This is a classical method developed in 1958 by Wegstein that is used widely in flowsheeting. 

In it, each independent variable is updated by a one dimensional secant method thereby 

ignoring interactions with other variables. For this reason it is termed a "one-dimensional" 

method. The update formula for the j'th independent variable is given by, 

Note that two sets of initial values would be required to start the algorithm. Some thought 

would also have to be given to the pairing of the independent variables with the error functions. 

One would attempt to pair those independent variables with the function that they most strongly 

influence. 

(3.20) 
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Table 3.2 reveals that this method does not work with the pipe network example. At iteration 

22 the algorithm starts to diverge and does not recover. From Figure 7, the initial steps to get 

into the 'valley' appear quite effective but the algorithm then has considerable problems and 

oscillates from one side of the valley to another. This would appear to be the result of not 

being able to take the strong interactions between the variables into account. Divergence 

occurred with other starting values as well. 

Iteration H2 H3 
0 95 0000 85 0000 
1 90 0000 90 0000 
2 91 1366 89 1 175 
3 90 6694 89 6072 
4 90 5042 90 0039 
5 90 5918 90 0051 
6 90 7388 90 0039 
7 90 7473 90 0059 
8 90 7499 89 9196 
9 90 7473 90 2349 

1 0 90 7493 90 2196 
1 1 90 7708 90 2224 
1 2 90 9403 90 2191 
1 3 90 9289 90 2228 
1 4 90 9307 90 2683 
1 5 90 9288 90 3935 
1 6 90 9314 90 3810 
1 7 90 9565 90 3832 
1 8 91 0701 90 3807 
1 9 91 0642 90 3838 
20 91 0658 90 4297 
21 91 0642 90 3844 
22 91 5746 79 4740 
23 89 5443 67 1659 
24 108 8397 55 4555 
25 23 8889 61 2009 

Table 3.2: Wegstein Acceleration Iterations 
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Pipe Flow Example: Wegstein Acceleration 

85 86 87 88 89 90 91 92 93 94 95 
H2 

Figure 3.3: Convergence of Wegstein for piping network example 

These examples emphasize the need for careful selection of the method used for solving sets of 

nonlinear equations. No technique is optimal for all applications and it is likely that the best 

approach is to use combinations of methods depending on how close one is to the optimal 

solution and the ease with which derivatives can be computed. 

Flowsheeting and Sparse Matrix Techniques 

The overall computational problem in large scale dynamic simulation involves the solution of 

many interconnected differential and algebraic equations. There appears to be three main 

approaches to solving flowsheeting problems: sequential modular, simultaneous modular and 

equation oriented (Westerberg et al.(1979)). In the first, rigorous mass, energy and 

momentum balances (possibly dynamic) are written for each processing unit/module. All input 

streams must be specified and calculated outputs from a module are passed to downstream 

modules. Recycle streams are handled by guessing values and iterating. The simulation 

routine will often contain algorithms identifying the order in which to calculate the modules and 

identify recycle streams. These procedures are called "precedence ordering" and "tearing" a 

flowsheet respectively. The main advantage of the sequential modular approach is the 
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straightforward manner in which the computations are carried out due to the requirement that all 

inputs be specified. In design problems, however, specifications may be placed on output 

streams or variables internal to the process units. These specifications are difficult to 

accommodate due to the usually highly complex unit models (i.e. how to map the output back 

to the input). Another disadvantage is that interactions between units are not considered which 

may lead to poor stability of the flowsheet, particularly when recycle streams are involved. 

The simultaneous modular approach is similar to the sequential modular in that separate 

rigorous unit descriptions are written and individually solved. In addition, approximate linear 

multi-input, single-output models are determined by perturbation methods for each output 

variable of each unit. The flowsheet is then solved (i.e. all inputs and outputs of the units are 

determined) using the set of linear equations. The advantage here is that constraints on the 

output variables are easily handled. Since the set of linear equations is solved simultaneously 

interactions amongst processing units are accounted for. 

Finally, the equation-oriented approach is arguably the most rigorous and also the most flexible 

of the three. The basic concept is simple: write out all equations (mostly nonlinear) describing 

all effects (mass and energy balances, chemical reactions, etc.) for every process unit and solve 

these simultaneously. Flowsheet design specifications are represented by additional equations 

and it is also possible to include equipment design parameters as outputs. Obviously, 

interactions are fully accounted for. The cost of this increased flexibility is in the 

computational effort required to solve this large set of equations simultaneously. Westerberg et 

al.(1979) report that "tearing" such a set of equations can result in a problem two to three 

orders of magnitude more complex than with the sequential modular approach. 

The above approaches can be applied to either steady-state or dynamic simulation. The 

introduction of dynamics adds additional requirements for numerical integration routines. In 
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the case where mixed differential and algebraic equations (DAE's) are present, a large body of 

literature provides techniques for their solution. These techniques originated with the work of 

Gear (1971) and are recently reviewed by Pantelides and Barton (1993). 

For any given unit or part of the flowsheet, it is usually only a small subset of the total number 

of variables in the flowsheet that will be involved. Thus, when setting up the solution to the 

flowsheet/network, the associated matrices will have a significant number of blank or zero 

entries. Such matrices are termed "sparse" and a review of techniques for exploiting their 

structure is given by Duff (1977). Here, a few of the sparse matrix techniques which are 

particularly useful for flowsheeting problems will be mentioned. The basic goal is to partition 

a potentially large set of equations into a series of smaller problems. 

In order to set up an automatic procedure for partitioning, each function must be assigned 

exactly one "output variable". This imposes an ordering for partitioning algorithms which 

trace the interactions amongst the variables and equations. Such automatic "output assignment" 

schemes are also used for pivot selection during Gaussian elimination (Duff (1977)). The 

general goal in output assignment is to select the dominant variable associated with a particular 

equation. However, output assignments are not unique if partitions involve more than one 

equation. 

The basis of an output assignment algorithm is to first choose the row, for a given column, 

which contains the fewest incidences. Then, for this chosen row, select the column with the 

fewest incidences. The selected variable is then assigned to the chosen function and the rows 

and columns are deleted. The procedure is repeated until all variables are assigned to 

functions. According to Duff (1977) a similar criterion, that of choosing the element with the 

lowest product of row and column incidences, is also widely used. 
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A partitioning algorithm will have to identify groups of functions whose outputs, as specified 

by the output assignments, are required by others in the group in order to be solved. This 

dependence can be represented by a Directed Graph. An equation is represented as a node with 

the output from each node assigned as the output variable for that equation. "Edges" 

(connections) are drawn to other nodes that require this variable for their solution. The most 

commonly used algorithms to carry out partitioning are due to Tarjan (1972) and Sargent and 

Westerberg (1964). One starts at an arbitrary node, say f,, and traces to any other node along a 

path. If either 1) a node is encountered a second time or 2) a node has no outputs, then the 

path is terminated. For case 1) all nodes between the previous and present occurrences are 

placed into a partition and for case 2) the node with no outputs is placed into a partition. Once 

a node (or nodes) has been placed into a partition then the node itself and all associated edges 

are deleted from the graph. The process is reinitiated at any remaining node and continues until 

all nodes have been placed into partitions. Precedence ordering takes place by placing the latest 

partition found on top of the stack of partitions. 

In certain situations it may be that partitioning and precedence ordering have failed to produce 

an Incidence Matrix in block triangular form. Often there are only a very small number of 

variables preventing a successive solution. In such cases, one can remove ("tear") these 

variables by guessing values for them and iterating. Each stage results in a bordered block 

triangular matrix where there are more equations than unknowns. The extra equations are 

regarded as error functions which can be used in any nonlinear equation solving routine to 

select values for the tear variables at the next iteration. 

3.1.2 Dynamic Simulation in the Pulp and Paper Industry 

The techniques described in the previous subsection have found wide application in the pulp 

and paper industry. Indeed, the large number of units as well as complex mixing and 
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recirculation dynamics lends itself such analysis. An excellent application oriented introduction 

to both steady state and dynamic simulation in the pulp and paper industry is given in Syberg 

and Wild (1992). In their monograph, some distinct features of pulp and paper simulators 

from those in other industries (the oil industry in particular) are noted: 

• solids components must be included 

• only small physical property data bases are available because little is known about 

pulp or liquor properties 

• models of pulp and paper unit operations are often quite simple. In paper mills 

commonly only mixers, splitters and separators are used 

The white water system of the paper machine has been the subject of a number of dynamic 

simulation studies. These have been driven by the need to reduce fresh water usage around 

the paper machine. As well, the complex configurations of white water systems with their 

many recirculation paths prohibit their analysis by analytical methods. 

Recently, Harris (1995) has reviewed applications of dynamic simulation to white water 

systems in newsprint mills. She also developed a large scale system of an integrated TMP mill 

and newsprint machine white water system, calculating both mass and energy balances. 

Orccotoma et al. (1996) modelled the fines distribution in a newsprint mill using dynamic 

simulation in order to study the effect of increased broke (repulped paper) recirculation and 

virgin pulp fines content on paper machine operation. First-pass retention, which was 

modelled by a semi-empirical relationship, was found to be sensitive to such variations. 

Dynamic simulation for studying the effect of broke recirculation has also been carried out by 

Bussiere et al. (1988) and for grade changes by Miyanishi et al. (1988). None of the above 

studies considered chemical effects. A notable exception to this was Humphrey (1986) who 

simulated the retention of alum in a pilot scale paper machine using empirical models for alum 

uptake developed by off-machine experiments. 
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3.1.3 The Simons IDEAS Simulation Platform 

The dynamic simulation package being used for this project is IDEAS developed by Simons 

Technologies Inc. (Meincer et al. (1992)). The software uses an object-oriented approach to 

flowsheeting with standard processing units and material properties available in libraries. The 

main advantages of object-oriented simulation is that connectivity of objects is not restricted by 

predefined notions of causality in the system (Maciejowski (1997)). This results from the use 

of fundamental physical and chemical laws in developing individual objects. Less formally, the 

phrase "plug and play" is often used to describe object-oriented simulation models. 

A "Developers Kit" is available for custom programming of novel process units and was used 

to design modules related to papermaking chemistry. Objects described by differential 

equations (e.g. tanks) are solved in a sequential modular manner using an implicit Euler 

method for numerical integration thereby avoiding stiffness problems. An integration interval 

of 1 second was used throughout to ensure accuracy of results. It was also found that longer 

intervals led to numerical instability in the piping network. Between units which define 

pressure boundaries is the "pressure-flow" network consisting of pipes, valves, pumps, etc. 

which tracks mass, energy and momentum dynamics throughout the system. Models for each 

flow element result in a system of nonlinear equations which is solved independently of the 

above set of differential equations based on the assumption that tank dynamics are much slower 

than those of the pressure/flow network. Transportation times for fluids in pipes have not been 

accounted for in this implementation of the simulation as there was no rigorous provision for 

time delays in the IDEAS software. Hold-up times in tanks are generally much larger than 

piping transportation times in the paper machine wet end. Tank residence times range from 1-

90 minutes while transportation times between these tanks do not exceed 1 minute. 
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The simulation was implemented on a PowerMac 8100/100 computer and required up to 40MB 

of RAM. A maximum speed of 3 times faster than real time was achieved. It was found that 

the main burden was the pressure/flow network which required approximately 75% of the 

computation time. Since the longest time constants involved in wet end chemistry are of the 

order of several hours each simulation run was of this time scale. 

3.2 Physical Modelling 

Simulations of the wet end of paper machines have traditionally been built up from process 

units describing mass hold-up as well as stream and component mixing and separation. With 

assumed values for variables affected by chemical effects (e.g. retention and drainage), such a 

model can describe very well the dynamics present. As well, this level of modelling can 

provide a basis for verifying the mass balance of the simulation against either process flow 

diagrams or laboratory data. The first part of this project was to develop such a simulation 

which forms the backbone onto which papermaking chemistry models were added. 

Most of the models for the above level of simulation are in existing libraries provided with the 

software package. A model for drainage on the wire was developed based on filtration theory 

and incorporated into the simulation. This section discusses modelling of these two 

components along with stock refining and characterization of "bound" water. These effects 

comprise the "physical" part of the overall simulation. 

3.2.1 Modelling Elements Using Existing Libraries 

In order to develop an accurate model of the wet end hydrodynamics and mixing the following 

information was gathered from the mill: 

• pertinent unit dimensions (e.g. tank capacities) 

• pump curves and control valve characteristics 

44 



Chapter 3. Dynamic Simulation of Wet End Chemistry 

• current control configurations including actual (mill DCS) tunings 

There are 107 process units (tanks/mixers/separators), 31 pumps, 50 control valves and 42 PI 

control loops in the simulation. 

All tanks are considered to have perfect mixing characteristics leading to first-order dynamics. 

Approximate mean residence times of the major tanks in the wet end are listed in Table 3 . 3 . 

Tracer studies performed on the mixing and machine chests have shown that the assumption of 

perfect mixing is reasonable. While the white water silo is also modelled as a well stirred tank it 

is believed that regions of near plug flow exist. Since the mean residence time of the silo is 

quite short ( s i minute) relative to the time constants involved in wet end chemistry, such an 

approximation will not introduce significant error. 

Process Unit Mean Residence Time (min) 

SWD Low Density 67 

HWD Low Density 33 

Mix Chest 15 

Machine Chest 8 

White Water Silo 1 

White Water Chest - Rich Side 3 

White Water Chest - Medium Side 5 

White Water Chest - Lean Side 3 

Cloudy Filtrate Chest 25 

Broke High Density 90* 

Broke Low Density 90 

Table 3.3 Mean residence times of tanks in wet end at Prince Albert Mill 

(*Broke HD level varies considerably) 
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Cleaners and screens have been modelled as static mass splitting operations based on steady-

state balances obtained from original mill process flow diagrams. Since this information is 

normally reported as total solids fractions, it was assumed that all fibre fines and filler material 

passed through the cleaners and screens from which the resulting fractionation of long fibres 

was calculated. 

The function of the saveall disc filter is to capture fine furnish particles in a mat formed from a 

sidestream of hardwood fibre. The operation of different types of savealls is described by 

Doucette (1988) and has been modelled empirically and incorporated in a dynamic simulation 

by St. Jacques (1982). For the present saveall model, all of the long fibre fraction was 

assumed to stay with the filter cake while fines and filler were assumed to be retained in a ratio 

equal to that found in the saveall slurry. Dynamics are not considered which did not introduce 

significant error into the overall white water system dynamics due to the comparatively large 

volume of the following filtrate chests. 

The headbox model consists of delivery of an appropriate amount of stock to the wire and the 

recirculation of flows to the deaerator and white water silo. No attempt has been made to 

model the hydrodynamic characteristics as pressure pulsations occur with much shorter time 

constants than mixing and recirculation effects involved in wet end chemistry. 

Other than added chemicals, four components are assumed to exist within the papermaking 

system. These are long fibres, fibre fines, filler and water. A fifth component, floes, exists 

only between the headbox and the couch. Dimensions of each of the solids components used 

in the simulation are summarized in Table 3.4. While the fibre fines dimensions are typical of 

the P200 fraction from a Bauer-McNett separation (Htun and de Ruvo (1978)), it is only 

necessary that these dimensions lead to a proportionately large specific surface area since in 

reality there is a distribution of particle sizes in the furnish. These values simply provide us 
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with the necessary degrees of freedom to investigate the effects of variations in this particle size 

distribution. As well, the cylindrical geometry of the fibre fines corresponds to that observed 

in Htun and de Ruvo's study. 

F u r n i s h Componen t G e o m e t r y Rad ius (m) L e n g t h (m) 

L o n g F ib re s Cylindrical l x l O 5 l x l O 3 

F i b r e Fines Cylindrical l x l O 7 lxlO"4 

F i l l e r Spherical 7xl0"7 N/A 

Table 3.4. Dimensions of furnish particles used in the present study 

Sources of fibre fines are with the incoming pulp, through refining and with dry end sheet 

breaks and trim. Filler enters with fresh filler addition and through dry end sheet breaks and 

trim. Details of fines generation through refining of the softwood and hardwood pulps are 

described later. No attempt was made to model fines generation through repulping in the broke 

system and as such constant values of component consistencies arising from dry end sheet 

breaks and trim were assumed. 

Sheet basis weight and ash controllers were approximately tuned to match plant process data 

from observed set-point changes. In practice, dead-time compensation is required in such 

loops. However, transportation time is not modelled in this study and standard PI algorithms 

were implemented for both basis weight and ash loops. 

3.2.2 Refiner Modelling 

Fibre fines are produced in the refining process by fibre shortening and complete removal of 

parts of the fibre wall (Page (1989)). Additional surface area is also created by external fibrils 
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which are still attached to long fibres. Marton (1980) has suggested that one should consider 

the hydrodynamic surface area as the most appropriate measure of pulp surface available for 

adsorption of starch. Applying this idea to other polymeric additives of sufficiently large size, 

the relationship between degree of refining and specific surface area needs to be determined. 

To this end, studies were used which had previously examined the resulting Canadian Standard 

Freenesses (CSF) of both hardwood and softwood pulps for various specific energy inputs of 

the Prince Albert mill refiners. Since CSF testing is conducted at a low pressure drop and fines 

production has been shown not to affect significantly pulp compressibility (El-Hosseiny and 

Yan (1980), Ingmanson and Andrews (1959)), differences in freeness were attributed entirely 

to increased furnish surface area. From El-Hosseiny and Yan (1980), the relationship between 

CSF and pulp specific surface area is, 

CSF = 
107 

104 + 1.11COliR 

107 

L l l C 0 u R 

104 

104 + 1.11C 0 l iR 
+ 1000 In 

/ 
1000 -

107 

V 104 + 1.11C 0uR 
- 6907.76 -23.5 

(3.21) 

R = 

where, 

5.55o 2Cm 

d - a C J 3 

• C D is the initial slurry consistency (g/mL) 

• l i is the liquid viscosity (Poise) 

• R is the specific filtration resistance (cm/g) 

• C m is the filtered pad "consistency" of El-Hosseiny and Yan (1980) or "apparent 

density" of Ingmanson and Andrews (1959) (g/mL) 

• a is the hydrodynamic specific volume (mL/g) 
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a is the furnish specific surface area (cm2/g) 

For the purposes of the simulation model, the refining process consists of converting a portion 

of the long fibre fraction into fibre fines. In this way, the additional surface area created by 

fibrillation of the long fibre fraction is ascribed to production of fibre fines. Indeed, by 

comparing classified and unclassified pulps at various levels of refining, Ingmanson and 

Andrews (1959) concluded that differences in filtration resistance are almost entirely the result 

of increased fines levels rather than fibrillation of the long fibre fraction. In terms of the overall 

simulation, this assumption will not affect the total amount of adsorbed additives but may lead 

to small inaccuracies in screening and other physical separation processes. The particular case 

of particle retention on the wire is discussed in a later section. 

For a sample consisting of only a long fibre and a fines fraction, 

° w h o i e i s m e specific surface area of the whole sample (cm2/g) 

a F j b and a F i n are the per particle surface area of fibre and fines (cm2/particle) 

V f l b and V f i n are the per particle volumes of fibre and fines (cmVparticle) 

d-fines is the fines percentage of the solids material 

p is the density of the fibre and fines particles (g/cm3) 

With the assumption that both long fibres and fines particles are cylindrical then 

cr/V = 2/R where R is the particle radius and C f i n e s can be found by rearrangement of Equation 

3.22 to, 

(3.22) 

where, 
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C Fines (3.23) 

Values showing the fines produced against refiner specific energy input are plotted in Figures 

3.4a and 3.4b for hardwood and softwood respectively. The individual points result from 

application of Equations 3.21 through 3.23 to CSF measurements in the original CSF vs. 

Refiner Energy studies. A linear regression of these points provides the implemented model in 

the hardwood and softwood refiners. The difference in responses to refining between slush 

(never-dried) and baled (previously dried) furnishes are immediately apparent. This is the 

result of decreased fibre swelling for previously dried pulps (Lindstrom (1992)). 

5 

4.5 Hardwood Slush 

4 

Hardwood Bale 

0.5 

0 
0 20 40 60 80 

Refiner Energy (kWh/t) 
100 120 140 

Figure 3.4a: Fines production for hardwood refiner model 
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140 
Refiner Energy (kWh/t) 

Figure 3.4b: Fines production for softwood refiner model 

3.2.3 Drainage Modelling 

Two types of water associated with the forming sheet on the paper machine are considered. 

"Free" water, which is held between individual furnish particles, is mostly removed by vacuum 

and gravitational forces in the forming section of the paper machine. "Bound" water, which is 

bound to the fibres through chemical interactions, is removed by pressing and steam drying. 

From first principles, a model based on filtration theory is developed for drainage of free 

water. Since this simulation only considers effects up to the couch, no models of pressing and 

steam drying operations are incorporated. However, a measure of the bound water at the 

couch is presented based on a semi-empirical approach. This provides a basis for drainage 

model validation against dryer section indicators. 

Drainage on the Wire 

The forming section of the paper machine, which accounts for approximately 95% of total 

drainage, is modelled as ten separate elements: forming board+blades, 3 individual foils, 2 

multifoil boxes, 2 vacufoil boxes and a curved multifoil shoe vacuum. A schematic diagram of 
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the forming section is shown in Figure 3.5. Nominal drainages for each element were taken as 

the average measured values from several independently conducted drainage studies of the 

paper machine. These studies measure the mass of stock on the wire at a particular location 

using a nuclear backscatter technique. Drainage from flatboxes and the couch are taken as 

fixed percentages of the available free water based on these nominal drainages. 

I n d i v i d u a l 

F o i l s 

F o r m i n g B o a r d 

+ B l a d e s 

V a c u f o i l s 

M u l t i f o i l 

B o x e s 

u u 

M u l t i f o i l 

S h o e V a c u u m 

C o u c h 

Figure 3.5: Drainage elements on wire 

The following development follows directly from Branion (1978) who also discusses 

limitations of this theory. Darcy's equation for drainage through a porous bed is, 

Q - A ( - A P ) (3.24) 
MXRW + R M ) L 

where, 

• Q is the volumetric flowrate through the bed (m3/s) 

• A is the cross-sectional area over which the vacuum is applied (m2) 

• u. is the viscosity of the fluid (kg/m*s) 

• AP is the applied vacuum (Pa) 

• R w and R M are the specific filtration resistance of the wire and fibre mat (1/m2) 
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• L is the depth of the porous bed (m) 

While Darcy's equation ignores inertial effects of fluid flow which will certainly be present on 

a high speed paper machine, it provides a first-order approximation to the effects of changes in 

operating conditions. Equation 3.24 may be applied at each drainage element j and the total 

drainage from the wire determined as the sum over all Qj's. The vacuum created by individual 

foils was determined by applying the analysis of Taylor (1958) and measured on-machine foil 

angles. The depth of the porous bed, L, is assumed equal to the mat thickness at each drainage 

element. Accordingly, a basis weight profile is estimated by applying a mass balance at each 

drainage element with instantaneous retentions, fy, calculated using the equation given in Han 

(1962), 

(t>j = l-(l-(t)J

0)exp((3«B j) (3.25) 

where B j is the basis weight at element j . The initial retention, is estimated using the 

previously mentioned snapshot drainage studies. The parameter (3 is determined at each 

iteration so that the boundary conditions, 

| B 0 = 0 

| B j 0 = Dry end basis weight - Small losses to flat boxes 

are satisfied. Except for the first drainage element, R w is considered negligible compared to 

RM. The mat specific filtration resistance can be evaluated by the Kozeny-Carman equation, 

k C 2 a2 

R M = _ J ^ £ _ (3.26) 
d - o c C M ) 3 

where, 

• the Kozeny "constant", k=5.55 (k is more rigorously a function of mat porosity) 

• C M is the mat compaction 

• a is the solids specific volume (=l/p) 
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Mat compaction is used as an adjustable parameter such that an overall water mass balance is 

satisfied. While C M will, in reality, vary across the drainage elements, a single, overall 

compaction is calculated in order to maintain numerical stability of the algorithm. 

Furnish specific surface area, a, is calculated at each time step from assumed dimensions of 

the individual furnish components in the fibre mat including floes formed as a result of 

chemical additions. Specific surface area is one of the main factors affecting drainage 

performance in that a greater degree of flocculation leads to a reduction in a which in turn 

enhances drainage. The total surface area of the mat to which draining water is exposed 

depends on how tightly the individual furnish particles are bound in the floes. Two extremes 

exist. One is that individual particles are very loosely bound and so the surface area is equal to 

the total of all the furnish particles. The other is that the furnish particles are very tightly bound 

so that the floes effectively form a sphere. A sliding scale between these two extremes can be 

characterized by a single parameter, the value of which was determined during calibration of 

the model. It was found that the best value of the parameter was very nearly toward the tightly 

bound extreme. This can be considered as a crude model of the sheet structure. However, 

further characterization of this structure and in particular its sensitivity to chemical additions 

would be valuable. Operator controlled effects included in the wire drainage model are 

summarized in the following block diagram. 

Basis Weight 

Mat Specific Surface 

Headbox Consistency 

Wire Speed 

Vacufoil Vacuum 

Drainage 

Block 

9 

Drainage 

Block 

W 

f 

Drainage 

Block 

Drainage 

Block 
• 

Drainage 

Block 
• 

Drainage 

Block 
• 

Wire Water Retention 

Figure 3.6: Input/outputs diagram for wire drainage model 
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Bound Water 

Water is bound to the surface and interstices of individual cellulosic particles through both 

capillary and surface chemical forces (Lindstrom (1992)). As a result, fibres and fibre fines 

swell to a degree depending on the fibre/fines surface charge density, their internal pore 

structure and elasticity as well as the ionic strength and valency of counterions present in the 

surrounding aqueous medium. Fibre fines are known to retain approximately four times the 

amount of bound water compared with the long fibre fraction (Stone et al. (1968)). Water 

may also be bound to calcium carbonate surfaces through capillary forces arising from the 

porous nature of this filler (Brown (1996)). 

Variations in the composition of the furnish components in the paper sheet lead to variations in 

the amount of effort required to remove this water, usually evident in the dryer steam demand. 

This is particularly true during grade changes and it is therefore important to be able to predict 

the amount of bound water leaving the couch. In the simulation environment this is 

accomplished by assigning specific amounts of bound water for each type of furnish particle. 

The amount of water bound to furnish components can be measured experimentally by the 

Water Retention Value (WRV) discussed in Scallan and Carles (1972). In the present study 

values of 1.4 and 6.0 g water/g fibre were assigned to the long fibre and fines fractions 

respectively based on the data of Stone et al. (1968). To the author's knowledge, no values 

for WRV's for fillers have been reported in the literature. Accordingly, WRV's for PCC and 

chalk fillers were measured in the lab using the method of Appendix A yielding values of 

0.84±0.12 and 0.22±0.03 g water/g filler respectively. These values, in relation to those for 

cellulosic particles, are consistent with the less porous and more rigid internal structure of such 

mineral fillers. Furthermore, as PCC has a much larger specific surface area due to its 

scalenohedral crystalline structure, its significantly larger WRV compared to that of chalk is 
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expected. We note that the four fold difference in measured WRV between PCC and chalk 

relates directly to their relative specific surface areas as reported by Blixt (1995). This suggests 

that electrostatic type interactions between water molecules and the calcium carbonate surface 

might play a role in determining the amount of bound water in addition to the capillary action of 

pores. However, further studies would have to be performed in order to confirm this 

mechanism. 

3.3 Chemistry Modelling 

The interaction between chemical and furnish components is modelled as 1) adsorption of each 

of the additives onto furnish components at their respective mixing points and 2) flocculation of 

the (partially) covered components just prior to and in the headbox. Deactivation of the 

adsorbed polymers is also considered. Each of these effects will be discussed in turn. 

Implementation of these models in the simulation environment required the establishment of a 

chemical process parallel to the above physical process. 

3.3.1 Adsorption of Additives 

Adsorption of polymers onto papermaking particles has been shown to follow Langmuir 

kinetics (van de Ven (1993)). In dimensionless form this can be expressed as, 

dfl 
— = k a t t ( n 0 - G ) ( l - 6 ) - k d e t e (3.27) 
dt 

where, 

• 6 is the fractional polymer coverage of the particle surface, 

• n 0 is the dosage of polymer relative to the amount required to completely cover the 

particle surface, 

• katt and kd e t are the attachment and detachment rate constants respectively. 
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If it is assumed that the bonds formed are sufficiently strong such that k d e t is negligible, then as 

t - » o o Equation 3.27 leads to, 

6 = n 0 (3.28) 

which is applicable to adsorption of a single polymer onto a particular furnish. In a 

multicomponent system, to calculate n Q for adsorption of polymer P on particle j we have, 

n o

p / J = ° - — — (3.29) 
<Jj rNj i p / j 

where, 

• c p is the concentration of polymer (kg/m3) 

• Oj is the surface area of an individual particle j (m2/particle) 

• Nj is the number concentration of particles j (particles/m3) 

• T^f? is the maximum amount of polymer per unit surface area (kg/m 2) 

The denominator in Equation 3.29 describes the total potential for adsorption of polymer P 

onto the surface of particle j . Therefore the polymer should distribute itself amongst the 

furnish components in a manner proportionately to this potential or, 

1 / n p / j 

flp/j _ n

P / J . . ° 

J (3.30) 
1 

Thus, the fractional coverage of fibre surfaces by added polymer is equal for each furnish 

component. However, it is important to note that:the much greater specific surface areas of 

fine particles means that they will adsorb a disproportionately large amount of the total 

polymer. 
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Values for r^f* may be determined experimentally from polymer adsorption plateaus. It does 

not appear to be common practice amongst suppliers or users of these additives to conduct such 

experiments. However, a number of studies have appeared in the literature from which 

approximate values can be taken (e.g. Hedborg (1992)). The nominal values used for this 

study are r L

M^, + =5xl(J6 kg/m2, r ^ l x l O " 5 kg/m2 and r^ x

w_=lxl0- 6 kg/m2. Here T M a x 

associated with a particular polymer is used for each of the furnish components onto which it 

adsorbs. While these represent approximate values for this system any inaccuracies can be, in 

part, accommodated for by adjusting semi-empirical rate constants in the flocculation process 

model discussed in the following section. Furthermore, the effects of changing retention of a 

particular additive on furnish surfaces can be examined in the simulation environment by 

varying r M a x values. 

The above implies that there is sufficient time for all the available polymer to adsorb onto 

particle surfaces. In order to justify this, approximate adsorption time scale calculations were 

performed as outlined in van de Ven (1993). For the adsorption of polymer P onto particle j 

the characteristic time constant, xp/j, for reaching the adsorption plateau is, 

x P / J = y*'>aJ:>%n:'i ( 3 - 3 1 ) 

where, 

• yP J 1 S t n e deposition efficiency which is dependent on the ratio of repulsive to 

attractive colloidal (chemistry dependent) forces 

• ccFast is the collision efficiency which depends on the ratio of (attractive) van der 

Waals forces to hydrodynamic forces 

• k p / j is the Smoluchowski rate constant (m3/s) 
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For the purposes of time scale calculations, it is assumed that y P j = « F a s t =1 due to the 

(designed) high affinity of additives for furnish surfaces and the observation of van de Ven 

(1993) that otFast in papermaking systems is close to its maximum of 1. For collisions between 

a polymer molecule and a furnish particle the Smoluchowski rate constant for shear induced 

(othokinetic) collisions is k p / j=0.4G*Vj . Using an approximate hydrodynamic shear rate of 

G=104 (1/s) (Kamiti and van de Ven (1995)) , it was determined that time scales for all cases 

were of the order of 1 second or less. Thus it is reasonable to assume that complete adsorption 

of additives onto furnish surfaces did occur. 

Part of the function of the LMW Cationic Polymer is to neutralize dissolved organic or 

inorganic anionic substances which interfere with the performance of the retention aid system. 

Such substances are present in the incoming pulp and may be released in small amounts during 

repulping operations in the broke handling system (Lindstrom (1992)). For purposes of this 

simulation, a given percentage of the LMW Cationic Polymer is assumed to be neutralized by 

such interfering substances. The effects of variations in this disturbance on the papermaking 

process can be investigated through this parameter. 

The coverage of any furnish component by each of the three additives is tracked throughout the 

wet end via the parallel chemistry simulation. At stream mixing points the exit coverages for 

each component are calculated as the mass weighted average of the incoming stream coverages. 

In tanks, appropriate (first-order) lag dynamics are introduced assuming perfect mixing of the 

components. The nature of this parallel chemistry system can be seen in Figure 3.7 where 

blocks representing adsorption chemistry and mixing of stream coverages are calculated 

alongside standard process blocks. Information about the chemistry of a particular stream is 

contained in the "stream chemistry array" denoted by SCA tags on the flowsheet. 

59 



Chapter 3. Dynamic Simulation of Wet End Chemistry 

Figure 3.7. Illustration of parallel chemistry system on process flowsheet 

3.3.2 F loccula t ion 

Flocculation of the partially covered furnish components takes place immediately following the 

adsorption of the HMW anionic polymer. A collision theory approach is used to determine 

rates at which floes are formed (van de Ven (1993)). For the purposes of this simulation, floes 

are defined as a joining of any two particles. In this way, a new component is temporarily 

formed as all floes delivered to the wire are assumed retained in the sheet along with all 

unflocculated long fibres. Only 5% of unflocculated fibre fines and 1% of unflocculated filler 

delivered to the wire are retained by mechanical entrapment, values which have been 

approximated by current mill retentions and theoretically justified by van de Ven (1984). Thus, 

variations in first-pass retention are realized through chemical and furnish interactions prior to 

the wire. 
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H M W anionic polymer is thought to partially adsorb onto furnish particles leaving long tails 

extending outward from the particle surface to a distance beyond the electrical double layer. 

Bridging flocculation occurs when these tails interact with another particle and a bond of 

sufficient strength is formed to withstand the hydrodynamic shears present (Gregory (1988)). 

In the standard model for bridging flocculation, based on a single polymer, effects related to 

the fractional polymer coverage take the mathematical form 9(1- 0) . This represents the fact 

that polymer adsorbed onto particles with coverage 0 must interact with uncovered areas on 

another particle in order to form a bridge. In our multi-component system, it is envisioned that 

the H M W anionic polymer adsorbed onto particle i with coverage Gr interacts with sites on 

particle j with adsorbed cationic polymer of coverage 0* . Assuming detachment rates are 

negligible, the rate at which floes composed of particles i and j are formed is described by the 

following second-order kinetic equation, 

d C 
•i 

dt 

( V.Vj ^ 
(3.32) 

where, 
k,J = 

Qj = consistency of floes formed from components i and j , 

C;, Cj = consistencies of components i and j , 

V j , V j = volumes of individual component particles i and j 

0* = fractional coverage of component i by cationic polymer, 

0j = fractional coverage of component i by anionic polymer. 
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The term involving individual particle volumes arises when transforming a differential equation 

in terms of rates of particle interactions to consistencies through C—VjNjp and noting that the 

volume of the formed floe is Vj+Vj. As in the previous section, it will be assumed that ctFast= 1. 

However, it may not be reasonable to assume that the Y'j=1- Instead, we replace these 

parameters with four empirical rate constants, r1, each associated with a furnish component 

(long fibre, fibre fines, filler and floes). This gives, 

k i j = k y r j (3.33) 

for which the values of the r̂ s can be determined such that nominal retentions and white water 

consistencies around the paper machine are obtained. In general, the r"s were found to be 

much greater than unity (sometimes orders of magnitude) indicating the approximate nature of 

the furnish particle size distribution and Smoluchowski rate constants. 

The result is a set of 16 differential equations describing all possible interactions amongst the 

four components. These are numerically integrated over the transportation time between the 

HMW anionic polymer addition point and delivery of the stock to the wire ( s l l sec). Initial 

consistencies for the long fibres, fibre fines and filler are those present at the addition point 

while the initial floe consistency is zero. Floe consistency and radius are updated at each 

integration interval as aggregate quantities of all floes formed. Floe radius is calculated as the 

total mass of particles in floes divided by density. Typical component trajectories are shown in 

Figure 3.8. The apparently large degree of flocculation results from defining floes as the 

joining of any two particles. Thus a filler particle adsorbed onto a long fibre is here defined as 

a floe which would not be discernible by visual techniques for determination of the degree of 

flocculation in a sheet. 
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0.40 

E 
| 0.30 

Floes 

Long Fibers 

/ /Fiber Fines 
s Filler 

Figure 3.8: Component trajectories during flocculation process 

A certain amount of flocculated stock is recirculated from the headbox to the white water silo 

and deaerator. Since they subsequently pass through points of high shear such as fan pumps , 

screens, etc., it is assumed that these "hard" floes are destroyed. Formation of "soft" floes 

through particle agglomeration, which results from adsorption of cationic additives onto 

negatively charged fibre surfaces, is not considered in this study. A s well , flocculation due 

mechanical entanglement of fibres is not modelled. 

3 . 3 . 3 Deactivation of Polymers 

F o r the purposes o f this simulation, coverage of particles by polymers affects retention and 

drainage only through the flocculation process described by Equation 3.32. U p o n adsorption 

onto furnish surfaces polymers are believed to undergo reconformation into flat configurations 

and further diffusion into particle pores (Koethe and Scott (1993). The surface charge 

behaviour of particles over time after addition of cationically charged polymers has been 

studied by Koethe and Scott (1993) and for starch by Gupta and Scott (1995). It was found 

that addition of polymer resulted in a rapid, instantaneous increase in surface charge fol lowed 
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by exponential charge decay to approximately 50% of the originally level. Time constants for 

this study were typically in the order of 20 minutes. 

In order to implement such behaviour in the present model it was assumed that the coverage of 

cationic additives underwent similar behaviour. In this way their effectiveness during the 

flocculation process diminishes with time. This view is consistent with the electrostatically 

dominated flocculation mechanism put forward in the previous section. From the above 

mentioned studies by Scott and coworkers, charge decay data was used from the most 

appropriate (of several) examples which matched the current additives and furnish 

characteristics. For LMW cationic polymer, data from polymer P-II in Koethe and Scott 

(1993) was used while for starch, data from Figure 4 in Gupta and Scott (1995) was used. 

Corrections were made for chemical dosage rates. 

At the initial, fully charged conditions, coverage was assumed to equal those values calculated 

by Equation 3.34. Decay in these coverages proceeded at a rate proportional to the 

corresponding charge decays. The resulting models for decay of LMW cationic and starch 

coverages are: 

DF L M W + (t) = 0.452 + 0.548e-° 0 4 1 6 1 

DFS t a r c h(t) = 0.455 + 0 .546e - ° 0 3 5 7 t 

where DF is the (decay) factor by which the corresponding coverage is multiplied at any point 

in the wet end and t (minutes) is the time from chemical addition. In order to implement these 

models in the simulation, mean residence times for each process unit with capacity (e.g. tanks) 

were computed and the coverages updated at the exit of each. 

The HMW anionic polymer is also believed to undergo similar reconformation onto the particle 

surface. However, this leads to greatly reduced rates of flocculation for reasons described by 
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P e l s s e r s e t a l . ( 1 9 8 9 ) . T h u s , par t ic les rec i rcu la ted t h r o u g h ei ther the w h i t e water o r b r o k e 

s y s t e m s are a s s u m e d to lose a n y a c t i v e H M W a n i o n i c p o l y m e r c o v e r a g e . 

3.4 Summary 

T h e m o d e l s i m p l e m e n t e d in to a d y n a m i c s i m u l a t i o n h a v e b e e n e x p l a i n e d . F i g u r e 3 .9 

s u m m a r i z e s m a n y o f the in teract ions present in the s i m u l a t o r . O t h e r s t a n d a r d e f fects not 

i n c l u d e d in th is d i a g r a m are f u r n i s h c o m p o s i t i o n , c o n t r o l l e r t u n i n g s a n d p r o c e s s c o n f i g u r a t i o n . 
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HMW Anionic • 

Polymer Retentions-

Particle Size Distribution • 

Anionic Trash • 

Refining Specific Energy-

Sheet Composition -

Basis Weight -

Vacufoil Vacuum-

Figure 3.9: B l o c k d i a g r a m o f s i m u l a t o r c a p a b i l i t i e s 

T h e r e m a y be s o m e impor tan t c h e m i s t r y p h e n o m e n a m i s s i n g in the a b o v e d i a g r a m . F o r 

e x a m p l e , part o f the f u n c t i o n o f the L M W C a t i o n i c p o l y m e r is to act as a d r a i n a g e a i d b y 

d e s w e l l i n g f i b r e s . H o w e v e r , d u r i n g a m i l l s a m p l i n g c a m p a i g n , n o c o n c r e t e r e l a t i o n s h i p 

s h o w i n g th is e f fec t c o u l d be d e t e r m i n e d a n d it is therefore e x c l u d e d in the present s i m u l a t i o n . 

T h e c o m p l e t e I D E A s p r o c e s s f l o w s h e e t s are s h o w n in A p p e n d i x B . 

Retentions 

Free Water 
Drainage 

Bound Water 
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A major advantage to the modular manner in which fundamental effects are implemented in the 

simulation is that as further relationships are uncovered amongst process variables, they can be 

implemented into the simulation without affecting the existing model. Thus one can test 

whether certain effects are responsible for observed but unexplained variations. It is also 

important to emphasize that other paper machines with different wet end configurations and 

furnish can be modelled once the necessary process parameters have been obtained. 
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Chapter 4 

Validation of Simulation 

Development of the wet end chemistry simulation model proceeded in a stage-wise fashion 

with calibration and subsequent validation at each step. First, a steady-state balance was 

achieved from which the dynamic simulation followed. Validation was carried out using 

the process experience of mill personnel and on-line data. Both of these sources of 

information proved of great importance. This section presents these various stages of 

model building and tests simulation results during a number of operating scenarios. 

4.1 Steady-State Material Balance 

The first step in verifying the accuracy of the simulation is to obtain steady-state conditions 

which match those of the operating paper mill. Since numerous grades are produced on the 

machine typical conditions representative of one offset grade were used. 

The general procedure followed to achieve the overall steady-state balance was: 

1. Obtain a steady state balance from each of the 7 process and instrumentation 

diagrams and adjust simulation flows to match. Here, water and total solids 

were the only components considered. Most dynamic models (described in 

Chapter 3) were included along with controllers. Retention and drainage levels 

were assumed fixed. 
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2. Combine these individual worksheets to obtain an overall initial total mass 

balance and solids consistencies. 

3. Update consistencies to match those currently observed on the paper machine. 

Such information was obtained from mill operating records and (previous) 

sampling campaigns. 

4. Incorporate fiber fines and filler into the simulation. Intermediate starting 

values were obtained by rough hand calculations and further details of these 

components will be discussed shortly. The simulation was then allowed to 

come to steady-state with the four components. 

5. The wire drainage and chemistry models were added, one at a time, allowing 

the simulation to reach steady-state after each. Certain drainage and chemistry 

parameters were adjusted in order to match the representative mill conditions. 

These conditions will be discussed shortly. 

Most of the models for fines and filler behaviour in processing units were discussed in 

Chapter 3. The procedure at the refiners will now be discussed in more detail. Due to the 

presence of a recirculation around the refiners the fibers are exposed to multiple passes. In 

order to achieve an overall degree of refining this recirculation must be modelled. The 

degree of refining is expressed as the percentage of long fiber fraction converted into fiber 

fines. 
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Figure 4 . 1 : Recycle flow of fiber through refiners. F is the mass flowrate and C is the 

fiber consistency at any point. 

Consider the refiner with recycle in Figure 4.1. A fiber balance at the input node gives 

^IN^IN + C R e c F R e c

 - C B R F B R 

Multiplying through by C R e c / (C B R C I n ) gives, 

c c c c 
'-Rec p V-Rec '"Rec p '-Rec p 

r In ^ r Rec _ „ BR 
*-BR '-'In *-Br *-In 

(4.1) 

(4.2) 

Noting that C A R = C o u t = C r e c and defining, 

C, 
R = 'Ou t 

C, 

R = 'AR 

c 

(Overall long fiber refining ratio) 

(One - pass long fiber refining ratio) 

(4.3) 

BR 

leads to, 

R F I n + R R F R e c = R F B R (4.4) 

Using the overall mass balance around the input node gives the desired one-pass long fiber 

conversion to fines in terms of the specified overall conversion and flowrates, 

R ( I + ^ 

R* = 

1 + R 
^ F R e c \ 

(4.5) 

\ FIn / 

69 



Chapter 4. Validation of Simulation 

This expression can be implemented into the refiner object on the simulation process 

flowsheet. 

The primary markers used to calibrate the steady-state simulation for a typical offset grade 

sheet are: 

Production 34 ton/hr 

Basis Weight 73 g/m2 

Sheet Ash 17% 

Headbox Solids Consistency 0.60 - 0.65% 

Flume Total Solids Consistency 0.1% 

Flume Filler Consistency 0.06% 

Couch Solids Consistency 20% 

Solids Retention 85-90% 

Filler Retention 65% 

Cloudy Filtrate Solids Consistency 0.14% 

The empirical rate constants, r-, of Equation 3.33 were the final tuning parameters adjusted 

in order that the above conditions were achieved. While each r. is associated with a 

particular component, adjusting any one of their values affects the flocculation of not only 

that component but of all others as well. This strong degree of correlation inhibits easy 

tuning of the system. It may be possible to determine the underlying dimensionality of this 

system through singular value decomposition or other chemometric techniques (Wise 

(1994)). From this a smaller or uncorrelated set of tuning parameters might be found. 

However, this was not undertaken in the present project. 

The base case simulation conditions achieved were: 

Basis Weight 73.0 g/m2 
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Sheet Ash 17.0% 

Production 32.4 ton/hr 

Hardwood/Softwood Ratio 70:30 

%Broke of Total Mix 17.0% 

Couch Solids Consistency 19.4% 

Cloudy Filtrate Solids Consistency 0.13% 

Headbox Solids/Filler/Fines Consistencies 0. 60 / 0.14 / 0.08 % 

Flume Solids/Filler/Fines Consistencies 0.074 / 0.055 / 0.020 % 

Results for the steady-state distribution of long fibers, fiber fines and filler throughout the 

wet end are shown in Figure 4.2 in the same format as in Orccotoma (1996). Note that the 

diagram shows proportions and not absolute quantities. 

Total 
Solids 

I 
• Filler 
• Fines 
• Fiber 

HW Low 
Density 

SW Low 
Density 

Mixing 
Chest 

Cloudy 
Filtrate 
Chest 

Figure 4.2: Steady-state distribution of fiber, fines and filler fractions 

Initial assumed fiber fines (mass) contents of baled hardwood and slushed softwood are 

10% and 5% respectively which agree roughly with values reported by Britt (1975). The 

presence of filler in the mixing chest illustrates fines buildup in the incoming stock line due 

to broke and white water recirculation. At the headbox, the total fines content is greater 
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than 30% of the solids material which decreases by the couch due to more favourable 

retention of the long fiber fraction. Filler content is a proportionately higher fraction of the 

fines in the white water silo due to its poorer retention. Cloudy white water, which is 

distributed through the long circulation to stock dilution points, is made up of roughly the 

same proportions of fiber fines and filler material. 

4.2 Simulated Step Tests 

This section implements step tests into the simulation and analyzes the response 

mechanisms and directionality. The validity of the simulation has been judged against 

process experience by both the author and Weyerhaeuser personnel. Of equal importance 

to the correctness of the retention and drainage responses is identification of the 

mechanisms by which they are achieved. 

4.2.1 H M W Anionic Polymer Step Increase 

A simulated 10% step increase in HMW Anionic Polymer (retention aid) was implemented 

in the simulation model starting from the conditions given in Section 4.1. The step 

occurred at t=60 minutes. 

Polymer coverages on the long fiber fraction at the headbox are shown in Figure 4.3. The 

immediate increase in retention aid coverage is expected with some beneficial dynamics as 

the white water short circulation becomes cleaner. Also seen is a slight slow rise in the 

starch coverage as fines are cleaned out of the white water long circulation. 
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Figure 4.3: Polymer coverages on long fiber fraction for 10% H M W Anionic increase 

Figure 4.4 shows the component consistencies after flocculation, i.e. of the stock delivered 

to the wire. The floe consistency, after some initial dry end controller dynamics, remains 

approximately constant. From the large, immediate drop in filler consistency it is apparent 

that the largest gains in flocculation are in capturing filler particles. The overall consistency 

of the stock on the wire drops as the retention increases. 

Figure 4.4: Consistencies of stock delivered to wire for 10% H M W Anionic increase 

Dry end controller dynamics play an important role in the overall machine responses to wet 

end chemistry variations. In Figure 4.5, the basis weight shows an initial jump due to 

increased retention of filler. The controller responds by lowering thick stock flow. 

However, as seen in Figure 4.6, the increase in sheet ash causes a simultaneous decrease in 

fresh filler flow. The result is overshoot in the basis weight control and the short term 
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oscillatory response observed. Over the longer term, there is a slight decrease in thick 

stock demand due to decreased amounts of filler in the recirculated white water. The filler 

balance in the short circulation is relatively slow to recover. In addition to the long 

circulation dynamics mentioned above, there are also some "medium" circulation dynamics 

due to the silo-»white water chest-*cleaner dilution-»headbox pathway. 

0 6 0 120 180 2 4 0 3 0 0 

Figure 4.5: Basis weight and thick stock flow response to 10% HMW Anionic increase 

Figure 4.6: Sheet ash and fresh filler flowrate response to 10% HMW Anionic increase 

Flume consistencies reflect the above phenomena as shown in Figure 4.7. The drop in 

flume solids is primarily the result of increased filler retention. This drop is rapid due to 

the combined effects of pulling filler particles into floes and reduction of PCC flowrate 

from the ash controller action. Fiber fines drop initially with increased retention but 

recover somewhat with the basis weight loop response. 
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Figure 4.7: Flume consistencies for 10% HMW Anionic increase 

Drainage responses are shown in Figure 4.8. Wire water retention is the fraction of water 

retained in the web after the multifoil shoe vacuum. It can be thought of as an inverse 

indicator of drainage. The rapid decrease in drainage directly follows the reduction of 

unflocculated filler in the stock delivered to the wire. Bound water at the couch follows the 

dry end controller dynamics but its steady state value remains constant. 

s 
tL 0.04 

180 

Time (minutes) 

Figure 4.8: Drainage responses to 10% HMW Anionic polymer increase 

Finally, cloudy filtrate consistencies are shown in Figure 4.9. In accordance with the 

increased filler retention, filler consistency drops. This causes the slight increase in starch 
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coverage seen in Figure 4.3. Fines consistency, on the other hand, shows some transient 

behaviour but no long term change in level. The overall impact of the retention aid change 

on cloudy filtrate consistencies is small. 

Time (minutes) 

Figure 4.9: Cloudy filtrate chest consistency response to 10% HMW Anionic polymer 

increase. 

4.2.2 LMW Cationic Polymer Step Increase 

A 4% increase in L M W Cationic Polymer was implemented into the simulation in the same 

manner as the HMW Anionic Polymer in the previous section. The overall impact of such 

a change is much smaller than for the HMW Anionic but the mechanisms are similar. 

Because the polymer is added prior to the mix tank, the impact on retention and drainage at 

the wire is not immediate. 

Figure 4.10 shows long fiber fraction coverages of starch and L M W Cationic polymer. 

The second-order dynamics induced by the mixing and machine chests are evident in the 

L M W Cationic coverage which is monitored at the headbox. Due to a slight decrease in 

stock demand with improved retention, there is a secondary increase in coverages evident 

in the starch. 
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Figure 4.10: Long fiber fraction polymer coverages for L M W Cationic step increase 

The filler and fines flume consistencies both decrease with the filler dominating as with the 

HMW Anionic polymer step. This is the result of greater flocculation of filler particles. 

120 180 

Time (minutes) 

Figure 4.11: Flume consistencies for L M W Cationic step increase 

The second-order dynamics are very apparent in the wire drainage response of Figure 4.12. 

A secondary decrease in water retention is also noticed at about 4 hours as a result of less 

fines present in the white water long circulation. However, no detectable effect is noticed 

in the coverages of Figure 4.10 from recirculation of undecayed polymer. 
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Time (minutes) 

Figure 4.12: Wire drainage response for L M W Cationic step increase 

4.2.3 Broke Step Increase 

The effect of a step increase in broke content was simulated next. A step from the base 

condition of 17% broke to 30% was implemented at t=60 minutes. The most immediate 

effect was seen at the mix chest where the increases in fines and filler content are evident 

Figure 4.13. These increases show essentially first order dynamics although there are 

additional effects introduced by the stock proportioning controller. The increase in filler 

content is dominant. 

Time (minutes) 

Figure 4.13: Mixing chest consistencies for broke step increase 
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As a result of the increased levels of fine particles in the system, polymer coverages 

decrease on the long fiber fraction as seen in Figure 4.14. However, as seen in Figure 

4.15, the same is not true for the filler fraction. In this case the coverages of cationic 

materials increases with increasing broke due to the recirculation of partially covered 

furnish particles through the broke system. This effect overwhelms that due to replacement 

of previously uncovered virgin stock with more fine material. Coverage of HMW anionic 

polymer decreases on all furnish fractions due to the increased fines levels in the system. It 

is recalled that the model assumes complete deactivation of HMW anionic polymer activity 

as far as its role in the flocculation process. 

Time (minutes) 

Figure 4.14: Additive coverages on long fiber fraction for broke step increase 
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Figure 4.15: Additive coverages on filler for broke step increase 
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The transient sheet ash and fresh filler flowrate responses of Figure 4.16 are expected from 

the previous figures. As more filler enters into the system through the broke stream and 

this filler is preferentially coated with polymer, more of it will be incorporated into the 

sheet. Hence the transient rise in sheet ash content before regaining the set-point. With the 

higher filler recirculation, fresh filler demand is reduced. 

, 5 - 1 1 1 1 1 1 

0 6 0 120 1 8 0 2 4 0 3 0 0 

Time (minutes) 

Figure 4.16: Sheet ash and fresh filler flowrate responses to broke step increase 

Basis weight response (Figure 4.17) is more stable but does exhibit a short initial transient 

which is also visible in the sheet ash response. This short term transient is the result of 

reduced hardwood and softwood stock demand from the low density chests and a 

corresponding reduction in dilution water demand from the rich white water chest. The 

rich white water chest operates at constant head and also supplies dilution water to the 

primary cleaner rejects in the standpipe. With the stock dilution water decrease, additional 

water is sent to the standpipe creating increased stock flow through the cleaners. This 

manifests itself as an increase in accepts consistency as seen in Figure 4.18. This 

consistency variation transmits through to the primary fan pump discharge and onto the 

wire. While this effect is quickly compensated for by the basis weight controller it does 

serve to illustrate the fidelity of the simulation model. The thick stock flow experiences a 
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longer term increase to compensate for the lower proportion of fibrous material in the white 

water recirculation. It would appear from Figures 4.16 and 4.17 that the basis weight and 

ash controllers are fighting one another in order to respond to the changing furnish mix. 

Decoupling of these control loops should alleviate such problems. 

1 8 0 

Time (minutes) 

Figure 4.17: Basis weight and thick stock flow responses to broke step increase 

Primary Fan Pump Discharge 

Secondary Cleaner Accepts 

Tertiary Cleaner Accepts 

Figure 4.18: Effect of reduced hardwood and softwood stock demand through cleaner 

dilution circuit. 

The initial drop in flume consistency seen in Figure 4.19 is due to the short term basis 

weight fluctuation noted above. The second-order dynamics are evident in the responses. 

The direction of the responses indicates that the overall increase in fines level and the 
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reduction in HMW Anionic polymer coverage are the dominant effect, although it is 

tempered by the increased cationic coverage noted in Figure 4.15. 

Figure 4.19: Flume consistency responses to broke step increase 

Retentions are seen in Figure 4.20 to fall uniformly with filler being the most sensitive. 

Again this shows that the loss of HMW Anionic coverage on filler dominates over the gain 

in cationic coverage. 

Figure 4.20: Retention responses to broke step increase 

Finally, both the free and bound drainage responses of Figure 4.21 indicate a wetter sheet 

leaving the couch which corresponds to experience. The increased water retention on the 
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wire is due to a decreased level of flocculation and more free fine material. Bound water 

increases as fines make up a larger portion of the fibrous material. Generally second order 

dynamics are observed which is consistent with the broke addition point prior to the mix 

chest. 

Figure 4.21 Drainage responses to broke step increase 

4.3 On-machine Retention Aid Step Test 

In order to test the validity of the model against machine data, an independent decrease in 

the retention aid level was implemented during a routine operating period. The actual form 

of the input signal was a ramp rather than a step as such sudden changes in the web 

structure and wetness might otherwise cause a sheet break. A ramp will excite fewer of the 

high frequency modes than a step but a good indication of the slower dynamics and gain 

will be available nevertheless. 

A 30% ramped decrease in HMW anionic retention aid was simulated with the machine 

producing a 73 g/m2 sheet at 17% filler content. Problems with the consistency sensor 

steady-state calibration were experienced during this time period but it is assumed that the 

dynamic response reflects actual conditions. Since the total solids bottom flume 
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consistency was often out of range, the filler consistency along with other signals were 

used to judge the validity of the retention dynamics. 

A number of cases were simulated in order to demonstrate the effects of adjusting various 

parameters. These are summarized in Table 4.1. 

Case r £ £ (kg/m2) Ash Controller Gain 

1 l.OxlO"6 0.1 

2 1.5xl0"6 0.1 

3 2.0xl0"6 0.1 

4 2.0x10 6 0.5 

Table 4.1: Parameters for HMW retention aid ramp increase. 

Figure 4.22 shows the white water silo filler consistency responses to these changes. 

Cases 1 through 3 show the effect of increasing the maximum amount of HMW retention 

aid that adsorbs onto filler, T^*, from Equation 3.29. As this quantity increases from its 

nominal value of 1x106 g (polymer)/m2, the coverage of retention aid on the furnish 

particles decreases. This, in turn, leads to decreased retention and greater filler loadings in 

the white water. The interaction between filler level and retention aid dosage is evident on 

the response gains with higher filler loadings leading to higher gains. Thus the gain 

sensitivity to changes in the number of collisions between filler and other particles 

overwhelms sensitivity to changes in retention aid coverage. 
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Figure 4.22: White water silo filler consistency responses to ramped retention aid 

decrease. 

While the gain for Case 3 is close to the measured response the dynamics are somewhat 

slow. In Case 4 we have increased the sheet ash controller gain from 0.1 to 0.5 with other 

conditions as in Case 3. The result is a faster response with a slight overshoot. This 

matches very closely with the response measured in the silo. Part of the motivation for 

adjusting the controller gain arose due to the observed fresh filler flowrate dynamics. 

Figure 4.23 shows that the controller response of Case 4 to be very close to the actual. The 

large overshoot in the controller action demonstrates the tight tuning and interaction with 

the basis weight loop as noted in the step responses of Section 4.2. 
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The 4th section dryer steam demand and wire water retention drainage responses are shown 

in Figure 4.24. The grade change slightly before 22:00 is evident as the dryer response is 

still reaching its new level. Although it is not completely stable at this new level, the large 

increase after the HMW decrease is evident albeit slightly delayed from the predicted wire 

water retention increase. This is partly due to the combined effects of the moisture loop 

dynamics, sampling/reporting delay and short transportation time between the forming 

section and the 4th dryer section. Perhaps more importantly is the fact that the basis weight 

dynamics are not accounted for in the wire drainage model for model stability reasons 

(although set-point changes are accounted for). In Figure 4.25 the simulation results show 

a short decrease in basis weight as the retention aid is first decreased and the basis weight 

controller has not yet compensated for this fact. The drop in basis weight is not significant 

enough to be visible in the noisy dry end sensor data. However, this effect implies that 

there is temporarily less stock and hence less bound water in the sheet going to the dryers. 

The short initial drop in dryer steam demand seen in Figure 4.24 is an artifact of the above 

effect. 
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Figure 4.24: Measured 4th section dryer steam demand and simulated wire water 

retention for HMW Anionic retention aid ramp increase 

Figure 4.25: Simulated (thin lines) and measured (thick line) basis weights and couch 

bound water responses to HMW Anionic ramp increase 
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4.4 Grade Change 

The simulated response of the system was compared against process data during a grade 

change. There were two operator moves during this time: 

• A 5% increase in the sheet ash set point 

• A 1 g/m2 decrease in the basis weight 

Simulation results are based on the parameters used in Case 4 from the previous section. 

The sheet ash set-point changes were implemented in two steps; first from 12 -15% and 

then from 15 - 17%. This was done in order to approximate the operator's moves during 

the grade change as an exact record was not available. 

Figure 4.26 shows the closed-loop response of the sheet ash controller to the grade change. 

A dry end sheet break occurred during this period during which the signal was lost. Also 

evident is the staged nature of the set-point increase to avoid the possibility of a sheet 

break. The simulation approximates the sheet ash dynamics very well. The PCC flowrate, 

shown in Figure 4.27, demonstrates that the filler mass balance is quite good in that the 

gains of the actual and simulated PCC-sheet ash loop agree. However, some overshoot in 

the simulated control action is evident indicating that the sheet ash loop tuning is not 

accurate. 
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Figure 4.26: Closed-loop sheet ash response to grade change. 
Simulated (thin line), Measured (thick line). 
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Figure 4.27: Closed-loop filler flowrate response to grade change. 
Simulated (thin line), Measured (thick line). 

Simulated polymer coverages on the headbox long fiber fraction are shown in Figure 4.28. 

With the increased filler loading in the white water there is a drop in the HMW anionic 

polymer coverage which closely follows the sheet ash controller dynamics. As the filler 

content of the sheet rises together with the small decrease in basis weight, there is less 

thick stock demand. Since polymers are added at constant flowrates, coverage of LMW 

cationic polymer and starch (not shown) increase after lags corresponding to the hold-up 

times in the mix and machine chests. This has a positive benefit on first-pass retentions 
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leading to a cleaner short circulation and reverses the decline in HMW retention aid 

coverage to a certain degree. 
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Figure 4.28: Simulated polymer coverages on the long fiber fraction during grade 

change. 

The white water silo filler consistency during this grade change is shown in Figure 4.29. It 

is both directionally correct and matches the gain very well. The simulated dynamics 

appear to be faster than the measured again due to inaccurate sheet ash loop tuning. 

Figure 4.29: Simulated and measured white water silo filler consistencies for grade 

change. 

Finally, Figure 4.30 compares drainage responses during the grade change. Bound water 

from the simulation has been scaled to fit the simulated wire water retention axis. Both free 

and bound water drainage indicators agree directionally with the overall decrease in dryer 
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steam demand. Free drainage improves from the first set-point change due to increased 

filler flocculation. This results from the greater number of particle collisions outweighing 

effects due to reduced polymer coverage. The reverse is true for the second sheet ash set-

point change. Bound water is reduced during the grade change due to replacement of 

fibers and fiber fines with filler. 

Sheet Break causes Time Delay 
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I 
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Figure 4.30: Drainage responses for grade change 

4.4 Summary 

This chapter has demonstrated many of the capabilities and limitations of the wet end 

chemistry simulation model. In general it is able to predict retention and drainage 

responses in both a directionally correct and, in most cases, accurate manner. Most 

importantly, the fundamental nature of the model allows one to interpret the responses in 

terms of the underlying chemical mechanisms. If an incorrect model response is 

encountered, the faulty or missing part of the model can be corrected without affecting the 

rest of the model. 

Most of the attention in both the modelling, calibration and validation stages has been 

placed on the paper machine and short circulations. Here the dynamic effects are most 
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pronounced and the model performed well. Since the variations during these periods 

affected the white water long circulation to a lesser degree, it is difficult to characterize the 

success of the model for this part of the process. However, it is clear that additional 

disturbances not present in the model are impacting on the white water, in particular on the 

cloudy filtrate chest. These disturbances likely originate in the broke system and enter via 

the broke thickening screens. 
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Chapter 5 

Control Relevant Identification 

One objective in developing process models is to design model-based feedback control 

schemes for key operating variables. While a simulation may provide accurate predictions 

of the process, the problem of "inverting" this model to determine appropriate control 

actions remains. Simpler transfer function models are often used to approximate process 

behaviour and are of a form which facilitates controller design. These models are usually 

identified from input/output data after application of a perturbation to the process. Due to 

the approximate nature of empirical transfer function models and the noise present in 

input/output data, there remain uncertainties associated with the model once identification 

has been carried out. Such uncertainty needs to be quantified as it impacts on the 

robustness of the implemented controller. This chapter addresses the need to quantify these 

model uncertainties and that of reducing their magnitude at those frequencies most relevant 

to the eventual closed-loop control. 

The role that the simulation model plays in the model identification process is highlighted 

through application to the wet end chemistry control problem. Often there is the 

paradoxical situation that in order to design optimal experiments for process identification 

one needs good knowledge of the process (Goodwin and Payne (1977)). The availability 

of a preliminary mechanistic process simulation helps to alleviate this situation. More 

importantly, the simulation model can serve as a testing ground for designed control 

schemes based on simplified linear process models. 
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5.1 Motivation for Uncertainty Bounds Based on Stochastic 
Theory 

This section is concerned with describing and minimizing the uncertainty associated with a 

linear, dynamic process model estimated from input-output data generated in open-loop. 

Most commonly, current application of "classical" statistical methods for specifying model 

uncertainty involves linear approximations to nonlinear parameter confidence regions 

(Ljung (1987)). It is known, however, that such approximations can produce confidence 

regions which are severely in error in static nonlinear regression situations (Bates and 

Watts (1987)). Other methods, such as evaluation of the conditional likelihood function, 

can provide joint confidence regions for the model parameters which are exact in shape but 

approximate in confidence level. However, we are ultimately interested in anticipating how 

such parametric variability will affect closed-loop controller robustness, which is itself a 

nonlinear function of the model parameters. The main computational problem addressed 

here is that of finding the maximal closed-loop controller robustness subject to the 

parameters belonging to a (l-a)% confidence region. This will be formulated as a 

constrained optimization problem (Chen (1991)). 

As a measure of the efficacy of the confidence bounds formed from a dataset y, we will 

evaluate the "coverage"1, 

Prob(j<ECR(y)) = l - c t (5.1) 

that our nonlinear confidence regions, CR(y), afford. By specification of different levels 

of confidence, the degree of conservatism of these confidence bounds can be controlled. 

This is in contrast to "worst-case" strategies where uncertainty bounds encompass the true 

system dynamics with probability 1 (e.g. Helmicki et al. (1990)). 

1 The statistical notion of "coverage" used in this chapter is not to be confused with that used in previous 
chapters related to polymer coverage on papermaking furnish particles. 
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Once a method for accurately describing the potential uncertainty of the closed-loop system 

has been proposed, control relevant methods for minimizing this uncertainty will be 

discussed. The basis of control relevant identification is evaluation of a closed-loop 

objective function in terms of identification variables. In this way, identification 

experiments can be tailored to match closed-loop objectives. 

First, consider the linear, dynamic process G p(0) with parameter vector 9. A controller 

for this plant designed from the estimated model G p(0) will be denoted G c(6). It will be 

assumed throughout this chapter that the estimated model has the same form as the true 

model. The closed-loop servo transfer function for the implemented controller is then, 

y(t,e) _ GP(9)Gc(e) 

ysp(t) l + Gp(e)Gc(§) 

where y and y s p denote the system response and set-point respectively. It is important to 

note that upon implementation of a model-based control scheme uncertainty arising from 

the identification stage manifests itself through the implemented controller and not through 

the process. 

If we had access to the true parameter values 0 then a controller Gc(0) could also be 

determined which represents the best controller achievable for the particular design method 

used. In this idealized situation the closed-loop transfer function is, 

y ( t , 9 )_ Gp(0)G c(0) 

ysp(t) l + Gp(0)G c(0) 

Note that there is no dependence upon the identification process. 
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The closed-loop tracking error, eH 2, of an implemented controller follows from Equation 

5.2, 
eH2(t,6) = y(t,e)-y s p(t) 

- y , p ( Q (5.4) 

l + Gp(0)G c(6) 

which gives rise to the following quadratic measure of closed-loop performance 

degradation arising from the use of identified parameters rather than the (unknown) true 

parameters, 

Jperf = 2 ( e H 2 ( t , e ) - e H 2 ( t , 6 ) ) 2 

1+GP(0)GC(0) l + G P(e)G c(6) 

(5.5) 

The stability robustness of the closed-loop control scheme is also affected through the 

quality of the identified model. A measure of stability robustness arises from consideration 

of the denominator of the closed-loop transfer function in Equation 5.2, 

'Stab 
l + G p(e)G c(6) (5.6) 

Equations 5.5 and 5.6 will be used as criteria expressing closed-loop requirements in the 

identification process. The use of closed-loop identification criteria, including other 

possible cost functions, has been reviewed by Van den Hof and Schrama (1995) in the 

context of iterative closed-loop identification. Control-relevant concepts can be applied to 

situations requiring open-loop experimentation by employing frequency weighing functions 

derived from the above closed-loop criteria. 
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"Classical" statistical methods of specifying such uncertainty assume that the process model 

is an accurate description of the true underlying process (Box and Jenkins (1976)). It is 

this assumption which has prompted researchers to develop alternative methods for 

describing model uncertainty often abandoning the traditional stochastic description of 

process disturbances. According to Ninness and Goodwin (1995) the main justification for 

abandoning the "classical" statistical identification framework is that a process model, in 

particular a linear model, can never capture the true process dynamics. This has led to the 

recognition of both unmodelled effects and process disturbances as components of the 

modelling residuals (Hjalmarson and Ljung (1994)). However, if an identified model 

passes various validation tests, then the data does not contain evidence to suggest either an 

inadequate process model form or that the assumptions regarding the process disturbance 

model are invalid (Lee and Poola (1994), Box and Jenkins (1976)). These tests include 

checking the cross-correlation between input and residuals as well as autocorrelation and 

distributional checks of the residuals themselves. Is the fact that we have a validated model 

enough to guarantee that one can construct uncertainty regions with good coverage 

properties? This question will be explored in the context of various methodologies for 

determining bounds on the modelling errors when reduced order models have been fit. 

A common theme throughout the chapter will be a graphical presentation which highlights 

the connection between the identification and control problems. By comparing parameter 

likelihood contours with robustness contours in parameter space, it is possible to gain 

insight into the impact of choices during the identification stage such as the form of the 

input test signal. Mapping of contour regions into the Nyquist plane will also be carried 

out in order to provide frequency domain bounds suitable for robust controller design. 
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5.2 Development of Control Relevant Identification Criteria 

In this section the theory and computational methods for constructing confidence intervals 

of closed-loop criteria based on identification data will be presented, followed by an 

algorithm for translation of these uncertainty regions into the frequency domain. 

Corresponding techniques based on linear approximations to the (generally) nonlinear 

problem are next reviewed. From this, a control relevant experimental design procedure is 

developed. Finally, a graphical method for presentation of the overall control relevant 

problem in parameter space is given. 

5.2.1 Confidence Intervals for Nonlinear Parametric Functions 

Consider a single input/single output (SISO) linear time invariant dynamic system where 

the actual plant dynamics are described by, 

y(t) = Gp(z-\e)u(t) + H(z-',e)c;(t) (5.7) 

In Equation 5.7, y(t) and u(t) are the measured process output and inputs at time t, G P and 

H are the process and additive disturbance transfer functions and z"1 is the unit backwards 

shift operator. The additive disturbance is driven by a normally distributed white noise 

sequence, ^(t), with zero mean and variance a 2 . The (pxl) column vector of the 

parameters associated with G p(z,0) and H(z, 0) is 0, and estimates of 0 obtained from N 

observations of input-output data from the process are denoted by 0 . Defining the model 

residuals (one-step ahead prediction errors) as e(t,0) we have, 

y(t) = G p(z-\8)u(t) + H(z-\0)e(t,0) (5.8) 

or 

e(t,0) = H - I ( Z - I , 0 ) [ G P ( Z - ' , 0 ) - Gp(z-',0)]u(t) + H - ' t z - ' i l z ^ ^ t ) (5.9) 
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The likelihood function is given by, 

1(9 I y) oc of exp 

r-2e(t,0)̂  
t=i 

2 a 
(5.10) 

and describes the ability of the parameter estimates of 9 to describe the observed data y. 

Minimization of the sum of squared residuals, 

S(9) = | V ( t , 9 ) (5.10) 
t=i 

leads to the maximum likelihood estimates of 0 under normality (Box and Jenkins (1976)). 

Contours of the sum of squares function provide a means for constructing confidence 

regions for the parameters. By analogy to the linear (wrt 9) estimation situation (l-a)% 

confidence intervals for the parameters are formed for all 9 such that, 

^ . - S - F , , , . , (5.11) 

S(9) N - p a ' p ' N p 

where F a N is the value of the F-distribution with p and N-p degrees of freedom (Bates 

and Watts (1987)). Comparison against the F-distribution results from the fact that 

(S(9) - S(9))/ p and S(6)/(N - p) are independent chi-squared variables since the e(t,9) in 

Equation 5.10 are independently normally distributed random variables. If the e(t,9) are 

not independent then Equation 5.11 is not applicable. This would be the case if a different 

sampling interval or k-step ahead prediction were used to estimate the parameters (see 

Ljung (1987), Equation 3.33). To the author's knowledge, techniques for constructing 

confidence intervals in such cases are not readily available. Results in this work are 

therefore restricted to maximum likelihood identification. 
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A sum of squares surface based on a two parameter example discussed further in Section 

5.3 is shown in Figure 5.1. The 95% confidence contour for the parameters 'a' and 'b' is 

highlighted. The interpretation is that the true parameter pair has a 95% probability of lying 

within this confidence contour. 

or 1 1 1 1 1 1 

-1 -0.95 -0 .9 -0 .85 -0 .8 -0 .75 -0 .7 

Figure 5.1: Sum of squares surface for first-order model of Section 5.3. The thick line 

is the 95% confidence contour. 

We are interested in constructing confidence intervals for nonlinear functions of the model 

parameters such as those given by Equations 5.5 and 5.6. The functions considered are 

scalar and so lead to intervals on a line. In fact, in most cases only one bound exists or is 

of interest. For example, the performance robustness criterion given by Equation 5.5 has a 

lower bound of zero which occurs when model parameters match the true parameters. In 

such a case we are only interested in assessing a maximal bound on the performance 

robustness. 
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In order to see the relationship between the identification and control problems it is also 

possible to construct contours of the control objectives in parameter space. As an example, 

consider the control objective J P e r f expressed by Equation 5.5. First, denote assumed true 

values of the parameters by 0 and use the current parameter estimates for their values. 

Normalizing J P e r f by the nominal controller performance and upon application of 

Parsevall's theorem we obtain, 

This expression may be evaluated for a grid of points 0 around 0 applying contouring 

techniques to produce the parametric robust performance surface. An example plot for the 

two parameter example is shown in Figure 5.2 where the '*' point again denotes the 

location of the true parameters. Also shown is the 95% likelihood contour from Figure 5.1 

which arises from the identification stage. At some point along the 95% parameter 

confidence contour the maximal value of JP e r f(0) occurs. This point represents an upper 

bound for the expected (normalized) controller performance degradation due to parametric 

deviations. The next section formulates the computation of this point as a constrained 

optimization problem. Such a picture also allows one to compare the required size and 

orientation of the likelihood contours from the identification stage in order to meet a 

performance specification. Clearly this visual method is restricted to two dimensions but 

can also be applied to parameter pairs for higher dimensional problems. 

:2 

€> (to)dco 
(5.12) 
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a 

Figure 5.2: Contours of J P e r f (0) (thin lines) for the two parameter example with the 

95% confidence contour superimposed (thick line) 

5.2.2 Computational Method 
Denote an arbitrary nonlinear function of the parameters by g(0) and assume it to be twice 

differeritiable wrt 0. Such a function could include J rf or J s t a b . For any fixed value of this 

nonlinear function, c, denote 

0C =arg min{S(0): g(0) = c} ( 5 1 3 ) 

0 

Using the example shown in Figure 5.2, 0C represents the location along an arbitrary 

contour of J P e r f (0)=c at which the corresponding sum of squares surface (shown in Figure 

5.1) is a minimum. 

From Chen (1991), a (l-a)% confidence region for g(0) follows from application of the 

likelihood ratio test for the hypothesis g(0)=c, or: 

S (9 e ) -S (9) , 

S(0) 
CR g(y) H e : ^ ^ ( N - p) s F o ; 1 > N . p (5.14) 
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where FOC;I,N-p is the value of the F-distribution at the (1-tx) level of significance with 1 and 

N-p degrees of freedom. Some comments on Equation 5.14 are appropriate: 

• The confidence region is dependent on the observed data. It is expected that the 

'true' value of g(0) will be encompassed by (l-cx)% of the confidence regions 

so formed. 

• One degree of freedom is associated with the difference S(0 c)-S(0) as one 

constraint g(0)=c is imposed on 0 in the hypothesis test (see Gallant (1987)). 

• Equation 5.14 is exact when S(0) and g(0) are linear. Otherwise it is 

approximate in the confidence level, due to the nonlinearity in the estimation. 

Alternative methods of constructing confidence intervals for g(0) based on linearization of 

g(0) and a score test are discussed by Chen (1991). The likelihood method was found to 

be the most effective and algorithms were constructed based on it. 

The computational problem is then: 

Maximize g(0) 

Subject to 
S(0)-S(0) (5.15) 

(N - p) <; F A ; 1 > N _ P 

S(0) 

for determination of the upper confidence limit and minimization of g(0) for determination 

of the lower confidence limit. This procedure amounts to locating the maxima and minima 

of the function g(0) over the p-dimensional confidence region for 0, a problem which can 

be handled by any number of general constrained optimization algorithms. Here the 

'constr' function provided in the M A T L A B Optimization Toolbox (The Mathworks (1995)) 

has been used. It employs a Sequential Quadratic Programming approach. 
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The formulation given in Equation 5.15 involves an inequality constraint. Chen (1991) 

makes the simplifying assumption that the solution lies on a boundary point of the 

parameter confidence region and thereby transforms the inequality to an equality constraint. 

Justification for this simplification was based on experience, but no proof was given of its 

validity. For the examples tried involving robust control objective functions it has always 

been the case that the solution lies on the boundary of the parameter confidence region. 

5.2.3 Frequency Domain Representation of Uncertainty Regions 

For robust controller design using frequency domain techniques, a description of the 

uncertainty associated with Gp(eJ<",0) is necessary. At any c o , we would like to assess the 

region in the complex plane, corresponding to the parametric uncertainty described by 

the (l-a)% likelihood region in 9^. 

To accomplish this, first transform the complex number G (ej"\0) - G (ej'",0) to radial 

coordinates d and § where, 

d(0) = ||G p(e j M,0)-G p(e J M,0)| 

(j)=zl|GD(e j <'>,0)-Gp(e j w,0)| 
(5.16) 

Fix (j) at a point in the interval [0 2jt] so that d(0,(j),oo) becomes a nonlinear function of 0 

only. Hence, a constrained optimization problem of the nonlinear function d(0,<j),co) results 

and the algorithm described in Section 5.2.2 can be applied repeatedly for successive § and 

co. That is, for fixed § and co, 

Maximize d(0,(j),co) 

"S(0)-S(0) 
Subject to 

L 

( N - p ) * F c a;l,N-p 
S(0) 

G p (e j ( \0)-G p (e J ( \0) | = <|) 

(5.17) 
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The extremal values for d(6,<p,oo) may be evaluated at a number of values of § and an 

interpolation routine can then be applied to produce a continuous uncertainty region. 

5.2.4 Linear Approximation Procedures 

Linear approximations can be derived to the nonlinear closed-loop criteria and procedures 

for both inference and experimental design then follow. The derivation given is similar to 

that of Ljung (1987) although we note that parametric uncertainty is associated with the 

controller transfer function rather than with the process. The J M criterion given by 

Equation 5.5 will be used as an example for development of the linearized criterion. 

Consider again the set-point tracking error, eH j, of Equation 5.4. Taking a first-order 

Taylor series expansion about the true parameter values 0 with V e G c ( z ,0) representing 

the (pxl) gradient vector of G c (z , 0 ) gives, 

e H j ( t , e ) - y s p ( t ) ( 1 ^ 
U + GP(z-1,e)Gc(z-1,6)Ji 

( G p ( z - 1 , e ) V f l G c ( z - ' , 9 ) ^ 
(6-6*) (5.18) 

l v(i + G P ( z - ' , e ) G c ( z - 1 , e ) ) 2 

The first of these two terms, say e H (t ,0 ), is the nominal closed-loop tracking error for 

the controller and is not a function of the model identification. The second term gives a 

linear measure of the transmission of identification uncertainty to controller performance. 

By first subtracting the nominal controller error from the overall error we have, 

iKt,0) = eH 2(t,0)-eH 2(t,0*) (5.19) 

A linear performance degradation criterion, denoted APerf(0), is then found by taking the 

expectation wrt 0, 

APerf(0J = ^-J*v(eja,,e')Cov(0)wT(e-j<,,,e*)dtD (5.20) 
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where 

1 » ( e - , 8 ) - y , ( ^ ) ° ^ " . e > V . ° c ( e ' " ' . & ) ; ( 5 2 ] ) 

l + Gp(eJ(1,,0)Gc(eJ"\0)| 

Here G p is evaluated at 0= 0 and E 9 denotes the statistical expectation wrt 0. This is the 

expression given by Equation 33 in Shirt et al. (1994). It is important to note that 

subtraction of the mean controller error, eH , removes the effects of the nominal controller 

performance from APerf(0). 

Linear characteristics about the precision of the estimated parameters are contained in 

Cov(0), the pxp variance-covariance matrix. For experimental design purposes, Fisher's 

Information Matrix, M , is often used to approximate Cov(0) before input-output data is 

generated by use of a priori parameter estimates. An exact definition of M is given 

elsewhere (Goodwin and Payne (1977)). 

Inference: In order to develop a confidence interval for APerf(0)we note that it is 

asymptotically distributed as a weighted sum of % variables due to the normality of 0. 

The critical value against which APerf(0) should be compared can be determined using the 

procedure given in Appendix A of MacGregor and Harris (1993). This procedure uses an 

approximation to the weighted %2 distribution introduced by Box (1954). 

A common method of producing confidence intervals for nonlinear functions of parameters 

is the Wald or linearization method explained in Chen (1993). In it, the variance of g(0) 

is estimated using a first-order Taylor series expansion of g(0) directly, resulting in 

Var(g(0)) = Veg(0) • Cov(0) • Vgg(0) which is evaluated at 0. However, for the case 

where g(0) = JP e r f(0), VBg(0) = 0 and the Wald method fails. Thus, the linear 

2 This result is due to S. Quinn of Queen's University, Department of Chemical Engineering (personal 
correspondence) 
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approximation method developed above provides an alternative for cost functions of this 

type. 

Experimental Design: The experimental design problem is to minimize the criterion given 

by Equation 5.20 wrt some function of the input signal frequency characteristics. It is 

noted that use of this criterion results in minimization of a weighted trace of the information 

matrix and leads to an A-optimal experimental design (Goodwin and Payne (1977)). The 

choice of input signal form is arbitrary as long as persistency of excitation conditions are 

met (Ljung (1987)). Examples of input signal forms used are: 

• Low-order autoregressive sequences of filtered white noise; the performance 

criterion is minimized wrt the time series parameter(s). 

• Pseudo-random binary sequences (Godfrey (1993)) or generalized binary noise 

(Tulleken (1990)). Here the performance criterion is minimized wrt the basic 

sampling interval or switching probability. 

• A square wave; the performance criterion is minimized wrt the fundamental 

frequency. 

• Weighted sums of sinusoids; the performance criterion is minimized wrt the 

frequencies of the sinusoids as well as their respective weights (Goodwin and 

Payne (1977)). 

The minimization can, in many instances, be cast in terms of a small number of parameters. 

Some efficiencies in the optimization problems can be realized with particular input signal 

forms and these are discussed in the references cited above. 

In the case of test signals in the form of filtered white noise, it is often desirable to 

implement the input signal as a binary sequence. For a stationary signal, u(t), which is 

continuous in level with mean u, the following clipping may be applied: 
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uc(t) = 

if u(t) - u a 0 

(5.22) 

[-A if u(t) - ii < 0 

The spectrum of the clipped series, in terms of the original (stationary) series spectrum 

Ou(co),is(Kedem(1980)) 

Oc

u(co) = 
JT 

1*3 
(5.23) 

where p u is the autocorrelation function of the signal u(t). As an example, consider the 

first-order autoregressive series, 

u(t) = - A R • u(t - 1) + |(t) (5.24) 

Denoting its spectrum <E>u(co,AR), on clipping according to Equation 22, we have: 

O c

u (co,AR) = 
JT 

O u (co ,AR) + l ( - N | O u ( c o , A R 3 ) + - ^ - f - ) <D u(co,AR 5) +. 
6 \ J t / 4 0 \ J T / 

(5.25) 

For slow processes (AR<0) typically required of input signals, clipping results in addition 

of higher frequency components to the original signal. However, the coefficients 

associated with these higher frequency terms are quite small (<5%) so the spectral features 

of the original signal remain dominant. Thus, the simplifications introduced by using the 

spectrum of the undipped series for purposes of experimental design calculations would 

seem to not introduce significant errors into the properties of the final test signal. 
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To summarize, the input design procedure suggested above is: 
• Specify: Process model, Gp(eJ"\9) 

Information matrix, M | § ,O U (OO )J 

Closed-loop set point signal, ysp(co) 

Closed-loop controller transfer function, G c(e j l 0,9) 

• Minimize A P e r f ( § , G p , G c , M , y s p ) 

wrt AR 

• Use the value of the parameter AR to generate a realization of a 1st order 

autoregressive sequence according to Equation 5.24 

• Clip the sequence according to Equation 5.22. 

The process model, G p , can be identified using a simulation model if available. An 

example demonstrating the effectiveness of this procedure will be given in the following 

section. 

5.3 Numerical Illustration of Methods 
Consider the following first-order linear system: 

y(t) = - ^ r u ( t ) + - ^ r r (5.26) 
1 + az 1 + dz 

with a=-0.9512, b=0.0488, d=-0.98 and |(t) ~ N(0,0.2). We wish to apply a set-point 

tracking controller to this system and will examine the resulting closed-loop robustness in 

the sense of Equations 5.5 and 5.6. The applied controller transfer function is: 

G<(Z'9) - r \ -• m ( 5 - 2 7 ) 

g - G p ( z ,9) 
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where g is the open-loop gain. This represents a model following controller with the 

desired closed-loop response equal to that of the open-loop process. The performance of 

the closed-loop scheme is tested by application of a command signal, ysp(t), which is a 

square wave with fundamental frequency cosp=0.008. 

Based on the above information, two different input sequences were generated and their 

results compared. Both sequences are clipped (±3) realizations of white noise to which a 

first-order autoregressive input was applied as in Equations 5.22 and 5.24. The sequences 

differ in the single parameter, AR, of the lst-order filter. The first input sequence was 

generated according to the optimal control relevant procedure outlined at the end of Section 

5.2.4 using Equation 5.5 as the performance robustness criterion. The resulting input 

signal time series parameter for this sequence was found to be AR=-0.965. Figure 5.3 

shows realizations of the optimal (AR=-0.965) and non-optimal (AR=-0.8) clipped input 

sequences respectively. Note that because the signals are binary (±3) they have equal 

variance. 

Optimal Input: AR=-0.965 

50 100 150 200 250 300 350 400 450 500 

Non-Optimal Input: AR=-0.8 

5 0 

-2 

-4 

0 50 100 150 200 250 300 350 400 450 500 
Observation 

Figure 5.3: Optimal and sub-optimal input sequences for first-order example 
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First-order models plus disturbances were identified from N=500 input/output data points 

generated by applying the above two input sequences to the system of Equation 5.26. The 

model was of the same structure as the 'true' system. Parameter estimation was 

accomplished using the method of maximum likelihood and 95% joint confidence regions 

for the parameters 'a' and 'b' were computed. The above information is shown in Figure 

5.4 along with contours of J P e r f calculated according to Equation 5.12. 

0.25 

0.2 

-o 0.15 

0.1 

0.05 

0 
-1 -0.98 -0.96 -0.94 -0.92 -0.9 -0.88 -0.86 -0.84 -0.82 -0.8 

a 

Figure 5.4: Comparison of 95% confidence contours and JPerfcontours for 

the first-order example. 
• Thick solid contour = 95% confidence region from optimal input, 
• Thin solid contour = 95% confidence region from non-optimal input, 
• Dashed contours = Normalized Jperf (levels indicated), 
• x's = Parameter estimates (large=optimal, small=non-optimal), 
• o's = Maximal J p e rf within parameter confidence region, 
• * = true parameter values. 

Table 5.1 summarizes parameter estimates and maximal values of J P e r ffor the two cases. 

For this example, J P e r f contours exhibit a severe elongation along their principle axis and 

highly non-uniform spacing in between. Regions leading to unstable closed-loop 
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performance are indicated by increasingly close spacing of contours. This occurs when the 

gain reverses sign (i.e. b<0) and for regions beyond a<-l. 

C a s e P a r a m e t e r E s t i m a t e s 

a b 
M a x i m a l J P e r f 

Optimal Input -0.9543 0.0566 0.2727 

Non-optimal Input -0.9599 0.0509 0.5001 

T a b l e 5.1: Parameter estimates and maximal J P e r f for first-order example. 

The parameter confidence regions exhibit nonlinear effects but in a different manner than 

those of J P e r f . The underlying likelihood regions are seen to have considerable nonlinearity 

in the 'a' parameter. Clearly, the optimal and non-optimal inputs differ greatly in their 

ability to precisely estimate this parameter. As well, a slight rotation of the underlying 

likelihood surface is evident in a direction consistent with the J P e r f contours. In this and 

other examples, application of control relevant input sequences has shown that both size 

and orientation of the resulting contours are important in achieving maximal robustness. 

If a specification on the maximum robustness exists then the above gives a graphical 

interpretation of how this specification can be achieved. For example, a typical 

specification might be that J P e r f < 0.1 so that the robust performance degradation is much 

less than the nominal performance. In the above example, it was found that with 

application of the control relevant binary input signal over 500 sampling periods, J P e r f = 

0.2727 was achieved. Thus further experimentation would need to be performed in order 

to meet the performance specification. 
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a 

Figure 5 .5: Comparison of robust stability (Equation 5.6) contours (thin solid lines), 

95% and 99% nonlinear confidence regions (thick solid lines) and 95% linear confidence 

region (dotted ellipse) based on non-optimal input sequence (AR=-0.8). Also shown are 

the maximum likelihood parameter estimates (x) and true parameter values (*) for this 

example. 

In Figure 5.5 contours of robust stability, J S t a b , are shown generated according to Equation 

5.6. The region of instability coincides with reversal in the sign of the process model gain 

and is indicated by increasingly closely spaced contours. Most of the 95% likelihood 

confidence region is relatively far from such instability. Two issues are of note here. 

First, we see that the 95% confidence ellipse based on a linear approximation to the 

likelihood surface gives overly optimistic results mainly due to its inability to capture the 

asymmetric centering of the parametric uncertainty. For slowly sampled systems, common 

in the processing industries, a system will often be operating near stability constraints 

leading to such asymmetry. A more detailed comparison between the linear controller 

robustness bound developed in Section 5.2.4 and the nonlinear bound will be given later. 

Secondly, the 99% confidence region extends considerably further along the 'a' axis with 
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an accompanying loss in minimal robustness. For this example, use of the 95% bound 

would lead to a small loss (approximately 10%) in stability robustness but may not be a 

reasonable trade-off against the extra conservatism introduced into the controller design. 

The graphical procedure clearly illustrates such trade-offs. 

The 95% parameter confidence region based on the optimal input was mapped into the 

Nyquist plane by the method of Section 5.2.3 with the resulting contours shown in Figure 

5.6. For comparison, Nyquist regions based on 95% linear parameter CR's are shown as 

well. We note the following: 

• The regions are non-circular and non-elliptical. They are also eccentrically 

positioned about the nominal Nyquist point. 

• Orientations of the regions vary. 

• The linear approximation does not accurately represent the uncertainty 

associated with G p(e j m,0), particularly in the low frequency regions. 

Clearly, the regions constructed from the nonlinear parameter CR's would give a less 

conservative controller design more reflective of the actual parameter uncertainty associated 

with identification of the process. 
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0.2 

- 1 . 6 h 

1.8' 1 1 1 1 1 1 1 1 

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 
Real 

Figure 5.6: Representation of nonlinear (solid) and linear (dashed) 95% confidence 

bounds in the frequency domain. Points of the nominal Nyquist curve are 

shown by *'s. 

5.4 Coverages of Confidence Intervals 

The likelihood method for construction of (l-a)% confidence intervals for g(9) provides 

(l-tx)% coverage if the parameters enter into S(0) and g(0) linearly (Chen (1991)). 

However, identification and controller design using transfer function models most often 

involves nonlinear mappings of the parameters. The effects of such nonlinearities are 

tested in this section. As well, we examine the effect of finite data set lengths on 

confidence intervals for nonlinear functions. 

To facilitate this, the Signed Root Deviance Profile (SRDP) is defined by Chen and 

Jennrich (1996) as, 
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SRDP(c) = sign(c - g(9)) 
S(Qc)-S(Q)'l/2 

(5.28) 
S(8) ' 

where g(0) is the nonlinear parametric function (e.g. controller robustness functions of 

Equations 5.5 and 5.6) evaluated at the maximum likelihood parameter estimates and § c is 

defined by Equation 5.13. When plotted against g(9), the S R D P function provides 

valuable information regarding nonlinearities present in the expectation surface. It is 

analogous to the Profile-t Function of Bates and Watts (1987) when g(6)=9j, a single 

parameter (Chen and Jennrich (1996)). For a model which is linear in the parameters, a 

plot of the S R D P over the response space of g(9) is a straight line. Comparison of the 

actual and approximate linear (or "reference") S R D P ' s gives a continuous measure of 

nonlinearity across the response space. This can provide insights into appropriate 

linearizing parameter transformations, should they be necessary. We note that, unlike 

contour plots which are limited to two dimensions, profiling can be applied to situations 

involving any number of parameters. 

The reference line is normally constructed as a straight line passing through (g(9),0) with 

r * T ~ ilA 
slope V 0 g(9) • Cov(9) • V^g(9) as this coincides with the S R D P when it is linear. 

However the slope of the reference line wil l be zero for functions where V e g(9)=0. This 

occurs for the function of Equation 5.5 as was noted in Section 5.2.4. In such cases, 

the slope can be approximated by Chen (1993, Theorem 3.3.2) has [E e (APerf (9)) | 

shown that for general g(9), the reference line is not necessarily tangent to the S R D P at 

g(8). 
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In this and subsequent examples, "coverage" is calculated via 500 Monte-Carlo 

simulations. It is reported as the percentage of confidence intervals which encompass the 

true value. Coverages can be determined for either joint confidence regions of the model 

parameters ("parameter coverage") and/or nonlinear functions of the parameters, such as 

the robust control criteria of Equations 5.5 and 5.6 ("controller coverage"). Our interest is 

ultimately in the latter although there appears to be a close correspondence between the two. 

Consider again the first-order example of the previous section. SRDP functions were 

determined for two different identification inputs, the control relevant optimal AR=-0.965 

and non-optimal AR=-0.5. It is seen in Figure 5.7 that they are markedly different from 

one another and deviate considerably from their respective linear approximations. The 

vertical drop lines indicate the 95% confidence bounds and the superiority of the linear 

approximation in the AR=-0.965 case is evident. This superiority is mostly a reflection of 

the particular local conditions around which the linearization was taken. However, since a 

control-oriented optimal input does ensure small confidence regions there is some 

assurance that the 95% confidence bound is relatively close to the point of linearization. 

The corresponding coverages of the nominal 95% confidence regions for the normalized 

robust control criterion of Equation 5.12 are given in Table 5.2 but do not reflect the 

severity of the observed differences between the SRDP's and their respective linear 

reference lines. Hence, the linearization or "reference" line may not be the most appropriate 

for indicating deviations from nominal coverage. 
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0.4 

Normalized Robust Performance Criterion 

Figure 5.7: Signed Root Deviance Profile functions (Eqn. 5.28) for the first-order 
example with different input signal frequency contents. NjD=500. 
Solid lines: Signed Root Deviance Profiles (SRDP) 
Dashed lines: Linear approximations 
o, * and x: 90, 95 and 99% Confidence bounds 
+: Approximate 95% linear bounds 

Input 
(AR Parameter of Eqn. 27) 

Controller Coverage 
by 95% CR's 

-0.965 91.6 

-0.5 89.6 

Table 5.2: Controller coverages for various input signals applied to the first-order 
example of Section 5.3. Ni D=500. 

From Figure 5.7, it is also possible to assess the increasing degree of conservatism 

introduced by specification of a higher probability level. When the profile plot is relatively 

flat in the neighbourhood of the (l-tx)% critical point a great deal of conservatism can be 

introduced into the upper control bound specification with the requirement of 99% 

confidence. However, for the case with input AR=-0.5, we see that there is virtually no 

penalty associated with increasing the confidence level and it may be possible to satisfy 
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effectively a requirement of "hard" upper bounds on the performance (i.e. 100% certainty 

on the performance specification). Thus, careful inspection of the SRDP provides a means 

of setting reasonable performance expectations on the controller for problems of any 

dimensionality. 

In Figures 5.8 and 5.9 we see the effect of increasingly short datasets on the efficacy of the 

confidence regions. For the essentially asymptotic case (N= 10,000) both parameter and 

controller coverages are quite accurate, with some additional nonlinearity introduced in the 

controller criterion. Controller confidence bounds based on the linearization given in 

Equation 5.20 are overly conservative. As the number of observations in the data set is 

reduced, coverage drops and does so severely for N<500. The difference between 

parameter and controller coverages remains constant with the number of observations 

indicating that the nonasymptotic degradation in accuracy is associated with the parameter 

estimation stage. 

,1 1 , , , , 1 , , , L _ 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 
Number of Observations in Identification Stage 

Figure 5.8: Non-asymptotic parameter and controller coverages for first-order example, 
x: Parameter coverage based on nonlinear CR's 
o: Controller coverage based on nonlinear CR's 
+: Controller coverage based on approximate .linear CR's 
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0.14 

, ! , , , , , 1 
0 0.1 0.2 0.3 0.4 0.5 0.6 

Normalized Robust Performance Criterion 

Figure 5.9: SRDP functions for first-order example with non-asymptotic model 
identification. Corresponding 90, 95 and 99% controller confidence 
bounds are shown as the points 'o', '*' and 'x' respectively. 

5.5 Confidence Intervals, Validation and Undermodelling 
Much emphasis has recently been put on the role of model validation and its connection to 

the size of uncertainty specifications on identified models. The basic result of Guo and 

Ljung (1994) is that for models which have passed a model validation test on the cross-

correlation between residuals and past inputs, the error due to uncertainty in the process 

transfer function parameter estimates is larger than that due to inadequacy in the form of the 

model. Such a result is in line with the classical notion of model validation tests as part of 

the model building process (e.g. Box and Jenkins (1976)), and has been stated more 

recently by Ljung and Guo (1996) as "obtain an unfalsified model: reduce it if necessary". 
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Recent efforts in the system identification literature have abandoned this classical iterative 

approach and opted instead to determine uncertainty bounds on models of order less than 

that of the actual underlying process. A common approach is to fit an additional set of 

terms which represent this undermodelling simultaneously with the model parameters 

resulting in, 

y(t) = Gp(z-\e)u(f) + GA(z-\e)u(t) + |(t) (5.29) 

where upon comparison with Equation 5.7, Gp(z~',0) = Gp(z~',0) + GA(z~',0). The 

unmodelled dynamics GA(z~',0) typically assume a Finite Impulse Response model, 

which is less parsimonious and more generic in form than Gp(z~',0). 

In order to conduct tests for the magnitude of the parametric uncertainty associated with 

G p(z _ 1 ,0) and G A(z _ 1 ,0) some a priori assumptions are placed on the undermodelling 

component. Wahlberg and Ljung (1992) specify an overbound on the sum of residual 

errors, (3, which leads to "hard" (i.e. 100% coverage) bounds for the true process 

dynamics. The resulting uncertainty regions are given by: 

(0-0) TCov(0)(0- 0)ss|3 (5.30) 

where 0 is associated with both Gp(z"',0) and GA(z~',0). Only the case in which 0 

entered into the model linearly was treated. Nonlinear cases could be handled by the 

techniques discussed previously in this chapter. Goodwin et al. (1992) treat the observed 

GA(z)u(t) as a realization of a stochastic process with conditions on the rate at which its 

impulse response decays. In both cases a likelihood ratio test is applied to the set of 

parameters in G(z,0) and GA(z,0) in order to produce linearized frequency domain 

confidence regions. Larimore (1993) made use of the non-central F-distribution in forming 

approximate linearized confidence bounds for dynamic models. The non-centrality 
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parameter is related to the bias present (i.e. distance between expectation planes) but 

requires an estimate of the true process dynamics for its estimation. Thus application of the 

likelihood ratio test dictates estimation of the true process dynamics. 

In all of the above methods for characterizing uncertainty of reduced order models, it is also 

necessary to obtain a model of the 'true' process dynamics. The methodology for 

producing uncertainty regions presented earlier in this chapter relies on the assumption that 

the true process model is known and, in fact, produces uncertainty regions for this true 

process. It is presumed that these regions could subsequently be mapped to corresponding 

ones for reduced order models if deemed necessary for controller design. The important 

advantage here is that a more parsimonious model form for the true process dynamics is 

sought thereby avoiding problems of overfitting (i.e. capturing noise effects through fitting 

models parameters in addition to those required to completely describe the process 

dynamics). 

To further illustrate these points the following example is given. Consider a second-order 

system, 

° - Q n 2 z " ' u ( t ) + | ( t ) (5.31) 
1-1.7236Z"1+0.7408z"2 

with a£=sqrt(0.002). The input is a clipped (±1) realization of 1st order autoregressive 

process, 

u(t) = 0 ' Q 1 Z , a(t) (5.32) 
1 - 0.99Z"1 

where a(t) is a unit variance white noise process independent of §(t). A first-order transfer 

function model was fit to the data with varying orders, s, of the disturbance model. 
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bz"1 

G(z,0) = 
1 + S z " ' (5.33) 

H(z,§) = ^ — s 

l + d,z +...+ dsz s 

Five hundred simulations of each case were performed and results are given in Table 5.3. 

Coverages for the true process model were calculated as the percentage of cases in which: 

S(0 o)*S(0m o d) 1 + mod 
a ; p m 0 d . . N - p m o d 

(5.34) 
N - Pmod 

where the subscript 'mod' indicated the fitted model. The residuals were subjected to tests 

of autocorrelation (RA C) and cross-correlation (Rxc) which are explained in Appendix C. 

Critical values at the 95% confidence level against which R Xc and R A C should be compared 

are shown in brackets. 

s Mean Process Transfer 
Function Parameters 

a b 

R x c 

(M=20) (M=20) 

95% 
Model 

Coverage 

0 0.0634 -0.9397 46.1 (28.9) 1550 (31.4) 100 

1 0.0595 -0.9437 2.50 (28.9) 79.9 (30.4) 100 

2 0.0527 -0.9520 0.80 (28.9) 34.5 (28.9) 89.2 

3 0.0519 -0.9545 0.60 (28.9) 22.1 (27.6) 67.6 

5 0.0509 -0.9546 0.50 (28.9) 19.1 (26.3) 61.2 

Table 5.3: Results of undermodelling simulation. 

For an inflexible disturbance model (s=0) the confidence bounds based on the sum of 

squared prediction errors are very large due to the large amount of bias present in the 

123 



Chapter 5. Control Relevant Identification 

identified model (i.e. the nominal sum of squared prediction errors is large). This is 

reflected in the validation statistics and the model would be rejected at the 95% confidence 

level. The autocorrelation function (ACF) for realizations of this case are shown in Figure 

5.10 in which the model inadequacy is obvious. With increasing s, more of the residual 

dynamics are captured by the disturbance transfer function and the model bias is reduced. 

Correspondingly, a reduction in the validation statistics results to the point where the model 

is validated. The A C F for the s=3 case is shown in Figure 5.11. However, application of 

the likelihood ratio test to the validated identified models does not result in good coverages. 

This is a direct consequence of the overmodelling which has made the residual vector 

smaller than the true residuals. 

Figure 5.10: Auto-correlation function for undermodelling example with s=0. 
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Figure 5.11: Auto-correlation function for undermodelling example with s=3. 

The conclusion to be drawn from this illustration is that validation of a model does not 

guarantee confidence intervals will provide good coverage. In order to obtain good 

coverage a parsimonious model representative of the true process dynamics must be used. 

This emphasizes the need for a process models based on fundamental physical and 

chemical knowledge. 

5.6 Application to Wet End Chemistry 

This section applies the linear experimental design techniques developed in Section 5.2.4 to 

the problem of designing control relevant test sequences for the paper machine wet end 

chemistry system. The idea of designing and applying perturbation signals to the system 

might seem at odds with developing a detailed first principles simulation model. Indeed, 

part of the motivation for developing the simulation was to avoid the limitations of 

empirical models which are effective only in the range over which the data was taken. 

125 



Chapter 5. Control Relevant Identification 

However, as seen in Chapter 4, with incomplete knowledge of certain key model 

parameters, process data is required to determine values for these parameters. This was 

seen most clearly in Section 4.2.1 where an approximate fitting of model parameters was 

made to step response data. The purpose of the examples given here is to impart desirable 

frequency characteristics into the test signals so that they are relevant to anticipated closed-

loop control requirements. The role of a previously developed simulation in designing 

these input sequences will also be noted, along with some practical aspects of their 

implementation. Hahn (1984) has noted the desirability of predicting process behaviour 

before implementing test signals into systems, in order that previously held perceptions are 

challenged in an objective manner. This prior prediction is done using the wet end 

chemistry simulation. 

Test sequences were designed for both LMW cationic and HMW anionic polymers. Each 

sequence was designed to be 2 hours in duration. It was decided to overlap the sequences 

by commencing the HMW anionic sequence 1 hour after the start of the LMW test. This 

overlap was designed in order to show interactions between these two effects. However, it 

is noted that the signals are not specifically designed to account for these interactions. 

The response of wire drainage to LMW cationic changes was used for design purposes, 

while the flume solids consistency response was paired with HMW anionic polymer. The 

closed-loop objective was the normalized robust performance criterion of Equation 5.12 

subject to a square wave (closed-loop) command signal with fundamental frequency 

co=0.0094. The results for the LMW cationic case will be shown as an example. Special 

considerations with regard to the rate of HMW anionic addition are also discussed. 
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From the simulated step response of Section 4.2.2, an approximate first-order transfer 

function model was identified for the LMW cationic (LMWC) <$> Wire Water Retention 

(WWR) response. The model is, 

WWR(t) = 
-0.0213Z" 

LMWC(t) (5.35) 
1-0.9814Z"1 

The model following controller design procedure from Section 5.3 was again used so that 

the closed-loop response matches the open-loop response according to Equation 5.27. 

The linear input design procedure of Section 5.2.4 was then applied to determine an 

optimal value of the AR parameter in the first-order time series of Equation 5.24, with 

results shown in Figure 5.12. The original and clipped time series realization implemented 

as the test signal for L M W cationic polymer are shown in Figure 5.13. It is noted that there 

are some high frequency switches in the proposed LMW cationic flowrate. These are 

ignored in the final proposed implementation of the signal as it would be impractical for 

operational staff to make these changes. 

Select ion o l Opt imal Autoregress ive Input 

Figure 5.12: Selection of optimal input signal parameter for L M W cationic polymer test 

sequence 
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Realization of optimal input sequence: AR=-0.9945 
ca 101 1 1 1 r 

E 
o 
Z _ 2 I , , , , , 1 

0 50 100 150 200 250 
Time (minutes) 

Figure 5.13: Clipped and non-clipped input realizations for LMW cationic polymer test 

sequence 

The robustness of the anticipated controller using both the optimal input signal (AR=-

0.9945) and a non-optimal test signal (AR=-0.8) are compared in Figure 5.14. The 

optimal test input's improved anticipated performance robustness is clearly illustrated by its 

much smaller confidence region volume. Worst case performance is indicated by the 

location of the 'x's on the corresponding confidence region boundaries, and where they lie 

on the control performance surface (dashed contours). In this case we see that the optimal 

input provides an anticipated three fold improvement in performance. Chapter 6 will 

explore whether these anticipated gains are realized in practice. 
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-1 -0.995 -0.99 -0.985 -0.98 -0.975 -0.97 -0.965 -0.96 -0.955 -0.95 
a 

Figure 5.14: Controller robustness and identification plot for optimal and non-optimal 

input sequences in L M W cationic polymer test. Optimal Input (Thick 

contour), non-optimal input (thin contour). 

For the case of the HMW anionic polymer test signal an additional constraint was imposed 

on the incremental rate of change to avoid a possible sheet break. After consultation with 

operating personnel a maximum rate of 0.6%/minute was determined. In order to 

incorporate this into the design procedure, the flume solids consistency response was 

restricted through choice of the desired closed-loop response, H m , in a pole placement 

controller design (Astrom and Wittenmark (1989)). In general, for second-order closed 

loop dynamics, 

Hm(s) = - 5 - ^ T (5.36) 
co + 2§co + s 

where the parameters % and co are chosen so that the maximal slope of the response is less 

than the above specified rate. The fact that, as a worst case scenario, there is essentially a 

straight open-loop gain relationship between input and output leads one to consider the 

129 



Chapter 5. Control Relevant Identification 

desired dynamics for both the input test signal and output closed-loop response to be 

expressed by H m . 

The resulting structure for H m was found by choosing co=0.4 and §=1 , giving a discrete 

time transfer function representation, 

(0.0616 + 0.0417z-')z" 

1.0-1.3406Z"1 +0.4493z" 
H m ( z - ' ) - - i : '- =- (5.37) 

The input signal form was modified for the clipped time series according to the procedure 

shown in Figure 5.15. 

White Noise 
(l-f-AR)z' (l-f-AR)z' 

Clipping H 
m w 1+AR z 1 

Clipping H 
m w 1+AR z 1 

u(t) 

Figure 5.15: Modified procedure for obtaining input signal with second-order dynamics 

In this way, the optimal parameter AR was chosen to account for the fact that both the 

identification input and the desired closed-loop response must follow suitably slow 

dynamics. 

The designed test sequences and simulated responses are shown in Figures 5.16 and 5.17 

respectively. Note that some simplifications were implemented by ignoring very short 

switches in the theoretical test signals. For the case of the HMW anionic test signal, 

ramped approximations are made in order to facilitate implementation of the signal in a 

DCS. Maximal test levels were agreed upon with operational staff to again ensure the 
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safety of the test. Due to a long term malfunction of the low consistency (retention) sensor 

electronics it was not possible to implement this test sequence during the course of this 

project. 

120 

T i m e ( m i n u t e s ) 

Figure 5.16: Multivariate input test sequence for LMW cationic and HMW anionic 

polymers 

Figure 5.17: Simulated wire water retention and flume solids consistency responses to 

multivariable input test sequence. 

131 



Chapter 5. Control Relevant Identification 

5.7 Summary 

The first part of this chapter has extended existing methodologies for producing bounds on 

the uncertainty associated with identified transfer function models used in the design of 

feedback control schemes. The result is that one can specify, with arbitrary probability, 

the anticipated uncertainty for any measure of closed-loop performance. The basic problem 

has been cast as an optimization of the controller robustness measure constrained by the 

model uncertainty, which is an application of a result due to Chen (1991). A constrained 

optimization approach has been suggested for determining the maximum and minimum 

expected robustness measures. As well, a procedure for representing the model uncertainty 

in the frequency domain has been given. The procedure also uses a constrained 

optimization approach as well as the fact that process transfer function frequency response 

is a nonlinear function of the parameters. 

Parametric nonlinearities affecting both the modelling and control problems are accounted 

for by the above techniques. From the simple examples examined in this study, confidence 

bounds which account for such nonlinearity are found to be significantly more accurate 

than those based on linear approximations. The Squared Root Deviance Profile (SRDP), 

introduced in Chen and Jennrich (1996), was used to give a graphical summary of the 

nonlinearity in the constrained optimization problem. In this manner, trade-offs between 

the level of confidence in the bounds (i.e. conservatism) and controller robust performance 

could be analyzed. 

The efficacy of the above confidence intervals has been determined by the statistical concept 

of "coverage" — the probability that a confidence interval encompasses the true value. 

While confidence intervals based on likelihood regions are exact in shape they are 

approximate in the probability level, a, as their development is based on an analogy to the 
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linear case. As well, identification carried out with finite datasets leads to small deviances 

of the coverages from their nominal level. An example was given showing, through use of 

the SRDP function, the relationship between the nonlinearities introduced by the above 

two approximations and the corresponding loss in coverage. This suggests the need for 

finding linearizing transformations to the sum of squares functions. 

An application of control-relevant input signal design was given. Through consideration of 

the control objective in the input signal design, substantial reductions in the size of the 

closed-loop uncertainty bounds were realized for a typical modelling/control situation. This 

was accomplished by affecting both the size of the parameter uncertainty region and its 

orientation with the control objective function. The input design theory was based on a 

first-order linear approximation to the closed-loop robust performance function. Hamilton 

and Watts (1985) have suggested a nonlinear formulation to the experimental design 

problem based on higher-order Taylor series expansion. 

A basic assumption of the above methodology is that one has identified the correct model 

form. Bounds on the uncertainty of an identified model that are based on classical 

statistical assumptions have come under a great deal of scrutiny in recent years. In 

particular, the reluctance to search for an assumed "true" underlying process has motivated 

alternative approaches in which the residuals in a lower order model contain both a 

stochastic component and unmodelled process dynamics. Bounds of the resulting 

uncertainty from such schemes are typically estimated by fitting a reasonably generic model 

form to the residuals and conducting hypothesis tests based on this approximate model. It 

has been argued here through the principle of parsimony, and shown by example, that 

identification of the true process leads to coverages of uncertainty regions closer to nominal 

levels. This holds even if model validation statistics have found no evidence of lack of fit. 
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Chapter 6 

Identification of Wet End Chemistry Dynamics 

The previous chapter introduced a methodology for conducting identification experiments 

which ensure good closed-loop performance when the system is linear. This chapter 

implements these methods in the wet end chemistry control problem using the nonlinear 

simulation model developed in Chapter 3. This is done in order to test the identification 

method's effectiveness in a more challenging setting. The overriding goal is to obtain 

reliable input-output models of the wet end dynamics in a form suitable for controller 

design. 

To this end, the HMW Anionic Polymer <=> White Water Consistency loop will be 

investigated. Addition of this polymer is the final manipulated variable which affects wet 

end operations (retention, drainage, etc.) and as such is extremely important. The 

simulated open-loop behaviour of this loop was discussed in Section 4.2.1 and an optimal 

input testing sequence was designed in Section 5.6, based on the simulation. Simulation 

results indicated that interactions between short and long white water recirculations leads to 

higher order dynamics. This chapter will further characterize such behaviour. As well, 

data from the on-machine polymer ramp increase (Section 4.3) will be used to characterize 

the disturbances acting on the system. 
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6.1 Implementation of Control Relevant Identification 

6.1.1 Disturbance Modelling 

The ramped step increase investigated in Section 4.3 is used to determine a disturbance data 

sequence. The residuals from the measured white water filler consistency and the 

simulated data from Case 4 are taken as the disturbance sequence, which is plotted in 

Figure 6.1. 

0.08 r-

0.06 -

0.04 -

(I , , , , , 1 

0 20 40 60 80 100 120 
O b s e r v a t i o n 

Figure 6.1: Additive disturbance sequence for white water filler consistency signal 

A number of linear time series models were fit to the above sequence. These models are of 

the ARIMA (Autoregressive Integrated Moving Average) form represented by, 

c „ + c , z +... + C p Z 
-2 

<*(t) - -,° L f r r r&t) (6-D 
V (l + f,z +... + fsz ) 

where, as in Chapter 5, V'=(l-z ')' and |(t) is a zero mean, normally distributed white noise 

process with variance o*. Inclusion of the differencing operator, V , accounts for low 

frequency drifting of the process. 
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Results from the model fitting by the method of maximum likelihood are summarized in 

Table 6.1. Models were partly judged by their ability to minimize the one-step ahead 

prediction error loss function. As well, the final prediction error (FPE) criterion indicates a 

trade-off between the amount of variation captured by the model and the complexity of the 

model. It can thereby be regarded as a measure of model predictive power (Priestly 

(1989)). 

Structure Loss Function (xlO4) F P E (xlO4) 

MA(1) 1.778 1.749 

ARMA(1,1) 1.743 1.802 

IMAQ.l) 1.749 1.778 

IMA(1,2) 1.825 1.765 

ARIMA(1,1,1) 2.069 2.140 

ARIMA( 1,2,1) 2.5720 2.661 

Table 6.1 Results of fitting ARIMA time series to disturbance sequence 

Most of the models have similar values for the loss function and FPE. To select the most 

appropriate model form the autocorrelation functions (ACFs) were examined. Figure 6.2 

shows the ACFs for the IMA(1,1) and MA(1) cases. In the former, there is a significant 

correlation at lag 2 which led to an (unsuccessful) attempt at improving the model by 

second differencing. The MA(1) model has a significant correlation at lag 1. Surprisingly, 

addition of an AR parameter is not significant. The MA(1) model was chosen as it 

represents a stationary time series and the data suggest little evidence of the large drifts 

associated with non-stationary integrated forms. The fitted disturbance model is then: 

d(t) = (l + 0.625 lz-')t;(t) (6.2) 

with c^=1.743xl0~4. The standard deviation of the parameter is 0.0748. 

136 



Chapter 6. Identification of Wet End Chemistry Dynamics 

IMA(1,1) 

0 2 4 6 8 10 12 14 16 18 20 
Lag 

MA(1) 

-0 .5 h 

_1 l i i i i i i i i i i l 
0 2 4 6 8 10 12 14 16 18 20 

Lag 

F i g u r e 6.2: Autocorrelation functions of residuals from time series model fitting to 

disturbance sequence 

6.1.2 Input Signal Implementation 

Two input sequences were implemented in the simulated process manipulating HMW 

Anionic Polymer flowrate. The first is the 'control relevant' sequence shown in Figure 

5.15. Design of this input sequence is discussed in Section 5.6 as well. The second input 

sequence is a square wave input signal with a switching time (1/2 period) of 30 minutes. 

This represents a simple test pattern that could be easily implemented in a mill and will be 

denoted as the 'ad-hoc' input. The ad-hoc input is also subject to a maximum rate of 

change constraint of 0.6%/minute. At each 30 minute interval the HMW Anionic flowrate is 

ramped to the next level and held at there until the next switching time. Both of these 

inputs are shown in Figure 6.3 below. 
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Control Relevant Input Sequence 

=c _o.061 ' 1 ' ' ' ' 1 
0 20 40 60 80 100 120 140 

A d - h o c Input Sequence 

140 
Time (minutes) 

Figure 6.3: Control relevant and ad-hoc input sequences 

Clearly the control relevant input sequence attempts to excite a broader range of frequencies 

than does the ad-hoc input. This is partly a reflection of the closed-loop requirements 

placed on the controller. 

Upon implementation of these input sequences in the simulation model the white water 

filler consistency responses were generated and are shown in Figure 6.4. 
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Simulated Response to Control Relevant Input 
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Simulated Response to Ad-hoc Input 
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Figure 6.4: Simulated white water filler consistency responses to implementation of 

input sequences 

6.1.3 Noise-free Identification of Linear Models 

Linear transfer function models were first fit to the noise free responses using the data 

displayed in Figures 6.3. and 6.4. This provided a means to investigate the order of the 

true process dynamics without uncertainty introduced into the modelling process by the 

presence of noise. Furthermore, it is also possible to assess the frequency distribution of 

bias introduced if reduced order models are to be used for controller design. 

The trade-off between model order and the squared prediction error loss function is shown 

in Figure 6.5. Note that there are separate curves corresponding to the two different input 

signals. This is due to the different frequency contents of the control relevant and ad-hoc 

inputs, with the former actually having a higher loss function for all model orders. As 

well, it is important to note that it was not possible to drive the loss function to zero even in 
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the noise free case. This indicates the presence of nonlinearities, the nature of which will 

be discussed in more detail later. 

Control Relevant Input 

,1 , , , , , , , , 1 
1 2 3 4 5 6 7 8 9 10 

Model Order 

Figure 6.5: Loss function for noise free linear model fitting 

The autocorrelation function for the 3rd and 5th order models identified using the control 

relevant input sequence are shown in Figure 6.6 by the thin and thick lines repectively. In 

the noise free case the A C F is an indication of model inadequacies indicated by linear 

correlation amongst lagged residuals. If the true system were linear then the A C F would be 

zero for lags > 0. Clearly the 5th order model does a reasonable job of capturing most of 

the linear effects present while there is some inadequacy indicated for the third order model. 

140 



Chapter 6. Identification of Wet End Chemistry Dynamics 

-0.5 ' ' ' ' ' ' ' ' ' 1 
0 2 4 6 8 10 12 14 16 18 20 

Lag 

Figure 6.6 Autocorrelation function of fifth (thick) and third (thin) order models from 

fits to noise free data 

If the set of possible models is restricted to those which are linear, the loss function curves 

demonstrate that there is little penalty to be paid for choosing a third-order approximation to 

the (unknown) true model. This is further illustrated in Figure 6.7 where Nyquist plots for 

fifth and third-order linear models are compared. Plots are shown for models identified 

with both the control relevant and ad-hoc inputs, along with the theoretical spectral 

densities of these inputs. Since the fundamental frequency of the square wave input is 1/60 

minutes=0.0167 minutes1 the ad-hoc input gives rise to excellent frequency matching in 

this region. The control relevant input, which excites a broader range of frequencies, has 

better mid-frequency matching with the higher order (linear) model. 
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Figure 6.7: Nyquist plots and input spectra for noise free linear identification. 

(a) Third (thin) and fifth (thick) order Nyquist plots, control relevant input 

(b) Third (thin) and fifth (thick) order Nyquist plots, ad-hoc input 

(c) Control relevant input spectral density (normalized) 

(d) Ad-hoc input spectral density (normalized) 

6.1.4 Identification of Linear Models in Presence of Noise 

In order to test the efficacy of the control relevant methodology for this example, five 

realizations of an additive disturbance were generated according to the MA(1) model 

identified in Section 6.1.1 and added to the noise free simulated responses. The four 

parameters of the 3rd order model, 

G ( z , 6 ) - - b ° Z _2 (6.3) 
l + atz +a2z +a3z 
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were identified for each of the 10 cases (5 for control relevant input case, 5 for ad-hoc input 

case). The third-order model was used because it was simpler for controller design 

purposes. Figure 6.7 also showed that bias introduced by using this lower order 

approximation is not too severe, particularly in the frequency ranges of interest. 

Nyquist diagrams of the fitted models are shown in Figure 6.8 along with the noise free 

Nyquist plots for the 5th and 3rd order approximations. The variation in the models 

identified with the control relevant input is clearly much greater than that from application 

of the ad-hoc input. This is especially true at lower frequencies which is the result of the 

lower frequency content of the ad-hoc input signal. In order to achieve better closed-loop 

robustness one would expect models identified with the control relevant input to 

demonstrate reduced variability as was seen in Chapter 5. The reasons for this discrepancy 

will be discussed further in Section 6.1.6. 

0 0.1 
Real 

Figure 6.8: Nyquist diagrams of fitted third-order models with noisy data 

(a) Control relevant input, noise free, 5th order (thick), 3rd order (thin) 

(b) Ad-hoc input, noise free, 5th order (thick), 3rd order (thin) 

(c) Control relevant input, noisy realizations (thin lines) 

(d) Ad-hoc input, noisy realizations (thin lines) 
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6.1.5 Closed-loop Performance 

Pole placement controllers were designed based on the third-order models identified from 

the noise free responses. A pole placement procedure was chosen as it allowed explicit 

specification of the closed-loop response and analytical determination of the controller 

transfer function, which was convenient for the input design procedure. This represents a 

slight re-design of the controller used to calculate the input signal in Section 5.6. The 

previous design was calculated "in the field" prior to completion of the simulation model. 

First the desired closed-loop response was modelled with a 3rd order transfer function 

fitted to the HMW Anionic Polymer flowrate signal from the ramp test of Section 4.3. This 

higher-order representation was determined to satisfy causality conditions in the controller 

design. The resulting model normalized to unity gain is: 

H (z - 1) , (6.4) 
1-1.0146Z"1+0.3280z"2 -0.1556z"3 

Following Astrom and Wittenmark (1990) the servo design problem is to find coefficients 

of the polynomials R(z'), S(z') and T(z') such that, 

BT B 
= —si- (6.5) 

AR + BS A m 

where B/A is the process transfer function of Equation 6.3 and B m / A m =Hm. From this the 

resulting control law is: 

R(z"')u(t) = T(z-1)y s p(t) - S(z-')y(t) (6.6) 

The orders of the design polynomials R,S and T are subject to causality conditions 

specified in Astrom and Wittenmark (1990). Some further design requirements are: 
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1. No cancellation of process zeros. 

2. High gain at low frequencies. This is achieved by requiring (1-z1) to be a 

factor of R thereby introducing integral action into the controller. 

3. Low sensitivity to measurement noise. This was achieved by proper selection 

of the observer polynomial A0(z_1). 

With the above specifications, the algebraic design problem is then to solve the Diophantine 

equation: 

(1 - z - X z - ' ^ C z - 1 ) + B-Cz- 1 )^- 1 ) = A 0 (z-')A m (z- 1 ) (6.7) 

where, 

B(z 1) = B+(z- |)B-(z1) = (l)b0z-1 

R(z') = (1-z1) BXz^R'^z - 1 ) = (1-z1) B+(z"1)(l+r, z ]+r 2 z"2) 

S(z_1) = S ^ S j z_1+s2 z"2+s3 z"3 

A 0 (z 1 ) = (l-aobsz-1)3 

For all cases, a o b s was chosen as -0.5 as this value best attenuated high frequencies. The 

six polynomial coefficients r,, r2, sG, s,, s2, s3 and s4 were determined for each case based 

on the identified model. 

The expected performance of the controller was first (qualitatively) judged by examining 

the closed-loop response with the identified linear model as the true model. Both the servo 

and disturbance rejection performance were examined with a typical result (control relevant 

case) shown in Figure 6.9 and the corresponding loop gain transfer function Bode diagram 

in Figure 6.10. The servo performance is quite good with smooth controller action. The 

controller is able to (partially) reject low frequency disturbances but is still somewhat 

sensitive to higher frequency measurement noise. This sensitivity is seen in the Bode 

diagram in which the amplitude ratio does not roll off strongly. In practice it would be 

desirable to introduce filtering into the measurement feedback loop. 
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0.01 

S 0.005 F 

-0.005 

300 400 500 

200 300 400 

Time (minutes) 

500 

Figure 6.9: Simulated controller performance based on identified third-order linear 

model. 
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Figure 6.10: Bode diagram of loop gain transfer function for controller based on 3rd 

order linear model 

These controllers were then implemented in the wet end chemistry simulation and the servo 

responses tested. Ten cases were simulated using the five models identified from both the 

control relevant and ad-hoc input sequences. For each of the ten cases, deviations from 

nominal H 2 performance were calculated as ^ (y - y N F ) 2 where the nominal performance, 
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yN F, was taken from a controller designed based on the noise free parameters. Results are 

shown in Table 6.2. 

Realization Control Relevant (xlO3) Ad-hoc (xlO3) 

1 1.137 0.804 

2 7.788 5.795 

3 77.024 3.764 

4 31.445 11.094 

5 7.190 6.502 

Table 6.2: H 2 performance deviations for controllers designed based on noisy data 

In all cases the controllers designed using models identified with the ad-hoc input gave 

superior robust servo performance. This is not surprising given the variation in the 

identified models seen in Figure 6.8 which resulted from excitation in frequency regions 

where apparent nonlinearities exist. 

6.1.6 Identification of Nonlinear Behaviour 

Difficulties were encountered in previous sections when attempting to fit linear dynamic 

models to data generated from the simulation model. The unreliable nature of models 

estimated from data generated using the control relevant input was attributed to excitation of 

frequencies at which nonlinearities were present. In order to examine this further, the 

simulation was excited at individual frequencies and the response examined. In general the 

responses were found to be nearly sinusoidal for all frequencies tested. Hence, 

approximate amplitudes and phase angles could be determined between the HMW Anionic 
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Polymer input and the White Water Filler Consistency output. These 'true' responses were 

then plotted on the Nyquist plane and are shown in Figure 6.11. 

0.04 r 
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Figure 6.11: Frequency response from simulation model ('o') at various frequencies 

versus 5th order linear models identified using the control relevant (thin 

line) and ad-hoc (thick line) inputs. 

Low frequency matching of the true and linear model responses is good. However, at 

higher frequencies there is considerable bias present. This agrees with the observations 

and results from previous sections. Since the control relevant input signal attempted to 

excite both low and high frequencies it introduced considerable bias into the modelling at 

these higher frequencies. The ad-hoc input, on the other hand, excited only the low 

frequency region and as such introduced little bias into the estimation. 

To characterize this nonlinear behaviour further, the steady-state response of White Water 

Filler Consistency to HMW Anionic Polymer addition rate was examined over the normal 

operating range. This is shown in Figure 6.12 where a nearly linear relationship is evident 
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over the entire range. The close matching of the linear models and the simulation response 

in the low frequency range seen in Figure 6.11 is consistent with this result. 

•0.15 -0.1 -0.05 0 0.05 0.1 0.15 
HMW Anionic Flowrate (L7s) 

0.2 0.25 0.3 

Figure 6.12: Steady-state response of White Water Filler Consistency to HMW Anionic 

Flowrate. 

A nonlinear difference equation was fit to the noise free data giving a model of the form: 

y(t) = -a,y(t - 1) - . . . - ary(t - r) + b^u(t - 1) +... + b^(t - s) 

+boU 2 ( t - l ) + . . . + blu 2 (t- l) 

This maintains the form of a linear regression so that the ARX procedure in the Matlab 

System Identification Toolbox (The Mathworks (1995)) could be used. The sum of 

squared errors loss function for increasing model orders (r=s=l) is shown in Figure 6.13 

and can be directly compared with the loss functions from linear model fitting of Figure 

6.5. For both the control relevant and ad-hoc inputs the overall loss functions are 

consistently lower for all model orders. More importantly, it is possible to drive the loss 

function close to zero, indicating that the input nonlinear model form of Equation 6.8 is 
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capable of describing the process dynamics. Alternative models forms may provide more 

parsimonious representations but will not be explored here. 

Model Order 

Figure 6.13: Loss functions for noise free nonlinear model fitting 

6.2 Summary 
One of the primary purposes of this chapter has been to test the control relevant 

identification methodology developed in Chapter 5 in a more challenging problem. 

Through use of the wet end chemistry simulation as the real plant, two different input 

signals were tested for their ability to identify dynamic models for the HMW Anionic 

Polymer/White Water Filler Consistency loop. Because of the presence of strong 

nonlinearities in the higher-order dynamics, the control relevant input failed to give models 

which were more robust than those from a low frequency ad hoc input when implemented 

into pole placement servo controllers. This indicates that the method itself may not be 

particularly robust to these types of nonlinearities. Thus it would seem appropriate to 

extend the control relevant identification methodology to include the presence of 
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nonlinearities. Knowledge of the presence and nature of nonlinearities could be furnished 

when an accurate process simulation is available. Without this level of a priori knowledge 

it is more appropriate to utilize input design techniques which are robust to model bias. 

Ljung (1987, Chapter 13) discusses design of input signals which account for the 

possibility of linear bias. Techniques for input design in the presence of nonlinear biases 

appear not to have been discussed in the literature. 

Knowledge of the form of the process nonlinearity may aid in design of higher 

performance controllers for this loop. Rantala et al. (1993) have previously attempted 

adaptive control of the HMW Anionic Polymer / White Water Filler Consistency loop based 

on continuous identification of a linear ARX process model. The need for adaptation may 

be tailored by the operating range (i.e. gain scheduling) according to Figure 6.12 or by the 

frequency at which controller actions are demanded. 

The value of an accurate process simulation has been underscored both in the identification 

and control stages. Most importantly, noise free identification can be carried out and 

potential biases in any proposed model can be identified prior to either input signal or 

controller design. Precise or control relevant models are not needed in order to develop the 

simulation model but rather follow from it. 
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Chapter 7 

Conclusions and Future Work 

7.1 Summary and Conclusions 
T h e p r o b l e m o f i d e n t i f i c a t i o n a n d eventua l c o n t r o l o f c h e m i c a l p h e n o m e n a in p a p e r m a k i n g 

is f o r m i d a b l e . A s s e e n i n th is a n d o ther w o r k s the p r e s e n c e o f m u l t i v a r i a b l e , n o n l i n e a r a n d 

o f ten p o o r l y u n d e r s t o o d ef fects in a d d i t i o n to d i f f i cu l t o n - l i n e m e a s u r e m e n t s o f k e y 

c h e m i s t r y v a r i a b l e s present m a j o r c h a l l e n g e s . T h i s w o r k has at tempted to i n c r e a s e the 

u n d e r s t a n d i n g o f p a p e r m a k i n g w e t e n d c h e m i s t r y s u c h that re l iable quant i ta t ive p r e d i c t i o n s 

o f p r o c e s s p e r f o r m a n c e are a v a i l a b l e . T h e p r i m a r y e n d - u s e o f the m o d e l d e v e l o p e d here 

has b e e n f o r e v e n t u a l o n - l i n e c o n t r o l . 

In o r d e r to a c c o m p l i s h the a b o v e , a l a r g e - s c a l e d y n a m i c s i m u l a t i o n o f the w e t e n d 

c h e m i s t r y s y s t e m w a s d e v e l o p e d e n c o m p a s s i n g the entire p a p e r m a c h i n e we t e n d . T h e 

m o d e l w a s b a s e d o n the P r i n c e A l b e r t f i n e p a p e r m i l l . W h e r e p o s s i b l e , f i r s t - p r i n c i p l e s 

m o d e l s w e r e u s e d a n d s i m u l a t e d r e s p o n s e s w e r e va l ida ted aga ins t o n - l i n e p r o c e s s d a t a . 

T o o l s w e r e d e v e l o p e d f o r character iza t ion a n d m i n i m i z a t i o n o f uncer ta in ty in l inear 

d y n a m i c p r o c e s s m o d e l s ident i f i ed f r o m n o i s y data . T h e s e t e c h n i q u e s a c c o u n t f o r 

an t ic ipa ted c l o s e d - l o o p r e q u i r e m e n t s w h e n the m o d e l s are to be u s e d in l inear f e e d b a c k 

c o n t r o l s c h e m e s . F i n a l l y , s u c h c o n t r o l re levant ident i f i ca t ion t e c h n i q u e s w e r e a p p l i e d to 

the w e t e n d c h e m i s t r y s y s t e m to test their e f f e c t i v e n e s s u s i n g the p r e v i o u s l y d e v e l o p e d 

s i m u l a t i o n as the ac tua l p r o c e s s . 
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The two main response variables studied were white water silo consistencies and wire 

drainage. The simulation model was able to predict variations in these two variables in a 

directionally correct manner thereby fulfilling the minimum requirement set out at the 

beginning of this work. This success was judged by comparison against on-line process 

data as well as the experience of paper mill personnel'. Furthermore, it was demonstrated 

that the model is flexible enough such that calibration against on-line data leads to accurate 

predictions as well. 

The on-line control of pH in the wet end was found unnecessary due to its control in the 

bleach plant. However, the wet end of a fine paper machine is sensitive to pH variations in 

the normal operating range even in the presence of calcium carbonate filler. If pH 

variations do occur either process solutions or better control in the pulp mill should be 

sought. 

Development of the wet end chemistry simulation was accomplished by first building a 

'physical' model of furnish component flows throughout the wet end. To this, modules 

were added describing refining, drainage, polymer adsorption and particle flocculation 

processes. The focus of these models was on their relationship to wet end chemistry 

phenomena. In particular, faithful tracking of fines production and recirculation throughout 

the wet end was maintained as this was found to have a major impact on retention and 

drainage phenomena as expected from previous studies. 

Surface area production in hardwood and softwood refiners was modelled using 

experimental Canadian Standard Freeness data collected over a range of refiner specific 

energies. By assuming additional surface area is the result of fines production, the post-

refiner fines level for various specific energies was determined. An element by element 

wire drainage model was also developed based on filtration theory and Kozney-Carman 
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analysis of the specific filtration resistance. This allows study of the effects of operator 

moves in vacuum levels. The effects of sheet forming characteristics are accounted for 

through the furnish composition, degree of flocculation and basis weight. The amount of 

water chemically bound to furnish particles was determined experimentally for each furnish 

component. In order to accomplish this a modification of the standard technique for 

determining water retention values was developed for filler particles. The water retention 

values obtained for precipitated calcium carbonate and chalk were 0.84±0.12 g/g and 

0.22±0.03 g/g respectively. Due to the corresponding four fold difference in surface areas 

between precipitated calcium carbonate and chalk, these values suggest an electrostatic 

interaction mechanism for the binding of water to carbonate surfaces. 

For the adsorption of polymers onto furnish surfaces the concept of coverage - the fraction 

of particle's surface covered by a polymer - played a central role. The degree of coverage 

directly affects the chance of successful collisions between particles in the flocculating 

process and was therefore tracked throughout the wet end by the chemistry simulation 

modules running parallel to the above physical process. The assumption of complete 

polymer adsorption onto furnish particles in proportion to their surface areas was supported 

by time scale calculations. A model for deactivation of polymer components was also 

implemented into the simulation based on polymer charge decay experiments reported in the 

literature. Coverages were adjusted to reflect the loss of electrostatic interaction potential 

of polymer components as they recirculated through the wet end. Second-order bridging 

flocculation kinetics were assumed with rate constants computed as the product of 

Smoluchowski rates of particle collisions. Empirical constants were selected to calibrate the 

model against process data. 
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Calibration of the simulation involved comparison against steady-state and dynamic process 

data. Equally important was the experience of mill technical personnel through whom the 

mechanisms leading to observed process responses could be confirmed. Initially, furnish 

component levels were set according to steady-state process data with assumed levels of 

retention and drainage. Modules added for these effects were calibrated against this steady-

state data and then against dynamic responses. The main calibration parameters are the four 

rate constants in the bridging flocculation model and a single parameter which affects the 

(overall) calculated mat compaction factor thereby affecting drainage rate. 

The simulation model is useful for control analysis and design, evaluation of process 

alternatives as well as operator training. The modular, object oriented manner in which it 

has been implemented allows for a "plug and play" approach to process/control analysis. 

The major drawback of the simulation is its speed which is 2-3 times faster than real time. 

Since the time constants in wet end chemistry can be in the order of an hour, lengthy 

simulation runs occur. This inhibits the simulation's usefulness in control analysis. 

Reliable on-line data is required to further validate the simulation model and for future 

control schemes. As this project was carried out in an operating paper mill, the challenges 

and realities of obtaining such data were encountered. Mill personnel need assessments of 

the potential economic benefits to be expected from on-line sensors in order to justify their 

implementation and maintenance. An accurate process simulation has the potential to allow 

mill personnel to evaluate the economic benefits of implementing wet end sensors and 

control. 

A method for producing confidence regions of specified probability for closed-loop 

robustness measures was proposed. It is based on optimization of closed-loop robustness 

criteria in terms of identification variables where the identified model/controller parameters 
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are constrained to lie within confidence regions. The procedure accounts for parametric 

nonlinearities and was shown to provide considerably more accurate confidence bounds 

than those based on linear approximations. A constrained optimization approach was also 

used to produce (l-a)% frequency domain confidence regions for the open-loop system. 

The ability of the above procedure to provide (l-a)% coverage was found to be affected by 

the degree of parametric nonlinearity and the number of observations in the dataset used for 

identification. The use of the Signed Root Deviance Profile function was useful in 

determining this degree of nonlinearity. A control relevant input signal design procedure 

was developed from a linearization of the closed-loop objective function in terms of 

identification variables. In the case where the true process was linear, considerable 

improvement in closed-loop robustness resulted when identification was carried out using 

such control relevant input signals. 

Application of the control relevant methodology to the wet end chemistry simulation 

highlighted some limitations of such identification methods as well as exposing interesting 

process behaviour. The HMW Anionic Polymer <=> White Water Filler Consistency loop 

was found to have nonlinear (in the inputs) dynamic behaviour. Surprisingly, the static 

gain of this loop is not strongly nonlinear. Because of this nonlinear behaviour, the input 

design methodology failed to produce better closed-performance when compared to a low 

frequency square wave input. 

Throughout this work the value of a high fidelity simulation based on first principles 

models has been seen. Details of the mechanisms during (simulated) step response 

experiments could be tracked without the need to perturb the process. As well, 

identification of process behaviour was done in a noise free environment. From this, the 

frequency distribution of bias from approximation of a higher order system could be 
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evaluated as well as identification of nonlinearities. Models from such an identification 

could then be used to better design validation experiments. In this way the a priori 

information available to the experimenter is increased. 

7.2 Future W o r k 

Study of wet end chemistry through the simulation model can proceed in two distinct paths: 

either through incorporating further physical and chemistry models into the simulation or 

further analysis of the dynamics for control design. Considerable scope exists in both 

areas. Ideally they should proceed simultaneously. 

Several specific additional units/phenomena that should be implemented into the simulation 

are listed below. In most cases they can be incorporated as separate modules and added 

without disruption of the existing simulation. 

1. Physical Modules: Simons IDEAs objects based on first-principles dynamic 

models for the slice lip opening, shoe vacuum, saveall, presses and dryers need 

developing. 

2. Fibre Properties: A method for representing fibrillated fiber needs to be 

included rather than ascribing increased surface area due refining to fines. This 

could possibly be accomplished by introducing a separate component and an 

attached parameter to represent the degree of refining/fibrillation. Secondly, it 

may be advantageous to expand the distribution of fibre lengths rather than just 

representing it by long and fine fibre fractions. However, this may require 

large amounts of memory in the simulation and would also require 

characterization of this distribution throughout the wet end. 
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3. Chemical Effects: Laboratory experiments to determine maximal adsorption of 

polymers onto furnish components (TM a x) should be carried out for this system. 

This would provide accurate parameters for the simulation model rather than 

relying on approximate values from the literature. Fibre deswelling by 

polymers should be further studied and implemented into the simulation if 

found significant. Laboratory experiments may support this effort. Inclusion 

of fiber surface and/or total stock charge effects would be beneficial to include 

into the simulation model. This would allow for study of charge reversal due 

to overdosing of polymers. Better characterization of the effects of organic 

substances which interfere in retention and drainage processes ("anionic trash") 

could also be accomplished with a charge model. Reliable on-line 

measurements of zeta potential would facilitate its development. Finally, other 

chemical additives should be included into the model including sizing agents 

and biocides. 

4. Operating Scenarios: Currently, the production of broke is assumed to occur on 

a continuous basis. In a mill, the majority of broke production is during 

discrete sheet break events (approximately 2 times per day). These situations 

clearly place higher demands on the broke handling system and cause variations 

in the white water systems. It would be of great benefit to develop the 

flexibility to simulate these situations. The other common operating scenario 

which has a large effect on the wet end is during transition from slush to baled 

pulp in either hardwood or softwood. Some development would be required in 

order to efficiently handle such a change in the simulation. 

5. Transportation Times in Pipes: Inclusion of transportation times in piping 

networks would increase the accuracy of the simulation model and allow more 

reliable evaluation of dead times in control loops. 

158 



Chapter 7. Conclusions and Future Work 

An efficient method for determination of the Kinetic Rate Constants (kj's) of Equation 3.32 

needs to be determined such that resulting white water consistencies can be affected 

individually for each component. This may be possible by a multivariable analysis using 

singular value decomposition based techniques such as Principal Component Analysis. A 

goal would be to find the minimum number of tuning parameters for the simulation model. 

Further analysis of the magnitude and nature of disturbances present in the wet end needs 

undertaking. This, could be accomplished through examination of residuals from 

comparison of simulated and measured responses. For example, comparison of simulated 

changes in stock composition with on-line freeness and drainage measurements could 

indicate changes in incoming fibre characteristics. 

Characterization of the interactions between the basis weight and ash control loops should 

be carried out as strong coupling was observed in the simulation model. The first step is to 

obtain actual time delays and tuning constants. Then the need for decoupling control in 

response to wet end chemistry disturbances could be determined. 

Finally, the need for extensions to the linear (in the inputs) control relevant identification 

techniques was clear in Chapter 6. Two avenues need exploring: extension to nonlinear 

systems and development of the multivariable case. Either of these forms a significant 

undertaking. 
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Appendix A. Water Retention Value of Fillers 

Appendix A 

Water Retention Value of Fillers 

Tappi Useful Method 256 describes the standard procedure for measuring Water Retention 

Value (WRV) of pulp samples. In it, a pad of pulp is formed in a Buchner funnel and 

transferred to a 100 mesh screen suspended in a specially fitted centrifuge tube. Due to the 

very small particle size of filler material it is not possible to form and retain a pad consisting of 

solely filler. The method described here is a slight modification of the standard procedure such 

that filler material is retained on a preformed pulp pad which has known WRV. D. Barzyk 

(Weyerhaeuser) originally suggested the calculation procedure. The conditions of centrifuging 

(30 minutes at 900g) remain the same as in the standard procedure. 

The following steps were performed: 

1) Using a single sample of pulp (refined Kraft softwood), 8 repeat measurements of WRV 

were performed using Tappi U M 256. This yielded an overall W R V P u l p = 1.64±0.08 g/g. 

2) Measure out the equivalent of 2 o.d. grams of the above pulp slurry, dilute with distilled 

water to approximately 1% consistency and put through a Buchner funnel to form a pulp pad. 

3) From a slurried sample of filler, the equivalent of approximately 8 o.d. grams of filler was 

measured out and diluted with distilled water to less than 10% consistency so it is easily 

suspended. This is slowly poured over the fiber pad in the Buchner funnel such that the filler 

is retained on top of the pad. It was observed that very little filler passed through with the 

filtrate. 
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4) The fiber/filler pad is then divided into 4 pieces and put in the specially fitted centrifuge 

tubes as in the standard procedure. These are then balanced and centrifuged for 30 minutes at 

900g. 

5) After centrifuging, the fiber/filler samples are transferred to preweighed crucibles each with 

markings capable of withstanding an ashing furnace (e.g. etching). The sample plus crucibles 

are weighed, oven dried and then reweighed as in the standard procedure to determine the total 

bound water (BWT o t a l). 

6) The oven dried sample is then ashed according to Tappi Method T211 to determine the filler 

content. 

7) Denoting the mass of pulp and filler in each sample W p u l p and W f l l l e r respectively we have, 

BW F i ] l e r= BW T o t a l - W P u l p - W R V P u l p (A. 1) 

WRV F i l l e r= BW F i l l e /W F i l l e r (A.2) 

Using this procedure for 8 repeat samples of each filler type, precipitated calcium carbonate 

was found to have a WRV of 0.84±0.12 g water/g PCC and chalk had a WRV of 0.22±0.03 g 

water/g chalk. We note that the use of significantly larger quantities of filler in relation to pulp 

in Steps 2 and 3 of this procedure helps to reduce the impact of measurement uncertainty in 

Step 1. 

It is not clear what effect the chemical environment has on the above results. The amount and 

nature of the various ions adsorbed onto the filler surface could possibly alter the amount of 

water associated with the filler particles. Scallan and Carles (1968) discuss various other 

factors affecting the validity of results from the water retention value method. In particular, 

there is evidence that the mass of each sample in may affect the compression of the pulp pad 

during centrifuging. Thus it would be useful to vary the amount of filler and pulp used. 

Ideally, one would like to use the minimum amount of pulp required to retain the filler. 
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IDEAs Process Flowsheets 
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Appendix C. Tests of Residuals 

Appendix C 

Tests of Residuals 

Model validation tests are applied to the residual vector, e0. The cross-correlation test is, 

R X C - ~ feT

uRu'feu (C.l) 

where 

feuW = 4fZe(t)u(t-x) (C.2) 

r e u=[r e u(0),...,r e u(M)] (C.3) 
_l_ 

Ru=^I>u(t)cPu(t) (C4) 
M t=l 

cpu(t) = [u(t),...,u(t-M)] (C.5) 

and the auto-correlation test is, 
1 

ree(0) 

U<* = 4fi>(t)e(t-T) (C.7) 
VM t=i 

re e=[re e(0),...,re e(M)] (C.8) 

M is the maximum lag to which the tests are applied. Both R A C and R X c can be compared 

against a chi-squared distribution with M+l -p D i s t u r b a n c e Modei and M - p P r o c e s s M o dei degrees of 

freedom respectively. 
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