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Abstract 

This thesis is about Frequency Hopped-Code Division Multiple Access (FH-CDMA) 

systems. More specifically, it studies the packet error rates and system performance of FH-

C D M A systems with guard times. In the past, a number of simplifying assumptions have been 

made in the studies of these systems. This work investigates the effects of these simplifying 

assumptions by deriving exact expressions, which do not make these assumptions, and 

comparing the results using both methods. By considering edge effects due to the inclusion 

of guard times, it is shown that the probability of codeword error can be significantly lower. 

Furthermore, it is found that the independence assumption, where frequency hits within a 

packet is assumed are independent, leads to larger probability of codeword error. On the 

other hand, system performance measures such as normalized maximum local traffic and 

throughput are not significantly altered by these simplifying assumptions. 

In addition, this work also proposed a new diversity scheme in FH-CDMA systems, 

which we refer to as code diversity. In such a diversity scheme, the transmitters are allowed 

to transmit in more than one frequency bin simultaneously. A variety of decoding schemes, 

including some with optimal bit error rate (BER) performance, for the code diversity system 

are proposed and studied. It is shown that the code diversity scheme can have a lower BER 

than conventional FH-CDMA systems and that such a method of transmitting can be used 

to establish priority classes among the users in the system. It is further shown that error 

control coding can be included in the code diversity transmission scheme to further improve 

the BER performance. The performance of several code diversity schemes is studied in a 

Rayleigh fading and additive white Gaussian noise environment. From the analysis of the 

various schemes it is found that code diversity can improve the BER. 
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Chapter 1 

Introduction 

Spread spectrum techniques have long been used in telecommunication systems [1] for 

their anti-jamming and low probability of interception features. In recent years, these 

techniques have been proposed and studied for multiple access systems. Such systems 

are known as code division multiple access (CDMA) or spread spectrum multiple access 

(SSMA) systems. A number of researchers [2]-[5] have found C D M A to have better spectral 

utilization characteristics and be able to support more users with a given bandwidth allocation 

than other more traditional multiple access schemes. This has made C D M A an active and 

important topic of research in the telecommunication field. 

This thesis is concerned with frequency hopped C D M A (FH-CDMA) systems. The first 

part of the work deals with time slotted FH-CDMA systems with asynchronous hopping. It 

extends some previous work by Hegde and Stark [6] and Pursley [7]. The exact packet error 

probabilities and system throughput are derived and investigated for time slotted FH-CDMA 

systems with an integer number of hop intervals as guard times. 

The second part of this work deals with a new diversity technique, called code diversity, 

in FH-CDMA. Here, we study a number of possible ways in which this technique can be 

used to improve the system performance in a multiple access situation. Several decoding 

schemes are proposed and the performances of these schemes are evaluated initially for the 

case of no coding and no background noise. The effects of background noise and coding 

are then taken into consideration. 

1 
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This thesis is organized as follows: 

A brief introduction to C D M A systems and the motivation for this work is given in the 

latter part of this chapter. The various types of C D M A systems are described and a summary 

of the advantages of using C D M A over other types of multiple-access systems is given. 

In Chapter 2, some of the related works found in the literature is reviewed. Various 

aspects of FH systems such as asynchronous and synchronous hopping, slotted and unslotted 

systems are briefly described. Models and assumptions commonly used in the study of F H -

C D M A system are also introduced. This chapter also contains a description of the various 

forms of diversity in the FH-CDMA systems. 

An analysis of the time slotted asynchronous hopping system can be found in Chapter 3. 

The concept of code diversity is introduced in Chapter 4. A number of code diversity 

decoding schemes are proposed and analyzed for an environment where the background 

noise is negligible. The effects of error control coding, using a random coding approach, is 

investigated in the latter part, of this chapter. In Chapter 5, the performance of code diversity 

systems is studied in an environment where there is noise and fading. A summary of the 

main results of this work and some suggestions for possible future work appear in Chapter 6. 

1.1 Multiple Access Schemes 

In communication systems with a large number of users, where it is highly improbable 

that all users are transmitting at any given time, it is often desirable for the users to share a 

common channel; this results in a multiple-access channel. The main objective of a multiple-

access system is to improve efficiency of channel utilization. While it is desirable to allow 

many transmissions over the multiple-access channel at any given time, this must be done at 

a manageable risk of transmission corruption due to collisions between transmissions which 
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will result in re-transmissions'.. In addition, it is also desirable to reduce the amount of 

overhead associated with managing the transmissions such as guard times. There are two 

extremes among the many strategies that have been developed (see Figure 1.1). One is the 

random access approach in which all users use the same channel and the users send new 

packets immediately (or transmit in the next time slot in the case of slotted systems), hoping 

for no interference from the other users. The other extreme is the "perfectly scheduled" 

approach in which each user is allocated channel resources (i.e. time slot and/or bandwidth) 

in some orderly manner, as defined by the scheme, for transmission of its packet. 

Aloha | DS-CDMA 

CSMA Hybrid Schemes TDMA 

Figure 1.1 Multiple Access Schemes 

Polling Schemes 

A L O H A , slotted A L O H A and CSMA [8] are examples of random access schemes. 

Compared to the "perfectly scheduled" schemes, random access schemes have good delay 

characteristics under low offered traffic conditions and since each user can potentially use 

the whole channel, they are especially effective in handling bursty type traffic. 
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Examples of "rigidly scheduled" schemes include polling schemes, frequency division 

multiple access (FDMA) and time division multiple access (TDMA) [8], [9]. These schemes 

perform well under heavy traffic conditions especially when all the transmitters are trans­

mitting regularly. Under such conditions, channel resources such as time slots in the case 

of T D M A and frequency channels in F D M A are heavily utilized and there is little wastage. 

The main drawback in most of these schemes is the longer delay compared to random access 

schemes under light traffic situations. 

1.2 Code Division Multiple Access (CDMA) 

C D M A which applies spread-spectrum waveform technology is a relatively new approach 

to the multiple access communications problem. It is recognized as a viable alternative to the 

schemes mentioned above. Pickholtz et al [1], Pursley [10] and Sklar [9] provide some good 

background on the theory behind CDMA. There are primarily three basic spread-spectrum 

techniques used in CDMA. These are 

• direct sequence (DS) spread spectrum. 

• frequency hopping (FH) spread spectrum which can be further classified into 

a. fast hopping in which there is more than one hop per data symbol. 

b. slow hopping in which one or more data symbols is transmitted per hop. 

• hybrid schemes which combine both DS, and FH spread spectrum features. 

The idea behind these techniques is to take the energy that is to be transmitted and spread it 

over a very wide bandwidth so that the energy per unit bandwidth is small. (We shall see later 

in Section 1.3 that there are several advantages for transmitting using this technique.) This is 

achieved via a pseudonoise (PN) sequence that is unique to each user in the system. Unlike 
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schemes such as F D M A or T D M A where the signals from each transmitter is separated in 

either frequency or time, all transmitters in a C D M A system can potentially be using the 

same transmission bandwidth simultaneously. 

In DS systems, as shown in Figure 1.2, spreading is accomplished by multiplying the 

data by a PN sequence with a rate that is much faster than the data rate, prior to modulation. 

In the frequency domain, this is equivalent to convolving the original signal with another 

signal with a much larger bandwidth. Hence the transmitted signal occupies a much larger 

bandwidth. At the receiver end, an estimate of the data sent can be recovered by despreading 

using the same PN sequence with the appropriate time delay prior to demodulation. Since 

all active transmitters use the same bandwidth simultaneously, there is mutual interference 

among these transmitters. This interference is commonly called multiple-access interference. 

To minimize multiple-access interference, it is desirable that the PN sequences used have low 

cross-correlation properties. Various sequences such as Gold sequences and Reed-Solomon 

codes [11] are known to have long periods and low crosscorrelation characteristics, making 

them suitable for C D M A applications. 

In FH systems, the total channel bandwidth is divided into a number of frequency bins. 

Unlike the DS system, each user in a FH system does not occupy the entire bandwidth 

at any given time. Instead, as shown in Figure 1.3, a hopping pattern determined by the 

PN sequence is used to specify which frequency bin is used for each hop interval. The 

same hopping pattern is generated at the receiver end and is used to reconstruct the message 

transmitted. When two or more users transmit using the same frequency bin simultaneously, 

they may interfere with each other's transmission. This is referred to as a frequency hit. 

A collection of hopping patterns are said to be orthogonal if there are no frequency hits 
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throughout the length of the hopping patterns [12]. In such a case, no two transmitters 

will be using the same frequency bin simultaneously throughout the duration of the hopping 

patterns. In reality, the hopping patterns are normally quasi-orthogonal and hence frequency 

hits do occur. This is especially true in systems where the length of the hopping patterns is 

long, the number of transmitters is large (i.e. large number of hopping patterns) and there 

is a small number of frequency bins. 

The PN sequence rate, also known as the chip rate, of a DS-CDMA system is normally 

much faster than the hopping rate of a FH-CDMA system. This is mainly due to the tech­

nology limitation of the frequency synthesizer [5], [13]. In a multipath fading environment 

where the delay spread is larger than the chip interval, a multipath-combining receiver such 

as the R A K E receiver [10], may be used to combine the signal received from the various 

paths in a DS-CDMA system. Such a receiver offers a form of diversity and can improve the 

performance of a DS-CDMA system. Hence DS-CDMA systems generally perform better 

than FH-CDMA systems in a frequency selective multipath environment [10], [14]. How­

ever, depending on the transmission protocol and nature of the channel, FH-CDMA can have 

better capture, multiple access and narrow-band interference rejection characteristics than 

DS-CDMA [10]. Hybrid schemes which combine both FH-CDMA and DS-CDMA features 

have been suggested [14]—[16] as yet another alternative C D M A system. Such schemes can 

lead to improved performance but at the cost of increased transmitter and receiver complex­

ity. In hybrid systems, two PN sequences are used. One to spread the bandwidth of the 

message signal and the other for frequency hopping. Unlike a true DS system, the spreading 

of the message signal is not over the entire system bandwidth but rather over a fraction of it. 

Such fractions of the entire system bandwidth will be used for transmission depending on the 
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hopping pattern. The reverse process of reconstructing the hopped signal and despreading is 

performed at the receiver. Such a system is illustrated in Figure 1.4. 

PN 
generator 

Data 
Source 

. Transmitter-

Multiple-Access 
Interference • 

Modulator Modulator 

AWGN 

Channel. 

PN 
generator 

Data 
out 

Receiver 

Figure 1.2 A Direct Sequence C D M A system 
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Interference 
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PN 
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AWGN Frequency 
Hopper 

PN 
generator 

. Transmitter Channel . Receiver. 

Data 
out 

Figure 1.3 A Frequency Hopped C D M A system 

1.3 Advantages of CDMA Scheme 

The two most common multiple access techniques in the area of wireless communications 

are F D M A and T D M A . In F D M A , all users may transmit simultaneously, and use disjoint 

frequency bands with some guard bands between adjacent frequency bands. In T D M A , all 

users occupy the same frequency bandwidth, but transmit sequentially in time. C D M A is 

essentially a random access scheme. However, unlike conventional random access schemes 
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Data 
Source 
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Frequency 
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Modulator' Modulator' 
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AWGN 
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generator 

Demodulator Demodulator 

Frequency 
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PN 
generator 

Channel Receiver _ 

Figure 1.4 A Hybrid CDMA system 

Data 
out 

such as A L O H A or CSMA, because each user has a unique spreading sequence, simultaneous 

transmissions from several users in the system do not necessarily result in packet errors. 

Listed below are some of the advantages of C D M A over T D M A and F D M A that have been 

suggested. 

• Increased capacity. Lee [5] and Gilhousen et al [4] have suggested that the number of 

users that can be supported for a fixed amount of bandwidth of a cellular C D M A system 

is about 20 and 4 times that of an equivalent analog FM/FDMA and T D M A cellular 

system respectively. Johannsen [3] showed that C D M A is a superior system in that it 

is able to support more users for a given bandwidth than F D M A in a mobile satellite 

communication environment. 

• No hard handoff in cellular systems is required. Since every cell uses the same C D M A 

frequency spectrum, a mobile does not have to switch to another frequency channel 

when it crosses over to another cell, unlike F D M A and TDMA. In a C D M A system, 

the mobile can receive transmission from the adjacent cell sites at the cell boundary and 

switch over to a particular cell only when the received power from that particular cell is 
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significantly higher. Furthermore since each cell uses the same frequency spectrum, no 

frequency management or assignment is required in C D M A [5]. 

• Some guard time is often needed in T D M A systems between time slots to allow for 

possible synchronization problems between the users. This1 guard time represents an 

overhead which reduces the capacity of the system. Since C D M A is usually a random 

access system, such guard time is normally not required [5]. 

• Less prone to fading. C D M A uses wideband transmission which is effective in combat­

ting frequency selective multipath fading [10]. A n equalizer to combat such fading in 

F D M A and T D M A is not necessary in a C D M A system. This reduces the complexity 

of the receiver. 

• Soft capacity. In C D M A , a new user can be added at the expense of a slight degradation 

in quality [5]. 

• Co-existence with narrowband system. Pickholtz et al [17] have shown that a care­

fully designed C D M A system and an existing narrowband system can share the same 

bandwidth without much adverse effect. 

• Relatively higher level of privacy and security. Each transmitter-receiver pair uses 

a unique spreading sequence to generate and despread the spread-spectrum waveform 

which make it relatively more difficult for a casual listener to eavesdrop. 

It should be noted that the issue of channel capacity has been the subject of an on-going 

debate. In most of the literature, the calculation of C D M A capacity has been based on 

theoretical models; Gilhousen et al [18] do provide some field results. The capacity issue 

is discussed further in [4], [18]—[21]. 



Chapter 2 

Review of Related Work 

C D M A is a wide research topic and numerous aspects of C D M A have been discussed 

in the literature. These include DS-CDMA, fast hopping FH-CDMA, slow hopping F H -

CDMA, coding, scheduling, stability, capacity, synchronization of clocks, interference and 

fading channels [22]-[30]. In this chapter, we will review previous work that is related to 

this thesis. In particular we will focus the review on slow hopping FH-CDMA and diversity 

techniques, which form the main focus of this thesis. 

2.1 Frequency Hopped CDMA System Model 

The entire frequency spectrum of a FH-CDMA system is divided into a number, q, of 

frequency bins. Within each frequency bin is a number of frequency tones, M, which the 

transmitters can select to transmit their symbols. In slow F H systems, the number of symbols 

transmitted, Ns, per hop interval is at least one and the time duration to transmit a packet 

is normally assumed fixed. The system may be slotted or unslotted. In slotted systems, all 

transmissions which begin in a slot must be completed within the same slot and there is no 

overlap between any two time slots. In addition, it is commonly assumed that a transmitter 

can transmit at most a single packet in a time slot [7]. Hence the number of packets which 

may potentially interfere with a particular packet is fixed within the time slot. In unslotted 

systems, there is no restriction on the start of transmission time of the users and transmitters 

can begin transmitting at any time. 

10 
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In slotted systems, the slot duration is larger than the time taken to transmit a packet. 

This is necessary to maintain synchronization at the packet (or slot) level in the system 

as there may be different time delays associated with the users in the system. There are 

delay compensation schemes which can be employed to improve synchronization, thereby 

reducing the slot duration. For example, through the use of pilot tones transmitted by the base 

station, mobiles can estimate their distance from the base station and make the appropriate 

timing adjustments to compensate for their relative delay in their reverse link transmission 

[4]. There is another level of synchronization, that is the hopping times of the users. The 

hopping times of the users can be synchronous i.e. identical or asynchronous i.e. random. 

In synchronous hopping, the users synchronize their hopping time, therefore the number 

of potential interferers is fixed for the hop duration. In asynchronous hopping, there is no 

restriction imposed on the hopping times of the users other than transmission of a packet must 

begin and end in the same time slot. Figure 2.1 illustrate how FH-CDMA systems may be 

classified. For unslotted systems, since the transmitters can transmit at any time, there would 

be no synchronization at the hopping times. For such systems, asynchronous hopping is used. 

Figure 2.1 Classification of FH-CDMA systems 



Chapter 2. Review of Related Work 12 

The multiple-access capability of a system is largely determined by its hopping patterns 

which determine which of the q frequency bins are used in a hop interval. Since these 

patterns are usually quasi-orthogonal rather than truly orthogonal, two or more users in the 

system may transmit in the same frequency bin simultaneously; Such an event is called a 

frequency hit and can result in loss of data even in the absence of noise or fading. Random 

hopping patterns are often used in the literature to model the extremely complex hopping 

patterns [12], [31]—[33]. These random hopping patterns can be either Markovian, in which 

the transmitter hops to a frequency bin other than the currently used frequency bin with 

equal probability, or memoryless, where the next frequency bin can be any frequency bin 

with equal probability [31]. hr a synchronous frequency hopping system, where the hopping 

times of all users are synchronized, the probability of a frequency hit by another user is 

Ph = l/q (2.1) 

for both memoryless and Markovian random hopping pattern models. Users in an asyn­

chronous frequency hopping system make no attempt to synchronize their hopping times. 

The probability of a hit in such a system, where Ns is the number of symbols transmitted 

per hop interval, is given by [31] 

and 

(2.2) 

(2.3) 

for Markovian and memoryless hopping patterns respectively. For asynchronous.frequency 

hopping systems with a large number of frequency bins (i.e. large q) the probability of hit 

for both memoryless and Markovian random hopping patterns are essentially equal. For 
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simplicity of analysis, it is commonly assumed that all frequency hits result in symbol errors 

[31], [33], [6], [12], regardless of the time duration of the hit or the symbols transmitted by 

the users. This is a pessimistic assumption and the actual symbol error rate should be lower 

than that obtained using this assumption. 

Reception of the transmitted signal at the receiver may be coherent if the phase of the 

symbol signal is known. However, it is more realistic to assume noncoherent reception, 

especially for fast frequency hopping (FFH) situations [16]. For such cases, the phase of the 

received signal is normally assumed to be uniformly distributed over [0,27r). The received 

signal is composed of the signal from the transmitter, background additive white Gaussian 

noise (AWGN) and multiple-access interference. Rayleigh or Rician fading is commonly used 

to model mobile communication channels [16], [31], [34]. Multiple-access interference, due 

to frequency hits from other users, is commonly modelled as a Gaussian random variable at 

the receiver's demodulator to simplify the analysis [16], [20], [31], [35]. This approximation, 

motivated by the central limit theorem, is called the Gaussian approximation. By dividing 

the power level, relative to a particular user, into a number of groups, Geraniotis [36] derived 

an exact expression for the bit error probability and by comparison showed that the Gaussian 1 

approximation technique is reasonably accurate for systems using binary frequency, shift 

keying (BFSK). For MFSK, the Gaussian approximation method is accurate only for low 

signal-to-inteference ratio i.e. when the transmission power of the interferers is large. For 

higher signal-to-inteference ratio, it gives very optimistic results. By assuming uniformly 

distributed random phases, independent data bits and a finite number of power levels, Cheun 

and Stark [32] also derived an exact expression for the error rate. It is shown [32] that results 

obtained using this expression give a very good fit to simulated results while the Gaussian 
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approximation method gives results that are optimistic. 

2.2 Slotted and Unslotted Systems 

Transmission of data packets may be time-slotted with synchronous or asynchronous 

frequency hopping or unslotted. Fixed-rate hopping, so that all hop intervals (also known 

as dwell intervals) are of the same length Th, is commonly assumed. Hopping times of 

the transmitters are the same in a synchronous FH-CDMA system. In certain applications 

where the propagation delay is small, synchronous frequency hopping may be accomplished 

by including a small guard interval at the ends of each dwell interval [37]. In time-slotted 

asynchronous FH-CDMA systems, we do not require that the transmission and the hopping 

times be completely synchronized. However, each packet transmission must be completed 

within a time slot which is normally slightly larger than the time required to transmit a 

packet. The time-slotted synchronous FH-CDMA scheme may be viewed as a special case 

of a time-slotted asynchronous FH-CDMA system where the time slot is exactly equal to 

the packet duration. In an unslotted FH-CDMA, no attempt is made to synchronize the 

hopping times or transmission times. As a result, unlike the time-slotted cases, the number 

of interferers during the transmission of a particular packet can vary. 

In a time-slotted asynchronous FH-CDMA communication system [7], some guard time 

between packets is required to maintain slotting of the network. This situation is especially 

true in systems where the variations in propagation delays can be large. Frank and Pursley 

[38] mentioned that due to this guard time, symbols at the beginning and at the end of a 

particular packet may be subjected to less multiple access interference than the other symbols 

within the packet. However, no quantitative study of this "edge" effect was reported. 
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It is known that if the number J, of transmitters in an asynchronous FH-CDMA system 

is greater than 2, the frequency hits within a packet (which for simplicity consist of a single 

codeword [39], [33]) for a particular transmitter are not independent [39]. In calculating the 

probability of a packet error, it is quite commonly assumed that the hits within a packet are 

independent even when J is greater than 2 [7], [31]. We shall refer to this assumption as 

the independence assumption. Pursley [7] used the independence assumption and Ph = 2/q, 

derived from equation (2.2) for Ns = 1, in his calculation of codeword error rate. Hegde 

and Stark [6] and Georgiopoulos [40] calculated the codeword error rate without making 

the independence assumption but did not take the edge effect into account. The results in 

[6] indicate that the independence assumption can yield a good approximation to the actual 

codeword error probability if the edge effects are neglected. The difference is typically less 

than 1%. 

2.4 Diversity Techniques in Spread Spectrum Systems 

A number of spread spectrum diversity schemes used in different channel models can be 

found in the literature [34], [35], [41]-.[44]. Together with the use of error control coding, 

diversity schemes can improve system performance significantly. 

An early paper using FFH as a form of diversity in a multiple-access system is by Cooper 

and Nettleton [2]. The system uses phase-shift-keying (PSK) modulation and maximum 

likelihood decoding. Each data symbol is divided into L subsymbols and each subsymbol is 

transmitted in a hop interval. It is suggested that the number of users that can be supported 

by this scheme may exceed those using narrow-band schemes by a factor of five for a given 

BER. This work was extended by Goodman et al [45] who examined a scheme which uses 

using frequency-shift-keying modulation and majority logic decoding with a simple frequency 



Chapter 2. Review of Related Work 16 

hopping encoder/decoder structure. It is shown that this system can further improve the 

capacity of the system in [2] by a factor of almost three. 

Atkin and Blake [46] studied a diversity system which uses FFH and multiple tone 

transmission per hop in the presence of jamming. For each hop interval, instead of sending 

a single tone as in the case of conventional FFH, a number of tones are transmitted 

simultaneously. It is shown that significant performance improvements can be achieved 

by such a multitone system over one that uses only FFH. 

Solaiman et al [34] studied the performance of FFH C D M A with binary frequency shift 

keying (BFSK) in a frequency selective Rayleigh fading environment. A scheme using L 

antennas at the receiver with equal gain was proposed and analyzed. It is shown that for bit 

energy to noise ratios, Ei/N0, less than 20 dB and diversity degrees, L of 3 or higher, the 

use of diversity can significantly improve the BER. 

A FFH BFSK system with self-normalization combining in a partial band interference 

and Rician fading environment was studied by Robertson and Ha [47]. Each data symbol 

is divided into L subsymbols and transmitted over a fading channel with partial band 

interference, using a different frequency bin for each subsymbol. At the receiver, the output 

of each matched filter is squared and the sum is used to normalize the output of each detector 

before the L subsymbols receptions are combined. The sum of the square of the match filter 

outputs is directly proportional to the interference level detected by the receiver. As a result, 

subsymbols of hops which contain a large amount of interference will have less influence 

on the decision statistics than subsymbols of hops with less interference. It is shown that 

diversity can reduce receiver performance degradation due to partial band interference and 

fading when the signal-to-interference ratio is about 13 dB or more, especially when the 
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signal does not contain a strong direct component. 

A number of studies [48], [44] have modelled diversity as L independent receptions at the 

receiver without specifying the way in which such receptions can be achieved. These studies 

have proposed a variety of diversity combining schemes, some requiring side-information 

which gives a measure of the reliability of the received symbols. Schemes that do not require 

side-information include ratio-threshold test (RTT) [48], ratio-statistic combining [49] and 

clipped diversity combining [43]. The basic idea of the RTT and ratio-statistic combining 

schemes is to discard unreliable diversity receptions by comparing each reception against 

a derived threshold limit based on the received signal levels. By doing so, only diversity 

receptions that are considered reliable enter into the decision device. Clipped diversity 

combining [43] limits the influence of partial-band interference by clipping the output of 

each envelope detector at the receiver prior to combining. Diversity combining schemes 

that require side information have been studied in [35], [41] under different conditions. In 

these schemes, Reed-Solomon codes are used and the side information provides a measure 

of the reliability of the received, symbols. Unreliable symbols are decoded as erasures 

rather than to one of the valid symbols. In [35], each code symbol is transmitted L 

times. Assuming Reed-Solomon coding scheme, frequency nonselective Rician channel, 

pulsed Gaussian interference and perfect side information, an expression for the symbol error 

probability as a function of the interference duty cycle of the pulsed Gaussian interference was 

derived. In [41], it is shown that with a proper combination of frequency hopping, diversity 

transmission and side information, a FH spread spectrum system can render a narrow band 

jammer harmless. As an example, numerical results indicate that employing a (256, 200) 

Reed-Solomon code with a diversity degree of 5 and 16-ary orthogonal signalling requires 
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that over 68 percent of the total bandwidth be jammed and a signal-to-noise ratio below 

6.81 dB in order for the symbol error probability to be above 1 0 - 4 . 



Chapter 3 

Asynchronous Hopping Slotted Systems 

In this chapter, we present a method for determining the exact codeword error proba­

bility in a time-slotted asynchronous FH-CDMA communication system employing Gt hop 

intervals as guard time [50], [51]. In particular, we consider the cases where the guard 

time is 1 and 2 hop intervals long. It is shown that the codeword error probabilities when 

. the edge effect is taken into consideration can be significantly different from those obtained 

in [6], [40]. It is also found that the independence assumption leads to larger probability 

of codeword error, for Gt — 2. Using the codeword error probability obtained using the 

new method, other performance measures such as maximum local traffic and throughput as 

defined by Pursley [7] are also evaluated. It is shown that the normalized values of these 

quantities are not significantly altered by using the independence assumption. 

3.1 System Model 

The hopping pattern for each transmitter T,-, i = 1 , 2 , J is assumed to be memoryless 

[6], [31], [40]. This means that the frequency bin used by T, at each hop is chosen 

independently and uniformly from an available set of q frequency bins, numbered 1,2, 

and independently of the bins used.by the other transmitters. For simplicity, we shall assume 

that a packet consists of a single codeword and that hop rate is one per symbol. The 

same method of analysis can be used for calculating the probability of codeword error for 

system with hop intervals that are greater than one symbol but with the added complication 

of determining where the interferers hop epochs are relative to the symbols within a hop 

19 



Chapter 3. Asynchronous Hopping Slotted Systems 20 

interval. Let F{j, i = 1,2,..., J , j = 1,2, . . . , n denote the frequency bin used by T; for the 

jth symbol 0 f ^ s codeword. The jth symbol of T z's packet is said to have suffered a hit if 

F{j is also simultaneously used by another transmitter. 

From Figure 3.1, we observe that the symbol of a particular transmitter (hereafter referred 

to as T) can overlap (in time) with one or two symbols from each of the other transmitters 

due to the guard time interval and the asynchronous nature of the hopping times. As in [6], 

[40] we assume that T's symbol is received in error (or erased in the case of an erasure 

demodulator) whenever a frequency hit occurs, even if the frequency hit occurs for only a 

small fraction of the hop interval. A symbol error can result from frequency hits by the other 

K = J — 1 transmitters either from the left or the right or both. We define the following 

three binary valued random variables: 

Note that T's j symbol is assumed to be demodulated correctly if and only if Hj = 0. 

Since each packet must be transmitted within a slot, the start of packet transmission 

for each packet must be within the first Gt hop intervals of each slot. This start of packet 

transmission time is assumed to be uniformly distributed over the range [0, 

3.2 Codeword Error Probability 

We will explicitly examine two cases, Gt = 1 and Gt = 2. The techniques used to 

analyze these cases can also be used for larger values of Gt, even though the computational 

1, i f T ' s jth f r e q u e n c y b i n i s h i t f r o m t h e l e f t 

0, o t h e r w i s e 

1, i f T ' s jth f r e q u e n c y b i n i s h i t f r o m t h e r i g h t 

0, o t h e r w i s e 

(3.1) 
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One Time Slot 

Figure 3.1 Time Slotted Asynchronous Hopping FH-CDMA System 

complexity grows rapidly. This is because the number of possible ways by which T can 

begin transmitting and the number of possible ways by which the other transmitters can cause 

the edge effects in T's transmission increases with Gt. Furthermore, to obtain the codeword 

error probability, an averaging over the total number of possible cases has to be performed. 

3.2.1 Case for Gt = 1 

Let Ai and A2 denote the two sets of interferers (of cardinality K\ and Ki) that start 

transmission before and after T respectively. The first hop interval of T's packet can be hit 

from the left only by interferers in A\. Similarly, the last hop interval of T's packet can be 

hit from the right only by interferers in A2. The first and last hop intervals of T's packet 

have to be considered separately from the other hop intervals within the packet. Let 

ai = (1 - l/qf1 

a 2 = (1 - l/qf2 



(3.2) 

Let the four possible values of Hj1, E.f for T's jth hop interval be represented by states 

• 0 : where T's first frequency bin is not hit by any interferer either from the left or right. 

• 1 : where T's first frequency bin is not hit by any interferer from the left but is hit by 

at least one interferer from right. 

• 2 : where T's first frequency bin is hit by at least one interferer from the left but is not 

hit by any interferer from right. 

• 3 : where T's first frequency bin is hit by at least one interferer from the left and at 

least one interferer from right. 

Since T's first hop interval can be hit from the left only by the interferers in A\, the 

probabilities associated with the states in T's first hop interval are given by 

ct\.a 

a\{l — a) 

(1 — ai)a 

( l - a i ) ( l - a ) . . (3.3) 

It has been shown [29] mat^i!^, i / ^ J , .j = 1,2, ...n form a Markov chain, i.e., 

Pi(Hf,H?\Hf_1,HJ±1,HJ'_2,HJt_2,..!) =Vi{Hf,Hf\Hf_x,Hf_^j. Furthermore, it is 
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A = (i - 2/?) 

h = (1 - 2/q) 

a = (l-l/qf 

0 = ( 1 - 2 / ? ) * 

Po = P r l ;*f 

P i = P r l [«i 

p 2 
= P r [*i 

p 3 = P r 'Hi 

0, Ef = o) = 

0 , # f = l ) = 

= o) -

= l ) = 
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also shown [29] that 

Vx(H$,Hf\Hf_uHf_^ =Vv(Hf,H?\H?_1) <3.4) 

For the purpose of determining T's packet error probability, there is no need to distinguish 

between the interferers after all interferers in A% have begun transmission. This is true until 

T's last hop. The evolution of T's hop intervals can be described by a 4-state Markov chain 

as shown in Figure 3.2. From (3.4), we can see that the transition probabilities of the Markov 

chain is only dependent on HR of the previous state. Therefore the transition probabilities 

from states 0 and 2 to any other state are equal. Likewise the transition probabilities from 

state 1 and 3 to any other state are equal. . The transition probabilities for hop intervals 

between T's first and last hop intervals are thus given by [6] 

Pn Pz2 I(l-a)H-(l-ij(2(l-a) 

-(1 - cx) + ( l - -){2{l - a) 

I — a 
a ) 

Pn P33 
q V qj 

(1-/?)) • (3.5) 

The detailed derivation of these transition probabilities is shown in Appendix A . l . 



Chapter 3. Asynchronous Hopping Slotted Systems 24 

Due to possible edge effects, the transition probabilities for the first and last hop must 

be considered separately. Denote P\^ as the transition probability for the iih state to the 

jth state in the kth hop. From (3.4) and the fact that all transmitters must begin transmitting 

within the first hop interval of each time slot, the transition probabilities from the first to 

the second hop interval are given by 

p(l) _ p(l) — r20 = -Poo 

p(l) 
Mn 

_ p(l) 
- r21 = Poi 

P ( i ) _ p(l) — r22 = -Po2 

p(l) _ p(l) 
— r23 = -Po3 

p(l) 
-MO 

_ p(l) 
— ^30 = Pio 

p(l) _ p(l) 
- ^31 = Pn 

p(l) _ p(l) — ̂ 32 = Pl2 

p(l) 
r 1 3 

_ p(l) 
— ^33 = Pl3 

(3.5) 

In T's last hop interval, the K\ interferers which started their transmissions earlier than 

T can only hit the from the left. The other K2 interferers can hit the last hop interval from 

both the left and right. Using (3.4), the transition probabilities from the second last to the 

last hop interval of T can be obtained as 

Pi 

Pi 

P 

00 

P-

01 

(n-1 
02 

(n-1 
03 

(n-1 
10 

= Pt^ = \«2 + (1 - l/q) 

= p(n-D = I(1 _ 

Ba2 

a 
( l - a 2 ) + (1 -1 /?) 

d{l-a2) 

a 

=pri)=a-i/?)(i-t)(i-a2) 
_ .p(n-l) _ 
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p 
00 

P22 

Figure 3.2 Four State Markov Chain 

Pt1} = Pt1} = J « 2 - ' l /?)[2(l - « ) - ( ! - / 5 ) l ( i ^ 0 ' 

^ 3 B " 1 ) = 4B"1) = ^ ( l - « 2 ) 

+ ( l - l / g ) [ 2 ( l - a ) - ( l - ) 9 ) ] ^ ^ . (3.6) 

These transition probabilities are derived in Appendix A.2. 
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Following an approach similar tp that in [6], let r™(L) be the probability that T's m t h 

hop interval is in state j and exactly L of the m corresponding symbols are not hit, given 

that T's first hop interval is in state i. We can write 

'•;:yv.)- E ^ m , . JVO - • o.v) 
'€{0,1,2,3} 

when the Markov chain goes into one of the 3 states where T's frequency bin is hit in the 

next transition and 

^ ( P ) = E ^ - W i . J = ° ( 3 - 8 ) 

when T's frequency bin is not hit from either the left or right in the next transition. The 

initial conditions are 

^ • ( 0 ) = Pij, 

rh(l) = Pio, i^0,j = 0 

rh(l) = Poj, ^ = 0 , j ^ 0 

rh(2) = Poo, i = 0J = Qi (3.9) 

Assuming that every frequency hit results in a symbol error, the probability of exactly 

c correct symbols in a packet of n symbols given K\ and K2 interferers start packet 

transmission before and after T respectively is given by 

Vi{C.= c\KuK2)= E . E E Pirtfmpw, 
i £ { 0 , 1 , 2 , 3 } je{o, 1,2,3} fee{0,l,2,3} 
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From (3.10), we can calculate the probability that a received packet is successfully decoded, 

given Ki and K2, .as 
n 

P r {success I #1,/^} = Y P r (C = c\Ku K2), (3.11) 
c=n—t 

where t is the error correcting capability of the code. 

The start of transmission times for the users are assumed to be independent, identically 

and uniformly distributed random variables with outcomes in the range [0,1]. The probability 

of having Ki interferers starting before T, given that there is a total of K interferers, is 

given by 
1 

Px(K1,K-K1) = J-(*^xKl(l-xf-Kldx 
0 . 

= ( ^ J B ^ - J ^ + M ^ + I ) , (3.12) 

where B(.,'.) is the beta function [52]. Using (3.11) and (3.12), we can write the probability 

of packet error after decoding as 

K 
Pe,i = l~ Y P r ( ^ l , ^ - ^ l ) P r { s u c c e s s | ^ i , / ^ - ^ i } 

#1=0 

= 1 - Y [K ) B ( ^ - ^ i + l , ^ i + l) Y PT(C = C\KUK2). (3.13) 
JTi=0 ^ 1 / c=n-t 

3.2.2 Case for Gt = 2 

In this case, it is convenient to divide the interferers into 4 groups. 

Group 1: Interferers in this group begin transmission within 1 hop interval earlier than T. 

Group 2: Interferers in this group begin transmission within 1 hop interval later than T. 
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Group 3: Interferers in this group begin transmission more than 1 hop interval later than 

T. Note that this set of interferers is non-empty only if T starts transmission within the 

first hop interval of the time slot. 

Group 4: Interferers in this group begin transmission more than 1 hop interval earlier 

than T. This set of interferers is non-empty only if T starts transmission within the 

second hop interval of the time slot. 

In situation i, i = 1,2, T begins transmission in the ith hop interval of the time slot. 

By symmetry, the packet error probability is the same regardless of whether T begins 

transmission within the first or second hop interval of the time slot. The various groups 

of interferers are depicted in the two situations in Figure 3.3. We shall consider the situation 

where T starts its transmission in the first hop interval. The number of interferers in group 

4 is zero in this case and the probability associated with the distribution of interferers in 

the other groups is given by 

?T(KUK2,K3 = K - K 1 - K 2 ) 
I 

K\ { x \ K , ( \ \ K W \ - x \ { K - K l - K 2 ) 

•(I)' / KX\K2\(K - Ki - K2)\ \2J \2 
o 

l 

dx 

j x K l ( l - x ) dx 
2K Kx\K2\{K-K1 -K2)\ 

o 

2* ( £ ' - * , - X , ) ! B < * + '< K ~ K l + 1 } " ( 3 J 4 ) 

The only interferers that can hit T's first hop interval are those in Group 1 and 2. The 

interferers in Group 1 can hit from left or right and the interferers in Group 2 can only hit 
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Interferer Gp 3 

User T 

Interferer Gp 2 

Time Slot 

Time Reference 

1 | 2 I 3 I _ _ _ _ I n | n+1 | n+2 

Situation # 1 

Situation # 2 

User T 

Interferer Gp 1 

Interferer Gp 2 

Interferer Gp 4 

Interferer Gp 1 

Figure 3.3 Possible Situations in the Case Where Gt = 2 

from the right. Hence the starting state probabilities can be written as 

P0 = P^Hf = 0,H* = (f) 

Pi =p(Hi = 0 , # f = l ) 

P2 = P(H{' = = o) 

P 3 = P ( # i L = l , # f = l ) 

ct\a2 

OL\{\ — 011012) 

(1 — a\)a\a2 

(1 — ct\) (I — uia2). (3.15) 
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Using a similar method to those in Appendix A . l and A.2, the transition probabilities from 

the first to the second hop interval of T is given by 

-a + ( 1 I a 
qja\a2 

p(l) _p( l ) 
— ^20 

1 
q 

p ( l ) _p( l ) 
— ^21 

l 
? 

p ( i ) _p( l ) 
— ^22 • ( 

p(l) 
M)3 

_p( l ) 
— ^23 • ( 

p ( l ) 
10 

_p( l ) 
— ^30 • ( 

p ( l ) r l l _p( l ) 
— ^31 • ( 

p(l) 
r 1 2 

_ p ( D 
— ^32 

l 
<i 

p(l) 
r\3 

_p( l ) 
— ^33 

l 
q 

1 
1 

01^2 
a 

Ct\OL2 

q.J \ cxia2J 
1 \ / a i a 2 ~ 0102 
q j \ 1 - a!Q!2 

aia2 — B\B2 

a 

-9( i a i Q 2 

a 

(1 a 

Ia + (\ - [2(1 - aia2) - (1 - 0I02)1T^ 

-(1 -a)-
[ 2 ( l - a i a 2 ) - ( l - A 0 2 ) ] 

a 
a\a2) 

(.1 - a) 

(1 — 0:1012) 

(3.16) 

The transition probability from the second last to the last hop interval of T's packet can 

be written as 

-1) _ p(n 

— r20 - 1 ) = 

p(n -1) _ p(n 

~ r2\ - 1 ) = 

p(n 

r02 
-1) _ p(n 

— r22 - 1 ) = 

p(n -1) ._ p(n 

— r23 - 1 ) = 

p(" 
"MO 

-1) _-.p(n - 1 ) = 

p(n 

r l l 
-1 ) _ p(« 

- ^31 = 

1 ( l\Ba2ct3 
-a2a3 + 1 
q V qJ « 

-(1 - Q!2a3) + 
V q) • a 

1 • " 1 — 0 2 0 : 3 

a) 

1 - - )(1 - 0 2 0 3 ) 
a) 

~ 0 2 « 3 , 

1 — a J 
- (1 - 0 2 0 3 ) 

I — a 

— ci2a.z) 
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P[Tl) = 4" _ 1 ) = \«2«z + ( l - f) [2(1 - a) - (1 - B)]-! 

P & - 1 ) = Jpi 3

B- 1) = i ( l - a 2 a 3 ) + 

C t ! 2 C * 3 

( l - I ) [ 2 ( l - a ) - ( l - / » ) ] ( i ^ l (3.17) 

where a 3 = (1 - l / ? )^ 3 . Using (3.7), (3.8), (3.15), (3.16) and (3.17), the probability of 

having exactly c correct symbols in a packet of n symbols given that there are K\, K2 and 

K3 interferers in Groups 1, 2 and 3 respectively, is given by 

Pr(C = c\K1,K2,K3) = E E E E PiP^WPt*' 
t"£{0 ,1 ,2 ,3} le{0,1,2,3} j£{0,1,2,3} k£{0,1,2,3} 

The initial conditions for r^ - 1 (.L) are as listed in (3.9) except that they are determined by 

the modified first transition probabilities, P^P • The probability of successfully decoding a 

codeword with an error correcting capability of t given K\, K2 and K3 can be written as 
n 

P r l s u c c e s s l ^ , / ^ , / ^ } = E P L ( C = °\K^ K ^ K*)' ( 3 - 1 9 ) 

c=n—t 

Using (3.14) and (3.19), the probability of codeword error with a guard time interval of 2 

is given by 
K ' 

Pe,2 = 1 - E ^(KlJ<2,I<3 = K~ Kl ~ K2) 
# 1 = 0 

x P r j s u c c e s s l A ' i , / ^ , / ^ = K- Ki - K2} 

x P r ( C = 0 ^ 1 , ^ 2 , ^ 3 ) . (3.20) 

c=n—t 
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3.2.3 Numerical Results 

Tables 1—6 list the numerical results obtained using (3.13) and (3.20) for P e ] i and 

P e ; 2 respectively. The results are obtained for various Reed-Solomon codes which are 

commonly used in data communication systems [53]. Tables 1—4 are for the case of an 

erasure demodulator, whereas Tables 5 and 6 are for the case in which the demodulator 

makes a symbol error whenever there is a frequency hit. The codeword error probabilities, 

Pefi obtained by Hegde and Stark [6] are included in these tables for comparison. The 

percentage difference between P e >o and Pe>i can be as large as 30% and the percentage 

difference between P e jn and P e > 2 can be as large as 40%. The codeword error probabilities, 

Piti and Pit2, calculated using the independence assumption and taking the edge effect into 

consideration for a guard time of 1 and 2 hop intervals respectively, are also shown in these 

tables. In calculating P ^ i and P ? i 2 , the interferers are divided into groups depending on the 

time that they begin transmission relative to T. This approach is identical the one used in 

calculating Pe>\ and P e i 2 . However, the probability of codeword error is calculated using 

the steady state probability for state 0 of the Markov chain, assuming that the probability of 

being in this state in the next hop interval is independent of the state of the previous and 

present hop interval. The percentage difference between P e > i and P ^ i is comparable to that 

between P e i o and P^o as reported in [6]. The percentage difference between P e ; 2 and P ; ) 2 

is larger and can be as large as 10%. 
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J Pefi Pe,l Pe,2 Pit 
3 2.444267 1.882547 1.640901 1.865608 1.533955 ( x l O - 1 1 ) 

4 9.854872 7.657452 6.712215 7.576007 6.264310 (x lO- 9 ) 

5 5.337109 4.214235 3.718516, 4.169784 3.476572 (x lO- 7 ) 

6 9.696240 7.774854 6.908226 7.698326 6.478714 (xlO" 6 ) 

7 8.849878 7.202879 6.445627 7.138844 6.067116 (x lO- 5 ) 

8 5.034209 4.157422 3.747022 4.124798 3.540926 (x lO- 4 ) 

9 2.030218 1.700660 1.543748 1.689109 1.464772 ( x l ( T 3 ) 

10 6.308742 5.358689 4.898808 5.327774 4.667201 (x lO- 3 ) 

Table 1 Probability of Codeword Error for (32,16) 
Reed-Solomon Code with Erasure Correction (e = 16), q = 50 

J Pefi Pe,2 

3 1.731250 1.196324 0.973509 1.148531 0.867806 (xio-4) 
4 5.531554 4.077022 3.400610 3.926648 3.041058 (xlO-3) 
5 4.060710 3.166278 2.712301 3.080231 2.465057 (xlO-2) 
6 1.382431 1.133423 0.996744 1.113716 0.922752 (xlO-1) 
7 2.987969 2.560861 2.308538 2.536849 2.174660 (xlO-1) 
8 4.854427 4.322844 3.985808 4.307251 3.811838 (xlO-1) 
9 6.561842 6.032867 5,673601 6.033098 5.493900 (xlO"1) 
10 7.8777426 7.429979 7.104640 7.444487 6.947213 (xlO"1) 

Table 2 Probability of Codeword Error for, (16,4) 
Reed-Solomon Code with Erasure Correction (e = 12), q = 10 
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J Pefi Pe,l Pe,2 P,i Pi,2 

3 3.339100 2.430601 2.064979 2.417253 1.920713 (XlO-7) 
4 8.670030 6.420760 5.478466 6.378077 5.081422 (xlO-6) 
5 7.812909 5.875259 5.041124 5.835487 4.678273 (xlO~5) 
6 3.948459 3.012379 2.600416 2.992773 2.417683 (xlO-4) 
7 1.385786 1.072042 0.931246 1.065524 0.867938 (xlO-3) 
8 3.785735 2.968415 2.594962 2.951859 2.425295 (xlO-3) 
9 8.617319 6.846324 6.023150 6.811779 5.646031 (xlO-3) 
10 1.707893 1.374423 1.216847 1.368225 1.144146 (xlO-2) 

Table 3 Probability of Codeword Error for (15,7) 
Reed-Solomon Code with Erasure Correction (e = 8), q = 50 

J Pefi Pe,2 PA P,2 

3 9.256974 6.641580 5.611106 6.621845 5.225990 (xlO-10) 
4 2.923396 2.119269 1.791927 2.111252 1.662394 (xlO-8) 
5 3.198852 2.339003 1.981957 2.329500 1.836645 (xlO-7) 
6 1.959040 1.443791 1.226652 1.437820 1.136733 (xlO-6) 
7 8.313498 6.173097 5.259966 6.147744 4.877187 (xlO-6) 
8 2.739603 2.049098 1.751318 2.040853 1.625317 (xlO"5) 
9 7.503881 5.652559 4.846238 5.630467 4.502449 (xlO-5) 
10 1.784956 1.353993 1.164540 1.348884 1.083239 (xlO"4) 

Table 4 Probability of Codeword Error for (15,7) 
Reed-Solomon Code with Erasure Correction (e = 8), q = 100 
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J Pe,0 Pe,l P*,i Pi,2 
3 4.263326 3.772204 3.542540 3.765302 3.430818 (xlfj- 4 ) 

4 6.336397 5.696838 5.389806 5.686733 5.236310 (x lO- 3 ) 

5 3.313866 3.024533 2.882686 3.020391 2.811121 ( x l ( T 2 ) 

6 9.873741 9.140107 8.773584 9.131715 8.588309 (x lO- 2 ) 

7 2.080458 1.951427 1.885804 1.950422 1.852692 (x lO- 1 ) 

8 3.483900 3.307527 3.216267 3.306883 3.170408 (xlO" 1 ) 

9 4.977498 4.776962 4.671439 4.777137 4.618713 (x lO- 1 ) 

10 6.357719 6.159570 6.053561 6.160697 6.000956 (x lO- 1 ) 

Table 5 Probability of Codeword Error for (31,15) 
Reed-Solomon with Error Correction (e = 8), q — 50 

J -Pe.O P.,2-

3 2.095480 1.824375e 1.700443 1.822202 1.642756 ( x l O - 6 ) 

4 4.979229 4.372417 4.089914 4.366336 3.955115 ( x l 0 ~ 5 ) 

5 4.111137 3.639668 3.417290. 3.634726 3.309877 ( x l O - 4 ) 

6 1.905278 . 1.700154 1.602336 1.698039 1.554739 ( x l O - 3 ) 

7 6.137291 5.518855 5.220994 5.512786 5.075341 ( x l O " 3 ) 

8 1.540237 1.395468 1.325087 1.394147 1.290548 ( x l O - 2 ) 

9 3.224276 2.942668 2.804527 2.940328 2.736552 ( x l O - 2 ) 

10 5.884108 5.408527 5.173190 5.405009 5.057140 ( x l O - 2 ) 

Table 6 Probability of Codeword Error for (31,15) 
Reed-Solomon with Error Correction (e = 8), q = 100 
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3.3 System Performance 

In a conventional slotted ALOHA system where multiple-access interference is the only 

source of interference, the codeword error probability, Pe(p) is 0 when there are no interfering 

packets in the slot and Pe(p) = 1 otherwise.* This is because packets in the same time slot 

are transmitted using the same frequency channel and when there are two or more packets 

using the same time slot, it is assumed that the packets interfere with each other and none 

of them can be successfully received by their respective intended receiver. Thus in the 

analysis of the slotted ALOHA system [8], it is assumed that the codewords are uncoded. 

In FH-CDMA system however, since symbols from the same packet may be transmitted 

using different frequency bins, Pe(p) can be less than one even when there are several 

packets being transmitted in a time slot. In the case where some of the symbols in a packet 

are corrupted due to interference from other packets, the packet may still be successfully 

received, depending on the type of error correcting code used. Furthermore, if a packet in a 

particular time slot cannot be decoded successfully, it does not necessarily mean that all other 

packets transmitted during that time slot cannot be decoded successfully. This suggests that 

the performance of FH-CDMA systems cannot be analyzed using the same techniques as the 

slotted ALOHA case. Pursley [7] suggested some new measures of system performance and 

these are based on the constraint that the average probability of codeword error, Pe{p), for the 

expected number of interfering packets, p, is not to exceed a pre-determined error rate, Pg. 

To allow valid comparison between FH-CDMA and slotted ALOHA systems, it is necessary 

to normalize these new measures with the code rate, r, and the number of frequency bins, q. 

* This is the usual assumption that is made in the analysis of the slotted ALOHA system although some authors [54] have developed 

capture models wherein due to the difference in received powers of the contending packets, it may be possible to successfully decode a 

packet even though it has been collided with. 
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In [7] the maximum normalized local load, L*(PE), normalized local throughput, 

W*(PE), and maximum normalized local throughput, WMAX, were used as performance 

measures for a FH-CDMA system. These measures were calculated using the independence 

assumption with the probability of a frequency hit by another user equal to 2/q. The traffic 

was modelled as a Poisson distribution with an average number, fi, of interferers per time slot. 

The normalized local load is defined by L(PE) == ^(PE) where fi(PE) is the number 

of interferers which can be accommodated if Pe{f), is not to exceed PE, and r is the code 

rate. The maximum normalized local load, L*(PE), can be calculated using 

L*(PE) = rfi*(PE)/q, (3-21) 

where fi*(PE) = m a x { ^ : Pe(fi) < PE] is the maximum expected number of arrivals in 

a time slot that is allowed subjected to the constraint that the average packet error remains 

below or equal to PE. 

The local throughput is defined as the number of successfully decoded packets per slot 

and is given by 

s{fi) = fiPc(fi), (3.22) 

where Pc(fi) = 1 — Pe(fi). When the expected number of arrivals, fi, increases the number of 

interfering packets increases and Pc(fi) decreases. Therefore the local throughput is a product 

of an increasing function of fi and a decreasing function of fi and there exist a maximum 

value. This maximum value can be determined by 

Smax = m a x {^Pci/J-) • V > 0}. (3.23) 

Since the local throughput is a product of an increasing function of \x and a decreasing 

function of fi, Pc(fi) may be unacceptably low when the local throughput is maximum. 



Chapter 3. Asynchronous Hopping Slotted Systems 38 

As an alternatively, we may be interested in determining the maximum local throughput 

subjected to a constraint on PE. This maximum value is given by 

S*(PE) = max{5(^) : p < p*(PE)}. (3.24) 

To allow for valid comparison against the slotted ALOHA system, we normalize the local 

throughput and the maximum local throughput. The normalized local throughput is defined as 

w(p) = rs(p)/q: _ (3.25) 

and we can write the maximum normalized local throughput for a given PE as 

W*(PE) = rS*(PE)/q (3.26) 

and the unconstrained maximum normalized local throughput as 

W m a x = max ^pPc(p) : M > O J . (3.27) 

It is shown by Pursley [7] that in applications in which the probability of packet error is 

required to be low, for example PE = 1 0 - 2 , the maximum normalized local throughput for 

FH-CDMA is higher than that of slotted ALOHA. 

3.3.1 Numerical Results 

The Poisson distribution, f(j) which is used in the performance measures is an infinite 

population model i.e. 

fU) = ^/j\ J 6 {0,1, }• (3.28) 

To obtain numerical results for L*(PE), W*(PE) and Wmax a truncated Poisson series as 

in [7] was used. The maximum number of users, jmax, considered in a time slot is selected 

such that 
Jmax 

1 - /0) < I O " 1 0 . (3.29) 
3=0 
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This ensures that the accuracy of the results obtained is at least 10 . The code rate used 

to normalize these performance measures is modified, taking guard time into consideration. 

The modified code rate is given by 

r = k/(n + Gt). (3.30) 

The results obtained, using (3.21), (3.26) and (3.27), for guard times of 1 and 2 hop 

intervals are shown in Tables 7 — 11. Subscript i is used to denote a guard time of i hop 

intervals. Results from [7], denoted by the subscript "0", are also included in these tables for 

comparison. The results indicate that the three performance measures are not sensitive to the 

inclusion of guard time into the time slots. The inclusion of a larger guard time will reduce 

the packet error probability due to edge effects. This will increase the throughput and local 

load. However, the inclusion of a larger guard time decrease the modified code rate which 

will reduce the normalized local load and throughput. These two factors appear to offset 

each other making the performance measures quite insensitive to the inclusion of guard time 

or the amount of guard time. It should be noted from the results, however, that these three 

performance measures do vary as a function of the code rate. For example, for PE = 10~2, 

n — 64 and q = 25, the maximum normalized local load and normalized maximum local 

throughput occurs at k = 16. 
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k iS(io- 2) x*(io-2) z*2(io-2) x 0(io- 6) z;(io- 6) 
24 0.0165 0.0171 0.0168 4.17E-5 5.19E-5 5.33E-5 

20 0.0348 0.0358 0.0353 0.0013 0.0014 0.0014 

16 0.0531 0.0544 0.0535 0.0054 0.0058 0.0057 

12 0.0672 0.0686 0.0676 0.011.7 0.0123 0.0122 

10 0.0712 0.0727 0.0716 0.0150 0.0157 0.0156 

8 0.0723 0.0737 0.0726 0.0178 0.0186 0.0184 

6 0.0692 0.0705 0.0695 0.0195 0.0202 0.0200 

5 0.0656 . 0:0668 0.0659 0.0196 0.0203 0.0201 

4 0.0602 0.0613 0.0605 0.0190 0.0196 0.0194 

Table 7 Maximum Normalized Local Load for (32, k) 
Reed-Solomon with Erasure Correction, q = 25 

k x*(io-2) £t (10- 2 ) £* 2(10- 2) x*(io-6) £?(10- 6) z 2 (io- 6 ) 
32 0.0592 0.0608 0.0603 0.0097 0.0103 0.0102 

24 0.0742 0.0761 0.0755 0.0183 0.0192 0.0191 

16 0.0796 0.0815 0.0806 0.0258 0.0268 0.0267 

12 0.0762 0.0780 0.0774 0.0276 0.0286 0.0285 

10 0.0723 0.0739 0.0734 0.0275 0.0285 0.0283 

Table 8 Maximum Normalized Local Load for (64, k) 
Reed-Solomon with Erasure Correction, q = 25 

k z*0(io-2) i*(io- 2) z*2(io-2) i 0 ( io - 6 ) x*(io-6) z 2 (io- 6 ) 
32 0.0926 0.0927 0.0918 0.0372 0.0373 0.0370 

24 0.1067 0.1068 0.1058 0.0503 0.0505 0.0501 

20 0.1089 0.1089 0.1079 0.0545 0.0546 0.0542 

16 0.1067 0.1067 0.1058 0.0561 0.0562 0.0558 

12 0.0988 0.1001 0.0981 0.0541 0.0545 0.0538 

Table 9 Maximum Normalized Local Load for (64, k) 
Reed-Solomon with Erasure Correction, q = 100 
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k w*(io- 2 ) W7(10" 2 ) w*(io- 2 ) Wo, m a x w2,max 

16 0.0526 . 0.0538 0.0530 0.0996 0.1007 0.0988 

12 0.0665 0.0679 0.0676 0.1085 0.1098 0.1078 

10 0.0705 0.0720 0.0709 0.1088 0.1101 0.1082 

8 0.0716 0.0729 0.0719 0.1053 0.1067 0.1049 

6 0.0685 0.0698 0.0688 0.0968 0.0981 0.0967 

Table 10 Normalized Maximum Local Throughput for 
(32, k) Reed-Solomon Codes with Erasure Decoding, q = 25 

k w 0*(io- 2) ^(IO-2) w;(io~2) ^ 0 , m a x ' v l , m a x 1 W2 ) m ax 

40 0.0390 0.0403 0.0399 0.0818 0.0832 0.0823 

32 0.0586 0.0602 0.0597 0.0996 0.1013 0.1003 

24 0.0735 0.0753 0.0748 0.1094 0.1113 0.1103 

20 0.0777 0.0796 0.0790 0.1100 0.1120 0.1110 

16 0.0788 0.0806 0.0801 0.1068 0.1087 0.1078 

15 0.0784 0.0803 0.0797 0.1053 0.1072 0.1063 . 

12 0.0754 0.0772 0.0766 0.0985 0.1004 0.0996 

10 0.0723 0.0732 0.0727 0.0919 0.0937 0.0930 

Table 11 Normalized Maximum Local Throughput for (64, k) Reed-Solomon Codes, q = 25 



Chapter 4 

Code Diversity Schemes 

Consider a spread-spectrum multiple-access data communication system [1], [10], [55]. 

with q frequency bins available for hopping. The transmitters use M-ary frequency-shift-

keyed (FSK) modulation and slow frequency-hopping, i.e. the symbol (baud) rate is a 

multiple of the hopping rate. Suppose that there are J active transmitters. In a conventional 

FH-CDMA system, at each hop each active transmitter sends its data in a single frequency 

bin. Here, we study a code diversity system [56], [57] in which at each hop, a transmitter 

uses L distinct frequency bins. As described in Section 2.4, a similar technique has been 

previously proposed [46] to reduce the probability of "confusion" in systems which are 

subject to jamming. 

The symbol error probabilities Pe(J,q,L) for several different receiver decoding schemes 

are derived. It is shown that depending on the values of J and q, a large reduction in symbol 

error rates may be achieved using code diversity. Furthermore, the code diversity scheme 

can be used to establish priority classes among the users in the system by giving higher 

values of L to users in the higher priority groups. The optimal diversity degree* L*, which 

minimizes Pe(J,q,L) for each decoding scheme is also examined. 

We consider a synchronous FH-CDMA system in which the hop times of the transmitters 

are synchronized. That is, the system is synchronous. Analysis for asynchronous hopping 

code diversity systems would be more complex and is not considered here. This complexity 

is mainly due to the fact that each user selects a set of L > 1 distinct frequency bins for 

transmission, so that the probability of a particular user choosing a particular frequency 

42 
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bin is dependent on the frequency bins that the user has already selected. Because of this 

dependency between the bins chosen by a user, the techniques used in Chapter 3 for the 

analysis of conventional asynchronous hopping FH-CDMA systems cannot be directly applied 

here. The probability of a frequency hit on one of L frequency bins is not only dependent 

on the probability of a hit from the right for the previous symbol but also dependent on the 

probability of a frequency hit on the remaining L — 1 frequency bins. 

4.1 Analysis of Symbol Error Probability for a Noiseless System 

In this section we will consider a system where the main source of errors is interference 

from other users so that thermal noise can be neglected. The case where the effects of noise 

and fading are not negligible is considered in Chapter 5. Four receiver decoding schemes 

are studied. In Scheme 1, the receiver knows which symbol frequencies (in the transmitter's 

L frequency bins) are being sent, but does not know how many transmitters are transmitting 

a given symbol frequency tone. As long as there is only one particular M-ary symbol 

m £ {0,1, ...,M — 1} that is present in all the L frequency bins used by transmitter, the 

receiver can correctly decode the transmitted symbol. In Scheme 2, the receiver is assumed 

to have knowledge of the number nm j of transmitters sending symbol "m" in the / t h bin of 

the transmitter's L frequency bins. As in Scheme 1, the receiver is able to decode correctly 

if there is only one particular M-ary symbol present in all the L frequency bins used by 

transmitter. If this is not the case, the receiver in Scheme 2 sums up the number of transmitters 

A L 

in the L bins for each of the M symbols i.e. it forms hm = ~nmy, the receiver then chooses 

symbol m* such that hm* > hm, for m £ { 0 , 1 , M — 1}. The decoding process in Scheme 

3 is similar to that in Scheme 2 except that the receiver uses the maximum a posteriori (MAP) 

decision rule [58] based on {ho, h i , h m } to choose the symbol which was transmitted. 
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Instead of using the MAP decision rule based on {ho,h\, ...,hm}, Scheme 4 bases the MAP 

decision rule on {no,i , n ^ i , no,2, ̂1,2, «o,l, UI,L}- The decoding process used in schemes 

3 and 4 are optimal in the sense that they achieve the lowest BER based on the information 

available to them. 

4.1.1 Scheme 1 

We first derive an expression for the symbol error probability Pe(J,q,L) for Scheme 1. 

The following assumptions are used in this derivation: 

• The data symbols for each transmitter are statistically independent and take on one of 

M possible values {0,1,..., (M — 1)} with equal probability. 

• For each hop, each transmitter independently selects its L distinct frequency bins from 

the available q bins. Each of the (|) possible sets is chosen with equal probability. A 

similar assumption has been commonly used in the study of conventional FH-CDMA 

systems [6], [31]. 

• If a transmitter, T, uses a certain set of L frequency bins to transmit a symbol 

rn e {0,1,..., (M — 1)}, and no other symbol is simultaneously present in all the L 

frequency bins used by T, then T's symbol can be correctly detected. This assumption 

is valid in an environment where the predominant cause of errors is interference from 

other users. 

• Let the set of K interferers (for a marked transmitter T) be partitioned into M sym­

bol groups Go5 G \ , G M - I - Each interferer in group G% transmits symbol i, i = 

0,1,..., M — 1 and we denote the number of such interferers by Ki. A hit refers to 

a symbol transmission in a given frequency bin by any transmitter (including T). A 

complete hit on symbol s is said to occur if all the L bins used by T are hit by at least 
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one interferer from symbol group Gs. Note that if a receiver for T finds that there is a 

complete hit on only one symbol s*, then the receiver knows that s* must be the symbol 

transmitted by T. In the event of a complete hit on I symbols, the receiver randomly 

declares one of these / symbols as having been sent. Note that this definition of a hit 

which is the event where two transmitters simultaneously use the same frequency bin to 

transmit. Here, we account the various possible symbols that can be transmitted within 

a frequency bin and we do not make the pessimistic assumption that all frequency hits 

results in decoding ambiguity or error. 

Let Qi(i\ks) be the probability of having exactly i of T's L frequency bins hit by ks 

interferers transmitting symbol "s". Qi(i\ks) can be calculated using the following recursive 

is slightly different from that used in Section 3 where a hit refers to a frequency hit 

equation : 
q-L+i 

L 

(!) 
+. . . 

(4.1) 
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with initial conditions 

W'i°)={J; l ^ L 
By symmetry, the symbol error probability is the same regardless of the symbol trans­

mitted by T. For convenience, we shall assume that T transmits a "0". Let P;, i € 

{ 1 , 2 , M — 1} denote the probability that a complete hit is caused by the ki interferers 

transmitting symbol "i". Then 

Pi = Qi(L\ki\ i e { l , 2 , . . , M - l } . (4.3) 

The probability of symbol error given the distribution of the K interferers can be written as 
M - i 

Pe(K + l,q,L\K0 = fco,#i = h, ...,KM-i = k-M-i) = g Y'P* - P J') 
i=i j^i 

+ 1 E PiPjT[{i-Pk) 

l<i<j<M — l 

M 1 M _ 1 

• II l< ™ 
i=l 

The probability associated with a particular distribution of interferers is given by the 

multinomial distribution [59] . 

Pr{*. = h , K l = i , = * „ _ , } = t o ! f c i , J n

f e M _ i , ( ^ ) A - ( « ) 

Since 

P e ( # 4 - l , g , L ) = Pr{^ 0 = fco,^i = fc1,...,^M_1 = A ; M_ 1} 
fco + fcl+.-. + fcM-l=^' 

x P e (i^ + 1,9,1^0 = h,Ki = h,...,KM-i = % - i ) , (4.6) 



Chapter 4. Code Diversity Schemes 47 

the symbol error rate, Pe{K + l,q,L), can be obtained using (4.1), (4.3), (4.4) and (4.5). 

4.1.1.1 Numerical Results 

Equation (4.6) was used to calculate the symbol error'probability Pe(J, q, L) when there 

are J active transmitters for M = 2, q = 200 and different diversity degrees. The results 

are plotted in Figure 4.1. It can be seen that depending on the value of J, a large decrease 

in the probability of bit error can be obtained through the use of diversity. As an example, 

for J = 20, Pe = 2.32 x 10~ 2 with no diversity whereas Pe = 2.69 x 1 0 - 4 with L = 5. 

Figure 4.2 shows the results obtained for q = 200 and M = 3 and Figure 4.3 show the plots 

for q = 100 for the binary case. It can be seen from these figures that the general behavior 

of the symbol error rate is similar in all three cases. 

For M = 2 and q = 200, the BER Pe(J,q,L) is plotted as a function of the diversity 

degree L for different values of J in Figure 4.4. It can be seen that Pe( J , g, L) is moderately 

sensitive to L. 

To illustrate the dependence of the optimal diversity degree L* on J and q, we have 

plotted L* as a function of q/J for different values of q in Figure 4.5. As would be expected, 

for a fixed value of q, L* increases with q/J (i.e. decreases with J). For a fixed value of 

q/J, L* tends to increase slightly with q: For q = 100, the optimal diversity degree can 

be approximated by 

L* = m a x j l , [3.84 (j)1/2 - 3.05J } (4.7) 

where \x] denotes the smallest integer greater than or equal to x. It was determined 

numerically that the use of L* as given by (4.7) when q is in fact 50 or 200 does not 

result in a serious BER degradation. The percentage difference in BER's, for q = 50 is 
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largest at J = 6 and is 11%. For q = 200, the largest percentage difference is 4% and 

occurs at J = 25. 

It can be noted from Figure 4.1 that for some ranges of BER's, code diversity does 

increase the capacity (number of active transmitters which can be supported) of the system. 

For example, when the BER is 10~2, the number of active transmitters that can be supported 

in the system is about 9 in the case where there is no code diversity. For this same BER, 

the capacity can be increased to 48 active transmitters by using a diversity degree of 5. The 

system capacity increase generally applies to all the code diversity schemes considered in 

this thesis when operating at lower BER's. 

4.1.2 Scheme 2 

In this section, we derive an expression for the symbol error probability Pe(J,q,L) for 

Scheme 2 under the following assumptions: 

• The hopping patterns, frequency bin and data symbol selection procedures are as de­

scribed for Scheme 1. 

• A receiver, R, which attempts to decode T's transmission has knowledge of the number 

of hits (including T's) on each of the symbols within the L frequency bins used by T. 

The decoding process proceeds as follows : 

• Step 1: If R finds that there is a complete hit on only one symbol, then R knows 

that this must be the symbol transmitted by T, and the decoding is complete. 

• Step 2: If there is a complete hit on / (> 2) symbols, R sums the number of hits 

in the L frequency bins for each of these / symbols and chooses the symbol with 

the largest number of hits as the symbol sent by T. In the event that two or more 
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Figure 4.2 Probability of Symbol Error Vs Number of 
Active Users in System, Scheme 1, q = 200, M = 3. 



Chapter 4. Code Diversity Schemes 51 

l.OE-01 

1.0E-02 

l.OE-03 S-l 
O 
a 
w 
PQ 

o 

£ 1.0E-04 
d 
o 

1.0E-05 

1.0E-06 

1.0E-07 

- - - - - " _ 

- 4 ^ 
-

/ si/ 
. -

/ // -

- -1 • 
:/ ///• 
- <7/; 
" ; I: 

-

Mi 

No Diversity 

Diversity degree L - 2 

-
- Ii 
: i; 
- ij 
" 1 ' 

i: 

Hi 

Diversity degree L - 3 : 

Diversity degree L = 4 

Diversity degree L - 5 

- i ; 
- i i 

J: 
I 

i 
-i 
-i 
"i 
"i 

i I l 

0 50 100 150 

Number of Active Transmitters 

Figure 4.3 Probability of Bit Error Vs Number of Active Users, in System, Scheme 1,5= 100. 

200 



Chapter 4. Code Diversity Schemes 52 



Chapter 4. Code Diversity Schemes 

q/J 
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symbols have the same number of hits, R randomly declares one of these symbols 

as having been sent. 

For simplicity, we shall consider the binary symbol case, i.e. M = 2, first. The analysis 

is then extended to the general case in Section 4.1.2.2. 

4.1.2.1 Binary Symbol Case 

It is convenient to divide the interferers into two groups, KQ interferers transmitting 

the symbol "0" and the remaining K\ = (K — KQ) interferers transmitting the symbol "1". 

Since each symbol is chosen independently and with equal probability by the interferers, the 

probability that there are exactly ks interferers transmitting symbol "s". is given by 

Pv(KS = k8) = 0̂ , s = 0 or i : (4.8) 

Let Q2{zs,i\ks) be the probability of having exactly i. of T's L frequency bins hit and 

a total number of zs hits by the ks interferers transmitting symbol "s". Q2(zs,i\ks) can be 

calculated using the following recursive equation 

(\)(L~-LI) ' 

I / J ' Ki.) 

+ Q2 (zs-j,i\ks-l)K3j^q

L 3 j + ... + Q2{zs-i,i\ks-l)yiJ^g

L l J 

KL) KL) 

. +Q2(zs-l,i-l\k3-iP—rfy—" 

+ Q2(z3-2,i-l\k3-l)^ 1 A * j y L ~ 2 j +-
AL) 

( < - I U / , - M I \ / H A 
+ Q2(zs-^-l\ks-l){3-1^ ' ) A ' - J ) •» 

KL) 

- r Q ^ Z s - h i - l l k s - l y ^ h y ) + ••• 
KL) 
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' L-i+l\(q-L\ 

+ Q2(zs l\k, - 1) v ' ( [ \ L ~ l ) 

\L) 
(i-l\(L-i+l\ ( q-L \ 

+ < > , ( , . - l - i , , - H k , - i / ' ^ +... 

A _ A / Z _ i + A / q-L \ 

+ Q,{ZS i\k. - i))JJ±J)±±±il +... 
KL) 

fi-l\ fL-i+l\ 

+ Q2(Zs i\k. - i y l ~ l y q ' } +... 

( L ) ( l - L ) 

+ Q 2 ( z s - i , o \ k s - i ) K i j y i ) 

KL) 
I i-l ( ( L - i + l \ ( q-L \ 

= E E < M « . - ' - ) . i - f t - D w n ' , , { L ~ ' ~ <4-9> 
7=0 j=o KL) 

with initial conditions 

^ / f 1, for zs = i = 0 , A i n s 
< M » . . . ! < > ) = { „ ; • . o t h e r w i s e . < 4 ' l 0 ) 

By symmetry, the symbol error probability is the same regardless of whether T transmits 

a "0" or a " l " . Assuming that a "0" was sent, the probability of having a total of exactly 

ZQ hits given K\ = k\ can be written as 

L 

. Yv{Z0 = zQ\Kv = K-kl} = YJQ2{zoAKo = K-k1). (4.ll) 

Using (4.9) and (4.11), the probability of symbol error given K\ = k\ can be written as 
kiL Pe(K + l,q,L\h) = Q2{zi,L\h)( ipr{Z 0 = zx- L\K0 = K - J*} 

z\=L 
zx-L-\ 

+ YI MZo = z0\Ko = K - h}^. (4.12) 
zo 
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Since 
K 

Pe(K + l,q,L)=J2 Pl{Kl = h}Pe(K + 1, q, L\h), (4.13) 

the BER, Pe(K + l,q,L) can be obtained using (4.8), (4.12) and (4.13). 

4.1.2.2 Extension to Non-binary Symbol Case 

The probability distribution of the interferers in the M symbol groups is given by (4.5). 

As before, we shall assume that the marked transmitter T sends symbol "0". For a given 

distribution of interferers {k^,k\, ...,kM-\), let 

• Ai, i E {1, 2 , M — 1} be the event that all L frequency bins chosen by T are hit by 

at least one of the ki interferers and z{ > ZQ + L. 

• Bi, i G {1, 2 , M — 1} be the event that all L frequency bins chosen by T are hit by 

at least one of the ki interferers and zi = ZQ + L. 

From the definition of (•,•!•)> w ^ c a n write 

kiL Zi—L—1 

Q2{zl,L\kl) £ Pr{Z 0 = *o|fco}, i = l , 2 , . . . , M - l (4.14) 
Zi=L+\ zo=0 

and 

Pr{5,-} = Y Q2{zi,L\h,ki,...,kM_l)¥v{ZQ L\kQ,ki,...,kM-\} 
Zi=L 

hL 

Zi=L 
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From equations (4.14) and (4.15), we can calculate Pr{A;} and Pr{I?i} using (4.9) and 

(4.11). The probability of symbol error given a distribution of interferers {&o, k\,&Af-i} 

can be written as 

Pe(K + l,q,L\K0 = k0,Ki = ki,....J<M-\ = kM-\) = 
M - l 

Pr{Ai U A 2 U ... U A M _ ! } + - £ Pr{B;} J] (1 - Pr{Bj} - Pr{A,-}) 

+ ^ £ P r ^ P r ^ } l[(l-Pv{Bk}-Pv{Ak})+,... 

l<i<j<M-l kj£i,j 

i=l 
The first term of (4.16) can be written as [59] 

M - l 
P r { A i U A 2 U ... U A M - i } = ^ P r { . A , - } - - ^ P r { A J Pr{A,} + 

i=l l<i<j<M-l 

Y Pr{A l }Pr{A,}Pr{A f c }+ .... + ( - 1 ) M 

l<i<j<JKM-l 

x P r { A j . (4.17) 
l<i<M-l 

Since 

Pe(K + l,q,L)= Pv{K0 = k0K1=k1, ...,KM-l = kM-l} 
k0+ki+ ...+kM-i=K 

Pe{K + l,q,L\K0 = k0;K1 = k1,...,KM-1 = kM_1) (4.18) 

we can obtain Pe{K + l,q,L) using (4.5), (4.14), (4.15), (4.16) and (4.17). 
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4.1.2.3 Numerical Results 

Equation (4.13) was used to calculate the symbol error probability Pe(J,q,L) given J 

active transmitters for M = 2, q = 200 and different diversity degrees. The results are 

plotted in Figure 4.6. In general, for the same value of L, Scheme 2 yields a lower BER 

than Scheme 1, especially for J > 10. However, there are instances e.g. q = 200, L = 4, 

J G {2, 3,4,5, 6} in which Scheme 1 yields a lower BER, even though the difference is less 

than 3%. This somewhat surprising result can be attributed to the fact that when most of the 

interferers are transmitting a symbol that is different from T's, Scheme 2 is more likely to 

make a decoding error than Scheme 1. Results for q = 200, M = 3 and q — 100, M = 2 are 

shown in Figure 4.7 and 4.8 respectively. The optimal diversity degree for a given number 

of transmitter is at least equal to or higher in Figure 4.7 than in Figure 4.6. This is because, 

for a same number of interferers, the probability of a complete hit is less when M — 3. 

The reverse situation is true when comparing Figure 4.6 with Figure 4.8. With a reduced 

number of frequency bins, the probability of a complete hit is increased for a given number 

of interferers. Hence, for a given number of transmitters, the optimal diversity degree in 

Figure 4.8 tends to be lower than in Figure 4.6. 

For M = 2 and q — 200, the BER Pe(J,q,L) is plotted as a function of the diversity 

degree L for different values of J in Figure 4.9. It can be seen that Pe(J,q,L) is less 

sensitive to L than in Scheme 1. 

To illustrate the dependence of the optimal diversity degree L* on J and q, we have 

plotted L* as a function of q/J for different values of q in Figure 4.10. For q = 100, the 

optimal diversity degree can be approximated by 

(4.19) 
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As in Scheme 1, it was determined numerically that the use of L* as given by (4.19) when 

q is in fact 50 or 200 does not result in a serious bit error degradation. The percentage 

difference in BER's for both cases is largest at J = 200 and is about 10%. 

4.1.2.4 Upperbound on Scheme 2 

A simplified version of Scheme 2 in which the receiver does not perform step 1 of 

Scheme 2 is considered in this section. The BER of the resulting scheme, which we will 

be referred to as Scheme 2A, is an upperbound on the BER of Scheme 2. Its performance 

relative to that of Scheme 2 gives the loss in omitting step 1: 

Using (4.9) and the law of total probability, the probability that the total number of hits 

on symbol "s" given ks interferers can be written as 

L 
Pv{Zs=zs\ks} = J2Q2{zs^\ks). • (4.20) 

i=0 

For a given distribution of interferers {ko, k\,kju-i}, let 

• Di, i e { 1 , 2 , M - 1} be the event that z{ > z0 + L. 

• Ei, z.e {1,2, . . . . , M - 1} be the event that zl - z0 + L. 

We can write 

kiL Zi^L—1 

P r { A } = Y P r R = * } Yl MZo=z0\k0}, i = 1,2,...,M-l (4.21) 

Zi=L+l 2 0 = 0 

and 

kiL 

Pr{El}= Y F v i Z z = zl\kl}Pv{Z0 = zt-L\k0}, % = 1,2,..., M-l. (4.22) 
z ; = Z 

The probability of symbol error given a distribution of interferers {fco, ^M-i}> 

Pe(K + l,q,L\Ko = ko,Ki — k\, ...,KM-I — kM-i), is again given by (4.16), except with 

Ai and Bi replaced by Di and Ei respectively. 
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Figure 4.7 Probability of Symbol Error Vs Number of 
Active Users in System, Scheme 2, q = 200, M = 3. 



Chapter 4. Code Diversity Schemes 62 

l.OE-01 

1.0E-02 

g l.OE-03 
b w 

•£ 1.0E-04 

o 
S-l 

CM 

1.0E-05 

1.0E-06 

1.0E-07 

H 1 

0 

No Diversity 

Diversity degree L = 2 

Diversity degree L = 3 

Diversity degree L = 4 

Diversity degree L = 5 

50 100 150 

Number of Active Transmitters 

Figure 4.8 Probability of Bit Error Vs Number of Active Users, Scheme 2, q = 100. 

200 



Chapter 4. Code Diversity Schemes 63 



Chapter 4. Code Diversity Schemes 6 

q/J 

Figure 4.10 Optimal Diversity Level Vs q/J, Scheme 2. 
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The probability of symbol error, Pe(K + 1, q, L), can be obtained using the same method 

as used for Scheme 2, i.e. (4.17) with Ai replaced by Di and (4.18). 

For the binary case, i.e. M = 2, the BER is given by 

^ ( « - + l , , , i )=5: (^) ( i ) t (p r {ZM + i p r { E l } ) 
A;o — 0 zi=L-\-l 

E (k0) G) A E P ( * ) { > , 0 + = # - * 0 
fco=0 v u / x y * c = 0 

+ ^ P ( Z 1 = zo + ^ |^i=^-A;o)[>. , (4.23) 

For L = 1, Schemes 2 and 2A have the same symbol error probabilities. Figure 4.11 

shows the BER's for Scheme 1, Scheme 2 and Scheme 2A for L = 3. It can be seen that a 

significant degradation in the BER may be incurred if step 1 of Scheme 2 is not performed. 

For J = 20, the BER's are 1.09 x I O - 3 for Scheme 2 and 3.71 x 10~3 for Scheme 2A. The 

BER for Scheme 1 is lower than that for Scheme 2A for small values of J . However, for 

higher values of J, Scheme 2A has a lower BER than Scheme 1. 

4.1.3 Scheme 3 

In this section, we determine Pe(J,q,L) for Scheme 3. The decoding process in Scheme 

3 is identical to that in Scheme 2 except that when there is a complete hit on more than 

one symbol, the receiver uses the MAP decision rule based on {ho, h i , / I M - I } instead 

of randomly choosing one of the symbols whose hm is largest as the symbol sent by T 

[60]. We consider the binary case here; similar techniques can be used to extend the results 

to the M-ary case. Note that hm,m e { 0 , 1 , M — 1} is the sum of the number of hits 

(including those caused by T) on the mth symbol of T's L frequency bins. This is different 
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Number of Active Transmitters 

Figure 4.11 Probability of Bit Error Vs Number of Active Users, ' 
Scheme 1, Scheme 2 and Scheme 2A for q = 200, L = 3. 
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from z{,i 6 {0,1, ...,M — 1} which is the sum of the number of hits in the ith symbol of 

T's L frequency bin caused by the interferers. Because the MAP decision rule is used in 

Scheme 3, using the sum of the hits caused by all the transmitters (including T) is seen as 

a better approach in the derivation. . 

Let F be the event that a complete hit on more than one symbol has occurred. Further­

more, let P r { T sent 0\ho, hi, J, F} be the probability that T transmitted symbol "0" given 

that event F occurred and there is a total of ho and hi hits by the J transmitters in T's L 

frequency bins. Based on the given information, the receiver in Scheme 3 chooses the most 

probable symbol that was sent by T. It might be noted from symmetry that, 

Pr {T sent 0\H0 = h0,Hi = huJ,F} = P r{T sent 1\H0 = h,Hi = h0,J,F}, (4.24) 

P r { i J 0 = h0,Hi = hi\T sent 0, J } = P r { i 7 0 = h,Hi = ^o |T sent 1 ,J} , (4.25) 

and 

Px{F\T sent 0, J } = P r { F | T sent 1, J } . (4.26) 

Furthermore 

Pr{F\J} = Pr{T sent 0| J } P r { F | T sent 0, J} + P r{T sent 1| J}?r{F\T sent 1, J} 

= P r { F | T sent 0, J } . (4.27) 

Using Bayes' rule, we can write 

P r r T , n | , , r F l Pr{fe 0 , hj\T sent 0, J, F } P r { T sent 0| J , F} • 
Pr {T sent 0 ft0,/ii, J,t\ = — — — (4.28) 

P r { / i o , / i i | J , F) 

where 

T W , , , ™ n T m Pr{/io, hi, F I T sent 0, J] „ 
P r { f c o , |T sent 0, J, F) = j?|x sent 0, J} ( 4 ' 2 9 ) 
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and 

Pr{T sent 0\J,F} = ^. (4.30) 

Using (4.28), (4.29) and (4.30), we can write the probability of symbol error for Scheme 3 

given Ho = ho and Hi = hi as 

P r { e r r o r | / i 0 , / i i , J] = Pi{F\h0,hi,J} x m i n ( P r { T sent 0\h0, hi, J , F}, 

Pr{T sent l | 7 i 0 , ^ i , J,F}) 

= ?r{F\hp,hi,J} 
2Fv{h0,hi\J,F} 

fPv{h0,hi,F\T sent 0, J } Pr{h0,hi,F\T sent 1, J } \ 
V P r { F | T sent 0, J} ' P r { F | T sent 1, J} 

_ P r { F [ J } 
~ 2?r{h0,hi\J} 

. fPv{h0, huF\T sent 0, J} Pv{h0, huF\T sent 1, J } ' 
X m m V P r { F | T sent 0, J } ' P r { F | T sent 1, J } , - ^ } 

x m m 

Using (4.26), (4.27) and (4.31), 

P r {error |/io, J} = 
2 P r { / t 0 , / » i | J } 

x m i n (Pv{h0, h,F\T sent 0, J } , P r { / t 0 , -F |T sent 1, J}). (4.32) 

Hence 

( J - l ) I ( J I - f e o ) 

Pe(J,q,L)= E P r f / i o ^ i l J j P r i e r r o r l / i o , ^ , . / } 

ho=L h\=L 

( J - l ) i (JI-fto) 
= 9 E E m i n ( P r { / i o , / i i , i 7 1 | T sent 0, J } , 2 

ho=L h\=L 

~Pv{ho,h\,F\T sent 1, J } ) . (4.33) 
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where 

K 
Pr{/ io, h\, F\T sent m, J} = P r{&i interferers sent m | T sent m, J} 

h=l 
x Vv{hm, F\T sent m, J, k^} 

E 
K 

0 

X 

L 

Y^2(hm ~ L,i\K - kw). (4.34) 

4.1.3.1 Numerical Results 

Numerical results obtained using (4.33) and (4.34) indicate that for q = 200 and 

J > 2(L — 1 ) , there is almost no difference between the BER's for Scheme 2 and Scheme 

3. For r < J < 2(L — 1), the maximum percentage difference for L — 2,3,4 and 5 is about 

10%. The difference between the BER's of Schemes 2 and 3 indicates that there are instances 

in which the receiver should choose symbol " m " even though hm < hm*. To explain this 

somewhat counter-intuitive statement, consider the case where q = 8, L = 3, J = 3, fro = 3 

and hi = 4. A sufficient condition to show that T is more likely to have transmitted symbol 

"0" given ho = 3 and hi = 4, is 

P r { / i 0 = 3, hi = 4, F j T sent 1} = 0.004783. 

The results obtained for L = 1,2,3,4 and q = 200 are plotted in Figure 4.12. Due to the 

computational complexity involved, the results shown are limited to 50 active transmitters. 

Pv{h0 = 3,hi= 4, F | T sent 0} > Pr{h0 = 3, h 1 = 4 , J F | T sent 1}. (4.35) 

It can be verified that P r { / i 0 = 3, hi = 4, F\T sent 0} = 0.0-1674 whereas 
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4.1.4 Scheme 4 

The assumptions made in the derivation of Pe(J,q,L) for Scheme 4 are identical 

to those for Scheme 3 except that Scheme 4 uses the MAP decision rule based on 

{no,i , no,2, 1̂,2, •••no,L^ where n m / is the total number of hits on the mth symbol 

of T's Ith frequency bin [60]. 

Using Bayes' rule, we can write 

P r { T sent 0 | n 0 , i , n i ; i , . . . , n 0 , i , n i , i , 

_ P r{no i i , r a i ) i , . . . , r eo ) £ , r e i ) x |T sent 0, J,F) 

P r { r a o , i , r c i j i , . : . , n 0 ) £ , r a i ) £ | J , i 7 ' } 

x P r{T sent 0\J,F} (4.36) 

where 

Pr{rao,i,rai,n . . . , n 0 , i , n i ; i | T sent 0, J,F}. 

_ P r { n o i i , n i i i , . . . , n o ! x , n i i £ , F | T sent 0, j] 

P r { F | T sent 0, J } 

Using (4.30), (4.36), and (4.37) we can write the probability of symbol error given 

{wo, i ,wi , i>—> r a o ,£ ,» i , i } as 

Pr{e r ro r | n 0 , i , n u , . . . n 0 , i , n i . i , J] 

_='Pr{F\notl,n1}i,...n0iL,niiL,j} 

x min (Pr{T sent Olno.i jni ,! , . . .720,1,711^, J , F } , 

P r { T sent l | n 0 , i , n i , i , ...n0iL,n^L,J,F}') 

_ P r { F l n o ! i , r e u , . . . r e o ! £ , r e l i £ , j } 

2Pr{ra 0 , i , " 4 , 1 , ...ra 0,£, T » I , I | J , F.} 
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' P r { n o 1 i , r a i , i , . . . n n I £ , n i £, . .F|T sent 0, J } 
x m m P r { F | T s e n t 0, J } 

Pr{ reo ! i , r e i i i , . . . r eo ! £ ,n i i x , .F |T sent 1, j } 

P r { F | T s e n t 1, J} 
P r { F | J } 

2 P r { n 0 , i , n 1 ) 1 , . . . n 0 , L , n 1 ) i | j } 

P r { n o J i , n i i i , . . . n 0 ) i , r a i ) £ , F | T sent 0, J } 
x mm P r { F | T sent 0, J } 

P r { w o , i , r a i , i , - n o i z , n i i £ , F | T sent 1, j } 

P r { F | T sent 1, J } 

Using (4.26), (4.27) and (4.38), 

Hence 
Pe(J,q,L) 

j - i J - i J - i J - i 

•= E E ••• E E 
no,i=0 Jii.i =0 no,L=0 ni,L=0 

P r { n 0 ) i , n i , i , . . . , n o , £ , » i , l | ^ } 

x P r { e r r o r | n 0 ! i , n i , i , n 0 i L , n 1 ( £ , J } 
J - l J - l J - l J - l 

! E >: E E 
no,i=0 7Ji,i=0 7io,i=0 ni,L=0 

m i n ( P r { n o , i , n i , i , ...,n0iL,n1>L,F\T'sent 0, J } , 

P r { n o , i , n i i i , . . . , n 0 ] i , n i ) £ , F | T sent 1, j } ) 

(4.38) 

P r { e r r o r | r c n , i , n i i i , . . . n 0 l £ , r a l j £ , J } 

1 

2 P r { n o , i , n i ) i , . . . n 0 , £ , n i j £ | J } 

x m i n ( P r { n 0 i i , n 1 ) i , . . .n 0 ,£ , n 1 ) j f j , F | T sent 0, J } , 

P r { n o J i , n i j i , . . . n 0 ) £ , n 1 , i , F | T s e n t . l , j } ) . (4.39) 
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J - l J - l J - l J - l 

£ - E E 
no,i = l n i , i=l rao,L = l rii,L=l 

r n i n ( P r { n o ) i , n i i i , . . . , n 0 , £ , ? ? i , £ | T sent 0, J } , 

P r { n o , i , n i , i , . . . , n o ) £ , r c i , £ | T sent 1, j } ) . where 

P r { n o , i , n i ) i , . . . , n 0 j £ , r a i i i | T sent m , j } 
A' 

= Pr{fc=j interferers sent m | T sent m , J} 

X P r { n ^ / j T sent m, J,kw] 

x P r { n m j i , . . . , n T O j i | T sent m, J , n 1 | £ } 

= E (ĵ )(̂ ) < 3 4 ( n m , i , - , % , i l M 

" x Q^{nm,i - l,...,nm>L - l\K - kw) (4.41) 

and Q4(nSii,nSt2, ...,nSti\ks) - is the probability of having exactly ns>2, ws,x hits on 

T's 1st, 2nd, . . . ,X t h frequency bins respectively by the &s interferers transmitting symbol 

"s". Denoting 

P ( D M 

fl = V ^ , (4.42) 

(^4(•,.,....,., .|.) can be calculated recursively as 

= PoQ4{nm,i,nm!2, ...,nmiL\km - l ) 

1 
+ Pl Q4:(nm,i - 1, n m > 2 , n m j L \ k m - l ) 

+ Q4(nm>i,nmt2.- l , . . . , n m i i | f c m - l ) + ... 
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+ P 2 

+ Qi{nm,i,nmt2, ...,nm>L - l\km - l] 

1 
Q±(nm,\ - l,nm>2 - 1, . . . ,n m , i |^m - l ) 

+ Q4(nm>i - l , n m , 2 , " m , 3 - 1, •••,nmtL\km - l ) 

+ 
+ Qi(nm,l - l , « m , 2 , • • • , « m , i ~ l|&m - l ) + . 

+ Q 4 ( « m , l ) ' n m , 2 ~ l , « m , 3 ~ 15 •••,"m,i|^m - l ) 

+ 
+ ^ ( " m , ! , —,n.m,L-l ~ I j^m. i ~ l|&m ~ l ) 

+ -
+ P i Q ^ m , ! - l , n m , 2 - 1, . . . ,n r a , i - ljfcm - l ) (4.43) 

with initial conditions 

<54("m,l,"m,2, ••• ,™m,l |0) 

1 n m _i = n m j 2 

0 o t h e r w i s e . 
(4.44) 

The BER for Scheme 4 was evaluated using (4.40) for q = 200, X = 1,2,3 and 4. A 

comparison with the BER for Scheme 3 indicated that there is very little difference between 

the performances of the two schemes. This difference is approximately 0.01%. However, the 

computational task for evaluating the performance of Scheme 4 is L fold more than Scheme 

3. Hence the technique developed for Scheme 3 may be used to obtain a tight upperbound 

on the BER of Scheme 4. 
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4.2 Error Control Coding 

All the code diversity schemes considered in previous sections used a repetition code 

as a means of error control coding. The same symbol is transmitted by a particular by a 

particular transmitter in all its diversity branches. In this section, an error control scheme 

using the random code approach is studied. The only source of interference is multiple access 

interference caused by other transmitters and except for the error control coding scheme, the 

system model used is the same as the one in the previous section. It will be shown that the 

BER with random coding is lower than the repetition code BER. 

4.2.1 Random Coding Scheme 

In this scheme, each transmitter/receiver pair uses a strategy where L distinct frequency 

bins are selected for transmission for each symbol. However, unlike the repetitive coding 

scheme, the tone transmitted in each of the L frequency bins is randomly selected. For 

example, it might be decided a priori that when a particular transmitter wants to transmit 

symbol "0", the actual transmission will involve transmitting symbols "0" and "1" in the 

first and second frequency bin respectively. Any receiver wishing to decode transmission 

from this particular transmitter must know a priori the encoding scheme to decode the actual 

symbol. 

For simplicity we shall assume, without loss of generality, that the marked transmitter 

T transmits the same symbol in all its L frequency bins. A receiver which decodes the 

transmission from T will not be able to decode T's transmitted symbol without ambiguity 

only when the L frequency bins contains more than 1 set of identical symbols which have 

been hit. In such cases, the receiver randomly select any one of these symbols which have 

been detected in all L frequency bins as the decoded symbol. 
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To evaluate Pe(J,q,L), we need to evaluate the joint probability of the number of 

interferers transmitting in T's L frequency bins, Pr(&i, b2, bi\K), where 6; is the total 

number of interferers transmitting in the Ith frequency bin. This probability can be easily 

evaluated using the following equation 

Pr (&!,..., bL\K) = Pr (&!,..., bL\K -
U J 

( Q - L \ 

+ - ^ ^ { P r (61 - 1, 62, &i|A^ - 1) + . . . 
U J 

+ Pr (fei, 62, 6i - - 1)} + ... 
( G - L \ 

+ - ^ ^ { P r (h - 1, b2 - 1 , b L \ K - 1) + ... 
U J 

+ Pr(6i, ...,bL-i - I M - 1\K-1)} + ... 

+ -Upr (&! - 1, b2 - 1 , b L - l\K - 1)} (4.45) 

with initial conditions 

?r(b1M,...M\0) = { l ' \ = h = --- = b L = °. (4-46) 
I- U otherwise 

As in the previous cases, we shall assume that T transmitted symbol "0" Given the number of 

interferers transmitting in a particular frequency bin, the distribution of hits on the symbols 

of that particular frequency bin is a multinomial distribution which can be written as-

P ( \h\ b i 1 (l V' 
Pr (n 0 >/,ni,i, nM.-\,i\oi) (n0A - 1 ) ! n u \ . ..nM_u\\Mj ' 

M-l 

m=l 

where n m ; is as defined in Section 4.1.4. Furthermore conditioned on the number of 

interferers transmitting in each frequency bin, the distribution of hits on the symbols for 
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each bin are independent. Hence we can write the conditional joint distribution of hits on 

the symbols for the L frequency bins as 

Pr ( ra 0 , l ,« l , l5 - - - 5

r a M-l,1 ,^1,1 , • • • , ™ M - 1 , 1 > —,NM-\,L\h\M, — ^ L ) 

L 

= J J P r {n0ihnlil,...,nM_l!i\bi). (4.48) 
. 1=1 

Using equations (4.47) and (4.48), we can determine the number of symbols besides "0" 

that is detected in all the L frequency bins. Therefore using equations (4.45), (4.47) and 

(4.48), we can write 
K K K 

P{K + l,q,L) = E E ••• E ^(b1,b2,...,bL\K)x 
6i=16 2 = l bL=l 

- | P r ( o n l y symbol 1 detected|&i, 6 2 , b £ ) 

+ Pr(only symbol 2 detected|&i, b2,b£) + ... 

+ Pr(only symbol M - l detected b 2 , + 

- | P r ( o n l y 2 other symbols detected|&i, b2, ' + ••• 

M - l 

M 
| P r ( a l l other symbols detected|&i, b 2 , 6 / J j (4.49) 

For the binary case, a much simpler form of the BER expression can be derived. 

Conditioned on the number of interferers transmitting in each of T's L frequency bins, 

the probability that symbol "1" is detected in all L frequency bins is given by 
L 

Pr(rai, i > 0,7*1,2 > 0 , . . . , n u > 0|&i, 6 2 , h ) = JJ^ ~ P r (no,J = k\k)) 
1=1 

L / -. \ h\ 

w ( ) )• «•*»• 
/=i v y 
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Therefore 

' K K K L /]\b' 

Pe(K + l,q,L) = - X) H - S PrCftl^.-.^t^IlC1- (2-) )•' ( 4 - 5 1 ) 

6 1 = 16 2 =1 bL=l 1=1 ^ ' 

4.2.2 Numerical Results 

Equations (4.45) and (4.51) were used to calculate the BER for q = 200, 100 and 

L = 1, 2 and 3. The results showing the BER versus J are plotted in Figures 4.13 and 

4.14. Unlike the other schemes, the interferers for this scheme cannot be partitioned into 

symbol groups. This results in fairly extensive computational memory usage and the BER's 

for values of J beyond 50 transmitters were not computed. 

It can be seen that the general behavior of the BER is quite similar to those shown for 

repetition code schemes. However, from the numerical results, the BER's using the random 

coding scheme are lower than those obtained using scheme 1. For example, when J = 20 

and L — 3, Pe(J,q,L) is 1.130 x 10~3 and 1.236 x 10 - 3 for the random coding scheme and 

scheme 1 respectively. The percentage difference is larger for smaller values of J . This is 

because for large values of J in scheme 1, the number of possible ways of hitting a particular 

symbol in one of T's L frequency bins increases. This tends to make the interference random­

like in nature. Hence the difference between the two schemes diminishes for a fixed value 

of L as J increases. From this reasoning and the numerical results obtained, we conjecture 

that the BER of the random code scheme is a lower bound to that of scheme 1. 
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Chapter 5 
Code Diversity Schemes in the Presence 

of Noise and Rayleigh Fading 

In this chapter, we consider the BER performance of code diversity schemes in the 

presence of noise and fading. The channel considered is a Rayleigh fading channel with 

AWGN. Two different models are considered here. 

In the first model, the signal strength detected at the receiver for a given tone is the same, 

whether one or more transmitters send that tone. This simplifying assumption is valid in 

cases where there is usually only a small number of transmitters transmitting a particular tone 

simultaneously and hence the probability of a hit is low. A detection threshold is used by the 

receiver to determine if a tone is detected and a majority voting rule is used to determine the 

symbol transmitted. In the second model, the signal strength of a given tone is dependent on 

the number of transmitters transmitting that tone. The signals from the transmitters sending 

a given tone are assumed to be independently faded and are vector added to determine the 

resultant signal for that tone. The simplifying assumption made in the first model is thus 

removed. Detection of the tone is based on the resultant signal strength. 

5.1 Majority Vote Decoding Scheme with Threshold Detection 

In this section, we derive an expression for the symbol error probability Pe(J,q,L) for 

a system in Rayleigh fading and AWGN [61]. Due to the fading, the receiver may not detect 

a symbol tone which was transmitted; this event is referred to as a deletion. The probability 

of such a deletion is given by [62] 

(5.1) 

81 
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where 8 is the detection threshold normalized with respect to the noise and p is the average 

signal-to-noise ratio. 

Due to the noise, it is possible that a receiver detects a certain tone even though that tone 

was not sent by any of the transmitters. This is. known as a false alarm and its probability 

can be expressed as [62] 

(5.2) 

The events, deletion and false alarm, are mutually exclusive. A deletion on a particular 

tone can occur only if at least one transmitter sent that particular tone and a false alarm 

on a particular tone can occur only if no transmitter sent that particular tone. Furthermore, 

deletion and false alarm events are assumed independent across all the tones in the system. 

For example, if there are two different tones transmitted in a particular frequency bin of a 

b—.ary system, possible deletions at the two symbol tones occur independently and possible 

false alarms in the other three symbol tones occur independently. 

A tone is said to be detected, if the receiver detection threshold is exceeded (either 

because the tone was sent by one of the transmitters or a false alarm has occurred). To 

decode the symbol sent by a particular transmitter T, the receiver sums up the number of 

times each symbol has been detected in T's L frequency bins and selects the symbol detected 

the largest number of times as the symbol sent by T. In the case of a tie, the receiver randomly 

selects one of these symbols as the symbol sent by T. 

As in previous sections, it is convenient to partition the total number of interferers, 
M - l 

K = J — 1, into the M symbol groups where ks = K and ks is the number of 

interferers transmitting symbol "s". 
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In addition to the assumptions made in Section 4.1.1, the following assumptions are 

made in the derivation: 

• as long as there is one or more hits caused by the users on a particular tone, po remains 

unchanged. 

• the receiver uses a majority vote decoding rule and chooses the symbol that has been 

hit most frequently in the L frequency bins. (Note that because pp in general is non­

zero, the receiver may not be able to find at least one set of tones corresponding to a 

particular symbol in all of T's L frequency bins.) If there are two or more symbols 

with the largest number of hits, the receiver declares randomly one of these symbols as 

the symbol decoded. 

Let X(d, f\l, ks) be the probability that there are exactly d e { 0 , 1 , / } deletions and 

/ G { 0 , 1 , L — 1} false alarms in T's L frequency bins given that there are exactly / of 

these L bins hit by the ks interferers. This probability can be calculated using 

X(dJ\l,k,)= ( ^ ^ ( l - p / ; ) ' - " ^ ^ ) ^ ! ! - ^ ) ^ (5.3) 

Furthermore let R(i\ks) be the probability of having exactly i of the symbol 

s E {1,2, . . . , M - 1} tones within T's L frequency bins detected by the receiver. Us­

ing (4.1) and (5.3), R(i\k3) can be calculated as 

R(i\ks) = Qi(0\ks)(L:\F 

+ Qi(l\ks 

+ ... 

+ Qi{t\ks 

1 ' 1 \ A . r - A ( L - l 
J J " ' \i + d - l 

•d=max,(l-i ,0) ^ J y x 

E C)^-.^G+;^)*"'(1-w)I_i 

d=max (t—i,0) 
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+ ... 
L 

„d / i • \L—d 
Ld=L-i 

' L t 

= X)Qi(*|fcs)' . E X{d,i + d-t\t,ks). " (5.4) 
t=0 rf=max(<-i,0) 

where Qi(.\.) is as defined in (4.1). 

As in the previous sections, assuming that T transmitted the symbol "0", the number 

of frequency bin hits detected at the receiver on symbol "0" at T's chosen frequency bins 

can be calculated as 

s ^ - { L t t ) p D ~ ^ i - p j > y - ( 5 - 5 ) 

Let Fs be the event that the number of frequency bins (of T's L bins) with tones 

detected on the sth symbol exceeds the corresponding number on the "0" symbol and Es be 

the event that the number of frequency bins with tones detected on the symbol sth equals the 

corresponding number on the "0" symbol. Using (5.4) and (5.5), the conditional probabilities 

associated with these event can be written as . • 

L . 
Pv{Fs\ks} = S(i) Y R(j\ks) (5.6) 

./=*'+1 

and 

: Pr{ /V/.',•} - S(i)ll(i A:.,). (5.7) 

The probability of symbol error given a distribution of interferers {fco, k\,fc^f-i} can be 

written as . 

Pe(K + 1, q, L\KQ = &o, Ki = h , K M - I = kM-i) = 
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M - l 
P r { F ! U F2 U ... U FM-i) + ̂  E P r W II t 1 " P r ^ ~ 

i = l j^i 

+1 E PR »̂} p^̂> n - pr >̂ -pr™)+-
i < « < i < M - i fc^j.i 

, x M - l 
i=i 

The first term of (5.8) can be written as [59] 

M - l 

P r { F ! U F 2 U . . . . U F M - l } = E P R { F ' } - E P r { ^ } P r { ^ } + 
i = l l<?'<i<M-l 

Y Pr{Ft}Pv{FJ}Pv{Fk}+ .... 
: l<i<j<k<M-l 

+ ( - i f n pr^̂ - (5-9) 

l < i < M - l 

Since 

Pe{K + l,q,L)= YI ?r{Ko = k0K1=kly...,KM_1 = kM_1} 
ko+h+ ...+kM-i—K 

Pe(K+ l,q,L\K0 = k0,K1 = k1,...,KM_1 = kM_1) (5.10) 

we can obtain Pe(K + l,q,L) using (4.5), (5.4), (5.5), (5.6), (5.7), (5.8) and (5.9). 

5.1.1 Numerical Results 

For given values of the average signal to noise ratio, p, and detection threshold, i3, 

equations (5.1) and (5.2) allow us to determine the corresponding values of po and PF-

These values are used to obtain the symbol error rate according to the procedure described 

above. In the results presented below, binary signalling (i.e. M = 2) and q = 200 is assumed. 
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Figure 5.1 Probability of Bit Error Versus Detection Threshold, p = 20 dB and J = 50. 



Chapter 5. Code Diversity Schemes in the Presence of Noise and Rayleigh Fading 87 

Plots of bit error rate, pj,, as a function of the detection threshold, 3 for L = 1,2,3 and 

4, p = 20 dB, and J = 50 are shown in Figure 5.1. It can be seen that the optimum value, 

80pt, of the detection threshold which minimizes pi is quite insensitive to changes in L. The 

value of 3opt is about 2.6. The curves also show that pi is not very sensitive to changes in 

8 around 8opt. Corresponding plots for J = 150 are shown in Figure 5.2. The observations 

drawn from Figure 5.1 also hold for Figure 5.2. 

Curves of pi versus 8 for J = 25,50, 75 and 100, p = 20 dB and L = 2 appear in Figure 

5.3. The value of 8opt is about 2.9 for the various values of J . In Figure 5.5 where L = 4, 

8opt is again about 2.9 for the various values of J. Figure 5.4 illustrates how pj changes 

with 8 for p = 10, 15, 20 and 25 dB with J = 50 and L = 2. Similar plots for L = 4 is 

shown in Figure 5.6. The value of 3opt tends to increase with 75 in both cases. 

The ph versus J curves for L = 1, 2, 3 and 4, p = 20 dB and 3 = 2.6 (a value which is 

close to the optimum) are shown in Figure 5.7: It can be seen that code diversity generally 

yields a lower BER. Corresponding curves for p - 15 dB and 8 = 2.6 appear in Figure 5.8. 

In the numerical results above, it is assumed that the transmitters for each diversity 

group is transmitting at the same power for each diversity branch as the transmitter with no 

diversity. This assumption is valid if there is no constraint on the total power transmitted and 

there is a limit on the power emission level at the frequency bin level. Because of the power 

emission limit at the frequency bin level, the transmitters with lower diversity degrees are 

not able to transmit at maximum power. In some situations, these assumptions may not be 

valid and it may be more appropriate to fix the overall transmitted power by each transmitter. 

In Figure 5.9, we have plotted the curves where the SNR for each diversity branch is p/L 

for p = 20 dB and 8 = 2.6. It can be seen that code diversity still yields a lower BER. 
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Figure 5.7 Probability of Bit Error Versus J,p = 20 dB and /3 = 2.6. 
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Corresponding curves for p = 15 dB and 8 = 2.6 appear in Figure 5.10. 

5.2 Majority Vote Decoding Without Threshold Detection 

In this section, we derive an expression for the symbol error probability Pe(J,q,L) 

for a system model in which the resultant signal for each symbol tone at the receiver is a 

vector addition of each individual signal transmitted by the transmitters for that particular 

symbol tone. The signal transmitted by each individual transmitter is assumed to undergo 

independent fading and the signal strength of each individual signal is assumed to be 

statistically identical. In other words, the individual signals are assumed to have independent 

and identically distributed (i.i.d) Rayleigh distributed amplitudes and uniformly distributed 

phase over (0, 2?r] and the variance of the in-phase and quadrature phase is CT2 if the signals 

from all transmitters are received at the same average power. The noise is assumed to be 

complex Gaussian with variance CT2. These signals (including the noise) are added vectorially 

to form a resultant signal. As an example, in Figure 5.11, three individual signals and the 

noise are vector added to produce the resultant signal. . 

The modulation scheme considered here is Non-coherent Binary Frequency Shift Keying 

(BFSK) and in the decoding process, the receiver selects the tone with the largest signal 

strength as the tone detected in each of T's L frequency bins. This signal strength at the 

sampling instance of the filter output is Rayleigh distributed according to the magnitude of 

the resultant signal of that particular tone. Majority vote decoding is then used to determine 

the symbol transmitted by T. In the event of a tie between the two symbols, the receiver 

randomly chooses any of them. This decoding process is illustrated in Figure 5.12 for the 

case of L = 5. 
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Figure 5.12 Majority Vote Decoding Without Detection Threshold, L = 5. 

Let Smj be the resultant vector of the 'mih, m £ {0,1}, symbol of T's Ith frequency 

bin: It is shown in Appendix B that Smji is Rayleigh distributed with uniform phase over 

(0, 2TT]. If nmj is the total number of hits on the mth symbol of T's'lth frequency bin, 
—* 

as defined in Section 4.1.4, the probability density function of the magnitude, Smii, of Smii 
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can be written as 

f ffil^a e~ J " . ' / 2 ( W r o -" r ? + g ") if T did not transmit m 
/ 5 - ' ^ = "m,'g' pj» a e - J

a

m , , / 2 ( ( n m , l - i ) g ? + g » + ^ ) i f T transmitted m ' 

(5.11) 

i.e. a Rayleigh distribution with mean and variance of the following form \fn{o-2 + <?%)/2 

and (2 — ir/2)(al + a2) respectively where 

2 / nm,lcr'i ^ T did not transmit m 
"m,( l ) cr̂  + cr2 + cr2 if T transmitted m 

and the average signal to interferer power ratio (SIR), ~pl = cr 2/cr 2. Hence the conditional 

probability of the receiver detecting "0" and "1" in the Ith frequency bin given that T 

transmitted "0" can be written as 

Po,l\T0 = Pr{5 ,

0 )z> Sij\n0>l, n ^ / j T transmitted 0} 

fs0,, (so,/|«o,/, nlti,T transmitted 0)dsQjl fSl<l 

0 5i, 

(•SI,/(SO,ZK ,Z,™I,Z,T transmitted 0)dsltl) 

n u - l ) a 2 + a2 + 2a2 
(5.13) 

and 

Pl ,Z |T 0 - 1 _ ^0 ,Z |T o 

[nQ!l + n h l - l ) a 2 + a2 + 2a2 
(5.14) 

respectively. Similar conditional probabilities can be obtained in the case where T transmitted 

"1" by symmetry. Using the law of total probability, we can write 

PQI — Pr{T transmitted 0} Po,Z|To + P r { ^ transmitted l}-Po,z|Ti 
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(2n0>l-l)a2 + a2 + 2a2

n 

(5.15) 
2((n< M + n 1 > , - l)<7? + <72 + 2<72) 

and 

Pi,i = 1 - Po,z • 

(2nlt}-l)a2 + a2 + 2a2

n 

(5.16) 
2((n0!l + n u - l ) a j + a2 + 2al)-

Note that when the SIR is one and the average signal to noise ratio, p = cr2/a2, is large 

Po,/ and P\ti is approximately ^ / / ( rao, / -f nij) and ni,//(no,j + n y ) respectively. In such 

situations, assuming that the tone detected at each frequency bin is dependent solely on the 

relative number of transmitters transmitting that particular tone as compared to the other tone 

in the frequency bin is a good approximation, just as in Section 4.1.1. Conversely, when p 

is small, Po,/ and Pij tends toward 0.5 as expected. 

Let Xm be the number of frequency bins among T's L frequency bins that detected 

the symbol " m " . The probability of error,-given T transmitted "0" (the dependency on 

{«o,i , ^0,2, ni,2, "o,£, n i , i } is n o t explicitly stated) can be written in terms of Xm as 

For example in the case of L — 3, 

P e ( X 0 , X i | T transmitted 0) = P 0 ! i P i > 2 P i , 3 + 1̂,1̂ 0,2̂ 1,3 + 1̂,1̂ 1,2̂ 0,3- (5.18) 

The probability of having exactly n m , i , nmt2, nm,L hits on T's 1 s t, 2 n d , I t h 

frequency bins respectively by km interferers transmitting symbol "m" can be calculated 

P e ( X 0 , X i | T transmitted 0) = j p ] 

Given { n 0 , i , n i , i , "0,2, «i,2, ••• ,«o,£,«i 
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using equation (4.41) and (4.43). Hence the average probability of error given the number 

of transmitters, J , can be written as 

Pe(J,q,L) = Pr{error|J, q, L,T sent 0} 

= Y, P r j n o . i j n i , ! , n 0 , i , n ^ / J J , T sent 0} 
» o , i , n i , i , . . . , » i o , i ) n i , i 

x Pr{Xi > Xo|no Ii ,ni,i, . . . ,no,I,ni Il} 
K / rs\ / i \ A ' fco ki k0 ki 

= £ . ( £ ) U) E E - E E o.(»....-.»ui*.) 
i i=0 no,i=l-ni,i=0 n o , L = l WI,L=0 

x #4 ("0,1 - 1, - , " o , £ - l|*o) 

X Pr{A"i > L/2} (5.19) 

for odd values of L and 

Pe( J , q, L) = Pr{error| J , q, L, T sent 0} 

= E (f )u) E E - E E <fcK..~.»wi*i) 
fci=0 n o , i = l «i,i=0 TIO,L=1 ni ,L=0 

X <54(̂ 0,1 - 1, • •• ,n 0 ) £ - l|fco) 

x [Pr{*i > 1/2} + ^Pr{^! > L/2}}. (5.20) 

for even values of L. 

5.2.1 Numerical Results 

Using equations (5.15), (5.16), (5.17), (5.19) and (5.20), Pe(J,q,L) for L = 1 and 2 can 

be calculated. Figures 5.13 and 5.14 show the plots for SNR of 20 dB and 10 dB respectively 

with the SIR of one and Figure 5.15 shows the plots for SNR and SIR of 20 dB. It can be 

seen that the BER for L = 1 is lower even for small values of J and the percentage difference 
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is greater in the case of higher SNR values. For example, for J = 6, the percentage BER 

difference is about 5% and 27% for SNR values of 10 dB and 20 dB respectively. The 

explanation for this somewhat surprising result is due to the fact that for higher SNR values, 
r 

multiple access interference is the predominant cause of error. The scheme which makes a 

hard decision on the symbol transmitted at the frequency bin level is especially susceptible to 

multiple access interference especially for larger diversity levels where the interferers have a 

higher chance of transmitting in the frequency bins of the marked transmitter. This is shown 

analytically for the case of J = 2 in Appendix C. 

It should also be noted that at high SNR values, this scheme is similar to scheme 1 

of Chapter 4 which shows that Pe(J,q,L) is lower for higher values of L in cases where 

the number of interferers is reasonably low. There is however an important difference — 

scheme 1 of Chapter 4 does a majority vote only when there is a complete hit on more than 

1 symbol. This suggests that threshold detection to determine if there is more than one set 

of complete hit is useful to lower the BER in cases where the SNR is large. 

5.3 Soft Decision Decoding Scheme 

The scheme considered in this section is a soft decision decoding scheme. The receiver 

for such a scheme with L = 3 is shown in Figure 5.16. All other aspects of the system 

model, apart from the decoding process, are as described in Section 5.2. 

The incoming signal is filtered at each tone in all of T's L frequency bins, resulting 

in a Rayleigh distributed random variable at the output of each filter. Instead of making a 

decision on the symbol detected at each frequency bin as in the previous scheme, the outputs 

of these filters for the same symbol are added together, resulting in M scalar quantities for a 
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Figure 5.13 Probability of Bit Error Versus J, SNR = 20 dB and q = 200. 
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Figure 5.14 Probability of Bit Error Versus J, SNR = 10 dB and q = 200. 
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Figure 5.15 Probability of Bit Error Versus J, SNR = 20 dB, SIR = 20 dB and q = 200. 
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Figure 5.16 Soft Decision Decoding 

M-ary system. The decision rule used by the decoder is to declare the symbol corresponding 

to the largest of these M values as the decoded symbol. 

Conditioned on the number of transmitters transmitting in each tone of T's L frequency 

bins, n^i, •••, no,£, ni,L> t n e magnitude of the filter output corresponding to symbol 

m and the Ith frequency bin, Smj, is only dependent on nmA. Hence we can write 

fsrn,l(sm,l\no,i,ni,l,---,no,L,nltL) = / s (sm ii|nm j/) (5.21) 

and fsml (sm,i\nm,i) is Rayleigh distribution as given by equation (5.11). Since Smj is only 

dependent on nmj, the probability density of the composite signal of symbol " m " can be 

obtained by 

/ 5 m ( % | n o , l , « l , l , - : " 0 , I , n u ) = fsm(sm\nm,l, • • • , « m , l ) 

• = fsmA(sm,i\nm,i) <S> fsma{sm,2\nm,2) -®>fsm,L(sm,L\nm,L) (5-22) 

where ® is the convolution operation symbol. 
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Given that T transmits symbol "0", the conditional probability of error is given by 

Pe(J,q, L\no,u ni, l , n o , I , nltL,T sent 0) = J fso(s0\n0il, . . . , n 0 , i ) 

o 
. oo 

• J fsi ( s i . . . , n i , £ ) dsids0. (5.23) 

Using equations (4.41), (4.43) and (5.23), the average probability of bit error can be written as 

P e ( J , q, L) = Pr{error |J , q, L , . T sent 0} 
K / /1 \ K • _h> fco fei 

= E(f)Q) E E - E E « < K . »,,*) 
fci=0 n o , i = l ni,i=0 n 0 ; i , = l n i , i = 0 

X (54(^0,1 - l , . . . , n 0 ) i - l|&o) 
0 0 0 0 

x J fs1(si\niti,...,n1>L) dsi . j fs0(s0\no!i,...,n0tL) ds0. (5.24) 
so . 0 ' 

5.3.1 Numerical Results 

By using equations (4.41), (4.43), (5.23) and (5.24), the probability of error can be 

determined. Unfortunately the computation complexity of this calculation quickly increases 

as the number of interferers and diversity level increase. Instead, Monte Carlo simulation was 

used to obtain numerical results. The probability of bit error versus number of transmitters 

for SNR of 20 dB arid 10 dB are shown in Figure 5.18 and 5.19 respectively. The results 

were obtained for cases where the number of interferers is 5, 10, 20, 50 and 100 for diversity 

degrees of 2, 3, 4 and 5. Along with the mean BER's, the 99% confidence levels of the 

simulation results are also shown. In the case where there is no diversity, this scheme is 

identical to the majority vote scheme described in Section 5.2. Therefore the exact BER's, 

calculated using equations (5.15), (5.16), (5.17) and (5.19) are shown in the figures. 
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Simulation results for cases where the total transmitter power is divided equally among 

the diversity branches are also obtained. Figures 5.20 and 5.21 shows the curves for cases 

where the SNR for transmitters with no diversity is 20 dB and 10 dB respectively. It can 

be seen that code diversity can yield a better BER when the SNR is relatively high as in 

the 20 dB case. However, in cases where the SNR is low, dividing the signal power by the 

number of diversity branches may not offer much improvement in the BER. Noise in each of" 

the diversity branches becomes an important factor and will reduce the performance of the 

system. Apart from the number of active users and frequency bins in the system, the optimal 

diversity degree is also dependent on the total power per transmitter and noise power ratio. 

With this receiver implementation, it can be seen that there is some advantage to using 

diversity in cases where the number of active transmitters is low. For example when J = 21, 

at an SNR of 20 dB, the BER is 46% less when L = 4 compared to the case of no diversity. 

Simulation results were also obtained using the optimal receiver structure for FSK signalling 

with diversity over a Rayleigh AWGN channel [63]. An example of such a receiver structure 

is shown in Figure 5.17. This receiver performs an additional operation by squaring the 

output of each filter prior to the summing operation. It was found that the BER for this 

receiver structure is not necessarily less than the soft decision receiver structure which uses 

the sum of the absolute values. In fact, using just the sum of the absolute values tends to 

achieve a better BER for parameter values in Figures 5.18 and 5.19. 

The reason why the optimal receiver structure for FSK signalling over a Rayleigh AWGN 

channel is no longer optimal in code diversity schemes is the distribution of hits on the symbol 

tones by the interferers. Unlike normal FSK signalling where the only source of interference 

is noise, code diversity schemes have to contend with multiple access interference. Unlike 
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Incoming 

Signal 

Figure 5.17 Optimal Receiver Structure for FSK Signalling 
over Rayleigh Channel with Diversity Degree of Three 

noise which is present and identically distributed in all diversity branches, the statistics of 

the multiple access interference is dependent on the number of interferers transmitting in that 

particular diversity branch and can be asymmetric across all diversity branches. 
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Chapter 6 

Conclusions 

Several aspects of FH-CDMA systems have been examined in this thesis. The effects of 

guard times in an asynchronous hopping slotted FH-CDMA system have been studied and a 

code diversity FH-CDMA system where the transmitters can transmit using L frequency bins 

for each symbol has been proposed. A number of decoding schemes for the code diversity 

system have been studied. 

In the asynchronous hopping systems, a method for calculating the packet error prob-

ability which takes into account the guard time has been proposed. This method does not 

use the independence assumption which is normally assumed in the literature. It is found 

that when the guard time is considered, the packet error rate can be as much as 40% lower. 

From the numerical results obtained, it is also found that the independence assumption is not 

as good when the.guard time is 2 hop intervals long. System performance measures such 

as the maximum normalized local throughput and unconstrained maximum normalized local 

throughput have also been evaluated for systems with guard time using the exact expression 

of codeword error probability. It was found that these system performance measures are not 

very sensitive to the inclusion of guard time into the time slots. The reduction in packet 

error probability due to edge effects is offset by the reduction in the normalized code rate. 

A code diversity scheme for FH-CDMA system has been proposed. In general, the code 

diversity scheme gives better BER than a conventional FH-CDMA system. Various code 

diversity decoding schemes, including two optimal receiver schemes, were studied. The 

exact symbol error probability expressions were derived for these schemes. The optimal 

114 
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diversity degree as a function of the number of active transmitters was also investigated. 

Instead of using repetitive coding in which the same tone is transmitted in each diversity 

branch, it was shown that some improvement in performance can be achieved by using 

a random coding scheme. We have also studied the effects of noise and fading on code 

diversity FH-CDMA systems. It was again found that code diversity schemes can have 

better performance than the conventional FH-CDMA system in most situations. It can also 

be seen that the code diversity scheme can be used to establish priority classes among the 

users in the system, with the high priority classes have a higher diversity level. 

6.1 Future Work 

The work described in this thesis can be extended in several directions. 

• In the asynchronous hopping slotted system, it was assumed that a symbol is received in 

error if there exist at least one other transmitter transmitting in that frequency bin at any 

time during the transmission of that symbol. This model can be improved especially if 

we were to consider the modulation scheme aspect of the model. One way of improving 

this model may be to assume that the symbol is in error only if there is at least one 

other transmitter transmitting in that frequency bin for at least 50% of that symbol's 

transmission time interval. A further refinement of the model could take into account 

the symbol transmitted by the other transmitters. For example, if the other transmitter is 

transmitting the same symbol as the marked transmitters, the probability of detection of 

this particular symbol may increase. These are more realistic but more complex models. 

The derivation of the exact codeword probability can probably be derived using a more 

complex Markov chain model which also keeps track of the amount of transmission time 
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overlap between the transmitters. And the transmitters may have to be partitioned into 

symbol groups as described in the code diversity scheme. 

• For this more complex asynchronous hopping slotted system model, once the codeword 

error has been evaluated, the same techniques used in this thesis can be used to evaluate 

the maximum normalized local load and normalized local throughput. It would be 

interesting to see if the general conclusion is the same. 

• We have assumed synchronous hopping in the code diversity schemes studied in this 

thesis. This work can be extended to the case of asynchronous hopping. 

• The issue of error control coding in the code diversity scheme could be studied further to 

include codes other than the repetition and random code used in this thesis. In particular, 

some of the more commonly used codes such as Hamming and BCH codes can be 

studied. One possibility is to encode the k information bits into a codeword of n bits. 

These n bits can be transmitted using the code diversity scheme using blocks of [n/L\ 

transmissions. 

• For the code diversity scheme over a Rayleigh fading channel, the simulation results 

indicate that for the range of parameters considered, a receiver structure based on the 

sum of the absolute values of outputs of all filters across the diversity branches is superior 

to one which uses the sum of the squared values. Some further work could be done tp 

derive an analytical result which confirms this. This could also be extended to study the 

optimal receiver structure for the code diversity scheme over a Rayleigh fading channel. 
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Appendix A 

Derivation of Transition Probabilities 

A.l Transition Probabilities without Edge Effects 

Here we derive the transition probabilities associated with the Markov chain in Figure 

3.2. Let A be the event that T hops onto the same frequency bin and A be its' complementary 

event. Since we are using the memoryless hopping pattern model, the probability associated 

with these events is 1/q and 1 — 1/q for A and A respectively. Using (3.2), 

P 0 0 = P 2 0 = p r (A) x P r [Hf = 0, H? = 01A, Hf_{ = o) + 

Pr (A) x P r ( # f = 0,Hf = OfcHf^ = fj) 

= 1-(l-l/qf+(l-^)(l-2/qf- . 

= -a+(l--)[3 (AA) 

P 0 1 = P 2 1 = Pr(A) x P r ( # / = 0 ,#f = l|>l,#f_i = o) + 

P r (A) x P r (Hf = 0,H? = 1 | A, Hf_t = o) 

= Pr(A) x P r (Hf = 0\A, Hf_Y = o) x 
Pr ( i f f = 11 A, Hf_x = 0, PT/. = o) + 

P r (A) x P r ( i f / = 0| A, = o) x 
Pr (Hf = 11 A, Hf_x = 0, #/ = o) 

= Pr(A) x P r (Hf = 0|A, = o) x 
Pr (Hf = 11 A, Hf_x = 0, / = o) + 
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P r ( A ) x P r ( # / = 0 , # £ _ i = 0 | A ) / ^ ( H ? ^ = 0|A 

YV(H? = ifcHJLi = 0 ,#/ = o) 

( 
(1 - a) 

x 

9 ^ J \ 9 / ( 1 - 1 / 9 ) 

9 V 9 

9 V 9 

( 1 - a ) 

a 

(1 - V9f) 

(A.2) 

P02 = P22 = P r ( A ) x P r ( # / = l,ijf = 0\A,Hf-_x = 0) + 

P r ( A ) x P r (Hf = l,HJt = 0\A, Hf_x = o) 

= P r ( A ) x P r ( # / = ij/Lj = 0) x P r ( # f = O L A , ! ^ = 0 ,# / = 1 

= ( l - ^ ( l - ( 9 - 2 / g - l f ) ( l - l / g f 

(A.3) 

P 0 3 = P 2 3 = p r ( A ) x P r ( # / = l,#f = l\A,Hf_x = Oj + 

P r ( A ) x P r ( # f = l,H? = Pf/Li = 0) 

= P r ( A ) x P r ( # / = iP/Lj = 0) x Pr(#f = Pf/Lj = 0 , / j / = l ) 

= ( l " I) ( l " (9 - 2/<z - if) ( l - (1 - 1/gf ) 
1 

1 ( 1 - a ) = 1 1 - -
qj \ a 

= 1 (A.4) 
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-Pio = 3̂0 = P r ( A ) x Pi (Hf = 0,Hf = Q\A,Hf_x = l ) + 

Pr ( A ) x . P r (Hf = 0, Hf = 0 | A , Hf_x = l ) 

= P r ( A ) x P r = 0 | A , Hf_x = l) x P r (Hf = 0| A , Hf_ 

= Pr ( A ) x Pr (Hf = 0, Hf_x = 11 A) / P r (Hf_x = 11 A ) 

x P r (Hf = 0 | A , Hf_x = 1, # / = 0) 

_ / _ i v ( l - l / g ) g ( l - ( g - 2 / g - l ) g ) ^ 

" V 1 q) l - ( l - l / q f ( 1 

• - H > - * > ( H h ; ) • 

l,Hf 

i/q) 

(A.5) 

P 3 1 = p R ( A ) x Pr (Hf = 0, # f = 1 |A , P f ^ = l ) + 

P r ( A ) x P r ( p / =0,Hf = l | A , # f _ ! = l ) 

= P r ( A ) x P r ( # / = Q\A,Hf_x = l ) x P r ( # f = 1 |A ,# /Li = l,Hf = o) 

( , - 2 / 9 - 1 ) ^ ( 1 - 1 / ^ 

= 1 

1 - -

1 
1 - (1 - 1/q) K (l-(l-l/qf) 

(a-0) (A.6) 

P 1 2 = P 3 2 = p R ( A ) x Pr (Hf = l,Hf = 0 | A , P f _ x = l ) + 

Pr ( A ) x Pr ( # / = 1, Hf = 0| A , P f _ x = l ) 

= P r ( A ) x P r ( p / = l | A , P f _ ! = l ) x P r ( # f = $\A,Hf_x = l,Hf = l ) + • 

P r ( A ) ,x P r ( p / = 1 | A , Hf_x = l ) x Pr (Hf = 0 | A , Hf_x = l,Hf = l ) 

= P r ( A ) x P r ( p / = l\A,Hf_x = l ) . x P r ( p f = 0\A,Hf_t = l,Hf = l ) + 
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Pi (A) x PT(H} = = l l A J / P r ^ / ^ ! = X 

Pr (H? = 01 A, H?_x = 1, Hf = l ) 

1 K l - 2 ( l - l / ^ + ( l - 2 / ^ _ , 

9 

1 

1 - (1 - 1/?) 

1 - a J a 

I(l-a)+(l-i)(2(l-a)-(l-/?)) 
1 - a 

(A.7) 

P 1 3 = P 3 3 = Pr(A) x P r ( # / = l,#f = llAHJl, = l ) + 

P r ( A ) x P r ( # / = l,Hjt = lfcHf^ = l ) 

= Pr(A) x P r ( / i / = Pf /Li = l ) x P r (H? = iP/L_i = 1,H. 

Pi (A) x P r ( # / = l L 4 , # £ i = l ) x 

= 0+ 

Pr = i | A 1 i r / _ 1 = i , f r / = i ) 

P r ( A ) x P r ( # / = l|A,Pf/L! = l ) x P r ( # f = l\A,Hf_x = 1,H. 

P r ( A ) x P r ( # / = l ,P7/Li = l ^ / P r ^ f ^ = l|A")x 

1 + 

P r ( # f = PT/Li = 1,#/ = l ) 

/ _ i \ i - 2 ( i - i / ^ + t i - 2 / ^ , _ f N 

V ? ; ( l - ( l - l / g ) A ) v 7 

1(1 - a) + ( i - l \ l - 2 a + B) . 

LI(l-a)+^l-i)(2(l-a)-(l-)9)) (A.S) 
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A.2 Transition Probabilities for the Last Hop, Gt = 1 

In T's last hop interval, K\ interferers can hit from the left only and the remaining K2 

interferers can hit from both the left and right. Using the same notation for A and A- as in 

A . l , the transition probabilities are given by t 

Plrl)
 = Ho^ = Pr04) x P r (# / = 0,H? = 0\A,HJi1 = o) + 

Pr(A) x Pr •(Hf = 0, Hf = 0\A, Hf_x = o) 

= \ l - l / q f > + (l-l-)((q-2)/(q-l)f(l-l/qf> . 
q X qj 

.. = I a 2 + f 1 _ I ) ^ (A.9) 
q \ qj a 

Pt1) = Pt1) = ^)xPr(Hf = 0,Hf^l\A,Hf_1 = 6) + 

• Pr(A) x Pv(Hf = 0,Hf = l\A,Hf_x = o) 

= Pr(A) x Pr (Hf = 0\A, Hf_x = o) x Pr (Hf = 11 A, Hf_x = 0, Hf = o) + 

Pv(A) x Vr(Hf = 0|A,#jLi = o) x Vr(Hf = 1\A,Hf_x = 0,Hf = 0 

=i ( 1_Q 2 ) +( 1_iv(i^) ( A. 1 0 ) 

i 3

0

( 2 n " 1 ) = A ( 2 B _ 1 ) - P ^ ) > < P r ( ^ / = l , ^ = 0 | A , ^ 

• P r ( A ) x?r(Hf = l,Hf = 'Q\A,Hf_l = ' 

= Pr (A) x P r ( # / = Hf_x = u) x Pr = 0 |A, = 0, Hf = l ) 
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= - ( 1 - ^ ) ( l - ( 9 - 2 / ? - l f ) ( l - l / ? ) J 

- ( (A.H) 
9 / V a , 

^ i " " n = ^ " _ , ) - x P r ( / / / = 1, / / f = \\A. II? , ™ 1)) + 

P r ( A ) x Pr(/// = 1,/// = H A / / / , , = 0) 

= P r (A) x P r = 11 A , tfjlj = 0) x P r ( # f = 1 \A, Hf_x = 0, = 1 

= ( 1 - £) (1 - (9 - 2/9 - if) (1 - (1 - 1 / i f 2 ) 

a ) ( 1 " " 2 ) ( A - 1 2 ) 

P ^ - 1 ) = P ^ - 1 ) = p r(A) x P r = 0, Hf = 0|A, = l ) + 

P r ( A ) x P r ( H ? = 0, tff = 0|A, Hf_x = l ) 

= P r ( A ) x P r ( # / = 0\A,H?_i = l ) x P r ( # f = O l A , / ^ = = 0 

= P r ( A ) x P r ( # / = 0,i7/Li = /Pr (PTf_! = 

x P r ' ( ' f i f = 0 |A , - f i ^ 1 = l , £ r / = o) 

/ A (1-1/9)^(1-(9-2/9-1)^) ' 

q j \ l - a . 1 - - V ^ > 2 (A.13) 

P ^ - 1 ) = p ^ " 1 ) = P r ( A ) x P r ( # / = 0,H? = l l A , ^ = l ) + 
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Pr ( A ) x P r ( i f f = 0, i f f = 11 A , Hf_x = l) 

= P r ( A ) x P r ( i f f = 0 | A , = l ) x P r ( i f f = l\A,Hf_x = l , i f f = u) 

/ A ( l - ( , - 2 / 9 - 1 ) ^ ( 1 - 1 / ^ 
1 - - " ^ 11 - (1 - 1/?) ) 

v <?; i - ( i - i / o ) A v 1 / y ; / 
= i 

= (14)(r^,(1-a2) ( A - 1 4 ) 

Pn~1] = PzV] = PrM) x P r ( i f f = l , i f f - O I A , ^ = l ) + . 

P r ( A ) x P r ( i f f = 1, i f f = 0 | A , i f f _ x = l ) 

= P r ( A ) x P r ( i f f = l | A , - # / L i = l ) x P r ( i f f = 0 | A , # £ i = l , i f f = l ) + 

P r ( A ) x P r ( i f f = llAHf^ = l ) x P r ( i f f = 0| A , JH"̂ .! = l,Hf = l ) 

= P r ( A ) x P r ( i f f = 1 |A , H?_x = l ) x P r ( i f f = 0 | A , i f f _ x = 1, i f f = l ) + 

P r ( A ) x P r ( i f f = 1, Hf_x = 1|A) / P r ( i f f ^ = 1|A) X 

Pr ( i f f = O l A i i f . ! = l , i f f = l ) ' • ' 

« v ( i - ( i - 1 / , ) - ) 

1. , / l \ f l - 2 a + 0\ 
-a2 + 1 — a2 

q \ qj\ l - a ) 
-a2+(l--)[2(l-a)-\l-0)}-^-- •'" (A.15) 

A ( 3 _ 1 ) = ^ = Pr(A) x P r ( i i f = l , f f f = I I A , ^ = l ) + 

P r ( A ) x P r ( i f f = l,H? = 11A, i f f . ! = l ) 

= P r ( A ) x P r ( i f f = l | A , i f f _ ! = l ) x P r ( i f f = l\A,Hf_x = l , i f f = l ) + 
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Pr (A) x P r ( # / = = l ) x P r ( # f = i P / L j = = l ) 

= Pr(A) x P r ( # / = i P / L i = l ) x P r ( # f = 1 | A , i P / L i = l,Hf = l ) + 

P r (A) x P r = 1, Hf_x = 1 |A~) / P r = 11 A) X 

P r (it? = 11 A, H?_x = 1, Hf = l ) 

/ _ i y - 2 ( i - i / ^ + ( i - 2 / ^ ( l t _ ^ 
V ^ ( l _ ( !_ ! / , ) * ) V ' 

1(1-«2)+('l-IVl-2Q + « . ( 1 - a 2 ) 
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Appendix B 
Envelope of Resultant Signal is Rayleigh Distributed 

In this part of the appendix, it is shown that if the envelope of the individual signal is 

Rayleigh distributed and the phase is uniformly distributed over (0, 2TT], the envelope of the 

resultant signal obtained by the vector addition of these individual signals is also Rayleigh 

distributed. 

Let n be the number of i.i.d Rayleigh distributed individual signals. Furthermore let 

SPi and Sqi be the in-phase and quadrature components of Si, the ith, i € {1, ...,n} signal, 

respectively. Since Si, is Rayleigh distributed, Spi and Sqi are independent Gaussian random 

variables. We shall denoted the mean and variance of these Gaussian random variable by 

p and a2 respectively. The in-phase component of the resultant vector, Spr, is obtained by 

adding the in-phase component of each individual signal and is given by 
n 

Spr — ^ ] Spj. ( B . l ) 
i= l 

The characteristic function of the in-phase component is 

<£s>) = e ^ - " V / 2 . (B.2) 

Since Spr is the sum of i.i.d random variables, the characteristic function of Spr can be 

written as 
n 

1=1 

n 

i = l _ ejw(nn)-oj2(na2)/2 -̂g ^ 
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which is the characteristic function of a Gaussian random variable with mean np, and variance 

na2. This shows that in-phase component of the resultant signal is a Gaussian random 

variable. 

Since the phase of each individual signal is uniformly distributed over (0, 2it], by 

symmetry the quadrature component of the of the resultant vector is Gaussian distribution 

identical to the in-phase component. Hence the envelope of the resultant signal must be 

Rayleigh distributed. 
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Appendix C 
Majority Vote Decoding without 

Detection Threshold, J = 2 

We shall show here that in the majority vote without detection threshold scheme, 

described in Section 5.2, the BER is lower for the case when there is no diversity, than 

the case where L = 2 for the case of J — 2. We shall assume that the marked transmitter, 

T„ transmitted the symbol "0" in both cases and determine the probability that the symbol 

decoded is "1". By symmetry, the unconditional BER is same as this probability. 

Consider first the case where the diversity degree is two. Let -Pn 0i«nrao2ni2 o e m e 

joint probability distribution of the number of hits in the various tones in T's selected 

frequency bins. For example, Poioi is the probability that there is none and one transmitter 

transmitting symbol "0" and "1" respectively in both frequency bins. For q = 200, the 

non-zero probabilities of such distribution of hits is as follow 

19503 
19900 

1 1 1. 
(Cl) Pirn 

It is convenient to denote 
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4 

2a2 

2a2 

2a2 + 2<r2 

a2 

2a2 + 2 a 2 fc = • ( C 2 ) 

These equations were derived using (5.15) and (5.16) and they are the conditional probabilities 

of decoding a particular symbol at frequency bin given the number of hits on the tones in 

that frequency bin. For example, fa is the conditional probability of decoding symbol "1" 

at a particular frequency bin given the number of hits on symbol "0" and "1" is one and 

none respectively. (Note that fa = 1/2, this is the probability of decoding either symbol 

given that there is an equal number of hits on both symbols.) Hence the probability of error 

can be written as 

Pe( J = 2,q = 200, L = 2) = Pioio($ + fa fa) + (P2010 + P1020) (tifa + I; fa fa + ^fafa^j 
+ ( A l i o + P1011) (tifa + + Ijfafa^J + Pnn ( 2 ^ | ) . 

+ P202oUl + \hfa\ . ( C 3 ) 

After simplification 

P ( j 2 , 200 1 - 2 1 - ^ + 4 0 0 ^ + ^ ( C 4 ) 

Using a similar approach for L = 1, the probability of bit error can be written as 

P ( T 9 onnr n SOOaj + 800a2 a2

n + a4 

Pe(J = 2,q = 200, L = 1) = 8 ( ) o ( ( 7 2 + 2 < ) . (C.5) 
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Since a2 and a2 are positive values, it is clear from (C.4) and (C.5) that 

Pe(J = 2,q = 200, L = 1) < Pe(J = 2,q = 200,L = 2). Note that when noise is neg­

ligible, Pe(J = 2, q = 200, L = 2) « 2Pe(J = 2, q = 200, L = 1). 


