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Abstract 

The ability to model the steady-state field inside active structures, such as a transistor, is an 

important aspect of monolithic microwave integrated circuit (MMIC) design. This paper focuses 

on such an active zone of semiconductor material, and presents a finite element analysis of the 

classical semiconductor equations. The semiconductor equations are very nonlinear and govern the 

potential and carrier density distributions in semiconductor materials. A previously developed 

finite element method (FEM) formulation of these equations, referred to as the current conservation 

model, is re-introduced and re-derived with compact matrix notation. It is shown how this 

formulation can be solved with the Newton-Raphson iterative scheme. Then, a newly developed 

F E M formulation, referred to as the advection-diffusion model, of the continuity equations is 

described in detail. It is shown by example how this formulation solved with Gummel's iterative 

technique is very numerically robust. These two different solution methods of the steady-state 

system of coupled Poisson and continuity equations are combined into a final solution algorithm 

that exploits their strengths. As a specific example, GaAs MESFETs are the focus of 

implementation, and the resulting potential field and carrier density distributions are used, to 

calculate various MESFET parameters such as electrode currents, voltage gain, capacitances, and 

conductances. Finally, various extensions to the F E M approach involving the application of the 

method of moments (MoM) are briefly discussed and partially demonstrated. These extensions are 

intended to compensate for the assumptions and simplifications, mainly with respect to the artificial 

boundary conditions, used in the original stand-alone F E M formulations. 

i i 
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1 Introduction 

1.1 The Big Picture 

As with other electrical technology, microwave technology has been following a path of 

smaller size and increased complexity. Monolithic microwave integrated circuits consist of a 

planar substrate on which passive and/or active circuit elements are constructed. Passive elements 

such as microstrip transmission lines, inductors, capacitors, and resistors take the form of various 

deposited layers of metal, dielectric, and resistive films on the surface of the substrate. In addition 

to this, a substrate made of semiconductor material may have active devices grown directly into it 

through ion implantation. For example, gallium arsenide substrates, which are the most common 

of the semiconductor substrates, allow for the construction of GaAs FETs which have many 

applications such as low-noise amplifiers, high-gain amplifiers, broadband amplifiers, mixers, 

oscillators, phase shifters, and switches [1]. Figure 1 shows a simple layout of a monolithic 

microwave integrated circuit (MMIC). 

Air Microstrip MIM 
bridge input line capacitor Inductor 

Ground Via GaAs Implanted GaAs 
plane hole FET resistor substrate 
metalization 

Figure 1. Layout of a monolithic microwave integrated circuit [1]. 
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The situation of many circuit elements operating at microwave frequencies and occupying 

such a compact environment that exists in MMICs leaves little room for error in the design and 

calls for considerable precision in the fabrication of MMICs. Unlike conventional circuit analysis 

in which a circuit is simply treated as the sum of its components whose operation is independent of 

their environments, a more thorough analysis is required. Such an analysis must take into account 

the electromagnetic effects of mutual field coupling among the components, discontinuities and 

sharp edges in the structures of the components, biasing circuitry, and packaging. Extensive use 

of specialized computer-aided design (CAD) software that treats the analysis as an electromagnetics 

problem is vital. 

In order to predict the voltage-current characteristics of a microwave circuit, the 

electromagnetic fields must be modeled. Dynamic and static fields induced by passive elements 

obey Helmholtz' equation and Laplace's equation, respectively, both of which are linear 

differential equations [1]. Dynamic and static fields induced by active elements also obey 

Helmholtz' equation and Poisson's equation (Laplace's equation with a source term), respectively, 

but are coupled to the variable charge distributions (electrons and holes) which are governed by the 

continuity equations [2]. The continuity equations are nonlinear. 

Theoretically, it is possible to deal with the problem of calculating the fields occurring in an 

MMIC such as the one shown in Figure 1 by simply solving the appropriate equation with 

specified boundary conditions. Practically, due to the complexity of such a problem and limited 

computing resources, this is simply not feasible. The complexity resides in the diversity of 

boundary shapes, types of boundary conditions, uncertainty in material parameters, and 

nonlinearities in active regions that exist in a typical M M I C . As a result, it becomes necessary to 

break down the problem into smaller ones. A smaller problem may consist of focusing on a single 

transmission line, capacitor, inductor, or transistor which occupies just a portion of the circuit. In 

order not to neglect coupling to the rest of the circuit, "appropriate" artificial boundary conditions 

surrounding the particular problem domain must be employed. 

Once a sub-problem is defined, a solution technique must be applied to the governing 

equation. In some cases analytic solutions are available [3], but in the vast majority of cases, 



3 

analytic solutions are simply not attainable. In such cases, numerical techniques have offered the 

only possible route to a solution. The finite element method, finite difference method, and method 

of moments are the three main classes of such techniques. Each has its own strengths and 

weaknesses. 

The method of moments has proven to be ideal for linear problems [4]-[8]. It requires an 

analytic solution of the linear differential equation at hand for a point source. This solution is 

known as a Green's function. Based on the equivalence theorem which states that any static or 

dynamic electromagnetic field in a source-free domain can be fully represented by an equivalent 

distribution of charge or current sources, respectively, and taking full advantage of the principle of 

superposition of point source solutions, a Green's integral equation that represents the solution of 

the linear differential equation in terms of source distributions is set up. Intimately related to the 

Green's integral equation is the boundary integral equation, which also requires knowledge of the 

Green's function and gives an expression of the field satisfying the governing equation over the 

entire domain in terms of the field over a closed contour in or around the domain. The method of 

moments involves discretizing the integral equation by way of an approximate basis function 

expansion of the true unknown solution and a minimization of the weighted inner product residuals 

reducing the problem to the determination of the unknown expansion coefficients via a matrix 

inversion. 

Finite element and finite difference methods appear similar to each other on the surface but, 

in reality, have completely different mathematical bases. They both solve differential equations, 

and they both require that the solution domain be finite. The fundamental difference between the 

two methods lies in the fact that finite difference methods approximate the differential equation 

operator and differential equation domain at hand with a difference operator and a finite number of 

discrete points spread over the original domain, while finite element methods approximate the 

solution with an expansion of known basis functions and unknown coefficients over the entire 

domain [9]-[l 1]. Finite element methods are formulated either directly from the original physical 

arguments used to derive the differential equations, known as a variational formulation, or based 

on minimization of weighted inner product residuals, known as a weak formulation. In this sense, 
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the method of moments and the finite element method are closely related. Generally speaking, 

finite element methods are more flexible than finite difference methods when dealing with 

inhomogeneous solution domains, irregularly shaped boundaries, and derivative boundary 

conditions. On the other hand, finite difference methods are more easily implemented in terms of 

formulation and programming since they are grid dependent, while finite element methods are 

coordinate-independent with mapping built into their formulation. 

The limitation of the method of moments is its dependency on the availability of an analytic 

expression of the Green's function. The Green's function satisfies boundary conditions at infinity 

and at other boundaries such as multi-layered substrate interfaces and the ground plane. 

Unfortunately, with added complexity, in the form of irregularly shaped boundaries and lossy 

materials, an integral equation representation of the solution quickly becomes increasingly difficult 

to derive [12]. Finite difference and finite element schemes do not suffer from such a limitation. 

On the other hand, moment method solutions of integral equations are typically more efficient than 

finite difference or finite element solutions to the differential equation of the same problem, and 

they naturally handle infinite domains. So, whenever dealing with relatively simple passive 

structures located in infinite domains, the method of moments has the upper hand. For more 

complex structures, the finite difference or finite element method must be employed [13], [14]. 

Also, since the principle of superposition does not apply to nonlinear problems, integral equation 

solutions do not exist, and the method of moments is not applicable to active structures such as 

transistors. In contrast, since they do not depend on integral equations, finite difference and finite 

element methods in conjunction with iterative solution techniques offer possibilities to reach the 

solution in a nonlinear domain. 

In referring back to the original problem of modeling an entire MMIC one subregion at a 

time, it becomes apparent that a choice of numerical solution is beneficial. For subregions 

containing simple, passive structures such as planar strip-like conductors, the method of moments 

along with the appropriate integral equation are appropriate. For subregions of higher complexity 

and/or containing active structures, the finite element method would seem to be the better choice 

over the finite difference method. The reason for this is that it is possible to exploit the 
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mathematical similarities of both the method of moments and the finite element method in order to 

directly couple the finite element solution in a finite subregion to moment method solutions in any 

adjacent infinite or finite subregions. Taking into account subregion interactions overcomes the 

problem of neglecting the mutual coupling of MMIC components. 

1.2 Objectives and Motivation 

For amplifier and digital logic applications, MMIC layouts include transistors which take 

the form of doped subregions of the semiconductor substrate. This paper focuses on one such 

active subregion of the MMIC problem and presents a finite element analysis of the governing 

classical semiconductor device equations. Two different finite element method (FEM) 

formulations of the steady-state system of coupled Poisson and continuity equations are described, 

and two different iterative techniques are used to solve for the potential and carrier density 

distributions inside the active subregion. As a specific example, GaAs MESFETs are the focus of 

implementation, and the resulting field distributions are used to calculate various MESFET 

parameters such as electrode currents, voltage gain, capacitances, and conductances. Additionally, 

techniques based on the M o M that link the finite element domain to any exterior domains are briefly 

discussed. 

To this day, finding a general solution to the tightly coupled set of nonlinear elliptic 

semiconductor equations has presented quite a challenge to the scientific community. There are 

many aspects to this challenge. The first and most important one is to be able to ensure robustness 

of the numerical solution. Since the equations are nonlinear and tightly coupled and since the 

parameters of semiconductor devices, such as doping density distributions, bias conditions, and 

geometries, vary widely depending on the device, it is difficult to develop a general solution 

algorithm that is guaranteed to reach a solution in all cases. Another important aspect is the rate of 

convergence to the solution. Almost all solution methods implement iterative schemes, and large 

systems of equations must be solved simultaneously at each iteration. This task demands 

considerable computing power and speed, and therefore efficiency of the solution algorithm is 
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important. Equally important is the accuracy of the final solution, and this requirement often forces 

a trade-off with the speed of convergence. Generally speaking, almost all solutions, the vast 

majority of which implement either finite element or finite difference schemes, involve the 

discretization of the semiconductor equations over the domain of the device, which results in a grid 

of points or a mesh spanning and representing the domain. The trade-off occurs in the coarseness 

of the mesh. That is, a finer mesh implies more equations, which require longer solution times per 

iteration, but results in more accurate solutions, while a cruder mesh implies fewer equations, 

which require less time to solve per iteration, but results in less accurate solutions. 

Applications of finite difference techniques have been studied and fine tuned over at least 

the past forty years in finding solutions to nonlinear elliptic differential equations and about thirty 

years in finding solutions to the semiconductor equations in particular [15]-[20]. Barnes and 

Lomax first introduced an F E M solution in [21], although they could not claim superiority of this 

solution over the highly refined finite difference schemes. Since their work, relatively little has 

been published regarding the application of the F E M specifically to the semiconductor equations, 

[22]-[25]. The purpose of this thesis is to expand on the work of Barnes and Lomax in [22] and 

[23] by first generalizing their F E M approach with compact F E M notation carried over from 

Zienkiewicz [9] and Buchanan [10]. Following this, a new F E M steady-state formulation referred 

to as the advection-diffusion model is described. Advantages and disadvantages of both 

formulations are pointed out, and a final solution algorithm is presented that adopts the best 

features of both of them. The final algorithm is used to simulate and analyze GaAs MESFET 

devices similar to those in [22]. 

1.3 Thesis Structure 

Sections 2-4 give a detailed description of the problem and a derivation of two different 

routes to a solution. The final solution approach offering the best performance involves a 

combination of two F E M models, the advection-diffusion model and the current conservation 

model, that are numerically solved by two different techniques, Gummel's method and the 
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Newton-Raphson method, respectively. Following this in Section 5, implementation 

considerations, such as stability and accuracy restrictions, of the F E M formulations are addressed. 

Two simple GaAs MESFET problems are introduced and fully analyzed in order to demonstrate 

the proposed techniques. Finally, various extensions to the F E M approach involving the 

application of the method of moments (MoM) are briefly discussed and partially demonstrated in 

Section 6. These "add-ons" attempt to compensate for the assumptions and simplifications, mainly 

with respect to the artificial boundary conditions, used in the original stand-alone F E M 

formulations. Ultimately, the goal of such extensions is to account for the effects of any exterior 

structures on the interior domain. 
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2 Problem Specifications 

The equations governing potential and carrier density distributions in the active 

semiconductor regions of an MMIC are the Poisson and continuity equations written as 

follows [23]: 

where 

V-EV<|> = -p 

qdp/dt = -V-Jp + qG 

qdn/dt = V - J n + qG 

(1) 

(2) 

and 

P = 

J P = 

Jn = 

E = 

q ( N d + p - n) 

q(pu.hE - D p V p ) 

q(nu.eE + D n V n ) 

-V(|> 

G = net generation rate 

N _ = donor minus acceptor ion densities 

<|> = potential 

n, p = electron and hole carrier densities 

J n , J p = electron and hole current densities 

D n , Dp = electron and hole diffusion coefficients 

q = electron charge, 1.602 x 10"^ C 

£ = semiconductor permittivity 

u-n = electron and hole mobilities 

t = time. 

(3) 

(4) 

(5) 
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The modeling problem is reduced to a two-dimensional cross section of the region, and 

steady state conditions are enforced, i.e. it is assumed that no variations of the potential and carrier 

density in the z coordinate and time dimension exist [19]. Also, the problem is further reduced to 

that of a majority-carrier device, for which the contribution of minority-carrier transport to the total 

current is negligible. In the case of GaAs MESFETs, electron transport dominates, and neglecting 

the hole continuity equation is therefore a valid approximation. Since generation and 

recombination phenomena depend on the existence of both electrons and holes, as is discussed in 

most texts on semiconductor theory such as Pulfrey and Tarr [26] and Markowich [2], the 

generation-recombination term is also omitted in the following analysis of a majority-carrier device. 

The generation-recombination term introduces a nonlinear coupling between the electron and hole 

continuity equations, so its omission simplifies the finite element formulation somewhat. Whether 

or not inclusion of this term would diminish the effectiveness of the F E M approaches described 

here for simulation of semiconductor devices in general has not been investigated. Regardless, 

how to incorporate this term into the two formulations described here is mentioned where 

appropriate. With these simplifications, equations (2) and (3) reduce to 

0 = V - J n (6) 

p = q ( N d - n) (7) 

for electron majority carrier devices. For hole majority carrier devices, a similar expression exists. 

For GaAs MESFETs with submicron gate lengths, which are of interest in MMIC 

technology and which will be the focus of later examples, even small applied bias voltages 

(~ 1-2 V) generate very large electric fields (~ 10^ V/cm) thus causing electrons to reach then-

saturation velocities throughout much of the device. Since the saturation velocity for electrons in 

GaAs is approximately 10^ cm/s [26], transit times for electrons from one end of a one-micron-

long MESFET to the other is on the order of 10"^ s. Such carrier transit times give an indication 

that operating frequencies of a submicron gate MESFET can reach well within tens of gigahertz, 

the range of millimeter-wave fields. In fact, it is this high frequency responsiveness along with 
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their compact size that makes MESFETs so attractive for microwave amplifier applications in 

M M I C designs [1]. 

Also, in place of a full transient analysis of the equations, it is reasonable to use a steady-

state analysis to approximate the behavior of the dynamic fields at operating frequencies which are 

typically well below the inverse of the transit times (in this case ~100 Ghz). Unfortunately, since 

this is a nonlinear problem, use of modal and frequency anlaysis in place of the transient analysis is 

not viable when dealing with higher operating frequencies. 

Source Gate Drain 

Figure 2. 2D cross section of a MESFET device. 

A MESFET device consists of a gate, drain, and source as shown in Figure 2. Under the 

drain and source metal electrodes, heavily doped ( > 1 0 ^ cm"^) n + regions ensure very thin 

Schottky barrier-induced depletion regions under the electrodes which are typically dealt with in 

problems by substituting them with ohmic contacts [2], [23] (See Section 5.3.1). The region 

under the gate is n-type with doping levels around 1 0 ^ - 1 0 ^ cm~^. Surrounding these active 

regions is a semi-insulating GaAs substrate which ideally has an intrinsic carrier concentration of 

2.25 x 10 ^ cm~3. During operation, a current is directed from the drain to the source along a 

channel around the gate depletion region. By varying the gate voltage, the size of the Schottky 

barrier depletion region changes determining the amount of current and the operating state of the 



11 

device. FETs typically have two operating states, the active regime and the saturation regime. In 

normally-on, or depletion, devices the depletion region does not reach the buffer zone under 

equilibrium conditions, while in normally-off, or enhancement, devices this depletion region 

extends into the substrate buffer at equilibrium. For amplifier applications, a MESFET must be 

forced into the saturation regime, in which the electron channel is commonly referred to as being 

"pinched o f f between the semi-insulating substrate and the gate depletion region, by applying a 

negative bias voltage on the gate. This phenomenon will be demonstrated in a depletion GaAs 

MESFET through simulation using the F E M . 
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3 FEM Formulation 

The finite element method consists of approximating an unknown function, in this case 

potential and carrier densities, by a low order polynomial with unknown coefficients over a 

subregion, or element, in the solution domain. Al l the elements together span the entire domain, 

and qualitatively speaking, each element interacts with its neighboring elements through their 

common boundaries. The behavior of the function at the edges of those elements bordering the 

solution domain is pre-defined by the solution domain's boundary condition specifications. In 

solving for the polynomial coefficients by way of a matrix inversion, the boundary conditions are, 

in effect, propagated throughout the solution domain via element boundary interactions as dictated 

by the governing system equations. A brief discussion of this process is explained in the following 

sections, and details can be found in various books on finite element analysis such as Zienkiewicz 

[9], Buchanan [10], and Burnett [11]. 

3.1 Elements 

For two-dimensional problems, an element has a polygonal shape. In practice, triangular 

and quadrilateral elements are the most popular because they are best suited for approximating 

boundaries of irregularly shaped domains. In addition to this, formulation of the polynomial 

approximations for these elements is straightforward as will be shown next. 

Figure 3. Six adjacent quadratic triangular elements. 
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Quadratic triangular elements are used in the F E M simulations that will be presented here. 

Figure 3 shows six such interconnected elements. Each is made up of six points, three at the 

vertices and the other three about half-way between vertex pairs. Over each element, a function g 

can be approximated with a function g a defined as 

where g n is the value of the function at node n, N n is a function of cartesian coordinates x and y 

for node n, and [N][g] is the matrix representation of the summation. N n is a basis function 

commonly referred to as a local shape function in F E M theory. The term "local" implies "per 

element". A "global" shape function for a particular node is simply the summation of all the local 

shape functions for that node. Figure 4 shows a linear (three-node triangular elements) shape 

function for a node both locally and globally. 

g - ga = 2 n g n N n = [N][g]- (8a) 

Figure 4. Local (left) and global (right) shape functions for Node i . 

From (8 a), the gradient of g can be written as 

V g - V g a = V[N][g] (8b) 

where V operates on each component of [N]. Throughout this paper, V[N] is a two-row matrix 

with the top row defined as d[N] / dx and the bottom row defined as d[N] / dy, and V [ N ] ^ is a 
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two-column matrix with the left column defined as 3[N]A / dx and the right column defined as 

d[N] T /3y. It follows that V [ N ] T = (V[N]) T . 

Derivation of N n depends on the type of element, and for triangular elements, the shape 

functions are often defined in terms of area coordinates rather than cartesian coordinates. A basic 

property of both local and global shape functions is that each N n has value 1 at node n and value 0 

at node m for m*n. Also, local shape functions for nodes of each element or global shape 

functions for nodes of all elements must satisfy the following property: 

2 n N n = 1 , (9) 

where N n is local, and n = 1, 2, . . . number nodes per element; or N n is global, and n = 1, 2, . . . 

total number of nodes. 

For a detailed discussion of area coordinates and the derivation of shape functions for 

various different elements, the reader is directed to Zienkiewicz [9] and Burnett [11]. As an 

extension to an exercise in Buchanan [10], a simple, yet general, method for determining shape 

functions for virtually any type of element is proposed in Appendix A . Although this method was 

not actually used in the F E M code here, it serves well as a complete and simple explanation of 

shape functions as an alternative to that which is given in most literature. 

A three node linear element with a three term expansion is the simplest triangular element. 

The higher the order of the element, i.e. the more terms used in (8), the better the unknown 

function can be represented over that element. Fewer higher order elements than lower order 

elements are needed to obtain the same desired accuracy in the final approximate solution. On the 

other hand, lower order elements require fewer nodes, and in either case, the exact solution will be 

approached as the elements become infinitesimally small. The choice of using quadratic triangular 

elements over linear triangular elements is based on the fact that they allow for the crudest possible 

expansion of the mobility gradient term in the advection-diffusion model of the continuity 

equations, while linear elements lead to a zero-valued mobility gradient term and are therefore 

unsuitable. A detailed explanation regarding this topic will be given in Section 3.2.2.2. 
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3.2 Discretization 

At this point, either a variational or a weighted residual Galerkin approach is used to 

complete the F E M formulation. In many cases such as this one, a variational form of the system 

equations is unavailable, so Galerkin's method is employed here. 

Most linear time-independent systems can be represented by an equation 

f(g,x,y) = fi(g,x,y) + f 2(x,y) = 0 and appropriate boundary conditions, where f̂  is a linear 

function of g, and f j , f2, and g are functions of spacial coordinates, x and y. It is desired to 

determine the unknown function g, so it is replaced by an approximate expansion g a leaving the 

expansion coefficients g n as the only unknowns yet to be determined. Since f ^ is linear with 

respect to g, f(ga,x,y) can be written as _ n f 1 (N n ,x ,y )g n + f 2(x,y) = [f][g] + f 2(x,y), where [f] 

is a row vector of functions f j (N n ,x ,y) , and [g] is a column vector of the unknown coefficients. 

The residual is defined as R = f(ga,x,y) - f(g,x,y) = [f][g] + f2(x,y), and the set of coefficients [g] 

is sought so as to minimize the residual over the solution domain. This is done by setting weighted 

inner products of the residual to zero on an element-by-element basis which results in a matrix 

equation representation of the system equations for each element spanning a subdomain __e. 

Galerkin's method consists of using the shape functions as the weighting functions, and the result 

looks like this: 

/Q e[N] T([f][g] + f 2 (x,y))dA = [Ax)[g] + [F,] , 

where Q e is the region spanned by the element, [N]^ is a column vector of shape functions, matrix 

[Ai] is called the local stiffness matrix, and [Fi] is the local forcing vector of the element. The jth 

component of [g] corresponds to the approximate value of g at node j , the ith component of [Fj] 

corresponds to a force at node i , and the ijth component of [A]] can be interpreted as a coupling 

factor, or stiffness, between nodes i and j . A global stiffness matrix and forcing vector 

representing the whole system are formed by the superposition of the local stiffness matrix and 
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forcing vector component contributions of all the elements spanning the entire solution domain. 

For instance, the total, or global, stiffness between nodes 1 and 2 in Figure 3 is equal to the sum of 

the two local stiffnesses between these nodes which are defined in the local stiffness matrices of 

elements I and II. The resulting matrix equation is 

[A][g] = [F], 

where [A] and [F] are the global stiffness matrix and forcing vector, respectively, and [g] is now a 

column vector of all the unknown coefficients. After forcing essential boundary condition values 

on nodes located at domain boundaries in this equation, the solution for the coefficients is given by 

[g] = [A]-![F] 

For construction of [A], numerical quadrature is used to evaluate the inner product 

integrals. Gauss-Legendre quadrature is best suited for rectangular elements, while numerical 

formulae based on area coordinates are ideal for triangular elements (See [9], [10], and [11]). For 

large domains with many elements, [A] becomes very sparse, and a specialized matrix inversion 

routine that takes advantage of this property should be employed in finding [g]. Discretization of 

the semiconductor equations is described next. 

3.2.1 Poisson Equation 

Using the notation in (8) to approximate the potential as [N][(j>] and the electron carrier 

density as [N][n] for each element, and inserting these expressions and (7) into (1) gives 

V-eV[N][<t>] = -q(N d-[N][n]) . 

Taking the inner products of this expression yields the matrix expression 
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fQe [N] TV-eV[N] dA [<j>] - q / Q e [ N ] T [ N ] d A [ n ] = - q / Q e [ N ] T N d dA . 

Using the Green-Gauss theorem on the first term, which is essentially integration by parts in more 

than one dimension, leads to the F E M expression of the Poisson equation: 

J Q e V[N] T eV[N] dA ft] + q[Qe [ N ] T [N] dA [n] = qfQe [ N ] T N d dA + J r e[N]TeV[N]-n dS [<|>] 

(10) 

where T e is the contour tracing __e, and n is the unit vector normal to T e . The last term is an 

integration along the outer contour of the element and represents a Neumann boundary condition 

on the potential, i.e. a Dirichlet boundary condition on the normal electric field component. This 

term is zero for insulating boundaries since, by definition, no drift current, which depends on the 

electric field, can exist across these boundaries. (10) is coupled to the continuity equations, and 

for each quadratic triangular element, it is a set of six equations in twelve unkowns, [(()] and [n]. 

3.2.2 Continuity Equations 

Discretization of the electron continuity equation can be done in two ways yielding two 

different numerical models which are referred to here as the current conservation model and the 

advection-diffusion model. Each has its advantages and disadvantages in terms of implementation 

considerations, and the final solution algorithm makes use of both models. Following is a detailed 

derivation of each model. 

3.2.2.1 Current Conservation Model 

The current conservation model was first introduced and demonstrated by Barnes and 

Lomaxin [23] and [22], respectively, and is re-derived and rewritten here with compact notation 

adopted from Zienkiewicz [9] and Buchanan [10]. Approximating the electron carrier density by 
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[N][n], and inserting this into (4) gives an approximate expression, J a , for the net current density: 

J a = q([N][n]u.eE + D nV[N][n]). 

Inserting this into (6) gives 

0 = V - J a = qV-([N][n]u.eE + D n V[N][n]). 

Taking the inner product of this expression yields a matrix expression, and applying the Green-

Gauss theorem results in the final form: 

Le [ N ] T V - J a dA = 0 

L e V [ N ] T - J a d A = J r e [N] T J a -n dS (11a) 

q / Q e V [ N ] T - [ N ] L i e E d A [ n ] + q / Q e V [ N ] T D n V [ N ] dA [n] = J F e [N] T J a -n dS . ( l i b ) 

This model has the desirable property, from a circuit analysis point of view, that current is 

conserved regardless of mesh coarseness. This property is made possible by defining the surface 

integral term on the right as the net current directed out of an element through its nodes (See 

Section 5.2). For an interior node of a system of elements such as Node 1 in Figure 3, this term is 

set to zero indicating a zero net global current through the node. The same is done for exterior 

nodes at insulating boundaries. Thus, interior and insulator nodes obey Kirchhoff's current law, 

or I m = 0 where I m is the net current through each of these nodes. For an exterior node, c, at a 

non-insulating boundary of the domain, i.e. a contact boundary, there exists a non-zero net 

current, I c = / N c J a n dS, which is the sum of the local surface integral contributions and where 

N c is the global shape function for node c. Letting the total current through the contacts be written 

as 2^ I| and using the global form of (11a), an expression for the total contact current can be 
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derived in the following manner: 

hot = ^ i 1 ! = 2 c ! c + 2 i n I i n = / _ c N c J a _ d S + 0 = / V - j N i - J a d A . 

where I t o t is the total current through all the nodes, and Ij denotes net current through any node. 

Substituting the identity of (9) into this expression gives 

_ C I C = / _ c N c J a _ d S = / V - i N j - J a d A = / v ( l ) - J a d A = 0 . 

So the net current throughout the system is zero, and current is conserved globally. 

The surface integral in (11) represents a boundary condition on J a , which is the sum of 

both the drift and diffusion current densities. Again, for insulating boundaries, it has value zero 

since no current may exist across them. 

3.2.2.2 Advection-Diffusion Model 

Another formulation of the continuity equations begins with inserting (4) into (6) and 

expanding the result with the chain rule: 

0 = V - J n = V-q(n[i eE + D n V n ) 

= qnu. eV-E + qnVu, e-E + qu_Vn-E + q D n V 2 n (12) 

This equation is referred to as an advection-diffusion equation in Brooks and Hughes [27] and as 

the mass transport equation in Buchanan [10], which describes the fate of a concentration of some 

substance as it flows in some medium and, at the same time, diffuses into the medium. In this case 

the substance is the electron, and the medium is the conduction band in the semiconductor. The 

last term represents the diffusion, the third term represents the flow with u. eE as the electron 

velocity, and the first two terms represent an interaction between the electrons and their 
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surroundings. Using (1), (3), and (7) and assuming that the permittivity e remains constant over 

the span of an element allows substitution of V-E in the first term: 

0 = qnu. e(q(N d - n)/e) + q n V u ^ E + qrA eVn-E + q D n V 2 n (13) 

This substitution removes some coupling between the continuity equation and the Poisson equation 

and is the key step in the derivation of the advection-diffusion model of the continuity equations. 

Now, the first term is nonlinear due to the n 2 term and the mobility u. e, which is a nonlinear 

function of the electric field intensity when taking velocity saturation into account. The second and 

third terms represent a heavy nonlinear coupling to Poisson's equation through both u.e and E , 

while the first term represents a nonlinear coupling to Poisson's equation only through u.£. 

Substituting the carrier density n with [N][n] in (13) and taking the inner products gives 

0 = q/ Q e [N] T [N][n]Li e (q(N d -[N][n])/e)dA + q / Q e [N] T [N][n]V^-E dA 

+ qL e [N] T u. e

v [ N ] - E dA [n] + q D j o e [ N ] T V 2 [ N ] dA [n] ; 

and applying the Green-Gauss theorem to the last term leaves 

qL [N] T[N][n]Li eq(N d - [N][n])/e dA + q / Q e [N] T[N]Vu. £-E dA [n] 

+ qfQe[N]TfieV[N]-EdA[n] - qD J Q e V[N] T V[N] dA [n] 

= - qD J r e [N] T V[N]-n dS [n] 

(14) 

The first two terms of this highly nonlinear equation offer several possibilities in the 

derivation of an iterative solution method as will be discussed for the application of Gummel's 

method (See Section 4.2). Some of these variations result in numerical convergence, and others 

may not. 

It is also important to address the mobility gradient Vu, £ in the second term of (14). In 
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building the stiffness matrix for a given element, Vu. e is calculated in the following manner: First, 

with the electric field intensity IEI = (V(|)-V(t>)1/'2 where Vcj) = V[N][(j)], the values of u,_(IEI) at 

each node of the element are approximated and are referred to as [[xe]; second, with these nodal 

values and the shape functions of the element, interpolation (See (8).) is used to write an 

approximate representation of \iQ as [N][u,e]; and finally, the expression for V[x g is given by 

V[N][ji e]. For a linear triangular element, the electric field, or -V(j), is a constant. It follows that 

Vu, g must be zero rendering linear triangular elements inadequate for approximating (15) on an 

element by element basis. Therefore, six node, quadratic triangular elements are applied to this 

problem instead, yielding a constant Vu. e for each element. Of course, the higher the order of the 

element, the better Vu, e can be approximated over the span of the element. 

The right hand term is a Neumann boundary condition on the carrier density n. Again, for 

insulating boundaries this term must be zero since any gradient in n would imply a diffusion 

current, and by definition no current can exist across such boundaries. For some boundaries it 

may be desired to force Dirichlet conditions on the potential (which implies a non-zero potential 

flux across the boundary) but also to force a zero net current condition across the boundary. In the 

current conservation model, this is achieved simply by setting the boundary condition on the 

current density to zero. To impose such a condition in the advection-diffusion model, the 

Neumann boundary condition on the carrier density, i.e. the diffusion current condition, must be 

set equal to the negative of the drift current. In other words, setting (4) to zero gives 

J n = q(nu.eE + D n V n ) = 0 

q D n V n = - qnu,eE . 

So 

- q D j r e [ N ] T V [ N ] - n d S [ n ] = - qfTe [N]T[N]u.eV[N][c|)]-n dS [n] (15) 

for a zero net current across the boundary in the advection-diffusion model. 
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4 Solution Methodologies 

The Poisson equation and electron continuity equation together form a set of coupled, 

nonlinear equations to which iterative techniques must be applied in order to obtain solutions for 

[n] and First, a qualitative explanation of both direct iteration, of which Gummel's method 

[15] is a subset, and Newton-Raphson iteration in one variable is given. Following this are 

descriptions of Gummel's method and the Newton Raphson method in their application to the two 

semiconductor models derived previously: the current conservation model, (10) and (11), and the 

advection-diffusion model, (10) and (15). These iterative techniques may or may not successfully 

converge to solutions depending on the F E M model to which they are applied. Taking advantage 

of the best features of two combinations of model and iterative scheme, a solution algorithm is 

proposed that offers good robustness and performance. 

4.1 Introduction to Iterative Techniques 

The following introduction to iterative techniques is based on a similar discussion in 

Zienkiewicz [9]. A single variable function, K x , for which K is a function of x is examined. 

Finding the values of x that satisfy Kx + f = 0, where f is assumed to be constant, can be done 

using direct iteration or the Newton-Raphson method. Direct iteration begins with an initial guess 

to the solution X Q . Next, the first iteration consists of finding a new solution Xj from 

x 1 = - f / K ( x 0 ) , 

which hopefully is closer to the actual solution than is X Q . Repeating this procedure, n iterations 

are carried out until x n converges to a particular solution. Gummel's method is a type of direct 

iteration scheme with the added simplification of decoupling the Poisson and continuity equations 

as will be seen in Section 4.2. Newton Raphson iteration begins with linearizing the equation 
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around some initial guess X Q by way of a truncated Taylor series expansion which gives the 

expression 

K ( x 0 ) x 0 + f + A(K(x 0 )x 0 )Ax 0 = 0 , 

where AXQ = X ^ - X Q and A ( K ( X Q ) X Q ) is known as the Jacobian which is, in effect, the function 

that is tangent to Kx at X Q . The first iteration involves first solving for AXQ and then for xj which 

is a new solution and guess for the next iteration. Again, repeating this procedure, n iterations are 

carried out until x n converges to a particular solution. Next, performance characteristics of these 

two schemes on three different types of functions Kx are shown graphically. 

Figure 5 shows how successive iterations of each method approach the solution of x for 

x = -fj . The initial guess is denoted as x = ag. 

aQ a^ a^ a^ a^ x aQ a^ a^ a^ x 

Figure 5. Direct iteration ; Newton-Raphson iteration. 

It is clear that the Newton-Raphson method has a much faster convergence rate than direct iteration 

for this case. Figure 6 shows the progress of a few iterations of both methods in the solution of x 

for K 2 x = -f 2 . 
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Figure 6. Direct iteration ; Newton-Raphson iteration. 

In this case, the Newton Raphson method still converges, but direct iteration does not converge to 

the solution regardless of the proximity of the initial guess to the exact solution. Finally, Figure 7 

shows the behavior of each method for the K 3 X = -f3 case. Here, direct iteration converges to the 

solution, while the Newton-Raphson iterations possibly diverge unless the initial guess is close 

enough to the exact solution. Ideally in this situation, direct iteration could be used to reach a 

suitable initial guess after which Newton-Raphson iteration could be applied to rapidly reach the 

solution. The cases shown here will serve as analogies to the performances of Gummel's method 

and the Newton-Raphson method applied to the two different F E M models in the following two 

sections. 



25 

Figure 7. Direct iteration ; Newton-Raphson iteration. 

4.2 Gummel' s Method 

Gummel first introduced his scheme in [15] as a general solution approach to 

semiconductor equations. It involves decoupling the equations and iteratively solving for [n] and 

[4>] independently. Gummel's method is actually a Gauss-Seidel method, which is described in 

most numerical analysis books such as Froberg [28], with specific application to the 

semiconductor equations. One iteration consists of two steps: 1) using an initial guess for the 

carrier density [n]1 in Poisson's equation, find a new potential [(J)]1+^ and 2) using [(J)]*+* in the 

continuity equation, find a new carrier density [n] 1 +^. The index i denotes the iteration number. 

These two steps are repeated until two consecutive iterations yield a pair of [n]'s and [<)>]'s with no 

significant changes between them. Such a change is defined by some norm, and a tolerance level 

is defined to be the maximum value of change for which the iterations may end (See Section 5.2). 

In terms of the iterative notation and leaving out the surface integral term, (10) becomes 

/QeV[N] T eV[N]dA[( |>] i + 1 + qfQe [ N ] T [N] dA [n]1 = q / Q e [ N ] T N d dA. 
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Assuming e is constant over each element and letting the doping density N d be represented by its 

nodal values as [N] [N d] allows this expression to be written in this compact form 

[Ai][<j>]i+1 = [B!]p([Nd] - [n]1) 

where 

[Ail = J Q e V [ N ] T V [ N ] d A ; (16) ' 

[Bjjp = (q/e) [B,] ; (17) 

[BJ = / Q e [ N ] T [ N ] d A . ' (18) 

It should be noted that if a continuous mathematical expression for N d is available, it should not be 

approximated by [N][N d] but instead should be employed directly in the integration over the 

element's domain. Building the global matrices [A] and [B]p from the local matrix contributions 

and incorporating any boundary conditions lead to a solution of [(()]̂ +^ : 

= [ A r ^ p Q N d ] - [n]1) . (19) 

Formulating the continuity equation current conservation model, (11), in the iterative 

notation allows for three possible configurations (Again, the boundary term is not shown here.): 

( [ C ^ + ̂ m!!]^1 = 0 ; (20) 
(21) [C 1 ] i [n] i + 1 = -[Djjhi] 1 . 

[DjHnji+1 = -[q] i [n] i . ( 2 2 ) 
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where 

[D,] = q D J A J ; (23) 

[Ci] 1 = q / Q e V [ N ] T [ N ] M . e

i E i d A = - q / Q e V f N ^ u . e M N H c } , ] 1 dA . (24) 

The number of possible configurations depends on the number of different stiffness matrices 

available. In this case, the two stiffness matrices [Ci] and [Di] can be arranged in three different 

combinations on the left side of the equation as shown in (20), (21), and (22) since 2^1 + 2^2 ~ 

3, where n C m is the number of possible combinations of n elements in groups of m. It should be 

noted that D n is considered to be constant over the span of the element, and [Aj] is defined in (16). 

Putting (20) through (22) in global terms with [C] and [D], incorporating boundary conditions, 

and solving yields 

[ n ] i + 1 = ([Cji + tD])- 1 [F] ; (25) 

[ n ] i + 1 = - ( [ C ] 1 ) - 1 ^ ] [n]1 + [F]); (26) 

[ n ] i + 1 = - [ D r ^ W + [F]). (27) 

In the above equations, the forcing vector [F] accounts for the boundary condition contributions to 

the matrix formulation. 

As a quick evaluation, a simple problem consisting of a thin strip of GaAs with a metal 

contact having zero voltage at one end and an artificial boundary also set to zero voltage at the other 

end was set up to test the convergence of combinations of any one of (25)-(27) with (19). The 

doping density is uniform and the strip is partitioned into 100 quadratic triangular elements as 

shown in Figure 8(a). 
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The metal contact introduces a negative voltage boundary condition 

(28a) 

where (j)̂  is the barrier potential of the semiconductor, § Q = kT/q ln (N c /N d ) , and V is the voltage 
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applied to the contact conductor. The barrier potential for GaAs is taken to be 0.8 V [22], and the 

contact conductor is at zero volts. The voltage boundary condition, in turn, also implies a carrier 

boundary condition n g just under the contact in the semiconductor. The relationship between ip s 

and n s is 

n s = N d e - q ^ s / k T . (28b) 

Explanation of (28) is given in Pulfrey and Tarr [26]. Through these boundary conditions, a 

Schottky barrier will be induced at the contact end of the strip. At the opposite end of the strip, the 

carrier density is set equal to the doping level N _ and the potential to zero. These are necessary 

artificial boundaries that simulate boundary conditions at infinity. 

In the absence of any educated guess of the carrier density, charge neutrality (n = N d ) , was 

used as an initial guess in the first iteration. The (19), (25) combination converged to a solution 
1 C Q 

only when N d < 10 cm , otherwise no combinations of any one of (25)-(27) and (19) reached 

convergent solutions with higher doping levels, N d > 1 0 ^ cm"^. In fact, even when the initial 

guess of the carrier density was very close to the actual solution, all these combinations diverged 

from the solution. Thus, it is concluded that the current conservation model solved using 

Gummel's method is useless for any practical problems! 

Putting the advection-diffusion model, (14), which has four different stiffness matrices, 

into Gummel's iterative form results in fifteen (̂ C^ + 4C2 + 4C3 + 4C4 = 15) different possible 

configurations, as opposed to the three possible configurations for the current conservation model 

shown in (20)-(22) and discussed earlier. After applying each of these configurations with (19) to 

the test problem defined earlier and shown in Figure 8(a), it was found that only two forms lead to 

converging iterations regardless of N d . The first is given as 

([Ei] 1 + [Fi] 1 + [G]] 1 + [Dj]) [ n ] i + 1 = [0,]^] 

[ n ] i + 1 = ([E] 1 + [F] 1 + [G] 1 + [D])" 1 [ G ] 1 ^ ] (29a) 
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and the second is slightly different: 

([Ei] 1 + [G,] 1 + [D,]) [ n ] i + 1 = [Gi]i[Nd] - [F i^n] 1 ; 

[ n ] i + 1 = ([E]1 + [G]1 + [D])" 1 ([G]i[Nd] - [F^n] 1) ; (29b) 

where the corresponding local stiffness matrices are 

[E]] 1 = q/„ e[N] Tu. e

1V[N]-V[N][(j)] 1 dA ; 

[Fi] 1 = qj*Qe [N]T[N]Vu._ i-V[N][(|)] i dA ; 

[Gi] 1 = (q 2 /e)/ Q e [N]T[N][n]Vei[N] dA ; 

and [Di] is defined in (23). Note that e is assumed to be constant over the span of the element, E 

has been replaced with -VfNjhtj]1, and [Ai] is defined in (16). It is also important to note that for 

the case of a zero net current boundary condition in (29), (15) contributes to the stiffness matrix, 

not the forcing vector! 

Both combinations of (19) and one of (29a) and (29b) are very robust, and in all cases 

(varying N d and contact voltages) tested on the strip, charge neutrality gave a sufficiently good 

initial guess of the carrier density to ensure convergence in the Gummel iterations. (29b) tended to 

reach a solution in slightly fewer iterations as compared to (29a). On the other hand, this scheme is 

more computationally intensive since [Ei] 1, [Fi]1, and [Gi] 1 must be recalculated for each iteration. 

Although it has not been done here, inclusion of a generation-recombination term would create an 

additional nonlinear term as a function of carrier densities that would also have to be recalculated 

for each iteration. 

Tan et al. [29] introduce an application of Scharfetter-Gummel (S-G) interpolation in 

conjunction with a seven-point Gaussian quadrature for the construction of a stiffness matrix and 

forcing vector for triangular elements that lead to a higher accuracy and convergence rate of the 
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solution when compared to the classical Gummel finite element formulation. The S-G interpolation 

is only used when applying the quadrature on the potential and carrier values of the previous 

iteration and therefore requires relatively minor modification to the original classical formulation in 

a computer program. Application of this scheme was briefly tested on the strip problem as well as 

the MESFET examples in Section 5.2, but there was no noticeable improvement in the accuracy or 

convergence rate of the solution. Nevertheless, [29] shows that the Scharfetter-Gummel scheme 

really shines for higher doping conditions, and due to its easy implemention in already existing 

F E M formulations that apply Gummel's method, it is well worth mentioning here. 

For later reference, the current conservation Gummel approach and the advection-diffusion 

Gummel approach (using (29b)) are abbreviated as C C G and A D G , respectively. 

4.3 Newton-Raphson Method 

The Newton-Raphson method applied to the semiconductor equations consists of iteratively 

solving the Poisson and continuity equations simultaneously and implicitly. Its application to 

solving the current conservation model is derived here. The general form of a discretized nonlinear 

system can be written as 

[K([a])] = [P([a])][a] + [F([a])] = 0 (30) 

where ([a]) indicates that the matrix or vector is a function of the coefficients [a]. Linearizing 

[K([a])] by way of a truncated Taylor series expansion around some point [a]1 gives 

[K([a])] = 0 - [K([a]i)] + [K([a]i)]T A[ap . 

Defining [a]1 as the result of iteration i allows an iterative process to be described by 

A[a]i = -([KttaJ^Tr^Kaa] 1)] , (31) 
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[a ] i + 1 = [a]1 + A[a][ (32) 

where 

[K([a])]T = d[K([a])]/d[a] . (33) 

(31) and (32) describe one iteration of the Newton-Raphson procedure. Also, it is important to 

note that Dirichlet boundary conditions are applied to (31) by enforcing a no-change condition for 

a boundary node value, i.e. Aaj = 0 where j refers to a Dirichlet boundary node. The core of this 

method is the Jacobian or tangential matrix [K([a]1)]'p . Using (30), (33), and the chain rule leads 

to 

[K([a])]xd[a] = d[K([a])] = [P([a])] d[a] + d[P([a])] [a] + d[F([a])] (34) 

Rewriting the last two terms as 

d[P([a])][a] = [X([a])]d[a] (35) 

d[F([a])] = [Y([a])]d[a] (36) 

and substituting into (34) yields an expression for [K([a])]j : 

[K([a])]T = [P([a])] + [X([a])] + [Y([a])] . (37) 

Combining the Poisson and current conservation continuity models, (10) and (11), into one 

local matrix representation gives 
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[K([a])] = [P([a])][a] + [F([a])] = 
[A,] [B, ] p " m ' [B , ] p [N d ] " 

0 [CJ + tD,] [n] + 0 
= [ 0 ] (38) 

where [Ai ] , [Bi]p, [Ci] , and [Di] are defined in (16), (17), (24), and (23), respectively. In this 

case the [F([a])] term is not actually a function of [a], and it follows from (36) that [Y([a])] = 0. 

[P([a])] on the other hand has the drift term [Ci] which is a function of [())], thus 

d[P([a])][a] = • o o • •[*]• 

0 d[CJ [n] 
(39) 

So d [Cj][n] must be evaluated in order to find [X([a])J as defined by (35). Following are the 

details of a full derivation of d [Ci][n] into the form, [Qi] d[(j>] : 

Through (24) and the chain rule 

d[C,][n] =-q/ n e V[N] T [N][n](djx e )V[N][(J)]dA - q / Q e V[N] T[N][n]u. eV[N] d[(|)] dA 

(40) 

Now du,e is evaluated: 

du,e = ( d[i e / d[(J)]) d[<j)] = ( du.e I dlEI) (dlEI / d[(j>]) d[(J>] 

= (du, e / dlEI) (d(V(J)TV(t)) 1 / 2 / d[(j>]) d[<J>] 

= (d|x e / dlEI) (d(V(()TV(l) ) 1 / 2 / d(V<t>)) ( d(V(|>) / d[(j>]) d[<|)] 

= ( du.e / dlEI) ((V(])TV(t) Tm V())T) ( d(V[N][(|>]) / d[<|)]) d[<|)] 

= ( d | i e / dlEI) (V(()T / IEI) (V[N] d[(j)] / d[<\>]) d[<|)] 

= ( d|xe / dlEI) IEI"1 (V[N][(|)])T V[N] d[$] 

Substituting this result into (40) gives 
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d [q][n] = - q / Q e V[N]T-[N][n] (( dLi e / dlEI) IEI"1 (V[N][(J)])T V[N] d[(J)]) V[N][(|)] dA 

-qLeV[N]T-[N][n]^ieV[N]d[(j)]dA . 

Rearranging terms leaves 

d[q][n] = [Qi]d[(H 
= " qLe V [ N ] T - V[N][(|>] [N1W ( d̂ e

 7 d l E I ) I E I " ! (V[N][<|>])T V[N] dA d[<|>] 
- qfQ eV[N] T-[N][n]Li eV[N]dAd[(t)] . 

Now, (39) can be rewritten as 

d[P([a])][a] = [X([a])]d[a] = • o o • W • o o- •dm 
0 d[C,] [n] [Q,] 0 d[n] 

It follows from (37) that 

[K([a])] x = [P([a])] + [X([a])] + [Y([a])] = 
[A,] [B,] p 

[Q,] [C,] + [D,] 
(41) 

(38) and (41) are used to build the global Newton-Raphson formulation as defined by (31) and 

(32): 

"A[<Mi+1" • [A] 

A[n] i + 1 [Q]\ [C] i +[D] 

[A] [B] p 

0 [C] j + [D] 
_1_ 

" [B] p[N d] • \ 

w1. 
I 

0 I 

'[ct)]i+1' 

[n] i + ' 
= + 

A[n] i + 1_ [n] i + ' w1. A[n] i + 1_ 
(42) 

Note that only [C] and [Q] must be computed for each iteration. On the other hand for an N-node 

problem , 2N equations must be solved simultaneously at each Newton-Raphson iteration as 
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opposed to having to solve two sets of N equations at each Gummel iteration. This places more 

demand on computing power both in terms of memory and speed. It should also be noted that any 

nonlinear term, possibly to account for generation-recombination in the continuity equations, 

would follow the same basic procedure as that of the nonlinear drift term for determination of 

[K([a])] x. 

This Newton-Raphson current conservation technique, (42), does converge to a solution 

given a "suitable" initial guess, as opposed to the implementation of Gummel's method to the same 

model which, for doping levels beyond a realitvely low point, diverges from the solution 

regardless of the initial guess (See Section 4.2). Unfortunately, using charge neutrality and zero 

potential everywhere as an initial guess most often leads to diverging results and is therefore not 

"suitable". On the other hand, for a good intial guess (42) converges very rapidly to the solution. 

In fact, Newton-Raphson methods converge quadratically near the solution, while direct iteration 

methods converge only linearly as the solution is approached [28]. Combining the robustness of 

the Gummel approach to the advection-diffusion model with the efficiency of the Newton-Raphson 

approach to the current conservation model yields a good system for solving the coupled Poisson-

continuity equations. As it turns out, relatively few iterations of Gummel's method are required to 

achieve an appropriate initial guess for which the Newton-Raphson method can then be 

implemented to quickly converge to the solution (See Section 5.2). Applying this procedure to the 

strip test of the previous section requires a total of about seven iterations (four Gummel iterations 

and three Newton-Raphson iterations) as opposed to nine iterations required when applying only 

A D G . Figure 8(b) shows the carrier density distribution and potential field solutions to the strip 

problem for both models as well as analytic solutions based on the depletion approximation which 

is discussed in most semiconductor theory texts [26], [2]. Throughout the remainder of this paper, 

the Newton-Raphson current conservation approach and the combined Newton-Raphson current 

conservation and Gummel advection-diffusion approach are referred to as C C N R and A D C C , 

respectively. 

Applying the Newton-Raphson method to the advection-diffusion model was not 

considered here because there is no apparent advantage it could offer. On observation of (14), it is 
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clear that a Newton Raphson approach would be quite computationally intensive, much more so 

than either the Gummel approach to the advection-diffusion equations (ADG) or even CCNR, due 

to the many nonlinear terms that would have to be calculated at each iteration. In other words, even 

for a best case scenario in which it offered better convergence properties than CCNR, its 

computational inefficiency would be more than enough to diminish its usefulness. Also, the 

current conservation model has the nice property of current conservation which the advection-

diffusion model does not. 

Qualitatively speaking, the current conservation model's stiffness matrix is analogous to 

K 2 in Section 4.1, and Figure 6 shows iteration behavior analogous to that of the C C G and CCNR 

approaches when applied to the Schottky barrier strip test. Also, the advection-diffusion model's 

stiffness matrix is analogous to either K j or K3 for which Gummel's method proves to be very 

robust. The ADCC scheme ensures convergence by first applying direct iteration (Gummel's 

method) to the or K3 case (advection-diffusion model) until a reasonable initial guess is 

achieved before implementing Newton-Raphson iterations on the K 2 case (current conservation 

model) for faster convergence. 
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5 Application 

Examples of application of the previously described A D G and ADCC methods are 

demonstrated here. In each example, the methods are used to compute the potenital field and 

carrier distribution throughout a particular MESFET device. From these results various electronic 

properties of the device can be derived such as currents, conductances, and capacitances. 

Example 1 demonstrates current and small signal conductance calculations based on the analyses in 

[22]. This example is also used to compare the performances and results of A D G and A D C C . 

Example 2 is a full analysis of a MESFET which describes, in detail, the derivation of a small 

signal circuit model from the potential field and carrier distribution computed with A D C C . 

Preceding the examples, in the following section, certain restrictions regarding the mesh 

coarseness of the F E M problem are specified that ensure, to a certain degree, convergence and 

accuracy of the computed solution. 

5.1 Mesh Spacing 

For numerical stability and physically meaningful results, general statements can be made 

concerning restrictions on mesh coarseness. The Debye length is the characteristic decay 

length of charge in a semiconductor (See [26] and [2]) and is given by 

L D = ( k T 8 / q 2 N d ) 1 / 2 . 

Qualitatively speaking, if the lower order polynomial expansion of an element that has dimensions 

of the order h is to reasonably approximate a decaying charge distribution, it is safe to say that h 

should not be larger than the Debye length. This restriction is necessary to achieve physically 

meaningful results. The phrase "dimensions of the order h" refers to the approximate distance 

between any two nodes of an element. 
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For numerical stability, another limitation on the size factor h of an element is Reynold's 

number: 

R c = vh/D =s 2, 

where v is the velocity and D is the diffusivity of the carriers. In mathematics, this is also referred 

to as Peclet's number and is of importance in flow problems in general. Attempts have been made 

[27] to remove this restriction by modifying the weighting functions used in the standard F E M 

formulation; these are known as Petrov-Galerkin techniques. Put simply, the standard Galerkin 

F E M discretization (as demonstrated in this paper) can be shown to, by its very nature, add 

artificial negative diffusion to flow equations which, when combined with large drift constants, i.e. 

a large Peclet number, may lead to spurious node-to-node oscillations or "wiggles" in the 

computed solution. These wiggles are strictly numerical artifacts and, in the case of nonlinear flow 

problems, may even degrade the convergence and stability of an iterative solution scheme. The 

Petrov-Galerkin F E M discretization "solves" this problem essentially by adding positive artificial 

diffusion to cancel the negative artificial diffusion in the standard formulation. Unfortunately, such 

diffusive schemes lower the order of accuracy of the numerical solution from second order to first 

order. In fact, it is questionable to use such wiggle-suppression schemes at all (See Gresho and 

Lee [29].), and if wiggles do appear, simple local mesh refinement is probably the safest remedy. 

Fortunately, in the case of GaAs the drift velocity of the electron carriers cannot exceed 

approximately 2 x 10^ cm/s (barring velocity overshoot or any other quantum phenomena [26]), so 

Reynold's number does not dictate the mesh fineness for the submicron gate MESFET problem as 

much so as does the Debye length. 

5.2 Simulations 

Following are two examples of F E M simulations for submicron gate MESFETs. Similar to 

the demonstrations in [22], the first example briefly analyzes a MESFET for the main purpose of 
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comparing the performances of the A D G and ADCC schemes. The second describes a complete 

analysis of another MESFET with a thinner active region of higher doping concentration in which 

conductances and capacitances of the device at a certain bias are predicted. In both examples, 

doping levels are relatively low in comparison to practical scenarios. This is done in order to keep 

the number of nodes at "reasonable" levels for implementation on a conventional workstation. The 

F E M algorithm is programmed entirely in Professional M A T L A B v4.2, and all F E M simulations 

are carried out on a Sun SPARC 10 workstation. Before proceeding to the examples, some details 

concerning current calculations, norms, and the electron mobility expression are specified here. 

As in Barnes and Lomax [23] following the idealogy of the current conservation model, 

currents [I] and charges [Q] travelling through and existing on all nodes are expressed conveniently 

as 

[I] = J r [N]TJ a-n dS = ([C] + [D])[n] (43) 

and 

[Q] = J r [N] T eV[N]-ndS[(l)] = s[A] [® + e [ B ] p [n] - q / Q [ N ] T N d dA (44) 

where local stiffness matrices [Ci], [Di], [Ai] , and [B]]p are defined in (23), (24), (16), and (17), 

respectively. These representations simply state that a node's current and charge are the 

accumulations of weighted normal component contributions of electric current density and electric 

flux density, respectively, over the portion of the boundary, T, spanned by that node's global 

shape function. It should be clear that these definitions satisfy the integral form of Maxwell's 

equations [30] for steady-state current and charge as node spacing becomes infinitesimal, i.e. 

/ r Jn dS = I and 

J r D n d S = Q 
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For comparing node potentials resulting from the last two iterations, a scaled Euclidean 

norm is used: 

A<|> = (l/maxCM1))- (2 n ( V - K i A ) 2 ) m 

For comparing node carrier densities from the last two iterations, the following norm is used: 

An = ( 2 n ( l - n ^ V ) 2 ) 1 7 2 

In contrast to the scaled Euclidean norm, this one places more importance on local nodal changes 

regardless of the values of the carrier densities at those nodes. Since carrier densities vary on 

exponential scales, this is a more suitable norm. In the above definitions, i is the iteration number, 

and n is the node number 

As in [22], the following expression is used for the nonlinear mobility term: 

Li e = (u,0 + v sIEI 3 / IE 0I 4) / (1 + IEI 4 / IE 0 I 4 ) , (45) 

where u.Q is the low field intensity electron mobility, v s is the electron saturation velocity, and IEI is 

the electric field intensity. The constants are chosen as u.Q = 5000 c m 2 s~' V ~ ' , 

v s = 0.85 x 10^ c m s ' ' , and IEQI = 4000 V cm"' . Figure 9 shows a plot of the electron drift 

velocity with respect to electric field intensity. 
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Figure 9. Electron drift velocity versus electric field intensity. 

5.2.1 Example 1 

Figure 10 shows the configuration of the cross section of the GaAs MESFET to be 

analyzed. The cross section is 1 x 2 um, and the gate length is 0.4 um. There is an active region 

with a uniform doping concentration of N d = 5 x 1 0 ^ cm"^, and a buffer zone with a uniform 

doping concentration of N d = 1 x 1 0 1 J cm" J and thickness 0.2 um. In order to reduce the number 

of necessary nodes, the Schottky barriers under the source and drain are neglected, and ohmic 

contacts are assumed in place of heavily doped wells that have the same effect. 

The mesh used for this problem was generated using a semi-automatic mesh generation 

algorithm based on Zienkiewicz and Phillips [31] and is shown in Figure 11. As can be seen, the 

mesh is finer near the contact edge singularities and underneath the gate since these are the regions 

of maximal gradients in carrier density and potential field. 
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Figure 10. MESFET device for Example 1. 
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Figure 11. Mesh Grid for Example 1 - 959 nodes, 448 elements. 

Dirichlet boundary conditions exist along the contacts and just below the buffer zone. The 

boundary potentials at the source and drain (ohmic contacts) are set equal to the voltage on the 

source and drain contacts, V d and V s , while the boundary potential along the gate boundary is set 

to -0.6852 V using (28a). V s = 0 V is used as the reference voltage throughout this example. The 

boundary carrier densities at the source and drain contacts are set equal to the doping level forcing 

charge neutrality as required for ohmic contacts, while the carrier density n s just under the gate 



43 

contact is 1.62 x 10^ cm"^ satisfying (28b). The boundary under the buffer zone is given an 

artificial condition of zero potential and charge neutrality to approximate the effects of a deep 

substrate. Of course, the artificial charge neutrality condition results in "leaking" current through 

this artificial boundary, and current conservation is not preserved. This is done intentionally in 

order to keep the number of A D G iterations low. It turns out that inclusion of the term (15), which 

is required to specify zero net current across a boundary in the advection-diffusion model, 

increases the number of iterations necessary to reach a solution with A D G , in this case by a factor 

of four. 

Neumann boundary conditions are enforced on the potential and carrier density at the 

semiconductor-air borders between the contacts, and along the left and right edges of the device. 

These boundary values are zero suggesting no current, diffusion and drift, across the boundaries, 

i.e. perfect insulation. Applying these conditions is accomplished simply by neglecting the surface 

integral terms in the F E M formulations for both A D G and A D C C . 

Figures 11 and 12 show the potential field and electron carrier distribution calculated with 

the ADCC method for V s = V g = 0 V and V d = 3 V . The Schottky barrier spans most of the 

region under the gate leaving only a thin channel of a high concentration of electrons just 

underneath. The channel is "pinched o f f at the drain side by a depleted region of carriers. 



Figure 13. Electron carrier distribution. 
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Figure 14 shows a plot of the current density field, and it is clear that the concentration of current is 

greatest along the narrow channel underneath the barrier. Also, after closer inspection of 
1 C Q 

Figure 13, a "bump" indicating an accumulation of carriers above the 5 x 10 cm" J level exists 

along this channel. This bump and the adjacent valley of carriers constitute what is known as a 

stationary or Gunn domain, and is a result of velocity saturation effects as predicted by one-

dimensional FET analysis [26]. As the drain voltage is increased further in the saturation regime, 

the stationary domain absorbs the bulk of the extra potential difference along the channel. 
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Figure 14. Current density field. 

Simulations were carried out for varying gate and drain voltages. A plot of I D vs. V _ , for 

Vg = 0, 0.5 V , is given in Figure 15. As expected, there is an active regime and a saturation 

regime of operation. There is also a region between these that shows negative resistance. Such 

regions are typically avoided in the design of amplfiers since they may cause the device to oscillate. 

Figure 16 shows a plot of 1̂  versus Vg for V d = 2.5 V . 
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Figure 15. Lj vs. V d for Example 1. 

Drain current versus gate-to-source voltage (Vds = 2.5 V). 

Figure 16. I d vs. Vg ( V d = 2.5 V) for Example 1. 

From these two plots, a quick calculation of the voltage gain G of this device operating in 

saturation mode, or V d > 2 V , and at V„ = 0 can be made: 

G = 0 I d / dV ) / ( 3 l d / d V d ) - 116.3/7.2 - 16. 

Figure 15 also shows drain current versus drain-to-source voltage results for both the ADG 

and the A D C C methods for V d = 0,0.5 V . The A D G and ADCC curves closely match each other 
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in the saturation regime but differ considerably in the triode regime and between the triode and 

saturation regimes. It is assumed that the crude finite element approximation of the term containing 

the gradient of the mobility, V u , e , in the advection-diffusion equations may introduce significant 

error in representing the drift current term, particularly when the electric field intensity along the 

channel is in the range of the "hill" in Figure 9, i.e. where [x e is highly nonlinear. Since the current 

conservation model does not suffer from such approximations and has fewer terms to approximate 

than the advection-diffusion formulation, the ADCC plot is assumed to be a better approximation 

of the true current. For this problem, the A D G method required between thirty and forty iterations, 

while the A D C C method required only about eight iterations for change tolerances < 10"^. Of the 

ADCC iterations, the first two or three were A D G iterations and the remaining were CCNR 

iterations. 

It should be emphasized that these results as well as those for the strip test in Section 4.2 

and shown in Figure7(b) come from two completely different F E M formulations, the current 

conservation model and the advection-diffusion model, solved by two completely different 

techniques, the Newton-Raphson method and Gummel's method, respectively. So, the fact that 

the A D G and A D C C results agree quite nicely, particularly in the saturation regime, confirms with 

some certainty that the results are indeed valid as approximate solutions to the MESFET problem. 

5.2.2 Example 2 

Next, a device similar to the one in the previous example is fully analyzed. A "full 

analysis" constitutes predicting the small signal characteristics of the MESFET for the purpose of 

constructing a small signal circuit model useful for implementation in circuit analysis applications. 

The circuit model used here is adopted from Pulfrey and Tarr [26], and a similar model is 

presented by Curtice [32]. 

The device used in this example is the same as the one described in Example 1 with a few 

modifications: The active layer is 0.4 um thick with doping density N d = 2 x 1 0 ^ cm"^, and the 

buffer zone is 0.6 um thick. Also, rather than forcing a neutral charge condition, a zero net current 

condition is forced on the lower artificial boundary. This ensures current conservation in the 
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system assuming the current definition of (43). 

The mesh used is shown in Figure 17. It is made up of 1453 nodes and 688 elements. 

Potential and carrier density field solutions were computed for a series of bias conditions using 

A D C C . The number of iterations required to reach the solutions starting from an initial guess of 

zero potential and neutral charge is about forty, of which only the last three or four are CCNR 

iterations. For a sufficiently good initial guess, CCNR iterations reached a solution within three or 

four iterations. 
x IP" 4 S o u r c e G a t e Drain 

x ( c m ) — > X1Q-4 

Figure 17. Mesh grid for Example 2 - 1453 nodes, 688 elements. 

Figure 18 shows how the potential and carrier fields change as the drain voltage is varied. 

As the drain voltage is increased from zero voltage (Figure 18(a)-(b)), the depletion region expands 

on the drain side and begins to pinch-off the channel of carriers. In Figure 18(c)-(d), the channel 

is completely pinched off and there is relatively little change in the carrier density distribution as the 

drain voltage is further increased. As a result, the drain current increases very slowly for higher 

drain voltages, and the device is described as being in the saturation regime. It should be noted 

that, unlike in Example 1, there is no Gunn domain present in this device. Typically, very small 

scale MESFET devices do not have this trait, the reason for this being that carrier transit times are 

so small such that charge accumulations do not have enough time to form before the carriers leave 

the device. A small carrier wall exists along part of the artificial boundary in all cases. It is a result 

of satisfying the zero net current boundary condition across this boundary, the potential for which 
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has a Dirichlet condition. The carrier wall supplies the necessary diffusion current that cancels out 

the drift current caused by the potential gradient on the boundary and is therefore solely a by

product of the artificial boundary condition with no physical meaning. 

A plot of the current density field is given in Figure 19, and as expected, the majority of the 

current exists mainly along a narrow channel from the drain to the source and between the Schottky 

barrier-induced depletion region and the buffer zone. 
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Figure 19. Current density field. 
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Drain current versus drain voltage plots for different gate voltages are shown in Figure 20. 

As expected, both a triode and saturation regime are apparent from these plots. Unlike the device 

in Example 1, there is no region of negative differential resistance in any of the current plots. It is 

believed that there is a correlation between the existence of a Gunn domain and the appearance of a 

negative differential resistance in the plots. Under certain bias conditions and depending on its 

dimensions (particularly the gate length) and doping levels, a MESFET device may behave 

similarly to a transferred electron device (TED) operating in the limited space-charge accumulation 

(LSA) mode [33]. TEDs, also known as Gunn diodes, are typically also made of GaAs and are 
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used for their negative resistance characteristics in amplifier and oscillator applications. 

For a small-signal characterization, the bias conditions of interest are chosen to be 

V g S = -0.5 V and V d s = 4 V . A l l small-signal conductances and capacitances are sought in order 

to build a small-signal model of the MESFET. From the data used to create the plots in Figure 20, 

the small signal conductance g d s is roughly approximated as 

g d s = dId/dVds - A I d / A V d s = 2.06/1 mho/m = 2.06 mho/m . (46) 

where A I d = Id(V d s=4.5) - I d (V d s =3.5) and A V d s = 4.5 -3.5 = 1. Next, the drain current must 

be calculated for different gate-source potentials. Figure 21(a) shows a plot of the results. From 

this data the transconductance g m can be computed: 

g m = dld/d\gs ~ AI d /AV„ s = 16.17/1 mho/m = 16.17 mho/m . (47) 

Similarly, the conductance g „ s is given as (See Figure 21(b).) 
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g = ai„/aV - Al / A V g s = 15.97/1 mho/m = 15.97 mho/m . (48) 

Drain current versus gate-to-source voltage (Vds = 4 V). Gate current versus gate-to-source voltage (Vds = 4 V). 

Vgs(V) —> Vgs(V) —> 

(a) (b) 

Figure 21. (a) Drain and (b) gate current versus gate voltage. 

By linearizing the currents and voltages around the DC bias points, the method outlined in 

Appendix B can be applied for finding the small signal capacitances of the device. This is done 

simply by replacing [V] and [Q] with perturbations A[V] and A[Q], respectively, so that the 

resulting capacitance matrix satisfies 

A[Q] = [C]A[V], 

where A[Q] = [5Q d 5 Q g 5 Q S ] T and A[V] = [5V d 5 V g 5 V S ] T . 

Using (44), electrode charges are computed from the carrier and potential solutions for 

several electrode potentials in the vicinity of the bias voltages on the drain, gate, and source. 

Figure 22 shows plots of the charges on each electrode for varying electrode potentials. 
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Electrode charges versus drain-to-source voltage (Vgs = -0.5 V). 
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(a) 
Electrode charges versus gate-to-source voltage (Vds = 4 V). 
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(b) 
Electrode charges versus source voltage (Vds = 4 V, Vgs = -0.5 V). 
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(C) 
Figure 2 2 . Electrode charges for varying potentials on (a) the drain, 

(b) the gate, and (c) the source. 
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From the data in the plots, the capacitance matrix is constructed: 

[C] 

100.04 26.66 -179.22 
-22.7 288.9 -280.52 
-0.26 -3.28 6.6 

pF/m 

As discussed in Appendix B , the diagonal terms give the capacitances to ground. Since this is an 

active device, this capacitance matrix is not symmetric. So, the next step is to decide which off-

diagonal terms are to be used to represent the mutual capacitances between the drain, gate, and 

source terminals. Assuming that the device is in common source mode, the gate acts as the input, 

and it is desired to represent the behavior of the charges on the gate as they redistribute themselves 

in response to a change in the applied input voltage. This behavior can be expressed by the 

capacitance elements C21 and C 2 3 [34]. Also, since the manner in which the charge redistributes 

itself at the output (the drain terminal) in response to a change in the drain voltage is sought, the 

capacitance element C i 3 is used as the mutual capacitance between the drain and the source, which 

in this case is an additional capacitance to ground. The resulting mutual capacitances and self-

capacitances for this MESFET device in common source configuration are given as follows: 

C G S = 280.5 pF/m 

C G D = 22.7 pF/m 

C D S = 179.2 pF/m 

C G G = 288.9 pF/m 

C D D = 100.0 pF/m 

(49) 

Compiling the results of (46)-(49) yields the small signal circuit model shown in Figure 23. 

An exponential term is introduced in the current source expression to take into account the time it 

takes for an electron to travel from the source to the drain. This delay time is taken to be 

approximately 10 ps, which is the time required for an electron to travel 1 um at a velocity of 

1 x 10^ cm/s. 



x = transit time (~ 10 ps) 
R G and R D = parasitic resistances 
g m = 13 mho/m 
g g s = 16.2 mho/m 
gjg = 2.1 mho/m 
C G G = 288.9 pF/m 
C D D = 100.0 pF/m 
C D S = 179.2 pF/m 
C G S = 280.5 pF/m s 

C G D = 22.7 pF/m 

Figure 23. Small signal model of MESFET in Example 2. 

It should be noted that the rough approximations of the partial derivatives in the above 

analysis were used in the context of a simple example with the intention of demonstrating direct 

application of the sampled data points in the plots. For applications in circuit analysis software, 

such as SPICE, each set of sampled data could be replaced by a polynomial curve fit. It follows 

that all conductances and capacitances could then be represented by continuous polynomial 

expressions as functions of the terminal voltages. 



57 

6 Extensions to FEM Model 

In monolithic microwave integrated ciruits (MMICs), MESFETs are implanted into an 

intrinsic GaAs substrate, and strip-like conductors feed the source, gate, and drain of the devices. 

Typically, source and drain strips are on the order of tens of microns in width, extending far past 

the feeds of the MESFET's active region (See Figure 24). These strip conductors introduce 

considerable capacitances of their own that are not completely accounted for in the previously 

described F E M analysis. These capacitances are parasitic degrading the performance of the device 

in terms of speed and power consumption [32], [35]-[37]. Following are descriptions and 

recommendations of how Green's integral equations and boundary integral equations (BIE) solved 

with the method of moments (MoM) can be used in conjunction with the F E M model of the 

MESFET to give a more accurate model of the device. The substrate and ground plane shown in 

Figure 24 extend infinitely along the x-axis. 

GaAs Substrate 

x 

Figure 24. MESFET with strip conductor feeds. 

6.1 Method of Moments and Integral Equations 

The method of moments (MoM) is a very efficient numerical technique originally 
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introduced by Harrington [5] for finding approximate solutions to integral equations of the form: 

where r is a position in space, a(r) is known in some domain Q, b(r') is unknown and to be 

determined, and c(r, r') is a known function, typically a Green's function for a particular linear 

differential equation satisfying a set of boundary conditions. The M o M consists of expanding the 

unknown b(r') into a sum of N known basis functions with N unknown coefficients, setting up a 

set of N equations for N known values of a(r), and solving for the unknown coefficients by a 

matrix inversion. 

6.2 Parasitic Capacitances and Green's Integral Equation 

The strip electrodes of a MESFET can be thought of as having free charges sitting on their 

surfaces when bias potentials are applied to them. As in [6], the goal is to find these charges in 

order to determine the parasitic capacitances of the strip electrodes which are then simply added 

together with the MESFET capacitances resulting from the F E M simulation in the circuit model. 

The big approximation and assumption that should be noted here are that the GaAs substrate is 

essentially charge-free (a perfect insulator) and that the strips and that the charge-free air-substrate-

ground configuration can be decoupled from the active region of the MESFET. This reduces the 

problem to a linear Poisson equation which governs the behavior of the static field resulting from a 

set of free charges restricted to some finite domain (the strip surfaces). 

A general solution of the potential field for the linear Poisson equation is the Green's 

integral equation . 

[5]: 

(50) 
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where (|)(r) is the potential field, p(r') is the charge distribution on some domain Q, and G(r, r') is 

the Green's function of the system. In this case, the strip surfaces constitute the domain of the 

problem, and the Green's function [38] satisfies the boundary conditions that exist at the substrate 

interfaces and the condition of zero potential at infinity. Since the potentials on the electrodes and 

the Green's function are known, the charge distribution can be found using the M o M . 

As in , New York: Macmillan, 1968. 

[6], the strip conductors are approximated to be infinitesimally thin. In contrast to , New York: 

Macmillan, 1968. 

[6], the problem is solved in two dimensions rather than three, and complex images and a 

multipipe model of the strips are used to give a much more compact and efficient M o M solution to 

the problem rather than using conventional image theory and pulse basis functions. Brief 

overviews of these techniques follow. 

6.2.1 Complex Images 

Complex images [39] are used for the purpose of determining an approximate closed-form 

Green's function for a multilayered substrate. For the case of a point charge above a ground plane, 

conventional image theory states that the potential field above the ground plane is identical to the 

field for the case in which the ground plane is replaced by a mirror image of the original charge 

with a sign opposite that of the original charge. This conveniently allows the Green's function of 

the original system to be represented as the sum of two free-space Green's functions which have 

simple, known analytic expressions. 

When dealing with a point charge embedded in a multilayered (more than two layers) 

structure, conventional image theory (, New York: Macmillan, 1968. 
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[6]) leads to representation of the Green's function by a singly (three layers) or multiply (more than 

three layers) infinite series, which often converges very slowly. The use of complex images 

allows for a much more compact (typically ~5 terms) approximate Green's function. A complex 

image has both a complex position and a complex amplitude. Since static fields are real, the 

complex images of a point source always occur in complex conjugate pairs. Complex images are 

computed numerically by approximating the Green's function in the spectral domain with complex 

exponentials using Prony's method. The spectral domain Green's function is computed using the 

transmission line method outlined in [12]. 

6.2.2 Multipipe Model 

The multipipe model [7] is used for the determination of an appropriate expansion of p(r'). 

Each strip is represented by a series of pipes each with constant unknown charge. Gauss-

Chebyshev quadrature is used to approximate the Green's integral equation, (50), by a finite 

summation which essentially results in the replacement of the unknown continuous charge 

distribution by a finite series of point charges with unknown values. Then, applying the results of 

Wheeler's work in which he derives a single pipe model of a strip in free space assigns a radius to 

each of the individual point charge locations, and hence pipes are formed . The result is a series of 

pipes with different radii and unknown charges that takes the place of the original strip. The 

charges on each pipe are related to the charge distribution on the strip by a simple relationship. 

With forced potentials on the strips and the appropriate Green's function, the charges are found 

using the M o M . The moment matrix resulting from such an approach is very compact for high 

computational efficiency. 

6.2.3 Results 

Extending the problem of Example 2, the source, gate, and drain of the MESFET are fed 

by strips numbered 1,2, and 3, respectively. Strip 1 and Strip 3 are each 10 um wide, and Strip 2 

is 0.4 um wide. In applying the M o M , thirteen pipes are used to model each of Strip 1 and Strip 
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3, while six are used for Strip 2 yielding a 32x32 moment matrix. Five complex image terms are 

sufficient to accurately approximate the Green's function of the air-substrate-ground plane system. 

Using the procedure outlined in Appendix B , the capacitances of the strips are calculated to be 

C l l = C 3 3 = 2 3 0 - ° P F / m 

C 2 2 = 148.7 pF/m 

*-T2 = ^23 = 72-9 pF/m 

C 1 3 = 98.2 pF/m 

Superposition of these parasitic capacitances with those computed in Example 2 gives the 

modified circuit model shown in Figure 25. The extra capacitance has the overall effect of slowing 

x = transit time (~ 10 ps) 
R Q and Rrj = parasitic resistances 
g m = 13 mho/m 
ggS =16.2 mho/m 
g,js = 2.1 mho/m 
C ' G G = 437.6 pF/m 
C ' D D = 330.0 pF/m 
C ' D S = 277.4pF/m 
C ' G S = 353.4 pF/m § 

C ' G D = 95.6 pF/m 

Figure 25. Modified small signal model of MESFET in Example 2. 

the device down. Figure 26 compares magnitude versus frequency plots of the transfer functions 

for both models. The analytic expression for the transfer function of the circuit model is 
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V 
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g d s + MCDD + cDS) -

torn 
w 2 C G D ( C G G + C G S ) - ja»CG Dg 

gs 

ggs + J « ( C G D + C G G + C G S ) 

As can be seen in Figure 26, inclusion of the parasitic capacitances in the modified circuit model 

causes the 3 dB cutoff frequency to decrease by more than one half, from 7 GHz to 3 Ghz. This 

illustrates the level of importance of parasitic capacitances in the performance of a MESFET. 

~i 1 1 1 1 1 i r~ 

3 GHz 

Modified Model 
- Original Model 

7 GHz 

0 2 4 6 8 10 12 14 16 18 20 
Frequency (GHz) -—> 

Figure 26. Gain versus frequency plots for circuit models. 

6.3 Artificial Boundary Condition Adjustments 

In both Example 1 and Example 2, the potential is set to zero on the artificial boundary in 

order to emulate the effects of the ground plane of the substrate which is actually much farther 

away. The thickness of the substrate is typically on the order of 100 \im making it impractical to 

include it in the solution domain of the F E M problem due to the many extra nodes that would be 

required in such a situation. In addition to this, the zero diffusion and drift current conditions on 

the left and right boundaries are not entirely realistic since some current does, in reality, travel 

outside of the active region of the device and into and out of the portions of the electrode strips that 
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extend beyond the active region as depicted in Figure 24. Following, possible solutions to these 

deficiencies using integral equation techniques are proposed. 

6.3.1 Green's Integral Equation 

A simple approach is to modify the F E M solution domain by extending the buffer zone 

around the entire active region. Zero net current boundary conditions are imposed on the boundary 

around the buffer zone. Using the Green's integral equation and M o M as explained earlier, the 

charges on the strip conductors are calculated. From these charges the field along the artificial 

boundary is computed and is used as a potential boundary condition in the F E M model. 

Applying this procedure to the MESFET in Example 2, the buffer zone is made to surround 

the active region and is 1 urn thick. The mesh is shown in Figure 27. The potential and carrier 

density fields computed with F E M and the new artificial boundary conditions for V d s = 4 V and 

V g S = 0 V are shown in Figure 29. Drain current versus drain-source voltage for V g S = 0 is 

plotted in Figure 28. There is considerable difference between this current plot and the one in 

Figure 20 even though the device being modelled is the same. 

Figure 27. Modified mesh grid for Example 2 - 1677 nodes, 800 elements. 
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Drain current versus drain-to-source voltage (Vgs = 0 V). 

Vds (V) —> 

Figure 28. Drain current versus drain-source voltage. 

These results are questionable and still under investigation due to the following reasons. 

Recall (See Section 2.) that ohmic contact conditions were applied at the boundaries between the 

source and drain conductors, and the active region of the MESFET in place of the heavily doped 

wells that exist in reality. This simplification greatly reduced the number of necessary nodes in the 

model (See Section 5.1). Unfortunately in this case, this simplification introduces a large step 

discontinuity in the carrier concentration condition along the source and drain portions of the 

boundary. Specifically, the portion of the boundary between the active region and the source and 

drain conductors has a carrier density condition of 2x10^ cm"^, while the portion of the boundary 

between the buffer region and the source and drain conductors has a carrier density condition of 

1.621x10^ cm~3 due to the Schottky barrier. This discontinuity results in unrealistic, nonphysical 

current behavior in the vicinity of the step. Of course, if the ohmic contact approximations would 

be replaced by the actual heavily doped contact wells, this abrupt step discontinuity does not occur, 

but the number of nodes required as a result of this would be costly. This scenario has not been 

investigated here. Another potential problem is that the artificial carrier walls that appear along 

most of the buffer zone boundary are quite high (See Figure 29.), and it is questionable that they 

have no effect on the true carrier and potential distributions in and around the active region. 
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o 

; = 4 V or 3.14 x 1 0 1 6 c m " 3 

= -0.7211 V o r 16210 cm" 3 

Figure 29. Artificial boundary adjustment results. 
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6.3.2 Boundary Integral Equation 

Instead of using the Green's integral equation to find the potential along the artificial 

boundary, the above approach could be further improved by incorporating an M o M matrix of a 

boundary integral equation (BIE) directly into the original F E M formulation thereby coupling the 

interior of the F E M domain to the exterior. 

The BIE expresses the relationship between the potential at a point on the boundary and the 

potential on the entire boundary. As outlined in [9], the BIE that satisfies the Laplace equation is 

where G(r,r') is the Green's function satisfying the exterior boundary conditions, (j)(r) is the 

potential along the boundary T, and a(r') = (V(()(r')-n), the potential flux normal to F. Using the 

M o M to discretize this equation , a matrix expression of a at a finite number of points in terms of 

the potential at those same points is derived: 

where [(j)] and [a] are nodal values of (j) and a, respectively, along T. An approximate expression 

for a is obtained by adding some shape functions [M] to (52), so a « [M] [a]. Next, although 

[9] uses a variational formulation to complete the derivation, it is shown here how the familiar 

Galerkin's method can also be used to arrive at a similar final result. Substituting the 

approximation for a and (52) into the surface term in (10) (global version) results in a new 

expression for this term: 

J r[N]TeV[N][(t)]-ndS = - J r [ N ] T e a dS = - ( f r [ N ] T

£ [M]dS [ B ] " 1 ^ ] ) [<|>] . (53) 

(|>(r)/e = J r(()(r')(VG(r,r')-n)dr' - / r G ( r , r ' ) a(r') dr' (51) 

[A][<|>] = [B][a] 

[a] = [BYl[A] [(M (52) 
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The minus sign is introduced since the normal vector of the interior F E M domain points in the 

opposite direction to the normal vector of the exterior BIE domain. The term enclosed in the 

brackets is a matrix, and it can be thought of as the stiffness matrix for a "boundary element" 

comprised of and coupling all the nodes on the outer boundary of the F E M problem. This stiffness 

matrix differs from the one resulting from the variational approach in that it is not symmetric. The 

boundary element is treated as any other finite element, and the components of its stiffness matrix 

are added to the global stiffness matrix in the same manner. This hybrid method has proven 

effective in open electromagnetic scattering problems [40], and its application to the MESFET 

problem is currently being studied. 
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7 Conclusion 

This paper presented a two-dimensional finite element analysis of the stationary 

semiconductor device equations. Exploiting the best features of two different F E M formulations, 

the current conservation model and the advection-diffusion model, along with two different 

numerical solutions, Gummel's method and the Newton Raphson method, a robust and efficient 

solution approach was developed. This technique was put to the test in two sample problems in 

which potential and carrier density distributions were computed inside GaAs MESFETs. In order 

to demonstrate the usefulness of these field distributions for the purpose of circuit analysis, various 

MESFET parameters such as electrode currents, voltage gain, capacitances, and conductances were 

calculated and incorporated into a small-signal circuit model of one of these devices. 

Implementation considerations, such as stability and accuracy restrictions, of the F E M solution 

were also addressed. Finally, various extensions to the F E M approach involving the application of 

the method of moments (MoM) were briefly discussed and partially demonstrated. These 

extensions consist of Green's integral and boundary integral equation solutions that are 

implemented in such a way as to compensate for the limitations of a finite domain and to improve 

physical accuracy of the F E M solution. The ultimate goal of such extensions is to couple the finite 

domain to the rest of the circuit of which it is a sub-region. 

7.1 Accomplishments 

The ability to model the steady-state fields inside semiconductor materials is an important 

step in properly accounting for active regions in MMICs. Through the development of a new 

formulation, it has been shown that the finite element method can be used reliably in the solution of 

the classical semiconductor equations at least in the case of majority carrier devices, which are most 

prominent in MMIC designs. Additionally, it has also been suggested that the choice of a finite 

element approach over a finite difference scheme has its advantages in light of the "big picture" of 
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MMIC modeling. The similarity in the mathematical structures of the finite element method and the 

method of moments together with the inherent flexibility of boundary handling in the finite element 

method offers a direct means for the coupling of the two methods. This is necessary if the mutual 

field coupling among all the components of an MMIC is to be considered. Failure to account for 

these component interactions may lead to inaccurate performance predictions in the overall design 

of an M M I C . 

7.2 Future Work 

Application of the F E M formulations presented in this paper is not restricted to majority-

carrier devices and can easily be applied in the simulation of other semiconductor devices. Also, 

these F E M formulations, as they stand, are not restricted to just two dimensions and, theoretically, 

can be applied to three dimensional problems as well, without any modification of the expressions 

or notation shown here. This would be possible by simply using three-dimensional finite elements 

in place of the two-dimensional elements implemented here. These two points open the door to a 

substantial amount of further investigation of and testing for the effectiveness of this finite element 

analysis in dealing with a myriad of semiconductor problems. 

Also, the application of boundary integral equations to account for exterior effects on the 

finite element domain has yet to be accomplished. Hybrid boundary integral finite element 

methods have successfully been applied to linear open electromagnetic scattering problems and 

open static field problems. Use of a boundary integral equation discretized with the method of 

moments leads to a convenient boundary element which is incorporated into the finite element 

formulation as any other element. For linear problems, this leads to one matrix equation that can 

be solved simultaneously; iterative techniques are not required. Herein lies the advantage of this 

hybrid method, as opposed to other exisiting iterative hybrid schemes, for dealing with nonlinear 

problems (nonlinear interior, linear exterior), since any other iterations besides the already 

necessary iterations due to the nonlinear aspect of the problem, e.g. Gummel or Newton-Raphson 

iterations, would prove to be quite costly in terms of speed. The difficulties with the boundary 
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integral approach are rooted in the challenge of accurately evaluating integrals over singularities 

(self-terms) and chosing appropriate basis functions both of which are necessary for an accurate 

moment method formulation. There is much room for experimentation in this area. 
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Appendix A Derivation of Shape Functions 

The following derivation of shape functions is an extension of Problem 3.2 in [10]. A 

function f in a two-dimensional space can be approximated by a polynomial of the form 

f(x,y) = C ^ C x . y ) + C 2 g 2 (x ,y) + . . . + C M g M (x ,y ) (A. l) 

where gj(x,y) is some arbitrary known function of space, and Cj is some arbitrary constant. Given 

values of this function at M specific points in space gives a set of M equations and M unknowns: 

fCxj.yj) = C 1 g 1 ( x 1 , y 1 ) + C 2 g 2 (x 1 , y 1 ) + . . . + C ^ ^ x ^ ) 

f ( x 2 , y 2 ) = C 1 g 1 ( x 2 , y 2 ) + C 2 g 2 ( x 2 , y 2 ) + . . . + C M g M ( x 2 , y 2 ) 

f ( x M > y M ) = c i g i ( x M - y M ) + c 282 ( x M>yM) + • • • + c M g M (x M , y M ) 

or 

m = rate] 

where fj = f(xj,yj) and Xjj = gj(xj,yj) . So, the solution for the coefficients is given by 

[C] = [X] _ 1 [f]. Now, (A.l) can be rewritten as 

f(x,y) - [g][C] 

where [g] is a row vector with gj = g^(x,y). Substituting for [C] in this expression gives 
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f(x,y) ~ [ g l t X ] - 1 ^ =[N][f] =N 1 (x ,y)f (x 1 ,y 1 )+ N ^ x . y ) ^ ^ ) + . . . + N M (x ,y) f (x M ,y M ) 

(A.2) 

where Nj (x,y) is the shape function for point i . So, (A.2) expresses the original function in terms 

of it's values at a finite number of points, M , and the shape functions at these points. Note that 

this procedure is not limited to two dimensions and is just as easily applicable to higher 

dimensions. 

As a simple example, an expression for the shape functions of a linear triangular element is 

derived. Here , the three points, or nodes, at which the function to be approximated is known are 

located at the three vertices of the triangle, (x^,y^), (X2,y2)> and ^ 3 ^ 3 ) . Next, [g] is chosen to 

be [1 x y]T. This is the same as saying that gj(x,y) = 1, g2(x,y) = x, and g 3(x,y) = y in ( A . l ) . 

The matrix [X] is constructed: 

[X] 
1 J 1 

It follows that 

[N] = [1 x y] 

1 x, 
1 x 2 

1 X , 

(A .3) 

Solving for an analytic expression for Nj (x,y), requires some considerable amount of algebra. 

Analytic solutions become much more difficult to obtain for higher order elements. Nevertheless, 

in practice there is no need to have analytic expressions for the shape functions, and (A.3) is 

ideally suited for numerical applications. Once [X]" ' has been computed, it is a simple matter to 

calculate the value of the shape functions at any point in space simply by plugging the coordinates 
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into [g] and solving (A3). This method for computing shape functions can be applied to a space 

of any number of dimensions. On the other hand, choosing an appropriate set of functions [g] 

and sampling points is quite arbitrary. For triangular elements of any order, Pascal's triangle can 

be used to find the proper [g]. 
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Appendix B Capacitance Calculations for a Multi-Port System 

A circuit model composed of N nodes interconnected by capacitors representing the 

capacitive coupling for a system of N conductors is sought. It is assumed that a means is available 

for calculating charges, Q n , on the conductors given any arbitrary set of potentials, V n , forced on 

the conductors. The charge on conductor 1 is defined as 

Q l = C 1 1 V 1 + C 1 2 V 2 + • • + C m V N 

Similarly, for the charge on conductor 2 

Q 2 = C 2 1 V ! + C 2 2 V 2 + . . . + C 2 N V N 

and so forth for the charges on the remaining N-2 conductors. Putting these relationships between 

the conductor voltages and charges into matrix form gives 

[Q] = [C][V] 

where [Q] is an N x l column vector with components Q n , [V] is an N x l column vector with 

components V n , and [C] is an NxN matrix with components C n m . [C] is referred to as the 

capacitance matrix [41]. By definition, the N components of the first column of [C] are simply the 

values of the charges on the N conductors for the case of a potential of value one on the first 

conductor and zero on the rest. The N components of the second column of [C] are the values of 

the charges on the N conductors for the case of a potential of value one on the second conductor 

and zero on the rest, and so on. The magnitude of each individual component of [C], I C n m l , is the 

value of the circuit capacitor between node n and m for n * m, mutual capacitance, or the value of 

the capacitor from n to ground for n = m, self-capacitance, in the equivalent circuit model. 

For example, two microstrip conductors are represented by the equivalent circuit model as 



shown in Figure B1. 
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Figure B1. Circuit model for two strip conductors. 

It should be noted that for a passive system, C n m = C m n , due to reciprocity 


