
SIMULATING WAVE SCATTERING PROBLEMS BY

PSEUDOSPECTRAL TIME-MARCHING ON SUPERCOMPUTERS

by

YONG LUO

B. Sc. (Electronic Engineering), Fudan University, 1987

M. A. Sc. (Electronic Engineering), The University of

Electronic Sci. & Tech. of China, 1990

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES

THE DEPARTMENT OF ELECTRICAL ENGINEERING

We accept this thesis as confonning

to the required standard

THE UNIVERSITY OF BPJTISH COLUMBIA

Sept. 1994

© Yong Luo, 1994

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for ectensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

(Signature)

Department of

The University of British Columbia
Vancouver, Canada

Date

DE-6 (2/88)

Abstract

In this thesis, a new time-marching scheme for time-dependent PDEs with periodic

and non-periodic boundary conditions is introduced and implemented. The new time-

marching scheme is based on the polynomial interpolation of the symbolic solution

of the original PDEs. The approximation of the space derivatives is performed by

pseudospectral methods. The marching of the solution in the time domain is done by

the polynomial expansion or the Newton-form polynomial interpolation, depending on

the properties of the space derivatives. The boundary conditions are properly represented

by a suitable pseudospectral approximation and some technical manipulations of the

collocated operators. This technique can efficiently provide balanced spectral accuracy

in both the space and time dimensions. The numerical stability and resolution are also

improved by the new polynomial time-marching scheme. In the periodic boundary

case, the spatial approximation generally can be done by Fourier collocation and the

time-marching sometimes can be easily implemented by Chebyshev polynomial series.

In the non-periodic case, the spatial operator should be approximated by a Chebyshev

collocation, which can include different non-periodic boundary conditions through careful

manipulations of the boundary conditions. In this case and the complicated periodic case,

the time-marching has to rely on the more general Newton-form interpolation based on

Fejér points.

Based on the new polynomial time-marching scheme, a two-dimensional, SH-seismic

reflection model is simulated by full implementation of the new time-marching scheme

with the approximated absorbing boundary conditions. Some scattering phenomena such

as diffraction are illustrated through the visualization.

The simulation of the physical model is accomplished on two supercomputers: the

TMC Connection Machine CM-5 and the Fujitsu VPX24OI1O. The parallel programming

(CM-Fortran on CM-5 and Fortran 77/VP on the VPX24O/lO) and optimization issues

on the two supercomputers are also discussed in this thesis.

11

TABLE OF CONTENTS

Abstract ii

List of Tables Vi

List of Figures vii

Acknowledgments ix

Chapter 1 Introduction 1

Section 1 Numerical Methods For Time-dependent PDEs 1

Section 2 Description of the Polynomial Time-marching Method 2

Section 3 Thesis Outline 2

Chapter 2 Pseudospectral Methods for PDEs 4

Section 1 Introduction of Pseudospectral Methods 4

Section 2 Pseudospectral Fourier Method 8

Section 3 Pseudospectral Chebyshev Method 11

Section 4 Pseudospectral Domain Decomposition Techniques 14

Chapter 3 Pseudospectral Polynomial Time-Marching Techniques 17

Section 1 Evolution of the Time Dependence Using Chebyshev

Polynomials 17

Topic 1 Algorithm 17

Topic 2 Accuracy, Resolution And Convergence 19

Topic 3 Second-order Case 21

Section 2 Approximating The Time Dependence By Complex

Polynomials 23

Topic 1 Polynomial Interpolation Algorithm 23

Topic 2 Rate of Convergence 27

Topic 3 Computational Considerations 29

111

Section 3 Numerical Results for Time-Marching in the Periodic Domain . 33

Topic 1 Variable Wave Velocity and Damping in the Pseudospectral

Time-Marching Scheme 33

Topic 2 Chebyshev polynomial expansion results 34

Chapter 4 Pseudospectral Polynomial Time-marching for Non-periodic

Boundary Value Problems 40

Section 1 Homogeneous Dirichlet Boundary Conditions 40

Section 2 Homogeneous Neumann Boundary Conditions 42

Section 3 Numerical Examples 44

Section 4 General Homogeneous Boundary Conditions 50

Section 5 The Two-Dimensional Case 51

Chapter 5 Pseudospectral Polynomial Time-marching for Non-reflecting

Boundary Problems 54

Section 1 Non-reflecting Boundary Condition Approximation 55

Section 2 Polynomial Time-marching With Non-reflecting Boundary

Conditions in One-dimensional Case 57

Section 3 Spectral Accuracy Discussions of the Polynomial

Time-marching Scheme in One Dimension 60

Section 4 Polynomial Time-marching With Non-reflecting Boundary

Conditions in Two Dimension 64

Chapter 6 Simulation and Visualization of Model Wave Scattering 68

Section 1 2—D Seismic Reflection Modeling 68

Section 2 Numerical Results and Discussion 75

Section 3 Half-space Wave Scattering 78

iv

Chapter 7 Parallel Programming On the Connection Machine CM-5 and the

Fujitsu VPX24O/10 84

Section 1 Fortran Programming on Fujitsu VPX24O/l0 84

Section 2 CM-5 and CM-Fortran 91

Section 3 Parallel Implementation of the Polynomial Time-Marching by

CM-Fortran 97

Chapter 8 Conclusion 100

Section 1 Summary 100

Section 2 Contributions 102

Section 3 Future Work 103

Appendix A Some Snapshot of Fourier Pseudospectral Time-marching

Results 104

Appendix B Previous Study Results on the Performance of the Connection

Machine CM-2 105

Appendix C Derivation of (6.1.5) 109

References 110

V

List of Tables

Table 2.1 The Choices of Basis Functions.8

Table 4.1 Numerical Stability Limitation for the Polynomial

Time-marching Step Size 49

Table 5.1 Time-marching Errors for the One-dimensional Wave Equation

with Homogeneous Neumann Boundary Conditions

(homogeneous medium) 61

Table 5.2 Time-marching Errors for the One-dimensional Wave Equation

with Homogeneous Dirichiet Boundary Conditions

(homogeneous medium) 62

Table 5.3 Time-marching Errors for the One-dimensional Wave Equation

with Absorbing Boundary Conditions (homogeneous medium). 63

Table 5.4 Time-marching Errors for the One-dimensional Wave Equation

with Absorbing Boundary Conditions (varying medium) 63

Table 7.1 VPX24O/10 Hardware Summary 86

Table 7.2 2K*2K REAL*8 Matrix Multiply 90

Table 7.3 Memory Access (2K*2K REAL*8 Array): two-dimensional

assignment (3 arrays) 90

Table 7.4 2K*2K Double Precision Matrix Multiply CA*B by CMSSL

Routine gen_matrix_mult_noadd 96

Table 7.5 Per Time Step Kernel Operation Execution Time (model

discussed in Section 6.1) 98

Table B.1 The 128* 128 one time step performance comparison: attached

to 4K processor except otherwise described. The CM-2 used

here has 256 Kbits/proc. distributed memory and one 64—bits

floating-point processing unit per 32 processors. The clock

frequency of this CM-2 is 7 MHz 106

vi

List of Figures

Figure 3.1 Conformal Mappings for the Newton-form Polynomial

Interpolation 24

Figure 3.2 Computation Error for the One-dimensional Homogeneous

Wave Equation 36

Figure 3.3 Magnitude of Errors At Different Time Steps 38

Figure 3.4 Magnitude of Errors For Different Time Step Sizes (at 1st time

step) 38

Figure 3.5 Initial Wave Distribution Simulating an Impulse 39

Figure 3.6 Wave-Velocity Distribution Simulating a Low Velocity Cylinder

(The interface is created by a Rapid Velicity Transition) . . 39

Figure 4.1 Homogeneous Dirichlet Initial-Boundary Value Problem N=64

(time step 0.005) 47

Figure 4.2 Homogeneous Dirichiet Initial-Boundary Value Problem N=31

(time step 0.005) 48

Figure 5.1 One-dimension Absorbing Boundary Condition Numerical

Results (N=32) 60

Figure 5.2 One-dimension Absorbing Boundary Condition Numerical

Results (N=64) 61

Figure 5.3 Two-dimension Absorbing Approximation Numerical Results

(Grid points 32 in both X and Y, dt=0.01) 66

Figure 6.1 Geometry of Salt Dome for Polynomial Time-marching

Modeling 69

Figure 6.2 Impulsive Source Distribution Time Function 73

Figure 6.3 Scatter Movie Snapshots When the Source is Located at

xs=3500m, zs=4000 76

vii

Figure 6.4 Scatter Movie Snapshots When the Source is Located at

xs=3500m, zs=3200 76

Figure 6.5 Scatter Movie Snapshots When the Source is Located at

xs=3500m, zs=2400 77

Figure 6.6 Half-space Scattering 77

Figure 6.7 Wave Incidence and Reflection for a Half-Space 79

Figure 6.8 Source-Receiver Geometry 79

Figure 6.9 Trace Comparison Between Analytical (——) and Numerical (++)

Solutions at (0, —0.094) 80

Figure 6.10 Trace Comparisons Between Analytical (—) and Numerical

(++) Solutions at (0.187, —0.094) and (0, -0.187) 81

Figure 7.1 The Architectural Diagram of the Fujitsu VPX24O/l0 85

Figure 7.2 Vectorizing a DO Loop 88

Figure 7.3 Components of a Typical CM-5 System 92

Figure 7.4 Components of a Processing Node with Vector Units 93

Figure 7.5 Distribution of Code and Data in a CM Program 95

Figure A.1 Snapshot of wave scattering described in page 37—39 . . . 104

viii

Acknowledgments

Dedicated to my parents

I would like to take this opportunity to express a much deserved “thank you” to my

knowledgeable and supportive thesis supervisor, Dr. Matthew J. Yedlin, for his two-

fisted assistance in helping me turn a vague idea into a finished product. His good

connections made some state-of-the-art computing facilities (CM-2 and CM-5) available

to this thesis work.

My sincerest thanks to Dr. Ian Cumming, Dr. Brian Seymour and Dr. E. V. Jull, in

recognition of helpfulness and partial financial support, which made the accomplishment

of this thesis work possible.

I gratefully appreciate the insightful and valuable discussions with Dr. Shenkai Zhao in

Geophysics and Mr. Pin Lin in Mathematics, from both of whom I’ve been benefited

so much on some complicated mathematical topics. Special thanks also to Dr. Peter

Cahoon in Computer Science for his assistance in helping me make the data visualization

tape which is part of this thesis.

Finally, a heartfelt note of thanks to my wonderful parents, who have supported me in

every manner possible. Without their endless love, support and care, this would never

have been possible. I am indebted to my dearest parents. At this moment, please allow

me to say:

‘To the Love ané9J)evotion of!7s4y Parents!

ix

Chapter 1 Introduction

Accurately and efficiently solving many time-dependent Partial Differential Equations

(PDEs) by numerical methods enables researchers to study some complex physical

phenomena in detail. With the help of the quickly growing computational ability of

some supercomputers, accurate simulation and visualization can be performed for many

wave-field problems. On the latest supercomputers, researchers now can perform accurate

time-dependent simulations in three dimensions and study phenomena they only dreamed

of studying a decade ago. Increasing demands in the numerical simulation field and

the availability of rapidly increasing computing power have greatly pushed and also

challenged some traditional numerical algorithms.

1.1 Numerical Methods For Time-dependent PDEs

Major numerical algorithm candidates in the numerical simulation field are the Finite

Difference (FD), Finite Element (FE) and spectral methods (including pseudospectral

or collocation). Particularly, spectral algorithms are becoming more popular with more

accurate simulation demands and the greater computing power of the supercomputers.

The solution of partial differential equations (PDEs) by pseudospectral methods has

been extensively studied and comprehensively applied in various numerical analysis ap

plication areas such as Computational Fluid Dynamics (CFD), geophysics, oceanography,

mechanics and electromagnetic, etc. Pseudospectral methods (or the spectral collocation

methods) are characterized by the expansion of the solutions in terms of global basis

functions, where the expansion coefficients are computed so that the differential equation

is satisfied exactly at a set of so-called collocation (or interpolation) points. The pop

ularity of these methods arises from several advantages in computation efficiency and

much higher accuracy over common finite difference methods. [24, 5]. Conventional

pseudospectral methods only deal with the approximation of the derivatives in space.

For time evolution of the solutions, so far the various finite difference time-marching

techniques still play a dominant role in actual applications.

1.2 Description of the Polynomial Time-marching Method

A unique technique for time-marching has been proposed by Tal-Ezer since 1986[39,

40, 41]. This technique is based on the polynomial approximation theory of complex

matrix polynomials and has arbitrary order accuracy for the time-marching approxima

tion. Furthermore, this technique actually evaluates time evolution by polynomials of

the derivatives in space. Tal-Ezer’s original algorithm is based on Fourier pseudospec

tral space approximation. Therefore, it can only be applied to those problems with

periodic boundaries in space. However, his Newton-form polynomial interpolation time-

marching scheme can be incorporated into many other space descretization methods such

as Chebyshev pseudospectral or finite-difference. This thesis extends the Newton-form

interpolation time-marching method to Chebyshev pseudospectral space descretization in

corporated with non-periodic and non-reflecting boundary conditions. With this incorpo

ration, some experimental calculations have been performed on the one-dimensional wave

equation in constant medium with homogeneous DirichletlNeumannlabsorbing boundary

conditions. The results show that the overall error converges to zero at a rate faster than

some fixed orders of finite-difference error convergence, but not at an exponential rate.

1.3 Thesis Outline

In Chapter 2 of this thesis, mathematical principles, accuracy, convergence, stability,

boundary-condition considerations and computational requirements of conventional pseu

dospectral methods for the PDEs are briefly described. Domain decomposition techniques

related to the use of pseudospectral methods for elliptic equations are also introduced.

Tal-Ezer’s time-marching technique is introduced in Chapter 3. Chebyshev polynomial

expansion, Newton-form polynomial interpolation and Faber polynomial expansion are

2

then described. Their advantages and weaknesses are also investigated. Chapter 4 in

troduces a new polynomial time-marching technique for non-periodic boundary value

problems. Stability improvement and computing efficiency are emphasized. Chapter 5

extends the technique in Chapter 4 to time-dependent boundary cases: non-reflecting

boundary approximations. Chapter 6 gives a general analysis of applying the foregoing

techniques to simulate an SH-wave seismic reflection model. Chapter 7 focuses on the

brief introduction of the supercomputing implementation, including the Connection Ma

chine CM-5 architecture, CM-Fortran parallel programming issues and the Fujitsu VPX

240/10 issues. The last chapter, summary chapter, summarizes the motivation, research

methods and achievements of this thesis.

The major contribution of this thesis work is incorporating the non-periodic and even

non-reflecting boundary conditions into the original polynomial time-marching scheme.

Thus, the applicability of the polynomial time-marching has been greatly expanded.

3

Chapter 2 Pseudospectral Methods for PDEs

The success of spectral methods in practical computation has led to an increasing

interest in their theoretical aspects, especially since the mid-1970s. Spectral methods

generally can be viewed as an extreme development of the class of discretization

schemes for differential equations known generically as the method of weighted residuals

(MWR). The key elements of the MWR are trial functions (also called the expansion or

approximating functions) and test functions (also known as weight functions). Choice

of the trial functions is one of the features which distinguish spectral methods from

finite-element and finite-difference methods. Choice of the test functions distinguishes

between the three most commonly used spectral schemes: the Galerkin, pseudospectral

or collocation, and tau methods. In this chapter, the basic theoretical principles will be

introduced and focussed mainly on the pseudospectral ones, through comparison with the

FD, FE and the other spectral schemes.

2.1 Introduction of Pseudospectral Methods

The general idea of spectral methods is based on approximating U(x), the solution

of a PDE by a sum of N+l “basis functions” ç(x):[24J

U(x) UN(x) = a(x) (2.1.1)

The second step is to obtain equations for the discrete values UN (x) or the coefficients

a from the original equation. In the case of a differential equation, this second step

involves finding an approximation for a differential operator in terms of the grid point

values of UN(x) or , equivalently, the expansion coefficients. The goal is to choose the

series coefficients {a } in such a way that the so-called residual function is made as

small as possible. For the equation

LU =f(x) (2.1.2)

4

where £ is the operator of a differential equation, the residual function is defined by

R(x;ao,al,”,aN)LUN—f (2.1.3)

The different spectral and pseudospectral methods differ mainly in their ways of minimiz

ing R(x; ao, al,• .. , ar). In this sense, the general spectral methods fall into two broad

categories: the interpolating or pseudospectral, and the non-interpolating (or sometimes

directly called spectral method). The pseudospectral methods associate a grid of points

with each basis set. The coefficients of a known functionf(x) are found by requiring that

the truncated series agrees with f(x) at each point of the grid. The solution of a differ

ential equation is found by demanding that the coefficients a be such that the residual

function has the property

R(x1;ao,ai,. •,aN) = 0, i = 0,1,... ,N (2.1.4)

Presumably, as R(x;a) is forced to vanish at an increasingly large number of discrete

points known as “collocation” or “interpolation” points, it will be smaller and smaller

in the gaps between the collocation points so that UN(X) will converge to U(x) as N

increases. Methods in this category are also called “orthogonal collocation” or “method

of selected points”.

The “non-interpolating” methods include Galerkin’s method and the Lanczos tau

method which were developed long before the pseudospectral methods. These algorithms

are usually labelled as spectral methods. There is no grid of interpolating points associated

with these procedures. Instead, the coefficients of a known function f(x) are computed

by multiplying f(x) by a given basis function and integrating (projection method). The

pseudospectral methods are equivalent to the spectral methods if one evaluates the

integrals of the latter algorithm by means of numerical quadrature with (N÷l) points

[24, 8].

In [24], [8], it has been shown that the accuracy of the pseudospectral methods is

only a little bit poorer than that of the non-interpolating ones too little to outweigh the

5

much greater simplicity and computational efficiency of the pseudospectral algorithms.

This approach is especially attractive because of the ease with which it can be applied to

variable-coefficient and non-linear problems. Consequently, this thesis will focus on the

pseudospectral techniques for applications involving variable coefficients.

The so-called “finite-element” methods are similar in philosophy to the spectral

algorithms. The major difference is that the finite-element (FE) techniques chop the

interval in x into a number of sub-intervals, and choose the qSn(x) to be local functions

which are polynomials of low, fixed degree and non-zero only over neighboring sub-

intervals. In contrast, the spectral methods use global basis functions in which each basis

function is a polynomial of degree and non-zero, except for isolated points, over

the entire computational domain. To increase the accuracy, the finite element methods

chop the interval into smaller pieces without changing the degree of the polynomials in

the basis. In contrast, the spectral methods raise the highest degree of the polynomials

without subdividing the interval any more. The FE methods convert differential equations

into matrix equations that are sparse. The spectral methods generate algebraic equations

with full matrices. As compensation, the high order of the basis functions gives high

accuracy for a given N. To model problems, when fast iterative matrix-solvers are used,

the spectral methods can be much more efficient than FE methods.

For comparison between the pseudospectral methods and the finite difference (FD)

methods, Fomberg has given more details in [14, 15]. He showed that the pseudospectral

methods can be viewed as a limit of finite differences of increasing orders. In each

space dimension, the pseudospectral methods require as little as a quarter the number of

grid points compared to a fourth-order finite difference scheme for the same accuracy

requirements. Here, some simple and heuristic explanations for the accuracy of the

pseudospectral methods are addressed. More detailed discussions can be found in [26,

24, 5, 20, 8, 14].

A standard fourth-order finite difference approximation to the 1st-order spatial deriva

6

tive can be written as:

[—f(x + 2h) + 8f(x + h) — 8f(x — h) + f(x — 2h)]/12h + 0(h4) (215)

where h=1/N is the grid interval. Since each spectral coefficient is determined by all the

grid point values of f(x) for the N-point pseudospectral approximation, it follows that the

pseudospectral rules are an N-point differencing formula with an error of O(h’).

As N is increased, the pseudospectral method benefits in two ways: the grid interval h

becomes smaller, and the order of the approximation degree increases. This is decreasing

faster than any finite power of N because the power in the error formula is increasing

too. This is the so-called “infinite order” or “exponential” convergence, as J.P. Boyd

noted in [5]. Specifically, this “exponential” convergence property is useful in solving

linear elliptic problems with smoothly variable coefficients. The property of “exponential”

convergence to hyperbolic equations only holds for sample model problems discussed in

Section 5.3.

Choosing a proper basis function set is the first step of the pseudospectral approxima

tion. This is usually decided by the boundary conditions of the problem. The boundary

conditions may be divided into two broad categories: behavioral and numerical. It is

almost always necessary to impose explicit numerical boundary conditions upon the ap

proximate solution. In contrast, behavioral conditions may be satisfied implicitly by

choosing basis functions that have the required property or behavior. Based on these

considerations and the properties of different basis function sets, the proper basis set can

be chosen as follows:

7

Function Behavior Over The Interval Basis Set

f(x) is periodic & symmetric or antisymmetric about x=O Fourier Series

x E [a, b] &f(x) is non-periodic Chebyshev Polys;

Legendre Polys.

x E [0, oo] &f(x) decays exponentially as x - Co TL(x) (rational

Chebyshev);

Legendre Polys.

x E [0, oo] f(x) has asymptotic series in inverse powers of x TL only

x e [—co, J &f(x) decays exponentially as x — 00 sinc functions or

Hermite functions

x [—oo, ooj &f(x) has asymptotic series in inverse powers of TB only

x
fQ,O) is a function of latitude and longtitude on a sphere Spherical

harmonics

Table 2.1 The Choices of Basis Functions

In most actual applications, the Fourier series and the Chebyshev polynomials are the

best choices, not only because Fast Fourier Transform (FFf) can be used to compute these

two bases, but also because most physical problems can be modelled as either periodic

boundary value problems or finite interval boundary value problems. Consequently,

all discussions and analysis will be concerned with the Fourier and the Chebyshev

pseudospectral methods.

2.2 Pseudospectral Fourier Method

In the pseudospectral Fourier approximation, the problem involves periodic boundary

conditions. Thus, all functions appearing in the problem are periodic. Suppose f(x) to

8

be a smoothly differentiable function with period 27r. It can be approximated by the

trigonometric polynomialP1vf(x) that interpolates it at a set of collocation points. The

following is one of the possible choices of the points [20]:

x2=- (j=O,.”,2N—1) (2.2.1)

Then the approximation FNf(x) has the form

2N—I

PNf(x) = f(x,)g,(x) (2.2.2)
j=o

where g3 (xk) 8jk, and
N

1x
—

g,
— 2N L

cj=1 (IlI#N), CN=C_N=2

Defining
2N—1

al 2Nc1
f(xj)e_2 , (2.2.3)

then (2.2.2) becomes

PNf(x)
=

a1e (2.2.4)

The next step in the pseudospectral method is to seek equations for an approximate
solution UN to a differential equation whose exact solution is U. Indeed, (2.2.4) gives

akU(x) =
(i)k 2 (2.2.5)

InIN

where a is given by (2.2.3). If N is a highly composite integer, the Discrete Fourier
Transforms (DFIs) (2.2.3), (2.2.5) can be efficiently evaluated by the FFT algorithm in
O(N log2 N) operations. Thus, evaluation of derivatives requires just two FFTs together
with the complex multiplications by (j)lC in (2.2.5).

9

Expressing the same procedure in matrix form, one obtains
aku(x)

(DkU) (2.2.6)

where Dk is a 2N x 2N matrix, and

/ UN(XO)

U is a column vector U =

\UN(x2N_1)

Explicitly,

(D) !(_i)J+fl cot (x) (2.2.7)
10 j—n

(Di)c

Obviously, D1 is a real, antisymmetric matrix. Consequently, D2k is a real, symmetric

matrix while D2k+1 is a real, antisymmetric matrix.

To show the accuracy of the Fourier pseudospectral method, an approximation theory

result has been given in [9] : Let p>l!2. Then for Oqp, there exists a constant C

independent of N and such that

lU — PNUIIq CN_PUi

Here the norm is defined as:
q

lIUH ul , where = > k2ai2
3=0 k=—cc

It measures the magnitude of U and its first q derivatives. Obviously, the rate error

decrease with increasing N only depends on the smoothness of the function being

approximated. However, if some smoothing procedure is used, the pseudospectral method

is still applicable to pointwise smooth problems[20].

It is necessary to review some results regarding the stability and convergence of the

Fourier pseudospectral method. A scheme is said to be stable if

IIUN(t)ll <CIIUN(0)ll , (0 t T) (2.2.8)

10

for some proper norm. Here C may depend on T, but not on N. By the energy estimate

method, Gotilieb et. al.[20] and Hussaini et. al.[241 have demonstrated the stability

of the pseudospectral method for three major types of partial differential equations. The

exception is the hyperbolic equation with zero order derivative (damping term):

U + a(x)U + bU = 0 (2.2.9)

The straightforward discretization for this equation is often unstable. The Fourier method

is stable if a(x) is of fixed sign. Otherwise only some typical cases have been proven

stable. Usually, writing the spatial derivative in skew-symmetric form, or filtering the

solution results in a practical and stable approximation.

As for the accuracy and convergence of Fourier pseudospectral method in elastic wave

equations, Fornberg [14, 15] has indicated analytically that the Fourier pseudospectral

method can be interpreted as a limit of finite differences of increasing orders. Based

on spectral analysis of a model equation, he showed that the pseudospectral method

(integration in time) may require, in each space dimension, as little as a quarter the

number of grid points compared to a fourth-order finite-difference scheme and one-

sixteenth the number of points as a second-order finite-difference scheme. For the total

number of points in two dimensions, these factors become 1/16 and 1/256, respectively.

In series of his test calculations on the two-dimensional elastic wave equation, only minor

degradations are found in cases with variable coefficients and discontinuous interfaces.

He also noted in [141 that in the acoustic case, the governing equations take a special

form which can be exploited by low-order finite-difference methods. The advantages of

the pseudospectral method are then less than in the more general elastic case.

2.3 Pseudospectral Chebyshev Method

When a function f(x) is not periodic, or the computational domain has some numer

ical boundary conditions, a trigonometric interpolation polynomial does not provide a

good enough approximation to yield accurate approximations to the derivatives of f(x).

11

It is better to approximate f(x) by polynomials in x. However, it is well known that

the Lagrange interpolation polynomial based on equally spaced points does not give a

satisfactory approximation to a general smooth function f. This poor behavior of poly

nomial interpolation can be avoided for smoothly differentiable functions by removing

the restriction to equally spaced collocation points. In the most common pseudospectral

Chebyshev method, the interpolation points in the interval [-1,1] are chosen to be one of

the extrema of the Nth order Chebyshev polynomials TN(x). These are

Gauss — Lobatto: xj = cos
-, (j = , N) (2.3.1)

Gauss — Radau: x = cos
2N+ 1’ i = , N) (2.3.2)

Gauss: x = cos (j = O,••• ,N) (2.3.3)

Following the definition of the Chebyshev polynomial

T(x) = cos (ncos’ x) (2.3.4)

in the Gauss-Lobatto grid point case, one obtains

T(x1)= cos (2.3.5)

which indicates a close relation between the pseudospectral Chebyshev and the pseu

dospectral Fourier method. The Nth degree interpolation polynomial PNf(x) to f(x) is

given by

FNf(x) = aT(x) (2.3.6)

where a = --—

c0=c=2, c=1, (1<j<N—1)

12

An expression for the derivative of PNf(x) can be obtained by differentiating the

above equation:

N N
öFNf

= aTr) bT(x) (2.3.7)
ox

n=O n=O
where bN = 0, bN_1 2NaN and

c, = b2 + 2(n + 1)a1 (0 Ti < N — 2)

More generally,

N
= f(x)(D) (2.3.8)

OxP j=o
Ck
(_1))+k

where (D1)kJ = — (kj)
ci X —

2N2+1 —

(D1)0= —(D1)NN6 —

(Dl)fi=—(2)

and D = (D1)’

It should be noted that the matrix D1 is not antisymmetric; also D2 is not symmetric.

To consider the stability and convergence of the pseudospectral Chebyshev method,

the following norm definitions are introduced:

[11f112 Of2 ‘I qf I2IIfIIq = + +“.

+
(2.3.9)

1

dx2 J f2(x)where Ifil
= \/l_x2

—1

By these norm definitions, Gotllieb et. al. have summarized the main approximation

results of the pseudospectral Chebyshev method in [20].

13

Let f(x) be a function with S continuous derivatives and let PNf be defined as in

(2.3.6), then there is a constant C independent of f(x) and N such that

If — FNfIIq (0 q (2.3.10)

The accuracy of this approximation still depends on the smoothness of f(x). Similarly, one

can obtain a good approximation for the derivative “far away” from the discontinuity by

somehow smoothing the function. In [24, 20], it is demonstrated by the energy estimate

method that the pseudospectral Chebyshev method has similar stability properties for the

three major PDEs as the Fourier method. The hyperbolic equation is still a problem when

the wave velocity changes sign. Fortunately, in physical applications, wave velocities

are always strictly positive.

2.4 Pseudospectral Domain Decomposition Techniques

In order to avoid the need for global mappings required by spectral methods in

problems with complicated geometries, domain decomposition techniques have been

developed for elliptic equations. They are also effective methods for overcoming some

non-smoothness or jumping conditions in global domains. A complicated domain can

be subdivided into several subdomains and individual spectral methods can be applied

to each subdomain. These techniques seems naturally suited for the parallel computer

architectures except at the subdomain interfaces. Gottlieb et. al. [19] investigated in

depth the influence of interface boundary conditions on the possibility of parallelizing

pseudospectral multidomain algorithms.

The subdomains are connected by “PATCHING” if the solutions in different elements

are matched along their common boundary by requiring that U(x) and a finite number of

its derivatives are equal along the interface [5]. Since the explicit numerical boundary

conditions must be used, the Chebyshev method is the most common choice.

The number of matching conditions is the number that is necessary to give a unique

solution in each subdomain. Thus, one must match both U(x) and at the interface for

14

a second order differential equation. For elliptic equations or other steady state equations,

patching is usually straightforward. Boyd [51 has given a very efficient way to generate

the weak coupling of element solutions in the following example:

Equation Lu = f(x) (2.4.1)

u(a) = o, u(b) = ,B
82 8

£ =q2(x).—+qi(x)— + qo(x)

Instead of just two subintervals, divide the interval x e [a, bl into M subdomains. Let d3

denote the boundary between element (j-1) and element j and define:

U3 u(d)

The solution on thejth element, Uj(x), can always be written as the sum of a particular

integral Pj(x) plus two homogeneous solutions, defined by:

£F,(x) f and P,(d3_i) = P(d,) = 0 (2.4.2)

= 0 and hL3(d,_l) = 1, hL3(d,) = 0 (2.4.3)

£IIRf = 0 and hR(df_1) = 0, hR,(d,) = 1

It follows that the general solution to the differential equation can be written as

u3(x) =F3(x) + U,_lhL3(x) +U3hR,(x) (2.4.4)

Thus, all particular integrals and homogeneous solutions can be computed independently

of the solutions on all the other elements. The boundary value problems defined by

(2.4.2), (2.4.3) are completely uncoupled.

15

The final element solutions u(x) should be determined by (2.4.2). (2.4.3) plus the

following continuity condition of the first derivative at each of the subdomain interfaces.

(The (2.4.2), (2.4.3) only consider the u(x) continuity)

+ (h —
— = — (2.4.5)

j=1,••,M—1

Uo = a, UM =

The matrix expressed above should be tridiagonal because only four different homoge

neous solutions, two for element (j- 1) and two for element j, enter the continuity condition
at each row of (2.4.5). Therefore, the cost of solving this continuity condition is not great.

16

Chapter 3 Pseudospectral Polynomial
Time-Marching Techniques

The pseudospectral methods provide a very useful tool for the solution of time-

dependent differential equations. A standard scheme uses spectral methods to approximate

the space derivatives and a finite difference approach to march the solution in time. This

tactic results in an unbalanced scheme. Some alternative time-marching techniques, which

approximate the time dependence of PDE solutions by using orthogonal polynomials

or Faber polynomials involving powers of the spatial differential operator, have been

introduced. These time-marching techniques can be used to evaluate the numerical

solutions to spectral accuracy in both the space and time dimensions.

1 Evolution of the Time Dependence Using Chebyshev Polynomials

3.1.1 Algorithm

Consider the equation

Uj—GU=O,Ox2Tr (3.1.1)

U(x,O) = Uo(x)

where G is a linear spatial differential operator (for example, 0 = at). Here, one can

assume the periodic boundary conditions for the problem so that (3.1.1) can be discretized

in space by using the pseudospectral Fourier methods outlined below:[39]

DUN
9t — FNGFNUN =0 (3.1.2)

UN(x,0) = PNUO(X)

where for any functionf(x), PNf(x) is its trigonometric interpolant at the collocation points

xi =j, j = 0,1,•••,2N— 1 (3.1.3)

17

More precisely (the same as (2.2.4))

PNf(x) = (3.1.4)

where a is defined in (2.2.3). The solution of (3.1.2) is given by

UN(x,t) eXP(tPNGPN)UO(X) (3.1.5)

Except for a very simple operator G, it is impossible to construct the exponential matrix

exp (tPNGPN) explicitly. Usually an approximation to the exponent is used.

According to the discussion in Chapter 2, the matrix GN = PNGPN is an anti-

symmetric matrix and therefore has a complete set of 2N eigenvectors. Let Hm(GNt)

be a polynomial approximation of exp (GNt) of the form

Hm(GNt) = (3.1.6)

Tal-Ezer [39] has shown that

GNt
— Hm(GNt) _ r — (3.1.7)

<max
— Hm(zt)2

where Xk, k = 1,2, . . , 2N are the eigenvalues of GN,

z [—ia(N — 1), ia(N — 1)]

We therefore seek a polynomial approximation with real coefficients to the function e

that will minimize the expression on the right hand of (3.1.7). Define

R= Ia(N—1) (3.1.8)

Then one can find the Chebyshev polynomial approximation

Hm(zt) = GkJk(Rt)Qk() (3.1.9)

18

where C0 = 1, C, = 2 for k 1, Jk(Rt) is the Bessel function of order k and the Qks

are the modified Chebyshev polynomials in z/R defined as below:

Qk(w) = (i)kTk(_iw), (3.1.10)

w w E [—i, i]

Thus, using the recurrence relation satisfied by the Chebyshev polynomials

Tk+l(x) = 2xTk(x) —
(3.1.11)

To(x) 1, Ti(x) =

it is easily verified that Qk(w) satisfies the following recurrence relation:

Qk+1(w) = 2wQk(w) + Qk_1(w), (3.1.12)

Qo(w) = 1, Qi(w) w

3.1.2 Accuracy, Resolution And Convergence

The accuracy of a polynomial is defined by its asymptotic rate of convergence as m

(the degree of the polynomial) tends to infinity. Let the interval of asymptotic behavior

of the polynomial be denoted by [mo, oo). Then the degree of the polynomial has to be

greater or equal to m in order to have proper time resolution. In [39J, Tal-Ezer defined

the condition of having meaningful resolution as one in which mm0 and the relative error

norm is less than 10%. precisely, assume that for m e [mo, oo), the minimal m which

achieves this accuracy is , Tal-Ezer defined the necessary and sufficient condition for

resolution is m> f. Applying this condition to my approximation problem means that

one has to apply the spatial operator tGN m0 times in order to resolve N modes of the

19

exact solution of (3.1.1) at time level t:

UN(x,t) exp (tGN)U°(x) (3.1.13)
mo G

= CkJk(tR)Qk()U0(X)

It is known that the Bessel function Jk(tR) converges to zero exponentially when

k increases beyond tR. This implies that the interval of asymptotic behavior is

[mo, oo) where mo = [tR]. Hence, to resolve N modes for the problem of (3.1.2),

one has to use the spatial operator at least Iat(N-1)I times. In contrast, in order to get a

resolution of N modes by the leap-frog central-differencing time-marching scheme,

U’’ U’’ + 2ztGU’ (3.1.14)

5 1/2 3/2one has to operate with iGN at least () ItaNI times [39]. A detailed analysis of the

time resolution in standard finite difference time-marching scheme can be found in [261

It is clear from the resolution discussion that resolution implies stability. In fact, since

Hm(tGN) etG const.

Hm(GN) must be bounded independently of m and N.

Obviously, due to the stability limitation, the leap-frog scheme has to be iterated

many times over a small time step /t to get the resolution at time level t. In contrast, the
Chebyshev polynomial approximation has no such kind of limitation. All the Ita(N-1)I

times operations can be evaluated in one time step L2st=t. According to the property of

the Bessel function:

Jm(m) <am (II <1)
exp (v’ - 2)

a
1+y1_2

20

Tal-Ezer has proven in [391 that the error of Chebyshev approximation scheme in time

converges to zero as

atm — o, o a < 1 (3.1.15)
m—*oo

Hence, this scheme has spectral accuracy both in time and space. In practice, if m is

too large, the coefficients of Qk in the polynomial may exceed machine precision, thus

imposing a practical limitation.

In the scalar variable coefficient (still the one-dimensional) case, the operator G is

(3.1.16)

Now the new discretized operator matrix

GN=AN•DN (3.1.17)

where AN is a diagonal matrix

(AN)21 a(x1)S1

and DN approximates the derivative spectrally. It is clear that GN is no longer a normal

matrix. By a technique different from the constant coefficient case, it has been proven

in [39] that the main results of the Chebyshev scheme are still valid as long as the wave

velocity a(x) does not change its sign in the interval. Now the max a(x)I, x E [0, 27r]

should replace the constant a in the previous case.

3.1.3 Second-order Case

Etgen [12] has extended Tal-Ezer’ s results to the second-order wave equation:

(3.1.18)

where _2 is a second-order spatial differential operator. The standard second-order

finite difference approximation is expressed as the sum of two Taylor series in [12]:

a2u 1
+ zt) — 2U(t) + U(t — (3.1.19)

21

ia2u z.t2ô4U z\t86u
=2

= 2[cos(tC) — l]U

By expressing (3.1.7) in terms of the real and imaginary parts, one has:

eZ — Hm(zt)2 cos (izt) — HmR(izt) (3.1.20)

+ sin (—izt) + H(—zzt)

where Hm(zt) H(—izt) + H(—izt)

According to (3.8) in [39]:

H(tL) = Jo(Rt) + 2 (_l)kJ2k(Rt)T2k() (3.1.21)

H(tJ) = 2 (_1)kJ (Rt)T ()
The cosine of a differential operator acting on a function can be represented by an

orthogonal polynomial series expansion as follows:

cos (tC)
=

C2kJ2k(tR)Q2k() (3.1.22)

where C2k , J21 and Q2k are defined the same as the previous definitions in (3.1.9).

Particularly, based on (3.1.12), Q2k satisfy the following recurrence relation:

Qo() =1; Q2()
‘2L (3.1.23)

Q2k+2 () = (42
+ 21) Q2k — Q2k--2

22

where I is the identity operator. In [12], Etgen also gives the formal solution to the wave

equation (3.1.18) for an initial value problem as:

U(t) = cos (tL)U(O) +
sin(tC) öU(O) (3.1.24)

This equation can be easily used to advance a solution to the wave equation in time. The

time updating operator for any time level can be found by shifting the initial conditions

to other values of t:

U(t + zt) = —U(— it) + 2 cos (L\tL)U(t) (3.1.25)

Theoretically, in this scheme there’s no limitation on the time step t. However, due

to the resolution requirement, one has to use the spatial operator at least R/t. times. In

other words, the highest degree of the evaluated polynomial should be at least (Rz.t)th

order. Therefore, the largest zt practically is limited by the highest order polynomial

for given machine precision.

3.2 Approximating The Time Dependence By Complex Polynomials

The main limitation to the orthogonal polynomial time-marching scheme is that it

requires a normal or skew-symmetric derivative matrix and its eigenvalues have to be

purely real or imaginary. Therefore, a more general polynomial time-marching algorithm

needs to be introduced.

3.2.1 Polynomial Interpolation Algorithm

Basically, the method described in the last section is the approximation of the time

dependence of the solution, which can be represented as f(A) where A is a finite operator.

Approximating frA) can be reduced to a problem of approximating f(z) where z belongs

to a domain D in the complex plane. This domain includes all the eigenvalues of A [40,

41]. A possible approach is to expand the function as a sum of orthogonal polynomials.

In the last section, it has been shown that this approach can be efficiently used for the

23

function f(z)=exp(tz) where the domain is part of the imaginary (or the real) axis. For

the more complicated domains, this method fails to demonstrate its effectiveness and

efficiency. Thus, Tal-Ezer [40, 41] suggests an alternative way which is based on the

complex polynomial interpolation for the topologically complex eigenvalue domains.

Consider a domain D in the complex plane C. The D is a bounded continuum and

its complement is simply connected in the extended plane and contains the point at c’o.

As concluded in [40, 41, 10], a general approximation to a function f(z) in the arbitrary

domain D is given by a Faber polynomial expansion. Let q’(z) be a conformal mapping

from z to w that maps the complement of D to the complement of a disk of radius p

such that

lirn-=i (3.2.1)

Here p is called the logarithmic capacity or the transfinite diameter of D. The conformal

mapping (z) and its inverse mapping ,b(w) are illustrated in Figure 3.1.

p(z)

(w)

Figure 3.1 Conformal Mappings for the Newton-form Polynomial Interpolation

If the Laurent expansion at oc of [b(z)]m is

[(z)Jm = m + Cm_i zm + ... + C1z +C_1z1+“ (3.2.2)

24

then the Faber polynomial of degree m, F7(z), which corresponds to the domain D is

the polynomial part of (3.2.2):

Fm(Z) = Zm + Cm_lZm_l + + Co (3.2.3)

with

C, —--. f çf) dz (3.2.4)
27r3 z)

IzI=R
where R is chosen sufficiently large so that D is contained in the interior of the region

bounded by the circle Iz=R. 1ff is a function that is analytic at every point of D, then

f can be approximated as:

f(z) = >akFk(z) (3.2.5)

The coefficients ak are

ak =
_ f (3.2.6)

IwI=r

where &(w) is the inverse of 4(z) and r>p is sufficiently small so thatf can be extended

analytically to I,. (Jr is the closed Jordan region with boundary Fr, where F,. is the

image under of the circle IwI=r). Based on (3.2.5), the matrix function f(A) can be

approximated by the Faber polynomial expansion:

f(A) akFk(A) (3.2.7)

When D is an ellipse or the special case, a segment of the real or imaginary axis, Fk is

the translated and scaled Chebyshev polynomial (Markushevich in [32]).

When D is a more complicated domain, the generalized Faber polynomial satisfies a k

term recurrence relation instead of the 3—term recurrence for the Chebyshev polynomial.

Thus it is more difficult to compute Fk’S. In order to overcome this major drawback,

Tal-Ezer has proposed the Newton-form interpolation in [40, 411 to simplify the problem

as outlined below:

25

First, some proper interpolation points for a general domain D are chosen in two

feasible ways:

a. The m zeros of Fm(z);

b. z, = (c4), j = 1,... , m +1 where w are the m+ 1 roots of the equation m+l

These points are called Fejér points.

Since, interpolating at = /‘(w,), j = 0,• . , m does not involve computing Faber

polynomials, it is a simpler and more efficient approach to the problem of approximation.

The interpolating polynomial in Newton-form is

Pm(z) = akRk(z) (3.2.8)

where ak is the divided difference of order k: [1]

ak=f[zo,.,zk] (3.2.9)
k

k = 0,••• , m
.

= (z1 — . (z — z_i)(z — (z1 — Zk)

f,=f(z,)

Ro(z) = 1, (3.2.10)

Rk(z)=fl(z—z),k=1,.”,m

In order to prevent overflow or underfiow while computing the divided differences, the

domain should be scaled such that its logarithmic capacity p will be equal to 1:

(3.2.11)
p

Hence

= f(z) = f(p.) and Fm(s) f(s) (3.2.12)

26

where

Pm(s)
=

b1() (3.2.13)

k = 0,.

Then one can approximate the operator f(A) by Fm (A). where

Pm (A) = b01 + b1 (A — + b2 (A —
.2o1) (A — iii) (3.2.14)

++bm(A_0I)”(A_m_i1)

withA= (-A
\\pJ

and p is the logarithmic capacity of the domain D.

3.2.2 Rate of Convergence

Before considering the convergence of the Newton-form interpolation approximation,

one needs the following definitions: [40, 41]

“Definition 1: Let FR be the image under ç& of the circle IwIR (R>p), and ‘R the closed

Jordan region whose boundary is “R• Iff(z) is single-valued and analytic on ‘R then the

sequence of polynomials Pm(z) is said to convergence to f(z) on D maximally if

f(z) — Pm(z)I C(p/R)m,z e D (3.2.15)

where C depends on p and R but not on m or z.”
[m]. . . .Definition 2: A set of points z is said to be uniformly distributed on D (the boundary

of D)if

urn IRm(z)!lhIm = p (3.2.16)
m—oo

27

where Rm (z) (z — z)

It has been shown in [32) that either the m zeros of Fm(Z) or the m Fejér points are

uniformly distributed on

According to the theorem in [58], if one chooses these uniformly distributed points

m1 as the interpolation points, the Pm(Z) converges maximally toflz) on D. Thus, one has

= the asymptotic rate of convergence (3.2.17)

Based on complex variable theory, Tal-Ezer has also shown that if f(z) is an entire

function, 3.2.15 is satisfied for arbitrary R.

Consequently, the degree m of the polynomial Pm(z) can be determined in the

following ways:

1. Getting the parameters R (the disc radius) and p (the logarithmic capacity) (analyt

ically or numerically) and choosing m such that

() (3.2.18)

where e is the desired accuracy.

2. Computing the error numerically on a set of check points on the boundary for different

m’s and choosing m that will satisfy the desired accuracy.

This method can provide an accurate value of the m only when A is a normal matrix

[40]. When A is “far” from normality, m should be increased by an amount that is not

known before hand. Therefore, it is preferable, in this case, to use the infinite set of

points generated by the second algorithm which will be described later.

28

3.2.3 Computational Considerations

In the Newton-form of polynomial interpolation, computing the divided differences

is very vulnerable to round off errors and overflow. Besides scaling the logarithmic

capacity to 1, the interpolation points should be arranged in a proper order. If the

successive points are very close to each other, there exist severe round off errors or

overflow for computing the divided differences.

Tal-Ezer gives two possible algorithms in [40, 41] to generate a set of interpolation

points which don’t cause severe round off errors and overflow.

Fejér point generating Algorithm 1: t91=0,j=l=1, S0=2irlm, find the largest k such that

k is power of two and kSO<zir2kSO. Then the algorithm proceeds as follows:

(1) For i = 1 until 1 do

0 + kSO

if (‘i ir) goto (2)

j=j+1

‘1

(2) end do

l=j

k = k/2

if (k < 1) stop

goto (1)

This part of the algorithm produces arguments of points on the upper part of the unit

circle. Thus

m) = ij(1), (m) = (3.2.19)

(m) — / (rn) — (m)
2j ‘K) 2j+1 2j

29

1 < < (m— 1)/2

Here, () is the conformal mapping from the complement of the unit disc to the

complement of the domain D. The set of points cm) described above is equally distributed

on the boundary of the domain D for any degree of m. It has the disadvantage of having

to decide on m before starting the iterations. The next algorithm generates an infinite set

of points free of this disadvantage.

Fejér point generating Algorithm 2:

60 =

k=1

zob(1)

01 = 0

(1) For i 1 until k do

0k+i = 0 + 60

Zk+j_1 ?,b(ei91)

end do

60 = 60/2

k = 2k

goto (1)

Those points generated by Algorithm 2 are asymptotically equally distributed. The even

distribution is achieved only when m is power of two. The uneven distribution of points in

Algorithm 2 is the price one has to pay for the ability to add additional points. Therefore,

in practice, one stops the iterations of Algorithm 2 at some proper degree m which satisfies

the desired accuracy. Otherwise, one can just add some more points to the existing set of

30

points by this algorithm without recomputing all the points until the accuracy is satisfied.

In general, one can expect the interpolation based on Algorithm 1 to be more accurate.

When the operator matrix A is real, f(z) accepts real values for z real, and also

f() = f(z), Tal-Ezer [40] has proven that the approximation algorithm can be modified

to eliminate complex arithmetic.

Approximation algorithm with real arithmetic: Wm f(A)v:

u = [ao + ai(A — zoI)]v (3.2.21)

r = (A — zoI)(A — ziI)v

For i=1,•,do

= (A— zI)r -

u — u +a2r +a22+ir
R R -1r‘- S goto (1)hull

r= (A—zI)r+ (zj)2r

end do

(1) Wm=U

Where zk’ are respectively the real and imaginary part of the interpolation points zk.

The only difficulty in finding the interpolation points is to get the conformal mapping

&() and its inverse çS(z). For few simple domains, it is possible to find this function

analytically. For more complicated domains, one has to resort to a numerical approach.

When the domain D is a polygon, the mapping function is a Schwarz-Christoffel

transformation. The numerical routines described by Trefethen in [51] map the interior

of the unit disk on the interior of the polygon. In order to map the exterior of the unit

31

disk to the exterior of the polygon, when it is symmetric about the real axis, Tal-Ezer

[40, 41] has modified the Trefethen’s routines as outlined below.

One can treat the upper half of the exterior of the polygon as an interior of a polygon

with vertex at infinity. Then, the desired mapping function is an interior Schwarz

Christoffel transfonnation composed with ftu) which maps the upper half of the exterior

of the unit disk on the interior of the unit disk. The f(u) can be written as f(u)—f2(fj(u)),

where

fl = (+—) (3.2.2 1)

f2(u) = Ua
U — Ub

Here, Ua is a point on the unit circle and 11b is a point in the upper half plane. These

points determine the orientation of the mapping.

Therefore, one construct the composed conformal mapping to map the complement

of the unit disk to the complement of the domain D. In general, one can use this idea

for any domain that can be divided into two symmetric parts, simply by rotating it such

that the line of symmetry will match the real axis.

Since the Faber series expansion deals with more general complex domain approx

imation to the time dependence operator J(A) of the solution, one can expect that this

method can solve the problems with a more complicated operator matrix A. For example,

as discussed in the previous chapter, for the non-periodic case, Chebyshev collocation

rather than Fourier pseudospectral has to be used. According to (2.3.8), the Chebyshev

derivative operator may be neither normal nor skew-symmetric. Therefore, the approx

imation of the time-dependent symbolic solution has to be based on the Newton-form

interpolation, rather than the Chebyshev expansion. The Newton-form interpolation is

just one kind of computational implementation based on the Faber series expansion the

ory. By these new complex domain approximation methods, the time dependence of

32

the solutions to the PDEs can be efficiently approximated as long as the eigenvalue dis

tributions of spatial differential operators are available. Thus, the new time-marching

technique based on the complex domain polynomial expansion can be applied to many

time-evolution problems.

3.3 Numerical Results for Time-Marching in the Periodic Domain

Some simulations have been done to demonstrate the accuracy of the new polynomial

time-marching techniques in the periodic domain. One-dimensional wave propagation in

a slowly-varying medium with damping has been simulated by the Fourier pseudospec

tral time-marching and the results are compared with the corresponding analytical so

lution. The well-known d’Alembert solution is used here to check the one-dimensional

homogeneous wave propagation simulation. A simple-shape two-dimensional scattering

simulation is also performed via the Fourier pseudospectral time-marching algorithm.

3.3.1 Variable Wave Velocity and Damping in the
Pseudospectral Time-Marching Scheme

In the equation (3.1.18), the operator £ actually includes not only a spatial differential

operator, but also the wave-velocity distribution in the medium. It has been proven (in

[39]) that when the wave-velocity distribution does not change sign in the computational

domain, the eigenvalues of £ are also purely imaginary. Therefore, all the foregoing

conclusions about the polynomial expansion remain valid.

For the cases in medium with constant damping, let us consider the following 1st

order hyperbolic equation model:

+ £U= —aU (3.3.1.1)

Here a is damping factor.

The symbolic solution to (3.3.1.1) is

U(t) = e(’’U(O) (3.3.1.2)

33

where I is identity operator. Because a is constant, and I is commutative with £

according to [33], one has:

=

+L (3.3.1.3)

=
k!(n—

n=0 k=0

= jjk

3=0 k=0

=

j=0 k=0

=
k!(n—

n=0 k=0
00 T\

\
i—’ n!
n=0

= e(1+I) =

Therefore, the (3.3.1.2) can be written as:

U(t) = e_e_tU(O) (3.3.1.4)

So one can separate the damping factor term from the differential operator if a is a

constant.

For non-constant damping and complicated wave-velocity distribution cases, since

the eigenvalues of a + £ are no longer purely imaginary or real, the corresponding

polynomial expansion has to be done in the complex plane by the Faber series.

3.3.2 Chebyshev polynomial expansion results

Some typical one-dimensional wave propagation and two-dimensional simple shape

scattering problem simulations have also been implemented.

34

The first problem is a simple one-dimensional wave equation in a homogeneous

medium (with periodic boundary condition):
(x_x)2
2 ,U(O,x)=O (3.3.1)

where C is a constant, and the initial distribution is a Gaussian pulse.

The corresponding analytical solution is

U(t,x)—
[exp(_fr+ct0)) +exp(__cx0)2)] (332)

The following computation is based on the parameters: wave Velocity C= 1, time step

t=O.l, number of grid points=256 or 128, and axis length 6.

Obviously, Figure 3.2 shows that the computation error will increase as time increases

due to the recursive use of spectral time-marching. Theoretically, it is possible to compute

the solution in one time step of any size. But since the highest Chebyshev polynomial to

be evaluated is governed byLtR, a time step which is too large requires very high order

Chebyshev polynomials whose coefficients need more digits than the machine precision.

In the above results, it seems that the errors are reduced by reducing the sampling grid

number (from 256 to 128). Actually, it is the highest order of the truncated polynomial

which directly affects the computational errors. When the grid number N is 256,ztR=l4

and the computation uses up to the 20th order Chebyshev polynomial, i.e. 43% higher

than ztR. As previously discussed, when k is beyond LtR, the Bessel function Jk(/.tR)

converges to zero exponentially. When the grid number N is 128 , i.tR=7 and the

computation uses up to the 14th order polynomial, i.e. 100% higher thanztR. The

results clearly show a higher accuracy for the latter, even though it has a lower spatial

sampling frequency (i.e. fewer frequency modes).

The second problem is a one-dimensional equation with a linear wave velocity

distribution and constant damping:

--

+ C(x) = —aU (3.3.3)

35

C

a)

Magnitude Error For

öU(t,x(t)) — ÔU OUOx
aaa’
.aU
i.e.— = —crU

at

.. UQ,x) = e_atU(O,x) = ef() (3.3.5)

1.5

0.5

Magnitude Error For Grid # N=256
8

6%2 4
XAxis

2 4 6
X Axis

I
8

4

0
0 6

X Axis X Axis

Figure 3.2 Computation Enor for the One-dimensional Homogeneous Wave Equation

Let 0(x) = then one has

2 4
0
0 2 4 6

that is:

(3.3.4)

36

If C(x)=ax+b (linear wave velocity distribution),

0(x)
=

= ax + b (3.3.6)

the solution to (3.3.6) is: (1/a)ln(ax+b)+constanh—t

When t=0, U(O,x)=f(),i.e. x(O)=

1 f’ax+b”\
= —in i i and (3.3.7)

a
(ax + b)e_° — b

a

Substituting in (3.3.5) by (3.3.7), one can get the final analytical solution to (3.3.3):

U(,x) e_tf{ + b)e — b]
(3.3.8)

Using (3.3.1.4) one can compute the numerical solution of (3.3.3). The following

figures illustrate the comparisons and errors between the spectral numerical results by

(3.3.1.4) and the analytical solution in (3.3.8). In Fig. 3.3 and the left part of Fig. 3.4,

the polynomial series are truncated over 150% more than ztR, which governs the least

order of the truncated series, but in the right part of Fig. 3.4 only 32% more than LtR

polynomials are evaluated. It is similar to the homogeneous case. If one evaluates more

polynomials, one can achieve higher computational accuracy. Comparing the left parts

of the two figures, one can see the only difference between them is that the Nyquist

rates of their wave velocity distributions are different (different linear rates). Thus, due

to the aliasing problem, the same spatial sampling rate (grid number) results in different

numerical accuracies. The third model simulated by the new time-marching algorithm

is a simple two-dimensional scattering problem without damping. The following Fig.

3.5 and Fig. 3.6 are the two-dimensional initial value distribution and the wave velocity

distribution. The medium wave velocity is variable in the domain with wave velocity

lower inside a disc region simulating a cylinder. Another appended figure (in Appendix

37

First Time Step (dtO.l)
.

10th Time Step (t=10*dt=1)
X1O

6 c(x)=0.01*x+0.1 A C(X)=0.01*X+0.1

I 4

4 damping factor Oi damping factor 0.1

2 grid number 256 : d number 256

XAxis XAxis

Figure 3.3 Magnitude of Errors At Different Time Steps

x107 Time Step dt=0.l xlO-5 Time Step dt=O.5

c(x)=0.1 *x+01

damping factor 0.1

05 gridnumber256 J

1* 6ojj 6

XAxis XAxis

Figure 3.4 Magnitude of Errors For Different ‘lime Step Sizes (at 1st time step)

A) illustrates one snapshot of the wave propagation and scattering procedure, in which

the diffraction and reflection are obvious for this model. The refraction is relatively

trivial because the wave velocity inside the low-velocity region (0.2 inside the disc, 1.0

outside).

38

Initial Pulse

a,t
•0I
zI

bOl

Y Axis

Figure 3.5 Initial Wave Distribution Simulating an Impulse

Wave Velocity Distribution

Figure 3.6 Wave-Velocity Distribution Simulating a Low Velocity

Cylinder (The interface is created by a Rapid Velicity Transition)

Y AxIs

39

Chapter 4 Pseudospectral Polynomial Time-marching
for Non-periodic Boundary Value Problems

For periodic problems or the other “behavior boundary” value problems, due to the

same boundary behavior of the corresponding spectral basis functions, the spectral opera

tor automatically includes the boundary behavior. The Tal-Ezer time-marching technique,

which is based on the approximation of the spectral operator function, can be directly ap

plied. However, for non-periodic “numerical boundary” value problems, explicit bound

ary condition expressions are decidedly needed. In the conventional finite-difference

time-marching scheme, a so-called “boundary-bordering” technique (Boyd, 1986) [5]

can be used to impose explicitly the boundary conditions on the spectral operator matrix.

In this thesis, a technique is developed to incorporate implicitly the homogeneous Dirich

let or Neumann boundary conditions into the Chebyshev collocated spatial operator. The

eigenvalue distribution of the operator, which determines the time-marching polynomial,

automatically includes the effect of the boundary conditions. Imposing homogeneous

boundary conditions in this way makes it possible to apply directly Tal-Ezer’s advanced

time-marching technique to homogeneous Dirichlet or Neumann boundary value prob

lems [31].

4.1 Homogeneous Dirichiet Boundary Conditions

First, let us consider the Chebyshev collocated second order derivative matrix with

homogeneous Dirichiet boundary conditions. The second-order pseudospectral differen

tiation process can be described as follows:

(1) Interpolate the data at Gauss-Lobatto grid points

xi = cos (), j = 1,. ,N— 1 (4.1.1)

40

by a Chebyshev polynomial p(x), which should be constrained to satisfy homogeneous

Dirichiet boundary conditions at the end points xo = +1 and ZN = —1

p(xo) = p(xN) = 0 (4.1.2)

(2) Differentiate the interpolant twice to obtain estimates p”(xj) of the second

derivative of the data at each grid point.

Since the differentiation process is linear it can be described by an (N-i) x (N-

1) matrix (Weideman et at 1988) [59]. This matrix is typically neither sparse

nor symmetric, in contrast to the situation with finite differences. Once the boundary

conditions (4.1.2) and collocation points x1 are fixed, the differentiation matrix

is implicitly determined. According to Gottlieb et at [20], the explicit formulas for

the Chebyshev collocated second-order differentiation matrix entries (without boundary

conditions) can be calculated as follows:

ö(FNf(xk))
= f(xj)(Dp)ka (4.1.3)

Ck (—i)’
where (D1)k3 = — (k j)ci Xj —

C0CN2,c3=1,(1jN—1)

2N2+1
(D113, = — , (D1)00 = = —(D1)NN

2(1_x) 6

and D = (D1)

Under homogeneous Dirichlet boundary constraints, one has
o uü=O
I,U1 Ui

= [D2}(N+I)2 (4.1.4)
UN1 UN_i

0 (N+1)xl UN 0 (N+i)xi

Since uo and UN are always fixed as zero, one has no need to evaluate their derivatives.

Due to Trefethen et at in [54], similar to the description of the first-order differentiation

41

matrix entries, one can easily obtain

u;’

[L] -

= [Dpj (N)2 [] - (4.1.5)

UN I (N 1)xl UN I (N I)xI

where D2 is the same matrix as D2, but with the first, last rows and columns deleted

(masked by the zero boundary conditions). Thus, it is two ranks lower than the original

D2, in contrast to the situation of two ranks higher as in the “boundary bordering” scheme.

Even though it has been proven by Gottlieb et al [21] that all eigenvalues of

for collocation at Gauss-Lobatto points are real, distinct, and negative, Weideman et al

[59] discovered that only a proportion, 21’ir, of the numerically computed eigenvalues are

accurate approximations to those of the continuous problem. However, it is fortunate

that all one needs in the new time-marching scheme are just the eigenvalue bounds

in the complex plane, rather than the accurately computed eigenvalues. As described

before, the domain D which determines the time-marching polynomials should include

all the eigenvalues of the spatial differentiation matrix. In many applications, the time

dependence of the solution (or the symbolic solution for time-marching) is usually an

entire function, such as an exponential, sin or cos. Thus, as long as all eigenvalues are

located within D, the time-marching can be done properly no matter what the actual shape

of the domain D. In practice, in order to efficiently compute the conformal mapping qS(z)

and b(w), sometimes the original eigenvalue domain needs to be re-scaled so that it is

easier to construct the conformal mapping. However, all eigenvalues are still included

inside.

4.2 Homogeneous Neumann Boundary Conditions

For homogeneous Neumann boundary conditions, since there are no fixed function

values, but the fixed first order derivatives at the end points, imposing the boundary

conditions into the second-order differentiation matrix is not as straightforward as for

Dirichlet boundary conditions.

42

According to equation (4.1.3), one has
ug
=D1D1 (4.2.1)

Uj UN

for the no-boundary constraint case. The homogeneous Neumann boundary conditions

at Gauss-Lobatto grid points are

U’(XO) = u’(XN) = 0 (4.2.2)

Then equation (4.2.1) can be re-written as
o 0

II 1 1 1 1
U0 U1 aoo alN U1

= . , (4.2.3a)

4 4_ dNo •.. dNN 4_
o 0

0
dIN U0

and = = •.. (4.2.3b)
UN_i UN dNo dNN UN

0
where d13 = (D1)1 (4.2.3c)

Obviously, when one calculates the first-order derivative, one only needs to evaluate

[Uç,.. , U’N_iI. The first and the last rows of the differentiation matrix D1 in (4.2.3a)

can be deleted. Thus, the first-order derivative evaluation becomes
U’1 d1,0 U0

= . (4.2.4)
UN_i (N—1)xl dN_i,o ... dN_i,N (N—i)x(N--i) UN (N+1)xi

Furthermore, the fixed zero first-order derivatives at end points x=+1 and xj=—l will

mask out the first and the last columns of the D1 matrix in (4.2.3a). Therefore the

second-order differentiation process becomes
U1 d0,1 ... do,N_1

= (4.2.5)
I, I

UN (N-i-i)xl UN,1 .•• UN,N_1 (N+i)x(N—1) UN_i (N—i)xi

43

From (4.2.1) — (4.2.5) one can note that the Chebyshev collocated second-order

derivative matrix with homogeneous Neumann boundary conditions at the end grid points

can be expressed as:
d0,1 • do,N_1

[Dp](N+l)2

= [•.. - I -

(4.2.6)
dN,1 dN,N 1 (N+1)x(N 1)

d1,0

dN_l,o dN_1,N (N—1)x(N+1)

This (N+1)x (N+1) matrix implicitly reflects both the Chebyshev collocated space

differentiation at interior Gauss-Lobatto points and the homogeneous Neumann boundary

conditions at end points.

By the foregoing manipulations, the homogeneous Dirichiet or Neumann boundary

conditions are incorporated into the spectral operator. Therefore, the polynomial time-

marching based on the eigenvalue characteristics of the spectral operator will automati

cally generate the boundary-constrained solution. For the Dirichiet boundary case, since

the time-marching is evaluated only at interior points, at every time step the end point

values should be updated separately by the boundary conditions. But for the Neumann

boundary conditions, the function value time-marching is evaluated at all grid points

(D is an (N+l)x(N+l) matrix) but with the incorporated first derivative constraints.

Therefore, all grid point values will be updated.

4.3 Numerical Examples

The first numerical example used to demonstrate the accuracy and efficiency of the

polynomial time-marching for boundary value problems is a homogeneous wave equation

with Dirichlet boundary conditions on the interval [-1,1].
2 2

I GIL aU_fl 1- -1
I —

— U, —-I. — X —

u(x,O) = uo(x), u(x,O) = 0 (4.3.1)
1. u(—l,t) = u(+l,t) = 0, t 0

44

In order to get a symbolic solution as an entire function (so that the eigenvalue

domain can be regularized), one can make some variable substitutions. Set = v and

the above equation becomes

H = 2 (4.3.2)
vj 0 V

U UOwith
=

, u(±1,t)=0
V

Chebyshev collocation at Gauss-Lobatto points (4.1.1) is represented as

[ua]
= GN

[u J j = 1,... , N — 1 (4.3.3)
V3 V3

U0 UN = 0

where GN
= [j

IN_i]

where ‘N—i is an identity matrix of rank (N-i), is defined in Section 4.1, a Chebyshev

collocation differentiation operator with homogeneous Dirichlet boundary conditions. The

symbolic solution of equation (4.3.3) is

[] exp (GNt)
[uo] (4.3.4)

where u = [Ui,.. ,UN_iI and 5 = [vi,... ,vN_i1 are (N-1)xl vectors for the interior

grid points.

At this stage, the solution of equation (4.3.1) can be computed by the Newton-form

interpolation time-marching technique. Even though the matrix 0N is twice as large

as the D, the actual computation will still be concentrated on evaluating due to

the sparse characteristics of the matrix GN. This operator matrix is far from normal.

Therefore, it is preferable to use the time-marching scheme based on an infinite set of

interpolation points in the domain D. Because of the special structure of the operator

45

GN the eigenvalues of GN can be easily obtained from those of Suppose one of

the eigenvalues of UN is g, then one can get the following:

X 0 ‘N X1 X
GN
, = i-2 — g (• •

‘ (2N)2 J I

• fY=gX
DX=gY

Finally, DX g2X

Thus, it can be concluded that the eigenvalues of the operator GN are the square roots of

those of Therefore, the eigenvalue distribution bounds of GN can also be directly

obtained from the eigenvalues distribution of An eigenvalue distribution domain D

can then be accordingly configured based on these bounds.

According to the definition of in the previous section, the elements of the

matrix operator GN are purely real, and the exponential function satisfies the condition

of f() = f(z). Due to the proof in [40](Tal-Ezer 1989), one can use the algorithm

designed to carry out only real arithmetic operations. Thus, the time-marching algorithm

in (3.2.2 1) should be preferred.

In Fig. 4.1 and 4.2, which show the numerical results of the time-marching of the

problem (4.3.1), the initial pulse is a smooth polynomial pulse. The time-marching error

is less than iO. The corresponding analytical solution is based on the d’Alembert

solution combined with the method of images. The numerical results in the following

figures show that under this time-marching scheme and error control factor, the space

discretization error due to spectral sampling dominates in the solution. This can be seen

by comparing the maximum errors at each time step for the case N=64 in Figure 4.1 and

N=31 in Figure 4.2. In both figures, the wave distribution at t=1 should be a fiat line

of zero, therefore the wave amplitude at t=1 is identical to the numerical computational

46

errors at t=l.

0.8
0.6
0.4
0.2

Wave Amplitude at t=0.4

-1 0
x

Wave Ampiltude at t=1 .6
0

-0.2

-0.4

-1 0
x

0
x

x io Erroratt=1.6

Figure 4.1 Homogeneous Dirichiet Initial-Boundary Value Problem N=64 (time step 0.005)

The numerical evidence listed in Table 4.1 shows that the stability limitation for

the time step in the polynomial time-marching scheme is approximately 0(1/N2). The

experimental data in Table 4.1 are based on the polynomial or Gaussian pulse initial

x 1 i4 Error at t=0.4

x
1
5 Wave at t=1

-1 0 1

5

0

-5

x
x105 Erroratt=1

1 —1 1

-1 0 1
x

47

Wave Amplitude at t=O.4 > io Error at t=O.4
1 +.+

+ +t=0 2
+ +O.5

_

0 I -1 0
x x

1 Wave at t=1 1 Error at t=1

\A/vv\Jv\JV
-1 0 1 -1 0

x x
Wave Amplitude at t=1 .6 > 1 -4 Error at t=1 .6

-0.2
\

-0.4

-20

-1 0 1 -1 0
x x

Figure 4.2 Homogeneous Dirichiet Initial-Boundary Value Problem N=31 (time step 0.005)

distribution and 20 time step calculations. The time-marching error control factor is

less than iO.

48

Table 4.1 Numerical Stability Limitation for the Polynomial Time-marching Step Size

N=32 N=64 N=128

Dirichiet boundary tmax=O.25 LtmaxO.O625 /tmax=O.Ol56

case

Neuman boundary LtmaO.25 L1tmaxO.O625 tmaxO.O156

case

Since there is no theoretical stability analysis available for the new polynomial time-

marching algorithm, a rough explanation and qualitative analysis can be presented here.

Numerically, the major cause of the instability is from the round-off errors of the Newton-

form interpolation points z. Since the maximum eigenvalue of the operator GNLt is

affected by the time step Lit, the interpolation points z, which are distributed along the

eigenvalue domain boundary, are also affected by the time step size. If the time step

is too large, the interpolation points, and thereby the divided difference coefficients ak,

could be large enough to cause significant round-off errors. A similar situation occurs in

Chebyshev polynomial time-marching (Luo and Yedlin l993)[30].

The second numerical example is a homogeneous initial boundary value problem

with homogeneous Neumann boundary conditions

I_=0, —1xl, t>O
u(x,O)=cos(rx), ut(x,O)=O (4.3.6)

I u(—1,t) = u(+l,t) = 0, t 0

solution to the above equation isThe analytical

u(x, t) = cos (rt) . cos (7rx) (4.3.7)

The solution procedure is the same as for Dirichiet boundary problem described before,

except that the operator GN now is defined as

10
GN ‘N--1 1

0] (2N+2)2
(4.3.8)

49

oc

(V.17.17)
Nng(t+N)

ooo
tNnN’tNptN’JNp...t’t—NpO’INptn

N’IptN’tp...t’tpO’tp

onooo3n
spiusaidaiquiwupipiopuutjjjittpuppamspatatp

Nn000
t—NnN’iNp1N’tNp

...tLtNpO’tNptJVn

=

tN’IpTN’tp...I’tpO’tpfl

On0009’—
:MopquxotfsAT1ALIppouoojsqqpiosjsiquo‘i(iunbsuo3

•
=O‘On9’—=

—N‘N—

I——flZ)_j

ams’wtodpuiuwnsuooqi‘(TTV)swiodo#vqo-ssnvatppwoo

S1OUiWUIflsnouowoqtjiwuuxoiddsuornpuoo

t(mpunoqatp‘>>9’‘j>>siiqouwjsnouomoqqiwixoidd

suornpuooiupunoqtp‘T<<9’‘<<uqM‘1JsnotAq()siimsuooam9’puz

IX—‘0(o’x)n‘(x)O=(o’x)n
O<‘j5x—

:Moquoqssnsuornpuo(.mpunoqSflOatiOWOt[

eiuatpqitiUAtSiuoiinbiMsoddngSStopuuatomjouoius

-aidatqioippuxsiqutonbiuqoiuorjndiusuiuompuookrspunoqatij

SUOfl!pUO£upunoqSIIOUOUIOHI’’

uoiwwixojddirnqm-wiwojswoouooniowqi‘uotofloo

AqsiCqq(qpiusaidaiApsioaidquioqoiqMsosiuoiinqi.nstpjsrnuiatj

‘idwxfiouuinuSRflUIpAitJ31quoiinampmuw(9-01)0uinqioqs

wqodS!tPJOS’lIflSat1U!JWUUtP‘(çJJt>JO13JIO.flUO3JOJJ4IIIU1PU

ioo=iv‘IE=N)suompuooiunuidaiuisqiiopun(9i 7)Uipupps’‘uaq

Here the matrix D1 is also defined in (4.1.3).

Thus, it can be concluded that the 2nd order Chebyshev collocation differential

operator, including the general homogeneous boundary conditions in (4.4.1), is given by:

—j3 0 0 0
d1,0 d1,1 • dl,N_1 dl,N

[Dj (N+1)2 = [D1](N+l)2
dN_1,o dN_I,1 dN_1,N_1 dN_1,N

o a (N+i)2
(4.4.5)

This general mixed boundary condition is extremely useful in simulating some wave

scattering problems in a domain with leaking walls, e.g. the wave propagation in a wave

guide.

4.5 The Two-Dimensional Case

In the two-dimensional case, the Chebyshev collocation is done along x, y directions.

The eigenvalue analysis for the collocated derivative operator is more complicated.

Suppose one can represent the two-dimensional Laplace operator as below:

2 OU OU
(4.5.1)

ox oy2
=D2U+UD,2

Here, include homogeneous boundary conditions and can be obtained through

the procedure described in the previous sections. Instead of a one-dimensional vector,

here U is a two-dimensional matrix with x-row-y-column orientation:

U00 UOM

U(N+1)x(M+1) = ... (4.5.2)
NO UNM (N-)-1)x(M-I-I)

For this orientation, one can have the following relationships for the operator matrices

(2)
— -1-’2sp .

51

D2 = (DP)T

where are the corresponding one-dimensional Chebyshev collocated 2nd

order derivative operators (including homogeneous boundary conditions) for N+1 and

M+1 grid points, respectively.

To get the eigenvalue bounds of the operator £2, one needs to use Kroneckerproduct

and to stack the matrix U(N+J)x(M+J) to a vector V

UOO

UOM

ulo

V = (4.5.4)

UNM (N+1)(M+1)xl

The Kronecker product (sometimes called the direct product) is defined as: [4]
a11B a12B a1B

Amxn 0 Bpxq = (4.5.5)
amiB am2B amnB

Each submatrix in the above (mp) x (nq) matrix has dimensions p x q. The Kronecker

product is distributive and associative [4]. Based on the description of Barnett [4], the

matrix equation

Anxnnxm + XnxmBmxm =0nxm (4.5.6)

is equivalent to

([A 0 Jm]nmxnm + [i ® Bxm]){vec(X)lnmxi = [vec(C)}nmxj (4.5.7)
nm X nm

Here, vecO is used to represent the re-stacking procedure along the column, as described

in (4.5.4). Hence, one can re-write (4.5.1) as:

(D2 0 ‘M+l + ‘N+1 0 (D2))T)[vj(N+l)(M+l)Xl (4.5.8)

52

According to the property of Kronecker product [4j, if has eigenvaiues ,,, i

0, 1,. , N, and has eigenvalues j = 0, 1,. , M, then the Kronecker

product operator in (4.5.8) has (M+1)(N+1) eigenvalues 1k = X + , k =

0, 1,—S , (M + l)(N + 1). Thus, the bounds of the two-dimensional Chebyshev collo

cation operator can be directly obtained from the maximum bound of the corresponding

one-dimensional operator bounds along X and Y. The eigenvalue bounds of the operator

determine the size aiad the shape of the domain D, thereby determining the logarithmic

capacity and the distribution of the Fejèr points used in (3.2.14).

It has been shown that the Chebyshev collocation approximation for spatial deriva

tives can be combined with the polynomial time-marching technique, provided that the

corresponding boundary conditions are properly incorporated into the spectral operator.

This technique extends the applicability of the new spectrally accurate polynomial time-

marching technique to many non-periodic problems. Homogeneous boundary conditions

have been successfully included within the corresponding Chebyshev collocation op

erator. Under this time-marching scheme, besides the significant improvement of the

accuracy in one dimension, the largest time step size required by stability is O(J/N2).

In the two-dimensional case, the eigenvalue bounds of the derivative operator incorpo

rated with boundary conditions can be obtained through the Kroneckerproduct properties.

Compared to some implicit finite-difference time-marching schemes, which may allow

larger time steps, this algorithm also avoids matrix inversion required by some implicit

time-marching schemes.

53

Chapter 5 Pseudospectral Polynomial Time-marching
for Non-reflecting Boundary Problems

When simulating wave propagation, usually it is essential to introduce artificial

boundaries to limit the area of computation, due to the finite memory limitation of the

computer. The boundary conditions at these artificial boundaries are used to guarantee a

unique and well-posed solution to the PDE problems within the computational domain.

These artificial boundary conditions are expected to affect the solution in a manner such

that it closely approximates the free space solution which exists in the absence of these

boundaries. Thus, the amplitudes of waves reflected from these artificial boundaries are

expected to be minimized.

In order to avoid (or reduce) the edge reflection contamination from the computational

domain boundaries, one may make the model sufficiently large so that the arrival times

of these edge reflections are out of the time window of interest. Although it would be

completely free of any edge contamination, this option is very costly in terms of CPU time

and memory. Another type ofmore practical choices is to implement non-reflecting and/or

absorbing boundary conditions at the computational domain edges. The “non-reflecting”

here means that a set of equations are imposed only at those grid points on the edges of

the computational domain that mathematically absorb almost all the outgoing energy [11,

38]. Unfortunately, according to Engquist et al in [11], the perfectly absorbing conditions

necessarily have to be nonlocal in both space and time and thus are not useful for practical

calculations. Hence, in practice, some approximations have to be derived to approach

the theoretical nonlocal boundary condition, at the cost of some energy being reflected

back into the computational domain. Often an absorbing region is used to dampen the

outgoing energy by surrounding the main domain with a narrow damping strip which can

drastically dampen the traversing waves. The damping factor should go from zero in the

interior of the strip to a maximum value at the edge of the whole model. This technique

54

is more efficient than the large “free-space” one, but still involves a non-trivial amount

of extra wave propagation. The third alternative to absorb the edge reflection is to set

some boundary conditions which can be used to cancel the edge reflection thoroughly

[18). As described in [18], Dirichlet and Neumann boundary conditions can be used

to simulate rigid and free surface conditions respectively. Their combination can be

used to effectively and completely cancel the first order edge reflections. Unlike other

schemes, it is independent of the incident angle. However, in order to obtain the combined

solutions of both boundary conditions, 21 wave propagation problems, (i is the number

of boundaries involved) one for each combination of Dirichlet and Neumann conditions

applied, have to be solved and linearly superimposed. Therefore, this perfectly-absorbing

scheme is also very costly in computing time, although it’s simpler.

In this chapter, the general approximation methods for the non-reflecting boundary

conditions will be briefly described and the method of incorporating the 2nd order

absorbing approximation equations at the edges into the new polynomial time-marching

scheme will be introduced.

5.1 Non-reflecting Boundary Condition Approximation

Consider the scalar wave equation,

= w + w, t,x 0 (5.1.1)

According to Engquist et al [11], the perfectly absorbing boundary condition for the

above equation at x=O can be written in the form

(s°(,)
—

wzo = 0 (5.1.2)

Here p(, w) is a smooth function homogeneous of degree zero for II + Iwl large with

support in 2 > for (,) large and identically one on a neighborhood of the support

of th(0, ,) (the Fourier transform of w(x, y, t) at x = 0).

55

Unfortunately, the perfectly absorbing boundary condition above in (5.1.2) is neces

sarily nonlocal in both space and time. This boundary condition is impractical from a

computational point of view since to advance one time level at a single point requires

information from all previous times over the entire boundary. Thus, many highly ab

sorbing local approximations to (5.1.2) have been developed. Necessarily, the boundary

condition approximations need to satisfy the following two criteria [11]:

1. These boundary conditions are local. This is essential for reasonable control of the

operation count.

2. The boundary conditions lead to a well-posed mixed boundary value problem for the

wave equation. This condition guarantees the stability of the solution.

The first and second order approximations based on Taylor or Padé expansion are

[11]:

1st Order Approximation:

(-
— = 0 (5.1.3)

2nd Order Approximation:

/02 82 182

— + wIxo 0 (5.1.4)

Both of the above two approximations have been verified to be well-posed in [11, 53].

The first order one approximates absorption at the normal incidence and it’s perfect in

the one-dimensional space case. Actually, (5.1.3) is the standard left-traveling one-way

wave equation, which represents the left-traveling-only propagation at the boundary x=O.

In [38] (Renaut 1992), Renaut reviewed some of the higher order methods currently

used for solving the absorbing boundary conditions for the two-dimensional scalar wave

equation, such as Lindman [27] and Engquist and Majda [11]. She showed that the

extension to higher orders is neither immediately obvious nor unique, as there are many

different ways one can discretize the derived absorbing boundary condition. She also

56

proposed a new high-order absorbing boundary condition approximation, which reserves

the 2nd order spatial derivative as the highest order derivative in the formula. For the

two-dimensional scalar wave equation

c2(us + u) , (5.1.5)

the absorbing boundary condition at x=O can be approximated by a set of equations (as

opposed to one)

u—u= (5.1.6)

where

2 aU

ãI3ic ,

to be solved at the boundary. Here po, crc, are approximation coefficients. The

derivation of P0, cxi, j3 is described by Renaut in [38]. In the above equation, to

increase the degree of approximation, one only needs to add some new coefficients and

increase the ioop index (i.e. increase the degree of interpolation, but not the highest order

derivative). This property is quite useful in the finite-difference implementations.

In the polynomial time-marching scheme, due to the complication of matrix manip

ulations, only the standard 2nd-order absorbing approximation (5.1.4) will be considered

as an example for the absorbing boundary condition implementation in the new time-

marching scheme.

5.2 Polynomial Time-marching With Non-reflecting
Boundary Conditions in One-dimensional Case

In the polynomial time-marching, as discussed in Chapter 4, one needs to incorporate

the time-dependent absorbing boundary conditions into the spatial operator. Here, one

can utilize the 1st order time derivative term in vector form (4.3.2)-(4.3.4). Let’s consider

57

8c

0
N’tNp

N’tp

0

00
00

00

0
0’tNp

0’tp

00

rn1
r><(I+N)rxel

=

=[j

N4_=‘(Nn)._=X(Nfl)

0a.=(0)=X(On)

sutodpuqiwpusidaioixquosuornpuo&rupunoquu,j.((iv)

UIUOIW]ndltnflnpsgurus)suiodorn?q07-ssnvDrnipUtfl?OOJJO3‘na

1+55i—‘0=(o‘x)n‘(x)0=(o=
ffl‘1t+._=i‘ie
uicIi

—

—ze 0<‘T+>X>T—
:spu

t
0

0
0

0
t’tNp

t’tp
Tgaiq

=(i+N)[Tj]=
[]Cff

Na_

t
tNa0

ta0
Oa0

(Evc)

Tx(I+N)

Nn000
tNnN’tNpt’tNp0’t—Np

InN’tpT’Ip0’tp

On000

(zvc)

spiusaidaiqunoSAt1AUP

‘aiojartuj1+=Nr‘-=0xsuiodputjiiirnppnoojiooartNa‘Oa‘Nn‘On

:1+=Nx‘-=Ox

OMIqinsuipunoquiqJosq1ojdqiiiuomnbAMnpostmoisuwip-uo

The matrix D1 and the elements dj are defined in (4.1.3). The vectors ü, are the

same as in Section 4.3. Following the same procedure as described in (4.3.2)-(4.3.4),

one can obtain the general symbolic operator solution including the absorbing boundary

condition as below:

ul u(O)
j = exp (GNt) (5.2.4)

0 ‘N-i-i 1Here , [GN](2N+2)2
= c2D1 -i c2D1 B] (2N+2)2

The matrices D1 and B are defined in (5.2.3). By a method similar to that described

in (4.3.5), one can also get the eigenvalue bounds of [GN](2N+2)2 directly from those

of [D1 B] and [D1 D1]. Let 1 is an eigenvalue of the operator [GJv](2N+2)2, then

one can obtain

(x’ 0 I (x”\ (x”
[GN}

= D1 D1 D1 B kY} = l} (5.2.5)

uIY=lx

1 [1 .i]x+[Di .B]Y =

Here d , respectively are the eigenvalues of {D1 . D1j and [D1 B]. Then the

eigenvalue bound of [GN](2N+2)2I4,I can be obtained from (5.2.5). Thus, the maximum

eigenvalue (spectral radius) of the operator [GN] (2N+2)2 can be calculated from the

eigenvalues of [D1 . I)] and [D1 B]. Direct eigenvalue computation for the bigger

matrix[GNJ(2N+2)2 is unnecessary.

Figure 5.1 and Figure 5.2 show some numerical results for the one-dimensional

absorbing boundary condition approximation when N=32 and N=64. The initial pulses

are all Gaussian, the time step is 0.2 and the wave velocity c=1. The time-marching

relative error control factor is less than 10. The analytical reference can be derived from

59

Wave Amplitude at t=O.4 1 Error at t=0.4
1

+ +t=o

1”
Hi

0
x

Wave Amplitude at t=i

N=32. dt=0.2

Figure 5.1 One-dimension Absorbing Boundary Condition Numerical Results (N=32)

the physical interpretation of one-dimensional scalar wave propagation. The analytical

solution of the wave at t=1 .6 in both figures should be a flat zero line because the pulse

has transmitted out of the computational domain. Therefore, what is shown in the left

column plots (t=l.6) in Figure 5.1 and Figure 5.2 is just computational error, which is

equivalent to the corresponding right column plot.

5.3 Spectral Accuracy Discussions of the Polynomial
Time-marching Scheme in One Dimension

As Fornberg stated in [14], the pseudospectral method performs in many situations far

better than present theory would suggest. As for the spectral accuracy for general initial-

boundary value problems, no general theory is available that is as readily applicable

as those for finite-differences. In Chapter 2, I have shown some previously existing

0.5

C.

x
x103 Waveatt=i.6

-1 0 1

-1 0
x

-i 0
x

1

60

Wave Amplitude at tO.4 1 Error at t=O.4

Wave Amplitude at t=1 1 Error at t=1:::\
11

Wave att=1.6 Error att=1.6

tMIWdvMN
X Nt64, dt=O.2 X

Figure 5.2 One-dimension Absorbing Boundary Condition Numerical Results (N=64)

spectral accuracy results for Fourier pseudospectral method in elastic wave equations,

presented by Fornberg in [14, 15]. To investigate the spectral accuracy of the Chebyshev

pseudospectral in polynomial time-marching scheme, some one-dimensional experimental

calculations have been performed to obtain the data in the following tables.

Table 5.1 Time-marching Errors for the One-dimensional Wave Equation

with Homogeneous Neumann Boundary Conditions (homogeneous medium)

N Mean Error Max. Error

4 6.041E-l 7.OlOE-1

8 2.788E-3 3.048E-3

12 l.552E-6 l.593E-6

16 2.270E-1O 2.297E-1O

20 l.099E-13 l.634E-13

61

Table 52 Time-marching Errors for the One-dimensional Wave Equation

with Homogeneous Dirichiet Boundary Conditions (homogeneous medium)

N Mean Error Max. Error

4 1.641E-2 4.lO2E-2

8 5.568E-5 1.050E-4

12 1.841E-8 6.150E-8

16 1.423E-12 4.535E-12

20 2.806E-14 5.684E-14

Here, the computation is based on Equation (4.3.1) with Uo(x) = sin (7rx) for the

Dirichlet case and with Equation (4.3.6) for the Neumann case. A time step of Lt=O.O1 is

used. The errors are computed from the 100th time step wave distribution, compared with

the corresponding analytical solution. From the error data listed in the tables, it is clear

that the error converges to zero fairly fast. In the Neumann case (Table 5.1), the mean

error ratio of N=8 to N=4 is about 0.0046, which roughly shows an error at the order

of o ((p4)8), i.e. 8th order finite-difference scheme accuracy. The mean error ratio of

N=16 to N=8 is about 8.14e-8, which roughly shows an error at the order of O((4)24),

i.e. 25th order finite-difference scheme accuracy. In Diriciflet case (Table 5.2), the mean

error ratio of N=8 to N=4 is approximately 0.0034. It also shows an 8th finite-difference

order of error convergence. The mean error ratio of N=16 to N=8 is 2.56e-8, which

is roughly equivalent to an error 0 (()25)’ i.e. 25th order finite-difference accuracy.

Both Dirichlet and Neumann case results show that when the number of grid points N

increases, the order of error convergence also increases. Although it is claimed by J.P.

Boyd in [5] that in elliptic equation case the spectral method has an error of o ((y)N),
in this experiment, probably due to the boundary condition interaction and also due to

the relatively low accuracy of computing Schwarz-Christoffel at small Ns, the results do

not illustrate such kind of “exponential order” convergence. In fact, due to the limitation

of computer double precision format, in practice it is impossible to get this order of

62

convergence for N>10. However, the experimental results do show that the degree of

error convergence increases with N.

Table 5.3 Time-marching Errors for the One-dimensional Wave

Equation with Absorbing Boundary Conditions (homogeneous medium)

N Mean Error Max. Error

64 5.629E-5 2.038E-4

128 5.374E-8 1.401E-7

In Table 5.3, the mean error ratio from N=128 to N=64 is 9.55e-4, which shows an

error convergence order of 0 ((*) 10). This error convergent degree is approximately

about the same as that for 10th order of finite-difference. Probably due to the operator

complexity in this case, the minimum error caused by Schwarz-Christoffel conformal

mapping is around 0(1O-). Thus, the overall accuracy is certainly limited by this order.

A time step of /.t=O.O1 is used in this experiment. The errors are computed from the

wave at 240th time step. A cosine initial distribution is used.

Table 5.4 Time-marching Errors for the One-dimensional Wave

Equation with Absorbing Boundary Conditions (varying medium)

N Mean Error Max. Error

32 1.514E-3 5.215E-3

64 6.053E-4 2.186E-3

128 2.936E-4 1.123E-3

Finally, a step discontinuity with the absorbing boundary condition is analyzed to see

the effect of the medium variance. The experimental data listed in Table 5.4 show that in

varying medium (wave velocity jumping from 0.5 to 1.0 with one middle point transition)

the performance is quite poor (o()) due to the varying medium coefficient’s affect.

Severe accuracy degradation is caused by the step discontinuity. In the polynomial time

marching scheme, since the differential operator is applied repeatedly over the medium

space, some high order derivatives of the medium variation contaminate the overall

63

solution. In the computation of Table 5.4 data, the time step remains as tt=O.O1 and
the errors are computed from the wave at 380th time step. Also, a cosine initial pulse•
is used here. For two-dimensional equations with absorbing boundary conditions, due to
the limitation of the 2nd order absorbing approximation, no result with accuracy higher
than 2nd order can be expected.

5.4 Polynomial Time-marching With Non-reflecting
Boundary Conditions in Two Dimension

In the two-dimensional case, in order to get a good absorbing approximation, one
needs to use at least the 2nd order absorbing boundary condition approximation (5.1.4),
rather than just the 1st order one for normal incidence. Consider a two-dimensional scalar
wave equation within the rectangular domain x, y e [—1, +11. The boundary condition
at the edge of x=-1 is a 2nd order absorbing approximation. The other 3 edges (x=+1,
y= +1-1) are all homogeneous Dirichiet.

+ c2 y (—1, +1), t > 0
u(x,y,0) Uo(x,y), uj(x,y,O) = 0, x,y E [—1,+1j (541)u(x = 1,y,t) = 0, u(x,y = ±1,t) = 0, 1 > 0

= cu + .c2u x —l,y E (—1,1)
To examine and compare the results, another two simulation results need to be linearly

superimposed to get a perfectly absorbing at the edge of x=-1. One is with all 4 edges
of homogeneous Dirichiet, and the second is with homogeneous Neumann at the edge of
x—-1 but the rest all homogeneous Dirichiet. According to [18], their linear combination
will generate the completely absorbing boundary at the edge of x—-1. Discretizing N, M
respectively along x, y at Gauss-Lobatto points, I have

Ix=cos(), i=0,.,N
y =co() , j =0,•.•,M (5.4.2)

Similarly, setting vu1, based on the two-dimensional results in (4.5.1), one has the
following matrix expression:

U 0 1 U
V = c2G v (5.4.3)

64

d2N—1,2
0

Here, d] , d] are respectively the elements of D1 , D2 defined in (4.1.3) and d,j =

[Di] The first row, first and last columns of the solution matrix uo , u2,0 , i,M

are all zero, due to the 3—edge homogeneous Dirichlet conditions.

In order to obtain the absorbing effect in a few time steps, and to avoid the reflection

interference from the other full-reflection edges, the initial Gaussian pulse center is located

very close to the x=-1 boundary. The initial pulse is tapered to zero at the near-edge

elements. The initial pulse is generated from the expression

u(x, y, 0) = 0.1 * exp (— ((x — xO)2 + 2) i) (544)

In this numerical experiment, the wave velocity c is 1.0, the time step t is 0.01, which

corresponds to a time step 3.33x 10 second if the wave propagation speed is light

speed c=3 x 108 rn/sec. This time step is comparable to 2.5 x 10_it second time step used

in [50]. In this experiment, the number of collocation grid points in both X and Y is 32,

xO=-0.5290, that is, the peak of the initial pulse will pass the x=-1 boundary at 47th time

step. The global error and normalized reflection are also defined in the same way as in

where GU = UNX(M1) + BN2UNX(M_1) [n(2)J
(M-1)2J NxN

‘lNxN [d
O&N1)XN

I d
r d2 ‘ (2)

I 1,1 d1,2
[(2)] [(2

dN..l,l0 ... 0
r

[(2)]
(M-i)2 =

LM_1,1 dM_1,M_1 .1 (M—l)2
fi 0I.
10 1

BNN I:

Lo 0

NxN

0
0

1 NxN

65

[501. At each time step the difference is defined to be

The normalized reflection is the reflection occuning at one cell above the x=-1

boundary when the pulse peak passes the boundary. It is normalized by the

value of the pulse along the boundary at that moment (47th time step).

0

w
-D
0

0

30 40 50 60
Time Step

1 0 2nd Order Absorbing Approximation

“0 10 20 30 40 50 60 70
Time Step

Normahzed Reflection at 47th Time Step, nx=31

D(i,j) = uappr.(i,i) 0.5 * (uditich(i,j) + uneum(i,j)) (5.4.5)

The global error is defined as

E =D2(i,j) (5.4.6)

absorbing

maximum

0

.0
0
0

x 1 o4 2nd Order Absorbing Approximation defta=0.01 5

70 80 90

delta=0.02

2

80 90

(defta=0.02)C
0
0
ID

IDcc
-o
ID
N

CD
E
0z

X Axis

Figure 5.3 Two-dimension Absorbing Approximation Numerical Results (Grid points 32 in both X and Y, dt=0.01)

The global errors of both cases in this experiment are comparable to those reported

in reference [50] (less than 0.0003 within 80 time steps). When z=0.0l5, the initial

66

pulse is steeper and more aliasing may occur, thus the results are worse. Since the same

polynomial time-marching and Chebyshev collocation scheme are used here for both the

approximated and the perfect absorber, the global error only demonstrates the accuracy

of the absorbing approximation, which is limited by the order of the absorber accuracy,

in this case second order, and is determined principally by the magnitude of the reflected

waves propagating into the computational domain.

67

Chapter 6 Simulation and
Visualization of Model Wave Scattering

Numerically simulating wave field propagation in heterogeneous media has become

one of the major tools for studying seismograms. Many different numerical algorithms

have been applied in this area. Particularly, finite-difference time-domain algorithms have

been intensively implemented on supercomputers for seismic forward modeling [25, 57,

551, which starts with an assumed earth model to generate the wave field by solving the

elastic wave equations.

6.1 2—D Seismic Reflection Modeling

The two-dimensional SH-wave (horizontal shear wave) propagation in a heteroge

neous medium can be described by the following elastic equation:

82v 8 Dv 8 Dv
=
— ,u(x,z).— + — u(x,z)— (6.1.1)

where p(x, z) is the density and IL(x, z) is the shear modulus at the point (x, z) of the

medium and v(x, z) is the horizontal displacement along the y axis. The medium is

supposed to be in equilibrium at time t=O. Hence, all the initial conditions are zero

everywhere in the medium. The wave propagation is caused by a point source excitation

(a short pulse under the earth surface) in the medium. The distribution geometry of

the medium is a rather simplified salt dome model used by J. Virieux in [57], illustrated

in Figure 6.1. The positions Si, S2, S3 are three possible source locations (one source

68

4.0km
4km

x x xsl
s3 s2

PLI 1.3

2.4

0km

okm_____ 8km

Figure 6.1 Geometry of Salt Dome for Polynomial Time-marching Modeling

at a time). The top edge is free earth surface, so the boundary condition is stress-free,

i.e. Neumann condition for the displacement v. The other three edges are all artificial

domain boundaries for computational purposes. They are all set as non-reflecting and

the 2nd order absorbing approximation (5.1.4) is applied there as described in Chapter 5

and [28]. For ease of implementation, when the absorbing approximation is applied to

the left and the right side of the domain illustrated in Figure 6.1, a fairly homogeneous

medium is always assumed along the boundaries so that the simple form of (5.1.4) can

be used. The boundary conditions can be expressed in the following form:
= cva + x = —1 (bottom)
=

= 2
x = +1 (top) (6.1.2)z_—1(et)

= —cv + z = +1 (right)

where c is wave velocity
VP

Similar to the manipulations in the previous chapters by introducing the 1st order

time derivative of v, the equation (6.1.1) with the above boundary conditions incorporated

can be comfigured in the following matrix operator form:
(v

=
(0 1 (v

(6.1.3)\vt j \opl op2,j \vtj

69

(6.1.4)

(6.1.5)

where I is an identity operator. Under the discretization of the scaled Gauss-Lobatto grid

points [61], the node positions are given by

I =X1-X+ Xmp Xm. cos () , i = o, . . . , N

1 z = + ZmZmmn cos () , j o, ,

where Zmin Xmin = 0 m, Zmax = 8000 m, Xmax = 4000 m

The operator 1 opi and operator 2 op2 can respectively represented as

opl{v} = {r[Do](tL)[Dlj[vj[A2}+r[Ai][vj[Dzj(t)[D2]},

op2{v} (c){rs[D4J[vt][Bi] + r[vt][D5]}

The detailed derivation procedure is described in Appendix C. Here, ()s are all two-

dimensional arrays and [Is are matrices. The operator 1 reflects the 2nd-order equation

(6.1.1), Neumann boundary condition at x=-1 and the 2nd-order derivatives in (6.1.2).

The operator 2 reflects the 1st order derivatives in (6.1.2). The corresponding matrices

are defined below as:

,_lx Ax
‘O,1 ON AX ,1X

1,O 1,N
D0

= dX dX
:

, = ... (6.1.6)
N—1,1 N—1,N dX dx
0 •.. 0 (N+1)xN

N,O N,N Nx(N+1)

00•0 0
0 d,1 ... d,M_l 0 0 1 0 0

D2= : : : ,A1= 0
n AZ AZ a 00 ... 1 0
‘ U.M1 uMM1 ‘ (M+i)2 0 0 •.. 0 0.5 (N+1)2
0 ... 0 AZ 11 AZ
: :

U U

D4= :: ,D5= : •..

d,0 ... dYN (N+i)2
—d0 0 ... 0 (M+i)2

70

0.5 0 0 0
0 0 0... 0

A2 = 0 . , B1 = ‘M—l
0 0 1 0 0 0 (M+i)2
0 0 0 0.5 (M+1)2

where d , d, are the elements of derivative matrices along X and Z, defined in the

formula (2.3.8) or (4.1.3). The D is simply the full 1st order derivative matrix in

Chebyshev collocation. The matrices D0 and D1 are configured in the same way as

described in (4.2.1) — (4.2.6). In addition, the last row of D0 is also masked by zeros

so that the last row (corresponding to x=-1 in the solution array) is left for the absorbing

approximation. The matrix D2 simply is the 1st order Chebyshev collocation derivative

matrix with its 1st and last column masked by zeros due to the absorbing approximation

at these two columns (corresponding to z=+1 and z=-1 respectively). The matrices

A1 and A2 are respectively used to add the absorbing boundary coefficient 0.5 to the

related row (the last row) and columns (the 1st and the last colunms). The matrix A1

also masks the 1st row of the solution array to zeros to satisfy the ji = 0 boundary

condition. The matrices D4 and D5 are used to represent the first order derivatives in

the absorbing approximation. The matrix B1 is used to avoid the repeat of the two lower

corners which have been counted twice at both the horizontal and the vertical edges.

The factors r, r and their squares come from the scaled coordinate. According to Zhao

in [611, the Chebyshev collocated derivative under the scaled coordinate (6.1.4) has the

following relationship with the standard [-1, +11 interval expression

= [Xmin,Xmaxl , E [1,+1] (6.1.7)

r
= Xmaz — Xmjn

Consequently, the symbolic solution of the 1st order operator equation system (6.1.3)

71

can be written as

(i)
= exp (tA) (:) (6.1.8)

Here, the general operator A is defined as

A=J (6.1.9)
\opl op2j

Then, the polynomial time-marching discussed in Chapter 3 can be applied.

In order to obtain the initial disthbution, a similar method as used by Alford et al in

[3] can be applied here. Assuming the point source is located in a small homogeneous

region, and the source excitation is a short pulse, which is the usual case in most seismic

applications, before the source term diminishes, the wave propagation resulting from the

source excitation is always limited within the homogeneous region. Therefore, the wave

distribution within the homogeneous region can be computed by an infinite-space Green’s

function method. After the source pulse disappears, the wave distribution obtained by

the Green’s function method can be used as the initial condition for the time marching

in (6.1.8).

The medium is composed of two layers. A dome rising from the lower medium (salt)

intrudes the upper overburden medium. The medium parameters used here are:

Upper layer: velocity 1500 rn/sec. density 2300 kg/rn3

Lower layer: velocity 2250 mlsec, density 2100 kg/rn3

The source is an impulsive point source located at 500 m below the free surface and

right at the horizontal middle line of the domain (xs = 3500 m , zs = 4000 m). The

source is defined as

f(t) = (t
—
to) exp (_a(t — to)2) (6.1.10)

with a=l000 and to—0.15. The main advantage of this pulse source is that its bandwidth

is limited while its time-period is also short. The negative part caused by this source

72

is especially suited for identifying wave fronts in block diagrams, according to Vineux

(1984) [57] and Alford (1974) [3]. The constant factor a governs the time interval w from

negative to positive peaks of the function as shown in the following figure This choice of

Impulsive Source with tO=0.15, oc=1000
0.015

0.01 I

iwH
0.005 I I

0 I I

w=’1 2,tz

-0.01 I

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Time (sec)

Figure 6.2 Impulsive Source Distribution Time Function

the source function was made as a good compromise between short time duration (regional

homogeneous propagation) and a narrow spectrum (reasonable sampling in time). The

Fourier transform of (6.1.10) is

F(w) = (6.1.11)

This spectrum provides sufficient damping to control the bandwidth of the source and

also limits the bandwidth of the convolution with the infinite-space Green’s function due

to the following formula

v3(x, z, t)
= J{—iH2(sr) F(w) }e+iwtdw (6.1.12)

where r is the distance between the observation point and the source point, c is the wave

velocity c H2 is the second Hankel function of 0th order. In practice, the

73

inverse Fourier transform integral is performed numerically to get the time-domain wave
distribution v(x, z, t). Its time derivative can obtained by the 4th order finite-difference
approximation. Then they are used as the initial conditions for the time marching. The
t0=0.5 sec and the homogeneous propagation time period [0, 0.31 sec are carefully chosen
so that the source values at both t=0 sec and t 0.3 sec are small enough (10_9*peak

). Therefore, the zero initial condition for the domain can be satisfied and the source
excitation virtually disappears when the time-marching begins at t=0.3 sec. With the wave
velocity of 1500 rn/sec in the upper layer medium, the wavefront caused by the point
source excitation (at sx=3500m , sz=4000m) is still within the upper layer homogeneous
region (0.3 sec * 1500 rn/sec = 450 m).

The highest frequency component can also be obtained from the source constant a
as the maximum time-domain sampling interval should be no greater than the largest
transition interval w (see Figure 6.2). In this case, 65 temporal sampling points are
chosen for the 0.3 sec initial propagation period (sample interval 0.0046 sec, far less than
w=0.045 sec for a=1000 case) for the Green’s function computation.

Consequently, the shortest wavelength corresponding to the highest frequency com
ponent is given by

min =2WCmin 2Cmin 134 m (6.1.13)

In order to resolve all the sampled frequency components (up to fmax = 0.5f8 =

in the time-domain, the spatial discretization should have enough grid points so that the
maximum spatial interval is less than half of the shortest wavelength corresponding to
the highest sampled frequency component, i.e. 67 meters. Since the Gauss-Lobatto grid
used here is unevenly distributed, its maximum interval should be counted here. From
(6.1.4), it’s easy to get the maximum interval for the scaled Gauss-Lobatto grid given by

max — mm . ft\
(LX)max

= 2 sin
N) (6.1.14)

Zmax — Zmiri . I ir
(Z)max 2

sin

74

Hence, N=100 and M=200 were chosen so as to satisfy the conditions of (LX)maz

(Z)maz 62.8 m < min 67 m.

The time-marching step size could also be limited to be no greater than w so that the

minimum time sampling interval can always be guaranteed. On the other hand, in order

to utilize the advantage of the looser stability limitation of the polynomial time-marching,

which allows much larger time step size than that in the conventional finite-difference

scheme, a time step of 0.00 1 sec was chosen for the time marching.

As a necessary practical requirement for numerical computation, the discontinuity of

the medium parameters at the interface has to be somehow smoothed. Here, a hyperbolic

tangent function is used for this purpose so as to effectively reduce the aliasing caused

by the discontinuity at the interface.

6.2 Numerical Results and Discussion

In the following pages, some simulation snapshots of the previously defined seismic

model are illustrated there. They demonstrate that the validity of the upper free surface

boundary condition and other 2nd-order absorbing boundary conditions. The corner

and the interface diffraction wavefronts can be clearly observed from these snapshots.

Figure 6.6 shows a simpler half space wave scattering model, which demonstrates clearer

multiple reflections, including the so-called “conical” wave occurring at the critical

incident angle. More animation movies of these wave scattering phenomena are presented

on a video tape as an appendix to this thesis.

75

Wave at t=2.0 (from tO=0.3 s) sec

4000
Z (meter)

Figure 6.3 Scatter Movie Snapshots When the Source is Located at xs=3500m, zs=4000

Wave at t=2.0 (from tO=0.3) sec

1000 2000 3000 4000
Z (meter)

Figure 6.4 Scatter Movie Snapshots When the Source is Located at xs=3500m, zs=3200

76

Wave at t=2.O (from tO=0.3) sec

Wave Scattering at t=1 .5 (from tO=0.3)

Figure 6.6 Half-space Scattering

5000 6000 7000 8000

4000
Z (meter)

Figure 6.5 Scatter Movie Snapshots When the Source is Located at xs35OOm, zs=2400

“0 1000 2000 3000 4000
Z (meter)

77

6.3 Half-space Wave Scattering

In order to verify the two-dimensional wave scattering results, a half-space scattering

example is considered. The analytical time-domain solution for half-space wave scattering

is derived by Cagniard in [7] in 1962 and Aid also gives more detailed descriptions in

[2]. In practice, due to the numerical implementation difficulties of a step function, it

is preferable to use the frequency domain solution as shown in (6.1.12). The reflection

can also be computed in the frequency domain by multiplying the incident wave by the

asymptotic reflection coefficients V(O) described by Brekhovskikh and Lysanov in [6]

given by

m cos 9 — \/fl2
— sin2 0V(0) = , sinO < ri (6.3.1)

m cos 0 + — sin2 0
m cos 9 — ijjsin2 9 —

V(0)= , sm9>n
m cos 0 + 9 —

Here, 9 is the incidence angle from the normal at the interface (y=O), m = P2/P1 , ‘ =

Cl /c2. p1, P2, ci, C2 are the medium densities and shear velocities for the upper and lower

medium layers respectively. In this analysis, we use pi = P2, ci < C2. Therefore, we

have a real n and n<1.

The same source function (6.1.10) is applied here. Thus, the analytical solution

for the half space y < 0 needs to be convolved with the source function to get the

source-excited wave propagation. The analytical solution can be written as

v3(x,z,t) =f {_i(H2)(R) + (6.3.2)

where R is the distance from the receiver to the source (xo, yo), Ro is the distance from
the receiver to the image source at (xo, —yo) (illustrated in Figure 6.7).

78

R receiver

x

Figure 6.7 Wave Incidence and Reflection for a Half-Space

On the other hand, the band-limited source also bandlimits the analytical solution in

numerical form. The “conical” wave is not included in the asymptotic reflection coeffi

cients. The purpose of computing the analytical solution here is to verify the accuracy

of the numerical results, in particular, the boundary-smoothing effect Fortunately, from

the numerical solution snapshots, one can note that there are plenty of receiver positions

without the “conical” wave involved.

The comparison results are illustrated in Figure 6.9 and Figure 6.10. In the compar

ison, the medium densities are all set as 1 and the shear velocities are c1 = 1, c2 = 3

(mlsec). The receivers are located at (x=0, y=-O.O94), (x=0, y=-O.lWl) and (xtO.187,

y=—O.O94) three positions, as shown in Figure 6.8.

—1

y

0

-1 x +1

Figure 6.8 Source-Receiver Geometry

source
(x0,y0)

p2 ,c2

(x0,-y0)

S

R3 R2
Ri

79

0

0
0
U)
>
U)
>
ct

2

1.5

1—
—0.2

C=tanh (y*30)+2
Medium Interface Ramp

—0.1 0 0.1
Y

At (x0,y.094)

0.2

3

0
0
a)
>
U)
>as

U)

C
C)as
ci)

2

1.5

1—
—0.2

C=tanh(y*90)+2
Medium Interface Ramp

—0.1 0 0.1
Y

1 At (x=0,y=—.094)

0.2

Figure 6.9 Trace Comparison Between Analytical (—) and Numerical (++) Solutions at (0, —0.094)

*

*

ITS IT’

*

x

0)
D
4-

C
C)as
a)

—5

—10
0.4 0.6 0.8

Time(sec)
0.4 0.6 0.8

Time(sec)

80

C=tanh(v*30)+2 C=tanh(v*90).,2
x io At (x.17, y=—O94) x iü At (x=.17, y=—.094)

5 . 5

0

__

>—5 >—5cri

—10 —10
0.4 0.6 0.8 1 0.4 0.6 0.8

Time (sec) Time (sec)

1 At (x=0, y=—.1 87) 1 At (x=0, y=—.l 87)

/71mtimtum111

—10 —lu
0.4 0.6 0.8 1 0.4 0.6 0.8

Time (sec) Time (sec)

Figure 6.10 Trace Comparisons Between Analytical (—) and
Numerical (++) Solutions at (0.187, —0.094) and (0, -0.187)

In the comparison graphs, the left column graphs are for numerical solutions with a

smoother interface ramp (5 transition points from velocity 1 to velocity 3). The right

column graphs are for numerical solutions with only one transition point for medium

interface. From the trace comparison, it is clear that the direct wave is fairly accurately

represented in the numerical solution. The main difference between the analytical solution

and the numerical one happens in the reflection part due to the smoothed numerical

81

interface ramp. Because of the existence of those intermediate transition points, the
numerically calculated reflection always occurs earlier than the analytical one. Also, the
numerical reflection wave is always weaker since the adjacent medium contrast at the
smoothed interface is lower. When the number of ramp transition points is reduced to
one (minimum transition for numerical simulation), the reflected wave is closer to the
analytical one in both time and magnitude. On the other hand, the reflected field was
obtained by an asymptotic expansion which is more accurate in the far field. This can
be noted that the magnitude of the reflection wave in the trace at (0, -0.187) is a little bit
closer to the analytical one than at (0, -0.094). In the traces at point (0, —0.187), one can
also note that there are some ripples occurring in the numerical solution, right at the tall
of the direct wave. This is mainly due to the band limitation of the Green’s function.

Although time-marching is spectrally accurate due to the high accuracy of the
polynomial time-marching scheme, all successive steps are based on the previously
generated numerical results (with accumulated errors from the very beginning). Generally,
this error accumulation effect exists for any time-marching scheme. Compared to
the conventional finite-difference time-marching techniques, since a larger time-step
size is allowed in this polynomial time-marching scheme, for a certain time-period,
fewer time steps are required to accomplish the time-marching. Therefore, less errors
are accumulated in this time-marching scheme. With the polynomial time-marching
technique, one can even accomplish the time-marching for a certain time-period in one
big time-step, provided machine precision is sufficient. Then the error accumulation
can be avoided. However, in the illustrated trace results, after 750 time steps of time
marching, and after the interface ramp distortion, the tail of the reflected wave in the
numerical solutions still fairly close to the analytical one. This phenomenon shows the
high accuracy and stability of the polynomial time-marching scheme.

In conclusion, the trace comparison and the foregoing analysis show that the major
error sources are the numerical modeffing of the medium interface, the approximate

82

absorbing boundary conditions and the numerical implementation of the Green’s function

(truncation and the asymptotic solution).

83

Chapter 7 Parallel Programming On the Connection
Machine CM-5 and the Fujitsu VPX24O/1O

As mentioned in the Introduction, the pseudospectral methods have many potential

parallelisms and have been implemented on the parallel computers [36, 37, 34]. On

the other hand, the iterative multi-dimensional collocation evaluation in space is an

extremely time-consuming procedure and it has to rely on the computational capabilities

of supercomputers. However, the parallel implementation of the new time-marching

technique is still a challenge even though the kernel of the new time-marching methods

is based on the pseudospectral methods. Fortunately, two state-of-the-art supercomputers

are available for this algorithm development and simulation: a 32—node (with vector

unit) Connection Machine CM-5 at Stanford University (courtesy of Stanford Exploration

Project), and a 2.5 GFLOPS peak performance single-CPU vector machine Fujitsu

VPX24OI1O at the Calgary High-Performance Computing Center (through HPCfFujitsu

scholarship). The general descriptions of the architecture of Fujitsu VPX24O/1O vector

machine and some important programming issues by the vectorized Fortran are given

here. Also, Connection Machine CM-5 and some CM-Fortran programming features
are introduced as a comparison. The implementation considerations of the polynomial
time-marching scheme are addressed.

7.1 Fortran Programming on Fujitsu VPX24O/1O

The Fujitsu VPX24OI1O at Calgary HPCC is a single processor, pipelined SIMD
parallel computer with peak performance rate currently at 2.5 GFLOPS. The general

84

I-
t

C) C)

C — CD
0 C)

r

0
,
-
.

C’
,

C’
, o —

Cd
, F

Table 7.1 VPX24O/1O Hardware Summary[231

No. of Vector Processing Unit 1

Vector Clock Period (Frequency) 3.2 nsec (312 MHz)

Peak Computation Rate 8 flops/cycle (2.5 GFLOPS)

Vector Register Size 64KB reconfigurable

Main Storage Unit (MSU) 512 MB (64 Mwords)

Memory Architecture 128-way interleaved

Load/Store Pipes 2 bidirectional

Memory Bandwidth 4 GB/sec

System Storage Unit (SSU) 1024 MB (128 Mwords)

MMTJ to SSU Bandwidth 1 GB/s read+1 GB/s write

No. of Scalar Processing Unit 1

Secondary Storage (Disk) 60 GB

The VPX24O vector processing unit is a SIMD (Single Instruction Multiple Data)

pipelined parallel processor. The term “vector” processing originated with the 1977

vintage CRAY- 1. The power of the original CRAY-i was derived from the extensive

use of pipelining, supported by segmented arithmetic units and an interleaved memory.

However, the maximum speedup available from pipelining is limited by the number of

operand pairs that can be in the pipe simultaneously (about 10); all further performance

must come from parallelism. The VPX24O has added significantly to the peak perfor

mance of a single vector processing unit by introducing in the VPX24O/l0 model four

independent arithmetic pipes for a peak computational rate of 8 floating point operations

(FLOPS) per 3.2 nsec clock period, which translates to 2.5 GFLOPS.

The optimal computation on the VPX24O is the matrix multiply computation defined

by the following kernel [23, 16]:

do 4 j=1, n

*VQCL LOQP,UNROLL(4)

do 4 k=1, n

86

do 4 i=1, n

4 c(i,j)c(i,j)+a(i,k) *b(k,j)

Here, the use of compiler directive (*VOCL LOOP,UNROLL(4)) to unroll the k loop

to a depth of 4 increases the number of parallel floating point operations in the inner loop

to 8 to match the 4—pipe architecture of the VPX24O without introducing any changes

to the original source code. A 1024 by 1024 matrix multiply in standard FORTRAN

code can execute at a speed very close to the 2.5 GFLOPS peak performance. according

to HPCC in [23].

The VPX24O/10 used for this simulation has a 512 MB Main Memory Unit (MMU)

divided into 128 memory banks. Although two 4 GB/sec bidirectional load/store pipes

are provided for the vector unit memory access, the memory contention problem still

exists. This problem can severely degrade the system performance if continuous memory

addressing is not properly used. Generally, for a continuous real*8 array access, unit

stride addressing through memory causes no memory bank conflict problems, but a

2n+l, 4n+2 and 4n stride addressing may respectively cause a performance degradation

of factor 2, 4 and 8. Therefore, the easiest way to avoid memory bank contention with

real*8 strides is to declare the leading dimension of arrays as an odd value (odd stride),

and try to put the leading dimension index in the innermost loop as long as it’s possible

(unit stride).

The VPX24O/10 also has 1 GB of secondary memory, a semiconductor memory

based System Storage Unit (SSU) , which can be configured as part of the file system.

The transfer rate between SSU and MMU is 1GB/sec for either reads or writes, for a

total bandwidth of 2 GB/sec. Users can perform 110 to the SSU using standard Fortran

reads or writes at a bandwidth approaching 1 GB/sec [23]. This feature provides a very

good way for temporarily swapping out some intermediate computational results.

The VPX24O Fortran compiler is a fully conforming ANSI standard Fortran 77

compiler. It is an optimized compiler with powerful auto-vectorizing capabilities. The

87

compiler is able to vectorize a wide range of loops using a variety of advanced techniques,

including inner and outer loop unrolling, nested DO loop reordering, subroutine miming,

vectorization of conditional blocks, first-order recursion and so on. The vectorization of

a DO loop can be simply illustrated in Figure 7.2 [17].

When a DO loop is vectorized, the execution order of the statements within the scope

of the DO loop changes. Each statement appears as if it is executed within its own DO

loop. Vectorized statements are executed so that the definition and reference order of

data appearing within the statement do not change. If nothing restricts the definition

and reference order of the data in the statement, the execution order of the statement

becomes undefined. The statement is not necessarily executed according to the order in

which is appears in the source program. Optimization is performed so that the program

executes at high speed, utilizing the parallel processing capabilities of the vector processor

hardware. Here the loop (1) has to be executed before the loop (2) and the loop (3) due

Do 1=1, 100
A(I)=B(I)÷C(I) CD
E(I) =A(I)*D(I) ©
F(I) =A(I)-D(I) ©

Enddo
Execution Image

Do 1, 100
A(I)=B(I)+C(I) CD
Enddo

Do 1=1, 100
E(I)=A(I)*D(I)
Enddo

DO 1=1, 100
F(I)=A(I)-D(I)
Enddo

Figure 7.2 Vectorizing a DO Loop

88

to the reference order in the original source. But the (2) and (3) loop execution order

is undefined. Each of the loops will be organized into the following vector form (take

the loop (1) as an example):

A(1) B(1) c(i)
A(2) = B(2)

+
c(2)

A(100) B(100) c(loo)

Thus, the DO loop operation becomes a vector operation that processes vector data [A],

[B] and [C] in one operation.

Consequently, the following factors have been carefully considered during the Fortran

implementation of the simulation on the VPX24O/lO:

• Vectorizing the code as much as possible so that the real computational power of the

vector unit can be properly utilized;

• Carefully dealing with some useful compiler directives such as UNROLL; whenever

it’s possible, an appropriate unrolling factor (or NOUNROLL because the default

unrolling depth is 2) is used so that the number of the inner loop floating point

operations is as close as possible to 8, and/or the number of the operation statements

is 2. Then the 4 arithmetic pipes and/or the 2 load/store pipes can be fully utilized;

• Declaring the leading dimension of every array as an odd value and indexing the lead

dimension in the innermost loop where possible, to minimize the memory contention;

• To avoid some unnecessary overhead, write repetitive matrix multiplication/add

operations in a optimal and customized way, instead of using those general purpose

matrix routines from NAG or SSL IT/VP (Scientific Subroutine Libraries);

• For very large-scale simulations (for example, multi-thousand time steps), the SSU is

used to temporarily store partial results so as to reduce the main memory consumption.

The following tables show some performance data of the VPX24O/lO and demonstrate
some powerful effects of the compiler directives and the memory contention problem.

89

From the above tables, it is quite clear that the optimal performance of the matrix multiply

Table 7.2 2K*2K REAL*8 Matrix Multiply

NAG FO1CRF Compiler directive: Compiler directive:

routine LOOP,UNROLL(4) LOOP,UNROLL(2)

CPU Time 10.287 9.764 14.950

(see)
VU Time 10.206 9.740 14.928

(see)
Vectorization 99.2% 99.8% 99.9%

Table 7.3 Memory Access (2K*2K REAL*8 Array): two-dimensional assignment (3 arrays)

Column loop inside, row Column loop outside, row

loop outside loop inside

CPU Time (microsec) 10772 10701

VU Time (microsec) 10607 10598

Vectorization 98.5 % 99.0 %

kernel, which fully utilizes the arithmetic pipes, is better than the corresponding NAG

routine which may have some overhead. The 2nd table also shows that the memory

access is always faster for the unit stride contiguous access.

Due to the non-IEEE internal binary format and different intrinsic function imple

mentation, the Schwarz-Christoffel conformal mapping package, used for generating the

interpolation points and coefficients in (3.2.14), can not guarantee a robust output on the

VPX24O/10. Since this package is obtained from NETLIB and includes many compli

cated numerical routines, which are hard to modify and optimize for the VPX24O/10, all

the necessary data through a good implementation of this SC package are precomputed

on the SUN SPARCstation. Then one can let the VPX24O/10 concentrate on the kernel

90

operator evaluation operation. A preliminary Fortran implementation based on the above

listed principles can achieve about 96.8% vectorization for the whole program execution.

For the kernel part of the time-marching, over 98% vectorization can be achieved and

each time step (14 iterations per step) takes about 0.78 sec CPU time, including 0.765

sec vector unit time (domain size 101*201). This execution time can be converted at

the sustained processing rate of about 650 MFLOPS, 25% of the theoretic peak perfor

mance 2.5 GFLOPS or 37% of the achievable peak performance 1.76 GFLOPS (based

on 2K*2K Real*8 matrix multiply execution time 9.76 sec).

7.2 CM-5 and CM-Fortran

The previous implementation of the pseudospectral time-marching technique was

based on the Thinking Machines Corp. CM-2 SIMI) supercomputer. Specially, the

Fourier pseudospectral time-marching with periodic boundary conditions was mainly

implemented on the hypercube networked CM-2. Since December 1992, the parallel

computing platform has been upgraded to the latest TMC SIMD & MIMD supercomputer,

the CM5. Since then, all later implementations, such as Chebyshev collocation, absorbing

boundary approximation and the final simulation, were all based on the more powerful

CM5.

The CM5 is the latest supercomputer developed by Thinking Machines Corp. (Cam

bridge, MA) in l990s. It continues and extends support of the parallel programming

model that has been proved successful in the CM-2 and CM-200. The major components

of a typical CM-5 system are illustrated in Figure 7.3.

91

Control Network

Figure 7.3 Components of a 1ipicaI CM-5 System [49]

The two network and the processing nodes are the key components of the CM-5. The

control network is used for operations that require all the nodes to work together, such

as the partitioning of the processing nodes, general broadcast of messages, and global

synchronization. The data network is used for point-to-point exchange of messages

between individual processing nodes. The topology of the CM-5 data network is a fat

tree (quadric tree) and currently it transfers data at upwards of 5 Mbytes/second per

node. Each CM-5 processing node contains a RISC microprocessor (currently a SPARC

chip) and the optional four vector units, as shown in Figure 7.4. From Figure 7.4, it

/ Data Network

I/o
Processlj

To I/O device
(Scalable Disk Array,

Tape System,
HIPPI, etc.)

Processing I
Nodej

Vector Parallel
UnLt 0 Memory

]Vector Parallell_F Memory

Jctor [iarallel
Unit 2 [Memory

]Vector Parallel

1 huu1t F Memory

rVector Parallel

1 Unit 0 r Memory

J Vector Parallel
Unit lFMemoxy

] Vector rparallel
Unit 2 Memory

] Vector Parallel

1 UnitS F Memory

External Network]

\\

92

Figure 7.4 Components of a Processing Node with Vector Units

is clear that the VUs are implicitly grouped in pairs. This affects the speed of data

transfer between the memory regions of the VUs. The fastest exchanges take place

between the two VUs on the same chip; the next fastest between VUs on the different

chips on the same node. Transfers between different processing nodes require network

communication, which takes longer.

Here CM-Fortran is used as the programming language because it’s an implementa

tion of Fortran 77 supplemented with array processing extensions from the ANSI Fortran

90, and it is also suitable for scientific computing. In Fortran 90, an array object can be

referenced by name in an expression or passed as an argument to an intrinsic function,

and the operation is performed on every element of the array. This feature matches the

parallel architecture of the CM system, which can process all the thousands of elements

in unison. If the number of array elements is greater than the number of the physical

processors, the CM system supports Virtual Processing which lets each physical proces

T VUs on the same chip
L__

Control Data
Network Network

64 bit

1
Vector Vector
UnitO Unit 1 I

I

VU Memory rVU Memo
(8 or 32MB) (8 or 32MB)

93

sor behave as many Virtual Processors (VPs) so that the Connection Machine programs

are completely scalable among different physically-sized CM systems. The CM system

architecture and interconnection network provide three different VP set layouts in CM

Fortran: NEWS, SEND and SERIAL, respectively corresponding to the NEWS grid in

terconnection, the data network router connection, and all elements along the axis local

(within one processing node).

CM Fortran’s execution model refers to the way a program makes use of the hardware.

The CM-Fortran on CM-5 systems supports three kinds of execution models: [43]

• A global model, where a single program operates on arrays of data spread across

all the parallel processors

• A nodal model, where multiple copies of a program operate independently on

subsections of the data and communicate in message passing style

• A global/local model, a combination of data parallel and message passing for

maximum flexibility in programming

The Fortran 90 features of CM-Fortran refer to the global model, which is data parallel

(corresponding to SIMD).

In the polynomial time-marching applications, a large number of operations are

matrix/array operations in a standard SIMD data parallel form. Therefore, the global

model of CM-Fortran is chosen for the simulations.

The global CM Fortran programs executes in a master/slave style between a partition

manager (PM) and the processing nodes in its partition. When the PM comes to a

program that requires a parallel operation (that is, requires the processing nodes, PNs

to execute some operation on their data), it broadcasts a call to a parallel routine, and

the PNs immediately execute that routine. The PM handles all scalar instructions and

CM Run-Time Systems (CMRTS), thereby controlling all communication involved as

94

shown in Figure 7.5 It is clear that all use (explicit or implicit) of parallel communication

Figure 7.5 Disthbution of Code and Data in a CM Pmgram [49]

involves not only the data movement (which is the bottleneck in any parallel computing)

but also the PM. Therefore, a significant amount of overhead occurs with the parallel

communication. As a general rule for multiprocessor parallel programming, the parallel

communication should be minimized so as to increase the purely parallel computational

portion thereby increasing the general efficiency. CM Fortran provides some compiler

directives, command line switches and some utility libraries to control the detailed parallel

array layout. Through these tools, a programmer can flexibly control the distribution of

the parallel array elements so that the inter-array operations involve a minimal amount of

PM Memory

o scalar data
and arrays

O CMRT data
structures

Partition Manager

compiled program
(scalar code)

a CMRTS routines

parai returned
routine ca scalar values

vector
operation

_____ _____ _____

IvU Ilvuilvull vu
4, 4? 4?
PN Parallel Memory

a parallel array data

Processing Nodes

o dispatch loop
D compiled program

(parallel code)
DCMRT routines

PN Scalar Memory
o PN Kernel
o some CMRTS
data structures

95

parallel communication. On the CM-5 systems, basically the parallel distributed :NEWS

layout and the locally :SERIAL layout are in effect.

As discussed in the previous chapters, in contrast to the FFT kernel operation

for the Fourier pseudospectral time-marching, the kernel operation of the Chebyshev

collocation polynomial time-marching is the matrix multiply. Therefore, among the

comprehensive scientific utilities provided by the Connection Machine Scientific Software

Library (CMSSL), the matrix multiply utility is addressed because it is extensively used

as the kernel operation in the final simulations described in Section 6.1.

There are two routines available on the CM-5 for matrix multiply: CM Fortran

intrinsic function MATMIJL and the CMSSL routine gen_matrix_mult_noadd. When

the CM Fortran program is linked with CMSSL Version 3.1 library, the MATMUL

performance is specially optimized and improved. The performance data in the following

table show how the parallel array layout affects the matrix multiply performance. The CM

Table 7.4 ZK*2K Double Precision Matrix Multiply C=A*B by CMSSL Routine gen_matrix_mulLnoadd

CM Elapsed Time (sec) CM Busy Time (sec)

All arrays laid out as 9.636 9.622

(:news, :news)

A, B: (:news, :serial), C: 9.759 9.578

(:news, :news)
All arrays laid out as 16.555 16.338

(:news, :serial)

elapsed time here means the elapsed execution time while the program is not swapped

out by the OS on the partition manager. The CM busy time means the time spent actually

executing parallel computation on the processing nodes. Due to the default axis reorder

action taken by the CM Fortran compiler, the :NEWS axis always varies faster than the

:SERIAL one. Therefore, a layout of (:NEWS, :SERIAL) is virtually equivalent to

96

(:SERIAL, :NEWS) layout here for these 2K*2K arrays. From the performance data

listed in the table, making one axis of A and B local (:SERL4L) can cause a marginal

performance improvement and making one axis of all arrays local even degraded the

performance. On the other hand, since a series ofmatrix/array operations will be involved,

the incompatible layout in the 2nd case in Table 7.4 may cause further performance

degradation due to the different layouts between arrays. Therefore, unanimous :NEWS

layout is used through the entire time-marching implementation.

7.3 Parallel Implementation of the
Polynomial Time-Marching by CM-Fortran

In this section, the preliminary optimized implementation issues on the CM-5 of the

polynomial time-marching simulation will be briefly discussed. For the model discussed

in Section 6.1, the following implementation issues should be carefully handled:

1. Based on the layout discussion in the previous section, :NEWS layout is used

throughout the entire program;

2. In order to minimize the interprocessor communication, some row, column masks for

incorporating boundary conditions (e.g. matrices [A1] , [A2] , [B1] in (6.1.5)) should
be handled via CM Fortran WhERE mask block, rather than FORALL which may
cause some unnecessary communication;

3. Due to some complicated non-linear numerical approximation routines involved,
currently it’s better to run the Schwarz-Christoffel conformal mapping package in

Fortran 77 serially on the front-end. However, this may cause a significant amount
of PN idle waiting while the SC package is running on the front-end. Thus, a more
efficient alternative is to pre-compute the necessary SC parameters on the workstation
(e.g. in MATLAB) and save these data for the final CM parallel processing;

4. To guarantee the minimum amount of communication involvement, the -list compiler
option can be used to generate an additional listing file. It contains a complete line-
numbered source-code listing of the program, as well as detailed information about

97

the array homes, a list of all CM interprocessor communication operators used by

the program, with line number showing where they are used. This information

is particularly useful in helping to identify all the communication, to eliminate

redundances.

By applying the above points to the CM Fortran program, the 2—D seismic simulation

program kernel with virtually no communication can be obtained. This is confirmed by the

generated listing files. The following table briefly illustrates the performance upgrading.

Since the communication caused by the FORALL operation is eliminated in the kernel

Table 7.5 Per Time Step Kernel Operation Execution Time (model discussed in Section 6.1)

CM Elapsed Time (sec) CM Busy Time (sec)

per time step per time step

FORALL used for the 9.262 8.656

boundary manipulations
WHERE mask used for 8.954 8.341

the boundary

manipulations

operation (6.1.5), the execution time is reduced. Furthermore, the difference between CM

elapsed time and busy time is also reduced since the PM involvement for the parallel

communication is reduced.

The polynomial time-marching algorithms evaluate the time dependent solution of

the wave equation by extensively and recursively using the pseudospectral methods. The

computational requirement therefore is much higher than the conventional time-marching

techniques. Thus, the powerful parallel computers such as the Connection Machine must

decidedly be the suitable tools. The parallel implementation of the algorithms should also

be fairly important to the application of these algorithms. From the above discussion, it

98

is also clear that a good or an optimal implementation on the massively parallel computer

critically depends on the machine architecture and the parallel language features.

99

Chapter 8 Conclusion

8.1 Summary

The purpose of this thesis research is to develop a novel numerical algorithm, based

on Tal-Ezer’s time-marching method, to simulate wave scattering phenomena in the time-

domain. The simulation usually is implemented on the supercomputers, which require

very high vectorization or parallelism in the algorithm. The pseudospectral methods

are chosen for the spatial derivative approximation and the polynomial expansion or

interpolation methods are developed for the time-marching.

In Chapter 2, the theoretical principles of pseudospectral methods are introduced.

The pseudospectral (or named as collocation) methods always associate a set of grid

points with some specific basis function sets. The choice of the basis function sets is

determined by the boundary conditions of the domain. Usually, the Fourier series is

chosen for periodic domains and Chebyshev polynomials are chosen for non-periodic

domains. Compared to the finite-difference methods, the pseudospectral methods have

“imfinite-order” or “exponential” convergence. This “exponential” convergence, however,

degrades in the presence of internal boundary and also some boundary conditions imposed

on the external boundaries. The discussion is focused on the derivative representations

of the Fourier and the Chebyshev pseudospectral methods. The latter one is extensively

addressed in consecutive chapters.

First in Chapter 3, the method of expanding the solution time dependence by

Chebyshev polynomials is presented. Its accuracy, resolution, convergence and stability

issue are also discussed. The time-marching scheme is later interpreted as a special case

of the general Faber polynomial approximation. It is limited to the case of a skew

symmetric spatial operator with purely real or imaginary eigenvalues. Hence, it is only

applicable to the Fourier pseudospectral spatial approximation which implies the periodic

boundary situations. Then, a more general Faber polynomial time-marching scheme and

100

its practical implementation, the Newton-form interpolation, are introduced, to deal with
those more complicated spatial operators occurring in the wave equation.

By manipulating the Chebyshev collocated derivative operators in space, non-periodic
boundary conditions are incorporated into the polynomial time-marching scheme, as
presented in Chapter 4. Homogeneous Dirichiet, Neuman and the mixed boundary
conditions respectively are included in the polynomial time-marching scheme without
changing the polynomial marching procedure. The key is to incorporate the homogeneous
boundary conditions into the spatial operator so that the eigenvalue distribution of the
combined operator reflects the boundary constraints. Consequently, the Newton-form
interpolation, which is determined by the eigenvalue distribution domain and the function
form of the symbolic solution, is also affected by the boundary constraints. After
incorporating the boundary conditions, the new scheme still maintains the same high
resolution and accuracy as discussed in Chapter 3, for the model problems presented.
These numerical examples show that the stability limitation over the time step in this
new scheme is O(r).

Furthermore, in order to simulate a long period of wave-scattering in a restricted
domain without involving severe edge reflection, approximate non-reflecting boundary
conditions are introduced in Chapter 5. The approximate absorbing boundary conditions
are also incorporated into the polynomial time-marching in a similar way. It is shown
that the 1st and 2nd order approximate absorber can be conveniently included in the poly
nomial time-marching without any significant algorithm changes or more computational
cost. One complete numerical simulation example, two-dimensional seismic reflection
model, is presented in Chapter 6. The snapshots of the visualization demonstrate scat
tering phenomena of diffraction, reflection and transmission.

Chapter 7 addresses the parallel programming issues of the numerical simulation
on the supercomputers Fujitsu VPX24O/lO and TMC CM-5. The architectures of the
two supercomputers are introduced and compared. The detailed programming and

101

optimization considerations in Fortran (vectorized Fortran on the VPX24O/lO and CM-

Fortran on the CM-5) are also discussed. Some preliminary optimization results are

presented there. The performance data show that the polynomial time-marching scheme

can be highly vectorized or parallelized. Therefore, it’s very suitable for implementation

on supercomputers for simulating some large-scale complex physical phenomena.

8.2 Contributions

The following is a list of the major contributions of this thesis:

• Implementation of the Fourier pseudospectral time-marching technique on the CM-2

supercomputers to simulate some simple-shape scalar wave scatterings.

• Extension of the polynomial time-marching scheme to the non-periodic boundary

value problems, including incorporating homogeneous boundary conditions, Dirichiet,

Neumann or the mixed, into the Chebyshev collocation operators, thus significantly

extending the application range of the polynomial time-marching technique.

• Derivation of the eigenvalue distribution of the combined two-dimensional Chebyshev

collocation operator via Kronecker product.

• Incorporation of the 2nd order approximate absorbing boundary conditions into the

polynomial time-marching scheme, thus making it possible to apply the polynomial

time-marching scheme to simulate wave propagation in opened domains.

• Simulation and visualization of a complex seismic wave scattering model by the

polynomial time-marching scheme on both of the CM-5 and the Fujitsu VPX24OI1O

supercomputers, including optimization of the parallel implementation in CM-Fortran

(Fortran 90) on the CM-5 and in the vectorized Fortran on the VPX24O/10.

• Examination, via numerical examples, for the one-dimensional 2nd order wave

equation of the accuracy for different N. The exponential convergence degrades in

the presence of internal boundaries or external applied boundary conditions.

102

8.3 Future Work

Due to the severe accuracy degradation in the presence of medium discontinuities or

2nd order absorbing boundary conditions, further work is needed to study the internal

boundary manipulation and also a higher order absorbing approximation should be

incorporated. A full comparison with an analytical solution in the two-dimensional

variable medium should be studied in the future as well.

In this thesis, the polynomial time-marching scheme for two-dimensional Chebyshev

collocation case have been studied. For three-dimensional case or the ChebyshevlFourier

mixed collocation case (for example, in cylinder or spheric coordinates), the whole

derivation procedure but the configuration of the collocation operators remains the same.

Therefore, in order to efficiently obtain the collocation matrix operator and its eigenvalue

distribution in the three-dimensional case, an appropriate form of the three-dimensional

Chebyshev collocation operator incorporated with boundary conditions needs to be built

up.

Generally, this polynomial time-marching scheme deals with boundary-initial-value

problems without any source excitation. However, some short pulse source problems can

always be approximated by the same scheme as used in Chapter 6. Further theoretical

work is needed to work out the cases with a long-lasting source.

Also, three-dimensional seismic forward modelling based on the complete elastic

wave equation will be certainly considered as one of the goals for this algorithm. The

major difficulty would be on constructing the three-dimensional operator and deriving

its spectral radius.

103

Appendix A Some Snapshot of Fourier
Pseudospectral Time-marching Results

Figure A.1 Snapshot of wave scattering described in page 37—39

104

Appendix B Previous Study Results on the
Performance of the Connection Machine CM-2

The Connection Machine CM-2/200 is a massively parallel, single instruction mul

tiple data (SIMD) machine. A fully configured CM-2 has 64K one-bit processors. All

these processing elements are organized into processing nodes each of which includes

32 processors, and the distributed memory, a 64—bit floating-point accelerator and com

munication interfaces for interprocessor communication. The interprocessor connection

network of the CM-2 provides three forms of interprocessor communication: general com

munication, which is based on hypercube message passing router and physically connects

the addresses differing by one bit; NEWS grid communication, which provides the hard

ware connections for each processor to its four nearest neighbors in a two-dimensional

Cartesian grid; and global communication, which is useful for the global cumulative and

reduction computations along one axis. These architectures provide more flexible parallel

programming techniques in high level languages.

Some early stage work is based on Fourier pseudospectral and implemented on the

Connection Machine CM-2 with 8K processors. The following is the outline of this work:

Performance Results for The Parallel linplementation
of Fourier Pseudospectral Time-Marching on CM-2

The following table shows some performance data for computing a 128* 128 two-
dimensional problem in one time step (the Chebyshev polynomials were evaluated up
to 28th order): From the performance data in the above table, it is clear that the

105

The FFT

complex

working array

layout

(10000:send,

:send)

The FF1’

complex

working array

layout

(:serial,:send)’

Layout is the

same as the first

one, but

attached to 8K

processors

Total one step CM time (see) 0.8115 1.6923 0.459 1
CM Elapsed 0.8326 1.7169 0.4877

time-marching

time (see)
Pseudo- CM time (see) 0.7702 1.6511 0.4376

CM Elapsed 0.7913 1.6757 0.4662
spectral

time (see)
evaluation

(computing all

the required

K’) CM time (see) 0.0398 0.0397 0.0206
CM Elapsed 0.0398 0.0397 0.0206

Polynomial

time (see)
Expansion
Table B.1 The 128*128 one time step performance comparison: attached to 4K processor except
otherwise described. The CM-2 used here has 256 Kbits/proc. distributed memory and one 64—bits
floating-point processing unit per 32 processors. The clock frequency of this CM-2 is 7 MHz.

pseudospectral evaluation uses the dominant part the execution time (about 95% of the

the wave speed array, wavenumber array are also set in the same way.

106

total time), and the serial operation for the Chebyshev polynomial expansion is also quite
efficient as the CM time is equal to the CM Elapsed time. Furthermore, setting the first
space axis of a two-dimensional problem as SERIAL will greatly decrease the parallel
execution efficiency. Increasing the number of the parallel processors to 8K can increase
the performance by a factor about 1.7 (less than linear)

As previously mentioned, the kernel parallel operation of this algorithm is the evalu
ation of various orders of the spatial derivative operator by the pseudospectral methods,
either Fourier (for periodic interval) or Chebyshev (for boundary value problems) collo
cation. Hence, some conventional pseudospectral parallel implementation techniques, as
analyzed by R.B. Pelz in [36], wifi also be applied in this implementation:

1. To minimize the con-imunication cost in the FFT, it is desirable that the x direction
(the first space axis of the array) be mapped as locally as possible. The x axis weight
is set to be greater than the other axes;

2. To match the FF1’ butterfly communication pattern, which always operates between
data elements at a distance of 2’, the FFT complex working array axes should be
laid out in SEND hypercube ordering;

3. To avoid wasteful communication cost, set the frequency domain axis ordering in
bit-reversed order;

4. To make the wavenumber multiplication more efficient, precompute all the one-
dimensional wavenumber vectors and combine them as a three-dimensional bit-
reversed ordered wavenumber array with the same layout as the working array. Thus,
the interprocessor communication during the multiplication can be minimized.

In addition to the above, because the new algorithm requires the polynomials of the
spatial derivative operator for time-marching, it is also necessary to extend the previous
parallel implementation techniques for the conventional pseudospectral methods:

1. To make better use of the Chebyshev and Bessel recurrence relations, the Chebyshev
polynomial coefficients and the Bessel function values are calculated on the front-end

107

beforehand. The computation of the Bessel function values is based on the NETLIB

special function routines (written by W. J. Cody of Argonne National Laboratory);

2. To evaluate the Chebyshev polynomial of the spatial derivatives, the Chebyshev

polynomial coefficients and the Bessel functions will be addressed individually for

multiplication with the various order derivative arrays. Therefore, storing these

coefficients and function values as frond-end arrays instead of parallel CM arrays

can dramatically reduce the single CM array element movement, which is one of the

most inefficient operations in the SIIvID machines;

3. Because of the above consideration, the order index dimensions of the derivative

arrays are also desirably set as SERIAL, so that some serial DO-LOOPs can be

used for the polynomial evaluation. (the DO-LOOP is usually more efficient in the

SERIAL dimension than FORALL[431);

4. As the new time-marching technique is not as simple as the finite difference one,

which may use the nearest neighbor NEWS grid communication, it is also expected to

set the time dimension as SERIAL so as to use DO-LOOP for the more complicated

time-marching operations;

5. If the first space axis of the FF1’ working array (complex) is set SERIAL, all the other

arrays should also be laid out in the same way so as to minimize the communication

cost of the operations between them and the working array. Because the time axis

of the solution array has been set SERIAL (mentioned above), the two-dimensional

problems will only have one parallel dimension in the solution array. This layout

usually is also inefficient because the spreadout of the only parallel dimension may be

less than the CM parallel processing requirement[43] (For an 8K CM-2, a 1K parallel

element dimension is the minimum requirement for the Slicewise mode. Otherwise

some processors have to be idled). Therefore, all the space axes have to be laid out

as SEND ordering, but the first one should be given the highest weight.

108

Appendix C Derivation of (6.1.5)

Step 1: represent the 2nd order equation (6.1.1) into Chebyshev collocation matrix

form (no boundary conditions).

[vj + r[v}[Dz]()[Dz]} (C.1)

Here, are defined in (6.1.7). The [Is are matrices and Qs are arrays. [DJ, [Di] are

just normal Chebyshev collocated 1st order derivative matrix, defined in (4.1.3).

Step 2: incorporate the top edge free surface (Neumann) boundary condition and the

2nd order terms of all the absorbing boundary conditions into (C.1).

[v] {r[Doj(fL)[Dl][v] + r[vj[D]()[D2]}, (c.2)

where
,Jzu0,1 UON dX• 1,0

D0
=

:
dZ

:
, D1 = : •.. : (C.3)

N—1,1 N—i N dX dX
0 0 (N+1)xN

N,0 N,N Nx(N+1)

o d,1 •.. d,M_l 0

o d1 ••• d,M_l 0 (M-i-1)2

The matrix [D0j includes the 2nd order term of the absorbing boundary condition for the

bottom edge. The matrix [D1] reflects the top edge homogeneous Neumann condition.

The matrix [D2] contains the 2nd order terms of the absorbing boundary conditions for

the left and right edges.

Step 3: build the 1st order terms for the absorbing boundary conditions.

op2{vj} = (c){r[D4J[v] + r[vt][D]}, (C.4)

109

where

9 9 —d,0 0 0
D4= ,D5= : :

d,0 d,N (N+i)2
—d,0 0 •.• 0 +d,M (M+i)2

(C.5)

The matrix [D4j, [D5] contain the 1st order term of the absorbing boundary conditions

respectively for the bottom edge, the left and right edges.

Step 4: extract those corner points which have been counted twice by their adjacent

edges, include the 0.5 factor for the 1st order term in the absorbing approximation.

opl{v} = + r[Aij[vJ[Dzj(1i)[D2J}, (C.6)

op2{vt} = (c){r[D4][vt}[Bi] + r[vtj[D5]}

00...0 0
01•..0 0

A1= 0 •. (C.7)
00•• 1 0
0 0 ... 0 0.5 (N+i)2

0.5 0 0 0
o 1••.0 0 0•• 0

A2 0 , B1 ‘M—i
0 0 1 0 0 0 (M+i)2
0 0 0 0.5 (M+i)2

References

[1] Milton Abramowitz and Irene A. Stegun, editors. Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables, pages 877—878. U.s.
National Bureau of Standards, 1972.

[2} Keiiti Aid and Paul G. Richards. Quantitative Seismology: theomy and methods. W.
H. Freeman And Company, 1980.

110

[3] R.M. Alford, K.R. Kelly, and D. M. Boore. Accuracy of finite-difference modeling

of the acoustic wave equation. Geophysics, 39(6), 1974.

[4] Stephen Barnett. Matrices, Methods and Applications. CLARENDON PRESS,

OXFORD, 1990.

[5] Joy P. Boyd. Chebyshev & Fourier Spectral Methods. Springer-Verlag, 1989.

[6] L.M. Brekhovskilch and Yu.P. Lysanov. Fundamentals of Ocean Acoustics.

Springer-Verlag, 1982.

[7] L. Cagniard. Reflection and Refraction of Progressive Seismic Waves. McGraw-

Hill, 1962.

[8] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral Methods in

Fluid Dynamics. Springer-Verlag, 1988.

[9] C. Canuto and A. Quarteroni. Error estimation for spectral and pseudospectral

approximations of hyperbolic equations. SIAM J. Numer. Anal., 19:629—642, 1982.

[10] S.W. Ellacott. Computation of Faber series with application to numerical poly

nomial approximation in the complex plane. Mathematics of Computation,

40(162):575—587, 1983.

[11] B. Engquist and A. Majda. Absorbing boundary conditions for the numerical

simulation of waves. Math. Comput., 31:629—651, 1977.

[12] John T. Etgen. Accurate wave equation modeling. Private Communication, 1991.

[13] B. Fischer and L. Reichel. Newton interpolation in Fejér and Chebyshev points.
Math. Comp., 53:265—278, 1989.

[14] Bengt Fornberg. The pseudospectral method: comparisons with finite differences
for the elastic wave equation. Geophysics, 52(4):483—501, 1987.

[15] Bengt Fornberg. The pseudospectral method: accurate representation of interfaces
in elastic wave calculations. Geophysics, 53(5):625—637, 1988.

[16] FUJITSU LIMITED. FUJiTSU FORTRAN VP PROGRAMMING GUIDE, 1991.

111

[17] FUJiTSU LIMITED. FUJiTSU UXP/M FORTRAN77 EX/VP USER’S GUIDE,

1992.

[18] G. E. Q. Goode. Numerical Simulation ofViscoelastic Waves. PhD thesis, University

of Calgary, AB., 1993.

[19] David Gottlieb and Richard S. Hirsh. Parallel pseudospectral domain decomposition

techniques. Journal of Scientific Computing, 4(4):309—325, 1989.

[20] David Gottlieb, M. Yousuff Hussaini, and Steven A. Orzarg. Introduction: Theory

andApplications of Spectral Methods, pages 1—54. SIAM, Philadelphia, 1984.

[21] David Gottlieb and L. Lustman. The spectrum of the Chebyshev collocation

operator for the heat equation. SIAM J. Numer. Anal., 20:909—921, 1983.

[22] Ri. Higdon. Absorbing boundary conditions for difference approximations to the

multi-dimensional wave equation. Math. Comput., 47:437—459, 1986.

[23] HPC Center, Calgary, Canada. HPCC User’s Guide, 1993.

[24] M.Y. Hussaini, D.A. Kopriva, and A.T. Patera. Spectral Collocation Methods.

Applied Numerical Mathematics, 5:177—208, 1989.

[25] F. Kalantzis, N. Dai, E. R. Kanasewich, S. Phadke, and A. Vafidis. 2—d and 3—d

seismic reflection modeling and imaging using vector and parallel supercomputer.

In Proceedings of Supercomputing Symposium’93, June 1993.

[26] H. Kreiss and 3. Oliger. Methods for the approximate solution of time dependent

problems. Global Atmospheric Research Programme (GARP) Publications Series

No.10, January 1973.

[27] E.L. Lindman. Free space boundary conditions for the time dependent wave

equation. J. Comput. Phys., 18:66—78, 1975.

[28] Yong Luo and Matthew J. Yedlin. Polynomial time-marching for non-reflection

boundary problems. Journal of Scientific Computing. (prepared in Sept. 1994).

112

[29] Yong Luo and Matthew J. Yedlin. Simulating Some Complex Wave Scattering

Problems on CM-2 Connection Machine by Pseudospectral Time-Marching. In

Proceedings ofThe 3rd International Conference onApplications ofSupercomputers

in Engineering, Southampton, U.K., September 1993. Computational Mechanics

Publications.

[30] Yong Luo and Matthew J. Yedlin. Solving wave equations by pseudospectral time-

marching on cm-2 connection machine. In Proceedings of The 7th Annual High

Peiformance Computing Conference of Canada, Calgary, AB, June 1993.

[31] Yong Luo and Matthew J. Yedlin. Polynomial time-marching for non-periodic

boundary value problems. Journal of Scientific Computing, 1994. (in press).

[32] A. I. Markushevich. Theoiy of Functions of a Complex Variable. Chelsea, New

York, 1977.

[33] V.P. Maslov. Operational Methods. MIR Publishers, Moscow, 1976.

[34] Oliver A. McBryan. The Connection Machine: PDE solution on 65,536 processors.

Parallel Computing, 9(1):1—24, December 1988.

[35] Alireza H Mohammadian, Vii aya Shankar, and William F. Hall. Computation

of electromagnetic scattering and radiation using a time-domain finite-volume

discretization procedure. Computer Physics Communications, 68:175—196, 1991.

[36] Richard B. Pelz. Pseudospectral methods on massively parallel computers. Com

puter Methods in Applied Mechanics & Engineering, 80:493—503, 1990.

[37] Richard B. Pelz. Fourier spectral method on ensemble architectures. Computer

Methods in Applied Mechanics & Engineering, 89:529—542, 1991.

[38] R.A. Renaut. Absorbing boundary conditions, difference operator, and stability.

Journal of Computational Physics, 102:236—251, 1992.

[39] Hillel Tal-Ezer. Spectral methods in time for hyperbolic equations. SIAM J. Numer.

Anal., 23(1), February 1986.

113

[401 Hillel Tal-Ezer. Polynomial approximation of functions of matrices and applica
tions. Journal of Scientific Computing, 4(1):25—60, 1989.

[41] Hillel Tal-Ezer. High degree polynomial interpolation in Newton form. SIAM .1.
Sci. Stat. Comput., 12(3):648—667, 1991.

[42] Thinking Machines Corp., Cambridge, AB. Connection Machine CM-200 Series
Technical Summaiy, 1991.

[43] Thinking Machines Corp., Cambridge, MA. ConnectionMachine Fortran Program
ming Guide (V.1.13), (V 2.1, Feb. 1994), July 1991.

[44] Thinking Machines Corp., Cambridge, MA. Getting Started in CM Fortran, 1991.
[45] Thinking Machines Corp., Cambridge, MA. CMFortran User’s Guidefor the CM-S

(v 1.1.3), (v. 2.1, Feb. 1994), January 1992.

[46] Thinking Machines Corp., Cambridge, MA. CM5 Technical Summary, November
1992.

[47] Thinking Machines Corp., Cambridge, MA. CMSSLfor CM Fortran: CM-S Edition
(v 3.1), June 1993.

[48] Thinking Machines Corp., Cambridge, MA. Using the CMAX Converter (v 1.0),
July 1993.

[49] Thinking Machines Corp., Cambridge, MA. CM-S CM Fortran Performance Guide
(v. 2.1), 1994.

[50] P. A. Tirkas, C. A. Balanis, and R.A. Renaut. Higher order absorbing boundary
conditionss for the finite-difference time-domain method. IEEE Trans. on Ant. &
Prop., 40(10):1215—1222, October 1992.

[51] Lloyd. N. Trefethen. Numerical computation of the Schwarz-Christoffel transfor
mation. SIAM J. Sci. Stat. Comput., 1(1):82—102, 1980.

[52] Lloyd N. Trefethen. SCPACK User’s Guide (NETLJB Document), 1983.

114

[53] L.N. Trefethen and L. Halpern. Well-posedness of one-way wave equations and

absorbing boundary conditions. Math. Comput., 47:421—435, 1986.

[54] L.N. Trefethen and M.R. Trummer. An instability phenomenon in spectral methods.

SIAM J. Numer. Anal., 24(5):1008—1023, 1987.

[55] A Vafidis, F. Abramovici, and E.R. Kanasewich. Elastic wave propagation using

fully vectorized high order finite-difference algorithms. Geophysics, 57(2), 1992.

[56] R. Vichnevetsky and J.B. Bowles. FourierAnalysis ofNumerical Approximation of

Hyperbolic Equations. SIAM, 1982.

[57] Jean Virieux. Sh-wave propagation in heterogeneous media: Velocity-stress finite-

difference method. Geophysics, 49(11), 1984.

[58] J.L. Walsh. Interpolation and approximation by rational functions in the complex

domain. Providence, Rhode Island, 1956.

[59] J.A.C. Weideman and L.N. Trefethen. The eigenvalues of second-order spectral
differentiation matrices. SIAM J. Numer. Anal., 25:1279—1298, 1988.

[60] Qin Zhang. Acoustic Pulse Diffraction by CurvedAnd Planar Structures With Edges.
PhD thesis, The University of British Columbia, Dept. of Electrical Engineering,
1990.

[61] Shengkai Zhao. Chebyshev Spectral Methodsfor Potential Field Computation. PhD
thesis, The University of British Columbia, August 1993.

115

