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Abstract

This thesis is a study of performance and receiver structures for Orthogonal Frequency
Division Multiplexing (OFDM) on land mobile radio channels characterized by flat 6r
frequency-selective Rayleigh fading. | |

The type of OFDM considered is a parallel modulation scheme in which N data
symbols are assembled and used to simultaneously modulaté N frequency-orthogohal
tones, forming the OFDM symibol or block. Relative to a conventional serial modulation
scheme of corﬁpafable bandwidth, OFDM has an extended signaling interval which allbws
for channel averaging in fading conditions. However, the channel variation. over the
duration of an OFDM block impairs the orthogonality of the modulated tdnes, causing

intersymbol interference.

" A new matched filter bound iS derived which dbes not require that the channel remain
constant over the signaling interval, and has Doppler frequency as a parameter. Puisc '
shape, diversity order, and interray correlation may also be varied. The matched filter
bound is used to establish analytic performance limits on the probability of bit error for
any receiver of uncoded OFDM on flat or frequency-selective Rayleigh fading channels.
In contrast to the AWGN channel, the optimal pulse shape used in the receive correlator -

is time-varying and the transmitter pulse shape affects the probability of error. -

Using the Maximum Likelihood Sequence Estimation (MLSE) Criterion, an optimal
reééi;/er for OFDM on ﬁat fading channels is derived. This turns out to réquire a constraint
length L = N — 1, which is generally infeasible due to complexity constraints. However
for BPSK OFDM a suboptimal truncated version of the MLSE receiver is able to approach
the MFB to within 1 dB for a wide range of Doppler rates.” For QPSK OFDM simple
truncated MLSE is found to be impfactical due to the required constraint length, which
is greater than for BPSK OFDM. | |
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. The Minimum Méan Square Error (MMSE) criterion is used‘to derivé optimal linear
and nonlinear decision feedback équalizing receivers for OFDM on flat fading cHénnc;ls.
A coﬁtinuoué—time analysis-is used to show that the optimal linear MMSE receiver
requires a sampling tafe in excess of N samples per V‘OFDM block, and thavt’the optimal
weighting function ‘a‘pplied to the received signal to mitigate channel fading. is tone-
dependent. Approximations are considered to remove the tone-depéndency, yielding a -
result consistent with previous work. o

An MMSE-based criterion is. i)ropoéed and used to derive é method for modifying
the channel inipulse response to an 10ptima1 desired impulse respohse having a specified
constraint length.. This limité error propagation With'decisi‘on feedback and reduces the
complexity of sequence estimation, making the latter feasibiefor QPSK OFDM as 'vx;ell
‘as BPSK OFDM. The resulting nonliﬁéar receiver structures have probability of error
perforrhances ‘which improve on pre{liousl'y .publishéd results for the s.ame modulation
and channel. | |

Finally optimal and suboptimai‘fegéivers for OFDM on frequency-selective Rayleigh‘
fading channels based 'o_ﬁ MLSE _énd MMSE criteria are derived. The additional
-complexities of receiver design arising from the presence -of deléy spread are studied_‘
anaiytically and evaluated by simulation. It is showﬁ that for the MLSE receiver, long
Blocklength OFDM is relatively insensiti?evto the distribution of signal strengths between

the rays of the two-ray freQuehcy-selective Rayleigh fadihg;channel model.
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Chapter 1 | 1

Introduction

We are at the dawn of the era of uni\}ersal wireless personal communications systems
(PCS). The goal of PCS is to provide access to a global communications network without
regard to location or mobility. These systems represent the third generation of public
wireless Services and will be completely digital [1].

It is unlikely that any single technology can be applied to all areas of PCS because of
the fundamentally different economic and techmcal issues of low-tier and high-tier PCS
situations. Low-tier applications are characterized by low power and low complexity,
for example a hand held cordless telephone for pedéstriém use. High-tier applications are
characterized by large macrocells and high-speed mobility, the most important example
being communication with a vehicle over land mobile radio channels. Communications
devices may be optimized for a particular tier [2] but intercommunicate when appropriate,
such as having a pedestrian phpne relay its information through a high-tier device when
" used inside a vehicle.

From the perspective of modulation and detection, it is the high-tier situation, and
in particular the vehicular digital mobile rad}o, which presents the most interesting and
challenging technical problems. This is due to thé severe and random nature of the
channel distortion encountered.

Land mobile radio channels suffer from random signal fading which corrupts both
the amplitude and phase of the received signal, causing dropouts whose frequency
varies with the vehicle’s speed, and there can be significant delay spread introducing
random frequency selectivity. Assuming that the transmitter cannot anticipate the random
channel! some form of diversity is required to obtain error rates comparable to those

attainable on an additive white Gaussian noise (AWGN) channel.

1 1In certain situations, e.g. if the channel varies slowly relative to the rate at which its state can be assessed and communicated from

the receiver back to the transmitter, some anticipation is possible.
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Some early forms of diveréity t3] took the form of multiple transmissions or recep-
tions in the time, frequency, or less often, polarization planes?. These methods effectively
halve the transmission rate. Another approach is to combine forward error correction
(FEC) with any non-diversity modulation method. Although not generally viewéd as a
" diversity t¢chnique, FEC provides an effective diversity by delocalizing the information
content of a specific data symbol. Its bandwidth cost is 1 — R, where R. is the code
rate. More recently some reéearchers have been advocating spread-spectrum modulation
which has inherent frequency diversity in combination with FEC [4]. Its bandwidth cost
or gain remains a subject of debate [2].

A novel methb‘d for dealing with the impairments of the land mobile radio channel
- was proposed in [5]. The idea was to use a version of orthogonalvfrequency division
multiplexing (OFDM) with signaling elements chosen long cnoﬁgh to enable channel
averaging, a type of inherent timé diversity essentially without bandwidth cost, except.
for a small portion reserved for channel measurement.. Simulation results preéented in
[5] showed substantial gains for channel-averaging OFDM over conventional modulation
techniques without FEC in fast fading conditions. | |

Motivated by the results of [S]l aﬁd the importahce of the land-mobile radio channel,
this thesis is concerned with the further developmént of OFDM theory. In particular
we seek to establish fhe best performaﬁce achievable with this technique. We begiﬁ by
deriving a new matched filter bound (MFB) for fast Rayleigh fading channels. - This
‘bound is unique in that it does not assume the fading channel remains constant over
the duration of a signaling element, and establishes analytic limits on the probability of
bit error (/) performance of any uncoded OFDM receiver with the maximum fading
rate as a parameter. In sub.sequent‘ chapters; several new receiver structures are derived

via maximum-likelihood sequence estimation (MLSE) and minimum mean-square error

2 Space diversity is does not halve the transmission rate.
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(MMSE) optimality criteria. Their P, or probability of symbol error (£s) performances
are evaluated by simulatiou for mutual comparison and for comparison to the bounds
based on the MFB work. This is.done for both flat (i.e. non-frequency-selective) and
frequency-selective Rayleigh fading channels. The Ps performances of the receiuer
structures derived in this thesis meet, or in most cases substantially exceed previously
published results on channel-averaging OFDM. |

The rest of this introduction is organized as follows. OFDM is introduced in Section
1.1 and the effects of fading on it are outlined. The research contributions of this thesis are

summarized in Section 1.3. Section 1.4 presents the organization of the rest of this thesis.

1.1 OFDM Modulation

OFDM can be.described as a parallel modulation in which N data symbols are
assembled and s1multane0usly modulated onto N orthogonal carriers. ‘The modulator
outputs are summed and the resulting waveform is further shaped by the unit energy

pulse p(t) to form s(t), the transmitted waveform of a single OFDM block. This is
N-1

s(t) = p(t)z a];ejo%kt . | (1.1.1)

k=0

where ay, is a data symbol, generally. complex, and p(.t) is a pulse' shaping funetion,
The nominal duration of the block is To = NT,, where T is the tiata symbol interval
in a comparable serial scheme having the same signaling rate The: frequency interval
between adjacent complex tones is 1 /Ty. This is shown in Figure 1.1.

The bank of modulators need not appear explicitly in a digital implementation.” An
efficient method for generating an OFDM signal takes advantage of the inverse Fourier
transform relationship between aj, and s(t) seenin (1.1.1). If we sample the time-domain

waveforms at intervals At, lettirig Ty = :c(mAt) then a discrete version of (1.1.1) is

Sm = Pm Z apel AL ' (1.1.2)
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; 12Tg1t
s(t)
as > .
;-zg
e/ o®

| | p(t)
| |
an-T '(;)2 >
. ejT—g(N-1)t
4y —= FFT
B VK

Pm

Figure 1.1 Parallel QAM and FFT based OFDM transmitters

Choose N'At =Ty, N' > N, and define a;, = 0, k > N. Then s,, can be written as

N—1 :
Sm = Pm Y agel W™ | L3

which is clearly an inverse discrete Fourier transform (DFT) [6] of the data post-multiplied
by a shaping function. Since N’ can be chosen for convenience, sucﬁ as a power of 2, the
fast Fourier transform (FFT) [6] algbrithm can be used to evaluate ( 1.1.._3). very cfﬁciently.
The choice of At affects the accuracy of the signal representation and is considered in

Chapter 4 Previous work on land mobile radio channels [5], [7] has used At = Ty /N

with rectangular pulse shaping.
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We will also need to con51der the more general time- domam root raised cosine pulse

shape p(t) g1ven by

p;q t)
(1+cos(”taT°)) 0 <t<al |
ot o= 0 (1.1.4)
psq 1 0, aTO' <t <Tp
—:,—1—(14—(;03(7rt x(t-Th) )), To <t <To(l1+a)
otherwise

where 0 Sa<g lis a rolloff factor descnbmg the percentage of the pulse duration
beyond Tp. The total time interval for which the pulse is nonzero is TO( + «), where
Ty is the time interval between the 1nﬂect10n-p01nts of its leading and trailing edges as
shown in Figure 1.2. As subsequent blocks of N data symbols are formed into OFDM

bloeks, they are transmitted serially over the channel at intervals of T, yielding

ss(t) =Y s(t—nT)

n

. ,‘ N—-
:Zp(t_nT)Za 6JTOk(t nT)’
n ) k=

where a,, is the k** data symbol of the nt bloek. This is also shown in Figure 1.2. We .

(1.1.5)

will assume throughout that 7' > T0(1-+ @) so that interblock interference (IBI) is not
an issue. Additionally, on delay spread channels we will assume that
T>To(l+0) + Tmae . (1.1.6)

N
where Tpgp 1S the maximum value of delay spread for the same reason. Typlcally

Tmaz < 0. 01 Ty so that (1. 16) is a mild requirement for OFDM With IBI precluded
we can henceforth confine our attention to the transmission and reception of a single

OFDM block.

To a close approximation® the bandwidth of OFDM is the same as that of a

~ conventional serial modulation transmitting data symbols at the same rate. This follows

3 At this point we are not considering overhead for channel measurement, or effects of o and Tpqz.
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Rq(t)

) plock n» \\ // ' block n+1\\———;

<—TO—~—————> <—TO'————>

Figure 1.2 Definitions of 7y and 7"

from noting that the bandwidth expénsion due to transmitting /N data symbols on
frequency orthogonal carriers is compensated for by the bandwidth reduction due to
each data symbol being transmitted N times more slowly. This extension in time of the
data symbols is the key to the (_:harinel averaging ability of OFDM.

We note that the precéding- 'debscriptlion of OFDM as a parallel modulaﬁon schéme is
convenient but not required. OFDM could equally well be viewed as a serial modulation
with a nominal OFDM symbol dﬁra}ion of Ty and possibly a very large alphabet of MY
OFDM symbols, where M is the size of the data symbol alphabet. '

1.1.1 Modulation Constellation

In principle the individual tdnes comprising the OFDM signal could be modﬁlated
with points from any quadrature amplitude modulation (QAM) consteliation. However
the Ej/ Ny required to obtain a specified Pb, where Fj is the energy per bit and Ny is the
noise power spectral density, increases with constellation size [8]. Since wé are primarily
interested in low Fp/Ny environments, we will confine our aftention to BOFDM and
QOFDM. BOFDM denotes OFDM with binary phase shift keying (BPSK) modulation
of the OFDM tones and QOFDM denotes OFDM with quadrature phﬁse shift keying'

(QPSK) modulation of the tones.
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1.1.2 Bandwidth of OFDM

The bandwidth' of OFDM is readily derived from first principles [9]. The general
approach is to first determine the autocorrelation function of the modulated waveform,
| which turns out to be a cyclostationary process, and then remove the time dependencyA
by averaging over one period of the process. The data symbols are assumed to be
mutually independent and of equal energy. A Fourier transform of the time-averaged

autocorrelation function gives the desired power spectral density as
L N-1 N

E, k

e Plf——
To ; (f To)

where E, = E [|ak|2] is the energy of a data symbol and P(f) = fp(t)e—jo_gktdt is the

2
(1.1.7)

“Fourier transform of the shaping pulse. Note that 7" does not appear in (1.1.7); this is a
consequence of the independenf data assumption. | |
An interesting consequence .of (1.1.7) is that the bandwidth of OFDM is-only mildly
influenced by p(¢) when NV is large. To illustraté, if we consider two serial modulations,
one with p1(t) = sinc(t/Ts) and the .other with py(t) = rect(t/Ts). pulse shaping,
and measure bandwidth as the distance between the mainlobe’s first nulls, then the
bandwidth in the first case is 1/7s which is only half that in the second. Similarly,
we corﬁpare two OFDM modulations, one with p;(¢) = sinc(¢/Tp) and the other with
pa(t) = rect(t/Tb) pulse shaping.  The bandwidths for these two cases are N/Ty and
(N + 1)/Ty respectively, a factor of (N +1)/N change. Since (N.+1)/N = 1 for
N large, the bandwidth for OFDM is approximately 1/7 in both caées, showing low

sensitivity to the pulse shape. -

1.1.3 Channel Measufement

The type of OFDM system we have been describing is a type of coherent amplitude

and phase modulation applied to a channel with randomly time;vary'ing amplitude and
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phase characteristics. Tﬁercfore optimal detection of the data requires knowledge of the
channel parameters at the receiver. We assume this knowledge is obtained by allocating
a small portion of the available bandwidth to channel estimation. The idea is to insert
known pilot tones or pilot symbols into the transmitted signal'. At the receiver these can
be used to estimate the channel’s imp_uise response.

The amount of bandwidth which must be allocated for channel measurement purposes
follows from Nyquist’s criterion, which states that the channel must be sampled at a rate
higher than 2fp. This represents only about 2% of the data bandwidth since typically
fp <0.01/Ts,e.g. fp =100Hz and fs = 1/Ts = 10 kbaud. This could be considered a
lower limit since it makes no provision for guard intervals to protect pilots from Doppler .
spread .data nor does it provide for mutual pilot signal orthogonality in an interference
environment. These issues have been addressed in the literature. Comparative studies of
pilot symbol and pilot tone téchhiques appear in.[10] and [11] in the context of serial
modulation and flat fading channels. The Groupe Spécial Mobile (GSM) standards [12]
specify a 26 symbol pilot sequence for estimating 'frequency—selective channels in an
interference environment.. The original OFDM for land mobile radio study [5] presents
pilot tone based techniques for estimating flat and frequency-selective fading channels.

In this thesis we do not develop the channel estimation problem further. The channel
is assumed known to the receiver, and the focus is then on optimal dletection. An
exception oceurs in Chapter 4 where an analysis is performed to estimate the deterioration
in P, due to using a noisy versus.perfect channel estimate, and the result is verified by

simulation.

1.1.4 Effect of Fading on OFDM
The extended symbol interval of OFDM that was introduced to provide channel
averaging also causes it to suffer a serious impairment on fading channels. Fading

impairs the orthogonality of the tones comprising the OFDM Signal. The result is a type
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of convolution of the data symbols within an OFDM block with a channel-dependent
waveform [5], [7]. The convolution”introduces intersymbol interference (ISI) amongst
the data symbols. It is shown in subsequent chapteré that the exact type of convolution
depends on the signal representation. Similarly, there is also intrasymbol interference*
when the data symbols are complex. This is generaﬂy not a problem for serial modulation
schemes because the channel is approximately constant over a symbol’s duration.

On frequency-selective fading channels the problem is compounded by additionalA

ISI arising from multiple arrivals of the same block, each of which suffers from its own

pattern of ISL.

1.2 Previous Work

Historically, many names have been used for OFDM, e.g. multichannel modulation,
multicarrier modulation, or multitone modulation, depending upon the author. The basic
idea is to subdivide a channe1 into a set of frequency-orthogonal subchannels. The
complex exponential tones of the preceding OFDM‘description are the subchannel carrier
frequencies of a multichannel description.

An early Wofk on OFDM considered data communication on telephone channels
[13]. Use of an FFT to construct the OFDM block was introduced in [14]. Application
of OFDM te.fading' channels was proposed in [15] and [16]. The formetr considered
HF band cemmunieations which are slowly fading such that Doppler spread induced IST
was of little importance. The latter considered digitaI audio broadcasting on land mobile
radio channels, but used OFDM blocklengths muc:_h shorter than the channel’s coherence
time. Thus in these previous works the channel is essentially constant during the OFDM‘
‘block and the motivation for OFDM is not channel averaging but simplified equalization.
The simplified equalizatioh follows from observing that individual OFDM subchannels

are much narrower in bandwidth than the entire signaL therefore there is relatively less

4 Interference of the in-phase and quadrature components.
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change in the channel over the bandwidth of a'subchannel as compared to the entire

channel bandwidth.

In this _work the OFDM blocks exceed the coherence time of the channel and OFDM'
is considered for its channel averaging ability. Only a few pliblications have been found
to date (1997) which explore this approach. The first is [5] WhiCh makes the original
proposal for OFDM on land mobile radio channels. This work related time-domain
fading to frequency-domain ISI° and propoéed simplified equalization structures for flat-
fading and frequency-selective fading channels. A channei—averaging variation of OFDM
in combination with FM transmission on flat-fading channels was considered in [17].
This work also presente.d a type of parallel decision feedback called decision feedback
correction (DFC). Conventional deéision feedback equalization (DFE) for OFDM of the
type proposed in [5] was studied in [7].

' In this thesis OFDM refers exclusively to coherent OFDM of the channel-averaging
type. We study OFDM without FEC so that the effects of fading channels on OFDM can

be observed without the artifacts of a particular code choice.

1.3 Thesis Contribution

The main contributions of this thesis are listed below:

1. A new matched filter bound for fast flat and frequency-selective Rayleigh fading
| channels is derived. This bound does not assume that the fading channel remains
constant for the duration of a signaling element. It cstéblishes analytic limits for the
P, performance of any receiver fof uncoded OFDM, with maximum Doppler rate
as a parameter. Arbitrary power levels and correlations between multiple rays due
either to delay spread or diversity can be accommodated. Previous results for slow

fading Rayleigh channels are special cases of this result.

5 What we call ISI was also called ICI .in [5].

6 The term slow is used to refer to a channel whose characteristics remain approximately constant over an entire symbol interval.
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2. An optimal receiver for OFDM on flat Rayleigh fading channels is derived using
the principlés of maximum likelihood sequence estimation (MLSE).‘ A 'Suboptimal
version of the MLSE receiver is introduced to redu.ce. compiexity and its performance
evaluated by simulation. An approximate analysis of the effects on P, of a noisy
channel estimate is presented and verified by simulation. '

3. The theory of equalization as modified for OFDM in flat Rayleigh fading is developed,
fesulting in the derivation of a new decision feedback equalization (DFE) structure
having substantial complexity and 'performance benefits over the current state of the
art. A method is devised for modifying the channel impulse response to a desired
impulse response (DIR) Wﬁich could also be applied to conventional serial modulation
schemes. , | '

4. Optimal and.suboptimal receivers for OFDM on frequency-selective Rayleigh fading
channels based on MLSE and MMSE criteria are derived. The additional complexities
of receiver design arisi"ng from the preserice of delay spread are studied analytically

and evaluated by simulation.

1.4 Thesis Organization

In Chapter 2 background material on the land mpbile fading channel is presented,
and the modelirig of flat and frequency-selecfive Rayleigh fading channels with one and
two-ray models is described. .

In Chapter 3, matched filter bounds for fast Rayleigh fading channels are presented.
The MFB system model for time-varying channels with AWGN is presented in Section
3.2. An analysis to determine P is presented in Section 3.3. Slectidn 3.4 extends the
results to accommodate K—channel diversity. Examples of the MFB evaluated for flat

and ‘frequency—se_lective Rayleigh fading chénnels are given in Section 3.5.

In Chapter 4, the MLSE receiver for OFDM in- flat Rayleigh fading is derived and

evaluated. Section 4.1 describes the transmitter and channel model. Section 4.2 presents
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the theoretical derivation of an optimal maximum likelihood receiver, in the sense of
+ sequence estimation. Evaluation of two key parameters, matched filter outputs and tone
correlations, by FFTs in a digital implemention and determination of the required sampling
rate is examined in Section 4.3. Section 4.4 describes the truncation of the constraint
length used by the sequence estimator to make it less complex and Section 4.5 pfesents
a criterion for choosing a non-rectangular pulse shape. Section 4.6 presents simulation
results for P as a function of Eb /No, of BOFDM for a variety of pa.fameters and.compares
them to the MFBs of Chapter 3. Section 4.7 develops an approxirﬁate analysis to predict
the effect of using an imperfect channel estimate. Section 4.8 shows a limitation of the

truncated MLSE receiver when applied to QOFDM. .

- . In Chapter 5, linear and decision feedback receivers for OFDM in flat Rayleigh fad-
ing are derived and evaluated. Section 5.1 derives the optimal linear MMSE cqﬁalizer for
OFDM in flat Rayleigh fading. Section 5.2 derives a discrete symbol-spaced équalizer,
also by the MMSE criterion. Section 5.3 reviewé classical DFE as developed for serial
modulation and Section 5.4 describes the application of this approach to OFDM in previ-
ous work. The idea of reshaping the overall impulse response of the tranémitter, channel,
and front-end filter’ to some desired impulse response (DIR) is reviewed in Section 5.5.
Section 5.6 derives a DIR DFE based on the zero-forcing criterion (ZFDIRDFE) and
in Section 5.7, an improved DIR DFE based on the MMSE criterion (MSEDIRDFE)
is derived. The combination of a Viterbi-type sequence estimator in combination with
MSEDIR shaping is considered in Section 5.8. A theoretical compan'son' in terms of
MSE performance surfaces for a simplified fading channel r}lodel appears in Section 5.9,

and simulation results for the receivers are presented in Sections 5.10 and 5.11.

In Chapter 6 some of our previous work for flat fading ‘channels is extended to

frequency-selective channels, Receivers for OFDM on fr¢Quency-selective Rayleigh

-7 The term front-end filter is defined in Section 5.3.
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fading channels are deri;led and evaluated, based on the optimization of MLSE and
MMSE performance criteria. Section 6.1 describes the channel modeling. Derivation of
optimal and truncated MLSE receivers is presented in Section 6.2. Methods for evaluating
matched filter outputs and tone correlations areAgiven in Section 6.2.1, and the effect of
pulse shaping on the tone correlations is considered in Section 6.2.2. Performance results
obtained by simulation of the MLSE receivers are presented in Section 6.2.3. In Section
6.3 optimal linear MMSE receivers are derived. Direct and alternate implementations
are described in Sections 6.3.1 and 6.3.2. Methods for evaluating matched filter outputs
~ and tone correlations are given in Section 6.3.3. The relatioriship between the integfal
equation and matrix formulations of the estimation problem is examined in Section 6.3.4,
and an efficient matrix formulation for rate N /Ty sampling is outlined in Section 6.3.5.
The performance results obtained by simulation of the MMSE receivers are presented

in Section 6.3.6.

In Chapter 7 the conclusions of this thesis are summarized, and some suggestions

for future work are presented. '




 Chapter 2 S

The Land Mobile Fading Channel -

In this chapter background material on the land mobile fading channel is presented,
and the modeling of flat and frequency-selective Rayleigh fading channels with one and

two-ray models is described.

In the case of the land mobile radio channel there is generally no line of sight path,
and ‘the transmitted signal propagates to the vicinity of the receiver over multiple paths
via reflection and diffraction. Each of the paths has a potentially different attenuation
and delay. Time variations of the multipath channel arise from motion of the receiver
which alters the sighiﬁcance of different paths. Fading occurs when the receiver moves
through an area of destructive interference. The fadidg is commonly described as either
flat, meaning that all frequencies in the signaling bandwidth are similarly affected, or
frequency-selective, meaning that different frequencies may undergo different fading. |

Useful characterizations are the coherence time Atf., a measure of how long the
channel stays approximately constant, .and the coherence bandwidth Af., a.measure
of the bandwidth over which signals spaced in frequency will be similarly affected.
Alternatively the Doppler spread.and delay spread may be used. The Doppler spread fp
is a measure of the width of the received spectrum when a single sine wave is transmitted
threugh the channel, and the delay spread 7 is a measure of the width of the received
signal in the tirde-domain when a single impulse excites the channel. It can be shown
[9] that At, ~ 1/fp and Af, =~ 1/7. |

A rule-of-thumb for categorizing a channel as flat or frequency-eelective for a digital
signal relates the symbol interval to the rms delay spread [18]. Channels with rms delay

spread less than about 10% of the symbol interval are considered flat and conversely

those with a greater rms delay spread are considered frequency-selective. This is based
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Figure 2.1 BPSK on AWGN and Rayleigh channels

on work which sh‘ow's P, < 1072 can be obtained without equalization for the channels
categorized as flat fading. |

Fading can be quite detrimental to the average P} performance of a standard mbdula-
tion format as compared to P, on an AWGN channel. For example, Figure 2.1 Compafes
the P, of BPSK on an AWGN channel to its Py on a Rayleigh flat fading channel.. At
P, = 1073, a difference of over 17 dB difference is seen. |

We will focus on the land mobile radio application with AWGN as the dominant
impairment. Although this is somewhat unrealistic in the context of cellular systems
which tend- to be interference limited, it does providé insight and has the important
advantages of being mathemaﬁcally tractable and broadly undérStood. |

The output of a linear channel with AWGN may be written in terms of its input and

impulse response as

w(t);» /.z(a, t)s(t —b.a)da +n(t) (2.1)
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where s(t) is thé channel input, n(¢) is AWGN, and w(t) is the channel output. Equation
(2.1) is in terms of the complex lowpass equivalents of bandpass waveforms [9], which
are used throughout this thesis. The channel impulse response z(o,t) is defined as the
response of the channel at time ¢ to an impulse applied at time ¢ — o. In this section,
expressions for z(o,t) are sought which model both flat and frequency-selective Rayleigh

fading channels. The approach follows that of [9].

The mobile receiver typically receives the transmitted signal as the sum of several
attenuated and delayed versions resulting from pafhs with reflectors and diffractors [3].
The effect of delay on a bandpass signal appears as a delay and phase rotation of its
lowpass equivalent [9] Neglectmg noise for the moment the received signal from a

multipath channel is
Z ()8t — 7 (t)) e~ 727 fen(t) , . @22).

where f. is the carrier frequency of the bandpass signal, and ,(t) and To(t) are the
attenuation and delay of the n** path at time ¢ respectively. Comparing (2.1) and (2.2)

it is apparent that -
=Y on(t)e 2050 — 1, (2)). (2.3)

Equation (2.3) could be written as a general integral expression to accommodate a
continuous distribution of paths, but for simplicity we consider mainly one and two-

ray models.

Suppose that several of the path delays are closely distributed about a meém-delay
71 and that the remainder of the path delays are closely distributed about 7. By closely .

distributed it is meant that the differences in path delays are small relative to a symbol

interval.
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Writing o
Ve, () =T1 4+ ATy, (2)
(2.4)

Tng(t) = T2 + A1y, (t) '
and indexing the paths grouped about 7; with n; and those about 7, with ny we have

2(0,7) = TN "y, (1) I IAM W (0 —Fy — Ary, (1)) B
| S ) . | BN
+ e PITN " gy, ()P ATR O (0 — Fy — Ay, (1))
where 7 is the mean of 7, (t) over ny and Ty is the mean of 7,,(t) over ns at some
arbitrary time within the duration of an OFDM block.

In order to simplify our model, it would be convenient to drop the Ay, (t) terms in
(2.5). To ensure this is reasonable, we upper bound the magnitude of Ay, (t).

The geometry which causes the greatest change in delay sprcad during the reception
of an OFDM block is the same as that'wlﬁch causes the maximum Doppler spread:
motion of fhe vehicle directly in line with the direction of arrivél of the signal. In this
situation the path length will change by vTy over the duration of an OFDM block, where
To is the duration of an OFDM block. This establishes an 'upper bound on |Ary, (t)|.‘of
ATmer = $To, where c is the speed of light. Since A7yq4 is seveial orders of magnitude
smaller than Ty, A7y, (t) can be dropped from the delta functions in (2.5). HoWever
because of the large factor f, in the complex exponentials, those terms remain. It is -
assumed that the phase distribution over the, paths is uniform and that there are several
terms in each of the summations: Setting 7 = 0 and 7 = 73, and applying the Central |

Limit Theorem [19], ’(2.5) approaches
z(o,t) = z1(t)8(o) + e_ﬂ’rf“rzz(t)(g(a — ) (2.6)

where z(t) and z,(¢) are independent complex Gaussian random processes. The ex-
ponential rotation factor in (2.6) is a constant; it can be included in the definition

of zy(t) without altering its statistics. Additionally, it is convenient to normalize
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E[|zl(t)|2] = E[|22(t)|2} = 1.0 and use the explicit factors «; and «y to indicate

the relative strengths of the rays, yielding for our two-ray model

z(o,t) = a121(t)6(0) + agza(t)6(oc — 7). » ' .27

The channel described in (2.7)isin geineral’ both time varying and frequency-selective;

specialized to a Rayleigh flat fading model it requires only one term
z(o,t) = z1(t)6(0). _ (2.8)

Equations (2.7) and (2.8) are widely used for modeling channels with serial modulations.
The purpose of outlining their derivations is to ensure that the assumptibns leéding to -
their final forms are not invalidated by the extended duration of thé .OFDM block. |
Additional characterizations of Rayleigh fading are derived in [3]. We will find use
for both the power density spectrum &, (f) and autoborrelation function ¢, (7) of the

process z;(t). They are _ ) , - :
' o o ~ o\ —1/2 . P
5.(f) = lefD <1 B (ffoc) ) o @9

$:(7) = Jo(27 fpT) | o (2.10)'

and

where Jo() is the zeroth-order Bessel function of the first kind. )
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‘Matched Filter Bounds for
- Fast Fading Rayleigh Channels

3.1 Introduction

Many analyses of digi_tal signaling on a Rayleigh fading channel assufnc that the
- Doppler rate is small compared to the symbol rate, allowing the channel to be treated
as constant for the duration 6f a single symbol. This chapter presents a matched ﬁl_ter
bound (MFB) analysis of BPSK on a Rayleigh fading channel in which the normalized
Doppler rate is unrestricted, including the slowly fading model as a special case. It is
shbwn that the optimal matched filter receiver is time varying, and in contrast to matched
filter reception on the AWGN or slowly fading channels, it is found that the probability
of‘ error depends on the transmitted pulse shape. |

Compaxgd to a single carrier modulation of similar bandwidth ar;d bit rate, the
duration of an OFDM block period is increased in proportioﬁ to the number of carriers
ﬁsed. Previous studies [5], [17] have used simulation to show gains of several dB due
to the channel averaging of OFDM on Rayleigh fading channels, where the savings
" increase with the Doppler rate. |

The maximum Doppler rate fp encountered in land mobilé radio systems operating
‘near 900 MHZ is typically about 100 Hz. For a transmission rate 1/T" of about 10,000
symbols/sec, the normalized Doppler rate fy = fpT?® is on the order of 1%. At such a
low rate the channel characteristics may often be treated as constant over a Single symbol
period. We will refer to channels fof' which fpT <-0.01 as slow fading channels.
Convérsely, a fast fading channel will be defined as one which changes significantly

during a symbol period, i.e. fpT > 0.01. Since OFDM systems may use hundreds of

8 We are using T as opposed to T, because at this point we are not necessarily considering just an OFDM block, but rather any

symbol of duration'T'.
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tones, an analysis applicable to fast fading is required. For OFDM systems having up to
512 tones we -are interested in a normalized Doppler rate in the range 0 < fn < 5.12.
As a first step, this work considers the transmission of a single pulse over fast fading
Rayleigh channels of arbitrary normalized Doppler rate, where it is assumed that the
receiver is a matched filter with perfect channel state information. The resulting error

" rate gives the Matched Filter Bound [20].

Although developed in terms of a matched filter bound, the results presented'for cases
of zero delay spread are equivalent to a probabﬂity of bit error (F;) analysis for continuous
BPSK 'signalingl\')vith perfect channel state information available at the receiver.

The analysis also allows for delay spreads due to multiple rays and K channel
diversity, where the correlations between rays and between channels are arbii:rary and
each chanhf;l may have a different impulse response. |

Whilé previous works [20], [21] with the slow fading Rayleigh channel have con-
sidered delay spread and channel diversity, the extensipn to. arbitrary Doppler rates as
well as the examination of correlations and differing impulse responses; are believed to

be new contributions.

3.2 System Model

Figure 3.1 shows the system model in terms of fhe complex baseband equivalents of
: passband signals. Although we consider BPSK modulation for simplicity, our method is
valid for any pulse amplitude modulated (PAM) scheme with minor modifications. The
modulator sen‘dsla single pulse +Ap(t) over a Rayleigh fading channel wﬁose. complex
impulse response is given by z(o,t), which denotes the response of the channel at time
to an impulse applied at time ¢ — o [9]. The pulse p(t) has duration Tp and ﬁpit energy,

therefore the én’ergyr per bit £y is A2, The real and imaginary components of z(o,?)

are independent zero-mean Gaussian processes of identical variances, and the maximum
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"modulator

|
— | ) X
Ap(t) > z6Y) 4@%—» Re[j(-)g(t)dt] —
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! , :
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| o

Figure 3.1 System Model

delay spread is 7p,q;. We assume that z(o,t) is wide-sense stationary so that we may

use its autocorrelation function defined as

$:(0ar obita — 1) = El2(00,ta)2" (o0, 13)]. G201y

The received signal is given by

r(t)=A / z(a;t)p(t — o)do + n(t) (3.2.2)

where n(t) is zero-mean complex AWGN of variance o2 = N,. The receiver uses r(t)

to form the decision variable

= Re [ / r(t)g(t)dt] | | | (3.2.3)

where ¢(t) is the pulse shape used in the receiver’s correlator, and the integration is

performed over the interval for which ¢(t) is nonzero.

3.3 Analysis

Denoting the signal' component of z by.

Tmasz

Ly = Re - z(a’,t)p(t — O')CZO' g(t)dt (331)
-
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and the noise component by

= Re[/ n(t)g(t)d;f] o | (3.3.2)
we have |

.z = Ay + ny. (3.3.3)
Given ¢(t), n1 is a zero-mean Gaussian random variable with variance

_ |
o = - / lg(2)]?dt. (3.3.4)

The probability density function (pdf) of = conditioned on y is Gaussian - with mean

Ay, ” i X
1 i
x = e m : 3.35
piﬁ( | y) \/ﬂo'nl ( )
The probability P; of a correct decision is the probability that x is greater than zero
o0 0 . Ay 2
P = 2" 1 dy dz. 3.3.6) .
= | e (33
0

8

'Changing the order of integration and recognizing the error function

.erf / et dt _ (3.3.7)
RV ,
we have for the probability of bit error
117 A?y2, ' '

To proceed further we must specify the p'ulse. shape ¢(t) used in the demodulator
correlator. Tt is well known [9] that the optimal demodulator for a pulse transmitted on a
nonfading AWGN channel is a matched filter demodulator, where the demodulator filter

is matched to the transmitted pulse shape. From the receiver’s viewpoint, we observe
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Figure 3.2 Equivalént system in terms of an AWGN channel

that the fixed-shape pulse Ap(t) entering the fading channel of Figure 3.1 is equivalent
to a time varying transmit pulse, A¢(t) = A Tzz(a, t)p(t — o)do, entering a nonfading.
0

AWGN channel as shown in Figure 3.2. Then it is clear that the optimal receive correlator

Tmazx

pulse shape is also time varying, g(t) = [ 2*(o,t)p*(t — o)do.
0 .

For the matched filter case (3.3.1) and (3.3.2) become
- : } 2

Tmax

;/. /z(a,t)p(t—a)da @

’ 0 : (3.3.9)

- [lawpa
and . . ‘ :
n1 = Re / n(t) / o, )p*(t —o)do dt|, (3.3.10)

» 0
where the noise variance is
N, :

- . ol = V- o . (3.3.11)

Note that the variance 07211 is itself a random variable. The expression for P in (3.3.8)

can be written as

[\

: 1 1 [ E -
Py=2—3 /erf< J\I}y>py(y)dy- (3.3.12)
0

Since y is nonnegative from (3.3.9), the lower limit in the integral has been replaced by 0.
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We will refer to £/ N, as the ﬁansfnitted signal to noise ratio (SNR). The quahtity
Eyy/N, is the received SNR at the output of the matched filter, shown with its equivalent
implementation as a matched correlator in Figure 3.2. Equation (3.3.12) states that the
- Py for our analysis is given by the average over all received SNRs of the P; for a static
AWGN channel. This expression has the same general form as that which results from a
slow fading analysis [9], except that the pdf of y is harder to obtain. The effects of fast

fading, correlations, and diversity are reflected solely in how they affect the pdf of y.

The average received SNR is given by v, = E[y]Ey/N,. Taking the expectation
of (3.3.9) yields .

Tmaz Tmaz

Ely] = / / / b2(0a,0;0)p(t — o0)p*(t — op)doadopdt. (3.3.13)
0o 0
Using the autocorrelation function of the pulse p(t)

flop —04) = /p(t — 0q)p*(t — op)dt | (3.3.14)
we have
Ely] = / / ¢:(04,03;0) f(0p — 04)doadoy. (3.3.15)
0 0

Equatidn (3.3.15) will be used to obtain more specific results in Section 3.5.
To derive the pdf of y, we approximate (3.3.9) arbitrarily closely using a finite

summation u
y=Aty gl o - (33.16)
: = -
where ¢; = ¢((: — 3)At) and M = {M%:LWEJ 9 The |gi|* are correlated random
variables with a chi-squared degree 2 pdf. Defining the vector gt = /At [at, a5, 4]

(3.3.16) can be written as

y=qlq. (3.3.17)

9 |_J means the integer part of.
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To obtain an expression for y as a sum of uncorrelated random variables, we apply a

discrete version of the Karhunen- Loeve [22] expansion to q as

B _ iy /RpT S (33a8)
where - ,
ull = [uf,ul, .ty E[uuﬂ] —1 (3.3.19)
A = diag(A1, Az, ..o Ar) 1 (3.3.20)
and
P = [p1,p2,...,pm), PP =1L | (3.3.21)
Defining the Hermitian matrix |
Q=F [qu] — PAPY (3.3.22)

the Als are recognized as the eigenvalues of Q and are also real and nonnegative [23].

We have for the (n,m)th element of Q

Qum = At / / 'b2(0a, 085 (n — m)At)p(n'At - Ua)p* (m'At — op)dogdoy

0 0 _
(3.3.23)

where n' —n—1/2 m/ _m—1/2and1<nm<M

Using (3.3.18) in (3.3.17) we can write y as a welghted sum of 1ndependent chi-

squared random variables of degree 2
' R
y = Ailu(i)|? A (3.3.24)
=1 : :

where R is the number of nonzero eigenvalues of Q, which is equal to its rank.

Equation (3.3.24) indicates that the characteristic function of y , ®,(v), expressed in

terms of the characteristic function of |ug %, O, p(v), is

v) = H B, (Aiv). (3.3.25)
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The characteristic function for degree 2 chi-squared random variables is given in [9] as

-1

where we set o2 = 1/2 in order to normalize E[|u,-|2] = 1.
The simple form of @lmlz(v) allows the pdf of y to be found analytically. Combi‘ning'
(3.3.25) and. (3.3.26) .

1 .
=1 t .

Equation (3.3.27) may be rewritten using a partial fraction expansion [24] as

E Z | (3.3.28)

i=1 k=1 ])‘ v)
where the constants A;; are given by
4 1 [dn' ~(1 = jAi0)™ B, (jv) (3.3.29)
k= - — J A Ju . 3.

A
D is the number of distinct Als, n; is the order of A;. Equation (3.3.28) is easily inverted

by recognizing the inverses of its individual terms as

‘ , (A k1 - A |
Inverse L (k 1)"\ky et/ y20 (3.3.30)
(1— j/\iv)k 0, otherwise. ‘
The pdf of y is then
—y/ X >
py(y) = 121 kzl A (3.331)
0, otherwise

and combining with (3.3.12) for P, yields

E
—by) yk1e=v/ gy (3.3.32)
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The integral in (3.3.32) is evaluated in Appendix A.1. The resulting expression for P is

R n; o k=1 -

1 1 : (20 — 1) © NEy/N,

Py=-—= Ak . (3.3.33)
RPNV \/<Az~Eb/No+1>2’+l

An expression having the same form as (3.3.33) was given in [21] for diversity reception
on slowly fading channels. However, the formulation in [21] does not allow the fast
fading channel case to be studied. In contrast, our model includes an arbitrary Doppler

frequency as a parameter.

3.4 ExtenSion to K -Channel Diversity

We can extend our technique for deriving the A;’s to include K-channel space,
frequency or time diversity reception by considering the channel impulse response z(o,t)
in (3.3.9) to be the concatenation in o of the K diversity channel impulse responses, which

may in general be correlated. The vector q becomes the concatenation of vectors gz
a=(allaf, ... o], | (3.4.1)

where q; is due to the 7" channel impulse response and where the k** element of o' is

q;*k = / 2! (a,' (k — —%—) At) p* ((k — %)At — a) do. (3.4.2)
0 : : o ) '

Defining the matrices
Qux = E[aiaf | - (343)

we have

[Qu Qi - Qik
Q= |Q Q2 - Qx| (344

Qk1 Q;{Z' Qkk
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When the impulse responses of the different channels are uncorrelated, Q simplifies to

a block diagonal matrix
| Qi1 -0 .. 0

lQ" =% Q2 - 0 (3.4.5)
0 0 .. Qkx]
It is easily shown that the fnatn'x of eigenvalues of Q’ is
Az 0 .0 |
A= |0 Amo O  (3.46)
0 0 . Axk

where Aj; is the diagonal matrix having as its elements the eigenvalues of Q;;. Thus
the eigenvalues of Q' can be found by ﬁnding the eigenvalues of the smaller matrices
'Qji, 1 <¢ < K independently. If we further assume that all diversity channels have the
same .autocorrlclation function, then we need only find the eigenvalues of Q11‘, since_'the

eigenvalues of Q' will be those of Qq1, but with their orders increased by a factor of K.

3.5 }Some MFB Results

- 3.5.1 Flat Rayleigh Fading

In flat Rayleigh fading there may be a fixed distortion of the power spectral density
of the received signal, but during fadés all ffeqlllency components are attenuated and
phase shifted equally. This implies that the channel’s impulse response is se;parable in
the delay and time variables. In the simplest case, there is no fixed distortion and the

channel’s impulse response and autocorrelation function may be written as
2(0,1) = 6(0)1(t)

bz(0ayop;ta —tp) = 5(Ja)5(0b)¢zl(ta — tp).
We will use the channel model of (3.5.1) to see how Fj is affected by the normalized

(3.5.1)

Dopplér rate fy, transmitted SNR, and pulse shape in flat Rayleigh fading. We begin by

considering the limiting cases of very slow (fy — 0%) and very fast (fy — oo) fading.
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It has been shown [3] that the channel autocorrelation function for a mobile whip
Aantenn_a_moving through a field with isotropic scat_teﬁng is given by o

#:((n = m)At) = Jo(wp(n —m)AL) . (352)

where Jy(z) is a zeroth order Bessel function and wp = 2r fp is the maximum Doppler -
frequency in radians. For this case the elements of the matrix Q as given by (3.3.23)

simplify to
Qum = AtJo(wp(n — m)At)p(n' At)p* (m'At): (3.5.3)

For very slow fading, Jo(wp(n — m)At) in (3.5.3) is essentially constant, and so Q
has only a single eigenvalue, which is A\g = 1.0. This follows from using (3.3.15) with
(3.5.1) to show that E[y] = f(0)¢,,(0) = 1.0. The pulse shape has no effect on the P,

since it does not influence Ag. The P, is given by the R = 1, ny = 1 case of (3.3.33), i.e.
11 | Ey/N, | , |

Ph==—=4/—— : 5.4

T 27 2\ Ey/N, + 1 _ (354

Af the opposite extreme as fy — oo it can be shown (Appendix A.2) that the variance

as is well known [9].

02 approaches 0 for any unit energy pulse. Ultimately as 0'5 -y O,. the pdf of y becomes

a delta function at Efy] = 1.0, ie.

lim p(y) = 6(y — 1.0).  (355)

fn—oo

Using this in (3.3.12) we find

lim Py = % _ % erf(\/‘ Eb/NO). (3.5:6)

Jnv—o0

The Py expression given by (3.5.6) is identical to that for BPSK signaling on a nonfading

AWGN channel, as might be expected. Tﬁus the use of an extremely long (relative to the
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coherence time of the channel) signaling pulse of arbitrary shape has essentially made

the fading channel look like a nonfading channel.

Between these extremes we might suspect that the pulse shape would be .Signiﬁcant
since the effective channel averaging or variance of y depends on the pulse shape. The
matrix Q given by (3.5.3) was calaulated for different pulse shapes, and for a range of
normalized Doppler rates fy and Ey/N, values. The pulse shapes chosen were a rect

pulse defined as

o
0<t<Ty
={ VT’ - D.
pr(t) { 0,  otherwise ’ (3:5.7)
a half sin pulse defined as
[T sin(xt/To), 0<t<Tp |
ps(t) = { 0, otherwise o (3.5.8)
and the root raised cosine pulse given previously in (1.1.4) as
p(t) = psq(t)a _
( 1 m(t—aTp
oty (1 +cos (L572)), 0t <aly (3.5.9)
Psg(l) = 1/, - alp <t<Ty
g\t) = , _
- 2—%—(1 + cos (ﬂ%l)) Ty <t < To(1 + )
0 otherwise. '

A computer package [25] was ‘used to find' the eigenvalues resulting from each
combination of pulse shape and normalized Doppler rate. In every case all R eigenvalues

were found to be distinct, so that (3.3.29) and (3.3.33) simplify to

[ B[N, _ _
E,,ZbNo+17 _ R=1

Py = - R /\',‘ X Ey/N, ' (3.5.10)
o Z H PYED YRV )\.’Eb/bNo-i-l’ RZ 2.

[T
DO —

[T
2O =

=1 I=1
1

-

Figure 3.3 shows the P, curves for the rect pulse shape in solid lines for a range -

of normalized Doppler rates up to 5.12. A couple of curves for the half sin pulse shape

are shown in dashed lines for comparison. The curve for the limiting case of very fast
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rect pulse

B - half sin pulse

0.0</,<0.01

0 2 4 6 8 10 12 14 16 18 20 22 24
E/N,
Figure 3.3 Effect of normalized Doppler rate and pulse shape for fast flat Rayleigh fading

fading (fy — oo) is also shown. As noted previously, this curve is identical to the
P, curve for BPSK optinially received on a nonfading AWGN channel. For P, < 0.1,
substantial improvements over the slowly fading case of several dB are seen for all the
curves presented. Below P, = 1072, at least half of the achievable gain is obtained by :
increasing the pulse duration such that the normalized Doppler rate is 0.64 for the rect
pulse or 1.28 for the sin pulse. Above these rates diminishing returns are clearly shown.
Each succeeding curve corresponds to a doubling of the normalized Doppler raté, but the
incremental improvement decreases with each curve. At P, = 1072, both pulse shapes
are within approximately 1 dB of nonfading AWGN channel performance, for fy > 5.12.
For finite positive values of fN,Vthe Py for the half sin pulse is worse than that for the

rect pulse, due to its inferior channel averaging.

Figure 3.4 shows the effect of varying the rolloff parameter « for the root raised

cosine pulse defined by (3.5.9) at fy = 0.32 and fy = 1.28. Thcre"is’very little change |
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0=0.0 & 0.125 ]

1 1 1 1 1 1 1 1 1 ] 1 i
0 2 4 6 8 10 12 14 16 18 20 22 24
E,/N, (dB)

Figure 3.4 Effect of rolloff on B,

in the curves for o < (.25, curves for o < 0.125 are practically coincident ovér much
of the graph’s range. For o > 0.5 loss in channel averaging ability is more significant.
These curves indicate the tradeoff between pulse smoothing and channel averaging which

is an important consideration in Chapter 6.

3.5.2 Frequency-Selective Rayleigh Fading

In frcqucncy-sclectiQe Rayleigh fading the fading at different frequencies of the power
density sbectrum is not completely correlated. This implies a significant delay spread
compared to the pulse duration. A common example [20] is when the transmitted pulse
and a'deléyed version arrive at the receiver after having travelled over different fading

paths. We model this channel impulse response with

z(o,t) ='a16(a)zl(t) + agb(a — T)z9(t) : (3.5.11)
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where m = 0and 7 = 75 — 1. Its autocorrelation function is
¢z(0'aa Op;teg — tb) = a%(s(o'a)é(o'b)¢z1 (ta - tb)

+ a1026(04)0(0p — T)bzy 2 (ta — tp) ,
. (3.5.12)

+ d1a25(0a — 7)8(0p) Py (ta — tp)

+ a26(oq — 7)8(0p — T) Pz, (ta — t?,).
We would like to consider the general case where the processes z1(t) and z(t) may
be correlated. To facilitate comparison with the flat Rayleigh fading case, we assume

- that they each have the same, to within a constant, autocorrelation function as used in

the one-ray case
¢z ((n — m)AL) = ¢,,((n — m)At) = Jo(wp(n — m)At) | (3.5.13)

and

Burn((n = M)AL) = pJo(wp(n — m)AY) (35.14)
where p is a normalized cross-correlation coefficient having | p| < 1. The elemenis of
Q for this case are |
Qu,m = AtJy(wp(n — m)At) [p(n' At)p* (m'At)
+app(n' At)p* (m'At — 1)

» ~ (3.5.15)
+ap*p _(n'At — 7)p*(m'At) 7

+ [azp(n'At — T)p* (m'At — 7')]
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Normalization

Evaluating (3.3.15) for our two-ray model we obtain

Ely] = ¢ (0)((ef + 03) f(0) + 2c1czRe[pf(7)])

(3.5.16)
=1+ 2a;a9Relpf(7)] |

assuming o? + o = 1.0.

Assuming for the moment that both rays have equal power we see that the average
received SNR ~y,, depends on the correlation between the rays and the amount of pulse -
overlap, and different cdmbinations can yield the same ~;,. Thus there are several
plausible ways for comparing P, plots. If diversity occurs because extra antennas are
being added at the receiver then it might be appropriate to have 7, increase with each
additional ray received. On the other hand, if we have a fixed amount of total power
to radiate and want to compare the merits of sending it with or without diversity then it '
would likely be more insightful to assume the powér per ray is reduced as the number of
diversity channels is increased. A third option is to compare on the basis of a constant . |

’fhe choice made in producing Figpres 3.5 and 3.6 is to assume that each of the
two rays has a variance of o = o2 = 1/2 and this remains fixed independently of
how the correlation-and pulse oveflap are varied. This makes two independently faded
pulses with 100% overlap equivalent to the transmission of a single pulse. To limit the
number of curves presented, the relative attenuation factor, ap/ag, between the two- rays

was not varied.

Two-ray slow Rayleigh fading

Figure 3.5 shows some P, curves for two-ray slow Rayleigh fading for several |
combinations of the normalized delay spread 7 and normalized correlation p between rays.
The results for independent rays are the same as those in [20], while the results for nonzero

p are new. A rect pulse shape was used in the calculation of Q by (3;5.15). The two
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(T,p):
) (0.0, —0.5)
100 R 0.5,-0.5) : 1
(0.0, 0.0) & (1.0, 1.0)
(0.0, 0.5) & (0.5, 1.0) .
(0.0, 1.0)

(0.5,0.5) . (
(0.5, 0.0) & (1.0, 0.5)
(1.0, 0.0) -

-5 Il 1 L 1 1 1 1 L 1 L L

0 2 4 6 8 10 12 14 16" 18 20 22 24
E/N,

10

Figure 3.5 Effect of delay spread and correlation between rays, for two-ray very sldw .
Rayleigh fading. : ‘ '

coincident curvés with (7, p) = (0.0,0.0) & (1.0,1.0) are equivalent to the transrﬁissibn
of a single pulse on a single ray with the same E;/N, and have the poorest performance
for p. > 0.0. Several connections between T and p are apparent. For the cases where
p = 1, the greater the overlap of the received pulses the better the performance, but the
maximum difference is only 3 dB. For the p = 0 cases, the‘ better performance occﬁrs with
smaller overlap and the dB advantage can be significantly greater depending on the pbint
of comparison, for example > 9.5 dB at P, = 1073, The reasons for thc gain occurring
in each case are also different. In the former, the gain occurs because the noise added
to each pulse is independent and so combines noncoherently, but the pulsé compdnents

are able to combine coherently. In the latter case, the gain occurs because of the more

important effect of diversity, where it is unlikely that both pulses fade simultaneously.
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For intermediate values of ray :'cerrelation there ought to be some' point where the
gains and losses due-to overlap oppose each othef and the trend is not so clear, but
as the curves show, most-of the gaiﬁ obtainable is achieved even for values of ‘(7', p)
~as high as (0.5,0.5). Additionally, each (7, p) pair is seen to have a dual in the sense
that there is more than one (7, p) combination that preducesvthe same curve. The Q
matrices produced by the duals are generaﬂy differeﬁt but their eigenvah_les are ef course
identical. For p > 0 the dual to (7, p) is given by (1 — p,1 — 7). The combinations -
(0.0,1.0), (1.0,0.0) and (0.5,0.5) are their own duals. | '

The P, curves were calculated by (3.5.10) except when (7,p) = (1.0,0.0). This |
is equivalent to diversity with two -indei)endent channels as described in Section 3.4.

Therefore there are R/2 distinct eigenvalues of order 2. In this case (3.3.33) simplifies to

R
1 18 XiEy /Ny AiEy /Ny
Pp==—= Air + Ai2) 3.5.17
' 2; A\ BN 1 T \/)\Eb/No—l-l G217
where N
1 2
Ay = ——
' Ai;a—x/xﬁn 1—)\1/>\) |
" i (3.5.18)

Two-ray fast Rayleigh fading
- Figure 3.6 shows several Py curves at a normahzed Doppler rate of fy = 0.64 for
© two-ray fast Raylelgh fading for several comblnamons of the normahzed delay spread T
and normalized correlation p between rays. The variations of P, with (7, p) are similar to
the slow fading case except the correlation between rays seems less important. Comparing
| the cases for 7 = 1.0 in Figure 3.6 with those of Figure 3.5 for slow fading, the dB spread

is seen to be much reduced. This is because in slow fading the only source of diversity
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Figure 3.6 Effect of delay spread and correlation between rays, for two-ray fast Raylelgh
fading.” Normalized Doppler rate = 0.64.

is the extent of the two rays’ independence, while in fast fading there is diversity within

a single pulse.

3.6 Conclusion

A matched filter bound analysis was presented for BPSK signaling on fast Rayleigh
fading channels. The effects of delay spread and correlation between the fading processes

for multipath reception were included in the analysis, and several examples given.

The bit error rate performance was shown to improve with incréasing fn'?, eventually
approaching the performance of BPSK on the nonfading AWGN channel. This result
dqes not depend on the specific pulse shape. For P, = 1072 and fy = 5.12, the E;/N,

10 This is consistent with previous work.
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required is within 1 dB of that required on a nonfading channel for both the rect and

half sin pulse shapes.

In contrast to the limiting case, for any finite normalized Doppler rate high enough -
that the channel gain cannot be assumed constant over the pulse duration, the pulse shape
affects the P;. This applies even in the case of a channel tracking receiver which ideally
matches the impulse response of ité correlator to the received pulse shape.

" Delay spread was found to result in a loWer Py for both the slow and fast fading

cases, when p < 0.5. The reduction was smaller in the latter case due to the inherent

diversity present within a single pulse.




~ Chapter 4 - x

A Maximum Likelihood Séquence Estimation Receiver
for OFDM on Flat Rayleigh Fading Channels

The MFB analysis presented in Chaptér 3 obtained performanc.e bounds on the
achievable P, for OFDM in part by neglecting the ISI introduced by the Channcl fading.
‘Since this ISI may be substaﬁtial, it remains an open question as to how. vclosely these
bounds may be approached by a receiver when ISI'is not neglected. -

In this chapter we derive an optimal receiver for OFDM based on the principles of
maximum likelihood sequence-estimation. A multiplicative fading channel model with .
AWGN is assumed in the derivation. The recei?er’s per’forrhance in flat Rayleigh fading

is evaluated by simulation and compared to the MFB results derived in Chapter 3.

This chapter is organized as follows. Section 4.1 describes the transmitter and chan-
nel model for which the receiver is being derived. Section'4.'2‘presents thé_: theoretical
derivati'on of an optimal maximum likeﬁhood receiver, in the sense of sequénce esti-
mation, for OFDM in flat Rayleigh fading. Evaluation of two key paranﬁeters, matched
filter outputs and tone correlations, bsllFFT s in a digital implemention énd the required
sampling rate is examined in Section 4.3. Section 4.4 describes 'truncating the constraint
length used by the sequence estimator to make it less cdmplex and Section 4.5 presents
a criterion foi choo.sing a non-rectangular pulse shape. Section 4.6 presents simulation
results for Py as a function of Ej/Np , assumihg perfect channel knoWk:dge, of BOFDM
for a variety of parameters and compares tﬁem to the MEFBs of Chapter 3. Section 47
develops an approximate aﬁalysis to predicti the effect of using an imperfect channel es-
timate, and compares this result to a simulation with a noisy channel reference. Section
4.8 shows a limitation of -the truncated MLSE receiver when applied to QOFDM and

Section 4.9 summarizes the conclusions of this chapter.

39
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OFDM on Flat Rayleigh Fading Channels

4.1 The Transmitter and Channel Model

Figure 4.1 shows the transmitter and channel model in terms of the complex lowpass -
equivalents for bandpass signals. N data'symbols are assembled and simultaneousiy
modulated onto N frequency-orthogonal carriers. 'i'he_modulator outputs are summed
and the resulting waveform is further shaped by‘ the unit energy pulse p(t) to form s(t),
the transmitted waveform of a single OFDM'tl)lock. The energy of an OFDM block is
Ey = NE,, where E, ‘is the energy of a data symbol. Both the OFDM block and thé
data symbols comprising it have duration (1 + «)Tj. |

The channel introduces multiplicative fading 2(¢) and AWGN n(¢) of spectral densi;y
Ny. The channel fading is modeled as a complex Gaussian random process with é power

| | - /2" -
' _ 0'2 _ f_fc 2 1 '
<I>z1(f)—27rfD<1_ ( = )> o @

spectrum

and autocorrélation function
¢z (7) =Jo(2nfpr) - (4.1.2)

appropriate for land mobile radio [3]. The AWGN is statistically indepéndent of both

the data and the fading.

}4.2 Derivation of a Maximum Likel‘ihood Receiver for OFDM

In order fo determine the best possible performance lattainable with an OFDM signal
in Rayleigh fading, we derive an optimzﬂ feceiv_er structure which assumes knowledge of
the fading Waveform z(t) is available as side information at the receiver. In practice z(t)
might be estimated by reserving some of the OFDM tones for a pilot signal. Since the
fading assumed is ﬁét, the phase and amplitude changes impressed upon the pilot will
be identical to those impressed upon the data tones, néglecting the effects of AWGN. .

We will not develop the estimate of z(¢) here, but merely assume that a perfect estimate
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OFDM on Flat Rayleigh Fading Channels
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Figure 4.1 OFDM transmitter and channel model

is available. Later in Section 4.7 we will consider the effect of noise on the channel

estimate, to verify that this assumption is not too brittle.

As previously noted, an OFDM block consists of N data symbols, and we are
interested in the optimal dctcction- of a single OFDM block. There a;é different possible
interpretations of what is optimal. We could for example seek the minimum probability
of a data symbol error or we could seek to minimize the probability of an OFDM block
error. These criteria are not quite identical. In the latter casé the problem is to find
" the optimal data _symbql sequence composing an OFDM block. Experience with serial
modulation [26] on ISI channels has shov"vn that optimization by the sequence estimation
criterion tends to perform well by the symbol :optimizat'ion“ criterion as well. Relatéd
work in [27] shows that the symbol optimization criterion generaﬂy leads to a more.

computationally complicated receiver. With these points in mind, we choose to derive

an optimal receiver in the sense of sequence estimation.
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- OFDM on Flat Rayleigh Fading Channels

Consider a signal w(t,a), dependent on a vector of data symbols a, transmitted on
an AWGN channel, where the noise is statistically independent of w(t,a). The received

signal is
r(t) = w(t,a) + n(t). - 4.2.1)

It is well known from the principles of maximum likelihood sequence estimation [28]-

that the log-likelihood function for a is
/]r(t) — w(t,a)|dt S . (422)

assuming the integral is finite. Equation (4.2.2) must be minimized over all possible
choices for a. Expanding (4.2.2) and retaining only the terms dependent on a we can

show that minimizing (4.2.2) is equivalent to maximizing the metric
A= /Re *(t,a)] — ——Iw(t a)| dt (4.2.3)

which is the form we shall work with here.
For the flat fading model, the received signal is given by

r(t) = z(t)s(t) + n(t), 0<t<To(1+a)

Vet _ o )
_ n ‘ , 42.4)
= 2(t)p(1) Y an ST 4 n(t) *2 )_
' n=0 .
where R
CN-1
s(1) =p(t) Y ane’ ™, (42.5)
OStST()(l—}—a)
Comparing with (4.2.1), it is apparent that
: N 1
w(t,a) (4.2.6)

n=0
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Substituting (4.2.6) into (4.2.3) we have

N-1
A= /Re r(t)z*(t)p*(t),z aZe_]zT_:ntjl dt
n=0 . :
‘N-1N-1

__/Iz P Y. > ahame B

n=0 m=0

(4.2.7)

where the interval of integration is the interval over which p(t) is nonzero, i.e. 0 <t <

To(1 + «). Interchanging the orders of the integrations and summations

N-1
2% / r(t)=* (£)p" (2) _JT"ntdt}

A= Re

4.2.8)
1 —1N-1 _
_§Zzaam/|z HP JTo(n m)t 5,
and defining
Un = / r(t)2*(t)p*(t)e i o o™ dt - (4.2.9)
and _
Vo = / l2(4))%|p(t) "’tdt S (4210
we can write for the metric |
N-1 N 1N=-1 .
A=Re|Y apl. z > ahamVnom. (4.2.11)
n=0 n—O m=0

Some insight into the méaning of U, and V,, can be obtained with a little manipulation of
(4.2.9) and (4.2.10). Let the equivalent pulse shape aftér transmission over the channel
be ¢(t) = p(t)z(t), and let P(f) = [ p(t)e~7%"ftdt. Using this and applying Parseval’s
relation!! to (4.2.9) yields .

Un =_Z R(f)Q (f j,%) ¥ @.2.12)
={R(f)® Q" (- N}=2,

1 e ()t = _T ADB*(Ndr.

—_
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where ® is a convolution operator. U, can be interpreted as the output U(f) of a filter
matched to Q(f) operating in the frequency-domain, evaluated at f = n/Tp. We will

~ refer to Up as the matched filter outputs. Using ¢(t) in (4.2.10) we have
V, = / () Pe I Bt  (4.2.13)

V., is the correlation between two complex tones spziced n/Ty apart in.frequency after
shaping by the equivalenf pulse. We will refer to V,, as the tone correlations. |
Once we have obtained U,, and V,,, (4.2.11) gives A in a form maximizable by the
Viterbi algorithm. Specifically, it may be shown (Appendix C) that A may be found
recursively by defining | |

- n—1

A = RelahUn] —Re|ah Y apVuoi| — §|anl‘2Vo (4:2.14)
k=n—-1L ‘ : .
and maximizing
‘ N=1 ) )
A=) (4.2.15)
n=0 :

Equation (4.2.14)'resu1ts in an opfimai sequence selection oﬁly for -the selection of

L = n, or equivalently if V;, = 0 for n > L. | .
~ The Viterbi algorithm is a search for an optimal path through a trellis with M L states,
where M is the number of symbols in the alphabet of -a,. Although much moré efficient
than an exhaustive éearch when L < N, it is still exponentially complex in L, and thus

L must be fairly small in actual use or approximations become necessary.

4.3 FFT'Evaluation of U, and V,,

Both the matched filter outputs U,, and the tone correlations V., which are .deﬁned'by

continous-time integrals, must be evaluated from discrete samples of r(t) and z(t) in a

digital implementation. While numerical integration techniques could be used, it is much
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more efficient to take advantage of certain relations between continous-time and discrete-
time Fourier transforms. If we define U(f) as the Fourier transform of r(t)z*(t)p*(t)
and V(f) as the Fourier transform of lz(t)]21p(t)lz,,then U, and V,, are seen to be
these transforms evaluated at f = n/ To. This leads to a criterion for determining the
sampling rate which will allow all N values of U, and V, to be evaluated accurately

and simultaneously using FFTs.

If we have,a discrete signal s,, related to a continuous signal s(t) by sampling as

sm = s(t) 3 6(t — mAt), the relation between S(f) = 3 sme™72™/mA and S(f) =
[ s(t)e™72Ftdt is [6] -

S(D:ézn:s(f—%)" - | 4.3.1)

which states that the spectrum of the discrete signal is a periodic version of that of the

continuous signal. When (4.2.9) and (4.2.10) are converted to DFTs by sampliﬁg as in

O =" rmzgppe B @32
m ' ‘
Vo= lomllpm[Pe T2 (43.3)

we are actually calculating periodic approximatiofxs to U, and V,. Equation (4.3.1)
indicates one period of Atf]n = U, and one period of Atf/n =V, if U, and V,, are
bandlimited and At is small enough to avoid aliasing. The bandwidth of s(t) depends
on how maﬁy sidelobes are considered significant components of P(f). For rectangular
pulse shaping, even considering only the first sidelobe on either side‘ and choosing At to
avoid these aliasing requires At < Tp/(N + 3). The bandwidth of the received signal
" is greater because of the multiplicative fading, and the bandwidth of the argument. of

(4.2.9), r(t)z*(t)p*(t), exceeds that of s(t) by twice the Doppler frequency. Since the

Doppler frequency is assuméd to be on the order of 1 % of the signal bandwidth only a

slight decrease in At is required. The implication is that despite the inVcrtibility of the
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DFT, an N-point transform (corresponding to At = Tp/N) is inadequate to represent an

il

N tone OFDM signal on a fading channel'?,

To allow an adequate guard interval, and because it is convenient to work with factors

~ of 2 when using FFTs we use At = %%, and our DFT equation for U, is

Un =50 3 rmzhphpe 2™ 434)
m=0 o
The upper limit N’ must be large enough to cover the time interval 0 < ¢ < Tp(1 + «), |
tequiring N’ greater than 2V for o > 0. Again choosing a factor of 2 for convenience
4N-1 ,
Un= Y rmzpphe 0™, (4.3.5)

m=0
where we have rescaled U, to remove the leading factor of 271—1‘3, This rescaling is also
applied to V, below and does not affect the optimal path selection as can be seen from

(4.2.11).
Equation (4.3.5) can be calculated from two 2N—point FFTs by using the periodicity

of discrete complex exponentials. It is easily shown
2N-1 .
* * —g2m
Un = Z (rmz;zp;z + 7’m+2NZm+2NPm+2N)€ Jannm,

n=0

(4.3.6)
0<n< N —1.

_ In (4.2.10) for V,, |z(t))*|p(¢)|* has a much narrower bandwidth than that of
r(t)z*(t)p*(t), pefmitting a much larger A¢ than that required to evaluate Uy,. However,
if a shorter FFT is used an interpolator is reqﬁired because the frequency ‘samples Vy,
are spaced too far apart. Since an FET is an efficient interpolatof, we use thé following

expression for V,

2N -1 .
- 27
Vo= 3" (lzml Ioml” + lzmean pmion]?) 7500,

n=0

4.3.7)
0 <n<.L.

12 N -points are adequate for AWGN channels, because the Nyquist criterion need not be satisfied.
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4.4 Truncated MLSE _

We have noted in Section‘ 4.2 that the complexity of the Viterbi algorifhm used to
evaluate the metric of (4.2.14) and (4.2.15) varies as M~. From (4.2.14) L is potentially as
large as N—1, or 1 less than the number of tones used. Even for M = 2, a binary signaling
)a‘lphabet, the complexity of the optimal receiver rapidly becomes unéupbortable for mbre
than perhaps 10 tones. Optimal receivers for L = 64 or 128 are clearly impractical, yet
we are interested in large numbers of tones for the channel averaging they provide. Thus
the maximum value of L must be reduced, and the simplest means is to set a limit for it.
Speciﬁcally,bin the calculation of A, by (4.2.14), we allow L = n to increase with n for
n=0,1,..., Lymaz, and then hold it fixed at Lo, for n = Loz +1, Linaz +2,..., N — 1.
By so limiting L the MLSE receiver is made suboptimal.

The indication that L may be limited while losing only a small portion of the attainable
performance follows from the interpretation of V,, as the correlation between two tones.
As the sidelobes of Q(f) decrease with increasing distance ffbm thé mainlobe, it is
apparent that inter-tone correlations will decrease as the frequency spacing between
the tones increases. How rapidly this decorrelation occurs depends on the type of
pulse shaping used and on the fading waveform during the signaling interval. The
selection of the pulse shape is affected in part by a tradeoff between channel averaging
and rapid sidelobe reduction. A raised cosine pulse, for example, has more rapidly
decreasing sidelobes than a rectangular pulse, but is less effective at channel averaging.
In the following .sections the required L4, for BOFDM is found by simulations of the

suboptimal receiver for both rectangular and raised cosine phlse shapes.

4.5 Pulse Shaping
Without foréknowledge_ of the fading waveform the most effective channel averaging

in the interval Ty is obtained with a rectangular pulse shape.
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However in practice a pulse without discontinuities is desﬁable because of bandwidth
limitations,:and additionally it seems possible that a pulse with more rapidly .decaying
sidelobes might cause less ISI and therefore require a smaller L. A criterion for choosing
p(t) is to require that the basis functions of s(t)‘remain orthonormal after shaping and

matched filtering in the absence of fading:
e :/ [p(t) PR . - @5

Let psg(t) = p(8)[? and Peg(f) = [ peq(t)e=72"71dt, then

6n = Psq(f) f=n/m0 :

. (4.5.2)
= Pyg.. -

Transforming both sides with an inverse discrete frequency Fourier transform (Appendix

B) and scaling by 1/7, yields

‘ 1
s t— _T
‘ En Psq(t — nTp)

— (4.5.3)
0 .
which is merely Nyquist’s criterion for zero-ISI pulse shaping with the traditional roles

of time-domain and frequency-domain expressions reversed.

An important consequence of (4.5.3) is that there is no pulse shape of duration less
than or e(iual to T (other than the rectangular) which satisfies the orthonormality criterion.
Thus alternative pulses must have their duration extended relative to the rectangular pulse.

We consider the raised cosine family for pg,(¢) since it is known to satisfy (4.5.3) and

 its spectral sidelobes decay-approximately as 1/f3. The raised cosine pulsé is given by

ﬁ(l—i-cos (ﬂ%l)), 0<t<aly

_ ) 1/Ty oy <t < T
Psq(t) = ’ o (4.5.4)
ﬁ(l+cos<%)>, To <t <Tp(1 + «)
, . otherwise '

where 0 < o < 1 is a rolloff factor describing the percentage of the pulse duration

beyond Ty. The pulse p(t) satisfying (4.5.1) is p(t) = 1/psq(t).
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o '
The need to project p(t) onto complex exponentials e’ To " of duration greater than
Ty leads to an interesting observation. Redefining the exponentials to include a linear

phase shift, the shaped basis functions aré
p1)E T 0 << (14 )T, T (455)

The Py, in contrast to the AWGN channel, is affected by the choice of o. Figure 4.2
shows the sensitivity of Py to the choice of o for BPSK modulation of N = 32 tones
and o = 0.125. These errors are due entirely to ISI caused by flat Rayleigh fading as
there is no AWGN. Matched filter detection is employed without MLSE The ‘optimal
o occurs at o = aTy/2. ' |
The effect occurs because p(t) has been defined to start at ¢ = 0. Thié causes pulée
shapes with nonzero o to have a delay of 7q = aTy /2 relative to the rect pulse. 'Consider

a single modulated tone from an OFDM block as in (4.5.6)
j2=nt o
anp(t)e’ T, ' (4.5.6)

- Time delay of the pulse, as shown in (4.5.7)

c2m - £ 2m ’
anp(t — Td)e]T_onf = anp(t') T +7a)

= (anef%"fd)p(t/)ej;—gmf @5
’ -2 ! -
= a;lp(t') e]Eﬁ?

where t' =t — 74 and o/, = a}tej 2T_§"”, effectively alters the transmitted constellation by
introducing a tone dependent rotation of the data symbol.

There is no effect from rotation on Py for an AWGN channel because the received
tones remain orthogonal. ‘ But F; is increase_d when orthogonaiity is lost as on a fading

channel; because the a, can be closer in signal space than the a,.

The variation in P, with o is greater than 2 : 1 without compensation, but can b¢

entirely removed by prerotating the an. by e~/™ when a # 0. This is equivalent to
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Figure 4.2 Variation of Py with ¢ for N = 32 tones and various rolloff factors. Matched
filter reception, no MLSE applied. ’ )

setting 0 = aTy/2 in (4.5.5), and was done in producing the simﬁlaﬁon results which

follow.

4.6 Perfect Channel Knowledge

4.6.1 Simulation Framewqu

The probability of a bit error, Fj, Was evaluated by simulation for several important
cases. The OFDM blocks were generated as specified by (4.2.5) with a, = +F,.
This is independent BPSK modulation of each of the N tones comprising the OFDM
block. Thus we have E, = Ej, and the probability of a syrﬁbol error P, = P,. The
simulation implements the transmitter and channel model shown 1n Figure 4.1, and the
truncated MLSE receiver with suboptimal constraint length L derived in this chapter. The
simulations were made long enough to obtain 95% confidence intervals of approximately

+10% of Pb.

The transmitted signal s(t) is subjected to flat Rayleigh fading and AWGN as specified

by (4.2.1) and (4.2.6). The received sighal r(t) is processed to produce the matched filter
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outputs and tone correlations giveﬁ by. (4.3.6) an_d (4.3.7) reépectively. These are then“
passed to a Viterbi algorithm which maximizes the metric X given by (4.2.15).

- The figures presented are annbta;éd with fn since it is this paiarﬁeter upon which
the P, of the MFB of Chapter 3 depénds. ‘A maximum Doppler rate of fp = 0.01 times
the data symbol rate i‘s assumed and the sampling rate and number of samples per block
is such. that fy = fpTo = fpN. Therefore we always have N = 100y data symbols

per OFDM block.

'4.6.2 Rectangular Pulse Shape

- We begin by considering a rectangular pulse shape p(t) = ﬁ rect(t/To) which

has a % sinc(Tyf) amplitude spectrum. The sidelobes fall off only inversely with f
and the first sidelobe is only 66 db down from the main lobe. If thefefo_re seems possible
that after channel fading has altered the special structure required to obtain orthogonality
that L might be quite large, but our simulation results iri comparison to the MFB indicate -
this is not always the case. - | |

Figure 4.3 shows some simulation results for the MLSE receiver with various values
of L. The OFDM signal uses BPSK modulation of 32 tones With rectangular pulse
- shaping on a flat Rayleigh fading .Channel. The normalized Dopplér rate is f}v = 0.32,
and Fhe MEB for fy = 0.32 is also shown for comparison. We observe that the truncatéd
MLSE receiver is-able to approach thé MFB to within approximately 1 dB over a P
range exceeding 1072 to 1074, and that the discrepancy between the MFB and MLSE
receiver Vinc,reases only slightly with Eb /No. This is for a modest value of L =3. If L

is restricted to only 1 there is less than a 1 dB loss at 1073; increasing L to 5 results
in negligible improvement over L = 3.
The L = 0 curve is simply matched filtering without sequence estimation. It exhibits

an error floor slightly below 1072, This is due to the large amount of uncofnpensat@d,

ISL. The effect becomes more visible with increasing -Ej/No becausé the proportion of
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error due to ISI relative to AWGN increases as well. Presumably error floors also exist

for L =1, 3,' and 5, but at levels too low to measure by simulation.

~ Figure 4.4 shows results for the same. parameters as Figure 4.3 ekqept there are now
128 tones and fiy = 1.28. Again values of L = 3 or 5 are within 1 dB of the MFB at
1073, although the discrepancy between these curves becomes significant at lower error
rates. Additional points show the inadequacy of L = 2 and a negligible improvement

for L = 7 over L = 5.

4.6.3 Raised Cosine Pulse Shape

Here we comparelthe required L for raised cosine ‘pulses of .various o to the
required L for a rectangular pulse. The pulse p(t) is specified by (4.5.4) and (4.5.1).
In comparing pulses of different « theire is an unavoidable discrepancy in- the overall
signaling rate. This is because the orthonormélity constraint of (4.5.1) requires a pulse of
length T}y = To(1 + «), and longer pulsés imply fewer OFDM blocks can be transmitted
in a given time. | ' |

‘FigUre 4.:5 shows Pb results for fy = 0.32 with L = 3 for « = 0.0 and o = 0.125. |

It was shown previously that there is negligible improvement beyond:L = 3 for this. .

Not too surprisingly, the change in « has a negligible effect.

Figure 4.6 compares the F; for various o at fy =1.28 and L = 3. Since L =3 is
noticeably worse than L > 5 at this fy, it was thought that the reduced spectral sidelobe )
levels of the pulse shapes for a > 0.0 might resfﬂt in a lowered P relative to the o = 0.0 -
case. However in the simulation results there is very little dependence on « from which

we conclude that it is the ISI from nearby mainlobes which causes most errors over the

simulated Fj range, and that the effect of ISI from sidelobes is relatively unimportant.
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Figure 4.5 Effect of pulse shaping on the P, of an MLSE for fy = 0.32 and L =3
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4.7 Effect of an Imperfect Channel Estimate

In deriving and simulating the MLSE receiver we have so far assumed the avai‘lability
of a perfect channel estimate z(t) at the receiver. The problem of channel estimation by
~ means of pilot signals for Rayleigh fading has been previously stﬁdied [51, [10], [11]. Iﬁ .;
this section we provide an approximate analysis of the effect of using a noisy estimate
on the receiver’s Py performance an'd verify our result by simulation.

An imperfect channel estimate affects thé MLSE receiver by introducing errors into
the computation of the metric parameters U, and Va. We will focus on the métched
filtér outputs U, since the results of Section 4.6 show the MLSE‘recéiver to be tolerant

of small errors in V.

_ We model the channel estimate 2,, with
Zm = Zm + Nz, 4.7.1)

where n;z is AWGN with variance oﬁ, and is statistically independent of z,,.
Consider the term r,,z; from the argument of .the summation in (4.3.5) used to

~ calculate U,. Substituting for r,, we have

TmZe, = [Smzm + nml2, :
472)

= Wz, + nﬁn
where w27, is a signal component and nj,, = np2;, is an AWGN component of Qariance
Npy. With the noisy estimate weﬁ have instead
TmZm = WmZn + nm2y,
: —w, [;;;;1 + n;m] + N, [z:n + n:m] _ (4.7.3)
R W zh, +nb +nl | M
- where nll, = wmn} is an additional Gaussian noise term and the second order noise

term n,n} has been dropped. Equation (4.7.3) is approximately equal to (4.7.2) with
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the addition of an extra noise term nl,. Its variance is
2
B||wmn?, |°] = Fac?, (474

which at first appears proportional to the energy per data symbol F,.

We note n), and n), are independent, since they are assumed jointly Gaussian and

their cross-correlation is

[/ A * k- :
E[n,ni] = Elnmelwhns, ]

= Wl Bl E[z5 Efns, @15

A =0.
Therefore the noise powers add, and the ratio of signal energy to noise power in (4.7.3)
is given by |
N = P
O+ 00n
Ea/No (4.7.6)
14 %aﬁz'
where we have used Elzmzl] = 1.

The variance a,zli depends on the type of estimator used to form 2,. Suppose the

channel is estimated by transmitting a pilot tone of energy F; per data symbol interval. _

Iy, = 4 /?1 Zm + T, @
S . )

where n,,, is independent AWGN of spectral density Np. [, is bandpass filtered by an

The received pilot is

ideal rectangular filter of unity gain and bandwidth B,. B, is chosen wide enough to pass
lp., undistorted except for band limiting the noise spectrum; i.e. B, >'2fp with equality

in the absence of frequency offsets. Adequate guard intervals (in frequency) are assumed

‘to protect the pilot from ISI effects. The output of the bandpass filter after sampling is

= / %’ Zm i, . | (4.7.8)
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where o2 NOB These outputs are further processed by a Wiener filter. Without loss
of generahty we can consider the estimate of 3 zZo by a W1ener filter as

20 = hil ‘ (4.7.9)
where ()H is the Hermitian operator, combining transposition'énd conjugation. For an

T
N—point estimate, the tap input vector 1 = [l_ N1, l_l, lo, 1y, .51 LY It is well
. . 2

_known from Wiener filter theory [23] that the optimum (in an MMSE sense) choice for
the tap weight vector his h = R™1g where R = E[IT] is the autocorrelation matrix of
 the tap input vector and g = E[z3]] is the cross-correlation between the desired response

and tap input Vector It is not dlfﬁcult to show that the variance of the estimation error is
EDBO . zo|2] —1-giR g | (4.7.10)

For the present problem we have

R (i« ) (V420

4.7.11)
= EIE[ZZ ] + NOE[nlnl ] :
where
Z = [Z_M'; vy 221, 20,4 21, "'7Z_M] - (4.7.12)
T2 2 o
and
. o T
n) = [nz Nl_l,...,nl_l,nlo,nzl,...,nlNl_l] . - (4.7.13)
- = :
The (7, )th element of R is given by
Ri;= TJO(QWth — J|At) + NoBpsinc(By(z — j)At) (4.7.14)
and ..
| = B[ (VEiz + m))
. (4.7.15)

E
Ts

l

B[z z].
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The " element of g is given by

o= ,‘/JEZF_’JO(zw fplilA). . (47.16)

Let us assume At = T, and normélize the pilot bandpass filter bandwidth by the
durétion of a data symbol § = B,T;. We define the two N; x N; matrices Jo(3) with
(4,4)™ element Jo,;(8) = Jo(2rBli — j]), Sinc(B) with (i,5)*" element Sinc; (8) =
sinc(B(: — 7)), and the N; x 1 matrix jo(8) with it element jo,(8) = Jo(27 7). Then
we can write | '

oo NoBTeoo o \TL

Ons = (1 —Jo (8) (Jo(m + —‘?E—f—SSmc(ﬂ)) Jow))- (4.7.17)
Let f = Fi/E; be the fraction of the total energy transmitted per data symbol which is
allocated to the pilot. The total energy transmitted per data symbol is E; = E, + E;

giving £, = E;(1 — f) and E; = E;f. Using these in (4.7.17)

2 _ (g NoBe. . \"L -
On; = 1=Jo (ﬁ)(JO(ﬁ) f?Smc(ﬂ)> Jo(ﬂ) (4.7.18)
and substituting in (4.7.6) yields for SNR! of 4.7.3) . |
| F(-1)
SNR' = ° (4.7.19)

1+ &) (1 - 58)(J0(8) + %%5inc(ﬂ5)_lj°<ﬁ>)

The variaﬁon_ of 0721'2 with N; for several values of ( 1, B, %) is shown in Figure 4.7.

It can be seen that a,zu is nearly independent of /N, suggesting that N; = 1 is an
appropriate choice. * This is because the noise comporients at the pilot filter output are
strongly correlated. As Ni is increased to obtaiﬁ less correlated noise compor}é;nts, the
correlations of the pith components with the desired component zg decrease, and these

effects tend to cancel each other. With N; =1 (4.7.18) sirﬁpliﬁes to

s P
No : (4.7.20)
N B

N ——

Es f
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and (4.7:19) to

SNR' =

(%f i ﬁ>(1 ~/) . (4.7.21)
fa=-8)+8(1+5)

Figure 4.8 shows the variation of SNR’ with f for various (%,ﬂ) pairs. - It can be
seen that the optinial allocation of power to the pilot signal is only 12.5% at 8 = 0.02
and increases only slightly as- 3 is increased. There is very little variation with F, /N().
Compared to an ideal system having perfect khowledge of zm at'the receiver without
having to expend powef to measure it, the curves of Figure 4.8 at 8 = 0.02 predict a cost
of approximately 1.3 dB for a system which must allocate power to channel méasuremént

and subsequently use the noisy estimate which results.

4.7.1 Noisy Reference Simulation
Figure 4.9 compares the Pg measured by simulation for a noisy pilot reference verses
an ideal reference, for f N' = 0.64 and L = 3. The MFB and ideal (noiséless) reference

curves are the same as appeared in Figure 4.3.
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A Maximum Likelihood Sequence Estimation Receiver for 61

OFDM on Flat Rayleigh Fading Channels

The curve for the ’noisy reference was obtained with thé sar'ne’simulation cbde as for
the ideal reference case; cexcept the ideal reference was replaced with a noisy referenée
as specified by (4.7.1), and having reference noise variance given by the first line of
(4.7.20). The noisy reference was used by the MLSE receiver in calculating the matched
filter outputs and the tone correlations, which are the only places a channel reference
is reQuired.

The Ej/Ny numbers of the horizontal axis consider the total energy used to transmit
"a single bit; the actual F} of a single bit was reduced by f = 12.5% to model the energy
allocation to a pilot signal. '

About 0.3 dB higher than predicted by the analysis, the energy required to measure

~ the channel and the subsequent use of a noisy reference result in approximately a 1.6 dB

penalty relative to an ideal, costless reference.
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" Figure 4.10 Limitation of truncated MLSE applied to QOFDM for fy = 0.32

Thus far we have considered results only for BOFDM where we found the MFB at
P, >10"* canl be approached within 1 dB for practical values of L ranging from 3 to
5. Unfortunately, as shown in Figure 4.10, the required L for QOFDM is impractically
large. There are two reasons for this. The first is the exponential dependence on L
of the number of states which must be extended with each iteration of the truncated
MLSE algorithm. For a given L, the number of states is squared for QOFDM compared
to BOFDM. Secondly, there is more interference with QPSK symbols as opposed to
BPSK syfnbols. This is because in addition to the ISI from nearby tones, there is also

intrasymbol!? distortion of the QPSK _symbOIS.

13

inphase-quadrature (IQ)
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The truncated MLSE receiver in its present form is clearly inadequate for ﬁse with
QOFDM.’ A more sophisticated approach, propésed in the context of serial mddulation
on an ISI channel, reduces the required MLSE constraint length with a linear préﬁlter
[29]. Variations of this idea-are developed in Chapter 5, which ultimately make the use
of MLSE with QOFDM feasible. ‘

4.9 Conclusion

In this chapter we have derivéd and simulated a truncated MLSE receiver for OFDM
on flat Rayleigh fading channels. The metric used by the sequence estimator is evaluated
by the Viterbi algorithm. Key quantities input to the algorithm can be interpreted as
frequency-domain matched filter outputs and tone correlations. These quantities can be
~ efficiently evaluated using FFTs. For BOFDM, with the assumption of perfect channel
knowledge, it is possible to a‘ppréach the MFBs of chapter 3 to withih 1 dB for bit error
rates as low as P, = 10™* using constraint lengths of only L = 3 — 5 for normalized
Doppler rates of fy = 0.32 — 1.28. Compared to uncoded serial schemes which are
unable to take advantage of channel averaging, there are gains of several dB for OFDM
at Py rates of 1072 and below. These gains are of course contingent on the normalized
Doppler rate being high enough to allow channel averaging to o.ccur, but not so high
as to require an excessive .cdnstraint length. The examples simulated covered the range
from fy = 0.32 — 1.28.

The use of pulse shaping of the OFDM block to reduce the spectral sidelobes of its
tones waé investigated but found to have iitﬂe'effect on P;. The implication is that the
sidelobes th_emseh’/es are relaﬁvély unimportant at the simulated bit error rates, and that

the visible error is due to a combination of mainlobe ISI resulting from the flat Rayleigh

fading and AWGN.,

While useful for comparison purposes? an ideal channel reference is unobtainable

in practice. An analysis was presented to determine the dB loss of using a noisy as
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opposed to an ideal reference, resulting in an estimated loss of about 1.6 dB for the

example considered.

Application of the receiver to QOFDM proved impractical due to the required

constraint length, which is longer than that required for BOFDM. Further work with
QOFDM is deferred to Chapter 5. | .
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In the previous chapter a truncated MLSE receiver was derived for channel-averaging
OFDM which was able to approach the MFB quite closely for a rénge of normalized
Doppler rates. A serious limitation of this approach is its complexity, which increases
exponéntially with the channel constraint length.L. For serial modulations, the traditional
alternatives have been linear and nonlinear decision feedback equalization techniques
whose complexity is only linearly dependent on L. While there has been substantial
activity in this area, particularly since the early seventies, to date (1997) tﬁere are few
publications, [5], [7] ‘and [17] in which equalization techniques have been applied to
channel-averaging vcrsibns of OFDM. | '

In this chapter, we look‘ quite closely at the theory of equalization as modified for
OFDM in flat Rayleigh fading,'ultimately resulting in the derivation of a new dqcision
feedback equalization structure having substantial colmplexity and performance benefits

over the current state of the- art.

Section 5.1 derives the optimal linear MMSE equalizer for OFDM in flat Rayleigh
fading. Section 5.2 derives a discrete symbol-spaced "equalizer, also by the MMSE
criterion. Section 5.3 reviews classic DFE as developed for serial modulation and Section

5.4 describes the application of this approach to OFDM in previous work.

The idea of reshaping the overall impulse response of the transmitter, channel, and
front-end ﬁlterla‘towsome desire‘d impulse responée’ (DIR) is reviewed in S@étion 5.8.
Section 5.6 derives va DIR DEFE based on the zero—f_ofcing criterion (ZFDIRDFE) and
in Section 5.7 an improved DIR DFE based on'the MMSE criterion (MSEDIRDFE)

14 The term “front-end filter” is defined in Section 5.3.



Linear and Decision Feedback Receivers for OFDM , 66
on Flat Rayleigh Fading Channels .

is derived. The combination of a Viterbi-type sequence estimator in combination with

MSEDIR shaping is considered in Section 5.8.

In Section 5.9 MSE performance surfaces are defined for a simpliﬁed fading channel
model and used to compare MSE (LMSE) equahzatlon to ZFDIRDFE and MSEDIRDFE.
Slmulatlon results for the receivers are presented in Sectlons 5.10 and 5.8. Section 5.12

summarizes the conclusions of this chapter.

5.1 An Optimal Linear Equalizer

We consider an OFDM system in which the transmitted signal is represented as

\/_Zan ST 0 <t < T 3 (5.1.1)

In (5.1.1) the pulse shaping p(¢) has been assumed rectangular primarily to simplify the
notation to follow, but also because the investigation of other pulse shapes in Chapter 4

showed no advantage in terms of B;.

‘The received signal is given by

1 =
r(t) n(t

S 5; y
e (5.1.2)
Z ™ 4 n(t)
where z(t) is the fading waveform, q(t) = 2(t)/v/To and n(t) is independent AWGN.
We require for the equalizer a linear structure whose estimate of the n** data symbol

is given by

fn = —e / r(t)cn(t)e T dt (5.1.3)
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and where ¢, (t) is a weighting function to be determined by the MMSE criterion. The
MSE is
MSE = E {l&n, . an|2]

: (5.1.4)
—E [|an|2] _ 9B[Relana]] + Ea.
Expanding r(¢) it can be shown that
B, f g
s 42y _ Ta 37y (n—m)t
E[|an} ] =7 /q(t)cn(t) Zoe T dt
0 m=
. . - (5.1.5)
< [ ¢ @ea@eE T a2 ol
Ty
d .
and
: . T |
9E[Relanal]] = — ten(t) + ¢*(t)c . © (5.1,
2B(Relinei]) = = [ (alt)enlt) + (a0 (5.06)
0
Combining (5.1.4), (5.1.5) and (5.1.6) we obtain the MSE as a function of c,(t)
B [ o ( ) |
o a —]% n—m)t
MSE = T g(t)en(t) > e dt
0 m;O
T - \ N Ty ‘ - .
X / ¢ (w)et (W)@ B gy 4 TO / lea()?dt - (S.LT)
: 0 . .
0 0 o '

To .
Ea N *
-~ 0/ (a(t)ea(t) + q (t)cn§t>>dt 1 Ea.

The derivative of (5.1.7) w.rt. cy(z) is

OMSE _ E, [ = eem)
_ T Hen —]T—g n—m)t
S imes To/q( e (t)zoe at
0 m= , :
'  (5.1.8
< gt (@) B 4 Do -
‘. TO
E,
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. JMSE . e . . .
Setting Toenz) = 0, scaling by 7,/ FE, and substituting z = u we obtain the integral

equation whose solution yields (%)

N- Ty '
nen(u) = ¢*(u) — VTog"(u Z S5 (nmm)u / a(ea(t)e BT (5.1.9)
where 7% = Np/ E, is the noise to signal ratio.
Defining |
R To '
B = / g(t)en(t)e I T M gy S (5.110)
J | _
(5.1.9) can be 'written as
N-1 . -
n?ea(u) = ¢*(u) — /Tog* (u) Y Bu-me ™ "™, (5.1.11)
. . m=0 v '
If we apply the linear operator
' T , » .
. —iFE(n—=lu . ‘
L) = [ ae B 5112
0 .
to (5.1.11) and define
T ..
V= / lg(u) e T =0 gy  (5.1.13)
-

we obtain

N—-1 .
772Bn—l =V TOVn—l - ZBn—me—la
m=0

0<n,I<N-1

(5.1.14)

a system of linear equations which can be solvedfor By,. Equations (5.1.11), (5.1.13)
and (5.1.14) specify the continuous linear MSE equalizer for calculating G,,.
The solutions to (5.1.'14) can be concisely expressed in matrix form. Defining

bn = [Bn, Bu—1,- -, Bn_N+1]» Vo = [Va, Va_1,.+ ., Van41] and V a square Hermitian
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Toeplitz matrix with (m, )™ element Viu) = Vg, 0 < I,m < N — 1, (5.1.14) can be
written

n’by =/Tovp — bV " (5.1.15)

which has for its Sqlutions
by = vTova(V +720) 7" (5.1.16)

Equation (5.1.16) indicates that. by and consequently the weighting function ¢, (¢) depend
on n, the index of the data symbol being estimated. This dependency arises because ISI
experienced by a given data symbol depends on its location (tohe) within the OFDM
biock. For example, centrally located data symbols .have several adjacent channel
interferers on either side but data symbols at the edges (n = 0 and N —1) have interferers

on only one side.

As can be expected from physical considerations, symmetﬁes caﬁ be used to reduce
the calculation requ“ired.. The V, of (5.1.13) are recognized as the tone correlations defined
in Chapter 4. We have V,, = V* and combined with deﬁnitien‘ of v, it follows that

B .

Vi = VN_1_n» Where the superscript B indicateé the vector’s elements are reversed in
order. Accordingly, we also have b}, = bﬁ_l_n.

In general, solution of (5.1.16) requires an N x N matrix inversion followed by N/2
row vector by square matrix multiplications. Thus the exact solution fer the linear MMSE
equalizer is fairly tedious unless N is restricted to be quite small, possibly N < 16. For |
the larger values of N used in this work we consider approximations to the optimal

solution to reduce the complexity of the equalizer.

5.1.1 Transform Approximation

A very useful simplification would be to eliminate the eXplicit matrix inversion

required by (5.1.16). For this purpose we will apply the discrete frequency Fourier
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transform (DFFT)!3 defined by
){n:/z() inntgy (5.1.17)
and its inversé (iDFFT) defined by

ZX SR | (5.1.18)

This is done in Appendix C along with some relevant properties. Taking an iDFFT with

respect to the index n of (5.1.14) yields

Y Byt = T SV, z ZBn WEY, L (5119)
n n

m=0 n
or
. S22 1y~ 2T _i2r
nze_]-fo_”b(t) = G_JTEH\/_ Z V1€ Iyt
N ) (5.1.20)
—]T:)r t\/_ JToltb Z V e —JIT "kt
' k=1 -

wheré the tilde accent (-) indicates a periodic or time-aliased function as in #(t) =
To Z z(t — nTy).

The last summation in (5 1.20) is not qulte an iDFFT of V. However 1f we assume
V; has significant values only over the range —L < k'< L then () = Z Vke’ ok
Comparing with (5.1.20), it is apparent that provided L <! < N —1 — L we can write

~ Toﬁ(t)

Note that (5.1.21) reveals B(t) to be a smoothed function‘, relative to ﬁ(t),v' thus the

restriction on the significant values of Vj imply a similar restriction on the values of

15 Not to be confused with the DFT or FFT.
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By. Therefore we assume that the significant values of By are also restricted to the range

—L S k < L and applying this to (5.1.11) yields“
n’e(t) = VToq"(t) — " ()B(t) (5.1.22)

from which with (5.1.21) it is readily shown that

o(t) = vTog*(t)
o(t) + n?
\/qu*(t) o o (5.1.23)

- To S lg(t = mTo)[* +n?

For the ¢*(¢) used in (5.1.2) this reduces to

(5.1.24)

where z(t) = |z(1ﬁ)l2 + n? has been introduced due to its frequent appearance in what

follows. The function z(¢) is the inverse Fourier transform of the channel autocorrelation

function in the frequency-domain, i.e. a time-domain version of the channel’s power -

spectrum.

Equation (5.1.23) is an optimal weighting function only for use in estimating those
data symbols a; whose indices are restricted to L < k < N — 1 - L, ie. the data
symbols transmitted near the band edges of the OFDM waveform optimally require

| different weighting functions determined from the more complicated expressions given
previously, even with the restrictions on the significant values of V. Practically though,
c(t) as given by (5.1.23) is expected to be a useful approximation for estimating all data
symbols, since altﬁough the data symbols near the band edges are suboptimally detected,
they also suffer from the least ISI. We see the difference between éxact'equalizaltion with

cn(t) and approximate equalization with ¢(t) is mainly a matter of edge effects. Thus

there should be little difference in P, éveraged over all NV tones, when L < V.
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Note that except for a—domain change (5.1.23) has the familiar form of a continuous
‘matched filter followed by a filter having a period‘ic response ‘implementable as an

infinitely long tapped delay line [30]. However, since in this case the OFDM block

has finite duration 75, it is convenient to determine ¢(¢) diréctly in the time-domain using

(5.1.23) or (5.1.24).

5.1.2 Aliasing Approximation

The two previous. works, [5] [7]'® concerning the equalization of channel averaging

OFDM in fading both used a discrete model of the OFDM signal. In the notation of this

work!?, the model for the transmitted signal is

1
N

Sm =

N-1 . ’
> e, 0<m <N -1 © (5.1.25)
n=0

E

and for the received signal
Tm = ZmSm +m, 0<m <IN -1 (5.1.26)

These equations may be interpreted as the result of sampling the waveforms of the -
continuous model at rate N/ T(; and then setting the scaling factor 1/+/Tg = 1/v/N. As
discussed in Chapter 4 this is a sub-Nyquist sampling rate and results in an aliaéing
effect which causes all tones to have the same pattern of ISI. Viewed in the frequenﬂcy—
domain, the 1ineér convolution of the channel impulse response with the data is fnodiﬁed
by the sub-Nyquist sampling into a circular convolution of an aliased impulse response
with the data. Thus the rate N/7T, sampling increases the level of ISI irreversibly, but
following the arguments 'of the Transform Approximation this effect should be quite small
on the error rate averaged over all tones, provided L < N. The principal benefit of the |

aliasing approximation is that the optimal (given the sampling rate) MMSE equalizer

16 A third, [17] was concerned with an FM version of OFDM, OFDM-FM.

7 The transform scaling has been adjusted to normalize energies; Es = E,.



Linear and Decision Feedback Receivers for OFDM , 73
on Flat Rayleigh Fading Channels |

has a weighting function which is independent of the data symbol’s index as shown in
Section 5.2.. This follows directly from the fact that a finite discrete sequence and its .

- DFT can be viewed as periodic functions.

5.2 A Discrete Ts Spaced Linear Equalizer

Accepting a sampling interval of Ty/N = T seconds at the input to a discrete
equalizer, we derive a linear MMSE (LMSE) equalizer which is optimal from that point

on. The desired estimate is formed as
n ' 1 _ -2mmn 4 L
Gy = —= E TmCm€ 7 N . (5.2

Substituting (5.1.25), (5.2.1) and v(5.1.26) into (5.1.4) it can be shown that the normalized

MSE for the discrete equalizer is

MSE N-1 n? N-1 [ Nl S
—— = emllaml + = D leml® = —= Y (cmam +chay) 1. (522)
Ea m=0 ‘ N m=0 \/N m=0 » ) '
Setting g%{gs = 0 yields an equation for ¢
2
— —qf =0 2.
alal” + 5 —a (5.2.3)
which hés the solution
= ——-—\/qu* |
~ Nlg)* + 7?2 , o
i _
g — x (5.2.4)
lzi|” +n?
z*
=1 0<I<N-1
z] :

for q = z;/V/N and z; = |1 +72. Equations (5.1.24) and (5.2.4) are deceptively similar -

in form, yet the approximations each represents are quite distinct. Again, with a-domain

change, the equalizer can be r¢cognized as a matched filter followed by a tapped delay
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liné, but now and without further approximation the delay line is finite with N eleménts _
used to circularly convolve the outpuis of the matched filter. While in this case it is more |
efficient to implement the equalizer directly in the time-domain as.specified by (5.2.4) -
and (5.2.1), the frequency-domain interpretatibn becomes important when the Equalizer
is generalized to include decision feedback.

The most important point concerning (5.2.4) is that like (5.1.24) it does not require
an inversion of an N x N matrix, as does the expression in (5.1.16). }

An expression essentially similar'® to (5.2.4) was presented in [5]. In that Work,
the error criterion was defined as the difference between an estifnate of the transmifted

waveform and the actual transmitted waveform
€m = Sm — Sm ' B (5.2.5)

instead of the estimated and actual data as defined by (5.1.4). Thus (5.2.4) is not a new

result, but merely establishes the equivalence of the two criteria for this case.

5.2.1 Optimal Linear Mean Squared Error
Unfortunately it is not possible to get an exact expression for P, thus we resort to
the more tractable MSE. The normalized MSE resulting from use of the optimal ¢; as

given by (5.2.4) reduces to a simple form. Rearranging (5.2.2) yields

N-1 N— :
MSE : 1 ’
T c — ——2Re cmZm | +1 5.2.6
and applying (5.2.4) ylelds '
N-1 '
MMSE - 1 : '
F—=1-= @ 2m . (5.27)
a m=0
or ' ,
MMSE 2 1 528
Ea . N = ¢zm _I_ ,’72 . ) e

where the superscript '(-)O designates optimal.

18 An adjacent channel interference term was used in place of the noise term here.
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5.3 Classic Decision Feedback Equalization

As with linear equalization, nearly all work with decision feedback equalization
(DFE) has occurred within the context of serial modulation on an ISI channel in the

time-domain. Consequently, the following description is presented within that context.

The structure of the classic DFE [31] is shown in Figure 5.1.

. f ‘ A
M)l o) > decisions .

sampler
D(f)

Figure 5.1 Claséic DFE strUcture‘i

It is designed to work with a received signal of the form

o0

r(t) =Y anh(t —nTy) +n(t) | ) ~(5.3.1)

n= —oo

where h(t) is the combined response of the transmitter pulse shapiﬁg filter and the channel

impulse response. The noise n(t) is generally assumed to be AWGN.

There are two basic sections, the feedforward section containingvthe feedforward
filter C(f) operating on the received waveform, and thé feedbaék section containing the
feedback filter D(f) operating on previous decisions. The impulse response 6f either
filter may ‘be finite or infinite in length. The feedforward section is a.linear equalizer
optimally consisting of‘ a matched filter followed by a sampler and a tapped delay line
with spacing equal to the symbol duration 7, or optionally may consist of a fractionally
spaced equalizer operating above the Nyquist rate [9] which incorporates matched filtering

as part of its overall response. The fcedback filter has the structure of a tapped delay line

with spacing T and is used to form an estimate of the ISI due to the previously detected
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data. ISI from future data is minimized by C(f). The impulse responses of C(f) and
D(f) are generally chosen by either the MMSE or zero-forcing (ZF)!? criteria.

The idea 6f the DFE is to subtr:clct this calculated ISI from the' sample entering.
the decision element before making the current decision. Assuming previous decisions
are correct, the DFE makes a decision based on a sample with less residual ISI than‘a
~ comparable purely linear equélizér, and should therefore have a lower error rate. It hés
| been shown [30] that .with. the perfect decision assumption, the MSE of the MMSE DFE
is upper bounded by the MSE of the purely linéar LMSE equalizer.

A potential problem that arises with DFE is error, propagation due to inccﬁ‘rect
decisions in the feedback section. While the derivation of a DFE requires the assumption
of ideal decisions for tractability, to be useful a DFE must feed back data from previous
decisions, some of which will be in error. Thus there is a tradéoff regarding the length
of the feedback section. A Iong section removes more ISI when decisions are correct,

but risks greater error propagation when an error is made.

5.4 Frequency Domain Zero-Forcing Decision Feedback Equalization

A technique called frequency-domain zero;forcing equalization (FDZFDFE) was
developed for OFDM and presented in [7]. The basic idea is to ir'nmediately-convert.
the received signal after sampling into the frequency-domain, and then to apply the
classic [9] matrix-based DFE structure, originally posed in the timé-domain for seﬁal

modulation, to the resulting signal.

In the notation of this work (5.1.26) is transformed into

N-1 :
1
Ri="= Y anZi—n+ Ny (5.4.1)
\/N m=0

19 ZF: elimination of ISI at the sampling instant over a certain range.
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N-1 N-1

where Zp = & 3 zpne 3™ and Ny = LS npe~i% ™ The FDZFDFE has
, VN =, ‘ VN o T .
the form -
0 B
by = Z CrRp_i + ZDk&n-_k (5.4.2)
k= —_F k=1 -

where the coefficients Cj were determined by the inversion of an (F 4 1) x (F +1)
channel dependent matrix and.the actual data, rather than the decisionjs, was used in tﬁé
feedback section [32]. F +1 is thé numberiof C} tap coefficients and B thé number
of feedback coefficients. In [7] F' was chosen as 10 and B as 15 for N = 512 apd a
normalized Doppler rate of fy = 2.05. Simulation results showed FDZEDFE required
6.5 dB less Eb‘/No than linear ZFE, and 2 dB less than an approximate method presented ‘
in [5], both at P, = 1073, Thus these fesults represent the best P performance obtained

for OFDM prior to the work being reported in this thesis.

5.5 Obtaihing a Desired Impulse Response (DIR)

With the classic DFE structure the causal?® component of the combined transmitter
impulsé response and channel impulse response may be so long as to preclude complete
cancellation of ISI from previous decisions, either due tb the required filter length or
error propagation effects. Typiéally a workable length is found through simulation which

is a compromise between error rate and complexity.

An alternative to the simple truncation described above is to reshape the combined
impulse response to some desired impulse response (DIR) of fixed length. An important
but not obvious point is the selection of the DIR. Simple examples include the preceding

truncation, and the unit sample function which reduces to linear ZFE.

More sophisticated examples, in the context of serial modulation, have appeared in

[29], [33], and [34]. The first two publications are principally concerned with obtaining a

-2 cansal: that part defined for ¢ > 0.
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shortened impulse response to simplify a subsequent MLSE, but are of course applicable
in the context of DFE as well. In [33],‘ the DIR chosen was a truncated version of the

original response and was shown to be an improvement over simple truncation without

shaping.
- DIR of fixed length ------------ >
Combined () ) A
ay- - -an-1| Transmitter - Reshaping DFE — &n
and Channel
n(t)

~Figure 5.2 Forcing a DIR of fixed length before DFE

In [29] an MSE criterion in combination with a total energy constraint on the DIR is
used to select the DIR, which is found by determining the eigenvector corresponding to
the minimum eigenvalue of a certain channel dependent matrix. Included comparisons

showed error rate improvements over the shaped truncation method of [33].

) ZF FIR > Y()

Reshaping |
Figure 5.3 DIR obtained by concatenating ZF and FIR filters

Subsequently [34] suggested modifying a ZEE to obtain a finite impulse résponse for
DFE..The idea is to obtain the DIR by concatenating a linear ZF ﬁltef with an FIR filter
of fixed length. The FIR is determined by fixing the 0th tap weight to a constant, and then
selecting the remaining coefficients to fninirhize the noise variance at the equalizer outi)ut.'

Noise variance estimates indicated that most of the attainable improvement required a

DIR length of only 4 or 5 for the channel investigated.
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5.6 A Zero-Forcing Desired Impulse Response Decision
Feedback Equalizer (ZFDIRDFE) '

In the following we apply the approach of [34] in order to obtain a ZFDIRDFE for
OFDM. |

The estimate of the n** data symbol is given by

) = 1 B )
i = kzzo CrR_i, — il ];Dkan_k (5.6.1)
N-1 . | |
where R; = ﬁ m{:ﬂ rme I T™F is the DFT of rp, given by (5‘..1.26), and Cy and Dy
are the coefficients of the equalizer filters.

N ote that it is rather ambiguous to refer to C}, as a feedforward filter in this context
for tWo reasons. The first is due to the circular nature of the ISI as viewed in thé
frequency-domain. The index k£ of Zj, increments and decrements modulo /N, thus there
is no clear distinction between past and future ISI. The second reason is that Cy will be
designed to remove IST due to ap_t for B <k < N — 1 when the estimate"&n is being
formed. To avoid this ambiguity we will refer to Cy, as the front-end filter, and continue

to refer to Dy, as the feedback filter.

Rather than perform the N circular convolutions indicated by the first term of (5.6.1)

directly, it is more efficient to define a new sequence

Ym = TmCm ' . | o , (5.6.2)
where
1 N-1 . . .
tm=—= Y CrelTkm - (5.6.3)
N k=0
and form the estimate
1 B

an =Y, — — Dya,,_ 5.6.4
n n \/N% kGn—k . ( )

where all N Y, are obtained simultaneously from an FFT of y,,.
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Of all the possible ZFE’s, it is shown in [35] that the ZFE having a métched filter
(MFZFE) is the ZFE which maximizes the SNR at the equalizer output. The output of
a matched filter applied to the received signal (5.1.26) is

U, = TmZ,
= |zm|*sm + Nm 2y (56.5)

*
= ¢z, 5m + "mzy,

where } .
b2 = |2ml”. (566
Applying u,, to a filter with frequency response 1/¢, _ yields

NmZp,

Pz

The sample «/, can be interpreted as the MFZFE estimate of s,,,. It is applied to a filter

!
Uy, = Sm +

(5.6.7)

with response d,, to obtain a DIR of d,, ie. .

zr.d
em = 2 (5.6.8)
" Pzm
which yields for ym,
*
Y = Smdyy 4 mEmm
'  Pan (569
= Smdm + Ny, '
where n,,, = ﬁ"ﬁ’*ﬂ—dﬂ is a colored Gaussian noise term. Its average variance is
. N-1., 2
No N~ |dn] |
2 0 ml .
- — . . .1
Th =N mzo - (5.6.10)

The noise variance of (5.6.10) is minimized by the selection of the frequency-domain

coefficients D where

B , :
> D wmE | . (5.6.11)
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and Dy = v/N. Note this method has the peculiar feature that Dj must have some

constraint or the minimum variance -solution would Dy = 0, 0 < k¥ < B, i.e. no output

at all.
Defining
| hon =1/6., | . (5.6.12)
(5.6.10) can be written as
N-1
N .
Ony = 57 D dmhmdm | (5.6.13)
m=0 : )

which has the equivalent frequcncy—domain expression

"y

ZD, Hi_, (5.6.14)
n 0 : )

F2m

N-1
where Hp = % Z hme_JT\r‘mk.
Defining d = [Dl,DQ, .,Dg]*, Wil = [Hy, Hy,... Hp]* and B x B Hermitian

Toeplitz matrix H with (I, n)t element H, , = H;_, (5.6.13) in matrix form is.

o2 = 'N 7 (NHo +2VNRe|d™h| + dHHd) (5.6.15)

The value of d for which (5.6.15) attains its minimum is determined by setting %ﬂ = 0.

This yields
Nh+Hd) =0 5.6.16
v (YR H) =0 (.64
which has the solution
d = —/NH 1h. (5.6.17)

Using (5.6.17) in (5.6.15) we obtain a frequency-domain expression for the optimal noise
variance | : |
90 No
O'ny = \/N

(HO hHH—lh). | (5.6.18)
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- 5.6.1 Optimal Mean Squared Error

Taking a DFT of (5.6.9) to obtain Y,, yields

B ’ .
Y, = L 3" Dian_i + My, | (5.6.19)

\/N k=0
_ N-1 . - -
where Ny, = _1\/17 > ny,,e I T™" is the DFT of n,, . Using (5.6.19) in (5.6.4) yields

m=0 : ) .
an = an + Ny, ' ' (5.6.20)

which shows that the ZFDIRDFE has no residual ISI when previous decisions are correct.
Therefore for this equalizer the MSE is equivalent to the noise variance (5.6.18), and the

normalized MSE, for the optimal choice of Dy is

' 2
o_ " _ pHygy-1 ’
. mse = = _\/N (HO h"H h). , (5.6.21)

5.6.2 Algorithm Summary

1. matrices h and H are formed using (5.6.6) and (5.6.12) .

2. H is inverted to obtain d from (5.6.17) _

3. (5.6.11) yields dp,, (5.6.8) cm, and (5.6.2) with an FFT yields Y,
4 .

&, is obtained from (5.6.4)

The first three steps need only be performed once per OFDM block. The final step

is repeated once per data symbol.

5.6.3 Structural Comparison to FDZFDFE

An interesting structural difference between ZFDIRDFE and FDDIRDFE concerns
the pattern of ISI which is' cancelled. The ZFDIRDFE exploits the circularity of the

ISI to cancel all IST except that from B previous (in a circular sense) data symbols.

‘The FDZFDEFE does not exploit the circularity; consequently less ISI is cancelled by the

frbnt—end filter and B must be llargerkfor FDZFDEFE than ZFDIRDFE.
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Of course, the FDZFDFE could be modified to provide the same ISI cancellation
pattern as does the ZFDIRDFE. However this could pose a problem for large F because

the complexity of the required matrix inversion varies with (F + 1)2.

5.7 A.Minimum Mean Squared Error Desired Impulse Response
Decision Feedback Equalizer (MSEDIRDFE)

While the ZFDIRDFE is interesting for Iits structure and performance, it is reaso.hable
to question whether the ZF criterion is a very good choice to use for the basis of a
nonlinear DIRDFE. Certainly in the context of linear equ.alization for serial modulations
it is well understood that ZF generally causes increased noise ‘enhancement relative to
a comparable LMSE. The LMSE results in a lower error rate than the ZFE when the
combination of noise and residual ISI is less damaging than no ISI in combination with

enhanced noise, and this is generally found to be the case?!.

Motivated by this observation we apply a minimum MSE criterion in the following
to the selection of a DIR to derive an MSEDIRDFE for OFDM. Aside from changes
to accommedate OFDM in fading, the formulation here differs from [29] in that there
is no energy constraint placed on the DIR, and the DIR is not obtained in’ torms of an

eigenvector.

In order obtain the same structure for the MSEDIRDFE as found for the ZFDIRDFE

the form of the estimate is unchanged It is repeated here for convenience.

The estimate of the nt* data symbol is given by
| = 1 B '
= — CrBRp_r — —= ) Dpan_p 5.7.1
i ;} bk = 1; Bln—k (5.7.1)

where R, = \/_ Z rm e ) FmE is the DFT of rm given by (5.1.26), and Ck and Dy,

are the equalizer coefﬁc:1ents In the time-domain ¢, is agam given by (5.6.3), but the

21 Constant amplitude, purely phase distorting channels are an exception since there is no noise enhancement problem.
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expression for d,, in the context of MSEDIRDFE is modified to
1 & , -
dp = = > Dy ©F™, : (5.7.2)

Rather than perform the NV circular convolutions indicated by the first term of (5.7.1)

~ directly, it is more efficient to define a new sequence

Ym = fmcm , (5.7.3)
and form the estimate
1 B . :
an = Yy — —— Dian— v 5.7.4
\/N; | kn—k . (5. : )

where all N Y,, are obtained simultaneouély from an FFT of y,,.

We begin with a coupled equation approach‘[36] to obtain some insight into the nature
of the front-end filter C and to derive some expressions for the MSE of relatively

simple form.

Deﬁning 5 _
. 1 .
H
¢’ =—|Cyp;,Ch,...,Cn_1], 5.7.5
‘ \/N[ 0; 1 N-1] (5.7.5)
df = L[D D Dpg] ‘(576)
\/N 1,472,y /B}, _
I'I = [Rn—O)R'n—,l)' . '7Rn——N+‘1]1 . , (577)
and

aE = [an_o,an_‘l,...,‘an,B] - (5.7.8)

(5.7.1) in matrix form is

Gy = cHrn — dHall

(5.7.9)

= fH
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where f# = [cf,—dH] and tT = [rl,as]. It is well known [23] that the MMSE

solution for f-satisfies

#f=p (5.7.10)
where
E[rnrH] E[rnaH]
P = o b 5.7.11
[E[anrg]. E[anag] ( )
and : o
_ Elrnay) :
= [E[ana;]} (5.7.12)
Evaluating the moments
- B | |
BlRutBii] = 07, + Nobit (5.7.13)
E[Ryp_a)_i] = =L (5.7.14)
VN
and , V S
Elania}_i] = Eabp— | (5.7.15)
where . : '
®z, = \/— Z ZnZn: (5.7.16)

Expanding (5.7.10) ylelds a pair of coupled wh1ch must be simultaneously satisfied;

N-1

1 .
—0 _+ 25_>C* Zo Dt =7, 0<I<N—1 (5717
Z(\/ﬁ Zg—y T T kl..k \/—Z k=1l l ( )

k=0

and . , : ,
i Y ZiiCi—Df =VN&, 1<1<B. (5.7.18)
k=0

The form of Cj can be deduced by expanding ®z, , in (5.7.17) and déﬁnihg Q;, the

linearly equalized fading samples (frequency-domain) as

Qi = — > Zi Gy (5.7.19)
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which yields

n?C} = z_,+ Z ZyDiyy — \/NZQZHZ;C, 1<I<B (5.7.20)
k 1-1 k=0

from which it is apparent

N-—

y..a

Zi Wit (5.7.21)
NS ‘

J

Equation (5.7.21) shows that the front-end filter can be viewed as the cascade of a filter
matched to the channel 'fad'mg waveform followed by an additional feedback dependent

filter specified by the coefficients Wy.

The W} expressed in terms of the DIR and linearly equalized fading samples are

N —
Wo:\/_2Qo
T]' .
Wk:Dk_sz, 1<k<B ' (5.7.22)
7
W@::%& B+1<k<N-1
Ui

We shall return to (5.7.22) with further developments.

Using (5.7.21) and applying the linear operator

1
Lll=—=) [lz2,, (5.7.23)
N =0 :
to (5.7.17) yields '
'1 N-1 =~ N- ' 2 N—1 S
N Z Z Zm+ +k T 0= Z ¢Zm+p Z q)Zm+ D:n = (I)Z
N =0 — P \/_ — \/_ i P p:
' 0<p<N-1
(5.7.24)

Transforming (5.7.24) and dividing by ¢, _ yields

b why + 0wk, —df, —1=0 . - (5.7.25)
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from which we obtain an explicit time-domain expression for the optimal w,, in terms

of the feedback filter

o_ (dm+1)
W, = el : 5.7.26
" bz + 772 ( )
or equivalently
0 _ M , | (5.7.27)

cm
¢Zm + 772
Equation (5.7.27) shows that the time-domain response of the front-end filter for
MSEDIRDEFE is the product of the responses for the LMSE equalizer and a factor based

on the DIR. This factor has the frequency-domain transform
(dpm +1) = |V'N,Dy,Dy,...,Dp| (5.7.28)

which is the DIR augmented with a coefficient Dy = V'N. Deﬁning the frequency-
domain sequence in (5.7.28) aé the augmented DIR, we see that MSEDIRDEE determines

an augmented DIR which is effectively constrained to have Dy = v/ N.

Further insight is obtained by rewriting (5.7.18) as

N-1 :
1 .
— Y &z W;-Di—VN& =Ty (5.7.29)
VN k=0 ' '
where o
0, 1<k<B
k= {undeﬁned, otherwise. (5.7.30)
Transforming -and conjugating (5.7.29)
Gamtly — dby =1 =7 (5.7.31)
and subtracting from (5.7.25) yields
—— (5.1.32)
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" or with a further transform

_Plt

Wi = .
772

(5.7.33)

From the definition of T in (5.7.30) and assuming n? > 0, (5.7.33) shows that W = 0,
1<k< B, precisely the range where the DIR is allowed nonzero values. This in turn
implies, with (5.7.22), that Dy, = @, 1 <k < B, ie. the DIR coefficients are exactly |

equal to the linearly equalized fading samples.

There still remains the problem of determining the DIR. Recalling the MSE

. 2
an"anl]
:E{&n

MSE = E[ -
- (5.7.34)
2} — 9E[Re[anal]] + Ea

we seek tﬁe joint minimization of (5.7.34) with respect to C and Dy. For the first

term in (5.7.34)

‘ 1 N-1N-1 1 N-1 B
, 1=0 k=0 1=0 k=1

1 B B .
+N z Z D[DZE [an—la;fk] ’

I=1 k=1 '

(5.7.35)

Evaluating the moments in (5.7.35) and defining
Xp—1 =@z, + VN 0’6y | (5.7.36)

yields
E[|&n|2} [ N-1N-n , N-1B
CiCiXr—1 — 2R CiD;Z
T, NN%kolkkl e ﬁggllkkl

’ B (5.7.37)

2
+N;|D1|.
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Similarly, the second ahd third terms of (5.7.34) are

3 N-1
2Relanay] 1 :
—5 - = 2Re |~ ; Ci 7, (5.7.38)
and 3 .
B |lanf
L J 1 5.7.39
o (5.7.39)

Combining (5.7.34), (5.7.37) and (5.7.38) and transforming to the time-domain yields
the normalized MSE - | ' | '

1 N-1
cmxmc:n oy z 2Re[cr, zmdm]

m=0

MSE

a

MZ

m=

. | (5.7.40)
1 . |
——NZQRe[c zn] + = Zd dy, +1

in terms of ¢, and d,,

. Expanding the first term of (5.7.40) with (5.7.27) and expahding _

dy, with its transform yields

N-1 N-1 '
25 4 25 dp  (zm + 2 dl
Zcmxmc:n:z(m m :C)T(n . ‘m) |
m=0 m=0 .
: . (5.7.41)
N——l"(Z:;{ + z}dm) <zm + zm\/_ Z Die™i% lm)
m=0 Lm
This expression can now be differentiat_ed w.rt. Di to obtain
5 Nl
20D; Z CmTmCry, Z (gm +gm
m=0 (5.7.42)
1 .
=G+ —= DiGy—
k N ; 1&g
where
_ ¢Zm ' '
Jm = . (5.7.43)

Tm
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Similarly it can be shown for the remaining terms

N-1 ’
P .
2Re[ct zrdm] = G +— D,Gr_y, (5.7.44)
20Dy, ";) | lem ] ¢ VN “ Z R

9 N1

39D, Z 2Relcy, zm] = G, (5.7.45)

and

P : ' ’

33D, Z{d ? _Dk (5.7.46)

Combining (5.7.40)-(5.7. 46) ylclds an 1mphc:1t expression for the opt1ma1 Dy,

1 L :
7 Z Gr_1D; = Dy, — Gy. (5.7.47)
=1 ’ )

Defining the B x B Hermitian Toeplitz matrix G with (k,l)th element Gy = Gy,
T = [Dy,Ds,...,Dp] and g7 = [G1, G5, ...,GB], (5.7.47) in matrix form is

1
—Gd=d - v ’ - (5.7.48
TN g | - ( )
which has for its solution
‘ ‘1 -1 o ‘
d={I- —G ) - (5.7.49)
( VN ) s R

The elements bf d as determined from (5“.7.49)‘are the desired D,?.

5.7.1 Minimum Mean Squared Error . |

A frequency-domain expression for the MMSE is readily obtained from [23]
MMSE = E, — f'p. . (5.7.50)

Evaluating f%p and normalizing by E, yields

N-1
MMSE 1
-4 k=0 . (5.7.51)
1
=1 wg
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Alternatively, applying Parseval’s relation to (5.7.51) yields

MMSE 1 o
Ea = 1 - N 2_:0 szm
I"V" (5.7.52) -
LN gt
h N 0 bz + 17

a pair of time-domain expressions in terms of the front—end and feedback filters respec-

tively.

Note that the first line of (5.7.52) is identical in form to (5.2.7) found for linear -

equalization, but differs due to the choice of cg . It can also be seen that in the absence

of feedback (5.7.52) reduces to (5.2.8) as found for linear equalization.

5.7.2 Algorithm Summary '

1. - matrices g and G are formed using (5.7.43)

2 (1- ﬁc.) is inverted to obtain d from (5.7.49)

3. (5.7.2) yields di,, (5.7.27) ¢m, and (5.7.3) with an FFT yields Y,
4

&, is obtained from (5.7.4)

The first three steps need only be performed once per OFDM block. The final step

‘is repeated once per data symbol. -

5.7.3 Structural Comparison

The MSEDIRDFE has the same structure aslthe ZFDIRDFE, the difference between
the two lies in the selection of the DIR. In addition both require essentiaHy the same
amount of computation when each has the same number of feedback taps B. Thus
the comparison of Section 5. 6.3 between ZFDIRDFE and FDZFDFE apphes as well
between MSEDIRDFE and FDZFDFE.

A key advantage of MSEDIRDFE over ZFDIRDFE carries over from their linear
counterparts. An MSEDIRDEFE exists in cases where a ZFDIRDFE does not, specifically
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when some values of zm are 0 as can be seen from (5.6.12) and (5.6.17).. Due to
finite wordlength effects it is not necessary for z,, to be exactly equal to 0 to encounter

numerical difficulties with the latter.

5.8 Combined Mean-Squared Error Desired Impulse Response
Shaping and Sequence Estimation (MSEDIRSE)

The truncated MLSE of Chapter 4 was quite successful when applied to BOFDM,
but its use with QOFDM was precluded by the required constraint léngth. We are now
in a position to rectify that situation by setting the constraint length to a desired value
- using the methods derived for MSEDIRDFE, and then processing the resulting controlléd ’
ISI sequence with a truncated MLSE based on the DIR. 4

Assuming we have obtained the sequences D, and Y, as per Section 5.7, we express

Yy in terms of the DIR as
Y, =— Diay,_p + N, 5.8.1
where Dy = /N and N, is a Gaussian noise term with correlation function
ooy Nl .
0 —32Zk(n—m
E[NuNp] = =7 ; |cx |2 eI FR(r=m) | (5.8.2)

Equation (5.8.2) indicates that the noise terms of (5.8.1) are generally correlated in the
presence of fading. However, we shall treat the N,, as if they were AWGN to obtain a
suboptimal but simplified séquénce estimator (simulatic;n results presented in Figlire 5.16
validate this approach). With this assumption it is easily shown that fhe .MLAnie'tric to

be maximized wrt. a,, 0 <n < N —11s
‘ 2

N-1 o B _
A= — Yo —— ) Dia,_ 5.8.3
| ;::o " TN ; kGn—k (5.8.3)
Equation (5.8.3) may be evaluated by defining
’ . m | . 1 B 2
A= . — Y |V —— Dya,_ 5.84
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for which

. B 2
o 1 :
)\m = /\m_l ot Ym —' ﬁ E Dkam_k . (58.5)
' k=0 ‘ .

and determining the sequence a, which maximizes A,,, 0 < m < N —1, récursively

via the Viterbi algorithm.

5.9 MSE Performance Surfaces

The preceding MSE expressions provide a basis for a theoretical comparison of the
equalizers. These expressions have been used to generate sets of performance surfaces
which present the mse O for the LMSE, ZFDIRDFE, and MSEDIRDFE as functions of
the noise to signal ratio 52, the nhrﬁber of‘_ feedback taps B, and the particular channel
fading waveform. '

The fading waveform is modeléd with a deter_ministic vector z to make the MSE
evaluations tractable. It is |

=1, k#4,5,6,42;43

T _
z° = [zo,z},... -5 263), {Zk e B 4564243 5.9
0<e<l1. |

Selection of ¢ < 1 models fading at the indexes designated in (5.9.1). Twol sets of
surfaces are presented in Figures -5.4 and 5.5, to illustrate the effects of fadevdepth. In
Figure 5.4 ¢ = 0.1 and in Figure 5.5 € = 0.001. The normalized optimal MSE (mse ©)
for a specific equalizer is represerited by the vertical height of ifs p‘erformance surface.
The horizontal axes, pictured as a plane orthogonal to the vertical dimension, show the
variation of mse® with B and n?. Note that for equalizers designed by the MMSE
criterion, mse @ = MMSE/E,. |

Figure 5.4 shows that with the shallow fades, for most of the explored ranges of B
and 772, that mse @ for ZFDIRDFE is lower than for LMSE, and it is lowesf of all for

MSEDIRDEFE. This statement has been verified by plotting a version of Figure 5.4 (not
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Figure 5.4 Normalized optimal mse surfaces for LMSE, ZFDIRDFE, and MSEDIRDFE
at N = 64 and ¢ = 0.1; shallow fades

Figure 5.5 Normalized optimal mse surfaces for LMSE, ZFDIRDFE, and MSEDIRDFE
at N = 64 and ¢ = 0.001; deep fades
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shown) without the\LMSE surface so as to render the entire ZFDIRDFE surface visible.
If is interesting that for small B and high 5? there are regions where the performance
of ZFDIRDFE is actually worse than for LMSE. In these areas the ZFDIRDFE is
approaching a ZFE and the noise enhancement characteristic of ZFE is significant. -

At n? =~ —20 dB there is ‘very little difference between ZFDIRDFE and
MSEDIRDFE, and in this region most of their improvement relative to LMSE is at-
tained for only B = 2. As n? increases the performance of ZFDIRDFE deteribrates more
rapidly than that of MSEDIRDFE, increasing the discrepancy between the two methods.

Figure 5.5 shows that er deeper fades, the performance differences between the
methods increase. Again MSEDIRDFE has at every point the lowest mse © and attains
most of the improvement to be had relative to LMSE for B = 2 or 3. The situation
is quite different for ZFDIRDFE. It can be seen that increasing B miﬁgates its noise
enhancement problem, but we must have B = 6 at least, to do as well as LMSE, and
this is adequate 6niy for small n’. Although increasing B improves its performance, at

B = 20 it is still worse than MSEDIRDFE with only B = 4.

5.10 Simulation Results

The P; performance of the equalizers derived in this chapter was evaluated by Monte
Carlo simulation. The simulation framework, concerning OFDM in flat Rayléigh fading,
is identical to that described in Chapter 4, except that the sampling rate was reduced to
take advantage of the structural simplifications afforded by the aliasing approximation.
As discussed ih Chapter 4, perfect knowledge of the channel impulse response is assumed
available at the receiver.i The simulations were made long enough to obtain 95%
confidence intervals of approximately +£10% of Ps.

We begin with a comparison of ZFDIRDFE and MSEDIRDFE, continue with an
evaluation of MSEDIRDEFE for a range of parameters, and then compare its performance

to previous work.



Linear and Decision Feedback Receivers for OFDM ‘ 96 .

on Flat Rayleigh Fading Channels

5.10.1 Feedback Data

To include the effects of error propagation in the results which follow, all the
simulations use the actual data symbol decisions in the feedback loop as opposed to
the ideal (correct) decisions previously assumed to make the derivations tractable. An
| excepti'on occurs with the initial decisions made for each OFDM block. Due to the
circularity of the ISI resulting from the aliasing approximation, lthe detection of every
data symbol requires knowledge of B previous, in a circular sense, data symbols. In order
to preclude an error propagation problem damaging the first decision, the first decision
is made with B correct data syrhbols in'uthe feedback loop. This decision is then shifted
. into the feedback tappéd delay line, and only B — 1 ideal data symbols remain. Clearly,
after the B initial decisions are made, all subsequent decisions involve only data symbols
from actual previous decisions in the feedback loop. In the following, B turns ouf to be -

quite small, e.g. B =3 for N = 128 and fp = 0.01, an overhead of less than 3%.

5.10.2 Comparison of ZFDIRDFE and MSEDIRDFE

Figure 5.6 shows the variation of P with B for both ZFDIRDFE and MSEDIRDFE.
The curves are erQOFDM at By /No = 16 dB and fy :_1.28. It can be seen that for both
DFE’s there is signiﬁcanf reduction in P, as B increases, and essentially all the available
improvement is achieved for only B = 3 feedback coefficients. It is also clear that for
a given value of B MSEDIRDFE has a lower Ps; than ZFDIRDFE. Figure 5.7 shows
explicitly the discrepancy in Fy /Ny, again for QOFDM and | fn = 1.28, required for the
two DFE’s. The curves were produced with B = 3 as suggested by Figure 5.6. It is clear
that MSEDIRDEFE has a consistent advantage of approximately 1 dB over ZFDIRDFE.‘
Since there is no complexity penalty for MSEDIRDEFE relative to ZFDIRDFE, there is
little motivation to pursue the 1.'atter beyond this point. In fact, if the PSA‘achicvable
by ZFDIRDFE with B > 3 was considered adequate, essentially the same performance

could be achieved by MSEDIRDFE with B = 1. In the latter case, the matrix inversion
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to obtain the feedback coefficients reduces to a simple scalar inversion. We also note that
for B > 2 with MSEDIRDFE, there is.no value of B Which can be used with ZFDIRDFE
to obtain as low a P;. Consequently subsequent comparisons focus on MSEDIRDFE.
A Ps curve for the LMSE equalizer of Sectton 5.2 also appeérs in Figure 5.7. It
is included in this and subsequent figures for comparison between linear and decision
feedback equalization. It can be seen that the advantage of MSEDIRDFE over LMSE

increases with increasing Ej /Ny, being near 3 dB at Ps; = 1073,
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Figure 5.6 Variation of P, with B for ZFDIRDFE and MSEDIRDFE, fy = 1.28,
Ey/Ny = 16 dB, QOFDM
5.10.3 Evaluation of MSEDIRDFE

Figure 5.8 compares the variation of Py with B for BOFDM and QOFDM, at
fv = 0.32 and ’Ei, /Ny = 22 dB. Nearly all the available impfovement is attained with

B =1 for both cases.
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Figlire 5.7 Comparison of MSE, ZFDIRDFE, and MSEDIRDEFE, fy = 1.28, QOFDM

The P, for QOFDM would.be very close to twice that fdr BOFDM if the channel
were nonfading AWGN, since then there would be no ISI and QOFDM is equivalent to
two BOFDM signals in quadrature. Figure 5.8 in contrast shows a ratio of approximately
3. This indicates, as found in Chapter 4, that QODFM suffers more from ISI than does
BOFDM. A key difference however, is that here the significant contributors to ISI have
been reduced to a number B which is small for QOFDM as well as BOF]jM. This is
important for the feasibility of MSEDIRSE with QOFDM. ’

Figure 5.9 makes the same comparison as Figure 5.8, but at fy = 1.28 and

Ey/Ny = 16 dB. Most of the improvement is obtained for small B, possibly B = 2
or 3 for BOFDM and B = 3 for QOFDM. |
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Figure 5.8 Variation of P; with B for MSEDIRDFE, fy = 0.32,‘Eb/N0 = 22 dB.
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P, Comparison of LMSE and MSEDIRD_FE. ~ Figures 5.10 and 5.11 compare
MSEDIRDEFE to LMSE ‘for BOFDM and QOFDM, at fy = 0.32 and fy = 1.28.
The B used to generate each curve is indicated on the graph legends. At fy = 0.32
there is little to be gained with MSEDIRDFE compared to LMSE, less than. 1 dB at
P, = 10_3vf0r BOFDM. For QOFDM the improvement 1s slightly better, about 1.5 dB.
We note though that obtaining this gain is simple since B = 1 for these curves. At
higher fy the ’advantage of MSEDIRDEFE is more apparént. Figure 5.11 shows gains of
about 1.5 dB for BOFDM and 2.7 dB for QOFDM at P; = 10_3. It can also be seen
that the reduction in Ps with increasing Ej/Nj is greater for MSEDIRDFE than LMSE;

and that the relative improvement for QOFDM is again greater than for BOFDM.

P, Comparison of MSEDIRDFE to MLSE and the MFB Figures 5.12 and 5.13
compare curves for MSEDIRDFE to the _MFB and MLSE res_ults‘ of Chapter 4 for
BOFDM. In both cases, fy = 0.32 and fy = 1.28, the MSEDIRDFE curve is slightly -
closer to the MLSE curve than the LMSE curve, indicating tﬁat over half the loss of
LMSE relative to MLSE is recoverable with MSEDIRDFE, and the gain of MSEDIRDFE
over LMSE increases with Eb/Ng and fy.

These curves also show the gain of MLSE over LMSE, about 1.7 dB at fy = 0.32
and 2.9 dB at fy = 1.28, both at P, = 1073.

5.10.4 Comparison of MSEDIRDFE to Previous Work: FDZFDFE
Figure 5.14 shows a comparison between FDZFDFE from [7] and MSEDIRDFE-
developed here. The comparison wés made by simulating on the basis of the OFDM‘
parameters used in that Work, vy = 2.(')5. and N = 512, since the exact équations for
calculating the front—end and feedback filter coefficients it used were not given. |
The simulation of [7] used ideal decisions in the feedback loop with B = 15. The

MSEDIRDFE simulation uses B = 4 and two curves are presented, one where ideal
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decisions were used in the feedback loop and one where the actual decisions were

“used. Thus a.fair comparison is between the left and rightmost curves. We see that

o

10

o o——o MSEDIRDEFE, B=4, ideal dec
10 o—=a MSEDIRDEFE, B=4, actdec F
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1\\\\
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Figure 5.14 Comparison of MSEDIRDFE to FDZFDFE, for' the parameters of [7], -
fv = 2.05, N = 512, QOFDM. : '

'MSEDIRDFE has about 3 dB gain over‘ FDZFDEE at P; = 10~2 and this increases
with increasing £y /Ny. The middle curve, for MSEDIRDFE with actual decisions in the

feedback loop loses only 1 dB compared to the ideal case, and still maintains a 2 dB

~ advantage over ideal FDZFDFE at P, = 1073,

5.11 MSEDIRSE Simulation Results

This section presents simulation results for the MSEDIRSE described in Section 5.8.
Since both MSEDIRSE and MSEDIRDEFE use the same front-end filter, a lower bound
on P, for MSEDIRSE given that filter is obtained from a simulation of MSEDIRDFE
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with ideal decisions in the feedback loop. This is because MSEDIRSE can do no better

than to make no errors due to ISI from the DIR.

Figures 5.15 and 5.16 present P versus Fy/Ny curves for MSEDIRDFE with both
the actual and ideal decisioris for comparison to MSEDIRSEi From the spread of the
MSEDIRDFE curves with é(_:tual and ideal decisions it is appareﬁt that the potential
improvement at P, = 1073 is lifnited to about 0.8 dB for fy = 0.32 and about 1 dB
for fy =1.28. As can be'seen, nearly all of the potehtial gain over MSEDIRDFE with
actual decisions is achieved by MSEDIRSE with only 4 and 16 state sequenée estimators

respectively.

Although the addition of a sequence estimator to obtain 1 dB or less available gain

on a fading channel is not likely to be a desireable engineering tradeoff, these results

validate the derivation of MSEDIRSE, and are in stark contrast to the poor performance

of truncated MLSE with QOFDM shown in Chapter 4.

5.12 Conchision

We have examined linear and decision feedback equalizer theory in the context of

OFDM modulation on flat Rayleigh fading channels. The aliasing approximation was
identified as a convenient means of obtain'mg simpliﬁed equalizer structures. This was
combined with the idea of modifying the overall pulse response to obta.inva desired impulse
response, resulting in two new DFE structures for OFDM, ZFDIRDFE and MSEDIRDFE.
The former is a translation of a previously existing idea for serial modulation to the
OFDM problem here. The _latter, MSEDIRDFE, is thought to be a new formulation with

application broader than the OFDM context which inspired it.

A third structure, MSEDIRSE, combines the use of MSEDIR shaping with an ap-

proximate MLSE, and performs essentially as well as MSEDIRDFE with ideal decisions

in the feedback loop.
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Of the three, MSEDIRSE has the best performance, bu£ MSEDIRDEE performs
nearly as well and is slightly less complex, thus it may be preferable. Comparisons of
MSEDIRDEFE with previous best results show a significant improvcmeh; in terms of P,

without increased complexity.
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OFDM on Fréquency-Selective
Rayleigh Fading Channels

Although the flat fading model of previous chapters is frequently ehcountered in
practice, it is-not always appliqéble. As noted in Chapter 2, frequency selec’ﬁvity is a
function of both the transmitted signal and the delay spréad of the channel. In urban
environments the typical worst case excess delays®? for arrivals whiph are within 10 dB
of the maximum' signal are less than 25 usec [18]. For the delays near 25 usec, this
corresponds to the chaﬁnel appearing frequency-selective for a signaling rates of about 4
kbaud and above. The delays can be even greater in suburban environments. For example
the IS-54 [37] digital éellular channel model uses a two-ray model wjth a 40 usec delay
between the rays, which corresponds to one symbol period. Thus the applicability of
- any modulation proposed for land mobile radio to delay spread or frequencj}-selective
channels is an important consideration. |

In this chapter we extend some of our previous work for ﬂatfading channels to
frequenéy—selective channels. We derive receivers for OFDM on frequency-selective
Rayleigh fading channels; based on the optimization of MLSE and MMSE performance

criteria.

The chapter is organized as follows. Section 6.1 des¢ribés the channel modeling.
Derivation ‘of optimal and truncated MLSE receivers is preseﬁted in Section 6.2. Methods
for evaluating matched filter outputs and tone correlations are given in Section 6.2.1,
and the effect of pulse shaping on the tone coneiations is considered in Section 6.2.2.
Performance results obtained by simi;lation of the MLSE receivers are presented in-

Section 6.2.3.

2 “with a probability of 0.99
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In Section 6.3 optimal linear MMSE_ receivers are derived. Direct and alternate
~implementations are described in Sections 6.3.1 and 6.3.2. Methods forv' evaluating
matched filter outputs and tone corrélations are given in Section 6.3.3. The réiationship
between integrél equation and matrix formulations of the estimation problem is examined
in Section 6.3.4, and an efficient matrix formulation for rate N/Tj sampling is outlined
in Section 6.3.5. The performance results obtained by simulation of the MMSE receivers

are presented Section 6.3.6.

Section 6.4 summarizes the conclusions of this chapter.

6.1 A Frequency-Selective Rayleigh Fading Channel Model
The model introduced in Chapter 3 for a delay Spr_ead and time varying channel

impulse response had a received signal r(t) given by

Tmaz
r(t) = / z(o,t)s(t — o)do + n(t) : (6.1.1)
4 A
where z(o,t) is the response of the channel at time ¢ to an impulse applied at time

t — o, and Thqag 1S th_e maximum delay spread. The time variation models the fading
. process and the delay spread gives rise to the frequehcy selectivity. Although not much
more difficult to Wofk with than a ﬂaf\ fading>model, theé generality of (6.1.1) makes
it difﬁcult to obtain insight into some of the quantities®> which arise in the following
sections. For this purpose it is helpful to specialize the model slightly by considering
a received signal consisting of N Rayleigh faded rays and AWGN. This model is still
quite general because the rays may be correlated, and by assuming suitable weighting
coefficients «; for each ray, arbitrary delay spread profiles may be approximated. The

model of the received signal is then

r(t) =Y aiz(t—m)st—m)+nlt) 6.12)

23

. . &
i.e. the matched filter outputs and tone correlations
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where N is the number of rays and 7; is the Adelay, associated with the 7** ray. The

channel impulse tesponse implied by (6.1.2) and (6.1.1) is
- z(o,t) = Z a;6(o — 13)z(t — 7). ' ' (6'.'1.3)
‘ S 4=1 - '

‘ 'Setting Ny = 2 in (6. 1.3) gives the two-ray Rayleigh fading channel model as

z(o,t) = a16(a)zlb(t) + agb(o — 7)zo(t — 7). o (6.1.4)
Although the analyses are performed with the more generzrl ‘models, (6.1.4) is used to
' produce the simulation results of this chapter since it has the fewest parameters while ;

still remaining able to model frequency—selective Rayleigh fading.

6.2 Derivation of the MLSE Receiver

The first preblem encountered in generalizing the results of Chapter 4 to delay spread
channels is in obtaining a discrete and sufficient statistic from the continuous received A‘
waveform. This statistic could then be precessed by discrete structures similar to the
MSEDIRDFE or MSEDIRSE derived previously. Altheughv truncated MLSE cerr be
expected ‘to suffer the semellimitationsv on frequency-selective channels as were found:
for flat fading channels, its derivation_ is useful because such a statistic is obtained as
an intermediate result. | |

The deri‘viation is similar to that of Chapter 4 but generalized to consider a received
signal given by (6.1.1). Recalling the derivation of the MLSE receiver in"‘C'hapter 4, the

“signal dependent parameter w(t,ar) is generalized to
w‘(i,_é) = /e(a,t)s(t —o)do. - | (6.2.1)

Equation (4.2.3) gave the metric /\'as‘a function of w(t,a). 1t is repeated here for

~ convenience

A= / Re[r(t)w*(t,a)]—%|w(t,la)_|2dt. o  (6.2.2)
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Combining (6.2.1) and (6.2.2) and simplifying yields

N-1 .
Z ay /r(t)/z*(a, t)p*(t — a)eﬂﬁn(t_a)da dt
N 1N-1"

-3 Z Za am// z(a1,t)p(t — oy)e iggm(t- Ul)da | (6.2.3)

nOmO

- /Z*(Uz,t)P*(t—Uz)e_j%n(t_az)daz dt

from which the quantities

Up = /r(t)'/z*(a, t)p*(t — U)e_,j%n(t_a)da dt (6.2.4)

mn // 01, t—O’)JTO (_al)d ol

x/z (o2, t)p*(t — o9)e —ign(t- ) doy dt

can be defined. As per the observations of Section 4.2, U, and V,, , will be referred

A= Re

and

(6.2.5)

to as the matched filter outputs and tone correlations respectively. The metric can now ‘

be written as

, N-1 N1N1 : C
X =Re ZaU ———ZZaam o (6.2.6)
n=0"m=0

which has the same general form as (4.2.11) except that Vm,n can no longer be written
as Vn—m. However the essential property for efficient recursive evaluation of (6.2.6) is
that Vi, n = V;',,,, which can be seen to hold from (6.2.5). Using this property it may be

shown (Appendix C) that ) >may be found recursively by defining

n—1

. 1 _
An = RelaUn] —Relah > arVia| — zlanl Vo (6.2.7)
. k=n—1L 2 .
‘and maximizing ‘
) = Z A | ‘ (6.2.8)

Equation (6.2.7) results in an optimal sequence selection only for the selection of L = n,

or equiVaIently if V, = 0forn > L.

The matched filter outputs U,, 0 < n < N — 1 are the desired sufficient statistic.
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6.2.1 Evaluation of U, and V,,

We obtain expressions for U, and V,, by specializing the channel impulsevr'csponse

to the NVy-ray model.

Matched Filter Outputs Using (6.1.3) in (6.2.4) we obtajn

Uy, = /r(t) / Z a;b(o — 1) 2X(t — T)p*(t — a)e_jo_gn(t‘—”)dadt
. i:l . ‘ ) N
Nb ’ -2
- / r(t) Y ekt — mpt(t— m)e IR T ay
’;1 < . (6.2.9)
i=1
Nb - 27
= / [Z oy (t + Tz)qz*(t)] e D" dt
1=1

where ¢;(t) = z;(t)p(t). Equation (6.2.9) has been manipulated into the form of a single
Fourier transfdrm of its argument in the square brackets. The interval of integration is
over the range .O.f non-zero vélues of its argument. In this éase an appropriate rangevis
0<t<TH(1+a)+tmm Wher§: « is the pulse rolloff and T, is the mzﬁ_dmum delay spread.

- There are N values of U, required to calculate the data estimates by (6.2.6), but we
note that approximation of integrals With. the form of a Fourier trahsform via an FFT
method was previously discussed in Section 4.3. Using this method all N valués of U;

are calculated simultaneously with one FFT.
This calculation is essentially similar to that for the flat fading model of Chapter 4.

Specialized to the two-ray case (6.2.9) is

Uy = /[alr(t)qf(t) + agr(t + T)q%(t)]e_j%ntdi. ’ | (6.2.10)
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Tone Correlations The tone correlations are defined in (6.2.5). Expanding this with

(6.1.3) as above yields

mn—// 0'1, t—O’l) ]TO m(t= Ch)d o1

/<mmu—m~%“mwﬁ

= 0(01 — 13)z(t — 7)p(t — Ifmlt=n)g
/Zawlfm m)p(t = o1)e i (6.2.11)

X Z ak5(02 - Tk)z*(t - Tk)p*(t — 02)6_j%§n(t_02)d0'2dt

Ny Nb

/Zzalaqu t— 7'1 Qk(t _Tk) m{t=i) —]T_n(t Tk)dt' .

i=1 k=1
| Comparison of (6.2.11) with (4.2.13) shows the key differcﬁce between the flat fading and
frequency-selective fading cases. In the former Vin,n = Vin—n, i.€. the tone correlations
do not depend on m and n individually but only their difference. As can be seenvabove
this is no longer the case for frequencyfselective fading. The dependency of the Vinn on
the individual values of m and n complicates their evaluation; they can no longer be fouﬁd ‘
from a single Fourier transform as in the flat fading case. However it is still possible to:
express it as a sum of Fourier transforms. Upon .collecting terms with a common index

and moving exponential rotations outside the integral sign (6.2.11) becomes

mn — / |:Za2|q1 :| —jgj%(n—m)tdt

Ny Np

—g2m g2y
+3°3 aie BT JTOnTk/Qi(t_Ti)QZ(t_Tk)e R L

=1 k=1
k#t

(6.2.12)

Defining the transforms

h, = / [Zaﬂ%(t”z}e_j%mdt - (6.2.13)
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and . |
ik, = i, / ai(t = 7)ah(t — e B at ' (6.2.14)
we can write (6.2.12) as | )
Ny, Ny o
an =1, .+ EZ —JTomn ]Tonﬂc]l’ .- (6.2.15)
1=1 k=1
k#i

which is a sum of Ny(Nj, — 1)+1 Fourier transforms. Noting I, ;. is conjugate symmetric,
thislcan be reduced to Ny(Ny —1)/2+1 transfﬁrms. As with the niatched filter outputs,
these transforms can be evaluated with the FFT method of Chapter 4.

Equation (6.2.15) specialized to the two-ray case is |

Vion = I, _, + ej%mhgn_m +6—j%m7-’2,1n_m
' (6.2.16)

25 mt
= I]-n—m + eJ T 1172’_1_"1 + € ]To 1{2

1“em—n

which requires only two transforms.

6.2.2 Pulse Shaping and the Tone Correlations

Tn Chapter 4 a criterion for pulse shaping was introduced as (4.5.1) which was shown
to be satisfied by the root raised cosine family with rolloff parameter «. The specific
criterion was to requiré that in the absence of fading thé shaped basis functions shouldi

be orthogonal over the duration of p(t), i.e.
/ Ip(t)|2e 7T m)tdt = 6 (6.2.17)

and that this should hold for any choice of c. Equivale'ntIy, (6.2.17) states that the tone

correlations in the absence of fading are
Ve = 6nm. - (6.2.18)

The effect of flat Rayleigh fading is to modulate the pulse shape at frequencies at and

below the maximum Doppler frequency. Since the tone correlations

Vo = / Iq(t)lze_j%"tdt | S (62.19)
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are sampies of the frequcncy spéctrum of this modulated pulse shape it is apparent that
the effect of the fading on V,, is to spread it out from a unit sample function by convolving
the spectrum' of I;o(t)[2 with the fower spectrum of the fading process. However since
the fading is lowpass and of much smaller bandwidth than that of the OFDM signal,
the most significant values of the tone correlaﬁons are clustered on either side of any-
| particular toné. It is this effect which allowed the use of truncated (L<N-1) MLSE
for use in detecting BOFDM, with little degradation of Pj. S'imulation results showed
that pulse shaping with moderate (o < 0.25) values of « had negligible effect on P, as
might be expected from (6.2.17) and (6.2.18). |

Thr; situation for the case of a delay spread channel is rharkedly different. This
can be seen by comparing (6.2.19) and (6.2.15) of the tone correlations for the flat
and frequency-selective cases respectively. The principal difference is the présence of

cross—terms between the rays in the latter. Considering any one of these cross—terms
Lk, = ajop / qi(t — i) qp(t - Tk)e_j%mdt (6.2.20)
it can be séen that even in the ébséﬁce of.fading where (6.2.20) is
Lig, = aiog / pilt — )Pt — m)e T oMt C(6.2.21)
we will find that-in general ‘ |
Tik,, # 6n | (6.2.22)
and consequently |
Vi # bn—m- | (6.2.23)

The important point of this is that pulse shaping is much more important on frequency-
selective fading channels than flat fading channels. In particular the short constraint
‘leng'ths used with rectangular pulse shaping and flat fading resalt in poor performance on

frequency-selective channels. Fortunately (6.2.21)‘also indicates that pulse shaping can

be used to control the spreading of Vinn and thereby make truncated MLSE feasible.
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6.2.3 Simulation Results

The performance of the receivers developed in the preceding sections has been -
evaluated by simulation. Perfect channel knowledge is assumed available at the receiver -
and thus the results bound the best attainable perforfnance for both receiver categories,
nonlinear MLSE and linear MMSE respectively.

 Asin previous chapters, the figures presented are annotated with fy since it is this
parameter upon which the P of the MFB of Chapter 3 depends. A rriaxirn.um'Doppler
rate of fp = 0.01 times the data symbol rate is assumed and the sampling rate and
number of samples pef block is such that fy = fpTo = fpN. Therefore we always
have N = 100fy data symbols per OFDM block.

The two-ray channel model was eéed to model frequency-selective Rayleigh fading.
The delay spread 7 is normalized by Ts = Ty /N, the data symbol interval. For example
=05 indicates a difference in arrival times, or delay spread, of 0.57; between the two
rays. The other channel model parameter is o?, the proportion of total recei?ed'power
in the first ray. In the figures it is designated by v to avoid confusion with «, the rolloff
parameter of the root raised cosine pulse shape. | |

Figures 6.1 and 6.2 show the effect of delay spread on the symbol error rate, Pg, of an
ideal MLSE receiver. By ideal MLSE we mean an eptimal MLSE receiver as derived in
Section 6.2 without tnincation or other modification of the constraint length. This requires
L = N —1; thus simulation is piactical only for small N due to complexity constraints.

Figure 6.1 shows the results for BOFDM with N = 4 and similarly Figure 6.2 for
QOFDM. Both show results for fhree values of delay spread. The case of 7 = 0.0 is
equivalent to flat fading. For 7 = 0.5 and 7 = 1.0, independent Rayleigh fading of two
equal power rays was applied with amplitudes scaled so as to make the fotal received

power of the two rays equal to that-of the one ray flat fading case. Nevertheless, both

figures show substantial gains in the presence of delay spread, of about 5 and 6 dB at
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P, = 1073 respectively. This is becédse such short blocks have negligible time diversity,
so there is al large diversity- gain dueb to the seeond ray. It is interesting that the MLSE
receiver is able to attain such gain despite the ISI which must be substantial. At 7 .: 0.5
the second arrival overlaps the first by 7/8 of the OFDM block length and for 7 = 1.0
the overlap is 3/4.

10 7 FrFrF 71—

...........
|||||||||||
|||||||||||
-----------

. ¢ MLSE, L=3,1=0.0 [
s——a MLSE, L=3,1=0.5
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Figure 6.3 Effect of Delay Spread on Constramt Length for fy = 0. 32

Flgure 6.3 shows the effect of delay spread on constraint length for fy =0.32. In
this case ideal MLSE is not feasible?* and so truncated MLSE with L = 3 is compared
for flat fading and 7 = 0.5. Rectangular pulse shaping was used. The deterioration of the
latter case is remarkable, about 5 dB-at P, = 1073. As discussed in Section 6.2.2, this
effect is due to the emergence of cross-terms which are not present in the flat fading case.

-One solution to the cross-term problem, the use of root raised cosine pulse shaping

to modify the required constraint length is evaluated in Figure 6.4 for fy = 0.32 and

% Tdeal MLSE would require L = N — 1; it is precluded by the exponential complexity of the Viterbi algorithm
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Figure 6.5 for fy = 1.28. Values of L = 3 and 5 respectively were used to be consistent -
with the flat fading sirﬁulations of Chaptér 4.  Results are shown for various values of
rolloff parameter o with 7 = 0.5. Fbr fn = 0.32 about 5 dB at P; = 102 is gained with
a = 0.125 compared to a = 0.0, Which is a substantial improvement. For fy = 1.28
the ifnprovement is not very significant above P, = 10~%, where it is only about 1 dB.
In both cases, increasing « to 0.25 provides little benefit. |

The‘relatively small improvement for the longer (N = 128) blocklength is because
there is relatively little deterioration to improve upon. This is likely because 7 = 0.5 is
a proportionately smaller delay spread for longer OFDM blocks. |

Figures 6.6 and 6.7 show the effect of various power distribqtidns between the rays,.

for « = 0.125 and 7 = 0.5. In both cases, fy = 0.32 and fn = 1.28, the effect of the
power distribution is seen to be nea.rlyvne‘gligible. This is in contrast to the MFB results
which show maximum benefit for equal power distribution. It appears that the additional
factor of ISI, which also varies with the power distribution, is counterbalancing diversity

gain from-delay spread.
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6.3 Derivation of an MMSE Linear Receiver A

In this section we defive the optimal linear receiver for frequency-selective (delay
spread) channels based on the MMSE criterion. This allows us to compare the optimal
linear receiver to the truncated MLSE receiver for BOFDM, and to obtain useful results
for QOFDM of long blocklength. The latter was not possible for MLSE due to complexity
constraints. In addition, simulation of the receiver from this derivation enables  us
to quantify the effect. of the aliasing approximation used in Chapter 5, Qerifying the
assumptions made there. |

The approach taken is a generalized version of that used for the flat fading.” Again

we seek to minimize the MSE given by

MSE = E[ i — a,ﬂ
E ' (6.3.1)
_ [;anﬁ — 2Relanal] + E]
and we assume a linear receiver structure of the form
iy = / r({)en(t)e B (6.3.2)

where the interval of integration is over the time of the OFDM block being demodulated.
The problem is to determine the weighting functions cn(t), 0 .S n < N — 1, that are
optimal in the MMSE sense. The difference compared to the flat fading case lies in r(t)

now having a more complicated form.

We can obtain an implicit expression for ¢, (t) using a variational argument [22], or

“more concisely by differentiation with respéct to a function. Using (6.3.2) in (6.3.1) yields

MSE = E[ay, / P (e (1) Tt — ay / r* (4 ()e! B dt—
3 (6.3.3)
—a;, / r(t)en(t)e Tt + E,
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and taking the derivative of (6.3.3) with respect to cp(u) .yields

F2m

L A

20¢y,(u)
Setting (6.3.4) to 0 and again using (6.3.2) for G, yields

/ E[r* (w)r(8)]en(t)e B dt = Blanr* (u)]. (6.3.5)

Equation (6.3.5) is the desired implicit solution for ¢, () in terms of a general received

signal #(2).
Expanding s(¢) in (6.1. 2) and using ¢;(t) = z;(t)p(t) yields

Ny N-1 .
=3 gt —7) Y am (=) +n(b). (6.3.6)
i=1 m=0 .
Using (6.3.6) it is straightforward to evaluate the expectations in (6.3._5), which are
N N-1 N, . |
| E[r (gzr Z Z CYzQz (t—7) ]?‘po m(t—7i) E aqu u— T)e —J Fm(u—Tk) .
m=0 =1 : ’ .
4?6t — ) . - (6.3.7)
N- ' ‘
Z w) + 28(t — u)
m:
and : .
Elanr*(u . ' o
___________[ 3 (w)] = fr(u) (6.3.8)
. . a . .
where for ease of manipulation we have defined
N, . . '
(1) =3 cigi(t — 7)™, C(639)

Upon substituting these expectations into (6.3.5) we obtain
.+ 2 ‘ N-1 ' -2m . )
en(w)e B = fr(u) = 3 fhu) / Fm(t)en(t)e T b, (6.3.10)
) . m=0 ' :

Equation (6.3.10) is in the form of a Fredholm integral equation [38] of the second kind

with a degenerate kernel.
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Deﬁnihg the constants
mn_/fm ealt ’To"tdt | (6311 |

(6.3.10) can be written | |
nlen(uw)e I B = fi(u) - E‘Bm,nf;;m) (6.3.12)

which indicates that c,(u) is expressible as

en(u) = o7 Z o nfm ) Hm (6.3.13)
a weighted sum of the fading funchons deﬁned in (6. 3 9). Cm n and Bm n are related by
Cm,n = bm—n — Bm n. (6.3. 14) :
We can ’obtain a matrix form by deﬁning the linear operator
L{] = /fz (6.3.15)
and applymg it to (6 3.12) to yleld ‘
- N-1
B = [ ALY B [ A0 6316)
Defining the constants V; , as | " | _ 4
n = / HOIMOL C - (6.317)

(6.3.16) becomes

(6.3.18)

772Bl,n = W,n - Z W,mBm,n,
—_— 0<I,n<N-1.
Making some additional definitions, bl = [Bon, Bin,.-.,BN-1a], Vi =
[Vo,n,V1,n,---,VN_1,n], and square matrix V having (l,m)th element Vi, = Vi,
0<Im<N -1, (6.3.18) can be written in matrix form as

n°by = Vo — Vby \ (6.3.19)

which has the solution

bo= (V47D 'va. (6.3.20)
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~6.3.1 Direct Implementation

It can be seen from the preceding that the operation of the optimal linear receiver
is fairly complicated for large N. The sequence of operations is as follows. Channel
measurements are used with (6.3.9) and (6.3.17) to obtain the V., and these are then
used iﬁ (6.3.20), requiring an N X NN matrix inversion, to obtéin the Bp,,n, wWhich Witﬁ
(6.3.14) and (6.3.13) yield c¢,(u). Finally c,(u) is used in (6.3.2) to obtain the data '

symbol estimate G,.

The matrix inversion is performed only once per OFDM block, but the matrix
multiplication in (6.3.20) and subsequent operations must be performed for each data

~symbol, or N times.

6.3.2 Alternate Implementation

- Its possible to circumvent explicit evaluation of ¢, (t) by combining (6.3.13) and

(6.3.2) to obtain

N-1

in=—=3 Cn / rOfLd (6321)

m=0

Defining the matched filter outputs .‘

U = / r(8) £5 () dt | (6.3.22)
and applying to (6.3.21) yields
1 N-1
an = — CrmaUm. (6.3.23)
. - n m=0 '

Equation (6.3.23) expresses the data estimates as weighted sums of the matched filter
outputs. To use this expression the Cr, , are calculated as 1n the direct implementation and
the U, are determined from (6.3.22). There is little difference in complexity compared

to the direct implementation; (6.3.23) was derived to obtain the relationship between a,,

- and U, explicitly.
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6.3.3 Evaluation of U,, and V,,

Matched Filter Outputs Using the definitions of U, in (6.3.22) and the fading func-
tions fr(¢) defined in (6.3.9) yields |

U = / r(t) f5 (£)dt

Nb ' . S2m
-/ [Z air(t+ T,.)q;@)] IRy
1=1

which is identical to (6.2.9). We see that both the MLSE and MMSE analyses prescribe .

(6.3.24)

calculation of the same matched filter outputs.

Tone Correlations. The tone correlations are defined in (6.3.17). Expanding this with

(6.3.9) as above yields

Vin = / FO 2 (2t

Ny N

- / SN cionai(t — m)gi(t — m)el B eI R
i=1 k=1 ' - _
Ny o - (6.3.25)
= [|3 attatore By
i=1
Ny Ny :
—§ 20 2, " —j 2 (n=I)t
+ Z z e T e’ T Fogay, | qi(t — T)qp(t — Tp)e T To dt
=1t -
and using the definition (6.2.14) this can be written
| Nb Nb 27r s 27 '
V=D YD e IB IR © (6.3.26)
’ i=1 k=1
k#i

which is identical to (6.2.15). As with the matched filter outputs,’ both the MLSE and

MMSE analyses prescribe calculation of the same tone correlations.
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6.3.4 Relation between Integral Equation and Mafrix Formulations

- The preceding analysis based on solving the integral equation (6.3.5) determined that

the optimal linear MMSE estimates have the form

1 N— ) e
=7 Z (6.3.27)

An alternative; solution method for the Crm,n €an be obtained by assuming (6.3.27) as an
optimal form for the solution and applying matrix based MMSE estimation theory. Itis

instructive to compare the solutions obtained by the two methods.

We obtain (6.3.27) in - matrix forrr'll by defining the vectors cg =

| [Coms Ciyny- -+, Cn—1,n] and uT = [Ug,Un,---,Un—1], then

in = —cpu. | - (6.3.28)
n

It is well known that the MMSE solution for an equation having the form of (6.3.28)

is given by [23]

Cn = 7,2R—1* : - (6.3.29)
where
R=E[ul] | (6.3.30)
and
~ pn = Efuagy]. (6.3.31)

The (I, k)™ element of R is Ry = Ryy. It is determined from (6.3.30) and (6.3.22)

yielding
Ry = E[U, Uk] |
' (6.3.32)
= [ [ B wif; 15w di du |
Expanding E[r(¢)r*(u)] with (6.3.7) and using (6 3.17) it is readﬂy shown
' N-1- A :
Rip = Ee > VimVimg + NoViey (6.3.33)

m=0
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or
R=EVTVT 4 N,VT, (6.3.34)
Similarly it can be shown
Pn = E.vi},. : (6.3.35)
Combining (6.3.34) (6.3.35) and (6.3.29) yields ¢, as
S ' ' ‘ —1x
2 (vTyT 2v;T oo
Cep ="V VT 49V Vn
g ( | ) : (6.3.36)
=2 (VV +72V) vy
where we have also used V = VH = VT* tg obtain the last line of (6.3.36).

The matrix based solution for ¢y in (6.3.36) has a different form than that from the

integral equation solution, and so it is not obvious that they are the same. Using the -

definition of ¢, and combining with (6.3.20) we have from the latter method

cn=dn— (V+72) vy S (633D

where dy, has a 1 in the n!* position and 0's elsewhere.
We demonstrate the equivalence of (6.3.36) and (6.3.37) by conHadictioﬁ. Assuming
inequality | : |
(VY +02V) vy £ da = (V 4+ 771) vy (6.3.38)
from which it follows |
(V47 D)V iva £ dy— (V402D) v
772V_1v1>1 # vp + nzdn —Vp (6.3.39)
v £0PVd,
and

n*vn # n2vn. . (6.3.40)

Equation (6.3.40) is a contradiction, establishing the equivalence of (6.3.36) and (6.3.37).
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Stability Comparison In terms of numerical stability (6.3.37) from the integral equation
approach is a more desirable form than (6.3.36). This can be seen by comparing the

condition numbers of the matrices which must be inverted in each case.

The condition number cn(M) of a matrix M is defined as the ratio of the magnitude

of its minimum to maximum eigenvalues [39]

Amin

Amazx

en(n = |

(6.3.41)

where Amin and Amaz are the minimum and maximum eigenvalues respectively.: By
definition cn(M) ranges between 0 and 1. A condition number close to zero implies the
matrix is nearly singular [25] and problems of numerical‘stability can be expected with

its attempted inversion.

Since V = VH it is possible to perform an eigenvector decomposition and express

1t as

2,
L

V=Y \egell (6.342)
0 .

o
I

where the ey are the eigenvectors of V. Usirig (6.3.42) we can write the relevant matrix

of (6.3.37) as

N-1
(V + 772:[) =" ')\kekeE + 7721
. k=0 .

N1 (6.3.43)

=Y (A +n%)exey

k=0 '
which reveals the condition number of (V +7%I) to be
/\‘ o+ 772 .

en(V +921) = |22~ L1 , (6.3.44)
( n ) 4 )\maz +772 )
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Similarly, the condition number of (VV +7%V) is

an(VV +7?V) = en(V(V +9°T))
N-1
C= CH(Z /\kekek (Z ()\, + nz)eieiﬂ>>
N1 | | (6.3.45)
= cn<z AL ()‘k + nz)ekeﬁ> .

k=

( min + 772)
ma:c( maz T+ 772)

which shows |

ﬁ(v+n21). . (6.3.46)

Amaz

Two conclusions that can be drawn from (6.3.44)-(6.3.46) is that (V 4 n*I) cannot be
exactly singular for non-zero 52, but it can be close for ? small. In contrast the matrix
(VV +72V) can be singular for non-zero n? if Amin = 0, and will in any case be closer

~ to singularity than (V + n*I) by the factor |Amin / Amaz|-

6.3.5 An Efficient Matrix Formulatlon for Rate N / Tp Samplmg
The transmitted OFDM s1gna1 s(t) is given by

N-1 ’ )
s()=p(t) 3 @™, 0<t < Ty(1+4a). (6.347)

n=0

Using the two-ray Rayleigh fading model, the received signal is given by

r(t) = arz1(t)s(t ) + azza(t — 7)s(t — 7) + n(?),
(6.3.48) .
0<t< To(l+a)+r.

In Chapter 5 we reasoned that the aliasing introduced by sub-Nyquist sampling at rate
N/Ty should not noticeably increase the error rate for large N. This suggests we

could model equations (6.3.47) and (6.3.48) sufficiently accurately by sampling at rate



~OFDM on Frequency-Selective Rayleigh Fadingv Channels o : 130 |

1 /At = N/Tjy to obtain a discrete model which is then suitable for a matrix description.

The discrete versions of the transmitted signal and recéivcd signal are then

. N-1 o ‘ _ :
Sm = Pm Z anej%rnm’ 0 < m <Ny —1 ’ (6.3.49)
‘ O =0 :
- where . ‘ E
N, = {TO(1 + a)} |
_ At (6.3.50)
= [N(1 + o)) '
and ' .
Tm = a]_Z]_mSm + a2zzm—rsm—7' + Nm,
. : (6.3.51)
0<m< N, ~1 ‘
_ wheré o
Ny = [N(1 + Q) + 7/At] . 4 (6.3.52)
respectively.
Defining the following.matn'ces
s = [SO,v«Sl,-,--SNa—l]’ . (6.3.53)
P = diag(po,p1,- - PNac1)y (63.54)
D= [{Dm,n}]a | Dm,n =Nt
0<n<N-1 . (63.55)
0<m< Ny—1
and
a® =[ag,a1,...,ax-1] (6.3.56)

(6.3.49) can be written -

s = PDa. (6.3.57)
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Similarly defining

oz, l=m,

7 = [{Zl,m}], Zl,m: a2y, - l:m+T/At
: 0, l#m

(6.3.58)
0<m< N, —1 :
0<I<N,—1

T '
r' =[ro,71,...,7N,] (6.3.59)
and '
nT = [ng,n1,...,nn.] | . (6.3.60)
(6.3.51) is
r=17Zs+n
—ZPDa+n (6.3.61)
=QDa+n
where |
Q=17P. (6.3.62)
If we form the estimates of a with
4 =CHy (6.3.63)

then it is readily shown that the linear MMSE choice for the weighting matrix CH is

found from

(6.3.64)

or

ct = piQH (QQH + 1721) _‘1 : (6.3.65)
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which yields for the estimate
—1 ’
a=D"QH (QQH + 7721) r. - (6.3.66)

- Equation (6.3.66) is a more efficient way to obtain & than to explicitly determine CH
and use it in (6.3.63). By first premultiplying r by (QQH + nZI)_l,‘premultiplying the
result by QY and then by DY the rectangular by rectangular matrix multiplications are
replaced with rectangular matrix by vector multiplications. This requires approximately
N times less computation. Further, with the computation organized in this way DY is

multiplying a vector
_ L , |
3= Q" (QQH + 7721) r | (6.3.67)

which can be interpreted as an estimate of the undistorted signal s. Combining (6.3.67)

~and (6.3.66)
a = DHs ' (6.3.68)

which is efficiently evaluated by an inverse FFT of §.

Comparison to Integr-al‘Equation Solution The advantage of this formulation over
that derived with the integral equatibn approach can be seen from the definitions of Z
and Q in (6.3.58) and (6.3.62) respectively. These fading matrices are two-diagonal
and consequentiy (QQH + nQI) is three-diagonal. By n—diagonal it is meant that all
matrix entries are zero except possibly. those on n diagonals, where the diagonals are
not necessarily adjacent. Therefore (QQY +7%I) can be in.vcrted with only O(N)
operations [25] ‘as opposed to O(N?®) operations for a general matrix inversion. For
the more general Ny-ray fading model the complexity of the matrix inversion varies as

N,;?‘ N with Ny typically 6 or less and independent of N. The principal limitation of this

formulation is that the complexity of the matrix inversion varies with the sarhpling rate
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as can be seen from (6.3.50). In (6.3.58) it is assumed that 7 is an integer multiple of
At. More gen::félly the sampling rate must be increased to obtain finer resolution of
since this resolution is limited to At. With the integral equation formulation.the size of

the matrix which must be inverted is independent of At.

6.3.6 Simulation Results

In this section we evaluate by simulation the performances of the various optimal
linear MMSE réceivers developed in the i)reyious sections, and compare them to the
MLSE receivers. As in the flat fading case, the complexity reduction of MMSE relative
to MLSE receivers allows simulation of QOFDM as well as ‘BOFDM.

For this work we also produced the first simulation of the ideal linear MMSE receiver

- based on the integral équation formulation. Consequently we are able to verify empirically

certain comments made previously about the significance of the Transform Approximation

made in Chapter 5 and about the relationship between the integral equation and rate N/ Ty
matrix formulations made in Section 6.3.5 of this chapter.

Figure 6.8 shows the effect of delay spread on the ideal linear MMSE receiver de-
termined by the integral equation approach (IEMSE) and also includes the correspondiqg
results from the ideal MLSE for comparison. Blocklength V = 4 is chosen because it
is the only blocklenéth for which ideal MLSE is feasible with QOFDM,; this is shown
in Figure 6.9. The performances of the two receivers are remarkably close for both
modulation formats, within a fraction of 1 dB at P, = 10~2 in each case. As might be
expected?’, the greater difference is for BOFDM. The closeness of the results indicate

- that ISI poses little problem at such a short blocklength. This is because the channel
changes little during the duration of the block, therefore there is little intrablock ISI, and

the small number of symbols means there are few contributors to interray ISI. Further,

25 In Chapter 4 we showed BOFDM suffers less than QOFDM from ISI on flat fading channels
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Figure 6.8 Effect of Delay Spread for Ideal MSE, for fy = 0.04 and BOFDM
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Figure 6.10 Effect of Delay Spread for Ideal MSE, for fy = 0.32 and QOFDM

since the equalized block is essentially ISI free, the P, for QOFDM is very nearly twice
that for BOFDM, indicating a lack of intrasymbol ISL |

Figure 6.10 shows the effect of delay spread for IEMSE for QOFDM with fy = 0.32.
For this longer block, the accumulated effects of the various types of IST make the )
delay spread case with 7 : 1.0 noticeably poorer than the flat fading éase, caﬁsing the
l appearance of an error floor near Ps = 1073, Some deterio;ation can also be anticipated
with longer blocks, such as fy = 1.28.
| Unfortunately, as discussed in the derivations, the complexity of thé matrix inversion
required for the IEMSE receiver varies with N3, and is largely impractical for N = 128,
as the simulations used to pfoduce the results of this section proéess from 50,000 to
100; 000 blocks. Using the insights developed concerning pulse shaping and constraint

length in the context of the MLSE work, 1t is clearly possible to develop an approximation

to the IEMSE of complexity proportional to LN which would then allow simulation of
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any blocklength of interest. An alternative approach, in which the frequency-selective

channel was treated as a set of parallél flat fading channels was presented in [5].

However, we pursue instead means of determining the performance of the’op'tirnal
linear MMSE receiver. The approach we take is to establish that the efficient matrix
formulation of Section 6’.3.5 produces results which are very close to those of the IEMSE
receiver for N > 32, and may thus be used to determine the linear MMSE perforinance
bound for fy = 1.28. |

In Chapter 5 we reasoned that the use of sub-Nyquist sampling at rate N/Tp was an
- aliasing approximation which replaced a linear convolution with a circular convolution,
and further that this effect would be insigniﬁcant for lérge’yalues of N. We note that
the only deviation of the matrix formnlation of Section 6.3.5 (MTXMSE) from the ideal

MMSE linear receiver is the use of this same aliasing approximation.

In Figure ‘6.11 results from the IEMSE are Compared to the MTXMSE for QOFDM,

'for N = 4 and 32, and for both flat and delay spread fading channels. For the IEMSE
results, the symbols identifying the curves are small and opaque.. The corresponding
curves foi tlie MTXMSE use the same symbol shapes, but transparent and eniarge‘d. In
this way ii éan be seen that while there is a very small difference when N = 4, the curves
for N = 32 are essentially coincident. The same coincidence would be expected for any
N larger. Thus we obtain in Figure 6.12 the effect of delay spread for fy = 1.28, and

find about 1.2 dB of deterioration relative to the flat fading case at Ps = 1073,

Figure 6.13 shows comparisons of the ideal MLSE and IEMSE reéeivcis' to the MFB
for f N = O._O4. MEFB’s are given for three: values of delay spread, with th§: amount of
delay spread increasing from the top to the bottom of the graph. The results for theIMLSE
© receiver 'are almost coincident with tlie MEB at ail delay spreads, indicating negligible

loss from ISI. The IEMSE receiver performs nearly as well for 7 = 0.0 and 7 = 1.0, but

has about 1 dB deterioration at P, = 10~3 when 7 = 0.5.
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Figure 6.13 Comparison of the MFB to the IEMSE and MLSE Receivers for fy = 0.04. /

The discrepancies found between the MFB, MLSE, and MMSE receivers are greater
for fy = 0.32 and fy = 1.28. This is expected because long blocklengths suffer
~ substantial ISI Wﬁich is neglected in the MFB formulation. = Figure 6.14 shows a
comparison of the MFB to the MLSE receiver for these two cases. The MLSE receiver, _
which at these blocklengths is the ‘truncated MLSE receiver with o = 0.125, stili performs
quite well, with about 0.7 dB discr'epancy from the MFB for fn = 1.28 and about 1.8 dB
. for fy = 0.32, both compared at Ps = 10‘_‘3. As shown in Figures 6.6 and 6.7, the MLSE
receiver has esslentially the samé performance on delay spread as flat fading channels.
The MFB in contrast has a larger diversity gain due to delay spread at fy = 0.32 than
at fy = 1.28. This accouﬁt‘s for the relatively poorer performance of the MLSE receiver

in the former case.
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Figuré 6.14 Comparison of the MFB to the MSE and MLSE Receivers for fnv =032
and fy = 1.28. S : '

Figure 6.14 also shows results for a linear MMSE?® receiver for fy = 1.28. Its
performance is about 3 dB worse at P; = 1073 than the MLSE receiver. This is due to
the inherent inferiority of linear compared to maximum likelihood estimation techniques

. in the presence of ISIL

6.4 Conclusion

We have derived optimal and suboptimal versions of ah MLSE receiver for OFDM
on frequency-selective fading channels, and evaluéted their performance by simulation.
In contrast to. our previous results for the flat fading channel we found ‘that.pulse shaping
has a large effect on the Ps of the truncated MLSE receiver. when it is used on channels
with delay spread.'_ This is due to the presence of croés—correlations between the received

"OFDM blocks in the latter case.

26 This is designated MSE on the figure, and was simulated by MTXMSE.
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We also derived an op’tiirial linear MMSE receiver for fre(iuency-selective-fading
channels, based upon an integral equation formulation of the estimation problem. This
approach allowed us, with Ps results generated by simulation, to quantify the effeét of the
aliasing approximation first ‘c'liscussed in Chapter 5 in the context of flat fading, as well ‘
as for the delay spread cases of this chapter. The effect was shown to be negligible for
N > 32, aﬁd only a fraction of 1 dB for /V as-low as 4. This led to an MSE receiver form
using the aliasing approximation Whos¢ complexity is only linear in N, with essentially.
optimal performance for long blocklengths. | |

We: compared the solution form obtained from the integral equation approach to the
solution form obtained from a conventional matrix analysis approach, and showed thenﬁ
to be fheoretically equivalent_when' ﬁnite'precision. effects are neglected, but havinvg. the
imporfaht difference that the ihtegral equation form is more stable numerically. This
difference was quantified in terms of the eigenvalues of a certain channcl dependeht tone |
correlation matrix. |

For the short blocklength N = 4 it was shown that diversity gains are achieved by
the MLSE and _MMSE receivers which are very close to the MFB gains. For the longer
blocklengths, it was found that the diversity gains were almost bélanced by the increase
in ISI with blocklength and diversity, yielding performance basically unchanged from the
flat fading cése. This result is based on the normalization choice Which compares the flat
fading and delay spread fading on the basis of same total received power. If we were to
ask a slightly different, but equally valid, question by considering the performance on a
flat fading channel, .and then ask what would be the effect of the arrival of a second ray,

we would then see a net gain due to the increase in total received power.

A key difference between the ﬂat-fading and delay spread channels is revealed by

comparing the results for QOFDM with N = 4; 32, and 128. These show that in

contrast to the flat-fading case, on delay spread channels longer block lengths do not
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necessarily have a lower Ps. This suggests that deliberately introduced delay spread

via transmitter diversity in combination with short blocks might be more effective than

channel averaging with long blocks.
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Conclusion and Suggestions for Future Work

7.1 Conclusion

The performance and receiver structures for channel-averaging OFDM on land mobile
radio channels characterized by flat and frequency-selective Rayleigh féding have beén
studied. A new matched filter bound (MFB) applicable to fast fading was derived to
establish lower limits on the P, of any receiver structure applied to uncoded OFDM.
on these channels, and to provide a benchmark for,receive.r performance. The theory
of equalization was developed in the context of OFDM using integral equation and
- matrix formulations. New nonlinear sequence estimating and decision feedback recei\fer
structures were derived using MLSE and MMSE optimality criteria. The performance of
these receivers was evaluated by simulation and found -to equal or in most.cases exceed“
previous results for the same modulation and channels.

~ Several insights were obtained into the nature of the ISI in OFDM caused by fading.

BOFDM waS found to be much less sensitive‘ to ISI than QOFDM. With BOFDM,
a simple truncated MLSE receivér can approach the MFB to within 1 dB, but it is
effectively useless for long blocklength QOFDM due to the required constraint length.
. The channel impulse response is ameﬁable to reshapiﬁg by the MSEDIR technique which
was devised to reduce the constraint length of the ISI, making sequence estimation feasible
and improving the performance of DFE substantiaily. IST on frequency-selective fadi;lg
channels is much worse than for flat fading channels. The problem was shown to be the
appearance of certain cross-terms arising in the tone correlations due to the interaction
of multiple received versions of the transmitted OFDM block, but controllable with by
proper pulse shaping.

We conclude that the channel aQeraging abﬂity of OFDM gives it a substantial B

performance advantage over any other uncoded modulation on fast flat Rayleigh fading
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channels, and that most of the gain indicated by the MFB is attainable by the nonlinear '
receiver structures devised in this thesis. On frequency-selective Raylergh fading channels
a comparison with conventional serial modulation schemes is less positive. This is
mainly because of diminishing returns with increasing diversity, also predicted by the
MFB. The presence of a second uncorrelated ray in the delay spread case causes a large
diversity improvement for short blocklength OFDM and serial modulation schemes which
is not available for long blocklength OFDM?’. By comparing the results for N = 4 and
N = 32 was found that given an equally sophisticated receiver, the performance of a
ser1al modulation scheme would be comparable to OFDM if the powers in' the two rays.
were similar. Of course, this is a very special case. Long blocklength OFDM maintains
an important advantage when the relative strengths of the received rays are unknown a

priori because it is fairly insensitive to the power distribution among the rays.

- 7.2 Suggestions for Future Work

1. Interleaved OFDM Ibrilterleaved OFDM (IOFDM) is a variation of OFDM originated
during this investigation. The idea is shown in Figure 7.1. A serial data strearn'
ay is partitioned into Vshort blocks of N = 4. These are transformed by .a 4-point-
liﬁverse FET to obtain a new set of symbols bg. The by stream “is -applied to. éin
interleaver, and the output of the 1nterleaver feeds a conventronal serial modulator
At the receiver the process is reversed ‘The inverse FFT time-diversifies the ap
information over the by, and the 1nter1eaver decorrelates the samples of a parUcular '
OFDM block. This method provrdes the diversity gain of a much longer block
with a block length short enough to allow ideal MLSE. Some prehmmary results for
BPSK IOFDM (BIOFDM) on a ﬂat Rayleigh fading channel, plotted in Figure 7. 2
show a companson to BOFDM with fp = 0.01 and N = 128. Ideal interleaving

27 unless Tmaz approaches N/2, an impractically large value.
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(ideal interleaving results in uncorrelated received samples for fy > 0.0) and perfect

channel estimation were assumed in the simulation.

by ok s(t) o
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Figure 7.1 IOFDM

2. DFE for frequency-selective channels The MSEDIRDFE equalizer developed for flat

fading could be extended to the frequency-selective fading case. A possible approach
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Figure 7.2 Comparison of BIOFDM with ideal interleaving to BOFDM with fy = 1.28
on a flat fading Rayleigh channel. ’
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might be to subdivide the OFDM bloéi{ into smaller units that experience relatively
flat fading, and then apply the ﬂat fading techniques to-ea‘ch subunit.

3. Trellis-coded blocks The effectiveness of channel averaging obtained by trellis-coding
of gonVentional serially-modulated data blocks should be compared to that of OFDM.
Since trellis-coding requires a larger signal '(‘:onstellation to maintain the same data
rate, it is unlikely that the two methods would have the same sensitivity to channel
estimation noise, and this would be an important point of comparison. |

4 Channel estimation Chahnel estimation for flat fading channels is well understood,
but much remains to be done in the area of frequency-selective fading channels. Pilot
tones, data sequences, and frequency chirps have all been applied ([5],[10], [11], [12],

) but a comparative analysis of the costs and merits of each would be quite useflil not. |

only for OFDM, but other coherent techniques as well. It is also important to quantify

the robustness of channel estimation methods in an interference limited environment.
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Appendix A MFB Details

A.1 Evaluation of an Integral

In Chapter 3 the following integral occurs:

R n; . o0 :

101 L Ag TEw \ it o o
P=—-—= _ ik Z0Y ) yk=1g=u/ X gy A1l
b=3 22 (k_1)uk/erf< N0>y ¢ A-LD

. 0

ELy
VT -
. .
I = —\/_;/ / @_tzdt yk~16~y/)‘idy. | (A.1.2)
0 0 '
Setting . |
: [ Byy
N
2 / g | (A.13)
U = — [ <L
T
VT ;o
and
v = yFlem¥ gy | (A.1.4)
it is easily shown
VEs/N | o
gy — VB! 0112 = Boy/No gy (A.1.5)
VT -
and . 1
— 1) +1 :
1 —z yhlemvh o (A.1.6)
1=0

Integrating by parts

r k- 1 |)\l+1 E ) . y=e0
I = erf [ 1 /289 ) k=11 =y/ »
Z “1-0)! ( N )Y€

(A.1.7)

» k— 1 +1
i Eb/No DA / yk—%—le—(Eb/No-H/)\i)ydy]
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and noting the remaining integral above is in the form of the gamma function

T kEk—1-1)!

Ep/No + 1/x;)2k-D-1

where T(-) is the gamma function defined by [40]

“T(z) = / Pl (A.1.9)
o) | | |

Equation (A.1.8) may be simplified by mod1fy1ng the summation 1ndex tom=k—1

to obtam

m!

: k - »l 1 X ‘ ' |
Fo Mk —.1)!» > I(m+ z)\/ ALy [N (A.1.10)

(/\iEb/NO + '1)2m+1

and using the identity [40] T'(m + 1) = —7@# yields

k-1
2m—1 By /N, |
k 14p 0
I=Xk-1Y : = ‘ — (A.L11)
. m=0 (AzEb/NO + 1)

o { (W =2)(n—4)---(1), nodd
( )!!——{( )(n—4)--‘-(2), neven-' (A.1.12)

Combining (A.1.11) with (A.1.1) yields the desired expression for 'Pb:

R n -1

11 (20— D! XiEy /N
pP=-__= A; . A.1.13
b=9 79 ZZ k Z 20! \/()\iEb/NO F )i , ( )

t=1 k=1 =0

k— 1 | +1 1
1 )l,\ F(k)l 2)\/( Ey/No AL8) .
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A.2 Mean and Variance of y in Flat Rayleigh Fading

For the flat Rayleigh fadmg model the matched filter output y 1s glven by

y—/lp Pl ()t | A2
’fhe mean of y is.
m= [borelaoie
= 20 |

where we have used £ [|z1( )| ] = 202, for a Raylelgh pdf and where o2, is the variance

of the real part of z(t).

Finding the variance of y is more involved. We have

ol = E[y2] — 402,

(A.2.3)

To-simplify the notation let v; = [2(?1)| and vz = |2(t2)|. Solving for the second moment

Ely’] = / / [p(t2) P 1p(t2) | E [v} 3] dtrdts. (A24)
We seek AI ,
o0 OO 7
E[viv}] / / _obd =iy, P2 Ndoy dvy. (A2S)
Uzr 1 - p Uzr(l - P ) .
00 :
In (A.2.18) we have used the joint pdf for two Rayleigh distributed random variables [22]
! * v +v i .
. . V1V2 m ( pUIV2 ) . »
Poyv,(V1,02) = —/———c e = Iy| ———— (A.2.6)
w1 92) = Sy 207

where p is the normalized cross correlation between two samples of the real part of the
process z1(t) or equivalently two samples of the imaginary part. The real and imaginary
parts are assumed to be independent. Io() is the zeroth order modified Bessel function

of the first kind. Expanding Io() as [40]

5= o)’

(A.2.7)

k=0
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and intégrating term by term, it can be shown that

E[U%U%] = 402 (1 + p%). - (A.2.8)

A result for the univariate case [9] is

Blvt| = (25;’,)%(1 + g)

. (A.2.9)
= E[vz] = 203,, and E[v4] = 80‘37,.
_This provides two consistency checks of (A.2.21) by setting p to 0 or 1.
We assume [3] '
() = Jo(wpT) | (A2.10) -

where Jg() is the zeroth order Bessel function of the first kind, wp is the maximum

Doppler frequency in radians, and 7 = ¢; — {2 is the time interval between samples.

Combining (A.2.16),(A.2.17),(A.2.21) and (A.2.23) we have

i = [ [Pt ol )i o @210

Note that the evaluation of (A.2.24) can be reduced to at most the evaluation of two one

dimensional integrals by rewriting it in terms of 7 = ¢; — {5 as

ol = / / Ip(t)Plp(ts — 7)[2dty T2 (wpr)dr. (A2.12)
The inner integral is the autocorrelation of the squared pulse magnitude

Gy = [wolbe-nfe  @a21)

Cp(7) could be consideréd the autocorrelation of the pulse power. In many cases, Cp(T)

can be determined analytically. For example, if p(t) is a rect pulse we have
T

Cor(T) = %/rectz(t)rectz(t —7)dt

o " (A.2.14)
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Using (A.2.26) in (A.2.25) we obtain

o= / Cp(T)JG(wpT)dr. (A.2.15)
A Limiting case Noting the normalized Doppler frequency in radians is wy =

2nfy = wpTy, we can obtain the limiting variance of y as fnN — oo by holding
wp constant in (A.2.28) and taking the limit as 7Ty — oo. | |

The pulse p(t) has been defined as‘having unit energy and duration Ty. These features
constrain the behavior of Cp(t) and hencé o2 as Ty increases. Writing p(¢) in_terms of

pu(t), a pulse having unit energy and also unit duration

p(t) = ﬁ

and combining this with (A.2.26) at =0 we have

pu(t/To) " (A2.16)

Cy(0) = / e/ To)
. l N ’ )
(A2.17)
/ | dzx 1 :
' C
where ¢ is some finite constant deﬁned as

c:/|pu(a:)|4dx. * (A.2.18)
0

Noting an autocorrelation function has its peak at lag O,

Cp(1) £ —=. (A.2.19)
_ T .
Using (A.2.32) in (A.2.28) yields
To =
2¢ [ .]g((.UDT)dT
ol < —2 ' ‘ (A.2.20)

To
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and applying L’Hopitai’s rule

lim o2 = lim 2cJ§(wpTp)dr = 0. | (A.2.21)

To—>00_ T0—>OO

2

, approaches 0 as the pulse duration T or equivalently as the

The variance o

normalized Doppler frequency fy increases without limit for any unit energy pulse.

A.3 Selection of M

Assuming fast fading, we first require that At in
M .
y=AtYy |al* (A3.1)
i=1 o -

be much less than the coherence time t. = 1/ f p of the channel so that

M , ‘
a3l [ la(oldt a3
1=1 )
is a close approximation, i.e.
1
At L te = —. (A3.3)
fp

In (A.3.37) At was chosen so that fpAt = 0.01 was used to calculate the fast fading

results of Section 3.5, and fp = 0.0 was used er the slow fading results.

.We have
fv = fpTo = fpMAt (A3.4)

and for fast fading the normalized Doppler rate was set by selecting

In

= ToAL (A.3.5)

For the slow fading examples M was selected just large enough to allow an accurate

- representation of the desired delay spread, e.g. for normalized delay spread 7 = 0.25,

M = 4 was selected.
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Appendix B The DFFT and the iDFFT
The discrete frequency Fourier transform (DFFT) is defined by
X = / s(t)e T G (B.1)
and its inverse (iDFFT) by
B0 =Y Xm0 . (B2)
k .
where Z(t) is a periodic function in time related to.z(t) by

#(t)=To ) «(t—nTo). (B.3)

n _
Equations (B.2) and (B.3) are readily established from the definition (B.1) using the
conventional continuous Fourier transform X(f) = [z(t)e™?"f'dt and the Fourier
transform pair S 6(t —nTo) = * zkja(f _ 7’2—) We have X; = X(f) x 2};5(]‘ ~ TL)
which must then have for its inverse
Xy =e(t) ®Tp Y 6(t — nTp)
.

=To E z(t — nTp) (B.4).

n

= Z(t)
where ® is the convolution operatof. Another useful relation is found by applying the
orthogonality property of complex exponentials to (B.2) yielding '
] / F(t)e B ™A =Y X, / SR TIT ™ gy ,
. T k To o (B'5)
=T X

or

1

= TO
To

X3 B(t)e TR, | © (B.6)
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~Appendix C Derivation of a Metric Recursion

The MLSE receivers of Chapters 3 and 5 are implemented with\ a Viterbi algoﬁthm
which requires a :recursive metric. Details of the derivation are giveh below. The original
application of the Viterbi algorithm to ISI probiems required a noise-whitening filter
before the sequence estimator [26]. We use the approach of [41] which is able to avoid

this requirement.

Consider the metric A; below for which we seek a recursive expression

! - I ,
> arUnl| - % YD aramVimn (C.7)
n=0 .

n=0 m=0
and expand' the double summation as follows

l ' -1 . :
ZZ@ Qm mn—z<a1am mI—I—Za am mn) - (C3)

nOmO . m=0 n=0

A1 = Re

Isolating the terms for which m = [ the R.H.S. above can be written .

. -1 : -1 -1 - 4
Vg + > ahaVin + Y (a;‘amvm,z + Za;amvm,n> (€Y
n=0 m=0 n=0 .

and using Vi,n = V;p,-the preceding is equivale'nt to

-1 1-1 |
azZavzn +2° ) GamVima. (C.10)
m=0 .

n=0

|a1| + 2Re

Using (C.4).in (C.1) yields

¥ Jar* Vig =
A =RelajUj] - —5—= — Re azz:()anvlm
n=
-1 Co1-1 1-1 (C.11)
+Re z :l n E Z a am
=0 n=0m=0
from which it is appar'ent )
| < Jaa|* Vi o
A = A, | + Re[alUj] — Re wd A Vin| - 2 (C.12)
n=0 2
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Appendix D Matrix Notation Conventions

Matrix notation, when clearly defined, provides an elegant representation for systems
of linear equations. We rely on ‘it.from Chapter 3 onwards. Unfortunately there is no one
consensus on how to identify matrices and define their elements, thérefore the conventions
.adopted for this work are explained Below.

All matrices are represented by boldface characters. An uppercase boldface character
représents a two-dimensional matrix, and a lbwer case boldface chaIathf represents one-
dimensional matrix, which is a column vector. For example Q is a two—dimensionél

matrix and q is a column vector.

The (¢, k)th element of Q is Q; x and the it* element of q is q;. Note the subscripts

are not bold. ‘
Examples:
z11 12 .. '3«"1,N T
Q- $2:’1 33%,2 s $2:,N ’ q — :Ez | (D13)
TM1 TMa  TMN | Ly

where Q;x = z;; and q; = z;. There is no relation bétwéen the case of a matrix
and the case of its elements. We do this because it is helpful when checking the
syntax of matrix equations to bé able to .distinguish two-dimensional matrices from
column vectors at a glance; this determines the case of the matrix. Yet, depending
on the situation, we need to aésemble matrices éf scalars defined in either the ' time-
domain or frequency-domain. Following the well-established convention for Fourier
Transforms, we consistently represent frequency-domain scalars with uppercase characters

and time-domain scalars with lowercase characters. Thus d = [z1, 22, - @ )T and d =

[X1, X5+, Xp]" are both valid constructs. The superscript ()T denotes transposition.
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Occasionally we need to define several related vectors. We do this with a bold
subscript, e.g. di,d2,---,dn represents N different column vectors. The i”? element .
of the k** vector is di,. Note k is bold, ¢ is not.

It follows an alternative way of describing Q above v&ould be to first define qk_ =
[$1,k,$2,k,"',$M,k].T and then define Q = [q1,92, -, qN]- |

Another convenient way to define the same matrix Q is: Q = [{Qix}], Qix = =i
where 1 <1< M, 1 gk < N. Thd [{Qix}] denotes the set of elements Qi,k are

arranged in a matrix.

Note the order of the subscripts in Q; = z;; can be reversed to obtain QT, e.g
QT = [{Qix}] . Qix = 7. |
Analogous to the vector case, a two-dimensional matrix can also be defined as an -
array of two-dimensional sub-matrices, e.g. Y = [{X;1}], where the (z, k)" element

of Xj1 is given by X;1 = Xj -

We also use the Hermitian, ()H to denote conjugate transpose, €.g. QH = QT*.




Conclusion and Suggestions for Future Work ' 156

Bibliography

[1]

21

(3]
(4]

[3]

J. E. Padgett, C. G. Gunther; and T. Hattori, “Overview of wireless pérsonal :
communications,” IEEE Communications Mag., vol. 33, pp. 28—41 Ian. 1995.

D. C. Cox, “Wireless network access for personal communications,” JEEE Commum-
cations Mag vol. 30, pp 96—115 Dec. 1992. :

W. C. Jakes, Microwave Mobile Commumcatlons N.Y.: Wlley, 1974

A. T Viterbi and R. Padovani, “Implications of mobile cellular CDMA,” IEEE
Communications Mag., vol. 30, pp. 42-49, Dec. 1992.

L. J. Cimini Jr., “Analysis and simulation of a digital mobile channel using orthogonal
frequency division multlplexmg,” IEEE Trans. Comm., vol. COM-33, pp. 665-675,

- July 1985.

(6]

[7]

[8]

(9]
[10]

[11]

[12]

A. V. Oppenheim and R. W. Schaffer, ngztal Signal Processing. Englewood Cliffs,
N.J.: Prentice-Hall, 1973.

J. Ahn and H. S. Lee, “Frequency domain equalisation of OFDM signals over frequency
nonselective Rayleigh fading channels,” Electronics Letters, vol. 29, pp. 1476-1477,
Aug. 1993.

.M. Wozencraft andI M.Jacobs, Prmctples of Communications Engmeermg N.Y.: |
Wiley, 1965.

J. G. Proakis, Digital Communications. N.Y.: McGraw-Hill, 1989.

J. K. Cavers, “An analysis of pilot symbol assisted modulation for Rayleigh fading
channels,” IEEE Trans. Veh. Tech., vol. 40, pp. 686693, Nov. 1991.

J. K. Cavers, “Performance of tone calibration with frequency offset and imperfect
pilot filter,” IEEE Trans. Veh. Tech., vol. 40, pp. 426434, May 1991. '

M. Mouly and M.-B. Pautet, The GSM System for Mobile Communications. 49 rue
Louise Bruneau, F-91120 Palaiseau, France: Mouly & Pautet, 1992,




Conclusion and Suggestions for Future Work ' . 157

[13]

[14]
[15]
[16]
[17]
[18]

[19]
[20]

[21]

[22]

[23]

24]

J. Holsinger, Digital Communication over fixed time contlnuous channels wzth memory.
PhD thesis, M.L.T., 1964

S. B. Weinstein and P. M. Ebert, “Data transmission by frequency division multiplexing
using the discrete Fourier transform,” IEEE Trans. Comm Tech., vol. COM-19
pp. 628-634, Oct. 1971.

P. Bello, “Selective fading limitations of the kathryn modem and some system design
considerations,” /IEEE Trans. Comm., vol. 13, pp. 320-333, Sept. 1965.

J. Rault, D. Castelain, and B. LeFloch, “The coded orthogonal frequency division
multiplexing (COFDM). technique, and its application to digital radio broadcasting
towards mobile receivers,” in IEEE Global Communication Conference (Globecom),
pp. 428-432, 1989.

E. F. Casas and C. Leung, “OFDM for data communication over mobile radio FM
channels-part 1: Analysis and experimental results,” /IEEE Trans Comm., vol COM—
39, pp. 783-793, May 1991. :

J. Andersen, T. Rappaport, and S. Yoshida, “Propagétion measurements and models for
wireless communications channels,” IEEE Communications Mag., vol. 33, pp. 4249,
Jan. 1995.

A. Papoulis, Probability, Random Variables, and Stochastic Processes.. N.Y.: McGraw-

Hill, 1984. -

J. Mazo, “Exact matched filter bound for two-beam Rayleigh fadmg,” IEEE Trans.
Comm., vol. COM-39, pp. 1027-1030, July 1991.

M. Clark, L. Greenstein, W. _Kennedy, and M. Shafi, “Matched filter performance
bounds for diversity combining receivers in digital mobile radio,” IEEE Trans. Veh.
Tech., vol. 41, pp. 356-362, Nov. 1992.

W. Davenport and W. Root, An Introduction to the Theory of Random Signals and

‘Noise. N.Y.: McGraw-Hill, 1958.

S. S. Haykin, Introduction to Adaptive Filters. N.Y.: MacMillan, 1984,

A. V. Oppenheim, A. S. Willsky, and I T. Young, Signals and Systems. Englewood
Cliffs, N.J.: Prentice-Hall, 1983.




Conclusion and Suggestions for Future Work | . ' 158

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37].

W. Press, B. Flannery, S. Teukolsky, and W Vetterling, Numerzcal Recipes in C.
Cambridge: Cambridge University Press, 1988.

G: D. Forney, Jr., “Maximum-likelihood sequence estimation of digital seciuences in the
presence of intersymbol interference,” IEEE Trans. Inf. Theory, vol. IT-18, pp. 363—
378, May 1972.

G. Ungerboeck, “Nonlinear equalization of binary signals in Gaussian noise,” IEEE ,
Trans. Comm. Tech., vol. COM-19, pp. 1128-1137, Dec. 1971.

R. E. Blahut, Digi'tal Transmission of Information. N.Y.: McGraw-Hill, 1982.

D. D. Falconer and F. R. Magee, Jr., “Adaptive channel memory truncation for
maximum likelihood sequence estimation,” Bell System Technical Journal, vol. 52,
pp. 1541-1562, Nov. 1973.

J. Salz, “Optimum mean-square decison feedback equahzat1on > Bell System Technical
Journal, vol. 52, pp. 1341-1373, Oct. 1973. g

C. A. Belﬁore and J. H. Park, Jr., “Decision feedback equalization,” Proc. of the IEEE,
vol. 67, pp. 1143-1156, Aug. 1979.

J. M. Ahn, “private communication.” te: ideal decisions in DFE feedback loop, July
1996.

S. U. H. Qureshi and E. E. Newhall, “An adaptive receiver for data transmission over
time-dispersive channels,” IEEE Trans. Inform Theory., vol. IT-19, pp. 448-457, July
1969.

D. G. Messerschmitt, “Design of a finit¢ impulse response for the Viterbi algorithm
and decision feedback equalizer,” in Rec. Int. Conf. Communications, 1CC-74,
(Minneapolis, MN)_, June 1974.

D. G. Messerschmitt, “A geometric théory of intersymbol interference,” Bell System
Technical Journal, vol. 52, pp. 1483-1519, Nov. 1973.

P. Monsen, “Feedback equalization for fading dispersivé channels,” IEEE Trans.
Inform. Theory., vol. IT-17, pp. 5664, Jan. 1971.

D. D. Falconer, F. Adachi, and B. Gudrriundson, “Time division multiple access
methods for wireless personal communications,” IEEE Communications Mag., vol. 33,
pp- 42-49, Jan. 1995.




Conclusion and Suggestions for Future Work , ' | 159

[38] A. Jerri, Introduction to Integral Equations with Applications. N.Y.: Dekker, 1985.
[39] G. Strang, Linear Algebra and its Applications. San Diego: Harcourt, 1988.

[40] M. Abramowitz and 1. E. Stegun, Handbook of Mathematical Functions. Washington,
D. C.: National Bureau of Standards, 1972. . '

411 G. Ungerboeck,b “Adaptive maximum-likelihood recéiver for carrier-modulated data-
transmission systems,” IEEE Trans. Comm., vol. COM-22, pp. 624-636, May 1974.




