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Abstract

In this thesis the development of a strategy for the detection and isolation of faults particular to
the pressure screens commonly used in mechanical pulp mills is presented. After exploring several
non-mode] and model-based approaches for fault detection and isolation (FDI), a method is chosen.
The method relies on the simultaneous identification of the states and process coefficients of a dynamic
model for said screens. The criterion used in developing such a model is explained and the concept
of “dynamical” friction coefficients as fault detection indicators is introduced. A technique called
the Singular Pencil Matrix (SPM) for simultaneous identification of states and process coefficients is
discussed and some simulation and industrial fesults using SPM are shown. As part of the validation
of the dynamic model a reduced version of it is proposed and tested. The problem of modelling the
process noise when applying SPM is discussed, some options are studied, and an alternative scheme

based on cumulative functions for confirmation of screen faults is presented.
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Chapter 1

Introduction

1.1 Pulp Screening Systems

Screening and cleaning systems are found in all pulp and paper industry plants. The purpose of
these systems is to remove certain unwanted constituents —such as coarse fibres and inorganics— from
a pulp slurry, so that the suspension becomes more suitable for the product in which it will be used:
paper, cardboard, etc. [30]. The removal of particles in screens is somewhat dependent on particle
size and shape, whereas in centrifugal cleaners it is based on the principle of particle weight [43].

Screens are employed in all pulping processes, mechanical and chemical. Their physical location
can differ. Thus, we find them placed between the cooking and bleaching stages or after the bleach
plant in chemical pulp mills, and after or between the refining stages in thermo-mechanical pulp mills.
Screens are also installed ahead of the paper machine. In all cases, the principles of operation and
control are the same, although the nature of the constituents to be removed is different. Generally
speaking, we can divide the screening systems in two classes: coarse and fine [47]. As the name
suggests, coarse screening involves the removal of large or coarse materials from the slurry, whereas
fine screening is designed to deal with smaller contaminants.

There are several types of screens currently in use in mills. The major types are flat, rotary,
centrifugal, and pressure [60].

The focus of this research was aimed at the screening systems used in mechanical pulping. In
this environment, fine screening is predominant, and pressure screens are utilized in virtually all

operations.

1.2 Fundamentals of Pressure Screens

The mechanisms by which screens remove the unwanted materials from the pulp suspension
are not fully developed as a mathematical corpus. Nevertheless, there is general agreement with

the idea that separation in pulp screens is accomplished by the combination of two fundamental
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processes, barrier screening and probability screening [20]. In the former, the screen plate orifices
are smaller than the size of the contaminants and the screen behaves much as a sieve. In the latter,
the openings are larger than the unwanted materials but some physical factors prevent their passage.
Among the prbbability screening mechanisms most cited in the literature are the angle at which the
particles approach the screen plate apertures (critical angle), the force created by the difference in fluid
velocities inside the screen (shear force), the movement of fibres inside the screen (fiber alignment),
the shortening of screen plate apertures due to the rotation of the plate (apparent hole size), and the
interaction of neighboring fibres (fiber mat) [29], [30]_.

To measure how well a screen is perfofming it is necessary to have an indication of how much
undesired material has been removed from. the incoming pulp stream. Oné performance parameter
widely used is called the debris reject efficiency, E,. This measures the _contaminants removed as a

percentage of the mass of contaminants in the incoming pulp, according to the formula:

Er = 5 Ry (1.1)

where i : . )
' R,, : Mass Reject Rate [non-dimensional]

Sy : Debris concentration in rejected pulp [in %] (1.2)
Si: Debris concentration in incoming pulp [in %)
The mass reject rate R,, is defined as

I

Ro=7

100 (1.3)

where
T, : Mass flow of rejected pulp [in Tons per day]

(1.4)
T; : Mass flow of incoming pulp [in Tons per day]

[47]. The classical method used in indus&y to evaluate screen performance is the shive removal
efficiency (SRE,) vs. reject rate (Ry,) curve illustrated in Figure 1.1. This graph, as the name
suggests, measures the screen reject efficiency as defined in (1.1) but regarding shives. A shive is an

intact fiber bundle or fibrous mass having a contrasting color to the pulp fibres and having dimensions

greater than some arbitrarily set minimum [61] and, as such, is a particular type of debris. The plot
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Figure 1.1: Efficiency vs. Reject Rate Curve [14]

displays the ratio between the volumetric flow of rejected shives and the total flow of incoming
shives, as a function of R,,. As shown by the curve, the higher the percentage of flow going throilgh
the reject line, the higher the percentage of debris removed. Complete removal of the contaminants
in the pulp can only be achieved if all flow goes to the reject line, i.e., no pulp is accepted. This
is obviously not practical. With approximately 25% of the total incoming fibres going to the rejects
(the proportion most often found in mills), around 80% of the shives present in the pulp are expected

to be removed!. If all feedstock flow is accepted (0% reject’rate) no removal will take place.

In order to avoid the need for a complete mass and debris balance, which is a difficult and time

consuming task, some formulas have been proposed. The best known uses the screening quotient

@ which is defined as

Sa (1.5)

! The real figure varies for every pressure screen.
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Figure 1.2: Typical pressure screen

where S, is the debris content by weight in the accepted pulp (in percentage units) , and leads to a

different expression for the relationship between E, and R,, namely,

Ry

B, = —7— 1.6
r 1- Q + RwQ ( )
[50]. Q is proposed as a constant that establishes screen performance independently of reject rate
because, if @ is known, the screen efficiency can be characterized only with measurements of the

accepts and rejects shive concentrations. This formula, however, has limitations [30].

Another important parameter to measure screen performance, albeit one with several meanings
in the literature, is capacity. A good definition is the one given by Gooding and Craig [21]. For

them, capacity is the volumetric accept flow rate of a screen at a given pressure differential.

1.3 Pressure Screen Design

There are many configurations of pressure screens in use today, but most of them are built with
a cylindrical screen plate. In a typical model, as the one seen in Figure 1.2, incoming stock is

tangentially fed into the inside of the cylinder. The pressure will force the passage of the suspension
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through the openings in the plate to an accept compartment, from where it is tangentially discharged
into the accept piping?. The rejected material passes down the inner surface of the plate into a reject
section, whence it is discharged into the reject piping. Dilution water —which may or may not be
used- can be added into the reject compartment and also into the screening zone. An electric motor
which drives the rotor is utilized as a means of preventing the screen from plugging and to accelerate

the pulp suspension.

The most important feature of any screen is the configuration of its plate. Depending on the
application, the screen plate can have a smooth incoming surface or a grooved one. Also, its

openings can either be round holes or slots.

1.4 Control Goals for Pulp Screens in the Mill

The variables that affect the performance of any pressure screen are the following:

p—
.

Screen plate design, i.e., shape and size of the openings and type of surface.
Rotor and screen housing design.

Feed stock flow rate.

Feed stock pressure.

Pressure drop across the screen.

Retention time of fibres.

Reject flow rate.

Accept flow rate. v

v 0 N L ok W

Stock characteristics, i.e., amount of debris, type of fibres.

—_
e

Feed stock consistency.

[S—y
p—

. Dilution flow to screen.

o
N

Feed stock temperature.

p—
w

. Rotor speed.

2 In some pressure screens the incoming-accept flow is reversed. Incoming stock will be fed to the outside and accepts will go out

from the inside of the screen plate.
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Figure 1.3: “Classical” control scheme for a pressure screen

Some of these variables are strongly related. For example, retention time is dependent on the stock

flow rate and the reject rate, and pressure drop is a direct function of the flow through the screen plate.

The most important variable —albeit one that can not be modified during operation- is the screen
plate design. In practice, the “élassical” control strategy calls for three parameters to be continuously
controlled by the plant operators: reject rate, feed consistenty and internal dilution [30]. The stock
flow rate and the rotor speed are seldom modified. The remaining variables are either secondary, or
out of reach for an on-line controller. Figure 1.3 shows the typical control schematic for a pressure

screen.
The ideal screen control would allow the extraction of all the debris in the feed stock without
removal of any acceptable pulp [58]. This objective cannot be directly achieved, among other reasons,

because there are no reliable on-line measurements of pﬁlp quality in industry to date. Therefore, the

best possible control is one which would optimize the relationship between the amount of debris that
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will go with the accept flow and the amount of good fiber that will be rejected, the screen capacity,
and the economic and operational aspects of the pulp processing plants, through manipulation of
indirect variables. Unfortunately such control must be tailored to satisfy the specifications of the

product being made. In practice, a general controller most likely does not exist.

1.5 Literature Review

Even though pressure screens were introduced to the pulp and paper industrial community over
thirty years ago, not much has been published about their control and even less on their faults. The
literature on screening seldom dwells on this operational aspect, dealing mainly with the fundamental
physical principles that govern the operation of these devices. Nevertheless, screening control has
been acknowledged as a promising prospect, expected to develop very fast in the coming years [39].

The ‘classical’ control strategy for pressure screens has called for either or both of two require-
ments to be met: a stable operating pressure and a stable stock throughput, measured as a flow rate,
to achieve optimum screening efficiency [48]. The standard technique for screening control shown in
Fig. 1.3 operates as follows: the accepts valve is used to control the screen throughput and the desired
operating point to maximize efficiency is controlled through the ratio of flows —accept vs. reje:ct.
The pressure drop is indirectly controlled by this ratio and, under normal conditions, is expected to
remain constant. However, if it increases above a preset level, the accepts valve will be fully closed
and the rejects valve will be fully opened to purge the screen. Usually, an alarm is provided to warn
the operator in the event of such abnormality [49], [64], [36], which is the only type of screen fault
addressed by this scheme. An alternative calls for differential pressure control through a feed flow

valve instead of the accepts valve [55], with no changes made for the alarm.

On-line control based on shive content of the pulp has been suggested by J. Hill et al. [25],
[26]. In this approach, the mass reject rate R,, and consequently the flows in the stock and rejects
lines are adjusted in accordance with the shive content and size distribution in the accepts slurry.
Stock freeness, defined as the resistance of fibres to the flow of water when pulp drains [60], has

also been used to control the reject rate in screens [7]. Both alternatives suffer from sensor problems,

and do not address the issue of faults.
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Figure 1.4: Daishowa America mill pressure screen control system (from reference [14])

A recent implementation of screen control uses a more sophisticated strategy, based on one

supervisory loop and seven régulatory loops for each screen, as seen in Figure 1.4 [14].

The purposé here is to put controller set-points in terms of actual reject rates and shive removal
efficiencies rather than in terms of flows and consistencies. This amounts to the imbedding of
the efficiency vs. reject rate curve in the control strategy, instead of the mere maintenance of a
constant differential pressure across the screen. Three categories of tasks are achieved by the control
loops: rejects control, feed control and inventory control. The first one maintains the percentage of
fibres flowing through the reject line constant. The second one controls feed stream pressure and
consistency, and the last one prevents the screen feed tank from running empty or from overflowing

through normal operation.
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It is important to mention that despite the sophistication of this control scheme, the detection
of screen faults is achieved by the same means used in more modest schemes: measurement of the
pressure differential between the feed line and the accepts line. Moreover, the only fault monitored

is screen blinding.

1.6 Objective

The objective of this thesis is to develop a strategy for fault detection of pulp pressure screens
which can overcome the shortcomings of the approach currently used in industry. As said before,
that method relies on monitoring of the pressure differential between the feed line and the accept
line, and on setting off an alarm when the differential exceeds a certain pre-fixed value. It will be
shown that this pressure differential alarm can be misleading as a fault detection tool at best, and

can severely curtail the throughput and efficiency of a screen.

The current approach to screen fault detection has also the following weaknesses which shall
be addressed:

e It is too slow, as it shows failure of the screen after it has occurred. In reality, that means that no
true fault detection scheme is applied because not much can be done to prevent screen failure.

It does nothing to detect screen faults different from gradual plugging of the screen plate.

« It leads to an inflexible control scheme, as it does not easily allow for changes in the feed rate
of the screen.

o It does not lend itself to being used with varying consistencies in the pulp, as. this condition
affects the pressure differential alarm limit.

« It cannot be linked to the quality of the pulp.

A true fault diagnosis algorithm for screens had never been attempted in the past. The existing
methods used to control pulp screens in industry do not prevent screens from plugging with all the
unwanted consequences that this problem produces: process interruptions, unsafe working conditions,

economic losses, etc. Even the newest strategies used for screen control consider the screen as a

system with one or more SISO loops with no coupling between them [40], [14]. This assumption
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does not seem realistic and most probably has an influence on the poor control performance seen
in industry, in general. The research proposed here shall improve this situation by using a MIMO
approach better suited to the reality of the dynamics of the screen. It also has the potential to open

the door to sophisticated MIMO control techniques which cannot be used today.

Finally, one could also identify at least three kinds of potential benefits to be obtained by
pursuing the research presented in this thesis: improvements on existing industrial control methods,
establishment of a fault diagnosis technique suitable for industrial environments in general, and

advancements in on-line estimation and control techniques.

1.7 Contribution of this Work

To the best of my knowledge, no work has ever been published on fault detection and isolation
(EDI) for pressure screens. Having said that, I believe that the major contributions of the present

research are the following:

« The introduction of faults in pulp pressure screens as a separate subject of study.

+  The derivation of the first dynamic model in the literature to chéracterize pressure screen behavior.
+  The development of the first model-based approach for fault detection on pressure screens.

o The use of the Singular Pencil Matrix estimation technique in a true practical application.

»  The enhancement of knowledge on pressure screen operation and faults, in general, and the gain

of valuable physical insight for better screen control.

At the same time, the strategy of using a dual identification method to obtain simultaneously the
state variables and the process parameters of a system introduces more flexibility into the general
universe of fault detection and Isolation (FDI). Having both quantities estimated at once might help to
overcome the weaknesses of the fault detection methods based in only one of these groups of process
variables, namely, the need for an extremely precise model of the sjstcm under identification, and the

need to have as many working equations as parameters in the system to achieve full fault identification.

10
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The testing of the proposed algorithm for FDI in a pilot plant also brought thc potential to
develop results suitable for the industrial environment, where noise and perturbations are the rule

rather than the exception.

1.8 Outline of the Thesis

The thesis is organized as follows. In Chabter 1 the basic concepts relatéd to pressure screens
and screen control are presented. Chapter 2 provides a look at background material on fault detection
in general. It also focuses on the issue of faults and failure in pressure screens, the current method
used in industry to prevent its occurrence and its shortcomings. Chapter 3 describes several attempts
at using non-parametric methods for the purpose of detecting screen faults, and their results. Some
conclusions are then derived. Chapter 4 shows the derivation of a mathematical dynamical model
of a pressure screen needed to use the parametric fault detection methods. The different techniques
available for on-line identification of the model are presented. Chapter S presents the environment in
which the testing of the parametric-based methods took place and it shows the results. Then, sbme
conclusions are drawn. Chapter 6 explores some alternative techniques for improving the efficacy
of the model-based fault detection schemes. Chapter 7 concludes the thesis summarizing the overall

results and mentioning avenues of further research.
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Chapter 2

Faults, Screen Faults, and their Detection

2.1 Faults, Failure and Fault Detection

2.1.1 Some definitions

Following Himmelblau’s definitions, when talking about some equipment it ;nust be implicit that
the terms fault and malfunction mean “departure from an acceptable range of an observed variable or
calculated parameter associated with the equipment” [27]. In this context, a fault implies a minimum
degradation of the normal performance. The term failure will be used as “an indicatibn of complete
inoperability of equipment or the process” [27]. From these definitions, it is obvious that the criteria
for establishing the presence of a fault is a subjective matter which depends on the characteristics of
the process under observation. Failure, on the other hand, has no ambiguity.

The structure of a fault detection and isolation (FDI) system is similar to a closed loop control
system. Figure 2.5 shows the block diagram proposed by Isermann to characterize the different
supervisory stages of a typical FDI system [33]. .'

The first step is called fault detection. As the name implies, it involves the detection of a
fault. For this, some process variable, measurable or estimated, is tested against a certain range of a

reference value. In the second stage the location of the fault is established and its most probable cause

. Stop ' > Fa'ulg '
Operation Elimination
Cause of Fault Hazard k4
and Location Class .
Operating
’ ‘ State Required
> F?U“ . » Fault . » Decision Jw Changg »  Process
Diagnosis Evaluation Operation |
y
Fault <
Detection

Fautt
Message

Figure 2.5: Supervision loop under appearance of a fault (from reference [33])
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is determined. This is known as fault diagnosis. Third, an ésscssment of how much the process will
be affected has to follow. Its name is fault evaluation. Finally, a decision regarding the required
control action can be made. Depending on whether the fault has been deemed tolerable, conditionally

tolerable or intolerable (failure), the plant operation must continue, or be modified, or be stopped.

Several classifications for fault detection and identification (FDI) have been suggested in the
literature. Some of them are based on the type of possible malfunctions to be identified, some others
are based on the methodology used, and yet some others on whether the information gathered is
redundant in terms of the hardware (hardware redundancy) or in terms of the software (analytical

redundancy) (271, [33], [18], [53].

From a systems identification point of view, the fact that a system may or may not have an
analytical representation seems to be the most suitable characteristic to be taken into account when
attempting a classification of FDI. Further refining will lead us into a scheme such as the one shown

below,

( Measurable signals U,Y
Non-model Based{ Characteristic Quantities n = f(U,Y)

Knowledge Based
FDI

N)!
Systems ﬁ

State Variables X

Model Based { Characteristic Quantities n = g(U,Y, X, 0)

L Process Parameters 6

' where the definitions are as follows:

e Non-Model Based System: FDI schemes do not contemplate a model representation of the system

under supervision. Nevertheless, they might include mathematical models of the system signals.

e Measurable Signals: Process faults are detected and singled out with the aid of measurable

input U(t) and output Y'(t) plant signals.

13
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»  Knowledge-Based System: Fault detection is based on some stored knowledge of the plant

(usually of qualitative nature) and inference mechanisms that allow for the making of comparisons
and deductions between the plant behavior and this stored data.

e Model Based System: The fault detection schemes are based on a mathematical process model

of the system under supervision or of parts of it.

e State Variables: Faults are detected with the aid of partially measurable and partially non-

measurable internal state variables of the supervised system.

e Process Parameters: FDI schemes are based on constants or time-dependent coefficients which

appear in the mathematical model used to represent the supervised plant.

e Characteristic Quantities: Malfunctions of a system are diagnosed with the aid of a combination

of information sources: state variables, process parameters and modelling of plant signals (inputs

and outputs).

2.1.2 Non-Model-Based Methods

As defined before, all fault detection methods which do not require a parsimonious model of the

process or system under measurement are called non-model based, or more loosely, non-parametric.

FDI approaches which involve the use of measurable signals and non-model based characteristfc
quantities generally require the performance of three operations: observing the records of the signals
or quantities in time, computing simple statistics of those records, and carrying out some tests to
determine the presence of a fault. The results are usually presented in graphical form, as a function
of sample sequence or time. A fault is deemed to have octurred whenever a non-random change
brings the observed variable out of the pre-established statistical limits. The best known methods
are the Shewhart Control Chart, which involves the use of mean and sample range values [59];
the Cumulative Sum Control Chart, which makes use of sums of a function of a random process
variable?; the Geometric Moving Average Control Chart, which involves the use of smoothed values
~ of the sample mean {27]; and Multivariate Control Charts [37], which use statistics calculated from

values of many variables which might have joint probability distributions.

3 The function can be the variable itself, the difference between the variable and a target value, the sample mean, etc.
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Himmelblau [27], Pau [54], Willsky [69] and Wise et al. [70], provide diverse examples of those
FDI techniques falling under the category of measurable signals and non-model based characteristic
quantities systems.

Knowledge-based FDI methods are based on the use of artificial intelligence techniques. They
involve the use of a computer program (which usuaﬂy emulates the behavior of a highly experienced
human operator), and qualitative and/or quantitative techniques based on existing knowledge of the
system, to determine the presence and nature of faults.

The key issues in implementing a knowledge-based FDI system involve the choice of: a symbolic
representation for the knowledge on the system, the rules which allow for the symbolic reasoning,
and a graphic interface to provide the representation and reasoning.

S. Tzafestas in the book by Patton et al. [53], Y. Ishida [35], Kramer and Finch [42], and Kramer

and Leonard [41] are only a few references on the growing area of FDI knowledge-based techniques.

2.1.3 Model-Based Methods

Whenever the fault detection schemes are based on the use of a mathematical process model of

the system, they are called model-based or parametric.

Process parameters are defined as coefficients or constants that appear in the mathematical
process model of a plant. These coefficients reflect, directly or indirectly, the physical parameters
like friction, mass, viscosity, length, etc. of the system under supervision and, therefore, many faults
can be determined by examining their behavior [32]. An FDI system based on process parameters

has a block representation as the one shown in Figure 2.6. ’

The mathematical model of the plant can be either static or dynamic. Provided that we have a

SISO system, the former might have the form
Y(U) = Bo+ B1iU + BU + ... _ (2.8)
and the latter, for processes with lumped parameters might have the form

y(t) + arg(t) + azii(t) + ... + any™(2) = bou(t) + bra(t) + bait(t) + ... + bnu™(2)  (2.9)
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Y
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Figure 2.6: Fault detection scheme based on parameter estimation (from reference [33])

which is usually, for simplicity, a linearization about an operating point.

The general procedure for fault detection and isolation using process parameters will include

the following steps:

-

1. Determination of the equation used for process modelling, Y (t) = f{U(t),0}

2. Determination of relationship between the model parameters 6; and the physical parameters p;
as 0 = f(p).

Estimation of the model parameters.

Determination of the physical parameters, p = f~1(6).

Calculation of variations in physical parameters Ap;.

SR

Determination of type and location of fault.
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In an industrial environment one would expect steps 1 and 2 to be performed off-line and the

remaining to be executed on-line.

Since changes in the physical parameters are the main concern, the model of the ‘normal’ process,

including its tolerance range, must be known accurately at all times.

Two parameter estimation methods for continuous-time models have attracted the bulk of attention
in the FDI literature : Least-squares and Instrumental Variables. In the first one, our time-invariant

linearized equation
a0yu(t) + a1yu(t) + aggiu(t) + ... + ¥ (t) = bou(t) + bra(t) + baii(t) + . . . + bpul™(t) (2.10)
has the measured output y(t) contaminated by a stationary stochastic noise n(t), therefore,
y(t) = yu(t) + n(t) (2.11)
and substituting for yf,i)(t) in terms of its measurements will lead to
Y(0) = T8+ e(t) @12)

with e(t) being the equation error, and ¥, 0 being the regressors and the unknown parameters,
respectively. Once input and output signal measurements have been made and the derivatives
determined at discrete times t = kT , with £ = 0,1,2,...N and T the sampling time, N+1

equations will result with the form
y™W(k) = 90 +e(k) @13)
where e(k) is again an equation error. These can be expressed as the vector equation
y™ =Tf +e (2.14)
Having a cost function of the form

a dv
V=z_;)ez(k)=eTe and — =0 (2.15)

will get the well-known least squares estimate of the parameter vector

6 = [9Tw] " gTym (2.16)
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It must be remembered that, since the parameters are biased in the presence of colored noise, this
method is not well-suited for high noise-to-signal ratio cases. For the equations above, the time
derivatives of the input and output signals can be obtained by several methods: backward differences,
spline interpolation, Newton interpolation or state variable filtering [33]. The state variable filtering
method has the advantage of providing the derivatives and filtering the noise without differentiation
[71]. When dealing with systems that have a high noise-to-signal ratio, the instrumental variables
parameter estimation provides better results than least-squares. Basically, the technique consists of
modifying the least-squares solution to include a vector of instrumental variables £ which are chosen
to be highly correlated with the noise-free output of the system y,, but totally uncorrelated with the

noise on the measurement of the system variables [71].

An FDI system based on state variables has the block representation shown in Figure 2.7. In

general, the dynamic relationships that exist in a system can be expressed in state representation as

x(t) = Ax(t) + Bu(t)
(2.17)

y(t) = Cx(t) + Du(t)
assuming that the system has been linearized around the operating point. The influence of a fault
can be evaluated in the residuals, which are functions of the state variables that are accentuated by
the malfunction. There are three preferred ways to generate residuals in the literature: the parity

space approach, dedicated observer schemes and fault detection filters [18]. All of them share the

presence of some kind of state observer.

The rationale behind the parity space approach is to 5:heck out the consistency of the state
variables mathematical representation when confronted with the actual plant measurements. When
the difference between the theoretical and the real values exceeds a certain range, a fault 1s deemed
to be present. It must be stressed that partial consistency, i.e., relations that refiect only part of
the overall model can be used advantageously. This concept was generalized by Lou et al. [46].

Assuming that the system is given by

x(k +1) = Ax(k) + Bu(k)
(2.18)
y(k) = Cx(k) + Du(k)
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Figure 2.7: Fault detection scherﬁe based on state variables estimation (from reference [331)
the output equation can be expressed by substitution as
y(k + 1) = CAx(k) + CBu(k) + Du(k +1) (2.19)
If we extend the formulation for any interval s such that.s > OAit turns into
y(k + s) = CA®x(k) + CA*'Bu(k) + ... + CBu(k + s — 1) + Du(k + s) (2.20)

Putting together all the equations for s = 0... n'; withn' < n and shifting by n' we obtain the

representation

Y(k) = Rx(k) + HU(k) : 2.21)
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ith
b [ y(k-n') T
y(k -n' + 1)
Y(k)= |y(k—n"+2) (2.22)
L y(k)
o
CA
R = | CA? (2.23)
[ca |
S 0
CB D
H=| CAB CB D (2.24)
CA*'B ... ... CAB CB D,
- u(k _ nl) -
u(k —-n' + 1)
U(k) = |u(k —n' +2) | (2.25)
| u(k)

If we define a subspace of (s + 1)g dimensional vectors v such that vTR = 0 (which is called the
parity space of order s), and apply it to equation 2.21, we obtain the expression

vIY(k) = vTHU(k) (2.26)

A parity check can be performed by using the different vectors v at any time. The residuals r(k)

can now be defined as _ : .
y(k —s) u(k — s)

r(k) =vT||: -H|: (2.27)

(k) u(k)
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and if we introduce the state equations 2.18 in the expression for r(k), it will become
C
r(k) =vT C:A x(k —s) (2.28)
CAS®
with r(k) = 0 if no fault occurs. It is evident from all the formulations above that the vectors v
must be in the left null-space of matrix
: c :

CA
(2.29)

LCA*1 _
but, apart from this, can be chosen freely. This leads to a variety of parity relations and, as mentioned
above, these relations are tests in the consistency of parts of the input-output dynamics of the system
as opposed to tests for the whole system model. Whenever a particular fault is present, the consistency
is altered and that fact is shown in the residuals. The concept leads to an observer called the dead-
beat observer for SISO and MIMO systems [18], which can be explained using the following line

of reasoniﬂg. A state-space model can be described in input-output form as
y(k) = S(z)u(k) (2.30)

where each element of the S(z)* matrix is a transfer function. If we use an observer to estimate the
states of a particular system with D = 0, the equations we obtain are
x(k +1) = (A - KC)x(k) + Bu(k) + Ky(k)
(2.31)
r(k) = y(k) - Cx(k)
where r represents the innovations and K the observer feedback matrix. Following the equivalence

between the state-space and the input-output representations, we could also express r(k) as a function

of the observables u(k) and y(k) as

r(k) = Q(2)y(k) + P(2)u(k) 232)

4 S(z2)=C(zI-A)"'B+D
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where Q(z) and P(2) are transfer functions including K. For the innovations to become FDI-usable
residuals, they must be zero if the system is under no-fault and the observer K must have been

chosen adequately, that is

Q)Y () + P(2)u(k) =0 23
As y(k) = S(z)u(k), that implies
[Q(2)8(2) + P(2)]u(k) =0 (2.34)
or
P(z)=-Q)S(z) (2.35)
Equation 2.32 then becomes
(k) = Q¥ (k) - Q(2)S(=)u(k) (2.36)

If we recall the form of the residuals in the parity space approach, namely,
r(k) = vTy(k) — vIHu(k) (2.37)
the relationship is evident [19].
The main idea behind the dedicated observer approach is to use the estimation error obtained

with the use of system observers (linear or non-linear, full or reduced order) or Kalman filters, as

the residual for fault detection. For a linearized system defined by
x(t) = Ax(t) + Bu(t) + Ed(t) 4+ Kf(?)

(2.38)
y(t) = Cx(t) + Fd(t) + Gf(t)
where
x : nxl state vector
u: pxl input vector 7
y : gxl output vector
A,B,C: known matrices
(2.39)

Ed : term for unknown inputs
Kf : term for actuator and component faults
Fd : term for unknown inputs to the sensors

Gf : term for sensor faults
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a full order observer will render the following state % and output ¥

% = (A — HC)x + Bu + Hy
(2.40)
y = Cx

The choice of the feedback gain matrix H will determine the performancé of the observer. The

observer state and output estimation errors are

E=X-—X
(241
e=y-y
and by substitution, will become
é¢=(A - HC)e+ Ed + Kf - HFd - HGf .
2.42)

e=Ce+ Fd + Gf
The output estimation error e can then be used as the residual. When no faults are present, the
residual will only depend on the unknown input. When a fault appears the residual will increase,

therefore, detection of the increment in e will determine the presence of faults.

The fault detection filter approach is nothing but a dedicated observer with a special choice for
the feedback gain matrix H. In this case, the system is modelled as
x(t) = Ax(t) + Bu(t) + k; fi(t)
y(#) = Cx(t) + k; f(t)

with f(¢) a scalar function of time and k; and k; vectors of dimension nx1 and gxI, respectively,

(2.43)

used to model faults. By design, k; can be chosen to represent the fault directions of the actuators
and components in the system. k; represents the directions and modes of sensor faults. With
i=1,2,...r, r is the number of fault directions. j is associated with the number of sensors in the
system. The observer is then represcnted by

% = (A - HC)x + Bu+ Hy
(2.44)
y=Cx
and the residual vector r = y — ¥ has now directional properties associated with the possible faults.

The estimation errors will reflect either an actuator or component fault as

€= (A - HC)e + kif;
(2.45)
r = Ce
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or a sensor fault as
€§=(A- HC)_e_,~_.+ h; f;
(2.46)
rj = Cﬁ + kjfj

where h; is the j-th column of H. From these equations it can be seen that the residual can be
unidirectional, for component and actuator faults, or could lie in a plane, in the case of a sensor
fault. The proper choice of H will make the residual of a particular fault f; to be constrained either
in a single direction or into a plane, in the residual space. Therefore, any large residual projections

along the known fault directions or fault plane will mean that a fault is present, and will tell which

kind of fault it is.

Needless to say, the parity space, dedicated observer, and fault detection filter approaches require

very precise system modelling.

2.2 Faults and Failure of Pressure Screens

Abiding by our definitions, failure of a screen is produced mainly by two causes: plugging (either
line plugging or plate plugging), and plate mechanical failure. These conditions demand the screen

to be shut down to allow for off-line repairs.

All screen faults can be grouped in five categories:

1. Blinding. Fibres accumulate within or adjacent to the screen plate apertures (or in the reject
piping). Low screen capacity will result from this conditjon and, in extreme cases, will lead to
plugging and stoppage of the accept pulp flow.

2. High loss of good fiber into the rejects. Either by improper feed consistency, volume of dilution
water or plate perforation [47].

3. Loss of accept quality. The presence of an undesired percentage of contaminants in the treated
pulp would result as a consequence of high rotor speeds, low consistencies or wrong reject rate.

4. Motor overloads. '

5. Flow instability, caused by high flow velocities and cavitation.
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In general, the main objective of screening is the steady removal of debris at adequate capacity.
Whenever this objective is not fully accomplished, there will be a faulty operating condition. As
with the existing technology most variables associated with the quality of the pulp can not be measured
on-line, a true FDI system should focus on detecting the remaining types of faults. In this research,
the emphasis is put into the operational faults: blinding and motor overloads.

How long it will take to blind a screen depends on its operating conditions and on the severity
of the blinding agents. Fast blinding can have a duration of a few seconds after the critical accept
flow has been met. Slow blinding can develop over a period of 30 seconds or more. Consistency?,
rotor speed, length of fibres and flexibility of the fibres, are among the factors which can influence

this phenomenon.

2.3 Present Standards and Practices

The “classical” technique for screening control has been shown in Fig. 1.3. As said previously,
when it is implemented, the pressure drop across the screen is maintained constant. The accept valve
is used to control the screen throughput and the differential pressure is controlled through the ratio of
flows: accept vs. reject. However, if the pressure drop increases above a preset level, screen blindihg
is deemed to have occurred. Then, the accept flow is temporarily stopped and the reject valve will
be fully opened to purge the screen, using the back-flushing effect of the screen rotor. Usually, an

alarm will go off to warn the operator that screen plugging has happened [49].

The main shortcoming of this approach is that there are many other factors, besides blinding,
which could cause the differential pressure to raise. Increased throughput is one of them. As a
consequence, a healthy screen operating at high capacity could be stopped and flushed. This weakness
is brought to light when one looks at the findings of Craig and Gooding [22], which were supported
by the findings in this research, and which are reflected in Figure 2.8. The relationship between
screen pressure differential and the square of the accept flow rate is clearly linear and positive when
the screen operation is normal. This behavior is not maintained when the screen fails. In such case,

after a critical accept flow is reached, the pressure differential will rise sharply without any increase in

3 Consistency Is defined as the mass or weight percentage of bone dry fiber in a stock (61].
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A-Pressure versus Squared Accept Flow
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Figure 2.8: Pressure differential vs. squared accept flow
relationships for a pulp that blinds and for a pulp that does not

accept flow. What this tells us is very simple: the use of pressure differential to detect faults implies
an inefficient use of the screen, as it curtails the throughput. Obviously, the heavily used pressure
differential technique is not satisfactory. Additionally, the fact remains that if the screen is under
the effect of blinding, this fault is only detected after the fault has become a failure. This means that

~
a fault detection scheme capable of giving warnings of incipient operational deviations is lacking.

L 4

2.4 Shortcomings

A true fault diagnosis scheme for pressure screens had never been attempted in the past. Neither
the “classical” method nor the alternative schemes used to control pulp screens in industry prevent
screens from plugging. Even the newest strategies used for screen control consider the screen as a
system with one or more SISO loops with no coupling between them [40], [14]. This assumption does

not seem realistic and most probably has an influence on the poor control performance generally seen
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in industry. That translates into interruptions in the pulp-making process, unsafe working conditions

and economic losses.

The current approach to screen fault detection has also the following weaknesses which shall

be addressed:

o Itis too slow, as it shows failure of the screen after it has occurred. In reality, that means that no
true fault detection scheme is applied because not much can be done to prevent screen failure.
e It does nothing to detect screen faults different from screen plate blinding.

« It leads to an inflexible control scheme, as it does not easily allow for changes in the feed rate
of the screen.

e It does not lend itself to being used with varying consistencies in the pulp, as this condition
affects the pressure differential alarm limit.

¢ It cannot be linked to the quality of the pulp if future on-line measurements become available.

The present research shall improve this situation by using a MIMO approach better suited to
the reality of the dynamics of the screen. It also has the potential to open the door to sophisticated

MIMO control techniques which cannot be used today.

2.5 Summary

In this chapter, the fundamentals of Fault Detection and Isolation (FDI) systems and the principles
of their application on pulp pressure screens have been described. After delving into some definitions
like fault, failure, and the different steps in a typical FDI system, a classification of such systems has
been introduced. The criteria used for said classification is the existence of an analytical representation
of the process plant under control. Details of the fundamental ideas behind the use of non-model
or model based FDI approaches have been provided. The state of the art of Fault Detection on
pressure screens and its shortcomings have been presented. Finally, the need for a new FDI method

has been substantiated.
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Chapter 3

Non-Parametric Fault Detection of Screens

3.1 The Experimental Setting

Process and equipment faults are undesirable events in a process plant, and failure is to be
avoided if at all possible. Developing a fault detection strategy in an environment where product
deviations and equipment malfunctions are unwelcome is not a simple task and usually becomes a
lengthy process, since not much can be done to expedite progress, or to study particular alternatives.
On the other hand, the use of theoretical tools alone to form a fault detection scheme for equipment
in industry is of limited use. In any case, direct knowledge of the real system under study, and an
understanding of what constitutes normal and faulty operations, are required. So, how can one build
an FDI system for pulp mill equipment? It seems that the best approach for such task should be
one which combines the flexibility of the theoretical tools with the depth of knowledge gained in
the industrial operations.

Fortunately, in the course of this research, access to Paprican’s screening research pilot plant,
located in Vancouver, B.C. was gained. This plant, whose Process and Instrumentation (P&ID)
diagram can be seen in Figure 3.9, comprises three storage tanks, a centrifugal pump, two industrial-
scale pulp screens, and the instrumentation required to measure and control all important process
variables of the equipment operation. It allows for circulation of pulp flows up to 10,000 liters per
minute (L/Min) with a consistency of up to 5%. In this settimg, it was possible not only to operate the
screens and observe their behavior, but most kinds of faults could be induced at will and their effects
documented. This pilot facility is as close as possible to the industrial reality while maintaining the

rigor of a research environment.

Two main sources were used to gather the information regarding the screen process variables:
asynchronous transfer of data from a Distributed Control System (DCS) Bailey Infi 90 which governs
the automatic operation of the pilot plant, and a data acquisition personal computer (PC) capable

of extremely fast sampling. In a period of several weeks, cabling, junction boxes, terminals,
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Figure 3.10: Typical Slow Sampled Data. Unfiltered
signal conditioning circuits and anti-aliasing filters were designed, built, and connected to the DCS
instrumentation inputs. Having two “independent” sources allowed for the study of process dita

taken simultaneously at different rates of sampling, as can be seen in Figures 3.10, and 3.11.

The typical fault trial would include the following steps:

1. One of the two screens is chosen for the trial. This includes plate selection.

2. The pulp consistency is adjusted by mixing dry pulp and water in the stock tank. This has a
capacity of 11,000 liters and a side-mounted mixer.

3. The reject valve is set at 75% open. The stock valve is set at 20% open and the accept valve
is closed. |

4. The reject flow rate for the trial is chosen. Several accept flow rates are selected, in incremental
steps. The stock pressure is to be maintained at 350 kPa.

5. The pump and screen motors are started.

6. The feedstock and reject valves are controlled manually using the DCS operator’s console until

the starting process conditions, with zero accept flow, are met.
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Figure 3.11: Typical Fast Sampled Data. Unfiltered

7. Slow data sampling is started.

8. The accept valve is opened to reach the first selected accept flow rate and this setting is kept

until steady state is achieved. Fast sampling data is collected by the PC for periods of up to

thirty seconds.

9. If failure is not present, the valves are manipulated to achieve the next higher accept flow rate

previously selected, and step 7 is repeated. If failure occurs, the settings remain untouched until

the differential pressure between the feedstock and the a::cept lines triggers a system shut—down

mechanism. Fast sampling data is then gathered at equally spaced accept flow rates until the

whole operation comes to a full stop.

The behavior of the accept flow when compared with the opening of the accept valve during a typical

fault trial can be seen in Figure 3.14. During the whole operation, the data gathered by the DCS is

downloaded to the PC. As mentioned, this information has a lower sampling rate and is transmitted

through one of the DCS asynchronous ports to the personal computer.
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A-Pressure versus Squared Accept Flow

120 T T
100 % x
~. g x
\\\ x
.
BUNDING K ™
x Y
L d x s b
-
.,
x .
-,
.
~
i x
9 o} o
.
8 -
@ L
[\
o -
2 Ve
S o .
2 . -
L
.
-
"
-
-
.
2} x L
.
.
.
I”’
f”’
L
-
0! i’ L
2 .
500 3500

Lft?rs pe‘rml'\)ﬂinut?zsqua?:d)
Figure 3.12: Screen Operated with Rotor Off

3.2 The Motor Load

It has been determined experimentally that velocity, acceleration, and convergence have a strong
influence on whether the fibres inside a screen will pass through the screen plate or not [30]. Aside
from the flows and pressures, one of the factors which strongly affect the velocity of the pulp are
the pulsations imparted by the rotor. Therefore, when thinking of alternatives to replace the current
method of fault detection, one variable which seems indicated for closer analysis is the screen motor
load. In this research, that variable was measured using an amperage transformer calibrated for phase

correction.

The influence of the rotor on the screen operation was demonstrated during the course of several
experimental trials. When the screen is operated without turning on the rotor, its throughput is
dramatically reduced, as can be seen in Figure 3.12, and failure occurs quite rapidly. The screen
shows no sign of malfunction when the accept flow rate remains below 50 L/Min (or 2500 [L/Min]2 ).

If the accept valve is opened further, the flow gets close to 65 L/Min and then the pressure differential
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A-Pressure versus Squared Accept Flow
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Shewhart Chart (M= 60.19)
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Figure 3.17: Shewhart Chart with A, R limits

suddenly starts to increase and the accept flow diminishes: clear signs of failure due to plugging. The
same screen can function without problems with flows above 5,000 L/Min (or 2.5 107 [L/Min]2 )

when operated with a fully operating rotor. See Figure 3.13.

Screen motor load was also mentioned by people from industry as a variable which would be

looked at by operators, to guarantee the absence of malfunctions.

Despite the indubitable influence that the rotor has in the prevention of screen plate blinding, in
all tests conducted in which the screen was made to fail, the screen motor load did not show any
significant trends or signal levels which would help to account for the presence (or absence) of a

failure, let alone of a fault.

As can be seen in Figures 3.15 and 3.16, when the throughput of the screen is increased, the

motor load signal does not register any dramatic changes, even when the behavior of the differential
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Shewhart Chart (M= 60.19)
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pressure and the accept flow tell us that failure has already occurred. If we prepare control charts
based on the motor load data sampled in the tests, the reéults are equally poor. As seen in Figure
3.17, when the range and the arithmetic mean of the signals are used to create the upper and lower
statistical control limits, many false alarms appear in the chart but the appearance of a true fault
is not detected. When the common value of twice the standard deviation is used to set the upper
and lower control limits (see Figure 3.18), no point falls out of statistical control. Cicarly, both

alternatives render the chart useless.

Judging from all the results obtained in the pilot plant trials, it does not look as if direct use of

the screen motor load signal, or any statistical manipulation of it, could be a better option for fault
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Delta Pressure versus Square Accepted Flow
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Figure 3.19: Differential Pressure versus Square of Accepts Flow (Raw Data)
detection than the current high differential pressure scheme used in industry. Quite to the contrary.
If the latter can be deemed as imprecise, the former seems to be of no help at all.

-

3.3 Square of Flow versus Differential Pressure

It is a proven fact that screen blinding is determined by the decrease of flow through the accept
line while the pressure differential between the feed line and the accept line increases [21]. The
current approach to fault detection focuses only on the increase in pressure differential, paying no
attention to what happens to the flow. Therefore, a logical next step would be to find an index or
indicator which would correct for that omission. The first candidate that comes to mind is pointed

by the hydrodynamic theory: the plot of one against the square of the other [22].
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A-Pressure versus Squared Accept Flow
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Figure 3.20: Differential Pressure versus Square of Accepts Flow (Filtered Data)

While running the screens to failure in the pilot plant trials, one feature immediately became
obvious: when plotting the relationship between the square of the accept flow and the pressure
differential, the slope of the graph would change dramatically depending on whether the screen was
operating normally or was deemed as having failed. A screen operating normally would have a
positive slope, while a faulty screen would have a negative one. The slope of the graphic, then,
appeared as a promising candidate for a fault indicator.

The upper part of Figures 3.19 and 3.20 shows that, when taken as a batch, the trial data
concemning the slope reveals unequivocally whether a fault has occurred or not. FDI-wise, this is a
very important finding. Nonetheless, the infonnaﬁon does not establish any time references. This

means that the failure, though clearly present, might have occurred at any time during the test. To
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overcome this deficiency, instead of gathering data and plotting curves at the end of a trial, one could
think of looking at the data while it is being collected, say once every minute. This would give
the operator some sense of timing. Obviously, if implemented as a cumulative algorithm developing
in time, as demonstrated by Figures 3.21 through 3.22, such information is better than the current
method of fault detection, as it would allow the plant operator to know if a high differential pressure
alarm is due to blinding or to other factors. One big weakness remains: the information would be

post-mortem. Faulty conditions would not be identified in their early stages but after a failure has

been declared.
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Going further, one could try to examine the slope of the graphic recursively, adding every new
value which is acquired by the process sampling system. The lower part of Figures 3.19 and 3.20
shows that such approach is not practical for industrial use. Due to the presence of process noise, even
if the data is heavily filtered, the calculated value of the slope oscillates in such a way that the index
is rendered useless. If the average of several points is examined, the presence of a faulty condition
could be determined, but being forced to average many points in time will bring us back to square

one: such fault would be declared after it has become a failure. That would not constitufe true FDI.

The problems caused by the presence of noise become more acute if we sample the data fastér.
As it can be seen in Figures 3.23 and 3.24, faster sampling not only does not help in making the
slope index more reliable (lower graph) but it even disables the possibility of looking at a clear
graphic of the slope. The batch data (upper graph) now looks as an amorphous blob from which no
conclusions can be drawn, no matter how heavily we filter it, and the recursive slope index is still

inconclusive, except if used for averaging.

Despite the lack of promise shown by the slope of the pressure differential versus the square
of the accepts flow as a true fault detection index, two useful conclusions were obtained from the .

screen trials:

1. The slope of the differential pressure versus squared accept flow graphic is an improvement over
the “classical” control approach used in mills to determine if a true failure is present.
2. When filtering screen process data, averaging produces smoother results for the variables than

low pass filtering.

3.4 Heuristic Rules

An alternative for detecting faults on a plant which model is not known is to use all the existing
knowledge of the system to extract useful conclusions. First, one has to look at the process conditions
which can be associated with the normal and abnormal operation of the plant. The second step is to
choose a symbolic representation of those conditions. Then, some inferential or heuristic rules are

laid out. These rules, made by comparisons and deductions, will help determine whether a fault can
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A-Pressure versus Squared Accept Flow
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Figure 3.23: Differential Pressure versus Square of Accepts Flow (Raw Data)

be deemed as present or not. Finally, some graphic means to display the reasoning and the results

must be designed [65].

Based on the existing literature on screens and on our findings, a fault detection mechanism for
the screens based on heuristic rules does not seem to hold much promise. So far, there is no evidence
of any observable variable or set of variables which can be used to make educated assumptions on
whether a fault is present or not. Motor load, flows, pressures, etc., do not offer much insight about
incipient screen malfunctions. What can be established without doubt is the presence of failure. That,
in itself, is an advance over the “classical” screen control method commonly used in mills, but does

not represent a true FDI method.

All in all, it does not seem that developing the next steps for a rule-based FDI system will add
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A-Pressure versus Squared Accept Flow
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Figure 3.24: Differential Pressure versus Square of Accepts Flow (Filtered Data)

anything useful. Most important, by setting an expert system to deal with screen faults not much
is gained over the use of the differential pressure versus squared accept flow method. The expense
in computing memory and programming is, therefore, obviously unwarranted. A different approach

is in order.

3.5 Summary

In this chapter the experimental setting and the results obtained when testing the non-model
based FDI approaches on pressure screens have been presented. After describing the pilot plant
used throughout the different experiments, a detailed explanation of a typical fault trial has been

given. The rationale used in choosing several signals (motor load, and squared accept flow versus
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delta pressure) for the application of some non-model based approaches has been explained and the
results obtained with such techniques have been shown. Using those results, the limitations of the
non-model based FDI techniques on pressure screens have been established and the need for a more

sophisticated model-based approach has been justified.

43




Chapter 4: Model-Based Fault Detection of Screens

Chapter 4

Model-Based Fault Detection of Screens

4.1 The Need for a Model

As it was mentioned in Chapter 2, from a systems identification point of view it is possible to
distinguish two classes of FDI systems: model-based and non-model-based. The main difference is

that the former relies on the existence of a mathematical model for the plant, while the latter does not.

With the exception of knowledge-based systems, FDI methods which do not require a model
tend to be simpler than those in which a model is required. Their simplicity, however, does not
come for free. Usually, the information they provide does not discriminate between possible causes
for the faults, or leads to very conservative detection thresholds prone to produce false alarms [19],
or does not detect the faults fast enough [33]. The non-model-based approaches attempted in the
present research have shown some of these drawbacks, and that made them unsuitable for true fault
detection. Due to limitations in the knowledge of the screen fault signatures, diagnostic methods built
around concepts of artificial intelligence did not hold much promise, either. Therefore, a strategy

based on developing a model of the screens seemed indicated.

In general, a mathematical model for the process or plarit provides the basis for obtaining better
information towards fault detection. Measurable coefficients, also called features, become available
with the model. Changes in these features with regard to their normal values can be used to detect fault
symptoms and to identify the cause of the faults. This leads to early detection of incipient malfunctions
and to a deeper level of diagnosis. The price to pay for these improvements is the development of the
model. In this research, basic physical laws and other well-established relationships were explored

and used to postulate the pressure screen model. The end result can be defined as of the type known

as a grey box [45].
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4.2 Modelling of a Pressure Screen

4.2.1 Pulp Screen Mass Balances

As the process that takes place inside a screen is non—reéctivc, three material balances can be
written: one for the water in the slurry, another for the pulp and a third for both components [16].

The first two will be expressed as:

d(my,0 - . . X
( dt : = MFy,o + Milution ~ May,0 — MRy,

d(msol) _ . . .
dt Mr, sol MAsol - MRsol

(4.47)

where the subscripts refer to water (H20), solids in the pulp slurry (sol), incoming feedstock (F),
reject (R), and accept (A) mass flows. In industrial environments total volumetric flows, rather than
individual mass flows, are commonly measured. Therefore, in order to determine the mass of both

phases in the slurry, consistency measurements and volume-to-mass equivalences are required.

Consistency (C) was defined earlier as the weight of oven-dry fibre in 100g of the pulp-water
mixture [48]. However, this definition introduces the problem of determining the amount of non-
fibrous additives in the stock. To overcome this difficulty the definition of consistency is usually

modified to mean weight of solids in 100g of the pulp-water stock.

On the other hand, the relationship between total volumetric flow F' and individual mass flows

M can be obtained from the relationship between volume (V), mass (M) and density p

PV Total = Mm,0 + Mlids (4.48)
Since
Mgolids = C (Mgoligs + Mi,0) (4.49)
then
Mgolids = PCVTotal (4.50)
and
Mp,0 = p(1 = C)Vrotal (4.51)
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Assuming that neither the consistencies nor the densities change too fast with time, the balances

become
d(Vi,0) _ 1

dt PH;0
d(Vsol ) — _1_
dt Psol

[01FF — a3F4 — a3Fr] + Filution
4.52)
[asFr — a5F4 — agFR)

where
al = pF(]. - CF)

ay = pa(l - Ca)
a3 = pr(1 — Cr) .
' 4.53)
ag = prCF

a5 = paCa

as = prCR
Due to the nature of the components, all densities are approximately equal. Now, because the

volume of the screen is constant and water is an incompressible fluid, fibres can only accumulate

at the expense of water, that is,

d(Vioma)) _ d(Vi0) | dVaal) _
dt dt dt

Adding both expressions for the mass accumulated in the system, we obtain the final mass

(4.54)

balance equation

d(V- 1
( ;rz(t)tal) = ;(F F — Fa = Fr + Filution) (4.55)

and, recalling that the Volume (V) inside the screen does not change,

0= Fp — F4 — Fp + Fdilution
(4.56)

L 4

4.2.2 Pulp Screen Energy Balances

As the screen is an open system where no phase changes or reactions occur, the starting point
for an energy balance is the expression

dilU+ E E . 2

[U + Ex + Ep] _ > Mi[v_.+gh,.+_%]_
dt ) 2. 9gc

Input streams

(v g
S Mo|gz+ —hotUo| +Q+
output streams e e :

(4.57)
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[27] with
U : Internal Energy

U : Specific Internal Energy
Eg : Kinetic Energy

Ep : Potential Energy

V : Volume

v : Velocity

g: Gravity (4.58)
h : Height

gc : Conversion factor

W : Work
@ : Heat
M : Mass Flow

T : Temperature
The work done on the system can be divided into hydraulic (W, = PV) and shaft work (Wy). Since

the process is adiabatic, the equation becomes

d[Energy] _ Z M; [1'2- +Lhi+ Ui+ ﬂ] -
dt input streams e Ge 7
_ 4.59)

; 2 P,
3 Mo[§°—+iho+l_zg+—°]+Ws
output streams e e p

leading to the non-linear expression

d[Energy] 3 3
s =e1Fp+eFr+ FrPr + e3FDi1 + esFp;) + FDilPDil 4.60)
—65F2PA —egFy — FyPy — 67F}31 — FpPp + W, + kA + kg
where k refers to the frictional losses inside the screen [11] and, again, the subscripts refer to

incoming feedstock (F), rejects (R), accepts (A), and dilution water (Dil). More details can be found

in Appendix A where the coefficients e; are defined. The above relationship, after applying some
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simplifying

ar :
- = fiFe + foFr + f3FrPr + fsFp; + fsFpit + f3FDitFbil @61)

—f6F3 — f1Fa — fsaFaPa — fsFp — fsFrPR + fsW, + faka + fskr

where the f;’s are coefficients defined in Appendix A. After linearization and the fact that %—{ varies

very slowly when compared with the flows and pressures, this becomes

0 = g1Fp + 92Pr + g3Fpy + 94Pp;
) ) p ) § , Dll, , (4.62)
—95F4 — g6Py — 91Fp — 98 Pp + f3W, + fak4 + fakp
with _ ' _
_ 3pFL +2A%pg(hr — hg) + 24%9.Pr
2A4%.pgcV Cy
_ 3F12)il + 2A2Dilg (hDil - hR) + 2A%)ilchDil
) 2A%;1P9:V Co ]
4 = 3pF% + 24% pg(ha — hr) + 24%9:.Pa
i 24%pgcV Co
_ 3pF} +2A%9.PR
9= TR A% pg.VC,y

a1

g2
(4.63)

Fp
gs = VCy

i
g6 = m
gr = VCo
gs = VCy

1 .
fa= Ve,

(4.64)

and the P"’s and F'’s are deviation variables from the set points £ and F'.

4.2.3 Mechanical Losses

From the mechanics of incompressible fluids, it is known that the energy losses associated with

friction in pipelines are proportional to the square of the fluid velocity. This can be expressed as

k= fyv? (4.65)
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and it is the underlying principle of Fanning’s and D’ Arcy-Weisbachs’s friction equations [9], [57].
Although f, is normally a constant, it can be theorized that it will vary with the accumulation
of fibres on the screen plate. Thus, considering both f, and v as time-varying, we differentiate

D’ Arcy-Weisbach’s equation, namely,

dk d ( fbvz)
Pl re (4.66)
We then obtain the following expression
dk _ 2dfp d(v?)
i + fp 7t (4.67)
which, when using the fact that k = fv? gives us fhe result
dk  Ldfy  k d(vz)

This shows that a dynamic expression for the losses inside the screen must include a term dependent
on the square of the fluid velocity and another term dependent on the losses themselves. Following

this line of reasoning, an expression is proposed to reflect the dynamic behavior of the losses inside

the screen:
k= dik + dzvz _ (4.69)
The éonstant
1 d(v?)
dy = i 4.70)

should be fairly sensitive to variations in the speed and, by implication, to flow changes. As the
flow becomes smaller one should expect to see it grow in magnitude, fairly rapidly. The constant
ds would reflect the rate of change of the parameter f, due to accumulation of fibres on the screen
plate. If blinding starts, the dynamic characteristic of the formulation will reflect this phenomenon:
the appearance of blinding increases the velocity of the flow and the frictional losses, which in turn
increase blinding, and so on.

As the velocity across the screen plate orifices is very difficult to measure, it is proposed that

the flows be used in the equation. It is also proposed that the same equation be applied to account
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Figure 4.25: The screen as a dynamic “T”

for the two different streams of pulp inside the screen. This amounts to saying that the screen is
considered as some sort of “T” pipe fitting with different dynamic friction coefficients: one set for

the accepts and another for the rejects, as it is shown in Figure 4.25

Accordingly, after linearization and the fact that Ff = F, + Fp — Fi)il’ the dynamic expressions

become ,
dk t ! ' ’
—th =diky + daFp + dyFpyy — d2Fp
P (4.71)
-ﬁ- = dskp +dsFp

with the d’s being the dynamic loss coefficients, the ks referring to the energy losses, and other

L 4

measurable variables being as described before.

4.2.4 The Proposed Mathematical Model

Theoretically, the mass balances have the potential to give us information about the accumulation
of fibres inside the screen. However, due to the state of the art of the existing measuring devices,
attempts at determining the weight of fibres involved in blinding do not seem realistic. Another
concern is that, due to the amount of fibres involved, such measurements might not convey enough

information on the dynamics of this process. Therefore, the proposed mathematical model for screen
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diagnosis relies directly on the balance of energy and the equation of losses for incompressible fluids
and only indirectly on the mass balances. It is believed that this set of equations forms a reasonable
basis towards a screen operational model. As the degrees of freedom allowed for the energy balance

and the losses relations are equal to three, the model can be expressed in discrete state space form as

!

1 [} . FF
zk)y 1 0] [k4 Js J3 J3 ,
| = |t Fpj | +@
Ky Lo jallke) Lo o )| D
. Fp
K, F
y=[hg hg]| , | +[h1 ho —hs}|Fp; |+
, kR . , 4.72)
| Fp
)
[ha hs —he —h7 hg] fa'
P
Ly

As mentioned before, the states k represent the energy losses and the output y the accept flow. The

derivation of the parameters h and j is explained in Appendix B.

This system is reachable, i.e., by using a realizable sequence of control signals it is possible to
drive it from an initial state to any final stateS, and observable, i.e., any state can be determined from
a finite sequence of input and output signals’. That makes it ideal for identification. More details

can be found in Appendix A.

4.2.5 Pulp Quality

Although research on the subject has advanced significantly in the last years [23], [17], modelling
of the effects of screening on pulp quality can not yet be achieved through the use of mechanistic
or physical principles. Results have to rely on empirical relations obtained through testing and
experiments. The tools to use in search of empirical relationships are the screening coefficient Q,

and the debris reject efficiency E,, previously mentioned. In the proposed model, the quality aspect

6 Provided the parameter j4 # 0 (which seems true in all cases).
7 Provided j; # jo (which is also true in the majority of cases)
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of pulp screening has not been included. Nonetheless, the path chosen for identification (the singular
pencil model, to be explained in the next sections) allows for easy incorporation in the model of

future theoretical formulations which might seem pertinent.

4.3 Identifying the Proposed Model

4.3.1 What to Identify?

Two approaches have concentrated the attention in the literature on model-based fault diagnosis:
process parameters and state variables. Although somewhat different, both share the same phases

when implemented:

1. Data processing. Measured signals of the process are gathered and made suitable for fault

detection.

2. Fault Detection. Some characteristic process features are extracted and compared with their

expected values. Deviations are used as indications of fault occurrence.
3. Identification. A classification of faults is prepared and any subsequent fault is compared with

this fault catalogue to determine type, location, size and probable cause.

The first two characterize the detection stage of an FDI system and the last one constitutes the
diagnosis.

Fault detection procedures must be insensitive to any changes in the process not produced by
faults, such as modelling errors, noise, changes in operating points, etc.8, for if not, its practical use
is severely compromised: no plant operator will trust a systém plagued with false alarms.

Unfortunately, the process parameters and the state variables methods can not always reach
decoupling between the effects of the unknown inputs and the effects of faults. Therefore, redundant
methods capable of precise identification are attractive to the researcher. Based on the fact that
process parameters and state variables share the same procedural stages, a strategy that combines
both approaches is therefore proposed. To the best of my knowledge, this has not been attempted

previously.

8 These latter are termed unknown inputs.
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4.32 How to Identify It?

Instead of selecting measurable states to calculate the model parameters, or assuming perfect
knowledge of the system to calculate the system states, the dynamic model that has been proposed
includes the two quantities as unknowns. Therefore, both the process parameters and the system
states must be estimated.

The problem of combined estimation of parameters and states was originally treated as a nonlinear
problem and the Extended Kalman filter was proposed to solve it [51], [3], [6]. However, although
this method has been proven feasible, the estimates often diverge. Building a methodology for
fault detection on the basis of an identification approach that does not guarantee convergence of
the parameter estimates does not seem very sound. Instead, an approach based on using a special
canonical model known as the singular pencil model is proposed. When the noise statistics are known,
the singular pencil model allows to solve the simultaneous estimation of state variables and system

parameters as an optimal linear filtering problem and its convergence properties are excellent [5].

4.4 The Singular Pencil Approach

4.4.1 From an ARMAX Model

Assume that we have an ARMAX model for a linear, discrete, multivariable, time-invariant
system with input variable uzeR™, output variable yxeR?, and noise input exeRP assumed as a zero

mean white Gaussian sequence with covariance A(A > 0), such as:

A(z )y = B(z")ug + C(zV)ex 4.73)
where 2~ is the shifting operator, and the matrices A(z71), B(2™!), and C(z7!) are of the form
Az = g+ A1z 4 A2
B(z7Y) =B, + B1z7' +...Byz™" 4.74)

C(zY)=T+Crzt+...Cp2™"

v being the maximum of the degrees of the polynomials in A(z7!), B(27!), and C(z™"). These

matrices have ¢ rows. Introducing auxiliary variables in a vector zx with n = vg we can represent
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the ARMAX model as

-Oqu 0 ] -Avw -Bv —CvT
I, I, : : :
[ ] 2xp = ) TE — Yr + ug + er 4.75)
Ogxn " A B, G
L 0 I, LAg LB, L1,

with I, and Oxp denoting an axc identity and a axf null matrix, respectively. And v = max{n;},
where n; is the largest polynomial degree of 2! in row i of [A(z7!), B(27'), C(27!)]. For
simplicity, this can be written as

2z = Eyzg — Auyr + Baug + Cuer
. 4.76)
0 = Egzr — Aoyk + Boug + ek

Assuming that this representation is canonical or has been modified to be canonical [8], it can be put as

[Tk ] [Tk

P(2) Ye | _ E,—z2I -A, B C*] Yk — 0 @1
Ug Ey —Ay By I |} lux
Leg Leg -

with P(z) a singular pencil of matrices and zj satisfying the definition of the system state vector.
This model is called a singular pencil matrix (SPM) model.

A pencil of matrices is a first-order polynomial in an indeterminate D with matrix coefficients,
of the form M+DN, where M and N are mxn matrices. The pencil is called singular if M and N

have different order or if the determinant IM+DNI is equal to zero [67].

4.4.2 From a State Space Model ’

_If we start modeling the singular pencil from a state-space model of the form

T4l = Azp + Bug
4.78)
yr = Czx + Dy

with the matrices A(z), B(z), C(z), and D(z) being nxn, nxp, mxn, and mxp, respectively, the

implicit equation is obtainable by inspection as:

= lel B
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where the I is our well known identity matrix. This initial expression has to be transformed into

the implicit canonical form

Tk [k
P( ) Y E, — I -A, B, C, Yk 0 (4.80)
z = = .
Uk Ey —-Ag By I ||ux
ex €k

to guarantee that the identification is unique’. That task is achieved by using linear transformations

Ty, Ty, and T3, as required, on the state-space expression and adding the matrices
Cyand (4.81)

which help account for the process noise [5]. Transformation T is obtained by selecting a chained

basis from the matrix

cA)”"
M=| (4.82)
CA
C
and it leads to
xk ' 1 [ zlk
TyAT{'—2I Ti0 T\B E,—z2I —-A, B,
. Ye | = , . | =0 (4.833)
CTy -I E, -4, B,
Uk Uk

Transformation T% is obtained from the form

FER) ... f(EM)

L 4

Ty=I+| ¢ = (4.84)
FER) ... f(EMT)

where E* is an n;-square companion matrix and, given

al a2 e Ain
asi as? N a2n

A=| . (4.85)
Gmi Am2 ... Omn

9 Note that matrices A, A., and Ag; B, B«, and By; and C and C, are all different.
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f(A) is a matrix function that produces the following result:

0 —ai1 —ai2 ... —Gi(n-1)
0 0 —a11 .. —al(n_z)

f(4) = _ (4.86)
0 0 0 .

and transformation T3 is derived using matrices L and R such that

I L] | E, —2zI G.
P(z)= 4.87)
0 R Ey Go
with
G* = |—A¢ B* I
(4.88)
Go=|-4A0 Bol

[S]. After applying those three linear transformations in the order above, we obtain the reduced

upper-right row echelon form required for the singular pencil, and the model becomes

T ] [Tk
yk E* -_— ZI G‘ C* yk h
Py =] =0 (4.89)
u Eq Go I ]|u
LEL LEL J
with
00
E, =
: 1 0 -
Ey=10 1| . (4.50)
L—jljz ja(hij1 — heja)  he(jojs — j1js) — hajije  Ja(hoji—hsjs) 0 ... O
i1+ j2 hejs — hi(j1+j2) he(ja— )+ ha(j1+j2) hsja—he(ji+j2) O ... O
Go=[-1 hi —hs hy hy hs —he —hr hg]
4.91)

and C, to be chosen from previous knowledge of the process noise. More details and explanations

can be found in Appendix B.
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4.4.3 Singular Pencil Identification

Once the canonical representation is achieved, F, and Ey are determined uniquely. As yy and ug
are measurable and therefore known, this means that the simultaneous state and parameter estimation
problem can be solved as a linear filtering problem, in contrast to the nonlinear estimation problem
encountered when using the state space model approach to attempt the simultaneous estimation of
state and process parameters. |

Making vectors wl = [y, uf ], J = [Ip|0pxm ], and r (which contains the non-pivot parameters

a;jx and byjx in the matrices A, Ao, B., and By) our singular pencil equation can be expressed as

Try1 = E,zp + é*(wk)r + Ctek
- (4.92)
0= FEozr + Go(wk)r — Jwg + e,
with - '
G.(wk)r = [—A,. IB,, ]wk

- 4.93)
Go(wk)r = [—A() IB() ]wk + Jwyg

As these matrices are not unique, they must be built in a way that ensures that the elements
of matrices A and B , i.e., a;jr and bk, are isolated into the column vector r. Since the system
is time-invariant, 7 = rp = rg41, and further refinements are possible in our representation of the

system, namely

8k41 = Fisk + Daeg

| 4.94)
Y = Hysk + e
with
T
Sk = [.’l:{, Tk] .
Hy = [Eoéo(wk)]
E.. G,(wk)
B — } | (@499
0 I

. C.
D, =
OIXn

and ! is the dimension of the vector r.

This last expression is nothing but the representation of a linear stochastic system in state space

form with state vector s. As such, if C, and the covariance matrix A of the noise are known, it is

57




Chapter 4: idodel-Based Fault Detection of Screens

possible to use the Kalman filter algorithm to obtain the optimal linear estimate of the augmented
state vector s, which in turn, will lead to the vectors xx and 7, rendering the states and the process

parameters of the system.

The recursive equations to use will then be

- Sk41 = FiSi + Ki(yx — Hir)
Ky = (FxPoHT + S) (Fe P HE + A) ™ (4.96)
Piy1 = FyPeFT + Q — Ki(Fr P HF + A)K{

where
C.A
S =
OlXp

[c,.Ac;-” Onxl] “n
Q= 20
Oixn  Omxi
with initial conditions
§0 = Elsq]
(4.98)

- Py=E|(s0 — Blsal)(s0 - Efsol)”] 2 0
and E[(.)] is the expected value of (.)

Once the process parameters and state variables under normal operating conditions are obtained,
they will be stored in memory. From this point, the physical coefficients in the model can be
recovered, if necessary, applying reverse linear transformations T 1,T2‘ Land Ty 1. Successive on-
line values can then be compared. The presence of swings or deviations will suggest the existence
of faults, which lead us to the next stage of the FDI system: the diagnosis.

If C, is not known (which is very likely in practice) there are several possible options, two
of which are: the use of an extended Kalman filter algoritl:m to estimate simultaneously the noise
and the measurement parameters, or the application of non-parametric noise estimation techniques
to determine its characteristics, before attempting the singular pencil strategy. This problem will be

addressed in the coming chapters.

4.4.4 Application of Equations

To offer a feel for the practical application of the proposed singular pencil approach for

identification, let us look at some graphs. Figure 4.26 shows some input/output information obtained
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from the pressure screen pilot plant trials conducted along this research. Although a detailed

discussion of these trials will not be attempted until next chapter, a few things can be said here

to illustrate the practical results obtained when using our mathematical derivations.
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Figure 4.26: Simulated measurements of pressure screen

To begin with, the typical data batches shown in the graph correspond to the screen process

variables measured by the sensors and then gathered by the fast sampling data acquiSition system.

This data clearly corresponds to deviation values and it is the data fed to the singular pencil algorithm.

These measurements are then processed using the estimation sequence described in the previous

sections to obtain the parameters shown in Figures 4.27 and 4.28. They are the parameters included

in the augmented states vector sg.

As our initial discrete screen model includes two states, the first two parameters in sx (seen

on top in graph 4.27) correspond to those states zx. One could use them directly for diagnosis or

apply similarity transformations to them to recover the original states representing the friction losses

(k4 and kg). Either way, their shape is not expected to change by much. At this point it is worth

underscoring one important fact: as the graphs reveal, in general, convergence of the estimation is
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Figure 4.27: Estimated parameters in the augmented state vector
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Figure 4.28: Estimated parameters in the augmented state vector (Cont.)
good. This comes as no surprise because the convergence properties of the SPM method are well
documented in the literature [8].
The remaining parameters in the vector have to be transformed back by using the
T 1 771 and Ty 1 Yinear transformations. When doing this, they render the d coefficients in

the discrete model which are associated with the friction losses inside the screen, and which are
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Figure 4.29: Estimated friction coefficients in the screen model

of interest for the fault detection process due to their physical meaning. The typical estimated d
coefficients are shown in Figure 4.29. As expected, after convergence is achieved, the accept and

reject friction coefficients (d; and d3) are negative.

With this information and proper judgement, one can attempt to detect the incipient operational
problems most commonly affecting industrial pressure screens, as it will be demonstrated in sub-

sequent chapters.

4.5 Summary

In this chapter a mathematical model of the typical pressure screen and a procedure for its use
as an FDI method have been presented. The model is of the grey-box type and it has been developed
using mechanistic principles and an expression analogous to the D’ Arcy-Weisbach formula to account
for the dynamics inside the screen. The problem of identifying the parameters and states in the

proposed model and its non-linear nature has been explored and an alternative for breaking this

61




Chapter 4: Model-Based Fault Detection of Screens

non-linearity has been proposed. The technique, called the Singular Pencil Matrix (SPM) has been

presented, and its implementation for use on pressure screens has been covered in detail.
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Chapter 5

Testing and Experimental Results

5.1 Model Validation

5.1.1 FDI and model checking

Having built a tentative model for pulp pressure’screcns and suggested a suitable identification
procedure, it is then appropriate to ask if the model is adequate for fault detection and isolation and,
if not, what kind of inadequacies it might have. This is known as the model validation or model

checking problem [45].

Most methods for model validation found in the literature on system identification rely on
statistical lack of fit tests applied to the model errors or residuals. Modél-based FDI is also built
around changes in the model parameters or residuals, thus, it may be seriously affected by modelling
errors [31]. In fact, when identifying for FDI, the main question that has to be answered when
detecting lack of fit in the model is the following: is the deviation due to a model inadequacy or is
it the signature of a fault? That is the problem the “robust” fault detection techniques try to solve.
Unfortunately, it has no complete solution in the literature [19]. Moreover, the evidence suggests
that it is not possible to improve simultaneously the fault sensitivity and the immunity to model

errors of any FDI technique.

In practice, despite any formal aspects which might be raised, the main criterion for model
validation must be whether the proposed model.is good enough for the purpose at hand, or not [45].
Therefore, the paramount concem in this research is to determine the “goodness” of the proposed
model in detecting incipient pressure screen faults. Or, in other words, its ability to display parameter

deviations in the presence of faults in such a way that fault diagnosis is made possible. All other

issues must be subordinated to that one.
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5.1.2 The validation procedure

In thé singular pencil model proposed for estimation in the previous chapter, the matrix C has
to be fixed according to the a priori knowledge of the noise. In practice, this means that testing the
statistical lack of fitness of the model helps to determine the choice of C, and, in turn, the choice
of C, affects the statistical fit of the model, but this selection muddies the question of the model
appropriateness from a fault-wise perspective. Does a better fit guarantee good fault discrimination?
Not necessarily. In our case, perhaps good fit might simply indicate that the choice of C. is masking
the presence of a fault. Therefore, instead of using the standard validation techniques and simply
testing the statistical properties of the proposed model (including the matrix C,), one has to address
the issue of model “goodness” for fault detection from a broader perspective. In doing so, some
questions have to be asked: Do the estimated model coefficients show similar values under similar
operating conditions? Are the values of the estimated coefficients different for different conditions?
How far between them are the values corresponding to normal and faulty operation?

To obtain the required answers while taking all important facts into consideration, a three step

validation procedure for the model-based scheme has been proposed:

1. Determination of parameters repeatability through simulation.
2. Evaluation of FDI-“goodness” in pilot plant trials.

3. Evaluation of statistical fit of the FDI-“good” models.

Thus, the singular pencil model approach is to be tested with simulated data first and, once its ability
to offer repeatable results for different operating conditions is established (and, therefore, its suitability

for the task at hand), pilot plant trials are to be used to assess its FDI-“goodness” and statistical fit.

5.2 Simulations and Repeatability

In instrumentation, repeatability is defined as the “closeness of agreement among a number of
consecutive measurements of the output for the same value of the input under the same operating
conditions, approaching from the same direction, for full range traverses” [1]. In the process plant, a

very repeatable but not too accurate instrument is often better than a more accurate one with poorer
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ACCURATE SHOOTING

Normal Faulty

REPEATABLE SHOOTING

Normal Faulty

Figure 5.30: Shooting targets to illustrate accuracy and repeatability

repeatability. The reason is obvious: poor repeatability leads to uncertain measuring results. Good

repeatability, even under the presence of measurement bias, provides consistent information.

As illustrated by the shooting targets in Figure 5.30, one can immediately establish an analogy
with the field of model-based Fault Detection and Isolation: amodel which shows consistent results for
“normal” and “faulty” behavior of a plant is preferable to another which is more accurate (statistically
or otherwise) in reflecting the “true” screen behavior but less repeatable. Accordingly, the first
property of the FDI model proposed in this research which should be investigated is its repeatability.

To fulfill that pre-requisite, a simulation algorithm was implemented.

The algorithm basically creates batches of data representing all the measurable process variables
of a typical pulp pressure screen: pressures, flows, temperature and rotor motor load. It calculates

the states and process coefficients included in the screen model and it extracts and plots the “d”
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|
\
|

| CASE 1 CASE 2 CASE 3
! Motor Current: 57% + 0.29
Accept Pressure: 320 kPa £
2.88
Accept Flow: 1500 LPM % 30
Process Reject Pressure: 367 kPa £ 3.3
Same Same
Conditions | Reject Flow: 500 LPM * 10
|| Feed Flow = Accept + Reject
Feed Pressure: 350 kPa + 3.15
Tank Temperature: 41 deg.C
0.21
Increasing accept Decreasing accept
flow flow
Perturbation None (Ramp at half of (Ramp at half of batch
batch with with
0.5% slope) -0.5 % slope)
Random with uniform
Noise Same Same
distribution

Table 5.1 Screen Simulations. Process Conditions

coefficients associated with the friction inside the screen. Noise can be added to all signals to make

the simulation stochastic.

The process data can be made to correspond with clearly distinct operating conditions: normalcy
and failure. It also allows for the superposition of several disturba_ncesv on all variables related to
either condition. Thus, one can have as many data batches as desired with the only difference among
them being the perturbation or the added noise. This allows for the testing of very similar data sets.

For these sets, the states and the coefficients in the model are estimated and the repeatability of their

values is investigated.
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Unfortunately, as it has been shown in previous chapters, the precise relations between the
different screen process variables (particularly pressures and flows) which might indicate the presence
of a fault are not well understood. Empirical knowledge on the screen friction losses is also lacking.
That combination of facts means that manipulation of these variables to accurately simulate incipient
faults is out of reach!®, but one can test the operational extremes of 'normal’ and ’faulty’ behavior of
a screen suffering from blinding and make them follow one another. If good estimation repeatability
is achievable during simulations of normal operation and failure, one might reasonably argue that
the model should give repeatable results iﬁ the intermediate ranges that precede the two extremes,
i.e., in the presence of incipient faults. Such argument can be tested against data showing normal
operating conditions followed by failure and ultimately, against real data. For now, let us concentrate

on the simulations.

CASE 4 CASE 5 CASE 6
Process
Same as in case 1 Same Same
Conditions
Decreasing accept flow
Fast decreasing accept
and increasing reject Decreasing accept flow
flow
flow (Ramp at beginning of
Perturbation (Step at half of batch
(Ramps at half of batch batch with
with
with -0.05 % slope)
-2% gain)
+ 1% slope)
Random with uniform
Noise Same Same
distribution

Table 5.2 Screen Simulations. Process Conditions (Cont.)

In order to test the repeatability of the proposed model-based strategy, six different pressure

screen operational cases were evaluated using the simulation program:

1. Screen operated in absence of perturbations (normally operated with change in feed).

10 [f that simulation was possible, the whole idea of the screen model as a fault detection tool would be moot as one would simply
look at the “right” variables for indication of the known faulty behavior.
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2. Screen with sudden increase in accept flow (normalcy with change in throughput).

3. Screen with sudden decrease of accept flow (normally operating screen suddenly brought to
failure).

4. Screen with sudden decrease in accept flow and increase in reject flow (another option for a
screen made to fail).

5. Screen with step changes affecting the screen flow (normally operating screen followed by fast
occurring failure).

6. Failed screen.

The characteristics of this cases, including process conditions, perturbations, and process noise, are
shown in Tables 5.1 and 5.2. It is pertinent to mention that each simulation case has faster dynamics
than the precedent, except for case 6 which obviously has slower dynamics than most of the others.

Cases 1, 2 and 6 correspond to what have been termed as the extremes of pressure screen
behavior: normalcy and failure. The remaining three cases included normalcy followed by conditions
associated with failure. To illustrate for the reader, the process variables for cases 4 and 5 can be
seen in Figures 5.31 and 5.32.

At this point, as establishing the statistical fit of the model is not relevant, the model noiée
matrix C, used in the simulations was selected arbitrarily with coefficient values which were deemed
“reasonable”!! and kept the same for all cases. Since blinding is the underlying agent of the simulated
failures, tracking the behavior of the accept losses coefficient is of particular interest!2, After running
the algorithm used to extract the-values of the screen losses coefficients, the results for d; shown
in Tables 5.3 and 5.4 were obtained. Those same results can be observed in graphic form in

Figure 5.33.

In the graphic, the center lines represent the average value obtained in the different trials tested for
each case. The upper and lower values represent the average plus or minus ¢.o of the samples, which
for a Gaussian distribution implies a confidence factor of approximately 95% [12]. The coefficient ¢

is Student’s “t” and has a value of 2 for a sampling universe larger than 30.

11 That 1s, corresponding to a system which is causal and realizable.

12 As the screen blinds, the passage of fibres from the feedstock to the accept line becomes more difficult. This suggests a change in
k4 and subsequently on the d’s.
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Figure 5.31: Simulated data for pressure screen which begins to fail (Case 4)

Variations of cases 1,2, 4 & 6 were also tested to evaluate the behavior of the reject friction
coefficient when under simulated pipg plugging. This time, the main manipulated flows and pressures
were the reject. For instance, in case 2, instead of increasing the accept flow, the variable dispensed
with was the reject flow. Cases 1, 4 & 6 were treated analogoﬁsly. The results obtained are shown

in table 5.5, and can be observed graphically in Figure 5.34.

From the information on the tables and graph the conclusion is obvious: the proposed model-
based strategy assures that most cases which are significantly different from an operational point of
view will produce repeatable and discl:riminating results for the estimated process coefficients. This
is equivalent to saying that it has the potential to be used for fault identification and diagnosis: the

increase in the magnitude of the d coefficients (particularly d; and d3) above a safe value can be
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Motor Current (M = 57); (SD =0.0811) g Stock Flow (M = 1985); (SD = 17.63)
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Figure 5.32: Simulated data for pressure screen which goes into fast failure (Case 5)
CASE 1 CASE 2 CASE 3
Mean: 108.45 Mean: 156.17 Mean: 19548
dl
o: 8.14 o: 3.67 o: 13.54
Statistics
Range: 26 Range: 10.18 Range: 37.01

Table 5.3 Screen Simulations. Results

used as an indication that a fault has occurred. The main question that arises from the simulation is
the following: why are the values for the accept coefficient of a failed screen similar to those of a
*healthy’ screen? And for that, the answer is simple: because they reflect similar rate of changes in

the accept friction losses of the screen. Let us take a more detailed look into this statement.

In the model proposed in this research, the accept losses coefficient d; represents the inverse of
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CASE 4 CASE § CASE 6
P Mean: 193.06 Mean: 257.44 Mean: 125.16
1 .
o: 13.36 o: 3.53 o: 6.87
Statistics
Range: 31 Range: 9.78 Range: 19.05
Table 5.4 Screen Simulations. Results (Cont.)
300 Accept Friction Coefficient (d1) for Simulations
©
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»
2 ol — _
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S
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©
__.3 501 .
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E 0 1 i [ ! 1 1
0 1 2 3 . 4 5 6 7
Simulation cases
Figure 5.33: Accept Friction Coefficient in Simulations
CASE 1 CASE 2 CASE 4 CASE 6
Mean:143.99 Mean:162.17 Mean:169.72 Mean: 145.38
d3
o: 3.12 o: 2.39 o: 5.58 o: 6.12
Statistics '
Range: 7.59 Range: 7.5 Range: 17.08 Range: 19.83

Table 5.5 Screen Simulations. Results (Cont.)
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Reject Friction Coefficient (d3) for Simulations
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Figure 5.34: Reject Friction Coefficient in Simulations
one of the time constants governing the behavior of the system. From the modified D’ Arcy-Weisbach

expression used to represent the screen friction losses
ka = dika+dyv}y (5.99)
assuming the velocity v constant, and reordering, the equation becomes
—= —dikg=ady (5.100)
which gives a weighting function of the form
ka(t) = koe™t . (5.101)

It is easy to see then that d; (which must be negative if plugging occurs) represents the rate of

change of the accept friction losses. The faster the variation in the losses, the bigger the magnitude
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of d; becomes, and vice versa. In a well operating scfeen the plate orifices are mostly clear. A
failed screen shall have those orifices mostly plugged. Although one would expect to see a normal
screen show less friction losses than a plugged (failed) screen, in both cases the rate of change of
those losses should be similar: fairly low, and the value of the coefficient d; should refiect that.
On the contrary, a screen which is suffering from blinding would display a higher absolute value

of d; until it gets totally plugged.

5.3 Experiments in the Pilot Plan

5.3.1 The setting

To further explore the validity of the FDI model-based strategy proposed for the screens, test
trials were conducted at Paprican’s screening research pilot plant. As described in Chapter 3, this
setting made possible not only to operate and gather data on typical pressure screens but it also
allowed for the induction of most kinds of faults. This is as close as it is possible to get to the
industrial reality while maintaining the rigor of a research environment. Special emphasis was put
on exploring blinding, among all screen faults, as it is the most common of faults and also the one
which causes the most frequent operational pcrfurbations of these devices in mills. Again, the typical

fault trial for detection of blinding would include the following steps:

1. A screen is chosen for the trial. This includes plate selection.

2. Pulp consistency is adjusted.

3. The screen valves are set at starting values. ‘

4. The reject flow rate for the trial is chosen. Several accept flow rates are selected, in incremental
steps. The stock pressure is to be maintained at 350 kPa.

5. The pump and screen motors are started.

6. Samples of pulp for determination of initialbonsistcncy are taken.

7. The pipes are tested for air entrapments and, if detected, purged.

8. The valves are controlled manually until the starting process conditions, with zero accept flow,

are met.
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9. Slow data sampling through the DCS is started.

10. The accept valve is opened to reach the selected accept flow rate and this setting is kept until
steady state is achieved. Fast sampling data is collected‘by the PC for periods of up to thirty
seconds.

11. If failure is not present, the valves are manipulated to achieve the next higher accept flow rate
previously selected, and step 8 is repeated. If failure occurs, the settings remain untouched until
the differential pressure between the feedstock and the accept lines triggers a system shut-down
mechanism. Fast sampling data is then gathered at equally spaced accept flow rates until the
whole operation comes to a full stop.

12. Samples of pulp for determination of final consistency are taken.

Figure 5.35 shows a schematic diagram of the screen instrumentation used to conduct all tests. The
interconnection DCS-PC was designed and installed and all programs for the data acquisition and

calculations were written in LabView® and Matlab®.

O OR

ev| || |

cv

o & [0
i ' _?® ————— <>

Distibited Faul Detection :
rol System H
System z ; ‘ > i
Ccv
(g \)

Figure 5.35: Instrumentation scheme for pressure screen tests
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The pulp used was CTMP unbleached softwood, composed by 10% aspen, 45% spruce, and 45%
fir. Its freeness was 100 ml CSF and all trials were run at consistencies ranging from 1.1% up to

2.8%. Coarseness of the pulp was not available.

The sampling rate for the fast data acquisition.was chosen to be 300 Hz and the slow sarripling
was selected at 1 Hz. In the first case, the frequency was singled out to comply with the time
constants of the expected phenomena, the bandwidth of the screen sensbrs, Shannon’s theorem and
the bandwidth of the anti-aliasing filters. The second frequency was picked to comply with the DCS
speed limits.

First, several rounds of trials with varying consistencies were conducted to gather general
information on the screen friction coefficients, and to determine the accept flow values at which
failure occurred. Later on, trials starting at accept flow ranges close to failure were studied in more
detail. For that purpose, the amount of increases in the flow rate mentioned in step 9 was made small

but all other provisions remained the same.

5.3.2 Some Results

As it has been mentioned before, there is a correspondence between the coefficients d; and ds
(which have been termed accept losses and reject losses coefficients) and the time constants in the
model. Under the light of the simulation results, it seemed logical to concentrate the attention on the

magnitude of those coefficients as potential indicators of faults. This assumption was proved correct.

The typical set of tests in the pilot plant to determine the fault detection capabilities of the
proposed model would produce results for the model losses coefficients as seen in Figure 5.36. These
graphs correspond to a single operating point during a given trial. When all the results corresponding
to a trial in which the screen is gradually brought to failure are put together, the graph corresponding
to the magnitude of the d coefficients (Figure 5.37) reflects the same pattern observed during the
simulations: under normalcy the magnitude of the d coefficients is small. When an increase in
the screen throughput is suspected of causing blinding, d; begins to grow faster and faster, until it
reaches a maximum. This point coincides with the external evidence gathered by the sensors in the

pilot plant that tells us that failure has indeed occurred. After the screen effectively fails, the value

75




Chapter 5: Testing and Experimental Results

d1 - Accept Friction Coefficlent m=-188.9 sd=22.7
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Figure 5.36: Screen friction coefficients

of d; diminishes to a range close to the one associated with normalcy. The variation in dj is only
noticeable when the maximum blinding is achieved. Since d3 is referred to the reject flow, one might
theorize that it is only at the point of maximum blinding that the impact on the reduced accept flow
starts to have an impact on the reject piping friction conditions.

As failure of the screen is deliberately caused by blindihg, the pattern observed in the results
agrees with the physical meaning of the proposed model, namely, that the coefficients reflect the rate

of change of the friction losses inside the screen.
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Figure 5.37: Screen friction coefficients

Let us look at the same results from a different angle. As shown in Fig. 5.40, when the
accept flow is between 4100 and 4500 L/Min the magnitude of the accept losses coefficient d;
remains below 100 non-dimensional units. When the flow moves beyond 4500 L/Min, the value of
the coefficient begins to grow rapidly, suggesting a more difficult passage of the pulp through the
screen plate openings, presumably due to the appearance of blinding. The value keeps growing until
the screen begins to show the effects of plugging, and reaches its maximum shortly thereafter this

condition is firmly present. Although at the present time there are no mechanisms to measure the
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Figure 5.39: Snapshot of screen plate orifices under blinding
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Accepts Physical Coefficient (Reject Flow = 1,000 L/min)
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Figure 5.40: Accept friction coefficient and A;:cept Flow

accumulation of fibres inside the screen plate, observations through the use of a high speed video
camera (See Figures 5.38 and 5.39) that shows some portions of the interior of the screen plate, seem
to confirm this theory. It is easy to see then that the magnitude of d;!3, which represents the rate of
change of the accept friction losses, grows larger when the rate of accumulation of fibres increases.
The faster the variation in the losses, the larger the magnitude of d; becomes. ‘When the screen is
totally plugged and, therefore, failure is declared, the rate of change of the losses falls back to a
value similar to the ones obtained for a “healthy” screen. This is what would be expected, following
the theoretical predictions of the proposed model. The natural conclusion is that by monitoring the
averaged coefficients imbedded in said model, failure of the screen due to blinding could be predicted

before it happens [15]. If the magnitude of the coefficients grows steadily and exceeds twice the

13 The value of dy is always negative, as plugging is underway.
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value obtained in the normal opemﬁng region, one could say fairly confidently that the screen is

under a faulty condition.

During the different trials some interesting observations were made:

1. For accurate results, fast uniform sampling and anti-aliasing filtering are required. Some
commercial DCS do their sampling using a mechanism called ’report by exception’. This implies
that the control software does not poll the incoming field signals at regular time intervals but
whenever its computing cycles allow for it; or when the value of the signal exceeds a pre-set
minimum percentage of full range. This practice makes impossible to use the strategy proposed
here. In such case, a dedicated PC can easily handle the sampling and filtering requirements.

2. High noise spikes in the process data can affect the convergence of the Kalman filter, effectively
derailing the estimation of the friction coefficients. Therefore, they must be filtered out. Figure
5.41 shows the effects caused by the appearance of this problem which is caused by the data
acquisition electronics. The spikes at samples 125, 340, 800, 1800, 2600, etc. in the pressure and
motor load signals make the accepts friction value change suddenly, making almost impossible
to assess its “true” value.

3. The choice of parameters in the noise matrix will affect the estimation results. This has an effe;ct
on the range of values that the d coefficients might take. As such, good care must be taken to
assure that the chosen noise model fits the process reasonably well. As this point is extremely

important, it is mandatory to examine it more closely.

5.3.3 The Choice of a Noise Model v

The singular-pencil-based FDI strategy proposed in this and previous chapters requires that the
matrix C, elements be fixed before identification takes place. Ideally, such selection must reflect
the a priori knowledge of the process noise. As the choice of C, has an influence on the results
achieved by the estimation, intuition suggests that the more closely it resembles the “true” noise in the
process, the better the identification results should be. The results in the pilot plant tests confirmed
this assumption. As seen in Figure 5.42, depending on the choice of elements of C., the estimation

of the accepts losses coefficient dy renders different values for the ten points included in the same
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Figure 5.41: Accept friction coefficient and Accept Flow

trial. Although it is clear that blinding of the screen is identified by all the noise models (C.1, C.2, -
and C.3), the one with the greatest difference between the pre-failure and the ’healthy’ points values
(C.2) is the better suited for FDI. The reasons are simple: it is less prone to false alarms and it allows

for the most time to take preventive actions. The meaning here is clear: proper matrix selection plays

an important role in the overall success of the FDI strategy.

Rather than elaborating on how to make an a priori selection of C, for identification (which will
be dealt with in chapter 6), the purpose of this section is to determine whether a good enough choice

of the matrix has been made, FDI-wise, when C, is given.

At this point in the model validation procedure, the best tool to assess the appropriateness of
the noise matrix C, seems to be an evaluation of the statistical lack of fit of the different choices
for it. To check the goodness of fit of the coefficients used in the model, one can look at the
“whiteness” of its residuals by using auto-correlation functions or some statistical criterion such as

Box-Pierce’s, Durbin-Watson’s or Akaike’s [4]. In any case, the residuals must be calculated first

using the estimation results.
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Accept Friction Coefficient d1 for different C* choices
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Figure 5.42: Accept friction coefficient and Accept Flow

Since our pencil matrix representation has the form

—xk-w 'ka
Yk E.,—z2I —-A, B, C. Yk .
P(z) = =0 (5.102)
ug, Ey —Ag By I ||ug
Ley Leg
it is easy to see that the residuals can be obtained as
ex = Aoyr — Eozr — Boug (5.103)

If the choice of the noise coefficients is appropriate, {ex} should be a stochastic sequence with a
Gaussian distribution, zero mean, and covariance A (A > 0). .

Getting back to the three choices for matrix C, that were shown above (C.1, C.2, and C.3),
when looking at the auto-correlations of the residuals during screen normalcy, i.e., at operating points
1, 2 or 3, the typical values look as seen in Figures 5.43, 5.45, and 5.44. It is obvious that choice
C.,2 it is the best suited, as speculated, as it satisfies the 20 condition which gives 95% statistical

confidence.
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Figure 5.43: Residuals during normalcy. Model C*1
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Figure 5.44: Residuals during normalcy. Model C*2
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Figure 5.45: Residuals during normalcy. Model C*3

The circumstances change drastically when, instead of looking at normalcy, one looks at the
points in which blinding is on the verge of making the screen plate fail. As seen in Figures 5.46,
5.47, and 5.48, now the auto-correlations tell us that no model passes the statistical confidence test.
There is a clear mismatch between the model and physical reality but that's precisely what any
process-coefficient-based FDI scheme would be looking for: indications of deviation in the behavior
of a system. As the screen model is an attempt to reflect the physical reality during normal operating
conditions, one would expect to see it become less and less suited when the screen deviates from
those conditions. But the problem remains: how do we know if the choice of C. is a good-enough
one? Obviously, to decide on that, one is confined to checking the normalcy regions, as the faulty
regions are by design expected to produce model mismatch. In laymen words: to know if the choice
of C, is good enough for FDI, one should test its statistical properties when the screen is known to

be operating normally. Good fit in that region would seem to guarantee the best possible FDI range.

When using simulations to test the generality of the conclusions made upon the pilot plant trials,

the results confirmed the initial assumptions. The choice of C, which guarantees statistical fit during

84




Chapter 5: Testing and Experimental Results:

A‘uto—Correlation AIC= 2.678e+04 2/sqroot n= 0.03778

Residuals

o 500 1000 1500 2000 2500
# of samples (fail81)

Figure 5.46: Residuals during failure. Model C*1
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Figure 5.47: Residuals during failure. Model C*2
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Figure 5.48: Residuals during failure. Model C*3

normalcy (Figure 5.49), becomes marginally fit under a mild fault (Figure 5.50), and is no longer
statistically adequate under a fast developing fault (Figure 5.51), but since that is the characteristic
FDI is interested in, to test for model adequacy one should confine the investigation to the normal

regions of operation.

5.4 Model Reduction

In the process of establishing the appropriateness of a model, an issue which must be addressed
is its complexity. If the original model can be simplified without much change on its input-output
properties, this reduced version is much preferable and the first one is deemed as too complex. One
procedure for achieving this simplification is reducing the model order [45].

In the case of the pressure screens, as the originating differential equations are first order, it is
not possible to change the order of the model without totally losing its dynamic characteristics, but
we can reduce the number of coefficients in the forming equations to achieve some simplifications.

One such reduction which seemed suitable concerned the D’ Arcy-Weisbach-based relationship.
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Figure 5.51: Simulation residuals. Fast fault

Instead of the original expression
kg =diks +dyvy (5.104)
which included two coefficients for every dynamic equation used in modelling, a simpler one
kg=ka+dpvi (5.105)

with only one coefficient was proposed. After linearization, that formulation leads to a continuous

state-space representation of the form

z=Az+ Bu
(5.106)
y=Cz+ Du
where
1 0
A=
01
de —dR1 de 0 0 0 0O
B = (5.107)
0 dpa 0O 00 0 OO
C = |hg hg |

D=|h1 —h3 h2 h4 —hs —h7 h5 hgl
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and where z, y, and u are the state, output and input vectors, and the dg’s, and h’s are defined as
for the original model. Unfortunately, when using such simplified model one problem immediately
arises: although the reduced model is controllable (provided that dpe # 0), it is not observable, as
the rank of the matrix

cT

CTA
Qb = ) (5.108)

CcTAm-1
is less than the order of matrix A. In order to achieve uniqueness in identification, a minimal
realization of the system has to be obtained. One might decide to obtain such realization at this
stage, using the proper state space transformations, or when rewriting the state-space model into a
singular pencil model. The latter approach will be taken here for illustration purposes.
As explained in Chapter 4, when starting from a state-space representation
= Az + Bu
(5.109)
y=Cz+Du

the departing implicit equation is obtained by inspection as

I A [0 B[y
0 C —-I D] |ug

or, making
I
= F -
0.
A
=F (5.111)
C|
0 B]
=G
-1 D]
as
Tk
T
P =[E-AF Gl{y| =0 (5.112)
W
U
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Since this representation is non minimal, one has to use elementary matrix operations equivalent to
row and column compression to obtain a minimal one'. Intuitively, this is equivalent to removing all
dependent variables in the state space vector z which do not affect the external behavior of the system.
The elementary operations are row operations on [E, F,G] or simultaneous column operations on £

and G. Those required to achieve a minimal controllable and observable system can be summarized

in the following algorithm [5]:

1. Make t = number of columns of E and F.
2. Make q = number of rows of [E, F,G].
3. Whilet>0and q >0

Put rows 1,...,q in columns 1,...,t of F into upper compressed form of resulting rank k.

alfk=gq

stop.

b.Else
put rows k+1,...,q in columns 1,...,t of E into right compressed form of resulting rank r
make q = k
make t =t -1

if r = O stop.
4. End.

Once the minimal representation is achieved and after applying transformation T3, the new model

has the by-now-well-known form

[Tk ] [Tk ]
yk E* - ZI —A‘ B-t C# yk
P(z) = =0 (5.113)
Uk Ey —Ag By I Uy,
Lek J Lek g

14 Upper row compression corresponds to pre-multiplication of matrix A by non-singular matrix W such that WA = [':)'] where
A, has full row rank. Lower row compression and left or right column compression are defined by analogy.
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with the following values

E,=|0|
Ey=1] (5.114)
Ac=0]

Ao =|1]
B, =|j1(1 = k1) + hsja  (h3 — 1)j1+ hs(js — j2) J1(1 — h2) + hsj2
- (5.115)
—hgjy —hsji heir hrii —hsji]

Bo=|hy —hs hy hy hs —hs —hr hsg]

and C, to be chosen from previous knowledge of the process noise. From here, the manipulations to
perform the system identification described in Chapter 4 are straightforward, and one can proceed to

estimate the minimal state and the physical coefficients in the screen model, namely, dgy and dp;.

dr1 - Accept Friction Coefficient
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Figure 5.52: Reduced Model. Friction Coefficients in Simulation Trials

Unfortunately, when using the new reduced model in simulations it did not show the same

usefulness as the original one, as seen in Figure 5.52. The original model seemed capable of displaying
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the characteristics of the dynamics affecting the screen: faster accept flow dynamics would produce

a higher value of the accept friction coefficient. This feature can easily be associated with the screen

faults, particularly with blinding, which is the most important of them from an industrial perspective.

As the graph purports, the reduced model has been stripped of that ability.

When the reduced model was applied to the pilot plant test trials, its usefulness was even worse,

as seen in Figure 5.53. In this case, the variations in the magnitude of the accept friction coefficient

could not be clearly related to the presence of faults.
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Figure 5.53: Reduced Model. Friction Coefficients in Pilot Plant Trials

An explanation for the inability of the new model to give a clear picture of the situation inside

the screen can be obtained when looking at the original equation representing the screen losses

ka = ka+dr1v}
That relation gives a weighting function of the form
k A(t) = k()et
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' and it seems clear that for the reduced model, the dr vcoefﬁcien.ts have lost their relationship with
the energy losses k and are only associated to the flow variations inside the screen. As such, any
change in those flows will affect their dimension, regardless of what might be the cause for such
change. Given the fact that the model proposed originally for the pressure screens is of first order,
the evidence seems to indicate that any simplified version of it will be stripped of the desired FDI
properties present in the original.

In all areas of model-based control, finding a model which describes the “true” system under
study is an ideal. Unfortunately, it is philosophically impossible to discern whether a particular model
is the “true” one or not, and one must settle for a good enough model for the purposes at hand. In

this case, judging by the results, the original model proposed for the screens should be preferred.

5.5 Summary

In this chapter a 3-step methodology for testing the proposed model-based FDI approach on
pressure screens has been presented and the main results obtained with this approach have been shown.
After disclosing the repeatability results of healthy and faulty screens simulations, experimental results
on the screen pilot plant have been presented. Those findings imply that the d coefficients included in
the proposed screen model are good indicators of the presence of faults. In particular, when dealing
with blinding, the coefficient d; has proven to be useful. The problem of choosing the noise matrix
C, included in the model has been explained. Finally, a reduced screen model has been proposed
and tested and the results have been displayed. The shortcomings found when using this reduced

model for FDI underline the benefits of utilizing the origina’l (non-reduced) model.
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Chapter 6

Additional Topics on Estimation

6.1 Noise Modelling

6.1.1 The Problem

In past sections it has been explained how the Singular Pencil approach can be used for FDI
purposes on pulp screens. Some results have also been presented but, all along, when applying the
system identification scheme, it has always been assurned that the coefficients present in the process
noise model are known from the beginning. In practice, such knowledge seldom exists. Therefore,
the natural question is: how can one obtain the coefficients of the noise? Let us take a look at that

problem which, needless to say, is not a simple one.

Trial and Error

When facing the need to obtain a priori values of C, for fault detection purposes, the first
option for the user is the simplest: trial and error. The procedure would go along the following
lines: take any starting value for c111, c112, and A in the matrix C,, provided that they comply with
the realization/causality conditions!3, and start the estimation during operating conditions which are
known to be very safe, or well below in the screen “healthy” region. Look at the residuals and, if not
“white” enough, try with different values. When some coefficients make the residuals look “white”,
stop the search and move the screen onto the desired (and more “risky”) regions of operation. The
results achieved in Chapter 5 show that this approach is feasible and that the chosen model should

be FDI adequate. Unfortunately, feasibility does not equal practicality.

Trial and error is simple and does not involve many calculations but, from an applications point
of view, is not recommendable. Although with enough iterations the operator can develop a certain
“feel” for what coefficients might constitute a good choice, the process can be lengthy and time

consuming, and there’s no guarantee that a suitable-enough model for C, will be found.

15 A system described by a transfer function is realizable if it satisfies the causality principle, i.e., the output variables do not depend
on future values of the inputs [32].
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Non Parametric Estimation

A second option would be to obtain the a priori knowledge on the process noise by non-
parametric methods such as the application of auto, cross-correlations and spectral density functions,
and to use that information to obtain the coefficients in an ARMA transfer function which would
produce colored noise of similar characteristics. That transfer function could then be transformed
back into the required Singular Pencil representation using the reverse similarity transformations T
described in Chapter 4.

Before further elaborating into the mathematical steps required for the complete procedure,
one warning sign grabs the attention: as shown in Appendix B, all the T transformations (and
their inverses) involved in the Singular Pencil approach require knowledge of the parameters in the

augmented state vector sx. Which is, precisely, the vector we want to estimate. In laymen words:

we need to know the results of the estimation in order to select the noise coefficients that will help us
estimate! Although some kind of recursive procedure can be thought of, by means of which the user
could start with an arbitrary value and through several iterations try fo obtain convergence towards
“optimal” values, the approach seems rather elaborate and without guarantees of being succcssful.
This fact suggests that time would be better invested looking first at some other simpler approaches

for determining the “good” noise coefficients.

Dual Estimation

Given the difficulties found in trying to determine a priori the coefficients in the noise matrix
C, by using independent means, one might think of estimating simultaneously those coefficients and

the system parameters. For that purpose, starting with the estimation equations shown in Chapter 4

Try1 = E.xi + G.(wk)r + C.ex

. (6.118)
0 = Egzi + Go(wg)r — Jwg + ex
letting
C’,,(ek) = diag(e{e{ ... ,ef') (6.119)
be a n x (n x p) block diagonal matrix, then
C.er = C’.(ek)nk (6.120)
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with 7 a column vector containing the parameters c;jx in C,. Using equation 6.120, and since the

system is assumed time-invariant, the departing expression can be transformed into

ske1 = Frsp
. (6.121)
Yr = Hysk + e
with T
Sk = [Th:Th M) .
Hy, = |EyGo(wr) 0] -
[E, é*(wk) C'~,.(ek) ’ 6.122)
Fr,=10 I ‘ 0
L 0 0 I

Now, the estimation of the augmented state si includes the state system parameters and the noise
parameters. Unfortunately, as e is not directly measurable, it has to be estimated from equation

6.121, namely
€k = yr — Hisk = yx — Eogx — Go(w)rx 6.123) -

where £ and 7} are the estimates of x5 and ry at time k. Now it should be evident that the estimation
problem has become non-linear, because when using € the matrix F’k which is a function of eg,
has become a function of si [8].

One of the reasons for selecting a Singular Pencil approach in this research was the desire to
avoid the problems encountered when trying to apply the Extended Kalman Filter for identification
purposes in an industrial environment. By getting back to a non-linear problem for which the EKF
seems the most suitable solution, we have defeated the benejﬁts of the Singular Pencil and returned
to the departing point. Perhaps a totally different strategy for the problem of the a priori knowledge

of the coefficients in the noise matrix C, is in order.

6.1.2 An Alternative

A detailed look at the results of Chapter 5 regarding the appropriateness of the coefficients in the
noise matrix C, seems to bring an alternative to the problem of their a priori selection. In Figure 5.42

it is evident that all the choices for C, which were evaluated share a common characteristic: they
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make the estimated coefficient d; reach its maximum dimension when the dynamics are suspected
to be fastest, i.e., very close to or at the point of screen failure. Instead of placing the attention on
how to obtain the best possible estimate for the noise coefficients, perhaps an approach suitable for
any “good enough” estimate would be preferable. Rather than dealing with intricate algorithms that
will give us the “smoothest” trajectory of dy values for the different operating points, it would be
better to implement a simple indicator that can be applied to the calculated values of d;, even -if the

choice of C, for obtaining them was not the best.

When looking at the shape of the variations in the dimension of d; for the different screen
operating points, the idea of using some sort of cumulative function of this variable immediately
arises. It is a well known fact in the FDI literature that cumulative sum charts .can “damp out” noise
and “amplify” true changes in the process [28]. They also can add some sénse of “threshold” for
the results obtained. Intuitively, several alternatives appear to have enough potential for detecting

changes in the nature of dj:

1. Successive averages.
2. Successive differences.

3. Range of two successive pairs of values from the expected value.

In the first case, the cumulative sum would be given by the expression
1, |
=Y dy . (6.124)
n =1
where ¢ represents the operating point at which the estimgtion of d; has been done, and n the
total number of operating points evaluated. In the second case, the function would be given by the
expression

f@) =dii—dy—1y; i=1,...,n (6.125)

with ¢ and n being the same as for the first case. In the last case, the function is given by

with ¢ and n as explained above.
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Successive Averages of d1 Coefficient for Different C* Matrices
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Figure 6.54: Coefficient d1 Cumulative Averages for Different Noise Matrix Choices

The usefulness of all three alternatives was tested against the d; estimation results obtained in
the pilot plant trials. If we apply the first criterion, the results obtained are as shown in Figure 6.54.
Regardless of the noise model chosen, an increasingly growing magnitude of d; seems to be a good
indication of blinding. Two consecutive increases could be used as a practical limit on the achievable
screen throughput in the mill. From the curves it is evident that the better suited the noise model,
the larger the throughput allowed. In other words, when using averages, the better suited the noise
model used in the estimation is, the bolder our decision makijng process (regarding screen operating
points) can be. The best model (Cy2) would allow for a throughput around 4,700 Liters per Minute,
whereas the poorest one (C.1) would call for stopping further increases when reaching the 4,500

L/Min mark. All models will allow for avoidance of plugging, i.e., screen failure.

When we apply the second criterion, the results are displayed in Figures 6.55, 6.56, and 6.57. In
this case, regardless of the noise model chosen, a good indication of imminent failure could be the
starting dimensional value of d;. Whenever a difference reaches this level, blinding can be considered

as present and the throughput should be adjusted accordingly. Once again, the best suitable noise

98




Chapter 6: Additional Topics on Estimation

Successive Differences in d1 Coefficient. Model C*1
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Figure 6.55: Successive Differences in d1 Coefficient. Model C*1

Successive Differences in d1 Coefficient. Model C*2
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Successive Differences in d1 Coefficient. Model C*3
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Figure 6.57: Successive Differences in d1 Coefficient. Model C*3

model (C,2) seem to allow for bigger throughput margins in the decision making process than the

poorest one (Ci1).

The results obtained when applying the last criterion can be seen in Figure 6.58. In this case, the
guidelines to be observed are not as clear cut as in the previous cases. Nonetheless, a combination
of rules could be applied to spell the imminence of failure: number of times the starting zero point
is exceeded and/or number of consecutively increasing values of d;. Again, the best adjusted noise

coefficients render the best results.

This discussion on cumulative functions could be extended. There are, of course, many other
cumulative sum charts suitable for application. It is not the intention to cover them all here. However,
what must be underlined is the rationale for using this type of “statistical” criterion to infer information

on screen fault detection:

a. All methods are simple to implement. They are very well suited for the typical mill environment.
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Range of d1 Coefficient Successive Pairs for Different C* Matrices
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Figure 6.58: Cumulative Range of Coefficient d1 for Different Noise Matrix Choices

b. Using proper engineering judgcment, it is possible to overcome the complicated problem of
estimating the noise matrix elements, without affecting the ability of the singular pencil approach
to give us valuable information on the screen faults.

c. The decision making process becomes independent of the individual values that the d coefficients
may display, adding some sense of “threshold” that clearly displays whether the screen is

operating normally or is under a fault.

L 4

In conclusion, it seems that a suitable FDI strategy for industrial pressure screens should
incorporate the use .of some “good-enough” approximated model for the noise matrix C, (which may
be found by means of a limited amount of trial and error testing) and the application of cumulative
functions criteria. Successive averages and successive differences are two of those functions which

seem particularly promising for such task.
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6.2 Other Identification Techniques

6.2.1 Bootstrapping

During the course of this research the need for combined estimation of the parameters and the
states included in our dynamic screen model arose. As mentioned in previous chapters, an strategy
based on the Extended Kalman Filter was not considered advisable for FDI purposes, due to the well
known fact that the estimates obtained with such method often diverge. Instead, we decided to use
the SPM approach which has been described so far. However, there were some other methods at hand
when this decision was made. One of the most promiéing at the time seemed to be “Bootstrapping”.
The main problem with “Bootstrapping” was that there has been an on going discussion in the
literature on whether it gives biased estimates or not, and some articles have appeared which proved
that, depending on the means used to estimate the parameters and the states, it indeed produces biased
estimates [2], [62]. Under those circumstances, the Singular Pencil Matrix alternative looked as a

more advisable choice.

The main idea behind tﬁe “Bootstrapping” approach. is to split the nonlinear problem of the
product of unknowns: model parameters and states, into two linear problems solved recursively. The
procedure is carried out using the certainty equivalence principle. First, the estimation of the states
takes place, assuming the parameters as known. Second, the parameters are‘ estimated using the
values obtained during the estimation of the states. Third, the states are estimated again, using the
new estimates of the paramétcrs, and so on and so forth, uatil both parameters and states achieve

converging estimated values [3].

If new developments in the literature find a way for the problem of bias to be worked out, given
the fact that this technique does not require any transformation of the estimates, its use would imply
that some computational speed advantages could be achieved. Another advantage is that little (or
none at all) a priori knowledge of the system would be required. Perhaps this is a good topic to
focus future research on, and a vis a vis comparison with the dual estimation of parameters and noise

using SPM plus the Extended Kalman Filter would be of interest.
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6.2.2 New Developments

From the time the choice of identification technique was done for FDI on pressure screens,
some work has been brought to light on how to deal with the simultaneous estimation of parameters
and states. Besides documents dealing with applications of the Extended Kalman Filter, some other
approaches have shown up in the literature on the subject. Some of these publications seem promising
and well worth investigating rigorously in forthcoming research, although, due to time constraints,
only a cursory overview is going to be offered here.

Kamas and Sanders have proposed the use of an adaptive oﬁsewer for the estimation of both
quantities. However, the convergence properties of their method are subject to strict conditions on
the system [38). It remains to be seen if those conditions can be applied to pressure screens. Du and
Brdys introduced an Extended Luenberger Observer for estimation on Induction Motor Drives. The
approach is deterministic and uses pre-filtering of the noise [13]. Given the noisy environment found
when operating the screens, it is not simple to speculate on the benefits of such approach. Instead of
concerning themselves with the dual estimation problem itself, Liu et al. have decided to focus the
attention on the bias of the pérameters and a way to detect its presence [44]. This is an intriguing
approach which could be further extended for FDL. Oshman has presented the use of a Maximum
Likelihood algorithm based on a square root filter and its derivatives for the estimation of the states
and their parameter-based sensitivity functions [52]. By his own admission the method involves very
expensive computations which may require a parallel processor. This obviously imposes a burden
on its industrial application. Sproesser and Gissinger have used MIMO transfer functions and an
improved version of the Recursive Least Squares which inclddes a filter for the calculation of states
[63], to perform FDI on sensors. The usefulness of their approach is limited, though, as the states
are simply the derivatives of the measurable signals in the model. As it has been said, in the case
of the pulp screens, the states are non-measurable. Finally, Feyo de Azevedo et al. have dealt with

simulation of deterministic non-linear MIMO systems which are of limited applicability [10].

6.3 Summary

In this chapter some topics related to the estimation of the states and parameters in the screen
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model have been presented. First, the difficulties involved in using analytic techniques for modelling
the noise matrix present in the SPM model have been explored. Then, simpler alternatives based
on cumulative functions have been explained and its usefulness has been shown. Finally, a cursory
overview on several identification methods and its importance as future topics of research has been

outlined.
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Chapter 7

Summary and Future Research

7.1 Summary

The preceding pages have presented the findings on the application of Fault Detection and
Isolation (FDI) techniques to pulp pressure screens. The motivation of this work, all along, has
been to find a technique suitable for implementation in an industrial mill with the potential to offer
the operator advanced warnings of deviations in the.desired performance of the screens. For that

purpose, the following methodology was used:

O First, the operation of pulp screens in industry was studied. The current techniques for detection
of faults were presented and analyzed. It was established that no real FDI is performed in industry
and that screen faults are not dealt with until they cause the device to become inoperative.

O Second, the FDI methods present in the literature were investigated. Their features were evaluated
and their potential for application to pressure screens was screened.

O Third, an experimental setting to test the different FDI approaches was chosen. It involved ;he
use of a fully instrumented pilot plant, capable of simulating industrial operation and flexible
enough to allow for the creation of faulty conditions at will. The simpler non-model based
approaches which showed promise were implemented and evaluated. The results gave clear
indications that such techniques were not capable of giving advanced warning of faults.

0O Fourth, a model-based approach was decided upon. It demanded the creation of a dynamic
model of the typical pressure screen and the application of identification techniques to estimate
the parameters and variables in the model. As the estimation turned out to be non-linear, a
technique called the Singular Pencil Matrix (SPM) was implemented to deal with this problem.
Its benefits and shortcomings were explored.

O Fifth, the model-based strategy was put to test. Computer simulations were conducted and the
results analyzed. Pilot plant tests followed and their results confirmed the previous simulations.

It was established that the physical parameters included in the screen model show strong potential
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for their use as an FDI technique in the mill. A sirﬁpﬁﬁed version of the model was then tested
to explore further gains of the model-based approach in computing expense. In this case, the
experimental outcome did not match the results of the full model.

Finally, the role of noise modelling in the application of the Singular Pencil Matrix approach was
explored and some conclusions were established. A cursory overview of some recent alternatives
appearing in the literature for the non-linear estimation was attempted, and techniques with

potential for further research were identified.

Every one of the steps outlined above bred findings and conclusions which have been explained in

all the previous chapters of this thesis. For the benefit of the reader the most important ones will

be repeated here.

Fault Detection and Isolation (FDI) involves the early diagnosis of deviations, also called faults,
in the expected behavior of a system. o

A typical pressure screen can suffer several possible faults. The most dainaging and, therefore, the
most worthy candidate for early detection is blinding. Blinding is .caused by the accumulation
of fibres in the screen plate orifices. ) )
Two non-model based approaches for FDI were attempted during this research. They involved
monitoring the screen motor load and calculating the slope of the curve given by the squared
accept flow versus the differential pressure. Although these methods are simpler to use, the
results obtained when using them were not satisfactory. | o

It was decided that an approach based on a model was indicated and, for that, a model has been
proposed. The pressure screen model designed for FDI is based on mechanistic principles and
an expression analogous to the D’ Arcy-Weisbach principle to account for screen dynamics.

By monitoring the d coefficients in the model, which represent the frictional changes in the
screen, the experimental results showed that faults can be detected. In particular, blindihg can
be associated with changes in the accept friction coefficient d;.

When using the SPM technique, modelling the screen noise is an important issue and must

be dealt with judiciously. Although the analytic procedures for this task are not simple, a
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combination of selection of C, through limited trial and error and use of cumulative functions

can be used advantageously.

The major contribution of this work is, to the best of my knowledge, to be the very first work
which has ever been written on the topic of Fault Detection and Isolation for pressure screens, and
one of a few (in the profuse literature published on the subject) dealing with industrial applications

| of FDI. Having said that, some other contributions are:

e The introduction of faults in pulp pressure screen as a separate subject of study.

«  The derivation of the first dynamic model in the literature to characterize pressure screen behavior.

e The devélopment and experimental implementation of the first model-based approach for fault
detection on pressure screens.

o The use of the Singular Pencil Matrix technique for dealing with non-linear estimation problems
in a true practical application. '

e  The enhancement of knowledge on pressure screen operation and faulis, in general, and the gain

of valuable physical insight for better screen control.

7.2 Future Work

It is very difficult to address all the issues that arise while doing research. Besides the obvious
need for focus, which forces one to put aside some unanswered questions that may appear to be of
marginal importance for the achievement of the main goal or goals, time limitations are always a
component to be reckoned with. This thesis is no exception énd, therefore there are some topics

which hopefully will be dealt with in future research, namely:

+  Pipe plugging. Due to the difficulties in duplicating f)ulp-induced plugging in piping, most results
presented in this thesis concentrated on the most important cause of screen failure: blinding.
Nevertheless, it would be of interest to observe the behavior of the coefficients in the model
under the presence of reject pipe plugging. Industrial simulation of such plugging could be

achieved by means of altering the mechanical configuration of the piping used in the pilot plant.
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Valve dynamics. The screen model proposed in the research includes the device dynamics only.

As such, it is intended to sit atop a screen control strategy, to be determined by the user. For
such strategy to be successful, the control valve dynamics used in conjunction with the screen
must be incorporated. The problem of in;orporating the accept and reject valves dynamics into
the screen model has not been addressed here.

Dual estimation of noise and physical coefficients. Given the new developments in the literature

regarding the Extended Kalman Filter, it would be of interest to study the performance of
simultaneous dual estimation of the noise and physical coefficients present in the screen model
which has been developed here. A detailed evaluation of its convergence and computing expense

have appeal for its examination.

Use of new estimation techniques. The application of other techniques different from the EKF to
the non-linear estimation problem is also of interest. A comparison vis a vis the dual estimation

using the EKF seems another interesting avenue to be explored.
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Appendix A Screen Modeling

A.1 Mass Balances

The fundamental relationship in a mass balance is expressed as
Rate of mass accumulation = R. of mass in — R. of mass out (A.127)

In our case, three equations can be written. The first two are for the water in the slurry and the

fibers, namely
d my.0Q . . . .
( dt2 ) = MF”2° + Mdilution - MAH,O - MR",o

d(msor)
dt

) ) ] (A.128)
= Mrg) = Magy - Mrg,

and the third one, representing the total mass, will come from adding these two. The total mass in

the screen will be the sum of the water and the fibers inside it
Mrotal = MA,0 + Mggligs (A.129)

Using the definitions of consistency (C)

Moo
C = Solids (A.130)
Mgolids + Mwater
and density .
M
=37 A.
p v (A.131)
we arrive to
Mgolids = PCVTotal (A.132)
and
Mp,0 = p(1 = C)Vrotal (A.133)
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Assuming that neither the consistencies nor the densities change too fast with time, the balances

will finally become

d(Vi,0) 1

2 = - Fai— oy e
pr oo FF = a2Fa — asFrl + Fjlution
d(Vaot) _ 1

a4Fr — asFa — agFR
dt Psol [ ] (A.134)

d(V- '
4MTotal) _ gy _ Fy - P + Fiion = 0

dt
with all consistencies approximately equal and
a1 = pr(1 = CF)
az = pa(l - Ca)

a3 = pr(1 — CR)

(A.135)
ag = prCF
as = paCa
a¢ = prCR
A.2 Pulp Screen Energy Balances
The fundamental relationship in an energy balance can be expressed as
Rate of energy accumulation = R. energy in — R. energy out
: (A.136)
+ Heat+4 Work
and ’
Energy = Kinetic + Potential 4- Internal (A.137)

As ours is an open system where no phase changes or reactions occur, and since our process is

adiabatic, i.e. @ = 0, the starting point for an energy balance is the expression

dlU + KE + PE] _ 5

dt Ej-

input streams

Y Ej+W

output streams

(A.138)
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which can be written as

d[U + KE + PE] | [ o2
dt = ) M ["L

+Zhi+ z] ~
. 29 ¢
mput streams

| (3 9
Y. Mi|gE e hot Uo| +W
output streams ge  Ge

(A.139)

The work done on the system can be divided into hydraulic (Wy, = PV and shaft work (W) and
the equation becomes '

d[Ene [ v? B
t . 29 ge p
input streams.

. 2 . P, ’
> Mo[;;’i+—g—ho+yg+—3]+ws
output streams e Ge P

(A.140)

Our sources of incoming energy are the feed flow and the dilution flow. Our sources of outgoing
energy are the accepts and rejects flows. The changes in the internal energy of this system can be
accounted for in terms of the temperature of the system materials and, since the process is adiabatic,
all thermal variations are due to friction. Establishing our rejects as our reference in height, i.e. -

hr = 0, and using the fact that

(A.m)

@
1l
>

the above expression becomes

d[Energy} F3 g
& - . E Pig :4".’ + PiFi—chi + FP;| ~
gC 1 g
input streams

F3 (A.142)
Z [Po——o—z + poFotho + FOPO] + Frictional losses + Wi
2gCAo gc
output streams .

which turns out to be
d[Energy]
dt
—CsVX - CGVA - VAPA - e-;V}% - VRPR +W,+ksa+kp

(5] VF3' + e VF + VFPF +e3 V]%il + e4 VDi] + VDiIPDil (A.143)
where k refers to the frictional losses inside the screen.
The left hand of the above equation is

d(KE) d(PE)
T at

d d/ .
=[U +KE+PE] = EZ(MU) + (A.144)
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and the influence of the last two derivatives can be considered negligible, as the changes inside the

screen are minimal. We can also safely assume that:

1. Temperature and composition of the system content do not vary with position within the system.
2. No phase changes or chemical reactions occur within the system.

3. Heat capacities do not vary with time.
4

No heat is added to the system by direct means.

therefore,
d[Energy] _ dU _ d(mv) a(pv0) (AL4S
dt ~ dt  dt —  dt -143)
since neither the density nor the Volume of the screen change, the above equation becomes
dU dU dT
=S =T (A.146)
leading to the expression
ar :
—d-{ = f]Fj';;' + szF + f3FFPF + f4FI3)il 4 f5FDi1 + f3FDilPDil (A.147)
—foF3 — f1Fa — f3FaPs — fsF§ — fsFRPR + fsWs + faka + fakr

which, since % varies very slowly when compared with the flows and pressures, becomes

0= fiF% + f2Fr + fsFrPr + faFyy + fsFpj1 + fsFpitPpit

(A.148)
—foF3 — f1Fa — fsFaPa — fsFjy — fsFRPr + fsW, + faka + fskr
with 1
fr= 2429.VC,
fr = g(hr — hR)
chCv
1 (A.149)
s=sve, -
1
fo= s —ve.
. DilchVCv
5, = i1 - hr)
9.pV Cy
1
fo=om 7
ZA’{*-‘”V:” (A.150)
f, = 9ha = hr)
9.V Cy
1
fo = 24%9.VC,y
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A.3 Mechanical Losses

The pipe-friction equation for flows of incompressible fluids in pipes is as follows

L v?

kp=f——
L='Dag

(A.151)
with

L : length

D : diameter

v : velocity
(A.152)
g : gravity .

f : friction factor

kr : head loss
it is obvious that the above is a static relationship. When dealing with a piece of pipe able to change
its head losses dynamically, that equation is not good.
If we lump all terms referred to the piping into the term f, and differentiate the D’Arcy-

Weisbach’s equation, namely,

de d( fpvz)
Pl — T (A.153)
we obtain the following expression
dk _ .dfp d(v?)
prie v. oy + fp——dt (A.154)

which, when using the fact that k = fpv2 gives us the resilt

dk odfp K d(vz)
E?_v -E-'-ﬁ_a—t— (A.155)

This shows that a dynamic expression for the losses inside the screen must include a term dependent
on the square of the fluid velocity and another term dependent on the losses themselves. Following

this line of reasoning, a dynamic relationship to account for the behavior of such device is proposed as

dk
-d_tL = 1k + cpv? (A.156)
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The constant

o (A.157)

should be fairly sensitive to variations in the speed and, by implication, to flow changes. As the
flow becomes smaller one should expect to see it grow in magnitude, fairly rapidly. The constant c;
would reflect the rate of change of the parameter f, which accounts for the internal characteristics

of the piping. Under steady-state conditions this relationship reduces to

—c1kp, = cov? (A.158)
or
kp = —2y2 (A.159)
a
Making
@ _ L (A.160)
C1 - D2g )

our equation becomes the pipe friction equation.

What pipe fitting would change its head losses dynamically? Observations and empirical relations
say that a pressure screen could be thought of as such a device. Since the screen has. two diverting
outgoing flows, it could be seen as some sort of “T” fitting with different losses: one for the.rejects

and another for the accepts line. Therefore, two equations would describe the losses in the screen

dk
Titﬁ = crkg + 20}

(A.161)
—dt—' = C3kR + C4Vp

Blinding would be responsible for the dynamical behavior 6f the head losses.

As velocity is difficult to measure and seldom measured, we can substitute it by its equivalent

expression
F
v=— (A.162)
and our equations become
dh
_d_tA; = c1ha + csF4
o = hp + csF5
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with .
F : volumetric flow

A: Area of pipe

Lo (A.164)
5= —3
A%
5 = —a
A%
A4 Linearization
Using a Taylor series expansion and truncating with first order terms, we’ll get
_ .. Of . Of -
f(z,y) = f(z,9) + 3 23y~ 9+ 5-l29(z — 2) (A.165)
for our energy equation, the derivatives are
0 _ _
% =3f1FE + fo+ faPr
7] _ _
B_FI-_ = 3fsFdy + f5 + faPpj)
anﬂ (A.166)
AR —3fsF% — fr — faPa
of _ _
oFm| = —3fsF% — f3Pr
of _
3P|~ f3FF
) ~
—aplf). = f3Fpj)
il | (A.167)
_‘l = —fLF
aof _
= —fFp .
3Pn f3FR
of
av‘/‘9 - f3
of _
m = fs (A.168)
of .
okn| f3
. and using deviation variables, i.e., f' = f — f the equation becomes
0= QIFII? + 92P}' + 93Fl’)il + g‘*Pll)il (A169)

—g5F'y — g6Py — g1Fp — 98P + faW, + faks + f3kp
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with _ _
o= 3pF2 + 2A%pg(hr — hR) + 24%g.Pr
2A§:|chVCv
_ 3Fhy +24%,9(hpi1 — hr) + 24559:Fpil
243,,,P9.V Cu |
4o = 3PFA+24%p0(ha — hp) + 2430:P4
2A31chVCv
_ 3pFL +2A%g:Pr
9= T A%pg.V Cy

92
(A.170)

gs = VCo
Fpil
Fy T
= A171
g7 pVCy . ( )
9% =2V,
fa= —
37 VG,

and the P'’s and F'’s are deviation variables from the set points P' and F".

Using the same approach for the remaining frictional losses equations, we’ll get

dk' ' ' ! ’
-TtA; = dlkA + szF + szDll - d2FR
Ky
-E = d3kR + d4Fp

(A.172)

with
di=c
2 Fy
do =
2 A% -
d3 = c3
2c4Fp
dy = :
4 A%

(A.173)

A.5 Degrees of Freedom

From our chosen model we have three equations that represent the energy balance and the

frictional losses. We also have six parameters: p, Cy, d1, da, d3, d4; and eleven variables:

flows, pressures, shaft work and frictional losses. From the formula for the degrees of freedom

&
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Np = Ny — Ng it is found that we must identify eight variables as inputs and the remaining as

outputs or states.

A.6 State Space Representation

As two of the three potential outputs in our model can not be measured directly (k4 and
kg), an input-output representation seems flawed for identification purposes. Instead, a state space

representation approach in which the states aren’t measurable is proposed. Making

.’121=k:4
, (A.174)
z9 = kg
our system model becomes
z = Az + Bu
(A.175)
y=Cz+ Du
with .
d, 0
0 ds
5 [dz —dy dy 0 0 0 O o] (A-176)
“lo d 0 00000
C =[hs hs]
(A177)
D=[hy —hs hy hy —he —hr bhs hs]
and
T =[h4 hg]
W' =[Fp Fp Fpy Pr P4 13,’2 Ppy W] (A.178)

y="F4
This system is controllable, provided d4 # 0 (which seems to be the case), and observable, provided

dy # dj (which also seems the case), which makes it suitable for use of Singular Pencil modelling

and identification!S.

16 1et us take a closer look at these two conditions:

1.  d4 = 0 can mean two things, zero reject flow (a condition which would not be present in normal screen operation) or ¢4 = 0. But
¢4 = 0 would make the rate of losses independent from the flow, which goes against the hydrodynamic theory.

2. Under the light of our empirical observations regarding the friction coefficients experimental values, the condition d; = dj is not
likely. This is backed by the knowledge on friction factors found in the literature. In the pipe-friction equation, these coefficients
depend on the internal geography of the piping. As such, the frictional coefficients on uneven branches of a “T" (due to size or
internal contour) would hardly be equal.
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Appendix B  Singular Pencil Representation

B.1 Discrete Model

Given a continuous time state-space model

& = Az + Bu

y=Cz+ Du

the equivalent discrete time representation will be of the form

- z((k+1)T)

y(kT) = Cz(kT) + Du(kT)

with

= G(T)2(KT) + H(T)u(kT)

G(T) = AT

T
H(T) = ( / e’”‘d/\) B

0

and A = T — t. Our discrete matrices then become

H(T)= [

= [hy
with
hy=2 =
g3
93
hy =2
g3
he=2
gs

' i1 0
¢ry=|
0 Jo

j3 —j3 j3 0 0 0 O 0]

0 js 0 00O0O00O

= [hg hs]
—hs hy hs —hg —hy hs hg]

j=eaT

jo=eT

ja= 2T 1)

o= ST - 1)
3p(F2/A%L) + 2pg(hr — hRr) + 29.PF
3p(F2/A%) + 2pg(ha — hr) + 29:Pa

)
)
_ 3(Fbu/Aby) + 29(hpa — hr) + 29:Ppat
3p(F§/A ) +2pg(ha — hr) + 29.Pa
3p(F%/A%) + 29.Pr
3p(F3/A%) + 2pg(ha — hr) + 29cPa
2chF
3p(F2/A%) + 2pg(ha — hr) + 29:Pa
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(B.180)

(B.181)

(B.182)

(B.183)

(B.184)

(B.185)



he = 96 29.Fpit
5= 72 [ A2 5
95 3p(F5/A%) +2pg(ha — hr) + 29cPa

he = g7 = - chFA _
95 3p(F%/A%) +2p9(ha — hr) + 29:P4 (B.186)
B = 98 _ _ 2chR _ .
' g8 3p(F%/AY) +2pg(ha — hR)+ 29:P4
hg = f3 _ 2gc

g3 3p(F%/A%) + 2pg(ha — hr) + 29cPa

B.2 Singular Pencil Matrix

As explained before, if we have the input-output representation of a system, it can be brought
as a singular pencil model as follows

Tk Tk

P@) | =[E*—zI A B C*] 1 =0 (B.187)
Uk E() —A() B() I Uk
€L LEL

In our case, since we already have a state space representation, the matrix P(z) will look as

A-z2I 0 B
P(2) = (B.188)
C -I D
with A, B, C, and D as defined in the previous section, i.e.,
ji—z 0 0 j3 -j3 j3 0 0 0 0 0
P(z) = 0 jo—2z 0 0 j4 0 O 0 0 0 0 (B.189)

L 4

hg hg 1 hy -hs hy hy —hs —hy hs hs
from here, it takes only a few linear transformations on the matrix (row operations) to bring it
_to a canonical representation that will allow the separation of the parameters and the states for

identification purposes.

Our departing equation can also be expressed as

[z] E,- ), G.l[«z
P = =0 B.190
al2]=1"7 GO] u .190)
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with

E.=A
Ey=C

' (B.191)
G0‘= [~ D]

and the operator z replaced by the algebraic indeterminate A. First, we use a transformation

T = z = T~ 'z’ and, consequently,

TE,T-! - \I, TG,][z E, -\, G,}[z
E 7! Go ||lw E, Gol lw
To get T we select a chained basis from the matrix-
'E()(E,.)n -
1 M= ' . (B.193)
? L By

which, in our case, will be _

‘ hej?  hsd3 .

M = |hgjl hgjs (B.194)
hs  hg

a basis is obviously {(hs hs), (hsj1 hsj2)} and, therefore, the transformation becomes

hgj1  hsj2
T =
hg  hg

1 —J (B.195)
T-1_ ‘:ha(jl—jz) h.(,-,_,-,)]
-1 iy *
755(11—175 m’?:ﬁ
which will give the new matrices
. [ +52 -5
E, =
1 0 (B.196)
Ey=[0 1]
, [0 hgjijs  hs(j2ja — j1j3) hsjrja 0 0 0 0 O
0 hsgjs hg(js — ja) hgja 0 0 0 0 O (B.197)

Gp=[-1 hy —hs hy hy hs —he —h; hg]
which constitute the basic canonical form.
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A second transformation is required, using a similarity transformation T, where

F(ER) ... £(EP)

T=1I,+ : : (B.198)
F(E2) ... 5(EP)
and f() is a matrix function that produces the following resuit
' 0 —a1; =-a12 ... —Qa1(n-1)
0 0 —Qa11 ... —al(n_g)
f(A)=I, + ’ (B.199)
0 0 0

where f(A) is m x n. To apply transformation T, we need to determine the observability indices of
the system (n;), as well as its positive integers ({x). The observability indices (n; withi=1,...,p
and p: number of rows in Eq) give the smallest integer j for which Eo,-Ei is linearly dependent on
the inferior rows in M. In our case, there is only one observability index: n; = 2, and that satisfies
the proposition i n; = n with n: number of rows in E,. As for the positive integers {x (with
k=1,...,p), tt::; are the column indices of the left most linearly-independent columns in Go. In

our case, {{x} = {1}. As we must apply f() on E# it is important to notice that the latter is a

ni-square companion matrix, sub-block of the block matrix

rEIL L. E&ﬁ
(JT)E(J'T)™ EP' ... EP
L= . (B.200)
Eo(J'T) E} ... EF
(EPY ... EEP
with [En By
Eq;.

JT = : (B.201)




In our case, it is obvious that J'T = T and then E¥ = E,. Therefore,

L1 0] [0 —(i+d2)
T= + - (B.202)
‘ 01 0 0
or equivalently,
_ [t —=(1+32)
T = (B.203)
0 1
and the new transformed matrices are:
. [0 —jij2
E, =
1 j1+7o (B.204)
Ey=[0 1],
. [0 —hgjajs  he(jajs — j1js) —hsjzjs 0 0 0 0 O _
" |0 hsjs  hs(ja—3js)  hejs 0 0 0 0 0O (B.205)
Gy=[-1 hi —hs hy hy hs —hs —hy hg]
Finally, a third transformation using matrices L and R such that
I L E.-zI G,
PN=| _ (B.206)
0 R E, Go

with the T matrices being the system canonical representation suitable for identification and R a

non-singular matrix. In our case,

Jije
L= [ ' . :| (B.207)
—(j1+J2)
and R = 1 which gives the transformation matrix
10 Jij2
T3=1{0 1 —(j1+Jj2) (B.208)
0 0 1
and the resulting matrices for the model
—_ 00
E, =
1 0 (B.209)
Fo=[0 1]
— L—jljz ja(hij1 — hejs)  hs(jojs — jijs) — hajijz  Ja(heji —hsjs) O ... O
i1+ 2 hejs — ha(Gi +j2) he(ja—a) + ha(jr1+J2) hejs —ha(ji+32) O ... 0

Go=[-1 hy —hy hy hy hs —hs —hr hs]
(B.210)
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" B.3 System Identification

The system can now be represented as

:vk .’Ek
P( ) Yr E: -zl _:4: E C. y;c 0 B211)
)4 —3 — — — — .
ug Ey —Ag 0o 1 u;c
ex €k

where [5;] _ [—’A: B:]

[Go] = -4, Bol

and ej a zero mean white Gaussian random noise sequence with covariance A (A > 0).

(B.212)

The measurements yx and uj, are known. The state vector is known and so are the parameters

in é: and @B Making
wi = [y, oL T | (B.213)

and r a column vector containing the non-identically zero, non-pivot parameters a;; and bijx in A,

Ag, B., By enumerated in some specific order, the equation above can be put as

Trg1 = Bazp + Gu(we)r + Cuex

R (B.214)
0 = Egzg + Go(wg)r — Jwr + e
where — —~
Gu(wr)r = [-Ax  BiJwy
— —_ (B.215)
Go(wg)r = [-A0  Bo)wg + Jwg
and . ‘
J=[, Opxm] (B.216)

a matrix which includes the pivot!”. G.(wg) and Go(wy) are not unique and are constructed to

isolate the unknown parameters a;jx and bijx into the column vector r. As such

_ F, Fp Fp Fpy 0 0 0 0 0 .. 0
G*(U)k)z ’ / ’ !
Go(we)=[0 ... 0 Fp Fp Fpy Pr Py P Ppg W]

17 yeRP,z€R", andu€R™
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and
r=[g11 g12 913 G14a 921 ... Gaa k1 ... hg] (B.218)
with the g;; indicating the elements in row 7 and colufnn jin éi As the system is considered
time-invariant,
R— | (B.219)
and then, if
s = [T, T 1" . (B.220)

our working equations become
sk41 = Fsk + Daer

(B.221)
Yr = Hisp + ex
with —_—~
Hip=[Eg Go(wr)]
* G*(wk) .
Fi =
0 I (B.222)

C.
D, =
OIXn

and ! is the dimension of the vector 1. If the matrix C, and the covariance A of e € R? are
assumed known, the Kalman filter algorithm can be applied to give the optimal linear estimate of the
augmented state vector sg. Knowing sx, we will know the system state vector zx and the parameter

vector r,. The recursive equations become
Sk4+1 = FiSk + Ki(yx — Hr3k)

Ki = (FoPoHF + S) (FePeHE + A) ™ (B.223)
Piy1 = FuP FT + Q — Ky (Fe PeHY + A) KL

C*A
S =
OlXp

where

CAACT  Ony (B.224)
o[
Oixn  Orxi
with. initial conditions
§() =F [30]
(B.225)

P(] =F [(80 - E[So])(S() - E[S(}])T] Z 0
and E[(.)] is the expected value of (.)
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