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Abstract 

This thesis presents a fully self-testable integrated circuit (IC) variable-rate Viterbi 

decoder of constraint length K = 5. The chip is designed to decode convolutional codes 

ranging from rate 7/8 to 1/4, derived from the same rate 1/2 mother code. The architecture 

of the Viterbi decoder is bit-serial node-parallel. The incoming 8-level quantized channel 

bits are input in parallel and converted to a serial stream. This reduces the amount of 

interprocessor wiring area substantially, as there are only single wire connections between 

the add-compare-select (ACS) units. High decoding speed is still achieved because the ACS 

operation is carried out concurrentiy in each of the 16 states. 

For the path memory, the register exchange technique was adopted. To reduce the ICs 

silicon area, the path memory is full-custom layout. For the trellis interconnections between 

consecutive memory stages, a novel state relabelling technique is proposed that reduces the 

interconnect area substantially. The area savings are accomplished by redrawing the trellis 

as sets of butterflies, 

A major aspect of this IC is its very cost effective built-in self-test. The stuck-at fault 

coverage is 99% with an overhead area of only 5%, which should not lower the manufacturing 

yield significantly, and thus yield significant benefits. 

A novel test algorithm was developed for the path memory. A specific but easy to 

generate test pattern is applied to the inputs. A major advantage of this deterministic test 

over pseudo-random techniques is that the test length is very short and, more importantly, 

independent of the number of states of the Viterbi decoder. 



The rest of the circuit is tested by pseudo-random patterns combined with a multiple 

signature analysis scheme. After finding an appropriate initial state of the test pattern 

generator, it is possible to check for four identical signatures. Compared to checking only one 

signature at the end of the test session, checking four identical signatures has the advantage 

of reducing the probability of error escape, while avoiding complicated signature checking 

for four different references. Moreover, test time can be reduced as faulty chips can be 

discarded as soon as a signature does not match the reference. These advantageous features 

are accomplished with circuit overhead equal to checking only a single signature at the end 

of the test session. The only cost is a one-time logic simulation performed at design phase. 
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1. Introduction 

1.1 Background 

A major concern in data transmission systems is how to deal with transmission errors due 

to noise on the channel. In recent years there has been a great interest in convolutional codes 

and their use in modern communications systems. Convolutional codes can be used solely 

for forward error correction (FEC), or can be incorporated into transmission systems using 

automatic-repeat-request (ARQ) schemes to ensure error-free transportation of data. The 

advent of high-rate punctured convolutional codes has incresed the interest in convolutional 

coding, as punctured codes can be readily decoded and still offer substantial coding gain. 

Variable-rate FEC systems use a family of punctured convolutional codes derived from the 

same low-rate mother code. 

With a type II hybrid A R Q protocol, in addition to a block code that is used for error 

detection only, a second code, usually a convolutional code, is used for error correction 

[Kal93]. To improve the system throughput, variable code rates can be used [Hag88], [Kal90], 

[Kal93]. The chosen code rate depends on the channel condition, round trip delay of the 

data packets, and buffer size at the receiver. At the receiver end usually a Viterbi decoder, 

suitable for decoding variable rates, performs the error correction step. The data packet is 

then handed over to the block decoder for error detection. There are two basic ideas in 

deploying variable rates with A R Q schemes: Adaptive Coding Rate (ACR) A R Q protocols 

and Adaptive Incremental Redundancy (AIR) A R Q protocols [Kal93]. 

The Viterbi algorithm [Bha81, Hay88, Lin83] was introduced in 1967 by A . J. Viterbi 

as a decoding algorithm for convolutional codes. Later, Forney found that it was in fact a 



maximum likelihood decoding algorithm for convolutional codes [For73]. In the past years 

many architectures have been proposed to increase decoding speed. Fettweis [Fet90] [Fet91] 

presented a 600 Mbit/s single chip Viterbi decoder for a four-state trellis. This high data 

rate is achieved by introducing massive pipelining and parallel processing in each of several 

Viterbi decoders, operating in parallel. A variable-rate Viterbi decoder was presented by 

Yasuda [Yas83]. The decoder is of constraint length K = l and is capable of decoding rates 

ranging from 1/2 up to 15/16. Single chip K = 1 Viterbi decoders of decoding speeds up 

to 25 Mbit/s are readily available commercially [Qua93] [Sta91]. However, these have the 

drawback of supporting only a very limited number of different rates. 

The variable-rate Viterbi decoder described in this thesis will be part in a data link 

protocol for mobile data communications deploying different code rates depending on the 

channel conditions. The decoder is fully self-testable and is designed to decode any rate from 

7/8 to 1/4. High code rates are obtained by puncturing (deleting bits) a 1/2 rate convolutional 

code periodically, whereas low rate codes are obtained by repeating encoder output bits. The 

advantage of using codes derived from the same 1/2 rate code is that only one 1/2 rate Viterbi 

decoder plus some additional control logic can be used to decode all these codes. 

The design methodology adopted here is top-down. The Viterbi decoder is split into 

blocks of smaller and smaller size down to the gate or even the transistor level. The 

decoder is implemented in Northern Telecom's 1.2 ^im double-metal CMOS technology. 

Unfortunately, only very limited silicon area was available. As a consequence the decoder 

is of constraint length K= 5. The maximum decoding speed is 12 Mbit/s channel rate. The 

supported modulation schemes are binary phase shift keying (BPSK) and quadrature phase 

shift keying (QPSK). 

1.2 Contributions to Knowledge 

Two major contributions can be found in this thesis. The first contribution to knowledge 



deals with reducing the silicon area of register exchange path memories. In a naive approach, 

consecutive stages in the path memory are connected in an area wasting trellis manner. 

Much of the silicon area can be saved when consecutive trellis stages are redrawn as sets 

of butterflies. The butterfly approach reduces the number of vertical wire tracks between 

memory stages from A ,̂ where is the number of states of the Viterbi decoder, between 

consecutive stages to 2 + 4 + ... + 2' + ... + for log A'̂  stages. 

The second novelty in this thesis is a very cost-effective test scheme to test a register-

exchange path memory. Instead of applying pseudo-random test vectors, the memory can 

be tested more efficientiy with deterministic test patterns. The test patterns are generated 

easily from a counter, usually the test counter for pseudo-random test of other parts in the 

circuit. The test length of a test session is three times the length of the path memory but 

independent of the number of states of the Viterbi decoder. Since adjacent outputs have 

complement values during a complete test session, an exclusive OR tree as compactor yields 

zero for a fault-free path memory for every clock cycle. A bit-by-bit comparison with zero 

eliminates any error escape. 

1.3 Outline of Thesis 

Chapter two introduces the reader to the basics of convolutional codes and their decoding 

by the Viterbi algorithm. This chapter also introduces the concept of rate compatible 

convolutional (RCC) codes. The family of codes is derived from the highest rate code 

obtained from a mother rate 1/2 code by adding back previously deleted bits. 

Chapter three is devoted to the decoder realization. First it discusses some possible 

decoder architectures and gives an overview of metric normalization techniques. Then, 

the two realizations of a path memory in use are introduced and compared. Finally, this 

chapter discusses different implementation possibilities. Programmable logic devices, field 



programmable gate arrays, and application-specific integrated circuits are described and 

compared. 

Chapter four presents solutions to the implementation of the basic blocks of the variable-

rate Viterbi decoder. One section in this chapter is devoted to a new approach for wiring the 

memory elements in the path memory. Redrawing consecutive stages of trellises as sets of 

butterflies achieves considerable silicon-area savings in custom-layout path memories. 

Chapter five starts with an introduction to built-in self-test. A later section describes 

the implementation of a minimal hardware overhead multiple signature scheme that reduces 

error escape and possibly test time. This chapter also presents a new, very cost effective 

test algorithm for a register exchange path memory by deploying a deterministic test instead 

of a pseudo-random test. 

Chapter six gives some practical details about the fabricated chip and instructions on 

how to operate the Viterbi decoder. Finally, chapter seven summarizes this thesis. 



2, Convolutional Encoding and Viterbi Decoding 

2.1 Convolutional Codes 

A convolutional code is a type of code where the encoder has memory. The n encoder 

outputs not only depend on the k inputs at that time unit but also on m previous inputs. 

Hence, the encoder has a memory order of m. lîk> 1, m is defined as the maximum of all k 

feedforward shift registers. The code is called an (n, k, m) convolutional code [Lin83]. The 

ratio R = k/n is called the code rate. Without loss of generality, the following discussion is 

restricted to l/n rate codes. As an example, consider the encoder for a (2, 1, 3) binary code, 

which is shown in Fig. 2.1. The binary input sequence x = (XQ xi X2 ...) enters the encoder 

Exclusive OR 

Memory Element Gate Multiplexer 

Figure 2.1 Encoder for a {2, 1, 3) a binary code. 

one bit at a time. The two output sequences ŷ ^̂  = (yo^^^ y/^^ y2^^^... j and y*̂^̂  = (yo^^^ y/^^ 

y2^^^ ...) are obtained by discrete convolution of the input sequence with the two encoder 

impulse responses, whereby the impulse responses are the observed output sequences of the 



input sequence x = (1 0 0 ...)• In general, there are n output sequences. As the encoder is 

of memory m, the input can influence the output for at most m + 1 time units, called the 

constraint length K. The impulse responses, called generator sequences, are written g*̂^̂  = 

(go^'^ gP ... gJ'^), = (gé'^ gP ... gJ'^h g(") = r̂ ô "̂  gP ... gJ"^). For the 
encoder in Fig. 2.1, 

g(i) = ( 10 11) 
(2.1) 

g('^ = ( 1 1 1 1). 

The encoding equations can now be written as 

y(2) ^ ^ ^ g(2) 

y(") = X * g("), 

(2.2) 

where * denotes discrete convolution and all operations are in modulo 2 arithmetic. For all 

/ > 0 the discrete convolution is given by 
m 

yp^ = J2 ^ ' - ^ F ^ = ^ r f ^ + ^ ' - i ^ i ' ^ + •••+ ^i-m9ii\ J = 1,2, (2.3) 

i = 0 

where xi.i = 0 for all / < i. The transmitted output sequence, the code word, y is obtained 

by multiplexing the n output sequences y'^^\ ŷ \̂ ŷ "̂  into a single sequence. One can 

also rewrite the encoding equations as a matrix multiplication 
y = x G , (2.4) 

where G is called the generator matrix and formed by interlacing the n generator sequences 

g(i)̂  g(2)^ ^ g(«) arranging them in the following matrix 

yn 9o ..9o di 91 .-91 92 92 ••92 ••• 9m y m ••ym 
h) h) U) h h) in) (1) (2) in) (1) (2) 

G = ^0 ^0 ••9Q 9i 9\ .-91 ••• 9m-l9m-l--9m-l 9m 9m 

(2.5) 



The blank elements are all zero and all operations are in modulo 2 arithmetic. 

To find the output sequence, we can either compute the discrete convolution, calculate 

the matrix multiplication, or simply shift the input sequence through the encoder. Let 

For reasons of clarity, since one input bit produces two output bits, the output sequence 

is represented as a stream of bit pairs. For this finite length L information sequence, the 

corresponding output sequence is of length n(L+m), where the last nm outputs are generated 

after the last information bit has entered the encoder and is followed by zeros until the 

encoder is cleared. This true code rate is given by L/n(L+m). In practical applications, 

where the information sequences are long compared to the memory order, i . e., L m, the 

reduction in code rate due to clearing the encoder is negligible. 

2.2 Convolutional Encoder 

Since the encoder is a sequential circuit of memory m, we can describe its operation by 

a state diagram. The state of the encoder is defined as the contents of the shift register. For 

binary logic, the total number of states is N = 2"^. Figure 2.2 shows the state diagram of 

the encoder in Fig. 2.1. The states are labelled So, Si,...,S2A^-iwith the arrows indicating the 

X = (1 0 0 1 1). (2.6) 

Encoding x = (1 0 0 1 1) by the encoder from Fig. 2.1, yields 

y = (11 01 11 00 10 01 11 11). (2.7) 



possible state transitions. The state transitions are labelled by their input/output pairs. The 

Figure 2.2 State diagram of the (2,1,3) encoder of Fig 2.1. 

State diagram in Fig. 2.2 is typical for any l/n encoder with binary inputs. Each state is 

reached from two states and is the origin of two state transitions to successor states since 

one bit is shifted in and one bit is shifted out of the encoder memory at every clock cycle. 

However, a more convenient way of displaying the state diagram, which becomes essential 

in the decoding process, is to expand the state diagram in time. The resulting structure that 

represents each discrete time step k with a state diagram is called a trellis diagram (Fig. 2.3). 

The branches of a trellis are labelled with the encoder's output corresponding to each state 

Time 

k k+1 k+2 k+3 

half 

Figure 2.3 Trellis diagram for the encoder of Fig. 2.1. 



transition. What becomes apparent is that all "upward" branches in the trellis end in the 

upper half where the binary representation of the states start with a "0" (000, 001, ...,011). 

This indicates that these upper states have been reached by encoding a "0" most recently. 

Conversely, the lower half of the states, starting with "1", is reached only by "downward" 

branches. A "1" has been encoded. With the help of a trellis diagram encoding "by hand" 

becomes very easy. For example, the message x = ( 1 1 0 10 . . . ) translates into moving 

"down, down, up, down, up, ..." in the trellis diagram of Fig. 2.4, assuming the encoder 

was initially cleared. The output sequence is obtained by just reading out the corresponding 

Time 

k k+1 k+2 k+3 k+4 k+5 

Figure 2.4 Encoding of the input sequence x = (1 1 0 1 0 ...). 

branch labels yielding y = (11 10 10 11 10 ...). 

The above discussion of convolutional codes and encoders considered only binary 

symbols. In the case of v-ary symbols, the same theory applies. The encoder has u"^ 

states. In any l/n code, v branches enter and leave each state in the state diagram or the 

trellis diagram [RadSl]. This thesis will consider binary input sequences only. It is left to 

the reader to generalize for v-axy symbols if necessary. 



2.3 Code Evaluation 

Why send more bits over the channel than are actually needed to represent a message? 

Unfortunately, noise on the channel may change a "1" into a "0" or vice versa. If all bit 

combinations were valid code words, noise could change the original message into another 

one. Thus, by introducing redundancy (in the example of Fig. 2.1 one input bit becomes 

two output bits) and not allowing all possible bit combinations as valid output sequences 

(starting from S2, 11 11 11 11 is not an allowed sequence), enables the decoder to correct bit 

errors randomly introduced on the channel to a certain degree. The figure of merit defined 

in convolutional codes is the free distance 

dfree = min {d {y', y") : x' ^ x" }, (2.8) 

where y' and y" are the code words corresponding to the information sequences x' and x", 

respectively [Lin83]. The distance d(;») of two code words is defined as the number of bits 

where they differ. Since a convolutional code is a linear code, dfree is also the minimum-

weight output sequence produced by any nonzero input sequence. In the trellis diagram dfree 

is the minimum weight of all paths that diverge and converge with the all-zero state SQ. The 

weight is defined as the number of non-zero components of y. In our example code, the 

sequence x = (1 1 0 0 0...) produces the minimum-weight path with a weight of six (Fig. 

2.5). In general dfree increases with increasing encoder memory m [Hac89]. The bigger 

dfree is, the more channel bit errors on the channel are necessary to change a transmitted 

sequence into another valid sequence that hence yields undetectable errors. 

2.4 Punctured and Repetition Codes 

2.4.1 Punctured Convolutional Codes 

Usually, the design of an error correction coding system requires the selection of a fixed 

rate code with a certain error correction capability depending on data protection requirements 



Time 

k+1 
00 

k+2 
00-

k+3 
00-

k+4 
00 

k+5 

10, 

,00" 

11 

Figure 2.5 The input sequence x = (1 1 0 0 0 ...) produces the minimum-weight path with a weight of six. 

and the channel noise. Ideally, one may wish to change the code rate depending on the current 

channel noise and/or the information significance [Hag88, Kal90]. The idea is to use a mother 

rate l/n convolutional code and periodically puncture the code with period P. Puncturing a 

code means deleting certain bits of the l/n rate code by following a specific perforation 

pattern. This yields a family of rate-compatible punctured convolutional (RCPC) codes with 

decreasing rates P/(P+l), where / can vary from 1 to (n-l)P. Rate compatibility requires that 

all code bits of a high rate code are used in the lower rate codes. Figure 2.6a shows the 

trellis structure of a standard rate R=2/3, m=2 code and Fig. 2.6b shows its equivalent 

punctured 1/2 rate code. The X ' s indicate that those bits are deleted in the encoder and not 

sent through the channel. 

The construction of a family of RCPC codes from a known "best" high rate {n-\)/n 

punctured convolutional code, obtained from a 1/2 rate code, is straightforward [Kal90]. 

"Best" in this case means having the best error performance, not necessarily the largest free 

distance d^ee [Cai79]. As the error performance highly depends on the deleting bit positions, 

a "best" high rate code is found by examining all possible bit deletion positions. Tables of 

high rate (n-l)/n punctured codes with maximum free distance for 3 < n < 14 and memory 



2 < m < 8 and 3 < « < 17 and memory m = 6 are given in [Yas84] and [Yas83], respectively. 

Starting with the (n-l)/n high rate code, rate-compatible lower rate codes are obtained by 

adding back the bits that were initially deleted to get the (n-l)/n rate code. The representation 

of the perforation pattern is usually in the form of a matrix P, the perforation matrix. The 

following is an example of a perforation matrix of a rate 4/5 code: 

P i = 
1 1 1 0 

1 0 0 1 
(2.9) 

The matrix is of size n x P, where a zero means that this code bit is not transmitted. The 

two (n in general) represent the two (n) branches in the encoder that are multiplexed to form 

a single output sequence (recall Fig. 2.1). In the above example matrix both code bits of 

the first information bit are transmitted because the first column contains two "l"s . For the 

second and the third information bits only the first code bit, which is the code bit of the 

upper branch of the encoder, is transmitted. Finally, for the fourth information bit, only the 

second code bit, from the lower branch, is output to the channel. This procedure repeats until 

the end of the message is reached. Suppose the error correction capability is not sufficient 



to overcome the current channel noise. Filling up the "0"s in P i with "T's, 

P2 = 
"1 1 1 0' "i 11 r 

, P4 = 
' 1 1 1 r 

1 1 0 1 , P3 = 1 1 0 1 , P4 = 1 1 1 1 (2.10) 

finally results in the mother 1/2 rate code. This procedure generates a family of rate 

compatible codes with incremental redundancy. Determining their performance must be 

achieved through simulations. An effective system could make efficient use of the channel 

by only retransmitting the newly added bits and combining them with the previously received 

erroneous message [Kal90]. 

2.4.2 Repetition Convolutional Codes 

Equivalently to constructing a family of RCPC codes by adding ones into the perforation 

matrix of the (n-l)/n high rate code, a family of rate-compatible repetition convolutional 

(RCRC) codes can be generated by replacing "l"s by higher values ("2", "3",...) without 

any limit [Kal90]. The matrix that represents an RCRC code is called a repetition matrix 

and is denoted Q. As an example, a 4/11 rate code would be represented by 

Q i = 
2 1 2 1 
2 1 1 1 

(2.11) 

where a "2" means that this particular code bit is sent twice. In Q i , the first and every other 

fourth information bit will produce four channel bits because the first column in the repetition 

matrix is 2-2 (repeat both the upper and the lower branch of the encoder). Two repetition 

codes obtained from the same original code are said to be rate-compatible if every element 

of the repetition matrix of the lower rate code is equal or greater than its corresponding 

element in the repetition matrix of the higher rate code. A 4/13 rate code, rate-compatible 

to the code of Q i , could be of the form: 

Q 2 = 
2 12 1 
3 2 11 

(2.12) 



2.5 Viterbi Decoding 

The Viterbi algorithm [BhaSl, Hay88, Lin83] was introduced in 1967 by A . J. Viterbi 

as a decoding algorithm for convolutional codes. Later, Forney found that it was in fact a 

maximum likelihood decoding algorithm for convolutional codes [For73]. 

Let X = {XQ, .., be the information sequence of L bits encoded into the code word 

y = (yo> -, yL+m-i), where yi = yn, y2{, ym, of length n(L+m). The received sequence is 

denoted by r = (FQ, .., rL+m-i) with FJ = r^, r2{, r^- As a maximum likelihood decoder, 

the Viterbi algorithm attempts to find the sequence y that is closest to the received sequence 

r. Assuming equiprobable input data sequences, the decoder chooses the path through a 

trellis that maximizes P(r/y), where the conditional probability P(r/y) is the likelihood of the 

received sequence r, given that y was sent. In a discrete memoryless channel (DMC) [Lin83], 

every received symbol r, is only dependent on the corresponding symbol yj, and hence, 

L + m-l n{L + m-l) 

pi^/y) = n ^(^^/y^) = n (2-13) 

1 = 0 i = 0 

Generally, it is more convenient to use the logarithm of the likelihood function (3.1) because 

the product turns into a sum, which can be more easily implemented. Since the logarithm 

is a monotonically increasing function, it does not alter the final result and (3.1) becomes 

the log-likelihood function 

i + m - l n (L + m-l) 

l o g P ( r / y ) = J] l o g P ( r i / y i ) = J] logP( r , /y , ) . (2.14) 
Î = 0 j = 0 

The negative log-likelihood function -log P(r/y) is called the path metric associated with 

the path y. The terms -log P(ri/yi) are called the branch metrics [Mag90]. Let the terms 

-log P(rj/yj) be called the partial branch metrics, i . e., the metrics from each of the channel 

symbols. The problem of maximizing the likelihood function has been transformed into 

minimizing the path metric. 



For a binary symmetric channel (BSC) or hard-quantized channel, the received sequence 

r is binary as shown in Fig. 2.7a, where p denotes the channel transition probability. 

Minimizing the path metric is equivalent to minimizing the Hamming distance, the total 

number of bits of y that differ from those of r. In the case of a soft-quantized D M C , which 

can be seen in Fig. 2.7b (P(0), P(l),.., P(7) are transition probabilities), the log-likelihood 

function must be used. However, in terms of implementation, since metrics have to be 

binary input binary output binary input P(O)-^ 

eight level output 

Figure 2.7 a) Hard-quantized channel (BSC) b) Soft-quantized channel. 

represented in binary form, it is more convenient to use integers as metrics. In order to 

round off, the log P(ri/yi) metric can be replaced by ai log P[(ri/yi) + 02], where «i is 

a real number and 02 a non-negative real number [BhaSl]. Yasuda [Yas81] showed that 

the decoder performance is rather insensitive to the particular choice of the o;'s and the 

threshold spacing of the quantization. Simulations [YasSl] [Mag90] showed that an eight-

level quantized channel outperforms a BSC by about 2dB. Thus, achieving the same bit 

error rate (BER) requires about 2dB less signal-to-noise ratio SNR. Increasing the number 

of quantization levels to infinity, an ideal soft-decision D M C , gains only another 0.25dB. A 

typical metric table is shown in Tab. 2.1. 

By definition, maximum likelihood decoding requires the comparison of the received 

sequence with all possible transmitted sequences before making a decision. For an L-bit-

long binary input sequence, 2^ accumulated metrics have to be compared, and the sequence 

with the lowest metric is chosen as the estimate y. However, the exponential increase of 



Channel Out put 

Partial Branch Metrics 7 0 1 2 3 4 5 6 7 

Channel Input 0 0 1 2 3 4 5 6 7 

(encoder output) 1 7 6 5 4 3 2 1 0 

Table 2.1 Metric table for a binary input-eight-level output D M C . 

decoding effort with L makes a "brute force" maximum likelihood decoder impractical to 

implement. One of the more practical but suboptimum algorithms is sequential decoding 

[Lin83]. In sequential decoding, the decoding of the received message is performed on one 

branch at a time. Starting from the root node of the tree, the algorithm selects that branch 

that has the lowest accumulated metric [Hac89]. 

With Viterbi decoding, there is a fixed number of states to be examined, one for each state 

of the encoder. The number of states is independent of the sequence length L, but grows 

exponentially with the constraint length K. This limits practical codes to short constraint 

lengths (K < 8), although a Viterbi decoder of ^ = 15 has been reported recently [Col92]. 

For each state of the trellis, the path metric is updated by adding the branch metrics of 

the entering branches, whereby the branch metrics are obtained by comparing the received 

symbol with the expected symbols for all possible state transitions (Fig. 2.8). For better 

readability the following examples will be restricted to constraint length K = 3. The 

decoder stores the lower path metric and keeps its associated path in the path memory as 

the "survivor" and discards the other one. This is done in each state and for every time 

unit. Hence, the decoder keeps only = 2^'^ paths and path metrics over the entire message 

length. In the case of a tie in a state, i . e., where both updated path metrics have the same 

value (state 10 in Fig. 2.8), there are two maximum likelihood paths through this node. The 

survivor is usually selected arbitrarily. At the end of the message, a tail is appended to clear 

the encoder and bring the Viterbi decoder into state SQ. A S the trellis is only extended into 



expected symbols 

4 
received "00" 

Figure 2.8 Updating the path metrics by adding the branch metrics. 

branches corresponding to a "0", there is finally a single survivor, the decoded maximum 

likelihood sequence. A decoding example can be seen in Fig. 2.9. The "1" on the branches 

received sequence 

Figure 2.9 Maximum likelihood Viterbi decoding example. A tail is appended to clear the encoder. 

indicates that those paths are discarded. 

The great advantage of the Viterbi decoder is the constant number of operations at 

successive levels. These are always of the same nature and are not very sophisticated. The 

main disadvantage however is that it requires to wait for the tail to get a single survivor. 



For long information sequences, this implies a long delay before delivering the first symbol. 

On the other hand, using only short messages greatly reduces the code rate unnecessarily. 

Simulations have shown that all surviving paths stem from a single node four to five 

constraint lengths earlier with high probability [Lin83]. In the example in Fig. 2.10, the 

survivors (solid bold and dashed lines) merge even in less than four times the constraint 

length. This also solves the problem of a huge path memory in the case of very long 

decoded sequence 

0 1 1 0 1 0 0 1 
0 2 , 4 , 2 2 2 , 4 , 4 

—<~z^ 

V 
k 

/ •V 
\ J r ' 3 

/ ' y < X 2 2 ^ 

\ x r 4 \ >>#*^ 

2 \ / 5 

ill 1— l - i^ i — 
\ / * 

1 2 2 3 3 4 3 4 
00 11 11 01 00 00 11 11 

received sequence 

Figure 2.10 A l l survivors stem from the same sequence. 

messages. There is no need to store 2 "̂̂  L-bit paths plus their metrics but only paths where 

r <C L and r is about four to five times the constraint length. Hence, after r decoding steps 

the path memory is full and a decision has to be made. Among several decision-making 

strategies, there are [Sny83]: 

• The oldest (first) bit from an arbitrary survivor is selected; 

• A majority vote is taken from all = 2^'^ first information bits, that is the oldest bit 

that appears most often in all paths is output; 

• The survivor with the lowest metric is chosen, and its oldest bit is output (solid bold 

line in Fig. 2.10). 



Clearly, the above is not a maximum likelihood decoder anymore. However, the performance 

degradation is negligible if r is not too short. In fact, a Viterbi decoder may start decoding 

from any state, and after producing about four to five times the constraint length of unreliable 

information bits, will resynchronize itself. 

Viterbi decoding of punctured high rate codes is hardly more complex than decoding 

the mother rate 1/2 code. In fact, using punctured codes greatly reduces the complexity of 

decoding high rate codes [Cai79]. For the rate 2/3 code in Fig. 2.6a we notice that four 

branches (2^ in general) enter each node of the trellis. Thus, at every time unit and for each 

node four branch metrics have to be added to the old path metrics, and the minimum out of 

four updated path metrics has to be found and retained. For higher code rates this becomes 

definitely impractical. However, in Fig. 2.6b, which represents the same rate 2/3 code as 

Fig. 2.6a, again only two branches enter each state in the trellis diagram as in any l/n rate 

code. Given that the decoder knows the perforation matrix, the decoding is performed on the 

trellis of the original mother code. The only necessary modification consists of assigning the 

same branch metric (usually "0") to all state transitions or simply skip any metric increment 

whenever a code bit was not sent. 

An unwanted side effect in decoding high rate codes is an enormous increase in path 

memory length with increasing code rate. The survivors do not merge after processing 4 

to 5 constraint lengths of bits as in the 1/2 rate code any more, but at up to 34 times 

the constraint length for a 16/17 rate code [Yas83]. Moreover, with increasing code rate 

(= decreasing redundancy) the free distance decreases and the coding gains will become 

smaller. However, Yasuda found that at a BER = 10'^, a coding gain of 3dB versus an 

uncoded system is still achievable with a rate 15/16, K = 7 code . 

The decoding procedure for low-rate repetition codes again is very simple with the use of 

the trellis of the mother 1/2 rate code. For the branch metric calculation however, similarly 



to assigning no branch metric to punctured symbols in high-rate codes, it is necessary to 

assign multiple branch metrics to one information bit in the case of repetition codes. Instead 

of the expected symbols 00, 01, 10, 11 (see Fig. 2.8), for example for the third column in 

Q i and Q2, which is 2-1, 000, 001, 110, 111 are expected before selecting the survivors. 

In other words, instead of the usual two channel bits in the 1/2 rate code, three have to be 

taken into account. 

Summarizing, it is easy to generate high-rate punctured and low-rate repetition convolu­

tional codes from a rate 1/2 code. The encoder only has to be succeeded by a pattern, either 

perforation or repetition, represented in the code matrix C. 



3. Viterbi Decoder Realization 

The Viterbi algorithm can be split into three basic blocks (Fig. 3.1): branch metric unit 

CONTROL U — ^ ^ ^ ^ 
MEMORY 

input B M U ACSUs 
PATH 

MEMORY 
output 

Figure 3.1 The basic blocks of a Viterbi decoder. 

(BMU), add-compare-select units (ACSUs), and path memory. Depending on the particular 

architecture that is chosen for the decoder there will always be some control logic. A 

variable-rate Viterbi decoder also requires a memory to store the current code matrix C, i . 

e., a code memory. The B M U calculates the branch metrics, a measure of likelihood that the 

received symbol matches the transmitted symbol for each branch of the trellis. In the A C S U , 

the metrics associated with each state of the trellis, i . e., the path metrics, are updated by 

adding the new branch metrics, comparing the updated path metrics, and selecting the smaller 

as the surviving path metric. The path memory stores the information bits corresponding 

to the surviving metric. 

3.1 Branch Metric Unit 

The branch metric unit (BMU) has to evaluate the incoming channel symbols and 

compare them to the expected symbols for each of the possible state transitions. It assigns 



a value of likelihood, called the branch metric, that the incoming and the expected symbols 

match. The B M U can be implemented as either a small read-only memory (ROM) or a 

correlator [Gul86]. For a BSC, where the output of the channel is either "0" or "1", the 

branch metric is simply the Hamming distance between the incoming and the expected 

symbols. The branch metrics for a finer quantized, soft-decision channel are either read from 

a table like Tab. 2.1 or can be computed as the squared Euclidean distance [Shu91]. In 

principle, there is no problem in calculating the branch metrics, however, the complexity of 

the implementation will highly depend on the different modulation schemes. 

3.2 Decoder Architectures 

3.2.1 Bit-Parallel Node-Parallel Architecture 

A bit-parallel node-parallel (fully parallel) architecture, as can be seen in Fig. 3.2, will 

be the fastest but also the most silicon area consuming realization. The B M U calculates 

the branch metrics from the quantized input channel symbols, with a branch metric word 

width of bmw bits. The B M U feeds the branch metrics in parallel to the ACSUs, one for 

each state of the trellis. The two feedback loops at the outer ACSUs symbolize a trellis-like 

pmw 

input 
bmw 

B M U B M U 

ACSU 

ACSU 

ACSU _ 

PATH 

MEMORY 
output 

pmw 

Figure 3.2 Block diagram of a bit-parallel node-parallel Viterbi decoder. 

connection between the ACSUs, where the outputs of the ACSUs feed back to the inputs of 



the successor states according to the trellis diagram. The path metrics have a path metric 

word width of pmw bits. The decoding strategy is very fast, as we get an output bit at every 

clock cycle. Note, that not only are the branch metric connections bmw-bit busses, but also 

that the trellis wired connections between the ACSUs are pmw-hit busses. However, in a 

V L S I implementation, such interconnect area could exceed the processing area and thus be 

a limiting factor. 

3.2.2 Bit-Parallel Node-Serial Architecture 

The opposite extreme to the fully parallel decoder is to share one A C S U for all nodes. 

The path metrics are updated sequentially. For each node in the trellis, at every cycle, 

two path metrics have to be fetched from a central metric memory (Fig. 3.3), the branch 

metrics added, and the lower resulting metric stored back in the memory. Of course, this 

results in a comparatively slow decoder, which moreover needs additional control logic for 

the scheduling. However, the area savings will be substantial with only one A C S U and no 

wide trellis wired busses. 

CONTROL 
METRIC 

MEMORY 

input • 
bmw 

B M U 
bmw 

pmw 

ACSU PATH 

MEMORY 
output 

Figure 3.3 Block diagram of a bit-parallel node-serial architecture. 

3.2.3 Sliared Nodes Arcliitecture 

A compromise between the small silicon area of the node-serial solution and the fast 

decoding speed of the fully parallel implementation is to share several ACSUs. In this case, 

at every clock cycle, more than one but less than 2^ ACSUs perform the ACS operation. 



Performing the ACS operation partly in parallel speeds up the node-serial implementation 

considerably, but requires less silicon area than the fully parallel architecture. Some 

interesting solutions are given in [Gul88]. Unfortunately, a considerable amount of control 

logic is needed to share the ACSUs. 

3.2.4 Bit-Serial Node-Parallel Architecture 

For a bit-serial node parallel architecture (Fig. 3.4), the incoming quantized channel 

symbols, are input in parallel and converted to a serial stream. This reduces the amount of 

interprocessor wiring area substantially, as there are only single wires connecting the B M U 

and the 2^ ACSUs. Moreover, the trellis connection between the ACSUs, symbolized by the 

1 

1 

Figure 3.4 Block diagram of a bit-serial node-parallel architecture. 

two feedback loops at the outer ACSUs in Fig. 3.4, are 1-bit lines. Note that using the bit-

serial approach does not only save interconnect area, but also considerable computation area. 

Instead of using pmw-hit parallel adders and comparators, the bit-serial approach utilizes 

only serial adders and comparators. High decoding speed is still achieved because the ACS 

operation is carried out concurrently in each of the 2"* states. At first sight it might seem 

that the bit-serial solution is pmw times slower than the bit-parallel architecture. However, 

simulations at the gate level, show that serial adders and comparators have much smaller 

delays than their parallel counterparts, thus allowing a higher clock speed resulting in a 



slow down of less than the path metric precision [Sta87]. A great advantage over all shared 

processor architectures is the fact that the bit-serial node-parallel architecture does not need 

any control logic for scheduling the ACS operation as they are performed concurrently for 

all states of the trellis. 

3.3 Path Metric Normalization 

Since only finite precision is possible for the path metric representation, the path metrics 

have to be normalized to prevent register overflow errors. To find the minimum number of 

registers to hold the path metrics, requires to determine the maximum spread A of the path 

metrics among all 2̂ "̂̂ ^ states [Vit79]. Assume that the partial branch metrics vary between 

0 and 7. Then it follows that the maximum spread A for a constraint length K code is 

A = ( / ^ - l ) î / , (3.1) 

where 

V = n^, (3.2) 

because any state can be reached from any other state in at most K-\ transitions. Consider 

the lowest path metric state a and any other state b at any node depth in the trellis, say 

j. There exists a path (not necessarily a surviving one) that diverged from state a K - \ 

transitions back at time j - K + 1 and arrives at state b. Since all branch metrics lie between 

0 and V, the metric change to state a at time j is nonnegative, while the metric change in the 

path to state b must be between 0 and (K - If the path to state b did not survive, this 

is only due to the fact that the accumulated metric in state b was smaller than that of this 

path. Hence, the spread will be even less. Thus, by subtracting the same integer from all 

states to bring the lowest metric to 0, the path metrics are normalized. The resulting storage 

requirement for the path metrics is [log2(/^ — l)z^] bits [Vit79], where [•] denotes the 

least integer not less than (•). 



3.3.1 Variable Shift Normalization 

After a fixed number of ACS operations, the minimum path metric can be subtracted 

from all survivor metrics [Mag90], [Shu90]. This however, needs circuitry to find the 

minimum path metric and requires an additional subtracter in each A C S U . Moreover, to 

find the minimum metric and distribute it to all ACSUs, global communication is necessary, 

which usually requires much silicon area for the interconnection wires. Performing the 

normalization at every decoding cycle adds an additional delay for the minimum search and 

the subtraction. 

3.3.2 Fixed Shift Normalization 

Another technique of normalizing the path metrics is to provide one extra bit and delete 

the most significant bits (MSBs) once they are all "1" [Bre92]. This one additional bit 

ensures that when all MSBs are "1" there is still room to store the full range A of path 

metrics. The computational overhead is less than in the variable shift case. However, there 

are still global, usually long, wires. 

3.3.3 Modulo Normalization 

In VLSI implementations, where interconnect area can exceed that of computational area, 

it is crucial to keep computations local to reduce interconnect area. In [Shu90], Shung et. al. 

presented a modulo normalization technique performed within each ACS unit that eliminates 

additional circuitry and long global wires. By implementing the adders as 2's complement 

adders, the path metrics (PM) are normalized by mod C confining them to -C/2 < PM < C/2. 

By providing one extra bit, it is ensured that A < C/2, or in other words, the path metrics are 

distributed only on one half of the circumference of a circle, and it is easy to determine which 

path metric is smaller. Let a be the angle starting from PMj counter clockwise to PM2, then 

P M i < PM2 if and only if a < ir. (3.3) 



The winning metric can be determined by a 2's complement subtracter instead of a compara­

tor. The sign bit (0 if a < TT, 1 otherwise) of the difference can be used to drive the multiplexer 

for the selection. Figure 3.5 shows the architecture of the ACSUs with modulo normalization. 

A l l computations are performed within the A C S U and no global communication is needed. 

sign 
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path metric ^ 
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branch metric 2 
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path metric 2 
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1 
a. "a 
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Figure 3.5 Architecture for modulo normalization with 2's complement subtracter. 

However, Shung [Shu90] found that the VLSI area can still be reduced by modifying the 

comparison rule, because comparators can be made smaller than 2's complement subtracters: 

PMi < PM2 if and only if z{PMi,PM2) = 1, (3.4) 

where 

z{PMi,PM2) = PM.MSB ® PM2MSB ® V {PM[,PM^), (3.5) 

and ® denotes the exclusive OR operation, the subscripts MSB indicate that the X O R 

operation is carried out only with the sign bits, y(») denotes the comparison, and PMj' 

and PM2 ' are the path metrics without the sign bits. In short, 

1, i f P M i < PM2 
z{PMi, PM2) = 

0, otherwise, 

^ ^ ^ >̂ \ 0, otherwise. 

(3.6) 

(3.7) 



As an example, in Fig. 3.6, PMj and PM2 have opposite sign and PMj' < PM2', giving 

y(PMi', PM2') = 1. Therefore, z(PMi, PM2) = 0, or PM2 < PMj. a > r confirms PM2 

< PMi. 

Figure 3.6 A n example for the modulo normalization with the modified comparison rule. 

3.4 Path Memory 

The path memory stores the information sequences for each state corresponding to the 

surviving path metrics for determining the most likely path through the trellis. Two common 

techniques are in use to find the transmitted sequence [Cog89]: the traceback method and 

the register exchange technique. 

3.4.1 Traceback Method 

The traceback method requires that the decisions made in each of the 2'" ACSUs be 

stored in the path memory as a two dimensional array. The most likely path is estimated by 

stepping back one symbol of the memory at a time, starting at the most recently received 

information bit (Fig. 3.7). It is necessary to traceback a decision depth of d bits, where d is 



bits 
< • 

Figure 3.7 Traceback memory. 

the memory length that ensures that all paths have merged with the correct one. The grey 

shaded boxes in Fig. 3.7 indicate b - d valid decoded bits. 

To understand what is stored in the memory and how the traceback works, consider the 

four-state trellis of Fig. 3.8. The state numbers at time k correspond to the encoder state, 

with ai and « 2 being the information bits at times k - 1 and k - 2, respectively. The 

new states at time ^ -i- 1 are represented by UQ ai. The discarded bit az can be stored in 

the path memory as path information [Mag90] since it was part of the state through which 

the path traversed at time k. 

When tracing back the trellis, the contents of the memory is read as pointers [Rad81]. The 

contents of a path memory cell at time k + 1, i. e., the path information bit az, is appended 

to the rightmost bit of the current pointer, i . e., UQ ai and the leftmost bit is discarded to 

form a new pointer, pointing to a memory cell at time k. To illustrate the traceback method, 

recall the example of Fig 2.10, where only the survivor paths (Fig. 3.9) were kept. In Fig. 

3.9, the branches are labelled with the path information bits stored in that node. Figure 3.10 

shows the corresponding path memory. The grey shaded memory cells indicate that these 



k k+ 1 

information bit a Q path information a 

Figure 3.8 Four-state trellis to determine the path information stored in the traceback memory. 

elements were read to form new pointers. Starting for example with the state with the lowest 

metric in Fig. 3.9, state 10, the memory cell contains a "0". The new pointer 00 is formed by 

appending the "0" to the rightmost bit and dropping the leftmost bit, i . e., "1", of the current 

pointer. One time step earlier in state 00 we find a "1", which generates the next pointer, 

pointing to state 01. Following this procedure back to the oldest bit, the path memory can 

Time 

0 1 2 3 4 5 6 7 8 

received sequence 

Figure 3.9 An example for the memory entry in the traceback method. 



Figure 3.10 Path memory contents of the example of Fig. 3.9. 

output a "0". Note, however, that the first m "decoded" bits (two in this example) are not 

information bits, but arbitrary bits of the state number in which the path ended. 

A n implementation that requires little hardware is to store the path information in a 

random-access-memory (RAM), configured as a circular buffer. The traceback is done by 

repeatedly accessing the memory and reading the path information with pointers. The pointer, 

the address to the R A M , is stored in a shift register. The traceback information is shifted 

in from the right to form the new pointer, which is the contents of the shift register read in 

parallel. Additional control logic is needed to control the R A M . A block diagram appears 

in Fig. 3.11. The major drawback of this simple implementation is its unacceptably long 

new path information 
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Figure 3.11 Block diagram of the basic traceback path memory. 



processing time. For every new decoded information bit, the traceback method takes one 

WRITE cycle and d R E A D cycles. 

A more realistic implementation is to operate the path memory with a speed advantage 

ratio of mREADs : WRITE, where m > 2 [Cog89]. For the minimum speed advantage of 2:1, 

the traceback performs two READs and one WRITE during one information symbol period. 

The minimum implementation performs 2d tracebacks to decode d output bits (the output bits 

are valid only after tracing back d steps), while further d path information bits are received 

from the A C S U block. The total storage requirement is 3d2'^ bits. This storage requirement 

can be reduced when operating the traceback with speed advantage ratios greater than 2. In 

general, for any m > 2, the path memory requires the storing of d2'^{m + l)/(m - 1) bits. 

3.4.2 Register Exchange Technique 

The register exchange technique is based on the movement of information sequences 

through the path memory [Cog89] accomplished by trellis-connected shift registers one for 

each state. In addition to the memory elements, the register exchange technique requires 

multiplexers to select the surviving paths. Figure 3.12 shows an example of a four-state path 

State 

Sel 4 ^ J 

Figure 3.12 Four-state register exchange path memory. 



memory, where M denotes a multiplexer and T a memory element. At each symbol clock, or 

in general, every time a decision in the ACS block has been made, a complete path is moved 

to its successor state(s) according to the trellis and a new information bit is appended to the 

path. For path lengths > d, the paths tend to merge and the oldest bits thus tend to represent 

the same information bits. The new appended information bits are readily determined. Recall 

from Chapter 2 that the inputs to the upper half of the trellis are all "0" because these states 

have an MSB of "0" indicating that the most recentiy encoded bit was a "0". Conversely, 

the states of the lower half of the trellis constantly receive "l"s as their MSBs are all "1". 

Further enhancements to discard m stages of the path memory are possible as follows 

[Ish87]. The memory cells and their preceding multiplexers up to the m''^ stage can be 

omitted, because they store information that is independent of the decisions made in the 

ACSUs. The improved version of Fig. 3.12 would look like Fig. 3.13 with alternating 

inputs of "0" and "1". 

T M T M 

Figure 3.13 Improved register exchange path memory without unnecessary memory stages. 

A major advantage of the register exchange technique is that there is no need for com­

plicated control logic. The only required control are the select signals for the multiplexers. 



These are just the decisions made by the comparator in the ACSUs. The speed of a register 

exchange path memory is limited only by the delay of one multiplexer and a flip-flop, making 

the register exchange technique attractive for high-speed Viterbi decoders. 

3.5 Design Implementation Options 

Before choosing a suitable decoder architecture, one has to consider the pros and contras 

of possible implementation technologies. This section gives a short overview of different 

methods of implementing a circuit. Here, we consider programmable logic devices (PLDs), 

field programmable gate arrays (FPGAs), and application specific integrated circuits (ASICs). 

3.5.1 Programmable Logic Devices 

A programmable logic device (PLD) is a small scale IC that can be configured by the 

end user to implement a specific logic function [Pel91]. A typical PLD is composed of a 

programmable array of logic gates and is surrounded by I/O circuitry. A l l different PLDs are 

based on variations of AND-OR plane architectures. A typical programmable logic array 

(PLA)-type structure is shown in Fig. 3.14. The X ' s in the A N D and the OR arrays indicate 

a possible programmable connection. Any A N D gate can be configured to implement any 

possible product term, as the inputs are available in their true and their complement values. 

The design of a P L A allows any product term in the array to be connected to any OR gate. 

This flexible design makes PLAs slower than other architectures with fixed connections in 

either the A N D or the OR plane. To configure PLDs, a large number of design tools are 

available, e. g., CUPL, [Pel91]. These design tools accept a variety of input forms, including 

truth tables and state diagrams. The functions are transformed into sum-of-products Boolean 

form, minimized, and converted into a PLD fuse map [Pel91]. This fuse map is further 

processed into a format that can be read by the programming device. 

The real benefit of PLDs comes into play when using erasable PLDs. Erasable PLDs 

can be reprogrammed to accommodate changes in specifications and fix design errors in a 
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Figure 3.14 PLA-type structure of a P L D . 

short time. The specifications of the design can be tested on real devices, and one does not 

solely need to rely on simulations. The use of PLDs is a fast way of prototyping devices. 

The cost of a design is in cost of the devices used. 

The primary limitations of PLDs are the number of flip-flops, the number of input/output 

signals, and the rigidity of the AND-OR plane. The use of one function can often preclude 

the use of other similar functions [Xil92]. The relatively low integration level of PLDs 

requires many such devices for complex circuits and thus makes PLDs unsuitable for a 

Viterbi decoder that is to be used in mobile data communications. A constraint length ^ = 5 

Viterbi decoder with decoding speed of 4.6 Mbit/s channel rate was implemented by Magerle 

[Mag90] using PLDs on a multi-layer board of size 25 cm by 25 cm. 



3.5.2 Field Programmable Gate Arrays 

A field programmable gate array (FPGA) is a high-density programmable device with 

more functionality than a PLD that can be configured by the end user [Xil92]. An FPGA 

consists of a matrix of independent logic modules in the interior of the device and a ring of 

FO blocks that can be connected to form a larger circuit. Interconnect resources occupy the 

channels between rows and columns of the logic blocks. Several different FPGA families 

with different architectures exist at present. Since the design tools available at the University 

of British Columbia are specifically for Xilinx's FPGAs, the following description will be 

restricted to those devices. A good overview of other FPGA families can be found in 

[Pel91], [Ros93]. Figure 3.15 shows the structure of XiUnx's Logic Cell™ Array (LCA™). 
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Figure 3.15 F P G A architecture. 

Each configurable logic block (CLB) is capable of implementing any Boolean function of its 

inputs. The basis of a C L B is a small static random access memory (SRAM), functioning 



as a lookup table [Ros93], a flip-flop, and feedback logic. The I/O blocks can be configured 

as either inputs or outputs or bidirectional. The routing architecture consists of horizontal 

and vertical routing channels and switch blocks at cross-over points of routing channels. 

The switch blocks or switch matrices can switch signals from one path to another. Design 

tools, such as Xilinx's X A C T take schematics or behavioural description as design entry 

and create netlists of the circuit. A logic optimizer reduces Boolean equations and partitions 

large combinational parts to fit the size of the CLBs. Then, the individual CLBs are placed, 

i . e., the logic is assigned to certain CLBs, and routed. The final step in designing FPGAs 

is to create a bit pattern that configures the actual FPGA. The bit pattern is either directly 

loaded into the FPGA R A M or can be stored in a configuration programmable read only 

memory (PROM) on the board. 

Xilinx's FPGAs are programmed on static R A M technology. A drawback of S R A M 

programming is that the configuration pattern is volatile, i . e., every time the system is 

powered up, the configuration pattern has to be loaded from an external PROM. However, 

since the chip programming is done with memory cells, the FPGA can be programmed an 

unlimited number of times. Prototyping and in-circuit verification can replace extensive 

simulations. A designer can verify that the design works in a real system and does not 

have to rely merely on potentially-erroneous simulation models of the system. Any design 

improvement can be accomplished within a few hours. Since the FPGAs rely solely on 

programming a certain configuration, there is no fixed cost for expensive mask production 

and again cost is cost of the device. 

A big drawback of FPGAs is that though high toggle rates (125 MHz) [Xil92] of flip-flops 

are claimed by Xilinx, the system clock rate is about one third to one half the maximum toggle 

rate. The switch matrices consist of pass transistors connecting or not two wire segments, 

depending on the value in the controlling memory cell [Tri93]. This pass transistor introduces 



resistance into the routing path and hence delay. The delay is strongly dependent on the 

number of interconnect points a signal path is passing and cannot be determined by logic 

simulations during design, because the simulator has not placed and routed the circuit yet. 

AK=5 Viterbi can probably be implemented on a single FPGA, plus a R A M for the path 

memory and a P R O M to configure the FPGA upon power-up. An FPGA implementation is 

certainly interesting, especially for prototyping and proof of concepts. Unfortunately, FPGA 

design tools were not available at the University during design phase of the Viterbi decoder, 

therefore this option had to be dropped. 

3.5.3 Application Specific Integrated Circuit 

The highest level of integration can be achieved with application specific integrated 

circuits (ASICs). Two types of ASICs exist on the market today: Mask-Programmed Gate 

Arrays and Standard Cell and Custom ICs. In typical standard cell implementations, as can 

be seen in Fig. 3.16, the standard cells are placed in rows across the chip, leaving horizontal 
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Figure 3.16 Typical standard cell ASIC structure. 

channels for routing. Wire connections are only made when necessary, resulting in different 

routing channel widths. Vertical routing is mainly accomplished by vertical wires across 

the standard cells and vertical channel at either end of the standard cell rows. The design 

tools typically accept schematic or higher level language entries and perform the complete 

4-
Routing 
Channels^ 



chip layout very quickly. If further area reductions deem necessary, time consuming custom 

layout blocks can be included into the design and routed with the standard cells. The layout 

is then sent to an ASIC manufacturer, called a foundry, for production. The need for unique 

masks for all layers used in manufacturing imposes high costs and weeks or months of delay 

for development. This requires careful circuit simulations before mask production, as the 

design cannot be changed afterwards. For high volume applications (> 100,000), standard 

cell and custom ICs result in the lowest production costs [Xil92]. 

Gate arrays implement user logic by interconnecting transistors or simple gates during 

the last stages of manufacturing process. Unlike standard cell ICs, mask-programmed gate 

arrays costs include fixed costs for mask production as well as cost per unit. Gate arrays 

become cost effective for volumes around 100,000. 

With the support of the Canadian Microelectronics Corporation it was possible to access 

Northern Telecom's l.ljim CMOS process, making a custom IC a viable option. The K = 

5 Viterbi decoder was implemented on a single chip, helping to reduce size and weight of 

mobile communications devices. 



4. Design of the Variable-Rate Viterbi Decoder 

4.1 General Considerations 

The Viterbi decoder is designed to decode convolutional codes of constraint length K = 

5. Figure 4.1 shows the encoder of memory m = 4, generating the convolutional code. The 

Figure 4.1 Convolutional encoder 

decoder is capable of decoding any code of rate ranging from (V- l ) / 4 (y - 1) to (V- l)/V 

for 1 < y < 8, or any code rate from 1/4 to 7/8 with period P < 7. The mother 1/2 rate 

code, from which all other codes are derived, has a free distance dfree = 7. For the highest 

code rate of 7/8, the code has still a dfree = 3. For high coding gain, the decoder expects 

eight-level quantized channel symbols as its inputs. The assumed modulation schemes are 

BPSK and QPSK. Since available silicon area was more a concern here than was decoding 

speed, the bit-serial node-parallel architecture is the most attractive and therefore adopted. 

The rest of the chapter describes specific implementation issues of the functional blocks used 

in the variable-rate Viterbi decoder. 



4.2 Branch Metric Unit 
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Figure 4.2 Implementation of the bit-serial branch metric unit. 

The bit-serial branch metric unit (BMU) for BPSK is a very simple block, as shown in 

Fig. 4.2. It takes the 3-bit channel symbols that have been converted to a serial bit stream by 

the parallel-to-serial converter, arriving with the least significant bit (LSB) first, and compares 

the individual bits against "0" and "1". For the QPSK case, I and Q channel symbols are 

fed in serially. Figure 4.3 illustrates the operation. Without loss of generality we assume a 

simple 1/2 rate decoder. The only difference with variable-rate codes is a different M U X 

SELECT signal from the control block for different code rates. Note that the branch metrics 

calculated here are only partial branch metrics for each channel symbol, having a range from 

0 to 7. The first row in Fig. 4.3 shows the output of the parallel-to-serial converter. The 

bit clock is illustrated in the second row. The LSB of the serial channel symbol arrives at 

every eighth clock cycle, which follows from the required path metric precision as discussed 

in the next section. Recalling a trellis, let the branch metrics for the four expected channel 

symbols "00", "01", "10", and "11" be B M 00, B M 01, B M 10, and B M 11. From Table 

3.1, the metric for an expected "0" is always the same as the channel output, while for an 

expected "1" it is its I's complement (the bitwise inverse). Therefore, B M 00 is just the 
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Figure 4.3 A n example of the branch metric calculation. 

output of the parallel-to-serial converter and B M 11 is its inverse. In the case of B M 01 and 

B M 10, B M 00 and B M 11 are tapped, respectively, for the first symbol and then switch the 

multiplexer M U X to tap their complements. The control block provides the " M U X SELECT" 

signal, which of course is adapted to the code matrix for different codes. The A N D gates are 

necessary because the complement of the parallel-to-serial converter would also give a logic 

"1" between two symbols, as the dashed lines in Fig. 4.3 indicate, and the A C S U would 

interpret the resulting output as large branch metrics. The signal " A L L O W METRIC" is 

"1" only while the three converter bits are shifted out. A pipeline stage between the B M U 

and the A C S U using the memory elements T shortens the critical path in the A C S U . Minor 

area improvement and speed-up is achieved by using N A N D instead of A N D gates, and 

performing the necessary buffering of the branch metrics with faster inverters. 

4.3 Add-Compare-Select Unit 

The add-compare-select unit (ACSU) adds the new arriving branch metrics to the current 

path metrics, compares the updated path metrics, and keeps the smaller path metric as 



survivor. In order to store the required path-metric precision, it is necessary to determine the 

maximum spread A among all path metrics. From Eqn. 3.1 it follows that A = {K - \)v. 

The maximum branch metric occurs in the case of the rate 1/4 code, because one information 

bit generates four channel bits in the encoder. Therefore the partial branch metrics of each 

of four channel symbols are added in the decoder before making a decision. The maximum 

branch metric J/ = 4 x 7 = 28. Thus, following Eqn. 3 .1 ,A = 4 x 2 8 = 1 1 2 , which can be 

stored using 7 bits. Providing one extra bit precision and using the modulo normalization 

with the modified comparison rule appears to be the most area efficient normalization and 

is therefore adopted in this design. 

For a bit-serial implementation of the ACS operation, the following observations can 

be made [Sta87]: 

1) a serial adder starts with the least significant bit (LSB) first; 

2) a serial comparison is fastest starting with the most significant bit (MSB); 

3) a select operation is possible only after a completed comparison. 

Obviously, Observations 1) and 2) are conflicting and suggest that we have to reverse 

the order of the bits in a first-in last-out (FILO) register. Observation 2) and Observation 3) 

imply a buffer, thus increasing the operation's delay by another word length, i . e., eight clock 

cycles in our case. However, using a serial comparator that starts with the LSB allows to 

pipeline the add and compare operation. The bit-serial 3-bit quantized branch metrics (BM) 

enter the ACS cells with the LSB s first and are added in the 2's complement adders A D D 

to the current path metrics (PM) (Fig. 4.4). Both sums, i . e., the updated path metrics, are 

stored in shift registers, denoted by memory elements T in Fig. 4.4, and fed to the comparator 

COMP concurrently. The result for every bit of the comparison is stored in the flip-flop 

FF, which is clocked at every symbol period Ts after the MSBs have been processed. The 

carry bit of the bit-serial comparison does not have to be cleared after completed comparison 
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Figure 4.4 Block diagram of a bit-serial A C S unit. 

because in the case of a tie, both shift registers store the same value, and it does not matter 

which one is selected. The multiplexer to the right in Fig. 4.4 selects the smaller sum as 

the survivor metric. The carry bits of the 2's complement adders have to be reset after the 

MSBs have been processed to avoid overflow and invalidation of the following addition. 

Since negative edge-triggered flip-flops are used, the same control signal can be used for 

triggering the selection-flip-flop FF and injecting a "0" to the adder, thus avoiding an extra 

global signal for carry reset. This control signal FF C L O C K - C A R R Y RESET is "0" during 

every arrival of an LSB at the adder to inject the "0", but at the same time its falling edge 

triggers the flip-flop FF after the previous MSB has been processed and the comparison 

is finished. Figure 4.5 shows the timing diagram to reset the carry bits in the adders and 

trigger the selection-flip-flop FF. The third row in Fig. 4.5 displays the positions of the 
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time 

Figure 4.5 Timing diagram for the concurrent carry reset and flip-flop FF trigger. 



MSB and LSB of some example metric. In the variable-rate decoder, described here, up to 

four partial branch metrics have to be added to the current path metrics before a decision 

about the survivor can be made. Therefore, the left multiplexers in Fig. 4.4 feed back the 

intermediate sums and accept path metrics from predecessor states only for the first symbol 

of an information bit after a decision has been made. Otherwise, the "survivor metric", which 

is output continuously, represents invalid data and has to be blocked by the multiplexers. 

4.3.1 Layout of Add-Compare-Select Units 

Since the concern here is silicon area, custom layout for the ACSUs was considered 

necessary. This section describes the individual gates necessary to build an A C S U . 

Multiplexers were laid out, because a standard cell static multiplexer uses 12 transistors 

and is designed to drive bigger capacitances than is actually needed here. A smaller solution 

is a six-transistor CMOS transmission-gate multiplexer. A CMOS transmission gate (shown 

in Fig. 4.6) is an "ON-OFF" switch consisting of an NMOS and a PMOS transistor in 

parallel [Gei90], i.e., drains connected to each other, and sources connected to each other. 

If the control voltage Vc = 0 V , the gate voltage of the n-channel transistor is also 0 V , 

while the gate voltage of the p-channel transistor is VDD> both transistors will be "OFF" and 

OUT will assume a high impedance state. In the case Vc = VDD> both transistors of the 

transmission gate will conduct. The NMOS transistor pulls the output to 0 V , if IN is at OV, 

and the PMOS transistor pulls the output to VDD if IN is at VDD-

IN OUT 

Figure 4.6 C M O S transmission gate. 



The multiplexer consists of two transmission gates and an inverter to provide the inverse 

of the select signal. Figure 4.7 shows a gate level representation of the multiplexer. A 

plot of the layout and the multiplexer's characteristics are summarized in Appendix A. SB 

SB 

Figure 4.7 Transmission gate multiplexer. 

("Select B") is the control signal that selects which transmission gate should be conducting 

and therefore which input should be connected to the output. For SB = 0 V , the upper 

transmission gate is "ON", thus connecting A with the output OUT. The lower transmission 

gate is "OFF", isolating B from the output. If SB = VDD, B is selected and the upper 

transmission gate is "OFF" isolating A . Minimum-size transistors were used in the layout. 

A minimum-size transistor has both the channel length / and width w set to the allowed 

minimum for the technology used. For the 1.2 /^m technology a minimum-size transistor 

has / = 1.2 jum and w = 2 /im. 

From the block diagram of the A C S U , Fig. 4.4, the path metrics are stored in memory 

elements arranged as shift registers. This suggests the use of D-flip-flops to transfer the signal 

at their inputs to the outputs at every falling clock edge. For the flip-flop implementation, 

several possibilities can be found in the literature, e. g., [Jir87], [Cha89]. To keep the silicon 

area small, static flip-flops similar to the standard cell approach which need 30 transistors 

were precluded. The single-phase-clock dynamic D-flip-flop in [Jir87] uses ten transistors. 

Unfortunately, the diffusion area of such flip-flops cannot be shared efficiently, so the area 

saving is relatively small compared to the standard cell. A better solution arises with the 
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Figure 4.8 Structure of the "clocked inverter" dynamic Z)-Master-Slave flip-flop. 

use of two-phase clocks, C K and CB and the use of two clocked inverters [Cha89], to build 

a master-slave flip-flop. Figure 4.8 shows such a structure. The outer four transistors 

build two inverters (P1-N2, P3-N4), which are never transparent simultaneously, provided 

the clock phases are as shown in Fig. 4.9. C K is the chip clock, and CB is derived from C K 

by an inverter. The clock skew It2 - til between C K and CB is introduced by the inverter 

through which CB is derived from CK. To describe the flip-flop's operation, it is necessary 

C K 

CB 

Figure 4.9 Clock traces for a dynamic D-Master-Slave flip-flop. 

to consider the case where IN is "1" and "0" separately, because they lead to different results. 

In the following ti —̂  tj symbolizes the time frame from tj to tj. 

1. IN = "0": 

ti t3 Master latch précharge phase. 

t3 —> ts Slave latch evaluation phase. OUT = 0. 



2. IN = "1": 

t2 U Master latch précharge phase. 

t4 to Slave latch evaluation phase. OUT = 1. 

A l l n-channel transistors are 3.1/im wide. Figure 4.10 shows that B. l^m wide transistors 

require less cell height and are therefore better suited when the transistors are stacked like 

in Fig. 4.8. A minimum size transistor at the input can pull the input line to "0" at the 

start-up phase and reset the path metrics. 

Drain 

Gate 

S o u r c e S o u r c e 
a) b) 

Figure 4.10 a) Minimum-size transistor with channel width w = 

Ifita, b) transistor to achieve minimum cell height with w = 3.1^m. 

While the flip-flop works fine when succeeded by a static gate, HSPICE™ simulations of 

a shift register showed that the signal deteriorates after three flip-flops, as shown in Fig. 4.11 

for a time frame of 25ns, and yields a logic error after the third flip-flop. The first two rows 

in Fig. 4.11 show C K and CB, respectively, and the fourth and sixth row show the flip-flops' 

intermediate nodes, denoted HELP in Fig. 4.8, of the second and the third flip-flop. Rows 

three, five, and seven are the outputs of the first, second, and the third flip-flop. In any 

fabrication process, drain and source will overlap the gate and form what can be modelled 

as two capacitors, as shown in Fig. 4.12 for a PMOS transistor. These parasitic overlap 

capacitances induce voltage into a floating node when the gate of the transistor is switched. 

A changed charge can partly turn on transistors. The effect accumulates over several stages 

until the output yield a logic error. In Fig. 4.11, the output of the first flip-flip is floating 

up to time t = 35ns, since C K = "0" and CB = "1". At time t = 35ns, when C K goes to 
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Figure 4.11 Flip-flop waveforms with clock skew = 0.7 ns. 
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Figure 4.12 Cross section of PMOS transistor with overlap capacitances. 

"1", the overlap capacitance between C K and the output in transistor P4 pulls up the floating 

output. The voltage of the output is high enough to turn on N2 of the second stage slightly 

and create a path to Vss while both clocks are "1". With C K = "1", P2 is turned off, the 



intermediate node in thie second stage becomes a floating node and will be pulled down by 

the path to Vss to some value less than "1". At t = 40ns, C K goes to "0" pulling down 

the floating intermediate node even lower via the overlap capacitance between C K and the 

intermediate node in transistor P2. The "non-one" intermediate node turns on transistor P3, 

while both clocks are "0". At the same time, the output becomes floating and is charged up 

by the path to VDD , formed by the transistors P3 and P4. Figure 4.11 shows that the effect 

aggravates from stage to stage until the floating intermediate node of the third flip-flop is 

discharged while both clocks are "0" and the output of the third stage outputs a constant "1". 

For clock skews t2 - ti < 0.3ns, the time both clocks "0" or "1" is too short to charge 

floating nodes enough to turn on transistors. However, it is not possible to guarantee a clock 

skew < 0.3ns when using two big clock trees (one for C K and one for CB) to drive 3200 

flip-flops. A solution is to increase the width of the PMOS transistor of the inverter in the 

master latch to at least 13/im. The improvement can be clearly seen in Fig. 4.13 with a 

transistor width for PI of 13yum. This increase in transistor size increases the capacitive load 

on the previous flip-flop and the output will not be charged high by overlap capacitances, 

thus allowing clock skews up to 0.6ns. The complete layout of the resetable D-flip-flop can 

be seen in Appendix A . 

Two X O R gates are needed for the normalization to perform the comparison. An attrac­

tive solution is to use a transmission gate implementation [Wes88] with only 6 transistors, 

as shown in Fig. 4.14. The operation of such an X O R gate is as follows. 

When A is "1", transistor 2 is " O N " and the source of transistor 4 is pulled to Vss, thus 

transistor 3 and 4 can act as an inverter. The transmission gate is open and not conducting. 

The output of B by the inverter forms A®B. In the case A is "0", transistor 1 pulls the 

source of transistor 4 to VDD and disables transistor pair 3 and 4. The transmission gate is 

now closed, passing B to the output. The layout and a summary of the XOR's characteristics 

are found in Appendix A . 
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Figure 4.13 Waveforms of the improved D-flip-flop with transistor width of PI of 13/im. 
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Figure 4.14 Transmission gate exclusive-or gate. 

The layout of the adders is a cell-height reduced version of the layout found in [Wes88]. 



The comparator is implemented as the carry stage of an adder, receiving one input inverted. 

Since the layout of the adder is spht into the sum stage and the carry stage, the layout of 

the carry stage can by directly used as comparator. 

After finishing the layout of a complete A C S U , simulation with HSPICE™ showed that 

the critical path through the multiplexers, the adder, and the comparator is 8ns. Allowing a 

safety margin of 2ns, the maximum clock frequency is limited at 100 MHz. 

4.3.2 Pairing of Add-Compare-Select-Units 

After completing the layout of the A C S U , the ACSUs were paired to reduce the number 

of interconnect wires by two [Bre92]. The trellis is a regular structure that can be divided 

into a set of butterflies. In any treUis diagram for l/n codes, an A C S U receives two inputs 

from ACSUs whose state number differs only in the LSB. In the other half of the trellis, there 

is an A C S U whose state number differs only in the MSB that receives the same inputs. By 

pairing those two ACSUs, their inputs can be shared, thus reducing the interconnect wires 

by two. Figure 4.15 shows a four-state example of how the pairing of the ACSUs can save 

interconnect area. In Fig. 4.15a, the ACSUs, labelled by the binary representation of their 

corresponding state, are connected in a conventional trellis-like manner. The wiring in Fig. 

4.15a needs four vertical wiring tracks, while the paired ACSUs in Fig. 4.15b need only 

two vertical tracks. Expanding this to the 16-state Viterbi decoder described here, implies 

that instead of 16 vertical tracks, the butterfly-paired ACSUs need only eight vertical tracks. 

The complete wired A C S U block for the 16 state decoder needs 1.5 mm^ of silicon area. 
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Figure 4.15 a) Conventional A C S U wiring, b) A C S U pairing that saves half the interconnect wiring. 

4.4 Path Memory with Novel Area-Saving Layout 

The path memory has to store the information sequences for each state corresponding to 

the surviving path metrics. To determine the most likely path through the trellis, which 

represents the transmitted sequence, two common techniques are in use [Cog89]: the 

traceback method and the register exchange technique. 

Simulations of a R A M macro cell show a R E A D delay of 10 ns and a WRITE delay of 

5.3 ns. Allocating some time for the control logic and a safety margin of about 2 ns, 20 ns 

is required for READs and WRITEs as the next multiple of the bit duration of 10 ns. This 

would allow a speed advantage ratio of 3:1 in a 80 ns symbol period. The memory length 

now becomes 1 .Id. In [Yas83] it was found that a suitable decoding depth d for the limiting 

7/8 rate code is around 14 times the constraint length, i . e., 70 for the A" = 5 decoder here. 

As the R A M cell generator of the VLSI tool Edge™ creates R A M of sizes of powers of 2, 

a R A M of 16 X 128 bits is necessary, which needs 3 mm^ of Si area. Though a R A M layout 

is very compact, a major cost of the traceback method is its considerable amount of control 

for address generation, READ/WRITE clocks, bit selection, and output bit buffering. 

The reason for choosing the register exchange technique is based on a comparison of 

the two methods in [Cog89]. The authors of [Cog89] found that a 64-state path memory 



implemented in trace back with a speed advantage of 6:1 occupies the same Si area as a 

register exchange path memory, implemented as a full custom layout block. In a 16-state 

Viterbi decoder, the amount of control logic will remain basically the same as for a 64-state 

decoder and the storage requirement for a 3:1 speed advantage is greater than for 6:1. On 

the other hand, the size of the register exchange memory decreases proportionally with the 

number of storage cells. Since the speed of either technique was sufficient for the given 

requirements, the smaller solution was adopted. 

The decoded output bit is chosen by a majority vote of five outputs. The number of 

gates increases very rapidly with more than five outputs, while the five output majority vote 

can be implemented efficiently with mostly three-input NOR gates from the standard-cell 

library, as it chooses any three of five inputs. 

To keep the circuit area small, the path memory cells are implemented using 6-transistor 

transmission-gate multiplexers and 6-transistor dynamic latches with NMOS pass transistors, 

similar to the ones used in [Ish87]. This is illustrated in Fig. 4.16. CB and C K are two 
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Figure 4.16 6-transistor dynamic latch. 

non-overlapping clocks, as shown in Fig. 4.17, generated by the control circuit, to avoid 

transparency of the latch and hence races. The use of NMOS pass transistors limits the lower 

CK 

CB "L J L 
T Symbol 

Figure 4.17 Two non-overlapping clocks C B and C K for the path memory. 



speed of operation as the transistor capacitance can hold its voltage value only for a certain 

amount of time. Simulations showed that this lower speed limit is around an information 

rate of 300 bit/s, which is far below most transmission speeds. Unfortunately, the pass 

transistors show some DC voltage loss at their outputs due to the threshold voltage and no 

pull-up transistor to set the output of the pass transistor to VDD- Although that results in 

a reduced noise margin, NMOS pass transistors were used instead of the more robust but 

30% bigger full CMOS transmission gates because of the very limited silicon area available. 

The price for the small silicon eirea is some static power dissipation of the flip-flops. If the 

output of the pass transistors is a threshold voltage below VDD, the lower voltage slightly 

turns on the PMOS transistor of the succeeding inverter and creates a DC path from VDD to 

ground. The complete layout and speed characteristics of a path memory cell, consisting of 

a transmission-gate multiplexer and a flip-flop, can be found in Appendix A . 

A major part of the silicon area used for the register exchange technique results from 

the trellis wiring between consecutive stages. A straightforward implementation of the trellis 

wiring would require 16 vertical wiring tracks for every stage, as shown in Fig 4.18a. The 

total wiring area is about 25% bigger than the total memory cell area. Using a state relabelling 

technique presented in [Cog88], [Cog89] can reduce the interconnect area substantially. 

Coggins partitions the 2"* state trellis into 2"* ~ trellises with 2'' states each. The movement 

of the surviving paths is confined to a particular region for r stages. Every r* stage relabelling 

wires move the paths to the appropriate region. Coggins' technique applied to a 16 state 

trellis would partition the trellis into four four-state trellises and use a relabelling every 

second stage. The total number of vertical wiring tracks is 16 for two stages, thus reducing 

wiring area by 50%. 

We propose an approach, often used in Fast Fourier Transform (EFT) hardware imple­

mentations, namely to redraw the trellis as sets of butterflies [Lei92]. The idea is shown in 



5. Built-in Self-Test 

5.1 Introduction to Built-in Self-Test 

Since built-in self-test (BIST) [Bar87] is a promising method for testing large and 

complex integrated circuits without the need for very expensive testing equipment, BIST 

was incorporated into the design. In BIST, test pattern generation as well as output data 

evaluation are performed on the same chip as the circuit under test (CUT) [Bar87], [Abr90]. 

Figure 5.1 shows the general structure of BIST. A test pattern generator (TPG) can be 

implemented as a simple linear feedback shift register (LFSR) [Abr90], configured to output 

a maximum length pseudo-random sequence. To reduce the volume of the output data to be 

Test pattern generator 

Circuit under test 

space compactor 

CHIP 

output data 
evaluation 

time compactor 

pass / fail 

Figure 5.1 Block diagram of BIST. 

evaluated, the output data of a multi-output CUT are compacted by a space compactor to 

fewer outputs. Some examples of generic space compactors are multiple input shift registers 

(MISR) [Abr90], multiple input no-feedback shift registers (MINSR) [Aga87], or X O R trees 



[Kat92], [Li87]. More circuit specific space compactors are programmable space compactors 

(PSC) [Iva93], [Tsu93]. The customized nature of PSCs enables them to be more efficient 

in terms of hardware cost and lower error escape than generic space compactors. The space 

compacted data are fed into a time compactor to generate a final signature at the end of the 

test [Bar87]. The most common time compactors are LFSRs or MISRs with the contents 

of the shift register used as the signature [Bar87]. The signature is then compared with a 

fault-free reference to determine whether the circuit is good. Due to the information loss 

during data compaction, the problem of error escape or aliasing [Bar87] arises, where the 

signature generated by a faulty CUT is identical to the fault-free signature, thus causing a 

faulty circuit to be mistakenly declared good. 

The fault model used in the BIST for this thesis is a simple single stuck-at fault model 

[Eld59] for gate inputs and outputs. Stuck-at fault means that due to a physical defect in the 

Si crystal or the fabrication process a node logically behaves as if it is connected to either 

VDD, a stuck-at-1 (s-a-1) fault, or GND, a stuck-at-0 (s-a-0) fault. "Single" expresses the 

fact that we only deal with one faulty node at a time. Note the difference between fault and 

error [Abr90]. A n error is the logical consequence of a fault at the primary outputs. For 

example, the stuck-at-0 fault at the input of an inverter causes the error of the output being 

"1" at all times. A fault is said to be undetected if it does not produce an error during the 

test period. The most common reasons for undetected faults are an insufficient set of test 

patterns or redundancy in the circuit [Bar87]. 

5.2 Multiple Signature Analysis 

There exist two basic techniques for signature analysis [Bar87]: single signature (SS) 

analysis and multiple signature (MS) analysis. In the SS technique only one signature is 

compared at the end of a test session. Let / be the output sequence length and k the number 

of stages of the LFSR, and assuming equally likely errors, then the probability of aliasing 



Pal is [Bar87]: 

2l-k _ 1 
Pal = (5.1) 

For I '> k, Pal ^ 2 ^, which is also true for unequally likely errors [Iva92]. The asymptotic 

result also holds true for MISRs if implemented with an irreducible polynomial [Kam93]. 

In the MS scheme, however, not only the final signature is checked, but also some 

intermediate signatures. This may greatly reduce the probability of aliasing. Let I2, .., In 

for k <^ Ij < I2 < ... < /„ = / be the positions where the signatures are checked, called check 

points, then the aliasing probability becomes [Bar87]: 

Paiin) ^ (5.2) 

Moreover, as faulty chips can be discarded as soon as one incorrect signature has been 

detected test time in lower yield processes can be reduced significantly. A big disadvantage 

of the MS scheme, however, is its increased hardware overhead as checking n k-hit signatures 

requires n k-hit references to be stored. This implies a read-only-memory (ROM) for the 

references, address generation for the R O M , and of course scheduling for the right reference 

at the right time [Wu93a]. Solutions to reduce the hardware complexity in multiple signature 

analysis schemes are presented by Wu in his Ph.D. thesis [Wu93a] and his publications, e. 

g., [Wu92], [Wu93]. 

5.2.1 Fuzzy Multiple Signature Analysis 

In [Wu92], Wu presented a fuzzy multiple signature (FMS) analysis scheme that greatty 

reduces complexity of a conventional MS scheme. Instead of comparing the intermediate 

signatures to their own references on a one-to-one basis, a signature only has to match any 

of the stored references. This fuzziness introduced by allowing more references to match an 

intermediate signature may result in a small increase of aliasing compared to the conventional 



multiple signature scheme. However, this drawback can be compensated for by significantly 

less hardware complexity. 

As an example, assume the checking of three 3-bit signature with the three references: 

ri = 010, r2 = 111, and rj = O i l . Denoting the three bits of the reference by a, b, c, we 

can describe the decision function as 

pass I fail = ahc -\- abc -\- abc = be ab = bac, (5.3) 

which can be implemented with only one inverter and two N A N D gates as shown in Fig. 

5.2. Not only is no additional control logic required, but also can the pass / fail function 

input sequence 

b-

4 > J 

pass / fail 

LFSR 

Figure 5.2 Example of the FMS scheme with the three references: 010, 111, O i l . 

some times be minimized [Wu92]. Moreover, some references may happen to be identical 

which results in a smaller number of references m than signatures n checked, i . e., m < n. 

To find the aliasing performance, it is necessary to consider the number of /-bit sequences 

that map to any one of the m references, namely m2^'^, resulting in a probability of aliasing 

at a single check point [Wu92], [Wu93a] 

m 2 ' -* - 1 
(5.4) ai - 2' - 1 

Assuming I > k yields Pai ~ m 2 " ^ . The asymptotic result applied to n check points 

yields the aliasing probability for the fuzzy multiple signature scheme [Wu92] 

PFMS ~ ( m 2 - ^ ) " . (5.5) 



Clearly, the worst case occurs for m = n (when all references are different). Then PFMS ~ 

(n2~^)^. For m = 1, i . e., the case where all signatures are identical, the aliasing probability 

is equal to that of the conventional MS scheme. The following section is devoted to this 

identical signature case. 

5.2.2 Minimal Hardware Multiple Signature Analysis 

In the case of deliberately making all n signatures identical [Wu93] [Wu93a], only one 

reference has to be stored, and by spacing the n signatures equally apart (Ij = I2 - Ij = ... = 

h - L-i), the hardware overhead for the timing controller is the same as for checking only 

one final signature [Wu93a]. The probability that a sequence generates a specific signature, 

say 0...0, is 2"̂  and the probability that it generates n identical 0...0 signatures is 2'"*̂ . If 

we allow the signatures to have any value as long as they are identical, then the probability 

becomes 2""̂ +̂ . The problem however is that for practical values of k and n, the probability 

that all n signatures have the same value is very small. 

If there is, however, a choice among many different sequences, then the probability of 

getting n identical signatures can be very high. Different sequences are achieved by applying 

different sets of test patterns to the CUT. Wu [Wu93] established a measure of confidence 

CL,n,k of finding n identical ^-bit signatures, given L possible fault-free sequences, which 

follows a geometric distribution: 

CL,n,k = E (1 - 2-̂ ^^+ )̂ 2-^^+1' (5.6) 
i = l 

or 

CL,n,k = 1 - (1 - 2-"^+^)^ (5.7) 

If L is made sufficiently large, n identical signatures can become highly probable. Solving 

Eqn. 5.7 for given n, k and a desired confidence C, gives the required L. Some results are 



shown in Tab. 5.1. 

L C(%) 
^nk-k+l 86.47 
2nk-k+2 98.17 

2nk-k+3 99.97 

Table 5.1 Desired confidence C versus required number of sequences L for a given Pai = 2 

A simple way to generate the required L different fault-free sequences is to apply L 

different sets of test patterns, for example, by starting the TPG with L different seeds. This 

approach requires simulating the CUT L times for / input patterns, where the simulation time 

complexity is of order 0(lL). A shortcut, however, is to shift the TPG L - 1 more times than 

what one test length / would be. This is equivalent to seeding the TPG L times and simulating 

the CUT with / + L - 1 patterns, resulting in / -i- L - 1 output bits [Wu93a]. In the search for 

identical signatures it is now possible to choose from L sequences of length /, one starting 

at the first output bit, another at the second, and finally, the last starting at the L''* output bit. 

The simulation time complexity for generating L sequences of length / is reduced to 0(l + L). 

As an example, assume to check two identical signatures with the 3-stage LFSR shown 

in Fig. 5.3. Let / = 8, L = 3, and the (I + L - l)-hit sequence to compact be: 

1 1 0 0 1 1 0 1 0 0. (8) 

Then the 10 intermediate LFSR states are: 

(100)(110)(111)(Oil)(101)(010)(101)(010)(101)(110). (9) 



Checking every four bits, we find two identical signature of value (101) if the compactor 

0 10 1 1 0 0 1 

Figure 5.3 A n example compactor. 

LFSR is initialized with (100) and the subsequence 1 0 0 1 1 0 1 0 is compacted. The 

simulation also determines the initial state of the TPG to generate exactly the above 

subsequence. 

Note that the number L of different sequences a TPG LFSR can generate is limited by 

its number of stages and possible internal states of the CUT if the CUT is not exclusively 

combinational. For example, a 5-stage LFSR can only generate a maximum of L = 31 

different output sequences (the all-zero seed will not produce useful test patterns) of length 

/ = 31. In general, it is not possible to generate more different output sequences than 2*̂  -

1 because an LFSR can only be seeded with 2^ - 1 different seeds, i . e., L < I. However, 

one can increase the probability of finding identical signatures by changing the seed in 

the compactor. Each stage of the compactor practically doubles L. Similarly, any flip-flop, 

independent from the TPG, such as free-running counters, can increase the effective number 

of sequences L. For practical larger circuits, which require many test patterns, the limitation 

L < / is not a real concern. 

The price that is to pay for better aliasing performance when using the minimal hardware 

overhead MS scheme, compared to the SS scheme, is the CPU-time overhead, including two 

parts. One is the time spent generating L fault-free sequences instead of only one. The other 

is the effort searching for the subsequence that yields n identical signatures. Compared to 

the effort of generating one /-bit fault-free sequence, the CPU-time overhead for generating 



L sequences is proportional to L/l [Wu93]. However, consider that the CPU-time overhead 

is a one-time cost for recurring lower aliasing and area savings for each produced chip. 

5.3 Implementation of the Minimal Hardware MS Scheme 

In the Viterbi decoder described here, the minimal hardware MS scheme is applied to 

the B M U , the control block, the code memory, the majority gate, and the parallel-serial 

converter. In test mode, the feedback path in the control block is cut, and the control unit 

is reconfigured as a maximum-length LFSR to generate the test patterns. Fault simulations, 

using the SILOS II® fault simulator, showed that a 12-stage LFSR with feedback polynomial 

a;̂ 2 -f- + + a;̂  + 1, (5.10) 

as shown in Fig. 5.4, generates enough pseudo-random test vectors for a complete test of the 

i L i L 

Figure 5.4 12-stage maximal-length shift register. 

combinational part in the control block. The B M U and the code memory have less inputs than 

the combination part of the control block and hence are tested exhaustively. Interestingly, 

only 1024 test patterns, instead of all 4096, are needed to detect all single stuck-at-faults 

in the combinational part of the control block. The 12-stage LFSR is necessary to generate 

independent test vectors for the state outputs and their complements. Each of the sum terms 

in the combinational block, however, requires less than 12 independent inputs for exhaustive 

testing. The reconfiguration of the control block as a TPG is accomplished by multiplexers 

that cut the feedback lines and connect the flip-flops to form an LFSR in test mode. Figure 

5.5a displays the control block in its mission mode, i . e., when TEST = 0. The multiplexers 



M accept the state inputs and the flip-flops T output the state outputs to the combinational 

block. The double arrows symbolize busses. In test mode, when TEST = 1, the multiplexers 
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Figure 5.5 Reconfiguration of a) a finite state machine as b) a T P G L F S R in test mode. 

accept the outputs from their predecessor flip-flops to form an LFSR. The ® symbolizes the 

feedback lines for a maximum length pseudo-random output sequence. 



Fault simulation determined where additional multiplexers were necessary in the B M U , 

the code memory, the parallel-serial converter, and the majority vote circuit to inject the 

random patterns in test mode for high fault coverage. Fault coverage is the percentage 

of faults detected in percent of the total number of faults considered. The achieved fault 

coverage is 98.2% of single stuck-at faults, i . e. 98.2% of the total of 8744 single stuck-at 

faults were detected. The reported fault coverage of 98.2% is before compaction in the MISR, 

because the SILOS® fault simulator cannot calculate the fault coverage after compaction. The 

main reason for not achieving a higher fault coverage is that the multiplexers that inject the 

test patterns are not tested for faults that appear in normal mode. The area overhead of the 

test scheme is about 10% of the circuitry tested, which seems relatively high. There are two 

reasons for that. First, the overall amount of circuitry tested with the MS scheme is relatively 

small, about a third of the chip. Therefore, the additional hardware for reconfiguring the test 

pattern generator and compaction counts heavily, percentage wise. The other reason is that 

some faults were hard to detect and needed extra multiplexers to test. 

Recalling Table 5.1, the success of the minimal hardware scheme depends on the number 

L of generated sequences of length / to find one sequence with n identical Â;-bit signatures. 

The SILOS 11® logic simulator could handle just over 100,000 or ^2^"^ input vectors. With 

86% confidence, one can find time compactors that have nk - k= 16. A good compromise 

between solutions with very low aliasing probability but considerable amount of hardware 

(e. g., two 16-bit signatures) and solutions with less hardware, but higher aliasing probability 

(e. g., 16 1-bit signatures) is to check four identical 5-bit signatures. This solution has a 

probability of aliasing Pai = 2"^^. As nk - k = 15, the chances of finding a solution rises 

to over 98%. An estimation of the fault coverage after compaction uses the fact that the 

expected number of escaped faults tends to N2''^ [Raj91], where is the total number of 

faults. With A'̂  = 8744 and Pat = 2~^° used here, the number of aliased faults is <C 1, which 

should not influence the overall fault coverage. It is desirable to check « = 2' signatures. 



where i is an integer. In that case, the test length counter can be used to schedule the 

signatures very easily [Wu93a]. 

A n X O R tree compacts 25 observation points into five bits, which are input into the 

5-stage MISR with the characteristic polynomial of 

+ + 1. (5.11) 

SILOS II® simulates the circuit for all 100,000 clock cycles and provides the contents of the 

MISR. A small C program searches for four identical signatures, one every 256 clock cycles 

(Fig. 5.6) and provides the corresponding initial state of the test pattern generator and other 

^ test pattern ^ 
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Figure 5.6 Four identical 5-bit (00000) signatures evenly spread in time. 

flip-flops in the circuit. The signatures turned out to be the "all zero" state with an initial 

MISR state of 11010. Of course the signature can have any value. Simple circuitry resets 

all flip-flops to "0" in normal mode, but sets the appropriate flip-flops to "1" in test mode to 

the desired initial state. When a signature does not match the reference, a flip-flop sets the 

test output B A D to "1". If all signatures match the reference, B A D stays "0" and ENDTEST 

= "1" indicates the end of the test. The maximum clock frequency in test mode is reduced 

to 80 MHz, due to the extra delay in the X O R tree. 

Compared to checking only one signature at the end of the test session, checking four 

identical signatures has the advantage of reducing the probability of aliasing here from 2"̂  to 

2'-^°, while avoiding complicated signature checking for four different references. Lowering 



the probability of aliasing also reduces the probability that unmodelled faults in the circuit 

be masked. Moreover, test time can be reduced as faulty chips can be discarded as soon as 

a signature does not match the reference. These advantageous features (reduced test time, 

low aliasing) are accomplished without recurring circuit overhead. The only cost is a one­

time, logic simulation performed at design phase, about 45 C P U minutes on a SPARC 2 

workstation to generate the L sequences and a few seconds to find the sequence yielding 

identical signatures. 

5.4 Novel Test Scheme for the Register Exchange Path Memory 

A short estimation of a pseudo-random test applied to all primary path-memory inputs 

shows that the test time for high fault coverage will be very long. The following analysis 

is a best-case estimate to demonstrate the poor observability of faults in a register-exchange 

path memory. Since a fault can propagate along many paths through the memory, it is easier 

to find an estimate of the probability that a fault will not propagate to the outputs compared 

to the probability that a fault will propagate to the outputs. Consider fault "One" in Fig. 

5.7. The probability that the fault will not propagate through the memory element is Pnii = 

1/2, depending on the pseudo-random value at the multiplexer select line. The probability 

Pfiii that fault "Two" from Fig. 5.7 will not propagate through exactly two stages of the 

trellis is Pni2 = 1/2-1/4 = 1/8, since after it passed the first stage, the fault can propagate 

to one next state with probability 1/2, to both next states with probability 1/4, or not at 

all propagate with probability 1/4. Fault "Three" does not propagate through exactly three 

stages with probability 

The first addend accounts for the case where the fault propagates singly through two stages 

and is blocked at the third stage. The second addend covers the case the fault propagates 



through the first stage, propagates to two states in the second stage, and does not propagate 

any further. The total probability that a fault does not propagate through three stages is 

the sum of Pnti, Pnii, and Pn^. For the best-case estimation, only the cases where faults 

propagate to one next state will be considered here. Then, the probability P„, that a fault 

does not propagate to the outputs of the path memory is 

N + l 

2" 4' 
(5.13) 

n = l 

where is the number of stages a fault has to pass to reach the output. P„j reaches 3/4 

exponentially. That means that a fault will propagate to the output with probability of 1/4. 

Each path memory cell has 6 possible input stuck-at faults (the multiplexer has three inputs), 

and there are 1152 memory cells in our path memory. To propagate the total of 6912 input 

stuck-at faults on average four times as many (=27,648) test vectors will be necessary. 

A similar estimation can be done for output stuck-at faults, such as fault "Four" in Fig. 

5.7. Here, the probability Pno that the fault does not propagate to the output reaches 1/2 

exponentially, again only considering paths where faults propagate to one successive state 

Figure 5.7 Four example faults. 



before being blocked. In the register-exchange path memory faults of three nodes fall into 

that category (output multiplexer, input flip-flop, output flip-flop), yielding a total number 

of stuck-at faults of 6912. Here, on average twice as many (=13824) test vectors as faults 

need to be applied to propagate these faults. 

To propagate all faults to the output a total of 27,648 -i- 13824 = 41,472 test vectors will 

be necessary. This number is certainly a lower bound, because: 

• A fault can go through many more possible paths before it does not propagate further; 

• A 16-stage LFSR to generate the pseudo-random inputs will not even generate many of 

the required pattern combinations to propagate a fault to the outputs; 

• It is still not guaranteed that all memory cells receive the necessary inputs to test the 

stuck-at faults. 

Compared to the 1024 test vectors necessary for the multiple signature analysis scheme 

described in Section 7.3, this number is very big and would increase test time by at least 

one order of magnitude. However, the regular structure of the path memory suggests a 

deterministic test to decrease test time. The following test patterns are sufficient to completely 

test a memory element and a multiplexer. 

— D-flip-flop: A memory element is completely tested by "load 0", "hold 0", "load 1", 

"hold 1", and "load 0" [Bar87]. Since the memory cells here are flip-flops, 

the flip-flops also have to be tested for s-a-0 faults and s-a-1 faults at their 

clock inputs. 

— Multiplexer: A multiplexer is characterized by its inputs A and B, its select line SB, and 

its output OUT. If SB = 0, A is selected, if SB = 1, B is selected. Table 5.2 

displays the four necessary input pattern combinations to test for all eight 



possible single stuck-at-faults in a multiplexer. Faults in internal nodes of 

Input pattern (A B SB) detects 

0 1 0 A-stuck-1, OUT-stuck-1, SB-stuck-1 

0 1 1 B-stuck-0, OUT-stuck-0, SB-stuck-0 

1 0 0 A-stuck-0, OUT-stuck-0, SB-stuck-1 

1 0 1 B-stuck-1, OUT-stuck-1, SB-stuck-0 

Table 5.2 Four input patterns detect all possible eight stuck-at-faults of a multiplexer. 

the multiplexer create contentions at the output node, as both transmission 

gates have one transistor " O N " and one "OFF". The output may have any 

value and therefore the fault may or may not be detected. 

5.4.1 Test Algorithm for Path Memory 

When developing a test scheme for such a large block as the path memory, it is desirable 

to introduce as much parallelism as possible. The structure of the trellis suggests applying 

complement values to the multiplexer select lines of multiplexers in states with different 

MSBs, as can be seen in Fig. 5.8. Then, the half of the multiplexers with select lines "0" 

selects the upper branches entering a node, and the other half with select lines "1" selects the 

lower branches entering a node. Together, the multiplexers select one leaving branch from 

each node from the previous memory stage. Hence, the value of each node will propagate to 

the next trellis stage. The "0"s and "l"s at each node in Fig. 5.8 indicate the select values 

for the multiplexers. The solid lines show which of the trellis branches are selected. 

In the following, it is not important which fault is tested at what time, as long as every 

multiplexer receives all four different input test patterns from Tab. 5.2 during the test session. 

Thus, at any time during the test, the multiplexer inputs A and B should be complements. 

Let SQ. SI, SM- I, with A'̂  = 2^" ^ be the input values to each of the A'̂  states. The 

subscripts denote the numbers of the states. Then, one out of two possible input patterns. 



STATES STAGE 

000 
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011 
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Figure 5.8 Applying complement values to the multiplexers of 

different halves propagates the values of each state to the next stage. 

denoted by input pattern, is obtained by the following procedure find.input.pattem, written 

in pseudo code. 

find.input.pattern 

50 = 0; i = 0; j = 0; k = 0; 

while(2'< AO do 

forG = X to 2'+i - 1) do 
Sj=sk; 
k = k + 1; 

~ endoffbr ^ 
i = i + 1; 

k = 0; 
endofwhile 

endoffind.input.pattern. 

The other possible input pattern is simply obtained by complementing the pattern obtained 

by the procédure find.input.pattem or, by starting the procedure with = 1 and is denoted by 



STATES 
000 0 k k+1 0 000 0 
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010 1 1 
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Figure 5.9 Example of an input pattern for the path memory test. 

input pattern. Figure 5.9 shows as an example input pattern for an eight-state trellis. This 

input pattern ensures that the same pattern is transferred to the next stage, if the multiplexer 

select lines are "0" for states with MSBs = "0" and "1" for states with MSBs = "1", denoted 

select pattern. Let the complement pattern, i . e., when the multiplexer select lines are "1" 

for states with MSBs = "0" and "0" for states with MSBs = "1", be select pattern. 

The procedure test.pathmemory contains the pseudo code for the complete test algorithm 

for the register exchange path memory. The path memory is of length d. 



test.pathmemory( mpMf pattern, select pattern, d) 

for(i = 1 to J) do 
apply input pattern and select pattern 

endoffor 
apply input pattern and select pattern 

for(i = 1 to (J - 1)) do 

apply input pattern and select pattern 
endoffor 

apply input pattern and select pattern 

for(i = 1 to (û? - 1)) do 
apply input pattern and select pattern 

endoffor 
endoftest-pathmemory. 

Four snapshots of the test algorithm are shown in Fig. 5.10. The first "for" loop of the 

procedure test.pathmemory loads the input pattern into the path memory, as can be seen in 

Fig. 5.10a. The multiplexers are tested for one test pattern from Table 5.2. For example, the 

multiplexer of state 000 receives the test pattern 010, the multiplexer of state 001 is tested 

with the pattern 100. When applying input pattern and select pattern once, as shown in 

Fig. 5.10b, all multiplexers are tested for a second test pattern in parallel. The multiplexer 

of state 000 receives the test pattern O i l , the multiplexer of state 001 is tested with the 

pattern 101. Note that though input pattern is applied to the input of the path memory, 

the multiplexers inside the path memory receive the input pattern. The application of 

input pattern and select pattern d - 1 times tests the multiplexers with a third test pattern 

(Fig. 5.10c) and propagates possible errors to the output and test the multiplexers for a 

third test pattern. The fourth and last test pattern for the multiplexers, as shown in Fig. 

5.10d (101 for state 000 and O i l for state 001) is generated by applying input pattern and 



select pattern once. To shift out any detected error in the path memory, input pattern and 

select pattern are applied d - 1 times. 



During the test procedure test.pathmemory, not only were the multiplexers tested with 

all necessary test pattems from Table 5.2, but also the flip-flops were tested for loading 

and holding "0"s and "l"s. Stuck-at-1 faults at the clock inputs are detected since the faults 

create races. For stuck-at-0 faults, the outputs of the flip-flops are floating and do not produce 

useful values, hence s-a-0 faults are detected. 

From the pseudo code in procedure test.pathmemory it becomes apparent that the total 

test length is three times the path memory length and is independent of the number of 

states of the Viterbi decoder. A major advantage of this test algorithm is its simple set of 

input vectors; only two different pattems for the multiplexer inputs and two pattems for the 

multiplexer select lines. A very efficient implementation with slightly increased test time 

uses the test counter to generate the test patterns. The stage, where 2' > 2d, generates a 

constant output at least d times. Inverters to the inputs of the path memory create the input 

pattern according to the procedure find.input.pattern. A decoder in the counter outputs a 

single "1" to invert the select pattern once, when stage i has a transition. 

5.4.2 Output Data Evaluation 

Section 5.4.1 described a very efficient test algorithm for all possible single stuck-at faults 

in a register exchange path memory. The fact that adjacent outputs of the path memory are 

always complements can be exploited in a bit-by-bit comparison of the outputs. Then, an 

X O R tree always outputs a "0" in the fault free case during a test session. This can be 

used to compare the X O R tree output to "0" every clock cycle and eliminate any aliasing. 

The X O R tree does not change the fact that the algorithm can detect any single stuck-at 

fault because the X O R tree propagates single errors. In fact, the scheme will detect any odd 

number of faults as long as the faults happen to be only in the path memory and not also 

in the X O R tree. In the case of any even number of faults they will only remain undetected 

if they produce the same error at the same stage (or pairs of stages) of the path memory. 
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Figure 5.11 Examples of detected even number of faults and an undetected double fault. 

SO that they cancel out in the X O R tree. Errors in different stages appear at the output at 

different times and will therefore be detected by the X O R tree. Figure 5.11 shows some 

examples of double and quadruple faults that are being detected and one that escapes. The 

faults are abbreviated with s-1 for stuck-at-1 and s-0 for stuck-at-0. 

A critical situation may happen if say for example the output of the X O R tree is stuck 

0. Then, the test will always say "pass". This is no problem as long as this fault is the only 

fault in the path memory, since the X O R tree has no role in mission mode. Any additional 



fault in the path memory, however, will also stay undetected and thus cause the circuit be 

mistakenly declared good. 

A major improvement on the fault coverage for multiple stuck-at faults is possible by 

substituting the X O R tree after the first column of XORs with a big A N D gate and compare 

to a "1". Since adjacent outputs of the path memory are always complements, a parity 

comparison of two adjacent outputs will always yield a "1". Any number of faults in the 

path memory itself are detected, because the A N D gate outputs a "1", only if all inputs are 

"1". Again, however, if the output of the A N D gate is stuck-at 1, no faults can be detected. 

5.4.3 Algorithm Performance 

In the case of an X O R tree as space compactor, the fault coverage for single stuck-at 

faults after compaction is the same as before compaction, because the X O R tree does not 

introduce any aliasing. A path memory storage element, consisting of a multiplexer and a 

D-flip-flop with two clocks can have 16 single stuck-at faults at the gate level. Then, the 

total number of single stuck-at faults in the path memory is 18,720, including the clock-

distribution tree. The overall detection rate after compaction for single stuck-at faults is 

99.74%. The reason for not being 100% is that the multiplexers that inject the test patterns 

are not tested for faults in normal mode. 

The fault coverage for double fault can be easily calculated by first finding the total 

number of double faults and then the number of escaped double faults. Since one storage 

element has 8 pins (4 from multiplexer and 4 from D-flip-flop), the total number of nodes 

n in the path memory is n = 8 x 16 x 72 = 9216. The total number of double faults is 

2n{n - 1) = 169,850,880. The number of double faults escaping is only the number of 

multiplexer select nodes times the number of nodes in the space compactor (21), beginning 

at the outputs of the XORs. The total number of undetected double faults is 24,192, yielding 

a fauh coverage of 99.98%. 



The area overhead of this high performance test scheme is only 2% of the original path 

memory area, including the multiplexers, the X O R tree, and extra wiring area. 

5.5 Test for the Add-Compare-Select Block 

The ACS block can be tested by a similar bit-by-bit comparison as the path memory. 

Fault simulations showed that only two pseudo-random patterns have to be injected from 

the test pattern generator into each of the ACSUs instead of the path metrics that are fed 

back to achieve complete fault coverage of the ACSUs. The branch metrics ( B M 00, B M 

01, B M 10, B M 11), the symbol clock, and the ACCEPT PATH signal are pseudo-random 

in test mode and do not need extra multiplexers for test patterns. Identical pseudo-random 

patterns are injected into the ACSUs in parallel. 

Figure 5.12 demonstrates the idea with an example of an eight-state Viterbi decoder with 

butterfly-paired ACSUs. The branch metric input labels are based on the encoder of Fig. 

2.1. Each A C S U , that receives the same branch metrics in the same order, e. g., top: B M 

00, bottom: B M 11, generates identical output sequences. Viterbi decoders of eight states 

or more have at least two ACSUs that generate the same output sequences. In Fig. 5.12 

states 000 and 101, 100 and 001, 010 and 111, and finally 110 and O i l produce identical 

output sequences. In this example, the output sequences after the second stage of an X O R 

tree provide the all-zero sequences. The observation that the X O R tree outputs a zero, even 

if the B M connection, the symbol clock connection, and the ACCEPT PATH connection was 

not changed, saves as much as four multiplexers in each A C S U . 

Any detected "1" at any time in the XOR-tree output indicates that an error has been 

detected, and the chip can be discarded. The advantage of using an X O R tree as a space 

compactor and no time compactor is that the X O R tree does not introduce aliasing for any 

odd number of faults. Even numbers of faults remain undetected only when they produce 

the same error at the same time as explained in Section 7.4. 
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Figure 5.12 Example of the bit-by-bit comparison in the A C S block. 

The total number of single stuck-at faults in the A C S U block including the XOR-tree-

space compactor is 3502. The achieved fault coverage is 98.6% after compaction. The 

area overhead of the test is 5% of the A C S U block area, again including the X O R tree and 

wiring area. 



6. Prototype Chip 

6.1 Chip Specifications 

The Viterbi decoder has been integrated on a single chip in l.lfxm CMOS double metal 

layer technology, partly using a standard cell library. The total chip size is 3.9 mm x 3.6 

mm, or 14 mm^. The active core area is 9.5 mm^. The chip contains about 29,000 transistors 

of which 19,000 are in the custom layout blocks. The expected clock speed is 100 MHz to 

achieve a maximum decoding speed of 12.5 Mbits/s channel rate. For different code rates this 

translates into 3 Mbits/s to 11 Mbits/s information rate. The chip has 30 pins of which 6 are 

for power supply. The operation of the Viterbi decoder requires 11 pins, 3 more are needed 

for the built-in self-test. 10 extra pins are provided for debugging possible design errors. 

6.2 Design Tbols 

The VLSI C A D system EDGE™ from CADENCE™ provided by the Canadian Micro­

electronics Corporation was used. Simulations of the standard cells were carried out with 

SILOS II® logic simulator and custom layouts were simulated in HSPICE™. The SILOS® 

fault simulator determined the fault coverage for the built-in self-test. Design, layout and 

simulations were carried out on SUN SPARC 2 and SUN SPARC 10 work stations provided 

by the Canadian Microelectronics Corporation. 



6.3 Pin Description 

The arrangement of the pads on the chip can be seen from Fig. 6.1. Arrows toward 
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Figure 6.1 Pad placement on the chip. 

the chip indicate inputs, arrows pointing from the chip denote outputs. A commercially 

produced chip would have only the bold face pads. They alone are necessary to form a 

fully testable Viterbi decoder for variable rates. The additional pads increase observability 

and controllability of the chip. In the case of a design error they help to narrow down the 

location of the error. The following is a list of all pins and the corresponding description. 

The number in the last column refers to the pin number of a 68-pin pin grid array as will 

be shown in Appendix B. 



Pad Name Description ^ 

ACS_TEST_OUT Output. Is the output of the bit-by-bit comparison of the 

ACS block test. ACS_TEST_OUT = 1 if an error was 23 

detected in the ACS block. 

BAD Output. Is the test result of the complete BIST. B A D = 

1 if an error was detected in the chip. 

CK Input. Provides the overall chip clock. The required 

clock format is "10" for one clock cycle. 

END_TEST Output. Indicates the end of the self test. The chip is 

said to be good if B A D = 0 and END_TEST =1. 

H E L P Input. Control point to allow a external test of the path 

memory, if HELP =1. 

19 

BR_01 Output. Outputs the value of the branch metric B M 01. 10 

66 

CODE 1, CODE 2, Inputs. Input the current code matrix here one column at 

CODE 3 a time. CODE 1 corresponds to the MSB of the code 

mapping (see Section 4.4). The code columns are 2, 4, 6 

entered in channel symbol speed. A maximum of seven 

columns are allowed. 

21 

GND_CORE Ground. Connects to the core area. 12, 46 

GND_RING Grown J. Connects to the pad ring. 38 

29 



HELP_PATH_CK2 Input. Provides the second non overlapping clock for 

external path memory testing if HELP = 1. Clock 1 is 

the chip clock C K . 

HELP_PATH_CK2 
CK ^ 

1 
1 

r 1 
1 1 

r 
1 

56 

H E L P _ S E L _ M U X Input. Takes the values for the multiplexer select lines 

for external path memory test, when H E L P = 1. 

H E L P _ S E L _ M U X is directly connected to the upper 58 

half and via an inverter to the lower half of the 

multiplexer select lines. 

IN_MSB, IN, Inputs. The eight-level quantized channel symbols to be 62, 61, 

IN LSB decoded. 60 

MEM_TEST_OUT Output. Outputs the result of the bit-by-bit comparison 

of the path memory test algorithm. 

OUTCLK Output. Provides the clock of the the decoded 

information bits. Can be used as write clock for a 

first-in-first-out memory. 

25 

OUTPUT Output. Outputs the decoded information bits. 

PATH_TEST_PAT Input. Takes the input pattern for external path memory 

test, when HELP = 1. Connects to all path memory 

inputs. 

42 

44 

54 



PATTERN_1 Output. One output of the pseudo-random test pattern 

generator. 

RESET Input. Global reset. A l l flip-flops are reset to state zero 

in normal mode (when TEST = 0). In test mode (when 

TEST = 1) it sets the circuit into the initial state for 

identical signatures. 

SIGNATURE_OUT Output. Gives the result of the multiple signature 

analysis. 

TEST Input. Switches between normal operating mode (TEST 

= 0) and test mode (TEST = 1). 

68 

SEL_PATH Output. Output of the control block that is "1" when the 

path metrics are selected at the inputs of the ACSUs and 52 

is "0" when the partial path metrics are recirculated. 

27 

31 

VDD_CORE Power. 5 V . Connects to the chip core. 14, 48 

VDD_RING Power 5 V . Supplies the I/O pads with power. 40 

WRITE Input. WRITE = 1 enables the user to enter the code 

matrix. Each code column takes one channel symbol 64 

period (= 8 clock cycles). 



6.4 Chip Layout 

Path Memory 

BMU, Code Memory, 
Control, Test, .•. 
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Figure 6.2 Floor plan of the Viterbi decoder. 

Figure 6.2 shows the floor plan and Fig. 6.3 the metal 1 and metal 2 layers of the 

fabricated chip. The path memory occupies almost half of the chip area and is placed on the 

upper half of the chip. The ACS block can be seen in the lower right corner. The rest are 

standard cells, placed by the Cadence™ Place and Route routine. 

The fabricated chip is mounted on a 68-pin pin grid array package (PGA). Appendix 

B shows the bonding diagram and the top and the bottom view of the packaged chip. The 

circled pins indicate used pins. 

6.5 Test Results 

To verify that the Viterbi decoder is working in theory, the circuit was simulated with 

SILOS n ® using encoded data as simulation input patterns. For the ACS block and the path 

memory, which exist only as their layout, equivalent standard cell blocks were substituted. 

Repeating these simulations with several different code rates, raised the confidence of proper 

functionality. 



Figure 6.3 Metal 1 and metal 2 layer of the chip that show the path memory on the upper half and the 

A C S block in the lower right comer. The rest is placed by the Cadence™ Place and Route. 



Unfortunately, the Place and Route function had a software error and did not connect 

the output pads of the chip properly. The output pads have to be enabled by connecting 

the E N A B L E pin to VDD- Place and Route connected all ENABLES together, but left them 

floating. It is not possible to see any output signals of this prototype chip. Hence test results 

are not available. 

However, even without working output pads, estimations of the power consumption are 

possible. The power consumption was determined by measuring the average current flowing 

into the chip and multiplying by the supply voltage of 5V. The measurement was conducted 

in two series. First, all four prototype chips were tested in normal mode for decoding an 

imaginary 7/8 rate code. The 7/8 rate code gives the upper limit in power consumption in 

mission mode, since 7 decisions are made in the ACSUs for 8 incoming channel symbols, 

resulting in the highest clock frequency for the path memory flip-flops. A counter generated 

the imaginary input symbols. Then, tests were repeated in test mode. In test mode, no inputs 

are necessary (except a static TEST =1), since all test patterns are generated on-chip. 

Since it is not possible to verify that the chip is working correctly, the power consumption 

was also estimated by HSPICE™ simulations. Since it was not possible to simulate the 

complete Viterbi decoder in one piece with HSPICE™, smaller blocks were simulated 

separately. The total power dissipation is the sum of the power consumptions of all blocks. 

Adding a simple "power meter", as can be seen in Fig. 6.4, eases the estimation of the 

power consumption. The current-controlled current source is controlled by the current 

flowing through node VDD and loads a capacitor. The integrated voltage at the capacitor, 

multiplied with a scaling factor, is a measure of the used power in pWatts. The resistor is 

necessary to provide a DC path to ground for the HSPICE™ simulation. 
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Figure 6.4 "Power meter" for HSPICE™ to estimate the power consumption. 

Figure 6.5 shows the simulated, measured, and from the measurements extrapolated 

power consumption of the Viterbi decoder. The measured power dissipation of all chips was 
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Figure 6.5 Estimated power consumption up to the maximum frequencies. 

within +/- 2 mW. To leave the figure readable, only the mean is shown in Fig. 6.5. For 

normal mode both simulations and extrapolated measurements show good agreement over the 

entire frequency range. 200 mW at maximum speed is reasonable for battery operated mobile 

devices. The power consumption is not zero when the clock frequency is zero due to a static 

power consumption of 30 mW in the path memory. The major disagreement of measured 



and simulated power dissipation in test mode cannot be explained without the actual output 

data to determine if, and if where, a mistake has happened that could explain the discrepancy. 



7. Conclusion 

This work described the development and design of a variable-rate Viterbi decoder of 

constraint length K = 5 (memory order m = 4). The decoder supports any code rate ranging 

from 7/8 to 1/4. The chip has been implemented in Northern Telecom's 1.2 /im CMOS 

double metal layer process and occupies a total of 14 mm^. The architecture of the Viterbi 

decoder is bit-serial node-parallel. The incoming 3-bit quantized channel symbols are input 

in parallel, converted to a serial stream, and processed serially. This reduces the amount 

of interconnect area substantially, as the add-compare-select (ACS) units are connected by 

single wires only. High decoding speed is still achieved because the ACS operation is 

carried out concurrently in each of the 16 states. 

The decoder uses a modulo normalization of the path metrics that can be performed 

within each ACS unit to prevent register overflow errors. This eliminates the need for 

additional circuitry and long global wires. Custom layout of the complete ACS block and 

butterfly pairing of ACS units reduced the silicon area to less than 50% of a standard cell 

implementation. 

The path memory is implemented using the register exchange technique. This technique 

was adopted as it occupies less silicon area than a traceback method implementation. A 

traceback path memory, however, is very attractive, if silicon area is not the first concern. 

The advantage of a traceback memory, if its speed is sufficient, is that it can be implemented 

using standard cell design automation tools and a tested macro cell static R A M . The register 

exchange technique is based on the movement of information sequences through the path 

memory, accomplished by trellis connected shift registers, one for each state. To reduce the 



silicon area, the path memory is full custom layout. For the trellis interconnections between 

consecutive memory stages, a new state relabelling technique that reduces the interconnect 

area to 30% compared to a straightforward trellis wiring was proposed and adopted for the 

design. The area reduction was accomplished by redrawing the trellis as sets of butterflies. 

A major aspect of this chip is its very cost effective built-in self-test. The fault coverage 

of the complete test before compaction for single-stuck-at faults at the logic gate level is 

99% with a hardware overhead of only 5%. A very efficient, novel test algorithm is used 

for the path memory. The test complexity is independent of the constraint length of the 

Viterbi decoder and the specific input pattern can be derived from the test counter very 

easily. Since adjacent outputs of the path memory always produce complement values in 

test mode, a bit-by-bit comparison that avoids any aliasing can be used for output data 

evaluation. The ACS block is tested by a similar bit-by-bit comparison. However, the input 

patterns are pseudo random. The rest of the circuit is tested by pseudo-random patterns 

and a multiple signature analysis scheme. After finding an appropriate initial state of the 

test pattern generator and other flip-flops in the circuit, it is possible to check four identical 

signatures. Compared to checking only one signature at the end of the test session, checking 

four identical signatures has the advantage of reducing the probability of aliasing, while 

avoiding complicated signature checking for four different references. Moreover, test time 

can be reduced as faulty chips can be discarded as soon as a signature does not match the 

reference. The only cost is a one-time logic simulation performed at design phase, while 

saving recurring circuit overhead. 
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Appendix A. Cell Layouts 

Simulations are carried out in HSPICE™ for 1.2/um CMOS technology. The ambient 

temperature is 25° C. VDD = 5 V . A l l rise and fall times are measured when simulating the 

cell with the maximum load that a cell has to drive. The rise and fall time here is defined 

as the time between the input crossing the 2.5 V mark and the output of the load crossing 

the 2.5 V mark. Inputs are driven by waveforms which have 0.5 ns rise and fall times. 



Exclusive Or 

OUT 

Figure A . l X O R layout. 

Silicon Area: 1000 /um^. 

Rise time: 0.3 ns. 

Fall time: 0.4 ns. 

Load: 0.05 pF. 



D-Flip-Flop 

Figure A.2 Layout of a resetable D-flip-flop. 

The long wire in poly-Si connecting the two transistors with CB is outside the cell, but 

when the flip-flops are connected to a shift register, CB will feed the p-channel transistor 

of the previous stage and the n-channel transistor of its own stage, making the poly-Si loop 

unnecessary. 

Silicon Area: 1470 fim^. 
Rise time: 0.4 ns. 

Fall time: 0.3 ns. 

Load: 0.04 pF. 



Path Memory Cell 

C B C K 

Figure A . 3 Layout of a path memory cell, consisting of a multiplexer on the left and a dynamic D-flip-flop on the right. 

Silicon Area: 1813 /im^. 

Rise time: 0.3 ns. 

Fall time: 0.8 ns. 

Load: 0.04 pF. 



1-Bit Adder Cout SUM 

Cin 
Figure A.4 Adder layout. 

Silicon Area: 3494 iivc?. 
Rise time S U M : 1.7 ns. 

Fall time S U M : 1.9 ns. 

Rise time C A R R Y : 1.2 ns. 

Fall time C A R R Y : 1.1 ns. 

Load: 0.06 pF. 



Multiplexer 

Figure A.5 Multiplexer layout. 

Silicon Area: 970 /im^. 

Rise time: 0.6 ns. 

Fall time: 0.5 ns. 

Load: 0.04 pF. 
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Appendix B. Pin Locations and Bonding Diagram 
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Figure B . l Pin location of the chip on a 68-pin P G A . 
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OTHER IDENTIFICATION FEATURES. 

WAFER NUMBERS 

DESIGN FILE REFERENCE 

PACKAGE LID 

no substrate connections required, a l l pins should be floating 

WIRE ALLOY ^ ' / ' ^ Si DIA. 
m A l / I l Si 

.001" ELONG. 1.5 - n 

.OP125" 1.5 - UX 
T.S. Oms 

""If 

D/A PREFORM ALLOY ^"/2X Si RECOMMENDED SIZE W/B METHOD U.S. 

BONDIMG DIAGRAM HOTES: 1. OIE ATTACH PAD SIZE: 

2. • ZERO GROUND 

26 

.400 X .400 

18 

Figure B.2 Bonding diagram to match the pads on the silicon chip to the pins of the P G A package. 



Appendix C. List of Acronyms 

A C R Adaptive Coding Rate 

ACS Add-Compare-Select 

A C S U Add-Compare-Select Unit 

AIR Adaptive Incremental Redundancy 

A R Q Automatic-Repeat-Request 

ASIC Application Specific Integrated Circuit 

BER Bit-Error Rate 

BIST Built-in Self-Test 

B M Branch Metric 

B M U Branch Metric Unit 

bmw branch metric word width 

BPSK Binary Phase Shift Keying 

BSC Binary Symétrie Channel 

C L B Configurable Logic Block 

CMOS Complementary Metal Oxide Silicon 

C P U Central Processing Unit 

CUT Circuit Under Test 

D M C Discrete Memoryless Channel 

EEC Forward Error Correction 

FILO First-In Last-Out 

FMS analysis Fuzzy Multiple Signature analysis 

F P G A Field Programmable Gate Array 

I/O Input/Output 

IC Integrated Circuit 



LFSR Linear Feedback Shift Register 

LSB Least Significant Bit 

MINSR Multiple Input No-Feedback Shift Register 

MISR Multiple Input Shift Register 

MS Multiple Signature 

M S B Most Significant Bit 

NMOS N-typeMOS 

P G A Pin Grid Array 

P L A Programmable Logic Array 

P L D Programmable Logic Device 

P M Path Metric 

PMOS P-typeMOS 

pmw path metric word width 

PSC Programmable Space Compactor 

QPSK Quadrature Phase Shift Keying 

P R O M Programmable Read Only Memory 

R A M Random Access Memory 

R C C Codes Rate Compatible Convolutional Codes 

RCPC Codes Rate-Compatible Punctured Convolutional Codes 

R C R C Codes Rate-Compatible Repetition Convolutional Codes 

R O M Read Only Memory 

SNR Signal-to-Noise Ratio 

S R A M Static Random Access Memory 

SS Single Signature 

TPG Test Pattern Generator 

VLSI Very Large Scale Integration 

X O R Exclusive OR 


