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Abstract 

In this thesis the development of a strategy for the detection and isolation of faults particular to 

the pressure screens commonly used in mechanical pulp mills is presented. After exploring several 

non-model and model-based approaches for fault detection and isolation (FDI), a method is chosen. 

The method relies on the simultaneous identification of the states and process coefficients of a dynamic 

model for said screens. The criterion used in developing such a model is explained and the concept 

of "dynamical" friction coefficients as fault detection indicators is introduced. A technique called 

the Singular Pencil Matrix (SPM) for simultaneous identification of states and process coefficients is 

discussed and some simulation and industrial results using SPM are shown. As part of the validation 

of the dynamic model a reduced version of it is proposed and tested. The problem of modelling the 

process noise when applying SPM is discussed, some options are studied, and an alternative scheme 

based on cumulative functions for confirmation of screen faults is presented. 
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Chapter I: Introduction 

Chapter 1 

Introduction 

1.1 Pulp Screening Systems 

Screening and cleaning systems are found in all pulp and paper industry plants. The purpose of 

these systems is to remove certain unwanted constituents -such as coarse fibres and inorganics- from 

a pulp slurry, so that the suspension becomes more suitable for the product in which it will be used: 

paper, cardboard, etc. [30]. The removal of particles in screens is somewhat dependent on particle 

size and shape, whereas in centrifugal cleaners it is based on the principle of particle weight [43]. 

Screens are employed in all pulping processes, mechanical and chemical. Their physical location 

can differ. Thus, we find them placed between the cooking and bleaching stages or after the bleach 

plant in chemical pulp mills, and after or between the refining stages in thermo-mechanical pulp mills. 

Screens are also installed ahead of the paper machine. In all cases, the principles of operation and 

control are the same, although the nature of the constituents to be removed is different. Generally 

speaking, we can divide the screening systems in two classes: coarse and fine [47]. As the name 

suggests, coarse screening involves the removal of large or coarse materials from the slurry, whereas 

fine screening is designed to deal with smaller contaminants. 

There are several types of screens currently in use in mills. The major types are flat, rotary, 

centrifugal, and pressure [60]. 

The focus of this research was aimed at the screening systems used in mechanical pulping. In 

this environment, fine screening is predominant, and pressure screens are utilized in virtually all 

operations. 

1.2 Fundamentals of Pressure Screens 

The mechanisms by which screens remove the unwanted materials from the pulp suspension 

are not fully developed as a mathematical corpus. Nevertheless, there is general agreement with 

the idea that separation in pulp screens is accomplished by the combination of two fundamental 
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Chapter I: Introduction 

processes, barrier screening and probability screening [20]. In the former, the screen plate orifices 

are smaller than the size of the contaminants and the screen behaves much as a sieve. In the latter, 

the openings are larger than the unwanted materials but some physical factors prevent their passage. 

Among the probability screening mechanisms most cited in the literature are the angle at which the 

particles approach the screen plate apertures (critical angle), the force created by the difference in fluid 

velocities inside the screen (shear force), the movement of fibres inside the screen (fiber alignment), 

the shortening of screen plate apertures due to the rotation of the plate (apparent hole size), and the 

interaction of neighboring fibres (fiber mat) [29], [30]. 

To measure how well a screen is performing it is necessary to have an indication of how much 

undesired material has been removed from the incoming pulp stream. One performance parameter 

widely used is called the debris reject efficiency, Er. This measures the contaminants removed as a 

percentage of the mass of contaminants in the incoming pulp, according to the formula: 

ET = ^Rw (1.1) 

where 
Ru,: Mass Reject Rate [non-dimensional] 

Sr : Debris concentration in rejected pulp [in %] (1.2) 

Si : Debris concentration in incoming pulp [in %] 

The mass reject rate Rw is defined as 

R„ = ^100 (1.3) 

where 
Tr : Mass flow of rejected pulp [in Tons per day] 

(1.4) 
Ti : Mass flow of incoming pulp [in Tons per day] 

[47]. The classical method used in industry to evaluate screen performance is the shive removal 

efficiency (SREr) vs. reject rate (Rw) curve illustrated in Figure 1.1. This graph, as the name 

suggests, measures the screen reject efficiency as defined in (1.1) but regarding shives. A shive is an 

intact fiber bundle or fibrous mass having a contrasting color to the pulp fibres and having dimensions 

greater than some arbitrarily set minimum [61] and, as such, is a particular type of debris. The plot 
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10 20 30 40 50 60 70 80 90 100 

Reject Rate (Rw) [%] 

Figure 1.1: Efficiency vs. Reject Rate Curve [14] 

displays the ratio between the volumetric flow of rejected shives and the total flow of incoming 

shives, as a function of Rv,. As shown by the curve, the higher the percentage of flow going through 

the reject Une, the higher the percentage of debris removed. Complete removal of the contaminants 

in the pulp can only be achieved if all flow goes to the reject line, i.e., no pulp is accepted. This 

is obviously not practical. With approximately 25% of the total incoming fibres going to the rejects 

(the proportion most often found in mills), around 80% of the shives present in the pulp are expected 

to be removed1. If all feedstock flow is accepted (0% rejecfrate) no removal will take place. 

In order to avoid the need for a complete mass and debris balance, which is a difficult and time 

consuming task, some formulas have been proposed. The best known uses the screening quotient 

Q which is defined as 

Q = l-
Sa (1.5) 

The real figure varies for every pressure screen. 
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Reject 
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O Dilution Line 

Figure 1.2: Typical pressure screen 

where Sa is the debris content by weight in the accepted pulp (in percentage units) , and leads to a 

different expression for the relationship between Er and Rw, namely, 

Rw 
E r 1-Q + RWQ 

(1.6) 

[50]. Q is proposed as a constant that establishes screen performance independendy of reject rate 

because, if Q is known, the screen efficiency can be characterized only with measurements of the 

accepts and rejects shive concentrations. This formula, however, has limitations [30]. 

Another important parameter to measure screen performance, albeit one with several meanings 

in the literature, is capacity. A good definition is the one given by Gooding and Craig [21]. For 

them, capacity is the volumetric accept flow rate of a screen at a given pressure differential. 

1.3 Pressure Screen Design 

There are many configurations of pressure screens in use today, but most of them are built with 

a cylindrical screen plate. In a typical model, as the one seen in Figure 1.2, incoming stock is 

tangentially fed into the inside of the cylinder. The pressure will force the passage of the suspension 
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through the openings in the plate to an accept compartment, from where it is tangentiaUy discharged 

into the accept piping2. The rejected material passes down the inner surface of the plate into a reject 

section, whence it is discharged into the reject piping. Dilution water -which may or may not be 

used- can be added into the reject compartment and also into the screening zone. An electric motor 

which drives the rotor is utilized as a means of preventing the screen from plugging and to accelerate 

the pulp suspension. 

The most important feature of any screen is the configuration of its plate. Depending on the 

application, the screen plate can have a smooth incoming surface or a grooved one. Also, its 

openings can either be round holes or slots. 

1.4 Control Goals for Pulp Screens in the Mill 

The variables that affect the performance of any pressure screen are the following: 

1. Screen plate design, i.e., shape and size of the openings and type of surface. 

2. Rotor and screen housing design. 

3. Feed stock flow rate. 

4. Feed stock pressure. 

5. Pressure drop across the screen. 

6. Retention time of fibres. 

7. Reject flow rate. 

8. Accept flow rate. 

9. Stock characteristics, i.e., amount of debris, type of fibres. 

10. Feed stock consistency. 

11. Dilution flow to screen. 

12. Feed stock temperature. 

13. Rotor speed. 

2 In some pressure screens the Incoming-accept flow is reversed. Incoming stock will be fed to the outside and accepts will go out 
from the Inside of the screen plate. 
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CV 

Figure 1.3: "Classical" control scheme for a pressure screen 

Some of these variables are strongly related. For example, retention time is dependent on the stock 

flow rate and the reject rate, and pressure drop is a direct function of the flow through the screen plate. 

The most important variable -albeit one that can not be modified during operation- is the screen 

plate design. In practice, the "classical" control strategy calls for three parameters to be continuously 

controlled by the plant operators: reject rate, feed consistency and internal dilution [30]. The stock 

flow rate and the rotor speed are seldom modified. The remaining variables are either secondary, or 

out of reach for an on-line controller. Figure 1.3 shows the typical control schematic for a pressure 

screen. 

The ideal screen control would allow the extraction of all the debris in the feed stock without 

removal of any acceptable pulp [58]. This objective cannot be directly achieved, among other reasons, 

because there are no reliable on-line measurements of pulp quality in industry to date. Therefore, the 

best possible control is one which would optimize the relationship between the amount of debris that 
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will go with the accept flow and the amount of good fiber that will be rejected, the screen capacity, 

and the economic and operational aspects of the pulp processing plants, through manipulation of 

indirect variables. Unfortunately such control must be tailored to satisfy the specifications of the 

product being made. In practice, a general controller most likely does not exist. 

1.5 Literature Review 

Even though pressure screens were introduced to the pulp and paper industrial community over 

thirty years ago, not much has been published about their control and even less on their faults. The 

literature on screening seldom dwells on this operational aspect, dealing mainly with the fundamental 

physical principles that govern the operation of these devices. Nevertheless, screening control has 

been acknowledged as a promising prospect, expected to develop very fast in the coming years [39]. 

The 'classical' control strategy for pressure screens has called for either or both of two require­

ments to be met: a stable operating pressure and a stable stock throughput, measured as a flow rate, 

to achieve optimum screening efficiency [48]. The standard technique for screening control shown in 

Fig. 1.3 operates as follows: the accepts valve is used to control the screen throughput and the desired 

operating point to maximize efficiency is controlled through the ratio of flows -accept vs. reject. 

The pressure drop is indirectly controlled by this ratio and, under normal conditions, is expected to 

remain constant. However, if it increases above a preset level, the accepts valve will be fully closed 

and the rejects valve will be fully opened to purge the screen. Usually, an alarm is provided to warn 

the operator in the event of such abnormality [49], [64], [36], which is the only type of screen fault 

addressed by this scheme. An alternative calls for differential pressure control through a feed flow 

valve instead of the accepts valve [55], with no changes made for the alarm. 

On-line control based on shive content of the pulp has been suggested by J. Hill et al. [25], 

[26]. In this approach, the mass reject rate Rw and consequently the flows in the stock and rejects 

lines are adjusted in accordance with the shive content and size distribution in the accepts slurry. 

Stock freeness, defined as the resistance of fibres to the flow of water when pulp drains [60], has 

also been used to control the reject rate in screens [7]. Both alternatives suffer from sensor problems, 

and do not address the issue of faults. 
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White water 

CT = Consistency transmitter CC c Consistency controller VPC = Valve position controller 
FT = Flow transmitter FC s Flow controller DPI s Dift. pressure Indicator LT = Level transmitter LC s Level controller SP = Set point 
PT s Pressure transmitter PC s Pressure controller RR = Reject rate 

RC e Ratio controller 
= Reject rate 

Figure 1.4: Daishowa America mill pressure screen control system (from reference [14]) 

A recent implementation of screen control uses a more sophisticated strategy, based on one 

supervisory loop and seven regulatory loops for each screen, as seen in Figure 1.4 [14]. 

The purpose here is to put controller set-points in terms'of actual reject rates and shive removal 

efficiencies rather than in terms of flows and consistencies. This amounts to the imbedding of 

the efficiency vs. reject rate curve in the control strategy, instead of the mere maintenance of a 

constant differential pressure across the screen. Three categories of tasks are achieved by the control 

loops: rejects control, feed control and inventory control. The first one maintains the percentage of 

fibres flowing through the reject line constant. The second one controls feed stream pressure and 

consistency, and the last one prevents the screen feed tank from running empty or from overflowing 

through normal operation. 
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It is important to mention that despite the sophistication of this control scheme, the detection 

of screen faults is achieved by the same means used in more modest schemes: measurement of the 

pressure differential between the feed Une and the accepts line. Moreover, the only fault monitored 

is screen blinding. 

1.6 Objective 

The objective of this thesis is to develop a strategy for fault detection of pulp pressure screens 

which can overcome the shortcomings of the approach currently used in industry. As said before, 

that method relies on monitoring of the pressure differential between the feed Une and the accept 

line, and on setting off an alarm when the differential exceeds a certain pre-fixed value. It will be 

shown that this pressure differential alarm can be misleading as a fault detection tool at best, and 

can severely curtail the throughput and efficiency of a screen. 

The current approach to screen fault detection has also the following weaknesses which shall 

be addressed: 

• It is too slow, as it shows failure of the screen after it has occurred. In reality, that means that no 

true fault detection scheme is applied because not much can be done to prevent screen failure. 

• It does nothing to detect screen faults different from gradual plugging of the screen plate. 

• It leads to an inflexible control scheme, as it does not easily allow for changes in the feed rate 

of the screen. 

• It does not lend itself to being used with varying consistencies in the pulp, as this condition 

affects the pressure differential alarm limit. 

• It cannot be linked to the quality of the pulp. 

A true fault diagnosis algorithm for screens had never been attempted in the past. The existing 

methods used to control pulp screens in industry do not prevent screens from plugging with all the 

unwanted consequences that this problem produces: process interruptions, unsafe working conditions, 

economic losses, etc. Even the newest strategies used for screen control consider the screen as a 

system with one or more SISO loops with no coupling between them [40], [14]. This assumption 
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does not seem realistic and most probably has an influence on the poor control performance seen 

in industry, in general. The research proposed here shall improve this situation by using a MLMO 

approach better suited to the reality of the dynamics of the screen. It also has the potential to open 

the door to sophisticated MIMO control techniques which cannot be used today. 

Finally, one could also identify at least three kinds of potential benefits to be obtained by 

pursuing the research presented in this thesis: improvements on existing industrial control methods, 

establishment of a fault diagnosis technique suitable for industrial environments in general, and 

advancements in on-line estimation and control techniques. 

1.7 Contribution of this Work 

To the best of my knowledge, no work has ever been published on fault detection and isolation 

(FDI) for pressure screens. Having said that, I believe that the major contributions of the present 

research are the following: 

• The introduction of faults in pulp pressure screens as a separate subject of study. 

• The derivation of the first dynamic model in the literature to characterize pressure screen behavior. 

• The development of the first model-based approach for fault detection on pressure screens. 

• The use of the Singular Pencil Matrix estimation technique in a hue practical application. 

• The enhancement of knowledge on pressure screen operation and faults, in general, and the gain 

of valuable physical insight for better screen control. 

At the same time, the strategy of using a dual identification method to obtain simultaneously the 

state variables and the process parameters of a system introduces more flexibility into the general 

universe of fault detection and Isolation (FDI). Having both quantities estimated at once might help to 

overcome the weaknesses of the fault detection methods based in only one of these groups of process 

variables, namely, the need for an extremely precise model of the system under identification, and the 

need to have as many working equations as parameters in the system to achieve full fault identification. 

10 
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The testing of the proposed algorithm for FDI in a pilot plant also brought the potential to 

develop results suitable for the industrial environment, where noise and perturbations are the rule 

rather than the exception. 

1.8 Outline of the Thesis 

The thesis is organized as follows. In Chapter 1 the basic concepts related to pressure screens 

and screen control are presented. Chapter 2 provides a look at background material on fault detection 

in general. It also focuses on the issue of faults and failure in pressure screens, the current method 

used in industry to prevent its occurrence and its shortcomings. Chapter 3 describes several attempts 

at using non-parametric methods for the purpose of detecting screen faults, and their results. Some 

conclusions are then derived. Chapter 4 shows the derivation of a mathematical dynamical model 

of a pressure screen needed to use the parametric fault detection methods. The different techniques 

available for on-line identification of the model are presented. Chapter 5 presents the environment in 

which the testing of the parametric-based methods took place and it shows the results. Then, some 

conclusions are drawn. Chapter 6 explores some alternative techniques for improving the efficacy 

of the model-based fault detection schemes. Chapter 7 concludes the thesis summarizing the overall 

results and mentioning avenues of further research. 

11 
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Chapter 2 

Faults, Screen Faults, and their Detection 

2.1 Faults, Failure and Fault Detection 

2.1.1 Some definitions 

Following Himmelblau's definitions, when talking about some equipment it must be implicit that 

the terms fault and malfunction mean "departure from an acceptable range of an observed variable or 

calculated parameter associated with the equipment" [27]. In this context, a fault implies a minimum 

degradation of the normal performance. The term failure will be used as "an indication of complete 

inoperability of equipment or the process" [27]. From these definitions, it is obvious that the criteria 

for establishing the presence of a fault is a subjective matter which depends on the characteristics of 

the process under observation. Failure, on the other hand, has no ambiguity. 

The structure of a fault detection and isolation (FDI) system is similar to a closed loop control 

system. Figure 2.5 shows the block diagram proposed by Isermann to characterize the different 

supervisory stages of a typical FDI system [33]. 

The first step is called fault detection. As the name implies, it involves the detection of a 

fault. For this, some process variable, measurable or estimated, is tested against a certain range of a 

reference value. In the second stage the location of the fault is established and its most probable cause 

Cause of Fault 
and Location 

Hazard 
Class 

Stop Fault 
Operation Elimination 

Operating 
State Required 

Fault Fault Decision Change Process 
Diagnosis Evaluation Decision Operation u 

Process 
y 

Fault 
Detection 

Fault 
Message 

Figure 2.5: Supervision loop under appearance of a fault (from reference [33]) 
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is determined. This is known as fault diagnosis. Third, an assessment of how much the process will 

be affected has to follow. Its name is fault evaluation. Finally, a decision regarding the required 

control action can be made. Depending on whether the fault has been deemed tolerable, conditionally 

tolerable or intolerable (failure), the plant operation must continue, or be modified, or be stopped. 

Several classifications for fault detection and identification (FDI) have been suggested in the 

literature. Some of them are based on the type of possible malfunctions to be identified, some others 

are based on the methodology used, and yet some others on whether the information gathered is 

redundant in terms of the hardware {hardware redundancy) or in terms of the software {analytical 

redundancy) [27], [33], [18], [53]. 

From a systems identification point of view, the fact that a system may or may not have an 

analytical representation seems to be the most suitable characteristic to be taken into account when 

attempting a classification of FDI. Further refining will lead us into a scheme such as the one shown 

below, 
''Measurable signals U,Y 

FDI 

Systems 

Non-model Based < Characteristic Quantities TJ = f(U,Y) 

Model Based < 

where the definitions are as follows: 

[ Knowledge Based 

State Variables X 

Characteristic Quantities n = g(U, Y, X, 0) 

Process Parameters 9 

(2.7) 

Non-Model Based System: FDI schemes do not contemplate a model representation of the system 

under supervision. Nevertheless, they might include mathematical models of the system signals. 

Measurable Signals: Process faults are detected and singled out with the aid of measurable 

input U(t) and output Y(t) plant signals. 

13 



Chapter 2: Faults, Screen Faults, and their Detection 

• Knowledge-Based System: Fault detection is based on some stored knowledge of the plant 

(usually of qualitative nature) and inference mechanisms that allow for the making of comparisons 

and deductions between the plant behavior and this stored data. 

• Model Based System: The fault detection schemes are based on a mathematical process model 

of the system under supervision or of parts of it. 

• State Variables: Faults are detected with the aid of partially measurable and partially non-

measurable internal state variables of the supervised system. 

• Process Parameters: FDI schemes are based on constants or time-dependent coefficients which 

appear in the mathematical model used to represent the supervised plant. 

• Characteristic Quantities: Malfunctions of a system are diagnosed with the aid of a combination 

of information sources: state variables, process parameters and modelling of plant signals (inputs 

and outputs). 

2.1.2 Non-Model-Based Methods 

As defined before, all fault detection methods which do not require a parsimonious model of the 

process or system under measurement are called non-model based, or more loosely, non-parametric. 

FDI approaches which involve the use of measurable signals and non-model based characteristic 

quantities generally require the performance of three operations: observing the records of the signals 

or quantities in time, computing simple statistics of those records, and carrying out some tests to 

determine the presence of a fault. The results are usually presented in graphical form, as a function 

of sample sequence or time. A fault is deemed to have occurred whenever a non-random change 

brings the observed variable out of the pre-established statistical limits. The best known methods 

are the Shewhart Control Chart, which involves the use of mean and sample range values [59]; 

the Cumulative Sum Control Chart, which makes use of sums of a function of a random process 

variable3; the Geometric Moving Average Control Chart, which involves the use of smoothed values 

of the sample mean [27]; and Multivariate Control Charts [37], which use statistics calculated from 

values of many variables which might have joint probability distributions. 

3 The function can be the variable itself, the difference between the variable and a target value, the sample mean, etc. 
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Himmelblau [27], Pau [54], Willsky [69] and Wise et al. [70], provide diverse examples of those 

FDI techniques falling under the category of measurable signals and non-model based characteristic 

quantities systems. 

Knowledge-based FDI methods are based on the use of artificial intelligence techniques. They 

involve the use of a computer program (which usually emulates the behavior of a highly experienced 

human operator), and qualitative and/or quantitative techniques based on existing knowledge of the 

system, to determine the presence and nature of faults. 

The key issues in implementing a knowledge-based FDI system involve the choice of: a symbolic 

representation for the knowledge on the system, the rules which allow for the symbolic reasoning, 

and a graphic interface to provide the representation and reasoning. 

S. Tzafestas in the book by Patton et al. [53], Y. Ishida [35], Kramer and Finch [42], and Kramer 

and Leonard [41] are only a few references on the growing area of FDI knowledge-based techniques. 

2.13 Model-Based Methods 

Whenever the fault detection schemes are based on the use of a mathematical process model of 

the system, they are called model-based or parametric. 

Process parameters are defined as coefficients or constants that appear in the mathematical 

process model of a plant. These coefficients reflect, directly or indirectly, the physical parameters 

like friction, mass, viscosity, length, etc. of the system under supervision and, therefore, many faults 

can be determined by examining their behavior [32]. An FDI system based on process parameters 

has a block representation as the one shown in Figure 2.6. 

The mathematical model of the plant can be either static or dynamic. Provided that we have a 

SISO system, the former might have the form 

Y(U) = (3o + faU + fhU2 + ... (2.8) 

and the latter, for processes with lumped parameters might have the form 

y(t) + aiy(t) + a2y(t) + ... + any^(t) = b0u(t) + 61u(<) + ^(f) + . . . + bmu^m\t) (2.9) 
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Figure 2.6: Fault detection scheme based on parameter estimation (from reference [33]) 

which is usually, for simplicity, a linearization about an operating point. 

The general procedure for fault detection and isolation using process parameters will include 

the following steps: 

1. Determination of the equation used for process modelling, Y(t) = f{U(t),0} 

2. Determination of relationship between the model parameters 0,- and the physical parameters pj 

as 6 = f(p). 

3. Estimation of the model parameters. 

4. Determination of the physical parameters, p = f~l(6). 

5. Calculation of variations in physical parameters Apj. 

6. Determination of type and location of fault. 
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In an industrial environment one would expect steps 1 and 2 to be performed off-line and the 

remaining to be executed on-line. 

Since changes in the physical parameters are the main concern, the model of the 'normal' process, 

including its tolerance range, must be known accurately at all times. 

Two parameter estimation methods for continuous-time models have attracted the bulk of attention 

in the FDI literature : Least-squares and Instrumental Variables. In the first one, our time-invariant 

linearized equation 

aoy«(*) + aiy-u{t) + a2yu(t) + ... + yu

n\t) = bau{t) + M(<) + &2«(0 + • • • + &mU ( m ) (0 (2.10) 

has the measured output y(t) contaminated by a stationary stochastic noise n(t), therefore, 

with e(t) being the equation error, and ip, 0 being the regressors and the unknown parameters, 

respectively. Once input and output signal measurements have been made and the derivatives 

determined at discrete times t = kTo , with k = 0,1,2,...iV and To the sampling time, N+l 

equations will result with the form 

y(0 = y«(<) + n(t) (2.11) 

and substituting for yu\t) in terms of its measurements will lead to 

M(t) = rpT(t)6 + e(t) (2.12) 

y M(Jb) = rpT(t)§ + e(k) (2.13) 

where e(k) is again an equation error. These can be expressed as the vector equation 

y (") = VQ + e (2.14) 

Having a cost function of the form 

(2.15) 

will get the well-known least squares estimate of the parameter vector 

6= [ * r < C ] " 1 * r

y ( » ) (2.16) 
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It must be remembered that, since the parameters are biased in the presence of colored noise, this 

method is not well-suited for high noise-to-signal ratio cases. For the equations above, the time 

derivatives of the input and output signals can be obtained by several methods: backward differences, 

spline interpolation, Newton interpolation or state variable filtering [33]. The state variable filtering 

method has the advantage of providing the derivatives and filtering the noise without differentiation 

[71]. When dealing with systems that have a high noise-to-signal ratio, the instrumental variables 

parameter estimation provides better results than least-squares. Basically, the technique consists of 

modifying the least-squares solution to include a vector of instrumental variables x which are chosen 

to be highly correlated with the noise-free output of the system yu, but totally uncorrected with the 

noise on the measurement of the system variables [71]. 

An FDI system based on state variables has the block representation shown in Figure 2.7. In 

general, the dynamic relationships that exist in a system can be expressed in state representation as 

x(f) = Ax(i) + Bu(t) 
(2.17) 

y(t) = Cx(t) + Du(t) 

assuming that the system has been linearized around the operating point. The influence of a fault 

can be evaluated in the residuals, which are functions of the state variables that are accentuated by 

the malfunction. There are three preferred ways to generate residuals in the literature: the parity 

space approach, dedicated observer schemes and fault detection filters [18]. All of them share the 

presence of some kind of state observer. 

The rationale behind the parity space approach is to check out the consistency of the state 

variables mathematical representation when confronted with the actual plant measurements. When 

the difference between the theoretical and the real values exceeds a certain range, a fault is deemed 

to be present. It must be stressed that partial consistency, i.e., relations that reflect only part of 

the overall model can be used advantageously. This concept was generalized by Lou et al. [46]. 

Assuming that the system is given by 

x(ifc + 1) = Ax(Jfc) + Bu(fc) 
(2.18) 

y(k) = Cx(fc) + Du(fc) 
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Figure 2.7: Fault detection scheme based on state variables estimation (from reference [33]) 

the output equation can be expressed by substitution as 

y(k + 1) = CAx(fc) + CBu(fc) + Du(fc + 1) (2.19) 

If we extend the formulation for any interval s such that s >0 it turns into 

y(fc + s) = CA8x(fc) + CA 8 - 1 Bu(fc) + . . . + CBu(fc + s - 1) + Du(.fc + s) (2.20) 

Putting together all the equations for s = 0... n'; with n < n and shifting by n we obtain the 

representation 

Y(k) = Rx(fe) 4- HU(fc) (2.21) 
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with 

Y(k) = 

y(fc-n') 

y(fc-n' + l) 

y(fc-n'+2) 

y(*) 
C " 

R = 

H = 

D 

CB 

C A B 

C A 

C A 2 

CA"' 

D 

CB D 

CA' 8 - 1 1 

U(*) = 

. . . . C A B CB D 

u(fc — n) 

u(k - n + l) 

u(k - n + 2) 

»(*) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

If we define a subspace of (s + l)q dimensional vectors v such that v T R = 0 (which is called the 

parity space of order s), and apply it to equation 2.21, we obtain the expression 

v T Y(/c) = v THU(fc) (2.26) 

A parity check can be performed by using the different vectors v at any time. The residuals r(fc) 

can now be defined as 

r(fc) = 

ry(fc-s)" 

Ly(fc) 

H 

ru(fc - s)m 

Lu(fc) 

(2.27) 
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and if we introduce the state equations 2.18 in the expression for r(k), it will become 

C 

r(fc) = v T 
C A 

. C A 8 

x(fc — s) (2.28) 

with r(fc) = 0 if no fault occurs. It is evident from all the formulations above that the vectors v 

must be in the left null-space of matrix 

C -

C A 
(2.29) 

» 

L C A S . 

but, apart from this, can be chosen freely. This leads to a variety of parity relations and, as mentioned 

above, these relations are tests in the consistency of parts of the input-output dynamics of the system 

as opposed to tests for the whole system model. Whenever a particular fault is present, the consistency 

is altered and that fact is shown in the residuals. The concept leads to an observer called the dead-

beat observer for SISO and MTMO systems [18], which can be explained using the following line 

of reasoning. A state-space model can be described in input-output form as 

y(A) = S(z)u(*) (2.30) 

where each element of the S(z) 4 matrix is a transfer function. If we use an observer to estimate the 

states of a particular system with D = 0, the equations wê obtain are 

x(fc + 1) = ( A - KC)x(ife) + Bu(Jt) + Ky(fc) 
(2.31) 

r(*) = y(A) - Cx(rc) 

where r represents the innovations and K the observer feedback matrix. Following the equivalence 

between the state-space and the input-output representations, we could also express r(fc) as a function 

of the observables u(k) and y(k) as 

rW = Q ( # ) + P ( # ) (2.32) 

S(z) = C(zl - A)'1 B + D 
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where Q(-z) and P(z) are transfer functions including K. For the innovations to become FDI-usable 

residuals, they must be zero if the system is under no-fault and the observer K must have been 

chosen adequately, that is 

Q(z)y(fc) + P(z)u(fc) = 0 (2.33) 

As y(k) = S(z)u(k), that implies 

[Q(z)S(z) -I- P(z)]u{k) = 0 (2.34) 

or 

P(z) = -Q(z)S(z) (2.35) 

Equation 2.32 then becomes 

r(fc) = Q(*)y(*) - Q(z)S(z)u(fc) (2.36) 

If we recall the form of the residuals in the parity space approach, namely, 

r(fc) = vTy(fc) - vTHu(fc) (2.37) 

the relationship is evident [19]. 

The main idea behind the dedicated observer approach is to use the estimation error obtained 

with the use of system observers (linear or non-linear, full or reduced order) or Kalman filters, as 

the residual for fault detection. For a linearized system defined by 
x(t) = Ax(r) + Bu(t) + Ed(r) + Kf(r) 

(2.38) 
y(t) = Cx(f) + Fd(<) + Gf (t) 

where 

x : nxl state vector 

u : pxl input vector 

y : qxl output vector 

A, B, C : known matrices 
(2.39) 

Ed : term for unknown inputs 

Kf : term for actuator and component faults 

Fd : term for unknown inputs to the sensors 

Gf : term for sensor faults 
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a full order observer will render the following state x and output y 

x = (A - HC)x + Bu + Hy 
(2.40) 

y = Cx 

The choice of the feedback gain matrix H will determine the performance of the observer. The 

observer state and output estimation errors are 

e = x — x 
(2.41) 

e = y - y 

and by substitution, will become 

e = (A - HC)e + Ed + Kf - HFd - HGf 
(2.42) 

e = Ce+Fd + Gf 

The output estimation error e can then be used as the residual. When no faults are present, the 

residual will only depend on the unknown input. When a fault appears the residual will increase, 

therefore, detection of the increment in e will determine the presence of faults. 
The fault detection filter approach is nothing but a dedicated observer with a special choice for 

the feedback gain matrix H. In this case, the system is modelled as 

x(f) = Ax(f) + Bu(t) + ki/,-(t) 
(2.43) 

y(t) = Cx(t) + kj/j(t) 

with f(t) a scalar function of time and k; and kj vectors of dimension nxl and qxl, respectively, 

used to model faults. By design, ki can be chosen to represent the fault directions of the actuators 

and components in the system, kj represents the directions and modes of sensor faults. With 

i = 1,2,... r, r is the number of fault directions, j is associated with the number of sensors in the 

system. The observer is then represented by 

x = (A - HC)x + Bu + Hy 
(2.44) 

y = Cx 

and the residual vector r = y — y has now directional properties associated with the possible faults. 

The estimation errors will reflect either an actuator or component fault as 
e= (A-HC)e + ki/,-

(2.45) 
r = Ce 
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or a sensor fault as 

^ = ( A - H C ) e i . + h J / i 

(2.46) 
r-j = Cej_ + kj/j 

where hj is the j-th column of H. From these equations it can be seen that the residual can be 

unidirectional, for component and actuator faults, or could lie in a plane, in the case of a sensor 

fault. The proper choice of H will make the residual of a particular fault fi to be constrained either 

in a single direction or into a plane, in the residual space. Therefore, any large residual projections 

along the known fault directions or fault plane will mean that a fault is present, and will tell which 

kind of fault it is. 

Needless to say, the parity space, dedicated observer, and fault detection filter approaches require 

very precise system modelling. 

2.2 Faults and Failure of Pressure Screens 

Abiding by our definitions, failure of a screen is produced mainly by two causes: plugging (either 

line plugging or plate plugging), and plate mechanical failure. These conditions demand the screen 

to be shut down to allow for off-line repairs. 

All screen faults can be grouped in five categories: 

1. Blinding. Fibres accumulate within or adjacent to the screen plate apertures (or in the reject 

piping). Low screen capacity will result from this condition and, in extreme cases, will lead to 

plugging and stoppage of the accept pulp flow. 

2. High loss of good fiber into the rejects. Either by improper feed consistency, volume of dilution 

water or plate perforation [47]. 

3. Loss of accept quality. The presence of an undesired percentage of contaminants in the treated 

pulp would result as a consequence of high rotor speeds, low consistencies or wrong reject rate. 

4. Motor overloads. 

5. Flow instability, caused by high flow velocities and cavitation. 
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In general, the main objective of screening is the steady removal of debris at adequate capacity. 

Whenever this objective is not fully accomplished, there will be a faulty operating condition. As 

with the existing technology most variables associated with the quality of the pulp can not be measured 

on-line, a true FDI system should focus on detecting the remaining types of faults. In this research, 

the emphasis is put into the operational faults: blinding and motor overloads. 

How long it will take to blind a screen depends on its operating conditions and on the severity 

of the blinding agents. Fast blinding can have a duration of a few seconds after the critical accept 

flow has been met. Slow blinding can develop over a period of 30 seconds or more. Consistency5, 

rotor speed, length of fibres and flexibility of the fibres, are among the factors which can influence 

this phenomenon. 

2.3 Present Standards and Practices 

The "classical" technique for screening control has been shown in Fig. 1.3. As said previously, 

when it is implemented, the pressure drop across the screen is maintained constant. The accept valve 

is used to control the screen throughput and the differential pressure is controlled through the ratio of 

flows: accept vs. reject. However, if the pressure drop increases above a preset level, screen blinding 

is deemed to have occurred. Then, the accept flow is temporarily stopped and the reject valve will 

be fully opened to purge the screen, using the back-flushing effect of the screen rotor. Usually, an 

alarm will go off to warn the operator that screen plugging has happened [49]. 

The main shortcoming of this approach is that there are many other factors, besides blinding, 

which could cause the differential pressure to raise. Increased throughput is one of them. As a 

consequence, a healthy screen operating at high capacity could be stopped and flushed. This weakness 

is brought to light when one looks at the findings of Craig and Gooding [22], which were supported 

by the findings in this research, and which are reflected in Figure 2.8. The relationship between 

screen pressure differential and the square of the accept flow rate is clearly linear and positive when 

the screen operation is normal. This behavior is not maintained when the screen fails. In such case, 

after a critical accept flow is reached, the pressure differential will rise sharply without any increase in 

5 Consistency is denned as the mass or weight percentage of bone dry fiber in a stock [61]. 
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A-Pressure versus Squared Accept Row 
1SOi 1 1 I 

Squared accept flow [(L/Min)^] '" 0 

Figure 2.8: Pressure differential vs. squared accept flow 
relationships for a pulp that blinds and for a pulp that does not 

accept flow. What this tells us is very simple: the use of pressure differential to detect faults implies 

an inefficient use of the screen, as it curtails the throughput. Obviously, the heavily used pressure 

differential technique is not satisfactory. Additionally, the fact remains that if the screen is under 

the effect of blinding, this fault is only detected after the fault has become a failure. This means that 

a fault detection scheme capable of giving warnings of incipient operational deviations is lacking. 

2.4 Shortcomings 

A true fault diagnosis scheme for pressure screens had never been attempted in the past. Neither 

the "classical" method nor the alternative schemes used to control pulp screens in industry prevent 

screens from plugging. Even the newest strategies used for screen control consider the screen as a 

system with one or more SISO loops with no coupling between them [40], [14]. This assumption does 

not seem realistic and most probably has an influence on the poor control performance generally seen 
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in industry. That translates into interruptions in the pulp-making process, unsafe working conditions 

and economic losses. 

The current approach to screen fault detection has also the following weaknesses which shall 

be addressed: 

• It is too slow, as it shows failure of the screen after it has occurred. In reality, that means that no 

true fault detection scheme is applied because not much can be done to prevent screen failure. 

• It does nothing to detect screen faults different from screen plate blinding. 

• It leads to an inflexible control scheme, as it does not easily allow for changes in the feed rate 

of the screen. 

• It does not lend itself to being used with varying consistencies in the pulp, as this condition 

affects the pressure differential alarm limit. 

• It cannot be linked to the quality of the pulp if future on-line measurements become available. 

The present research shall improve this situation by using a MIMO approach better suited to 

the reality of the dynamics of the screen. It also has the potential to open the door to sophisticated 

MIMO control techniques which cannot be used today. 

2.5 Summary 

In this chapter, the fundamentals of Fault Detection and Isolation (FDI) systems and the principles 

of their application on pulp pressure screens have been described. After delving into some definitions 

like fault, failure, and the different steps in a typical FDI sy§tem, a classification of such systems has 

been introduced. The criteria used for said classification is the existence of an analytical representation 

of the process plant under control. Details of the fundamental ideas behind the use of non-model 

or model based FDI approaches have been provided. The state of the art of Fault Detection on 

pressure screens and its shortcomings have been presented. Finally, the need for a new FDI method 

has been substantiated. 
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Chapter 3 

Non-Parametric Fault Detection of Screens 

3.1 The Experimental Setting 

Process and equipment faults are undesirable events in a process plant, and failure is to be 

avoided if at all possible. Developing a fault detection strategy in an environment where product 

deviations and equipment malfunctions are unwelcome is not a simple task and usually becomes a 

lengthy process, since not much can be done to expedite progress, or to study particular alternatives. 

On the other hand, the use of theoretical tools alone to form a fault detection scheme for equipment 

in industry is of limited use. In any case, direct knowledge of the real system under study, and an 

understanding of what constitutes normal and faulty operations, are required. So, how can one build 

an FDI system for pulp mill equipment? It seems that the best approach for such task should be 

one which combines the flexibility of the theoretical tools with the depth of knowledge gained in 

the industrial operations. 

Fortunately, in the course of this research, access to Paprican's screening research pilot plant, 

located in Vancouver, B.C. was gained. This plant, whose Process and Instrumentation (P&ID) 

diagram can be seen in Figure 3.9, comprises three storage tanks, a centrifugal pump, two industrial-

scale pulp screens, and the instrumentation required to measure and control all important process 

variables of the equipment operation. It allows for circulation of pulp flows up to 10,000 liters per 

minute (L/Min) with a consistency of up to 5%. In this setting, it was possible not only to operate the 

screens and observe their behavior, but most kinds of faults could be induced at will and their effects 

documented. This pilot facility is as close as possible to the industrial reality while maintaining the 

rigor of a research environment. 

Two main sources were used to gather the information regarding the screen process variables: 

asynchronous transfer of data from a Distributed Control System (DCS) Bailey Infi 90 which governs 

the automatic operation of the pilot plant, and a data acquisition personal computer (PC) capable 

of extremely fast sampling. In a period of several weeks, cabling, junction boxes, terminals, 
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Figure 3.10: Typical Slow Sampled Data Unfiltered 

signal conditioning circuits and anti-aliasing filters were designed, built, and connected to the DCS 

instrumentation inputs. Having two "independent" sources allowed for the study of process data 

taken simultaneously at different rates of sampling, as can be seen in Figures 3.10, and 3.11. 

The typical fault trial would include the following steps: 

1. One of the two screens is chosen for the trial. This includes plate selection. 

2. The pulp consistency is adjusted by mixing dry pulp and water in the stock tank. This has a 

capacity of 11,000 liters and a side-mounted mixer. 

3. The reject valve is set at 75% open. The stock valve is set at 20% open and the accept valve 

is closed. 

4. The reject flow rate for the trial is chosen. Several accept flow rates are selected, in incremental 

steps. The stock pressure is to be maintained at 350 kPa. 

5. The pump and screen motors are started. 

6. The feedstock and reject valves are controlled manually using the DCS operator's console until 

the starting process conditions, with zero accept flow, are met. 

30 



Chapter 3: Non-Parametric Fault Detection of Screens 

2 
3 

65 

55 

Motor Current (M = 60.16); (SD = 0.5164) 

1000 2000 3000 4000 5000 
# of samples (virg505) 

Stock Flow (M = 4107); (SD = 117.3) 

6000 

£ 5000 
2 
a 4000 
Q. 

I 3000 

-£ 400 

1000 2000 3000 4000 5000 
# of samples (virg505) 

Stock Pressure (M = 358.3); (SD = 5.567) 

6000 

350 

300 

1 1 1 i i i 

s 
3 , 

1000 2000 3000 4000 
# of samples (virg505) 

Accept Flow (M = 4088); (SD = 117) 

5000 6000 

;5000 

i 4000 
L 
•3000 

1000 2000 3000 4000 
# of samples (virg505) 

5000 6000 

Figure 3.11: Typical Fast Sampled Data. Unfiltered 

7. Slow data sampling is started. 

8. The accept valve is opened to reach the first selected accept flow rate and this setting is kept 

until steady state is achieved. Fast sampling data is collected by the PC for periods of up to 

thirty seconds. 

9. If failure is not present, the valves are manipulated to achieve the next higher accept flow rate 

previously selected, and step 7 is repeated. If failure occurs, the settings remain untouched until 

the differential pressure between the feedstock and the accept lines triggers a system shut-down 

mechanism. Fast sampling data is then gathered at equally spaced accept flow rates until the 

whole operation comes to a full stop. 

The behavior of the accept flow when compared with the opening of the accept valve during a typical 

fault trial can be seen in Figure 3.14. During the whole operation, the data gathered by the DCS is 

downloaded to the PC. As mentioned, this information has a lower sampling rate and is transmitted 

through one of the DCS asynchronous ports to the personal computer. 
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A-Pressure versus Squared Accept Flow 
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Figure 3.12: Screen Operated with Rotor Off 

3.2 The Motor Load 

It has been determined experimentally that velocity, acceleration, and convergence have a strong 

influence on whether the fibres inside a screen will pass through the screen plate or not [30]. Aside 

from the flows and pressures, one of the factors which strongly affect the velocity of the pulp are 

the pulsations imparted by the rotor. Therefore, when thinking of alternatives to replace the current 

method of fault detection, one variable which seems indicated for closer analysis is the screen motor 

load. In this research, that variable was measured using an amperage transformer calibrated for phase 

correction. 

The influence of the rotor on the screen operation was demonstrated during the course of several 

experimental trials. When the screen is operated without turning on the rotor, its throughput is 

dramatically reduced, as can be seen in Figure 3.12, and failure occurs quite rapidly. The screen 

shows no sign of malfunction when the accept flow rate remains below 50 L/Min (or 2500 [L/Min]2 ). 

If the accept valve is opened further, the flow gets close to 65 L/Min and then the pressure differential 
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Figure 3.17: Shewhart Chart with A2& limits 

suddenly starts to increase and the accept flow diminishes: clear signs of failure due to plugging. The 

same screen can function without problems with flows above 5,000 L/Min (or 2.5 x 107 [L/Min]2 ) 

when operated with a fully operating rotor. See Figure 3.13. 

Screen motor load was also mentioned by people froiri. industry as a variable which would be 

looked at by operators, to guarantee the absence of malfunctions. 

Despite the indubitable influence that the rotor has in the prevention of screen plate blinding, in 

all tests conducted in which the screen was made to fail, the screen motor load did not show any 

significant trends or signal levels which would help to account for the presence (or absence) of a 

failure, let alone of a fault. 

As can be seen in Figures 3.15 and 3.16, when the throughput of the screen is increased, the 

motor load signal does not register any dramatic changes, even when the behavior of the differential 
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Figure 3.18: Shewhart Chart with 2u limits 

pressure and the accept flow tell us that failure has already occurred. If we prepare control charts 

based on the motor load data sampled in the tests, the results are equally poor. As seen in Figure 

3.17, when the range and the arithmetic mean of the signals are used to create the upper and lower 

statistical control limits, many false alarms appear in the chart but the appearance of a true fault 

is not detected. When the common value of twice the standard deviation is used to set the upper 

and lower control limits (see Figure 3.18), no point falls out of statistical control. Clearly, both 

alternatives render the chart useless. 

Judging from all the results obtained in the pilot plant trials, it does not look as if direct use of 

the screen motor load signal, or any statistical manipulation of it, could be a better option for fault 
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Figure 3.19: Differential Pressure versus Square of Accepts Flow (Raw Data) 

detection than the current high differential pressure scheme used in industry. Quite to the contrary. 

If the latter can be deemed as imprecise, the former seems to be of no help at all. 

3.3 Square of Flow versus Differential Pressure 

It is a proven fact that screen blinding is determined by the decrease of flow through the accept 

line while the pressure differential between the feed line and the accept line increases [21]. The 

current approach to fault detection focuses only on the increase in pressure differential, paying no 

attention to what happens to the flow. Therefore, a logical next step would be to find an index or 

indicator which would correct for that omission. The first candidate that comes to mind is pointed 

by the hydrodynamic theory: the plot of one against the square of the other [22]. 
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Figure 3.20: Differential Pressure versus Square of Accepts Flow (Filtered Data) 

While running the screens to failure in the pilot plant trials, one feature immediately became 

obvious: when plotting the relationship between the square of the accept flow and the pressure 

differential, the slope of the graph would change dramatically depending on whether the screen was 

operating normally or was deemed as having failed. A screen operating normally would have a 

positive slope, while a faulty screen would have a negative one. The slope of the graphic, then, 

appeared as a promising candidate for a fault indicator. 

The upper part of Figures 3.19 and 3.20 shows that, when taken as a batch, the trial data 

concerning the slope reveals unequivocally whether a fault has occurred or not. FDI-wise, this is a 

very important finding. Nonetheless, the information does not establish any time references. This 

means that the failure, though clearly present, might have occurred at any time during the test. To 
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overcome this deficiency, instead of gathering data and plotting curves at the end of a trial, one could 

think of looking at the data while it is being collected, say once every minute. This would give 

the operator some sense of timing. Obviously, if implemented as a cumulative algorithm developing 

in time, as demonstrated by Figures 3.21 through 3.22, such information is better than the current 

method of fault detection, as it would allow the plant operator to know if a high differential pressure 

alarm is due to bunding or to other factors. One big weakness remains: the information would be 

post-mortem. Faulty conditions would not be identified in their early stages but after a failure has 

been declared. 
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Going further, one could try to examine the slope of the graphic recursively, adding every new 

value which is acquired by the process sampling system. The lower part of Figures 3.19 and 3.20 

shows that such approach is not practical for industrial use. Due to the presence of process noise, even 

if the data is heavily filtered, the calculated value of the slope oscillates in such a way that the index 

is rendered useless. If the average of several points is examined, the presence of a faulty condition 

could be determined, but being forced to average many points in time will bring us back to square 

one: such fault would be declared after it has become a failure. That would not constitute true FDI. 

The problems caused by the presence of noise become more acute if we sample the data faster. 

As it can be seen in Figures 3.23 and 3.24, faster sampling not only does not help in making the 

slope index more reliable (lower graph) but it even disables the possibility of looking at a clear 

graphic of the slope. The batch data (upper graph) now looks as an amorphous blob from which no 

conclusions can be drawn, no matter how heavily we filter it, and the recursive slope index is still 

inconclusive, except if used for averaging. 

Despite the lack of promise shown by the slope of the pressure differential versus the square 

of the accepts flow as a true fault detection index, two useful conclusions were obtained from the 

screen trials: 

1. The slope of the differential pressure versus squared accept flow graphic is an improvement over 

the "classical" control approach used in mills to determine if a true failure is present. 

2. When filtering screen process data, averaging produces smoother results for the variables than 

low pass filtering. 

3.4 Heuristic Rules 

An alternative for detecting faults on a plant which model is not known is to use all the existing 

knowledge of the system to extract useful conclusions. First, one has to look at the process conditions 

which can be associated with the normal and abnormal operation of the plant. The second step is to 

choose a symbolic representation of those conditions. Then, some inferential or heuristic rules are 

laid out. These rules, made by comparisons and deductions, will help determine whether a fault can 
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Figure 3.23: Differential Pressure versus Square of Accepts Flow (Raw Data) 

be deemed as present or not. Finally, some graphic means to display the reasoning and the results 

must be designed [65]. 

Based on the existing literature on screens and on our findings, a fault detection mechanism for 

the screens based on heuristic rules does not seem to hold much promise. So far, there is no evidence 

of any observable variable or set of variables which can be used to make educated assumptions on 

whether a fault is present or not. Motor load, flows, pressures, etc., do not offer much insight about 

incipient screen malfunctions. What can be established without doubt is the presence of failure. That, 

in itself, is an advance over the "classical" screen control method commonly used in mills, but does 

not represent a true FDI method. 

All in all, it does not seem that developing the next steps for a rule-based FDI system will add 
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Figure 3.24: Differential Pressure versus Square of Accepts Row (Filtered Data) 

anything useful. Most important, by setting an expert system to deal with screen faults not much 

is gained over the use of the differential pressure versus squared accept flow method. The expense 

in computing memory and programming is, therefore, obviously unwarranted. A different approach 

is in order. 

3.5 Summary 

In this chapter the experimental setting and the results obtained when testing the non-model 

based FDI approaches on pressure screens have been presented. After describing the pilot plant 

used throughout the different experiments, a detailed explanation of a typical fault trial has been 

given. The rationale used in choosing several signals (motor load, and squared accept flow versus 
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delta pressure) for the application of some non-model based approaches has been explained and the 

results obtained with such techniques have been shown. Using those results, the limitations of the 

non-model based FDI techniques on pressure screens have been established and the need for a more 

sophisticated model-based approach has been justified. 

43 



Chapter 4: Model-Based Fault Detection of Screens 

Chapter 4 

Model-Based Fault Detection of Screens 

4.1 The Need for a Model 

As it was mentioned in Chapter 2, from a systems identification point of view it is possible to 

distinguish two classes of FDI systems: model-based and non-model-based. The main difference is 

that the former relies on the existence of a mathematical model for the plant, while the latter does not. 

With the exception of knowledge-based systems, FDI methods which do not require a model 

tend to be simpler than those in which a model is required. Their simplicity, however, does not 

come for free. Usually, the information they provide does not discriminate between possible causes 

for the faults, or leads to very conservative detection thresholds prone to produce false alarms [19], 

or does not detect the faults fast enough [33]. The non-model-based approaches attempted in the 

present research have shown some of these drawbacks, and that made them unsuitable for true fault 

detection. Due to limitations in the knowledge of the screen fault signatures, diagnostic methods built 

around concepts of artificial intelligence did not hold much promise, either. Therefore, a strategy 

based on developing a model of the screens seemed indicated. 

In general, a mathematical model for the process or plafit provides the basis for obtaining better 

information towards fault detection. Measurable coefficients, also called features, become available 

with the model. Changes in these features with regard to their normal values can be used to detect fault 

symptoms and to identify the cause of the faults. This leads to early detection of incipient malfunctions 

and to a deeper level of diagnosis. The price to pay for these improvements is the development of the 

model. In this research, basic physical laws and other well-established relationships were explored 

and used to postulate the pressure screen model. The end result can be defined as of the type known 

as a grey box [45]. 
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4.2 Modelling of a Pressure Screen 

4.2.1 Pulp Screen Mass Balances 

As the process that takes place inside a screen is non-reactive, three material balances can be 

written: one for the water in the slurry, another for the pulp and a third for both components [16]. 

The first two will be expressed as: 

^ m J? 3 °^ = MFHi0 + MdUution ~ ^ » 3 o " MR„20 

d(maol) • • • 
—dT = MFsol ~ MasoI ~ MrsoI 

where the subscripts refer to water (H2O), solids in the pulp slurry (sol), incoming feedstock (F), 

reject (R), and accept (A) mass flows. In industrial environments total volumetric flows, rather than 

individual mass flows, are commonly measured. Therefore, in order to determine the mass of both 

phases in the slurry, consistency measurements and volume-to-mass equivalences are required. 

Consistency (C) was defined earlier as the weight of oven-dry fibre in lOOg of the pulp-water 

mixture [48]. However, this definition introduces the problem of determining the amount of non-

fibrous additives in the stock. To overcome this difficulty the definition of consistency is usually 

modified to mean weight of solids in lOOg of the pulp-water stock. 

On the other hand, the relationship between total volumetric flow F and individual mass flows 

M can be obtained from the relationship between volume (V), mass (M) and density p 

^Total = mh*o + Solids <4-48) 

Since 

Msolids = C (Msolids + MH,o) (4.49) 

then 

^solids = pCVTotal (4.50) 

and 

MH,o = P(l - C)VTotal (4.51) 
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(4.52) 

(4.53) 

Assuming that neither the consistencies nor the densities change too fast with time, the balances 

become 

d f 1 = p i ^ [ a i F F - ° 2 F a " ° 3 F r ] + F d i i u t i ° n 

= ±-[aAFF - a5FA - a6FR] at Psoi 
where 

«i = Pf\1 - Cf) 

o-i - />A(1 - Ca) 

a3 = Pr(1 - Cr) 

«4 = PfCf 

«5 = PaQa 
« 6 = PrCr 

Due to the nature of the components, all densities are approximately equal. Now, because the 

volume of the screen is constant and water is an incompressible fluid, fibres can only accumulate 

at the expense of water, that is, 

$ y = « + « = 0 ( 4 5 4 ) 

dt dt dt 

Adding both expressions for the mass accumulated in the system, we obtain the final mass 
balance equation 

^ % a £ = i (FF - FA - FR + F d i I u t i o n ) (4.55) 

and, recalling that the Volume (V) inside the screen does not change, 
0 = FF - FA - FR + ̂ dilution 

(4.56) 

4.2.2 Pulp Screen Energy Balances 

As the screen is an open system where no phase changes or reactions occur, the starting point 

for an energy balance is the expression 
d[U + EK + EP] _ ^ 

, £ + ^ + " .1 . t l29c 9c input streams ^ ^ 

output streams 
£i- + 2.h0 + Uo 
2& 9c 

+ Q + W 

46 



Chapter 4: Model-Based Fault Detection of Screens 

[27] with 

U : Internal Energy 

U_: Specific Internal Energy 

Ek • Kinetic Energy 

Ep : Potential Energy 

V : Volume 

v : Velocity 

g: Gravity (4.58) 

h : Height 

gc : Conversion factor 

W : Work 

Q : Heat 

M: Mass Row 

T : Temperature 

The work done on the system can be divided into hydraulic (WN = PV) and shaft work (W3). Since 

the process is adiabatic, the equation becomes 

[̂Energy] M-
dt ^ 

input streams 

7 T - + — hi + Ui+ — 
2 & gc — p] 

output streams 

leading to the non-linear expression 

2 & 9c P\ 

(4.59) 

s 

= e i F 3 + 6 2 F p + FppF + + e 4 F D U + FmpDil ^ 

-eBFAPA - <%FA - FAPA - e7FR - FRPR + WS + kA + kR 

where k refers to the frictional losses inside the screen [11] and, again, the subscripts refer to 

incoming feedstock (F), rejects (R), accepts (A), and dilution water (Dil). More details can be found 

in Appendix A where the coefficients e, are defined. The above relationship, after applying some 
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simplifying 

^ = fiFf + f2FF + hFFPF + f4Fm + f5FDil + h F M P M 

-h*A ~ hFA - hFAPA - f&Fji - HFrPr + hWs + f3kA + f3kR 

where the /j's are coefficients defined in Appendix A. After linearization and the fact that ̂  varies 

very slowly when compared with the flows and pressures, this becomes 

0 = g\F'F + g2PF + + 54 - P D i l 

-9hF'A - g6P'A - g7FR - g8PR + f3W'3 + f3k'A + f3k'R 

with 

(4.62) 

= 3pFF + 2A2

Fpg(hF - hR) + 2A2

FgcPF 

9 1 2A2

FpgcVCv 

_ 3 i D i l + 2^Dilg(ftDil ~ h R ) + 2 ADil^^>il 
2AhilpgcVCv ( 4 6 3 ) 

= 3pF\ + 2A\pg(hA - hR) + 2A\gcPA 

9 3 2A\pgcVCv 

= ZpF2

R + 2A2

RgcPR 

9 4 2A\pgcVCv 

FF 

95 = pVCv 

n - F D i l 
9 6 - p v c -

Fr 
9&=PVCV 

n

 P v c v 

and the P's and F's are deviation variables from the set points P' and F . 

4.2.3 Mechanical Losses 

From the mechanics of incompressible fluids, it is known that the energy losses associated with 

friction in pipelines are proportional to the square of the fluid velocity. This can be expressed as 

k = fpv2 (4.65) 
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and it is the underlying principle of Farming's and D'Arcy-Weisbachs's friction equations [9], [57]. 

Although fp is normally a constant, it can be theorized that it will vary with the accumulation 

of fibres on the screen plate. Thus, considering both fp and v as time-varying, we differentiate 

D'Arcy-Weisbach's equation, namely, 

We then obtain the following expression 

which, when using the fact that k = fpv2 gives us the result 

This shows that a dynamic expression for the losses inside the screen must include a term dependent 

on the square of the fluid velocity and another term dependent on the losses themselves. Following 

this Une of reasoning, an expression is proposed to reflect the dynamic behavior of the losses inside 

the screen: 

k = d1k + d2v2 (4.69) 

The constant 

1 d(v2) 
di = -^r1 (4.70) 

tr dt 

should be fairly sensitive to variations in the speed and, by implication, to flow changes. As the 

flow becomes smaller one should expect to see it grow in magnitude, fairly rapidly. The constant 

d2 would reflect the rate of change of the parameter fp due to accumulation of fibres on the screen 

plate. If blinding starts, the dynamic characteristic of the formulation will reflect this phenomenon: 

the appearance of blinding increases the velocity of the flow and the frictional losses, which in turn 

increase blinding, and so on. 

As the velocity across the screen plate orifices is very difficult to measure, it is proposed that 

the flows be used in the equation. It is also proposed that the same equation be applied to account 
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Figure 4.25: The screen as a dynamic "T" 

for the two different streams of pulp inside the screen. This amounts to saying that the screen is 

considered as some sort of "T" pipe fitting with different dynamic friction coefficients: one set for 

the accepts and another for the rejects, as it is shown in Figure 4.25 

Accordingly, after linearization and the fact that F'F = F'A + FR - F^» die dynamic expressions 

become 
dk A _ dxk'A + d2F'F + d 2 F D i l - d2FR 

dt 

^ = d3k'R + d4FR 

(4.71) 

with the d's being the dynamic loss coefficients, the k's referring to the energy losses, and other 

measurable variables being as described before. 

4.2.4 The Proposed Mathematical Model 

Theoretically, the mass balances have the potential to give us information about the accumulation 

of fibres inside the screen. However, due to the state of the art of the existing measuring devices, 

attempts at determining the weight of fibres involved in blinding do not seem realistic. Another 

concern is that, due to the amount of fibres involved, such measurements might not convey enough 

information on the dynamics of this process. Therefore, the proposed mathematical model for screen 
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diagnosis relies directly on the balance of energy and the equation of losses for incompressible fluids 

and only indirectly on the mass balances. It is believed that this set of equations forms a reasonable 

basis towards a screen operational model. As the degrees of freedom allowed for the energy balance 

and the losses relations are equal to three, the model can be expressed in discrete state space form as 

'zk'A' Jl 0" J3 J3 
= + 

.0 32. .0 0 J4. 
rDil 

y=[h& h&] 

LkR 

+ [hi h2 -h3] 

+ 0 

+ (4.72) 

[/14 /15 —/l6 —h-; h&] 

p' 

r R 

w: 

As mentioned before, the states k represent the energy losses and the output y the accept flow. The 

derivation of the parameters h and j is explained in Appendix B. 

This system is reachable, i.e., by using a realizable sequence of control signals it is possible to 

drive it from an initial state to any final state6, and observable, i.e., any state can be determined from 

a finite sequence of input and output signals7. That makes it ideal for identification. More details 

can be found in Appendix A. 

4.2.5 Pulp Quality 

Although research on the subject has advanced significandy in the last years [23], [17], modelling 

of the effects of screening on pulp quality can not yet be achieved through the use of mechanistic 

or physical principles. Results have to rely on empirical relations obtained through testing and 

experiments. The tools to use in search of empirical relationships are the screening coefficient Q, 

and the debris reject efficiency Er, previously mentioned. In the proposed model, the quality aspect 

6 Provided the parameter J4 ^ 0 (which seems true in all cases). 
7 Provided j\ ^ ji (which is also true In the majority of cases) 
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of pulp screening has not been included. Nonetheless, the path chosen for identification (the singular 

pencil model, to be explained in the next sections) allows for easy incorporation in the model of 

future theoretical formulations which might seem pertinent. 

4.3 Identifying the Proposed Model 

4.3.1 What to Identify? 

Two approaches have concentrated the attention in the literature on model-based fault diagnosis: 

process parameters and state variables. Although somewhat different, both share the same phases 

when implemented: 

1. Data processing. Measured signals of the process are gathered and made suitable for fault 

detection. 

2. Fault Detection. Some characteristic process features are extracted and compared with their 

expected values. Deviations are used as indications of fault occurrence. 

3. Identification. A classification of faults is prepared and any subsequent fault is compared with 

this fault catalogue to determine type, location, size and probable cause. 

The first two characterize the detection stage of an FDI system and the last one constitutes the 

diagnosis. 

Fault detection procedures must be insensitive to any changes in the process not produced by 

faults, such as modelling errors, noise, changes in operating points, etc.8, for if not, its practical use 

is severely compromised: no plant operator will trust a system plagued with false alarms. 

Unfortunately, the process parameters and the state variables methods can not always reach 

decoupling between the effects of the unknown inputs and the effects of faults. Therefore, redundant 

methods capable of precise identification are attractive to the researcher. Based on the fact that 

process parameters and state variables share the same procedural stages, a strategy that combines 

both approaches is therefore proposed. To the best of my knowledge, this has not been attempted 

previously. 
8 These latter are termed unknown inputs. 
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4.3.2 How to Identify It? 

Instead of selecting measurable states to calculate the model parameters, or assuming perfect 

knowledge of the system to calculate the system states, the dynamic model that has been proposed 

includes the two quantities as unknowns. Therefore, both the process parameters and the system 

states must be estimated. 

The problem of combined estimation of parameters and states was originally treated as a nonlinear 

problem and the Extended Kalman filter was proposed to solve it [51], [3], [6]. However, although 

this method has been proven feasible, the estimates often diverge. Building a methodology for 

fault detection on the basis of an identification approach that does not guarantee convergence of 

the parameter estimates does not seem very sound. Instead, an approach based on using a special 

canonical model known as the singular pencil model is proposed. When the noise statistics are known, 

the singular pencil model allows to solve the simultaneous estimation of state variables and system 

parameters as an optimal linear filtering problem and its convergence properties are excellent [5]. 

4.4 The Singular Pencil Approach 

4.4.1 From an ARMAX Model 

Assume that we have an ARMAX model for a linear, discrete, multivariable, time-invariant 

system with input variable ukeRm, output variable yk^Rp, and noise input ekeRP assumed as a zero 

mean white Gaussian sequence with covariance A(A > 0), such as: 

A{z~1)yk = B{z~l)uk + C{z-X)ek (4.73) 

where z~l is the shifting operator, and the matrices A{z~x), B(z~1), and C(z~l) are of the form 

A{z~l) = Ao + A^-1 + ...Avz~v 

B(z-l)=B0 + B1z-1 + . . . B v z - v (4.74) 

C(z~l) =I + ClZ-1 + ...Cvz~v 

v being the maximum of the degrees of the polynomials in A(z - 1 ) , B(z~l), and C{z~l). These 

matrices have q rows. Introducing auxiliary variables in a vector xk with n — vq we can represent 
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the ARMAX model as 

'OqXq o - •Av- •Bv- •cv-
' I n ' 

; I \ 
zxk = Vk + 

Ci 

-Iq. 

.OgXn. 

zxk = 

. 0 Iq. 

Ai 

-An-

Bi 

-Bo-

Ci 

-Iq. 

(4.75) 

with Ia and O a X / 9 denoting an axa identity and a ax/3 null matrix, respectively. And v = max{n,}, 

where is the largest polynomial degree of z~l in row i of [A(z _ 1 ) , B(z~1), C(z~1)]. For 

simpUcity, this can be written as 

zxk = E*xk - A*yk + B+uk + C*ek 

(4.76) 
0 = Eaxk - AQyk + B(tuk + ek 

Assuming that this representation is canonical or has been modified to be canonical [8], it can be put as 

P(z) 

xk 

Vk 

uk 

-efc J 

JS;+ - zl -A„ B* C* 

EQ -Aa B0 I 

xk 

yk 

uk 

•ejfc J 

= 0 (4.77) 

with P(z) a singular pencil of matrices and xk satisfying the definition of the system state vector. 

This model is called a singular pencil matrix (SPM) model. 

A pencil of matrices is a first-order polynomial in an indeterminate D with matrix coefficients, 

of the form M+DN, where Af and N are mxn matrices. The pencil is called singular if M and N 

have different order or if the determinant \M+DN\ is equal to zero [67]. 

4.4.2 From a State Space Model 

If we start modeling the singular pencil from a state-space model of the form 

xk+i = Axk + Buk 

(4.78) 
Vk = Cxk + Duk 

with the matrices A(z), B(z), C(z), and D(z) being nxn, nxp, mxn, and mxp, respectively, the 

implicit equation is obtainable by inspection as: 

TO B i r v j t l 
(4.79) 

7" 
zxk = 

"A* 
xk + 

' 0 B' "yjt" 

0. C . -I D. 
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where the / is our well known identity matrix. This initial expression has to be transformed into 

the implicit canonical form 

yk \E.-zI - A , 5* CV 

Eo -Ao Bo I 
P(z) 

•efc 

xk 

Vk 

.ekJ 

= 0 (4.80) 

to guarantee that the identification is unique9. That task is achieved by using linear transformations 

Ti,T2, and T3, as required, on the state-space expression and adding the matrices 

C* and I (4.81) 

which help account for the process noise [5]. Transformation T\ is obtained by selecting a chained 

basis from the matrix 
C(A)n 

CA 

C 

(4.82) 

and it leads to 

T^AT^-zI TxO T\B 

CTf1 - / D 
Vk 

Mk 

rEl-zI -A\ Bl 

E' < B'o 
Vk 

LujtJ 

= 0 (4.83) 

Transformation T2 is obtained from the form 

f ( K u ) ••• f ( K l n ) 

f { K n l ) ••• f{Knn) 
where E" is an n,-square companion matrix and, given 

I an <*12 ••• ai„ 

(4.84) 

A = 
a2i a22 

Cml am2 

02n 
(4.85) 

9 Note that matrices A, A., and Ao; B, B., and Bo; and C and C . ate all different. 
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f(A) is a matrix function that produces the following result: 

f(A) = 

0 -an - a i 2 ••• - a i ( „ _ i ) 

0 0 - a n . . . - a i ( „ - 2 ) 

0 0 0 
(4.86) 

and transformation T 3 is derived using matrices L and R such that 

P\z) = 
I L 

0 R 

'E+ - zl G» 

. EQ <?oJ 
(4.87) 

with 

(4.88) 
G* = \-A, 5 + | 

G 0 = |-Ao B0\ 

[5]. After applying those three linear transformations in the order above, we obtain the reduced 

upper-right row echelon form required for the singular pencil, and the model becomes 

P(z) 

Xk 

Vk 

Uk 

•ek -I 

'E+ - zi G+ c . 

E0 Go. I 

xk 

Vk 

Uk 
= 0 (4.89) 

with 
0 0 

E.= 
1 0 

E0 = \0 1| 
(4.90) 

-jih J2(hji - hjs) h&(J2J3 - hk) - hj\J2 J2{h2Ji - hjz) 0 . . . 0 
G , = I 

U ' i + J 2 hsh ~ hi(h +h) h8{JA -h) + hz(jx + j2) hgj3 - h2{ji + j2) 0 . . . 0 
Go = [—1 h\ — /13 h2 /14 ^5 — hi h%] 

(4.91) 

and C* to be chosen from previous knowledge of the process noise. More details and explanations 

can be found in Appendix B. 
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4.43 Singular Pencil Identification 

Once the canonical representation is achieved, E* and EQ are determined uniquely. As yk and uk 

are measurable and therefore known, this means that the simultaneous state and parameter estimation 

problem can be solved as a linear filtering problem, in contrast to the nonlinear estimation problem 

encountered when using the state space model approach to attempt the simultaneous estimation of 

state and process parameters. 

Making vectors = [t/jT, u £ ] , J = [7p|0pxm]» and r (which contains the non-pivot parameters 

a.ijk and 6 i j fc in the matrices A + , Ao, B*, and Bo) our singular pencil equation can be expressed as 

xk+i = E+xk + G*{wk)r + C*ek 

(4.92) 
0 = Eoxk + Go(wk)r - Jwk + ek 

with 
G*(wk)r = [-A, \B*]wk 

(4.93) 

Go(u>k)r = [-A0 \Ba]wk + Jwk 

As these matrices are not unique, they must be built in a way that ensures that the elements 

of matrices A and B , i.e., atjk and are isolated into the column vector r. Since the system 

is time-invariant, r = rk = r k + i , and further refinements are possible in our representation of the 

system, namely 

= -FjfcS* + D*ek 

Vk = Hksk + ek 

with 

(4.94) 

Hk = [E0Go(wk)\ 

L o i, 

' c * 1 
!>• = 

Ofx„. 

and / is the dimension of the vector r. 

This last expression is nothing but the representation of a linear stochastic system in state space 

form with state vector s. As such, if C* and the covariance matrix A of the noise are known, it is 
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possible to use the Kalman filter algorithm to obtain the optimal linear estimate of the augmented 

state vector sk, which in turn, will lead to the vectors xk and rk, rendering the states and the process 

parameters of the system. 

The recursive equations to use will then be 

sk+i = Fksk + Kk(yk - Hksk) 

Kk = {FkPkHl + S) {FkPkHl + A ) _ 1 (4.96) 

P k + l = FkPkF? + Q- Kk(FkPkHl + A)KT 

[a A' 
where 

5 = 

Q = 

"C*ACi 0nX, 
(4.97) 

> 0 

with initial conditions 

(4.98) 

L 0,Xn OJXIJ 

s0 = E[s0] 

~PQ = E [(s0 - J5l>0])0o - E[sQ}f] > 0 

and E[(.)] is the expected value of (.) 

Once the process parameters and state variables under normal operating conditions are obtained, 

they will be stored in memory. From this point, the physical coefficients in the model can be 

recovered, if necessary, applying reverse linear transformations T1
-1,r2

-1 and T 3

- 1 . Successive on­

line values can then be compared. The presence of swings or deviations will suggest the existence 

of faults, which lead us to the next stage of the FDI system: the diagnosis. 

If C* is not known (which is very likely in practice) there are several possible options, two 

of which are: the use of an extended Kalman filter algorithm to estimate simultaneously the noise 

and the measurement parameters, or the application of non-parametric noise estimation techniques 

to determine its characteristics, before attempting the singular pencil strategy. This problem will be 

addressed in the coming chapters. 

4.4.4 Application of Equations 

To offer a feel for the practical application of the proposed singular pencil approach for 

identification, let us look at some graphs. Figure 4.26 shows some input/output information obtained 
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from the pressure screen pilot plant trials conducted along this research. Although a detailed 

discussion of these trials will not be attempted until next chapter, a few things can be said here 

to illustrate the practical results obtained when using our mathematical derivations. 

U. Mt. Cur. (M= -0.07745); (SD= 0.4523) 

500 1000 1500 2000 
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Figure 4.26: Simulated measurements of pressure screen 

To begin with, the typical data batches shown in the graph correspond to the screen process 

variables measured by the sensors and then gathered by the fast sampling data acquisition system. 

This data clearly corresponds to deviation values and it is the data fed to the singular pencil algorithm. 

These measurements are then processed using the estimation sequence described in the previous 

sections to obtain the parameters shown in Figures 4.27 and 4.28. They are the parameters included 

in the augmented states vector sk. 

As our initial discrete screen model includes two states, the first two parameters in sk (seen 

on top in graph 4.27) correspond to those states xk. One could use them directly for diagnosis or 

apply similarity transformations to them to recover the original states representing the friction losses 

(fĉ  and kp). Either way, their shape is not expected to change by much. At this point it is worth 

underscoring one important fact: as the graphs reveal, in general, convergence of the estimation is 
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Figure 4.27: Estimated parameters in the augmented state vector 
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Figure 4.28: Estimated parameters in the augmented state vector (Cont.) 

good. This comes as no surprise because the convergence properties of the SPM method are well 

documented in the literature [8]. 

The remaining parameters in the vector have to be transformed back by using the 

Tj - 1, T2
_1 and T3

-1 linear transformations. When doing this, they render the d coefficients in 

the discrete model which are associated with the friction losses inside the screen, and which are 
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Figure 4.29: Estimated friction coefficients in the screen model 

of interest for the fault detection process due to their physical meaning. The typical estimated d 

coefficients are shown in Figure 4.29. As expected, after convergence is achieved, the accept and 

reject friction coefficients (d x and d 3) are negative. 

With this information and proper judgement, one can attempt to detect the incipient operational 

problems most commonly affecting industrial pressure screens, as it will be demonstrated in sub­

sequent chapters. 

4.5 Summary 

In this chapter a mathematical model of the typical pressure screen and a procedure for its use 

as an FDI method have been presented. The model is of the grey-box type and it has been developed 

using mechanistic principles and an expression analogous to the D'Arcy-Weisbach formula to account 

for the dynamics inside the screen. The problem of identifying the parameters and states in the 

proposed model and its non-linear nature has been explored and an alternative for breaking this 
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non-linearity has been proposed. The technique, called the Singular Pencil Matrix (SPM) has been 

presented, and its implementation for use on pressure screens has been covered in detail. 
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Chapter 5 

Testing and Experimental Results 

5.1 Model Validation 

5.1.1 FDI and model checking 

Having built a tentative model for pulp pressure screens and suggested a suitable identification 

procedure, it is then appropriate to ask if the model is adequate for fault detection and isolation and, 

if not, what kind of inadequacies it might have. This is known as the model validation or model 

checking problem [45]. 

Most methods for model validation found in the literature on system identification rely on 

statistical lack of fit tests applied to the model errors or residuals. Model-based FDI is also built 

around changes in the model parameters or residuals, thus, it may be seriously affected by modelling 

errors [31]. In fact, when identifying for FDI, the main question that has to be answered when 

detecting lack of fit in the model is the following: is the deviation due to a model inadequacy or is 

it the signature of a fault? That is the problem the "robust" fault detection techniques try to solve. 

Unfortunately, it has no complete solution in the literature [19]. Moreover, the evidence suggests 

that it is not possible to improve simultaneously the fault̂ ensitivity and the immunity to model 

errors of any FDI technique. 

In practice, despite any formal aspects which might be raised, the main criterion for model 

validation must be whether the proposed model is good enough for the purpose at hand, or not [45]. 

Therefore, the paramount concern in this research is to determine the "goodness" of the proposed 

model in detecting incipient pressure screen faults. Or, in other words, its ability to display parameter 

deviations in the presence of faults in such a way that fault diagnosis is made possible. All other 

issues must be subordinated to that one. 
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5.1.2 The validation procedure 

In the singular pencil model proposed for estimation in the previous chapter, the matrix C* has 

to be fixed according to the a priori knowledge of the noise. In practice, this means that testing the 

statistical lack of fitness of the model helps to determine the choice of C* and, in turn, the choice 

of C* affects the statistical fit of the model, but this selection muddies the question of the model 

appropriateness from a fault-wise perspective. Does a better fit guarantee good fault discrimination? 

Not necessarily. In our case, perhaps good fit might simply indicate that the choice of C* is masking 

the presence of a fault. Therefore, instead of using the standard validation techniques and simply 

testing the statistical properties of the proposed model (including the matrix C*), one has to address 

the issue of model "goodness" for fault detection from a broader perspective. In doing so, some 

questions have to be asked: Do the estimated model coefficients show similar values under similar 

operating conditions? Are the values of the estimated coefficients different for different conditions? 

How far between them are the values corresponding to normal and faulty operation? 

To obtain the required answers while taking all important facts into consideration, a three step 

validation procedure for the model-based scheme has been proposed: 

1. Determination of parameters repeatability through simulation. 

2. Evaluation of FDI-"goodness" in pilot plant trials. 

3. Evaluation of statistical fit of the FDI-"good" models. 

Thus, the singular pencil model approach is to be tested with simulated data first and, once its ability 

to offer repeatable results for different operating conditions is established (and, therefore, its suitability 

for the task at hand), pilot plant trials are to be used to assess its FDI-"goodness" and statistical fit. 

5.2 Simulations and Repeatability 

In instrumentation, repeatability is defined as the "closeness of agreement among a number of 

consecutive measurements of the output for the same value of the input under the same operating 

conditions, approaching from the same direction, for full range traverses" [1]. In the process plant, a 

very repeatable but not too accurate instrument is often better than a more accurate one with poorer 
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ACCURATE SHOOTING 

Normal F a u l t y 

REPEATABLE SHOOTING 

Normal Faulty 

Figure 5.30: Shooting targets to illustrate accuracy and repeatability 

repeatability. The reason is obvious: poor repeatability leads to uncertain measuring results. Good 

repeatability, even under the presence of measurement bias, provides consistent information. 

As illustrated by the shooting targets in Figure 5.30, one can immediately establish an analogy 

with the field of model-based Fault Detection and Isolation: a model which shows consistent results for 

"normal" and "faulty" behavior of a plant is preferable to another which is more accurate (statistically 

or otherwise) in reflecting the "true" screen behavior but less repeatable. Accordingly, the first 

property of the FDI model proposed in this research which should be investigated is its repeatability. 

To fulfill that pre-requisite, a simulation algorithm was implemented. 

The algorithm basically creates batches of data representing all the measurable process variables 

of a typical pulp pressure screen: pressures, flows, temperature and rotor motor load. It calculates 

the states and process coefficients included in the screen model and it extracts and plots the "d" 
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CASE 1 CASE 2 CASE 3 

Motor Current: 57% ± 0.29 

Accept Pressure: 320 kPa ± 

2.88 

Accept Flow: 1500 LPM ± 30 

Process 

Conditions 

Reject Pressure: 367 kPa ± 3.3 

Reject Flow: 500 LPM ± 10 

Feed Flow = Accept + Reject 

Feed Pressure: 350 kPa ± 3.15 

Tank Temperature: 41 deg.C ± 

0.21 

Same Same 

Increasing accept Decreasing accept 

flow flow 

Perturbation None (Ramp at half of 

batch with 

0.5% slope) 

(Ramp at half of batch 

with 

-0.5 % slope) 

Noise 
Random with uniform 

distribution 
Same Same 

Table 5.1 Screen Simulations. Process Conditions 

coefficients associated with the friction inside the screen. Noise can be added to all signals to make 

the simulation stochastic. 

The process data can be made to correspond with clearly distinct operating conditions: normalcy 

and failure. It also allows for the superposition of several disturbances on all variables related to 

either condition. Thus, one can have as many data batches as desired with the only difference among 

them being the perturbation or the added noise. This allows for the testing of very similar data sets. 

For these sets, the states and the coefficients in the model are estimated and the repeatability of their 

values is investigated. 

66 



Chapter 5: Testing and Experimental Results 

Unfortunately, as it has been shown in previous chapters, the precise relations between the 

different screen process variables (particularly pressures and flows) which might indicate the presence 

of a fault are not well understood. Empirical knowledge on the screen friction losses is also lacking. 

That combination of facts means that manipulation of these variables to accurately simulate incipient 

faults is out of reach10, but one can test the operational extremes of 'normal* and 'faulty' behavior of 

a screen suffering from blinding and make them follow one another. If good estimation repeatability 

is achievable during simulations of normal operation and failure, one might reasonably argue that 

the model should give repeatable results in the intermediate ranges that precede the two extremes, 

i.e., in the presence of incipient faults. Such argument can be tested against data showing normal 

operating conditions followed by failure and ultimately, against real data. For now, let us concentrate 

on the simulations. 

CASE 4 CASE 5 CASE 6 

Process 

Conditions 
Same as in case 1 Same Same 

Perturbation 

Decreasing accept flow 

and increasing reject 

flow 

(Ramps at half of batch 

with 

± 1% slope) 

Fast decreasing accept 

flow 

(Step at half of batch 

with 

-2% gain) 

Decreasing accept flow 

(Ramp at beginning of 

batch with 

-0.05 % slope) 

Noise 
Random with uniform 

distribution 
Same Same 

Table 5.2 Screen Simulations. Process Conditions (Cont) 

In order to test the repeatability of the proposed model-based strategy, six different pressure 

screen operational cases were evaluated using the simulation program: 

1. Screen operated in absence of perturbations (normally operated with change in feed). 

1 0 If that simulation was possible, the whole Idea of the screen model as a fault detection tool would be moot as one would simply 
look at the "right" variables for indication of the known faulty behavior. 
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2. Screen with sudden increase in accept flow (normalcy with change in throughput). 

3. Screen with sudden decrease of accept flow (normally operating screen suddenly brought to 

failure). 

4. Screen with sudden decrease in accept flow and increase in reject flow (another option for a 

screen made to fail). 

5. Screen with step changes affecting the screen flow (normally operating screen followed by fast 

occurring failure). 

6. Failed screen. 

The characteristics of this cases, including process conditions, perturbations, and process noise, are 

shown in Tables 5.1 and 5.2. It is pertinent to mention that each simulation case has faster dynamics 

than the precedent, except for case 6 which obviously has slower dynamics than most of the others. 

Cases 1, 2 and 6 correspond to what have been termed as the extremes of pressure screen 

behavior: normalcy and failure. The remaining three cases included normalcy followed by conditions 

associated with failure. To illustrate for the reader, the process variables for cases 4 and 5 can be 

seen in Figures 5.31 and 5.32. 

At this point, as establishing the statistical fit of the model is not relevant, the model noise 

matrix C* used in the simulations was selected arbitrarily with coefficient values which were deemed 

"reasonable"11 and kept the same for all cases. Since blinding is the underlying agent of the simulated 

failures, tracking the behavior of the accept losses coefficient is of particular interest12. After running 

the algorithm used to extract the values of the screen losses coefficients, the results for di shown 

in Tables 5.3 and 5.4 were obtained. Those same results can be observed in graphic form in 

Figure 5.33. 

In the graphic, the center lines represent the average value obtained in the different trials tested for 

each case. The upper and lower values represent the average plus or minus t.a of the samples, which 

for a Gaussian distribution implies a confidence factor of approximately 95% [12]. The coefficient t 

is Student's "t" and has a value of 2 for a sampling universe larger than 30. 
1 1 That Is, corresponding to a system which Is causal and realizable. 
1 2 As the screen blinds, the passage of fibres from the feedstock to the accept line becomes more difficult. This suggests a change in 
k/\ and subsequently on the d's. 
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Figure 5.31: Simulated data for pressure screen which begins to fail (Case 4) 

Variations of cases 1,2, 4 & 6 were also tested to evaluate the behavior of the reject friction 

coefficient when under simulated pipe plugging. This time, the main manipulated flows and pressures 

were the reject. For instance, in case 2, instead of increasing* the accept flow, the variable dispensed 

with was the reject flow. Cases 1, 4 & 6 were treated analogously. The results obtained are shown 

in table 5.5, and can be observed graphically in Figure 5.34. 

From the information on the tables and graph the conclusion is obvious: the proposed model-

based strategy assures that most cases which are significantly different from an operational point of 

view will produce repeatable and discriminating results for the estimated process coefficients. This 

is equivalent to saying that it has the potential to be used for fault identification and diagnosis: the 

increase in the magnitude of the d coefficients (particularly di and d 3) above a safe value can be 
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Figure 5.32: Simulated data for pressure screen which goes into fast failure (Case 5) 

CASE 1 CASE 2 CASE 3 

dl 

Statistics 

Mean: 108.45 

a: 8.14 

Range: 26 

Mean: 156.17 

a: 3.67 

Range: 10.18 

Mean: 195.48 

a: 13.54 

Range: 37.01 

Table 5.3 Screen Simulations. Results 

used as an indication that a fault has occurred. The main question that arises from the simulation is 

the following: why are the values for the accept coefficient of a failed screen similar to those of a 

'healthy' screen? And for that, the answer is simple: because they reflect similar rate of changes in 

the accept friction losses of the screen. Let us take a more detailed look into this statement. 

In the model proposed in this research, the accept losses coefficient d x represents the inverse of 
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Table 5.4 Screen Simulations. Results (Cont) 
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Figure 5.33: Accept Friction Coefficient in Simulations 

CASE 1 CASE 2 CASE 4 CASE 6 

d3 

Statistics 

Mean: 143.99 

C J : 3.12 

Range: 7.59 

Mean: 162.17 

a: 2.39 

Range: 7.5 

Mean: 169.72 

a: 5.58 

Range: 17.08 

Mean: 145.38 

a: 6.12 

Range: 19.83 

Table 5.5 Screen Simulations. Results (Cont.) 
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Figure 5.34: Reject Friction Coefficient in Simulations 

one of the time constants governing the behavior of the system. From the modified D'Arcy-Weisbach 

expression used to represent the screen friction losses 

kA = dikA + d2v\ (5.99) 

assuming the velocity v constant, and reordering, the equation becomes 

<^--d\kA = ad2 

which gives a weighting function of the form 

kA(t) = he^ 

(5.100) 

(5.101) 

It is easy to see then that di (which must be negative if plugging occurs) represents the rate of 

change of the accept friction losses. The faster the variation in the losses, the bigger the magnitude 
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of di becomes, and vice versa. In a well operating screen the plate orifices are mostly clear. A 

failed screen shall have those orifices mosdy plugged. Although one would expect to see a normal 

screen show less friction losses than a plugged (failed) screen, in both cases the rate of change of 

those losses should be similar: fairly low, and the value of the coefficient di should reflect that. 

On the contrary, a screen which is suffering from blinding would display a higher absolute value 

of di until it gets totally plugged. 

5.3 Experiments in the Pilot Plan 

5.3.1 The setting 

To further explore the validity of the FDI model-based strategy proposed for the screens, test 

trials were conducted at Paprican's screening research pilot plant. As described in Chapter 3, this 

setting made possible not only to operate and gather data on typical pressure screens but it also 

allowed for the induction of most kinds of faults. This is as close as it is possible to get to the 

industrial reality while maintaining the rigor of a research environment. Special emphasis was put 

on exploring blinding, among all screen faults, as it is the most common of faults and also the one 

which causes the most frequent operational perturbations of these devices in mills. Again, the typical 

fault trial for detection of blinding would include the following steps: 

1. A screen is chosen for the trial. This includes plate selection. 

2. Pulp consistency is adjusted. 

3. The screen valves are set at starting values. 

4. The reject flow rate for the trial is chosen. Several accept flow rates are selected, in incremental 

steps. The stock pressure is to be maintained at 350 kPa. 

5. The pump and screen motors are started. 

6. Samples of pulp for determination of initial consistency are taken. 

7. The pipes are tested for air entrapments and, if detected, purged. 

8. The valves are controlled manually until the starting process conditions, with zero accept flow, 

are met. 
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9. Slow data sampling through the DCS is started. 

10. The accept valve is opened to reach the selected accept flow rate and this setting is kept until 

steady state is achieved. Fast sampling data is collected by the PC for periods of up to thirty 

seconds. 

11. If failure is not present, the valves are manipulated to achieve the next higher accept flow rate 

previously selected, and step 8 is repeated. If failure occurs, the settings remain untouched until 

the differential pressure between the feedstock and the accept lines triggers a system shut-down 

mechanism. Fast sampling data is then gathered at equally spaced accept flow rates until the 

whole operation comes to a full stop. 

12. Samples of pulp for determination of final consistency are taken. 

Figure 5.35 shows a schematic diagram of the screen instrumentation used to conduct all tests. The 

interconnection DCS-PC was designed and installed and all programs for the data acquisition and 

calculations were written in Lab View® and Matlab®. 

74 



Chapter 5: Testing and Experimental Results 

The pulp used was CTMP unbleached softwood, composed by 10% aspen, 45% spruce, and 45% 

fir. Its freeness was 100 ml CSF and all trials were run at consistencies ranging from 1.1% up to 

2.8%. Coarseness of the pulp was not available. 

The sampling rate for the fast data acquisition was chosen to be 300 Hz and the slow sampling 

was selected at 1 Hz. In the first case, the frequency was singled out to comply with the time 

constants of the expected phenomena, the bandwidth of the screen sensors, Shannon's theorem and 

the bandwidth of the anti-aliasing filters. The second frequency was picked to comply with the DCS 

speed limits. 

First, several rounds of trials with varying consistencies were conducted to gather general 

information on the screen friction coefficients, and to determine the accept flow values at which 

failure occurred. Later on, trials starting at accept flow ranges close to failure were studied in more 

detail. For that purpose, the amount of increases in the flow rate mentioned in step 9 was made small 

but all other provisions remained the same. 

5.3.2 Some Results 

As it has been mentioned before, there is a correspondence between the coefficients di and d 3 

(which have been termed accept losses and reject losses coefficients) and the time constants in the 

model. Under the light of the simulation results, it seemed logical to concentrate the attention on the 

magnitude of those coefficients as potential indicators of faults. This assumption was proved correct. 

The typical set of tests in the pilot plant to determine the fault detection capabilities of the 

proposed model would produce results for the model losses coefficients as seen in Figure 5.36. These 

graphs correspond to a single operating point during a given trial. When all the results corresponding 

to a trial in which the screen is gradually brought to failure are put together, the graph corresponding 

to the magnitude of the d coefficients (Figure 5.37) reflects the same pattern observed during the 

simulations: under normalcy the magnitude of the d coefficients is small. When an increase in 

the screen throughput is suspected of causing blinding, d x begins to grow faster and faster, until it 

reaches a maximum. This point coincides with the external evidence gathered by the sensors in the 

pilot plant that tells us that failure has indeed occurred. After the screen effectively fails, the value 
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Figure 5.36: Screen friction coefficients 

of di diminishes to a range close to the one associated with normalcy. The variation in d 3 is only 

noticeable when the maximum blinding is achieved. Since d 3 is referred to the reject flow, one might 

theorize that it is only at the point of maximum blinding that the impact on the reduced accept flow 

starts to have an impact on the reject piping friction conditions. 

As failure of the screen is deliberately caused by blinding, the pattern observed in the results 

agrees with the physical meaning of the proposed model, namely, that the coefficients reflect the rate 

of change of the friction losses inside the screen. 
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Figure 5.37: Screen friction coefficients 

Let us look at the same results from a different angle. As shown in Fig. 5.40, when the 

accept flow is between 4100 and 4500 L/Min the magnitude of the accept losses coefficient d x 

remains below 100 non-dimensional units. When the flow moves beyond 4500 L/Min, the value of 

the coefficient begins to grow rapidly, suggesting a more difficult passage of the pulp through the 

screen plate openings, presumably due to the appearance of blinding. The value keeps growing until 

the screen begins to show the effects of plugging, and reaches its maximum shortly thereafter this 

condition is firmly present. Although at the present time there are no mechanisms to measure the 
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Figure 5.40: Accept friction coefficient and Accept Flow 

accumulation of fibres inside the screen plate, observations through the use of a high speed video 

camera (See Figures 5.38 and 5.39) that shows some portions of the interior of the screen plate, seem 

to confirm this theory. It is easy to see then that the magnitude of d i 1 3 , which represents the rate of 

change of the accept friction losses, grows larger when the rate of accumulation of fibres increases. 

The faster the variation in the losses, the larger the magnitude of di becomes. When the screen is 

totally plugged and, therefore, failure is declared, the rate of change of the losses falls back to a 

value similar to the ones obtained for a "healthy" screen. This is what would be expected, following 

the theoretical predictions of the proposed model. The natural conclusion is that by monitoring the 

averaged coefficients imbedded in said model, failure of the screen due to blinding could be predicted 

before it happens [15]. If the magnitude of the coefficients grows steadily and exceeds twice the 

1 3 The value of dj is always negative, as plugging is underway. 
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value obtained in the normal operating region, one could say fairly confidently that the screen is 

under a faulty condition. 

During the different trials some interesting observations were made: 

1. For accurate results, fast uniform sampling and anti-aliasing filtering are required. Some 

commercial DCS do their sampling using a mechanism called 'report by exception*. This implies 

that the control software does not poll the incoming field signals at regular time intervals but 

whenever its computing cycles allow for it, or when the value of the signal exceeds a pre-set 

minimum percentage of full range. This practice makes impossible to use the strategy proposed 

here. In such case, a dedicated PC can easily handle the sampling and filtering requirements. 

2. High noise spikes in the process data can affect the convergence of the Kalman filter, effectively 

derailing the estimation of the friction coefficients. Therefore, they must be filtered out. Figure 

5.41 shows the effects caused by the appearance of this problem which is caused by the data 

acquisition electronics. The spikes at samples 125, 340, 800, 1800, 2600, etc. in the pressure and 

motor load signals make the accepts friction value change suddenly, making almost impossible 

to assess its "true" value. 

3. The choice of parameters in the noise matrix will affect the estimation results. This has an effect 

on the range of values that the d coefficients might take. As such, good care must be taken to 

assure that the chosen noise model fits the process reasonably well. As this point is extremely 

important, it is mandatory to examine it more closely. 

5.3.3 The Choice of a Noise Model 

The singular-pencil-based FDI strategy proposed in this and previous chapters requires that the 

matrix C* elements be fixed before identification takes place. Ideally, such selection must reflect 

the a priori knowledge of the process noise. As the choice of C* has an influence on the results 

achieved by the estimation, intuition suggests that the more closely it resembles the "true" noise in the 

process, the better the identification results should be. The results in the pilot plant tests confirmed 

this assumption. As seen in Figure 5.42, depending on the choice of elements of C*, the estimation 

of the accepts losses coefficient di renders different values for the ten points included in the same 
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Figure 5.41: Accept friction coefficient and Accept Row 

trial. Although it is clear that blinding of the screen is identified by all the noise models (C*l, C*2, 

and C*3), the one with the greatest difference between the pre-failure and the 'healthy' points values 

(C»2) is the better suited for FDI. The reasons are simple: it is less prone to false alarms and it allows 

for the most time to take preventive actions. The meaning here is clear: proper matrix selection plays 

an important role in the overall success of the FDI strategy. 

Rather than elaborating on how to make an a priori selection of C* for identification (which will 

be dealt with in chapter 6), the purpose of this section is to 4etermine whether a good enough choice 

of the matrix has been made, FDI-wise, when C, is given. 

At this point in the model validation procedure, the best tool to assess the appropriateness of 

the noise matrix C* seems to be an evaluation of the statistical lack of fit of the different choices 

for it. To check the goodness of fit of the coefficients used in the model, one can look at the 

"whiteness" of its residuals by using auto-correlation functions or some statistical criterion such as 

Box-Pierce's, Durbin-Watson's or Akaike's [4]. In any case, the residuals must be calculated first 

using the estimation results. 
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Figure 5.42: Accept friction coefficient and Accept Flow 

Since our pencil matrix representation has the form 

P(z) 

Xk 

Vk 

uk 

ejfc 

~E*-zI - A * B* C* 

E0 -A0 BO I 

xk 

Vk 

Uk 

-ejt 

= 0 

it is easy to see that the residuals can be obtained as 

ejfc = Aoyk - Eoxk - BfiUk 

(5.102) 

(5.103) 

If the choice of the noise coefficients is appropriate, {ek} should be a stochastic sequence with a 

Gaussian distribution, zero mean, and covariance A (A > 0). 

Getting back to the three choices for matrix that were shown above (C*l, C.2, and C*3), 

when looking at the auto-correlations of the residuals during screen normalcy, i.e., at operating points 

1, 2 or 3, the typical values look as seen in Figures 5.43, 5.45, and 5.44. It is obvious that choice 

C*2 it is the best suited, as speculated, as it satisfies the 2CT condition which gives 95% statistical 

confidence. 
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Figure 5.43: Residuals during normalcy. Model C*l 
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Figure 5.44: Residuals during normalcy. Model C*2 
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Figure 5.45: Residuals during normalcy. Model C*3 

The circumstances change drastically when, instead of looking at normalcy, one looks at the 

points in which blinding is on the verge of making the screen plate fail. As seen in Figures 5.46, 

5.47, and 5.48, now the auto-correlations tell us that no model passes the statistical confidence test. 

There is a clear mismatch between the model and physical reality but that's precisely what any 

process-coefficient-based FDI scheme would be looking for: indications of deviation in the behavior 

of a system. As the screen model is an attempt to reflect the physical reality during normal operating 

conditions, one would expect to see it become less and less suited when the screen deviates from 

those conditions. But the problem remains: how do we know if the choice of C, is a good-enough 

one? Obviously, to decide on that, one is confined to checking the normalcy regions, as the faulty 

regions are by design expected to produce model mismatch. In laymen words: to know if the choice 

of C* is good enough for FDI, one should test its statistical properties when the screen is known to 

be operating normally. Good fit in that region would seem to guarantee the best possible FDI range. 

When using simulations to test the generality of the conclusions made upon the pilot plant trials, 

the results confirmed the initial assumptions. The choice of C* which guarantees statistical fit during 
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Figure 5.47: Residuals during failure. Model C*2 
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Auto-Correlation AIC= 2.672e+04 2/sqroot n= 0.03778 

Figure 5.48: Residuals during failure. Model C*3 

normalcy (Figure 5.49), becomes marginally fit under a mild fault (Figure 5.50), and is no longer 

statistically adequate under a fast developing fault (Figure 5.51), but since that is the characteristic 

FDI is interested in, to test for model adequacy one should confine the investigation to the normal 

regions of operation. 

5.4 Model Reduction 

In the process of establishing the appropriateness of a model, an issue which must be addressed 

is its complexity. If the original model can be simplified without much change on its input-output 

properties, this reduced version is much preferable and the first one is deemed as too complex. One 

procedure for achieving this simplification is reducing the model order [45]. 

In the case of the pressure screens, as the originating differential equations are first order, it is 

not possible to change the order of the model without totally losing its dynamic characteristics, but 

we can reduce the number of coefficients in the forming equations to achieve some simplifications. 

One such reduction which seemed suitable concerned the D'Arcy-Weisbach-based relationship. 

86 



Chapter 5: Testing and Experimental Results 

Auto-Correlation AIC= -1.49e+04 2/sqroot n= 0.03778 

•s 

1 r i 

j 

| 

| 

j 

:+2a 
0 I 

!-2a 
j ! 

# of samples (faB1 a) 

Figure 5.49: Simulation residuals. Normalcy 
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Figure 5.50: Simulation residuals. Incipient mild fault 
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Figure 5.51: Simulation residuals. Fast fault 

Instead of the original expression 

kA = dxkA + d2v2

A (5.104) 

which included two coefficients for every dynamic equation used in modelling, a simpler one 

kA = kA + dmv2

A (5.105) 

with only one coefficient was proposed. After linearization, that formulation leads to a continuous 

state-space representation of the form 
x = Ax + Bu 

y = Cx + Du 
(5.106) 

where 
A = 

B = 

1 0 

0 1 
dm -dR1 di?! 0 0 0 0 0 

0 dm 0 0 0 0 0 0 
C=\h8 h8\ 

D = \h\ -h3 /12 /14 - / i6 -h7 /15 ^8 i 

(5.107) 
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and where x, y, and u are the state, output and input vectors, and the dps, and h's are defined as 

for the original model. Unfortunately, when using such simplified model one problem immediately 

arises: although the reduced model is controllable (provided that dj® 7̂  OX it is not observable, as 

the rank of the matrix 

CT 

CTA 
Qb = (5.108) 

\CTAm-l 

is less than the order of matrix A. In order to achieve uniqueness in identification, a minimal 

realization of the system has to be obtained. One might decide to obtain such realization at this 

stage, using the proper state space transformations, or when rewriting the state-space model into a 

singular pencil model. The latter approach will be taken here for illustration purposes. 

As explained in Chapter 4, when starting from a state-space representation 

i = Ax + Bu 

y = Cx + Du 

the departing implicit equation is obtained by inspection as 

(5.109) 

T 'A" " 0 B' 'Vk~ 

0. C. -I D . .uk. 
(5.110) 

or, making 

.0. 
A' 

[C. 
0 B 

-I D 

= F 

= E 

= G 

(5.111) 

as 
Xk 

.wk. 
= [E-XF G] 

Xk 

yk 

"It. 

= 0 (5.112) 
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Since this representation is non minimal, one has to use elementary matrix operations equivalent to 

row and column compression to obtain a minimal one14. Intuitively, this is equivalent to removing all 

dependent variables in the state space vector x which do not affect the external behavior of the system. 

The elementary operations are row operations on [E, F, G] or simultaneous column operations on E 

and G. Those required to achieve a minimal controllable and observable system can be summarized 

in the following algorithm [5]: 

1. Make t = number of columns of E and F. 

2. Make q = number of rows of [E,F,G], 

3. While t > 0 and q > 0 

Put rows l,...,q in columns l,...,t of F into upper compressed form of resulting rank k. 

a. If k = q 

stop. 

b. Else 

put rows k+l,...,q in columns l,...,t of E into right compressed form of resulting rank r 

make q = k 

make t = t - r 

if r = 0 stop. 

4. End. 

Once the minimal representation is achieved and after applying transformation T\, the new model 

has the by-now-well-known form 

Vk 
P(z) 

Xk 

Vk 

Uk 

E*-zI -A. C* 

E0 -A0 Ba I 
= 0 (5.113) 

1 4 Upper row compression corresponds lo pie-multiplication of matrix A by non-singular matrix W such that WA = 

Ar has full row rank. Lower row compression and left or right column compression are defined by analogy. 

where 
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(5.114) 

with the following values 

£• = 101 

EQ = |11 

A, = |0| 

Ao =|11 

B* =\h(l - fti) + h&j2 (h3 - l)ji + h&(j3 - j2) - h2) + hgj2 

-/14J1 -h5ji h6ji h-jji -h8ji\ 

•So =\hi —hz h2 / i 4 h5 -h$ —h-j /i81 
and C + to be chosen from previous knowledge of the process noise. From here, the manipulations to 

perform the system identification described in Chapter 4 are straightforward, and one can proceed to 

estimate the minimal state and the physical coefficients in the screen model, namely, dpi and dp2. 

(5.115) 
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Figure 5.52: Reduced Model. Friction Coefficients in Simulation Trials 

Unfortunately, when using the new reduced model in simulations it did not show the same 

usefulness as the original one, as seen in Figure 5.52. The original model seemed capable of displaying 
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the characteristics of the dynamics affecting the screen: faster accept flow dynamics would produce 

a higher value of the accept friction coefficient. This feature can easily be associated with the screen 

faults, particularly with blinding, which is the most important of them from an industrial perspective. 

As the graph purports, the reduced model has been stripped of that ability. 

When the reduced model was applied to the pilot plant test trials, its usefulness was even worse, 

as seen in Figure 5.53. In this case, the variations in the magnitude of the accept friction coefficient 

could not be clearly related to the presence of faults. 

dr1 - Accept Friction Coefficient 

Accept Row (in 100 L/min increments) 

Figure 5.53: Reduced Model. Friction Coefficients in Pilot Plant Trials 

An explanation for the inability of the new model to give a clear picture of the situation inside 

the screen can be obtained when looking at the original equation representing the screen losses 

kA = kA + dR1vA (5.116) 

That relation gives a weighting function of the form 

kA(t) = kQet (5.117) 
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and it seems clear that for the reduced model, the dR coefficients have lost their relationship with 

the energy losses k and are only associated to the flow variations inside the screen. As such, any 

change in those flows will affect their dimension, regardless of what might be the cause for such 

change. Given the fact that the model proposed originally for the pressure screens is of first order, 

the evidence seems to indicate that any simplified version of it will be stripped of the desired FDI 

properties present in the original. 

In all areas of model-based control, finding a model which describes the "true" system under 

study is an ideal. Unfortunately, it is philosophically impossible to discern whether a particular model 

is the "true" one or not, and one must settle for a good enough model for the purposes at hand. In 

this case, judging by the results, the original model proposed for the screens should be preferred. 

5.5 Summary 

In this chapter a 3-step methodology for testing the proposed model-based FDI approach on 

pressure screens has been presented and the main results obtained with this approach have been shown. 

After disclosing the repeatability results of healthy and faulty screens simulations, experimental results 

on the screen pilot plant have been presented. Those findings imply that the d coefficients included in 

the proposed screen model are good indicators of the presence of faults. In particular, when dealing 

with blinding, the coefficient di has proven to be useful. The problem of choosing the noise matrix 

C* included in the model has been explained. Finally, a reduced screen model has been proposed 

and tested and the results have been displayed. The shortcomings found when using this reduced 

model for FDI underline the benefits of utilizing the original (non-reduced) model. 

93 



Chapter 6: Additional Topics on Estimation 

Chapter 6 

Additional Topics on Estimation 

6.1 Noise Modelling 

6.1.1 The Problem 

In past sections it has been explained how the Singular Pencil approach can be used for FDI 

purposes on pulp screens. Some results have also been presented but, all along, when applying the 

system identification scheme, it has always been assumed that the coefficients present in the process 

noise model are known from the beginning. In practice, such knowledge seldom exists. Therefore, 

the natural question is: how can one obtain the coefficients of the noise? Let us take a look at that 

problem which, needless to say, is not a simple one. 

Trial and Error 

When facing the need to obtain a priori values of C* for fault detection purposes, the first 

option for the user is the simplest: trial and error. The procedure would go along the following 

lines: take any starting value for cm, c\\2, and A in the matrix C*, provided that they comply with 

the realization/causality conditions15, and start the estimation during operating conditions which are 

known to be very safe, or well below in the screen "healthy" region. Look at the residuals and, if not 

"white" enough, try with different values. When some coefficients make the residuals look "white", 

stop the search and move the screen onto the desired (and more "risky") regions of operation. The 

results achieved in Chapter 5 show that this approach is feasible and that the chosen model should 

be FDI adequate. Unfortunately, feasibility does not equal practicality. 

Trial and error is simple and does not involve many calculations but, from an applications point 

of view, is not recommendable. Although with enough iterations the operator can develop a certain 

"feel" for what coefficients might constitute a good choice, the process can be lengthy and time 

consuming, and there's no guarantee that a suitable-enough model for C« will be found. 
1 5 A system described by a transfer function is realizable if it satisfies the causality principle, i.e., the output variables do not depend 
on future values of the inputs [32]. 
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Non Parametric Estimation 

A second option would be to obtain the a priori knowledge on the process noise by non-

parametric methods such as the application of auto, cross-correlations and spectral density functions, 

and to use that information to obtain the coefficients in an ARMA transfer function which would 

produce colored noise of similar characteristics. That transfer function could then be transformed 

back into the required Singular Pencil representation using the reverse similarity transformations T 

described in Chapter 4. 

Before further elaborating into the mathematical steps required for the complete procedure, 

one warning sign grabs the attention: as shown in Appendix B, all the T transformations (and 

their inverses) involved in the Singular Pencil approach require knowledge of the parameters in the 

augmented state vector sk. Which is, precisely, the vector we want to estimate. In laymen words: 

we need to know the results of the estimation in order to select the noise coefficients that will help us 

estimate! Although some kind of recursive procedure can be thought of, by means of which the user 

could start with an arbitrary value and through several iterations try to obtain convergence towards 

"optimal" values, the approach seems rather elaborate and without guarantees of being successful. 

This fact suggests that time would be better invested looking first at some other simpler approaches 

for determining the "good" noise coefficients. 

Dual Estimation 

Given the difficulties found in trying to determine a priori the coefficients in the noise matrix 

C* by using independent means, one might think of estimating simultaneously those coefficients and 

the system parameters. For that purpose, starting with the estimation equations shown in Chapter 4 

xk+i = E*xk + Gt(wk)r + Ctek 

(6.118) 
0 = EQxk + Gn(wk)r - Jwk + ek 

letting 

C*(ek) = diag{elel...,el) (6.119) 

be a n x (n x p) block diagonal matrix, then 

C.ek = C*{eK)T)K (6.120) 
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with rjk a column vector containing the parameters Cijk in C*. Using equation 6.120, and since the 

system is assumed time-invariant, the departing expression can be transformed into 

(6.121) 
yk = Hksk + ek 

with T 

sk = [xl, r J, rg] 

Hk = [EQGQ(wk) 0 

•E. G.(wk) C*(ek)1 (6.122) 

Fk= 0 I 0 

.0 0 / . 

Now, the estimation of the augmented state sk includes the state system parameters and the noise 

parameters. Unfortunately, as ek is not directly measurable, it has to be estimated from equation 

6.121, namely 

4 = Vk - Hks"k = y k - EQxk - GQ(wk)fk 
(6.123) 

where xk and fk are the estimates of xk and rk at time A;. Now it should be evident that the estimation 

problem has become non-linear, because when using ek the matrix Fk which is a function of ek, 

has become a function of sk [8]. 

One of the reasons for selecting a Singular Pencil approach in this research was the desire to 

avoid the problems encountered when trying to apply the Extended Kalman Filter for identification 

purposes in an industrial environment. By getting back to a non-linear problem for which the EKF 

seems the most suitable solution, we have defeated the benefits of the Singular Pencil and returned 

to the departing point. Perhaps a totally different strategy for the problem of the a priori knowledge 

of the coefficients in the noise matrix C* is in order. 

6.1.2 An Alternative 

A detailed look at the results of Chapter 5 regarding the appropriateness of the coefficients in the 

noise matrix C* seems to bring an alternative to the problem of their a priori selection. In Figure 5.42 

it is evident that all the choices for C* which were evaluated share a common characteristic: they 
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make the estimated coefficient d x reach its maximum dimension when the dynamics are suspected 

to be fastest, i.e., very close to or at the point of screen failure. Instead of placing the attention on 

how to obtain the best possible estimate for the noise coefficients, perhaps an approach suitable for 

any "good enough" estimate would be preferable. Rather than dealing with intricate algorithms that 

will give us the "smoothest" trajectory of di values for the different operating points, it would be 

better to implement a simple indicator that can be applied to the calculated values of d x , even if the 

choice of C* for obtaining them was not the best. 

When looking at the shape of the variations in the dimension of di for the different screen 

operating points, the idea of using some sort of cumulative function of this variable immediately 

arises. It is a well known fact in the FDI literature that cumulative sum charts can "damp out" noise 

and "amplify" true changes in the process [28]. They also can add some sense of "threshold" for 

the results obtained. Intuitively, several alternatives appear to have enough potential for detecting 

changes in the nature of dx: 

1. Successive averages. 

2. Successive differences. 

3. Range of two successive pairs of values from the expected value. 

In the first case, the cumulative sum would be given by the expression 

where i represents the operating point at which the estimation of d x has been done, and n the 

total number of operating points evaluated. In the second case, the function would be given by the 

expression 

with i and n being the same as for the first case. In the last case, the function is given by 

(6.124) 

/(*) = dit - di(,-_i); i = 1, • • • n (6.125) 

f(i) = [du-E{dl}]; t = l , . . . ,n (6.126) 

with i and n as explained above. 
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Successive Averages of d1 Coefficient for Different C* Matrices 
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Figure 6.54: Coefficient dl Cumulative Averages for Different Noise Matrix Choices 

The usefulness of all three alternatives was tested against the di estimation results obtained in 

the pilot plant trials. If we apply the first criterion, the results obtained are as shown in Figure 6.54. 

Regardless of the noise model chosen, an increasingly growing magnitude of di seems to be a good 

indication of blinding. Two consecutive increases could be used as a practical Umit on the achievable 

screen throughput in the mill. From the curves it is evident that the better suited the noise model, 

the larger the throughput allowed. In other words, when using averages, the better suited the noise 

model used in the estimation is, the bolder our decision maldng process (regarding screen operating 

points) can be. The best model {C^) would allow for a throughput around 4,700 Liters per Minute, 

whereas the poorest one (C«i) would call for stopping further increases when reaching the 4,500 

L/Min mark. All models will allow for avoidance of plugging, i.e., screen failure. 

When we apply the second criterion, the results are displayed in Figures 6.55, 6.56, and 6.57. In 

this case, regardless of the noise model chosen, a good indication of imminent failure could be the 

starting dimensional value of di. Whenever a difference reaches this level, blinding can be considered 

as present and the throughput should be adjusted accordingly. Once again, the best suitable noise 
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Successive Differences in d1 Coefficient. Model C*1 
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Figure 6.55: Successive Differences in dl Coefficient Model C*l 
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Successive Differences in d1 Coefficient. Model C*3 
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Figure 6.57: Successive Differences in dl Coefficient Model C*3 

model (C*2) seem to allow for bigger throughput margins in the decision making process than the 

poorest one (C*i). 

The results obtained when applying the last criterion can be seen in Figure 6.58. In this case, the 

guidelines to be observed are not as clear cut as in the previous cases. Nonetheless, a combination 

of rules could be applied to spell the imminence of failure: number of times the starting zero point 

is exceeded and/or number of consecutively increasing values of d x . Again, the best adjusted noise 

coefficients render the best results. 

This discussion on cumulative functions could be extended. There are, of course, many other 

cumulative sum charts suitable for application. It is not the intention to cover them all here. However, 

what must be underlined is the rationale for using this type of "statistical" criterion to infer information 

on screen fault detection: 

a. All methods are simple to implement. They are very well suited for the typical mill environment. 
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Range of d1 Coefficient Successive Pairs for Different C* Matrices 
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Figure 6.58: Cumulative Range of Coefficient dl for Different Noise Matrix Choices 

b. Using proper engineering judgement, it is possible to overcome the complicated problem of 

estimating the noise matrix elements, without affecting the ability of the singular pencil approach 

to give us valuable information on the screen faults. 

c. The decision making process becomes independent of the individual values that the d coefficients 

may display, adding some sense of "threshold" that clearly displays whether the screen is 

operating normally or is under a fault. 

In conclusion, it seems that a suitable FDI strategy for industrial pressure screens should 

incorporate the use of some "good-enough" approximated model for the noise matrix C* (which may 

be found by means of a limited amount of trial and error testing) and the application of cumulative 

functions criteria. Successive averages and successive differences are two of those functions which 

seem particularly promising for such task. 
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6.2 Other Identification Techniques 

6.2.1 Bootstrapping 

During the course of this research the need for combined estimation of the parameters and the 

states included in our dynamic screen model arose. As mentioned in previous chapters, an strategy 

based on the Extended Kalman Filter was not considered advisable for FDI purposes, due to the well 

known fact that the estimates obtained with such method often diverge. Instead, we decided to use 

the SPM approach which has been described so far. However, there were some other methods at hand 

when this decision was made. One of the most promising at the time seemed to be "Bootstrapping". 

The main problem with "Bootstrapping" was that there has been an on going discussion in the 

literature on whether it gives biased estimates or not, and some articles have appeared which proved 

that, depending on the means used to estimate the parameters and the states, it indeed produces biased 

estimates [2], [62]. Under those circumstances, the Singular Pencil Matrix alternative looked as a 

more advisable choice. 

The main idea behind the "Bootstrapping" approach is to split the nonlinear problem of the 

product of unknowns: model parameters and states, into two linear problems solved recursively. The 

procedure is carried out using the certainty equivalence principle. First, the estimation of the states 

takes place, assuming the parameters as known. Second, the parameters are estimated using the 

values obtained during the estimation of the states. Third, the states are estimated again, using the 

new estimates of the parameters, and so on and so forth, until both parameters and states achieve 

converging estimated values [3]. 

If new developments in the literature find a way for the problem of bias to be worked out, given 

the fact that this technique does not require any transformation of the estimates, its use would imply 

that some computational speed advantages could be achieved. Another advantage is that little (or 

none at all) a priori knowledge of the system would be required. Perhaps this is a good topic to 

focus future research on, and a vis a vis comparison with the dual estimation of parameters and noise 

using SPM plus the Extended Kalman Filter would be of interest. 
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6.2.2 New Developments 

From the time the choice of identification technique was done for FDI on pressure screens, 

some work has been brought to light on how to deal with the simultaneous estimation of parameters 

and states. Besides documents dealing with applications of the Extended Kalman Filter, some other 

approaches have shown up in the literature on the subject Some of these publications seem promising 

and well worth investigating rigorously in forthcoming research, although, due to time constraints, 

only a cursory overview is going to be offered here. 

Kamas and Sanders have proposed the use of an adaptive observer for the estimation of both 

quantities. However, the convergence properties of their method are subject to strict conditions on 

the system [38]. It remains to be seen if those conditions can be applied to pressure screens. Du and 

Brdys introduced an Extended Luenberger Observer for estimation on Induction Motor Drives. The 

approach is deterministic and uses pre-filtering of the noise [13]. Given the noisy environment found 

when operating the screens, it is not simple to speculate on the benefits of such approach. Instead of 

concerning themselves with the dual estimation problem itself, Liu et al. have decided to focus the 

attention on the bias of the parameters and a way to detect its presence [44]. This is an intriguing 

approach which could be further extended for FDI. Oshman has presented the use of a Maximum 

Likelihood algorithm based on a square root filter and its derivatives for the estimation of the states 

and their parameter-based sensitivity functions [52]. By his own admission the method involves very 

expensive computations which may require a parallel processor. This obviously imposes a burden 

on its industrial application. Sproesser and Gissinger have used MIMO transfer functions and an 

improved version of the Recursive Least Squares which includes a filter for the calculation of states 

[63], to perform FDI on sensors. The usefulness of their approach is limited, though, as the states 

are simply the derivatives of the measurable signals in the model. As it has been said, in the case 

of the pulp screens, the states are non-measurable. Finally, Feyo de Azevedo et al. have dealt with 

simulation of deterministic non-linear MIMO systems which are of limited applicability [10]. 

6.3 Summary 

In this chapter some topics related to the estimation of the states and parameters in the screen 

103 



Chapter 6: Additional Topics on Estimation 

model have been presented. First, the difficulties involved in using analytic techniques for modelling 

the noise matrix present in the SPM model have been explored. Then, simpler alternatives based 

on cumulative functions have been explained and its usefulness has been shown. Finally, a cursory 

overview on several identification methods and its importance as future topics of research has been 

outlined. 
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Chapter 7 

Summary and Future Research 

7.1 Summary 

The preceding pages have presented the findings on the application of Fault Detection and 

Isolation (FDI) techniques to pulp pressure screens. The motivation of this work, all along, has 

been to find a technique suitable for implementation in an industrial mill with the potential to offer 

the operator advanced warnings of deviations in the.desired performance of the screens. For that 

purpose, the following methodology was used: 

• First, the operation of pulp screens in industry was studied. The current techniques for detection 

of faults were presented and analyzed. It was established that no real FDI is performed in industry 

and that screen faults are not dealt with until they cause the device to become inoperative. 

• Second, the FDI methods present in the literature were investigated. Their features were evaluated 

and their potential for application to pressure screens was screened. 

• Third, an experimental setting to test the different FDI approaches was chosen. It involved the 

use of a fully instrumented pilot plant, capable of simulating industrial operation and flexible 

enough to allow for the creation of faulty conditions at will. The simpler non-model based 

approaches which showed promise were implemented and evaluated. The results gave clear 

indications that such techniques were not capable of giving advanced warning of faults. 

• Fourth, a model-based approach was decided upon, ft demanded the creation of a dynamic 

model of the typical pressure screen and the application of identification techniques to estimate 

the parameters and variables in the model. As the estimation turned out to be non-linear, a 

technique called the Singular Pencil Matrix (SPM) was implemented to deal with this problem. 

Its benefits and shortcomings were explored. 

• Fifth, the model-based strategy was put to test. Computer simulations were conducted and the 

results analyzed. Pilot plant tests followed and their results confirmed the previous simulations. 

It was established that the physical parameters included in the screen model show strong potential 

105 



Chapter 7: Summary and Future Research 

for their use as an FDI technique in the mill. A simplified version of the model was then tested 

to explore further gains of the model-based approach in computing expense. In this case, the 

experimental outcome did not match the results of the full model. 

• Finally, the role of noise modelling in the application of the Singular Pencil Matrix approach was 

explored and some conclusions were established. A cursory overview of some recent alternatives 

appearing in the literature for the non-linear estimation was attempted, and techniques with 

potential for further research were identified. 

Every one of the steps outlined above bred findings and conclusions which have been explained in 

all the previous chapters of this thesis. For the benefit of the reader the most important ones will 

be repeated here. 

• Fault Detection and Isolation (FDI) involves the early diagnosis of deviations, also called faults, 

in the expected behavior of a system. 

• A typical pressure screen can suffer several possible faults. The most damaging and, therefore, the 

most worthy candidate for early detection is blinding. Blinding is caused by the accumulation 

of fibres in the screen plate orifices. 

• Two non-model based approaches for FDI were attempted during this research. They involved 

monitoring the screen motor load and calculating the slope of the curve given by the squared 

accept flow versus the differential pressure. Although these methods are simpler to use, the 

results obtained when using them were not satisfactory. 

• It was decided that an approach based on a model was indicated and, for that, a model has been 

proposed. The pressure screen model designed for FDI is based on mechanistic principles and 

an expression analogous to the D'Arcy-Weisbach principle to account for screen dynamics. 

• By monitoring the d coefficients in the model, which represent the frictional changes in the 

screen, the experimental results showed that faults can be detected. In particular, blinding can 

be associated with changes in the accept friction coefficient di. 

• When using the SPM technique, modelling the screen noise is an important issue and must 

be dealt with judiciously. Although the analytic procedures for this task are not simple, a 
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combination of selection of C* through limited trial and error and use of cumulative functions 

can be used advantageously. 

The major contribution of this work is, to the best of my knowledge, to be the very first work 

which has ever been written on the topic of Fault Detection and Isolation for pressure screens, and 

one of a few (in the profuse literature published on the subject) dealing with industrial applications 

of FDI. Having said that, some other contributions are: 

• The introduction of faults in pulp pressure screen as a separate subject of study. 

• The derivation of the first dynamic model in the literature to characterize pressure screen behavior. 

• The development and experimental implementation of the first model-based approach for fault 

detection on pressure screens. 

• The use of the Singular Pencil Matrix technique for dealing with non-linear estimation problems 

in a true practical application. 

• The enhancement of knowledge on pressure screen operation and faults, in general, and the gain 

of valuable physical insight for better screen control. 

7.2 Future Work 

It is very difficult to address all the issues that arise while doing research. Besides the obvious 

need for focus, which forces one to put aside some unanswered questions that may appear to be of 

marginal importance for the achievement of the main goal or goals, time limitations are always a 

component to be reckoned with. This thesis is no exception and, therefore there are some topics 

which hopefully will be dealt with in future research, namely: 

• Pipe plugging. Due to the difficulties in duplicating pulp-induced plugging in piping, most results 

presented in this thesis concentrated on the most important cause of screen failure: blinding. 

Nevertheless, it would be of interest to observe the behavior of the coefficients in the model 

under the presence of reject pipe plugging. Industrial simulation of such plugging could be 

achieved by means of altering the mechanical configuration of the piping used in the pilot plant. 
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Valve dynamics. The screen model proposed in the research includes the device dynamics only. 

As such, it is intended to sit atop a screen control strategy, to be determined by the user. For 

such strategy to be successful, the control valve dynamics used in conjunction with the screen 

must be incorporated. The problem of incorporating the accept and reject valves dynamics into 

the screen model has not been addressed here. 

Dual estimation of noise and physical coefficients. Given the new developments in the literature 

regarding the Extended Kalman Filter, it would be of interest to study the performance of 

simultaneous dual estimation of the noise and physical coefficients present in the screen model 

which has been developed here. A detailed evaluation of its convergence and computing expense 

have appeal for its examination. 

Use of new estimation techniques. The application of other techniques different from the EKF to 

the non-linear estimation problem is also of interest. A comparison vis a vis the dual estimation 

using the EKF seems another interesting avenue to be explored. 
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Appendix A Screen Modeling 

A.1 Mass Balances 

The fundamental relationship in a mass balance is expressed as 

Rate of mass accumulation = R. of mass in - R. of mass out (A.127) 

In our case, three equations can be written. The first two are for the water in the slurry and the 

fibers, namely 

d(mH,o) 
D F = MFHJ0 + M d i l u t i o n - MALL]0 - M R H J 0 

^ ! l = MF ,-MA ,-MR , dt sol sol "sol 

(A. 128) 

and the third one, representing the total mass, will come from adding these two. The total mass in 

the screen will be the sum of the water and the fibers inside it 

MTotal = M^o + Mso]ids 
(A. 129) 

Using the definitions of consistency (C) 

and density 

C = 
MSolids 

MSolids + MWater 

M 

V 

(A. 130) 

(A.131) 

we arrive to 

Msolids = /^Total (A. 132) 

and 

MH2o = P{1 - C)VTotai 
(A. 133) 
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Assuming that neither the consistencies nor the densities change too fast with time, the balances 

will finally become 

d(YHao) 1 
dt PH,0 

[a-iFp - a2FA - a3FR] + -Fdii u ti o n 

ffi2il = J_[a4*> - a5FA - a6FR) 
dt Psol 

Wmd = FF-FA-FR + Fi dt dilution = 0 

(A. 134) 

with all consistencies approximately equal and 

ai = AF(1 _ CF) 

«2 = PA{^ ~ CA) 

03 = PRO- - CR) 

a 4 = PFCF 

05 = PACA 

a6 = PRCR 

A.2 Pulp Screen Energy Balances 

The fundamental relationship in an energy balance can be expressed as 

Rate of energy accumulation = R. energy in — R. energy out 

+ Heat+ Work 

and 

Energy = Kinetic + Potential + Internal 

(A. 135) 

(A.136) 

(A. 137) 

As ours is an open system where no phase changes or reactions occur, and since our process is 

adiabatic, i.e. Q = 0, the starting point for an energy balance is the expression 

d[U + KE + PE] _ 
dt ' 

input streams 

£ Ej + W 
output streams 

(A.138) 
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which can be written as 
i[U + KE + PE\= • ^ t^ + u;_ 

dt . ^ L 2 5 c 9c — 
input streams 

Mi £ + 9 - h o + U0] + W 
2ffc 9c —. 

(A.139) 

2gc gc — Pi 
(A. 140) 

+ W3 

E 
output streams 

The work done on the system can be divided into hydraulic (W& — PV) and shaft work (Wa) and 

the equation becomes 

djE^rgy]= ^ ^ 

input streams 

E M0\^- + ^h0 + U0+^ 
*Qc QC — P 

output streams L * y ^ J 

Our sources of incoming energy are the feed flow and the dilution flow. Our sources of outgoing 

energy are the accepts and rejects flows. The changes in the internal energy of this system can be 

accounted for in terms of the temperature of the system materials and, since the process is adiabatic, 

all thermal variations are due to friction. Establishing our rejects as our reference in height, i.e. 

hR = 0, and using the fact that 

F 
v = (A. 141) 

the above expression becomes 

[̂Energy] _ 
di ~ . 

input streams 
E i<"Si+PiFihi+FiPi 

E 
output streams 

which turns out to be 

+ Frictional losses + Ws 

d [ E ™ g y ] = + e2 V> + VFPF + e 3 V- D i l + e4VDil + W O i l 

-<%V% - eeVA - VAPA - e7V% - VRPR + Wa + kA + kR 

where k refers to the frictional losses inside the screen. 

The left hand of the above equation is 

d_ 
dt 

(A. 142) 

(A. 143) 
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and the influence of the last two derivatives can be considered negligible, as the changes inside the 

screen are minimal. We can also safely assume that: 

1. Temperature and composition of the system content do not vary with position within the system. 

2. No phase changes or chemical reactions occur within the system. 

3. Heat capacities do not vary with time. 

4. No heat is added to the system by direct means. 

therefore 

^Energy] dU " M 
dt dt djt dt 

since neither the density nor the Volume of the screen change, the above equation becomes 
dU dU dT 
- = P V - = PVC„- (A.146) 

leading to the expression 

^ = fiF} + hFF + f3FFPF + / 4 F D i l + / 5 F D i l + h F M P D I L 

-hF\ - f7FA - hFAPA - f&FR - f3FRPR + f3Wa + f3kA + f3kR 

which, since ^ varies very slowly when compared with the flows and pressures, becomes 
0 = fiFF + f2FF + f3FFPF + UF^z + / 5 F D i l + / 3 F D i l F D i l 

(A. 148) 
-hF\ - f7FA - HFAPA - f&FR - f3FRPR + f3Wa 4- hkA + f3kR 

with . 
h = 

/ 2 = 

2AFgcVCv 

g(hF - hR) 

/3 = 

gcVCv 

1 (A. 149) 
gcVCv * 

1 

h 

h 

h 

h 

2A2

mgcPVCv 

g(hm - hR) 
9cpVCv 

1 
2A\gcVCv (A. 150) 
g(hA - hR) 

9cVCv 

1 
2A\gcVCv 
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A.3 Mechanical Losses 

The pipe-friction equation for flows of incompressible fluids in pipes is as follows 

( A - 1 5 1 ) 

with 

L : length 

D: diameter 

v : velocity 
(A. 152) 

g : gravity . 

/ : friction factor 

ki,: head loss 

it is obvious that the above is a static relationship. When dealing with a piece of pipe able to change 

its head losses dynamically, that equation is not good. 

If we lump all terms referred to the piping into the term fp and differentiate the D'Arcy-

Weisbach's equation, namely, 
dk _ d(fpv2) dt dt 

we obtain the following expression 

(A. 153) 

dk= 2dfp d{v2) 
dt V dt Jp dt 

which, when using the fact that k = fpv2 gives us the result 

dk_ 2dfp kd(v2) 
dl-v-d7 + ^ — ( A - 1 5 5 ) 

This shows that a dynamic expression for the losses inside the screen must include a term dependent 

on the square of the fluid velocity and another term dependent on the losses themselves. Following 

this line of reasoning, a dynamic relationship to account for the behavior of such device is proposed as 

^• = c1kL + c2v2 (A.156) 
at 
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The constant 

1 d{v2) (A.157) 
v2 dt 

should be fairly sensitive to variations in the speed and, by implication, to flow changes. As the 

flow becomes smaller one should expect to see it grow in magnitude, fairly rapidly. The constant c2 

would reflect the rate of change of the parameter fp which accounts for the internal characteristics 

of the piping. Under steady-state conditions this relationship reduces to 

-cikL = c2v2 (A.158) 

or 
C2 2 

Making 

kL = -^-v2 (A.159) 
ci 

- ° ± = / — (A.160) 
ci JD2g 

our equation becomes the pipe friction equation. 

What pipe fitting would change its head losses dynamically? Observations and empirical relations 

say that a pressure screen could be thought of as such a device. Since the screen has two diverting 

outgoing flows, it could be seen as some sort of "T" fitting with different losses: one for the rejects 

and another for the accepts Une. Therefore, two equations would describe the losses in the screen 

dkA 2 —— - c1kA + c2vA 

, f (A.161) 
dkR 2 —jj- = c3kR + c4vR 

Blinding would be responsible for the dynamical behavior <5f the head losses. 

As velocity is difficult to measure and seldom measured, we can substitute it by its equivalent 

expression 

v = ̂  (A. 162) 
A 

and our equations become 
dhA 2 —— = cihA + cbtA 

A <A-163> 
—jj- = c3hR + ctFfc 
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with 
F : volumetric flow 

A : Area of pipe 
c 2 

(A. 164) 
C5 = 

_C4_ 

A.4 Linearization 

Using a Taylor series expansion and truncating with first order terms, we'll get 
£) f 

/(*,y) » / ( * , y ) + « ( » . - y ) + ^ 

for our energy equation, the derivatives are 
df 

dFp 
df 

0 * b i l 
df 

dFA 

df 
dFR 

df 

dPF 

df 

= 3/i FF + h + hP~F 

= 3 / 4 ^ + h + h P m 

= - 3 / e ^ i - S t - SZPA 

= -ZhFR-hPR 

= S$FF 

= /3-fbil 

= -SzFA 

= -fzFR . 

= /3 

= / 3 

= / 3 

dS 

dPA 

dS 

dPp 

df 
dWs 

df 
dkA 

df 
dkR 

and using deviation variables, i.e., / ' = / - / the equation becomes 

0 = g!Fp + g2P'F + gsFpii + S ^ i l 

-9$F'A ~ 9eP'A - 9IF'R - 9&PR + S*Wa + f3k'A + hk'R 

(A.165) 

(A. 166) 

(A. 167) 

(A. 168) 

(A. 169) 
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with 
= ZpFp + 2A2

Fpg(hF - hR) + 2A2

FgcPF 

9 1 2A2

FpgcVCv 

_ 3 J D i l + 2 y LDiig( f tDil ~ M + 2 A Dilg^Dil 
2A2

mPgcVCv ( A 1 ? 0 ) 

3/frFJ + 2A2

4pg(/M - hR) + 2A\gcPA 

9 3 2A\pgcVCv 

= 3? F% + 2A2

?gcP,R 

ff4 2A2

RpgcVCv 

FF 

95 pVCv 

96 = 
_ F Dil 

pVCv 

98 = 

a . = JA- (A.171) 
9' P v c v 

FR 

pVCv 

J pVCv 

and the P''s and F''s are deviation variables from the set points P' and F'. 

Using the same approach for the remaining frictional losses equations, we'll get 

dk f = dxk'A + d2FF + d2F^i{ - d2FR 

dt " (A.172) 

d rr = d ^ R + d*FR dt 

with 
di = c i 

2c2FA d2 = 

dz = c 3 

2cAFR 

(A. 173) 

di = 

A.5 Degrees of Freedom 

From our chosen model we have three equations that represent the energy balance and the 

frictional losses. We also have six parameters: p, Cv, dit d2, d3, dA; and eleven variables: 

flows, pressures, shaft work and frictional losses. From the formula for the degrees of freedom 
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NF = Nv - NE it is found that we must identify eight variables as inputs and the remaining as 

outputs or states. 

A.6 State Space Representation 

As two of the three potential outputs in our model can not be measured directly {kA and 

kR), an input-output representation seems flawed for identification purposes. Instead, a state space 

representation approach in which the states aren't measurable is proposed. Making 

x i = k'A 

x2 = kR 

our system model becomes 

x = Ax + Bu 

y = Cx + Du 

with 
A = 

0 

B = 

0 dz 

d2 -d2 d2 0 0 0 0 0 

0 d4 0 0 0 0 0 0 
C=[h& h&) 

D = [hi —/13 h2 h4 —/i6 —h-j /15 h$,] 

and 
xj = [hA hR] 

HT = [F'F F'R F' P'F P'A P'R P'DU K) 

V = FA 

(A. 174) 

(A. 175) 

(A. 176) 

(A.177) 

(A. 178) 

This system is controllable, provided d4 ^ 0 (which seems to be the case), and observable, provided 

d i ^ c?3 (which also seems the case), which makes it suitable for use of Singular Pencil modelling 

and identification16. 
1 6 Let us take a closer look at these two conditions: 
1. <*4 = 0 can mean two things, zero reject flow (a condition which would not be present in normal screen operation) or C4 = 0. But 

C4 = 0 would make the rate of losses independent from the flow, which goes against the hydrodynamlc theory. 
2. Under the light of our empirical observations regarding the friction coefficients experimental values, the condition d\ = da is not 

likely. This is backed by the knowledge on friction factors found in the literature. In the pipe-friction equation, these coefficients 
depend on the internal geography of the piping. As such, the frictional coefficients on uneven branches of a *T" (due to size or 
internal contour) would hardly be equal. 
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Appendix B Singular Pencil Representation 

B.l Discrete Model 

Given a continuous time state-space model 
i = Ax + Bu 

y = Cx + Du 
the equivalent discrete time representation will be of the form 

x({k + 1)T) = G{T)x(kT) + H(T)u{kT) 

with 
y(kT) = Cx(kT) + Du(kT) 

G(T) = eAT 

H(T) eAXd\^j B 

and A = T - t. Our discrete matrices then become 
I* 0 

H(T) = 

G(T) = 
L o h \ 

'h - h h 0 0 0 0 0 
0 j4 0 0 0 0 0 0 

C=[h& h&] 

with 
D = [hi —/13 h2 /14 —he —h-j 

ji = e c'T 

h&] 

h = 9 ± = 

1 53 

h2 = — = 
53 

J2 = e"T 

A - 1 ) 
Cl * 

k = d ± { e ^ _ l ) 

3/9(^1^) + 2/9g(/iF - hR) + 2gcPF 

3p{Fl/A2

A) + 2pg{hA - hR) + 2gcPA 

HFDil/ADil) + M"DU ~ hR) + 29cPDU 
Sp{F2

A/A2

A) + 2pg{hA - hR) + 2gcPA 

g3 MFAIAA) + 2P9(HA ~ hR) + 2gcPA 

HA = — = 
2gcFF 

ff3 3p(Fl/A2
A) + 2pg(hA - hR) + 2gcPA 

(B.179) 

(B.180) 

(B.181) 

(B.182) 

(B.183) 

(B.184) 

(B.185) 
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96 
k h 95 

h7 = 9-* = 

2gcFDii 
3p{Fl/AA)+2pg(hA- hR) + 2gcPA 

2gcFA 

3p(Fl/AA)+2pg(hA- hR) + 2gcPA 

2gcFR 

3p(Fl/AA) + 2Pg(hA- hR) + 2gcPA 

2gc 

3p{Fl/AA)+2pg(hA- hR) + 2gcPA 

(B.186) 

BJ, Singular Pencil Matrix 

As explained before, if we have the input-output representation of a system, it can be brought 

as a singular pencil model as follows 

P{z) 
Vk 

uk 

•ek 

E+-zI - A * 5* C* 

Ec -Ao B 0 I 

Xk 

Vk 

Uk 

Lejfc 

= 0 (B.187) 

P(z) = (B.188) 

(B.189) 

In our case, since we already have a state space representation, the matrix P(z) will look as 

\A - zl 0 Bl 

C -I D_ 

with A, B, C, and D as defined in the previous section, i.e., 

'ji-z 0 0 h -33 h 0 0 0 0 0 

P(z) = 0 J2 - z 0 0 j 4 0 0 0 0 0 0 

. h$ h& 1 h\ —/13 /12 /14 —/i6 — h7 h5 /igj 

from here, it takes only a few linear transformations on the matrix (row operations) to bring it 

to a canonical representation that will allow the separation of the parameters and the states for 

identification purposes. 

Our departing equation can also be expressed as 

[E.-\In ( 7 / 

EQ GO. 
P(z) 

w _ w 
0 (B.190) 
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(B.191) 

with 
E. = A 

EA = C 

G. = [0 B) 

G 0 = [-/i D] 

and the operator z replaced by the algebraic indeterminate A. First, we use a transformation 

T x = T~lx and, consequently, 

| X - A J „ G'+ 
r ' n 

X 

W 

'TE*T~X - XIN TG* 

EQT-1 GO 

To get T we select a chained basis from the matrix 

E' Go 

r ' - i 
X 

= 0 

M = 
EQE* 

L EQ 

which, in our case, will be 

~h&j2 /isjl"1 

M = h&jl h&J2 

. h& h& , 

a basis is obviously {(h& h8), (h$ji h&J2)} and, therefore, the transformation becomes 

\hh n&J2 

h8 h& 
T = 

T - 1 = 
1 -ii 

which will give the new matrices 

ji + 32 -J1J2 

1 0 
E'A = [0 1] 

"0 hjijz h&(j2J4 - J1J3) 0 0 0 0 0 

0 /i 8J3 h8{j4-j3) hsjz 0 0 0 0 0 

G n = [-1 /il —/l3 /l2 ^4 5̂ -/l6 -^7 ^8] 

which constitute the basic canonical form. 

(B.192) 

(B.193) 

(B.194) 

(B.195) 

(B.196) 

(B.197) 
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A second transformation is required, using a similarity transformation T, where 
•f(E?) . . . f(El*) 

f = in+ ; : 

./(itf 1) . . . f(Epp)j 
and /() is a matrix function that produces the following result 

[0 - a n -ai2 • • • _ a i ( n - i ) 

(B.198) 

/(A) = In + 
0 0 -an • • • - O i ( „ _ 2 ) 

0 0 0 
(B.199) 

where f(A) ism x n. To apply transformation T, we need to determine the observability indices of 

the system (n,), as well as its positive integers (£*). The observability indices (n,- with i = 1,... ,p 

and p: number of rows in J3b) give the smallest integer j for which EoiEi is linearly dependent on 

the inferior rows in M. In our case, there is only one observability index: ni = 2, and that satisfies 
p 

the proposition "YJ n« = n w i m n : number of rows in E*. As for the positive integers (with 
i=i 

k = 1,... ,p), they are the column indices of the left most linearly-independent columns in Go. In 

our case, = {1}. As we must apply /() on E", it is important to notice that the latter is a 

nj-square companion matrix, sub-block of the block matrix 

(J'T)E*{J'T)-^ 

Eo(fT)-1 

i i 'E, 

EpX 

EP 

Elp 

Epp 

E. 

Epp 

(B.200) 

with 

JT = 

EQ1E? - I n 

E02E?-1 

E, Op 

(B.201) 
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In our case, it is obvious that J'T = T and then £*' = £*. Therefore, 

f = 

or equivalently, 

f = 

"1 0" '0 -C71+J2)" 

+ 
P i . P 0 

1 - ( i l + J ' 2 ) 

0 1 

(B.202) 

(B.203) 

and the new transformed matrices are: 
'0 -j\h 

.1 i i + h 
E; = [0 1], 

"0 -h&j2h h&(j2h-hJ4) -hhh 0 0 0 0 0 
.0 h&j3 h&(j4-h) h8j3 0 0 0 0 0 

Go = [—1 h\ —/13 h2 h,4 /15 —h$ —h-j h&] 
Finally, a third transformation using matrices L and R such that 

\%-zi dl 
EQ GQ 

G" = 

(B.204) 

(B.205) 

I L 

0 R 
P(X) = 

with the 7 matrices being the system canonical representation suitable for identification 

non-singular matrix. In our case, 

i l i a 
- ( i i +J2) 

L = 

(B.206) 

and R a 

(B.207) 

and R = 1 which gives the transformation matrix 

"1 0 hh 

T3= 0 1 -C /1+J2) 

.0 0 1 

and the resulting matrices for the model 

0 0" 

1 0. 

EQ = [0 1] 

- i i j ' 2 h{h\h - hh) Hikh - hk) ~ hhh h{h2J\ - h&h) 0 

Lh + i2 ^si3 - h (ji + j2) h& (jA - j3) + /13 ( i l + J2) h8ja - h2 (ji + j2) 0 

Go = [— 1 hi —/13 h2 /14 h$ —/i6 —h-j h&] 

(B.208) 

E* = 

G* = 

(B.209) 

. . . 0" 

. . . 0. 

(B.210) 
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B.3 System Identification 

The system can now be represented as 

P'z) 
Vk 

Uk 

Lejfc 

"E*-zI -A* B* C* 

Eo -AQ BQ I \ 

Vk 

u'k 
= 0 (B.211) 

where 

(B.212) 
[<?•]=[-A, B.] 

[GO]=[-AO. BO] 

and ek a zero mean white Gaussian random noise sequence with covariance A (A > 0). 

The measurements yk and uk are known. The state vector is known and so are the parameters 

in G* and Go- Making 

wk = {yhulf (B.213) 

and r a column vector containing the non-identically zero, non-pivot parameters a,-̂  and fcj,* in A * , 

AQ, B+, BQ enumerated in some specific order, the equation above can be put as 

Xk+i = E*xk + G*(wk)r + C+ek 

0 = EQxk + G~Q(wk)r -Jwk + ek 

where 
GJwu\r = f—A* BAwi-

(B.215) 

(B.214) 

G*(wk)r = [-A» B*]wk 

Go{wk)r = [-AQ Bo]wk + Jwk 

and 

J=[IP 0 p xm] (B-216) 

a matrix which includes the pivot17. G*(wk) and Go(wk) are not unique and are constructed to 

isolate the unknown parameters aijk and bijk into the column vector r. As such 

0 0 0 . . . 0' 
G*(wk) = 

G0(wk) = [0 

A FF 
F'R FDIL 0 0 

0 0 0 0 F'A F'F F'R F'DIL 0 . . . 0. 

• • • 0 F'F FR FDIL P'F P'A PR P'DIL W'A) 

(B.217) 

j 6 » ' , i € and « 6 » m 
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and 

r = [flu 912 9u 9i4 921 ••• 924 h ... h&] (B.218) 

with the gij indicating the elements in row i and column j in G>. As the system is considered 

time-invariant, 

and then, if 

our working equations become 

with 

r — rk = rk+i 

sjfc+i = -fjfcSJfc +-  D* ek 

yk = Hksk + ek 

Hk = [E^ Ga{wk)] 

(B.219) 

(B.220) 

(B.221) 

0 
C. 

OlXn 

(B.222) 

and I is the dimension of the vector r. If the matrix C* and the co variance A of ek e ffl are 

assumed known, the Kalman filter algorithm can be applied to give the optimal linear estimate of the 

augmented state vector sk. Knowing sk, we will know the system state vector xk and the parameter 

vector rk. The recursive equations become 
sjfc+l = -FjfcSfc + Kk(yk - Hksk) 

,-i 

where 

Kk = {FkPkHl + S) {FkPkHl + A)" 

P f c + 1 = i ^ i f + Q- Kk{FkPkHl + A)K% 

rcu-

(B.223) 

S = 

Q = > o 
with initial conditions 

PQ = E 

LO/xp 
'C.ACT 0nX{ 

s 0 = E[aQ] 

(so - E[s0])(so - Eisa}? 

(B.224) 

> 0 
(B.225) 

and E[(.)] is the expected value of (.) 
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