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Abstract 

Constructing predictive models or mappings from sample data is an important goal in 

many areas of science. Most of the research in this area has been directed towards relatively low 

dimensional models; however, many real world problems can be large and very high dimensional. 

Such problems require general learning methods which are fundamentally different from those 

used to construct low dimensional models. In this thesis a new nonparametric regression method­

ology (SPORE) is proposed for very large and very high dimensional learning problems: 

problems with more than 10,000 learning examples of regression data having 100 or more inputs. 

The SPORE regression model is constructed incrementally by adding small, low dimensional 

parametric building blocks one at a time, using the outputs of previously added blocks as inputs to 

the new ones. This process forms stable regression functions from relatively few training 

examples, even when there are a large number of input variables. Furthermore, SPORE demands 

little computational effort to choose between candidate building blocks or inputs, making it 

computationaly feasible in very high dimensional spaces. SPORE challenges two basic 

mainstream notions found in contemporary learning algorithms. First, it questions the need to 

simultaneously fitting large high dimensional structures to model complex high dimensional 

interactions. Second, it rejects the need for "greedy", computationaly expensive searches used to 

finding the next "best" building block to add to a regression function. SPORE also allows for the 

subdivision of the domain of the input space to make incremental construction both computation­

aly and theoretically feasible. Conditions under which the rate of convergence of the method is 

independent of the dimension of the data are established. It is also shown that the computational 

complexity of constructing a SPORE-type regression model is linear with respect to dimension 

within each domain subdivision. In addition, conditions are given under which no domain 

subdivision is necessary. 

The most basic version of this regression methodology (SPORE-1) is implemented and 

empirically evaluated on four types of data sets. The SPORE-1 learning algorithm is completely 

automatic and requires no manual intervention. First, SPORE-1 is applied to 10 regression 

problems found in the literature and is shown to produce regression functions which are as good 

or better, with respect to mean squared approximation error, than published results on 9 of these 

data sets. Second, SPORE-1 is applied to 15 new, synthetic, large, very high dimensional data sets 

ii 



(40,000 learning examples of 100, 200, 400, 800, and 1600 inputs) and is shown to construct 

effective regression functions in the presence of both input and output noise. Third, SPORE-1 is 

used to build mappings from input/output learning examples generated by a human using teleop-

eration to execute an 'object locate and approach' task sequence. SPORE-1 effectively builds this 

mapping and directs a robot to autonomously execute the task demonstrated by the human 

operator, even in a visually cluttered environment with an unpredictable background. Finally, 

SPORE-1 is successfully applied to the 10-bit parity problem to demonstrate its efficacy on 

problems which have flat low dimensional projections, thus showing that it is not subject to the 

same limitations as other algorithms that build regression functions using low dimensional 

parametric building blocks, added one at a time. 
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Chapter 1: Introduction 

A l l scientific predictions are based on models of the phenomena being predicted. This is 

equally true when one is predicting the path of a projectile as when one is trying to predict 

tomorrow's weather. A l l of these models are constructed starting from empirical observations of 

the phenomena of interest. These empirical observations, in whatever form they occur, are in 

essence input and output examples of what the model is intended to predict. The resulting predic­

tive models can be of causal relationships between input and output or visa versa (such as predict­

ing the path of a projectile given initial velocity, or conversely, predicting the initial velocity given 

its path), or they can be models reflecting some correlation between variables arbitrarily labelled 

as inputs and outputs, that have other, as yet unidentified, causal factors. Whatever the nature of 

the phenomenon in question, the goal is always the same: to convert empirical observations into a 

model structure which allows accurate prediction of future observations. 

Building models from data often has two specific goals: the first is to predict output values 

given future inputs; the second is to use the resulting model to interpret or analyze the data. 

Interpretation of models involves analyzing which inputs most affect the output, as well as how 

these inputs interact with one another. Such analysis can reveal important information about the 

phenomenon that generated the data. This is especially true when relatively few input variables 

can effectively predict output values. However, the specific focus of this thesis is model prediction 

accuracy, and thus the topic of data analysis is largely ignored. One justification for this is that the 

models we are interested in are very high dimensional, making analysis difficult when many 

inputs combine in complicated nonlinear ways. 

Most major theoretical and practical work on general methods for building models has 

been done in mathematics, in the form of function approximation, and statistics in the form of 

regression. More recently, the neural network and machine learning communities have addressed 

this general modeling problem, mainly using variations of tools which have their origins in 

mathematics and statistics. Many of these endeavors have met with much success, and many 

diverse fields, ranging from the physical to social sciences, have benefited from the modeling 

tools that have emerged. 
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Chapter I: Introduction 2 

In studying the literature on general modeling methods, it is apparent that most of the 

theoretical and practical work in this area has been applied to problems which are relatively small 

and low dimensional. Relatively little effort has been specifically directed towards general 

modeling methods where there are many potential inputs, and the model is to be built based on a 

very large data set. 

Numerous examples of large high dimensional regression problems can be found in such 

diverse fields as meteorology, economics, and robotics. In meteorology, one can imagine predict­

ing tomorrow's weather given temperature, pressure, humidity, and cloud covering readings from 

hundreds of weather stations surrounding the area of interest. In economics, predicting the major 

economic indicators based on a detailed time sampling of various economic indices can be a 

profitable venture. In robotics, building mappings between a robot's sensor inputs and actuator 

outputs can be considered to be a problem in regression, if, as in human-to-robot skill transfer, 

one has access to examples of the mapping (see Chapter 4 and [Grudic and Lawrence, 1995] 

[Grudic and Lawrence, 1996] for details). All of these regression problems have one characteristic 

in common: a large number of factors influence the output, and therefore, it is not easy to choose a 

small set of inputs which effectively explain the output. 

The goal of this thesis is the theoretical and experimental study of building very high 

dimensional models from very large data sets. The type of modeling problem addressed typically 

has at least 100 inputs, and there are 10,000 or more empirical input-to-output examples of the 

phenomenon of interest. To this end, a methodology, termed SPORE, for building such regression 

models is presented and theoretically and experimentally analyzed. From a practical standpoint 

the end result of this thesis is a regression algorithm and structure, called SPORE-1, which can be 

used to build such large models. A key characteristic of SPORE-1 is that no a priori knowledge of 

the phenomenon of interest is required for model construction: all that the user must provide is a 

file containing the learning data. 

1.1 Constructing Models from Data 

The problem being addressed in this thesis is deceptively simple to state. There is a data 
M 

set containing M input/output examples (*-, y,) for / = 1, M , symbolized by {xi,yi}l . 

The inputs JC = (xx, ...,xN) are N dimensional and the outputs y = (y 1 ; ...,yk) are k 
dimensional. The goal is to find some mapping function, / , such that: 
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X 

u 

Figure 1.1 The Mapping Problem 

y = /(*) (i-i) 

where y is some estimate of y given x . Once constructed, / can then be used to predict y given 

some future input x. In the general case, the data {xt, yi}i is generated by some unknown 

phenomenon or function /(%), where % = ( « , v) is a P dimensional input vector. % can have 2 
M 

types of inputs: inputs u which do not appear in the data set {xt, y,}^ , and inputs v which do 

appear in the data {xt, yt}^ . Therefore, one is often required to construct / using an incomplete 

set of inputs (i.e. we may not have access to the inputs u). A further difficulty arises when the 

accessible inputs x include some unknown set of inputs which do not affect the output vector y 

(i.e. not all inputs found in x will also be found in v) . This is diagrammatically represented in 

Figure 1.1. Not knowing which inputs actually have some definable relationship to the output is 

just one of the potential difficulties encountered in the general model construction problem. 

The process of constructing models from data has been studied in a variety of fields, and, 

not surprisingly has been given different names in each field. In applied mathematics this process 

is termed function approximation, and one speaks of approximating the dependent variable y as 

some function of the independent variable x . In statistics, the process of model building is called 

regression and the terminology used is as follows: estimate the responses y given the explanatory 

or predictor variables x. More recently, the machine learning and neural network communities 

have termed this type of model building supervised learning and typically refer to learning the 

mapping between input variables x and output variables y . 

In this thesis, the process of building models from data is studied from the point of view of 

applied mathematics (function approximation) and statistics (regression). Referring to Figure 1.1, 

function approximation typically deals with the case of u = 0 (i.e. the empty set) and v = x. 

Thus, function approximation assumes that the independent variables x exactly define the 

dependent variables y , and the goal is to determine how well one can model / given some defined 
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structure for the approximating function / . Regression on the other hand, deals with the case 

when H ^ 0 and/or v * x. Typically, this is represented in the following form: 

y = f(x) + t (1.2) 

where, e is a noise term or, more formally, a random variable obeying some probability distribu­

tion. In most instances, 8 is assumed to be normally distributed with mean zero and fixed standard 

deviation. Hence, from the perspective of regression, not knowing whether the given inputs 

completely define the output is treated as estimation noise. 

There are two basic approaches to constructing the function / : parametric and nonpara­

metric. In the parametric approach, knowledge about the nature of the problem is used to define 

the structure and size of the function / . Typically / will contain a set of parameters that need to 

be assigned values using some numerical algorithm such as gradient descent, least squares, or 

simulated annealing (to mention just a few). For example, if / is a polynomial with a finite 

number of terms, then the parameters which are "learned" using sample data are the polynomial 

coefficients. A key characteristic of the parametric method is that because both structure and size 

are fixed, the space or class of functions representable by any single model / is inherently 

constrained. It is because of this characteristic that parametric models are often fast to compute 

and extremely effective when they are representative of the phenomenon being studied. Paramet­

ric models are in fact the best form of model to use when the nature of the problem is well 

understood. 

In contrast, nonparametric models are most useful when the nature of the problem is 

poorly understood. In nonparametric modeling, the basic structure of the model is usually 

defined, but not the number of parameters in the final constructed / function. One example of a 

nonparametric model is a polynomial which does not have a fixed number of coefficients. A 

nonparametric model grows in size in order to effectively model the desired data. Thus, in the 

case of a polynomial, new terms are added until a sufficient model is constructed. In theory, a 

nonparametric model is able to represent a greater space of functions than a parametric model. 

However, because nonparametric regression does not have a fixed parameter space, the task of 

constructing models becomes considerably more difficult than with parametric models. As a 

result, nonparametric models are typically more time consuming to construct. 

The specific problem being addressed in this thesis is model construction when little or no 
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information about the phenomenon being studied is available. Thus, the main focus of this thesis 

is nonparametric model construction, or nonparametric regression. As indicated above, there are 

difficulties associated with nonparametric regression. One of the most pervasive of these difficul­

ties is the curse of dimensionality [Bellman, 1961], which is briefly addressed below. 

1.2 The Curse of Dimensionality 

From a practical standpoint, the curse of dimensionality has two major implications for 

high dimensional nonparametric regression. The first results from the rate of convergence of 

nonparametric regression, and the second from the computational complexity of nonparametric 

regression. If we are to build regression algorithms which work well in high dimensional spaces, 

we must find ways of addressing both of these issues. 

1.2.1 Rate of Convergence of Nonparametric Regression 

There are a number of theoretical results associated with the rate of convergence of 

nonparametric regression (see Section 2.3 of Chapter 2 for details). In this thesis, we are mainly 

concerned with rate of convergence results which measure the decrease in approximation error as 

the number of sample points used to construct the regression function increases. For example, 

Stone [Stone, 1982] has shown that in general, and under appropriate regularity conditions, the 

number of sample points required to approximate a bounded continuous N dimensional function 

which is at least once differentiable and defined over a closed domain, grows exponentially with 

dimension N. This means that it is not feasible to densely sample high dimensional space (e.g. 10 

or more input variables), and therefore, in to order approximate high dimensional functions, one 

must impose some type of smoothness constraint on the approximation [Friedman, 1994b]. In 

fact, all learning methods impose such a constraint. Nonparametric methods differ from paramet­

ric methods in that they impose fewer such constraints, and are thus able to form more flexible 

approximations. Imposing a smoothness constraint on approximation means that fewer sample 

points are required to determine the parameters of the approximation. 

However, as is argued throughout this thesis and elsewhere [Friedman, 1994b], the 

problem associated with approximating high dimensional functions is not strictly due to the 

number of input variables, but rather due to the underlying complexity of the function being 
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approximated. We measure complexity as the number of samples necessary to build an effective 

nonparametric approximation (see Section 4.3 of Chapter 4 for an example). Clearly it is possible 

to have a very complicated 1 dimensional function, or a very simple high dimensional function. 

Thus, one can argue that a regression problem is difficult because it requires large numbers of 

learning data, which is not by necessity related to the dimension of the problem. Our goal then, as 

model builders, should be to find regression algorithms which perform well in high dimensional 

spaces, when only relatively few learning examples (i.e. tens of thousands) are sufficient to build 

adequate models. 

The goal then, when formulating structures for very high dimensional nonparametric 

regression is two-fold. First, we must ensure that the rate of convergence of the regression 

function is not overly dependent on the dimension of the underlying function which generated the 

learning data. In other words, the rate at which the nonparametric regression function converges to 

some stable function should not depend adversely on the dimension of the problem. Second, one 

must have an understanding of what class of functions are representable by a given nonparametric 

regression technique. If the data being used to construct the regression function is being generated 

by a function which belongs to this class, then the regression function will converge to it. In this 

case the approximation error converges to zero. However, if the function generating the sample 

points does not belong to this class of functions, then the approximation error will converge to 

some finite non-zero value. From a practical standpoint, if this approximation error is greater than 

the maximum error that is appropriate for the regression problem at hand, then the regression 

function being used is inadequate for the task. 

Recently, much theoretical work has been done to define classes of functions which have 

corresponding regression functions with rate of convergence independent of dimension (see 

Section 2.3 of Chapter 2 for details). One of the main theoretical contributions of this thesis is that 

we establish a rate of convergence result which is independent of dimension on function spaces 

which have not been previously studied in this way. 

1.2.2 Computational Complexity of Nonparametric Regression 

The second aspect of the curse of dimensionality is the computational complexity of 

constructing high dimensional regression functions. Generally speaking, there are two commonly 

used methods for constructing nonparametric regression functions. The first builds regression 
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functions by including all input variables simultaneously, thus building one or more large 

component functions which may be combined to form the final regression function. The second 

uses some form of variable selection to build up the regression function using smaller functional 

subunits. Both of these approaches can be effective for relatively low dimensional problems. 

However, consider the problem of approximating a function of 1000 variables. If one uses the first 

approach and attempts to fit all the variables simultaneously, then even if the regression function 

is a simple second order polynomial (i.e. one which has relatively few nonlinear terms) of 1000 

variables, the regression algorithm needs to solve simultaneously for over 500,000 model parame­

ters (calculated using the identity m = (s + v)!/(.?! • v!), where m is the number of polynomial 

terms and hence the number of model parameters, s is the order of the polynomial and v is the 

number of input variables). Whether solved via gradient descent or least squares, the computa­

tional cost of simultaneously fitting 500,000 parameters is not insignificant [Press et al., 1988]. 

Thus even a simple simultaneous fit of a second order polynomial of 1000 variables is computa­

tionaly significant, and adding more nonlinear terms makes the problem correspondingly more 

expensive (for example a third order polynomial of 1000 variables has more than 1.6x10 model 

parameters). The computational cost becomes even more significant when the appropriate model 

structure is unknown (thus making the problem nonparametric), and many different types of large 

nonlinear models need to be constructed before an adequate one is found. 

An additional difficulty associated with attempting to simultaneously fit many variables is 

due to the large number of training examples needed to form a stable fit. This results because a 

simultaneous fit of a large number of model inputs implies that many model parameters need to be 

fit at the same time (as discussed in the previous paragraph), which in turn requires many training 

samples for the model to converge to a stable solution [Friedman, 1994b] [Breiman, 1996b]. In 

terms of computational complexity, large numbers of learning data result in an increase in the 

computational complexity of the learning algorithm. 

Next consider the 1000 variable regression problem using some method of variable 

selection. In the literature, variable selection is typically achieved by choosing the best q of 

possible N inputs. Thus, in order to determine the optimal set of q input variables, the number of 
(N\ AT! 

model constructions and evaluations required is = —TTTT-—r: • As q and N become large, 
\qj q\{N-q)\ 

this search for an optimal solution quickly becomes impractical. For example, choosing the best 

500 out of a possible 1000 variables requires the evaluation of ^QQ^^QQ;^ m o ^ constructions 
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(usually nonlinear models are needed and hence each individual construction can itself be 

computationaly expensive); such an exhaustive search is not currently feasible, and is unlikely to 

be in the near future. Even if one chooses the suboptimal solution of removing one variable at a 

time from the model, one would require ^(N(N + \ )-{q- 1 )(<?)) model constructions and 

evaluations. Hence, using this method to find the "best" 500 out of 1000 inputs requires 375,750 

model constructions and evaluations. Even this suboptimal search strategy is computationaly 

difficult given the computational complexity of constructing and evaluating nonlinear models of 

more than 500 variables. Similar computational complexity arguments can be made for any 

method which attempts to choose the "best" (by whatever measure one uses) low dimensional 

projections of high dimensional data (see Section 2.1.1 of Chapter 2). 

Any practical nonparametric algorithm required to work on high dimensional regression 

functions must deal with the above complexity issues. In the next section, the SPORE approxima­

tion is introduced as a methodology designed to address both the computational complexity and 

rate of convergence problems associated with high dimensional nonparametric regression. 

1.3 The SPORE Approximation 

When we speak of the difficulties inherent in high dimensional nonparametric regression 

(i.e. the curse on dimensionality), we are referring to the difficulties of applying existing approxi­

mation techniques to high dimensional problems. Any approximation problem is potentially 

difficult. In fact, one dimensional problems are potentially just as difficult as one thousand 

dimensional problems, and the intrinsic difficulty of any approximation problem is directly 

related to the number of learning examples required to build a sufficient approximation. Thus, the 

curse of dimensionality is only a curse because most algorithms have been designed to work well 

in low dimensional spaces, and there is no theoretical reason why a one dimensional function 

requiring 50,000 training examples to build a sufficient model, should be any more easier to 

approximate than a one thousand dimensional function requiring the same number of training 

samples. 

We propose the following methodology to address high dimensional nonparametric 

regression problems. First, in order to ensure that the number of learning samples required to 

build a sufficient model depends on the complexity of the regression problem and not on how 

many input variables there are, we build approximations by projecting the high dimensional 
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learning data onto low dimensional parametric building blocks. Thus, the number of learning 

samples required to form stable approximations depends on the number of parameters in our 

parametric building blocks, and not on the dimension of the learning data. The result is that the 

rate of convergence of the algorithm to some fixed error, is in fact independent of dimension. 

This use of low dimensional parametric projections has been extensively used in the past 

(see Chapter 2, Section 2.1.1.1 for details), however, it has invariably involved a systematic search 

for building blocks and associated inputs for the next best (assuming some measure of best) 

building block to add. As we have argued in Section 1.2.2, these types of search procedures are 

not feasible when we have very high dimensional input spaces. Therefore, such search strategies 

are, of necessity, not used in the algorithms proposed in this thesis. 

The second key aspect of our methodology is that the algorithmic procedure we use to 

determine which building block to add next, or what its inputs will be, is not dependent on the 

number of input variables. This may appear to be an impossible or impractical algorithmic charac­

teristic, however, from a theoretical standpoint, there is no reason why computationaly expensive 

variable or building block selection is necessary. This is illustrated in the Appendices of this thesis 

(see Section 5.2.1 of Chapter 5) where we present an approximation algorithm which is theoreti­

cally guaranteed to construct uniformly converging approximations to any bounded continuous 

function of arbitrary dimension, while always using the same building blocks and a random 

ordering of input variables. The arguments in these Appendices demonstrate that computationaly 

expensive searches for building blocks and their inputs is not a theoretical necessity. A practical 

example of this aspect of our methodology is the SPORE-1 algorithm (see Section 1.3.3), where 

the same parametric building block is used throughout the algorithm, and the order in which input 

variables are added to the building blocks is random. 

The third and final key component of our methodology is that the input space of the 

regression function is sub-divided in order to avoid flat or zero projections from high dimensional 

learning data onto our low dimensional parametric building blocks. This is a necessary algorith­

mic component because it gives convergence to zero error when other algorithms which use low 

dimensional projections do not (see Section 4.5 of Chapter 4). In fact, one of the main criticisms 

of algorithms which use lower dimensional building blocks is that they do not work well on high 

dimensional data. In the appendices of this thesis we demonstrate a systematic method of space 

subdivision which gives theoretically proven convergence (see Section 5.2.1 of Chapter 5). In 
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addition, we show that the benefits of space subdivision can be obtained with minimal computa­

tional effort and without actually subdividing the input space (see Section 3.3.4 of Chapter 3). We 

refer to this as Virtual Space Partitioning, and show that it is a direct consequence of using 

bootstrap sampling techniques [Efron, 1983] to randomly subdivide the input space when adding 

parametric building blocks to the regression function. 

Science often works by pushing a thesis to an extreme point of view in order to establish 

conditions under which this view is valid, as well as conditions under which it breaks down. This 

document is an example of this form of scientific endeavor. The thesis being put forward, and 

upon which the SPORE approximation is based, is the following: 

Very high dimensional nonparametric regression models can be effectively 

constructed by using a sufficient number of small, low dimensional parametric 

building blocks which are added to the model one at a time, using the outputs of 

previously added blocks as inputs to the new ones. Furthermore, one can use a 

random selection process to choose candidate building blocks (picked from some 

small finite set) and their inputs, thus little or no computational effort is required to 

determine what to fit next. 

Our objective is to both experimentally and theoretically establish under which conditions this 

thesis is valid, and to determine how restrictive these conditions are. It is argued throughout this 

document that the principal implication of the above thesis is that very high dimensional nonpara­

metric regression is feasible, both in terms of rate of convergence and computational complexity. 

The surprising conclusion is that it is both feasible and effective on a large class of functions. 

The Space Partitioning, self-Organizing, and dimensionality REducing, or S P O R E , 

algorithmic philosophy defines our basic methodology for nonparametric regression. As the name 

suggests, the input space of the regression data is partitioned or divided into regions where it is 

possible to reduce the dimension of the problem by constructing the approximation only a few 

variables at a time. SPORE approximations are self-organizing, or equivalently nonparametric, in 

that the size of the resulting regression function is defined by the learning or regression data, and 

is not defined a priori. In Chapter 5, the general SPORE methodology is defined and theoretically 

analyzed. In the following, a brief description of the basic concepts behind SPORE are presented. 
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1.3.1 A Conceptual Summary of SPORE 

We view SPORE as a methodology for designing learning algorithms which construct 

SPORE-type regression functions or approximations. The SPORE methodology has five basic 

characteristics which can be summarized as follows: 

CI. The SPORE approximation consists of a finite number of functional units. These 

functional units are either structurally all identical (for example 2 dimensional, third order 

polynomials as in Chapter 4) or of different types (for example some may belong to a class 

of polynomials of a given range of dimension and order, while others may belong to one or 

more classes of radial basis functions of some range of dimension and number of basis 

units). From a practical perspective, these functional units should have the following prop­

erty: the process of individually fitting these functional units to input/output data should be 

relatively easy when compared to the complete regression problem. 

C2. The functional units are added to the approximation one unit at a time, and are not 

modified after they are added. Input variables, as well as the outputs of previously added 

functional units, can serve as inputs to new units. The addition of functional units stops when 

a desired residual error is reached. 

C3. Little or no computational effort is spent on selecting inputs to structural units. 

C4. Little or no computational effort is spent on selecting which type of structural unit is 

added next. 

C5. The input space is partitioned in order to reduce approximation error. 

Thus, dimensionality reduction is implied by characteristics CI and C2, self-organization is 

implied by C2, and space partitioning is implied by C5 (thus the name SPORE as defined above). 

One should note that characteristics CI and C2 are common to a number of other nonparametric 

regression architectures. In Chapter 2, these architectures are discussed in detail. Two notable 

examples are the Group Method of Data Handling (GMDH) [Ivankhnenko, 1971] (as well as 

various other related algorithms), and Cascade Correlation [Fahlman and Lebiere, 1990]. A l l of 

these algorithms build successively on structures, using the outputs of previously constructed 

structural units as inputs to new units. However, it is the further incorporation of characteristics 

C3 and C4 which make SPORE different from all other approaches to nonparametric regression. 

As described in Section 2.4 of Chapter 2, these two characteristics lead to learning algorithms 
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which are significantly different from those studied previously. They are also a key to formulating 

a practical algorithm for very high dimensional regression. As argued in Section 1.2.2, the 

computational effort required for variable selection makes it difficult, if not impossible, to do in 

very high dimensional spaces. The same argument applies to structural unit selection in high 

dimensional spaces. 

The purpose of the space partitioning characteristic, C5, is to ensure that the SPORE 

regression function is a universal approximator, or in other words is (theoretically) able to approx­

imate any bounded continuous function defined over a finite domain in N dimensional space (see 

Chapter 5). As is briefly outlined in the next section, it is also used to avoid problems with rate of 

convergence in very high dimensional regression. 

1.3.2 Theoretical Results 

As stated previously, Stone [Stone, 1982] has shown that, in general and under appropriate 

regularity conditions, the number of sample points required to approximate a bounded continuous 

N dimensional function which is at least once differentiable and defined over a closed domain, 

grows exponentially with dimension N. The main theoretical result of this thesis is the following: 

We prove that such functions have a finite number of sub-domains where there exists at least one 

type of regression function (e.g. one of the SPORE structures define in Chapter 5) which has a 

rate of convergence independent of dimension. The SPORE approximation is in fact built by 

partitioning the input space into subdomains where the rate of convergence to zero approximation 

error is independent of dimension. This result is significant from both a theoretical and practical 

point of view. Theoretically it demonstrates that much broader function classes can have rates of 

convergence independent of dimension (see Section 2.3 of Chapter 2 for details). In practice it 

points the way to practical nonparametric regression algorithms which can work in very high 

dimensional spaces. 

A second theoretical result given in this thesis concerns the computational complexity 

required to build a SPORE structure. As stated above, SPORE subdivides the input space of the 

function being approximated into a finite number of subdomains where the rate of convergence is 

independent of dimension. In Chapter 5, it is further shown that the computational complexity of 

constructing SPORE in each of these subdomains is on the order of 0(N x C), where N is the 

dimension of the data and C is the average complexity of adding a functional unit (C is indepen-
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fix) 

Figure 1.2 The S P O R E - 1 Structure 

dent of N). This indicates that, at least within each siibdomain, the computational complexity of 

constructing an approximation is at most linear with dimension. This is a promising result from 

the point of view of practical nonparametric regression. 

One theoretical question which this thesis does not address is how many such subdomains 

are necessary. Having desirable theoretical properties in each subdomain may not mean much if 

there are exponentially many such domains in practice. Although this remains an open theoretical 

question, in Chapter 5 some theoretical justification is given which suggests that functions requir­

ing many subdomains are unlikely. Furthermore, in Chapter 3 and Chapter 5 we establish 

conditions under which subdivision is not necessary. It is interesting to observe that none of the 

empirical evaluations of the SPORE approximation required domain subdivision (see Chapter 4 

for details). Thus, for at least the regression problems studied in this thesis, one domain is 

sufficient (although virtual space subdivision was necessary to obtain these results: see Section 

3.3.4 of Chapter 3). 

1.3.3 The SPORE-1 Regression Function 

In Chapter 3, the most basic form of SPORE, termed SPORE-1, is defined and a construc­

tion or learning algorithm is given. A l l of the experimental evaluations presented in this thesis 

(see Chapter 4) are done using SPORE-1. A brief description of SPORE-1 is give next. 

As shown in Figure 1.2, SPORE-1 consists of a cascade of 2 dimensional functions gL(-), 
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which are scaled (o^) and summed to produce the regression function f(x): the subscripts 

kQ, ...,kLG {1, TV} serve to identify the input variables (xx, xN). The exact algorithm 

used to construct the SPORE-1 approximation is fully defined in Chapter 5. The points of note in 

the learning algorithm are as follows: 

1. the functions (building blocks) g ;(-) are 2-dimensional polynomials, all having the 

same number of coefficients; 

. 2. the functions gt(-) are added one at a time in order gj(-), g2(') >•••, ( m e learning 

data determines how many levels are constructed); 

3. the order of inputs (JCJ, xN) is random, and any single input may enter the cascade 

at many levels; and, 

4. the input space is randomly subdivided (using bootstrap) whenever a new gt(-) is 

added. 

Hence, the SPORE-1 learning algorithm conforms to the general SPORE methodology given in 

Section 1.3.1. 

Consider the simple nature of SPORE-1. The algorithm does not use a complicated 

variable selection technique (it is in fact random variable selection), and simple parametric 

functions (all identical) are incrementally added to the regression function. In fact, SPORE-1 is an 

experiment in pushing the lower bounds in algorithmic and structural simplicity, the goal being to 

test the efficacy of the general SPORE methodology at this most basic level. However, as 

summarized in Section 1.3.5, this surprisingly simple SPORE-1 structure can indeed form 

effective nonparametric regression functions. 

1.3.4 Why Does SPORE-1 Work and When Does It Work Best? 

Given the simple structure of SPORE-1, it is not unreasonable to ask why SPORE-1 is 

able to form effective regression functions. Roughly speaking there are three basic reasons for this 

(see Chapter 3 for details). These are briefly addressed below. 

First, that the addition of each new building block to the structure defined in Figure 1.2 can 

have, on-average, only one of 2 consequences: 1) it can reduce the model error because of the 

addition of the new input variable (chosen randomly) to the regression function; or 2) it can leave 

the model error unchanged, because if the addition of the new input variable does not contribute to 

a better model, then the new building block g ;(-) simply passes the output of the previous level 
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£/ _ i (•) to the input of the next level gt + x (•) (i.e. gt(•) = gt_ x (•)). The result is that the order in 

which input variables are added to the regression functions does not significantly affect model 

error, as long as the relevant variables are eventually incorporated. 

The second reason why SPORE-1 is effective is because it forms stable high dimension 

regression functions using relatively few learning examples. This is because 1) high dimensional 

data is projected onto low dimensional parametric building blocks gt{-) which implies that 

relatively few training examples are required to form stable model parameters [Friedman, 1994b], 

and 2) the outputs from these building blocks are combined using a weighted average (in the form 

of the scaling factors a ; ) which tends to further stabilize the regression function 

[Breiman, 1996b] (see Section 3.3.3 of Chapter 3). 

The third reason why SPORE-1 is effective is because the low dimensional projections 

(parametric building blocks) gt{-) tend to have un-correlated residual errors and are unlikely to be 

flat (i.e. ĝ (-) = g/_ j(-)) if the input xk to g[(-) has an effect on the output. The reason for this 

is due to the random subdivision of the input space resulting from the use of bootstrap samples of 

the training data whenever a new level gt(-) is added (see Section 3.3.3 and Section 3.3.4 of 

Chapter 3). The result of this is that adding new levels (building blocks) to the regression function 

tends to improve the approximation, as long as the input variables continue to effect the output. 

The next question one might ask is the following: what types of problems is SPORE-1 

best suited for? Given that the SPORE-1 structure consists of a long cascade of parametric 

building blocks (see Figure 1.2), with each level in the cascade incorporating additional input 

variables into the regression function, it is reasonable to assume that SPORE-1 is best suited to 

regression problems where many input variables are required to produce an effective model, and 

the relevant input variables have approximately equally significant effects on the output. In 

addition, if all of the parametric building blocks (g/(-)) are continuous (which they are in the 

current implementation; see Chapter 3 for details), in the ideal case, the target function would also 

be continuous. Although this is a compelling argument for defining an ideal class of target 

functions, there is significant experimental evidence that, in practice, SPORE-1 is not limited to 

only these types of regression problems. This is briefly discussed in the next section. 

1.3.5 Experimental Evaluation of the SPORE-1 Approximation 

The SPORE-1 approximation is evaluated experimentally in Chapter 4. First, SPORE-1 is 
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compared with other algorithms by applying it to 10 regression problems found in the literature 

[Grudic and Lawrence, 1997]. This initial evaluation shows that SPORE-1, on average, does at 

least as well or better (with respect to mean squared approximation error) than published results 

on 9 of these data sets. A l l of these published regression problems are relatively small and low 

dimensional, and thus not the type of problems SPORE-1 was designed for. Hence it is interesting 

to observe SPORE-l 's effectiveness on such problems. 

Next, SPORE is evaluated on 15 synthetic, large, high dimensional data sets (40,000 

learning examples of data having 100, 200, 400, 800 and 1,600 inputs) [Grudic and 

Lawrence, 1997]. This synthetic data is generated specifically to evaluate SPORE-1 on the type of 

data sets it was designed for. Some of these data sets have output noise (i.e. the 8 in equation 

(1.2)), while others include input variables which do not affect the output (i.e. v in Section 

1.1). Synthetic data allows us to test theoretical limits with full knowledge of what the best attain­

able approximation errors are. The results from these experiments indicate that SPORE-1 closely 

approaches these best possible approximation errors. As no data sets of sufficient size and 

dimensionality were found in the literature, this is the first use of this data for evaluation of high 

dimensional regression. 

Next, SPORE-1 is applied to 3 high dimensional (1024 pixel inputs) human-to-robot skill 

transfer problems. These experiments involve having a human operator demonstrate a mobile 

robot "locate object and approach object" motion sequence using video input. During this 

demonstration, the human uses only the robot's sensors as inputs, and controls the robot's actuator 

as output. The demonstration generates a learning data set via recording the image pixels seen by 

the human, as well as the corresponding output commands, during each time step of the 

demonstration. This data set is used to construct a mapping between sensor inputs and actuator 

outputs, which when constructed, is used to autonomously control the robot. Experimental results 

indicate that the robot is able to autonomously accomplish the desired task. Although, as indicated 

in Chapter 4, the task being transferred from human to robot is relatively simple, these experi­

ments demonstrate the ability of SPORE-1 to form very high dimensional regression functions, 

based on real world learning data. 

Finally, SPORE-1 is applied to the 10-bit parity problem [Grudic and Lawrence, 1997]. 

We chose this problem to demonstrated that SPORE-1 does not have the same limitations as other 

systems which build regression functions using small dimensional units which are added one at a 
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time. 

1.4 Plan of Presentation 

In Chapter 2 a review of nonparametric regression is presented. In Chapter 3 the simplest 

version of SPORE (SPORE-1) is described, and theoretical results are given. In Chapter 4 an 

empirical evaluation of SPORE-1 is presented. In Chapter 5 the general SPORE methodology is 

defined and the basic theory behind it is described. Chapter 6 contains a summary of the conclu­

sions and major technical contributions of this thesis, and includes a proposal for future theoreti­

cal and empirical evaluation of SPORE. 



Chapter 2: Review of Nonparametric 
Regression 

This Chapter gives a brief review of nonparametric regression. In Section 2.1, a discussion 

of various nonparametric regression algorithms is given. In Section 2.2, the problem of over-

fitting in nonparametric regression is discussed and various published solutions are mentioned. In 

Section 2.3, convergence results of various regression functions are discussed. Finally, in Section 

2.4, a comparison is made between published regression algorithms and the regression methodol­

ogy proposed in this thesis (SPORE). 

2.1 Regression Algorithms: Addressing the Curse of Dimensionality 

As discussed in Chapter 1, the curse of dimensionality has two serious detrimental 

consequences for practical high dimensional nonparametric regression. The first is the potential 

necessity for a large learning data set which is impractical, and the second is the computational 

complexity associated with a large number of input variables. Many algorithms have been 

presented in the literature which are designed to deal with these two difficulties. Good reviews 

and descriptions of many types of regression and approximation algorithms can be found in the 

literature [Kwok and Yeung, 1997] [Haykin, 1994] [Friedman, 1994b] [Hastie and 

Tibshirani, 1994] [Alfeld, 1989]. In the following, we discuss some representative examples of 

these algorithms. A l l of the algorithms discussed below have been demonstrated to be useful on a 

variety of different types of regression problems. Each has its own particular strengths and 

weaknesses, however, none of these algorithms have been demonstrated to be effective on the 

large, very high dimension nonparametric regression problems studied in this thesis. 

For the purposes of this thesis, we view nonparametric learning algorithms as broadly 

grouped into two major categories. The first is termed dimensionality reducing algorithms, and 

the second is called space partitioning algorithms. 

18 
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2.1.1 Dimensionality Reducing Algorithms 

The goal in dimensionality reduction is to break a large regression problem into a number 

of smaller regression problems. The end result of this is a reduction in the number of parameters 

which are being fitted to the learning data. A reduced parameter set implies that algorithms which 

fit learning data to these parameters can potentially be more efficient. In addition, fewer parame­

ters generally require fewer learning samples in order to achieve stable parameter values. In the 

following, we will briefly discuss some of the better known examples of dimensionality reducing 

algorithms. For organizational purposes, we divide these algorithms into two types. 

2.1.1.1 Sum of Approximated Lower Dimensional Projections 

Let f(x), where x = ( J C 1 ; xN) e D qz 3iN, be an N dimensional function* and let 

/(x) be some approximation of /(x). Then in one form of dimensionality reduction, /(x) has 

the following structure: 

i,e{\,...,N} i „ i 2 G {1.....JV} 

X fi, i (*/,> •••»*!• ) 
1 I •••lm M lm 

(„ im e {1, N} 

where, for all m e { 1, AO , / . • are m dimensional functions defined over the domain D 

of /(x). Generally speaking, the goal is to have m much smaller than N, and to find some finite 

set of functions / t- • which sum to effectively approximate the target function. The hope is that 

effective approximations are possible using functions which are either lower dimensional or have 

some fixed finite parametric structure. Examples of this type of dimensionality reduction include 

Generalized Additive Models [Hastie and Tibshirani, 1986], M A R S [Friedman, 1991], G M D H 

[Ivankhnenko, 1971], A S P N [Elder and Brown, 1995], and S O N N [Tenorio and Lee, 1990]. 

These are briefly discussed below. 

In General ized Addi t ive Models [Hastie and Tibshi rani , 1986] [Hastie and 

Tibshirani, 1990] regression functions are constructed using a sum of smooth 1 dimensional 

functions X/^C*,-,) • The 1 dimensional functions / • are nonparametrically constructed, one at 

a time, using a scatterplot smoother. One advantage of this technique is that the construction of 

the functions / • is completely automated, requiring no interventions in the learning process. In 
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addition, the resulting regression model can often be effectively interpreted, allowing a statistician 

to analyze significant factors involved in model generation. One limitation of this method is that 

higher dimensional interactions are difficult to model, however, in many lower dimensional 

regression problems this is not a significant concern. 

In Multidimensional Adaptive Regression Splines (MARS) [Friedman, 1991], regression 

functions are constructed using a sum of products of spline functions. These functions are built in 

a forward stepwise hierarchical manner which is based on recursive partitioning (see Section 

2.1.2). M A R S is able to automatically account for interactions between variables, in a controlled 

manner, allowing for effective model interpretation. A limitation of M A R S is that its computa­

tional complexity increases rapidly with dimension, making large regression problems (i.e. 

thousands of learning samples) of more than about 20 input variables, impractical when high 

dimensional interactions occur. However, in many applications, low dimensional interactions are 

sufficient to form effective approximations. 

Polynomials have been widely used to build regression models. Polynomial models have 

the following form (note that these types of multidimensional polynomials are often termed 

multinomials): 

i'i + ... + iN < M 

/(x) = £ ",•,...«„ •*i ' -"*!v (2.2) 
«i. -.«*e {0 M} 

where M is the order of the polynomial. These models are built by fitting the parameters at • 

to the learning data. One difficulty with this general polynomial formulation is that the number of 

parameters • increases rapidly with polynomial order and dimension, thus making it difficult 

to determine which subset of parameters are significant. Many iterative schemes have been 

developed which attempt to chose the most relevant parameters, and construct the approximation 

a few terms at a time. One such algorithm, originated by Ivakhnenko [Ivankhnenko, 1971], is the 

Group Method of Data Handling (GMDH). The original algorithm builds the global approximat­

ing polynomial using layers of 2 dimensional quadratic polynomials. The first layer is constructed 

using enough quadratic polynomials to exhaustively account for all possible input combinations. 

The outputs of this first layer are then used as inputs to the next layer, where they are once more 

exhaustively combined two inputs at a time. This process of adding layers continues until further 

additions to the polynomial do not reduce the approximation error. There have been many 
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enhancements to this original algorithm since it was introduced by Ivakhnenko [Farlow, 1984]. 

Some specific examples include the Algorithm for Synthesis of Polynomial Networks (ASPN) 

[Elder and Brown, 1995], which extends the paradigm to include 3 dimensional polynomials, and 

the Self Organizing Neural Network (SONN) [Tenorio and Lee, 1990], which allows for basis 

functions other than polynomials and uses a Simulated Annealing technique to search for an 

optimal structure. Other variations of this include the method by Sanger [Sanger, 1991] where 

subnetworks of polynomials (or other basis functions) are grown below the previously added 

terms which exhibit maximum variance in approximation error. A l l of these algorithms have 

demonstrated both good generalization and interpretation properties, on many types of regression 

problems. One common characteristic of these methods is that they all use some form of search in 

variable space (and often basis function space as well) to define the structure of the resulting 

polynomial. Ultimately, due to the computational complexity of such searches (see Section 1.2.2 

of Chapter 1), these algorithms are not practical for the very high dimensional regression 

problems studied in this thesis. 

2.1.1.2 S u m m e d H i g h D i m e n s i o n a l Bas is F u n c t i o n s 

A second general type of dimensionality reducing algorithm constructs regression 

functions that have the following structure: 

f{x) = X Sq(hq(x)) (2.3) 
q = 0 

where gq are 1 dimensional functions, the basis functions h are functions of a known type 

chosen a priori, and the number of terms M is chosen large enough to give effective approxima­

tions. Examples of these regression functions include Projection Pursuit [Friedman and 

Stuetzle, 1981], Radial Basis Functions [Hardy, 1971], Hinging Hyperplanes [Breiman, 1993], 

Wavelets [Sjoberg et al., 1995] [Juditsky et al., 1995] [Zhang, 1997], Cascade Correlation 

[Fahlman and Lebiere, 1990], and other adaptive Neural Network type algorithms [Reed, 1993] 

[Igelnik and Pao, 1995] [Yao and Lui, 1997]. These are briefly discussed below. 

In Projection Pursuit [Friedman and Stuetzle, 1981], the functions hq are linear, having 

the form hq(x) = } a(-• xt, where the parameters a{ are chosen to maximize error 

reduction, given that the functions g are restricted to be smooth and nonparametric. This 
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minimization of error process can be accomplished using Newton-Raphson [Press et al., 1988] on 

an appropriate cost function. The residual errors are updated after the construction of each hq and 

g function, and the construction of new functions stops when the approximation error is 

sufficiently small. Projection Pursuit is often used as an analysis tool because determining which 

projection axis (defined by function hq) gives the most error reduction, can shed light on which 

independent variables are important and how they interact. A limitation of this method is that all 

approximations are made along N dimensional linear projection axes (defined by functions hq), 

making the construction of these axes computationally difficult for very high dimensional regres­

sion problems (N > 100). 

Cascade-Correlation [Fahlman and Lebiere, 1990] is an example of a nonparametric 

Artificial Neural Network regression function. Neural networks are generally implemented using 

sigmoidal basis functions (artificial neuron) of the form s(z) = 1/(1 + e z ) , where 

z = ot0 + Y!i- i ai' ui' w ' t n ui D e ' n g t n e inputs to the basis function and the parameters a ; 

being adjusted to fit the training data. Neural networks often consist of layers of these sigmoidal 

functions, with each layer containing a potentially large number of neurons or sigmoidal units, 

and the output of lower layers serving as inputs to higher layers (each unit in the first layer having 

as its inputs all of the predictor variables). 

The Cascade-Correlation algorithm is designed to automatically determine the network 

structure based on the training data. Cascade-Correlation adds hidden units (i.e. units not directly 

connected to the output) to the network one at a time, with each hidden unit having an input 

connection from all the previously added hidden units, as well as all of the predictor variables. 

Thus the number of inputs into hidden units grows linearly with the number of levels added to the 

network, with the first unit having N inputs (one from each of the predictor variables). In 

addition, each time a hidden unit is added, many potential candidate units are trained using the 

Widrow-Hoff delta rule [Widrow et al., 1976] starting from randomly chosen weights oc(. Only 

the one which best correlates with the current residual error is added as the next hidden unit. 

The efficacy of Cascade-Correlation on high dimensional data has been widely 

demonstrated in the literature [Michie et al., 1994]. However, because each hidden unit accepts 

inputs from all predictor variables, as well as the outputs of all existing hidden units, the method 

exhibits high computational complexity and potential numerical instability (due to a large number 

of parameters), when the regression problem is very high dimensional. As a result, Cascade-
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Correlation is unsuitable when large numbers of hidden units are necessary for effective approxi­

mation, and thus is not ideally suited for the very high dimensional regression problems studied in 

this thesis. 

Other nonparametric artificial neural network algorithms work by either starting with a 

large network and pruning until an effective approximation has been achieved (pruning 

algorithms [Reed, 1993]), or by starting with a small network and adding interconnections and 

basis functions (artificial neurons) until no further error reduction is possible (constructive 

algorithms [Kwok and Yeung, 1997]). Both constructive and pruning type neural network 

algorithm have the same goal: to find a neural network structure which is large enough to 

effectively model the learning data, while small enough to ensure that over-fitting does not occur 

(see Section 2.2 for a discussion of variance reduction techniques and the problem of over-fitting). 

Other learning algorithms use genetic programming techniques [Yao and Lui , 1997] and stochas­

tic basis function generation techniques [Igelnik and Pao, 1995] to achieve the same goal. These 

algorithms have been shown to perform well when relatively small numbers of artificial neurons 

effectively model the learning data. However, when large numbers of artificial neurons are 

necessary, the learning process can become unstable (small changes in learning data leading to 

large changes in model structure [Breiman, 1996b]) because of the large number of parameters in 

the neural network. This makes these types of neural network learning algorithms unsuitable for 

the large high dimensional problems studied in this thesis. 

In Radial Basis Function methods [Jackson, 1988] [Hardy, 1971] [Poggio and 

Girosi, 1989] [Broomhead and Lowe, 1988] [Casdagli, 1989] [Renals andRohwer, 1989] [Poggio 

and Girosi, 1990] [Edelman and Poggio, 1990] [Mel and Kock, 1990] [Saha and Keeler, 1990] 

[Girosi, 1994], the functions hq have the form hq(x) = <p(||x - x ||), where <j) is afunction which 

varies according to some distance metric from a center point xq. The functions gq take the form 

gq(x) = aq • hq(x) where the parameters a, are defined by the training data. Radial Basis 

Functions become nonparametric when the number and type of basis functions hq, and the 

location of the centers xq is determined by the learning data. A limitation of Radial Basis 

Functions is that they all use some measure of distance between points in space, and in high 

dimensional space, almost every learning sample point is closer to the sample boundary than to 

another learning point [Friedman, 1994b]. This makes radial basis functions not ideally suited for 

very high dimensional nonparametric regression. 
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Hinging Hyperplanes [Breiman, 1993] represent regression functions as a linear superpo­

sition of basis functions which consist of 2 hinging hyperplanes. These hyperplanes are hinged in 

the sense that two planes in TV dimensional space must always intersect at a line (or hinge) in N 

dimensional space. The learning algorithm works by finding the hinge between 2 hyperplanes 

which best fit the current residual error, thus producing a basis function. The next basis function is 

then produced in a similar manner using the new residual errors resulting because of the addition 

of the previous basis function. If N is small, the hyperplanes are chosen to be N dimensional, 

otherwise the best M <N dimensions are chosen for the hyperplanes. As is argued in Chapter 1, 

such searches make very high dimensional regression computationally difficult. Thus Hinging 

Hyperplanes are not an ideal candidate for the type of regression problems studied in this thesis. 

However, the computational efficiency of Hinging Hyperplanes on certain high dimensional 

problems (see [Breiman, 1993] for examples), make it an important potential candidate for many 

regression problems. 

Wavelets [Sjoberg et al., 1995] [Juditsky et al., 1995] have also been effectively used in 

nonparametric regression. Wavelets have the attractive property that they are spatially adaptive, 

and thus they are effective at approximating functions which are locally spiky (i.e. are smooth 

throughout most of the input space, but have certain regions where they are rapidly changing). 

Wavelet shrinking algorithms have demonstrated good performance on relatively low dimensional 

problems (3 inputs or less) [Sjoberg et al., 1995]. However, wavelet algorithms which 

demonstrate good performance on very high dimensional problems have not yet been proposed in 

the literature. 

2.1.2 Space Partitioning Algorithms 

In space partitioning algorithms the domain D of the function being approximated is 

divided into a finite number of disjoint subdomains Dt such that LJZ)- = D. Then, in each 

subdomain £>•, a regression function is constructed such that: 

V X G D ; , y = ; , (x) (2.4) 

Often, the functions '/,-(x) are simply constant over the domain Di. There are two main types of 

space partitioning algorithms: recursive partitioning or decision tree algorithms, and nearest 

neighbor algorithms. 
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Examples of recursive partitioning algorithms or Decision Trees [Michie et al., 1994], 

include Classification and Regression Trees (CART) [Breiman et al. , 1984], and C4.5 

[Quinlan, 1993]. Recursive partitioning works as follows: starting with the entire domain D, 

subdivide it into two daughter subregions such that a parametric regression function (usually 

chosen to be a single constant value) fitted in each region, reduces the overall approximation error. 

This process of binary subdivision continues with each daughter region (creating new daughter 

subregions) until some predefined cost trade-off between approximation error and number of 

subregions is met. Recursive partitioning algorithms have proven to be very useful, especially for 

classification problems. In addition, decision trees can be easily interpreted, allowing analysis of 

how various predictor variables interact with one another. However, because functions are approx­

imated by many discontinuous subregions, recursive partitioning methods tend not to do well on 

regression problems which are continuous [Friedman, 1991]. This is especially true when there 

are many predictor variables. 

Another notable example of a tree-structured space partitioning architecture is the Hierar­

chical Mixtures of Experts (HMM) model which uses the Expectation-Maximization (EM) 

learning algorithm [Jordan and Jacobs, 1994]. This is a parametric approach that uses a fixed 

number of experts (or parametric building blocks) which are hierarchically combined using gating 

networks to form the final regression function. In general, each "expert" is trained to work in a 

particular region of the input space, and the gating networks combine these regions to form a 

global approximation. This H M M model has been successfully applied to many learning 

problems, however, because it uses a parametric learning algorithm, it is not directly applicable to 

the nonparametric regression problems studied in this thesis. 

In the simplest implementation, AT-Nearest Neighbor algorithms work as follows: given a 

point x , find the K points in the learning set which are nearest to this point, according to some 

distance metric. Then the regression estimate at x becomes the average (perhaps a weighted 

average) response value of these ^-Nearest Neighbors [Michie et al., 1994]. A criticism of 

Nearest Neighbor algorithms has been that they often exhibit poor generalization [Lowe, 1995]. 

This problem is mainly due to a poor choice of distance metrics (or kernels). Recently, algorith­

mic improvements have been suggested which allow the learning data to define the most appropri­

ate distance metric [Lowe, 1995] [Friedman, 1994a] [Hastie and Tibshirani, 1996], the result 

being much better generalization, especially for classification problems. However, as with regres-
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sion trees, because functions are approximated by many discontinuous subregions, Nearest 

Neighbor algorithms have yet to demonstrate good performance on regression problems which 

are very high dimensional (greater than 100 inputs) and continuous. 

2.2 Regression Model Variance Reduction Techniques 

For any given set of learning data, there are infinitely many regression models which fit 

this data exactly. An example of this is given in Figure 2.1, where the 5 data points are fitted 

exactly with 3 different model types: the piece-wise linear fit model, the smooth fit model 

(smoothness here refers to how rapidly the model varies within its domain rather than how many 

times it is differentiable) and the high variance fit model. These 3 models all describe the learning 

data exactly, however, they interpolate between the data points in very different ways. Most likely, 

at most one of these models most appropriately describes the target function that generated the 

data. In fact, only a small subset of all models which fit any given training data accurately, also 

effectively describe the target function that actually generated the data. Thus, one of the more 

difficult problems in nonparametric regression is choosing the most appropriate regression model. 

The problem becomes even more difficult when the training data is noisy, in which case, exactly 

modeling the learning data can lead to greater approximation errors. This makes the regression 

model search space even larger because, in addition to models which exactly fit the training data, 

the search space is extended to include those models which closely fit the training data. As an 

example of this, the smooth approximation model in Figure 2.1 would be just one model which 

can be used to model the noisy sample points. Any number of small variations to this smooth 

approximation of the sample points could equally well fit the data points. 

A model with high variance is one which is not stable with respect to which set of training 

samples are used to construct it. The more variance a model has, the more sensitive it is to small 

changes in learning data (this notion of model variance is related to model stability as define in 

Breiman, 1996b). If a model has high variance then two different sets of learning data randomly 

generated by the same target function, can produce two very different regression models. Often, 

as with the high variance fit model in Figure 2.1, both models exactly fit their respective learning 

data, however neither interpolates effectively between data points (this is often referred to as 

model over-fitting). Thus, an important goal in regression is to reduce model variance. For most 

regression problems, failing other evidence the model with least variance is often the one which 
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Figure 2.1 Model Variance 

most smoothly interpolates through data points (for example the smooth fit model in Figure 2.1). 

The variance reduction problem is related to the bias-variance trade-off 

[Friedman, 1994b], which divides the approximation error into a bias term and a variance term. 

The bias term defines how closely the regression model fits the learning data, and the variance 

term defines how much variance there is in the regression model. For example, the three models in 

Figure 2.1 that fit the data exactly, all have a zero bias error, but have varying degrees of variance. 

Conversely, the smooth approximation model in Figure 2.1 has a nonzero bias error because it 

doesn't pass exactly through sample points, however, if the data is assumed to be noisy, its 

variance error may be the smallest of all three models. Thus, the smooth approximation model 

may be the most appropriate model when data is noisy. 

A variety of techniques have been developed for nonparametric model variance reduction. 

In this thesis we group these methods into two categories: penalty based variance reduction and 

averaging based variance reduction. These are briefly discussed below. 

Methods which use penalties for variance reduction work by giving a specific cost to an 

increase in model complexity. The basic reason for this is that an increase in model complexity 

(i.e. an increase in the number of model parameters) often means an increase in model variance. 

Thus, the trade-off between the error reduction obtained by the addition of new model terms, and 

the increase in complexity due to the addition of these new terms, must be analyzed to determine 

if this increase in model complexity is justified. Examples of these types of penalty based variance 

reduction techniques include the generalized cross validation criteria used in M A R S 



Chapter 2: Review of Nonparametric Regression 28 

[Friedman, 1991], and the minimum description length criteria used in S O N N [Tenorio and 

Lee, 1990]. Generalized cross validation works by multiplying the average squared residual error 

of the training data by a penalty factor which increases as terms are added to the M A R S model. 

Similarly, minimum description length attempts to find the smallest model which effectively fits 

the training data. Other examples of penalty based variance reduction techniques can be found in 

[Friedman, 1994b]. One key advantage of variance reduction techniques which use penalties, is 

that a single regression model is constructed, thus allowing for potentially useful model interpre­

tation. However, one of the key problems associated with penalty based variance reduction 

techniques is that they are inherently unstable. Breiman [Breiman, 1996b] has shown that this 

form of model selection is unstable because small changes in learning data can lead to large 

changes in model structure, making it difficult to choose the most appropriate model. 

In contrast to penalty based variance reduction techniques, averaging methods work by 

forming ensembles of many different regression functions, and modeling a final predictor value as 

a weighted average of all the regression functions. One of the first noted examples of this is 

Stacked Generalization [Wolpert, 1992] where potentially nonlinear combinations of regression 

functions, each trained on some subset of the total data, are used to form the overall regression 

function. This idea is simplified by Breiman in Stacked Regression [Breiman, 1996c], where the 

stacked regression functions are simply weighted by non-negative real values. Theoretical justifi­

cation for such weighted averaging is given by Perrone [Perrone, 1993], where derivations are 

given for the optimal weighted average of a fixed number of regression functions. In addition, 

Breiman has shown that averaging can effectively stabilize predictors which are inherently 

unstable [Breiman, 1996b]. 

One example of an averaging variance reduction technique is Breiman's bootstrap 

aggregation or Bagging [Breiman, 1996a]. Bagging uses the average value of many regression 

functions, each trained using a bootstrap sample of the learning data, to represent the final regres­

sion function. The key idea here being that the bootstrap samples tend to create regression 

functions which have uncorrelated error residuals, thus averaging their values tends to cancel out 

approximation errors, giving potentially better regression functions when compared with a single 

regression. Bagging has proven to be an effective variance reduction technique, and variations of 

it have been successfully applied to many types of regression problems [Parmanto et al., 1996]. 

However, one significant drawback of all averaging methods is that they do not easily allow for 
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interpretation of the resulting regression model. 

2.3 Convergence Results in Nonparametric Regression 

In this section, we consider three main types of known convergence results for nonpara­

metric regression. First we briefly discuss some known results in representability, or what 

function class a given regression function is theoretically able to converge to. Second, we look at 

two types of rate of convergence results. The first measures how, given an infinite number of 

learning sample points, the approximation error decreases with the size of the regression model. 

The second measures how the approximation error decreases as the number of sample points of 

the target function increases. Examples of these types of convergence results are given below. 

Given a particular regression function, one of the first theoretical questions which is asked 

is what class of functions can it represent! Indeed, the most common question posed is whether 

the regression model is a universal approximator; i.e. whether it is able to form arbitrarily good 

approximations of bounded continuous functions defined over a finite domain. Examples of 

universal approximators include polynomials [Lorentz, 1986], radial basis functions 

[Girosi, 1994], artificial neural networks [Cybenko, 1989] [Hornik et al., 1989], space partition­

ing techniques [Breiman et al., 1984], projection pursuit [Huber, 1985], and wavelets [Sjoberg 

et al., 1995] [Juditsky et al., 1995]. These representation results are important because they 

establish what the respective regression functions are capable of representing. However, represen­

tation results in themselves do not establish the rate at which these regression functions converge 

to the target function. 

The first type of rate of convergence result we consider is one which measures the decrease 

in approximation error as the number of parameters in the regression function increases. From a 

practical standpoint, this rate of convergence measure tells how the size of the regression model 

depends on the dimension of the target function. In particular, from the standpoint of high 

dimensional regression, we can ask the following question: "under what conditions is the rate of 

convergence of the regression model independent of dimension?" A general answer to this 

question is the following: by limiting the class of target functions which one is attempting to 

approximate, many regression functions have a rate of convergence which is independent of 

dimension [Girosi, 1994]. This includes radial basis functions [Girosi, 1994], artificial neural 

networks [Barron, 1993], hinging hyperplanes [Breiman, 1993], and projection pursuit 



Chapter 2: Review of Nonparametric Regression 30 

[Jones, 1992]. A l l of these theoretical results demonstrate rates of convergence independent of 

dimension are based on a lemma which can be jointly attributed to Muarey [Barron, 1993], Jones 

[Jones, 1992] and Barron [Barron, 1993] [Girosi, 1994]. In all these results, the class of target 

functions is limited to those functions for which the magnitude of the first moment of the Fourier 

transform is finite and independent of dimension. In addition, all of these results are based on 

greedy algorithms which search an infinite function space for the globally optimal regression 

function. Because of this large search problem, it is not clear how computationally practical these 

convergence results are [Barron, 1993] [Breiman, 1993] [Juditsky et al., 1995]. 

The second rate of convergence result we discuss here is how approximation error 

decreases with the number of sample points of the target function. Stone [Stone, 1982] showed 

that, in the general case of a target function which is at least once differentiable, the optimal rate 

of convergence as a function of the number of sample points, does depend on dimension. In fact, 

this dependence is significant enough that general very high dimensional nonparametric regres­

sion requires an impractical number of sample points (i.e. the curse of dimensionality). Once 

more, by putting more limits on the target function, it is possible to improve on these rates. There 

are examples in the literature which demonstrate function spaces, and corresponding regression 

functions, which have rates of convergence that are independent of dimension. One example of 

this is the projection pursuit regression function when the target function is limited to the class of 

projection pursuit regression functions with specific constraints [Chen, 1991a]. A second example 

is an interaction spline model, where the target function is sufficiently differentiable 

[Chen, 1991b]. Such theoretical results are useful because they can lead to practical implementa­

tions which are effective in very high dimensional spaces. 

For further discussions on rate of convergence results, see Section 5.3 of Chapter 5. 

2.4 Compar ing Exist ing Algori thms to the S P O R E 

In this chapter, many different approaches to nonparametric regression have been 

discussed. In addition, we have discussed the concept of model variance reduction and how it is 

done in the literature. Finally, we have outlined some of the basic theoretical results in nonpara­

metric regression. In this section, we compare SPORE to other published regression methodolo­

gies. First we outline which existing learning algorithms most closely .resemble SPORE-type 

learning algorithms, and how they are fundamentally different. Then we discuss how the variance 
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reduction methodology of SPORE relates to those of existing variance reduction techniques. 

Finally, this section concludes with a brief description of how the theoretical properties of SPORE 

differ from those of other published regression functions. 

The two types of regression functions which are most closely related to the regression 

functions studied in this thesis (SPORE), are Cascade-Correlation [Fahlman and Lebiere, 1990], 

and G M D H [Ivankhnenko, 1971] type algorithms such as A S P N [Elder and Brown, 1995] and 

SONN [Tenorio and Lee, 1990]. A l l of these algorithms build successively on structures, using 

the outputs of previously constructed structural units as inputs to new units. However, from the 

conceptual standpoint of how units are added, and how their inputs are chosen, SPORE differs 

significantly from these regression functions. These regression functions attempt to build an 

"optimal" structure by searching for the "best" set of functional units, and/or the best set of inputs 

to each structural unit. As argued in Section 1.2.2 of Chapter 1, such searches are not computa­

tionally feasible in very high dimensional spaces. In the SPORE methodology, this philosophical 

perspective of searching for optimal (or close to optimal) structures is abandoned because our aim 

is specifically to address the very high dimensional regression problem. Instead, SPORE 

algorithms spend minimal computational effort on searches in function space and input space, 

concentrating more on constructing structures which produce robust approximations without the 

need for costly search strategies. 

From the standpoint of how variance reduction is achieved in the SPORE methodology, 

we refer the reader to the specific example of SPORE-1 in Chapter 3, and the related discussion in 

Section 3.3.3 of that chapter. In comparison to other algorithms, SPORE-1 achieves effective 

variance reduction using a methodology which is similar to Bagging [Breiman, 1996a], but does 

so with only a single regression function, instead of an aggregate ensemble of regression 

functions. This is accomplished by constructing each structural unit using a bootstrap sample of 

the training data. The output of SPORE-1 is the weighted average (each unit is weighted propor­

tionally to the inverse of the squared residual error it has on the training data) of each of these 

simple structural units. This produces an effective variance reduction methodology (here termed 

internal variance reduction) which differs significantly from other proposed averaging methods. 

In Section 5.3 of Chapter 5, the rate of convergence (as a function of the number of sample 

points) results for the general SPORE-type learning algorithms are given. The rate of convergence 

is shown to be independent of dimension, but on different function spaces from those studied in 
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the past. Instead of putting greater limits on the function type [Chen, 1991a] or requiring it to be 

more differentiable [Chen, 1991b], we assume a more general class of bounded continuous 

functions, which are at least once differentiable. We obtain a rate of convergence results indepen­

dent of dimension by limiting the target function's domain of definition in specific ways. Because 

of this, regression functions based on SPORE have very different convergence properties when 

compared with other published results. 



Chapter 3: The SPORE-1 Regression 
Function 

The general SPORE methodology outlined in Chapter 1 can be implemented in a variety 

of ways. In this chapter, the simplest implementation of SPORE, termed SPORE-1, is defined and 

analyzed. In Section 1.3 of Chapter 1, an intuitive justification for the SPORE-1 structure was 

presented. In this chapter, we present a theoretical analysis of SPORE-1, with particular emphasis 

on rate of convergence and complexity properties. In Section 3.1 we examine the representation 

capabilities of the SPORE-1 regression function. In Section 3.2, the SPORE-1 learning algorithm, 

which is used to construct the regression function, is defined. In Section 3.3 an analysis of the 

theoretical properties of the SPORE-1 learning algorithm is given. Finally, a summary of the main 

results of this Chapter is given in Section 3.4. 

3.1 SPORE-1: A Cascade of Two Dimensional Functions 

The SPORE-1 structure is a cascade of two dimensional functions, with the output of each 

level of the cascade feeding directly to one of the inputs of the next level. This is diagrammati-

cally represented in Figure 3.1. In the following, a complete description of this basic structure is 

given, followed by an analysis of the class of functions which can be represented by this SPORE-

1 structure. 

Let RL(xp xN) be an N dimensional SPORE-1 regression function constructed using 

an L level cascade of 2 dimensional functions. Thus, y = RL(x) estimates the dependent 

variable y given the independent variables x = (JCJ, ..., xN), and has the following form: 

L 

RL{xx, ...,xN) = a, •gi(xko,xki) + a2-g2(g1,xk2)+ £ a, • gl(gl_ „ xk) (3.1) 
1 = 3 

where L defines the number of levels in the cascade or, equivalently, the number of 2 dimensional 

functions £/(•); OC/ are real valued scaling factors; and the subscripts k0,...,kLs {l,...,N} 
serve to identify the input variables (JCJ, xN). 

33 
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Figure 3.1 The S P O R E - 1 Regression 

Given the above definition, the question we pose is what class of functions can be 

represented by the simple cascade given in (3.1)? The answer to this question depends on what 

class of 2 dimensional functions g^-) are used in the cascade. In the following, two classes of 2 

dimensional functions are considered. First we consider the case of gt{-) belonging to the class of 

bounded continuous 2 dimensional functions defined on a closed domain in 9t .In the second 

case gt{-) is limited to the class of 2 dimensional polynomials of finite order greater than 1. The 

interesting conclusion is that in both instances, the cascade in (3.1) is shown to be a universal 

approximator: i.e. able of approximating any bounded continuous multidimensional function 

defined over a finite domain. 

3.1.1 A Cascade of Bounded Continuous 2 Dimensional Functions 

In the following theorem, it is assumed that the 2 dimensional functions gL{-) belong to 

the class of 2 dimensional bounded continuous functions. Under these conditions, it is shown that 

any continuous, bounded N dimensional function, defined over a closed domain, can be 
2 

represented using a cascade of 2N + 3N g ;(-) functions. Since this is the broadest class of 

bounded continuous gt(-) functions, this result defines a bound on the number of cascade levels 

necessary to exactly represent a bounded continuous multidimensional function. Other smaller 

classes of bounded continuous functions, such as polynomials, will require more functions. 

T H E O R E M 1. Let f(x\, xN) be a bounded continuous function defined on a closed 
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domain in 3iN, N > 2. Then, there exist 2N2 + 3N bounded continuous gi(-) functions which 
2 

are at most 2 dimensional, and 2N +3N real valued numbers a.[, such that: 

2N2 + 3N-2 

f(xi,...,xN) = a r g l ( x k o , x k i ) + a2-g2(g],xk2)+ £ <*f8i(8i-i>xk) (3-2) 
/= 3 

Proof: The proof is based on Kolmogorov's superposition theorem [Kolmogorov, 1957], 

which states that any bounded continuous TV dimensional function, f(xx, xN), defined on a 

closed domain, can be represented as: 

2N f N \ 

q-=0 V = 1 

(3.3) 

where the 1 dimensional functions \|/ and are bounded and continuous (for more recent 

versions of this theorem see [Lorentz, 1986]). Thus, for our proof we must show that (3.2) and 

(3.3) are equivalent for N>2. We show this by equating all gt(-) functions in (3.2) to the 

appropriate functions in (3.3). First make the following assignment: 

8\ = <t>0l(xl) + (t)02(x2)' ex, = 0 (3.4) 

Then, for Ze {2, ...,N- 1} and p = I + 1, let 

£/ = S/-1 + M V ' ai = 0 ( 3 - 5 ) 

Thus, completing the definitions to level / = TV, let 

8N = Yo(fftf-i)> A N = 1 (3-6) 

Therefore, TV levels are required to build the q = 0 part of (3.3). What remains are the 

q = 1, 2TV parts to be constructed. Consider the q = 1 part. For level / = N +1 , let 

8 N + i = <hi(*i)> aN + \ = 0 (3-7) 

Then, for le {N + 2, ...,2N} and p = / - A T , let 

*/ = S / - i + ( M V ' ai = 0 (3"8) 

Thus, completing the definitions to level / = 2N + 1 , let 

82N+1 = Vl(82N)> a 2 N + \ = 1 (3-9) 
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«/ + 2 = 1 

Figure 3.2 A Cascade Representation of a Polynomial Term 

Therefore, 2N + 1 levels are required to build the q = 0 and q = 1 parts of (3.3). What remains 

are the q = 2, 2N parts to be constructed. The construction of these parts is identical to that 

of q = 1, which took N + 1 levels of (3.2). Thus, the total number of levels required is 

2N(N +l)+N = 2N2 + 3N. This completes the proof of T H E O R E M 1. Q.E.D. 

T H E O R E M 1 establishes a bound on the sufficient number of levels required to exactly 

represent any bounded continuous function defined over a finite domain in 3 or more dimensions. 

However, the only restriction on the functions g ;(-) is that they be some 2 dimensional function. 

In addition, the proof of T H E O R E M 1 is based on Kolmogorov's superposition theorem, and it is 

a known result that the 1 dimensional functions used in Kolmogorov's theorem are often highly 

non-smooth [Vitushkin, 1954] [Vitushkin and Henkin, 1967] and therefore not easy to represent 

in practice. 

3.1.2 A Cascade of Finite Order 2 Dimensional Polynomials 

In this section the functions gt{-) are further restricted to belong to the class of finite order 

polynomials. Thus T H E O R E M 2 deals with a more practical scenario in that the functions g l {-) 

are of a class which makes them easier to use in practice. 

T H E O R E M 2. Let f(xx, xN) be a continuous function defined on a compact subset 

A cz 3iN. Let gl(-) be a 2 dimensional polynomial of finite order greater than 1. Then, for each 
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£ > 0, there exists a finite number, L, of functions £/(•) and real numbers OC / ( such that 

\f{xx, ...,xN)-RL{xx, ...,xN)\<z (3.10) 

where / ^ (x) is defined in (3.1). 

Proof: It is a known result that a continuous function / ( * , , ...,xN) defined over a 

compact subspace can be approximated by polynomials in x u ...,xN (see Theorem 6 on page 10 

in [Lorentz, 1986] for a statement of the appropriate theorem). This representation has the form 

f(xv...,xN)= £ b i i t _ t i i t - x i - x % (3.11) 
...,iNe {0, 1,2, ...} 

where b^ t- are polynomial coefficients. Thus, we shall prove T H E O R E M 2 by showing that 

any polynomial in xx, xN can be represented by the cascade structure defined in (3.1), where 

the g [ (-) are 2 dimensional polynomials of finite order greater than 1. By this constraint, the 

simplest form of functions used in the cascade is: 

2 2 
gl(u,v) = a 0 0 + a ] 0 u + a 0 1 v + alxuv + a20M + an2 v (3-12) 

This and every other 2 dimensional polynomial of order greater than 1 must at least have the terms 

a 1 0w and alxuv. Given these two terms, it is simple to show that any term in (3.11) can be 

equated to the cascade structure (3.1). As an example, consider the polynomial term 
3 3 5 3 

3̂35 ' xix2x3 • We first construct the JC , part of this term as outlined in Figure 3.2. Starting at any 

arbitrary level / , set at = 0, xk = x , , a 1 0 = 1, and all other parameters of g [ (-) to zero. Then, 

for levels p = / + 1 and p = / + 2 set a p = 0, xk = xx, au = 1 , and all other parameters of 
3 P 3 3 5 3 

gp(-) to zero. This gives us the x{ part of b 3 3 5 • x{x2x3. Next, we construct the x2 part as 

follows. For levels p = / + 3 to p = / + 5 set a p = 0, xk = x2, au = 1, and all other 

parameters of g p(-) to zero. Next, for the x^ part, for levels p = / + 6 to p = 1 + 9 set a p = 0, 

xk = x 3 , a n = 1, and all other parameters of g p(-) to zero. Finally, for level p = /+10,set 

ocp = b 3 3 5 , xk = x 3 , a n = 1, and all other parameters of g p(-) to zero. This gives us the 
P 3 3 5 

completed term b 3 3 5 • xxx2x3 . In a similar manner, we can construct any other term in the polyno­

mial (3.11). Hence, given that we can construct any polynomial term using sections of the cascade 

structure in (3.1), and because (3.1) is a sum of such sections, it follows that any polynomial 

structure can be represented by the cascade structure defined in (3.1). This completes the proof of 
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T H E O R E M 2. Q.E.D. 

3.2 Learning Algorithm for the SPORE-1 Regression Function 

In the previous section we have shown that the SPORE-1 regression function is a universal 

approximator. However, we have not shown how to construct the functions g ;(-) and real 

numbers at. One such algorithm is presented next. 

3.2.1 The SPORE-1 Learning Algorithm 

We assume that ML learning input/output examples (xq, y ) e TL have been divided into 

2 sets: a training set TT containing MT input/output pairs, and a validation set Tv containing 

Mv input/output pairs. In Chapter 4, various methodologies are described for dividing learning 

data into training and validation sets. There are 3 preset learning parameters, symbolized by 

depth j , depth2, and e. The function of each of these parameters is explained in the following 

algorithmic description, and is further elaborated on below. A single cascade of functions is 

constructed in a series of sections. A section of a cascade between levels i and symbolized by 
lRj, is defined as follows: 

j 

l = i 

When the section being constructed can no longer reduce mean squared error, the learning outputs 

y are replaced by residual errors due to lRj and a new section is begun starting from the last error 

reducing function gj(-). Throughout the remainder of the chapter we assume that the functions 

are 2 dimensional polynomials of finite order: 

I + j < K 

gt{u,v) = 2 fly-MV (3.14) 
i, ye {0, 1,2, ...'} 

where K is the order of the polynomial, and a- are its coefficients. Stated in detail, the construc­

tion of the regression functions, RL(x), proceeds as follows (note that each SPORE-1 regression 

function has only one output, so for problems with multiple outputs, one regression function must 

be constructed for each output): 



Chapter 3: The SPORE-J Regression Function 39 

Algorithm 1: SPORE-1 

STEP 1: Initialize algorithm: Initialize the 2 counters i = 1 and p = 1, where / and p are used 

as follows: / indexes the function g-(-) at the start of the current section; p is a subscript 

indicating that section p of the cascade wil l be constructed in step 2. Throughout the 

algorithm the subscripts k0, kL (used to identify the independent variables) are randomly 

selected, one at a time, from the set {1, N} , without replacement. When the set is empty, 

it is re-initialized to {1, N} , and the process of selecting these subscripts continues. 

STEP 2: Construct new section: Construct, in order, the functions £,•(•)>£,• + ](•)> • • •, gj( •), where 

j - i> depth j, as follows: 

1. Obtain a bootstrap sample set TT (i.e. MT randomly chosen samples with replacement) 

from the training set TT. 

2. Given r r , using singular value decomposition, determine the model parameters {apa} 

of the function g(-) which minimize the following least squared error criteria: 

Ho-} = a r g M I N H 0 } (3.15) 

The construction stops with function gy(-) when the change in cascade error on the validation 

set Tv, over the past depth} + 1 level additions, is less than some small, positive number £. 

This is defined as follows: 

1 -

depth j 

MSE(lRj)rv 

I 
\q = j - 1 - depth/ 

MSE{lRq)Tv 

<e (3.16) 

JJ 

where lR = (

a / ' £/(') ^ s t n e constructed cascade between levels i and q; and 

MSE(Rq)Tv is the mean squared error of this cascade on the validation set Tv. With the 

addition of each new level, the scaling factors al, for / = j, are recomputed as follows: 
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(MSE(8l(-))r )"' 
a, = - 1 (3.17) 

ZWSEigq(-))rT)-\ 
q = i 

where MSE(g[(-))r is the mean squared error of the single function gt(-) on the training set 

TT. Hence, at is simply the inverse of the normalized mean squared error of level / , and its 

purpose is to give more weight to levels which contribute more significantly to error 

reduction. 

STEP 3: Prune section: Next prune the current section back to the level which has the best mean 

squared error as follows. Find the minimum level s e {/- 1, i, j} which gives the least 

mean squared error of the cascade on the validation set Tv, in the following sense: 

choose^<r s.t. V( re {i,...,j}), MSE{lRs)rv<MSE(Rt)rv (3.18) 

Delete all functions g J + ] ( • ) , g i + 2(0> •••> g / ' ) • Set j - s and, using (3.17), recalculate the 

- scaling factors CLT, for / = i, j . The current state of the cascade is now given by: 

/= l 

Note that if s = / - 1 then all of the functions just constructed in step 2 are deleted. 

STEP 4: Update learning outputs: Update the output values, y •, of both the validation set Tv and 

the training set TT as follows: 

s 

V ( ( x , y ) 6 r v u r » = > y = y - X < * / • * / ( • ) (3.20) 
l = i 

The sets Tv and TT now contain the residual approximation errors after the cascade has been 

constructed to pruned level s. Let be the variance of the output values, y •, of the valida­

tion set Tv (as defined in step 1, the index p refers to the section just constructed). Thus, pp 

is equivalent to the mean squared error of the approximation Rs(x) on the validation set Tv. 

pp is used in STEP 5 to establish a stopping condition under which the construction of the 
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cascade stops. 

STEP 5: Check stopping condition: Go back to STEP 2, constructing at least depth2 + 1 

sections, until the following condition is met: 

f \ 

1 - p - i 

\y = p - 1 - depth2 

depth* 

< £ (3.21) 

Therefore, the algorithm will terminate when the mean squared error fails to improve by a 

factor of e, over the last depth2 + 1 sections. Before executing STEP 2, set / = s + 1 and 

increment the section counter p to initialize the next section. Upon termination, set L = s, 

the total number of levels constructed. This completes the description of the algorithm. 

As indicated above, the learning parameters depth j , depth2, and £, are all used to define 

conditions under which the construction of the cascade stops. In particular, £ defines the relative 

decrease in error required to justify the addition of more gt(-) functions to the cascade. The 

learning parameter depth} defines how many levels of the cascade are used to determine the 

termination conditions of STEP 2. Similarly, depth2 and £ are used in STEP 5 to define how 

many times STEP 2 is executed before the algorithm is executed. The theoretical significance of 

these learning parameters is discussed in Section 3.3.1. In Chapter 4, the actual setting of these 

values is discussed. 

3.3 Theoretical Analysis of the SPORE-1 Learning Algorithm 

In this section we analyze some theoretical properties of the SPORE-1 learning algorithm. 

In Section 3.3.1 we give convergence and rate of convergence results for the algorithm. In Section 

3.3.2 we give complexity results. In Section 3.3.3, we discuss the internal variance reduction 

property of SPORE-1. And in Section 3.3.4 we define the virtual space partitioning property of 

SPORE-1. 
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3.3.1 Convergence Results 

We begin the theoretical analysis of SPORE-1 by analyzing its convergence properties. In 

T H E O R E M 3 we prove that, under appropriate regularity assumptions, the SPORE-1 algorithm 

monotonically converges to some finite approximation error. In T H E O R E M 4 we give sufficient 

conditions for the approximation error to converge to zero. In T H E O R E M 5 we extend this result 

by showing that the rate (as a function of the number of learning sample points) at which the 

learning algorithm converges to this approximation error, is independent of the dimension of the 

dimension of the target function. The proofs of T H E O R E M 3, T H E O R E M 4 and T H E O R E M 5 

are based on 4 lemmas which we state and prove below. 

The reader should note that in the following, the learning data F L always refers to the 

updated learning data or residuals as defined in STEP 4 of the learning algorithm. 

In the first lemma, we show that the approximation error on any bootstrap sample used in 

the construction of a function £/(•)> must either decrease or stay the same; it can never increase. 

L E M M A A. For all / > 1, the following is true (note that the subscript q serves as an 

index for the summation V ): 

Proof: From S T E P 2 of the SPORE-1 learning algorithm, the parameters of g[ + ,(•) are chosen 

as follows: 

Given that u = gl and v = xk we could set coefficients of all terms with xk/ ^ to zero if they 

increase error. Therefore, the error can never increase. Similarly, error will decrease if and only if 

L E M M A A is true by definition. Q.E.D. 

The implication of L E M M A A is that the mean squared error of any new level 

MSE(gl + j(-)) „, on any bootstrap sample TT, is as least as small as the mean squared error of 

the previous level. Thus, even if v = xk does not contribute to the lowering of error at level 

I + 1 , the parametric form of g[+ , (•) ensures that for any bootstrap TT, the previous best error is 

(3.22) 

iaij} = a r g M I L W ^Z(8i+\(u,v)-yq) 
lrB

T 

(3.23) 

v = xk contributes to error reduction within the parametric structure of g / + 1 ( - ) - Thus, 
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maintained. 

Next we examine how the expected error, on the entire learning data set Y L , behaves with 

the addition of a new function gt + , (•) to the cascade. This requires us to make some assumptions 

about the function which originally generated the learning data. 

Assumption A: We will assume that all the learning data Y L , and therefore all of the data 

in the training set YT and the validation set Yy, are independently generated by some unknown 

function: 

y = / ( x ) + e(x) (3.24) 

where f(x) is bounded, continuous and defined over some closed domain D cz 3lN, and e(x) is 

some noise term with the property that V(x £ D), E(e(x)) = 0. Furthermore, we assume that 

the probability density function which defines the distribution o/e(x) is continuous, and has finite 

variance, V ( x e D). Note that one can equivalently define fix) as follows: 

oo 

/ ( x ) = E[y\x) = \ yh(y\x)iy(dy) (3.25) 

—oo 

where, h(y\x) is a continuous probability density function with bounded variance, and q>(dy) is 

some measure on . 

In the following lemma, we use Assumption A to show that the expected approximation 

error on the learning data either decreases or stays the same. 

L E M M A B. Given Assumption A, and for sufficiently large sample sizes MT and My, 

then for all l> 1, the following is true: 

E[£(8i+i(8i, xklJ - y / ] < £ [ ] • > / . ( • ) -yq)2] 0-26) 

Proof: From L E M M A A, we know that L E M M A B is true if the learning set YL is equiva-

lent to the bootstrap training set: i.e. YT = YL. Hence, it is reasonable to assume that it will also be 

true if r r is a "sufficiently good" representation of the distribution of points in the training set 

YT and the validation set Yv. Thus, we prove this lemma by showing, given Assumption A, YT 

becomes sufficiently close (in the probability distribution sense) to YT and Yv for large MT and 

Mv. Consider any arbitrary point x, e D. From the Central Limit Theorem, we know the follow­

ing: if y,, yn are independent random observations from a population with probability 
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2 1 

function h(y\xx) for which the variance o [y] is finite, the sample mean y = ~2"- l s 

approximately normally distributed when the sample size is reasonably large, with mean E[y] 
2 

and variance (a [ y ] ) / « [Nester et al., 1990]. Therefore, if we limit all learning sample points to 

be generated from any single point X j e D and we make MT and Mv sufficiently large, the 

following is true due to Assumption A and the Central Limit Theorem; 
^8i+\isi,xklJ-yq)2 = E\^L(8i(-)-yq) 
• r —' I— -i— 

(3.27) 

This is true because, at any single point x, e D, the construction of the function gl + x(gt, xk ) 

as defined in (3.23) is equivalent to finding the mean value of the bias coefficient a 0 0 ; i.e. 

8i+i(8i> xic! ,) reduces to a single mean value which is equivalent to the mean of a one 

dimensional distribution. In addition, assuming that the variable xk ^ does not contribute to 

reduction of error, then because gt(-) and f(x) are both bounded and continuous over a finite 

domain, and because the distribution of e(x) is also continuous, it must be the case that (3.27) is 

also true for any finite local region (within the domain D) about any arbitrary point x, 6 D . This 

is true because the continuity constraints on gl+x{-) imply that as any point (w,, V j ) approaches 

another point (u2, v 2 ) , then gl + l(ul, v,) must approach gl + , ( M 2 , V 2 ) ; hence, this is analogous 

to taking an elastic surface and smoothly bending it according to the constraints of (3.23). 

Furthermore, under the same conditions, because this is true for any arbitrary point X j e D, 

(3.27) must be true over the entire domain D (i.e. simply stretch the above elastic surface to 

include all of D). Thus, at minimum, the expected approximation error will remain unchanged. 

Similarly, due to the construction of g l + x (g ;, xk^ ) as defined in (3.23), the condition 

E\T(Si+i(8i, xk ) - y/1 < 4Z(S/(0 - v/1 (3.28) 

is true if and only if the variable | serves to reduce the approximation error within the context 

of the parametric structure of g l + x (gt, xk | ) . This completes the proof of L E M M A B. Q.E.D. 

Next we extend the result of the previous lemma to show that the expected approximation 

error, over the entire domain D of the target function, either decreases or stays the same. 

L E M M A C. Let fu(x) represent the updated error function after the computation of 

residuals in STEP 4. Thus before STEP 4 is first executed fu(x) = /(x), and the execution of 

STEP 4, computes: 
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fu(x) = / ( x ) - £ a z •*,(•), (3.29) 
/ = i 

and thereafter fu(x) is updated as follows: 

s 
fu(x)^fu(x)-^ar§l(-) (3.30) 

/ = i 

Then, given Assumption A, and for sufficiently large sample sizes MT and Mv, for every level 

I > 1, the following is true: 

E\\(8i+ ,(*/, xkiJ-fu{x))2dD\ < E\\{gl{-)-fu{x))2dD\ (3.31) 
D D 

Proof: From Assumption A we know that the samples yq have mean f u(x). Further­

more, because f(x) and 2/- iai ' £ / ( ' ) a r e bounded and continuous, then so is fu(x). The the 

proof of L E M M A C is identical to the proof of L E M M A B, with the exception that the approxi­

mation errors are now integrated over the entire domain D and not simply summed over the 

learning set TL. Q.E.D. 

Next, using the above lemmas, we show that the SPORE-1 learning algorithm must 

converge to some finite approximation error. It is important to establish that SPORE-1 converges 

to some error function because this allows us to establish conditions under which the algorithm 

terminates. Algorithms which do not terminate are rarely useful in regression. 

T H E O R E M 3. Given Assumption A, and for sufficiently large sample sizes MT and Mv, 

then for every £ > 0 fee there exists a level I such that the following is true: 

EU(Rl + p(x)-Rt(x))2dD 
D 

< £ (3.32) 

where p > 1 is any positive integer (note that this theorem implies a monotonically converging 

sequence). 

Proof: Consider the construction of the function RL(x) during the first execution of STEP 

2. Let 
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I 

Rt(x) = X <*P-8P(-) (3-33) 
p= i 

and 

/ + 1 

= 5>VM-> ( 3 - 3 4 ) 

P = \ 

Note that we have put a prime on a' to distinguish that they are different from ap . Therefore, 

/+1 / 

i? /+1(x)-/?,(*) = 2 <V M ' ) - I a, •*„(•) (3.35) 

Simplifying we get: 

*/+i(*)-*/(x) = - S / + i ( - J - E ( a ' p - V - M - ) ( 3 3 6 ) 

where, in the limit of MT —> oo, 

JUp(-)-/(x))2^D 

a „ -> = -r-e- (3.37) 
2 V I 

X(J(*,(•)-/(x))2dDj X % 
q = i D q = i 

and 

.2 , „ V ' 

« ' P "> ITT ; = TTT^ (3-38> 
,2 

1 
q = i D q = i 
X (/(*,(•)-/(x))2dDJ £ 0 

where, for all /? > 0 

®p = {\(gp(-)-Hx))dDJ (3.39) 
D 

Therefore, we can write oc' - ap as 
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a p - a p / + 1 / 

q = i q = i 

(1 ^ / / + I \ 

p - O 2*, 
\q = i J ^ = i J 

Y ' 
I*, I*, 

Simplifying, we get 

f V *\ 
-q> 

/+ l 
/+1 

5>« 
because 

a' 
/+ I 

Therefore, we can simplify (3.36) as follows: substituting cc' - a p with -oc' / + jOC^ 

Ri+iW-R[(x) = a' / + 1 -g / + 1 ( - ) -a' / + 1 X < V M ' > 
P = I 

Substituting in Equation (3.33) we get: 

/?/+1(x)-/?z(x) = a' z + 1 -g^O -a^j / tyx) 

which simplifies to 

Rl+l(x)-Rt(x) = a'l+l(gl+l(-)-RL(x)) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

Finally, from L E M M A C, and assuming that > 0 for all / (note that if this assumption is 

false, then T H E O R E M 3 is tme by default due to L E M M A C), as / -» « , 

E [ O / + 1 - < D z ] - > 0 (3.46) 

therefore, we have an infinite sum of a constant, giving infinity, or 

/+ l 

ct 
<7 

(3.47) 
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and as a result 

/+1 - - » 0 . (3.48) 

V X * , 
J 

q = l 

Therefore, as / —> °o, Equation (3.45) becomes: 

£ ( / ? z + 1 ( x ) - / e z ( x ) ) - > 0 . (3.49) 

Thus, T H E O R E M 3 is true during the first execution of execution of STEP 2, and because of the 

execution of STEP 2. This completes the proof of T H E O R E M 3. Q.E.D. 

T H E O R E M 3 establishes that the SPORE-1 Learning Algorithm converges to some 

function ^ ( x ) as / —> ~ . Thus, for any fixed sequence kQ, , the approximation error 

converges to the following: 

In addition, T H E O R E M 3 allows us to define theoretically optimal values for the learning 

parameters depth j, depth2, and e (see STEP 2 and STEP 5 of the SPORE-1 Learning 

Algorithm). First consider e, which defines a cut-off on the minimum allowable decrease in 

approximation error. From the proof of T H E O R E M 3, we know that this rate of decrease 

monotonically converges to zero as the number of levels grows. Hence, by stopping the algorithm 

when some e rate of decrease is reached, we know that any future expected decrease will not 

exceed this amount. Thus, in order to achieve the error given in (3.50), we must let e —> 0. In 

addition, the true rate of potential error reduction is measured only when p —> °° in (3.32). 

Therefore, the parameters depth 1 and depth2, which are related to p , should also be large in 

order to achieve (3.50). 

In the next theorem, we establish sufficient conditions under which approximation error is 

reduced when a new level is added to the regression function. In order to do this, we need to make 

a further assumption as follows. 

Assumption B: For simplicity, we define the following: 

continuity arguments in L E M M A C, the same argument can be made during each subsequent 

(3.50) 
D 
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E[\(gl+l(.)-fu(x))2dDJ 
D 

(3.51) 

y = E J ( g / + | ( . ) - / M ( x ) ) ( / ? / ( x ) - / ( x ) ) J Z ) (3.52) 
D 

Q = E J ( ^ ( x ) - / ( x ) ) 2 ^ D (3.53) 
D 

Given the above definitions, the following 3 conditions are assumed to be true. First, the approxi­

mation error of i?;(x) is greater than the correlation between the errors due to the new level 

function g[+](-) and the approximation error due to R[(x). This can be stated as follows (fu(x) 

is defined in L E M M A C): 

In other words, this condition is satisfied when the errors due to g^ j (•) are sufficiently uncorre­

cted with those due to Rpix). The second condition requires that the correlation between the 

errors due to the new level function gj + j (•) and the approximation error due to i?/(x) satisfy the 

following: 

Once again, this condition is satisfied when the errors due to g/ + j (•) are sufficiently uncorrelated 

with those due to i?/(x). The final condition which we need to meet is that the scaling factor 

oc ' / + 1 satisfies the following: 

where e = 1 -8 , and 5 e 31 « an arbitrarily small positive real number defining the amount of 

error reduction due to the addition of a new level to the regression function. If we let I —> °°, and 

thus a' [ + , —> 0 (see proof of THEOREM 3), this condition is also satisfied when the errors due to 

8i+\(') a r e sufficiently uncorrelated with those due to i?/(x). Hence all 3 conditions require that 

the approximation errors of a new level are uncorrelated with those of previous levels. As 

discussed in Section 3.3.3, the SPORE-1 learning algorithm encourages this condition to occur 

through the use of bootstrap training samples. 

Q>x¥ (3.54) 

0 > 2 V F - Q (3.55) 

( Y - f l ) - 7( Y - fl)2 - (O - 2 Y + - e)Q 
( 0 - 2 v F + fl) 

(3.56) 
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Using Assumption B, we now state the following theorem. 

T H E O R E M 4. Given Assumption A and Assumption B, and for sufficiently large sample 

sizes Mj and Mv, then for every I > 1 the following is true: 

J ( /? / + 1 (x)- / (x)) 2 JD]<e^rj ( /? / (x)- / (x)) 2 JD 
'D D 

(3.57) 

where e is defined in Assumption A. 

Proof: From (3.44) we can write Rl+ j (x) as follows: 

* / + i ( x ) = <x' / + 1 • g z + 1 ( - ) - o c ' / + 1 / ? / ( x ) + /? ;(x) 

This can be written as: 

#, + i(x) = a ' / + 1 -gl+ ,(•) + (!-a ' [ + l )R t (x) 

(3.58) 

(3.59) 

In addition, we can write (R[+ t (x) - f(x)) as: 

( / ? / + 1 ( x ) - / ( x ) ) = a ' / + ] ( g / + 1 ( - ) - / M ( x ) ) + ( l - a ' / + ) ) ( i ? / ( x ) - / ( x ) ) (3.60) 

and (R[+ j(x) - f(x)) becomes: 

(Rl+l(x)-f(x))2 = (a'l+l)2(gl+l(-)-fu(x))2 + 

2 a ' / + 1 ( l - a ' / + 1 ) ( g / + 1 ( - ) - / M ( x ) ) ( / ? / ( x ) - / ( x ) ) + ( l - a ' / + 1 ) 2 ( / ? / ( x ) - / ( x ) ) 2 

(3.61) 

Using the above identities and the definitions given in (3.51), (3.52) and (3.53), rewriting (3.57) 

we get: 

( a ' / + 1 ) 2 0 + 2 a ' / + 1 ( l - a ' / + 1 ) ^ + ( l - a ' / + 1 ) 2 Q < e Q (3.62) 

Solving for oc'z + j , we get 

a' /+1 
^ - ( Y - f l ) - V ( x P - Q ) 2 - ( Q - 2 t P + n ) ( l - e ) Q 

( 0 - 2 x F + Q) 
(3.63) 

The above is true given Assumption B is satisfied. This completes the proof of T H E O R E M 4. 

Q.E.D. 

In the last two theorems, we have established conditions under which the SPORE-1 

learning algorithm converges. Next, we quantify the rate of convergence of this algorithm. More 
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precisely, we measure how the approximation error decreases as the number of sample points 

used during the construction process increases. As discussed, in Section 2.3 of Chapter 2, this 

type of rate of convergence analysis is an important indication of an algorithms usefulness in high 

dimensional regression. In the following lemma and theorem, we establish the rate of conver­

gence, to some finite approximation error given by (3.50), of the SPORE-1 Learning Algorithm as 

independent of the dimension of the function being approximated. 

L E M M A D. Let the optimal g;(-) function be defined as 

°pt

g[(u,v) = " % • „ V (3.64) 
i,je {0, 1,2, ...} 

where the coefficients {°P'aij} are chosen using an infinite number of training sample points as 

follows: 

2 1 r Opt -. 

{ au} = argmin , 
J l aijS 

jW)-/«(*))dD 

~D 
(3.65) 

and fu(x) is the residual error function defined in LEMMA C. Similarly, let the approximated 

g/( •) function be defined as 

i + j<K 

g[(u, v) = ^ ay • w V (3.66) 
i,je {0, 1,2, ...} 

where the coefficients {a^} ctre chosen using a finite number of training sample points as 

follows: 

{au} = argmin { a ; . } X ( g / K v)-yqY 
•r? 

(3.67) 

Given Assumption A, and for sufficiently large sample size, the rate of convergence of the 

function gl(-) to the optimal function °p'gl(u, v), as a function of the number of sample points 

Mj, is independent of dimension N of the target function f(x) (we assume N>2). More 

precisely, there exists a constant K, independent of N, such that the rate of convergence is given 

by: 
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E\\(gl(-)-[op'g [(•)])-dD <K (3.68) 

where, T ^ is the number of terms in the polynomial g/(-). 

Proof: We first prove this theorem for the first level / = 1. The coefficients of °ptg[(u, v) 

are given, using an infinite sample size, by the following: 

{ a-} = argmin , J ( ° p ' g l ( x v xki)-f(x))2dD 
D 

(3.69) 

Similarly, the coefficients for g ;(-) are given using a finite samples size MT, as follows: 

,2 
{atj} = argmin{ } X ^ i < * * « , '

 xk)-yqy (3.70) 

Thus, given that gt(-) converges to op'gi(-) as MT —> °° (this is true because gt(-) is continuous 

and so is / ( x ) ) , then we can view g^(-) as being an approximation of °P'gi(-). Given this view, 

the coefficients {aif} are chosen based on sample outputs yq which are generated using the 

following density function: 

\(°ptg,(xkjXk)-f(x))dV 

hgl(y\(xkii, xk[)) = D' 

jdD' 
(3.71) 

D' 

where f(x) is defined in (3.25) of Assumption A, and D' is the domain D given that (xk, xk) 

is fixed (hence D' is N-2 dimensional space, spanning the N-2 dimensions of D which do 

not include the axes (xk, xk)). Within this context, and by Assumption A, hg(<y\(xk^, xk)) 

must be continuous with finite variance, and an equivalent representation for °ptg\{xkn, *kx) is: 

opt g\(xk{)>xk) = E[y\(xko, xk{)] = j yhgi(y\(xko, xki))tp(dy) (3.72) 

Thus, we view the sample outputs y as being generated as follows: 

opt , . , x 

yq= sMK,xk) + z(xkn,xk) 
(3.73) 

where the density function of the error term z(xk ,xk) is continuous, and has finite variance 
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2 2 
Ge(xko,-xk) dependent on (xk^,xk). Note that the variance GE(xk , xk ) is independent of 

dimension N because it is calculated using the distribution given in (3.71), which integrates and 
2 2 2 

divides out N-2 dimensions of f(\). Now, using the equality G (y) = E(y ) - (E(y)) , we 

can write 
E[(gl(-)-opt

8l(-))2] = a2[gl(-)-optgl(-)] + (E[gl(-)-optgi(-)])2 (3.74) 

From the Central Limit Theorem we know that E[gx(-)-°P'gx (•)] - 0 for each point (xk, xk). 
In addition, because op'gl(xk ,xk) is constant for each fixed point (xk ,xk),we can write (3.74) 

2 2 
as follows (note that we are using the equality a (y + c) = G (y) for c constant): 

£ [ ( g , ( - ) - % , ( - ) ) 2 ] = o - 2 ^ - ) - 0 ' ^ - ) ] = o-2(g,(-)) (3.75) 

Next, if we symbolize the terms of g j (•) as 

8i(-) = I 9* (3-76) 
k = l 

then, using the identity 0" 2(^"_ x c-9.) = ̂  ^ ] c-c;a(9-, 0^), where G(0-, 0 ; ) is the 

covariance between 0, and 0,, we obtain 

£[(*,(•)-"'WO) 1 = * I 9* =11 °( e ;> e , ) (3.77) 
Vjt = 1 / 

Now, for all terms / = j = k where k e { 1, T ^} , the covariance is given by the Central 
2 

Limit Theorem as (i.e. variance of a distribution decreases as o (y)/n for n samples, if the 
2 

original distribution had variance G (y)): 
2, . 

9 o~P {xk , xk ) 
G(Qk, Qk) = G2(Qk) = ^

 1 (3.78) 

2 
where ^ ( x ^ , x^) is the variance of the noise term defined in (3.73). Similarly, for all terms i * j 
the covariance is: 

Gu{xk , xk ) 

0 ( e e) = l} *• ( 3 .79) 

2 2 
where o\-,(x,,, xb ) is some initial covariance between 0,- and 0 ,• (note that o\,(x,, , xk ) measures 
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the covariance between terms of the 2 dimensional polynomial #](•), and is therefore indepen-
2 2 

dent of N). Thus, if we let GMax(xk ,xk) be the maximum covariance of all of a ij(xk , xk ) and 
2 
Ge(xk , xk ) , we can write (3.77) as: 

TSi() TSiV) 

Therefore, integrating ever D , we get 

^Max(xk{}' xk^ 
(3.80) 

D 

r°Pl 

< \vMax(Xkn>Xk)dD) = K 

D 

' Si(-) 
Mr 

(3.81) 

C 2 
where = CT^^^CJC^, xk^)dD, is independent of Af. Thus, this proves L E M M A D for the 

function gj(-) • The proof for all other levels / > 1 follows the same logic and is not given here. 

This completes the proof of L E M M A D. Q.E.D. 

In L E M M A D we proved that the rate of convergence of each function gt(-) is indepen­

dent of dimension N of the target function. In the following theorem, we extend this to show that 

the rate of convergence of -fy(x) is also independent of N. 

T H E O R E M 5. Let °ptRL(x) = Yu- \ 0 / " a / " °P'gi(') be the optimal constructed cascade 

(to level L , ) after the first time that STEP 2 of the SPORE-] learning algorithm is executed; thus 

°ptRL^(x) is constructed using an infinite number of samples points, and °ptOLl is defined as: 

opt _ _D 
al ~ L, 

jCP'gl(-)-f(x))2dD 
(3.82) 

= 1 7) 

,-1 

where °P'gl(-) is defined in L E M M A D. Similarly, let R^^x) = Y^- \ ^i(') be the 

constructed cascade (using the usual finite number of samples points) after the first time that 

STEP 2 of the SPORE-1 learning algorithm is executed. Then, given Assumption A and for 

sufficiently large sample sizes MT, the rate of convergence, as a function of the number of sample 

points MT, of the function RL](x) to the optimal function °p,RL(Kx), is independent of dimension 

N of the target function f(x), (we assume N > 2). More precisely, there exists a constant K, 

independent of N, such that the rate of convergence is given by: 
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j(RLi(x)-[op'RLi(x)))2dD 
D 

<K (3.83) 

where, T g ^ is the number of terms in the polynomial g/(-) • 
2 2 2 

Proof: Using the identity a (y) = E(y )-(E(y)) , we write 

E[(RL(x) - [op'RL(x)])-] = G*(RL(x) - [""X (x)]) + (E(RL(x) - [""7?, (x)])M3.84) opt .opt. 

From the Central Limit Theorem we know that E(RL (x) - [°ptRL ( X ) ] ) = 0 for each point x . In 

addition, because °ptRL (X) is constant for each fixed point x , we can write (3.74) as follows 
2 2 

(note that we are using the equality a (y + c) = a (y) for c constant): 

E[(RLi(x)-[optRLi(x)]y] = a(RLi(x)-[u'"RLi(x)]) = c'(RLi(x)) 

Next, given that RL[(x) = , oil • gt(-), we can write the above as: 

V = i ) i = i y = i 

op / , 

£[(/?,(x)-[•""/?, (x)]) ] = a 

(3.85) 

(3.86) 

For each point x , let pMax(x) be the maximum covariance over all o(g{, gj). Then, given that 

j oc, = 1 by definition, we can write the above as: 

E[(RL(x)-[optRL(x)])-]< 
( L | Y L | ^ 

v,- =i A,- = i ) 
(3.87) 

From L E M M A D, we know that for a(g-, g () = a (#•), the variance has the form: 

a 2(g ()<(r g ; ( ,) 2 

Mn 
(3.88) 

Thus, given that the functions gt(-) are constructed one at a time using a least squared error fit, all 

other covariances 0"(g(, gf) must have the same form given in (3.88). Therefore, substituting 

pMax(x) with the maximum c(gt, gj), (3.87) becomes: 

E[(RL(x)-[optRL(x)])-]< 
f(T YA 

MT Max (0 (3.89) 
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Therefore, integrating ever D, we get 

E\\(RL(x)-[optRLi(.x)])2dD (3.90) 
'D J 

where K = jDoMax(-)dD, is independent of N (see proof of L E M M A D). This completes the 

proof of T H E O R E M 5. Q.E.D. 

Therefore, T H E O R E M 5 shows that the rate of convergence of the error function, to the 

optimal error function is independent of dimension of the function being approximated. This 

result is important because it establishes that, for the SPORE-1 Learning Algorithm, the rate at 

which the constructed cascade approaches the best regression function is independent of the 

dimension of the function being approximated. Thus the number of sample points required to 

build an optimal SPORE-1 regression function, does not explode with dimension. 

3.3.2 Complexity Results 

An important property of a learning algorithm for the construction of high dimensional 

regression functions, is how its complexity grows with the number of input variables. Given that 

the number of parameters of each function g^-) is fixed, the computational cost of adding a level 

/ is the same for all levels. In the following, we symbolize the computational complexity of 

adding a new level to the regression function, as C . The cost C is dominated by the computations 

required to determine the polynomial coefficients of g [ (-) (see STEP 2 of the SPORE-1 Learning 

Algorithm). In the following theorem, we calculate the computational cost of the SPORE-1 

learning algorithm. 

T H E O R E M 6. For any fixed sequence kQ, ...,kL of indices defining the order of indepen­

dent variables (see STEP 1 of the SPORE-1 Learning Algorithm), and any e > 0, the computa­

tional cost to achieve the following convergence 

D 

is u / V C , where N is the dimension of f(x), C is the complexity of adding a level to the cascade, 

and p > 0 ( [ 1 6 3i) is independent of dimension N. 

Proof: From T H E O R E M 3, we know that a level / satisfying the above condition must 

(3.91) 
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exist. Furthermore, due to T H E O R E M 3, there must be a sequence of positive real numbers 

e0, . . . , £ k 

such that £• ^ e, + j and ek < e. Thus k is the number of times one must cycle through the N 

independent variables before the desired convergence is achieved. Note that k depends on how 

the function f(x) projects, at each specific level, onto the 2 dimensional functions £/(•)• Thus k 

depends on the distributions hg(y\-) (see L E M M A D), and not on the dimension of f(x). 

Therefore we complete the proof of T H E O R E M 6 by choosing p > k. Q.E.D. 

Thus, T H E O R E M 6 shows that the computational cost of building a SPORE-1 regression 

function is linear with respect to the number of predictor variables. 

Next consider the effect of the number of sample points MT used in the construction of 

the regression function, on computational complexity. The main effect of sample size is on the 

construction of each level of the regression function. Thus, the cost C of adding a single level is 

some function of the number of sample points: i.e. C(MT). The actual relationship will depend 

on how the coefficients of gt{-) are calculated. In the SPORE-1 algorithm the preferred method is 

Singular Value Decomposition (SVD), and therefore C{MT) is the cost of doing 1 SVD calcula­

tion (see [Golub and Van Loan, 1993] for details). 

3.3.3 Internal Variance Reduction 

As outlined in Section 2.2 of Chapter 2, variance reduction is fundamental to constructing 

regression functions which have low approximation errors. One of the more effective means of 

variance reduction is to use many different regression functions to create a single prediction using 

a weighted average of all their outputs. The resulting regression function is referred to as an 

ensemble regression function. Thus, given P different N dimensional regression functions 

symbolized by /,-(x), the ensemble regression function f(x) is given by: 

where the P ( are some positive scaling coefficients. Perrone [Perrone, 1993] has shown that 

D 
(3.92) 

p 

f{x) = Y P,-£(x) (3.93) 
i = 1 
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optimal variance reduction is achieved when the (3- are calculated as follows: 

P< = (3-94) 
L k L j L k j 

where C- ; is the correlation between the /,(x) and fj(x) regression functions. Furthermore, if 

residual errors of any two different regression functions /,-(x) and //(x) (i.e. / ̂  j) are uncorre­

lated, (3.94) becomes: 

X J a (/*-/)] 

This calculation of (3,- is equivalent to the calculation of the scaling factors CL1 are computed in 

STEP 2 of the SPORE-1 learning algorithm. Thus, the SPORE-1 regression function will exhibit 

optimal variance reduction if all gt(-) have residual approximation errors which are uncorrelated. 

Although the learning algorithm does not guarantee that the approximation errors of all of the 

functions g^-) are uncorrelated, this condition is implicitly encouraged through use of different 

bootstrap samples and predictor variable inputs for the construction of each level. In T H E O R E M 

4, we show that error reduction (or equivalently variance reduction) can occur even if two 

functions g-(-) and. #•(•) have some correlated residual errors, as long as the conditions in 

Assumption B are satisfied. 

Therefore, SPORE-1 exhibits variance reduction which is internal to its structure. It does 

not rely on a large ensemble of different high dimensional regression functions, using instead a 

weighted average of 2 dimensional functions within it's structure. We refer to this as the internal 

variance reduction property of the SPORE-1 learning algorithm. 

In Chapter 4, we experimentally verify that this internal variance reduction property is 

effective in significantly reducing approximation errors. 

3.3.4 Virtual Space Partitioning 

Consider the pathological situation where 

{ a..} = argmin- , 
J i aijt 

'jCPl8i(-)-f(x))2dD 
D 

= {0, ...,0} (3.96) 
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Given this condition, we cannot expect reduction in approximation error to occur because the 

optimal solution is gt(-) = 0. In Chapter 5 this condition is avoided by partitioning the space D 

into a finite number of subdomains where this cannot happen (note that in Chapter 5 it is shown 

that these subdomains must exist). However, even without space partitioning, this pathological 

condition is not likely because the actual calculation of the coefficients of #,(•) is done using a 

bootstrap sample of the training data. Due to replacement during sampling, on average each 

bootstrap sample contains roughly 63% of the training data [Efron, 1983]. Therefore, a bootstrap 

sample is essentially a random partitioning of the input space. We term this phenomenon virtual 

space partitioning. 

In Chapter 4, we experimentally verify, that virtual space partitioning, causes the SPORE-

1 regression function to converge to zero approximation error, even when condition (3.96) is 

valid. We verify this by applying SPORE-1 to the 10 bit parity problem. As outlined in Section 

4.5 of Chapter 4, a major deficiency of most learning algorithms which build a regression function 

using lower dimensional functional units, is that they cannot represent parity functions that are of 

higher dimension than their largest dimensional function unit. In being able to approximate the 10 

bit parity problem arbitrarily well using only 2 dimensional functional units, the virtual space 

partitioning property of the SPORE-1 algorithm serves to overcome the deficiencies present in 

other dimensionality reducing regression functions. 

3.4 Summary 

This chapter constitutes our first attempt at a theoretical verification of our thesis 

presented in Section 1.3 of Chapter 1. First, we have shown that the SPORE-1 structure is a 

universal approximator. Second, we have shown that under appropriate conditions, the rate of 

convergence of the SPORE-1 learning algorithm to some finite approximation error, is indepen­

dent of the dimension of the target function. Thirdly, we have given sufficient conditions under 

which the approximation error converges to zero. And finally, we have shown that the complexity 

of constructing the SPORE-1 regression function is at most linear with the dimension of the target 

function. 



Chapter 4: Experimental Results 

In this chapter, the SPORE-1 learning algorithm is experimentally evaluated. In Section 

4.1, the implementation details of SPORE-1 are described. In Section 4.2, the algorithm is 

evaluated on ten well known regression problems. In Section 4.3, the algorithm is evaluated on 

very high dimensional regression data. In Section 4.4, SPORE-1 is applied to 3 very high 

dimensional human-to-robot skill transfer problems, In Section 4.5, SPORE-1 is applied to the 

10-bit parity problem. Finally, Section 4.6 concludes the chapter with a summary of experimental 

results. 

4.1 Implementation Details of the SPORE-1 Regression Function 

In this section we give the implementation details of the SPORE-1 algorithm described in 

Section 3.2 of Chapter 3. In all of the experiments described in this chapter, the same version of 

SPORE-1 is used. Thus, the same class of two dimensional functions g [ (-) are used, with identi­

cal settings for the learning parameters depth 1 , depth2 , and e. Even though the regression data 

presented in this chapter vary widely in dimension and number of learning samples, no fine tuning 

of the SPORE-1 algorithm was required. The SPORE-1 algorithm is completely automated, 

requiring no manual intervention. 

The functions g^-) are modeled as third order 2 dimensional polynomials as follows: 

g[(u, v) = a Q 0 + a 0 ) v + a ] 0 M + fl|jMV + a 0 2 v 2 + 
(4.1) 2 2 2 3 3 

CI2QU + al2uv + a 2 i u v + aQ3v + a3Qu 

As indicated in Chapter 3, this choice for gt(-) is not unique. In T H E O R E M 2 of Chapter 3 

(Section 3.1.2) we showed that g ;(-) must belong to the class of 2 dimensional polynomials of 

order greater than one. Our original reason for not choosing second order polynomials was that 

third order polynomials are the smallest order polynomials which incorporate asymmetric terms 
2 

(i.e. terms such as uv which we assumed would allow for faster convergence) which second 

order polynomials do not. However, preliminary experiments (these results are not reported here) 

60 
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with second order polynomials suggest that they produce approximations which are comparable 

(with respect to mean squared error) to those produced by third order polynomials. In addition, 

second order polynomials often produced regression functions which were smaller than those 

produced by third order polynomials (however, this may not prove true if we exclude coefficients 

which are insignificantly small; we have not attempted such an analysis here). Our original reason 

for not choosing higher order polynomials is due to our goal of testing the SPORE methodology 

under the simplest implementation: i.e. very simply polynomial building blocks (only 10 coeffi­

cients). As with second order polynomials, preliminary experiments (these are not reported here) 

indicated that fourth, fifth and sixth order polynomials produce regression functions which are 

comparable (with respect to mean squared error) with those produced with third order polynomi­

als. The main difference being that higher order polynomials produce regression functions which 

are larger (once again, this may not prove true if we exclude coefficients which are insignificantly 

small). Thus, even from a practical perspective, it appears that the choice of g^(-) may be 

arbitrary, as long as they belong to the class of 2 dimensional polynomials of order greater than 

one. 

The three learning parameters were assigned the following values: depthj = 25, 

depth2 = 6, and e = 0.0001 (see Section 3.2 of Chapter 3). These values were consistently 

found to be sufficiently close to the theoretically motivated values given in Section 3.3.1 of 

Chapter 3; i.e. theory suggests that large positive values should be assigned to depthj and depth2 , 

while e > 0 should be made as small as possible (see S T E P 2 and S T E P 5 of the SPORE-1 

Learning Algorithm in Section 3.2 of Chapter 3). 

4.2 Evaluating SPORE-1 on Standard Regression Problems 

In this section we evaluate the efficacy of the SPORE-1 algorithm by applying it to 10 well 

known regression problems from the literature (See Table 4.1) [Grudic and Lawrence, 1997]. 

These problems were chosen because they have been extensively studied with many different 

learning algorithms being applied to them. A l l of these regression examples are comparatively 

small, ranging in dimension from 4 input variables to 16, with learning sample sizes ranging from 

80 to 15,000. Although these regression problems are not the type of large, very high dimensional 

problems that SPORE-1 was designed for (i.e. more than 100 input variables with about 40,000 

learning examples), they are among the largest regression problems available in the literature. In 
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addition, they allow us to directly compare the performance of SPORE-1 to many different 

learning algorithms. 

Our comparisons are based on 3 different publications: Breiman [Breiman, 1996a], 

Rasmussen [Rasmussen, 1996], and Jordan and Jacobs [Jordan and Jacobs, 1994]. In the follow­

ing, we give a brief description of the regression data used in each of these publications. 

4.2.1 Regression Data Used by Breiman 

Breiman studied 5 different regression problems in [Breiman, 1996a]. His goal was to 

determine how Bagging (see Section 2.2 of Chapter 2) affects the approximation error of CART 

(see Section 2.1.2 of Chapter 2). Since Bagging is a method of improving predictor accuracy 

through variance reduction, comparing SPORE-1 to the Bagged CART algorithm allows us to 

directly study the efficacy of the internal variance reduction property of SPORE-1 (see Section 

3.3.3 of Chapter 3). Of the 5 regression data sets studied in [Breiman, 1996a], we used the Boston 

Housing, Friedman #1, Friedman #2, and Friedman #3 data. A brief description of these data sets 

is given below. 

• Boston Hosing Data: This data has 12 predictor variables, which constitute various so­

cio-economic indicators in the Boston area, and 1 output variable which is the median 

housing price in the corresponding area. There are a total of 506 examples in this data set, 

51 of which are randomly selected to be used as a test set. 

• Friedman #1: This is a simulated data set which appeared in [Friedman, 1991]. It has 

10 independent predictor variables which are uniformly distributed over 0 < xl< 1, for all 

i = 1, ..., 10. The output is defined by the following equation: 

y = 10sin(7UXjjc2)+ 20 (x 3 -0 .5 ) 2 + \0x4 + 5x5 + z (4.2) 

The noise term e is Normally distributed with mean zero and a variance of 1. Half of the 

10 prediction variables (x6, x 1 0 ) do not affect the output y , so this data is a good test 

of the ability of the SPORE-1 learning algorithm to ignore variables which do not contrib­

ute to reduced approximation error. This data has a total of 200 learning examples and 

1000 test examples, all randomly generated using (4.2). 



Chapter 4: Experimental Results 63 

• Friedman #2 and Friedman #3: This is simulated data having 4 inputs and 1 output. 

The data was used in [Friedman, 1991] and simulates the impedance and phase shift in an 

alternating current circuit. The Friedman #2 is generated using the following: 

2 2 1 / 2 

y2 = (*! + (x2x3-(l/(x2x4))) ) +e 2 • (4.3) 

The Friedman #3 is generated using the following: 

fx2x3-(\/(x2x4))\ 
y3 = a t a n J - = - ^ ^ - ^ J + e 3 (4.4) 

The variables x ] ; x2, x3, x4 are uniformly distributed as follows: 

0 < X ! < 1 0 0 

20<fJ2-l<280 
\2K) (4.5) 

0 < x3 < 1 

1 <x4< 11 

2 
The noise terms e 2 and e 3 are Normally distributed with mean zero and a variance of o"2 

2 
and a 3 respectively. The variance is chosen so that the signal to noise ratios are 3 to 1; i.e. 

2 2 2 2 2 
the ratios of variances are chosen to be (<y0/o\, ) = (o%/o\, ) = 1/3 , where o\, and 

z y2' v o yy y2 

2 
a are the variance of the outputs of (4.3) and (4.4) respectively. The learning examples 

for these data sets had 200 randomly generated samples, while the test data had 1000 

randomly generated examples. 

In Table 4.1 we compare the performance of SPORE-1 on these data sets to the Bagged CART 

algorithm. We chose these data sets because the manner in which they were used was fully 

specified, allowing us to directly compare prediction error results (full specification of the use of 

the fifth data set, Ozone, was not available in [Breiman, 1996a]). 
4.2.2 Regression Data Used by Rasmussen 

Rasmussen [Rasmussen, 1996] studied five data sets from real-world regression examples. 

These included Auto Price data, CPU data, Boston Housing data, M P G data, and Servo Data. We 

give a brief description of these data sets below. 
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• Auto Price Data: This data set relates the list price of a 1985 automobile to various at­

tributes such as it's size, weight and engine capacity. The data set has 10 real inputs and 1 

output. There are 80 learning examples and 79 test examples. 

• CPU Data: This data set relates CPU performance to various attributes such as maxi­

mum and minimum memory size. The data set has 6 real inputs and 1 output. There are 

104 learning examples and 105 test examples. 

• Boston Housing Data: This data set is a variation of the Boston Housing data de­

scribed in the previous section. The data set has 12 real inputs, 1 binary input, and 1 out­

put. There are 80 learning examples and 79 test examples. 

• M P G Data: This data relates automobile fuel consumption to such attributes as car 

weight, model year, and horsepower. The data set has 3 real inputs, 6 binary inputs, and 1 

output. There are 256 learning examples and 250 test examples. 

• Servo Data: This data relates rise time of a servomechanism to gain settings and choice 

of mechanical linkages. The data set has 2 real inputs, 10 binary inputs, and 1 output. 

There are 80 learning examples and 79 test examples. 

Rasmussen applied 5 different learning algorithms to this data: Monte Carlo, Gaussian Evidence, 

Backpropagation, M A R S , and Gaussian Process. In his paper, Rasmussen was testing the efficacy 

of these algorithms as the number of learning data is increased, hence he tested them on various 

sizes of learning data. Since we are not concerned with data-limited regression in this thesis, we 

limited our comparisons to those results obtained on the largest learning data sizes. In Table 4.1, 

SPORE-1 is always compared to the algorithm which achieved the lowest errors on the 

corresponding data (this is symbolized by the brackets around the published error results). This 

gives a direct comparison of SPORE-1 with the best algorithm applied to this regression data. 

4.2.3 Regression Data Used by Jordan and Jacobs 

Finally, we compared SPORE-1 to the forward dynamics data studied by Jordan and 

Jacobs [Jordan and Jacobs, 1994]. This data was generated by a simulation of a 4 joint robot arm 

moving in 3 dimensional space. The goal is to predict the acceleration of the 4 joints, given as 

input the position, velocity, and applied torque of each joint (i.e. a total of 12 predictor variables). 

There are 15,000 training examples and 5,000 validation examples. This data is highly nonlinear 

and is a good test of a learning algorithm's ability to predict nonlinear phenomena. Jordan and 
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Jacobs applied 7 learning algorithms to this data: linear, Backpropagation, two versions of the 

Hierarchical Mixtures of Experts (HME) algorithm, two versions of CART, and the M A R S 

algorithm. In Table 4.1 we compare SPORE-1 to the Backporpagation algorithm, which achieved 

the lowest approximation error of algorithms studied by Jordan and Jacobs. 

4.2.4 Experimental Results 

Next, we detail our experimental results on the above regression data. A l l experimental 

results reported in Table 4.1 are obtained under the exact experimental conditions reported in the 

literature. This allows a direct comparison of the performance of SPORE-1 to other algorithms. 

A l l learning times reported in this section are for SPORE-1 programmed in C and running on a 

Pentium Pro 150 using L I N U X . 

The data sets studied by Breiman [Breiman, 1996a] and Rasmussen [Rasmussen, 1996] 

have relatively few training examples, and therefore we constructed the SPORE-1 approximations 

using 10 fold cross-validation (10 fold cross-validation is one effective method of getting good 

approximations using a small number of data points). The 10 fold cross-validation procedure used 

is the following: the learning data set was divided into 10 approximately equally distributed sets, 

and then 10 regression functions were constructed using, in turn, 9 of these sets as training sets, 

and the remaining set as a validation set (see Section 3.2.1 of Chapter 3 for definitions of 

learning, training and validation data). For each test data point {test data was not used during 

learning), the outputs of the 10 regression functions were averaged to produce the final approxi­

mation output, for which error results are reported. To test reproducibility, 100 independent 

approximations (independent with respect to random sequences of input variables and bootstrap 

samples as defined in Section 3.2 of Chapter 3) were generated using the Learning Data: Table 4.1 

reports the best test set error, along with the average and standard deviation (s.d.) over the 100 

independent runs. 

For the data sets studied by Breiman, we followed the same experimental procedure used 

by Breiman [Breiman, 1996a]. Briefly, this procedure is summarized as follows. For each of the 4 

data sets, 100 trials were set up using 100 learning and 100 test sets created randomly according 

to the guidelines outlined in Section 4.2.1 and in [Breiman, 1996a]. For each of the 100 learning 

sets a regression function was constructed (using 10 fold cross-validation as described above) and 

evaluated on the corresponding test set. Experimental results for the 100 experiments are given in 
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Table 4.1. The previously published error for the Breiman [Breiman, 1996a] data refers to the 

average bagged error reported. From Table 4.1 it is evident that the internal variance reduction 

property of SPORE-1 is at least as effective as Bagged regression trees in reducing approximation 

error (see Section 3.3.3 of Chapter 3). Note that the large standard deviation (s.d.) in the errors is 

due to the fact that each of the 100 learning and training sets were different. For all 4 data sets, the 

average SPORE-1 learning time ranged from about 1 to 10 minutes per approximation (this is the 

time required to generate one 10-fold approximation, or equivalently, ten SPORE-1 regression 

functions). The average size of a single cascade was about 90 K-bytes (i.e. about 8500 model 

parameters). 

For the data sets studied by Rasmussen [Rasmussen, 1996], we report results for the 

largest learning sets only (we used 80 learning examples of auto price data, 104 of cpu data, 256 

of housing data, 192 of mpg data, and 88 of servo data as outlined in Section 4.2.2). For each of 

these 5 fixed data sets, the SPORE-1 approximation was constructed using 10 fold cross valida­

tion as described above. The previously published error given in Table 4.1 under the Rasmussen 

[Rasmussen, 1996] data sets is the best reported error (indicated by brackets) of the 5 algorithms 

evaluated, and was obtained from the graphs presented in the paper. We generated 100 trials 

(independent approximations) for each data set. Because all learning and test data were the same 

in each trial, this was done to determine what effect the stochastic aspect of the SPORE-1 

algorithm has on its performance. As defined in Section 3.2 of Chapter 3, the ordering of the 

independent variables is random, and the construction of the 2 dimensional functions gt(-) is 

done using a (random) bootstrap sample of the training data. The best and average relative mean 

squared test set error, and its standard deviation, are reported in Table 4.1. From Table 4.1, it is 

evident that although there is some variation in error performance from run to run, the stochastic 

effect of the algorithm is mostly negligible. As with the Breiman data, the average SPORE-1 

learning time ranged from about 1 to 10 minutes per approximation. The average size of a single 

cascade was about 90 K-bytes (i.e. about 8500 model parameters). 

Finally, for the forward dynamics data studied by Jordon and Jacobs [Jordan and 

Jacobs, 1994], our evaluation was done using the experimental setup described in their paper for 

the on-line back-propagation algorithm: learning was done using 15,000 training examples, and 

learning stopped when the error could no longer be reduced on 5000 validation examples. The 

SPORE-1 approximation for this data consisted of a single cascade per output: due to the large 



Chapter 4: Experimental Results 

Table 4.1 Performance of SPORE-1 of Published Data 

67 

Published Source Data 
Pub. 

Lrror 

SPORE-1 Error (100/10 Runs) 

Published Source Data 
Pub. 

Lrror best a\e. s.d. 
Ave. Size 

of Cascade 

Breiman. IWda 

Housing 11.6 1.95 9.4 8.4 

90 K-byte 
(8500 
model 

parameters) 

Breiman. IWda 
Friedman 1 6.1 1.77 2.88 0.43 

90 K-byte 
(8500 
model 

parameters) 

Breiman. IWda 
Friedman 2 22,100 16,733 19,603 1,413 

90 K-byte 
(8500 
model 

parameters) 

Breiman. IWda 

Friedman 3 0.0242 0.014 0.0189 0.0024 90 K-byte 
(8500 
model 

parameters) 

Rasmussen, 1996 

Auto Price (0.29) 0.21 0.29 0.03 
90 K-byte 
(8500 
model 

parameters) 

Rasmussen, 1996 
CPU (0.17) 0.086 0.14 0.025 

90 K-byte 
(8500 
model 

parameters) 

Rasmussen, 1996 House (0.15) 0.128 0.145 0.007 

90 K-byte 
(8500 
model 

parameters) 

Rasmussen, 1996 
MPG (0.10) 0.008 0.1 0.004 

90 K-byte 
(8500 
model 

parameters) 

Rasmussen, 1996 

Servo (0.15) 0.198 0.25 0.02 

90 K-byte 
(8500 
model 

parameters) 

.lord.in and 
Jacobs. |<W For. Dyn. (0.09) 0.0378 0.041 0.009 

1 M-byte 
(94,000 

parameters) 

data size, 10 fold cross validation was not necessary. In order to estimate the reproducibility of 

SPORE-1 on this data, we constructed 10 independent approximations. The best and average 

relative error on the validation set (in accordance with [Jordan and Jacobs, 1994]), and the 

standard deviation over these 10 independent experiments (time constraints did not allow us to do 

100 experiments), is reported in Table 4.1. The previously published error, shown in Table 4.1, is 

the best relative error (on the validation data) of the 7 algorithms studied in [Jordan and 

Jacobs, 1994]. The forward dynamics data consists of 12 inputs and 4 outputs, which requires 4 

SPORE-1 cascades (1 for each output). The algorithm required about 10 hours of computation to 

build all 4 cascades, and the average size of each cascade was about 1 M-byte (i.e. about 94,000 

model parameters). From Table 4.1 we conclude that the SPORE-1 errors on all 10 runs are 

consistently low, thus the stochastic effect of the learning algorithm had negligible effect on 

approximation error. 

From Table 4.1, it is evident that the SPORE-1 algorithm demonstrated as good or better 

error results on all but 1 (the servo data) of the data sets. However, this result should be interpreted 

with caution. The specific goal of SPORE-1 is to build a regression function which best represents 
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the learning data in the mean squared error sense. The SPORE-1 learning algorithm continues to 

add levels until the mean squared error can no longer be reduced: this is beneficial if one wants the 

"best" approximation, but detrimental if one wants a representation of fixed size. Most algorithms 

referred to in Table 4.1 are parametric and therefore of fixed size. Two exceptions are M A R S and 

CART. However, even comparing these to SPORE-1 should be done with caution: both M A R S 

and CART can be used to determine the significance of various inputs and how they interact with 

one another. Currently SPORE-1 has no such data interpretation features. 

Nevertheless, we cannot ignore the fact that SPORE-1 consistently produced regression 

functions which had low prediction errors. Thus, even though SPORE-1 was not designed for 

small, low dimensional problems, it should be considered a strong candidate for such regression 

problems if prediction error is important. 

4.3 Evaluating SPORE-1 on Synthetic High Dimensional Problems 

In this section, our goal is to study the SPORE-1 algorithm when applied to very high 

dimensional regression data, under various noise conditions [Grudic and Lawrence, 1997]. A l l 

learning times reported in this section are for SPORE-1 running on a Pentium Pro 150 using 

LINUX. 

Since no large, high dimensional regression data examples were found in the literature, we 

applied SPORE-1 to fifteen artificial data sets ranging from 100 to 1,600 input dimensions. For 

five of these data sets no noise was present, while the remaining ten data sets had noise. For the 

first five of these "noisy" data sets, noise was present only in the output, while the remaining five 

data sets had both input and output noise. Input noise was generated by simply allowing only half 

of all inputs to contribute to the output (thus half of the inputs used in constructing the approxima­

tion had no effect on output). This allows us to determine how effectively the SPORE-1 learning 

algorithm is able to account for variables which have no predictive power. 

Output noise was generated using a normal distribution with the standard deviation 

selected to give a signal to noise ratio of 3 to 1, thus implying that the true underlying function 

accounts for 90% of the variance in learning and test data. Specifically, we generated the regres­

sion data as follows: 

y = f(xx, ...,xN) + e (4.6) 
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where / ( x , , xN) is the target function, and e is a Gaussian noise term with mean zero and 
2 2 2 2 2 2 

variance c>e . Under output noise conditions, we chose 0"E such that (o~y/cTe) = (3) , where Gj-

is the variance of f{xx, xN). Thus, because e and f{xx, xN) are independent, we know 

that 
2 2 

0"P 0\> 1 1 
— = — = - —— = 0.1 (4.7) 
2 2 2 , 2 . 2 , , 9 + 1 v y 

2 
where <jy is the variance of the output y. Therefore, given that relative error is defined as 

^ £ (4.8) 

where / is the constructed regression function, theoretically the best relative error achievable by 

any approximation is 0.1 . 

The target function / ( x j , xN) is generated as follows: 

f(xlt...,xN) = — (4.9) 

1 + c o s ( A 7 z r = i c ° s ( ^ ( x ' ) ) 

where N is the input dimension of the data, while r^xA and 5((x-) are continuous 1 dimensional 

functions which are nonlinear and all different from one another. Equation (4.9) allows us to 

generate highly nonlinear data of any dimension, while at the same time controlling the complex­

ity of the data via the appropriate selection of functions r^x^ and ̂ (x , ) . By data complexity, we 

are referring to the number of random sample points required to build sufficient non-parametric 

models of the data, with respect to mean squared error. The more complex the generating 

function, the more data points are required for non-parametric modeling. 

For the purposes of this thesis, we have chosen functions /*,(x-) and ^,(x-) such that 

40,000 random sample points are sufficient in order to effectively model the data. Our choice of 

functions r ; (x ; ) and .s'-(x-) was done as follows. The functions r-(x-) and ^-(x-) are modeled 

using linear splines. The spline knot locations were randomly chosen using a uniform random 

distribution. The number of knots was the same for each function. In addition, each of the predic­

tor variables x- were modeled as 2 dimensional parametric functions of the form 
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x;- = i|/i(cOj, co 2), where the functions ^(co, , co2) are different for each predictor variable x;-. 

The parametric functions V|/-(co,, co2) are modeled as 2 dimensional linear splines, with knot 

positions randomly chosen using a uniform random number generator (the number of knots is the 

same in each of the functions Vj/((tO], co 2), but their locations are all different). Hence, the 

complexity of the target function f{x{, xN) in (4.9) is directly controlled by the number of 

knots in functions r-(jc-), s^xA and \|/((co,, co 2), and increasing the number of knots increases 

the number of points required to achieve effective approximations of the target function. One 

should note that, even though the target function is essentially 2 dimensional in the parameter 

space (C0j, co 2), this information is not used by SPORE-1; i.e. regression data is provided in the 

form of N dimensional predictor variables x-, and one output variable y . Therefore a learning 

algorithm sees the resulting regression problem as N dimensional. 

In order to pick a target function complexity such that 40,000 sample points are required 

in order to generate an effective regression model, we followed the following procedure. The 

number of knots used to represent the functions /"-(x-), 5-(x-) and \j/(-(c0j, co 2), was increased 

until a nearest neighbor approximation (implemented using a simple AT-Nearest Neighbor 

algorithm with K = 1 ; see Chapter 2 for details), in the 2 dimensional parameter space 

(GL>J, (0 2) exceeded a relative mean squared error of 0.01 (relative mean squared error is defined, 

in the usual sense, as the mean squared error on the test data, divided by the variance of the test 

data). In building this AT-Nearest Neighbor approximation, 40,000 random training samples were 

used, and the relative error was calculated using 5000 randomly picked points. A nearest neighbor 

approximation gives a good indication of maximum approximation error, because the 40,000 

learning points densely sample the 2 dimensional parameter space (cflj, co 2), where the nearest 

neighbor calculations are done (a nearest neighbor approximation done in the N dimensional 

predictor variables x-, would not be nearly as effective, for reasons outlined in Chapter 2). This 

procedure gives us a good estimate of the maximum approximation error that the SPORE-1 

algorithm should get; the relative mean squared error of a SPORE-1 approximation, or any 

effective approximation method, should not exceed 0.01 on any of the high dimensional data 

presented in this section. 

The simulation results for the 15 high dimensional data sets are presented in Table 4.2. For 

each data set there are 40,000 learning examples and 40,000 testing examples. Each learning set is 

further divided into 30,000 training examples and 10,000 validation examples: these are used to 
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construct one cascade which forms the approximation for that data set. The three rightmost 

columns of Table 4.2 contain the test set average relative mean squared error and corresponding 

standard deviations over 10 independent runs. From Table 4.2 it is evident that the relative error is 

small when no noise is present, and falls well below the expected maximum error value of 0.01. 

With the addition of noise the relative error approaches the theoretical limit (due to the 3 to 1 

signal to noise ratio) of 0.1 (see explanation given above). Learning time for each data set with no 

noise was approximately 7 hours and produced cascades which were between 2 and 6 M-bytes in 

size (i.e. between approximately 190,000 and 570,000 model parameters). In contrast, learning 

time for each data set containing noise was about 1 hour and produced approximations of between 

200 and 600 K-bytes in size (i.e. between approximately 19,000 and 57,000 model parameters). 

The drop in learning time and approximation size results because the SPORE-1 learning 

algorithm stops adding levels when error on the validation set can no longer be reduced. When the 

data has output noise, this condition is reached sooner than when there is no noise. The reason for 

this is that interpolation between sample points is no longer possible when noise is present, once a 

given level of approximation error (i.e. 0.1) is reached. 

Table 4.2 Evaluation of SPORE-1 on High Dimensional Data Sets 

Dimension No Noise Data Output Noise Data 
Input/Output Noise 

Data 

100 0.00139 s.d. 0.00006 0.1049 s.d. 0.0003 0.1048 s.d. 0.0004 

200 0.0018 s.d. 0.0002 0.1064 s.d. 0.0003 0.1055 s.d. 0.0002 

400 0.0009 s.d. 0.0002 0.1041 s.d. 0.0002 0.1064 s.d. 0.0003 

SOO 0.0044 s.d. 0.0006 0.1111 s.d. 0.0003 0.1038 s.d. 0.0003 

1.600 0.0011 s.d. 0.0003 0.1087 s.d. 0.0003 0.1042 s.d. 0.0003 

The results in Table 4.2 demonstrate that SPORE-1 can potentially be used on large, high 

dimensional regression problems. It is interesting to observe that the dimension of the data did not 

adversely affect either learning time or the size of the approximation. This is made evident in 

Figure 4.1 where we plot approximation size as a function data dimension. The "error bars" 

indicate the variation in approximation size for each specific data type. These experimental results 

support the theory developed in Chapter 3, where we showed that the rate of convergence of 

SPORE-1 is independent of dimension, and that complexity is at most linear with dimension. A 
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Figure 4.1 Increase in Approximat ion Size with Data Dimension 

second interesting observation is that SPORE-1 is effective in dealing with both input and output 

noise, even on regression functions which are very high dimensional. 

4.4 Human-to-Robot Skill Transfer Experiments 

We chose human-to-robot skill transfer as a real world test of the SPORE-1 learning 

algorithm. Our motivation for this is that human-to-robot skill transfer is an example of a regres­

sion problem which is very high dimensional (1024 inputs), and exhibits both input and output 

noise characteristics [Grudic and Lawrence, 1995] [Grudic and Lawrence, 1996]. 

We approach the problem of programming robots that can work in unstructured environ­

ments from the point of view of human-to-robot skill transfer. In this paradigm, the human 

transfers his or her skills to a robot by giving the robot a finite number of examples of how the 

desired manipulation task is done. The key to the success of this type of robot programming is that 

the robot must be able to generalize the desired task, given only the human experts examples, even 

when the unstructured environments of interest change after learning has occurred. 

Other researchers have had success with similar approaches to the robot programming 
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problem. We mention only a few examples here. Perhaps the most related work is that of 

Pomerleau [Pomerleau, 1993b] [Pomerleau, 1993a] where he successfully uses a 3 layer percep-

tron network to control the C M U A L V I N N autonomous driving system as it drives along a road. 

Pomerleau's approach differs from that presented here in that 1) we use a nonparametric approxi­

mation approach and 2) the human expert supplying the training data uses only the sensor inputs 

being fed to the approximation (Pomerleau does not use this restriction). However, as with the 

approach presented here, Pomerleau uses a large number of sensor inputs (960) to effectively 

generalize the desired task. 

Other related work includes that of Kosuge et. al. [Kosuge et al., 1991] where a priori 

knowledge of the task is incorporated with human generated examples to transfer a skill. Other 

researchers use neural networks to encode the human's skills: for the deburring task Shimokura 

and Liu [Shimokura and Liu, 1991], and for compliance control Asada [Asada, 1990]. Lui and 

Asada [Lui and Asada, 1992] use process dynamics for transferring manipulative skills. Yang et. 

al. [Yang et al., 1994] use a multidimensional Hidden Markov Model to represent the transferred 

skill. Rouse et. al. [Rouse et al., 1989] also consider symbol processing models as useful tools for 

capturing human skills and knowledge. 

The approach to human-to-robot skill transfer proposed in this section assumes the follow­

ing: 

The human operator can accomplish the desired manipulation task by using only 

the robot's sensors to obtain information about the world, and using only the 

robot's actuators to manipulate world objects. Thus, the human has only the 

robot's perspective on gathering world information and manipulating world 

objects, and no other. This implies that if the human can accomplish the task, then 

the robot should also be able to accomplish it. 

This assumption has at least one important implication for the choice of a learning system, or 

approximation framework, for generating the sensor to actuator mappings. Humans are usually 

only experts at manipulation tasks which they can anthropomorphize to their natural frame of 

reference. In other words, we are accustomed to particular human sensory and action modalities, 

and as the information for the task becomes more sparse, the task becomes more difficult. As a 

result, when a human expert is demonstrating a task which is sufficiently complex, it is likely that 

he or she is using a large number of sensor inputs of various types, including both visual and 
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Figure 4.2 The Human to Robot Skill Transfer Test Bed 

tactile. Thus, the type of human-to-robot skill transfer proposed here requires an approximation 

framework which is highly flexible with respect to the number and variety of sensor inputs, and 

yet is practical to implement. 

In this section, we describe a human-to-robot skill transfer testbed which we have 

implemented, as well as outline our first skill transfer experiments done in an unstructured 

environment using the SPORE-1 algorithm. The skill which we have chosen to demonstrate is 

loosely based on a typical "object locate and approach task", and was chosen due to its inherently 

unstructured characteristics. However, the framework we are in the process of formulating should 

be generalizable to a large variety of human skills. 

4.4.1 The Experimental Testbed 

A small scale proof-of-concept testbed for human-to-robot ski l l transfer has been 

implemented (see Figure 4.2), consisting of a tracked mobile robot which is approximately 35 

centimeters long and 23 centimeters wide. The robot is equipped with 1) left and right tracks, each 

with independent proportional forward/backward motion similar to that found in forestry excava­

tors; 2) a gripper (not shown in Figure 4.2) to allow it to grasp objects; and 3) an NTSC color 

camera. The leftmost image in Figure 4.2 shows the robot's workspace and the rightmost image 

shows a close-up of the mobile robot. Initially this robot is intended to operate in a flat 2.5 meter 

by 1.8 meter workspace which has randomly placed objects. The intended task of the robot is to 

manipulate the target objects in a manner defined by a human operator who first accomplishes the 

desired task a number of times via teleoperation. The human operator observes images received 
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from the camera located on the robot (at a frame rate of approximately 20 to 30 frames per 

second), and operates two joysticks which control the robot's left/right forward/backward motion, 

as well as the open/close gripper motion. A SPARCstation 20, equipped with a frame grabber, is 

used to display the on-board camera image to the human operator as he or she demonstrates the 

desired task. The learning and subsequent autonomous control of the robot are also performed by 

the SPARCstation 20. 

The testbed currently uses various small objects including lego models and model "trees", 

as objects which must be located and approached. There are 2 lego objects, a red and blue stripped 

tower, and a red and blue stripped tower with holes. The "trees" are currently of three different 

types (tall spruce, short spruce, and short birch), and our goal is to teach the robot to differentiate 

between them. This testbed is considered unstructured because 1) although there are only three 

different types of trees and two lego models, no two objects are identical either in height, color 

distribution, or in texture, making manual encoding of a model difficult (especially for the model 

trees); and 2) the image background of the objects is a robotics lab which is continually changing 

as equipment is moved around and people move throughout the lab. 

4.4.2 Experimental Results 

The first skill which has been successfully transferred from human to robot is described in 

Figure 4.3. This skill is loosely related to the "tree tending skill," which requires the selection of a 

certain size and species of tree for inspection. The skill involves turning the robot counterclock­

wise in place until at least one tall spruce is within the camera's field of view, and then maneuver­

ing the robot into a position where the tree can be inspected. Figure 4.3 shows several typical 

camera views which the operator sees, as the task of locating and moving towards a tall spruce is 

performed. Starting at the leftmost image of Figure 4.3, the robot is turning counterclockwise 

searching for a tree; in the third image a tall spruce has been found and the robot begins to move 

towards it; in the sixth image the spruce is within inspecting distance and the robot turns off to the 

left in search of another tall spruce. Note that this first task does not involve avoiding obstacles or 

actually stopping to inspect the tree, it simply requires the robot to find and move towards a tall 



Chapter 4: Experimental Results 76 

Figure 4.3 A "Tall Spruce Tree" 

spruce tree in the visually cluttered environment of the robotics lab. 

The image which the human operator, as well as the robot, observes while executing the 

desired task, consists of 1024 pixels derived by sampling a 32 pixel by 32 pixel region in the 

center of the original colour NTSC image (see Figure 4.3 for gray-scale examples). The sampled 

pixel resolution is 8 bits, 3 bits for red, 3 bits for green, and 2 bits for blue. There is no image 

processing done prior to feeding these pixel values to the SPORE approximation; what the human 

sees is exactly what is passed to the approximator. In order to generalize the desired task the robot 

must approximate two mappings, one to control the robot's forward and backward motion, and 

one to control the robot's left and right motion. Both of these mappings have 1024 inputs and 1 

output. As usual, two SPORE-1 cascades are generated, one for each dependent variable. 

The training data generated by the human operator consisted of demonstrating the above 

skill a total of 4 times, from 4 random starting positions of the robot, and 4 random positions of 

the spruce. Due to image resolution limits, the distance between the robot and the "tree" was 

always 1.5 meters or less. It took approximately 2 minutes (equivalent to 2180 camera frames or 

input/output examples) for the human operator to do these 4 demonstrations. The SPORE-1 

regression function was constructed by randomly subdividng these 2180 samples into 218 valida­

tion samples and 1962 training samples. The resulting approximation took about 5 minutes of 

SPARCstation 20 C P U time to generate, and took about 250 K-bytes of memory space (i.e. 

approximately 24,000 model parameters). The length of time to evaluate the resulting approxima­

tion for one instance of sensor inputs is 191 milliseconds. 

Next we asked the following question: given only a few examples of the desired skill, and 

the raw sensor inputs used by the human, can the SPORE-1 regression algorithm effectively 

generalize the desired skill. In the case of the above experiment, the human operator generated 

only 4 examples of the desired task, and the SPORE approximation was fed raw pixel data with 

no intensity compensation or any other type of signal preprocessing. In addition, one can see from 

Figure 4.3 that the image generated by the frame grabber inside the SPARCstation 20 is extremely 

noisy. Nonetheless, when we ran 30 experiments where the robot used the SPORE approximation 
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Figure 4.4 A Red and Blue Stripped Tower 
to autonomously accomplish the transferred skill, the robot never failed to locate and move 

towards the tree. These 30 experiments were done with random placements of tree and robot (as 

with the training set, the spruce was always within 1.5 meters of the robot). It is interesting to note 

that the robot does not approach, for instance, upside-down spruce trees, and does not seem to be 

solely color sensitive; the shape of the tree and its texture are significant as well. We may 

therefore conclude that to the extent that the robot acquired the desired skill, it was able to execute 

it within an unstructured environment. 

Next, we repeated the same experiments with the two lego objects. Figure 4.4 and Figure 

4.5 show grey-scale camera frame examples of approach sequences to two objects we have 

experimented with. The object in Figure 4.4 is a red and blue striped tower, and the object in 

Figure 4.5 is also a red and blue striped tower but has a number of holes through it, which allow 

background scenes to be observed. For the object in Figure 4.4, the teleoperator generated 4632 

camera images during 4 approaches. Similarly, for the object in Figure 4.5, the teleoperator 

generated 4805 images during 4 example approaches. The variation in camera frame counts is 

simply a result of the random placement of the vehicle and object. The SPORE-1 approximation 

was generated for both objects, using a random selection of 10% of the learning points as valida­

tion set, and rest as a training set. The generation of the 4 approach examples took the teleoperator 

approximately 5 minutes to generate for each object, while the off-line learning of SPORE-1 

required approximately 4 additional minutes on the SPARCstation 20, for each object. The size of 

the approximation generated for the object in Figure 4.4 is 489 K-bytes (i.e. approximately 44,000 

model parameters), while the size of the approximation generated for the object in Figure 4.5 is 

552 K-bytes (i.e. approximately 52,000 model parameters). The time required to evaluate either 

approximation (once it has been constructed) for an observed image is less than 120 milliseconds 
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Figure 4.5 A Red and Blue Stripped Tower with Holes 
for either object (run on a SPARCstation 20). 

Once more, in order to evaluate the ability of the robot to autonomously execute an 

approach sequence toward an object, we ran 30 experiments for each of the two objects described 

above. Each experiment involved placing the vehicle and object in random positions, and then 

seeing whether the robot would autonomously be able to located and approach the object. For the 

object shown in Figure 4.4 the robot successfully executed the task 29 out of 30 trials, while for 

the object shown in Figure 4.5, the robot was successful in approaching the object 27 out of 30 

trials (only one object was present at each trial). Note that the initial distance between the vehicle 

and target object was always less than 1.5 meters, because at distances greater than this, the object 

is not easily distinguishable, even by a human operator. 

From these experimental results, we can conclude that the SPORE-1 approximation was 

successful in generalizing all of the above locate and approach tasks, given relatively few noisy 

examples and raw pixel inputs. This is promising for the many and difficult robot programming 

problem facing robotics researchers. 

4.5 The 10 Bit Parity Problem 

One of the main criticisms of algorithms which construct a high dimensional regression 

functions using the smaller dimensional functional units, is that they cannot model interactions 

which have an intrinsic dimension that is greater than the dimension of the highest dimensional 

functional unit. For example, the classic implementation G M D H [Ivankhnenko, 1971] has 2 

dimensional functional units, and therefore can at most model the 2-bit parity problem G M D H 

[Elder IV and Brown, 1995]. Similarly, ASPN can at most model the 3-bit parity problem because 

its functional units are at most 3 dimensional [Elder IV and Brown, 1995]. Note that the N-b'ti 

parity problem is one of determining whether an odd or even number of the N bits in a word is 

high: the target function being, for example, set to 1 if an even number of bits are high, and -1 

otherwise. 
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Using this same train of thought, one may conclude that because SPORE-1 uses 2 

dimensional functional units, it should not be able to model parity problems for words of 3 or 

more bits. This, however, is not the case. As discussed in Section 3.3.4 of Chapter 3, the virtual 

space partitioning property of SPORE-1 can allow the algorithm to converge to zero error, even 

when the following pathological condition occurs; 

The above condition occurs in a parity problem of more than 2 bits because the target function 

value is equally to be likely -1 or 1, for each point (u, v) in the training set. Thus, given that the 

training set consists of an exhaustive set of parity points, and the training data is applied without 

modification (i.e. a bootstrap sample is not used), the function °p''gt(u, v) which always gives the 

best squared error fit to the training data is the zero function gt(u, v) - 0. 

In order to demonstrate the ability of SPORE-1 to represent 3 or more bit parity functions, 

we applied it to the 10-bit parity problem [Grudic and Lawrence, 1997]. The training data and the 

validation data were made to be identical, with each containing the exhaustive 1024 examples of 

the 10-bit parity function. Our goal was to determine how well SPORE-1 could fit these learning 

examples. The results achieved were that the relative mean squared error on the learning data was 
_9 

9.8x10 , indicating that, to within the floating point precision of the C P U , the SPORE-1 

algorithm was able to exactly model the 10-bit parity function. However, the rate at which 

SPORE-1 converged to this exact solution was rather slow: it took about 2 hours and the final 

approximation was over a megabyte in size (i.e. approximately 94,000 model parameters). If, on 

the other hand we stopped the learning algorithm when the parity problem was actually solved 

(i.e. when the maximum approximation error is less than 1, meaning that every instance of the 

learning data has been appropriately mapped), the learning time is only 10 minutes, and the size 

of the approximation is about 40 K-bytes (i.e. approximately 3,800 model parameters). 

4.6 Summary 

{ a-} = argmin 
{ aij} 

jC'gl(u,v)-f(x)) dD = {0, ...,0} (4.10) 
D 

This chapter is our first attempt at an experimental verification of our thesis presented in 

Section 1.3 of Chapter 1. The SPORE-1 algorithm is our most extreme example of the general 

SPORE methodology. The structural units are small and all the same (i.e third order two 
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dimensional polynomials), and no input selection is ever done. We have demonstrated its success­

ful performance on problems ranging from relatively small 6 dimensional regression problems 

having only 104 learning examples, to 1,600 dimensional regression problems with 40,000 

learning examples. Its performance compared favorably to published results on well known data 

sets in the literature. We introduced new very high dimensional data and demonstrated that 

SPORE-l 's construction times were independent of dimension. A real world example of human-

to-robot skill transfer was also successful despite the raw image pixels used as inputs. Finally, we 

demonstrated that SPORE-1 does not have the same limitations on parity type problems, as other 

systems which build regression functions using small dimensional functions which are added one 

at a time. 



Chapter 5: The General SPORE 
Methodology 

In Chapter 3 the SPORE-1 learning algorithm was presented, and its basic theoretical 

characteristics were explored. In this chapter the most general form of the SPORE methodology is 

presented and the theoretical characteristics of learning algorithms which construct SPORE-type 

regression functions are presented. In particular, this chapter deals with the rate of convergence 

and computational complexity properties of the general SPORE learning algorithms, with particu­

lar emphasis on how these depend on the dimension of the function being approximated. 

5.1 The Complete SPORE Definition 

The most general form of the SPORE structure (see Figure 5.1) has C cascades of D 

dimensional functions. In Figure 5.1, the D dimensional functions are symbolized by g i j, where 

i serves to identify one of the C cascades, and j identifies the level of the cascade where the 

function g • . is located. In the general case, there are C > 1 cascades of D > 2 dimensional 

functions, and the dimension of the functions g • • need not all be the same. As a specific example, 

the SPORE-1 structure in Chapter 3 has C = 1 and D = 2 for all g- • functions. The columns 

in Figure 5.1 symbolize cascades of functions, and the rows symbolize levels in each of the 

cascades. Thus, the SPORE structure depicted in Figure 5.1 has C cascades, with the first cascade 

having Lj levels, and the final cascade having Lc levels. 

There are 2 types of inputs to the functions gt •. The first type are symbolized by 

X; ,• = (jc t, ..., xk ), where (xk , ...,xb ) are some subset (perhaps randomly selected) of all 

of the model input variables (or independent variables). The second type are symbolized by 

Gitj = (8ri,qi> — S r ^ J '
 W h e r e (Sr,,,,. • • • ' ^ , , J ) , <?,,,) ^ S ° m e S U b S e t ° f ° U t P U t S ° f 

functions which have already been added to the structure (note that gr< q^ refers to the output of 

the function from level qx of the r, cascade). 

The final regression function, symbolized by / in Figure 5.1, is some weighted sum of all 

81 



Chapter 5: The General SPORE Methodology 82 

Cascades 

D 
> 
<U 

Figure 5.1 The SPORE Structure 

constructed functions g • •. This is symbolized by the vector: 

W = ( w u r g u l , w l t 2 - g l t 2 , . . . , W C , L c - 8 C , L C ) (5.1) 

Given this definition of the general SPORE structure outlined in Figure 5.1, we next give a 

description of how the a general implementation of a SPORE learning algorithm would construct 

this structure. 

The specific structure of the functions g(- • is either 1) fixed throughout SPORE structure 

as with SPORE-1; 2) chosen randomly, either with or without replacement, from a set of possible 

candidate functions (if without replacement, then reinitializing the list after all have been chosen), 

or 3) chosen in a specific order from a predefined sequence. Similarly, the inputs to each g- • 

function is either 1) chosen in a specific order (going back to the first one in the list after all have 

been chosen); or 2) chosen randomly, with or without replacement, from a list of all possible 

inputs (if without replacement, then reinitializing the list after all have been chosen). This 

methodology for selecting inputs and function types implies that no time consuming search 

occurs during the process of constructing the structure. 

In all instances of SPORE, the function g, , is constructed first, its inputs being some 

Dj , > 2 dimensional projection of the N dimensional learning data. The parameters of the 
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function g, x are determined using some subset (perhaps even all) of points in a training set 

containing examples of inputs and outputs. Once the initial function j is constructed, the 

remaining functions are constructed, one at a time, with the only stipulation being that no function 

gt j is constructed until all of its inputs have been constructed. As with the initial function gx x , 

the parameters of each function g- • are determined using some subset (or perhaps all) of the 

points in a training set, projected onto the inputs (X • G ( •) of g • •. 

The weights in the vector W are either all the same, or chosen using some criteria such as 

W:. being proportional to the inverse of the approximation error of g- • on the training data (note 
ij ' J 

that this is how the weights are chosen in the SPORE-1 learning algorithm). 

During construction the desired learning outputs are periodically replaced by the residual 

errors resulting from subtracting out the approximation due to the structure already constructed. 

This usually happens when the approximation errors can no longer be reduced by fitting the 

parameters of the current gi • function to the current residual errors in the data set. Further 

additions to the structure are then added to reduce these residual errors. 

In the general case, the SPORE construction terminates when the approximation error, on 

some validation set, has been reduced to some acceptable level. An exception to this rule is when 

the algorithm allows for the subdivision of the input space of the target function into disjoint sub-

domains. In which case new SPORE structures are then constructed in each resulting subdomain. 

The reader should note that the above description conforms with the general SPORE 

characteristics outlined in Section 1.3.1 of Chapter 1. 

5.2 Theoretical Analysis of Rates of Convergence For Two Specific SPORE 
Structures 

In this chapter we study the rate of convergence properties of two specific examples of 

SPORE: the SPORE-2 algorithm and an extension of the SPORE-1 algorithm defined in Chapter 

3. As discussed in Section 2.3 of Chapter 2, there are two types of rate of convergence results. The 

first assumes an infinite number of learning examples and measures how approximation error 

decreases as new structures (or parameters) are added to the regression model. The second 

assumes a finite number of learning samples and measures how approximation error decreases as 

the learning sample size increases. In this section we address the second type of convergence 

result. 
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In Section 5.2.1, we describe and theoretically analyze the SPORE-2 regression function. 

Specifically, our goal is to define function spaces for which the rate of convergence of SPORE-2 is 

independent of dimension. In such function spaces, it is potentially possible to avoid both the 

computational complexity and large sample size aspects of the curse of dimensionality. Our aim is 

to analyze theoretically motivated regression functions which point the way to real implementa­

tions that are feasible. The theoretical constructions presented should be viewed with this in mind. 

In Section 5.2.2, we extend the SPORE-1 regression function described in Chapter 3 to 

include the partitioning of the input space into disjoint subdomains. This subdivision of the input 

space guarantees that the approximation error to converges to zero, while simultaneously preserv­

ing the rate of convergence and complexity properties of the SPORE-1 learning algorithm within 

each of these subdomains. 

5.2.1 The SPORE-2 Regression Function 

As the primary goal of this thesis is to study very high dimensional nonparametric regres­

sion, in this section we explore function spaces where such large problems are potentially tracta­

ble. In the previous two chapters we have demonstrated the value of building cascades of lower 

dimensional functions as approximations to high dimensional functions. In this section we extend 

this basic idea to more complex cascaded structures, and include space partitioning as a method to 

ensure that the approximation error always converges zero. As is outlined below, an additional 

benefit of space partitioning is that the rate of convergence of the regression function is indepen­

dent of dimension, within each resulting subdomain. 

The SPORE-2 regression model consists of a partitioner and a structure. The structure 

consists of a cascade of 2 dimensional functions, and the partitioner is a method of subdividing 

the domain of the target function into regions were the cascade is an effective regression function. 

The algorithm for building the SPORE-2 regression function is based first on an algorithm which 

decomposes a continuous 3 dimensional function U(x, y, z) into a cascaded 2 dimensional 

function having the structural form cW{'U(x, y), z). Such a decomposition of 3 dimensional 

function into two 2 dimensional functions is possible because we partition the domain of 

Zl(x, y, z) into a finite number of regions where it can be represented to arbitrary accuracy by 

W( V(x, y), z) • This partitioning is the subject of the following theorem. 

T H E O R E M I: Let U(x, y, z) be a bounded continuous 3 dimensional function defined 
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Level 1 ! Level 2 

Figure 5.2 A Tree-Like Subdivision of Input Space 
3 

over a finite dense domain in U czSi . Then for every arbitrary small real £ > 0, there exist a 

finite number of dense disjoint domains J7,-, where L J Ut = U, and corresponding bounded 

continuous 2 dimensional functions and <Vi, such that for any (x, y, z) £ U t the following is 

true: 
\W-AVAx, y), z) - U(x, y, z)\ < £ (5.2) 

The proof of T H E O R E M I is given in Appendix A, where it is restated in a more precise, 

but equivalent, way. The proof is based on four algorithmic constructions which are presented in 

Appendix D. These constructions are titled Construction I through Construction IV, and they 

collectively serve to decompose the function 1l(x, y, z) into the functions rWAVi(x, y), z), as 

well as define and build the disjoint domains Ui. 

Using the 3 dimensional decomposition and domain partitioning outlined in T H E O R E M I, 

we can begin to define the domain partitioning nature of the complete N dimensional SPORE-2 

algorithm. The SPORE-2 partitioner works by subdividing the input space of the target function 

into a tree-like subdivision. This subdivision is represented using the tree notation P j O ^ . . . p ^ , 

where / represents the level of the tree, and the symbols p and a refer to branch numbers at 

file:///W-AVAx
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various levels of the tree. Thus, each branch of the tree (or equivalently path through a tree), 

defines a subdomain of the target function. An example of such a subdivision of space is given in 

Figure 5.2. Because each tree branch defines a unique subdomain, we speak of a point 

(x0, xN_ j) being an element of the subdomain corresponding to a tree branch with index 

P I < * I - P J < V 

Given this description of domain subdivision, we can define the structure built by the 

SPORE-2 regression algorithm within each of these subdomains. The partitioner works by 

subdividing the domain of the function being estimated into a set of disjoint subdomains, such 

that in each subdomain, one can estimate the function using a superposition, or summation, of a 

cascade of 2 dimensional functions. The 2 dimensional functions are of two types symbolized by 

£p,a, p,a, a n c * ^p,o, p,a,' where Pi°~i •••P/°~/ is the tree subdivision of the input space defined 

above. Thus, we can view the functions en „ n„ and hn „ n n as acting on the subdomain 
° P i ° i - P / 0 / P i ° i - P ; ° / ° 

defined by tree branch pial...plo[. 
The SPORE-2 structure is defined as follows. Let 0„(JC O , ...,xN_l) be the SPORE-2 

estimate of some unknown function Q(xQ, xN_ j ) , which is based on n random samples of 

0(x o, xN_ j ) . Then, if (x0, xN_ j) is an element of the subdomain corresponding to a tree 

branch with index p , a , ...p, o~, , the SPORE-2 regression function Qn(xa, xN_ ,) has the 
lmax '•max ^ i v 1 

following expansion: 

e„(*0> ...,xN_l) = g P l 0 l ( fc p i 0 l ( ( *o> xl)> xl)) + S p . o . p ^ p . o . p ^ ^ p . o , ' *2)> * 3)) + 

'«« (5.3) 

X ^p1a,...a/(^p1ol...o/(^P|0|...o,_1' x(l mod #))> X((l+ 1) modN))) 
1 = 3 

where, 

1. A mod N is the integer remainder of A -s- N, and is used to cycle through the indices of 

the independent variables (x 0, xN_ j) (hence the order of input variables is predefined); 

2. the subscript notation p,G,...pl a, is described above (see Appendix B for a more 
1 1 1 max lmax 

complete specification) and serves to identify the two dimensional functions g P | ( J | 0 / and 

^p,0, o w n i c n a c t on the specific subdomain of 0(x o , ...,xN_x) referred to by branch 

PifJi---P/0-/; 

3. and, lmax is an integer defining the maximum number of terms (or levels of the tree 

structure) required in order to achieve some approximation error bound 
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Figure 5.3 A 4 Dimensional Example of SPORE-2 

maxxeD\Qn(x)-Q(x)\ <e (5.4) 

where e is an arbitrarily small (for sufficiently large n) positive real number, and D is the 

domain of the unknown function 6(x 0 , ..., xN_ j ) . 

A 4 dimensional example of a SPORE-2 structure is shown in Figure 5.3, where the tree branch is 

defined by pt = 1 and at = 1, for all / = 1, lmax. Note that this branch is identified by the 

top most branch in Figure 5.2. 

Given the above description of SPORE-2, we now state the second theoretical result of 

this section. In T H E O R E M II, we prove that the SPORE-2 algorithm produces an approximation 

which is a universal approximator. 

T H E O R E M II: Let 9(x 0 , ...,xN_l) be a bounded continuous N dimensional function 

defined over a finite dense domain in D cz^.N. Then, for every arbitrarily small real £ > 0, there 
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exist a finite number of dense disjoint domains Sk, where {JkSk = D, and each domain 

corresponds to some branch p . O i . . . p i <5, , and corresponding bounded continuous 2 
* ' lmax ''max 

dimensional functions gpjCi] 0 and ^ P | C | 0 , such that, for any ( x 0 , x N _ j) e Sk the follow­

ing is true: 

|0„(JC)-0(JC)| <e (5.5) 

where Qn(x) is defined in (5.3), and we let n —» °°. 

The proof of T H E O R E M II is given in Appendix B, where it is restated in a more precise, 

but equivalent, way. The proof uses the result of T H E O R E M I, and is based on five algorithmic 

constructions which are presented in Appendix D. These constructions are titled Construction I 

through Construction V, and they collectively serve to decompose the function Q(x) into the 

functions Qn(x), as well as define and build the disjoint domains Sk. Note that Construction I 

through Construction IV are constructions which are also used in the proof of T H E O R E M I. 

The proof of T H E O R E M II defines a sufficient algorithm for constructing the universal 

approximation 0„(JC) , given that the number of samples points, n, is infinite. In T H E O R E M III 

we extend this result by assuming a finite learning sample size n, analyzing how the approxima­

tion error decrease as the sample size increases. We state this theorem next. 

T H E O R E M III: Let Qn(x), 0(x), and Sk be as defined in THEOREM II, with the 

further assumptions that Q(x) is p -times differentiable (p > 1), and is the mean value of some 

probability function as follows: 

Q(x) = \yh(y\xMdy) (5.6) 

where h(y\x) is some probability function, and §(dy) is some measure on SK. Assume the 

regularity conditions 1-3 (establishing optimal rates of convergence), defined by Stone 

[Stone, 1982], are true for the target function d(x). Let n be the number of samples of the target 

function Q(x) within a specific subdomain Sk. Then, as n increases, the rate of convergence of 

the regression function Qn(x) to the target function Q(x), on the subdomain Sk, is given by: 

||en(jc) - 0(x)|| o o < 0((nYX log(n)) r (5.7) 

where r = p/(2p + 3), and IHI^ is the L°° norm. 

The proof of T H E O R E M III is given in Appendix C, where it is restated in a more precise, 
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but equivalent, way. The three regularity conditions of Stone [Stone, 1982] which we use in the 

statement of the theorem, simply impose certain restrictions on the probability distributions 

associated with the target function 6(JC) (see [Stone, 1982] for details). The first condition 

imposes constraints on the density function h(y\x), and is required to verify that the sequence 
—l r 

(in) log(n)) is a lower convergence sequence (i.e. the best convergence sequence). The 
second condition imposes further constraints on h(y\x) to ensure that the rate defined by the 

- l r 

sequence ((n) log(rc)) is achievable. Examples of density functions which satisfy these two 

conditions are the Normal distribution and the Bernoulli distribution. The final condition used by 

Stone puts constraints on the asymptotic distribution of the independent variables, x, of the 

training samples. This condition is required to ensure that the rate of convergence is both optimal 

an achievable. An example domain D a SiN which satisfies this condition would be any polyhe­

dral domain in 3iN where the distribution of points x is uniform, where the learning samples are 

independent and identically distributed. A more general example of a sufficient domain D cz 3iN 

can be found in [Stone, 1982]. 

T H E O R E M III establishes that the closed domain of any function, which is bounded and 

at least once differentiable (and under appropriate regularity conditions of Stone [Stone, 1982]), is 

densely covered by a finite number of subdomains where the rate of convergence of our regression 

model is independent of dimension. This is an important result because it is not intuitively 

obvious. Previously, Stone [Stone, 1982] showed that the optimal rate of convergence, over the 

entire domain of such functions, does depend on dimension. Specifically, for an N dimensional 

function, the rate of convergence established by Stone is ||9„(JC) - 0(x)| | o o < 0((n) 1 log(n)) , 

where v = p/(2p + N). Knowing that every such function has a finite number of subdomains 

where there exists at least one type of regression function (for example the SPORE-2 regression 

function studied in this section) which has a rate of convergence independent of dimension, has 

important practical implications if these domains can be identified. For example, suppose that we 

have a regression problem which has a rate of convergence that depends adversely on dimension 

over its whole domain. Furthermore, suppose that we can divide the domain of this regression 

problem into two regions, with each region having a rate of convergence independent of 

dimension. Then our original "hard" regression problem has been converted into two "easier" 

regression problems. 

The constructions given in Appendix D of this thesis provide a sufficient algorithm for 
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finding domains which have rates of convergence independent of dimension. These theoretical 

constructions can serve as a basis for practical algorithms for very high dimensional regression, 

and in fact are the motivation behind the implementation of the SPORE-1 algorithm. 

A further implication of T H E O R E M III of Appendix C is that it demonstrates that it is 

possible to measure the complexity of regression in terms of the minimum number of subdomains 

which have rate of convergence independent of dimension, rather than the dimension of the 

regression problem. The more subdomains, the more complex the regression problem. This 

measure of complexity may have important implications for the practical implementation of very 

high dimensional regression. This is especially true if we can establish the complexity of a regres­

sion problem using only the given training examples. Our hope is that the constructions contained 

in Appendix D of this thesis can serve as the basis for such a data based complexity measure. As 

described above, these constructions collectively serve to decompose the function 0(x) into the 

functions 0„ (x) , while at the same time building the disjoint domains Sk which have the desired 

rate of convergence properties. Since these constructions are based on learning examples of the 

target function 0(x) (see proof of T H E O R E M III in Appendix C), they constitute a sufficient 

algorithm for such a data based complexity measure. However, the practicality of such a complex­

ity measure has yet to be demonstrated. 

5.2.2 The SPORE-1 Regression Function with Domain Partitioning 

The rate of convergence result for the SPORE-2 algorithm is based on two key observa­

tions. First, the SPORE-2 algorithm works by constructing the approximation one functional unit 

at a time, and the rate of convergence of each of these individual functional units is independent of 

dimension. Secondly, the domain of the function being approximated is subdivided to ensure that 

as each functional unit is constructed, the approximation error over the particular subdivision 

acted on by the functional unit, must decrease. The result is that within each subdomain, the 

approximation error converges to zero, and the rate at which it does so is independent of 

dimension. 

Given the definition of the SPORE-1 algorithm in Chapter 3, it is not difficult to envision a 

modification to the SPORE-1 algorithm which will also give it a rate of convergence to zero error 

which is independent of dimension. First, in T H E O R E M 5 of Chapter 3, we showed that the rate 

of convergence, to a fixed approximation error, Of SPORE-1 is independent of the dimension of 
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the function being approximated. Therefore, if we designate each single execution of the SPORE-

1 algorithm to be a single equivalent functional unit, then we can achieve a rate of convergence to 

zero error, by subdividing the input space such that the next time SPORE-1 is run on any subdivi­

sion, the resulting approximation error over that subdivision wil l decrease. One method of 

choosing such a subdivision is to do the following binary split of the input space. Let RL(x) be 

the constructed SPORE-1 regression function which acts on the domain D. Then, create 2 

subdomains, Dj and D2, such that Z)j u D 2 = D,as follows: 

x e D , iff ( ( i ? L (x ) - / ( x ) )>0 ) 

xeD2 iff ( ( * L ( x ) - / ( x ) ) < 0 ) 
(5.8) 

(Note that Dx and D2 may not be topologically connected, whereas the subdivisions of most 

implementations of regression trees [Breiman et al., 1984] are. This may or may not be a signifi­

cant advantage depending on how hard it is to construct such domains in practice. This is a topic 

for future research) The subdivision in (5.8) ensures that the maximum expected approximation 

error, within each subdomain Di (i e { 1, 2}), is given by 

j" «RL(x) - f(x)) - AfdD^ < E\\ (Rl(X) - f(x))2dDi 

where A,- e 3i is a constant defined as follows: 

'-D, 

(5.9) 

A, = argminA % \({RL(x)-f{x))-Ai)2dDi 

•D, 
(5.10) 

(Note that A • is simply the average value of (RL(x) - f(x)) over each region Di). Hence, such a 

subdivision ensures the reduction of error after each execution of the SPORE-1 algorithm. Using 

T H E O R E M 5 of Chapter 3, this gives us the following rate of convergence (assuming we 

subdivide after each execution of SPORE-1), 

j ( ^ L | ( - ) - / ( x ) ) 2 ^ 
DT\(m) 

(m) <K 
Mn 

+ e (5.11) 

where 

1. e is any arbitrarily small positive real number; 

2. -D^^) is any resulting subdomain after m domain subdivisions; 
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3. and MT is the number of training sample points in domain £ )

r ) ( m ) • 

Thus, the rate of convergence to any arbitrarily small error e is independent of the dimension of 

5.3 Rate of Convergence and Computational Complexity 

In this chapter we have given two specific examples of the SPORE structure. We have 

shown that both examples have a rate of convergence which is independent of the dimension of 

the function being approximated as a result of two important characteristics. The first is that the 

regression function is constructed one functional unit at a time, and the rate of convergence of 

each of these individual functional units is independent of dimension. The second is that the 

domain of the function being approximated is subdivided to ensure that as each functional unit is 

constructed, the overall approximation error decreases. Thus, as long as these two characteristics 

are maintained, any resulting SPORE implementation will have a rate of convergence independent 

of dimension. 

In T H E O R E M 6 of Chapter 3, we showed that the computational complexity of the 

SPORE-1 algorithm is linear with respect to the dimension of the function being approximated. 

This is a powerful practical result because it makes regression functions which have thousands of 

inputs, at least potentially feasible from a computational standpoint. This is experimentally 

supported by the high dimensional regression examples given in Chapter 4. 

The SPORE-1 algorithm achieves a computational complexity which is linear with 

dimension because the drop in approximation error, due to the addition of a new level, does not 

depend on the dimension of the function being approximated. Instead, it depends on the probabil­

ity distribution of the function space of f{x) around the 2 dimensional space that the error 

function is being projected on; i.e. the 2 dimensional space defined by the independent variables 

of the function g((-) (see proof of T H E O R E M 6 in Chapter 3). Thus, if the variance of this 

probability distribution is high, this is an indication that f(x) maps poorly onto g[(-) and many 

levels in the SPORE-1 structure may be required to get a good fit. Thus, the error drop achieved 

by cycling through all independent variables of / ( x ) is not a dependent on the dimension of 

/ ( x ) , but rather on the way it projects onto the 2 dimensional input space of g^(-) • Hence the 

linear growth in computational complexity. 

Following this argument, we can show that, within each subdomain defined in Section 
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5.2.1, the computational complexity of the SPORE-2 algorithm is also linear with dimension. 

Thus, the total computational cost of the SPORE-2 algorithm is dependent on the number of 

subdomains required (which may in fact depend on dimension). Similar arguments are valid for 

the computational cost analysis of any SPORE structure. Thus, we conclude that within each 

subdivision of a general SPORE-type structure, the computational cost of the algorithm is linear 

with respect to the number of input variables. 

Finally, we ask the following question: under what conditions is the subdivisions of space 

not necessary in order to achieve convergence to zero error? For the SPORE-1 algorithm, this 

question is answered in T H E O R E M 4 of Chapter 3, where we showed that as long as the approxi­

mation errors due to the addition of a level to the regression function are sufficiently uncorrelated 

with respect to current approximation errors, approximation errors will continue to converge to 

zero. Another interpretation of this is simply that the new level is contributing to overall error 

reduction. An analysis of the SPORE-2 constructions gives an equally trivial interpretation of 

what constitutes continued error reduction without subdivision. In order for SPORE-2 to reduce 

error without space subdivision, the projection of the current error function onto its two 

dimensional functions must always contribute to overall error reduction. The only condition under 

which error reduction will not occur, is if the projection of the current error function onto the 

appropriate 2 dimensional space produces functions g P i 0 i 0 and ^ P | 0 i a which are identically 

zero (see Appendix B for details). Similarly, the SPORE-1 learning algorithm will also fail to 

converge if gt(-) = 0. Therefore, for both algorithms, subdivision is required when the residual 

error produce two dimensional functions which are identically zero. As described in Section 3.3.4 

of Chapter 3, SPORE-1 uses bootstrap samples to make this pathological condition unlikely. 

Perhaps it is also possible to use bootstrap samples to achieve similar results with the SPORE-2 

algorithm, and more generally with other SPORE-type algorithms. This is an open theoretical 

question. 

5.4 Summary 

In this chapter we have shown that the general SPORE structure addresses the two major 

difficulties associated with high dimensional nonparametric regression. Both of these can be 

attributed to the curse of dimensionality [Bellman, 1961]). The first difficulty is associated with 

the potentially intractable number of sample points required to approximate high dimensional 
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functions. The second is associated with the computational complexity inherent in building very 

high dimensional regression functions. Both difficulties are addressed in the SPORE structure via 

the sequential addition of small functional units in a way which decreases the residual approxima­

tion error. We have shown under which regularity conditions (Stone [Stone, 1982]) this leads to a 

rate of convergence (as a function of the number of training sample points) independent of 

dimension. In addition, we have demonstrated that under appropriate conditions, the computa­

tional complexity of the general SPORE structure, is linear with respect to the dimension of the 

function being approximated. 

Thus, this chapter, building upon our results in Chapter 3, constitutes our second argument 

for a theoretical verification of our thesis presented in Section 1.3 of Chapter 1. The theoretical 

analysis presented in this chapter is an attempt to fully understand the fundamental characteristics 

of a learning algorithm. Many practical implementations of learning algorithms are not based on a 

firm theoretical understanding of their theoretical characteristics, often resulting in ad hoc heuris­

tics which have no firm foundations. Perhaps one of the most significant differences between the 

SPORE methodology and the other learning methodologies which it loosely resembles (see 

Section 2.4 of Chapter 2), results from the fact that we have specifically used a theoretical analysis 

of the characteristics of very high dimensional regression to define our methodology. 



Chapter 6: Conclusion 

The focus of this thesis has been the construction of models (nonparametric regression 

functions) which have a large number of inputs, and where little a priori knowledge is available 

about what constitutes a good choice for model structure. Examples of large high dimensional 

nonparametric regression problems can be found in such diverse fields as meteorology, econom­

ics, and robotics. However, general practical methods for constructing these high dimensional 

models have yet to be widely proposed in the literature. 

It has been shown in this thesis that very high dimensional nonparametric regression can 

be effectively accomplished using a sufficient number of small, low dimensional parametric 

building blocks, which are fitted to the regression data one at a time. Furthermore, we have 

demonstrated that both variables and building blocks can be added in a random order to the 

approximation, thus little or no computational effort is required to determine what to fit next. 

Projection onto low dimensional parametric building blocks was shown by proof and example to 

produce stable regression functions from relatively few sample points. It was demonstrated that 

the random selection of building blocks and their inputs leads to algorithms that are computation­

ally feasible in very high dimensional spaces. 

This document is a theoretical and experimental evaluation of a general methodology 

(SPORE) which exhibits the above characteristics. The most significant result of this thesis is that 

this simple algorithmic structure leads to regression functions which are effective approximators 

in very high dimensional spaces. The successful application of nonparametric regression to high 

dimensional problems such as the 1,600 dimensional problem defined in Section 4.3 of Chapter 4, 

has not been demonstrated in the past, without using some form of dimensionality reduction 

requiring a priori knowledge. The main reason for this is that previously published techniques 

have been designed with lower dimensional problems in mind, resulting in algorithms which 

utilize search strategies in input space, thus making them computationally infeasible in very high 

dimensional spaces. 

The main contributions of this thesis are the following: 

I. A new methodology is proposed (SPORE) for constructing very high dimensional 

95 
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regression functions. The SPORE approach to nonparametric regression differs from conven­

tional approaches. Emphasis is shifted from searching through a large parameter space for an 

optimal structure, to an algorithmic approach which projects learning data onto low dimen­

sional structures, without resorting to computationally expensive searches. This makes 

SPORE particularly suited to the large regression problems considered in this thesis. 

II. A theoretical analysis of SPORE demonstrated that it is a universal approximator. Fur­

thermore, we showed that domain of the target function can be subdivided into a finite number 

of regions where the rate of convergence (as a function of the number of learning examples) to 

any bounded continuous target function (at least once differentiable) is independent of the 

number of input variables (i.e. dimension). This theoretical result is significant because it 

shows a rate of convergence which has not previously been demonstrated for high dimen­

sional nonparametric regression problems. In addition, we showed that the SPORE structure 

has a computational complexity which is linear with dimension in each of these subdomains. 

This is also a significant theoretical result because previously proposed multidimensional non­

parametric regression algorithms are not computationally practical in higher dimensional 

spaces. 

III. The simplest example of SPORE, called SPORE-1, has been implemented and evalu­

ated. The SPORE-1 learning algorithm is completely automated, requiring no user interven­

tion. Theoretical analysis of the SPORE-1 learning algorithm gives conditions under which 

the approximation error converges to zero (without domain partitioning), with a rate of con­

vergence which is independent of the number of input variables (i.e. dimension). Experimen­

tal evaluation of SPORE-1 on regression problems which have been previously studied in the 

literature, shows that SPORE-1 compares favorably, and often outperforms, other published 

regression algorithms. Out of ten regression examples, SPORE-1 did as well or better than 

published results on all but one of these examples. Evaluation of SPORE-1 on the 10-bit par­

ity problem showed that it can be applied to problems which have flat low dimensional projec­

tions, and therefore is not subject to the same limitations as other methods which construct 

approximations using low dimensional structural units added sequentially. Evaluation of 

SPORE-1 on very high dimensional data (100 to 1600 inputs) showed that SPORE-1 performs 

well under noise conditions in both input variables and output values, and that the dimension 

of the data had no direct effect on learning times or the size of the approximation. Application 
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of SPORE-1 to real-world human-to-robot skill transfer problems, using raw image pixels, 

showed that SPORE-1 is effective on very high dimensional (1024 inputs), noisy, real world 

problems. These human-to-robot skill transfer experiments demonstrated a promising (and 

theoretically understood) solution for a wide variety of complicated learning/programming 

tasks, which could not previously be addressed in this manner. 

6.1 Future Work 

SPORE defines a general methodology for constructing regression functions. The 

SPORE-1 algorithm, having only a simple 2 dimensional cascaded structure with only one type of 

functional unit, is the most basic example of this general methodology. Our intention is to 

implement and empirically evaluate other examples of SPORE. In particular, we intend to 

implement a SPORE algorithm which has many types of functional units, where each functional 

unit can accept inputs from more than one existing unit. Such a structure would exploit more 

aspects of the general SPORE methodology, while still maintaining the computational capabilities 

of the SPORE-1 algorithm. 

In addition, the SPORE structures presented in this thesis have been designed as long, 

cascaded chains which can only be evaluated in a serial manner. This may not be a suitable 

computational structure for applications which require fast calculations (e.g. real-time control 

systems). For such applications, computationally parallel SPORE structures may be more 

appropriate. The theoretical and empirical evaluation of a parallel SPORE algorithm is a good 

topic for further investigation. 

The main focus of this thesis has been building nonparametric regression functions for the 

purpose of predicting future outputs given new inputs. However, traditionally many nonparamet­

ric regression techniques have been used as analytical tools to determine which inputs are 

important and how they interact. It would be interesting to investigate the possibility of using 

SPORE as such an analytical tool. If this were possible, it would allow analysis of input spaces for 

problems which have many input variables. 

An additional topic for further study is a more complete analysis of the theoretical proper­

ties of the SPORE structure. This thesis gives rate of convergence results as a function of the 

number of learning variables, and gives conditions under which these rates are valid. Although 

empirical and theoretical evidence suggests that these conditions are not overly restrictive, there 
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are as yet no theoretical results which analyze how useful or interesting this class of functions is. 

In addition, no rate of convergence results, as a function of the number of parameters in the 

SPORE regression function, are given in this thesis. Both of these theoretical questions are topics 

for future research. 

A specific theoretical investigation which this thesis has not addressed is the full computa­

tional cost of a SPORE learning algorithm which uses domain subdivision. We know that the 

computational cost of a SPORE construction is linear with dimension, in each of the resulting 

subdivisions. However, we don't know how many subdivisions are required for a specific class of 

target functions. Empirical evidence presented in this thesis suggests that subdivision of the input 

space is not necessary (at least for the regression examples studied here), however, this may not be 

true in the general case. In fact, regression examples may exist where an exponential growth in the 

number of subdomains may be needed, as the dimension of the target function increases. This is 

clearly a topic for future investigation. 

Finally, in this thesis, we demonstrated that it is possible to do very high dimensional 

human-to-robot skill transfer if the operator demonstrates the task using only the robot's sensors 

and actuators. This is a promising result which we have only started to explore. Many more 

experiments need to be done in order to fully evaluate the efficacy of this approach to robot 

programming. 
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Appendix A. Approximating 3 
Dimensional Functions as a Cascade 

THEOREM I: Let U(x,y,z) be a bounded continuous 3 dimensional function defined on the 

dense domain (x,y,z) £ U, where U C 9£3 and U has finite non-zero volume. Then there exists, 

for all b £ {1 ,2 , . . . , 6 m a x } where 6 m a x > 0 ( 6 m a x £ \), 

a. a set of bounded continuous 2 dimensional functions Vi(x,y) defined on (x,y) £ Sb, where 

Sb C 3?2 and V i , j £ {1 ,2 , . . . , ^ j) => 5; D S'; = 0]; and, 

b. a second set of bounded continuous 2 dimensional functions Wfc(Vj, 2) defined on (Vj, 2) £ 

c 3t2, 

SMC/I ?/ia£, /or a// e > 0 (e £ 3t), the following is true: 

\/(x,y,z)£U [36 £ { l , 2 , . . . , 6 m a x } 

[((x,y) £ Sb) A (|W f c(V 6(.r,y),z) - U(x,y,z)\ < e)] . 

The following are some basic definitions which are used throughout the proof of THEOREM 

I. Let 8 > 0 be an arbitrarily small real number. Create a uniformly spaced grid of points in -ft3 

at all points (/ • 6,m • 6,n • 8), such that l,m,n £ I. Define the set U to be: 

U = {(l,m,n)\(l,m,n £ I) A ((/ • 8, m • 8,n • 8) £ £/)}, (2A) 

where the set U is defined in T H E O R E M I. Let l\, m\ £ 1 be fixed such that 3n[(l\, m i , rc) £ U]. 

Then, U(l\ • 8,m\- 8, n • 8) (the function U(x,y,z) is defined in T H E O R E M I) is a 1 dimensional 

function defined for all n such that ( / i ,mi ,n) £ U. Let / i , m i , / 2 , « ^ 2 G 1 be fixed such that 
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3n [ ( ( / i , m i , n) £ U ) A ((h,rn,2,n) £ U ) ] . Now one can define a norm, symbolized by [|• jl̂ -

between the two 1 dimensional functions U{1\ • 8,m\ • 8,n • 8) and £/(/ 2 • 8, ra2 • 8,n • 8) as: 

\\U(li • 8,mi • S,n • 8) — Ufa • 8,rn,2 • 8,n • 8) ||max = 

m a x • 8, mi • 8,n • 6) — U{l2 • 8, m,2 • 8,n • 8)\, 
(3A) 

where the set N is defined as: 

= {n\(n 6 1) A ((/ i ,mi,re) £ U ) A ( ( / 2 , m 2 , n ) £ U)}. (4A) 

Note that the norm 

\\U(h • 6,171! -8,n-8)- U{h • 8, m 2 • 6, n • <5)||max (5A) 

is defined if and only if 3n[{{l\,m\,n) G U ) A {(h,m2,n) £ U ) ] . 

The concept of an S-ordering of the 1 dimensional functions U(l • 8,m • 8,n • 8) (defined V n 

such that (/, m, n) £ U) with respect to the norm | | - | | m a x , is defined next (note that an S-ordering 

is similar to a well ordering defined in [Malitz, 1987, pp. 21-23], with the addition of some 

other conditions given below). Define the set T to be: 

T = {(l,m)\(l,m £ 1) A (3n[(l,m,n) £ U] )} . (6A) 

Let S C T represent a set of 1 dimensional functions U{1 • 8,m • 8,n • 8), where (l,m) £ S, 

which are S-ordered. Let the set V 1 C S be defined such that V ( / 1 , m 1 ) £ V 1 the 1 dimensional 

functions U (ll • <5, m 1 • 6,n • 8) are first in the S-ordering. Let the set Vp C S be defined such 

that V(lp,mp) £ Vp the 1 dimensional functions U(lp • 8,mp • 8,n • 8) are in order p (where 
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p £ I [p > 1]) of the S-ordering. Let the set VPm C S (where pm £ 1 \pm > 1]) be denned 

such that V(lPm,mPm) £ V P m the 1 dimensional functions U(lPm • 8, mPm • 8,n • 8) are last in the 

S-ordering (because T is a set which has a finite number of elements, S C T also has a finite 

number of elements and therefore there must exist a set VPm C S which is last in the S-ordering). 

Then the S-ordering of the functions U(l • 8,m • 8,n • 8), where (l,m) £ S, is defined such that 

the set S, and the sets Vp (\/p £ { 1 , . . . ,pm}), must satisfy the following conditions: 

Cond a .V( / i ,mi) , ( / 2 ,m 2 ) £ S[3n £ l[((/i, m i , n) £ U) A {{l2,m2,n) £ U)]]. 

Cond b.Vp £ {1,2,...pm}, if ( / i ,mi) £ V* and (/ 2 ,m 2 ) £ V? then 

\\U(h-6,m1-8,n-6)-U(l2-8,7n2-8,n-6)\\m^ = 0. (7 A) 

Also, Vp £ {l,2,...Pm}, if (h,mi) £ V and (Z 3,m 3) £ S [(/ 3 ,m 3) g Vp] then 

\\U{h • 8,mi • 8,n-8)- U{13 • 8,m3 • 8,n • <5)||max ^ 0. (8A) 

Condc .Vpi £ { l , 2 , . . . , p m - 2 } , Vp 2 £ {Pl + 1,... , P m - 1}, Vp 3 £ {p2 + 1,... ,Pm}, if 

( / i ,mi) £ V * \ (/ 2 ,m 2 ) £ Vp\ and (Z 3 ,m 3) £ V ' 3 then 

||W(/3 • £,??^3 • 8,n • 8) -K(h- 8,m1 • 8,n- <J)||max > 
(9A) 

||W(/2 • 8,m2 • 8,n- 8) - U(l\- 8,mx • 8,n • <5)||max. 

Cond d.Choose 8 > 0 (8 £ §ff) such that V(x i , y i , 21), (x 2 , j / 2 , z 2 ) £ /7, if 

11(^1,2/1,-21) - ( « 2 , y 2 , - Z 2 ) | | < 8 • s/2, then (note that e is defined in T H E O R E M I) 

\U(xuyu Zl) - U(x2,y2, z2)\ < (10A) 
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It is always possible to choose such a 8 because U(x,y,z) is bounded and uniformly 

continuous on U. Given the above 8, V p £ { 1 , 2 , . . . , p T O — 1 } , if ( / i , m i ) £ V p , and 

(h,rn2) £ Vp+1 then the following condition must hold: 

\\U(h • 6,mi • 8,n • 8) - U{12 • 8,m2 • 6,n • 8)||max < (11 A) 

Proof of T H E O R E M I: The proof of T H E O R E M I is based on constructions of the 

functions Vb(x,y) and Wb(Vb,z), and the domains Sb (for all b £ { 1 , 2 , . . . , 6 m a x } ) . These 

constructions are given in CONSTRUCTION I, CONSTRUCTION II, CONSTRUCTION III, 

and CONSTRUCTION IV of Appendix D. 

In CONSTRUCTION I the discrete functions V 6(x, y) and W6(Vfc, z), along with the discrete 

sets S 6 (for all b £ { 1 , 2 , . . . , 6 m a x } ) are constructed. In CONSTRUCTION II the discrete sets 

S 6 (for all b £ { 1 , 2 , . . . , 6 m a x } ) are used to construct the domains Sb. In CONSTRUCTION III 

the discrete functions V&(.T, y) (for all b £ { 1 , 2 , . . . , 6 m a x } ) are used to construct the continuous 

functions Vb(x,y), and finally, in CONSTRUCTION IV the discrete functions W 6(V 6,z) (for all 

b £ { 1 , 2 , . . . , 6 m a x } ) a r e used to construct the continuous functions W&(V&(a:, y),z). 

One should first note that a maximum value for b £ { 1 , 2 , . . . , 6 m a x } must exist because, in 

STEP 3 of CONSTRUCTION I, the number of elements in the set T i is finite, and because in 

STEP 9 of CONSTRUCTION I, Jb is updated using the equation Jb = T 6 _ i - S 6 _ i , where S f t _ ! 

is always a non-empty S-ordering set (non-empty because, by the definition of an S-ordering 

given on page 108, if T j _ i is non-empty, then there is always at least one element in T&_i 

which satisfies the conditions of an S-ordering and is therefore a member of the set Sj_i) . 
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Because CONSTRUCTION II chooses a value for b £ {1, 2 , . . . , 6 m a x } which minimizes 

the function 

P = ,,min \\(x,y) - (/ • S,m • 8)\\, (12A) 

it must be the case that V(x,y,z) £ U, 3b £ {1 ,2 , . . . , 6 m a x } such that (x,y) £ 5j. Thus the 

constructed approximation spans the domain of definition of the function being approximated. 

Also, because the value of b chosen is one which is minimum in magnitude, it must also be 

true that Vi , j £ {1 ,2 , . . . , bmax}[(i ^ j) St D Sj = 0] (i.e. V(x, y, z) £ U, b is unique and 

therefore Sb is also unique). 

Given that (x,y,z) £ U and (x,y) £ Sb, in CONSTRUCTION IV the function 

Wb(Vb(x, y), z) is calculated using the equation: 

Wb(Vb(x,y),z) =(W 6 (V 6 l > m • <5) - W 6 ( V 6 o , n 0 • 6)) • sv(Vb(xy)-Vbo) + 

s ( z - n 6 ) ( 1 3 A ) 

where the function Vb(x,y) is calculated, from CONSTRUCTION III, using the equation: 

Vb(x, y) =(V 6(/i • tf, mi • *) - V 6 ( / 0 • <5, m 0 • *)) • a * ( x ~ l * ' 8 ) + 
(14A) 

(V 6 (/ 2 • 5, m 2 • 5) - V 6 ( / 0 • .5, m 0 • 6)) • S y { y ~ ™° ' 6 ) + V 6 ( / 0 • m 0 • 5). 

One should note that the function Vt(.x,?/) is continuous and bounded on (x,y) £ Sb, and the 

function Wb(Vb(x,y), z) is continuous and bounded on (Vj,z) £ $6, because: 

1. U[x,y,z) is continuous and bounded on (z,?/,z) £ (7; 

2. Condition d of an S-ordering given on page 108; 
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3. STEP 6 of CONSTRUCTION I; 

4. - The tessellations grids used in CONSTRUCTION III and CONSTRUCTION IV; and, 

5. STEP 2.a and STEP 2.b of both CONSTRUCTION III and CONSTRUCTION IV. 

Inserting equation (14A) into equation (13A), one gets: 

Wb(Vb(x,y),z) = ( W 6 ( V 6 l , n i •6)-Ub(Vbo,n0-6))-sv 

(Vfc(/i • 8, mi • 8) - V 6 ( / 0 • 8, m0 • 8)) sx(x - l0 • 6) 

8V 6 
( V 6 ( / 2 • 8, m2 • 8) - V f c ( / 0 • 8, m0 • 8)) sy(y - m0 • 8) 

+ 8V 8 
( V i ( / 0 • 8,m0 • 8) - Vbo] 

8v 

(Ub{Vb2,n2-8)-Wb(Vbo,n0-8)) • ^ ' ^ + W 6 ( V f e o , n 0 • 8). 

(15A) 

Therefore, 

\m(Vb(x,y),z)-U(x,y,z) 
( W 6 ( V 6 l , ? i i • 8) - W j ( V 6 o , n o • 6)) • sy 

(Vb(h • 8, mi • 8) - V 6 ( / 0 • 8,m0 • 8)) sx(x - l0 • 8) 

8V 8 

( V f e ( / 2 • 8, m2 • 8) - V f e ( / 0 • 8, mp • 8)) sy(y - ?np • 8) 

8y 8 
( V 6 ( / 0 -6,7710 -8) - V 6 o ) + 

(Ub(Vb2,n2-6)-Ub{Vbo,n0-8)) 

W/j(Vfeo,?2o • 8) -U(x,y,z) 

sz{z — no • 8) 

(16A) 

Using the Schwartz inequality and taking out the sy, sx, sy, and sz terms (this can be done 

because, from CONSTRUCTION III and CONSTRUCTION IV, \sv \ = \ss \ = Is, 1), 



one gets: 

\Wb(Vb{x,y),z)-U(x,y,z)\ < ( W 6 ( V 6 l , n i -8) - W 6 ( V 6 o , n 0 •<$))• 

(V f e ( / i • 6, m i • 8) - V f e ( / 0 • 8, mp • 6)) (x - lp • 8) 

8V ' 8 

( W 6 ( V 6 l , n i - < S ) - W 6 ( V f e o , n 0 - 6 ) ) -

(V f t(/ 2 • S, m2 • 8) - Vb(lp • 8, mp • 8)) (y - nip- 8) 

8y ' 8 

(Ub(Vbl,n1-8)-Ub(Vb0,no-8))-

(Vb(lp-8,m0-8)-Vbo) 

+ 

+ 

8v + 

( W 6 ( V 6 2 , n 2 - -6) - W 6 ( V 6 o , n 0 -6)) 

W & ( V f e o , n 0 • 8) -U(x,y,z) 

(z - np • 8) + 

(17A) 

Because of: 

1. Condition d of an S-ordering given on page 108; 

2. STEP 6 of CONSTRUCTION I; and, 

3. STEP 2.a of both CONSTRUCTION III and CONSTRUCTION IV, 

the following inequalities are true: 

| W & ( V 6 l , r i i • 8) - W 6 (V 6 O ,72 0 • < $ ) ! < { , 

5 

Because of: 

(18A) 

1. STEP 2 of CONSTRUCTION I; and, 
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2. STEP 1 of both CONSTRUCTION III and CONSTRUCTION IV, 

the following inequalities are true: 

(x -lo- 6) 
8 

(V - m0 
•8) 

8 
- n0 

8 

Because of: 

1. STEP 1 of CONSTRUCTION I; and, 

2. STEP 2 of CONSTRUCTION I; and, 

3. STEP 1 of both CONSTRUCTION III and CONSTRUCTION IV, 

the following inequality is true: 

\Vb{Vbo,n0-6)-U{x,y,z)\ < ^. 

And finally, because of: 

1. Condition d of an S-ordering given on page 108; 

2. STEP 6.iii of CONSTRUCTION I; 

3. STEP 2.a of both CONSTRUCTION III and CONSTRUCTION IV; and, 

4. STEP 2 of CONSTRUCTION IV, 
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the following inequalities are true: 

(V 6(/i 8, mi 6)-Mk • 8, m 0 S)) 

(Mh 8, 7712 8)-Vb(lo • 8, mo S)) 

Sv 

(Vj(/0 
8, mo * ) - v i o ) 

< 1. 
Sv 

< 1. 

Inserting the above inequalities into equation (17A), one gets: 

\Wb(Vb(x,y),z)-U(x,y,z)\ < ^ + ̂  + J + ̂  + 

This completes the proof of T H E O R E M I • . 
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Appendix B. Constructing the SPORE-2 Structure 

In the proposed structure the approximation of f(x0,..., ZJV-I) is given by the following 

expansion (see Figure 1 for a 4 dimensional example of this): 

If (xrj, • • •, xN-i) is an element of the subdomain corresponding to tree branch 

P\o~i • • • Pi cri , then 

f(x0,.. .,XN-I) = g P l a 1 ( h P l a 1 ( x o , xi), x2) + 

9pia1p2(T2 (jlpl<TlP2<T2 VlPl&l 1 X^)l ^ ( 3 ) niOd ( J V ) ) ) 

^ 9pi(Ti...a, \ hpifTl...ai \ h p i < r 1 . . . < T ( l _ 1 ) , X ( l m o c j J , m 0 f j {N)\J , 

1=3 
(23A) 

where, 

a. A mod TV = integer remainder of (A -f- TV), and is used as an index to cycle through the 

independent variables of f(xo, • • •, £_/v_i); 

b. the subscript notation /?i <TI . . . /9;<r; (/ e { 1 , . . . , l m a x } ) is standard tree notation (see complete 

definition below) and serves to identify the two dimensional functions g P i a i . . . p i a i and 

hp^ai-.-piui which act on the specific subdomain of / (xo, . . . , XJV_I) referred to by branch 

P\(T\ • • • picrr, 

c. and, lmax is an integer defining the maximum number of terms (or levels of the tree structure) 

required in order, to achieve some maximum approximation error 

max /(x) - /(x) < e (24A) 
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where e is an arbitrary small positive real number, andV is the domain of the function / (x ) . 

The most basic structural characteristic of the proposed iV dimensional model is its tree 

structure. This structure is here referred to as the approximation tree. An example of the 

proposed model approximation tree structure is given in Figure 2. Two things are represented 

via this tree structure: 1) variables of the function being approximated are selected and acted 

upon by functions at each tree node; and, 2) the domains spanned by these variables are being 

divided up at each node in such a way that each point in the domain of the function being 

approximated represents one and only one path through the tree. These characteristics are 

explained in detail below. 

Tree Notation: Each level of the proposed model has 2 types of branches: p branches and a 

branches. These two types of branches, as is described later, are differentiated from one another 

by the type of discriminant functions (which are functions that dictate which path through the 

tree is taken) associated with them. Note that the length of a branch path and the number of 

branches emanating from a particular tree node is not fixed a priori, and is determined based on 

the mapping of the function being approximated, as the model is being built. 

The branches of the tree are labeled as follows: let i\, i2, ..., iii be positive integers, then 

level 1 branches are identified by the labeling pi — i\ for p branches and p\o\ = ii,%2 for 

a branches; level 2 branches are identified by the labeling p\(j\p2 = u,«2,«3 for p branches 

and p\o\p2(J2 = ii,i2,h,H for a branches; similarly, level / branches are identified by the 

labeling piai... p\ = %i,%2,..., i2i-i for p branches and pio-y... p\o\ = ii,i.2, • • - ,121-1,121 for 

a branches. 

1 1 6 



The above is an example of how a 4 dimensional function f(xQ, xx, x2,x3) is approximated in the proposed structure. 

The approximation is symbolized above by / . The above example shows the calculation of the approximation / along 

one path of the approximation tree. This path passes through the branches p\ = 1, p\(T1 = 1,1, p\0-1p2 — 1,1,1, 

and Picr1p2a2 = 1,1,1,1 (see Figure 2), and continues on through to branch p j C i . . - P L ^ L = 1,1, - - -, 1,1, where 

the subscript L defines the number of levels of the tree required to get a sufficiently good approximation along this 

path of the tree. As explained in the body, the proposed approximation approximates functions 2 dimensions at a 

time. These 2 dimensional functions are symbolized as (JP1<T1,,,PI<TI and h p i a i p i a i (the integer / defines the level of 

the tree). At tree branch p 1 a 1 = 1,1 of level / = 1, the functions are symbolized by <h ^ and h1:1; at tree branch 

Picr1p2o-2 = 1,1,1,1 of level / = 2, the functions are symbolized by <7i,i,i,i and ^ 1 , 1 , 1 , 1 ; and so on through to branch 

P1V1 • • - P L & L = 1,1,..., 1,1 at level / = L , where the functions are symbolized by <7i,i,...,i,i and • 

Figure 1 4-D Example of the Proposed Approximation 
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Rr 

P,= 2 

D. P ° 
M 1 

R 

p a , = 1 , 1 / 

P,a =1,2^ 

p a =2,1 
1 I 

Branches 
o 

Branches 

Level 1 

P , a l P 2 = 1,1,1 

P,°,P, = 1,1,2 

p , c f 2 = 2,1,1 

,P ,a l P 2 = 2.1.2 

P i 0 i P f ; 

P f f f 2 = 1 . 1 . 1 . 1 ^ 

P l a l P p 2 = 1,1,2,1 ^ 

P 1

a , P f 2 = 
X \ 1,1,2,2 

\ 
P . ° l P f \ 
= 1,1,2,3 \ 

P l ° l P f 2 = 2 . 1 ' 1 > 1 

Branches 

Level 2 

ppp?2= 2.1 A l , , 

< Pl° lPf 2 = 
2.1.2.2 

Branches 

The above is an example of the tree structure of the proposed model which partitions the 

input space of the function being approximated into subdomains that allow the function to be 

approximated using a superposition of a cascade of 2 dimensional functions. The example tree 

given shows only 2 levels. The notation used in the diagram is explained in detail within the 

text of the paper. 

Figure 2 The Space Partitioning Characteristic of the Proposed Model 

Each branch of the approximation tree represents a specific subdomain of the function being 
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approximated. Thus, one can define the notion of 

(XQ, . . . , . T J V - I ) £ tree branch p\a\ ... p\o\ (25A) 

to mean that the point (XQ, . . . , x-yv-i) (which is within the domain of the dimensional function 

being approximated) is contained within the subdomain represented by branch p\o\... p\o\. For 

/ = 2, this subdomain is defined as follows: 

(xo, • • • i ^ A f - i ) £ tree branch p\o\p2(J2 ^ 

( ( x 3 , x 4 , . . . , . T / Y _ I ) £ RPl A (x0,xi) £ Dpiai)A (26A) 

((x0,xi,X4,x5,... , X J V _ I ) £ i2p 1 ( T l p 2 A (hPlffl(xo,xi),X2) £ D P l < T l P 2 a 2 ) , 

where the domains RPl, - D P l C T l , RPl<jip2-, Dp1<T1p2CT2 and the functions hPl<Tl are defined in THEO­

R E M II. For / > 2, the domain represented by branch p\a\... p\o\ is defined as follows: 

(XQ, . . . , x /y- i ) £ tree branch p\o\ ... p\o\ 

((x0, . . . , x / v _ i ) £ tree branch p\a\... / ? ; _ i c r / _ i ) A (27A) 

{ ( X i l J • • • ) XiN-2) ^ • ^ p i ( T 1 . . . p | A ( / l p l ( T l ...pi-KTl-l 5 ^ j l ) ^ D pi<T\...pi(Tl)l 

where the domains RPl(Ji...pnDpiai...Pl(Tl, the functions / i p l C T l . . . p , _ 1 ( r , _ 1 , and the subscripts 

z i , . . . ,iN-2,ji a r e defined in T H E O R E M II. Note that the integer subscripts z i , . . . , I N - 2 ,J I 

are used to keep track of which variables of the function being approximated are used at which 

node of the approximation tree. Also, note that the modulo function used in equation (23A) and 

in the statement of T H E O R E M II, is used to cycle through all possible variables as often as is 

necessary to produce an approximation which is within some maximum allowable error. 

T H E O R E M II: Let f(xo,xi,... , .r/y_i) be a bounded continuous N dimensional function 

(N > 3) defined on the dense domain V, where V C and V has finite non-zero size. For 

119 



all I G 1 such that I > 1, let i\, io, • • •, i N-2 £ { 0 , l , . . . , i V — 1} and j\, ji G { 0 , 1 , . . . , N — 1 

swcn £na£, ' 

a. ji = (/ mod N), and j2 = ((/ + 1) mod N); 

b. Vm,n G {1, 2,. . . , TV — 2} [(m ^ n => im ^ in) A (m > n => im > in)]; a n d 

c. Vm G {1 ,2 , . . . , T V - 2 } A Vn G {1, 2}[im + jn]. 

Then there exists, 

1. V / 9 i G {1,2,3,. . .}, a set of domains RPl C K ^ - 3 where 

a. V i , j G { l , 2 , 3 , . . . } [ i + j => Rt n Rj = 0], and 

b. 3 ? G {l,2,3,...}[(Pl>i)=>(RPl =<&)]; 

2. V /O I ,<T I G {1,2,3, . . .}, a set of bounded continuous 2 dimensional functions hPl(Tl(xQ,xi 

defined on (xo,x\) G DPl(Tl where 

a. DPiai C 3?2, 

b. V/>i,i,j G { l , 2 , . . . } [ i ^ j =4> DPlinDPlj = 0], and, 

c. 3i G { l , 2 , 3 , . . . } [ ( < 7 1 > O ^ ( £ p 1 « r 1 = 0 ) ] ; 

3. V / ? I , < T I G {1,2, ,3,...}, a set of bounded continuous 2 dimensional functions g P i a i ( h p i a i , x2 

defined on (hPlC7l,xz) £ wnere 

a. Q p i a i C 9£2, and 

b. 3 ? G { l ^ , . . . } ^ ! > 0 ( Q P l < 7 l = 0 ) ] ; 
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4. V/ 6 {2,3,4,.. .} andVpi,ai,...,pi £ {1,2,. . .}, a set of domains RPiai...Pl C ̂  2 wnere 

a. V/>i,CTi,...,/»j_i,<7i_i,i,.7 e {1,2,....} 

{} 7̂  i) ^ (-Rpi<Ti...pi_1<T|_ii l~l Rp1ai...pi-1at-1j = 0) 

b. 3? e {i,2,3,. . .}[( / 0 />i)=>(i2 P la 1 . . . .p I = 0)]; 

, and, 

5. VI £ {2,3,4,.. .} and V/3i, <7i, />2, cr2, • • • ,Y>/,cr; £ {1,2,3,. ..}, a set of bounded continuous 

2 dimensional functions hpl(Tl...Piai(hpl<Tl:..Pl_iai_1,xJ1) defined on (hPlffl...Pl_l(ri_1, xjf) £ 

Dp\o\ . . . p\o-\ where 1 

&• -Dpi (Ti ...p((T; C K , 

b. V / J i , c r i , . . . , / J i , i , j £ { l , 2 , . . . } [ ( i ^ j ) (£>pi <Ti...pii H DPlfTl,,,plj — 0)], and 

c. 3i G { 1 , 2 , 3 , . . . > i ) =^(Z>Pl(Tl.;.plffl = 0)]; 

ana", , 

6. V/ £ {2,3,4,. . .} and \/pi, ai, p2, cr2, ...,pi,at £ {1,2,3,. . .}, a set of bounded continuous 

2 dimensional functions gPla1...pial(hPla1...Plal,Xj2) defined on (hPiai„.Pl„nxj2) £ Qp^.-piai, 

where 

3- Qp\ct\...picri CL 9?", and 

b. 3? £ {l,2,3,...}[(a />i)=>(Qp 1<r 1 . . . P l f f | = 0)]; 

such that (given all of the above definitions), for any arbitrarily small emax £ St where emax > 0, 
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the following is true: 

V(x0,xi,... ,XN-I) G T>, 3lm G {1,2,3,. . .} 

(V/ G {1,2, 3 , . . . , lm}(3(pi G { l , 2, 3,...} A a, G {1, 2, 3,...}))) 

f(x0,xi,:.. ,xN_i) - \ 

(28A) 

where fl\ is defined as follows: 

i . far I = 1, ((x0,xi) G D P l ( T l A ( x 3 , . . . € RPl) =>• fi\ - gPla1(hpl<Tl(x0,x1),x2), 

i i . V/ G {2,3, 4 , . . . , lm}, if(xQ,.... ,x JV_I ) G tree branch p\o~\... p\o-\ (note that the concept of 

"(x0,..., xTV-I) an element of tree branch p\o~\ ... p\a\" is defined on page 119), then 

— 9pi<jj...pi<Ti(ll P\(J\ ...pi<Tl V'Pl (Tl...p(_lCT(_l , Xjl ) 5 XJ2 ) • (29k) 

Proof: The proof of T H E O R E M II is based on constructions of the functions hPlCru_,Pl(Tl 

and g P i a i . . . p m , and the domains RPl(7l...Pl ' and DplCTl,„piCTl (for all / G {1,2,3,.. .} and 

V/9i, a i , . . . , pi, ai G {1,2,3,. . .}). These constructions are given in CONSTRUCTION V of 

Appendix D. 

L E M M A I: Let (x\, x\,..., x1

N_1) G $Nr3
 be a single point which satisfies equation (83A). 

Then there exists a domain RPl C $tN~3 such that (x\, x\,..., x\f_i) G RPl and the conditions 

of STEP 3.ii of CONSTRUCTION V are satisfied. 
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Proof of L E M M A I: Let 7 G 3? such that 7 > 0. Then, define the domain RPl as follows: 

RP1 = {(xi,...,xN_1)\((x3,...,xN_1) G ^ " ^ A 

(3(x0,xi,x2)[(x0,... G 2>])A 
(30A) 

( | | (x 3 , • • - , X N - l ) - (xl, • • • ,XN-l)\\ < 7 ) A 

(Vi G { 0 , . . . , / 9 i - 1 } [ ( X 3 , . . . , X J V _ I ) 

Note that one can always choose a domain RPl which satisfies the above condition because the 

domain T> of the function being approximated, is dense, and because equation (83A) is true. 

Note that the above RPl, by definition, satisfies the condition of STEP 3.ii.a and the condition 

of STEP 3.ii.b of CONSTRUCTION V. 

Given the above definition of RPl, for 7 = 0 equation (85A) becomes: 

VPl(xo,xi,x2) = f(x0,xi,X2,xl,x\ . . . ,x1

N_1). (31A) 

Because f(xo,x\,..., XJV-I) is continuous within the dense domain T>, it follows then that as 

7 approaches zero, 

r n , ax |7 ?

P l (a ;o ,x i ,X2) - /(a; 0, x i . • . , XN-I)\ 0. (32A) 

By the definition of continuous functions, this implies that VPl(xa,xi,x2) is also continuous. 

Thus, because the domain V is dense, there must exist a 7 > 0 such that equation (88A) is 

satisfied. Therefore, there must exist a domain RPl which satisfies the condition of STEP 3.ii.d 

of CONSTRUCTION V. 

Finally, if one chooses any value of 7 > 0 which satisfies equation (88A), then the condition 

of STEP 3.ii.c of CONSTRUCTION V is also satisfied because RPl is dense and because the 
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domain V of the function being approximated, f(xo, x \ , . . . ,XN-I), is also dense and finite in 

size. 

This completes the proof of L E M M A I. 

As shown in the proof of L E M M A I, the function VPl (XQ,X\, X2) is continuous and therefore, 

by T H E O R E M I, the construction in STEP 3.iii of CONSTRUCTION V is valid. Also, by 

T H E O R E M I, the functions hpi\,(xQ,xi) and gPlb(hPlb,x2) a r e continuous and therefore the 

function fPltTl(x0,xAr_1), constructed in STEP 3.iv of CONSTRUCTION V as 

/ p i ( T i ( » 0 , • • • ,xN-l) = f(x0, • • • ,xN-l) ~ 9p1aAflPi(rAx0,xl),x2), (33A) 

is also continuous within the domain D o m P l ( T l . Note that, because the domains DPl(Tl,RPl,U 

and V are all dense and of finite size, then by STEP 3.iv of CONSTRUCTION V, the 

domain Dom,,^, is also dense and of finite size. Also, by T H E O R E M I and STEP 3.iv of 

CONSTRUCTION V, the union of the domains D o m P l ( 7 l span the domain V; i.e. 

V= | J D o m i ; . (34A) 

i € { l , 2 , . . . } 
j G { l , 2 , . . . } 

Next, by T H E O R E M I and STEP 3.iii of CONSTRUCTION V, the following is true: 

max \VPl(x0,x1,x2) - gPla1(hpi<Tl(x0,x1),x2)\ < ep. (35A) 

Thus, given that equation (88A) of CONSTRUCTION V is satisfied, one can rewrite equation 

(88A) as follows: 
max | / ( . T 0 , • • • . Z J V - I ) - VPl{x0,xi,X2)\ + 

max \VPl(x0,xi,X2) - gPl<,1(hPl<Tl(xo,xi),X2)\ < P • ( m a x \f(x0,...,xN_i)\ 

(36A) 
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Using the Schwartz inequality, the above equation becomes: 

f(x0,. . . ,XN_I) - VPl(x0,xi,X2) + VPl(x0,x1,X2)-max 
Dom„, 

9Pla1(hPla1(xo,xi),x2) < f3 • ( max \f(x0,..., aw_i) | I, 
\ D o m w a i J 

(37A) 

or, simplifying the equation, one gets 

f(xo, • • • ,XN_i) - gPla1{hpia1{xo,Xi),X2) max 
Donip l C T l 

< 

(3 • ( max \f(x0,. . . , 2 . ^ - 1 ) 1 , , 
,Dom P 1 CTj 

(38A) 

which can be expressed as 

max 
Dom 0 . a 

fPlCTl(xQ,...,xN-i) < / ? • ( max \f(x0,. . . , X J V - I ) | ) • 
Dom„, CT1 

(39A) 

Now consider the statement and proof of L E M M A II. 

L E M M A II: Let (x^,..., x\N_^j £ $tN~2 be a single point which satisfies equation 

(94A). Then there exists a domain RPl(J-i...pt_lUl_lPl C such that (x^,..., x}N_^J £ 

RPlai...Pl-1ai-lPl and conditions o / S T E P 7.iiL2 of CONSTRUCTION V are satisfied. 

Proof of L E M M A II: The lemma is first proven for the case / = 2. Let 7 £ 9£ such that 

7 > 0. Then, define the domain R P l ( T l P 2 as follows: 

R j (xil,. . •, XiN_2) I ( 2 ^ ,. . ., X{N_2) £ 3? ^ 

(3(xjl,Xj2)[(x0,.\. .,xN_i) £ D])A 

( ( X Q , . . . , XN-I) £ tree branch pia\)A 

A 

(40A) 

. ) - ( 4 . - ^ L ) | < 7 ) A 

(Vi £ {0,...,/)2 - l}^,-,,...,^^) ^ i2pi f f l i ] )}-
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Note that one can always choose a domain RPlfflP2 which satisfies the above condition because, 

as shown above, the domain, D o m P l ( r i , of the function being approximated, fPlUl (^0, • • •, xN-i), 

is dense and because equation (94A) is true. Note that the above RPiaiP2, by definition, satisfies 

the condition of STEP 7.iii.2.a and the condition of STEP 7.iii.2.b of CONSTRUCTION V. 

Given the above definition of RPl(TlP2, for 7 = 0 equation (97A) becomes: 

^Pi<TlP2{hpL!TL,X2,X3) = fPl„1(xl,x\,x2,X3,x\,...,x1

N_1). (41A) 

Because the function being approximated, fpuTi(xo, • • • ^ ' J V - i ) . is continuous within the dense 

domain D o m P l ( T l , and because the function hpj(Ti is continuous (as proven in T H E O R E M I), it 

follows then that as 7 approaches zero, 

max \VPllXlp2(hpLLTL,X2,X3) - fPl(Tl (an, a i , • • •, z / v - i ) | -» 0. (42A) 
PI "\ P 2 

By the definition of continuous functions, this implies that VPl<Tlp2(hPl(Tl, X2, £ 3 ) is also contin­

uous. Thus, because the domain DomPl(Ti is dense, there must exist a 7 > 0 such that equation 

(100A) is satisfied. Therefore, there must exist a domain -Rp 1 ( T ] / 9 2 which satisfies the condition 

of STEP 7.iii.2.d of CONSTRUCTION V. 

Finally, if one chooses any value of 7 > 0 which satisfies equation (100A), then the condition 

of STEP 7.iii.2.c of CONSTRUCTION V is also satisfied because RPl(7lP2 is dense and the 

domain D o m P l J ] of the function being approximated, fpl<Ti (xrj, • • •, xN-i), is also dense and 

finite in size. 

This completes the proof of L E M M A II for the case / = 2. The proof of L E M M A II for 

the cases / 6 {3,4,...} is given next. 
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As shown above, the function VPl(jlP2(hPiai,x2,£3) is continuous and therefore, by THE­

O R E M I, the construction in STEP 7.iii.3 of CONSTRUCTION V is valid. Also, by THE­

O R E M I, the functions hPiaiP2(J2 and gPlalP2a2 are continuous and therefore the function 

fpi<TlP2a2(xo, S J V - I ) , constructed in STEP 7.iii.4 of CONSTRUCTION V as 

fpi<Tip2cr2 (XQ, • • • , a-'Af — l ) = jPl <7] (XQ, . . . , Xyyr_ 1 ) —- gplu\P2a2 Olpi<Tip2cr2 5 ^ 3 ) , (43A) 

is also continuous within the domain DomPlCJlP2CT2. Note that, because the domains 

Dpi<TlP2cr2, R P l a i P 2 , U and V are all dense and of finite size, then by STEP 7.iii.4 of CON­

STRUCTION V, the domain Dom P l 

o\p2o2 is also dense and of finite size. Also, by T H E O R E M 

I and STEP 7.iii.4 of CONSTRUCTION V, the union of the domains D o m P l ( T l P 2 ( T 2 span the 

domain D o m P l ( T l ; i.e. 

D o m p i ( T l = [ J D o m P l ( T l i r (44 A) 
^ { 1 , 2 , . . } 
./ G {1-2....} 

Therefore, given that fPl<jlP2cr2(xo,... , xyy_i) is continuous within the dense finite domain 

Dom P l ( T l p 2 ( T 2 , the proof of L E M M A II for the cases / £ {3,4,...} follows by induction the proof 

for the case / = 2. Note that for / £ {3,4,...} the domains R P i a i . . . P l are constructed as follows: 

Rpl<T1...Pi — {(^ii? • • • , xix-i)\{x%\i • • •) xiN_2) E 2 A 

( 3 ( X J I , . T J 2 ) [ ( X 0 , . . . ,ia?AT_i) £ D]) 

((xo, • • •, XN-I) £ tree branch p\(?\ ... /0/_i<7/_i)A (45A) 

||(x,-,,..., xtN_2) - (xl,..., x\N_2) || < 7A 
Vi £ {0,. . . ,pi - l } [ (x . t l , . . . , x J N _ 2 ) i RPl<j1...Pl„1cTl-1i] }• 
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Also, note that, by induction, and by T H E O R E M I and STEP 7.iii.4 of CONSTRUCTION V, 

the union of the domains DomPl(Tl...p((T( span the domain Domp 1 < 7 l... ( 0 (_ l O- l_ 1; i.e. 

Dom P l ( r i...p I_ 1 ( r i_ ] = ( J Dom / ? l 0 . 1 . . . w _ l £ r , _ 1 i r (46A) 
z G { l , 2 , . . . } 
j G { l , 2 , . . . } 

This completes the proof of L E M M A II. 

Next, by T H E O R E M I, and STEP 7.iii.3 of CONSTRUCTION V, the following is true for 

the case 1=2: 

x3)\<ep. (47A) 
Uom CTJ P2 a~2 

Thus, given that equation (lOOA) of CONSTRUCTION V is satisfied, one can rewrite equation 

(100A) as follows: 
max \fp1<T1(xo,...,xN^i)-/Pp1a1p2(hp1„1,x2,xs)\ + 

UOHlp^ tjy P2&2 

max \/Pp1<rip2 (x0, xl, X2) — Qp^ai P2O2 i]lPi<JiP2(T2 {hpitri, x2), xz) I 5i (A<2\\ 

P - I max |/p l C T l(a 
y J J O I T l p ^ cr^ p2 o"2 

[ . T 0 , • • • , z / y _ i , 

Using the Schwartz inequality, the above equation becomes: 

/PI<TI(ZO, • • • ,xN-l) - Vpl(Tlp2{hpiUl1X2,xz)+ max 
DomPlCTlP2 CT2 

~Ppi<J\P2 {xG-> xli x2^ 9p\o\p2<72 ( ^ p i T 1 P 2 U 2 {hpi&i, x2~) 1
 xs) 

P-[ max \fPiai(x0,... ,xN_i)\], 

< (49A) 

or, simplifying the equation, one gets 

max 
Dom P i a 1 P2 "2 

fpiUl {X0l • • • 5
 XN — l ) 9pi<TlP2<72 0lPl<riP2&2 ( ^ P l « T l ,

 X2)l XZ) < 

P-\ max \fp1<Tl(xo,. . . ,xN-i] 
. L/OITlrti <T 1 Do (TO 
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Therefore, for the cases / £ {3,4, . . .} , it follows by induction that 

jp\G\...px-xUl-x (X0l • • • )  XN —1)~ Dom 
max 

Qp\<J\...plVl {]lpi(Jl...pi<Tl (hpi<Tl...pi-lCTl-l ) Xjl)-I XJ2) 

(3 • I max \fpi<JI••.pi-i(Ti-i{xQi • • • •>  x N ) 
\ D o m P 1 C T 1 . . . p 1 ( r ( / 

(51 A) 

or, simply, 

Dom 
max fp < Ip\<Ti...pi<jXxQi • • • ixN—l) 

(3 • [ max \fPl<T1...Pl-1cTl-.1(x0,-••,xN-l)\)' 
\DomPiai...Pl<Tl J 

Thus, given equation (39A), it follows that 

(52A) 

Dor 
max 
11>\ "i • • • PI 

fpi(Tl...pi(Tl{X0-> • • • 1  X N — l) </? ' • ( max | / ( s 0 , • • -,XN-l] 
Dom, 

(53A) 

Therefore, because 0 < (3 < 1 and because the function being approximated, f(xo,. • . , Z J V - I ) 

is bounded, it follows that there exists an / E {1,2,...} such that, for any arbitrarily small 

> 0, 

(3 • max |/(x0,...,a;jv-i)| <£r 
\ Dom c 

(54A) 

Thus, because equation (34A) and equation (46A) are true, it must be the case that equation 

(28A) of T H E O R E M II is satisfied. This completes the proof of T H E O R E M II • . 
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Appendix C. Rate of Convergence 

The approximations developed in the previous two appendices are here be applied to 

nonparametric regression. 

Let (X, Y) be a pair of random variables such that X is of dimension TV, where iV > 3, 

and Y is of dimension one. Let 6(X) = E(Y\X) be the regression function of Y on the 

measurement variable X. Let 9n, n > 1, denote an estimation of 9 given the n random samples 

(Xu Yi),..., (Xn,Yn) of the distribution (X, Y). 

Let the estimators 9n be based on the nonparametric model given in equation (23A) of 

Appendix B. Let the two dimensional functions gPl<r1...pl<rl and hPl(Tl,,,Pl(Tl of 9n be constructed as 

defined in CONSTRUCTION V of Appendix D with 0(x) = / (x ) , x = (x0, xi,..., xN_i) G V. 

Assume that the function 9 = f, and the domain V, are as defined in T H E O R E M II, with the 

additional constraint that 9 is p-times differentiable (p > 1) on V. 

As defined in [Stone, 1982], assume that the distribution of Y depends on the value of the 

measurement variable x and takes the form h{y\x.,t)4>(dy), where <f> is a measure on 9t and 

t = 0(x) is the mean of the distribution as defined by: 

T H E O R E M III: Assume that conditions 1-3 defined in [Stone, 1982] are true. Assume that 

9 and 9n are as defined above. Then, there exist a finite set of dense domains Sk C V, where 

k G { 1 , . . . , K} (K finite), and | J Sk = T>, such that, given n random samples of 9 from any 

(55A) 

K 

k=l 
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9 — 9n < 0 ^ ( n ) 1 log (n)^ where domain S}., the rate of convergence of 6n to 9 on Sk is 

r = p/(2p + 3). 

Proof: Because the dense domains D o m p i ( T l P i ( T i are finite in number and span V (see 

equation (46A)), in order to prove this theorem, it is sufficient to establish the rate of convergence 

of the error functions fpitJi pl(Ti(xo-> • • • > xN-i)> where n is the number of random samples from 

the corresponding domain 5& = D o m p i ( T l . . . P l f f r As defined in equations (91A) and (103A) of 

CONSTRUCTION V in Appendix D, the error function after the construction of / levels is 

given by: 

fp1*1...pl*l(xo, • • -,xN-i) =9(x0,... , X J V - I ) - 9pla1{hp1ff1(xo,x1),x2) + 

9p\<J\P2ff2\'lp\<JiP2'J2 (hpiai,X2),Xi) + 
I 

^^9pi(Ti...ai(hp1<T1...tTi(hp1<Ti...(T{i^1),xri mod w ) ) ' x ( ( ; + i ) mod w ) ) > 

(56A) 

We prove T H E O R E M III by showing that \\f^1<ri...pi<ri(x0, • . . , xN-i)\\OQ < O^n)'1 log ( n ) ) " 

given n random samples from the corresponding domain Sk = Dom P l ( T l . . . P i C T r 

As defined in CONSTRUCTION V of Appendix D, the functions hPiai,,.Pl(Ti and g P l o 1 . . . p l ( j l 

in (56A) are constructed from the 3 dimensional functions VPl and VPiai...Pl_1(xl_lPl (see 

equations (85A) and (97A)) which are in turn constructed from the function 0(x) = / (x) 

being approximated. However, 0(x) is unknown, and therefore, VPl and VPlUl...Pl_xUl_lPl must 

be approximated from n random samples from the domain TPl I) D o m P l ( T l and TPl(Tl...Pl D 

Dom ( 0 l f f l . . . P j ( T i respectively (see equations (87A) and (98A)). We denote this by defining Vpi and 

^>p1<T1...pi-1ai-1pi
 t 0 D e approximations of VPl and VPl<Tl...Pl_1<Tl_ipl, respectively, based on n from 
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there respective domains. The following lemma establishes the optimal rate of convergence for 

the estimation of \\VPl - ^ " J ^ and \\VPiai...Pl_1(ri_lPl - V^iai_pl_1<Tl_lPl W^, as a function of 

n random samples. 

L E M M A III: Let the functions VPl andV pitJl^.Pl_1(Tl_lPl, for all I £ { 2 , . . . , lm}, be estimated 

using the local average estimator of [Stone, 1982]. Then the optimal L°° rate of convergence of 

each estimator Vp\ and VpiCTl...Pl_l(Tl_lPl *s C ( n _ 1 logn) r , where r = p/(2p + 3), and n is the 

number of points used in constructing the estimator. 

Proof of L E M M A III: This lemma is proven by showing that, given the assumption in 

Theorem III, all functions VPl and Vpi(7l,,,pi_1(7l_ipi meet the conditions defined in [Stone, 1982]. 

First consider the estimation of VPl. By equation (85A) and equation (55A), the expected value 

VPl takes the following form: 

/ 6(x0,xi,..., 

VPl(x0,xi,x2) 
R, •PI 

pi 
R, •PI (57A) 

Therefore, the distribution of VPl is of the form 

/ -h(y\-x.,t)dRPl 

<f>(dy). (58A) 
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Because (58A) is an appropriately scaled version of h(y\x.,t)</>(dy), it follows that given that 

h(y\x.,t)<f>(dy) meets conditions 1-3 defined in [Stone, 1982], then the distribution in (58A) 

must also meet these conditions. Also, note that because 6 is p-times differentiable, then given 

the above calculation, it must be the case that VPl is also p-times differentiable. Therefore, 

given that VPl is a p-times differentiable 3 dimensional regression function, then by Theorem 

1 of [Stone, 1982], the optimal L°° rate of convergence is \\VPl — ̂ " J l < O ( n _ 1 l o g n ) r , 

where r = p/(2p + 3). 

Next consider the construction of the 2 dimensional functions hPl<Tl and gPl(Jl in STEP 3-iii of 

CONSTRUCTION V, and functions hPltTl...PltTl and g P l t T l . . . P l t r i , for all / £ { 2 , . . . , lm}, in STEP 

7.iii.3 of CONSTRUCTION V. As defined in CONSTRUCTION III and CONSTRUCTION IV, 

these functions are constructed using linear interpolation based on VPl. Because of equations 

(91 A), (97A), and (103A), in order to complete the proof of L E M M A III, we must ensure 

that the 2 dimensional functions h P l ( T l , g P l t T l , hPl/Jl...Plljl and gPxcx...Pla{ are at least p-times 

differentiable (that being the number of times that the regression function 9 is differentiable). 

Without loss of generality, this condition can be satisfied by representing h P l C T l , gPlCTl, hPl(Tl.„PllTl 

and gPlCj1...Pl(jl, for all / £ { 2 , . . . , lm}, using, for example, 2 dimensional spline approximations, 

of differentiability p or higher (i.e. instead of the linear interpolation scheme defined in 

CONSTRUCTION III and CONSTRUCTION IV). 

Given that the functions f 1

p

l

l C J l . . . P l _ 1 c T l _ 1 of equation (97A) are at least p-times differentiable, 

the proof of the lemma for the functions VPiai...pl_iai_lPl, for all / £ { 2 , . . . , l m } , follows the 

same steps outlined above for VPl, and is therefore not be presented here. This completes the 
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proof of L E M M A III. 

Given L E M M A III, we can establish the rate of convergence of the error functions 

fp1<T1...plai(xo-,---->xN-i)- Consider the rate of convergence of the first function fPl<Jl. Us­

ing an analysis similar to that found in [Barron, 1994] and referring to CONSTRUCTION V of 

Appendix D, the norm of /™1(Tl is given by (unless otherwise stated, the Loo norm is over 

the domain of the respective function fPl(Tl,,,P[ai(xo, • • • ,xN-i), for a H / = 1, 2,.. .): 

\\r;^ L ^ II / - ^ " o o + \\vP1 - vn

pi L (59A) 

Letting ep = \\VPl — ̂ " J l < 0(ji~l \ogn)r and using equations (88A) and (39A), equation 

(59A) can be written as: 

n 
P iM o o < m\oo + *v (60A) 

In order to guarantee convergence we choose an a 6 $ such that 0 < (3 < a < 1 and equation 

(60A) satisfies: 

1 1 / ^ 1 1 0 0 ^ 1 1 ^ 0 0 + ^ < « l l * l l o o ( 6 1 A ) 

Similarly, the Loo norm of f P l ( T l P 2 ( T 2 is given by: 

||/pi<7lP2<T2 lloo — 11/piO-l ~~ ^ V ^ ^ H o O + H^PlO-lPS ~~ ^ P i <7i p2 \ | QQ (62A) 

Once again, letting ep = \\VPl(7lP2 — ' P p i a l P 2 ^ O ( n _ 1 l o g n ) r and using equations (100A) 

and (50A), equation (62A) can be written as: 

11/pUp, J o o ^ J L + **< "WK* lloo ^ « 2 | ^ l l o o (63A) 
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Thus, by induction, the norm of /p 1 < T l... P ( ( T i is given by: 

\\fn I I < l l f ™ —v I I 4-Wv -Vn I I 
|| J p1a1...pi<ri\\00 — \\J pi<Ti...pi-1cn-i ' picri—pi IIQQ ~ \\' p\<J\...pi r p 1 a i . . . p i \ \ 0 0 

<P\\fp\,1...Pl-1*l-1\L + h (64A) 

< « l l / ; 1 . 1 . . . p I _ 1 . I _ 1 I L < « ' P i i 0 0 

Therefore, construction stops at level / when, at level / + 1, equation (64A) is no longer true; 

this is defined by the following condition: 

| | i p i < 7 i . . . p i < T i H o o — l ^ \ \ f p 1 c r 1 . . . p i - i a i - 1 IIQO + eP — a l l ^ l l o o 

A N D (65A) 

\\fpiCT1...pi+1al+1 IIQQ ^ a Halloo 

The stopping condition given in equation (65A) is met if and only if the number of points used in 

constructing Vpir7l...piaipl+1 is insufficient for error reduction; in other words, the following is true: 

I K . , . . P , + 1 - ^ ; U . . . P J L < o(n-Hogn)r i H I / P % , . . P J L -0\\&w,\L (66A) 

Using the inequality \\fp,fTl...pl_lCTl_1\\oo < a1 l\\9\\OQ, then for all fp1(7l„.pl(7l satisfying equation 

(64A), the following is true: 

/ ^ ' - ^ I L + ̂ a ^ l L (67A) 

Solving equation (67A) for a^PHoo, we get: 
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Using the inequality ||/™1<Tl...P(_ : 1 (T(_11|^ < of 1\\0\\OQ, and inserting equation (68A) into equation 

(64A), we get the final result: 

H/piaL.-Pif f lHoo ^ P a

 V_ p + 6P 

< (9 (n _ 1 log n) 

This completes the proof of T H E O R E M III • . 
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Appendix D. The Main Theoretical Constructions 
CONSTRUCTION I: The Construction of V 6 (x ,y) , W 6(V 6 ,z), and S 6 

STEP 1. Choose 6. > 0 (8 £ 9fc) such that V(xx,yi, zi),(x2,y2, z2) £ U, if 

IK^i,Vi,zi) - (x2,y'2,z2)\\ < 8 • y/2, then 

\U(x1,y1,z1)-U(x2,y2,z2)\ < | . (70A) 

STEP 2. Create a uniformly spaced grid of points in 3?3 at all points (/ • 8,m • S,n • 8), such 

that / ,m ,n £ 1. Define the set U to be 

U =•{(*, m,ri)|(Z,m,ra £ 1) A ((/ • 8, m • 8,n • 8) £ U)}. (71A) 

[Thus the set U contains all points which are within the set U and which lie on the 

uniformly spaced grid of points in 3?3 defined above. (Note that the italic text within 

the square brackets indicates comments.)] 

STEP 3. Define the set T i to be 

T i = {( / i ,mi ) | ( / i ,mi £ 1) A (3n £ mun) £ U])}. (72A) 

[The set T i represents the set of all one dimensional functions U{1\ • 8, mi • 8,n • 8), 

where (l\,m{) £ ~X\.] 

STEP 4. Let 6 = 1. 

[The index b indicates that discrete functions Vft(x,y) and W J ( V J , Z ) , along with the 

discrete set S& are constructed.] 
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STEP 5. Choose an arbitrary point (!o,mo) G T j . Construct the set Sj such that: 

a. S 6 C T f c. 

b. (k,m0) G Si; 

c. V ( / i , ? ? 2 i ) E Sj, the 1 dimensional functions U(l\ • 8,mi • 8,n • 8) form an S-

ordering as defined above; 

d. V( /2 ,m2) G T fc [ ( / 2 , « i2 ) 0 the 1 dimensional functions U(h • 8, rn2 • 8, n • 8) 

cannot be inserted within the S-ordering of the 1 dimensional functions 

U{li • 8, mi • 8,n • 8), where m i ) G S;,. 

[Thus the set Sb represents an S-ordering of the functions U(li • 8, mi • 8,n • 8) 

(V(?i,mi)"e Sb).] 

STEP 6. Let C S 6 be the set of all points (J1,?™1) G Sfe which are first in the S-

ordering of the 1 dimensional functions U(l • 8,m • 8,n • 8) (V(/, m) E Sb). Similarly, 

Vp G { 2 , 3 , . . . , p m } , let Vf C Sfc be the set of all points (lp,mp) G Sfc which are 

in position p of the S-ordering of the 1 dimensional functions U(l • 8,m • 8,n • 8) 

(V(/, m) G S 6). E X E C U T E the following steps: 

i . V ( / 1 , m 1 ) G set the value of the 2 dimensional function Vj to be 

V ^ / 1 -8,ml -8) = 0. 

i i . Let p = 2. 

i i i . WHILE p < pm E X E C U T E the following steps: 
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1. Let (p-^mP-1) G V p 1 . V(lp

}mp) G VP

b set the value of the 2 dimensional 

function Vb to be: 

Vb(lp -8,mp-8) = V^P-1 • W 1 • 8) + a, (73A) 

where 

a = \\U(lp-6,mp -8,n- 8)-U(lp~1 • 8,mp-1 • 6,n- 8)\\ 

2. Let p = p + 1. 

(74A) 

Vp G { l , 2 , . . . , p m } , V(lp,mp) G Vf and Vn such that G U, set the 

value of the 2 dimensional function Wj to be: 

W F E ( V 6 ( / P • 6, mp • 8), n-8)= U{lp • 8, mp -8,n-8). (75A) 

[Therefore, at all points (/ • 8,m • 8,n • 8), where (/, m) G Sb and n G 

I [(/, ra, n) G U], the function WJ(VJ(Z • 6, m • <5), n • <5)« egua/ to the function 

U(l • 6,m • 8,n • 8).[ 

Define.the set Qb as: 

Q& = j(<*,/3)|Vp G {1 ,2 , . . . ,pm} j v ( / p ,m p ) G V£ 

[Vn such that (lp, mp', n) G U (76A) 

[(a = V 6 ( P - 6 , m p • 8)) A (ft = n • 8)]\ 

[Therefore, Qb contains the set of all possible independent variable values of the 

function Wb(Vb,n • 8).[ 
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STEP 7. Let 6 m a x = 6. 

[bma.x represents the current maximum number ofVb(x, y) and W J ( V J , z) functions, and 

Sb sets.] 

STEP 8. Let 6 = 6 + 1 . 

[Thus the next set ofVb(x,y) and l/lb(yb,z) functions, and. the next set Sb will be 

constructed next.] 

STEP 9. Let Tb = Tb_i - S 4 _ i . 

/T/ie se? Tj represents the set of all one dimensional functions U(lb • S,mb • 6,n • 6), 

where (h,mb) £ T i , which have not been used in the construction of the functions 

Vft(x, y) and W J ' ( V J , 2 ) , and sets Sb. W / ien Tj = 0 //ze construction is complete.] 

STEP 10. IF T f c ^ 0, GOTO STEP 5 

ELSE END CONSTRUCTION I. 

/"STEP 5 through STEP 9 are repeated until all one dimensional functions 

U(l\ • 6,mi • <5, n • S), where (h,mi) £ Ti , have been used in the construction of the 

functions Vb{x, y) and W J ( V J , 2 ) , and sete Sb.] 

C O N S T R U C T I O N II: The Calculation of the Domains Sb 

The function of CONSTRUCTION II is, given a point (x, y) £ 5t2 such that 3z[(x, y, z) £ U], 

determine which domain Sb, b £ {1 ,2 , . . . , b m a x ] , the point (x, y) belongs to. 

STEP 1. Let 

/ ? m i n = . r

m i n , [,Mn

c IK^^) - ( /-.^m-^)ll )• ( 7 7 A ) iG{i,...,omax} y^rajes, / 
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[Therefore, ', Pmin is the distance from the point (x,y) £ 9ft2 to the closest point 

(lb.8,mb • 8) where (h,mb) 6 Sb and be {1, 2 , . . . , b m a x } . ] 

STEP 2. Let ^min be the minimum value of i £ {1 ,2 , . . . , &max} such that 

(/,m)gSv (78A) 
— Pmin-

[Thus, im[n is the first i which satisfies the above condition p = pm[n. Therefore, for 

each point (x, y), there is one and only one assigned value for i m in-7 

STEP 3. Let b = imin. The point (x,y) is therefore in domain Sb.. 

[Therefore, each point (x,y) belongs to one and only one domain Sb.] 

STEP 4. END CONSTRUCTION II. 

C O N S T R U C T I O N III: The Calculation of the functions Vb{x,y) 

The function of CONSTRUCTION III is, given a point (x,y) G Sb calculate the function 

STEP 1. Given the triangular tessellations grid in Figure 3 find the triangle which contains the 

point (x, y) (if the point lies at the intersection of 2 or more triangles, arbitrarily choose 

any one of these triangles). Let (IQ • 8,mo • 8), (li • 8, m\ • 8), and (l2 • 8,m2 • 8) be 

the vertices, as defined in Figure 4, of the triangle containing the point (x,r/). Let 

Vj(/o • 8, mo • 8), Vfc(/i • 8, mi • 8), and Vb(l2 • 8, m2 • 8) be the values of the function 

at these vertices. 

Vb(x,y). 
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STEP 2. Then Vb(x,y).is calculated as follows: 

Vb(x, y) =(V 6(/i • 6, mx • «S) - Vj(/ 0 • 8,mQ • 8)) • S * ( X - J ° ' 6> + 

(79A) 

(V 6 (/ 2 • 8, m 2 • 8) - V 6 ( / 0 • 8, m 0 • 6)) • * * ( y ~ ™° ' ^ + V 6 ( / 0 • 8, m0 • 8), 

where for an upper triangle (as defined in Figure 4) sx = sy = — 1 and for a lower 

triangle sx = sy = +1. Note that if any of the points (/o,mo), ( I i ,mi) , or (h,^) 

are not elements of then the value of Vj at that point must be chosen such that: 

a. Vz,j G {0,1,2} \\Vb(li-6,mi-6)-Vb(lj • f>,mj • 6)\\ < 8 , and 

b. the resulting surface Vb(x,y) ((x,y) E Sb) is continuous. 

[Therefore the function Vb(x,y) is calculated as a linear interpolation between the 

vertices of the triangle which contains the point (x,y).] 

STEP 3. END CONSTRUCTION III. 

C O N S T R U C T I O N IV: The Calculation of the functions Wb(Vb(x,y),z) 

The function of CONSTRUCTION IV is, given Vb(x,y) and z, where (x,y,z) E U, calculate 

Wb(Vb(x,y),z). 

STEP 1. Given the triangular tessellations grid in Figure 5 find the triangle which contains the 

point (Vb(x, y), z) (if the point lies at the intersection of 2 or more triangles, arbitrarily 

choose any one of these triangles). Let (Vj0,nn • 8), [Vbl,ni • 8), and (Nb2,n2 • 8) be 

the vertices, as defined in Figure 6, of the triangle containing the point (xo,yo). Let 

Wj(V60,no • 8), Wj(V6j,ni • 8), and Wfc(Vj2,n2 • 8) be the values of the function Wj at 

these vertices. 
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STEP 2. Then Wb(yb(x,y), z) is calculated as follows: 

sv(Vb(x,y) - V f c o ) 
Wb(Vb(x,y),z) = ( W J ( V 6 l , m - 5 ) - W 6 ( V 6 o , n 6 - 5 ) ) 

<5y 

(W 6 (V f c 2 , n 2 • 5) - W 6 ( V 6 o , 77 0 -6))- S z < y Z + W 6 ( V f c o , n 0 • 5), 

(80A) 

where for an upper triangle (as defined in Figure 6) sy = sz = — 1 and for a Zower 

triangle sy = sz = +1, and 

min ||V&0 — C K | | , for sy = —1 

mm — V j 0 | | , tor sy = +1 v y 

( a , ^ ) e Q 6 , Q ' > V 6 o 

Note that if any of the points (Vbo, no • <*>), (V^, rai • 6), or (Vfe2 , n 2 • 6) are not elements 

of Qj , then the value of Wj at that point must be chosen such that: 

a. G {0,l ,2}[ | |w 6 (V 6 i ,n f - -6) - W 6 ( v 6 y , n j < f ] , and 

b. the resulting surface Wb(Vb(x,y), z), V(x, y, z)[((x, y) G Sj) A (x,y,z) G (7], is 

continuous. 

Also, if the ^ does not exist as calculated in (81 A), then choose 6y such that: 

$v = |W 6(V 6 l,rai -6)- W6(Vfco, n0-6) |. (82A) 

[Therefore the function Wb(Vb(x, y), z) is calculated as a linear interpolation between 

the vertices of the triangle which contains the point (Vb(x,y), z).] 

STEP 3. END CONSTRUCTION IV. 
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Triangular tessellations grid used to construct the function Vj(x,y). Note that there are two 

types of triangles formed using this tessellations gird: a lower triangle and an upper triangle 

(see Figure 4). 

Figure 3 Triangular Tessellation Grid for Vb(x,y) 

C O N S T R U C T I O N V: Approximating Functions of N 
Dimensions Using Functions of 2 Dimensions (JV > 3) 

STEP 1. Let Ro = 0. 

[The first domain RQ is initialized to be an empty set.] 

STEP 2. Let P l = 0. 

[The integer p\ is used as a pointer to the domains RPL.] 

STEP 3. WHILE it is true that 

3(aJ3, • • -,XN-I) 

pi 

; 3 , . . . ,XN-I) £ [j Rt I A ( 3 ( x 0 , x 1 , x 2 ) [ ( x 0 , . . . , £ J V - I ) € V]) 

i=0 
(83A) 
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2 0 

0 2 

lower triangle upper triangle 

The point £ Sfc can be located in either a lower triangle or an upper triangle of the 

tessellations grid defined in Figure 3. For both types of triangles, vertex "0" is located at point 

(fa • 8, rnQ • 8) £ IR2 and the value of the function Vj at this point is V&(7rj • 6, mo • 6); vertex 

"1" is located at point (fa • 8,m\- 8) £ !Jc2 and the value of the function at this point is 

Vj(/i • 8, mi -8); and finally, vertex "2" is located at point (fa • 8, m2 • 8) £ 5t2 and the value of 

the function V& at this point is Vb(h~ 8,m2 • 8). 

E X E C U T E the following steps: 

[Therefore, at the completion o /STEP 3, the entire domain of definition of the function 

being approximated will be spanned, along the axis (x$, x±,..., X J V - I ) , by the union 

of all the domains Ri, for all i £ { 0 , 1 , . . . , pi}.] 

i . Let pi = pi + 1. 

[This initiates the construction of the next domain RPl.] 

i i . Choose RPl C $t,N~3 such that 

Figure 4 Lower A n d Upper Triangles of Sb 

a. V ? £ {l,...,(pi-l)}[RlnRl •pi ~ 

[Thus the domains RPl are all disjoint, satisfying definition La of THEOREM 

II.] 
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Triangular tessellations grid used to construct the function VVj,(Vb(x,y),z). Note that there are 

two types of triangles formed using this tessellations gird: a lower triangle and an upper triangle 

(see Figure 6). Note also that the vertical lines are not regularly spaced: the vertical line spacing 

is defined by the value of a in STEP 6.iii of CONSTRUCTION I. 

Figure 5 Triangular Tessellation Grid for Wb(Vb(x, y) , z) 

b. 3 ( x 0 , x i , X 2 ) [ ( ( x o , x i , . . . , X J V - I ) E T>) A ( ( x 3 , x 4 , . . . ,XN-I) e RPl)], and> 

[Thus the domains RPl contain points which correspond to the domain of 

definition of the function being approximated.] 

c. The domain Rpi is dense. 

d. The boundaries of the domains RPl are chosen such that a 3 dimensional 

approximation, along the axes (x 0 , X I , x 2 ) , of the function / ( x 0 , . . . , Z J V - I ) 

within the domain RPl, is at least better than no approximation at all. Or, 

put formally, this condition is satisfied as follows. Define the 3 dimensional 



0 1 

lower triangle upper triangle 

The point (Vb(x,y),z) can be located in either a lower triangle or an upper triangle of the 

tessellations grid defined in Figure 5. For both types of triangles, vertex "0" is located at point 

(Vfc0, no • 8) and the value of the function at this point is W& (V&0,720 • 8); vertex "1" is located at 

point (Vjj ,n\ -8) and the value of the function at this point is W^V^, n\ • 8); and finally, vertex 

"2" is located at point (Vj 2 , n2 • 8) and the value of the function at this point is W&(V&2, n2 • 8). 

Figure 6 Lower A n d Upper Triangles of (Vb(x,y),z) 

function VPl(xo,xi,x2), defined on the domain 

UPl = {(x0,xi,x2)\((xo,xi,... ,XN-I) G £>) A ((x3,... ,xN_x) E RPl)}, (84A) 

to be 

J f{xo,xi,.. .,XN-i)dRi pi 

VPi(XQ,X1,X2) = 
R0 

I dRpi 

(85A) 

Ro 

Let P G 3? such that 0 < P < 1, and let tp G 3ft such that 

0 < £p < P • ( max \f(xo, • • • ,XN-I)\ ), 

where the domain TPl is defined as 

(86A) 

TPi = {{XQ,XI,. . . ,XN-i)\{[xQ,Xi,.. . ,XN-\) G V) A ((x3,£4, • • • € RPl)}-

(87A) 
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Then, the domains RPl must be chosen such that 

max \f(x0,... , X J V _ I ) - VPl(x0, x1} x2)\ + ep < 0 - ( max | / ( x 0 , • • . , x ^ - i ) | ) • (88A) 

[In LEMMA I it is shown that such a domain Rp^ must exist. The proof of 

LEMMA I is based on the construction of a domain RPl which satisfies all of 

the above conditions.] 

i i i . Let W(x, y , z) = VPi(XQ,XI,X2) and 

U = { ( . T , y , 2 r ) | ( ( x 0 , . . . , x 7 v - i ) G Z>) A ( ( x 3 , . . . , X J V - I ) G # P l )A 
(89A) 

( x = x 0 ) A (y = X i ) A (z = x2)}. 

Use CONSTRUCTION I, CONSTRUCTION II, CONSTRUCTION III and CON­

STRUCTION IV to construct the functions Vb(x, y) and W&(V&, z), and the domain 

Sb (V6 G {1 ,2 , . . . , 6 m a x } ) . Note that the e used in CONSTRUCTION I must be 

chosen to satisfy equation (86A) of this CONSTRUCTION; i.e. t < tp. For all 

be {1 ,2 , . . . , 6 m a x } , let hpib(xQ,xi) = Vb(x,y), g P l b ( h p i b , x 2 ) = Wb{Vb,z), and 

D P l b = Sb. Also, V6 € { ( 6 m a x + 1), (femax + 2),...} let D P l b = 0. 

[Thus the domains D p i b and the functions hpib(xo, x-y) satisfy definition 2 of THE­

OREM II, and the functions gPlb(jlplb-> x2) satisfy definition 3 of THEOREM II (for 

all b G { l , 2 , . . . , 6 m a x } | 7 

iv. For all a\ G {1 ,2 , . . . , 6 m a x } define the N dimensional function 

fPl(Tl (x0,..., xN_i), V ( x 0 , • • • , Z J V - I ) G Dom p i ( 7 ] where 

Dom P l £ r i = { ( x o , . . . ,XN-I)\((XQ, . . .,xN-x) G V) A ( ( x 3 , x 4 , . . . ,XN-I) G -R P l)A 
(90A) 

( ( x 0 , x i ) G I>p1(Ti) A ( ( x 0 , x i , x 2 ) G UP1)}, 
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as 

fp1(ri{xo,. • • ,xN_x) = f(x0,... ,XAf - i ) - gPla1(hp1<7l(xo,xi),X2). (91A) 

[Thus, the function fPiai (xo, • • •, £ J V - I ) represents the approximation error along 

branch p\G\ for the case lm = 1 /n equation (28A) of THEOREM II. Note that if 

max l / p i o - i (aJo, - - • , ^ J V - i ) | < ^ m a z , (92AJ 
V ( x o , . . . , x N - i ) 6 D o m p i [ r i 

r/ien r/ie approximation along branch pi&i is complete and the branch need not be 

extended.] 

STEP 4. Vz G {(pi + 1), (pi +2),...}, let Rt = 0. 

[This satisfies definition Lb of THEOREM II] 

STEP 5. Let / = 2. 

[This initiates the construction of level I = 2 of the approximation tree.] 

STEP 6. Leu ' i , i 2 , . . . , * ' jv-2 G {0,1, • • •,-/V - 1} and j i , j 2 6 { 0 , 1 , . . . , TV - 1} such that, 

a. j i = (/ mod (TV - 1)), and j2 = ((I + 1) mod (TV - 1)); 

b. Vm, n G {1 ,2 , . . . , TV - 2} [(m ^ ra = M m / i „ ) A ( m > n im > in 

)]; and, 
c. Vm G {1, 2,..-., TV — 2} A Vn G {1, 2}[im + Jn]. 

STEP 7. For all P i , c ^ , . . . , / > / _ ! , c r ^ G {1,2,3,.. .} and (note that for the case / = 2, 

Pi,°~i,.. - , p i - i is read as P l , and /3 I ,<JI , ... , / > j _ i , <T/_X is read as / > i , c r i ) 

V(xo, • • • , £ j V - i ) G tree branch p \ o \ . . . p\-\Oi_\, such that 
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a. 

max \fp1a1...Pl_1ai-1{xo,---,XN-l)\> tmax, (93A) 
( i o , . . - , W - i ) € D o m w „ ] . . . P i _ 1 j | _ 1 

where the domain Dom P l< 7 l... P (_ 1 ( 7 (_ 1 is defined in STEP 3.iv and STEP 7.iii.4 of 

this CONSTRUCTION, and, 

b. ^ 0 and •D P l < r i . . .p,_ l f f |_ 1 7̂  0, 

E X E C U T E the following steps: 

[The goal of the following steps is to continue the construction of the tree until each 

branch has an approximation error which is less than the maximum allowable error. 

The steps executed are similar in function to the first 4 steps of this CONSTRUCTION, 

with the exception that the function being approximated at branch pi, a\,..., p / _ i , c / _ i 

is denoted by fp1<Jl...pl_iai-l [xo, • • • ,xN-i)J 

i . Let i? P l ( T l . . .p ,_ 1<Ti_iO = 0-

[The first domain RPla1...Pl_lai_lo = 0 is initialized to be an empty set.] 

i i . Let pi = 0. 

[The integer p\ is used as a pointer to the domains RPla1...Pi-1<Tl-iPr] 

i i i . WHILE it is true that, 

^(Xil !••••> XlN-2 ) 

(3(xn, xJ2)[(x0,..., X J V _ I ) G DA (94A) 

(.TO, • • • , XN-l) £ i r c c b r a n c h p i (Tl . . . / 9 / _ l C T ^ _ l J 

' Pi 
(.Tjj, . . . , X{N_f) Rpia1...pi_1(rl-ii I A 
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E X E C U T E the following steps: 

[Therefore, at the completion of STEP 7.iii, the entire domain of definition 

of the function fPla1...Pl_1(Tl_1 (so, • • •, xN-l) be spanned, along the axis 

(xix,xl2,...,XiN_2), by the union of all the domains R P l t T 1 . . . P l _ l t j , _ 1 i , for all 

i G {0 ,1 , . . . ,pi}. Note that the goal of this step is similar to goal of STEP 

3.7 

1. Let pi = pi + 1. 

[This initiates the construction of the next domain RPltJl...Pl_1(Jl_lPl-] 

2. Choose R P l ( T l . . . P l _ 1 c T l - l P i C $lN~2 such that 

a. \/i G {1, ...,(/>; — 1)} [Rpicr1...Pi_1cri-1i H Rpiai...Pi_1ai-lPi = 0] * 

[Thus the domains R p u T l . . . p l _ 1 c T l _ l P l are all disjoint, satisfying definition 

4.a of THEOREM II] 

b. 3(xn,xj2)[((x1,.. .,xN) G D)A 

{(XQ, xN_x) G tree branch p\o-\ ... cr/_i)A 

( ( X i l , • • • , X i N - i ) ^ 7?p1(7l ...Pl_y(Tl_lPl)\ 

and, 

[Thus the domains R P x l T l . . . P l _ 1 t T l _ l P l contain points which correspond to the 

domain of definition of the function being approximated.] 

c. The domain R P l ( T l . . . P t _ 1 ( T l _ l P l is dense. 

d. The boundaries of the domains RPl<j1...Pl_1<jl-1pi are chosen such that a 3 di-
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mensional approximation, along the axes (hPl(Tl...pl_iai_1,xji:xj2), of the 

function / P l ( T l . . .p 1_ 1 ( T l_ 1 (xo, • • • ,XN-I) within a domain Rp1<T1...pl_1<rl_lPl, is 

at least better than no approximation at all. Or, put formally, this condition 

is satisfied as follows. Define the 3 dimensional function 

'Pp\o\...pi-\oi-\pi (hpiai...pi-iai-i 5 xji i XJ2)i (95A) 

defined on the domain 

UPl(Tl...pi_l(Tl_lpi = { (hpiai...pi-1ai-i 5 xjn x j 2 ) \ ( ( x 0 i • • • , XN — l ) £ T>)A 

((x0, • • •, x^-i) G tree branch pia\... p i ^ a ^ A (96A) 

{ ( X i l 1 • • • 5 XlN-2) G - R p 1 f J 1 . . . p , _ 1 f J i _ 1 p ( ) } , 

to be 

J / p io - i . . . p i - i o - i - ! dYi 

^Pp1(T1...pi-i(Ti-1pi(hpia1...pi-1ai-n xjn xj2) = j ^JJ (97 A) 

n 

where II = TPiai...Pl_1(Tl_lPl n UPl<Tl...Pl_1(Tl_lPl and the domain 

?p 1 ( T l . . . p i _ 1 (T ,_ 1 p i is defined as 

Tpiai...pi_1<Tl_xPi = |(x 0, • • • ,xyv_i) | ((x0,... ,XN-I) G D)A 

((x0,. •.-, XAr_!) G tree branch p\G\ ... p/_i<7/_i)A (98A) 

((xjj , . . . , XiN_2) G Rpxoi ...pi^ai-iPi) j* • 

Let /? G 5t such that 0 < /? < 1, and let e# G 3t such that 

0 max |/p1ffi...p,_iff,_i(zo,---,zw-i)| )• (99A) 
[lij ,...,XiN JGTp 1 < rj...p (_ 1o- i_ 1/> i 
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max 
T 

Then, the domains RPl<T1...p,_1<Tl_1pl must be chosen such that 

fp\(j\ ...p\-\<ji-\ (^0, • • • j xN — l)~ 

1 ~ > p i c r l . . . p l _ l c T l _ l p l ( h p l C r l . . . p l _ l c T l _ l , X j l , X j i

> ) < (100A) 

P ' \ T

 m a x \fpi<Tl...pi-1<n-AxQ,...,xN-i)\y 
\J- P1a1.-P{_1al_1Pl J 

[In LEMMA II it is shown that such a domain R P l t T l . . . p l _ l t T , _ l P l

 must ex­

ist. The proof of LEMMA II is based on the construction of a domain 

Rpi<Ti...pi-i<xi-ipi which satisfies the all of the above conditions.] 

3. Let lA(x, y , z) = T J p i a - 1 . . . p l _ 1 a i _ 1 p i ( h p i a i „ . p l _ 1 ( r i _ 1 , xjt, XJ2^ and 

U = { ( x , y , z ) | ( ( x 0 , . . . , x 7 v - i ) G £>)A 

((x0,zjv-i) G tree branch pxux ... px_xox_{)N 

(101A) 
5 • • • 1 XlN-2) G i?p 1 0'i...pi_i (7 l_iPl) A 

(s = ' V K T L - W - I ^ - I ) A (y = xy j A (2 = x j 2 ) } . 

Use CONSTRUCTION I, CONSTRUCTION II, CONSTRUCTION 

III and CONSTRUCTION IV to construct the functions Vb(x,y) 

and Wb(Vb,z), and the domain Sb (Vfe G {1 ,2 , . . . , 6 m a x } ) . Note 

that the e used in CONSTRUCTION I must be chosen to satisfy 

equation (99A) of this CONSTRUCTION i.e. t < tp. For all 

^ G {1 ,2 , . . . , 6 m a x } , let hpi<j\...pib(]ipia\...pi-i<Ti-iixji) — ^bi,xiy)i 

(Jpicr1...plb(hp1a1...plb,x32) = Wb(Vb,z), and DpiCTl^.pib = Sb. Also, 

V6 G {(femax + 1), (&max + 2), . . .} let Dpi<Tl...pib = 0. 
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[Thus the domains D p i ( T l pii = 0 and the functions 

hpi<Ti...pib{hPjai...Pl_iai_1,Xj1) satisfy definition 5 of THEOREM II, 

and the functions gPla1...pib(hpi(Tl...plb, x n ) sansfy definition 6 of THEOREM 

II (for all b G {1, 2 , . . . , 6 m a x } ; j 

4. For all a\ G {1 ,2 , . . . , 6 m a x } define the TV dimensional function 

fpi<ri...pi(T,(xo, • • . , XN-I), V ( x 0 , . . . ,a:j\r-i) G Dom P l ( T l...p i ( T, where 

D o m f t f f i . . . p i o i = {(xo,---,xN_1)\((x0,...,xN-i) G V)A 

((xi1,... ,XiN_2) G RPl Tl...pi )A 

( ( x i , . . . , XN) G tree branch pio- i . . . / O / _ I < J / _ 1 ) A (102A) 

((hp, <J\...pi-\Gl-\ ) ) G Up1(Tl..,pl_lCrt_1pl)A 

as 

P\U\...pi<Tl 

((hp1<Tl...pl_1al_l,Xjf) G L)p 1 o-i . . .p(<7() 15 

>o, • • • , X J V - I ) =/p1<Ti...p,_i<T,_1(a;o, • • • , X J V - I ) -

(103 A) 
9p1ai...pi<Ti(hp1(T1...pian x j 2 ) -

[Thus, the function fp1a1...piai(xo,..., XjV - l ) represents the approximation er­

ror along branch p\o\ ... p\cri for the case lm = / in equation (28A) of THE­

OREM II Note that if max |/p 1 ( T l . . .p ( ( T i(xo,..., x jv- i ) | < 
V(x0,...,XN-i)eDomp i ( J i m < r t 

(•max, then the approximation along branch p\o\ ... p\o\ is complete and the 

branch need not be extended.] 

Vi G { ( M + l ) , ( ^ + 2), . . .}, let Rp 

[This satisfies definition 4.b of THEOREM II] 
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STEP 8. IF 3p1,a1,...,pt,o-i 6 {1,2,3,...} such that, V(x 0 , • • • , X J V - I ) G 

tree branch p\o\... p\o\, 

[The goal of this step is to search out branches pi,o-\,..., pi,o~i which still have an 

approximation error which is greater than the maximum allowable error.] 

a. 

. max \fPi<T1...picri(xo,..., XN-I)\ > emax, (104A) 
(xo, • • •, x N-1 ) € D o m P l CT1.. p , at 

where the domain DompifTl...piai is defined in STEP 3.iv and STEP 7.iii.4 of this 

CONSTRUCTION, and, 

b. RPiax...Pl ^ 0 and DPl(7l...Piai ^ 0, 

T H E N E X E C U T E the following steps: 

i. Let / = / + 1. 

[This initiates the construction of level I of the approximation tree.] 

i i . GOTO STEP 6 

ELSE END CONSTRUCTION V. 

155 


