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“Abstract

This thesis is 'about Frequency Hopped-Code Division Multiple Access (FH-CDMA)
' systems. More specifically, it studies the ‘packet error rates and system performahce of FH-

CDMA systems with guard times. In the past, a number of simplifying assumptions have been
made in the studies of these systems. This work invesﬁgates the effects of these simplifying
assumptions by deriving exact expressions, which do-not make these assumptions, and
comparing the results using both methods. By considering edge effects due to the inclusion
of guard times, it is shown that the probability of codeword error can be significantly lower.
Furthermore, it is found that the independence assumption, where frequency hits within a
packet is assumed are independent, leads to larger probabﬂity of codeword error. -On the
other hand, system performanée measures such as normalized maximum local traffic and
throughput are not significantly altered by these simﬁlifying assumptions.

In addition, this work also proposed a new diversity scheme in FH-CDMA systems,
which we refer to as code diversity. In such a diversity scheme, the transmitters are allowed
to transmit in more than one frequency bin simultaneously. A variety of decoding schemes,
including some with optimal bit error rate (BER) performance, for the code diversity system
are proposed and studied. It is showh that the code diversity scheme.can have a lower BER
than conventional FH-CDMA systems and that such a method of transmitting can be used
to establish priority classes among the users in the system. It is further shown that error
control coding can be included in the code diversity transmission scheme to further improve
the BER performance. The performance of several code diversity schemes is studied in a
Rayleigh fading and additive white Gaussian noise environment. From the analysis of the

various schemes it is found that code diversity can-improve the BER.



S o Table of Contents

Abstract - ' o : . o o = i
" List of Tables - - o o
List of Figures - o | » | " R " | - vii
Gl;issary | o o | | T o | X
.Acknowledgméht o T ) o | xii
B Infroduction ‘ . - o ) ) B 1
1.1 Multiple Access 'Sc:her'nes. ..... R I a2
12 Code Division Multiple Access (CDMA) . . . . . RERR U 4
1.3 Advantages of CDMA Scheme‘ ...... " AU e Sl T
2 Review of Related ‘Work“ . o - ’ 10
21 Frequency Hopped CDMA System Model . - . .. .\ 10
22 Slotted and Unslotted Systems . . . . . e Ce e 14
24 ]?ivefsity Techniques in Spréad Spectrum Systems’ ........... L e 15
3 Asynchronous Hopi)ing Slotted Systems ’ P e A - 19
3.1 System Model . . . U 19
3.2 Codeword Elerr.Probability' ..... ‘. R I s C e 26 ’
321 Casefor Gy=1......... ...... 21
3;2.2 CaseforGt:-2...., ......... . ....... 27
3{.2.3‘ Numeriédl Results . . . T L. o ) ‘f ; e .32

iii




3.3 System Performance - .......... J . ,‘ .......... 36

3.3.1 Numerical Results . . - . ... ..o N 38
4 Code Diversity Schemes - | | | 42
4.1 'Analyéis of Symbc)l Error Probability for éNoiseless System-. . AR, I
4.1.1 ‘Schemc '1. ..... . .  ................... . C . 44
4.1.1.1 Numerical Res_ﬁlts. Ce U :47
412 Scheme?2. . ..... P P T &
4.1.2.1 Binary Symbol Case . . ....... N e 54
4.1.2.2 Extension to Non-binary S)%mbol Case‘ .......... L 56
4.1.2'3 Numerical Results. . . . . . ‘.- e o . e 98
4124 Upperbound .on.Scheme 2 . e C e | ce . 595
4.13 Scheme3..‘..‘.v.‘....'.. ..... T 65
4131 Numerica ReSults . . .. .. 69
414 Scheme4 . .. .. o e S 71
4.2 Error Control Coding . . . ... .. e e e SR 75
4.2.1 Random Coding Scheme . . ... ... .. AP EETTPE . U750
4.2.2 Numerical Resulfs ........ SRR 78
5 Code Diversity Schemes in the Presence of Noise and Rayleigh Fading . . 81
51 "Méjority Vote Decodjng ‘Schern»e vs./ith Threshold Detection . . ... . A '.. L .' . 81
5.1.1 Numerical R_eshlts F 85
.5.2‘ ‘Majority Vote Decodil;g Without Threshold Detection . ’. e o - 95
520 Numerical Resuls . . . . . . | A I .. 101

v




5.3 Soft Decision Decoding Scheme . ... . . IR DI
5.3.1 Numerical Results . . . . ... ... ... ... .. . ... ... ...
6 Conclusions
6.1 Future Work . ... ... ....... ..........
Bibliography |
A Derivation qf_ Tfansition Probabilities
A.1 Transition Probabilities without Edge Effects . . . . .. ... ... ... cee
- A.2 Transition Probabilities for the Last Hop, Gy =1 .. ... ... ... ... ...

B Envelope of Resultant Signal is Rayleigh Distributed

C Majority Vote Decoding without Detection Threshold, J = 2

114
115
117
125
125
129

133

135



10

11

List of Tables
Probability of Codeword Error for (32,16) Reed-Solomon Code with Erasure
Correction (e =16), ¢ =50 . ... .. .. . ... 33

Probability of Codeword Error for (16,4) Reed-Solomon Code with Erasure - -
Correction (e = 12), ¢ =10 . . . . . . . it 33

Probability of Codeword Error for (15,7) Reed-Solomon Code with Erasure
Correction (e =8), ¢ =50 .. ... . ... ....... e e 34

Probability of Codeword Error for (15,7) Reed-Solomon Code with Erasure
Correction (e =8), ¢ =100 . . . . . . ... ... ... 34

Probability of Codeword Error for (31,15) Reed-Solomon with Error Correction
(e=8),¢=580 ... ... ... .. 35

Probability of Codeword Error for (31,15) Reed-Solomon with Error Correction ‘
(e=8),¢=100. ... ... ... .. ... ... ... e e 35

Maximum Normalized Local Load for (32, k) Reed-Solomon with Erasure
Correction, ¢ =25.: ... ....... [ 40

Maximum Normalized Local Load for (64, k) Reed-Solomon with Erasure
Correction, g =25 . . . . . . . e e e - 40

Maximum Normalized Local Load for (64, k) Reed-Solomon with Erasure
Correction, ¢ = 100 . . . . . .. .. . e 40

Normalized Maximum Local Throughput for (32; k) Reed-Solomon Codes with
Erasure Decoding, ¢ =25 . . . . . . . . . 41

Normalized Maximum Local Throughput for (64, k) Reed-Solomon Codes,
q=25..... T e .41l

vi



1.1

1.2

1.3

1.4

2.1

3.1

32

33

4.1

4.2

43
4.4
45
4.6

4.7

4.8

49

| List of Figures

Multiple Access Schemes . . . ... ... . ... ... .. e 3 |
A Direct Sequence CDMA SYStEIM . . . . . . . vt v iv ettt 7
A Frequency Hopped CDMA sysfem .......... e e 7
A Hybrid CDMA system . ... .. ............ e e e e e 8
Classification of FH-CDMA systems .. .' ..... . o SRR 11
‘Time' Slotted Asynchronous Hopping FH-CDMA System . . . . ... ... .. |
Four State Markov Chain . .. .. . ..... e '. o IR 25
Possible Situations in the Case Where Gy =2 . . ... ... ..... EEEEEEEE 29
‘Probability of Bit Error Vs Number of Active Users in System, Scheme 1, ¢ = 200. . 49

Probability of Symbol Error Vs Number of Active Users in System Scheme 1,
q=200, M=3. ............ O 50

Probability of Bit Error Vs Number of Active Users in System, Scheme 1, ¢ = 100. . 51

Prbbability of Bit Error Vs Diversity Degree, Scheme 1, ¢ =200. . ... ..... 52
Optimal Diversity Level‘Vs q/J, Scheme 1. BRI 53
Probability of Bii Error Vs Number of Active Users, Scheme 2,¢g=200. ..... 60
Probability of Symbol Error Vs Number of Active Users in System, Scheme 2,

g=200, M =3. . . . . e 61
Probability of Bit Error Vs Number of Active Users, Scheme 2, ¢ = 100. . . . .. 62
Probability of Bit Error Vs Divefsity Degfée, Scheme 2, ¢ =200. ......... 63

4.10 Optimal Diversity Level Vs ¢/J, Scheme 2. . . . .. ................. 64

vii



4.11 Probability of Bit Error Vs Number of Active ‘Users, Scheme 1, Scheme 2 and

Scheme 2A for ¢ =200, L = 3. . . . . . . .. ... - 66

4.1‘2 Probability of Bit Error Vs Number of Active Users, Scheme 3, g=200...... 70

" 4.13 Probability of Bit Error Versus J , Random Code Scheme with ¢ = 200. . . . .. 19
4.14 Probability of Bit Error Versus J, Randgm Code Scheme with ¢ =100. . . . . .. 80

5.1 Probability of Bit Error Versus ]jetection Threshold, p =20 dB and J =50. . . . 86

5.2 4Probability of Bit Error Versus Detection Threshold, p = 20 dB and J = 150. . . 88

5.3 Probability of Bit Error Versus Detection Threshold, p =20 dBand L =2. . . . . 89
54 Probability of Bit Error Versus Detection Threshold, J = 50 and L =2.. ... .. 90
5.5 Probability of Bit Error Versus Detectlon Threshold, 7 = 20 dB and L = 4. .. ‘. .91
5.6 Probability of Bit Error Versus Detection Threshold, J =50 and L = 4. . . . .. 92
5.7 Probability of Bit Error Versus J,p=20dBand 8 =2.6............... 93
5.8 Probability of Bit Error Vefsus J,p=15dBand f=26.............. .94

5.9 Probability of Bit Error Versus J, P = 20 dB and 8 = 2 6; the total power per
transmitter is constant. . . . . . . .. ..ol e 96

5.10 Probability of Bit Error Versus J, p = 15 dB and § = 2. 6 the total power per

transmitter 1s COMStant. . . . .. ... .. ... ... ..l 97
5.11 Vector Addition of Signals. . . B o U 98
5.12 Majérity Vote Decoding Without Detection Threshold, L = 5. . ........ .98
5.13 Probability of Bit Error Versus J ,ISNR = 26 dBand ¢ =200............ 103
5.14 Proi)ability of Bit Error Versus J, SNR =10dB and ¢ =200.. . ... .. .. 104
5.15\Probability of Bit Error Versus J, SNR = 20‘ dB, SIR = 20 dB and ¢ = 200. .. 105

| 5.16 Soft Decision Decoding . . . ... ... .. . e e 106




5.17 Optimal Receiver Structure for FSK Signalling over Rayleigh Channel with

Diversity Degree of Three .- . . . ... .. .. 109
5.18 Probability of Bit Error Versus J, SNR =20 dB and ¢ = 200.. . . . .. ... 110
5.19 Probability of Bit Error Versus J, SNR = 10 dB and ¢ = 200.. . . . . . .. o 111

5.20 Probability of Bit Error Versus J, SNR = 20 dB for Transmitters with no Dlver51ty
‘and ¢ = 200, equal total transmitted power for all transrmtters ............ 112

5.21 Probability of Bit Error Versus J, SNR = 10 dB for Transmitters with no Diversity
and ¢ = 200, equal total transmitted power for all transmitters. . . . . ... .. .. 113




Acronyms

BER
CDMA

“TDMA
FDMA
DS
FH
FFH
AWGN
SIR
SNR
FSK
BFSK
MFSK
CSMA

Notations

Py

Glossary

Bit Error Rate

Code Division Multiple Access
Time Division Multiple Access
Frequency Division Multiple Access
Direct Sequence

Frequency Hopped

‘Fast Frequency Hopped

Additive White Gaussian Noise
Signal to Interference Ratio
Signal to Noise Ratio
Frequency Shift Keying
Binary Frequency Shift Keying
M -ary Frequency Shift Keying

Carrier Sense Multiple Access |

Probability of a frequency hit by another transmitter
Number bf frequency bins |

Number of symbols transmitted per hop interval
Length of. guard time in terms of hop durations
Number of active transmitters

Number of active interferers

Maximum normalized local load

Normalized local throughput

Maximum normalized local thoughput

Diversity degree

Average signal to noise ratio

Detection threshold normalized with respect to noise



Pp Probability of deletion -
PF : Probability of false alarm

xi




Acknowledgment

I WOlﬂd like to express my sinéere thanks aﬁd gratitude té my thesis advisor, Professor
Cyri1 Leuﬁg, for his guidance and encouragement. Thrbﬁgh the niany discussions I had with
hirﬁ, he has proyided me with rﬁany useful insights and ideasj..whiéh were essential to the
cornpletion of this work. His tirﬁely and crit_iéal review of this wOfk is also very much
éppreciate;d. | |

Finan(;ial support from the Natu_r;avll Sciences and Engineeriﬁg Research Council (NSERC),

Science Council of British Columbia, Uhiversity of British Columbia'ah'd British Columbia
Telephone Company in the form of various scholarships is gratefully aci(nowledged. Adcii-
tional financial support from NSERC Grant' OGP0001731 is also gratefully acknowledged.
I would also liké to thénk Dr. Andrew Wright, Mr. A.Mike Walker and Mr. Greg Acres
- from MPR Teltech who lhave acted‘ as my indus'triallcl:ollaborat(‘)rs for.the; Sc'ie;nce Co@ncil |
of British Columbia’s GREAT award. |
| Friends and fellow students at UBC haVe‘cértainly made my _sfudies here a memora‘ble'
and interesfing one. I would especially like to thank fellow sfudents from the cdmmunications

and high performance computing and networks labs.

Last but not least, rny family has been a constant source of love and encouragement. My

wife, son and daughter have made my life as a student an unusual but enriching one. They,

too, have played a significant role in the completion of this work.




Chapter 1.

Introduction

Spread spectrum techniques have long been used in telecommunication gystems [1] for
their anti-jamming and low probability of interception features. In re(;ent years, these
techniqqes have been proposed and studied for multiple access systems. Such systems
ére known as code division rﬂultiplé access (CDMA) or spread spectrum multiple access
| (SSMA) systems. A number of researchers [2]-[5] have found CDMA to have better spectral
utilization characteristics and be able to support more users with ;1 given bandwidth allocation
than other more traditional multiple aécess schemes. This has made CDMA an activé and

important topic of research in the telecommuﬁication field.

This thesis is concemgd with frequency hopped CDMA (FH-CDMA) systems. The first
part of the work deals with time slotted FH-CDMA systems with asynchronous hopping. It
exte;lds some previous work by Hegde and St\ark [6] and Pursle'y [7]. The exact pécket errdr
probabilities and system throughput are derived and investigated for time slétted FH-CDMA

systems with an integer number of hop intervals as guard times.

The second part of this work deals with a new diversity technique, called code diversity,
in FH-CDMA. Here, we study a number of possible ways in which this technique can be
used to improve the system performance in a multiplé access situatién. Several decbding '
schemes are vpr(;posed and the performances of these schemes are evalﬁated initially for the
case of no ching and no background -noise.' The effects of backgréund noise and codihg

are then taken into consideration.
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This thesis is organized as follows:

A brief introduction to CDMA systems and the motivation for this work is given in the
latter part of this chapter. The various types of CDMA systems are described and a summary

of the advantages of using CDMA over other types of multiple-access systems is given.

In Chapter 2, some of the related works fouhd' in fhe literature is reviewed. Vari‘ous
aspects of FH systems such as asynchroﬁous and synchronous hopping, slotted and unslotted‘
systems are briefly described. Models and assumptions commonly used in the study of FH-
CDMA system are also introduced. This chapter also contains a description of the various
forms of diversity in the FH-CDMA systems.

An analysis of the time‘ slbfted asynchronous hopping systefn can be found in Chapter 3.
The concept of code diversity is introduced in Chapter 4. A numbfar ‘of code diversity
~decoding schemes are Aproposed and analyzed for an environment where the background
noise is negligible. The effects of error control coding, using a random coding approach, is
investigated in the latter part.of this chapter. In Chapter 5, the performance of code diversity
systems is studied in an environment where there is noise aﬁd fading. A summary of the

main results of this work and some suggestions for possible future work appear in Chapter 6.

1.1 Multiple Access Schemes

In communication systems with a large number of users, where‘ it is highly improbable
that all users are tranvsmitting at any given time, it is often desirable for the users to share a
common channel; this results in a multiple-access channel. The main objective of a multiplei
access system is to improve efficiency of channel utilization.‘ While it is desirable to allow

many transmissions over the multiple-access channel at any given time, this must be done at

a manageable risk of transmission corruption due to collisions between transmissions which
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‘will .res.ult in re-transmissions.. In addition, it is also desirable to reduce the arhount of
overhead associated with ménaging the transmissions such as guard times. There are two
extremes amoné thé rhany strategies 'tﬁat have been develdped (see Figure 1.1). One is thé .
re{hdom access approach in which all users ‘use the éame' charmel and ‘the users send new

packets immediately (or transmit in the next time slot in the caée of slotted systéms), hoping
for ﬁp interference frlo.m‘the other users. The other e‘xtremé is the “perfectly scheduled”
approach in which each user is-allocated ch.annel%-resources (i.e.‘time slot and/or bandwidth)

" in some. orderly manner, as defined by the scheme, for transmission of its packet.

Multiple Access Schemes

“Non-Random Access

1
) A . . . ‘ - L.
Non-Spread Spectrum > _Spread Spectrum _

S . | |
DS-CDMA ' FH-CDMA FDMA
CSMA . Hybrid Schemes TDMA - Polling Schemes

Figure 1.1 Multiple Access Schemes

4ALOHA, slotted ALOHA and CSMA (8] are examples of random access schémes..
Compared to the “perfectly scheduled” schemes, random access schemes have gbod delay
characteristics under low offered traffic conditions and since each user can potentially use

the whole channel, they are eépeéially effective in handling bursty type traffic.

\
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Examples of “r_igidly scheduled” schemes include polling schemes, f;equéncy'division 3
multiple access (FDMA) and time'division multiplé acéess (TD‘MA)Y [81, [9]. 'These‘ schemeé"
perform well under heavy traffic conditions 'espec.ially th;n all the transmitters are trans-
mitting regularly. Under sucﬁ conditions, chahnel resources such as time slots m the case
of TDMA and frequency channels in FDMA are heavily utilized and there‘ is little wastagé.
The main dréwback in most Qf Ithese schemes is.the longer delay compared to random {a'lccess '

schemes 'under light traffic situations.
1.2 Code Division Multiple Access (CDMA)

CDMA'Which applies spread—épectmrﬁ waveform téchnology is a relatively new approach
- to-the mﬁltipie access cdmmunicatioﬁs'prbblem. It is recognized as a viable ﬁltemativé to the
schemes nientioned above. Pickholt’z etal [1], Pursl;y’[lO] and Sklar [9] provide some good
background on the theory behind CD_MA. There are primarily three basic spread-spectrum

techniques. used in CDMA. These are’
. -direct. sequence (DS) spread spectrum.
. freqﬁency hopping (FH) spread spectrum which can be further classified into
a. -fast hopping in which there is more than one hop per data symbol.
'b. slow hopping in which one or more data’symbols is transmitted per hbp.
* hybrid sche"mcs( which combine'bqth DS and FH spread spectrum features.

The idea behind these techniques is to take the energy that is to be transmitted and spread it
over a very Wide band_width 'so‘that the energy per unit bandwidth is small. (We shall see later
~ in Section 1.3 that there are several advantages for transmitting using this téchnique.) This is

a_chieved via a pseudonoise (PN) sequenée that is unique to each user in the system. Unlike
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schemes such as FDMA or TDMA where the signals from each transmitter is separated in
either frequency or time, all transmitters in a CDMA' system can potentially be using the

same transmission bandwidth simultaneously.

In DS systems, as shown in Figure 1.2, spreading is accomplished by multiplying the
data by a PN sequence with a rate that is mucﬁ faster than the data rate, prior to modulation.
In the frequency domain, this is equivalent to convolving £he driginal signal with another
signal with a much larger bandwidth. Hence the trénsmitted signal occupies a much larger
bandwidth. At the receiver end, an estimate of the data sent cén be recovered by despreading

using the same PN sequence with the appropriate time delay prior to demodulation. Since

all active transmitters use the same bandwidth simultaneously, there is mutual interference -

among these transmitters. This interferénce is commonly called multiple-access interference.
To minimize multiple-access interference, itvis desirable that the PN sequences used have low
cross-correlation properties. Vérious sequences such as Gold sequences and Reed-Solomon
codes [11] are known to have long periods and low crosscorrelation characteristics, making

them suitable for CDMA applications.

In FH systems, the total channel béndwidth 1s divided into a number of frequency bins.
Unlike the DS system, each user in a FH system does not occupy the entire bandwidth
at any given time. Instead, as shown in Figure 1.3, a hopping patte'rnv determined by the
PN sequence is used to specify which frequency bin is used for each hop interval. The
same hopping péttem is generated at the receiver end and is used to reconstruct the message
transmitted. When two or more users transmit using the same frequency bin simultaneously,

- they may interfere with each other’s transmission. This is referred to as a frequency hit.

A collection of hopping patterns are said to be orthogonal if there are no frequency hits
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throughOﬁt the length of the hopping patterns [12]. In such a case, no two transmitters
will be using the same’ frequency bin simul‘taneously throughout the duration of the hopping '
patterns. In reality, the hopping patterns are‘ normally quasi-orthogonal and hence frequency
hits do occur. This is esbeéially true in syétems where the length of the hopping patterns is
long, the number of transmitters is large (i.e. large number of hopping pattems) and there

is a small number of frequency bins.

The PN sequence rate, also known as the chip rate, of a DS-CDMA system is ﬁormally
much faster than the hopping rate of a FH-CDMA system. This is mainly due to the tech-
nology limitation of the frequency synthesizer [SA],' [13]. Iﬁ.a multipath fading environment
where the délay spread is largér than the chip‘interval, a multipath—combining receiver such
as the RAKE receiver [10], may be used to combine the signal received from the various
paths in a DS-CDMA system. Such a receiver offers a form of diversity and can improve the
performance of a DS-CDMA system. Hence DS-CDMA systems genér’ally perform better
than FH—CDMA systems in a frequency selective multipath environment [10], [14]. How-
ever, depending on the transmission protocol and nature of the channel, FH-CDMA can have
better capture, multiple access and narrow-band i‘nterference rejection characteristics than
DS-CDMA [10]. Hybrid schemes which combine both FH-CDMA and DS-CDMA features
have been s'uggested‘ [14]-[16] as yet another altemétive CDMA systerh. Such schemes can
lead to improved perfbrmance but at the cost of increased transmitter and receiver complex-
ity. In hybrid systems, two PN sequences are used. One to spread the bandwidth of the
meséage signal and the other for frequency hopping. Unlike a true DS system, the spreading

of the message signal is not over the entire system bandwidth but rather over'a fraction of it. .

Such fractions of the entire system bandwidth will be used for transmission depending on the
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hopping pattern. The reverse process of reconstructing the l;opped signal and despreading is

performed at the receiver. Such a system is illustrated in Figure 1.4.

PN Multi‘ple-Access PN
generator Interferenca - generator
/l\' l Data
t
Data N N ou
Source \)_(/ Modulator @ ] \)_(/ Demodulator————»
AWGN

| | |
| I 1

. | . . |
e Transmitter e Channel ———— Receiver —
| ! I

Figure 1.2 A Direct Sequence CDMA system

Multiple-Access

Interference
Data
out
Data 0\ -
Source Modulator jﬁ'ﬂ Demodulator !
v Frequency Frequency
Hopper AWGN Hopper
PN PN
' generator ) generator
| ( | |
L_ Transmitter ___,L_____ Channel : Receiver l

Figure 1.3 A Frequency Hopped CDMA system

1.3 Advantages of CDMA Scheme

The two most common multiple access techniQues in the area of wireless communications
are FDMA and TDMA. In FDMA, all users may transmit simultaneously, and use disjoint
frequency bands with some guard bandé between adjacent frequency bands. In TDMA, all

users occupy the same frequency bandwidth, but transmit sequentially in time. CDMA is

essentially a random access scheme. However, unlike conventional random access schemes
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Mu]tiple—Access

Interference .

’ : ‘ " Data
. - : ) . out
Data Modulator * (x > X) ™ Demodulator > .
Source \T : '

Frequency ) Frequency

Hopper AWGN ) : Hopper

PN PN A , PN PN
generator generator generator generator

| X . o o |
- I . I
| Transmitter ———»le— Channel _____ ., Receiver -,

Figure 1.4 A Hybrid CDMA system

“such as ALOHA or CSMA, because each user has a unique s.pre'c‘lding sequence, simultaneous
transmissions from several users in the system do not necessarily result in packet errors.
- Listed below-are some of the advantages of CDMA over TDMA and FDMA that have been

suggested.

. Iﬁcreased capécity. Lee [5] and Gilhousen ét al [4] have suggested that the number of
users tﬁ;i.t ‘can be supported for a ﬁxéd amount of bandwidth of a cellular CDMA system‘
,’is about 20, and 4 times that of an equivalent analog FM/FDMA a‘nd‘TDMA celluiar
system réspectively. Johannsen [3] showed that CDMA is a superior system in that it
“is able té support more users for a giveﬁ bandwidth than FDMA 1n a mobile satellite
communication environment. H

* No hard handoff in cellular systems is required. Since every cell uses the same CDMA
frequency spectrum, a mobile ‘.doesynbt have to s_Witch to anpt‘her-'frequency ch(arllnel :
when it crosses over to anothef cell, »unlike FDMA ,aﬁd TDMA. In‘ai CDMA system, .

the mobile can receive transmission from the adjacent cell sites at the cell boundary and

switch over to a particular cell only_Wherj’the received power from that partiéul"ar cell is
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significantly higher. | Furthérmore since each cell uses thé same frequency spectrum, no:
-frequency management or assignment is required in CDMA [5].

» Some guard time -is often needed in TDMA systems between time slots to allo‘w for
possible synchronization problems between the users. This guard time represents an
overhead which reduces the capacity of the system. Since CDMA is usually a random
access system, such guard time is normélly not required [5].

* Less prone to fading. CDMA uses wideband tfansmission which is effective in combat-
ting frequency selective multipath fading [10]. An equalizer to combat such fading in
FDMA and TDMA is not necessary in a CDMA system. This reduces the complexity
of the receiver. |

. Soft capacity. In CDMA, a new ﬁser can be added at the expense of a slight degradation
in quality [5].

+ Co-existence with- narfowband system. Pickholtz et al [17] have shown that a care-
fully designed CDMA system énd an exiSting narrowband systém can share the sarhe |
bandwidth withoutArvnuch adverse effect.

» Relatively higher level of privacy and security. Each tr_ansrrﬁtfer—receiver pair uses
a unique spreading sequence to generate and despread the spread-spectrum waveform-

which make it relatively more difficult for a casual listener to eavesdrop.

'

It should be noted that the issue of channel capacity has been the subject of an on-going
debate. In most of the literature, the calculation of CDMA capacity has been based on

theoretical models; Gilhousen et al [18] do provide some field results. The capacity issue

is discussed further in [4], [18]-[21].




Chapter 2

Review of Related Work

CDMA is a wide research topic and numerous aspects of CDMA have been discussed
in the literature. These include DS:CDMA, fast hopping 'FH-CDMA, slow~ hopping FH-
CDMA, coding, scheduling, }stability,Acapacity, synéhfonizatioﬁ of clocks, interference and
fading channels [22]-[30]. In this ch'apter, we will review previous work that is related to
this tﬂésis. In par_ﬁcular we will focué the review on slow hopping FH-CDMA and diversity

techniques, which form the main focus of this thesis.

2.1 Frequency Hopped CDMA System Model

The entire frequency spectrum of a FH-CDMA system is divided into a humber, q, of
frequency bins. Within each frequency bin is a number of frequency tones, M, which the
transmitters can select to transmit their symbqlsf In slow FH systems, the number of symbols
transmitted, Ny, per hop interval is at least one and the .timé duration to transmit a packet
is normally assumed fixed. The system may be slotted or unslotted. In slotted systems, all
transmissions which begin in a slot must be complete‘d within the same slot and there is no
overlap between any two time slots. In addition, if is commonly assumed that a transmittér
ean transmit at most a single packet in a time slot [7]. Hence the number of packets which
rﬂay potentially interfere with a particular packet is fixed withiﬁ the time slot. In unslotted
systems, there is no restriction on the start of transmission time of the users and transmitters

can begin transmitting at any time.

10




Chapter 2. Review of Related Work ' ' ' 11

In sl@tted systems, the slot duration is larger than the time taken to transmit a pﬁcket.
This is necessary to maintain synchronization at the papket (dr élot) level in the system
as there may be different time delays associatéd with the users in the system. There are
delay compensation schemes which can be employed to improve synchrohization, thereby
reducing the slot duration. For examplg, .through the use of pilot tones transnﬁtted by the base
station, rhobiles can estimate their distance from the base station and make the appropriate
timing adjustments to compensate for their relative delay in their reverse link transmission
[4]. There is another level of synchronization, that is tﬁe hopping times of the users. The
hopping times of the users cén b‘e synchronous i.e. identical or asynchronous i.e. random. -

In synchronous hqpping, the users synchronize their hopi)ing time, therefore the number |
of potential interferers is fixed for the hop duration. In asynchronousl hopping, there is no
restriction imposed on the hopping times of the users other than transmission of a packet must
begin and end in the same time slot. Figure 2.1 illustrate hox;v FH-CDMA sy'stems may be

| classified. For unslotted systems, since the-. fransmitters can transmit at any time, there would

be no synchronization at the hopping times. For such systems, asynchronous hopping is used.

FH-CDMA Systems

A A,
Slotted Unslotted
) \ '/\A
FastFH ' Slow FH Fast FH *Slow FH
‘/‘\A | A/\
Synchronous Asynchronous Synchronous Asynchronous

Figure 2.1 Classification of FH-CDMA systems
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The mﬁltiﬁle-éccess capability of a system is largely detérr‘ninedvby ité hopping_pattérné
which determin'eh which of the ¢ frequency bins are used in a-hop interval. Since these
patterns é;re usually quasi-orthogonal rather than truly orthogonal, tw;o of mére- users in the
system may transmit in the sa;ile fréquenéy bin simultaneously:- Such an. event is called a
Jfrequency hit and can result_ in loss of data even -in the absence of noise (')r> fading. Réndom
hopping patterns are often used in the literature to model the extremely complex hopping
patterns [12], [31]-[33]. Thesé random hopping patterns can be either Markovian, in Which'
the transmitter hops to a frequency bin. other than the currently uséd frequéncy bin with
equal probability, or memoryless, where the next frequency bin can be. any frequency biﬁ

~ with equal probability [31].-In'a synéhronous frequency hc;ppingv sslstem; where the hopping

times of all users are synchronized, the probability of a frequency hit by another user is
Py =1/q B 2.1)

for both memoryless and Markovian random hopping pattern models. Users in an asyn-
chronous frequency hopping system make no attempt to synchronize their hopping times.
~ The probability of a hit in such a system, where N, is the number of symbols transmitted

.,per hop interval, is given by [31]

phzé(m‘Nis) | | e
and L ‘ .

for Markovian and memoryless hoppirig patterns respecti?ely. For aSynchronous.frequency'

~ hopping systems with a large number of 'freq'uency biris (ie. lérge q) the probability of hit

for both memoryless and Markovian random hopping patterns are. esééhtially-equal. For
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simplicity of analysis, it is commonly assumed that all frequency hits result in symbol errors
[31], [33], [6], [12], regardless of the time duratiofl of the hit or the symbols transmitted by
the users. This is a pessimistic assumptioh and the actual symbol error rate should be lower

than that obtained using this assumption.

Reception of the transmitted signal at the recei.ver may be coherent if the phase of the
symbol sig‘nal‘ is known. However, it is more realistic to assume noncoherent reception,
especially for fast frequency hopping (FFH) situations [16]. For such cases, the phase of the
received signal is normally” assumed to be uniformly di.stributed over [0,27). The received
signal is composed of the signal from the transmitter, background additive white Gaussian -
noise (AWGN) and multiple-access interference. Rayleigh or Rician fading is commonly used
- to model mobile communiéation channels [16], [31], [34]. Multiple-access interference, due
to ffequency hits from other users, is commonly modelled as a Gaussian random variable at
the receiver’s demodulator to simplify the analysis [16], [20], [31], [35]. This approximation,
motivated by the central limit theorem, is called the Gaussian approximation. By di;riding
the power level, relative to a particular user, into a number of groups, Geraniotis [36] derived
an exact ¢xpressi0n for the bit error probability and by comparison showed that the Gaussian *
approximétion technique is reasonably accurate for systems using binary frequency, shift
keying (BFSK). For MFSK, the Gaussian approximation method is accurate only for low
signal-to-inteference ratio i.e. when the transmission power of the interferers is large. For
higher signal—t‘o—intefer‘ence ratio, it gives very optimistic results. By assuming uniformly
distributed random phases, independent data bits and é finite number of power levels, Cheun

and Stark [32] also deriyed an exact expression fbr the error rate. It is shown [32] that results

obtained using this expression give a very good fit to simulated results while the Gaussian
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approximation method gives results that are optimistic.

2.2 Slotted and Unslotted Systems

Transmissioﬁ of data packets may be time-slotted with synchronous or asynchronous
frequency hopping or unslottedv. Fixed-rate hopping, so that all hop intervals (also known
as dwell intervals) are of the same 1ength Th, is‘ commonly assumed. Hopping times of
fhe transmittérs ’are the same in a synchronous FH-CDMA system. I:n certain applications
where the Propagation delay is small, synchronous frequency hopping may be accomplished
by including a small guard interval at the ends of each dwell: interval [37]. In time-slotted
asynchronous FH-CDMA systems, we do not require that the transmission and the hopping
times be completely synchronized: Hdwever, each packet transmission must be completed
within a time slot which is normally slightly larger than the time required to transmit a
packet. The time-slotted synchronous FH-CDMA scheme may be viewed as a special case
of a time-slotted asynchronous FH-CDMA' Systerﬂ where the time slot is exactly eqlial tol
the packet duration. In én unslotted FH-CDMA, no attempt is made to synchronize'the
" hopping times or transmission times. As a result, unlike the time-slotted cases, the number

of interferers during the transmission of a particular packet can vary.

In a time-slotted asynchronous FH-CDMA communication system [7], some guard time
between packets is required to maintain slotting of the network. This situation is éspecially
true in systems where the Variaﬁions in propagation delays can be large. Frank and Pursley ‘
[38] mentioned that due to this guard time, symbols at the beginning and at the end of a’
particular packet may be subje;:ted to less multiple access interference than the other symbols

within the packet. However, no quantitative study of this “edge” effect was reported.

N\
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It is known that if the number J, of transmitters in an asynchronous FH-CDMA system
is greater than 2, the frequency hits within a packet (which for simbli‘c‘ity consist of a -single
codeword [39], [33]) for a parﬁcular transmitter are not independent [39]. In calculating the
probability of a packet error, it is quite commonly assumed that the hits within a packet are
independent even when J s greater than 2 [7], [31]. We shall refer to this assumption as
the independence assumption. Pursley [7] used the independence assumption and P, = 2/q,
derived from equation (2.2) for Ny = 1, in his calculation'of cbdeword error rate. Hegde
and Stark [6] and Georgiopoulos [40] calculated the codeword error 4rate without making
the independencé assumption but did not take the edge effect into account. The results in
[6] indicate that the independence assumption can yield a good aﬁproximation to thé actual
codeword error probability if the edge effects are neglected. The difference is typically less

than 1%.

2.4 Diversity Techniques in Spread Spectrum Systems

A number of spread spectrum diversity schemes used in different channel models caﬁ be
found in the .Iiterature [34], [35], [41]-[44]. Together with the usé of error cbntrol coding,
diversity schemes can improve sys’tém performanée sign‘iﬁcantly. | .

An early paper using FFH as a form of diversity in a multiple—aCcess system is by Cpopgr |
and Nettleton [2]. The éystem uses phase-shift-keying (PSK) modulation and maximum
likelihood decodi_ng. Each data symbol is divided intobL subsymbols and each subsymbol is
transmitted in a hop interval. It is suggested that the ﬁurhber of users. that can be supported
by this scheme may exceed those.using narrow-band schemes by a factor of five for a given

BER. This work was extended by Goodman et al [45] who examined a scheme which uses

using frequency-shift-keying modulation and majority logic decoding with a simple frequency
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hopping encoder/decoder structure. It is shown that this system can further improve the

capacity of the system in [2] by a factor of almost three.

Atkin and Bléke [46] studied a diversity system which uses FFH and multiple tone
transmission per hop in the presence of jamming. For each hop interval, instead of sending
a single tone as in the case of conventionaf FFH, a number of ,tc')nes are transmitted
. simultaneously. It is shown that signiﬁcant‘perfqrmance.improvements can be Yaichieved-_‘

by such a multitone system over one that uses only FFH. -

Solaiman et al [34] studied the perfofma.nce of FFH CDMA with binary frequency shift
keying (BFSK) in a frequency selective Rayleigh fading environment. A scheme using L
antennas at the receiver with equal gain was proposed and analyzed. It is shown that for bit
energy to noise ratios, E;/N,, less than 20 dB and diversity degrees, L of 3 or higher, the

use of diversity can significantly improve the BER.

A FFH BFSK system with self-normalization combining in a partial band interference
and Rician fading environrﬁent was studied by Robertson and Ha [47]. Each data syrﬁbol
is divided into L subsyfnbols and transmittéd-over a fading channel with partiai band
interference, using a different freq‘uency bin for each 'subsymbol. At the receiver, the output
of each matched filter is squared and the sum is used té hormalize the output of each detector
before the L subsymbols receptions are éombined. The sum of the square of the match filter
‘outputs is directly proportional to the intérference level detected by the receiver. As a result,
subsymﬁols of hops which contain a large amount of interfereﬁce will have less influence
on the decision statistics than subsymbols of hops with less interférence. It is shown that

diversity can reduce receiver performance degradation due to partial band interference and

fading when the signal-to-interference ratio is about 13 dB or more, especially when the
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signal does not contain a strong direct component.

A numbér of studies [48], [44] héve modglled diversity as L iﬁdependent receptions at the
receiver without specifying the way in which such receptions can be achieved. These studies
" have proposed a yariety of diversity combining schemes, sofne requiring side-information

which gives a measure of the reliability of the received symbols. Schemes that do not requiré
side-information include ratio-threshold test (RTT) [48], rétio-statistic éombining [49] and
clipped diversity combining [43]. The basic idea of the RTT and ratio-statistic combining
schemes is to discard unreliable diversity receptions by comparing each féception against
a derivedvt'hreshold limit based on the received signal levels. By'dbihg so, only diversity
receptions that are considered reliable enter into the decision device. Clipped diversity
combining [43] limits the influence of partial-band interference be clipping the output of
each envelope detector at the receiver prior to combiﬁing. Diversity combining schemes
that require side inforﬁétion have been studied iﬁ [35], [41] under different éonditions. In
these séhemés, Reed-Solomon code‘s are used and the side information provides a measure
of the reliability of the received symbols. Unreliable éymbols are decoded as erasures
-rather than to one of the valid symbols. In [35], each code symbol is transmitted L
times. Assuming Reed-Solomon coding scheme, frequéncy nonselective Rician channel,
pulsed Gaussian interference and perfect side informatibn, an expression for. the symbol error
probability as a function of the interference duty cyclé of the pulsed Gaussian interference was
derived. In [41], it is shown that with a proper combination of frequency hopping, diversity
transmission and side informatioﬁ, a FH spread spectrum system can render a narrow band

jammer harmless. As an example, numerical results indicate that employing a (256, 200)

Reed-Solomon code with a diversity degree of 5 and 16-ary orthogonal signalling requires
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that over 68 percent of the total bandwidth be jammed and a signal-to-noise ratio below

6.81 dB in order for the symbol error probability to be above 104,




- Chapter 3

” AsynchrOhous Hopping Slotted Systems

" In this chapter, we present a method fé); detérmining the exact codeword error proba-
bility in a time-slotted aéynchronous FH-CDMA comniunication system employing G hop
-intervals as guard time [50], [51]. In particﬁ‘lar_,”we consider the cases where the guard
time is 1 and 2 hop inter\.lals long. It is shO'Wn’ that the codeword errér probabilities whgn
.the edge effect i.sAtake‘n into co_nsideration can be Vsigriiﬁca;ltly different from tﬁose obtained
’ in [6], [40]. Itvi‘s‘élso found that the independence assumption leads to larger probability
of codeword error, for Gi = 2. Using the codeword error probability obtained using the
new method, dther performance measures such as maximum local traffic and throughput as
déﬁned by Pursley [7] are. allso_ evaluated. It is shown that the normalized valueé of thesé

quantities are not significantly altered by using the independence assumption.

- 3.1 System Model

| ’I:he hqppirig pattern for each trans}mit‘te; Ti’ :=1,2,...,J is assumed to be memoryless
[6], [31], [40]. This means that the freqﬁen‘éy bin Vused by T,; at each hop is chosen.
independently and unifofmly from an availabie set of ¢ frequency bins, numbered 1,2, ..., ¢,
and independently of the bins used by the other transnﬁtters. For simplicity, we shalllass'ume
that a packét consists of a single codeword énd‘that hop rate is one per symbol. The
same method of analys_i.s can be used for éalculati_ng the‘probability of codeword error fér
system with hop intervals that are greater than one symbol but with the added complication

of determining where the interferers hop epochs are relative to the symbols within a hop

- 19




Chapter 3. Asynchronous Hopping Slotted Systems ‘ 20

interval. Let F;j, : = 1,2,...,J, 3 = 1,2,...,n denote the fréquency bin used by TZ for the
jthAsymbol of its codeword. The j** symbol of T;’s packet is said to have suffered a hit if

F; ; is also simultaneously used by another transmitter.

From Figure 3.1, we observe that the symbol of a particular transmitter (hereafter referred
~ to as T) can overlap (in time) with one or two symbols from each of the other transmitters
due to the guard time interval and the asynchronous nature of the hopping times. Aé in [6],
[40] we assume that T’s symbol is réceived in érror (or erased in the case of an erasure
demodulator) whenever a frequency hit occurs, even if the frequency hit occurs for only a
smallnfraction of the hop interval. A symbol error can result from frequency hits by the other
K = J — 1 transmitters either from the left or the right or both. We define the following

three'binary valued random variables:

gL = { 1, if T's jt* frequency bin is hit from the left
¥ =

0, otherwise
gE = 1, if T's 5t frequency bin is hit from the right
1 0, otherwise

Hj = {1, if at least one of HJL orH]R isl. 3.1)

0, otherwise

Nofe that T’s j** symbol is assumed to be demodulated correctly if and only if H; = 0.

Since each packet must be transmitted within a slot, the start of packet transmission
for each packet must be within the first G; hop intervals of each slot. This start of packet

transmission time is assumed to be uniformly distributed over the range [0, G¢].

3.2 Codeword Error Probability

We will explicitly examine two cases, G; = 1 and Gy = 2. The techniques used to

analyze these cases can also be used for larger values of G4, even though the computational
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One Time Slot |
| “Hop Intervals ‘
Time ‘// \\.
Reference |1 ‘ 2 | DR { n | m
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Figure 3.1 Time Slotted Asynchronous Hopping FH-CDMA System -

complexity grows rapidly. This is because the number of possible ways by which T can
begin transmitting and the number of possible ways by which the other transmitters can cause
the edge effects in T’s transmission increases with G;. Furthermore, to obtain the codeword

error probability, an averaging over the total number of possible cases has to be performed.

3.2.1 Case for G; = 1

Let A; and A, denote the two sets of intgrferers (of cardinality K, and K») that staft
-transmissior.l'before and éfter T respectively. Thé first hop inter\‘/al of T’s packet can be hit
from the left only by interferers in A;. Similarly, the last hop interval of T’s packet can be
hit. from the right only by interferers in A;. The first and last hop intervals ‘of T’s packet

have to be considered separately from the other hop intervals within the packet. Let

a1 = (1-1/¢9)™

a = (1-1/¢)"
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B=(1-2/9). (32)

Let the four possible values of H L, H; R for Ts ji* hop interval be represented by states

* 0: ‘Where_ T’s first frequency bin is not hit by any interferer either from the left or right.

o 1 : where T’s first frequency bin is not hit by any interferer from the left but is hit by
at least one interferer from right.

* 2 : where T’s first frequeﬁcy bin is hit by at least one interferer from the left but is not
hit by any interferer from right.

e 3: wheré T’s first ffequency bin is hit by at least one'interfercr from the left and at

least one interferer from right.

Since T’s first hop interval can be hit from the left only by the interferers in A, the
probabilities associated with the states in T’s first hop interval are given by -
- PozPr(HlL:O,Hf?=O> =a.« |
P = Pr(H1_0H1_1) 11— @)
P, = Pr(HlL —1,HE _o) (1~ ap)a
Py = Pr(Hf —1,HE = 1) = (1-a)(1 -a) ‘ (3.3)

It has been shown [29] that(HJ-L, H]R), J =1,2,..n form a Markov chain, i.e.,

Pr(HE, HE|HE B 2,H ) = Pr(HE, HFHE, HE, ). Furthermore, it is
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also shown [29] that
L Ryl R L pgRigR ' '
Pr<H],H] ]H]—-DH]—l) :PI‘(H],H] IH]—I) o (34)

For the purpose of determining T’s packet error probability, there is no need to distinguish
between the interferers aftg:r all interferers in A; have begun transmission. This is true until
T’s last hop. The evolution of T’s hop intervals can be desctibed by a 4;state Markov chain:
as shown in Figure 3.2.‘ From (3.4), we can see that the transition probabilities of the Markov
chain is only depgndent on H® of the previous state. Therefore the transition probabilities
from states O and 2 to any other state are équal. Likewise the transition probabilities from
state 1 _énd 3 to any other state are equal. . The transition probabilities for hop intervals

between T’s first and last hop intervals are thus given by [6]

o1

P 1

Poy = Py = (1—3(&“[3)

P

A

Piy = Py = (1 _ %)(a—ﬂ)

S AN ST

P =P = [3(1 —a)+ (1 - %) (201 —a)— (1 - ﬂ))]. 33)

The detailed derivation of these transition probabilities is shown in Appendix A.1.
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Due to possible edge effects, the transition probabilities for the first and last hop must

th state to the

be considered separately. Denote P( ) as the transmon probablhty for the 1
7P state in the th hop. From (3.4) and the fact that all transmitters must begin transmitting
within the first hop interval of each time slot, fhe transition probabilities from the first to
the second hop interval are given by |
cho) —Pz(o) = Poo
P = £fY = o
Py = PR = Py
Py = Py = Py
(3.5)
Pl = Py) = Pyg
P = Py = Py
Py = Py = Py

Py = Py = Pys.

In T’s last hop interval, the K interferers which started their transmissions earlier than
T can only hit the from the left. The other K interferers can hit the last hop interval from
both the left and right. Using (3.4), the transition probabilities from the second last to the

last hop interval of T can be obfained as
n—1 -1 1
P =P = e+ (1= 1/g) 7

PRl =P =

1 -«
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P
11
Figure 3.2 Four State Markov Chain
PO _ pe=D 1 1g) (228 (1 = )
11 = I3 = q 1 —a a2
n— n— 1 . ’
P = P = e ¥ (L= 10— ) = (L= Bl
n— n— 1
P1(3 ) :Pz«x(3 = 5(1_042)
1 —
sa-ygRi-0-0-8=2 e

These transition probabilities are derived in Appendix A.2.
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. Following an appréach similar to that in' [6], let ri(L) be tﬁe probability that T’s mth
hdp interval is in state j and exactly L of thé m‘ corfesporiding symbols aré not hit, given
that T’s first hop interval is in state 3. We can write .-

)= Y MR, A0 - @)
1€{0,1,2,3} : '
when the Markoil chain goes into one of. the 3 ,states.where T’s freqtle.ncy bin 1s hit in the
'ne-xt transition and |

)= ) (L —1)Ry, j=0 o (3.8)
. 1e{0,1,2,3}

- when T’s frequency bin is not hit from either the left or right in the next transition. The :

initial conditions are

rﬁj(O):P,-,-, i #£0,j#0

i) =Po, - i#0,j=0.
rf;(1) = Poj, i=0,j#0
- 77(2) = Poo, o i=0,j=0. - (3.9)

Assuming that every frequency hit results in a symbol error, the probabiiity of exactly

¢ correct symbols in a packet of n syfnbols given K; and: K, interferers start packet

transmission before and after T respectively is ~g'iven by

Pr(C=cEn,K2)= Y. Y > PeHLPGTY,
- ie{0,1,2,3} je{0,1,2,3} ke{0,1,2,3} : o
' L_{c—l, for k=0
c, for k #£ 0.

(3.10)
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From (3.10), we can calculate the probability that a received packet is successfully decoded,

given Kj and Ko, as

Pr{success| Ky, Ky} = Z Pr(C = ¢|Ky, K2), (3.11)

c=n—t

where t is the error éérrecting capability of the code.
The start of transmission times for the users are assumed to be independent, identically
and uniformly distributed random variables with outcomes in the range [0, 1]. The probability

of having K interferers starting before T, given that there is a total of K interferers, is

given by
1
Pr(Ky. K — Ky) = Kip — g)E-H
( 1, ]&1 /<1{1> ) dz
. 0 _ ‘
(II )B(Is - Kq +1, le +1), ' (3.12)

where B(.,.) is the beta function [52]. Using (3.11) and (3.12), we can write the probability

of packet error after decoding as

K
Ppy=1- Y Pr(Ki, K — K1) Pr{success|K1, K — K1}
Ki=0

K no-
K
—1- Y ( )B(K—K1+1,K1,+1) Y Pr(C = dK1,K2).  (3.13)

Ki1=0 K c=n—1

3.2.2 Case for G = 2

In this case, it is convenient to divide the interferers into 4 groups.

Group 1: Interferers in this group begin transmission within 1 hop interval earlier than T.

Group 2: Interferers in this group begin transmission within 1 hop interval later than T.
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Group 3: Interferers in this group begin transmission more than 1 hop interval later than
T. Note that this set of interferers is non-empty only if T starts transmission within the

first hop interval of the time slot.

Group 4: Interferers in this group begin transmission more than 1 hop interval earlier
than T. This set of interferers is non-empty only if T starts transmission within the

second hop interval of the time slot.

In situatjbn t, ¢+ = 1,2, T begins transmission in the ith'hop interval of the time slot.
By symmetry, the packet error probability is the same regardless of whether T begins
transmission within the first or éecond hop interval of the time slot. The various groups
of interferers are depicted in the two situations in Figure 3.3. We shall consider the situation
where T starts its transmission in the first hop interval. The »number of interferers in group
4 is zero in this case and the probability. associated with the distribution of interferers in

the other groups is given by

Pr([(i,[(g,]{g =K — 1(1 — I{Q)
1

K! oK (1) (1= o\ (HFami)
—/Kl!Kz!(K—Kl~K2)! (5) (5) ( > ) §
0

1

Kt / 2Ki(1 = g)E—K1=K) g
L Kl']{g (K — K1 K»)! ' _
4 :
I&' s e . . y
B(K1+1,I& — K1 - Ky+1). (3.14)

T K KKy (K — Ky — Ky)!

The only interferers that can hit T’s first h‘op interval are those in Group 1 and 2. The

interferers in Group 1 can hit from left or right and the interferers in Group 2 can only hit
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| - ‘Time Slot | |

Time Reference
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Figure 3.3 Possible Situations in the Case Where G; = 2

from the right. Hence the starting state probabilities can be written as

—_—(1 —a1)(l — agaz). - (3;15)
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Using a similar method to those in Appendix ‘A.1 and A.2, the transition pfdbabilities from
the first to the second hop interval of T is given by

1 1\
A=A - las (1-1) 22,
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(1 q) 2(1 = eneg) — (1 51[32)]( T ore)’ (3-16)

The transition probability from the second last to the last hop interya‘l of T’s packet can
" be ‘written as

B =y = Ly (1 1) 20

q) «a
P(E;z R P(n Y= —(1 — apar3) + (1——1—) Bl ~ azas)
q «
A
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-
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o e 1 .1: ‘
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n— n— 1
1(3 Y= P3(3 1)—q(1—a2a3)+

1 (1 — aga3)
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—a)

where a3 = (1 — 1/q)Ks. Using (3.7), (3.8),' (3.15), (3.16) and (3.17), the probability of
having éxactly ¢ correct symbols in a packet of n symbols given that there are K;, K9 and

K3 interferers in Groups 1, 2 and 3 respectively, is given by

Pr(C =K, Ko K) = Y. Y Y Y mPMei@pGY,

1€{0,1,2,3} 1€{0,1,2,3} j€{0,1,2,3} ke{0,1,2,3}

c—1, fork=0 '
L= {c, for k # 0. (3.18)

The initial conditions for r;‘j_l(L) are as listed in (3.9) except that they are determined by

1)

the modified first transitidn probabilities, Pz-(l . The probability of successfully decoding a

codeword with an error correcting capability of ¢ given K;, K; and K3 can be written as
_ n
Pr{success|K1, K3, Ks} = Y Pr(C = ¢|Ky, K, K3). (3.19)
c=n—t .

Using (3.14) and (3.19), the probability of codeword error with a guard time interval of 2
is given by '

K- :
Pop=1— Y Pr(Ki, Ky, K3 =K — K1 — K3)

K,=0 .
x Pr{success|Ky, Ky, K3 = K — K1 — K3}
K K-K ‘ K
=1- - B(K IL,K—-K{—-K 1
AZO KZ 2K\ II(K — Ki — Ko)! (o +1, 1Ko +)
1= 2 .

X Z Pr(C = c|K1, K2, K3). - (3.20)

c=n—t
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3.2.3 Numerical Results

Tables 1—6 list the numerical results obtained hsing (3.13) and (3.20) for P 1 aed
Pe 2 respectively. "The results are obtained for various Reed—Solomgn codes which are
~commonly used in data communication systems [53]. Tables 1-4 are for the case of an
erasure demodulator, whereas Tables 5 and 6 are for the case in which the demoduiator
makes a symbol error whenever there is a frequency hit. The codeword error probaeilities,
Pe,o lobtained by Hegde and Stark '[6] are included in these tebles for comparison. The
percentage difference between P, and F.; can be as large as 30% and the percentage
difference between P, o and Pe’z can be as large as 40%. The codeword error probabilities,
Py and P;, calculated using the independence assumption and taking the edge effect into
* consideration for a guard time ofbl-and 2 hop intervals respectively, are also shown in these .
tables. In calculating £; 1 and F; 2, the interferers are divided into groups depending on the
time that they beéin transmission relative to T. This approach is identical the one used in
calculating P, 1 and F; . However, the probability of codewor'd error is calculated using .
the steady state probability for state O of the Markov chain, assumingvthat the probability of
being in this state in the next hop interval is independent of the state of the previous and
present holp interval. The percentage difference between P 1 and F; is comparable to that

between P, o and P; o as reported in [6]. The percentage difference between P, and F;o

is larger and can be as large as 10%.
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J Peo- P 1 Pe o Pi1 P; o
3 2444267 |1.882547 |1.640901 |1.865608 |1.533955 | (x10-11)
4 9.854872 |7.657452 |6.712215 [7.576007 |6.264310 | (x10-?)
5 5337109 |4.214235 |3.718516, |4.169784 |3.476572 | (x1077)
6 9.696240 |7.774854 |6.908226 |7.698326 |6.478714 | (x1076)

|7 8.849878 [7.202879 |6.445627 |7.138844 |6.067116 | (x10~%)
8 5.034209 | 4.157422 |3.747022 [4.124798 |3.540926 | (x107*)
9 2.030218 | 1.700660 | 1.543748 |1.689109 |1.464772 | (x103)
10 16.308742 |5.358689 |[4.898808 |5.327774 '[4.667201 | (x1073)

Table 1 Probability of CodeWord Error for (32,16) K
Reed-Solomon Code with Erasure Correction (e = 16), ¢ = 50

17 P, P, P, by Py
3 1.731250 1.196324 1 0.973509 1.148531 0.867806 (x107%)
4 5531554 | 4.077022 | 3.400610 | 3.926648 3.041058 | (x10-3)
5 4.060710 3.166278 2.712301 3.080231 2465057 | (x107%)
6 1.382431 1.133423 . ] 0.996744 1.113716 0.922752 (x1071)
7 2987969  |2.560861 |2.308538 |2.536849 2174660 | (x1071)
8 4.854427 4.322844 | 3.985808 4.307251 3.811838 (X1071)
9 6.561842 - | 6.032867 |5.673601 - |6.033098  |5.493900 [ (x107!)
10 7.8777426 | 7.429979 7.104640 7.444487 6.947213 (x1071)

Table 2 Probability of Codeword Error for. (16,4)
Reed-Solomon Code with Erasure Correction (e = 12), ¢ = 10

33
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J Pe o P P Py P

3 3.339100 2.430601 2.064979 2417253 1.920713 (x1077)
4 8.670030 6.420760 | 5.478466 6.378077 5.081422 (x10-9)
5 7.812909 5.875259 |5.041124 5.835487 4.678273 © | (x107°)
6 3.948459 -3.012379 2.600416 2.992773 2.417683 (x107%)
7 1.385786 1.072042 | 0.931246 1.065524 0.867938 (x1073)
8 3.785735 2.968415 2.594962 2.951859 2.425295 (x1073?)
9 8.617319 - | 6.846324 | 6.023150 6.811779 5.646031 (x1073)
10 1.707893 1.374423 1.216847 1.368225 1.144146 (x1072)

Table 3 Probability of Codeword Error for (15,7)
Reed-Solomon Code with Erasure Correction (e = 8), ¢ = 50

7 Puo P, P., Pix P,

3 9.256974 6.641580 |5.611106 6.621845 5.225990 (x10719)
4 2.923396 2.119269 1.791927 2.111252 1.662394 (x1078)
5 3.198852 2.339003 1.981957 2.329500 1.836645 (x1077)
6 1.959040 1.443791 1.226652 1.437820 1.136733 (x107°)
7 8.313498 6.173097 5.259966 6.147744 | 4.877187 (x107%)
8 2.739603 2.049098 1.751318 2.040853 1.625317 (x1079)
9 7.503881 5.652559 | 4.846238 5630467 | 4.502449 (I>< 107%)
10 1.784956 1.353993 1.164540 1.348884 1.083239 (x107%)

Table 4 Probability of Codeword Error for (15,7)
Reed-Solomon Code with Erasure Correction (e = 8), ¢ = 100
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J Py Py - P2 Py P; o :
13 4263326 [3.772204 |3.542540 |[3.765302 |3.430818 | (x10~*)

4 6336397 |5.696838 |5.389806 " |5.686733 |5.236310 | (x1073)

5 3313866 |3.024533 |2.882686 |3.020391 |2.811121 | (x1072)
|6 9.873741 9.140107 |8.773584 |9.131715 |8.588309 | (x1072)

7 2.080458 | 1.951427 |1.885804 |1.950422 |1.852692 | (x10-1)

8 3483900 [3.307527 |3.216267 |3.306883 |3.170408 | (x10-!)

9 4977498 | 4.776962 |4.671439 |4.777137 [4.618713 | (x1071)

10 16357719 | 6.159570 | 6.053561 [ 6.160697 [6.000956 | (x10~1)

Table 5 Probability of Codeword Error for (31,15)
Reed-Solomon with Error Correction (e = 8), ¢ = 50

J P.o P,, P, P, P,

3 2.095480 1.824375¢ 1.700443 1.822202 1.642756 (x 107%)

4 4.979229 4372417 4.089914 4.366336 3.955115 (x 10‘5)

5 4111137 | 3.639668 |3.417290 - |3.634726 | 3.309877 - | (x10-%)

6 1.905278 . 1 1.700154 1.602336 1.698039 1.554739 © } (x107%)

7 6.137291 5.518855 5.220994 5.512786 5.075341 (x 10"3)

8 1.540237 1.395468 1.325087 1.394147 1.290548 (x10~ 2)

9 3.224276 2.942668 2.804527 2.940328 2-736552, (><10-2)

10 '5.884108 5.408527 5.173190 5.405009 5.057140 (x 10‘2.)

Table 6 Probability of Codeword Error for (31,15)
Reed-Solomon with Error Correction (e = 8), ¢ = 100
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33 Sysfem Performance

In a conventional slotted ALOHA system where multiple-access interference is the only
source of interference, the codeword error probabﬂity, P.(w) is 0 when there are no ipterfeﬁng
packets in the slot and P(u) = 1 otherwise.” This is because packets in the same time élot
are transmitted using the same frequency channel and when there are two or more packeps
using the same time slot, it is assumed that the packets interferevwith each other and none
of them can be successfully feceived by their respective intended rec.eiver. Thus in the
énalysis of the slotted ALOHA system [8], it is assumed that the codewords are uncoded.
In FH-CDMA system however, since symﬁols from the same packet may be tfansmitted
using different frequency bins, P.(x) can be less than one even when there are several
packets being transmitted in a time slot. In the case where some of the symbolé in a packet
are corrupted due to interference from other packets, the packet may still be successfully
received, depending on the type of error correcting code used. Fl‘thhermbre, if a packet in a
particular time slot cénnot be decoded successfully, it does not necessarily mean that all other
packets transmitted during that time slot cannot be decoded successfﬁlly. This sﬁggcsts that
the performance of FH-CDMA systems cannot be analyzed using the same techniques as the
slotted ALOHA case. Pursley [7] suggested some new measures of Asystem performance and
these are based on the constraint that the average probability of codeword error, P,(u), for the
expected number of interfering packets, u, is not to exceed a pre-determined error rate, Pg.
To allow valid comparison between FH-CDMA and slotted ALOHA systems, it is_ necéssary

to normalize these new measures with the code rate, r, and the number of frequency bins, g.

*

This is the usual assumption that is made in the analysis of the slotted ALOHA systerﬁ although éome authors [54] have developed

capture models wherein due to the difference in received powers of the contending packets, it may be possible to successfully decode a

packet even though it has been collided with.
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In [7] the maximum normalized local load, L'*(PE), normalized local throughput,
W*(PE); and maximum normalized local throughput, Wy,,,, were used as performance
measures for a FH-CDMA system. These measures were calculated using the independence
assumption with .the probability of a fréquency hit by another user equal to 2 /q. The traffic
was modelled as a Poissoﬁ distribution with an average number, u, of interferers per time slot.

~ The normalized local load is defined by L(Pg) = ~u(Pr) where u(Pg) is the number
of interferers which can be accofnmodated if Pe( p), is not to exceed Pg, and r is the code

rate. The maximum normalized local load, L*(Pg), can be calculated using

L*(Pg) = ru*(PE)/q, (3.21)

where p*(Pg) = max{u: Pe(p) < Pp} is tﬁe maximum expected number of arrivals in
a time slot that is allowed subjected to the constraint that the average packet error remains
below or equal to Pg.

The local throughput is déﬁned as the number of successfully decoded packets per slot

and is given by
s(u) = pPe(p), (3.22)

where P, (1) = 1— P,(1). When the expected number of arrivals, p, increases the number of
interfering packets increases and P,(y) decreases.’ Therefore the local throughput is a produét
of an increasing function of yx and a decreasing function of x and there exist a maximum

value. This maximum value can be determined by
Smax = max {pP,(p) : p > 0}. | (3.23)

Since the local throughput is a product of an increasing function of y and a decreasing

function of g, P.(r) may be unacceptably low when the local throughput is maximum.




Chapter 3. Asynchronous Hopping Slotted Systems i 38

As an alternatively, we may be interested in determining the maximum local throughput '

subjected to a constraint on Pg. This maximum value is given by
S*(Pg) = max {s(p) : p < u*(Pg)}. (3.24)

To allow for valid comparison against the slotted ALOHA system, we normalize the local

throughput and the maximum local throughput. The normalized local throughput is defined as

wp) =rs(p)/e, - (3.25)
A ‘and we can write the maximum normalized local throughput for a given Pg as

W*(Pp) =rS"(Pp)/a | (3.26)
and the unconstrained maximum normalized local throughput as

r

Wmax = max {-é,uPc(p) D> 0}. o (3.27)
It is shown by Pursley [7] that in applications in which the probability of packet error is
required to be low, for exarriple Pp =1072, the maximum normalized local throughput for

FH-CDMA is higher than that of slotted ALOHA.
3.3.1 Numerical Results

The Poisson distribution, f(j) which is used in the performance measures is an infinite

population model i.e.

F(5) = e /! i€{0,1,...}. (3.28)
To obtain numerical results for L*(Pg), W*(Pg) and Wpas a truncated Poisson series as

in [7] was used. The maximum number of users, jmaz, considered in a time slot is selected

such that
jmax

1= f(G) <107 (3:29)
j=0 -
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This ensures that the accuracy of the results obtained is at least 10719, The code rate used
to normalize these performance measures is modified, taking guard time into consideration.

The modified code rate is given by

r=k/(n+G). (3.30)

The resulté obtained, using (3.»21), (3.26) ‘and (3.27), for guafd'times of 1 and 2 hop
intervals are shown in Tables 7 — 11. Subscript ¢ is used to denote a guard time of : hop
intervals. Results from [7], denoted by the subscript “0”, are also _included in'these tables for
comparison. The results indicate that the three performance measures are not sensitive to the
inclusion of guard time into the time slots. The inclusion of a lafger guard time will reduce
the pécket error probability due to edge effects. This will increase the throughpﬁt and local.
load. However, the inclusién of a larger guard time decrease the modified code rate which
will reduce the normalized local loaq and throughput. These two factors appear to offset
each other making the performance measures quite insensitive to the inclusion of guafd time
or the amount of guard time. It should be noted from the results, however, that these three
performance measures do vary as a function of the code rate. For example, for Pp = 10"2,_

n = 64 and ¢ = 25, the maximum normalized local load and normalized maximﬁm local

throughput occurs at k£ = 16.
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k 5;10%) | zz000) [zz0-) [z00-%) | ziao-e) |z
24 0.0165 0.0171 0.0168 4.17E-5 5.19E-5 5.33E-5
20 0.0348 0.0358 0.0353 0.0013 0.0014 0.0014
16 0.0531 0.0544 0.0535 0.0054 0.0058 0.0057
12 0.0672 0.0686 0.0676 0.0117 0.0123 0.0122
10 0.0712 0.0727 0.0716 - 0.0150 0.0157 0.0156

| 8 0.0723 0.0737 0.0726 0.0178 0.0186 0.0184
6 0.0692 0.0705 0.0695 0.0195 0.0202 0.0200
5 0.0656 . 0.0668 0.0659 0.0196 0.0203 0.0201
4 0.0602 0.0613 0.0605 0.0190 0.0196 0.0194

Table 7 Maximum Normalized Local Load for (32, k)
Reed-Solomon with Erasure Correction, ¢ = 25
k L3(1072) L3(1072) L3(1072) Ly(1079) L3(107%) L%(107°)
32 0.0592 | 0.0608 0.0603 0.0097 0.0103 0.0102
24 10.0742 0.0761 0.0755 0.0183 0.0192 0.0191
16 0.0796 0.0815 0.0806 0.0258 0.0268 0.0267
12 0.0762 0.0780 0.0774 0.0276 0.0286 0.0285
10 0.0723 0.0739 0.0734 0.0275 0.0285 0.0283
Table 8 Maximum Normalized Local Load for (64, k)
Reed-Solomon with Erasure Correction, ¢ = 25

k Ly(107%) L3 (107%) L3(1072%) Ly(107°) L3(107%) L3(107%)
32 0.0926 0.0927 0.0918 0.0372 0.0373 0.0370
24 0.1067 0.1068 0.1058 0.0503 0.0505 0.0501
20 0.1089 0.1089 0.1079 0.0545 0.0546 0.0542
16 0.1067 0.1067 0.1058 0.0561 0.0562 0.0558
12 0.0988 0.1001 0.0981 0.0541 0.0545 0.0538

Table 9 Maximum Normalized Local Load for (64, k)
- Reed-Solomon with Erasure Correction, ¢ = 100
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N
k Wz(1072) | Wr(1072) | W3(1072) | Womax W1, max W2, max
16 0.0526 0.0538 0.0530 0.0996 0.1007 0.0988
12 0.0665 0.0679 0.0676 0:1085 0.1098 0.1078
10 0.0705 0.0720 0.0709 0.1088 0.1101 0.1082
8 0.0716 0.0729 0.0719 0.1053 0.1067 0.1049
6 0.0685 0.0698 0.0688 0.0968 0.0981 0.0967
Table 10 Normalized Maximum Local Throughput for
(32, k) Reed-Solomon Codes with Erasure Decoding, ¢ = 25

k Wy (1072) | Wr(1072) | Wr(1072) | Wo max W1, max Wa,max
40 0.0390 0.0403 0.0399 ° ]0.0818 0.0832 0.0823
32 0.0586 0.0602 0.0597 0.0996 0.1013 0.1003
24 0.0735 0.0753 0.0748 0.1094 0.1113 0.1103
20 0.0777 0.0796 0.0790 0.1100 0.1120 0.1110
16 0.0788 0.0806 0.0801 0.1068 0.1087 0.1078
15 0.0784 0.0803 0.0797 0.1053 0.1072 0.1063
12 0.0754 0.0772. 0.0766 0.0985 0.1004 0.0996
10 0.0723 0.0732 0.0727 0.0919 0.0937 0.0930

Table 11 Normalized Maximum Local Throughput for (64, k) Reed-Solomén Codes, ¢ = 25
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Code Diversity Schemes

Consider a spread-spectrum multiple-access data comrhunication system [1], [10], [55].
with ¢ frequency bins available for hopping. The transmitters use M-ziry frequency-shift-
keyed (FSK) modulation and slow frequeﬁcy—hopping, i.e. the symbol (baud) rate is a
multiple of the hopping rate. Suppose that there are J active transmitters.- In a conventional
FH-CDMA system, at each hop each active transmitter sends its data in a single frequency
bin. Here, we study a code diversity system [56], [57] in which at each hop,'et transmitter
uses L distinct frequency bins. As described in Section 2.4, a similar technique has been
previously proposed [46] to reduce the probability of “confusion” in systems which are
subject to jamming. |

The symbol error probabilities Pe(J, g, L) for several different receiver decoding schemes
are derived. It is shown that depending on the values of J and q, a‘large reduction in symb.ol :
error rates may be-achieved using code diversity. Furthermote, the code diversity scheme
can be used to establish priority classeé among the users in the system by giving higher
values of L to users in the higher priority groups. The optimal diversity degree; L*, which

minimizes P, (J,q, L) for each decoding scheme is also examined.

We consider a synchronous FH-CDMA system in which the hop times of the transmitters

are synchronized. That is, the system is synchronous. Analysis for asynchronous hopping
code diversity systems would be more complex and is not consi(iered iiere. This complexity

* is mainly due to the fact that each iiser selects.a set of L > 1 distinct frequency bins for

transmission, so that the probability of a particular user choosing a particular frequency

42
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bin is depericieﬁt on the frequency bins that theluser has already selected. Because of this
dependency between thé bins chosen by a user, the techniques used in Chapter 3 for the
analysis of conventional asynchronous hopping FH-CDMA systems cannot be directly applied
here. The probability of a frequency hit on one of L frequeﬁcy bins is not only dependent
on the probabiliity of a hit from the right for‘thé pre;/iéus symbol but also dependent on tﬁe

probability of a frequency hit on the remaining L — 1 frequency bins.

4.1 Analysis of Symbol Error Probability for a Noiseless System

In this section we will consider a system where the main source of errors is interference

from other users so that thermal noise can be neglected. The case where the effects of noise
and fading are not negligible.is considered in Chapter 5. Four receiver decoding schemes
are studied. In S'cheme 1, thé receiver knows which symbol frequencies (in the transmitter’s
L ffequency bins) are being sent, but does not know how many transmitters are transmitting
a given symbol frequency tone. As long as there is only one particular M-ary symbol
m € {0,1,....,M — 1} that is present in all the L frequency bins used by transmitter, the
receiver can correctly decode the transmitted symbol. In Scheme 2, the receiver is assumed
to have knowledge of the number n,,; of transmitters sending symbol “m” in the I*" bin of
the transmitter’s L frequency bins. As in Scheme 1, the receiver is able to decode correctly
if there is only one particular M-ary symbol present in all the L frequency bins used by
transmitter. If this is not the case, the receiver in Scheme 2 sums up the number of transmitters
in the L bins for each of the M symbols i.e. it forms hmA 2 EL: nm,1; the receiver then chooses

- =1

symbol m* such that Ay« > Ay, form € {0,1,..., M — 1}. The decoding process in Scheme

3 is similar to that in Scheme 2 except that the receiver uses the maximum a posteriori (MAP)

decision rule [58] based on {ko, 21, ..., hm} to choose the symbol which was transmitted.
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Instead of using the MAP decision rule based on {hg, k1, ..., hm }, Scheme 4 bases the MAP
decision rule on {no,l, T1,1,70,2, 11,25 -+ 100, L, nl,L}. The decoding process used in schemes
3 and 4 are optimal in the sense that they achieve the lowest BER based on the information

available to thefn.

4.1.1 Scheme 1

We first derive an expression for the symbol error probability Pe(J, ¢, L) for Scheme 1.

The following assumptions are used in this derivation:

* The data symbols for each transmitter are statistically independent and take on one of
M possible values {0,1,...,(M — 1)} with equal -probability.

* For each hop, each transmitter independently selects its L distinct frequency bins from
the available ¢ bins. Each of the () possible sets is chosen with equal probability.” A
similar assumption has been commonly used in the study o‘f conventional FH-CDMA
systems [6], [31]. |

. If a transmitter, T, uses a certain set of L frequency bins to transmit a symbol
m € {0,1,...,(M — 1)}, and no other symbol is simultaneously present in all the L
frequency bins used by T, then T’s symbol can be correctly deteéted. This assumption
is valid in an environment where the predominant cause of errors is interference fporri
other users.’

* Let the set of K inferferers (for a marked transmitter T) be partitioned into M sym-
bol gfoups Go, G, ..., Gy—1. Bach interferer in group Gj transmits symbol ¢, 1 =
0,1,...,M — 1 and we denote the number of such interferers by K;. A hit refers to

a symbol transmission in a given frequency bin by any transmitter (including T). A

complete hit on symbol s is said to occur if all the L bins used by T are hit by at least
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one interferer from symbol group G. Note that if a receiver for T ﬁnds that there is a .
complete hit on only one symbol ._3’.*, then the receiver knows that s* must be the symbol
transmitted by T. In thé event of a cdmplgte hit on [ symbols, the receiver randomly
declares one of these [ symbols -as having b¢en sent. Note that this definition of a hit
‘is slightly different from that used in Section 3 whére a hit r¢fers to a frequency hit
‘which is the event where two transmitters simultqnebusly use the séme frequehcy bin to
transmit. Here, we account the various pbssible symbols t‘hat can be transmitted within
‘a frequency bin and we (io not make thé pessimistic assumption that all frequency hits

results in. decoding ambiguity or error.
Let Q1(z]ks) be the probability of having exactly of Ts L frequency bins hit by ks
interferers transmitting symbol “s”. ();(z|ks) can be calculated using the following recursive

equation :

= iczl(z‘éj‘lk - 1) En)t) | @

7=0 i (%)
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with initial conditions

Ql(z’IO):‘{l’ fori‘:.O S “2)

0, otherwise.

By symmetry, the symbol error probability is the same regardless of the symbol trans-
mitted by T. For convenience, we shall ‘assume that T transmits a “0”. Let F;, @ 46
{1,2,...,M — 1} denote the probability that a complete hit is caused by the k; interferers

transmitting symbol “2”. Then"
P = Q1(L|k:),, e {l1,2,..,M—1}. 4.3)

The probability of symbol error given the distributioh of the K interferers can be written as

Po(K +1,q,LIKo = ko, Ky = k1, ..., Kpr—1 = kag—1) Z rI[a-p)
' . =1 JA
9
ty 2 BE]lO-R
1<i<y<M -1 k#1,3
+ ...
M-1
LMt
+— 1 P, (4.4)
. |

The probability associated with a particular distribution of interferers is given by the

multinomial distribution '[59] ,

\

| 3 | K! 1\ "
PI‘{I{O = k(),[(l = kla---aI{M—_l = kM—l} = k()' kl' kM 1' <M> . (45)

Since

P(K +1,¢,L) = 3 Pr{Ko = ko, K1 = kn, ey K1 = kg1 }
kot+ki+..+kpm_1=K
X Pe(ff + 1,q,L|K0 =ko,Ki=Fk,... K1 = kM—l), (4.6)
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the symbol error rate, P.(K + 1,¢, L), can be obtained using (4.1), (4.3), (4.4) and (4.5).

4.1.1.1 Ngmerical Results

Equation (4.6) Was used to caiculate the symbol error’probabilﬁy P.(J,q,L) when there
are J active transmitters for M = 2, ¢ = 200 and different diversity degrees. The results
are plotted in Figure 4.1. It can be seen that depending on the value of J, a large decrease
in the probabilify of bit error can be obtained through the use of diversity. As an example, -
for J =20, P, =2.32 X 102 with no diversity whereas P, = 2.69 x 10~% with' L = 5.
Figure 4.2 shows the results obtained for ¢ = 200 and M = 3 and Figure 4.3 show the plots "

for ¢ = 100 for the binary case. It can be seen from these figures that the general behavior

of the symbol error rate is similar in all three cases.

For M = 2 and ¢ = 200, the BER Pe(J, g, L) is plotted as a function of the diversity
degree L for different values of J in Figur§‘4.4. It can be seen that P.(J, ¢, L) is moderately
sensitive to L. | |

To illustrate fhe dependenée of the optimal diversity degree L* on J and ¢, we have
plotted L* as a function of ¢/J for different values of ¢ in Figure 4.5. As would be expected,
for a ﬁxéd value of ¢, L* iﬁcreases with ¢/J (i.e. decreases with- J ). For a fixed vélue of

q/J, L* tends to increase slightly with ¢.- For ¢ = 100, the optimal diversity degree can

' be approximated by

L= m;x{1, [3.84'(%)1/2 - 3.05] } " @

where [z] denotes the smallest integer greater than or equal to z. It was determined
numerically that the use of L* as given by (4.7) when ¢ is in fact 50 or 200 does not

result in a serious BER degradzitiqn.- The percentage difference in BER’s, for ¢ = 30 is
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largest at J = 6 and is 11%. For ¢ = 200, the largest percentage difference is 4% and

occurs at J = 25.

It can be noted from Figure 4.1 that for some ranges of BER’s, code diversity does
increase the capacity (number of active transmitters which can be supported) of the system.
For example, when the BER is 1.0_2, the nuhber of activ¢ transmitters that can be supported .
in the ’system is about 9 in the case where there is no code diversity. For this same BER,
the capacity can be increased to 48 active transmitters by .using a di{/ersity_degree of 5. The
system capacity increase generally applies to all the code diversity schemes considered in

this thesis when'operating at lower BER’s. =

4.1.2 Scheme 2

In this section, we derive an expression for the symbol error prob'ability P.(J,q,L) for

Scheme 2 under the following assumptions:

« The hopping patterns, frequency bin and data symbol selection pfocedﬁres are as de-

scribed for Scheme 1.
e A receiver, R, which attempté to decode T’s transmission has knowledge of the number
of hits (including T’s) on each of the symbols within the L frequency bins used by T.

The decoding process proceeds as follows :

. Stép 1: If R finds that there is a complete hit on only one symbol, then R knows
that this must be the symbol transrﬂitted by T, and the decoding is complete.

« Step 2: If there is a complete hit on [ (> 2) symbols, R sums the number of hits
in the L frequency bins for each of thc\ase [ symbols and chooses the symbol with

the largest number of hits as the symbol sent by T. In the event that two or more
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symbols have the same number of .hits, R randomly declares one of these symbols

as having been sent.

For simplicity, we shall consider the binary synibol case, i.e. M =2, first. The analysis
is then extended to the general case in Section 4.1.2.2.

. 4.1.2.1 Binary Symbol Case

It is convenient to divide the interferers into two groups, Ky interferers transmitting
the symbol “0” ‘and the remaining K3 = (K — Kj) interferers transmitting the symbol“‘l,”.‘
Since each symbol is chosen independently and with equal probability by the interferers, the

probébility that there are exactly ks interferers transmitting symbol “s” is given by-

Pr(Ks.z ks) = (?;) (%)IX,.H_ o os= O (51" 1. (4.8)
Let Q2(zs, z|ks) be t.heAprobability of havving“’ éxactly i of T’s L fréque_ncy bins hit and
a total number of z, hits by the k, “interferers transmitting symbol “s”. (Q2(zs,7]ks) can be .
calculated using the following recursive_-equation. » | |

L g—L ~ ~ . i\ (g~ o
Qa(zs, ilks) = Qalzs, ks — 1)(5—) + Qa(2s — 1,4lky — 1)&2@ 4o
| : (9% , i) (=)
+ Q2 (25 — jyilks — 1)—(’)(%") 4l 1)—(’) (L"‘)
,V 4 Qalzs — 1,4 — 1|ks — 1) <L_li+1> (3:_—L1>

4@@fﬂw—nm—m< () i
R (D) |
. o (im1\ (=41 (¢-L
+Q2(zs—j,i¥1|k3—.1)(j—l)( - _>(L_j) o
)
=)0

+ Qa(zs — 1,1 — 1k — 1)
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L—iti
+ Qa(ze — Lo — ks ‘*1)( +)

(2
1

FQazs—1—1 z—l|k —1)(

+Qz(zs—l—j,i—l|ks—1)< :

i—1\ [ L—itl
. +Q2(Z.s_i,i'—l|k3-—1)(i 1>(( ,"‘)
-1

£

. = Z Z_f Qoo — 1= i — Ilky — 1) () 2) (4.9)

=0 =0 (1)

~with initial conditions

1, " forzs=1=0

Q2(z5,1[0) = {O, otherwise. (4.10)

By symmetry, the symbol error probability is the same regardless of whether T transmits
a “0” or a “1”. Assuming that a “0” was sent, the probability of having a total of exactly

zo hits given K; = k ‘can be written as
L
Pr{Zo = z0|Ko = K — b1} = Y Qa(20,i|Ko = K — k). 4.11)
1=0

Using (4.9) and (4.11), the probability of symbol error given K; = k; can be written as

1
P.(K +1,q,Llk) = § : Qs zl,L|k1)< SPr{Zo =21 - LIKo = K — b1}
Zl—L .

21—L—1
+ Y Pr{Z=zlKo=K - kl}). 4.12)
20=L
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Since
K ‘ . .
Po(K +1,q,L) = Y Pr{Ky =k} P.(K +1,q, L|ky), (4.13)
k1=1 o

the BER, P.(K +1,q, L) can be obtained using (4.8), (4.12) and (4.13).

4.1.2.2 Extension to Non-binary Symbol Case

The probability distribution of the interferers in the M symbol groups is given by (4.5).
As before, we shall assume that the'marked transmitter T sends symbol “0”. For a given

distribution of interferers 4{k0, ki,....kp—1}, let

e A;,1€{1,2,..., M — 1} be the event that all L frequency bins chosen by T are hit by
’at least one of the k; interferers and z; > zo + L.
e B;,i1e{l, 2,y M — 1} be the event that all L fréquency bins chosen by T are hit by

at least one of the k; interferers and z; = zg + L.

From the definition of Q2(.,.|.), wé can write

k. L zi—L—1
Pr{Ai} = Y Qa(zi,Llko,k1,...kyr—1) > Pr{Zo = zolko, k1,...,kn—1}
zi=L+1 20=0 ‘
kL . zi—L—1 ) .
= > Quzi,Llk) > Pr{Zy==znlk}, i=12.,M-1 (414
zi=L+1 z0=0"

~and

ki L . .
Pr{Bz} = Z Q2(Zi7le0a kl) "'7kM—1) Pr{ZOA =z L|k07 kla "'7kM—1}
zi=L ’
kil »
= > Qalzi, Lki) Pr{Z = 2 — Llko}, i=1,2,.. M —1. (4.15)
zi=1L
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From equations (4.14) and (4.15), we can calculate Pr{A;} and Pr{B;} using (4.9) and
(4.11). The probability of symboi error given a distribution of interferers {ko, k1, ..., kar—1}

can be written as

Po(K +1,¢,LIKo = ko, Ky = k1, .o, Kay1 = kpg_1) =

M-1 . :
Pr{AiUAzU ... UAy1}+ % z Pr{Bi} [] (1 — Pr{B;} — Pr{A;})

| j#i
2 : |
+3 Z Pr{B;} Pr{B;} H (1 —Pr{Bi} — Pr{Ai}) +...
1<i<j<M—1 k#1,5 '
M -1 - | |
+ 1;[1 PrB). ~ | (4.16)

The first term of (4.16) can be written ‘as [59]

‘ M-1
Pr{A;jUAU ... UAy_1} =Y Pr{d}— > Pr{A}Pr{4;}+
i=1 1<i<j<M—1 '

S Pr{Ai} Pr{4;} Pr{A} + . + (-1)¥
1<i<y<k<M -1 :

< [ Pr{a. (4.17)
1<i<M =1
Since
P(K +1,¢,L) = o Pr{Ko = ko K1 =k, ..., Kpr_1 = kpr_1}

kot+ki+ ... +knm—1=K ‘
Po(K 41,4, LIKo = ko, K1 = kv, oo, Kago1 = kar_1)  (4.18)

we can obtain P.(K + 1,q, L) using (4.5), (4.14), (4.15), (4.16) and 4.17).




Chapter 4. Code Diversity Schemes 58

4.1.2.3 Numerical Results

- Equation (4.13) was used ;[o calculate the symbol error probability Pe(J, ¢, L) given J
active trénsrnitters for M = 2, ¢ = 200 and different divérsity degrees. The results are
plotted in Figure 4.6. In general, fof the same valué of L, Scheme 2 yields a lower BER
than Scheme 1, especially for J Z 10. Howe.ver,‘there are instances e.g. ¢ =200, L =4,
J € {2,3,4,5, 6}. in which Séheme 1’ yields a lower BER, even though the difference is less
than 3%. This somewhat surprising result can be attributed to thé fact that when most of the
interferers aré transmitting a symbol that is different from T’s, Scheme 2 is more likely to
make a deéoding errof than Scheme 1. Results for ¢ = 200, M = 3.and qg=100,M =2 are
shown in Figure 4.7 and 4.8 respectively. The optimal diversity degree for a given number
of transmitter is at least edual to or higher in Figure 4.7 than in Figure 4.6. This is becaﬁse,
for a same number of interferers, the probability of a complete hit is less when M = 3.
The reverse situation is true when comparing Figuré 4.6 with Figure 4.8. With a reduced
number of frequency Bins, the probability of -a complete hit is inc;reased for a given number
of interferers. Hence, for a given number of transmitters, the éptimal diversity degree in
Figure 4.8 tends to be lower than in Figure 4.6.

For M = 2 and ¢ = 200, the BER P,.(J,q, L) is plotted as-a function of the diversity
degree L for different values of J in Figure 4.9. ‘It can be seen that P.(J, g, L) .is less
sensitive to L than in Scheme 1. ‘

To illustrate the dependence of the optimal diversity degree L* on J and ¢q, we have
plotted L* .as a function of ¢/J for different Vélues of g in Figure 4.10.\ For ¢ = 100, the

optimal diversity degree can be approximated by

1* = max{1, {2.803(%)'1/ ? —'0.734] b (4.19)
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As in Scheme 1, it was determined numerically that the use of L* as given by (4.19) when
g is in fact 50 or 200 does not result in a serious bit error degradation. The percentage

diff_erénce in BER’s for both cases is largest at J = 200 and is aboﬁt 10%.
4.1.2.4 Upperbound on Scheme 2

A simplified version -of Scheme 2 in which the feceiver does not perform step 1 of
Scheme 2 is considered in this section. The BER of the resulting scheme, which We will
be referred to as Scheme 2A, is an upperbound on the BER of Scheme 2. Its performance
relative to that of Scheme 2 gives the lqss in omitting step 1:

Using (4.9) and the law of total probability, the probability that the total number of hits -
- on symbol “s” given ks interferers can be wri'tten'as

L .
Pr{Z; = zslks} = Y _ Q2(2s,ilks). . (4.20)

i=0‘

For a given distribution of interferers {ko, k1, ..., kar—1}, let

s D;, 1€ {1,2,..... M — 1} be the event that z; > z9 + L.

» E; 1€ {1,2,...,M — 1} be the event that z; = 29 + L.

We can write

kiL zi=L—1
Pr{D;} = > Pr{Zi=zlk} Y Pr{Z =zlk}, i=1,2,..., M—1 (4.21)
zi=L+1 20=0 _ :
and |
kiL v . .
Pr{Ei} = Y Pr{Z = zl|ki} Pr{Z = z — Llko}, 1=1,2,.., M —1. (4.22)
zi=L ’

The probability of symbol error given a distribution of interferers {kg, k1, ..., kapr—1},

Po(K +1,q,L|Ky = ko, K1 = ky, ..., Kpp—1 = kp—1), is again given by (4.16), except with

A; and B; replaced by D; ahd E; respectively.
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The probability of symbol error, P.(K + 1,q, L), can be obtained using the same method

"~ as used for Scheme 2, i.e. (4.17) with A; replaced by D; and (4.18).

For the binary case, i.e. M = 2, the BER is given by

CPK +1,q,L) = i (f) (;)K kzjj (Pr{bl}+ Pr{El})

0

ko=0 =L+1
K K koL ‘
:Z< )() szolko{ (Zy > 2 + LIKy = K — ko)
» ko=0 20_0
- %P(Zl =z + LK1 =K - ko)}. (423)

For L = 1, Schemes 2 and 2A have the same symbol error probabilities. Figure 4.11
shows the BER’s for Scheme 1, Scheme 2 and Scheme 2A for L ='3. It can be seen that a
significant degradatlon in the BER may be mcurred if step 1 of Scheme 2 is not performed.
For J = 20, the BER’s are 1.09 x 103 for Scheme 2 and 3.71 x 1073 for Scheme 2A. The
BER for Scheme 1 is lower than that for Schéme 2A for small values of J. However, for

higher values of J, Scheme 2A has a lowef BER than Scheme 1.

4.1.3 Scheme 3

In this section, we determine P,(J, g, L) for Scheme 3. The decoding process in Scheme .
3 is identical to thaf in Schemé 2 except that when there is a corﬁplete hit on m§re than
one symbol, the receiver uses the MAP decision rule based on {ho, b1, , hM_i} instead
of randomly cﬁéosing one of the symbols whose Ay, is largest as the symbol sent by T
[60]. We consider the binary case here; similar fechriiques can be used to extend the results

to the M-ary case. Note that hpm,m € {0,1,...,M — 1} is the sum of the number of hits

(including those caused by T) on the m!* symbol of T’s L frequency bins. This is different
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frdm Zi,1 € {O, L,...,M — 1} which is the sum of the number of hits in the it* symbol? of
T’s L frequency bin caused by the interferers. Because the MAP decision rule is used in
Scheme 3, using the sum of the hité caused by all the transmitters (including T) is seen as
a better approach 1n the derivation.”

Let F' be the event that a complete hit on more thaﬁ one symbol has occurred. Further-
more, let Pr{T sent 0|ho, k1, J, F'} be the probability that T traﬁsmitted symbol “0” given
that event F' occurred and theré is a total of hg apd h1 hits by the J transmitters in T’s L
frequency bins. Based on the given iﬁformation, the receiver in Scheme 3 chooses the most

probable symbol that was sent by T. It might be noted from symmetry that,
Pr{T sent 0|Hy = ho, H; = h1,J, F} = Pr{T senf 1|Hy = h1, Hy; = ho,J, F}, (4.24)
Pr{Hy = ho, Hy = h1|T sent O,J-}.z'Pr{Ho : h‘l,Hl = ho|T sent 1, J}, 4.25)
and
Pr{F|T sent 0, J}-= Pr{F|T sent 1, J}. (4.26)
Furthermore
Pr{F|J} = Pr{T sent 0|J}Pr{F|T sent 0,J} + Pr{T sent 1|J}Pr{F|T sent 1, J}

= Pr{F|Tsent 0,J}. - 4.27)

Using Bayes’ rule, we can write

Pr{hg, h1|T sent 0, J, F}Pr{T sent 0|J, F'}
Pr{ho, h1|J, F'}

Pr{T sent 0|hg, hy,J, F'} = (4.28)

where
Pr{hg, h1, F|T sent 0, J}

Pr{hg, h1|T sent 0, J, F'} = (4.29)

Pr{F|T sent 0, J}
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and

Pr{T sent 0|J, F} = % _ (4.30)

Using (4.28), (4.29) and (4.30), we can write the probability of symbol error for Scheme 3

given Hy = ho and Hy; = hy as

Pr{error|ho, h1, J} = Pr{F|ho, h1,J} x min(Pr{T sent 0|ho, h1,J, F'},

Pr{T sent 1}hg, k1, J, F'})

_ Pr{Flho, h1,J}
~ 2Pr{hg, h1|J, F}
« min (Pr{hg, hi, F|T sent 0,J} Pr{hg, h1, F|T sent 1, J})
Pr{F|Tsent0,J} '  Pr{F|T sent1,J}

_Pr{F) |
B 2Pr{h0,h1|J}

. (Pr{ho, h1, F|T sent 0,J} Pr{hg,hi, F|T sent1,J}
X ( Pr{F|Tsent0,J} '  Pr{F|Tsent1,J} >

4.31)

Using (4.26), (4.27) and (4.31),

1
Pr{errorlho, 1, J} = o5y

x min (Pr{hq, k1, F|T sent 0, J}, Pr{hq, hy, F|T sent 1,J}).  (4.32)

Hence

(J=1)L (JL—ho)

P,(J,q,L)= Y Y Pr{ho, h|J}Pr{error|ho, h1,J}
ho=L hi=L
1 (J=1)L (JL—ho)
=3 z Z min(Pr{hg, k1, F|T sent 0, J},
ho=L hy=L
' Pr{hg, h1, F|T sent 1, J}). (4.33)
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where

K
Pr{ho, h1, F|T sent m, J} = Z Pr{k; interferers sent 77| T sent m, J}
k1:1 - '
X Pr{hzw, F|T sent m, J, km} -

X Pr{hm|T sent m, J, ke, b, F'}

S (Z;)(%)KQZ(]W,LWW)

kﬁ=0

L .
x> Qalhm — L,i|K — k). (4.34)
2 , |

4.1.3.1 Numerical Results

Numerical results obtained using (4.33) and (4.34) indicate that for ¢ = 200 and
J >2(L—1), there is almost no difference between the BER’s for Scheme 2 and Scheme
3. For 1'< J < 2(L — 1), the maximum percentége differenée for L =2,3,4 and 5 is about
10%. The difference between the BER’s of Schemes 2 and 3 indicates that there are instances
in which the receiver should choose symbol “m” even though h,, < hogs. To explain this
somewhat counter-intuitive statement, consider the case where'q =8, L=3,J=3, hg=3
and hy = 4 Avgufﬁcient condition to show that T is more likely to have transmitted symbol

“0” given hg = 3 and hy = 4, is
Pr{hp = 3,h1 =4, F|T sent 0} > Pr{hg = 3,h; =4, F|T sent 1}. (4.35)

It can be verified that Pr{hq = 3, h1 = 4, F|T sent 0} — 0.01674 ~whereas
Pr{ho = 3,hy = 4, F|T sent 1} = 0.004783. ‘
The results obtained for L = 1,2,3,4 and ¢ = 200 are plotfed in Figure 4.12. Due to the

computational complexity involved, the results shown are limited. to 50 active transmitters.
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4.1.4 Scheme 4

The assumptions ma;de. in the derivatjbn of P.(J,q,L) for Scheme 4 are identical
to those for Scheme 3 except that Scheme 4 uses the MAP decision rule based on
{no1,m1,1,m0,2,m1,2,---70,1, 71,1 } where T is the total number of hits on the mith symbol
of T’s I** frequency bin [60].

Using Bayes’ rule, we can write

Pr{T sent 0|n0,1_,n1;1, ey 0,1 M1, Ly I F} .

. Pr{no,hnl,l, ~--7n0,L7n1,L|T sent 0, J,F}
Pr{no,l,nl,l,-;-,no,L,nl,LU,F} ‘
x Pr{T sent 0|J, F'} (4.36)

where

Pr{no,l, n1,1, 570,171 T sent 0, J, F}

_ Pr{no,l,n‘l,l, ~~~,n0;L,n1,L, F|T sent 0, J} | 437)
Pr{F|T sent 0, J} o

Using (4.30), (4.36), and (4.37) we can write the probability of symbol error given
{ng,l,vnl,l,...,no,L,nl,L} as |
Pr{errorlng,l,ni,l,...nO,L,nl,L,J}
= Pr{F[noyl,nl,l,...nO’L,nl;L,J}

X min (Pr{T sent 0|no 1,711, .--70,L, P1,L, J, F},

Pr{T sent 1|ng,1,m1,1,..-n0,L, 71,1, J, F})

PI‘{F!nO,], nl,l) ---nO,La nl,L7 ‘]}

= 2PI‘{TLO,1, nl’.l’ -100,L, nl,Llj, F}
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i Pr{ng,l,nl,l, ..ng ,n1,L,F|T sent 0, J}
X min ,
Pr{F|T sent 0, J} '
Pr{ng,l,nl 1,.---n0,L,71,L, F|T sent 1,J}
Pr{F|T sent 1 J} '
Pr{F|J}
2Pr{ng1,m1,1,-.-n0,1,n1,0|J }
. (Pr{no1,n1,1,...n0,1,m1,1, F|T sent 0, J }
X min ,
Pr{F|T sent 0,J}
Pr{ng,1,n1,1,...n0,z,n1,1, F|T sent 1 J}
Pr{F|T sent 1 J}

(4.38)

Using (4.26), (4.27) and (4.38),

Pr{error|no,1,n1,1, .10, 1, 1,L, J }
2Pr{no,1,n1,1,--n0,L, 71,7 }

X min(Pr{ng,l, n,1,.--No,L,71,L, I | T sent 0, J},

Pr{no1,n1,1,...n0,0,n1,0, F|T sent 1,J}). (4.39)

Hence
Pe(J,q,L)
J-1 J-1 J—1 -
=D, > D Z
19,1=0mn1,,=0 no,L=0mn1,,=0

Pr{no,1,n1,1,..,n0,z,m1,0]J }
xPr{error|n01,n11, "no,L,nLL,J}
J-1 J-1 J-1 J-
Iy YLy YT
2
- m0,1=0mn;,;=0 no,.=0 n1,,=0

min(Pr{no1,n1,1,...,70, 1,711, F|T sent 0, J},

Pr{ng,l,nl,l, ;0,171 L, F|T sent 1, J})
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~

IIM

—

no,2=1mny,.=1

min( Pr{no 1,M11,- -,no,L,nl,L|T sent O,J}, (4.40)
Pr{no,l,nl,l,...,ng,L,nl,L|T sentvl,J}). ’
where
Pr{no,l,nl,l, o5 T80, Ly n1,|T sent m, J}
-
= Z Pr{kzm interferers sent m|T sent m, J}
kﬁ=1
X Pr{nm,l, ooy N, 1| T sent m, J, km}
X Pr{nm1, ey i, | T sent m, J, kg, 1 1, 1L} |
K .
KN /1\E
= Z( )(-) Qa(nwm,1, - w1 fiw)
kw/ \2
X Qa(nmy — 1, eynm p — 1K — ki) (4.41)

and Q4(n'5,1,n5,2, ...,ns,les) 1is the probability of having exactly n, 1,752, ...,  hits on

T's 15t,90d | Lth frequency bins respectively by the k, interferers transmitting symbol

1P

s”. Denoting
g- L) .
L-1
= —j—, (4.42)
Q4(., -, -,-|]-) can be calculated recursively as

Q4<nm,17 NMm,2, sy nm,L!km)
= P0Q4(nm,1>nm,% a nm,L|km - 1)

+ Pl(%) [Q4(nm,1 — 1,nm 2,y ey o 1| — 1)

+ Q4(nm,1,n'm.,,2v_ 17 ,nm,L“Cm - 1) + ...
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+ Q4 15m 2 1, = 1k = 1)]
1. |
+ PQT [Q4(nm,1 - 1,nm’2 -1, ---’nm,LIkm - 1)
L
+ Q4(nm,1 — 1L, nm,2,nm,s — 1, ooy, L] km — 1) '
+ ...
+ Q4(nm,1 — 1, nm2, s [ — 1km — 1)—{—
+ Q4(nm,1>.nm,2 —lLnps—1, "'7nm,L|km - 1)
¥ ...
+ Q‘l(nm,la sy M -1 — 1anm,L - 1lkm - 1)]
+ ...

+ PrQa(nm1 — 1, mma — 1y ey — Uk — 1) (4.43)

with initial conditions

Q4 (nm,l? Tm,2y -+ nm,LIO)

1 Nl =Nmo=..=Npr =0
- ) 5 , 4.44
{ 0 otherwise_.' : ( )

The BER for Scheme 4 was evaluatéd using (4.40) for ¢ = \200., L=1,23and 4 A
comparison with the BER for Scheme 3 indicated that there is Qery little difference betWeen
the performances of the two schemes. This difference. is approximately 0.01%. However, the
computational task for evaluating the performance of Scheme 4 is L fold more rthan Scheme

3. Hence' the technique developed for Scheme 3 may- be used to obtain a tight upperbound

on the BER of Scheme 4.
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4.2 Error Control Coding .

All the code diversity schemes considered in previous sections used a repetition code
as a means of error contfbl coding. The same symbol is transinitted by a particular by a
particular transmitter in all its diversity branches. In thié section, an error control scheme
using the random code approach is studied. The ohly source of interference is multiple access
interference caused by other transmitters and except for the error control coding scheme, the
system model used is the same as the one in the previous section. It will be shown that the

BER with random coding is lower than the repetition code BER.

4.2.1 Random Coding Scheme

In this scheme, each transmitterﬁeceiver pair uses a ‘strategy where L distinct frequency
bins are selected for transmission for. each symbol. However, unlike the repetitive coding
scheme, the féne transmitted in each of the L fréquency bins is randomly selected. For
example, it might be decided a priori that when a particular transmitter wants to transrrﬁt
symbol “0”, the actual transmission will involve transmitting syrﬂbols “0” and “1” in the
first and second frequency bin respectively. Any receiver wishing to decode transmission
from this particular transmitter must know a priori the encoding scheme to decode the actual

symbol.

For simplicity we shall assume, without loss of generality, that the marked transmitter
’f transmits the same symboi in all its L frequency bins. A receiver which decodes the
transmissidn from T will not be able to decode T’s transmitted"symbol without ambiguity
only when the L frequency bins contains more than 1 ;et of identical symbols which have

been hit. In such cases, the receiver randomly select any one of these symbols which have

been detected in all L frequency bins as the decoded symbol. -
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To evaluate Pe(J,(j,L), we need to evaluate the joiht probability of the number of

interferers transmitting in T°s L frequency bins, Pr(b1, by, ..., br|K), where b;-is the total

lth

number of interferers transmitting in the frequency bin. This probability can be easily

evaluated using the following‘ equation

Pr(by,...,bp|K) = Pr(by,..., b | K — 1)

()
tory P Ll b K = 1)
L

+Pr(b1,bz,...,bL - 1|I{ — 1)} +
(%) | |
-\ L-2
+ o {Pr(by — 1,by = 1, b [ K — 1) + ..

+Pr (bt b1 = 1,bp — 1K — 1)} + ...

'

+L{Pr(b1—1,b2—1,...,bL—11K-1)} (4.45)

(1)

with initial conditions

1 by=by=..=b,=0
0 otherwise ’ .

Pr (by, by, ..., br|0) = { (4.46)

As in the previous cases, we shall assume that T transmitted symbol “0”.Given the number of
interferers transmitting in a particular frequency bin, the distribution of hits on the symbols

of that particular frequency bin is a multinomial distribution which can be written as.

. b! 1 by
Pr (nO,la LS NERTES nMv—l,l|bl.) = (nO | — 1)' " l! M1 I! (M) E

M-1
not—1l+ Y nmi=b (4.47)
m=1 : E

where 71, is as defined in Section 4.1.4. Furthermore conditioned on the number of

interferers transmitting in each frequency bin, the distribution of hits on the symbols for
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each bin are independent. Hence we can write the conditional joint distribution of hits on

the. symbols for the L frequency bins as

Pr (10,1, 01,15 e TM=1,1, P11, o M =11 -y WM —1,0101, b2, -, b))

L
= [IPr (ros s o mr—nlls).  (4.48)
=1 .

Using equations (4.47) and (4.48), we can determine the number of symbols besides “0”
that is detected in all the. L frequen.cy bins. Therefore using equations (4.45), (4.47) and

(4.48), we can write
K K K

P(K+1,q,L) =YY" .. > Pr(by,by, ..., br|K)x

b1=1b,=1 br=1
E{Pr(only symbol 1 detected|br, by, ..., br)
+ Pr(only symbol 2 detected|by, by, ..., br) + .
+ Pr(only symbol M — 1 detected|br, by, ., br) } +
g{Pr(only 2 other symbols detected|br, ba, ..., bL)}' + ..

%{Pr(all other symbols detected|by, by, ..., bL)}] . (4.49)

For the binary case, a much simpler form of the BER expression can be derived.
Conditioned on the number of interferers transmitting in each of T’s L frequency bins,

the probability that symbol “1” is detected in all L frequency bins is given by

Pr (77,1)1 > 0,7?,1,2 > O,...,nl,L > 0|b],b2,...,bL) = (1 — Pr (no,l = bllbl)) |

_ II(- (%) bl). (4.56)

b‘
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Therefore
K KK | | N
PAK+1,0,0)=5 3 3 > Pr(bl,bg,...bLlK)H(l — (§> ) @451

b1=1bo=1 br=1 1=1

4.2.2 Numerical Results

Equations (4.45) and (4.51) were ﬁsed to calculate the BER for ¢ = 200, 100 ‘and
L =1, 2 and 3. The results showing the BER versus J are plotted in Figures 4.13 and
4.14. Unlike the other schemes, the interferers for this scheme cannot be partitioned into
symbol groups. This results in fairly extensive computational memory usage and the BER’s
for values of J beyond 50 transmitters were not. computed. |

It can be seen that the general behavior of the BER is quite similar to those shown .for
repetition code schemes. However, from the numerical results, the BER’s using the random
coding schéme are lower than those obtained using scheme 1. For example, when J = 20
and L = 3,’P6(J, ¢, L) is 1.130 x 1072 and 1.236 x 102 for the random coding scheme and
scheme 1 respectively. The percentage difference is large\r for smaller values of J. This is
Because for large values of J in scheme 1, the number of possible ways of hitting a particular
symbol in one of T’s L frequency bins increases. This tends to make the interference random-
like in nature. Hence the difference between thé two schemes diminishes for a fixed value
of L as J increases. From this reasoning and the numerical results pbtained, we conjecture

that the BER of the random code scheme is a lower bound to that of scheme 1.
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Chapter S5
Code Diversity Schemes in the Presence
of Noise and Rayleigh Fading

In this chapter, we consider the BER performance of code diversity schemes in the
presence of noise and fading. The channel considered is a Rayleigh fading channel with

AWGN. Two different models are considered here.

In the first médel, the signal strength detected at the receiver for a given tone is the same,
whether one or more transmitters send that tone. This simplifying assumption is valid in
cases where there is usually only a small number of transmitters transmitting a particular tone
simultaneously and hence the probability of a hit is low. A detection threshold is used by the
receiver to detefmine if a tone is detected and a majority voting rule is used to determine the
symbol transmitted. In the second model, the_signal strength of a given tone is dependent on
the number of transmitters transmitting that tone. The signals from the transmitters sending
a given tone are assumed to be independéntly faded and are vector added to determine the
resultant signal for that tone. The. simplifying assumption made in fhe first model is thus

removed. Detection of the tone is based on the resultant signal strength.

5.1 Majority Vote Decoding Scheme with Threshold Detection

In this section, we derive an expression for the symbol error probability P.(J, ¢, L) for
a system in Rayleigh fading and AWGN [61]. Due to the fading, the receiver may not detect
a symbol tone which was transmitted; this event is referred to as a deletion. The probability

of such a deletion is given by [62] -

pp=1— eXpl<_2(1—+ﬁ)> : . (5.1)

81
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where [ is the detection threshold normalized with respect to the noise and p is the average

signal-to-noise ratio.

Due to the noise, it is possible that‘a receiver detects a certain tone even though that fone
was not sent by any of the transmitters. This is known as a false alarm and its probability
can be expressed as [62] |

32

pF = exp (—%) | (5.2)
The events, deletion and false alarm, are rhutually exclusive. A deletion on a particular
" tone caﬁ occur only if at least ene transmitter‘ sent that particular tone and a falsé alarm -
on a particular tone can occur orﬂy if no transmitter sent that particular tone. Furthermore,
deletion and false alarm events are assumed independent across all the tones in the system.
For example, if there are two different tones transmitted in a particular frequency bin of a
5 — ary system, possible deletions at the two symbol tones occur independently and possible

false alarms in the other three symbol tones occur independently.

A tone is’_ said to ee'detected, if the receiver detection threshold is exceeded (either
because the tone was sent by one of the transmitters er a false alarm has occurred). To
deeode the symbol sent by a particular transmitter T, the receiver sums up the number of
times each symbol has been detected inAT’_s L frequency bins and selects the symbol detected
the largest number of times as the symbol sent by T. Ih the case of a tie, the receiver randomly

selects one of these symbols as the symbol sent by T.

 As in previous sections, it is eonvenient to partition the total number of interferers,
M-1 ‘ ,
K = J -1, into the M symbol groups where ‘> ks = K and k; is the number of

s=0

interferers transmitting symbol *“s”.
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In addition to the assumptions made in Section 4.1.1, the following assumptions are -

made in the derivation:

- as long as there is one or more hits caused by the users on a particular tone, pp remains
unchanged. |

» the receive£ uses a majority vote decoding rule and chooses the..symbol that has been
hit most fréquéntly in the L frequency bins. (Note that because pp in general is non-
zero, the receiver may not‘be able to find at least one set of tones corresponding to a
particular symbol iﬁ all of T’s L frequency bins.) If there are two or more symbols
with the largest number of hits, the receiver declares randomly one of these symbols as

the symbol decoded.

Let X(d, f|l,ks) be the probability that there are exactly d € {0,1,...,} deletions and
fef{o1,...L -1} falée alarms in T’s L frequency bins given that there are exactly [ of
these L bins hit by the ks‘ interferers. Thié probability can be calculated usirig

X(d, fll, ks) = (DP“DU - )™ (Lf— Z>P§<1 ~pr) 63)
Furthermore let R(i|ks) be the probability of having exactly i of the symbol
se{l,2,...M ; 1} tones within T’s L frequency bins detected by the receiver. Us- .

ing (4.1) and (5.3), R(:|ks) can be calculated as
N L\
Rilk) = Qu(olks) (| )

1

o3 (oo L Ja-no]

d=max (1-1,0) ttd—1

+ ... ’
-|-Q1(t|k3)[' Zt: (2)1)%(1 —}PD)i—d<if;_tt)P?d—t(l.—}?F)L—i] |

d=max (1—1,0)
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L I ' ‘
+ Ql(Lst)[ > (d>P61l)(1 —P'D)L#d]
: d=L-i A .
L t - ) : .
=> " Qutlk) Y X(di+d—titk). L Ga)
t=0 - d=max (t—1,0) . . A l

where Q1(.].) is as defined in (4.1).

As in the previous sections, assuming ihat T trahsrﬁitted the ~"syniboi “0”, the “n‘lvlmb'er _
of frequency bin hits detected at the receiver on symbol “0” at T’s chosen frequencv:‘y bins
cén be calculated as |

S(4) :‘(L_fi i)pé_i(l Zep). o (5.5)

Let F , be the event that the number of frequency bins (of T’s L bins) with- tones
dete_éted on the st* syfnbol exceeds tﬁe corrlesporidihg‘ number on the “0” symbol and E; be -

~ the event that th\e number of frequéncy bins with tones detected on the symbol\ sth equals the
correspénding number on the “O” symbol. Using (5.4) and (5.5), thevc'onditional probabili'ties

associated with these event can be written as

Pr{Flk} = SG) Y RGlk) 6
| j=tl : »
and. _ .
(B} = SOR(IE). | )

The probability of symbol error given a distribution of interferers {ko, k1, ..., kar—1} can be

written as

Pe(I{ + 17(]7[/1[(0 = kOaKl = kla.'_",]{M.—‘l = kM—l) =
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M-1
Pr{FfUF U .. UFy_1}+ % Z Pr{E;} H (1 —Pr{E;} — Pr{F;})

| i#i ’
) _
+3 > Pr{E}Pr{E;} J] @ —Pr{Ex} - Pr{F})+ ..
1<i<i<M—1 ‘ k#ij
M-1 . '
(M —1) , |
+ IZI1 Pr{E;}. . (5.8)
The first term of (5.8) can be written as [59]
’ ' M-1 | . :
P{FiURU...UFy_1} =Y Pr{F}— >  Pr{F}Pr{F}+
S =1 1<i<j<M -1

Y Pr{E}Pr{F;}Pr{F} + ...
C1<i<i<k<M -1 o

+-0" I Pe{Ey. 69

1<i<M—1

Since

P(K +1,q,L) = D Pr{Ko = ko K1 = k1, .., Kyr—1 = kag—1}
kot+ki+ ... +kpa=K .
Pe(I{ + 1,q,L|I{0 =ko, Ky =ky,... Kpy_1 = kM—l) (5.10)

we can obtain P.(K +1,q,L) using 4.5), (5.4), (5.5),(5.6), (5.7), v(5.8) and (5.9).
' 5.1.1 Numerical Results

For given values of the average signal to noise ratio, p, and detection threshold, 3, -
equations (5.1) and (5.2) allow us to determine the corresponding values of pp and pp.

These values are used to obtain the symbol error rate according to the procedure described

above. In the results presented below, binary signalling (i.e. M = 2) and ¢ = 200 is assumed.
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Plots of bit error rate, p;, as a function of thé detection threshold, J¢] forv L=1,2,3 and
4, p = 20 dB, and YJ = 50 are shown in Figure 5.1. It can be seen that the optimum _Valﬁe,
Bopt, of the detection threshold which minimizes pj -is quité insenéitive to changes in L. The
value of Bop: is about 2.6. The curlves also show that p is not very sensitive to changes in
B around Bop:. Correéponding plots‘ for J = 150 are shown in Figure 5.2. The observations

drawn from Figure 5.1 also hold fof Figure 5.2.

Curves of p versus 3 for J = 25,50, 75 and 100, p = 20 dB and L = 2 appear in Figure
5.3. The value of ﬂopt is about 2.9 for the various values of J. In Figure 5.5 where L = 4,
Bopt 18 again about 2. 9 for the various values of J Figure 5.4 illustrates how pp changes
with 8 for p = 10, 15, 20 and 25 dB with J = 50 and L = 2. Similar plots for L = 4 is

shown in Figure 5.6. The value of 3oy tendrs to increase with p in both cases.

The p, versus J curves for L =1, 2, 3 and 4, 7 = 20 dB and 8 = 2.6 (a value which is
close to the optimum) are shown in Figure 5.7: It can be seen that code diversity generally

yields a lower BER. Corresponding curves for p = 15 dB and 8 = 2.6 appear in Figure 5.8.

In the numerical results above, it is assumed’that the transmitters for each diversity
group 1is traﬁSmitting at the same pow‘er for each diversjty branch as the transmitter with no
diversity. This assumptioh is valid if there .is no constraint on the total power transmitted and
there is a limit on the power emission leyel at the fréquency bin level. Because of the power
emission limit at the frequenéy bin level, the transnlitters with lower diversity degrees are

_not able to transmit at maximum power. In some situations, these assumptions may not be
valid and it may be more appropriate .to fix the overall transmitted power by each transmitter.

In Figure 5.9, we have plotted the curves where the SNR for each diversity branch is p/L

for p = 20 dB and B = 2.6. It can be seen that code diversity still yields a lower BER.
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Corresponding curves for p = 15 dB and § = 2.6 appear in Figure 5.10.

5.2 Majority Vote Decoding Withoht Threshold Detection

In this section, we derive an expressron for the symbol error probability P.(J,q, L)
for a system model in which the resultant signal for each symbol tone at the receiver is a
vector addition of each individual signal transmitted by the transmitters for that particular
symbol tone. The signal transmitted by each individual transmitter is assumed to undergo
independent fading and the signal strength of each individual signal is assumed to be
statistically identical. In other words, the individual signals are assumed to havé independent
and identically distributed (i.i.d) Rayleigh distributed amplitudes and uniformly distributed
phase over (0, 27] and the variance of the in-phase and quadrature phase is o2 if the lsignals
from all transmitters are received at' the same average power. The noise is assumed to be
complex Gaussian with variance o2. These signals (including the noisé) are added vectorialvly
to form a resultant signal. As an exampl.e,’in‘ Figure 5.11, three individual s_ignals and the

14

noise are vector added to produce the resultant signal.

’I;he modulbati.on séheme considered here is Non-coherent Binary'Frequency Shift Keying
(BFSK) and in Ithe ,decodirlg process, thé recerver selects tlre tone with the la_rgest Signal '
strerlgth as the tone detected in each of Ts L frequency bins. This signal str¢rrgth at the -
sampling instance of the filter output is Rayleigh distributed according to the rhagr_litude of
the resultant signal of that particular tone. Majority Vott: decodrng is then used to détermine
the symbol transmitted by T. In the event of a tie between the two symbols, the receiver

randomly chooses any of them. This decoding process is illustrated in Figure 5.12 for the

case of L = 5.
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- Let S"m,l be the resultant vector of the m** m e {0, 1}, symbol of T’s I** frequency.
bin: It is shown in Appendix B that §m,l is Rayleigh distributed with ur_ﬁform phase over

(0, 2. If ny, is the total number of hits on the m™ symbol of T°s"I™ frequency bin,

" as defined in Section 4.1.4, the probability density funétion of the magnitude, Sy, 1, of gm,l
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can be written as

2 2 2 ’
Sl e_sm"/z(nm"”" +o7) if T did not transmit m

_ nm,lai +an
me,l (3m>1) - ( 1\;m2,l+ - 2e—sfn,z/Z((nm,z—l)a?+a2+m21)
nmi—1)o;+o+to; :

if T transmitted m .
¢.1D

i.e. a Rayleigh distribution with mean and variance of the following form +/7 (o2 + 02)/2
and (2 — 7/2)(c2 + o) respectively where

2 . . .
9 { N 107} if T did not transmit m (5.12)

Te = (Rmy=1)o? + 02+ o2 if T transmitted m

and the average signal to interferer power ratio (SIR), p; = 02/o2. Hence the conditional
robability of the receiver detecting “0” and “1” in the I** frequency bin given that T
p y g q :

transmitted “0” can be written as

Py, = Pr{50,1‘> S1,1lno,1, n1,1, T transmitted 0}

[e.0] o) -

- /[/ FSou (50,1|n0’1,4n1’1,T transmitted'O)dso,l] fs1,
0 Si4 '

(31,1(30,1|n0,1, ny1, T transmitted 0)d31’1)

(no,l — 1)03—}— o? + 0‘12L

= 5.13
(noj + 1y —1)of + 0% + 203 G139
and
Pyt =1 — Pogt,
_ nl,laiz + 0721 ) _ <5 14)

(ros+nig—1)o? + 0% + 202

respectively. Similar conditional probabilities can be obtained in the case where T transmitted

“1” by symmetry. Using the law of total probability, we can write

Py = Pr{T transmitted 0} Py j1, + Pr{7" transmitted 1} Fy ;r,
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(2710,1 — 1)01-2 +\02 + 20,21

" 2((noy + ny — 1)o? + 0% + 202) | ~ (5.15)
aﬁd
Pi=1-Fy. |
(2n1; — 1)o? + 0% + 202

2((”0,l+n1,1—1)af+02+20%)' | (5.16) |

Note that wheh the SIR i‘s one and the average signal to noise ratio, p = o?/o2, is large
Py and Py is approximately no,z/(no,z + nu) and nl,l/(nO,l'"*" nl,z) respectively. In such
situations, assumihg that the tone detected at each frequency bin is dependent solely on the
relative number of transmitters transmitting that particular tone as compared.to the other tone
in the frequcncy bin is a good, approximatioh, just as in Section 4.1.1. Conversely, when p
is small, Py; and Py tends toward 0.5 as éxpected.

Let X,, be the number of frequéncy bins among T’s L frequency bins that detected
the symbol “m”. The probability of error,-given T transmitted “0” (the dependency on

{no,l, n1,1,710,2, 71,2, ---, 120,15 nl,L} is not explicitly stated) can be written in terms of X, as

Pr{X, > L/2} L odd

Pr{Xi > L/2} + sPr{X1 =1L/2} L even. (5.17)

P,(Xo, X;|T transmitted 0) = {

Given {ng,l,nl,l,no,z,nl,z, ...,no’L,nl,L}, this probability can be written in terms of P, ;.

For example in the case of [ = 3,
PB(XQ,XllT ‘transrpjtted 0) = P0,1P1’2P1,3 + P1,1P0,2P1,3 + P1,1P1,2P0’3. (5.18)

The probability of having exactly np, 1, nm,2, ..., m,r hits on T’s 1%¢, 2”‘1,'..., Ltk

frequency bins respectively by kg, interferers transmitting symbol “m” can be calculated
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_using equatiori (4.41) and (4.43). Hence the average probability of error given the number

of transmitters, J, can be written as
Pe(J,Q,L) = Pr{error|J, ¢, L, T sent 0}

= Z Pr{ng,l;nlyl,...,nO’L,n'l,L|J,T sentO}

70,1,M1,1,---,70,L,M1,L
x Pr{X; > Xolno 1, 7,15 -0, 10, L5 101 L)
ko ko

SO 555 5 e

k1=0 no,1= 17111 0 no,L= 1"7»1L 0

X Qa(noy —1,...,m0,1 — 1l’ko)

x Pr{X; > L/2} (5.19)

for odd values of L and

P.(J,q, L) = Pr{error|J,q, L, T sent 0}

ko

K ko ki
= Z <f)< ) Z Z Z Z Q4(ni,1,...,n1,L|k1)
k=0 N1 noi=1n11=0 nor=1ns =0

X Q4(n0’1 — l, ey 0L — llko)

« [Pr{X; > L/2} + —;—Pr{Xl S L2 (5.20)

for even values of L.
5.2.1 Numerical Results

Using equations (5.15), (5.16), (5.17), (5.19) and (5.20), P.(J,q, L) for L = 1 and 2 can -
be calculated. Figures 5.13 and 5.14 show the plots for SNR of 20 dB and 10 dB respectively
with the SIR of one and Figure 5.15 shows the plots for SNR and SIR of 20 dB. It can be

‘seen that the BER for L = 1 is lower even for small values of J and the percentage difference
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is greater in the case of higher SNR values. For ¢xafﬁple, for J = 6, the percentage BER
difference is labout"‘S% and 27% fér SNR values of 10 dB and 20 dB respectively. The
explanation for this somewhat surpfising result is due to the fact that for higher SNR values,
- multiple access interference is the predominant cause bf error‘.- The scheme which makes a
hard decision on the symbol transmitted at the frequency bin level 1s éspecially susceptible to
multiple access interference espec.ially for largef diversity levels where the interferers have a
higher chance of transmitting in the ffequency biné of the marl;ed transmitter. This is shown
aﬁalytically for theicase’.of ‘J = 2 in Appendix C. |

f It shouid also be noted that at high SNR values, this séheme is similar to scherﬁe 1
of Chapter‘4 which sho;’vs that P.(J,q, L) is lower for higher values of L in cases where
the number of interferers iS feasonably loW. lThere is howéVer an important difference — ‘
scheme 1 of',Chapter 4 does a majority vote bnly_-when there is a complete hit on more than
1 syﬁbol. ‘This suggests thét. threshold detection to determihe if there is more than one set

o

of complete hit is useful to lower the BER in cases where the SNR is large.

5.3 Soff Decision Decoding Scheme

* The scheme considered in this section is a soft decision dec’oding scheme. The receiver
for such a scheme with L = 3 is shown in Figure 5.16. All other aspects of the system -

model, apart from the d¢coding_ process, are as descrified in Section 5.2.

The incoming signal is filtered at each tone in all of T’s L frequency-bins, resulting l
in a Rayleigh distributed random variable;_at"_the outplit of each  filter. Instead of making a
decision on the symbol detected at each freqﬁency bin as in the previous scheme, the outputs -

of these filters for the same symbol are added together, resulting in M scalar quantities for a
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Figure 5.16 Soft Decision Decoding

‘ M-ary system. The decision rule used by the decoder is to declare the symbol corresponding

to the largest of these M values as the decoded symbol.

Conditioned on the number of transmitters transmitting in each tone of T’s L frequency
bins, ng,1, 71,1, ...,M0,L, 71,5, the magnitude of the filter output corresponding to symbol

lth

m and the frequenby bin, Sy, is only dependent on 7,y ;. Hence we can write

£s,n(8malno,1, 1,1, 10,0, 01,2) = fom, (Smotlnm,1) (5.21)

and fg, | (sm,1|nm’1) is Rayleigh distribution as given by equation (5.11). Since S, ; is only
dependent on n,, , the probability density of the composite signal of symbol “m” can be

obtained by

me (3m|n0,1>n1,1> vy nb,La nl,L) - me (Sm,lnm,lv sy nm,L)

=I5 (Sm1nm1) ® 5,5 (Sm2lnm2) - ® fs,  (Sm,LInm,L) (5.22)

where ® is the convolution operation symbol.
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Given that T transmits symbol “0”, »th.e conditional probability of error is given by

<

Pe(’]aQ5L[n0,1>n1,1>"'anO',Lanl,LaTSent O) :/f50(30|n0,17---,n0,L)

0
.00

. /Afs_l (31|n1,1, ...,7’L1,L) dsldS(). (523)

S0

Using equations (4.41), (4.43) and (5.23), the average probability of bit error can be written as

Pe(J,q,L) = Pr{error|J,q, L, T sent 0} . -
‘ ky " ko ks

. K K\ /1 K ko ) .
B Z <k )(5) Z Z Z Z Qa(ni1,...,n1,zlkr)
k=0 M no,1=1n1,1=0 mo;z=1n1,L=0

X Q4(n0,1 — l,A...,’rLbo,L — llkg)

) o )
X /f51 (Sllnl,ly---alnl,L) dsy . /fs'o (30|n0’1,...,n0,L) dsp. . (5.24)
. So . . 0 ' i

5.3.1 Numerical Results

By using equations (4.41), (4.43), (5.23) and (5.24), the probability of error can be
determined. Unfortunately the computation complexity of this calculation quickly increases
as the number of interferers and diversity level increase. Instead, Monte Carlo simulation was
used to obtain numerical results. The probability of bit error versus number of transmitters
for SNR of 20 dB and 10 dB are shown in Figure 5.18 and 5.19 respectively. The results
were obtained for casés where the number of interfer_ers is 5; 10, 20, 50.and 100 for diversity
degrees of 2, 3, 4 and‘ 5. Along with the mean BER’s, fhe 99% confidence levels of the
simulation resultsv are also shown. In the case where there is no diversity, this scheme is

“identical to the majority vote scheme described in Section 5.2. Therefore the exact BER’s,

calculated using equations (5.15), (5.16), (5.17) and (5.19) are shown in the figures.
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Simulation results for cases where the tofal transmitter \power is divided equally among
the diversity branches ére also obtained. . Figures 5.20 and 5.21 shows the curves for cases
where the SNR for transmitters with no diversity is 20 dB aﬁd 10 dB respectivély. It can
be seen that code diversity can yield a better BER when the SNR is relaﬁvely high as in
the 20 dB casé. However, in cases where the SNR is low, dividing the signal power by the
number of diversity branches may not offer much improvement in the BER. Noise in eaéh of -
the diversity branches becomes an important factor and will reduce the performance of -tlhe
system. Apart frbm the number of active ﬁsers and frequency bins in the system, the obtimal

diversity degree is also dependent on the total power per transmitter and noise power ratio.

With this receiver implementation, it can be seen that thére is some advantage to using
diversity in cases where the number of active transmitters is low. For example when J = 21,
af an SNR of 20 dB, the BER is 46% less when L = 4 compared to the case of no diversity.
Simulation results were also obtained using the opﬁmal receiver structure for FSK signalling
with diyersity over a Rayleigh AWGN channel [63]. An example of such a receiver structure
is shown in Figure 5.17. This receiver ‘perform.s an additional operation by squaringA the
output of each filter prior to the summing operation. It was found that the BER for this
receiver structure is not necessarily less than the soft decision receiver structure WHich uses
the sum of the absolute values. In fact, using just the sum of the absolute values tends to

achieve a better BER for parameter values in Figures 5.18 and 5.19.

The reason why the optimal receiver structure for FSK signalling over a Rayleigh AWGN
channel is no longer optimal in code diversity schemes is the distribution of hits on the symbol

tones by the interferers. Unlike normal FSK signalling where thé only source of interference

is noise, code diversity schemes have to contend with multiple access interference. Unlike-
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Figure 5.17 Optimal Receiver Structure for FSK Signalling
over Rayleigh Channel with Diversity Degree of Three

noise which is present and identically distributed in all diversity branches, the statistics of

the multiple access interference is dependent on the number of interferers transmitting in that

‘particular diversity branch and can be asymmetric across all diversity branches.
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Chapter 6

Conclusions

Several aspects of FH-CDMA systems have been exafninéd in this thesis. The effects of
guard times in an asynchronous hopping s.lotted.FH—'CDMA system have been studied and a
“code diversity FH-CDMA syystem wh_efé the transmitters can trans_nﬁt using L frequency bins
for each symbol has been proposed. A number of decoding schemes for the code diversity

system have been studied.

" In the asynchronous hopping systems, a method for calculating the packet error prob-
ability which takes into account the guard time has been pfoposed. This method does not.
‘use the independence assumption which is normally assumed in the literature. It is found
that when the guard time is considered, the packet error rate can be as much as 40% lower.
From the numerical results obtained, it is also found that the independence assumption is not
as good wheh'the_guard tirﬁe is 2 hop.infervals long. System performance measures such
as the maximum norfnalized local thro'ughputs and unéohstrainéd maximum normalized local
throughput have aléo been evaluated for systems with guard tifne using the exaét expreésion _
of codeword error probability. It was found that these systém perfprmance measures are not

very sensitive to the inclusion of guard time into the time slots. The reduction in packet

error probability due t'o> edge effects is offset by the reduction in the normalized code rate.

A code diversity scheme for FH-CDMA system has been proposed. In general, the code ,
‘diversity scheme gives better BER than a conventional FH-CDMA system. Various code
diversity decoding schemes, including two optimal receiver schemes, were studied. The

exact symbol error probability expressions were derived for these schemes. The optimal
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diversity degree as a fuﬁction of the number of active transmitters was also investigated.
Instead of‘using repetitive coding in which the same tone is transmitted iﬁ each diversity
branch, it was shown that some improvement in performance can ‘be achieved by using
a random coding scheme. We have also studied the effects of noise and fadiﬁg on code
diversity FH-CDMA systems. It was again found that code diversity schemes can have
better performance than the conventional FH-CDMA system in most situations. It can also
be seen that the code diversity scheme can be used to establish priority classes among the

users in the system, with the high priority classes have a higher diversity level.

6.1 Future Work

The work described in this thesis can be extended in several directions.

* In the asynchronous hopping slotted system, it was assumed that a symbol is received in
error if there exist at least one other transmitter transmitting in that frequency bin at any-
time during the transmission of that symbol. This model can be improved especially if- -
we were to consider the modulation scheme aspect of the mbde_l. (Olne way c‘>f‘ improving
this model may be to assumé‘that-the symbol is in error only ‘if. there is at least one
other transmitter transmitting in that frequency bin for at least 50% of that symbol’s
transmission time interval. A further refinement of the model could take into account
£he symbol transmitted by the; other transmitters. For example, if the other transmitter is
transmitting the same symbol as the marked transmitters, the probability of detection of
this particular symbol may increase. ’These a;e more realistic but moré complex models.

The derivation of the exact codeword probability can probably be derived using a more

complex Markov chain model which also keeps track of the amount of ftransmission time
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overlap between the transmitters. And the transmitters may have to 'be partitioned into
symbol groups as described in the code diversity scheme.

 For .this more complex asynchronous hopping slotted system model, once the codeword
error has been evaluated, the same techniques used in this thesis can be used to evaluate
the maximum normalized local load and normalized local throughput. If would be
interesting to see if the general conclusion is the same.

. Wé4 have assumed synchronous hopﬁing l_in the code diversity séhemes studied in this
thesis. This work can be extended to the case of asynchronous hopping.

» The issue of error control coding in the éode diversity scheme could be studied further to
include codes other than the repetition and random code used in this thesis. In particular,
s;)rhe of the more commonly used codes such as Hamming and BCH codes can be
stqdied. One possibility is to encode the £ information bits in;co é c_odew'ord Qf n bits.
These n bits can be transmitted using the code diversity scheme using blocks of |n/L]
transmissions.

. qu the code diversity scheme over a Rayleigh fadingvc'hannel,. the simulation results
indicate that for the range of parameters considered, a reéeiver structure based on the
sum of the absolute values of outputs of all filters across the diversity branches is superior
to one which uses the sum of the squared values. Some further work éould be done to

derive an analytical result which confirms this. This could also be extended to study the

optimal receiver structure for the code diversity scheme over a Rayleigh fading channel.
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Appendix A

Derivation of Transition Probabilities

A.1 Transition Probabilities without Edge Effects

125

Here we derive the transition probabilities associated with the Markov chain in Figure

3.2. Let A be the event that T hops onto the same frequency bin and A be its’ complementary

event. Since we are using the memoryless hopping pattern model, the probability associated

with these events is 1/¢q and 1 — 1/¢ for A and A respectively. Using (3.2),
Pio = P = Pr(A) x Pr<H]L = O,HJR = 0|A,H]-R_i = )+ ’

Pr(4) x Pr<Hf =0,HF = 0[A4, HE | = 0)

Po1 = Py = Pr(4) x PY(HJL.Z 0, Hjf = 1|A’Hﬁ1 - 0)+
Pr(A) x Pr(H} =0, Hf = 1[4, H]', = 0)
= Pr(A) x Pr(H} = 0|4, HE | = 0)x

Pr(Hf =14, B, = 0, Hf =

o

)

4
Pr(A) x Pr(HE = O HE = 0)x

Pe(Hf = 1[4 HE = 0,1} =0)
= Pr(A) x Pr(HJL = 0|4, Hf_l - 0) x

Pr(HE =114, HE, = 0,Hf =0)+ -

(A.1)
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Pr(m x 'Pr(HjL —0,HF, = O|A>/Pr( ) '1 - 0|A)
Pe(Hf =14, H], =o,_Hf =0)
—2(1-a-10)+ (1- 3)%(1 (- 1/9%)
:3(1—a)+<1~§>ﬂ(1;a) |
e (- e

Py = Py = Pr(A) x Pr(Hf = 1, B = 0|4, B, = 0)+
Pr(Z)xPr(HL—1 HEF =04, HE, = )
= Pr(A) x Pr(HL = 1[4, HE, _o) x Pr(HR = 04, HE | =0, HL 1)
1 p p
—(1-2)(1=(¢g=2/q - 1)¥)(1 -1
(1-3) (-t =21a-1F)a-179
1 |
(1 _ -> (a— ) ~ | (A3)

Pys = Pa3g = Pr(A) x Pr(HjL = 1,HjR = 1|AaI{R.1 = 0)+

Pr(A) x Pr(HF =1, HE = 1[4, B}, = )

= Pr(A) x Pr(H} = 1[4, H], = ) gPr(HR = 1A HE =0, Hf =1)
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Pig = Py = Pr(A) x .Pr(Hf: 0, HE = 0|4, HE | _ 1)+
Pr(A) x.Pr(HJL.: 0, Hf = 04, HE, =1)
_ Pr(A) x Pr(H} = 0[4, HE, = 1) x Pr'(HR _O[A HE, =1, B = 0)
- P'r(Z) x Pr(H} =0, I = 1[A)/Pr(HE, = 1/4)
x Pr(HE = 0[4, HE, = 1,H} =0

N =1 (1= (g - 2/g 1)
:( 1) q1~<(1_q1/q)["q >(1_'1/q)K

:(1-3)(01—@(12) | N (A.S)

N——’

Py = Py = Pr(A) x Pr(H} = 0,HF =114, HE, =1)+
Pr(A) x Pr(H} =0, HE = 1[4, HE | = 1)
= Pr(A) x Pr(H]L - 0|Z,Hﬁ1’ _ ) x Pr(HJR =14, HE, =1,H} = 0)
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(“E) 1-(1=1/g"

(hen o

(1-a-19")

I

Pyy = Py = Pr(A) x PI(H]L =1, Hj' =014, B, = 1>+
Pr(A) x PI(H]L =1L,H =04, H} | = 1)

= Pr(A) x Pr(HF =114, B =1) x Pr(Hf =014, B, = 1, B} =1)+

Pr(A) x Pr(H} = 1A, HE, =1) x Pr(Hf = 0/, HE, = 1,1} =1)

= Pe(4) x Pr(HF = 114, HE = 1) x Pr(HF = 0|4, HfE =1, 8] = 1)+
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Pe(d) x Pr(H} =1, HE, = 1|Z)/Pr(ﬂf;1 = 1[7) x
Pr(HR ~0[A,HR, =1,H = 1)

_ Ll 1 1-20-1/9" + 1 -2/9" = 'k
Loy (1) o)
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- Co-a+(1-D)ea-a-a-0) () @1
,P13=P33:Pr(A)xPr(H —1 HR—1|A :1)+

Pr(A) x Pr(Hf =1, Hf = 1|Z,Hj€1 =1)
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A.2 Transition Probabilities for the Last Hop, G; = 1
~In T’s last hop interval, K interferers can hit from the left only and the remaining K
“interferers can hit from 'bovth the left and right. Using the same notation for A and Aas in
A.1, the transition probabilities are given by a
PEY = I = Pr(4) x Pr(HL =0, HF = 0|4, HE ;= 0)+

Pr(4) xPr' H-L:O,Hﬂzo'Z,HR_ _ o)
_ J ‘ J—1

1 . 1 Lk N
= l0-10%+ (1 q)((q “9) /(g )E Q- 1%
_ 1L, +<1—1ﬂ | ' a9
q qa a ‘ . .
P = Péf”:Pr(A)xPr(H =0, Hf' = 114, H Fi=0)+

Pr(A) x Pr(Hf _OHR_1|AHRl_O) |
— Pr(A) x Pr( L= 0|4, HE | = o) X Pr(HR = 1]4, HR1 —0, HL o)-+
Pr(Z) x Pr<Hf :OlA, 1_0) xPr(HR_ LA, Hf = 0, H} = 0)

, : : ' . _ K-
Zé(lf(_?—l_/@’,("’) (1—3)(1— 2/)" «l (1(11/1q{)(],3 )

e )tz g
q .9/ @ ‘ , : o

|

~ P(Z)xPr(HL_1HR 0|ZH -0)’

_ Pr(Z) XPr(HL—llA ) ( . _O|A 1’—0 ﬁL >
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Pr(4) x Pr(Hf = 0,HE = 1[4, HE, = 1)
= Pr(A) x Pr(HF = 0[A, HE = 1) x Pr(HE = 1A, B = 1,0F =0)

1-(¢—2/q-1)")(1 - 1/9)" |
(- )

(e o

1>.+

Pr(A) x Pr(Hf = 1,HE = 0|4, HE | = 1)

Pl = Pl = Pr(A) x Pr(Hf =1, H = 0|4, H],

= Pr(4) x Pr(HE = 1A HE  =1) x Pr(H] = 0]4, B, = 1,0 = 1)+
Pe(A) x Pr(HE = 1A, HE, =1) x Pr(HE = 04, HE, = 1,0} = 1)
= Pr(A) x Pr(HE = 1|4, HE = 1) x Pr(HE = 0)4, HE, =1, H} = 1)+ |
Pr(A) x Pr(H} =1, 8, = 1(A)/Pr(HE, = 1[4) x.
Pr(HJR =04 HE, =1,8F = 1)

K Cnl—20-1fva-2f o g
<11m>-f@ ) TR

T 1 -9
= —ag + (1—1> <—a+ﬂ>a2
q q l-a

= o | - - —.a _(1— &2 o
~ oo+ (1-D)p0- @) - - A2 | (A15)

Ce]

Pl = PG = Pe(A) x Pr(HF = 1, HE = 1)4, HE = 1)+
Pe(A) x Pr(HF =1, HE = 1[4, HE, = 1)

= Pr(A) x Pr(HE = 1A, BHR , = 1) x Pr(HR = 1|4, HR , =1, HF = 1)+
J J—1 J J—1 J
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Pr(A) x Pr(H} = 1A, HE =1) x Pr(HE = 1A HE, = 1,0} =1)
= Pr(4) x Pr(Hf = 1|A, B =1) < Pr(HF =14, B} = 1,8 =1)+
Pr(4) x Pr(Hf =1,HE, = 1_|Z)/Pr(Hf_1 - 1|7_4‘) x

Pr(H]R =14, By =1, Hf = 1)

= ~(1-a-y9™)+

(1- DR LT () gk

? (1-a-1/9")
_la . AR (1 — og)
- S(1—a2)+ (1 q>(1 2a+8) 7o) |
_ 1 A TR  ker))
=0 et (1 q>[2(1 ) -=Bl—y (A.16)
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Appendix B |
Envelope of Resultant Signal is Rayleigh Distributed

In this part of the appendix, it is shown that if the envelope of the indivi(iual signal 1s
Rayleigh distributed and the phase is uniformly distribu.ted.over (0, 27], the envelope of the
resuliant signal 6btéined by the vector addition of these individual signals is also Rayleigh
distributed. o

Let n be the nufnber of i.i.d Rayleigh distributed individual signz;ls. Furthermore let
Spi and Sy; be the in-phase and quadrature components of 5,', the i*, i € {1, ..., } signal,
respectively. Since 5’;, is Rayleigh distribbuted, Spi and Sy; are independent Gaussian random
variables. We shall denoted the mean and variance of these Gaussién random variable by'
 and o? respectively. The in-phase component of the resultant vector, Sy, is obtained by

adding the in-phase component of each individual signal and is given by
. . |
Sor = Spi. (B.1)
i=1 :
The characteristic function of the in-phase component is
gs,.(w) = er=io)2, . (B.2)

Since Spy is the sum of i.i.d random variables, the characteristic function of S, can be

written as

$s,,(w) = H b5pi(w)

n
. 2 2
:Hejw,u w?o® /2
1=1

_ ejw(nu)—w2(na'2)/v2 (B.3)
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which is the characteristic function of a Gaussian random variable with mean ny and variance
no®. This shows that in-phase component of the resultant signal is a Gaussian random

variable.
Since the phase of each individual signal is uniformly distributed over (0, 27}, by
symmetry the quadrature component of the of the resultant vector is Gaussian distribution

identical to the in-phase component. Hence the envelope of the resultant signal must be

Raylei gh distributed. .
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. Appendix C |
Majority Vote Decoding without
‘Detection Threshold, J = 2

‘We shall show here that in the mzlljhori't’y vote 'With(v)ut' detection thre;shold' scheme,
déscribed in Section 5.2, the BER is lower for the case when there:is no dive?sity thén

~ the césé wﬁere L =2 for thé case of J = 2. We shall assume that the marked trdnsnﬁttef;
T,, transﬁﬁtted the s'ymbboll “0” in Both cases and determine the probabiiity ’thét the syﬁibol
. decoded is “1”. By 'symmetry, the-unéonditio_nal BER is sam_e as this probability.

Consider first the case Wwhere the diversity.degree s two.  Let Pogingingenis }be the
joint probability distribution of the number of hits in tﬁe various ‘t'onves in T’s selected
freqﬁency bins. For example, Po101 is the pré)bability that there 1s none‘and one transmitter -
transmitting - symbol “O?’. and “1” respectively in bqth ffcquency bins. For q = 200, fhe
non’-‘z_er‘o probabilities of such distribution of hits iéuas follow ’ -

(138> 19503

P10}0 = (230) = 19000

_ . ' | . 2 (198) 99
, . . 1/

Pi110 1.011. . Pao10 P1020’ 2 (230> = 5950

11
200) "~ 39800°
2/ )

1
- Pi111 = Pag2o = §-<

It is convenient to denote

.' . 2
. . On
1= <02 + 26,%)

5 _  o2+ 02\
27\ o2+ 202
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, , 2
‘ : . bs = <2a2 + 20%)

20% + o2
pa= 55> .
20° + 20 : '
o? -+ 02 ‘ ‘
¢5 = (—” ) (C.2)
202 + 202 | |

These equations were derived using (5.15) and (5.16) and they are the conditional probabilities
of decoding a particular symbol at frequency bin given the_ number of hits on the tones in
that frequency bin. For example, ¢; is the conditional probability'.of decoding symbol “1”
at a partiéular frequency bin given the number of hits on symbol “0” and “1” is one and
none respé:ctively. (Note that ¢s5 : 1/2, this is the probability of decoding either symbol
given that there is an equal number of hité on both symbols.) Hence ‘the' probability of error

can be written as

P.(J'=2,q=200,L =2) = Pioio(] + ¢1¢2) + (Pa010 + Pioz2o) (¢1¢3 + %¢2¢3 + -;—¢1¢4>
+ (P1110 + Pro11) (¢1¢5 + %¢2¢5 + -;—¢1¢5> + Pi (262)

+ P2020 (Gﬁ + %¢3¢4)- _ _ | ‘ (C3)

After simplification

40002 + 4000%02 +ot

P(J =2,q=200,L =2) = . C4
v (] =29 ’ ) 400(c? + 02)(0? + 202) €4
Using a similar approach for L = 1, the probability of bit error can be written as
4 2.2, 4
Po(J =2, =200,1 = 1) 8000, + 8000“0;, + o (C.5)

a 800(c? + o2)(0? + 202)




Appendix C. Majority Vote Decoding without Detection Threshold, J = 2 137

2 2

Since ¢° and o: are positive values, it is clear from (C.4) and (C.5) that

P.(J=2,¢q=200,L=1) < P(J = 2,q =200, L = 2). Note that when noise is neg-

ligible, Pe(J = 2,¢ = 200,L = 2) ~ 2P,(J = 2,q = 200, = 1).



