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Abstract 

The discrete Fourier transform (DFT) is a widely used tool in signal or image processing 

and its efficiency is important. There are applications where it is desirable to use 

relatively small, successive, overlapped DFTs to obtain the spectrum coefficients. The 

momentary Fourier transform (MFT) computes the D F T of a discrete-time sequence for 

every new sample in an efficient recursive form. In this thesis we give an alternate 

derivation of the M F T using the momentary matrix transform ( M M T ) . Recursive and 

non-recursive forms of the inverse M F T are also given, which can provide efficient 

frequency domain manipulation (e.g. filtering). Discussion on the properties and 

examples of the usage of the M F T is given, followed by a survey on its efficiency. 

In this work we investigate the applicability of the M F T to synthetic aperture radar (SAR) 

signal processing, and in particular show what advantages the M F T algorithm offers to 

the SPECtral ANalysis ( S P E C A N ) method and burst-mode data processing. In the 

S P E C A N algorithm, the received signals are multiplied in the time domain by a reference 

function, and overlapped short length DFTs are used to compress the data. The azimuth 

F M rate of the signal varies in each range cell, which leads to the issue of keeping the 

azimuth resolution and output sampling rate constant. After the introduction to S P E C A N , 

we show what advantages and disadvantages the M F T has compared to the F F T 

algorithms. 

i i 



When a S A R system is operated in burst-mode, its azimuth received signal has a 

segmented frequency-time energy in its Doppler history. It requires that EDFTs be located 

at specific points in the spectral domain to perform the azimuth signal compression. After 

the introduction of the burst-mode data properties, we show why the short EFFT (SIFFT) 

algorithm has the requirement of arbitrary-length, highly-overlapped EDFTs to process 

burst-mode data, in which case the I M F T is shown to have computational advantages. 
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Chapter 1 

Introduction 

1.1 Background 

Linear transformations, such as the discrete Fourier transform (DFT) are frequently used 

in digital signal processing, and their efficiency is very important. In applications where 

the D F T is applied to a signal, it is often desirable to use successive, possibly overlapping 

DFTs of smaller extent than the full length of the signal to obtain the spectrum 

coefficients. These transformations are normally off-line operations on blocks of data, 

requiring N samples of the signal before the transformation can be computed. The 

momentary Fourier transform (MFT) which is derived here is a method of computing the 

D F T of a sequence in incremental steps. It can be computed using an efficient recursive 

formula, and it is useful in cases where the detailed evolution of the spectra of a discrete 

series is wanted, and in cases where only a few Fourier coefficients are needed. 

The spectrum components of the M F T can be calculated independently and only one 

complex multiplication and two complex additions are needed to update each spectrum 

component. The inverse momentary Fourier transform (IMFT) is the dual of the M F T and 
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shares the same property, while the non-recursive form of the I M F T requires only 

additions to obtain a sample of the time sequence from its spectrum with N samples 

delay. 

The computational order of the M F T to update an TV-point D F T is N, a factor of log2N 

improvement over the radix-2 F F T algorithm i f all incremental results are needed. If only 

a sub-set of the transform domain components are needed, the computing load of the 

M F T can be further reduced, calculating only the coefficients of interest. The M F T does 

not rely upon on N being power of two to obtain its efficiency, in contrast to standard 

F F T algorithms. 

Uses of the incremental D F T were introduced by Papoulis in 1977 [1], and by Bitmead 

and Anderson in 1981 [5]. A detailed derivation of the momentary Fourier transform was 

given by Dudas in 1986 [6]. In 1991, L i l l y gives a similar derivation, using the term 

"moving Fourier transform", and uses the M F T for updating the model of a time-varying 

system [7]. In this thesis we further develop the theory of M F T , examine its applications 

and in particular, see what advantages it offers to synthetic aperture radar data 

processing. 

A synthetic aperture radar (SAR) is a powerful sensor in remote sensing which is capable 

of observing geophysical parameters of the Earth's surface, regardless of time of day and 

weather conditions [3]. S A R systems are extensively used for monitoring ocean surface 

patterns, sea-ice cover, agricultural features and for military applications such as in the 
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detection and tracking of moving targets. A S A R transmits radar signals from an airborne 

or spaceborne antenna which is perpendicular to the flight direction of the platform which 

is travels at a constant velocity. The back-scattered signal is collected by the antenna and 

stored in a raw format. Extensive signal processing is required to produce the output S A R 

image. 

The SPECtral ANalysis ( S P E C A N ) S A R processing algorithm was developed in 1979 by 

MacDonald Dettwiler and Associates, as a multi-look version of the deramp-FFT method 

of pulse compression. In S P E C A N , the received signals are multiplied in the time domain 

by a reference function, and overlapped short length DFTs are used to compress the data. 

In contrast, a precision processing algorithm such as the Range Doppler (RD) method 

requires both forward and inverse D F T operations, thus it is less computationally 

efficient. S P E C A N is an efficient algorithm for moderate to low resolution processing 

and generally implemented in quick look processors for viewing of magnitude detected 

imagery data. 

Burst-mode operation is used in S A R systems, to image wide swaths, to save power or 

save data link bandwidth. Several spaceborne remote sensing missions employ the 

ScanSAR mode in addition to other operational modes for radar imaging. Canada's 

Radarsat satellite, which was successfully launched in 1995, is a sophisticated Earth 

observation system developed to monitor environmental changes. The imaging platform 

supports various S A R operating modes, including a ScanSAR mode for the low-

resolution (~100m) imaging of ground regions of width 500 km. 
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A n Advanced S A R ( A S A R ) system wi l l be flown on the Envisat satellite polar platform 

to be launched in 2000 by the European Space Agency. This system wi l l be able to 

operate in three burst-modes: alternating polarization mode (AP), wide swath mode (WS) 

and global monitoring mode (GM) . Alternating polarization mode provides high 

resolution in any swath with polarization changing from sub-aperture to sub-aperture 

within the synthetic aperture. This results in two images of the same scene in different 

polarizations combination with approximately 30 m resolution. In the wide swath mode 

the ScanSAR technique is used providing images of a wider swath (405 km) with 

medium resolution (150 m). 

1.2 Thesis objectives and outline 

The objective of this research is to further develop the theory of the M F T , examine its 

properties and applications, and in particular, see what advantages it offers to S P E C A N 

processing and to the short IFFT (SIFFT) burst-mode processing algorithm. 

Chapter 2 presents the theory and properties of the momentary Fourier transform. Here, 

we introduce the recursive form of the momentary matrix transform ( M M T ) , and show 

when the M M T takes the form of the D F T or the IDFT, the resulting M F T and EvLFT 

have an efficient computational structure. The properties and computing efficiency of the 

M F T is also discussed in this chapter. 
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In Chapter 3, an overview of SAR processing is given, where the conventional 

compression method of the SAR signals is studied. This chapter gives a background 

knowledge for the research of the SPECAN algorithm and burst-mode data processing. 

The azimuth FM rate of the received signal varies in each range cell, which leads to the 

issue of keeping the azimuth resolution and output sampling rate constant. After the 

introduction of the SPECAN algorithm in Chapter 4, we show what advantages the MFT 

method offers vs. the FFT algorithms when they are applied to the SPECAN SAR 

processing algorithm. 

In Chapter 5, the ScanSAR operation mode will be introduced, and the received burst-

mode data properties will be analyzed. After the effect of the varying SAR parameters 

and SNR/efficiency tradeoffs, a survey on the arithmetic of the SIFFT algorithm using 

IMFT and EFFT is given. Here, we show that the JJVEFT algorithm can improve the 

computational efficiency of the SIFFT algorithm in certain burst-mode data processing 

cases. 

Finally in Chapter 6, conclusions of the efficiency and applicability of the momentary 

Fourier transform to SAR processing will be drawn, and suggestions for possible future 

work will be given. 
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Chapter 2 

Theory and Properties of the Momentary Fourier 

Transformation 

2.1 Introduction 

In this Chapter, we give a derivation of the momentary Fourier transforms from the 

momentary matrix transform in Section 1.2. Section 1.3 gives a survey on the properties 

of the M F T , and in Section 1.4 a discussion on its computational efficiency is given. 

2.2 The Momentary Fourier Transformations derived form the 
Recursive Momentary Matrix Transformation 

In this section, we introduce the matrix form of the momentary transform, and show that 

it has a recursive form. We also show that when the momentary matrix transform takes 

the form of the D F T or the inverse D F T , the resulting M F T has an efficient (recursive) 

computational structure. In the last part of the section, the inverse of the M F T is 

introduced, as well. 
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2.2.1 The Recursive Momentary Matrix Transformation 

Let xi be a sample of an arbitrary complex-valued sequence of one variable. The sequence 

wi l l be analyzed through an TV-point window, ending at the current sample i. In 

subsequent analyses, the window wi l l be advanced one sample at a time. A t sample i x, 

enters the window, while Xi.N leaves the window, as shown in Figure 1. 

Samples 

Figure 1 Windowing of the discrete-time function 

At samples i-1 and i, the windowed function can be represented by the following two 

column vectors: 

X, = 

v i - i 

v i - i 

X, 

(1) 
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Let T be an NxN non-singular matrix, which represent a linear transformation and has the 

inverse T" . The sequence of index vectors is transformed by T at each sample: 

• • • - y,-i =Tx1._„ y,. =Tx,., . . . 

(2) 

Let P be the NxN elementary cyclic permutation matrix. When the vector is 

multiplied by P, a one-element circular shift is performed, such that the index of each 

element is increased by one, and the first element becomes the last one: 

x, 

, where P= 

0 1 . . 0 

. 0 1 . 0 

. . 0 1 . 

. . . 0 1 

1 0 . . 0 

(3) 

Using the result above, the x; vector can be expressed by the shifted xj.i vector and with 

an adjustment vector Ax\ made from the difference between the samples entering and 

leaving the window: 

Xi-(N-\) 0 

+ 

X i - l 0 

Xi-N _Xi~Xi-N _ 

= P x w + A X i 

(4) 
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Substituting (4) into the transformation associated with the ith window in (2) and using 

the inverse transform XM = T"1 V M , the following relationships are obtained: 

y, =Tx, =T[Px,_ 1+Ax,.]=TPT- Iy,_ 1+TAx i 

(5) 

Equation (5) expresses the recursivity of the momentary matrix transforms (MMT), since 

calculation of the newly transformed index vector v* needs the previously transformed 

index vector and the difference between samples entering and leaving the window. 

2.2.2 The diagonal form of the MMT 

The momentary matrix transform is particularly efficient and it can be calculated by 

components only i f the product of similarity matrix transform TFT"1 in (5) is diagonal. 

The P matrix has N distinct eigenvalues (Ao, ^N-I) which are the nth complex unit 

roots, Xk = w~k - ej2nkJN,k-0,1,2,...N-1. To each eigenvalue, N linearly independent 

eigenvector corresponds as follows: 

A 0 = w°=l <=> s0= 

w 

w 

w 
(N-l) 
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Xk=wk <=> st= 

w 

w 
-2k 

W 
(N-l)k 

; - >• K-i= w ' ' <=> V i = 

w 

w 

1 

2(N-\; 

w 
•(N-l )(N-l) 

(6) 

If the eigenvectors are chosen to be the columns of the inverse of the T matrix, then 

TPT"1 is a diagonal matrix, with the eigenvalues of P along its diagonal: 

TPT 1 = S PS = S n S, s'1 s"1 

3 N- 2 s N-l 

I I 

0 -A, 0 

0 

0 

A 2 0 

0 0 . . A . 

(7) 

where S is the eigenvector matrix of P. 

The diagonalizing matrix S is not unique. A n eigenvector sk can be multiplied by a 

constant, and wi l l remain an eigenvector [2]. Therefore the columns of S can be 

multiplied by any nonzero constants and produce a new diagonalizing S. There is also no 

preferred order of the columns of S. The order of the eigenvectors in S and the 

eigenvalues in the diagonal matrix is automatically the same. Therefore, all T matrixes, 

which satisfy the above mentioned properties w i l l diagonalize the momentary matrix 

transform: 

10 



Xk 0 . . 0 

0 A, 0 . 0 

0 

0 0 

0 

(8) 

where k, I, m e {0,1,...,N-l) and T N _i is the last column of the T matrix. 

2.2.3 Inverse of the diagonalized MMT 

If y i is available at each sample and the columns of T are the eigenvectors of P , an 

efficient implementation of the inverse of the M M T can be obtained. The inverse MMT 

(IMMT) at time i: 

(9) 

1 1 1 1 1 11 r y,.0 ^ XHNi) 

(10) 

The first row of T" 1 contains only ones (10), so the oldest element of X ; can be computed 

using adds only: 

AM 

i - ( N - l ) k = 0 

(11) 

11 



from which the elements of the input sequence (JC , .^.;j.. .JC,) can be computed from the 

transform domain sequence y; with N-l sample delay. 

2.2.4 Momentary Fourier Transform 

The matrix of the Discrete Fourier Transform (DFT) and the Inverse Discrete Fourier 

Transform (EDFT) have the properties described in Section 1.1.2, thus their columns are 

the eigenvectors of the matrix P: 

DFT = F = S 

w 
2 

w 

w 
2iN-\) 

W 

1 
N-l 

W 

2-(N-l) 

W 
(N-\HN-\) 

(12) 

IDFT= F 1 = S = 
N 

w 

1 1 
„-<N-\) 

W 

w-iN-l, w-l<N-l> 

w 
-Z(N-l) 

lHN-\HN-l) 

_1_ 
N 

1 
N - l 

w 
2(N-l) 

W 

JN-lXN-l) 

W 

W 

2 
W 

„2(N-l) 

(13) 
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Using that w is the Nth complex unit root (i.e. w'k = wN'k), it can be seen that the columns 

of the IDFT matrix are the same as the D F T matrix, but they are in reverse order from the 

second column (13). Therefore, i f T performs the D F T (14) or the IDFT (15), diagonal 

forms of the M M T can be obtained: 

y,.= F P F - ' y ^ + F A x , = 

1 0 
0 wA 0 

w'2 0 

0 0 w 

x ^ F - ' P F x ^ + F - ' A y , . = 

1 0 
0 w1 0 

w 
2 0 

0 0 . . 

1 0 
0 w(NA) 0 

w 

w 

0 
0 

0 
N-l 

{N-l) Q 

0 0 

0 
0 

y,-. + 
0 

-(N-l) 

I 

w2 

N-l 
w 

0 " 
0 
. 

0 
-1 

w 

w 

w 
-2 

W 
-(N-l) 

( X l - X i - N ) 

(14) 

(y,•-y,,A,)= 

w 

w 

1 
-(N-l) 

(N-2) 

W 

( y i - y i - s ) 

(15) 

Equation (14) expresses the recursive equation of the momentary Fourier-transform 

(MFT). The TV-element vector y; contains the Fourier coefficients of the TV-point sequence 

xj ending at sample i. Note that each spectral component can be calculated 

independently, 
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y = w 
i.k 

k (yi-u  +  xi- x, ) 
(16) 

which increases efficiency i f only a few frequency components need to be computed, as 

in the zoom transform. 

On the other hand, equation (15) is the dual pair of the M F T , the recursive inverse 

momentary Fourier-transform (IMFT), where the TV-element vector x; contains the TV-

point time sequence and y-, contains TV Fourier coefficients ending at frequency bin /. Note 

that the each sample in Xi can also be obtained independently and the same twiddle 

factors, but in different order, can be used to calculate both the M F T and I M F T . 

Thus it has been showed that i f the D F T or the EDFT performs the momentary matrix 

transform of a sequence the elements of the transformed sequence can be computed 

recursively and independently using TV complex multiplies and N+l complex adds 

(computational savings are available i f the input sequence is real-valued). 

2.2.5 The non-recursive Inverse MFT 

The non-recursive inverse momentary Fourier transform can be expressed using (11) and 

(13) as follows: 

x 
i-(N-l) i,k 

(17) 

14 



from which each sample of the input sequence (XJ) can be computed using adds only from 

the spectrum (y0 with N-l sample delay. In this way the M F T - non-recursive I M F T 

transform pair can provide an efficient frequency-domain manipulation method (e.g. 

filtering), especially i f many of the D F T coefficients are not calculated. 

If the elements of x; are real, taking advantage of the conjugate symmetry of the 

spectrum, the oldest element can be computed using only the real part of the spectrum 

components: 

t-(N-l) N k=0 

(18) 

It has been showed in [6] that i f X ; is real, the Hilbert transform of Xj.(N-i) can be obtained 

to sum only^the imaginary part of the spectrum components: 

1 N-l r -, 

H{x 1 = -Hm{y.k} 
i-(N-l) N k=0 

(19) 

In this case the MFT/non-recursive I M F T pair can be useful for different signal 

processing applications where the in-phase (I) and quadrature component (Q) of the 

signal is needed (i.e. communications and radar systems). 
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2.3 Properties of the M F T 

In this section, some properties of the M F T are given. Section 1.3.1 shows how to 

implement cosine windows in the frequency domain using the M F T . In Section 1.3.2, 

discussion on the software and hardware implementation of the M F T algorithm is given, 

while section 1.3.3 gives an example of the use of the M F T . 

2.3.1 Cosine windows using MFT 

The TV-point D F T treats the data sequence as i f it has a periodicity of N samples, xi = 

Xi+kN, for all integer k. In practice many signals do not have the above periodicity. If the 

boxcar window is applied to such a signal, the D F T wi l l treat it i f there were 

discontinuities at its edges. Ringing effects near the edges of filtered signals may occur as 

a result of these spurious discontinuities [4]. Such effects can be reduced by applying a 

more appropriate window. In addition to selecting a portion of the input sequence, the 

window modifies this portion to make it continuous at the edges when regarded as 

periodically repeated. Several types of window have been described in the literature [1], 

[4]. This section introduces how the Planning, Hamming and Blackman window can be 

implemented using the M F T . 

Given the discrete-time sequence xj, we wish to calculate the M F T of the windowed data 

xwJ = Wj-xi at time i, where wi is the window function. The ith element of the window 

may be expressed as follows: 

Hanning: w,= 0.5 1-cos 
( 2ni 

1-cos 
{ N J 

16 



Hamming: w,= 0.54 - 0.46 cos 
( 2ni \ 

Blackman: w.= 0.42 - 0.5 cos 
( 2ni ^ 

v N , 
+ 0.08 cos 

r Ani ^ 

v N j 

The derivation for the Blackman window is given below: 

0.42 - 0.5 cos 

=0.42 JC, - 0.25 

0.04 

exp 

exp 
( Ani\ 

J 
V N 

( 2ni 

{ N 

2ni \ 

N 
/ 

f 
exp 

+ 0.08 cos 
f Ani ^ 

v N y j 

+ exp 

. Ani 

f 2ni ^ 

N 
x,- + 

N 

Taking the D F T of each part of (17) the spectrum of the windowed data at time i: 

y = 0.42y - 0.25 
wi, k i , k y.M + yu-i + 0.04 

(20) 

(21) 

(22) 

Therefore, the M F T of the windowed data can be obtained simply by maintaining the 

M F T of the non-windowed data and applying a weighted average in the spectrum. 

Similar results can be easily derived for the other cosine windows. These are: 

Hanning: y = 0.5 yik - 0.25 \yiM + y i t _, ] 
wt,k 

Hamming: y = 0.54 y - 0.23 Lv a + 1 +yik_l \ 
i,k wi,k 

(23) 
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Although only generalized cosine windows can be applied easily with the M F T , arbitrary 

windows can be approximated i f enough cosine terms are used. Note, that the memory 

requirement of the M F T algorithm gets larger, while its efficiency drops as the number of 

terms increases. 

The edge effect of the boxcar window can also be compensated i f the non-weighted 

moving average of the spectrum components is used. The moving average of a spectrum 

coefficient at times i, for L (L < N) consecutive samples can be expressed as: 

= 1 ' 
y mavg_i,k T y i,k 

L j=i-L+\ 

(24) 

It also has a recursive form where, the calculation of the averaged spectrum coefficient 

needs the previously calculated average and the difference between the spectrum 

coefficient entering and leaving the averaging window: 

y = y + 
mavg_i+l,k mavg_i,k 

^ yt+\,k yi-L+\,k ^ 

(25) 

The above defined moving average with the long-term average (26) of the M F T 

coefficients can also be useful for statistical analysis of the input discrete sequence. 

1 M 

yk
 = 7 7 s ^ ' M > > N 

k,avg M i=l 

(26) 
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2.3.2 Implementation of the M F T algorithm 

In this section, discussion on the software and hardware implementation of the M F T 

algorithm is given. Section 1.2.2.1 shows the computer coding of the M F T with its 

memory requirement, while the principle hardware structure of the M F T is given in 

Section 1.2.2.2. 

2.3.2.1 Software Implementation of the M F T 

As it was shown earlier, the spectrum components in the M F T algorithm can be 

calculated independently from each other. Thus, the M F T can be built up from identical 

blocks, where a block refers to equation (10). The software implementation of one M F T 

block can be obtained using the trigonometric form of the equation: 

y.t =w~*(y,_ u+ *,.-*,•_„) 
i,k 

-j2nk 

. w ~ k - e

 N = cos (<&k }+- j sin ( ® k ) 

-jink where 
k N 

(27) 

Re /y } = cos(<Dj(Re/ ry J + Re{xrx.N J) - sin (Ok)(Im{y } + Im{xrXi_N}) 
i,k i-l,k 

Im{y } = cos (oj(lm/ r y J+lmfo-x^}) + sin(oJ(Re/> y" + R e 7 ) 
i,k i - l , k i-l,k 

(28) 

Equation (28) corresponds to the kth M F T block for complex xi, where is the kth 

spectrum component at sample i. Re{} means real part and Im{} means imaginary part of 

a complex number. 
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The M F T blocks can be organized in a for loop to calculate the needed D F T coefficients. 

The following pseudo-code segment illustrates the computer coding of the M F T 

algorithm, assuming the sine and cosine arrays (twiddle factors) have been precomputed: 

c a l c u l a t e ( x i - X i _ N ) ; 

for k = s t a r t to start+N c-l do 
MFTblock(k); 

endfor 

If the calculation of the spectrum coefficients is off-line, the difference of the entering 

and leaving samples of the window can be calculated for the whole data set and stored in 

a file or an array in the memory. If it is on-line, a modulo-A 7 array is needed to calculate 

xi-Xi-N. The index of the for loop in the pseudo-code indicates, that within the valid 

spectrum components only a smaller interval of the D F T coefficients can be computed. If 

the parameter start is zero and Nc = N , then all the spectrum coefficients are going to be 

calculated. Within the MFTblock procedure, the previously computed spectrum 

coefficient should be stored in an array for the computation of the recent one. The 

following table gives the memory requirement of the M F T algorithm: 

Array type Size 

Twiddle factors (sine and cosine arrays) 2-NVB bits 

Modulo-A^ FIFO for complex 2-N-B bits 

Spectrum coefficients at time /'-/ - y,./ L 2 N t B bits 

Spectrum coefficients at time i - y,.;^ 2-N c -B bits 

Table 1 Memory requirement of the M F T 

20 



In Table 1, parameter B is the number of bits used during the arithmetic operations, thus 

B = 32bits i f floating point arithmetic is used. B should be at least 24 bits for the fix point 

arithmetic, concerning the sensitivity of the M F T algorithm for the quantization error of 

the sine and cosine function. 

Note, the memory requirement of the M F T depends on the calculated spectrum 

coefficients. If the whole spectrum is computed, NB byte memory is needed for the 

computation. 

2.3.2.2 Hardware Implementation of the M F T 

The trigonometric form of the M F T for one spectrum component (29) can be easily 

implemented in hardware. From the basic blocks of M F T a parallel hardware structure 

can be built for the computation of the D F T coefficients. Figure 2 illustrates the block 

diagram of the concurrent implementation of the M F T blocks of the full M F T algorithm. 

Note, the updating time of the fully concurrent implementation is equivalent to the 

propagation time of one M F T block, regardless of the number of the calculated spectrum 

coefficients. 
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Figure 2 Block diagram of the full M F T algorithm 

In Figure 2 the architecture of the full M F T contains a modulo-TV F I F O register to obtain 

Xi.N. If all the spectrum coefficients are computed, the leaving sample of the window at 

time i can be expressed using the I M F T algorithm: 

^ N-l 

X i - N = T7 X y.,, 

N to "lk 

(29) 

Substituting (29) to (10), the recursive equation of one M F T coefficients becomes the 

following: 
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-k y -w yt-ik + xt 

(30) 

In (30), the data sample at time i and all the spectrum coefficients at time i-1 are needed 

to obtain yiik. The memory requirement of the M F T algorithm is reduced by 2-N-B bits, 

because there is no need to save the input data samples in a F IFO, while the arithmetic of 

the M F T increased by 2N-1 real operations due to the calculation of I M F T . The block 

diagram of the M F T corresponding to equation (30) is shown in Figure 3. 

x, - X,. 

MFT Block #0 

M MFT Block #T 

Xi"(N-1) 

MFT Block #N-1 Yl.N.1 

1/N 

Figure 3 Block diagram of the full M F T algorithm without the modulo-TV FIFO 

The detailed hardware structure of one M F T block for complex Xi is given in Figure 4. 

This implementation contains four multipliers ( M P Y ) and four adders ( A L U ) to obtain 
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the complex arithmetic of the M F T . The twiddle factors and the previously calculated 

spectrum coefficients are stored in registers. Because of the parallel computation of the 

real and the imaginary part of the M F T coefficients, the updating time of the spectrum 

coefficients is limited only by the propagation time of two multipliers and two adders. 

MFT Block #fc 
cos(k2»t/N) sin(k2n/N) 

MPY MPY MPY MPY 

A L U 
+ + 

A L U 

Re{YM i k} 

+ A L U + A L U 
+ + 

Re{x,-x,.N} Re{Y,k) lm{YLk} lm{x,-x,.N} 

Figure 4 Hardware structure of one M F T block 
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2.3.3 Example of M F T Usage 

To illustrate the usage of the incremental form of the M F T , a frequency shift key (FSK) 

modulated sinusoidal signal of length 4N samples is used. Using an analysis window 

length 7V=100, and two frequencies of 5 cycles/window and 29 cycles/window, the 

magnitude of the evolving spectrum is shown in Figure 5, when the M F T is incremented 

by one sample at each analysis stage. 

FSK Signal 

0 50 100 150 200 250 300 350 
Time 

Time Dependent Spectrum of the FSK Signal 

Figure 5 F S K signal analysis using M F T 

The M F T begins with the initial conditions of yo = 0. This is equivalent to having N zeros 

precede the data vector. In Figure 5, note how the energy in the spectrum rises from zero 

to a maximum in the first /V samples. Also note how spectral leakage is observed in the 
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first N-l time samples, because the sinusoidal signal does not have an integer number of 

cycles/window over this time. At time N, there is an integer number of cycles/window, so 

all the energy in the spectrum lies in one bin. For the next A M samples, leakage occurs 

again as the window sliding towards to the next frequency component of the signal. The 

spectral energy of the 5th frequency bin decays to zero while the spectral energy of the 

29th bin rises to its maximum. This spectrum energy 'swapping' between the two 

frequency bins is repeated as the window is moving through the two frequency 

components. 

In Figure 6, the same F S K signal is analyzed in the present of noise. The spectrum energy 

swapping between the two frequency bins is also noticeable, which shows how the M F T 

can be useful for signal detection in noise environment. 

FSK Signal in Noise 

Time Dependent Spectrum ot the FSK Signal 

Figure 6 Signal detection using M F T 
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2.4 C o m p u t i n g Efficiency of M F T 

In this section, a survey on the arithmetic of the M F T is given, followed by a discussion 

of its efficiency. The M F T is particularly efficient compare to F F T algorithms, when 

successive DFTs with high overlap ratio are to be computed or when only a few spectrum 

coefficients are needed. Examples of applications of the M F T to signal processing is also 

given, here. 

2.4.1 Arithmetic of MFT 

The previously derived equation for one spectrum component of an N samples long M F T 

at time i: 

y., =w'k:(yM.*+*/ 

The twiddle factors (w"k) can be calculated only once and stored in an array before the 

M F T procedure. This computation is not included in the arithmetic of M F T . 

The difference of the sample entering and leaving the window - XJ-X;_N - can be pre-

calculated at each time moment and used for the calculation of all spectrum coefficients. 

In this case, the spectrum of X ; can be updated from the spectrum of x\.\ using only N 

complex multiplies and N+l complex adds, i f x j contains complex-valued data. If Xj is 

real, N/2 complex multiplies and N/2+1 real adds are needed to obtain the N/2 new 

spectrum coefficients. Table 2 gives a summary of the number of real operations for these 

27 



cases when only Nc coefficients are calculated (N c <N for complex data and Nc <N/2 for 

real data). 

Input data Real Multiplies Real Adds Real Operations 

Real 4 N C 3NC+1 7N c +2 

Complex 4 N C 4N c+2 8N c+2 

Table 2 Real operations in M F T for Nc coefficients 

Note, the number of operations in each case can be reduced with one, i f the D C 

component is calculated, because in that case the twiddle factor equals to 1 (wk = 1 when 

k=0). 

2.4.2 Comparison of MFT to FFT algorithms 

Consider the case where TV point DFTs are used to analyze an M-point complex-valued 

data record. If the window is shifted by q samples between each D F T application, where 

M-N 

1 <q <N, then +1 DFTs are needed to spectrum analyze the record, in the case 
q 

of F F T . If the M F T is applied, M M F T s are needed, because the spectrum coefficients 

have to be calculated in each time samples, irrespectively of the value of q. 

Then, when radix-2 FFTs are used: 

OPS — 
f M - N ^ 

+ 1 [5Mog 2 ( iV)] 

(31) 
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real operations, while in the case of M F T : 

OPSMFr=M[8Nc+2] 

(32) 

real operations are needed to analyze the whole record. 

From (31) and (32) the number of shift between DFTs when the M F T is more efficient 

than the radix-2 F F T can be expressed: 

(M -N)[5N\og2(N)] 
QMFT < 

M(SNc-l)-5N\og2(N) 

(33) 

A s we can see from (33), qMrr is function of the length of the data record (M), the size of 

the window (AO and the calculated M F T spectrum coefficients (Nc). In Figure 7, the shift 

between DFTs when the M F T is more efficient is shown as a function of the window 

length, with two values of M and Nc: 

Number of shift between DFTs when MFT is more efficient than FFT Number of shift between DFTs when MFT is more efficient than FFT 
1 . . , . . , ! « 1 

Total sample* an alyzed = 5000 

i 
MFT 

i r -

» 

i> i i | \ -

i I:::*-
.0 o 

FullMFT 
0 ! j< 

|18 
5 
"16 t 
a 14 

6 

Total samples analyzed: 

0••! • 

100 200 300 400 500 600 
Window size [sample] 

700 800 900 1000 100 200 300 400 500 600 700 
Window size [sample] 

800 900 1000 

(a) (b) 

Figure 7 Shift between DFTs when the M F T is more efficient 
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The full M F T is more efficient compared to the radix-2 F F T , i f the shift between D F T s is 

very small (qMFT ^ 5), while for the reduced M F T (Nc = N/4), the M F T is more efficient 

even for larger values of shift. Note, i f the data record is longer (Figure 7 (b)), the values 

of qMFT are larger for all window sizes. The computational load for small amount of shifts 

is illustrated in Figure 8 and 9: 

Arithmetic of MFT and Radix-2 FFT - Shift Between DFTs = 1 sample(s) Arithmetic of MFT and Radix-2 FFT - Shift Between DFTs = 1 sample(s) 
— i 1 1 1 1 1 1 1 1 

.Total samplesanalyzed.?. 5QO0, 

400 500 600 700 
Window size [sample] 

Total samples ana|yzrf=M000 

400 500 600 700 
Window size [sample] 

(a) (b) 

Figure 8 Arithmetic of M F T and Radix-2 F F T when qMFT = 1 

Arithmetic of MFT and Radix-2 FFT - Shift Between DFTs = 4 sample(s) Arithmetic of MFT and Radix-2 FFT - Shift Between DFTs = 4 sample(s) 

nples an 
1 1 1 1 1 1 
ilyzcd = flNM) 

1 1 

Radix-2 FFT / — 

\ ; Full MFT 

1/4NAU FT J.4 

- -0--
_ . • 

1 1 1 1 1 

101) 200 3(H) 41)0 500 600 700 800 900 1000 
Window size [sample] 

100 200 300 400 500 600 700 800 900 1000 
Window size [sample] 

(a) (b) 

Figure 9 Arithmetic of M F T and Radix-2 F F T when qMFT - 4 
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The arithmetic of M F T is linear with the number of the computed spectrum coefficients 

(7VC) and the length of the data record (M). For a given record size (e.g. Figure 8 (a) and 

Figure 9 (a)) the M F T arithmetic remains the same, with varying shifts, while the F F T 

arithmetic drops down considerably as the value of shift gets larger. 

In Figure 10 the floating point operation per D F T is shown for radix-2 F F T , mixed-radix 

FFT, M F T and the direct D F T , when the consecutive windows are overlapped by N/2 

samples (i.e. qMFr = N/2). The arithmetic of the mixed-radix F F T was estimated using the 

Matlab's fft and flops functions. The radix-2 F F T is very efficient i f the D F T length is 

power of two, while the M F T is more efficient when TV is a non-composite number (e.g. 

prime). 

Floating Point Operations per DFT 

Window size [samples] 

Figure 10 Floating Point Operations of D F T algorithms 

When there is no overlap between the two consecutive DFTs (i.e. qMFT = AO during the 

spectrum analysis, the M F T has to be applied N consecutive times to obtain the next valid 
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D F T . In this case, the arithmetic of the M F T becomes the same as the direct D F T in 

Figure 10, while the arithmetic of the other algorithms remains the same. 

As an example of efficiency of the M F T , consider an TV-point frequency domain filter 

with a fast convolution method applied to the complex-valued data record. The filter 

coefficients are pre-calculated and stored and the filter is applied with a radix-2 F F T (or 

M F T ) , an array multiply, then an inverse F F T (or IMFT) . When radix-2 F F T is used to 

obtain the convolution 

real operations are needed. In the case of the M F T the number of real operations needed 

are: 

(34) 

COPSMFT =M[10NC +2] 

(35) 

The comparison of efficiencies is shown in Figure 11: 
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Arithmetic of Frequency Domain Convolution 

Window size [samples] 

Figure 11 Fast Convolution with M F T and Radix-2 F F T 

If the M F T is used to compute all the spectrum coefficients, then the radix-2 F F T is more 

efficient for most of the D F T lengths. But i f only a subset of the spectrum coefficients 

need to be computed (i.e. sub-band filtering), the M F T / I M F T transformation pair can be 

more efficient for many values of N. 

2.4.3 Advantages and Uses of MFT 

The computational order of the M F T to recursively calculate the coefficients of an Ap­

point D F T is N, a factor of log2N improvement over the F F T . If only a sub-set of the 

spectrum components are needed, the computing load of the M F T can be further reduced, 

calculating only the frequency coefficients of interest. The M F T does not rely upon on N 

being power of two to obtain its efficiency, in contrast to standard F F T algorithms. In this 

way, the M F T can provide more efficient computation of the D F T when any or all of the 

following conditions apply: 
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• DFTs are highly overlapped 

• only a few Fourier coefficients are needed 

• a specific, non-composite D F T length is needed. 

Concerning the above properties of the M F T , we can say that it can be useful in different 

applications of signal processing such as: 

• on-line computations in real-time spectral analysis 

• on-line signal identification and detection 

• speech processing 

• radar and sonar processing. 
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Chapter 3 

Overview of SAR Processing 

3.1 Introduction 

In this chapter the basic geometry of the synthetic aperture radar (SAR) system, the 

mathematical form of the ideal received signal of a point target and the traditional S A R 

compression algorithm, the range-Doppler algorithm are introduced. 

3.2 Ideal point-target model 

Assume, the airplane or satellite carrying the S A R antenna travels across the surface of 

the earth at a constant velocity (V r ) while transmitting microwave pulses at a given pulse 

repetition frequency (PRF) to the ground with a squint angle © as it is shown in Figure 

12. The direction of travel of the S A R antenna is called the azimuth direction while the 

direction of travel of the transmitted pules is referred to as the range direction ( azimuth 

and range directions are perpendicular to each other). 
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The transmitted pulses travel at the speed of light (c = 3x10 m/s) which is much faster 

than the velocity of the antenna. In this way, the antenna can be treated as stationary from 

the time when it sends out one pulse and receives the reflections from the ground targets. 

Then the antenna moves to one position to the next azimuth position, sending out another 

pulse and receiving the back scatter again. Because of the large disparity in time duration 

of the two directions, azimuth is referred to as the "slow time" axis while range as the 

"fast time " axis. 

Figure 12 Synthetic aperture radar geometry 
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Let r\ represent the slow time variable in azimuth direction. Then at each r\ there is a fast 

time variable t corresponds to the signal in the slant range (R) direction. The transmitted 

pulse is a chirp signal, exp(y'7TKr t2), and the ideal received S A R signal from a point 

target can be written as a two dimensional signal [3]: 

s (t, r\) = P(t) A(r]) exd 
2R(V) 

A 

(36) 

In (36) P(t) is the pulse envelope in range direction, A(r\) is the azimuth antenna pattern, 

Kr is the range F M rate, and X is the radar wave length. The received signal s(t,r]) can be 

separated to the range signal sft,rj) and the azimuth signal sa(rj) as follows: 

s(t,rj) = sr(t,ri)xsa(ri) 

sr(t,rj) = P(t) exp] jnKr 

sa(T]) = A(77)exp 

(

t 2R(M 
v c 

,2 \ 

f 4R(r])^ 

(37) 

After the chirp travels through the slant range R(r\) and back, the received signal sr has a 

time delay 2R(r])/c. In this case, for the same target, but in a different azimuth position, 

the time delay of the received chirp is different, causing range cell migration in the data 

memory. 
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From the geometry of Figure 12, the closest slant range of the target (R0) is at azimuth 

time r\ = no. When the target is at some arbitrary position with respect to the antenna, the 

slant range R can be expressed as: 

R(n) = JR?>+V?(n-noy 

(38) 

Because Ro» Vfn-rio), equation (37) can be approximated by a parabola, expanding the 

equation in a second order Taylor series around r|o: 

R(n) = R0 + 
2Rn 

(39) 

Combining equation (37) and (39) together, the received azimuth signal can be written as: 

sa(n) = A(r\) exp 

= A(r\) exp 

77T 4 V exp 
r 2V2

 2^ 
• i»7t ( l - 1 o ) 

K0 A 

]7l-
4Rn 

X 
exp(-jn Ka(n-r}0)2) 

(40) 

where the Ka is the azimuth F M rate. Note, that the value of Ro changes for each range 

cell, therefore the azimuth F M rate changes also, and this must be taken into account 

when processing the data from different range locations. Also note, that sjr]) has a 

constant phase -4nRo/X proportional to Ro. This constant phase must be preserved or 

recovered after the azimuth compression. It is needed for further S A R processing 

applications, such as S A R interferometry (InSAR). 

38 



The time variable 77 in the azimuth signal is valid within the exposure period of the target, 

which is determined by the antenna pattern A(r]). When the antenna length is L , the foot 

print width of the antenna beam at the target is XRo/L, so the target exposure time is 

_ A R0 

e~LVr 

(41) 

Let r\c represent the azimuth time when the beam center crosses the target. Then, r\c = 

Rotan(©/Vr), and the valid interval of t] for sa(r]) is: 

T T 
n c ~ * V < 

(42) 

3.3 SAR signal compression 

The received S A R data in both range and azimuth can be modeled as the convolution of a 

linear F M chirp and the ground reflectivity. Using the form of the ideal received signal in 

equation (36) a matched filter can be derived for each dimension and a pulse compression 

can be performed on the received data. The pulse compression rearranges the energy 

received from each ground targets into a single focused pulse. The location of the 

maximum energy of the pulse corresponds to the location of the target in range and 

azimuth, while the strength of the pulse represents the reflectivity of the target. 

The Range/Doppler (RD) algorithm is a traditional, highly accurate and efficient method 

for compressing S A R data. It consist of the following major stages [3]: 
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• range F F T , 

• range matched filter multiplication, 

• range EFFT, 

• azimuth F F T , 

• range cell migration correction ( R C M C ) , 

• azimuth matched filter multiplication and 

• azimuth EFFT. 

In the R D algorithm, the range and the azimuth signal are compressed separately using 

different matched filters. In either case, the matched filtering can be implemented via 

time domain convolution or frequency domain multiplication. In the rest of this section, 

the pulse compression is introduced through the frequency domain azimuth compression. 

The azimuth signal in (40) can be simplified without loss of generality by ignoring the 

phase term exp(-JTV4RO/A) and the antenna pattern A(n): 

sa(n) = exp(-jn Ka(t]-rj0)2) 

The spectrum of the signal in equation (43): 

Sa(f) = rect dc exp 
K. 

2f% 

(43) 

Where Fdc is the Doppler centroid frequency and Fdc = -Ka(nc-r]o). The Doppler 

bandwidth of the azimuth signal BW=TeKa. 

The matched filter in the azimuth frequency (Doppler) domain is the complex conjugate 

ofSa(f): 

40 



M(D=s:(f\o=0 

(44) 

The frequency domain compressed signal is the product of the spectrum of the matched 

filter and the spectrum of the azimuth signal: 

Sc(f) = M(f)-S(f) 

= red exp(-;'27z:/770) 

(45) 

The compressed signal in the time domain is the inverse Fourier transform of Sc(f): 

Sc(TI) = F{SJf)} = KA Te exP(j2nFdc(r] -Vo)) s i n c ( ^ Te(r)-r),)) 

(46) 

In (48), the compressed peak is at the point of the target's closest approach (r\o). This 

compressed peak location can be changed to other position, such as the target's starting 

time or Doppler centroid location, by changing the format of the matched filter. 

In the following two chapters, survey on the applicability of the Momentary Fourier 

Transform to S A R signal processing algorithms is given. Chapter 4 shows how the M F T 

can be applied to the S P E C A N S A R processing algorithm, while in Chapter 5 it is shown 

what advantages the M F T offers when it is used for burst-mode data processing. 
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C h a p t e r 4 

A p p l i c a t i o n o f M F T to S P E C A N S A R Process ing 

A l g o r i t h m 

4.1 Introduction 

As it was mentioned in the previous chapter, S A R signal compression in range and 

azimuth can be accomplished by cross-correlation in the time domain using time domain 

convolution, or in the frequency domain, using the fast-convolution variant Range-

Doppler method. Alternately, advantage can be made of the linear F M structure of signals 

by replacing the cross-correlation operation with a frequency filtering operation 

performed by a D F T . This method is called SPECtral ANalysis ( S P E C A N ) [11]. In this 

chapter after the theory of the S P E C A N algorithm discussion on the application of M F T 

to azimuth S P E C A N processing is given. 

4.2 The SPECAN Algorithm 

The S P E C A N algorithm consists two major computational steps: 

• Deramping 
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• D F T extraction. 

Deramping is the operation of multiplying a linear F M signal with a complex conjugate 

reference signal with the same F M rate, but opposite F M slope. The deramping of a 

signal containing multiple targets is shown in Figure 13. 

1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 

(a) Frequency - time history of a set equally spaced point reflectors 

(b) Frequency - time history of the reference function 

15 

14 

13 

12 

F„ Hz 

Time 

F„ Hz 

Time 

F. Hz 

Time 

(c) Frequency • time history of the product function when the signal in (a) is multiplied by the 
reference function (b) 

Figure 13 Deramping of multiple targets 
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After deramping, the targets whose zero Doppler frequency is located within one 

reference function cycle wi l l have frequencies ranging from -FJ2 to FJ2, where Fa is the 

azimuth sampling frequency. These targets w i l l constitute one processing region. The 

formation of parallelogram shaped regions from the deramped targets is shown in Figure 

13 (c). 

Note that each incremental step in the time direction in Figure 13 (a) results an 

incremental step in the frequency direction in (c), and that the frequency continuity is 

reset by Fa H z (i.e. / = 0 a n d / = Fa are connected). 

Consecutive processing regions are separated by lines of slope of the azimuth F M rate 

(Ka) and constitute a parallelogram shaped area. Figure 14 shows one processing region 

in more detail. The parameters defined on the figure are calculated as follows: 

2V2 

• Azimuth F M rate: Kn = r— [Hz/s] 
AR0 

F2 

• One cycle of the reference function: M - —3- [samples] 

• The processed region of the total Doppler spectrum: Mp=(\.-/3)M, where 

parameter j3 denotes the guard band. 

• Velocity of a sub-satellite point: Vr [m/s] 

• Wavelength: A [m] 

• Closest slant range: Ro [m] 

• Sampling frequency of the azimuth signal: Fa [Hz] 
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Each deramped target in the parallelogram has a unique frequency ranging from -FJ2 to 

+FJ2. It is this unique frequency which defines the position of each target with respect to 

other targets in the same parallelogram. 

N = input DFT samples 
•< • 

Time 

: G good DFT output samples 

: discarded DFT output samples 

Figure 14 Processing regions and the placement of successive D F T blocks in single look 

case 

The parts of the energy of any target which originate near the ends of each trajectory (i.e. 

near the sloped lines) has poor S N R because they arise from the low gain part of the 

azimuth beam profile and because of the relatively high presence of aliased energy there. 
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The guard band is represented by dashed lines in Figure 14. The total width of the guard 

band in the time direction is (3 times the distance between the sloped lines. This means 

that only (i-/3) fraction of the total available Doppler spectrum of each target trajectory is 

processed. 

The next step in the processing is to separate the targets into different energy cells with 

regard to their position in the time domain. This is done by performing short length DFTs 

across the deramped data. The placement of the DFTs is also shown in Figure 13, where 

the D F T length is N samples. The location of the first D F T block is arbitrary, but for the 

sake of illustration it is placed so that the last sample corresponds to the bottom right 

corner of the processing region. The first D F T rectangle is divided into two parts by a 

horizontal line where the left-hand side of the rectangle touches the right side of the 

guard band. The upper section of the rectangle contains invalid output samples which 

must be discarded because the targets in that region are not fully exposed, while output 

points corresponding to the lower section of the rectangle are kept as the good D F T 

output points. 

If N = ccM, then the unused portion of the available time axis is (l-a-(3) M samples long 

and the height of the valid part of the rectangle is 

G = (1-a-p) N 

(28) 

D F T output samples. G is the number of good points retained from the D F T operation. 
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The next D F T must be applied so that the frequency of the lowest frequency cell 

corresponding to the good output region is exactly one cell higher than the highest 

frequency cell of the current D F T . This placement is shown in Figure 14, as well . The 

gap between successive DFTs in the input time domain: 

g = (l-2cc-P)M 

(29) 

The D F T length is governed by the desired azimuth resolution pa, by the relation: 

N=0X9VrFa _ 0 . 8 9 F a A / g 0 

(30) 

where cr is the weighting factor used in the application of D F T such that o~N is the 

effective number of samples used in the D F T input. From (30) it is seen that the D F T 

length (AO is directly proportional to the range (Ro) and inversely proportional to the 

resolution (pa), while the variables Vr, Fa and Ka are defined by the S A R system. The 

azimuth F M rate strongly depends upon the range while Vr depends weekly upon R for 

satellite systems and constant for airborne systems. The azimuth resolution can be 

expressed from (30): 

_ 0 . 8 9 y r F a _0.89 FaXR0 

Pa~ oNKa ~ oN2Vr 

(31) 

Table 3 gives available azimuth resolutions for various D F T lengths, with the following 

C-band S A R satellite parameters: Ka = 2100 Hz/s, Fa = 1650 Hz, Vr = 6800 m/s, a = 

0.68. 
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D F T length - N Resolution - p a 

256 23 m 

512 11 m 

Table 3 Resolution versus D F T length in S P E C A N for C-band satellite S A R 

4.3 M u l t i look processing in S P E C A N 

The processing scheme of Figure 14 is a single look processing because the azimuth 

compression operation produces only one output point for each azimuth location. A multi 

look processing scheme is introduced as follows. 

The large gaps between DFTs in Figure 14 shows that much of the input data is not used, 

which is indicative of the excess azimuth bandwidth available when this length of D F T is 

used. This excess bandwidth can be used to generate multiple looks. 

Extra looks can be generated by dividing the G good output points from a single D F T 

into Ni equal groups, and assigning each group to a different look number. Ni is the 

number of looks. The next D F T is then placed so that the beginning of its good output 

points are contiguous with the end of the first look of the first D F T . Such a division into 

looks and placement of the second D F T is illustrated in Figure 15 for the four-look case. 

In this case the target is fully exposed in four consecutive DFTs , and the fifth D F T would 

have the same location as the second D F T in Figure 14. 
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Using the good points, obtained from each D F T output (28), the number of good output 

points per look is 

L=INT 
N, 

(32) 

Time 

Figure 15 Divis ion of the good output samples into looks and the location of the D F T 

operations in multi-look processing 

Note that G/Ni is not in general an integer so that usually LNi < G and that a small 

fraction of the good output points are not used. L must be an integer so that the looks fit 

together evenly at look summation time for each successive D F T . 
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The shift between successive DFTs is: 

LF R0 A 
NKa 2 pa 

Fa{l-P) 0.89 

(33) 

In general q is not an integer, and the nearest integer must be chosen in order to decide 

where to place the second D F T . 

For complete efficient data utilization q ~ o~N, so the number of looks that are normally 

taken can be expressed as follows: 

I V | =_S_(l.^)-I = A P a _ ( i . / 5 ) - l » ^ a . 
' oNKa 0.89V ' a Vr 

(34) 

Note that Ni is linearly proportional to pa and does not depend on RQ. 

4.4 The SPECAN Algorithm Using the MFT 

The azimuth F M rate of the received S A R signal is inversely proportional to range, so it 

changes as the range varies in each cell. In order to keep the resolution and output 

sampling rate constant across the swath, there is a need to choose different D F T lengths 

which vary with one or a few samples at a time. The affect of the varying range on the 

F M rate and the required D F T length for spaceborne and airborne case are shown in 

Figure 16. 
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Azimuth F M Rate and DFT Length in SPECAN 
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Figure 16 Azimuth F M rate and the D F T length with varying range 

The radar parameters for the two cases are given, in Table 4. Note that in the spaceborne 

case there is a need for only 16 different D F T sizes to keep the resolution constant 

through the whole swath, while in the airborne case a wide range of window length is 

needed. 
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Radar parameter Spaceborne 
S A R 

Airborne 
S A R 

Units 

Velocity (V'r) 7000 [m/s] 

Wavelength (A) 0.057 0.057 [m] 

Weighting parameter (<T) 0.68 JlllllIMI 

Guard hand ((I) 0.15 0.15 -

Slant range (R) 830 - 870 Lkm| 

Sampling frequency (F,,) 1680 300 [Hz| 

Number of looks (A-'/) HBil Is I -

Azimuth resolution (pa) 25 4 [m] 

Table 4 Spaceborne and airborne S A R parameters for S P E C A N arithmetic calculation 

The Radix-2 F F T algorithm can be only used when the D F T length is a power of two. In 

other cases of window length a mixed-radix F F T algorithm is used to achieve efficiency 

only for highly composite N. It means for each different D F T a different F F T algorithm 

should be implemented within the S P E C A N processor, which makes the D S P 

architecture rather complex when many lengths of F F T are needed. 

In contrast to F F T algorithms, the structure and the efficiency of the M F T does not rely 

upon on the size of the D F T . The same simple algorithm can be used to calculate all of 

the necessary D F T s during the azimuth compression. The number of real operations of 

M F T to process an M samples long region, when all of the spectrum coefficients are 

computed (Nc = AO is given in equation (32). 
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During the D F T extraction only a portion of the spectrum coefficients - good output 

samples (G) - are used at the same time to obtain the compressed data. Although the 

amount of these spectrum components remains the same through the processing, but their 

position changes with the DFTs . So, the conventional form of the reduced-MFT 

algorithm cannot be used in this case. The sub-band of the calculated spectrum 

coefficients has to change its positions in the frequency domain in phase with position of 

the good output samples. The arithmetic of the required reduced-MFT algorithm is 

introduced below. 

For the first M F T (DFT 1 in Figure 13) all of the good output samples are computed for 

the first time so the arithmetic of the first M F T is: 

MFTOPSDFT, =N [8 G + 2 ] 

(35) 

For the next M F T (DFT 2 in Figure 13) the position of the sub-band of the good output 

points shifted towards to the higher frequencies with L samples (the good output points in 

a look). Thus, there are L new frequency components to calculate beside the (Ni-L) 

continuously calculated ones. The number of real operations needed for the L new 

coefficients of the second D F T are: 

MFTOPSDFT 2 NEW =N [ 8 L + 2 ] 

(36) 

The arithmetic of the previously computed spectrum coefficients of the second D F T is: 

MFTOPSDFT20LD =q [8(/V, - l ) L + 2 ] 
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(37) 

The shifting of the interval of the good output points in the frequency domain continues 

during the whole azimuth processing, which means that the 'new' and the 'old' spectrum 

coefficients have to be computed 

previously introduced equations 

R M - N ^ 
+ 1 times through the whole region. Using the 

MFTOPS = MFTOPS D F T L + 
R M - N ^ 

+ 1 (MFTOPSDFT2NEW + MFTOPS D F T 1 0 L D ) 

= N[SG + 2] + 
R M - N ^ 

+ 1 N[SL + 2]+ 
(M-N 

+1 4 [ 8 ( ^ - 1 ) ^ + 2 ] 

(38) 

real operations are needed to process the whole processing region with the reduced M F T . 

Although equation (38) looks rather complex, the implementation of the above described 

reduced M F T algorithm is the same as the full M F T algorithm, except the timing and 

synchronization of the sub-band of the spectrum coefficients. Figure 17 shows the 

number of operations of the S P E C A N azimuth compression for spaceborne and airborne 

cases. 
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D F T Operations in S P E C A N 

D F T Operations in S P E C A N 

250 300 350 
Window size [samples] 

(b) Airborne S P E C A N processing 

Figure 17 Arithmetic of S P E C A N azimuth compression with different D F T algorithms 

The D F T algorithms used to obtain the D F T output samples are the direct D F T algorithm, 

the full and reduced M F T , the mixed-radix and radix-2 F F T . Although the radix-2 F F T 

algorithm is the most efficient, it can be used only once during the process, when the 

D F T length is 256 samples (Figure 17 (b)). As the window length gets larger ( K a smaller) 
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the size of the processing region also gets larger, thus more operation is needed to process 

one range cell. The envelope of the plots in Figure 17 (a) and (b) represents the tendency 

of the growing arithmetic of S P E C A N . 

Note that the arithmetic of the full and reduced M F T is more uniform in contrast with the 

arithmetic of the mixed-radix F F T algorithms. Also note, that the arithmetic of the 

mixed-radix algorithm is equal to the direct D F T i f the window length is a non-composite 

number (i.e. prime). In Table 5 the ratio between the maximum and minimum of real 

operation of the reduced-MFT and mixed-radix F F T are given, followed by the ratio 

between the average operation of reduced and fu l l -MFT and mixed-radix F F T of the full 

swath. 

Ratio of flops 
Spaceborne 

S A R 
Airborne 

S A R 

NU v o l icd ikvd Ml '1 

M i n . of reduced M F T 
11.15 

Max. of mixed radix F F T 

M i n . of mixed radix F F T 
18.00 141.25 

reduced M F T per swath 

mixed radi \ F F T per swath 
1.74 

full M F T per swath 

mixed radix F F T per swath 
1.42 2.17 

Table 5 Reduced and full M F T versus mixed-radix F F T 
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From Table 5 we can see that in the spaceborne case there is less than 10 % difference 

between the minimum and maximum of the reduced-MFT flops, while the maximum of 

the real operations of the mixed-radix F F T more than 18 times bigger than the minimum. 

In the airborne case, the azimuth F M rate changes more dramatically, thus the difference 

between the minimum and maximum flops are much larger. When the M F T is applied to 

S P E C A N there is a factor of 11 difference between the maximum and minimum 

arithmetic, while in the case of the F F T the maximum of flops is 141 times bigger than 

the minimum. This large difference in the processing arithmetic makes the timing of the 

data flow in S P E C A N rather difficult when F F T algorithms are implemented. Note, the 

results in Table 5 are strongly depend on the azimuth resolution and on the width of the 

swath. 

In the S P E C A N algorithm, the resolution is inversely related to the D F T length, thus 

larger DFTs are needed to obtain finer resolution. As the transformation length is getting 

wider, the interval of the good output points wi l l shorten, therefore more D F T blocks 

with higher overlap ratio wi l l be needed to cover the processing region (Figure 14). In 

this case, the S P E C A N algorithm requires more computation to obtain the azimuth 

compression. Figure 18 and 19 illustrate the real operations per input samples of the 

traditional Range-Doppler (RD) algorithm and the S P E C A N algorithm with the M F T and 

radix-2 F F T algorithms for a spaceborne S A R system. The used system parameters for 

the analysis are the same as in Table 4, except the number of looks, Ni = 1 in this case. 
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Figure 18 The arithmetic of S P E C A N when the M F T is more efficient 

Operations/Input samples vs. DFT length in SPECAN and RD Operations/Input samples vs. DFT length in SPECAN and RD 
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Figure 19 The arithmetic of the Range-Doppler algorithm and the S P E C A N algorithm 

using the M F T and F F T algorithms 

As it was shown in Section 2.4.2, the M F T algorithm gets more efficient as the Radix-2 

F F T when the shift between successive DFTs are not bigger than five samples. Small 

amount of shift between the DFTs and the corresponding resolution are shown, in Figure 
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18 (a). The shift between DFTs is smaller than six samples only for large window lengths 

(1181, 1182, 1183, 1184, 1185 samples), close to the maximum (Nmax = (l-fi)M = 1186). 

Thus the M F T algorithms are more efficient than the Radix-2 F F T algorithm only for 

very fine resolutions. In Figure 18 (b) the real operations per input samples of the 

S P E C A N algorithm with the fu l l -MFT, reduced-MFT and radix-2 F F T are shown. 

Figure 19 (a) illustrates the arithmetic of the R D algorithm and the S P E C A N with 

different D F T implementations. A s the D T F length gets larger, thus the azimuth 

resolution gets finer (i.e. N > 700 samples, pa < 10.85 m) the R D algorithm gets more 

efficient, even if the Radix-2 F F T is applied in S P E C A N (Figure 19 (b)). Thus, when fine 

resolution is needed, the R D algorithm is used for S A R signal compression. From Figure 

18 (b) and 19 (b) it can be seen that the F F T algorithms are more efficient than the full-

or reduced-MFT for all transformation lengths usually used in S P E C A N , thus the M F T 

does not improve significantly the computational efficiency of the S P E C A N algorithm. 

Beside the complexity and computational efficiency, another important issue in the 

S P E C A N algorithm to keep the output sampling rate constant. In other words, targets 

which are T seconds apart in azimuth input time must appear T seconds apart in the 

output data. It was shown in [11] that the azimuth output sample rate is 

^ = ^ - H z 

(40) 
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The output sampling rate strongly depends on the azimuth F M rate, so when Ka changes 

trough the swath, there is also a need for slowly varying D F T length to keep the output 

sampling rate constant. Figure 20 shows Fou, as the function of range, when M F T and 

radix-2 F F T is applied in the S P E C A N algorithm for spaceborne and airborne systems. 

Note when the M F T algorithm is applied, the output sampling rate is more uniform for 

both cases. During the application of the radix-2 F F T only two transformation lengths -

256 and 512 - can be used for the airborne case, while only one, N = 512 can be used for 

the spaceborne case. This is the reason of the large migration of the output sampling rate 

when the radix-2 F F T is applied to the S P E C A N . 

Output Sampling Rate Output Sampling Rate 

: ! Radixr2 FFT: N = 512 

MFT: 

£ 6 5 a 
<2 
,s6 0 

o. 
E 
i 55 
Br 
S 5 0 

Radix-2FF'T: N -.256and 512 . 

835 8411 845 850 855 860 865 870 
Range [Km] 

12 14 
Range [Km] 

(a) Spaceborne case (b) Airborne case 

Figure 20 The output sampling rate of the S P E C A N algorithm 

In this chapter, the applicability of the M F T to S P E C A N S A R processing algorithm has 

been investigated. Although, the M F T does not improve the computational efficiency of 
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the S P E C A N algorithm, it has the following advantages over the radix-2 and mixed-radix 

F F T when they are applied to S P E C A N : 

• The M F T has consistent computing load as the D F T length changes. 

• It is easier to implement the M F T algorithm for variable window length. The 

architecture of a S P E C A N processor using M F T is less complex, because the same 

M F T algorithm can be used for the different window lengths. 

• The full radar resolution can be achieved, because the full Doppler spectrum of the 

targets can be used for the compression by using high-overlapped DFTs . 

• The output sampling rate of S P E C A N is more uniform. 
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Chapter 5 

Application of MFT to Burst-mode SAR Data 

Processing 

5.1 Introduction 

Burst-mode operation is used in S A R systems, such as R A D A R S A T , to image wide 

swaths, to save power or to save data link bandwidth. In this operational mode the 

received data has segmented frequency-time energy in its Doppler history. There are 

several algorithms for burst-mode data processing: one of them is the Short JLFFT (SIFFT) 

algorithm which was proposed by Dr. Frank Wong at M D A [17]. In this chapter, after the 

introduction of the burst-mode data and the SLFFT algorithm properties, a survey on the 

efficiency of the SLFFT and the applicability of the M F T to the SLFFT algorithm is given. 

5.2 Burst-mode SAR processing 

Burst-mode is commonly used in S A R systems in ScanSAR mode, where the beam is 

switched between two or more swaths to maximize the imaged swath width. A 2-beam 

ScanSAR mode is illustrated Figure 21. 
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Figure 21 Burst-mode operation in 2-beam ScanSAR case 

In this operation mode, the radar beam scans through one sub-swath for a certain time 

interval, and switches to the next one. After scanning through the second sub-swath, the 

radar switches back to the first one to start the next burst cycle. The burst cycle has to be 

short enough to make sure each target is fully exposed in at least one burst. 

The data from one sub-swath have to be processed separately from other sub-swaths, 

because the radar beam covers a different ground area in different sub-swaths. In the 

azimuth direction, the data is segmented into discrete bursts (shaded area in Figure 21), 

while in range the signal of any sub-swath is continuous, thus the data is not acquired in 

discrete range bursts. 
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Figure 22 Burst-mode processing of 16 fully exposed and evenly spaced targets in one 

range cell 

5.3 Properties of fully exposed targets in burst-mode processing 

A typical 2-beam burst-mode data collection pattern is shown in Figure 22. Data from 16 

evenly spaced, fully exposed targets in one range cell are shown, where the burst length 

is 20% of the aperture length. Dashed lines show the azimuth exposure time of each 
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target i f the S A R were operating in continuous mode, and the solid parts of each line 

show that part of each target actually exposed in burst mode. 

Note that the part of the target's exposure captured in burst mode varies with each target, 

which is illustrated in the frequency-time diagram of Figure 22. Each successive target is 

received at a lower Doppler frequency within a given burst, but is later captured at a 

higher frequency in the next burst, as long as it stays within the beam. The pulse 

repetition frequency (PRF or Fa) and the aperture length in azimuth time (Ta) are 

connected through Ka, 

Fa=TaKa [Hz] 

(47) 

Ta in the time-domain consist of 5 burst lengths, so Fa in the frequency-domain also 

consists of 5 burst bandwidths (Figure 22). 

The Doppler history of the 16 targets is also shown in Figure 22, where it is seen that it 

takes up to 2 bursts to cover all of them. The plot shows the distribution of target spectral 

energy that would appear i f an azimuth D F T were taken over the full 4 bursts, thus the 

D F T length was 4 bursts plus 4 gaps long in this case. Note that some targets appear in 2 

full bursts (e.g. Target 6), some appear in 3 full bursts (e.g. Target 11), while others 

appear in two full and one partial burst. In this case, the average number of target 

exposures or bursts per aperture is 2.5. The number of bursts/aperture in ScanSAR 

systems is typically between 1.5 and 3. 

65 



If single-look complex processing is to be done, then there is a choice of which bursts to 

use for each target. Normally, the target exposures closest to the Doppler centroid (Fdc) 

wi l l be selected, as shown by the heavier lines in the lower part of Figure 22. However, 

other bursts may be chosen, when the data is processed for InSAR purposes. 
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Figure 23 Burst-mode processing of fully and partially exposed targets in one range cell 
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5.4 Properties of partially exposed targets in burst-mode processing 

In the previous section the properties of fully exposed targets of a synthetic aperture were 

introduced when they are processed in burst-mode. These are the valid targets of 

continuous-mode processing: they have complete frequency-time history and get 

compressed using the full Doppler aperture (Fa) matched-filter. 

Beside the fully captured targets, there are also partially exposed targets both at the 

leading edge and trailing edge of the azimuth D F T . These targets are incomplete, so they 

are discarded during continuous-mode processing. The frequency-time diagram and 

Doppler history of the partially exposed targets are shown in Figure 23, where the light 

gray region corresponds to signals from targets that begin previous to the start of the D F T 

and the dark gray region corresponds to signals from targets which end after the end of 

the D F T . Note that most of the partially exposed targets are also completely captured by 

one or two bursts, so they can be fully compressed using one burst width of their 

spectrum. In this way more targets with lower resolution can be fully compressed in the 

same synthetic aperture as in the continuous-mode for a given D F T length. 

In Figure 23, both partially exposed regions in the Doppler history have a triangle shape 

in frequency-time space and they complete each other to a rectangular shape. Originally, 

the position of the light gray region is before the region of the fully exposed targets, 

corresponding to the position of targets to the synthetic aperture in azimuth time domain. 

The change in the position of the light gray region is caused by the wrap-around 

properties of the D F T . 
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Figure 24 Effect of the circular convolution on the targets Doppler history 

Figure 24 shows the original parallelogram region of the Doppler history and how the 

light gray region gets 'wrapped-around', when frequency-domain circular convolution is 

used instead of time-domain linear convolution. Note, targets in the parallelogram region 

get compressed into different output cells, while when the top triangle gets wrapped-

around different targets can be compressed into the same cell depending on which 

Doppler sub-band is used. This property of the wrapped-around target Doppler history 

has to be taken under consideration, when selecting good targets during burst-mode 

signal compression using DFTs . 
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5.5 T h e S I F F T A l g o r i t h m 

Most S A R processing algorithms are based on the fast convolution principle where a 

frequency-domain matched filter is used in the azimuth or Doppler frequency domain. 

When this method is applied to burst-mode data, the inter-burst gaps are filled with zeros 

and all the bursts are compressed at once using a full length matched filter followed by an 

IFFT. However, the compressed targets are then left with a burst-induced modulation. 

The SIFFT algorithm differs from the conventional fast convolution algorithm in that 

short, overlapped IFFTs are taken after the matched filter multiply in the Doppler domain 

[ 2 2 ] . So, when one burst of a target is fully captured by the IFFT, little or no energy from 

adjacent bursts of the same target is present in the same IFFT. In this way, each IFFT 

compresses a group of targets without interference (modulation) from other bursts, and an 

accurate impulse response is obtained. The IFFT is acting like a band-pass filter to extract 

target energy from the segmented form of the targets' spectra. The filter is time varying 

in the sense that each successive IFFT is applied to a different frequency band. 

To capture a target fully, the length of the IFFT must be at least as long as the length of 

the bandwidth of one burst. The bandwidth of one burst is 

N K 
BWHz = [Hz] 

F a 

BWbin = N b K " ^ F F T [frequency bins] 

(48) 
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where Nb is the burst length and NFFT is the length of the azimuth F F T in time samples. 

Then, the minimum LFFT length is 

A W „ = BWbin = [samples] 

(49) 

The EFFT cannot be longer than the bandwidth of one burst plus one gap, so that a fully-

exposed target is not contaminated by a partial exposure of the same target at a different 

frequency. In the 2-beam ScanSAR case, the length of the gap is often equal to the burst 

length, so the maximum length EFFT is 

N =7BW = 2 N b K " N f f t 

J V / F F T max ^ u y v bin ^ j-,2 

(50) 

In practice, these length limits must be modified a little because of the spreading of target 

energy in the frequency domain, i.e. a guard band is used when locating the IFFTs. Note, 

NIFFT max and N IFFT min are proportional to Ka and NFFT- The effect of this property is 

discussed in Section 5.6, where the arithmetic of the SEFFT is given. Usually, NIFFT max is 

smaller than NFFT, so less than the whole Doppler spectrum is used for azimuth 

compression, which means that the output resolution of the SEFFT algorithm is smaller 

than the maximum available by a factor of NIFFT/NFFT. 

Locations of NIFFT max and N IFFT min to extract targets with the highest energy using the 

closest burst spectrum to Fdc (thick lines) are shown in Figure 25. Targets, which are after 

or before the synthetic aperture and partially exposed, are noted as A 1 - A 2 4 and B1-B24, 

respectively. 
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F igure 25 H o w m i n i m u m and m a x i m u m L D F T is p laced to compress groups o f targets 

f rom each burst 

It can be seen that IFFT Max I captures the complete energy of a single burst spectra of 

Targets 1, 6-11, 16-A5 B10-B15 and B20-24. F o r these targets, IFFT Max I does not 
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extract any energy from other bursts' spectra, so their impulse response is not corrupted 

by modulation. Similarly, IFFT Max 2 captures the complete energy of a single burst 

spectra of Targets 1-6, 11-16, A 5 - A 1 0 and B15-20 and between the two IFFTs, all the 

targets are correctly compressed. In order to form a continuous output image, the results 

of successive IFFTs are stitched together. If only bursts with the highest energy are used 

to compress targets, then each output target gets to a different output cell. Note, not all 

the partially exposed targets can be compressed with the best S N R and Targets A16-24 

cannot be compressed at all , because none of the bursts covers them completely. Also 

note, targets before the full synthetic aperture (B10-B24) get compressed at last and their 

position in the output array is unique and correct. 

5.5.1 Number of good output targets of a single IFFT 

It was shown in the previous section that each IFFT compress different groups of targets 

correctly. We refer to these correct results as "good" output targets of one IFFT (GIFFT)-

The General form of GIFFT w i l l be derived as below. 

The number of groups of good output targets of an IFFT in the 2-beam burst-mode 

processing case is 

N 
_  l y FFT N 

group 

(51) 

Note, Ngr0Up is equal to the number of complete bursts in a D F T . In our example in Figure 

25, the D F T consists of 4 burst and 4 gaps, so there are 4 groups of good output targets. 
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Also note, that Target 1 and Targets B20-B24 are in the same group or burst ( but Target 

B20-B24 is wrapped-around by the circular convolution). 

The shift q between two consecutive targets in the Doppler frequency domain is shown 

on the top in Figure 25 and 

K N2  

q = — | — [ f r e q u e n c y bins] 

FA ^ IFFT 

(52) 

Note, q is proportional to Ka and N FFT, SO the shift varies with range and the length of 

the D F T . Note, also that although targets are more than one samples apart in the Doppler 

domain, they placed one cell apart in the output space. 

The number of good output targets in a group depends on the length of the IFFT and shift 

between targets: 

N - BW 
n — IFFT ""bin , 1 
kgroup ~ " +  1  

(53) 

Note, when NIFFT = NIFFTMIN, then G g r 0 u p = i as it is shown in Figure 25. 

Then, the number of good output targets from an EFFT can be expressed as: 

( T , „ ™ — (j • N 
IFFT group group 

N 
FFT 2Nh 

(NIFFT BWBIN)FA NIFFT ^ 

KANFFT 

(54) 
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5.5.2 Real data simulation of burst-mode processing 

A real data experiment was done to verify the above described properties of the SIFFT 

algorithm. A burst-mode processor was created by combining the M D A / U B C dtSAR 

processor and our Matlab azimuth processing program. 

In the experiment, the raw data ingestion, range compression and R C M C are done by the 

dtSAR processor. The R C M C - e d data, along with the required processing parameters, 

such as Fa, Ka and the Doppler centroid frequency are read into our Matlab program for 

azimuth processing. Before we can apply the burst-mode algorithm to the d tSAR output 

data, we have to generate the burst mode signal and correct the antenna pattern to avoid 

scalloping in the output. The antenna pattern correction is done by summing the azimuth 

F F T of each range cell, and polyfitting the summed data. 

The burst mode data is emulated from S A R continuous-mode data by windowing the 

signals in the azimuth direction in the Matlab program. The parameters of the ERS-1 data 

are shown in Table 6. The single look detected S A R image generated with the SIFFT 

algorithm is shown in Figure 26. 

Processing parameter Value Unit 

Sampling lrequv.'iK> i / i 1679.90 [Hz] 

Doppler Centroid (F^ c) 447.01 [Hz] 

Burst length (N,,) Samples 

Range cells 1024 Samples 

Azimuth samples (TV/v /) 2048 Samples 

Table 6 ERS-1 parameters for real data simulation 
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Figure 26 S L C product of burst-mode simulation 



Although, the synthetic aperture length varies with range, the burst length is 

approximately l / 5 t h of the aperture through the whole processing region. During the 

azimuth compression, NIFFT MIN was used for bursts close to the Doppler centroid, so the 

burst-mode data is extracted with the best SNR. The resolution of the output image is 

l / 5 t h of the original continuous S L C , because maximum only l / 5 t h of the targets' Doppler 

spectrum can be used for signal compression. 

Figure 27 The Doppler history of real burst-mode data 

The Doppler history of one range cell of the real data was generated using the LMFT 

algorithm is shown in Figure 27. LMFTs, with size of NIFFT MIN were taken, at each 

frequency bin, and the result of the transforms were stored in a matrix. Figure 27 shows 
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the values of the matrix, where the brightness of the image corresponds to the magnitude 

of the output result. The bright points represents the good output answers, while the 

darker parts show the gaps in the frequency domain. Note, the energy leakage of the good 

output points in the figure. When the I M F T is applied to process a data record, it needs N 

samples to fully contain data. So, in the output space there is an ./V sample long ramp 

before the first valid result. Similarly, after the last valid result there is an N samples long 

ramp as the I M F T is sliding off from the data. These properties of the frequency analysis 

cause the leakage in the output space. Ideally Figure 27 would look like the Doppler 

history in Figure 23, thus it would have the same intervals of gaps and targets. 

5.6 Efficiency of SIFFT using the IMFT and the IFFT algorithms 

To show the efficiency of the rMFT vs. the IFFT algorithm we use the parameters of the 

alternating polarization (AP) mode of E S A Envisat satellite. Alternating polarization 

mode provides high resolution products (approximately 30m) in any of the seven swath 

located over a range of incidence angles spanning from 15 to 45 degrees with polarization 

changing from sub-aperture to sub-aperture within the synthetic aperture. Effectively, a 

2-beam case ScanSAR technique is used but without varying the sub-swath. 

The velocity of the satellite Vr = 6700 m/s, the radar wavelength X = 0.0567 m and the 

azimuth F F T is 2048 and 4096 samples long during the efficiency evaluation. Other 

parameters of the seven swath are given in Table 7. 
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Swathes Sampling frequency 
F a [Hz] 

Burst/Gap length 
in [samples] 

Range [km] 

IS 1 
•f "';'::!::':E'"""I:.":E! h !̂h!-L:JP4pNî ^̂ ^̂ ^̂y|̂ l̂iii:!i!!!!i!!i:H!:::: 

825 - 864 

IS 2 1645 196 843 - 891 

IS 3 2096 887-934 

IS 4 1680 218 929 - 990 

IS 5 H H 9 N H I <>S3 - 1032 

IS 6 1698 238 1027- 1087 

IS 7 IOMI 

Table 7 Envisat swath parameters 

5.6.1 Effect of varying SAR parameters and SNR/efficiency tradeoffs 

As it was shown previously, the azimuth F M rate of the received S A R signal is inversely 

proportional to range, so it changes as the range varies in each range cell. While the 

length of the bursts is constant in the azimuth time domain, the bandwidth of the bursts 

(49) varies with range because it is proportional to Ka. Table 8 shows the maximum and 

minimum value of the burst bandwidth of each swath in FIz and in frequency bins. A t 

close range the bandwidth has its maximum, while at far range has its minimum as it is 

shown in Figure 28 for swath IS1. In a swath, the minimum IFFT length (ND?FT min) 

should be at least as long as the maximum BWbin to compress all the targets in each range 

cell correctly. Note, the lower and upper limit length of the IFFTs related to the burst 

bandwidth so they are different for each swath as well . 

78 



BW H z [HZ] 
BWbin [frequency bins] 

Swathes 
BW H z [HZ] 

N F F T = = 2048 N F F T -= 4096 

M L N M A X M L N M A X M L N M A X 

IS 1 212 222 259 271 ^517 542 

IS 2 212 221 2o4 279 527 557 

• - I S 3 208S/:-': 219 203 214 4Mo 428 

IS 4 208 221 253 :~o 506 539 

IS 5 204 214 201 211 402 422 

IS 6 204 216 246 261 493 521 

IS 7 210 198 397 l l o 

Table 8 Min imum and maximum burst bandwidth of the seven swathes 

The S N R of the SLFFT algorithm depends on the ratio of the LFFT and the burst 

bandwidth [22]. The S N R is maximum when the LFFT length is equal to the burst 

bandwidth (NIFFT = NIFFT min), while the S N R is 3 dB lower when the LFFT window is one 

burst plus one equal-sized gap long (NIFFT = NIFFT max)- So, in order to keep the S N R loss 

below a certain value across the swath, there is a need to choose specific azimuth LFFT 

lengths. The change in S N R for a given LFFT length is: 

dSNR = 10 log 1 0 
J V IFFT 

KBWbinj 

(55) 

If we choose NIFFT as small as possible at near range and have it stay the same through 

the whole swath, the S N R wi l l decrease, as the burst bandwidth decreases with range. 
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Figure 28 shows how dSNR changes with range, in the case of IS1 swath and NFFT = 

2048. The decrease in S N R is zero at near range and rises to about 0.2 dB at far range. 

Note, although BWbin in (54) depends on NFFT, the gradient and maximum of dSNR is the 

same for different azimuth F F T lengths. 

Figure 28 Burst bandwidth and dSNR of IS1 swath 

5.6.2 Arithmetic of the SIFFT algorithm using the IMFT and the IFFT algorithms 

During the efficiency evaluation of the SLFFT algorithm, the ful l -LMFT, the reduced-

I M F T and the mixed-radix LFFT algorithms are considered. A formula of the arithmetic 

of each algorithm is introduced below. 

It can be shown that the number of LFFTs to compress bursts with the highest energy is 
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NIFFT = 2 N 
N b G 

FFT group 

2NlFFTNbq 

NFFT(NlFFT-BWbin+q) 

(56) 

We can see from (56) that NIFFT inversely proportional to Gsr0uP, thus i f more targets are 

in a group less LFFTs are needed for data extraction. Than, the number of operations 

needed to compress all the targets using the LFFT algorithm is 

OPIFFT = NIFFT • OPN ,FFT 

(57) 

where OPNiFFT is the number of operations needed for one N sample long mixed-radix 

LFFT. Note i f N is power of 2 than OPN,FFT = 5N log2(N). 

As we saw in section 1.4.2, in case of the ful l-LMFT algorithm OPIMFT = M(8NIFFT + 2) 

real operations are needed to analyze an M-point complex data record. In the case of 2-

beam burst processing M = 3BWbin, so the arithmetic of the ful l -LMFT algorithm is 

OPIMFTFULL=3BWBIN(%N 
IMFT 

+ 2) 
(58) 

During the LDFT extraction in the SLFFT algorithm, only a portion of the output target 

space - 'good' output targets (GIFFT) - is compressed correctly. Although the amount of 

the 'good' targets remains the same through the processing of a range cell, but their 

position changes with the position of the LDFTs. So, a simple reduced-LMFT algorithm 

cannot be used for the target extraction. The position of the computed Doppler - spectrum 
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coefficients has to change in phase with position of the not-compressed good output 

samples, and the Doppler-frequency coefficients of the already compressed targets do not 

have to be computed during the rest of the processing. The arithmetic of the required 

reduced-MFT algorithm is given below. 

At first, the reduced - I M F T algorithm has to be applied NMFT times to give the first valid 

compression result. This requires 

OPIMFTReducedl=N 
IMFT 

(SNIMFT+2) 

(59) 

real operation. When the first I M F T is done, GIFFT number of targets are compressed 

correctly, so in the next I M F T NReduced 1 = NMFT - GIFFT number of targets have to be 

compressed. Than, the I M F T window is shifted q times, a sample at a time, t i l l it fully 

covers the next target in the group. Now, Ggr0Up number of targets can be extracted 

correctly, so during the next q shift Nneduced - GSROUP targets need to be extracted. The 

deduction of the spectrum coefficients from the previously reduced whole output target 

cell repeats (3BWbin - NiFFrVq times trough the processing region, until all the targets get 

compressed. It can be shown that the arithmetic of this procedure is: 

3BW -N 
OPIMFTReduced2 =2[3BWbin-NIMFT][4(NlMFT-GIFFT)-2GIFFT ( * ^ L - l ) + l] 

q 

(60) 

Using the previously introduced equations 
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0P1MFT, Reduced = OPIMFT, 
Reduced 1 

+ OPIMFT, 
Reduced 2 

= NIMFT(SN, IMFT + 2) + 

IMFT 
IMFT - l ) + l] 

(61) 

real operations are needed to compress all targets using the reduced-IMFT algorithm. 

Note that the arithmetic of the reduced-IMFT depends on GIFFT and G&ROUP, thus i f more 

targets get extracted by an I M F T than less computation is needed. Note, the 

implementation of the reduced-IMFT is the same as the fu l l - IMFT algorithm, except the 

timing of the position of the output targets need to be compressed. 

During the efficiency evaluation, we choose the IDFT lengths on the principles that we 

want: 

• maximum S N R at near range, 

• minimum sampling rate at near range, and 

• the sampling rate constant with range, 

and we set the forward azimuth F F T to be 2048 and 4096 samples long. 

First, we make the IDFT as small as possible at near range (i.e. NIDFT = Max BWbin), and 

have it stay the same with range, even though the burst bandwidth decreases with 

increasing range. Thus there is only one IDFT window length to choose from (w = 1) for 

the IFFT or the I M F T algorithms. 

83 



Second, we consider the case where the IDFT is allowed to be up to 4 samples longer 

than the minimum (i.e. Max BWun ^ NIDFT < Max BWbm + 4). This allows some 

flexibility in choosing a favorable IFFT length from 5 different window sizes, at the 

expense of a small decrease in S N R . Table 9 shows the IDFT lengths and the maximum 

of the corresponding dSNR for the seven swathes of the Envisat. 

Swathes 

N F F T = 2048 N F F T = 4096 

Swathes 
w = 1 w = 5 w = 1 w = 5 

Swathes 

NIDFT 
Max 

dSNR NIDFT 
Max 

dSNR NIDFT 
M a x 

dSNR , NIDFT 
Max 

dSNR 

IS 1 271 0.20 275 0.26 542 0.20 546 0.24 

IS 2 279 0.24 280 0.26 557 0.24 560 0.26 

is ̂  - 214 (»23 216 0.27 42S 0.23 • 432 0.27 

IS 4 270 0.28 270 0.28 539 0.27 540 0.28 

IS 5 211 0.21 215 0.29 422 0.21 425 0.24 

IS 6 261 0.26 264 0.30 521 0.24 525 0.27 

208 : : 210 0.26 416 0.20 420 0.24 

Table 9 The length of the IDFTs and the corresponding dSNR 

The burst bandwidth is direct proportional to NFFT (48), so it changes with the same ratio 

as NFFT does. Note that i f the value of BWbin is bigger, than it is easier to find a highly 

composite number in its neighborhood, thus it is easier to pick a suitable window length 

for the IFFT algorithm. Also note in Table 9, that the change in dSNR when a more 
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suitable window is used for the LDFTs is less than 0.1 dB, thus the S N R decrease is 

practically negligible. 

Figure 29 shows the number of real operations of the SLFFT algorithm when it is used to 

compress the data of IS1 swath. The LDFT algorithms used to obtain the azimuth 

compression are the mixed-radix LFFT and the full- and reduced-LMFT. In Figure 29 (a), 

we see that the I M F T algorithms are more efficient trough the whole swath when only the 

minimum window length can be used. 

The LFFT window begins to cover the bandwidth of more than one target as BWbm 

decreasing with range, so there is a change in the value of Ggr0up and GIFFT when the LFFT 

window starts to fully cover two or more targets in the Doppler domain. The I M F T 

arithmetic decreasing slowly with rage and the arithmetic of the mixed-radix LFFT drops 

down to its half when Ggr0Up doubles from 1 to 2. The LFFT arithmetic is constant on both 

side of the down-step. Note that there is more than a factor of 10 difference between the 

arithmetic of I M F T and LFFT, because the window length is prime (271), so only the 

direct LDFT can be used to obtain the LFFT results. 
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IS1 Swath Number of IDFT windows to choose from = 1 IS1 Swath Number of IDFT windows to choose from = 5 

B25 

£.20 

JlS 

IFFT 
full-IMFT 
reduced-IMFT 

3.5 

2.5 

IFFT 
full-IMFT 
reduced-IMFT 

825 830 835 840 845 850 855 860 
Range [km] 

825 830 835 840 845 850 855 860 
Range [km] 

a) b) 

Figure 29 Arithmetic of the SLFFT algorithm when applied to the IS1 swath 

In Figure 29 (b), we can see that the mixed-radix LFFT arithmetic dramatically drops 

down when the LFFT window length can be a composite number (275). The arithmetic of 

the I M F T algorithms did not change significantly and they are efficient only in a part of 

the swath, where only one target can be fully compressed in each group. The down-step 

of the LFFT arithmetic happens in closer range, because the LFFT window is larger, so it 

starts to fully cover two targets earlier. Note that the reduced-IMFT arithmetic also drops 

down when Ggr0Up doubles, but this change is not significant compare to the change in the 

LFFT arithmetic. Note, the arithmetic of the I M F T and LFFT algorithms of the other 

swaths is some what similar to the arithmetic of swath LSI. 

In figure 30, the average millions of operations (MOPS) are shown for all the Envisat 

swathes when the azimuth F F T 2048 and 4096 samples long. The trend of the arithmetic 

of the full- and reduced-LMFT is similar in all cases, while the LFFT arithmetic is quite 
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variable, depending upon the composition of the window length. When NFFT = 2048, the 

I M F T is more efficient for most of the swathes even i f there is an option to chose a 

suitable window length for the LFFT algorithm. When NFFT = 4096, the I M F T is almost 

always better than the LFFT i f only the smallest LDFT window can be used (Figure 30 

(c)). When there is a possibility to chose a favorable LFFT length, the LFFT is more 

efficient for all the swathes except one. Note, there is a higher possibility to find a high 

composite number in the neighborhood of the smallest window size value and more 

group of good targets (51) can be extracted, when the azimuth F F T larger. So, the 

arithmetic of the LFFT algorithm decreases more dramatically, than in the case of smaller 

NFFT length. 

Number of IDFT windows to choose from = 1, N = 2048 Number of IDFT windows to choose from = 5, N = 2048 

Envisat AP mode burst length [samples] Envisat A P mode burst length [samples] 

a) b) 
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Number of I D F T windows to choose from = 1, N = 4096 Number of I D F T windows to choose from = 5, N = 4096 

Envisat AP mode burst length [samples] Envisat AP mode burst length [samples] 

c) d) 

Figure 30 Arithmetic of the SIFFT when it is applied to Envisat A P burst mode operation 

From the above given arithmetic survey we can see that the I M F T algorithm can improve 

the computational efficiency of the SIFFT algorithm when, 

• the azimuth F F T is relatively small, 

• the maximum near range S N R is required and 

• the IDFT window length is a non-composite number. 

Beside its efficiency, the I M F T has the following advantages when it is applied to the 

SIFFT algorithm: 

• the I M F T has more consistent computing load as the burst bandwidth changes with 

range and 

• it is easier to implement the I M F T algorithm for different burst and NFFT lengths, 

because the same I M F T algorithm can be used for the different I D F T window 

lengths. 
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Chapter 6 

Conclusions 

6.1 Summary 

The objective of this work has been to further develop the theory of the momentary 

Fourier transform, to examine its arithmetic and efficiency and to show what advantages 

it offers when it is applied to the S P E C A N S A R algorithm and the SLFFT burst-mode 

data processing algorithm. 

The momentary matrix transform was introduced and it was shown when it takes the 

form of the D F T or the LDFT, the resulting M F T / L M F T have an efficient recursive 

computational structure. The spectrum coefficients of the M F T / L M F T can be calculated 

independently and only one complex multiplication and two complex additions are 

needed to update each spectrum component. This is a factor of log2N improvement over 

the radix-2 F F T algorithm if all incremental D F T results are needed. The efficiency of the 

M F T / L M F T do not rely upon the transform length being a power of two, in contrast to 
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standard FFT algorithms. The MFT/IMFT transformation pair can provide more efficient 

computation of the DFT when: 

• DFTs are highly overlapped 

• only a few Fourier coefficients are needed 

• a specific, non-composite DFT length is needed, 

and they can be useful in different applications of signal processing such as: 

• on-line computations in real-time spectral analysis 

• on-line signal identification and detection 

• speech processing 

• radar and sonar processing 

• narrow-band filtering. 

After the introduction of the SPECAN SAR processing algorithm, the applicability of the 

MFT to SPECAN has been investigated. Although, the MFT does not improve the 

computational efficiency of the SPECAN algorithm, it has the following advantages over 

the radix-2 and mixed-radix FFT when they are applied to SPECAN: 

• The MFT has consistent computing load as the DFT length changes. 

• It is easier to implement the MFT algorithm for variable window length. The 

architecture of a SPECAN processor using MFT is less complex, because the same 

MFT algorithm can be used for the different window lengths. 

• The full radar resolution can be achieved, because the full Doppler spectrum of the 

targets can be used for the compression by using high-overlapped DFTs. 
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• The output sampling rate of S P E C A N is more uniform. 

In burst-mode S A R processing, the time-varying spectral properties of the azimuth 

received data requires that highly-overlapped inverse DFTs used at specific points in the 

spectral domain to obtain the azimuth compression. It was shown that the I M F T can be 

more efficient than the LFFT when it is applied to the SLFFT burst-mode data processing 

algorithm, when: 

• the azimuth F F T is relatively small, 

• the maximum near range S N R is required and 

• the LDFT window length is a non-composite number. 

6.2 Future work 

The research of this thesis project raised the following topics for further study: 

• Further develop the theory of the momentary matrix transform, and see what other 

discrete transforms, which are used in signal processing can be efficiently 

implemented using the M M T . 

• Investigate i f there is a closed recursive formula of the M M T for shifts greater than 

one, using higher order permutational matrixes. 

• Further examine the applicability of M F T to other S A R processing techniques, such 

as interferometry S A R (InSAR) processing. The M F T can improve the computational 

efficiency of the local frequency estimation of interferograms, because frequency 

estimates are needed at every sample point of the interferogram. In addition, there is a 

possibility of obtaining better resolution estimates of the local frequency using two 
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passes of M F T , in order to provide more accurate estimates of unwrapped 

interferogram phase. 

Compare the accuracy, signal-to-noise ratio and computational efficiency of the 

S P E C A N and the SIFFT algorithm, when they are applied to burst-mode data 

processing. 

Investigate how efficiently and with what parameters the SIFFT algorithm could be 

used to process continuous-mode S A R data. 
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