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Abstract il

Abstract

This thesis presents a fully self-testable integrated circuit (IC) variable-rate Viterbi
decoder of constraint length K = 5. The chip is designed to decode convolutional codes
ranging from rate 7/8 to 1/4, derived from the same rate 1/2 mother code. The architecture
of the Viterbi decoder is bit-serial node-parallel. The incoming 8-level quantized channel
bits are input in parallel and converted to a serial stream. This reduces the amount of
interprocessor wiring area substantially, as there are only single wire connections between
the add-compare-select (ACS) units. High decoding speed is still achieved because the ACS

operation is carried out concurrently in each of the 16 states.

For the path memory, the register exchange technique was adopted. To reduce the ICs
silicon area, the path memory is full-custom layout. For the trellis interconnections between
consecutive memory stages, a novel state relabelling technique is proposed that reduces the
interconnect area substantially. The area savings are accomplished by redrawing the trellis

as sets of butterflies,

A major aspect of this IC is its very cost effective built-in self-test. The stuck-at fault
coverage is 99% with an overhead area of only 5%, which should not lower the manufacturing

yield significantly, and thus yield significant benefits.

A novel test algorithm was developed for the path memory. A specific but easy to
generate test pattern is applied to the inputs. A major advantage of this deterministic test
over pseudo-random techniques is that the test length is very short and, more importantly,

independent of the number of states of the Viterbi decoder.
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The rest of the circuit is tested by pseudo-random patterns combined with a multiple
signature analysis scheme. After finding an appropriate initial state of the test pattern
generator, it is possible to check for four identical signatures. Compared to checking only one
signature at the end of the test session, checking four identical signatures has the advantage
of reducing the probability of error escape, while avoiding complicated signature checking
for four different references. Moreover, test time can be reduced as faulty chips can be
discarded as soon as a signature does not match the reference. These advantageous features
are accomplished with circuit overhead equal to checking only a single signature at the end

of the test session. The only cost is a one-time logic simulation performed at design phase.
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1. Introduction

1.1 Background

A major concern in data transmission systems is how to deal with transmission errors due
to noise on the channel. In recent years there has been a great interest in convolutional codes
and their use in modern communications systems. Convolutional codes can be used solely
for forward error correction (FEC), or can be incorporated into transmission systems using
automatic-repeat-request (ARQ) schemes to ensure error-free transportation of data. The
advent of high-rate punctured convolutional codes has incresed the interest in convolutional
coding, as punctured codes can be readily decoded and still offer substantial coding gain.
Variable-rate FEC systems use a family of punctured convolutional codes derived from the

same low-rate mother code.

With a type II hybrid ARQ protocol, in addition to a block code that is used for error
detection only, a second code, usually a convolutional code, is used for error correction
[Kal93]. To improve the system throughput, variable code rates can be used [Hag88], [Kal90],
[Kal93]. The chosen code rate depends on the channel condition, round trip delay of the
data packets, and buffer size at the receiver. At the receiver end usually a Viterbi decoder,
suitable for decoding variable rates, performs the error correction step. The data packet is
then handed over to the block decoder for error detection. There are two basic ideas in
deploying variable rates with ARQ schemes: Adaptive Coding Rate (ACR) ARQ protocols
and Adaptive Incremental Redundancy (AIR) ARQ protocols [Kal93].

The Viterbi algorithm [Bha81, Hay88, Lin83] was introduced in 1967 by A. J. Viterbi

as a decoding algorithm for convolutional codes. Later, Forney found that it was in fact a
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maximum likelihood decoding algorithm for convolutional codes [For73]. In the past years
many architectures have been proposed to increase decoding speed. Fettweis [Fet90] [Fet91]
presented a 600 Mbit/s single chip Viterbi decoder for a four-state trellis. This high data
rate is achieved by introducing massive pipelining and parallel processing in each of several
Viterbi decoders, operating in parallel. A variable-rate Viterbi decoder was presented by
Yasuda [Yas83]. The decoder is of constraint length K = 7 and is capable of decoding rates
ranging from 1/2 up to 15/16. Single chip K = 7 Viterbi decoders of decoding speeds up
to 25 Mbit/s are readily available commercially [Qua93] [Sta91]. However, these have the
drawback of supporting only a very limited number of different rates.

The variable-rate Viterbi decoder described in this thesis will be part in a data link
protocol for mobile data communications deploying different code rates depending on the
channel conditions. The decoder is fully self-testable and is designed to decode any rate from
7/8 to 1/4. High code rates are obtained by puncturing (deleting bits) a 1/2 rate convolutional
code periodically, whereas low rate codes are obtained by repeating encoder output bits. The
advantage of using codes derived from the same 1/2 rate code is that only one 1/2 rate Viterbi
decoder plus some additional control logic can be used to decode all these codes.

The design methodology adopted here is top-down. The Viterbi decoder is split into
blocks of smaller and smaller size down to the gate or even the transistor level. The
decoder is implemented in Northern Telecom’s 1.2 pm double-metal CMOS technology.
Unfortunately, only very limited silicon area was available. As a consequence the decoder
is of constraint length K = 5. The maximum decoding speed is 12 Mbit/s channel rate. The
supported modulation schemes are binary phase shift keying (BPSK) and quadrature phase
shift keying (QPSK).

1.2 Contributions to Knowledge

Two major contributions can be found in this thesis. The first contribution to knowledge
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deals with reducing the silicon area of register exchange path memories. In a naive approach,
consecutive stages in the path memory are connected in an area wasting trellis manner.
Much of the silicon area can be saved when consecutive trellis stages are redrawn as sets
of butterflies. The butterfly approach reduces the number of vertical wire tracks between
memory stages from N, where N is the number of states of the Viterbi decoder, between

consecutive stages to 2 + 4 + ... + 2 + ... + N for log N stages.

The second novelty in this thesis is a very cost-effective test scheme to test a register-
exchange path memory. Instead of applying pseudo-random test vectors, the memory can
be tested more efficiently with deterministic test patterns. The test patterns are generated
easily from a counter, usually the test counter for pseudo-random test of other parts in the
circuit. The test length of a test session is three times the length of the path memory but
independent of the number of states of the Viterbi decoder. Since adjacent outputs have
complement values during a complete test session, an exclusive OR tree as compactor yields
zero for a fault-free path memory for every clock cycle. A bit-by-bit comparison with zero

eliminates any error escape.

1.3 Outline of Thesis

Chapter two introduces the reader to the basics of convolutional codes and their decoding
by the Viterbi algorithm. This chapter also introduces the concept of rate compatible
convolutional (RCC) codes. The family of codes is derived from the highest rate code

obtained from a mother rate 1/2 code by adding back previously deleted bits.

Chapter three is devoted to the decoder realization. First it discusses some possible
decoder architectures and gives an overview of metric normalization techniques. Then,
the two realizations of a path memory in use are introduced and compared. Finally, this

chapter discusses different implementation possibilities. Programmable logic devices, field
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programmable gate arrays, and application-specific integrated circuits are described and

compared.

Chapter four presents solutions to the implementation of the basic blocks of the variable-
rate Viterbi decoder. One section in this chapter is devoted to a new approach for wiring the
memory elements in the path memory. Redrawing consecutive stages of trellises as sets of

butterflies achieves considerable silicon-area savings in custom-layout path memories.

Chapter five starts with an introduction to built-in self-test. A later section describes
the implementation of a minimal hardware overhead multiple signature scheme that reduces
error escape and possibly test time. This chapter also presents a new, very cost effective
test algorithm for a register exchange path memory by deploying a deterministic test instead

of a pseudo-random test.

Chapter six gives some practical details about the fabricated chip and instructions on

how to operate the Viterbi decoder. Finally, chapter seven summarizes this thesis.
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2. Convolutional Encoding and Viterbi Decoding

2.1 Convolutional Codes

A convolutional code is a type of code where the encoder has memory. The n encoder
outputs not only depend on the k inputs at that time unit but also on m previous inputs.
Hence, the encoder has a memory order of m. If k > 1, m is defined as the maximum of all &
feedforward shift registers. The code is called an (n, k, m) convolutional code [Lin83]. The
ratio R = k/n is called the code rate. Without loss of generality, the following discussion is
restricted to 1/n rate codes. As an example, consider the encoder for a (2, 1, 3) binary code,

which is shown in Fig. 2.1. The binary input sequence x = (xg x; x2 ...) enters the encoder

i"’) oy®

w0 @ (\H

Exclusive OR
Memory Element Gate Multiplexer

Figure 2.1 Encoder for a (2, 1, 3) a binary code.

one bit at a time. The two output sequences yV = (yo" y;(1) y,(1) ) and y® = (yy(? y;?
y2(?) ...) are obtained by discrete convolution of the input sequence with the two encoder

impulse responses, whereby the impulse responses are the observed output sequences of the
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input sequence x = (1 0 0 ...). In general, there are n output sequences. As the encoder is
of memory m, the input can influence the output for at most m + 1 time units, called the
constraint length K. The impulse responses, called generator sequences, are written gt =
(g0 1V ... gn'V), 8 = (20® &1¥ ... gn®), ... 8" = (80™ gi™ ... gn™). For the
encoder in Fig. 2.1,

gt =@1o011)

(2.1)
g® = (@110,
The encoding equations can now be written as
vl'l:l - g|:1_|
y(2) = x % g(2)
2.2)

y(") = x % g(")7
where * denotes discrete convolution and all operations are in modulo 2 arithmetic. For all

[ = 0 the discrete convolution is given by

m
w = Y wsig? = a4 wiag?) -t wimd), 5= 1,2, @3)
t=0

i : . .
where x;; = 0 for all [ < i. The transmitted output sequence, the code word, y is obtained
by multiplexing the n output sequences yU, y®, ..., y™ into a single sequence. One can

also rewrite the encoding equations as a matrix multiplication
y = xG, (2.4)

where G is called the generator matrix and formed by interlacing the n generator sequences

gD, g@ . o™ and arranging them in the following matrix

T b I {1} 123 =} IO I (1 025 _ded -

B R O T O Wt ISl s S RN
G- 99 90 91 91 91 - Im19me1-Gmo1 Gm Gm |

(2.5)
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The blank elements are all zero and all operations are in modulo 2 arithmetic.

To find the output sequence, we can either compute the discrete convolution, calculate

the matrix multiplication, or simply shift the input sequence through the encoder. Let

x = (10011). (2.6)

Encoding x = (1 0 0 1 1) by the encoder from Fig. 2.1, yields

y = (110111001001 11 11). 2.7)

For reasons of clarity, since one input bit produces two output bits, the output sequence
is represented as a stream of bit pairs. For this finite length L information sequence, the
corresponding output sequence is of length n(L+m), where the last nm outputs are generated
after the last information bit has entered the encoder and is followed by zeros until the
encoder is cleared. This true code rate is given by L/n(L+m). In practical applications,
where the information sequences are long compared to the memory order, i. e., L > m, the

reduction in code rate due to clearing the encoder is negligible.

2.2 Convolutional Encoder

Since the encoder is a sequential circuit of memory m, we can describe its operation by
a state diagram. The state of the encoder is defined as the contents of the shift register. For
binary logic, the total number of states is N = 2™. Figure 2.2 shows the state diagram of

the encoder in Fig. 2.1. The states are labelled Sy, Sy,...,S,#-1with the arrows indicating the
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possible state transitions. The state transitions are labelled by their input/output pairs. The

1/10

Figure 2.2 State diagram of the (2,1,3) encoder of Fig 2.1.

state diagram in Fig. 2.2 is typical for any 1/n encoder with binary inputs. Each state is
reached from two states and is the origin of two state transitions to successor states since
one bit is shifted in and one bit is shifted out of the encoder memory at every clock cycle.
However, a more convenient way of displaying the state diagram, which becomes essential
in the decoding process, is to expand the state diagram in time. The resulting structure that
represents each discrete time step k with a state diagram is called a trellis diagram (Fig. 2.3).

The branches of a trellis are labelled with the encoder’s output corresponding to each state

Time
k
o| Sp @00 000
2 11 g
al s, &ll 001 &
00
S, &!! 010
00
00 upper
~_Szf}.1_ X ,,,,OAII__‘ half
01
S, &, 10 jower
S5 &) 101
10
S¢ &0 110
01
S, ®10 111

Figure 2.3 Trellis diagram for the encoder of Fig. 2.1.
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transition. What becomes apparent is that all “upward” branches in the trellis end in the
upper half where the binary representation of the states start with a “0” (000, 001, ..., 011).
This indicates that these upper states have been reached by encoding a “0” most recently.
Conversely, the lower half of the states, starting with “1”, is reached only by “downward”
branches. A “1” has been encoded. With the help of a trellis diagram encoding “by hand”
becomes very easy. For example, the message x = (1 1 0 1 0 ...) translates into moving
“down, down, up, down, up, ...” in the trellis diagram of Fig. 2.4, assuming the encoder

was initially cleared. The output sequence is obtained by just reading out the corresponding

Time
—_—
k k+1 k+2 k+3 k+4 k+5
«00 00 00 00 00
11 11 11 1 1
o!! 1 11 11 11
00 00 00 00 00
ol 11 1 1 11
00 00 00 00 00
o 00 00 00 00
11 1 11 11 11
¢! 01 01 01 01
10 10 10 10 10
o0 10 10 10 10
01 01 01 01 01
10 10 10 10 10
L0} 01 01 01 01
01 01 01 01 01
&0 10 10 10 10

Figure 2.4 Encoding of the input sequence x=(1 1010 ..).

branch labels yielding y = (11 10 10 11 10 ...).

The above discussion of convolutional codes and encoders considered only binary
symbols. In the case of v-ary symbols, the same theory applies. The encoder has v
states. In any 1/n code, v branches enter and leave each state in the state diagram or the
trellis diagram [Rad81]. This thesis will consider binary input sequences only. It is left to

the reader to generalize for v-ary symbols if necessary.
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2.3 Code Evaluation

Why send more bits over the channel than are actually needed to represent a message?
Unfortunately, noise on the channel may change a “1” into a “0” or vice versa. If all bit
combinations were valid code words, noise could change the original message into another
one. Thus, by introducing redundancy (in the example of Fig. 2.1 one input bit becomes
two output bits) and not allowing all possible bit combinations as valid output sequences
(starting from S,, 11 11 11 11 is not an allowed sequence), enables the decoder to correct bit
errors randomly introduced on the channel to a certain degree. The figure of merit defined

in convolutional codes is the free distance
a4 P L "
dfree = min {d(y Y ) T £ oz }, (2.8)

where y’ and y” are the code words corresponding to the information sequences x’ and x”,
respectively [Lin83]. The distance d(e,*) of two code words is defined as the number of bits
where they differ. Since a convolutional code is a linear code, df,. is also the minimum-
weight output sequence produced by any nonzero input sequence. In the trellis diagram dfe.
is the minimum weight of all paths that diverge and converge with the all-zero state Sg. The
weight is defined as the number of non-zero components of y. In our example code, the
sequence X = (1 1 00 0 ...) produces the minimum-weight path with a weight of six (Fig.
2.5). In general dj,, increases with increasing encoder memory m [Hac89]. The bigger
dfree is, the more channel bit errors on the channel are necessary to change a transmitted

sequence into another valid sequence that hence yields undetectable errors.

2.4 Punctured and Repetition Codes

2.4.1 Punctured Convolutional Codes

Usually, the design of an error correction coding system requires the selection of a fixed

rate code with a certain error correction capability depending on data protection requirements
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Time
—_—
k k+1 k+2 k+3 k+4 k+5

QW—————— 00— 000 »@-00 »8-00 /
11

-

00

.

Figure 2.5 The input sequence x = (1 1 0 0 0 ...) produces the minimum-weight path with a weight of six.

and the channel noise. Ideally, one may wish to change the code rate depending on the current
channel noise and/or the information significance [Hag88, Kal90]. The idea is to use a mother
rate 1/n convolutional code and periodically puncture the code with period P. Puncturing a
code means deleting certain bits of the 1/n rate code by following a specific perforation
pattern. This yields a family of rate-compatible punctured convolutional (RCPC) codes with
decreasing rates P/(P+1), where [ can vary from 1 to (n-1)P. Rate compatibility requires that
all code bits of a high rate code are used in the lower rate codes. Figure 2.6a shows the
trellis structure of a standard rate R=2/3, m=2 code and Fig. 2.6b shows its equivalent
punctured 1/2 rate code. The X’s indicate that those bits are deleted in the encoder and not

sent through the channel.

The construction of a family of RCPC codes from a known “best” high rate (n-1)/n
punctured convolutional code, obtained from a 1/2 rate code, is straightforward [Kal90].
“Best” in this case means having the best error performance, not necessarily the largest free
distance df. [Cai79]. As the error performance highly depends on the deleting bit positions,
a “best” high rate code is found by examining all possible bit deletion positions. Tables of

high rate (n-1)/n punctured codes with maximum free distance for 3 < n < 14 and memory
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Figure 2.6 a) Trellis of an R=2/3, m=2 code b) its equivalent punctured R=1/2 code.

2<m<8and3 <n<17and memory m = 6 are given in [Yas84] and [Yas83], respectively.
Starting with the (n-1)/n high rate code, rate-compatible lower rate codes are obtained by
adding back the bits that were initially deleted to get the (rn-1)/n rate code. The representation
of the perforation pattern is usually in the form of a matrix P, the perforation matrix. The

following is an example of a perforation matrix of a rate 4/5 code:
1110
Py = [1 00 1]. (2.9)

The matrix is of size n x P, where a zero means that this code bit is not transmitted. The
two (» in general) represent the two (n) branches in the encoder that are multiplexed to form
a single output sequence (recall Fig. 2.1). In the above example matrix both code bits of
the first information bit are transmitted because the first column contains two “1”s. For the
second and the third information bits only the first code bit, which is the code bit of the
upper branch of the encoder, is transmitted. Finally, for the fourth information bit, only the
second code bit, from the lower branch, is output to the channel. This procedure repeats until

the end of the message is reached. Suppose the error correction capability is not sufficient
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to overcome the current channel noise. Filling up the “0”s in Py with “1”s,

1111 1111
]’P3_ [1 10 1]’P4" {1 11 1]’ (2.10)

finally results in the mother 1/2 rate code. This procedure generates a family of rate
compatible codes with incremental redundancy. Determining their performance must be
achieved through simulations. An effective system could make efficient use of the channel
by only retransmitting the newly added bits and combining them with the previously received

erroneous message [Kal90].

2.4.2 Repetition Convolutional Codes

Equivalently to constructing a family of RCPC codes by adding ones into the perforation
matrix of the (n-1)/n high rate code, a family of rate-compatible repetition convolutional
(RCRC) codes can be generated by replacing “1”s by higher values (“2”, “37,...) without
any limit [Kal90]. The matrix that represents an RCRC code is called a repetition matrix

and is denoted Q. As an example, a 4/11 rate code would be represented by

2 1 2 1]’ 2.11)

Q= [2 111
where a “2” means that this particular code bit is sent twice. In Qq, the first and every other
fourth information bit will produce four channel bits because the first column in the repetition
matrix is 2-2 (repeat both the upper and the lower branch of the encoder). Two repetition
codes obtained from the same original code are said to be rate-compatible if every element
of the repetition matrix of the lower rate code is equal or greater than its corresponding
element in the repetition matrix of the higher rate code. A 4/13 rate code, rate-compatible

to the code of Qq, could be of the form:

— N

(2.12)

(I N
DN =

|

—_ =
—_—
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2.5 Viterbi Decoding

The Viterbi algorithm [Bha81, Hay88, Lin83] was introduced in 1967 by A. J. Viterbi
as a decoding algorithm for convolutional codes. Later, Forney found that it was in fact a

maximum likelihood decoding algorithm for convolutional codes [For73].

Let x = (xp, .., x.-1) be the information sequence of L bits encoded into the code word
Y = (Yo, --» YL+m-1), Where yi = y1i, ¥2i, ..., ¥ni, Of length n(L+m). The received sequence is
denoted by r = (rg, .., FLym-1) With r; = ry3, 74, ..., nj- As a maximum likelihood decoder,
the Viterbi algorithm attempts to find the sequence § that is closest to the received sequence
r. Assuming equiprobable input data sequences, the decoder chooses the path through a
trellis that maximizes P(r/y), where the conditional probability P(r/y) is the likelihood of the
received sequence r, given that y was sent. In a discrete memoryless channel (DMC) [Lin83],

every received symbol r;j is only dependent on the corresponding symbol y;, and hence,

L+m-—1 n(L+m—1)
P(r/y) = [ Pai/y) = T[] Plrilv). (2.13)
i=0 j=0

Generally, it is more convenient to use the logarithm of the likelihood function (3.1) because
the product turns into a sum, which can be more easily implemented. Since the logarithm
is a monotonically increasing function, it does not alter the final result and (3.1) becomes

the log-likelihood function

L+m—1 n{L+m—1)
log P(r/y) = . logP(rify;) = Y logP(rj/y;). (2.14)
1=0 §=0

The negative log-likelihood function —log P(r/y) is called the path metric associated with
the path y. The terms —log P(ri/y;) are called the branch metrics [Mag90]. Let the terms
—log P(rj/y;) be called the partial branch metrics, i. e., the metrics from each of the channel
symbols. The problem of maximizing the likelihood function has been transformed into

minimizing the path metric.
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For a binary symmetric channel (BSC) or hard-quantized channel, the received sequence
r is binary as shown in Fig. 2.7a, where p denotes the channel transition probability.
Minimizing the path metric is equivalent to minimizing the Hamming distance, the total
number of bits of § that differ from those of r. In the case of a soft-quantized DMC, which
can be seen in Fig. 2.7b (P(0), P(1),.., P(7) are transition probabilities), the log-likelihood

function must be used. However, in terms of implementation, since metrics have to be

binary input binary output binary input P(O)»V.
0 L 0 o)
p
p eight level output
1 1 1 é
P P(7)

a) b)

Figure 2.7 a) Hard-quantized channel (BSC) b) Soft-quantized channel.

represented in binary form, it is more convenient to use integers as metrics. In order to
round off, the log P(rj/y;) metric can be replaced by «a; log P[(rj/y;) + «3], where «q is
a real number and o, a non-negative real number [Bha81]. Yasuda [Yas81] showed that
the decoder performance is rather insensitive to the particular choice of the o’s and the
threshold spacing of the quantization. Simulations [Yas81] [Mag90] showed that an eight-
level quantized channel outperforms a BSC by about 2dB. Thus, achieving the same bit
error rate (BER) requires about 2dB less signal-to-noise ratio SNR. Increasing the number
of quantization levels to infinity, an ideal soft-decision DMC, gains only another 0.25dB. A
typical metric table is shown in Tab. 2.1.

By definition, maximum likelihood decoding requires the comparison of the received
sequence with all possible transmitted sequences before making a decision. For an L-bit-
long binary input sequence, 2~ accumulated metrics have to be compared, and the sequence

with the lowest metric is chosen as the estimate §. However, the exponential increase of
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Channel Output
Partial Branch Metricsy | O | 1 | 2 | 3 |4 5| 6| 7

Channel Input 0 Ol 123145617

(encoder output) 1 716|514 ]|1312|1]0

Table 2.1 Metric table for a binary input-eight-level output DMC.

decoding effort with L makes a “brute force” maximum likelihood decoder impractical to
implement. One of the more practical but suboptimum algorithms is sequential decoding
[Lin83]. In sequential decoding, the decoding of the received message is performed on one
branch at a time. Starting from the root node of the tree, the algorithm selects that branch

that has the lowest accumulated metric [Hac89].

With Viterbi decoding, there is a fixed number of states to be examined, one for each state
of the encoder. The number of states is independent of the sequence length L, but grows
exponentially with the constraint length K. This limits practical codes to short constraint
lengths (K < 8), although a Viterbi decoder of K = 15 has been reported recently [Col92].
For each state of the trellis, the path metric is updated by adding the branch metrics of
the entering branches, whereby the branch metrics are obtained by comparing the received
symbol with the expected symbols for all possible state transitions (Fig. 2.8). For better
readability the following examples will be restricted to constraint length K = 3.  The
decoder stores the lower path metric and keeps its associated path in the path memory as
the “survivor” and discards the other one. This is done in each state and for every time

unit. Hence, the decoder keeps only N = 2K-1

paths and path metrics over the entire message
length. In the case of a tie in a state, i. e., where both updated path metrics have the same
value (state 10 in Fig. 2.8), there are two maximum likelihood paths through this node. The
survivor is usually selected arbitrarily. At the end of the message, a tail is appended to clear

the encoder and bring the Viterbi decoder into state Sg. As the trellis is only extended into
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expected symbols

states @

00 1 QOO
11 5
=) @ S
o 23 el <
8 00, 4
=3 ®
5 5
g 10 3 B
10 a2 (01 @ 5
(7] 0'
01 3
11 3 ‘10 i
4

received "00"
Figure 2.8 Updating the path metrics by adding the branch metrics.

branches corresponding to a “0”, there is finally a single survivor, the decoded maximum

“I”

likelihood sequence. A decoding example can be seen in Fig. 2.9. The “I” on the branches

decoded sequence tail
0 1 1 0 1 0 0
2 2 2 -

|b
1 T2
00 1
received sequence

Figure 2.9 Maximum likelihood Viterbi decoding example. A tail is appended to clear the encoder.

indicates that those paths are discarded.
The great advantage of the Viterbi decoder is the constant number of operations at
successive levels. These are always of the same nature and are not very sophisticated. The

main disadvantage however is that it requires to wait for the tail to get a single survivor.
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For long information sequences, this implies a long delay before delivering the first symbol.
On the other hand, using only short messages greatly reduces the code rate unnecessarily.
Simulations have shown that all N surviving paths stem from a single node four to five
constraint lengths earlier with high probability [Lin83]. In the example in Fig. 2.10, the
survivors (solid bold and dashed lines) merge even in less than four times the constraint

length. This also solves the problem of a huge path memory in the case of very long

decoded sequence

received sequence
Figure 2.10 All survivors stem from the same sequence.

messages. There is no need to store 251

L-bit paths plus their metrics but only paths where
7 < L and 7 is about four to five times the constraint length. Hence, after 7 decoding steps
the path memory is full and a decision has to be made. Among several decision-making

strategies, there are [Sny83]:

¢ The oldest (first) bit from an arbitrary survivor is selected;
* A majority vote is taken from all N = 2%°! first information bits, that is the oldest bit
that appears most often in all paths is output;

e The survivor with the lowest metric is chosen, and its oldest bit is output (solid bold

line in Fig. 2.10).
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Clearly, the above is not a maximum likelihood decoder anymore. However, the performance
degradation is negligible if 7 is not too short. In fact, a Viterbi decoder may start decoding
from any state, and after producing about four to five times the constraint length of unreliable

information bits, will resyn<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>