
Single Chip Variable Rate Viterbi
Decoder of Constraint Length K = 5

By
Peter Bonek

Dipl.-Ing. Technische Universitat Vienna, Austria, 1991

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENT FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in
THE FACULTY OF GRADUATE STUDIES

ELECTRICAL ENGINEERING

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

1993

© Peter Bonek, 1993

In presenting this thesis In partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of t£ccl\A^y^^ £*vv|/okvtgA>^/

The University of British Columbia
Vancouver, Canada

Date ^...ji^ 10, /«S S 3

DE-6 (2/88)

Abstract

This thesis presents a fully self-testable integrated circuit (IC) variable-rate Viterbi

decoder of constraint length K = 5. The chip is designed to decode convolutional codes

ranging from rate 7/8 to 1/4, derived from the same rate 1/2 mother code. The architecture

of the Viterbi decoder is bit-serial node-parallel. The incoming 8-level quantized channel

bits are input in parallel and converted to a serial stream. This reduces the amount of

interprocessor wiring area substantially, as there are only single wire connections between

the add-compare-select (ACS) units. High decoding speed is still achieved because the ACS

operation is carried out concurrentiy in each of the 16 states.

For the path memory, the register exchange technique was adopted. To reduce the ICs

silicon area, the path memory is full-custom layout. For the trellis interconnections between

consecutive memory stages, a novel state relabelling technique is proposed that reduces the

interconnect area substantially. The area savings are accomplished by redrawing the trellis

as sets of butterflies,

A major aspect of this IC is its very cost effective built-in self-test. The stuck-at fault

coverage is 99% with an overhead area of only 5%, which should not lower the manufacturing

yield significantly, and thus yield significant benefits.

A novel test algorithm was developed for the path memory. A specific but easy to

generate test pattern is applied to the inputs. A major advantage of this deterministic test

over pseudo-random techniques is that the test length is very short and, more importantly,

independent of the number of states of the Viterbi decoder.

The rest of the circuit is tested by pseudo-random patterns combined with a multiple

signature analysis scheme. After finding an appropriate initial state of the test pattern

generator, it is possible to check for four identical signatures. Compared to checking only one

signature at the end of the test session, checking four identical signatures has the advantage

of reducing the probability of error escape, while avoiding complicated signature checking

for four different references. Moreover, test time can be reduced as faulty chips can be

discarded as soon as a signature does not match the reference. These advantageous features

are accomplished with circuit overhead equal to checking only a single signature at the end

of the test session. The only cost is a one-time logic simulation performed at design phase.

Table of Contents

Abstract ii

List of Figures vii

Acknowledgments xi

1. Introduction 1

1.1. Background 1

1.2. Contributions to Knowledge 2

1.3. Outline of Thesis 3

2. Convolutional Encoding and Viterbi Decoding 5

2.1. Convolutional Codes 5

2.2. Convolutional Encoder 7

2.3. Code Evaluation 10

2.4. Punctured and Repetition Codes 10

2.4.1. Punctured Convolutional Codes 10

2.4.2. Repetition Convolutional Codes 13

2.5. Viterbi Decoding 14

3. Viterbi Decoder Realization 21

3.1. Branch Metric Unit 21

3.2. Decoder Architectures 22

3.2.1. Bit-Parallel Node-Parallel Architecture 22

3.2.2. Bit-Parallel Node-Serial Architecture 23

3.2.3. Shared Nodes Architecture 23

3.2.4. Bit-Serial Node-Parallel Architecture 24

3.3. Path Metric Normalization 25

3.3.1. Variable Shift Normalization 26

3.3.2. Fixed Shift Normalization 26

3.3.3. Modulo Normahzation 26

3.4. Path Memory 28

3.4.1. Traceback Method 28

3.4.2. Register Exchange Technique 32

3.5. Design Implementation Options 34

3.5.1. Programmable Logic Devices 34

3.5.2. Field Programmable Gate Arrays 36

3.5.3. Application Specific Integrated Circuit 38

4. Design of the Variable-Rate Viterbi Decoder 40

4.1. General Considerations 40

4.2. Branch Metric Unit 41

4.3. Add-Compare-Select Unit 42

4.3.1. Layout of Add-Compare-Select Units 45

4.3.2. Pairing of Add-Compare-Select-Units 52

4.4. Path Memory with Novel Area-Saving Layout 53

4.5. Code Memory 58

4.6. Control Block 59

5. Built-in Self-Test 60

5.1. Introduction to Built-in Self-Test 60

5.2. Multiple Signature Analysis 61

5.2.1. Fuzzy Multiple Signature Analysis 62

5.2.2. Minimal Hardware Multiple Signature Analysis 64

5.3. Implementation of the Minimal Hardware MS Scheme 67

5.4. Novel Test Scheme for the Register Exchange Path Memory 71

5.4.1. Test Algorithm for Path Memory 74

5.4.2. Output Data Evaluation 79

5.4.3. Algorithm Performance 81

5.5. Test for the Add-Compare-Select Block 82

6. Prototype Chip 84

6.1. Chip Specifications 84

6.2. Design Tools 84

6.3. Pin Description 85

6.4. Chip Layout 89

6.5. Test Results 89

7. Conclusion 94

References 96

Appendix A. Cell Layouts 101

Appendix B. Pin Locations and Bonding Diagram 107

Appendix C. List of Acronyms 109

List of Figures

Figure 2.1 Encoder for a (2, 1, 3) a binary code. 5

Figure 2.2 State diagram of the (2,1,3) encoder of Fig 2.1. 8

Figure 2.3 Trellis diagram for the encoder of Fig. 2.1. 8

Figure 2.4 Encoding of the input sequence x = (1 1 0 1 0 . . .) . 9

Figure 2.5 The input sequence x = (l 1 0 0 0 . . .) produces the minimum-weight path

with a weight of six. 11

Figure 2.6 a) Trellis of an R=2/3, m=2 code b) its equivalent punctured R=l/2 code. 12

Figure 2.7 a) Hard-quantized channel (BSC) b) Soft-quantized channel. 15

Figure 2.8 Updating the path metrics by adding the branch metrics. 17

Figure 2.9 Maximum likelihood Viterbi decoding example. A tail is appended to clear

the encoder. 17

Figure 2.10 A l l survivors stem from the same sequence. 18

Figure 3.1 The basic blocks of a Viterbi decoder. 21

Figure 3.2 Block diagram of a bit-parallel node-parallel Viterbi decoder. 22

Figure 3.3 Block diagram of a bit-parallel node-serial architecture. 23

Figure 3.4 Block diagram of a bit-serial node-parallel architecture. 24

Figure 3.5 Architecture for modulo normalization with 2's complement subtracter. 27

Figure 3.6 An example for the modulo normalization with the modified comparison

rule. 28

Figure 3.7 Traceback memory. 29

Figure 3.8 Four-state trellis to determine the path information stored in the traceback

memory. 30

Figure 3.9 An example for the memory entry in the traceback method. 30

Figure 3.10 Path memory contents of the example of Fig. 3.9. 31

Figure 3.11 Block diagram of the basic traceback path memory. 31

Figure 3.12 Four-state register exchange path memory. 32

Figure 3.13 Improved register exchange path memory without unnecessary memory

stages. 33

Figure 3.14 PLA-type structure of a PLD. 35

Figure 3.15 FPGA architecture. 36

Figure 3.16 Typical standard cell ASIC structure. 38

Figure 4.1 Convolutional encoder 40

Figure 4.2 Implementation of the bit-serial branch metric unit. 41

Figure 4.3 An example of the branch metric calculation. 42

Figure 4.4 Block diagram of a bit-serial ACS unit. 44

Figure 4.5 Timing diagram for the concurrent carry reset and flip-flop FF trigger. 44

Figure 4.6 CMOS transmission gate. 45

Figure 4.7 Transmission gate multiplexer. 46

Figure 4.8 Structure of the "clocked inverter" dynamic D-Master-Slave flip-flop. 47

Figure 4.9 Clock traces for a dynamic D-Master-Slave flip-flop. 47

Figure 4.10 a) Minimum-size transistor with channel width w = 2/im, b) transistor to

achieve minimum cell height with w = 3.1/im. 48

Figure 4.11 Flip-flop waveforms with clock skew = 0.7 ns. 49

Figure 4.12 Cross section of PMOS transistor with overlap capacitances. 49

Figure 4.13 Waveforms of the improved D-flip-flop with transistor width of PI of 13/im.51

Figure 4.14 Transmission gate exclusive-or gate. 51

Figure 4.15 a) Conventional A C S U wiring, b) A C S U pairing that saves half the

interconnect wiring. 53

Figure 4.16 6-transistor dynamic latch. 54

Figure 4.17 Two non-overlapping clocks CB and C K for the path memory. 54

Figure 4.18 Rearrangement of a) the trellis diagram as b) sets of butterflies . 56

Figure 4.19 By using the empty spaces memory cells can be staggered to save Si-area.57

Figure 5.1 Block diagram of BIST. 60

Figure 5.2 Example of the FMS scheme with the three references: 010, 111, O i l . 63

Figure 5.3 An example compactor. 66

Figure 5.4 12-stage maximal-length shift register. 67

Figure 5.5 Reconfiguration of a) a finite state machine as b) a TPG LFSR in test mode.68

Figure 5.6 Four identical 5-bit (00000) signatures evenly spread in time. 70

Figure 5.7 Four example faults. 72

Figure 5.8 Applying complement values to the multiplexers of different halves

propagates the values of each state to the next stage. 75

Figure 5.9 Example of an input pattern for the path memory test. 76

Figure 5.10 Four sets of test patterns are input to the path memory. 78

Figure 5.11 Examples of detected even number of faults and an undetected double fault.80

Figure 5.12 Example of the bit-by-bit comparison in the ACS block. 83

Figure 6.1 Pad placement on the chip. 85

Figure 6.2 Floor plan of the Viterbi decoder. 89

Figure 6.3 Metal 1 and metal 2 layer of the chip that show the path memory on the

upper half and the ACS block in the lower right comer. The rest is placed

by the Cadence™ Place and Route. 90

Figure 6.4 "Power meter" for HSPICE™ to estimate the power consumption. 92

Figure 6.5 Estimated power consumption up to the maximum frequencies. 92

Figure A . 1 X O R layout. 102

Figure A.2 Layout of a resetable D-flip-flop. 103

Figure A . 3 Layout of a path memory cell, consisting of a multiplexer on the left and a

dynamic D-flip-flop on the right. 104

Figure A.4 Adder layout. 105

Figure A.5 Multiplexer layout. 106

Figure B . l Pin location of the chip on a 68-pin PGA. 107

Figure B.2 Bonding diagram to match the pads on the silicon chip to the pins of the

P G A package. 108

A cknowledgments x i

Acknowledgments

I want to take the opportunity to thank my supervisors Dr. André Ivanov and Dr. Samir

Kallel for their constant encouragement and valuable guidance I was fortunate to receive in

the past year. Their helpful comments and critical questions made research interesting for me.

I would also like to thank my colleague Yuejian Wu for his helpful discussions on ideas how

to implement efficient built-in self-tests. Especially, I thank Yuejian for letting me implement

his idea of multiple signature analysis, which improved the test quality dramatically. Special

thanks go to Dave Gagne, our VLSI-tool guru. Without his help it would not have been

possible to finish the design and layout of the chip in a reasonable time. Dave had quick

solutions to almost any problem relating the use of our VLSI tool. Here, I would like

to thank the Canadian Microelectronics Corporation for providing me both hardware and

software tools for VLSI design and providing me access to Northern Telecom's fabrication

process. I also want to thank the Austrian Government and the Austrian Federal Chamber of

Commerce for their financial support that made this work possible. I would like to express

my sincere thanks to my girlfriend Claudia Kiinzel, who paved the way to the successful

completion of this project with her love and support. I am extremely grateful to my parents,

who always encourage and support whatever I do. Without them nothing would have been

possible.

1. Introduction

1.1 Background

A major concern in data transmission systems is how to deal with transmission errors due

to noise on the channel. In recent years there has been a great interest in convolutional codes

and their use in modern communications systems. Convolutional codes can be used solely

for forward error correction (FEC), or can be incorporated into transmission systems using

automatic-repeat-request (ARQ) schemes to ensure error-free transportation of data. The

advent of high-rate punctured convolutional codes has incresed the interest in convolutional

coding, as punctured codes can be readily decoded and still offer substantial coding gain.

Variable-rate FEC systems use a family of punctured convolutional codes derived from the

same low-rate mother code.

With a type II hybrid A R Q protocol, in addition to a block code that is used for error

detection only, a second code, usually a convolutional code, is used for error correction

[Kal93]. To improve the system throughput, variable code rates can be used [Hag88], [Kal90],

[Kal93]. The chosen code rate depends on the channel condition, round trip delay of the

data packets, and buffer size at the receiver. At the receiver end usually a Viterbi decoder,

suitable for decoding variable rates, performs the error correction step. The data packet is

then handed over to the block decoder for error detection. There are two basic ideas in

deploying variable rates with A R Q schemes: Adaptive Coding Rate (ACR) A R Q protocols

and Adaptive Incremental Redundancy (AIR) A R Q protocols [Kal93].

The Viterbi algorithm [Bha81, Hay88, Lin83] was introduced in 1967 by A . J. Viterbi

as a decoding algorithm for convolutional codes. Later, Forney found that it was in fact a

maximum likelihood decoding algorithm for convolutional codes [For73]. In the past years

many architectures have been proposed to increase decoding speed. Fettweis [Fet90] [Fet91]

presented a 600 Mbit/s single chip Viterbi decoder for a four-state trellis. This high data

rate is achieved by introducing massive pipelining and parallel processing in each of several

Viterbi decoders, operating in parallel. A variable-rate Viterbi decoder was presented by

Yasuda [Yas83]. The decoder is of constraint length K = l and is capable of decoding rates

ranging from 1/2 up to 15/16. Single chip K = 1 Viterbi decoders of decoding speeds up

to 25 Mbit/s are readily available commercially [Qua93] [Sta91]. However, these have the

drawback of supporting only a very limited number of different rates.

The variable-rate Viterbi decoder described in this thesis will be part in a data link

protocol for mobile data communications deploying different code rates depending on the

channel conditions. The decoder is fully self-testable and is designed to decode any rate from

7/8 to 1/4. High code rates are obtained by puncturing (deleting bits) a 1/2 rate convolutional

code periodically, whereas low rate codes are obtained by repeating encoder output bits. The

advantage of using codes derived from the same 1/2 rate code is that only one 1/2 rate Viterbi

decoder plus some additional control logic can be used to decode all these codes.

The design methodology adopted here is top-down. The Viterbi decoder is split into

blocks of smaller and smaller size down to the gate or even the transistor level. The

decoder is implemented in Northern Telecom's 1.2 ^im double-metal CMOS technology.

Unfortunately, only very limited silicon area was available. As a consequence the decoder

is of constraint length K= 5. The maximum decoding speed is 12 Mbit/s channel rate. The

supported modulation schemes are binary phase shift keying (BPSK) and quadrature phase

shift keying (QPSK).

1.2 Contributions to Knowledge

Two major contributions can be found in this thesis. The first contribution to knowledge

deals with reducing the silicon area of register exchange path memories. In a naive approach,

consecutive stages in the path memory are connected in an area wasting trellis manner.

Much of the silicon area can be saved when consecutive trellis stages are redrawn as sets

of butterflies. The butterfly approach reduces the number of vertical wire tracks between

memory stages from A ,̂ where is the number of states of the Viterbi decoder, between

consecutive stages to 2 + 4 + ... + 2' + ... + for log A'̂ stages.

The second novelty in this thesis is a very cost-effective test scheme to test a register-

exchange path memory. Instead of applying pseudo-random test vectors, the memory can

be tested more efficientiy with deterministic test patterns. The test patterns are generated

easily from a counter, usually the test counter for pseudo-random test of other parts in the

circuit. The test length of a test session is three times the length of the path memory but

independent of the number of states of the Viterbi decoder. Since adjacent outputs have

complement values during a complete test session, an exclusive OR tree as compactor yields

zero for a fault-free path memory for every clock cycle. A bit-by-bit comparison with zero

eliminates any error escape.

1.3 Outline of Thesis

Chapter two introduces the reader to the basics of convolutional codes and their decoding

by the Viterbi algorithm. This chapter also introduces the concept of rate compatible

convolutional (RCC) codes. The family of codes is derived from the highest rate code

obtained from a mother rate 1/2 code by adding back previously deleted bits.

Chapter three is devoted to the decoder realization. First it discusses some possible

decoder architectures and gives an overview of metric normalization techniques. Then,

the two realizations of a path memory in use are introduced and compared. Finally, this

chapter discusses different implementation possibilities. Programmable logic devices, field

programmable gate arrays, and application-specific integrated circuits are described and

compared.

Chapter four presents solutions to the implementation of the basic blocks of the variable-

rate Viterbi decoder. One section in this chapter is devoted to a new approach for wiring the

memory elements in the path memory. Redrawing consecutive stages of trellises as sets of

butterflies achieves considerable silicon-area savings in custom-layout path memories.

Chapter five starts with an introduction to built-in self-test. A later section describes

the implementation of a minimal hardware overhead multiple signature scheme that reduces

error escape and possibly test time. This chapter also presents a new, very cost effective

test algorithm for a register exchange path memory by deploying a deterministic test instead

of a pseudo-random test.

Chapter six gives some practical details about the fabricated chip and instructions on

how to operate the Viterbi decoder. Finally, chapter seven summarizes this thesis.

2, Convolutional Encoding and Viterbi Decoding

2.1 Convolutional Codes

A convolutional code is a type of code where the encoder has memory. The n encoder

outputs not only depend on the k inputs at that time unit but also on m previous inputs.

Hence, the encoder has a memory order of m. lîk> 1, m is defined as the maximum of all k

feedforward shift registers. The code is called an (n, k, m) convolutional code [Lin83]. The

ratio R = k/n is called the code rate. Without loss of generality, the following discussion is

restricted to l/n rate codes. As an example, consider the encoder for a (2, 1, 3) binary code,

which is shown in Fig. 2.1. The binary input sequence x = (XQ xi X2 ...) enters the encoder

Exclusive OR

Memory Element Gate Multiplexer

Figure 2.1 Encoder for a {2, 1, 3) a binary code.

one bit at a time. The two output sequences ŷ ^̂ = (yo^^^ y/^^ y2^^^... j and y*̂^̂ = (yo^^^ y/^^

y2^^^ ...) are obtained by discrete convolution of the input sequence with the two encoder

impulse responses, whereby the impulse responses are the observed output sequences of the

input sequence x = (1 0 0 ...)• In general, there are n output sequences. As the encoder is

of memory m, the input can influence the output for at most m + 1 time units, called the

constraint length K. The impulse responses, called generator sequences, are written g*̂^̂ =

(go^'^ gP ... gJ'^), = (gé'^ gP ... gJ'^h g(") = r̂ ô "̂ gP ... gJ"^). For the
encoder in Fig. 2.1,

g(i) = (10 11)
(2.1)

g('^ = (1 1 1 1).

The encoding equations can now be written as

y(2) ^ ^ ^ g(2)

y(") = X * g("),

(2.2)

where * denotes discrete convolution and all operations are in modulo 2 arithmetic. For all

/ > 0 the discrete convolution is given by
m

yp^ = J2 ^ ' - ^ F ^ = ^ r f ^ + ^ ' - i ^ i ' ^ + •••+ ^i-m9ii\ J = 1,2, (2.3)

i = 0

where xi.i = 0 for all / < i. The transmitted output sequence, the code word, y is obtained

by multiplexing the n output sequences y'^^\ ŷ \̂ ŷ "̂ into a single sequence. One can

also rewrite the encoding equations as a matrix multiplication
y = x G , (2.4)

where G is called the generator matrix and formed by interlacing the n generator sequences

g(i)̂ g(2)^ ^ g(«) arranging them in the following matrix

yn 9o ..9o di 91 .-91 92 92 ••92 ••• 9m y m ••ym
h) h) U) h h) in) (1) (2) in) (1) (2)

G = ^0 ^0 ••9Q 9i 9\ .-91 ••• 9m-l9m-l--9m-l 9m 9m

(2.5)

The blank elements are all zero and all operations are in modulo 2 arithmetic.

To find the output sequence, we can either compute the discrete convolution, calculate

the matrix multiplication, or simply shift the input sequence through the encoder. Let

For reasons of clarity, since one input bit produces two output bits, the output sequence

is represented as a stream of bit pairs. For this finite length L information sequence, the

corresponding output sequence is of length n(L+m), where the last nm outputs are generated

after the last information bit has entered the encoder and is followed by zeros until the

encoder is cleared. This true code rate is given by L/n(L+m). In practical applications,

where the information sequences are long compared to the memory order, i . e., L m, the

reduction in code rate due to clearing the encoder is negligible.

2.2 Convolutional Encoder

Since the encoder is a sequential circuit of memory m, we can describe its operation by

a state diagram. The state of the encoder is defined as the contents of the shift register. For

binary logic, the total number of states is N = 2"^. Figure 2.2 shows the state diagram of

the encoder in Fig. 2.1. The states are labelled So, Si,...,S2A^-iwith the arrows indicating the

X = (1 0 0 1 1). (2.6)

Encoding x = (1 0 0 1 1) by the encoder from Fig. 2.1, yields

y = (11 01 11 00 10 01 11 11). (2.7)

possible state transitions. The state transitions are labelled by their input/output pairs. The

Figure 2.2 State diagram of the (2,1,3) encoder of Fig 2.1.

State diagram in Fig. 2.2 is typical for any l/n encoder with binary inputs. Each state is

reached from two states and is the origin of two state transitions to successor states since

one bit is shifted in and one bit is shifted out of the encoder memory at every clock cycle.

However, a more convenient way of displaying the state diagram, which becomes essential

in the decoding process, is to expand the state diagram in time. The resulting structure that

represents each discrete time step k with a state diagram is called a trellis diagram (Fig. 2.3).

The branches of a trellis are labelled with the encoder's output corresponding to each state

Time

k k+1 k+2 k+3

half

Figure 2.3 Trellis diagram for the encoder of Fig. 2.1.

transition. What becomes apparent is that all "upward" branches in the trellis end in the

upper half where the binary representation of the states start with a "0" (000, 001, ...,011).

This indicates that these upper states have been reached by encoding a "0" most recently.

Conversely, the lower half of the states, starting with "1", is reached only by "downward"

branches. A "1" has been encoded. With the help of a trellis diagram encoding "by hand"

becomes very easy. For example, the message x = (1 1 0 10 . . .) translates into moving

"down, down, up, down, up, ..." in the trellis diagram of Fig. 2.4, assuming the encoder

was initially cleared. The output sequence is obtained by just reading out the corresponding

Time

k k+1 k+2 k+3 k+4 k+5

Figure 2.4 Encoding of the input sequence x = (1 1 0 1 0 ...).

branch labels yielding y = (11 10 10 11 10 ...).

The above discussion of convolutional codes and encoders considered only binary

symbols. In the case of v-ary symbols, the same theory applies. The encoder has u"^

states. In any l/n code, v branches enter and leave each state in the state diagram or the

trellis diagram [RadSl]. This thesis will consider binary input sequences only. It is left to

the reader to generalize for v-axy symbols if necessary.

2.3 Code Evaluation

Why send more bits over the channel than are actually needed to represent a message?

Unfortunately, noise on the channel may change a "1" into a "0" or vice versa. If all bit

combinations were valid code words, noise could change the original message into another

one. Thus, by introducing redundancy (in the example of Fig. 2.1 one input bit becomes

two output bits) and not allowing all possible bit combinations as valid output sequences

(starting from S2, 11 11 11 11 is not an allowed sequence), enables the decoder to correct bit

errors randomly introduced on the channel to a certain degree. The figure of merit defined

in convolutional codes is the free distance

dfree = min {d {y', y") : x' ^ x" }, (2.8)

where y' and y" are the code words corresponding to the information sequences x' and x",

respectively [Lin83]. The distance d(;») of two code words is defined as the number of bits

where they differ. Since a convolutional code is a linear code, dfree is also the minimum-

weight output sequence produced by any nonzero input sequence. In the trellis diagram dfree

is the minimum weight of all paths that diverge and converge with the all-zero state SQ. The

weight is defined as the number of non-zero components of y. In our example code, the

sequence x = (1 1 0 0 0...) produces the minimum-weight path with a weight of six (Fig.

2.5). In general dfree increases with increasing encoder memory m [Hac89]. The bigger

dfree is, the more channel bit errors on the channel are necessary to change a transmitted

sequence into another valid sequence that hence yields undetectable errors.

2.4 Punctured and Repetition Codes

2.4.1 Punctured Convolutional Codes

Usually, the design of an error correction coding system requires the selection of a fixed

rate code with a certain error correction capability depending on data protection requirements

Time

k+1
00

k+2
00-

k+3
00-

k+4
00

k+5

10,

,00"

11

Figure 2.5 The input sequence x = (1 1 0 0 0 ...) produces the minimum-weight path with a weight of six.

and the channel noise. Ideally, one may wish to change the code rate depending on the current

channel noise and/or the information significance [Hag88, Kal90]. The idea is to use a mother

rate l/n convolutional code and periodically puncture the code with period P. Puncturing a

code means deleting certain bits of the l/n rate code by following a specific perforation

pattern. This yields a family of rate-compatible punctured convolutional (RCPC) codes with

decreasing rates P/(P+l), where / can vary from 1 to (n-l)P. Rate compatibility requires that

all code bits of a high rate code are used in the lower rate codes. Figure 2.6a shows the

trellis structure of a standard rate R=2/3, m=2 code and Fig. 2.6b shows its equivalent

punctured 1/2 rate code. The X ' s indicate that those bits are deleted in the encoder and not

sent through the channel.

The construction of a family of RCPC codes from a known "best" high rate {n-\)/n

punctured convolutional code, obtained from a 1/2 rate code, is straightforward [Kal90].

"Best" in this case means having the best error performance, not necessarily the largest free

distance d^ee [Cai79]. As the error performance highly depends on the deleting bit positions,

a "best" high rate code is found by examining all possible bit deletion positions. Tables of

high rate (n-l)/n punctured codes with maximum free distance for 3 < n < 14 and memory

2 < m < 8 and 3 < « < 17 and memory m = 6 are given in [Yas84] and [Yas83], respectively.

Starting with the (n-l)/n high rate code, rate-compatible lower rate codes are obtained by

adding back the bits that were initially deleted to get the (n-l)/n rate code. The representation

of the perforation pattern is usually in the form of a matrix P, the perforation matrix. The

following is an example of a perforation matrix of a rate 4/5 code:

P i =
1 1 1 0

1 0 0 1
(2.9)

The matrix is of size n x P, where a zero means that this code bit is not transmitted. The

two (n in general) represent the two (n) branches in the encoder that are multiplexed to form

a single output sequence (recall Fig. 2.1). In the above example matrix both code bits of

the first information bit are transmitted because the first column contains two "l"s . For the

second and the third information bits only the first code bit, which is the code bit of the

upper branch of the encoder, is transmitted. Finally, for the fourth information bit, only the

second code bit, from the lower branch, is output to the channel. This procedure repeats until

the end of the message is reached. Suppose the error correction capability is not sufficient

to overcome the current channel noise. Filling up the "0"s in P i with "T's,

P2 =
"1 1 1 0' "i 11 r

, P4 =
' 1 1 1 r

1 1 0 1 , P3 = 1 1 0 1 , P4 = 1 1 1 1 (2.10)

finally results in the mother 1/2 rate code. This procedure generates a family of rate

compatible codes with incremental redundancy. Determining their performance must be

achieved through simulations. An effective system could make efficient use of the channel

by only retransmitting the newly added bits and combining them with the previously received

erroneous message [Kal90].

2.4.2 Repetition Convolutional Codes

Equivalently to constructing a family of RCPC codes by adding ones into the perforation

matrix of the (n-l)/n high rate code, a family of rate-compatible repetition convolutional

(RCRC) codes can be generated by replacing "l"s by higher values ("2", "3",...) without

any limit [Kal90]. The matrix that represents an RCRC code is called a repetition matrix

and is denoted Q. As an example, a 4/11 rate code would be represented by

Q i =
2 1 2 1
2 1 1 1

(2.11)

where a "2" means that this particular code bit is sent twice. In Q i , the first and every other

fourth information bit will produce four channel bits because the first column in the repetition

matrix is 2-2 (repeat both the upper and the lower branch of the encoder). Two repetition

codes obtained from the same original code are said to be rate-compatible if every element

of the repetition matrix of the lower rate code is equal or greater than its corresponding

element in the repetition matrix of the higher rate code. A 4/13 rate code, rate-compatible

to the code of Q i , could be of the form:

Q 2 =
2 12 1
3 2 11

(2.12)

2.5 Viterbi Decoding

The Viterbi algorithm [BhaSl, Hay88, Lin83] was introduced in 1967 by A . J. Viterbi

as a decoding algorithm for convolutional codes. Later, Forney found that it was in fact a

maximum likelihood decoding algorithm for convolutional codes [For73].

Let X = {XQ, .., be the information sequence of L bits encoded into the code word

y = (yo> -, yL+m-i), where yi = yn, y2{, ym, of length n(L+m). The received sequence is

denoted by r = (FQ, .., rL+m-i) with FJ = r^, r2{, r^- As a maximum likelihood decoder,

the Viterbi algorithm attempts to find the sequence y that is closest to the received sequence

r. Assuming equiprobable input data sequences, the decoder chooses the path through a

trellis that maximizes P(r/y), where the conditional probability P(r/y) is the likelihood of the

received sequence r, given that y was sent. In a discrete memoryless channel (DMC) [Lin83],

every received symbol r, is only dependent on the corresponding symbol yj, and hence,

L + m-l n{L + m-l)

pi^/y) = n ^(^^/y^) = n (2-13)

1 = 0 i = 0

Generally, it is more convenient to use the logarithm of the likelihood function (3.1) because

the product turns into a sum, which can be more easily implemented. Since the logarithm

is a monotonically increasing function, it does not alter the final result and (3.1) becomes

the log-likelihood function

i + m - l n (L + m-l)

l o g P (r / y) = J] l o g P (r i / y i) = J] logP(r , /y ,) . (2.14)
Î = 0 j = 0

The negative log-likelihood function -log P(r/y) is called the path metric associated with

the path y. The terms -log P(ri/yi) are called the branch metrics [Mag90]. Let the terms

-log P(rj/yj) be called the partial branch metrics, i . e., the metrics from each of the channel

symbols. The problem of maximizing the likelihood function has been transformed into

minimizing the path metric.

For a binary symmetric channel (BSC) or hard-quantized channel, the received sequence

r is binary as shown in Fig. 2.7a, where p denotes the channel transition probability.

Minimizing the path metric is equivalent to minimizing the Hamming distance, the total

number of bits of y that differ from those of r. In the case of a soft-quantized D M C , which

can be seen in Fig. 2.7b (P(0), P(l),.., P(7) are transition probabilities), the log-likelihood

function must be used. However, in terms of implementation, since metrics have to be

binary input binary output binary input P(O)-^

eight level output

Figure 2.7 a) Hard-quantized channel (BSC) b) Soft-quantized channel.

represented in binary form, it is more convenient to use integers as metrics. In order to

round off, the log P(ri/yi) metric can be replaced by ai log P[(ri/yi) + 02], where «i is

a real number and 02 a non-negative real number [BhaSl]. Yasuda [Yas81] showed that

the decoder performance is rather insensitive to the particular choice of the o;'s and the

threshold spacing of the quantization. Simulations [YasSl] [Mag90] showed that an eight-

level quantized channel outperforms a BSC by about 2dB. Thus, achieving the same bit

error rate (BER) requires about 2dB less signal-to-noise ratio SNR. Increasing the number

of quantization levels to infinity, an ideal soft-decision D M C , gains only another 0.25dB. A

typical metric table is shown in Tab. 2.1.

By definition, maximum likelihood decoding requires the comparison of the received

sequence with all possible transmitted sequences before making a decision. For an L-bit-

long binary input sequence, 2^ accumulated metrics have to be compared, and the sequence

with the lowest metric is chosen as the estimate y. However, the exponential increase of

Channel Out put

Partial Branch Metrics 7 0 1 2 3 4 5 6 7

Channel Input 0 0 1 2 3 4 5 6 7

(encoder output) 1 7 6 5 4 3 2 1 0

Table 2.1 Metric table for a binary input-eight-level output D M C .

decoding effort with L makes a "brute force" maximum likelihood decoder impractical to

implement. One of the more practical but suboptimum algorithms is sequential decoding

[Lin83]. In sequential decoding, the decoding of the received message is performed on one

branch at a time. Starting from the root node of the tree, the algorithm selects that branch

that has the lowest accumulated metric [Hac89].

With Viterbi decoding, there is a fixed number of states to be examined, one for each state

of the encoder. The number of states is independent of the sequence length L, but grows

exponentially with the constraint length K. This limits practical codes to short constraint

lengths (K < 8), although a Viterbi decoder of ^ = 15 has been reported recently [Col92].

For each state of the trellis, the path metric is updated by adding the branch metrics of

the entering branches, whereby the branch metrics are obtained by comparing the received

symbol with the expected symbols for all possible state transitions (Fig. 2.8). For better

readability the following examples will be restricted to constraint length K = 3. The

decoder stores the lower path metric and keeps its associated path in the path memory as

the "survivor" and discards the other one. This is done in each state and for every time

unit. Hence, the decoder keeps only = 2^'^ paths and path metrics over the entire message

length. In the case of a tie in a state, i . e., where both updated path metrics have the same

value (state 10 in Fig. 2.8), there are two maximum likelihood paths through this node. The

survivor is usually selected arbitrarily. At the end of the message, a tail is appended to clear

the encoder and bring the Viterbi decoder into state SQ. A S the trellis is only extended into

expected symbols

4
received "00"

Figure 2.8 Updating the path metrics by adding the branch metrics.

branches corresponding to a "0", there is finally a single survivor, the decoded maximum

likelihood sequence. A decoding example can be seen in Fig. 2.9. The "1" on the branches

received sequence

Figure 2.9 Maximum likelihood Viterbi decoding example. A tail is appended to clear the encoder.

indicates that those paths are discarded.

The great advantage of the Viterbi decoder is the constant number of operations at

successive levels. These are always of the same nature and are not very sophisticated. The

main disadvantage however is that it requires to wait for the tail to get a single survivor.

For long information sequences, this implies a long delay before delivering the first symbol.

On the other hand, using only short messages greatly reduces the code rate unnecessarily.

Simulations have shown that all surviving paths stem from a single node four to five

constraint lengths earlier with high probability [Lin83]. In the example in Fig. 2.10, the

survivors (solid bold and dashed lines) merge even in less than four times the constraint

length. This also solves the problem of a huge path memory in the case of very long

decoded sequence

0 1 1 0 1 0 0 1
0 2 , 4 , 2 2 2 , 4 , 4

—<~z^

V
k

/ •V
\ J r ' 3

/ ' y < X 2 2 ^

\ x r 4 \ >>#*^

2 \ / 5

ill 1— l - i^ i —
\ / *

1 2 2 3 3 4 3 4
00 11 11 01 00 00 11 11

received sequence

Figure 2.10 A l l survivors stem from the same sequence.

messages. There is no need to store 2 "̂̂ L-bit paths plus their metrics but only paths where

r <C L and r is about four to five times the constraint length. Hence, after r decoding steps

the path memory is full and a decision has to be made. Among several decision-making

strategies, there are [Sny83]:

• The oldest (first) bit from an arbitrary survivor is selected;

• A majority vote is taken from all = 2^'^ first information bits, that is the oldest bit

that appears most often in all paths is output;

• The survivor with the lowest metric is chosen, and its oldest bit is output (solid bold

line in Fig. 2.10).

Clearly, the above is not a maximum likelihood decoder anymore. However, the performance

degradation is negligible if r is not too short. In fact, a Viterbi decoder may start decoding

from any state, and after producing about four to five times the constraint length of unreliable

information bits, will resynchronize itself.

Viterbi decoding of punctured high rate codes is hardly more complex than decoding

the mother rate 1/2 code. In fact, using punctured codes greatly reduces the complexity of

decoding high rate codes [Cai79]. For the rate 2/3 code in Fig. 2.6a we notice that four

branches (2^ in general) enter each node of the trellis. Thus, at every time unit and for each

node four branch metrics have to be added to the old path metrics, and the minimum out of

four updated path metrics has to be found and retained. For higher code rates this becomes

definitely impractical. However, in Fig. 2.6b, which represents the same rate 2/3 code as

Fig. 2.6a, again only two branches enter each state in the trellis diagram as in any l/n rate

code. Given that the decoder knows the perforation matrix, the decoding is performed on the

trellis of the original mother code. The only necessary modification consists of assigning the

same branch metric (usually "0") to all state transitions or simply skip any metric increment

whenever a code bit was not sent.

An unwanted side effect in decoding high rate codes is an enormous increase in path

memory length with increasing code rate. The survivors do not merge after processing 4

to 5 constraint lengths of bits as in the 1/2 rate code any more, but at up to 34 times

the constraint length for a 16/17 rate code [Yas83]. Moreover, with increasing code rate

(= decreasing redundancy) the free distance decreases and the coding gains will become

smaller. However, Yasuda found that at a BER = 10'^, a coding gain of 3dB versus an

uncoded system is still achievable with a rate 15/16, K = 7 code .

The decoding procedure for low-rate repetition codes again is very simple with the use of

the trellis of the mother 1/2 rate code. For the branch metric calculation however, similarly

to assigning no branch metric to punctured symbols in high-rate codes, it is necessary to

assign multiple branch metrics to one information bit in the case of repetition codes. Instead

of the expected symbols 00, 01, 10, 11 (see Fig. 2.8), for example for the third column in

Q i and Q2, which is 2-1, 000, 001, 110, 111 are expected before selecting the survivors.

In other words, instead of the usual two channel bits in the 1/2 rate code, three have to be

taken into account.

Summarizing, it is easy to generate high-rate punctured and low-rate repetition convolu­

tional codes from a rate 1/2 code. The encoder only has to be succeeded by a pattern, either

perforation or repetition, represented in the code matrix C.

3. Viterbi Decoder Realization

The Viterbi algorithm can be split into three basic blocks (Fig. 3.1): branch metric unit

CONTROL U — ^ ^ ^ ^
MEMORY

input B M U ACSUs
PATH

MEMORY
output

Figure 3.1 The basic blocks of a Viterbi decoder.

(BMU), add-compare-select units (ACSUs), and path memory. Depending on the particular

architecture that is chosen for the decoder there will always be some control logic. A

variable-rate Viterbi decoder also requires a memory to store the current code matrix C, i .

e., a code memory. The B M U calculates the branch metrics, a measure of likelihood that the

received symbol matches the transmitted symbol for each branch of the trellis. In the A C S U ,

the metrics associated with each state of the trellis, i . e., the path metrics, are updated by

adding the new branch metrics, comparing the updated path metrics, and selecting the smaller

as the surviving path metric. The path memory stores the information bits corresponding

to the surviving metric.

3.1 Branch Metric Unit

The branch metric unit (BMU) has to evaluate the incoming channel symbols and

compare them to the expected symbols for each of the possible state transitions. It assigns

a value of likelihood, called the branch metric, that the incoming and the expected symbols

match. The B M U can be implemented as either a small read-only memory (ROM) or a

correlator [Gul86]. For a BSC, where the output of the channel is either "0" or "1", the

branch metric is simply the Hamming distance between the incoming and the expected

symbols. The branch metrics for a finer quantized, soft-decision channel are either read from

a table like Tab. 2.1 or can be computed as the squared Euclidean distance [Shu91]. In

principle, there is no problem in calculating the branch metrics, however, the complexity of

the implementation will highly depend on the different modulation schemes.

3.2 Decoder Architectures

3.2.1 Bit-Parallel Node-Parallel Architecture

A bit-parallel node-parallel (fully parallel) architecture, as can be seen in Fig. 3.2, will

be the fastest but also the most silicon area consuming realization. The B M U calculates

the branch metrics from the quantized input channel symbols, with a branch metric word

width of bmw bits. The B M U feeds the branch metrics in parallel to the ACSUs, one for

each state of the trellis. The two feedback loops at the outer ACSUs symbolize a trellis-like

pmw

input
bmw

B M U B M U

ACSU

ACSU

ACSU _

PATH

MEMORY
output

pmw

Figure 3.2 Block diagram of a bit-parallel node-parallel Viterbi decoder.

connection between the ACSUs, where the outputs of the ACSUs feed back to the inputs of

the successor states according to the trellis diagram. The path metrics have a path metric

word width of pmw bits. The decoding strategy is very fast, as we get an output bit at every

clock cycle. Note, that not only are the branch metric connections bmw-bit busses, but also

that the trellis wired connections between the ACSUs are pmw-hit busses. However, in a

V L S I implementation, such interconnect area could exceed the processing area and thus be

a limiting factor.

3.2.2 Bit-Parallel Node-Serial Architecture

The opposite extreme to the fully parallel decoder is to share one A C S U for all nodes.

The path metrics are updated sequentially. For each node in the trellis, at every cycle,

two path metrics have to be fetched from a central metric memory (Fig. 3.3), the branch

metrics added, and the lower resulting metric stored back in the memory. Of course, this

results in a comparatively slow decoder, which moreover needs additional control logic for

the scheduling. However, the area savings will be substantial with only one A C S U and no

wide trellis wired busses.

CONTROL
METRIC

MEMORY

input •
bmw

B M U
bmw

pmw

ACSU PATH

MEMORY
output

Figure 3.3 Block diagram of a bit-parallel node-serial architecture.

3.2.3 Sliared Nodes Arcliitecture

A compromise between the small silicon area of the node-serial solution and the fast

decoding speed of the fully parallel implementation is to share several ACSUs. In this case,

at every clock cycle, more than one but less than 2^ ACSUs perform the ACS operation.

Performing the ACS operation partly in parallel speeds up the node-serial implementation

considerably, but requires less silicon area than the fully parallel architecture. Some

interesting solutions are given in [Gul88]. Unfortunately, a considerable amount of control

logic is needed to share the ACSUs.

3.2.4 Bit-Serial Node-Parallel Architecture

For a bit-serial node parallel architecture (Fig. 3.4), the incoming quantized channel

symbols, are input in parallel and converted to a serial stream. This reduces the amount of

interprocessor wiring area substantially, as there are only single wires connecting the B M U

and the 2^ ACSUs. Moreover, the trellis connection between the ACSUs, symbolized by the

1

1

Figure 3.4 Block diagram of a bit-serial node-parallel architecture.

two feedback loops at the outer ACSUs in Fig. 3.4, are 1-bit lines. Note that using the bit-

serial approach does not only save interconnect area, but also considerable computation area.

Instead of using pmw-hit parallel adders and comparators, the bit-serial approach utilizes

only serial adders and comparators. High decoding speed is still achieved because the ACS

operation is carried out concurrently in each of the 2"* states. At first sight it might seem

that the bit-serial solution is pmw times slower than the bit-parallel architecture. However,

simulations at the gate level, show that serial adders and comparators have much smaller

delays than their parallel counterparts, thus allowing a higher clock speed resulting in a

slow down of less than the path metric precision [Sta87]. A great advantage over all shared

processor architectures is the fact that the bit-serial node-parallel architecture does not need

any control logic for scheduling the ACS operation as they are performed concurrently for

all states of the trellis.

3.3 Path Metric Normalization

Since only finite precision is possible for the path metric representation, the path metrics

have to be normalized to prevent register overflow errors. To find the minimum number of

registers to hold the path metrics, requires to determine the maximum spread A of the path

metrics among all 2̂ "̂̂ ^ states [Vit79]. Assume that the partial branch metrics vary between

0 and 7. Then it follows that the maximum spread A for a constraint length K code is

A = (/ ^ - l) î / , (3.1)

where

V = n^, (3.2)

because any state can be reached from any other state in at most K-\ transitions. Consider

the lowest path metric state a and any other state b at any node depth in the trellis, say

j. There exists a path (not necessarily a surviving one) that diverged from state a K - \

transitions back at time j - K + 1 and arrives at state b. Since all branch metrics lie between

0 and V, the metric change to state a at time j is nonnegative, while the metric change in the

path to state b must be between 0 and (K - If the path to state b did not survive, this

is only due to the fact that the accumulated metric in state b was smaller than that of this

path. Hence, the spread will be even less. Thus, by subtracting the same integer from all

states to bring the lowest metric to 0, the path metrics are normalized. The resulting storage

requirement for the path metrics is [log2(/^ — l)z^] bits [Vit79], where [•] denotes the

least integer not less than (•).

3.3.1 Variable Shift Normalization

After a fixed number of ACS operations, the minimum path metric can be subtracted

from all survivor metrics [Mag90], [Shu90]. This however, needs circuitry to find the

minimum path metric and requires an additional subtracter in each A C S U . Moreover, to

find the minimum metric and distribute it to all ACSUs, global communication is necessary,

which usually requires much silicon area for the interconnection wires. Performing the

normalization at every decoding cycle adds an additional delay for the minimum search and

the subtraction.

3.3.2 Fixed Shift Normalization

Another technique of normalizing the path metrics is to provide one extra bit and delete

the most significant bits (MSBs) once they are all "1" [Bre92]. This one additional bit

ensures that when all MSBs are "1" there is still room to store the full range A of path

metrics. The computational overhead is less than in the variable shift case. However, there

are still global, usually long, wires.

3.3.3 Modulo Normalization

In VLSI implementations, where interconnect area can exceed that of computational area,

it is crucial to keep computations local to reduce interconnect area. In [Shu90], Shung et. al.

presented a modulo normalization technique performed within each ACS unit that eliminates

additional circuitry and long global wires. By implementing the adders as 2's complement

adders, the path metrics (PM) are normalized by mod C confining them to -C/2 < PM < C/2.

By providing one extra bit, it is ensured that A < C/2, or in other words, the path metrics are

distributed only on one half of the circumference of a circle, and it is easy to determine which

path metric is smaller. Let a be the angle starting from PMj counter clockwise to PM2, then

P M i < PM2 if and only if a < ir. (3.3)

The winning metric can be determined by a 2's complement subtracter instead of a compara­

tor. The sign bit (0 if a < TT, 1 otherwise) of the difference can be used to drive the multiplexer

for the selection. Figure 3.5 shows the architecture of the ACSUs with modulo normalization.

A l l computations are performed within the A C S U and no global communication is needed.

sign

branch metric 1

path metric ^

2's
complement

adder

P M i

branch metric 2
»"

path metric 2

2's
complement

adder

2's

complement

subtracter

P M 2

1
a. "a

2
survivor metnc

Figure 3.5 Architecture for modulo normalization with 2's complement subtracter.

However, Shung [Shu90] found that the VLSI area can still be reduced by modifying the

comparison rule, because comparators can be made smaller than 2's complement subtracters:

PMi < PM2 if and only if z{PMi,PM2) = 1, (3.4)

where

z{PMi,PM2) = PM.MSB ® PM2MSB ® V {PM[,PM^), (3.5)

and ® denotes the exclusive OR operation, the subscripts MSB indicate that the X O R

operation is carried out only with the sign bits, y(») denotes the comparison, and PMj'

and PM2 ' are the path metrics without the sign bits. In short,

1, i f P M i < PM2
z{PMi, PM2) =

0, otherwise,

^ ^ ^ >̂ \ 0, otherwise.

(3.6)

(3.7)

As an example, in Fig. 3.6, PMj and PM2 have opposite sign and PMj' < PM2', giving

y(PMi', PM2') = 1. Therefore, z(PMi, PM2) = 0, or PM2 < PMj. a > r confirms PM2

< PMi.

Figure 3.6 A n example for the modulo normalization with the modified comparison rule.

3.4 Path Memory

The path memory stores the information sequences for each state corresponding to the

surviving path metrics for determining the most likely path through the trellis. Two common

techniques are in use to find the transmitted sequence [Cog89]: the traceback method and

the register exchange technique.

3.4.1 Traceback Method

The traceback method requires that the decisions made in each of the 2'" ACSUs be

stored in the path memory as a two dimensional array. The most likely path is estimated by

stepping back one symbol of the memory at a time, starting at the most recently received

information bit (Fig. 3.7). It is necessary to traceback a decision depth of d bits, where d is

bits
< •

Figure 3.7 Traceback memory.

the memory length that ensures that all paths have merged with the correct one. The grey

shaded boxes in Fig. 3.7 indicate b - d valid decoded bits.

To understand what is stored in the memory and how the traceback works, consider the

four-state trellis of Fig. 3.8. The state numbers at time k correspond to the encoder state,

with ai and « 2 being the information bits at times k - 1 and k - 2, respectively. The

new states at time ^ -i- 1 are represented by UQ ai. The discarded bit az can be stored in

the path memory as path information [Mag90] since it was part of the state through which

the path traversed at time k.

When tracing back the trellis, the contents of the memory is read as pointers [Rad81]. The

contents of a path memory cell at time k + 1, i. e., the path information bit az, is appended

to the rightmost bit of the current pointer, i . e., UQ ai and the leftmost bit is discarded to

form a new pointer, pointing to a memory cell at time k. To illustrate the traceback method,

recall the example of Fig 2.10, where only the survivor paths (Fig. 3.9) were kept. In Fig.

3.9, the branches are labelled with the path information bits stored in that node. Figure 3.10

shows the corresponding path memory. The grey shaded memory cells indicate that these

k k+ 1

information bit a Q path information a

Figure 3.8 Four-state trellis to determine the path information stored in the traceback memory.

elements were read to form new pointers. Starting for example with the state with the lowest

metric in Fig. 3.9, state 10, the memory cell contains a "0". The new pointer 00 is formed by

appending the "0" to the rightmost bit and dropping the leftmost bit, i . e., "1", of the current

pointer. One time step earlier in state 00 we find a "1", which generates the next pointer,

pointing to state 01. Following this procedure back to the oldest bit, the path memory can

Time

0 1 2 3 4 5 6 7 8

received sequence

Figure 3.9 An example for the memory entry in the traceback method.

Figure 3.10 Path memory contents of the example of Fig. 3.9.

output a "0". Note, however, that the first m "decoded" bits (two in this example) are not

information bits, but arbitrary bits of the state number in which the path ended.

A n implementation that requires little hardware is to store the path information in a

random-access-memory (RAM), configured as a circular buffer. The traceback is done by

repeatedly accessing the memory and reading the path information with pointers. The pointer,

the address to the R A M , is stored in a shift register. The traceback information is shifted

in from the right to form the new pointer, which is the contents of the shift register read in

parallel. Additional control logic is needed to control the R A M . A block diagram appears

in Fig. 3.11. The major drawback of this simple implementation is its unacceptably long

new path information

Control

Read/Write

,m

Address

Traceback
Memory

^

•

MUX

2"̂ :1

/ . /• /• /

- • decoded output bit

Shift register

Figure 3.11 Block diagram of the basic traceback path memory.

processing time. For every new decoded information bit, the traceback method takes one

WRITE cycle and d R E A D cycles.

A more realistic implementation is to operate the path memory with a speed advantage

ratio of mREADs : WRITE, where m > 2 [Cog89]. For the minimum speed advantage of 2:1,

the traceback performs two READs and one WRITE during one information symbol period.

The minimum implementation performs 2d tracebacks to decode d output bits (the output bits

are valid only after tracing back d steps), while further d path information bits are received

from the A C S U block. The total storage requirement is 3d2'^ bits. This storage requirement

can be reduced when operating the traceback with speed advantage ratios greater than 2. In

general, for any m > 2, the path memory requires the storing of d2'^{m + l)/(m - 1) bits.

3.4.2 Register Exchange Technique

The register exchange technique is based on the movement of information sequences

through the path memory [Cog89] accomplished by trellis-connected shift registers one for

each state. In addition to the memory elements, the register exchange technique requires

multiplexers to select the surviving paths. Figure 3.12 shows an example of a four-state path

State

Sel 4 ^ J

Figure 3.12 Four-state register exchange path memory.

memory, where M denotes a multiplexer and T a memory element. At each symbol clock, or

in general, every time a decision in the ACS block has been made, a complete path is moved

to its successor state(s) according to the trellis and a new information bit is appended to the

path. For path lengths > d, the paths tend to merge and the oldest bits thus tend to represent

the same information bits. The new appended information bits are readily determined. Recall

from Chapter 2 that the inputs to the upper half of the trellis are all "0" because these states

have an MSB of "0" indicating that the most recentiy encoded bit was a "0". Conversely,

the states of the lower half of the trellis constantly receive "l"s as their MSBs are all "1".

Further enhancements to discard m stages of the path memory are possible as follows

[Ish87]. The memory cells and their preceding multiplexers up to the m''^ stage can be

omitted, because they store information that is independent of the decisions made in the

ACSUs. The improved version of Fig. 3.12 would look like Fig. 3.13 with alternating

inputs of "0" and "1".

T M T M

Figure 3.13 Improved register exchange path memory without unnecessary memory stages.

A major advantage of the register exchange technique is that there is no need for com­

plicated control logic. The only required control are the select signals for the multiplexers.

These are just the decisions made by the comparator in the ACSUs. The speed of a register

exchange path memory is limited only by the delay of one multiplexer and a flip-flop, making

the register exchange technique attractive for high-speed Viterbi decoders.

3.5 Design Implementation Options

Before choosing a suitable decoder architecture, one has to consider the pros and contras

of possible implementation technologies. This section gives a short overview of different

methods of implementing a circuit. Here, we consider programmable logic devices (PLDs),

field programmable gate arrays (FPGAs), and application specific integrated circuits (ASICs).

3.5.1 Programmable Logic Devices

A programmable logic device (PLD) is a small scale IC that can be configured by the

end user to implement a specific logic function [Pel91]. A typical PLD is composed of a

programmable array of logic gates and is surrounded by I/O circuitry. A l l different PLDs are

based on variations of AND-OR plane architectures. A typical programmable logic array

(PLA)-type structure is shown in Fig. 3.14. The X ' s in the A N D and the OR arrays indicate

a possible programmable connection. Any A N D gate can be configured to implement any

possible product term, as the inputs are available in their true and their complement values.

The design of a P L A allows any product term in the array to be connected to any OR gate.

This flexible design makes PLAs slower than other architectures with fixed connections in

either the A N D or the OR plane. To configure PLDs, a large number of design tools are

available, e. g., CUPL, [Pel91]. These design tools accept a variety of input forms, including

truth tables and state diagrams. The functions are transformed into sum-of-products Boolean

form, minimized, and converted into a PLD fuse map [Pel91]. This fuse map is further

processed into a format that can be read by the programming device.

The real benefit of PLDs comes into play when using erasable PLDs. Erasable PLDs

can be reprogrammed to accommodate changes in specifications and fix design errors in a

INI IN2 IN3 IN4

n n n n

ys.

. \ / . NJ^

A N D P L A N E

O R P L A N E

Nk

i / : N£

^ Programmable Connection

OUT 1 OUT 2 OUT 3 OUT 4

Figure 3.14 PLA-type structure of a P L D .

short time. The specifications of the design can be tested on real devices, and one does not

solely need to rely on simulations. The use of PLDs is a fast way of prototyping devices.

The cost of a design is in cost of the devices used.

The primary limitations of PLDs are the number of flip-flops, the number of input/output

signals, and the rigidity of the AND-OR plane. The use of one function can often preclude

the use of other similar functions [Xil92]. The relatively low integration level of PLDs

requires many such devices for complex circuits and thus makes PLDs unsuitable for a

Viterbi decoder that is to be used in mobile data communications. A constraint length ^ = 5

Viterbi decoder with decoding speed of 4.6 Mbit/s channel rate was implemented by Magerle

[Mag90] using PLDs on a multi-layer board of size 25 cm by 25 cm.

3.5.2 Field Programmable Gate Arrays

A field programmable gate array (FPGA) is a high-density programmable device with

more functionality than a PLD that can be configured by the end user [Xil92]. An FPGA

consists of a matrix of independent logic modules in the interior of the device and a ring of

FO blocks that can be connected to form a larger circuit. Interconnect resources occupy the

channels between rows and columns of the logic blocks. Several different FPGA families

with different architectures exist at present. Since the design tools available at the University

of British Columbia are specifically for Xilinx's FPGAs, the following description will be

restricted to those devices. A good overview of other FPGA families can be found in

[Pel91], [Ros93]. Figure 3.15 shows the structure of XiUnx's Logic Cell™ Array (LCA™).

_L

n—r

L

I /OB
n — r T T

C L B

n—r

I

T

SW

C L B = Configurable Logic Block
I/O B = Configurable I/O Block
sw = Switch Matrix

Figure 3.15 F P G A architecture.

Each configurable logic block (CLB) is capable of implementing any Boolean function of its

inputs. The basis of a C L B is a small static random access memory (SRAM), functioning

as a lookup table [Ros93], a flip-flop, and feedback logic. The I/O blocks can be configured

as either inputs or outputs or bidirectional. The routing architecture consists of horizontal

and vertical routing channels and switch blocks at cross-over points of routing channels.

The switch blocks or switch matrices can switch signals from one path to another. Design

tools, such as Xilinx's X A C T take schematics or behavioural description as design entry

and create netlists of the circuit. A logic optimizer reduces Boolean equations and partitions

large combinational parts to fit the size of the CLBs. Then, the individual CLBs are placed,

i . e., the logic is assigned to certain CLBs, and routed. The final step in designing FPGAs

is to create a bit pattern that configures the actual FPGA. The bit pattern is either directly

loaded into the FPGA R A M or can be stored in a configuration programmable read only

memory (PROM) on the board.

Xilinx's FPGAs are programmed on static R A M technology. A drawback of S R A M

programming is that the configuration pattern is volatile, i . e., every time the system is

powered up, the configuration pattern has to be loaded from an external PROM. However,

since the chip programming is done with memory cells, the FPGA can be programmed an

unlimited number of times. Prototyping and in-circuit verification can replace extensive

simulations. A designer can verify that the design works in a real system and does not

have to rely merely on potentially-erroneous simulation models of the system. Any design

improvement can be accomplished within a few hours. Since the FPGAs rely solely on

programming a certain configuration, there is no fixed cost for expensive mask production

and again cost is cost of the device.

A big drawback of FPGAs is that though high toggle rates (125 MHz) [Xil92] of flip-flops

are claimed by Xilinx, the system clock rate is about one third to one half the maximum toggle

rate. The switch matrices consist of pass transistors connecting or not two wire segments,

depending on the value in the controlling memory cell [Tri93]. This pass transistor introduces

resistance into the routing path and hence delay. The delay is strongly dependent on the

number of interconnect points a signal path is passing and cannot be determined by logic

simulations during design, because the simulator has not placed and routed the circuit yet.

AK=5 Viterbi can probably be implemented on a single FPGA, plus a R A M for the path

memory and a P R O M to configure the FPGA upon power-up. An FPGA implementation is

certainly interesting, especially for prototyping and proof of concepts. Unfortunately, FPGA

design tools were not available at the University during design phase of the Viterbi decoder,

therefore this option had to be dropped.

3.5.3 Application Specific Integrated Circuit

The highest level of integration can be achieved with application specific integrated

circuits (ASICs). Two types of ASICs exist on the market today: Mask-Programmed Gate

Arrays and Standard Cell and Custom ICs. In typical standard cell implementations, as can

be seen in Fig. 3.16, the standard cells are placed in rows across the chip, leaving horizontal

Standard
Cell
Rows

• ' • ^ • I • • •

Figure 3.16 Typical standard cell ASIC structure.

channels for routing. Wire connections are only made when necessary, resulting in different

routing channel widths. Vertical routing is mainly accomplished by vertical wires across

the standard cells and vertical channel at either end of the standard cell rows. The design

tools typically accept schematic or higher level language entries and perform the complete

4-
Routing
Channels^

chip layout very quickly. If further area reductions deem necessary, time consuming custom

layout blocks can be included into the design and routed with the standard cells. The layout

is then sent to an ASIC manufacturer, called a foundry, for production. The need for unique

masks for all layers used in manufacturing imposes high costs and weeks or months of delay

for development. This requires careful circuit simulations before mask production, as the

design cannot be changed afterwards. For high volume applications (> 100,000), standard

cell and custom ICs result in the lowest production costs [Xil92].

Gate arrays implement user logic by interconnecting transistors or simple gates during

the last stages of manufacturing process. Unlike standard cell ICs, mask-programmed gate

arrays costs include fixed costs for mask production as well as cost per unit. Gate arrays

become cost effective for volumes around 100,000.

With the support of the Canadian Microelectronics Corporation it was possible to access

Northern Telecom's l.ljim CMOS process, making a custom IC a viable option. The K =

5 Viterbi decoder was implemented on a single chip, helping to reduce size and weight of

mobile communications devices.

4. Design of the Variable-Rate Viterbi Decoder

4.1 General Considerations

The Viterbi decoder is designed to decode convolutional codes of constraint length K =

5. Figure 4.1 shows the encoder of memory m = 4, generating the convolutional code. The

Figure 4.1 Convolutional encoder

decoder is capable of decoding any code of rate ranging from (V- l) / 4 (y - 1) to (V- l)/V

for 1 < y < 8, or any code rate from 1/4 to 7/8 with period P < 7. The mother 1/2 rate

code, from which all other codes are derived, has a free distance dfree = 7. For the highest

code rate of 7/8, the code has still a dfree = 3. For high coding gain, the decoder expects

eight-level quantized channel symbols as its inputs. The assumed modulation schemes are

BPSK and QPSK. Since available silicon area was more a concern here than was decoding

speed, the bit-serial node-parallel architecture is the most attractive and therefore adopted.

The rest of the chapter describes specific implementation issues of the functional blocks used

in the variable-rate Viterbi decoder.

4.2 Branch Metric Unit

p/s
converter
output INV

M U X

M U X

M U X

i n —

A N D - • BMOO

A N D - • B M l l

_ A N D ^ — - • B M O l

A N D - • BMIO

SELECT ALLOW METRIC

Figure 4.2 Implementation of the bit-serial branch metric unit.

The bit-serial branch metric unit (BMU) for BPSK is a very simple block, as shown in

Fig. 4.2. It takes the 3-bit channel symbols that have been converted to a serial bit stream by

the parallel-to-serial converter, arriving with the least significant bit (LSB) first, and compares

the individual bits against "0" and "1". For the QPSK case, I and Q channel symbols are

fed in serially. Figure 4.3 illustrates the operation. Without loss of generality we assume a

simple 1/2 rate decoder. The only difference with variable-rate codes is a different M U X

SELECT signal from the control block for different code rates. Note that the branch metrics

calculated here are only partial branch metrics for each channel symbol, having a range from

0 to 7. The first row in Fig. 4.3 shows the output of the parallel-to-serial converter. The

bit clock is illustrated in the second row. The LSB of the serial channel symbol arrives at

every eighth clock cycle, which follows from the required path metric precision as discussed

in the next section. Recalling a trellis, let the branch metrics for the four expected channel

symbols "00", "01", "10", and "11" be B M 00, B M 01, B M 10, and B M 11. From Table

3.1, the metric for an expected "0" is always the same as the channel output, while for an

expected "1" it is its I's complement (the bitwise inverse). Therefore, B M 00 is just the

P/S output

BIT C L O C K

B M 00

B M O l

B M 10

B M l l

time

M U X SELECT

Figure 4.3 A n example of the branch metric calculation.

output of the parallel-to-serial converter and B M 11 is its inverse. In the case of B M 01 and

B M 10, B M 00 and B M 11 are tapped, respectively, for the first symbol and then switch the

multiplexer M U X to tap their complements. The control block provides the " M U X SELECT"

signal, which of course is adapted to the code matrix for different codes. The A N D gates are

necessary because the complement of the parallel-to-serial converter would also give a logic

"1" between two symbols, as the dashed lines in Fig. 4.3 indicate, and the A C S U would

interpret the resulting output as large branch metrics. The signal " A L L O W METRIC" is

"1" only while the three converter bits are shifted out. A pipeline stage between the B M U

and the A C S U using the memory elements T shortens the critical path in the A C S U . Minor

area improvement and speed-up is achieved by using N A N D instead of A N D gates, and

performing the necessary buffering of the branch metrics with faster inverters.

4.3 Add-Compare-Select Unit

The add-compare-select unit (ACSU) adds the new arriving branch metrics to the current

path metrics, compares the updated path metrics, and keeps the smaller path metric as

survivor. In order to store the required path-metric precision, it is necessary to determine the

maximum spread A among all path metrics. From Eqn. 3.1 it follows that A = {K - \)v.

The maximum branch metric occurs in the case of the rate 1/4 code, because one information

bit generates four channel bits in the encoder. Therefore the partial branch metrics of each

of four channel symbols are added in the decoder before making a decision. The maximum

branch metric J/ = 4 x 7 = 28. Thus, following Eqn. 3 .1 ,A = 4 x 2 8 = 1 1 2 , which can be

stored using 7 bits. Providing one extra bit precision and using the modulo normalization

with the modified comparison rule appears to be the most area efficient normalization and

is therefore adopted in this design.

For a bit-serial implementation of the ACS operation, the following observations can

be made [Sta87]:

1) a serial adder starts with the least significant bit (LSB) first;

2) a serial comparison is fastest starting with the most significant bit (MSB);

3) a select operation is possible only after a completed comparison.

Obviously, Observations 1) and 2) are conflicting and suggest that we have to reverse

the order of the bits in a first-in last-out (FILO) register. Observation 2) and Observation 3)

imply a buffer, thus increasing the operation's delay by another word length, i . e., eight clock

cycles in our case. However, using a serial comparator that starts with the LSB allows to

pipeline the add and compare operation. The bit-serial 3-bit quantized branch metrics (BM)

enter the ACS cells with the LSB s first and are added in the 2's complement adders A D D

to the current path metrics (PM) (Fig. 4.4). Both sums, i . e., the updated path metrics, are

stored in shift registers, denoted by memory elements T in Fig. 4.4, and fed to the comparator

COMP concurrently. The result for every bit of the comparison is stored in the flip-flop

FF, which is clocked at every symbol period Ts after the MSBs have been processed. The

carry bit of the bit-serial comparison does not have to be cleared after completed comparison

B M 1

P M I —»-
M U X

P M 2 —>

ADD T - T - T - T - T - T - T - T -

M U X

B M 2
ADD

COMP FF M U X

1/Ts

T - T - T - T - T - T - T - T -

survivor
metric

Figure 4.4 Block diagram of a bit-serial A C S unit.

because in the case of a tie, both shift registers store the same value, and it does not matter

which one is selected. The multiplexer to the right in Fig. 4.4 selects the smaller sum as

the survivor metric. The carry bits of the 2's complement adders have to be reset after the

MSBs have been processed to avoid overflow and invalidation of the following addition.

Since negative edge-triggered flip-flops are used, the same control signal can be used for

triggering the selection-flip-flop FF and injecting a "0" to the adder, thus avoiding an extra

global signal for carry reset. This control signal FF C L O C K - C A R R Y RESET is "0" during

every arrival of an LSB at the adder to inject the "0", but at the same time its falling edge

triggers the flip-flop FF after the previous MSB has been processed and the comparison

is finished. Figure 4.5 shows the timing diagram to reset the carry bits in the adders and

trigger the selection-flip-flop FF. The third row in Fig. 4.5 displays the positions of the

BIT C L O C K

FF C L O C K

C A R R Y RESET

METRIC SB LSB MSB LSB

time

Figure 4.5 Timing diagram for the concurrent carry reset and flip-flop FF trigger.

MSB and LSB of some example metric. In the variable-rate decoder, described here, up to

four partial branch metrics have to be added to the current path metrics before a decision

about the survivor can be made. Therefore, the left multiplexers in Fig. 4.4 feed back the

intermediate sums and accept path metrics from predecessor states only for the first symbol

of an information bit after a decision has been made. Otherwise, the "survivor metric", which

is output continuously, represents invalid data and has to be blocked by the multiplexers.

4.3.1 Layout of Add-Compare-Select Units

Since the concern here is silicon area, custom layout for the ACSUs was considered

necessary. This section describes the individual gates necessary to build an A C S U .

Multiplexers were laid out, because a standard cell static multiplexer uses 12 transistors

and is designed to drive bigger capacitances than is actually needed here. A smaller solution

is a six-transistor CMOS transmission-gate multiplexer. A CMOS transmission gate (shown

in Fig. 4.6) is an "ON-OFF" switch consisting of an NMOS and a PMOS transistor in

parallel [Gei90], i.e., drains connected to each other, and sources connected to each other.

If the control voltage Vc = 0 V , the gate voltage of the n-channel transistor is also 0 V ,

while the gate voltage of the p-channel transistor is VDD> both transistors will be "OFF" and

OUT will assume a high impedance state. In the case Vc = VDD> both transistors of the

transmission gate will conduct. The NMOS transistor pulls the output to 0 V , if IN is at OV,

and the PMOS transistor pulls the output to VDD if IN is at VDD-

IN OUT

Figure 4.6 C M O S transmission gate.

The multiplexer consists of two transmission gates and an inverter to provide the inverse

of the select signal. Figure 4.7 shows a gate level representation of the multiplexer. A

plot of the layout and the multiplexer's characteristics are summarized in Appendix A. SB

SB

Figure 4.7 Transmission gate multiplexer.

("Select B") is the control signal that selects which transmission gate should be conducting

and therefore which input should be connected to the output. For SB = 0 V , the upper

transmission gate is "ON", thus connecting A with the output OUT. The lower transmission

gate is "OFF", isolating B from the output. If SB = VDD, B is selected and the upper

transmission gate is "OFF" isolating A . Minimum-size transistors were used in the layout.

A minimum-size transistor has both the channel length / and width w set to the allowed

minimum for the technology used. For the 1.2 /^m technology a minimum-size transistor

has / = 1.2 jum and w = 2 /im.

From the block diagram of the A C S U , Fig. 4.4, the path metrics are stored in memory

elements arranged as shift registers. This suggests the use of D-flip-flops to transfer the signal

at their inputs to the outputs at every falling clock edge. For the flip-flop implementation,

several possibilities can be found in the literature, e. g., [Jir87], [Cha89]. To keep the silicon

area small, static flip-flops similar to the standard cell approach which need 30 transistors

were precluded. The single-phase-clock dynamic D-flip-flop in [Jir87] uses ten transistors.

Unfortunately, the diffusion area of such flip-flops cannot be shared efficiently, so the area

saving is relatively small compared to the standard cell. A better solution arises with the

V, DD V, DD

PI

I N -

C K - C

C B —

P2
H E L P

Nl

C B - C P4

P3

C K — N3

•OUT

N2

Master Latch

N4

Vss
Slave Latch

Figure 4.8 Structure of the "clocked inverter" dynamic Z)-Master-Slave flip-flop.

use of two-phase clocks, C K and CB and the use of two clocked inverters [Cha89], to build

a master-slave flip-flop. Figure 4.8 shows such a structure. The outer four transistors

build two inverters (P1-N2, P3-N4), which are never transparent simultaneously, provided

the clock phases are as shown in Fig. 4.9. C K is the chip clock, and CB is derived from C K

by an inverter. The clock skew It2 - til between C K and CB is introduced by the inverter

through which CB is derived from CK. To describe the flip-flop's operation, it is necessary

C K

CB

Figure 4.9 Clock traces for a dynamic D-Master-Slave flip-flop.

to consider the case where IN is "1" and "0" separately, because they lead to different results.

In the following ti —̂ tj symbolizes the time frame from tj to tj.

1. IN = "0":

ti t3 Master latch précharge phase.

t3 —> ts Slave latch evaluation phase. OUT = 0.

2. IN = "1":

t2 U Master latch précharge phase.

t4 to Slave latch evaluation phase. OUT = 1.

A l l n-channel transistors are 3.1/im wide. Figure 4.10 shows that B. l^m wide transistors

require less cell height and are therefore better suited when the transistors are stacked like

in Fig. 4.8. A minimum size transistor at the input can pull the input line to "0" at the

start-up phase and reset the path metrics.

Drain

Gate

S o u r c e S o u r c e
a) b)

Figure 4.10 a) Minimum-size transistor with channel width w =

Ifita, b) transistor to achieve minimum cell height with w = 3.1^m.

While the flip-flop works fine when succeeded by a static gate, HSPICE™ simulations of

a shift register showed that the signal deteriorates after three flip-flops, as shown in Fig. 4.11

for a time frame of 25ns, and yields a logic error after the third flip-flop. The first two rows

in Fig. 4.11 show C K and CB, respectively, and the fourth and sixth row show the flip-flops'

intermediate nodes, denoted HELP in Fig. 4.8, of the second and the third flip-flop. Rows

three, five, and seven are the outputs of the first, second, and the third flip-flop. In any

fabrication process, drain and source will overlap the gate and form what can be modelled

as two capacitors, as shown in Fig. 4.12 for a PMOS transistor. These parasitic overlap

capacitances induce voltage into a floating node when the gate of the transistor is switched.

A changed charge can partly turn on transistors. The effect accumulates over several stages

until the output yield a logic error. In Fig. 4.11, the output of the first flip-flip is floating

up to time t = 35ns, since C K = "0" and CB = "1". At time t = 35ns, when C K goes to

/14.0UT in vo l t s
h sp i c e t e m p l a t e c on t r o l f i le [x in s e c o n d s]

• /123 .0UT in vo l t s

• / 0 U T 1 in vo l t s

• / l e g . h e l p in vo l t s

• / 0 U T 2 in vo l t s

/ I71.he lp in vo l t s

/ 0 U T 3 in vo l t s

3 5 n 4 0 n 4 5 n 5 0 n 5 5 n

Figure 4.11 Flip-flop waveforms with clock skew = 0.7 ns.

Gate Overlap Capacitances

Drain

n-Substrate

Figure 4.12 Cross section of PMOS transistor with overlap capacitances.

"1", the overlap capacitance between C K and the output in transistor P4 pulls up the floating

output. The voltage of the output is high enough to turn on N2 of the second stage slightly

and create a path to Vss while both clocks are "1". With C K = "1", P2 is turned off, the

intermediate node in thie second stage becomes a floating node and will be pulled down by

the path to Vss to some value less than "1". At t = 40ns, C K goes to "0" pulling down

the floating intermediate node even lower via the overlap capacitance between C K and the

intermediate node in transistor P2. The "non-one" intermediate node turns on transistor P3,

while both clocks are "0". At the same time, the output becomes floating and is charged up

by the path to VDD , formed by the transistors P3 and P4. Figure 4.11 shows that the effect

aggravates from stage to stage until the floating intermediate node of the third flip-flop is

discharged while both clocks are "0" and the output of the third stage outputs a constant "1".

For clock skews t2 - ti < 0.3ns, the time both clocks "0" or "1" is too short to charge

floating nodes enough to turn on transistors. However, it is not possible to guarantee a clock

skew < 0.3ns when using two big clock trees (one for C K and one for CB) to drive 3200

flip-flops. A solution is to increase the width of the PMOS transistor of the inverter in the

master latch to at least 13/im. The improvement can be clearly seen in Fig. 4.13 with a

transistor width for PI of 13yum. This increase in transistor size increases the capacitive load

on the previous flip-flop and the output will not be charged high by overlap capacitances,

thus allowing clock skews up to 0.6ns. The complete layout of the resetable D-flip-flop can

be seen in Appendix A .

Two X O R gates are needed for the normalization to perform the comparison. An attrac­

tive solution is to use a transmission gate implementation [Wes88] with only 6 transistors,

as shown in Fig. 4.14. The operation of such an X O R gate is as follows.

When A is "1", transistor 2 is " O N " and the source of transistor 4 is pulled to Vss, thus

transistor 3 and 4 can act as an inverter. The transmission gate is open and not conducting.

The output of B by the inverter forms A®B. In the case A is "0", transistor 1 pulls the

source of transistor 4 to VDD and disables transistor pair 3 and 4. The transmission gate is

now closed, passing B to the output. The layout and a summary of the XOR's characteristics

are found in Appendix A .

* h sp i c e t e m p l a t e con t ro l f i le [x in s e c o n d s)
/ I4 .0UT in vo l t s

• /123 .0UT in vo l t s

• / 0UT1 in vo l t s

sf
4
3
2
1

• /160 he lp in v o l t s '
S t ' '~

• / 0 U T 2 in vo l t s

/ I71 .he lp in vo l t s
6h ' '~

/ 0 U T 3 in vo l t s

3 5 n 4 0 n 4 5 n 5 0 n 5 5 n

Figure 4.13 Waveforms of the improved D-flip-flop with transistor width of PI of 13/im.

"DD
o

1

ŝs

û

A ® B

Figure 4.14 Transmission gate exclusive-or gate.

The layout of the adders is a cell-height reduced version of the layout found in [Wes88].

The comparator is implemented as the carry stage of an adder, receiving one input inverted.

Since the layout of the adder is spht into the sum stage and the carry stage, the layout of

the carry stage can by directly used as comparator.

After finishing the layout of a complete A C S U , simulation with HSPICE™ showed that

the critical path through the multiplexers, the adder, and the comparator is 8ns. Allowing a

safety margin of 2ns, the maximum clock frequency is limited at 100 MHz.

4.3.2 Pairing of Add-Compare-Select-Units

After completing the layout of the A C S U , the ACSUs were paired to reduce the number

of interconnect wires by two [Bre92]. The trellis is a regular structure that can be divided

into a set of butterflies. In any treUis diagram for l/n codes, an A C S U receives two inputs

from ACSUs whose state number differs only in the LSB. In the other half of the trellis, there

is an A C S U whose state number differs only in the MSB that receives the same inputs. By

pairing those two ACSUs, their inputs can be shared, thus reducing the interconnect wires

by two. Figure 4.15 shows a four-state example of how the pairing of the ACSUs can save

interconnect area. In Fig. 4.15a, the ACSUs, labelled by the binary representation of their

corresponding state, are connected in a conventional trellis-like manner. The wiring in Fig.

4.15a needs four vertical wiring tracks, while the paired ACSUs in Fig. 4.15b need only

two vertical tracks. Expanding this to the 16-state Viterbi decoder described here, implies

that instead of 16 vertical tracks, the butterfly-paired ACSUs need only eight vertical tracks.

The complete wired A C S U block for the 16 state decoder needs 1.5 mm^ of silicon area.

I 00 : 00 -

01 . 10 -

_ 10 : 01 -1

11 . 11 -

a) b)

Figure 4.15 a) Conventional A C S U wiring, b) A C S U pairing that saves half the interconnect wiring.

4.4 Path Memory with Novel Area-Saving Layout

The path memory has to store the information sequences for each state corresponding to

the surviving path metrics. To determine the most likely path through the trellis, which

represents the transmitted sequence, two common techniques are in use [Cog89]: the

traceback method and the register exchange technique.

Simulations of a R A M macro cell show a R E A D delay of 10 ns and a WRITE delay of

5.3 ns. Allocating some time for the control logic and a safety margin of about 2 ns, 20 ns

is required for READs and WRITEs as the next multiple of the bit duration of 10 ns. This

would allow a speed advantage ratio of 3:1 in a 80 ns symbol period. The memory length

now becomes 1 .Id. In [Yas83] it was found that a suitable decoding depth d for the limiting

7/8 rate code is around 14 times the constraint length, i . e., 70 for the A" = 5 decoder here.

As the R A M cell generator of the VLSI tool Edge™ creates R A M of sizes of powers of 2,

a R A M of 16 X 128 bits is necessary, which needs 3 mm^ of Si area. Though a R A M layout

is very compact, a major cost of the traceback method is its considerable amount of control

for address generation, READ/WRITE clocks, bit selection, and output bit buffering.

The reason for choosing the register exchange technique is based on a comparison of

the two methods in [Cog89]. The authors of [Cog89] found that a 64-state path memory

implemented in trace back with a speed advantage of 6:1 occupies the same Si area as a

register exchange path memory, implemented as a full custom layout block. In a 16-state

Viterbi decoder, the amount of control logic will remain basically the same as for a 64-state

decoder and the storage requirement for a 3:1 speed advantage is greater than for 6:1. On

the other hand, the size of the register exchange memory decreases proportionally with the

number of storage cells. Since the speed of either technique was sufficient for the given

requirements, the smaller solution was adopted.

The decoded output bit is chosen by a majority vote of five outputs. The number of

gates increases very rapidly with more than five outputs, while the five output majority vote

can be implemented efficiently with mostly three-input NOR gates from the standard-cell

library, as it chooses any three of five inputs.

To keep the circuit area small, the path memory cells are implemented using 6-transistor

transmission-gate multiplexers and 6-transistor dynamic latches with NMOS pass transistors,

similar to the ones used in [Ish87]. This is illustrated in Fig. 4.16. CB and C K are two

I N O -

Ô
CB

- O OUT

Ô
C K

Figure 4.16 6-transistor dynamic latch.

non-overlapping clocks, as shown in Fig. 4.17, generated by the control circuit, to avoid

transparency of the latch and hence races. The use of NMOS pass transistors limits the lower

CK

CB "L J L
T Symbol

Figure 4.17 Two non-overlapping clocks C B and C K for the path memory.

speed of operation as the transistor capacitance can hold its voltage value only for a certain

amount of time. Simulations showed that this lower speed limit is around an information

rate of 300 bit/s, which is far below most transmission speeds. Unfortunately, the pass

transistors show some DC voltage loss at their outputs due to the threshold voltage and no

pull-up transistor to set the output of the pass transistor to VDD- Although that results in

a reduced noise margin, NMOS pass transistors were used instead of the more robust but

30% bigger full CMOS transmission gates because of the very limited silicon area available.

The price for the small silicon eirea is some static power dissipation of the flip-flops. If the

output of the pass transistors is a threshold voltage below VDD, the lower voltage slightly

turns on the PMOS transistor of the succeeding inverter and creates a DC path from VDD to

ground. The complete layout and speed characteristics of a path memory cell, consisting of

a transmission-gate multiplexer and a flip-flop, can be found in Appendix A .

A major part of the silicon area used for the register exchange technique results from

the trellis wiring between consecutive stages. A straightforward implementation of the trellis

wiring would require 16 vertical wiring tracks for every stage, as shown in Fig 4.18a. The

total wiring area is about 25% bigger than the total memory cell area. Using a state relabelling

technique presented in [Cog88], [Cog89] can reduce the interconnect area substantially.

Coggins partitions the 2"* state trellis into 2"* ~ trellises with 2'' states each. The movement

of the surviving paths is confined to a particular region for r stages. Every r* stage relabelling

wires move the paths to the appropriate region. Coggins' technique applied to a 16 state

trellis would partition the trellis into four four-state trellises and use a relabelling every

second stage. The total number of vertical wiring tracks is 16 for two stages, thus reducing

wiring area by 50%.

We propose an approach, often used in Fast Fourier Transform (EFT) hardware imple­

mentations, namely to redraw the trellis as sets of butterflies [Lei92]. The idea is shown in

5. Built-in Self-Test

5.1 Introduction to Built-in Self-Test

Since built-in self-test (BIST) [Bar87] is a promising method for testing large and

complex integrated circuits without the need for very expensive testing equipment, BIST

was incorporated into the design. In BIST, test pattern generation as well as output data

evaluation are performed on the same chip as the circuit under test (CUT) [Bar87], [Abr90].

Figure 5.1 shows the general structure of BIST. A test pattern generator (TPG) can be

implemented as a simple linear feedback shift register (LFSR) [Abr90], configured to output

a maximum length pseudo-random sequence. To reduce the volume of the output data to be

Test pattern generator

Circuit under test

space compactor

CHIP

output data
evaluation

time compactor

pass / fail

Figure 5.1 Block diagram of BIST.

evaluated, the output data of a multi-output CUT are compacted by a space compactor to

fewer outputs. Some examples of generic space compactors are multiple input shift registers

(MISR) [Abr90], multiple input no-feedback shift registers (MINSR) [Aga87], or X O R trees

[Kat92], [Li87]. More circuit specific space compactors are programmable space compactors

(PSC) [Iva93], [Tsu93]. The customized nature of PSCs enables them to be more efficient

in terms of hardware cost and lower error escape than generic space compactors. The space

compacted data are fed into a time compactor to generate a final signature at the end of the

test [Bar87]. The most common time compactors are LFSRs or MISRs with the contents

of the shift register used as the signature [Bar87]. The signature is then compared with a

fault-free reference to determine whether the circuit is good. Due to the information loss

during data compaction, the problem of error escape or aliasing [Bar87] arises, where the

signature generated by a faulty CUT is identical to the fault-free signature, thus causing a

faulty circuit to be mistakenly declared good.

The fault model used in the BIST for this thesis is a simple single stuck-at fault model

[Eld59] for gate inputs and outputs. Stuck-at fault means that due to a physical defect in the

Si crystal or the fabrication process a node logically behaves as if it is connected to either

VDD, a stuck-at-1 (s-a-1) fault, or GND, a stuck-at-0 (s-a-0) fault. "Single" expresses the

fact that we only deal with one faulty node at a time. Note the difference between fault and

error [Abr90]. A n error is the logical consequence of a fault at the primary outputs. For

example, the stuck-at-0 fault at the input of an inverter causes the error of the output being

"1" at all times. A fault is said to be undetected if it does not produce an error during the

test period. The most common reasons for undetected faults are an insufficient set of test

patterns or redundancy in the circuit [Bar87].

5.2 Multiple Signature Analysis

There exist two basic techniques for signature analysis [Bar87]: single signature (SS)

analysis and multiple signature (MS) analysis. In the SS technique only one signature is

compared at the end of a test session. Let / be the output sequence length and k the number

of stages of the LFSR, and assuming equally likely errors, then the probability of aliasing

Pal is [Bar87]:

2l-k _ 1
Pal = (5.1)

For I '> k, Pal ^ 2 ^, which is also true for unequally likely errors [Iva92]. The asymptotic

result also holds true for MISRs if implemented with an irreducible polynomial [Kam93].

In the MS scheme, however, not only the final signature is checked, but also some

intermediate signatures. This may greatly reduce the probability of aliasing. Let I2, .., In

for k <^ Ij < I2 < ... < /„ = / be the positions where the signatures are checked, called check

points, then the aliasing probability becomes [Bar87]:

Paiin) ^ (5.2)

Moreover, as faulty chips can be discarded as soon as one incorrect signature has been

detected test time in lower yield processes can be reduced significantly. A big disadvantage

of the MS scheme, however, is its increased hardware overhead as checking n k-hit signatures

requires n k-hit references to be stored. This implies a read-only-memory (ROM) for the

references, address generation for the R O M , and of course scheduling for the right reference

at the right time [Wu93a]. Solutions to reduce the hardware complexity in multiple signature

analysis schemes are presented by Wu in his Ph.D. thesis [Wu93a] and his publications, e.

g., [Wu92], [Wu93].

5.2.1 Fuzzy Multiple Signature Analysis

In [Wu92], Wu presented a fuzzy multiple signature (FMS) analysis scheme that greatty

reduces complexity of a conventional MS scheme. Instead of comparing the intermediate

signatures to their own references on a one-to-one basis, a signature only has to match any

of the stored references. This fuzziness introduced by allowing more references to match an

intermediate signature may result in a small increase of aliasing compared to the conventional

multiple signature scheme. However, this drawback can be compensated for by significantly

less hardware complexity.

As an example, assume the checking of three 3-bit signature with the three references:

ri = 010, r2 = 111, and rj = O i l . Denoting the three bits of the reference by a, b, c, we

can describe the decision function as

pass I fail = ahc -\- abc -\- abc = be ab = bac, (5.3)

which can be implemented with only one inverter and two N A N D gates as shown in Fig.

5.2. Not only is no additional control logic required, but also can the pass / fail function

input sequence

b-

4 > J

pass / fail

LFSR

Figure 5.2 Example of the FMS scheme with the three references: 010, 111, O i l .

some times be minimized [Wu92]. Moreover, some references may happen to be identical

which results in a smaller number of references m than signatures n checked, i . e., m < n.

To find the aliasing performance, it is necessary to consider the number of /-bit sequences

that map to any one of the m references, namely m2^'^, resulting in a probability of aliasing

at a single check point [Wu92], [Wu93a]

m 2 ' -* - 1
(5.4) ai - 2' - 1

Assuming I > k yields Pai ~ m 2 " ^ . The asymptotic result applied to n check points

yields the aliasing probability for the fuzzy multiple signature scheme [Wu92]

PFMS ~ (m 2 - ^) " . (5.5)

Clearly, the worst case occurs for m = n (when all references are different). Then PFMS ~

(n2~^)^. For m = 1, i . e., the case where all signatures are identical, the aliasing probability

is equal to that of the conventional MS scheme. The following section is devoted to this

identical signature case.

5.2.2 Minimal Hardware Multiple Signature Analysis

In the case of deliberately making all n signatures identical [Wu93] [Wu93a], only one

reference has to be stored, and by spacing the n signatures equally apart (Ij = I2 - Ij = ... =

h - L-i), the hardware overhead for the timing controller is the same as for checking only

one final signature [Wu93a]. The probability that a sequence generates a specific signature,

say 0...0, is 2"̂ and the probability that it generates n identical 0...0 signatures is 2'"*̂ . If

we allow the signatures to have any value as long as they are identical, then the probability

becomes 2""̂ +̂ . The problem however is that for practical values of k and n, the probability

that all n signatures have the same value is very small.

If there is, however, a choice among many different sequences, then the probability of

getting n identical signatures can be very high. Different sequences are achieved by applying

different sets of test patterns to the CUT. Wu [Wu93] established a measure of confidence

CL,n,k of finding n identical ^-bit signatures, given L possible fault-free sequences, which

follows a geometric distribution:

CL,n,k = E (1 - 2-̂ ^^+)̂ 2-^^+1' (5.6)
i = l

or

CL,n,k = 1 - (1 - 2-"^+^)^ (5.7)

If L is made sufficiently large, n identical signatures can become highly probable. Solving

Eqn. 5.7 for given n, k and a desired confidence C, gives the required L. Some results are

shown in Tab. 5.1.

L C(%)
^nk-k+l 86.47
2nk-k+2 98.17

2nk-k+3 99.97

Table 5.1 Desired confidence C versus required number of sequences L for a given Pai = 2

A simple way to generate the required L different fault-free sequences is to apply L

different sets of test patterns, for example, by starting the TPG with L different seeds. This

approach requires simulating the CUT L times for / input patterns, where the simulation time

complexity is of order 0(lL). A shortcut, however, is to shift the TPG L - 1 more times than

what one test length / would be. This is equivalent to seeding the TPG L times and simulating

the CUT with / + L - 1 patterns, resulting in / -i- L - 1 output bits [Wu93a]. In the search for

identical signatures it is now possible to choose from L sequences of length /, one starting

at the first output bit, another at the second, and finally, the last starting at the L''* output bit.

The simulation time complexity for generating L sequences of length / is reduced to 0(l + L).

As an example, assume to check two identical signatures with the 3-stage LFSR shown

in Fig. 5.3. Let / = 8, L = 3, and the (I + L - l)-hit sequence to compact be:

1 1 0 0 1 1 0 1 0 0. (8)

Then the 10 intermediate LFSR states are:

(100)(110)(111)(Oil)(101)(010)(101)(010)(101)(110). (9)

Checking every four bits, we find two identical signature of value (101) if the compactor

0 10 1 1 0 0 1

Figure 5.3 A n example compactor.

LFSR is initialized with (100) and the subsequence 1 0 0 1 1 0 1 0 is compacted. The

simulation also determines the initial state of the TPG to generate exactly the above

subsequence.

Note that the number L of different sequences a TPG LFSR can generate is limited by

its number of stages and possible internal states of the CUT if the CUT is not exclusively

combinational. For example, a 5-stage LFSR can only generate a maximum of L = 31

different output sequences (the all-zero seed will not produce useful test patterns) of length

/ = 31. In general, it is not possible to generate more different output sequences than 2*̂ -

1 because an LFSR can only be seeded with 2^ - 1 different seeds, i . e., L < I. However,

one can increase the probability of finding identical signatures by changing the seed in

the compactor. Each stage of the compactor practically doubles L. Similarly, any flip-flop,

independent from the TPG, such as free-running counters, can increase the effective number

of sequences L. For practical larger circuits, which require many test patterns, the limitation

L < / is not a real concern.

The price that is to pay for better aliasing performance when using the minimal hardware

overhead MS scheme, compared to the SS scheme, is the CPU-time overhead, including two

parts. One is the time spent generating L fault-free sequences instead of only one. The other

is the effort searching for the subsequence that yields n identical signatures. Compared to

the effort of generating one /-bit fault-free sequence, the CPU-time overhead for generating

L sequences is proportional to L/l [Wu93]. However, consider that the CPU-time overhead

is a one-time cost for recurring lower aliasing and area savings for each produced chip.

5.3 Implementation of the Minimal Hardware MS Scheme

In the Viterbi decoder described here, the minimal hardware MS scheme is applied to

the B M U , the control block, the code memory, the majority gate, and the parallel-serial

converter. In test mode, the feedback path in the control block is cut, and the control unit

is reconfigured as a maximum-length LFSR to generate the test patterns. Fault simulations,

using the SILOS II® fault simulator, showed that a 12-stage LFSR with feedback polynomial

a;̂ 2 -f- + + a;̂ + 1, (5.10)

as shown in Fig. 5.4, generates enough pseudo-random test vectors for a complete test of the

i L i L

Figure 5.4 12-stage maximal-length shift register.

combinational part in the control block. The B M U and the code memory have less inputs than

the combination part of the control block and hence are tested exhaustively. Interestingly,

only 1024 test patterns, instead of all 4096, are needed to detect all single stuck-at-faults

in the combinational part of the control block. The 12-stage LFSR is necessary to generate

independent test vectors for the state outputs and their complements. Each of the sum terms

in the combinational block, however, requires less than 12 independent inputs for exhaustive

testing. The reconfiguration of the control block as a TPG is accomplished by multiplexers

that cut the feedback lines and connect the flip-flops to form an LFSR in test mode. Figure

5.5a displays the control block in its mission mode, i . e., when TEST = 0. The multiplexers

M accept the state inputs and the flip-flops T output the state outputs to the combinational

block. The double arrows symbolize busses. In test mode, when TEST = 1, the multiplexers

primary ^
inputs

Combinational

Logic

. primary
• outputs

_ M - T

T E S T = 0

M - T n
->

a)

test

pattems

Combinational

Logic

test

evaluation
•

TEST = 1

^(±RM:>T > W : > T T - ' - ^ l M E > T h

b)

Figure 5.5 Reconfiguration of a) a finite state machine as b) a T P G L F S R in test mode.

accept the outputs from their predecessor flip-flops to form an LFSR. The ® symbolizes the

feedback lines for a maximum length pseudo-random output sequence.

Fault simulation determined where additional multiplexers were necessary in the B M U ,

the code memory, the parallel-serial converter, and the majority vote circuit to inject the

random patterns in test mode for high fault coverage. Fault coverage is the percentage

of faults detected in percent of the total number of faults considered. The achieved fault

coverage is 98.2% of single stuck-at faults, i . e. 98.2% of the total of 8744 single stuck-at

faults were detected. The reported fault coverage of 98.2% is before compaction in the MISR,

because the SILOS® fault simulator cannot calculate the fault coverage after compaction. The

main reason for not achieving a higher fault coverage is that the multiplexers that inject the

test patterns are not tested for faults that appear in normal mode. The area overhead of the

test scheme is about 10% of the circuitry tested, which seems relatively high. There are two

reasons for that. First, the overall amount of circuitry tested with the MS scheme is relatively

small, about a third of the chip. Therefore, the additional hardware for reconfiguring the test

pattern generator and compaction counts heavily, percentage wise. The other reason is that

some faults were hard to detect and needed extra multiplexers to test.

Recalling Table 5.1, the success of the minimal hardware scheme depends on the number

L of generated sequences of length / to find one sequence with n identical Â;-bit signatures.

The SILOS 11® logic simulator could handle just over 100,000 or ^2^"^ input vectors. With

86% confidence, one can find time compactors that have nk - k= 16. A good compromise

between solutions with very low aliasing probability but considerable amount of hardware

(e. g., two 16-bit signatures) and solutions with less hardware, but higher aliasing probability

(e. g., 16 1-bit signatures) is to check four identical 5-bit signatures. This solution has a

probability of aliasing Pai = 2"^^. As nk - k = 15, the chances of finding a solution rises

to over 98%. An estimation of the fault coverage after compaction uses the fact that the

expected number of escaped faults tends to N2''^ [Raj91], where is the total number of

faults. With A'̂ = 8744 and Pat = 2~^° used here, the number of aliased faults is <C 1, which

should not influence the overall fault coverage. It is desirable to check « = 2' signatures.

where i is an integer. In that case, the test length counter can be used to schedule the

signatures very easily [Wu93a].

A n X O R tree compacts 25 observation points into five bits, which are input into the

5-stage MISR with the characteristic polynomial of

+ + 1. (5.11)

SILOS II® simulates the circuit for all 100,000 clock cycles and provides the contents of the

MISR. A small C program searches for four identical signatures, one every 256 clock cycles

(Fig. 5.6) and provides the corresponding initial state of the test pattern generator and other

^ test pattern ^

0 256 512 768 1024
• • • •

'^'^^ ^^^f-

O e < ^ . ^ , ^ ^

Figure 5.6 Four identical 5-bit (00000) signatures evenly spread in time.

flip-flops in the circuit. The signatures turned out to be the "all zero" state with an initial

MISR state of 11010. Of course the signature can have any value. Simple circuitry resets

all flip-flops to "0" in normal mode, but sets the appropriate flip-flops to "1" in test mode to

the desired initial state. When a signature does not match the reference, a flip-flop sets the

test output B A D to "1". If all signatures match the reference, B A D stays "0" and ENDTEST

= "1" indicates the end of the test. The maximum clock frequency in test mode is reduced

to 80 MHz, due to the extra delay in the X O R tree.

Compared to checking only one signature at the end of the test session, checking four

identical signatures has the advantage of reducing the probability of aliasing here from 2"̂ to

2'-^°, while avoiding complicated signature checking for four different references. Lowering

the probability of aliasing also reduces the probability that unmodelled faults in the circuit

be masked. Moreover, test time can be reduced as faulty chips can be discarded as soon as

a signature does not match the reference. These advantageous features (reduced test time,

low aliasing) are accomplished without recurring circuit overhead. The only cost is a one­

time, logic simulation performed at design phase, about 45 C P U minutes on a SPARC 2

workstation to generate the L sequences and a few seconds to find the sequence yielding

identical signatures.

5.4 Novel Test Scheme for the Register Exchange Path Memory

A short estimation of a pseudo-random test applied to all primary path-memory inputs

shows that the test time for high fault coverage will be very long. The following analysis

is a best-case estimate to demonstrate the poor observability of faults in a register-exchange

path memory. Since a fault can propagate along many paths through the memory, it is easier

to find an estimate of the probability that a fault will not propagate to the outputs compared

to the probability that a fault will propagate to the outputs. Consider fault "One" in Fig.

5.7. The probability that the fault will not propagate through the memory element is Pnii =

1/2, depending on the pseudo-random value at the multiplexer select line. The probability

Pfiii that fault "Two" from Fig. 5.7 will not propagate through exactly two stages of the

trellis is Pni2 = 1/2-1/4 = 1/8, since after it passed the first stage, the fault can propagate

to one next state with probability 1/2, to both next states with probability 1/4, or not at

all propagate with probability 1/4. Fault "Three" does not propagate through exactly three

stages with probability

The first addend accounts for the case where the fault propagates singly through two stages

and is blocked at the third stage. The second addend covers the case the fault propagates

through the first stage, propagates to two states in the second stage, and does not propagate

any further. The total probability that a fault does not propagate through three stages is

the sum of Pnti, Pnii, and Pn^. For the best-case estimation, only the cases where faults

propagate to one next state will be considered here. Then, the probability P„, that a fault

does not propagate to the outputs of the path memory is

N + l

2" 4'
(5.13)

n = l

where is the number of stages a fault has to pass to reach the output. P„j reaches 3/4

exponentially. That means that a fault will propagate to the output with probability of 1/4.

Each path memory cell has 6 possible input stuck-at faults (the multiplexer has three inputs),

and there are 1152 memory cells in our path memory. To propagate the total of 6912 input

stuck-at faults on average four times as many (=27,648) test vectors will be necessary.

A similar estimation can be done for output stuck-at faults, such as fault "Four" in Fig.

5.7. Here, the probability Pno that the fault does not propagate to the output reaches 1/2

exponentially, again only considering paths where faults propagate to one successive state

Figure 5.7 Four example faults.

before being blocked. In the register-exchange path memory faults of three nodes fall into

that category (output multiplexer, input flip-flop, output flip-flop), yielding a total number

of stuck-at faults of 6912. Here, on average twice as many (=13824) test vectors as faults

need to be applied to propagate these faults.

To propagate all faults to the output a total of 27,648 -i- 13824 = 41,472 test vectors will

be necessary. This number is certainly a lower bound, because:

• A fault can go through many more possible paths before it does not propagate further;

• A 16-stage LFSR to generate the pseudo-random inputs will not even generate many of

the required pattern combinations to propagate a fault to the outputs;

• It is still not guaranteed that all memory cells receive the necessary inputs to test the

stuck-at faults.

Compared to the 1024 test vectors necessary for the multiple signature analysis scheme

described in Section 7.3, this number is very big and would increase test time by at least

one order of magnitude. However, the regular structure of the path memory suggests a

deterministic test to decrease test time. The following test patterns are sufficient to completely

test a memory element and a multiplexer.

— D-flip-flop: A memory element is completely tested by "load 0", "hold 0", "load 1",

"hold 1", and "load 0" [Bar87]. Since the memory cells here are flip-flops,

the flip-flops also have to be tested for s-a-0 faults and s-a-1 faults at their

clock inputs.

— Multiplexer: A multiplexer is characterized by its inputs A and B, its select line SB, and

its output OUT. If SB = 0, A is selected, if SB = 1, B is selected. Table 5.2

displays the four necessary input pattern combinations to test for all eight

possible single stuck-at-faults in a multiplexer. Faults in internal nodes of

Input pattern (A B SB) detects

0 1 0 A-stuck-1, OUT-stuck-1, SB-stuck-1

0 1 1 B-stuck-0, OUT-stuck-0, SB-stuck-0

1 0 0 A-stuck-0, OUT-stuck-0, SB-stuck-1

1 0 1 B-stuck-1, OUT-stuck-1, SB-stuck-0

Table 5.2 Four input patterns detect all possible eight stuck-at-faults of a multiplexer.

the multiplexer create contentions at the output node, as both transmission

gates have one transistor " O N " and one "OFF". The output may have any

value and therefore the fault may or may not be detected.

5.4.1 Test Algorithm for Path Memory

When developing a test scheme for such a large block as the path memory, it is desirable

to introduce as much parallelism as possible. The structure of the trellis suggests applying

complement values to the multiplexer select lines of multiplexers in states with different

MSBs, as can be seen in Fig. 5.8. Then, the half of the multiplexers with select lines "0"

selects the upper branches entering a node, and the other half with select lines "1" selects the

lower branches entering a node. Together, the multiplexers select one leaving branch from

each node from the previous memory stage. Hence, the value of each node will propagate to

the next trellis stage. The "0"s and "l"s at each node in Fig. 5.8 indicate the select values

for the multiplexers. The solid lines show which of the trellis branches are selected.

In the following, it is not important which fault is tested at what time, as long as every

multiplexer receives all four different input test patterns from Tab. 5.2 during the test session.

Thus, at any time during the test, the multiplexer inputs A and B should be complements.

Let SQ. SI, SM- I, with A'̂ = 2^" ^ be the input values to each of the A'̂ states. The

subscripts denote the numbers of the states. Then, one out of two possible input patterns.

STATES STAGE

000

001

010

011

100

101

110

111

Figure 5.8 Applying complement values to the multiplexers of

different halves propagates the values of each state to the next stage.

denoted by input pattern, is obtained by the following procedure find.input.pattem, written

in pseudo code.

find.input.pattern

50 = 0; i = 0; j = 0; k = 0;

while(2'< AO do

forG = X to 2'+i - 1) do
Sj=sk;
k = k + 1;

~ endoffbr ^
i = i + 1;

k = 0;
endofwhile

endoffind.input.pattern.

The other possible input pattern is simply obtained by complementing the pattern obtained

by the procédure find.input.pattem or, by starting the procedure with = 1 and is denoted by

STATES
000 0 k k+1 0 000 0

0
0

001 1 1

010 1 1

oi l 0 0

100 1
/ ^ ^ ^ 1

1

101 0
1

0

110 0
1

0

111 1 » 1
1

Figure 5.9 Example of an input pattern for the path memory test.

input pattern. Figure 5.9 shows as an example input pattern for an eight-state trellis. This

input pattern ensures that the same pattern is transferred to the next stage, if the multiplexer

select lines are "0" for states with MSBs = "0" and "1" for states with MSBs = "1", denoted

select pattern. Let the complement pattern, i . e., when the multiplexer select lines are "1"

for states with MSBs = "0" and "0" for states with MSBs = "1", be select pattern.

The procedure test.pathmemory contains the pseudo code for the complete test algorithm

for the register exchange path memory. The path memory is of length d.

test.pathmemory(mpMf pattern, select pattern, d)

for(i = 1 to J) do
apply input pattern and select pattern

endoffor
apply input pattern and select pattern

for(i = 1 to (J - 1)) do

apply input pattern and select pattern
endoffor

apply input pattern and select pattern

for(i = 1 to (û? - 1)) do
apply input pattern and select pattern

endoffor
endoftest-pathmemory.

Four snapshots of the test algorithm are shown in Fig. 5.10. The first "for" loop of the

procedure test.pathmemory loads the input pattern into the path memory, as can be seen in

Fig. 5.10a. The multiplexers are tested for one test pattern from Table 5.2. For example, the

multiplexer of state 000 receives the test pattern 010, the multiplexer of state 001 is tested

with the pattern 100. When applying input pattern and select pattern once, as shown in

Fig. 5.10b, all multiplexers are tested for a second test pattern in parallel. The multiplexer

of state 000 receives the test pattern O i l , the multiplexer of state 001 is tested with the

pattern 101. Note that though input pattern is applied to the input of the path memory,

the multiplexers inside the path memory receive the input pattern. The application of

input pattern and select pattern d - 1 times tests the multiplexers with a third test pattern

(Fig. 5.10c) and propagates possible errors to the output and test the multiplexers for a

third test pattern. The fourth and last test pattern for the multiplexers, as shown in Fig.

5.10d (101 for state 000 and O i l for state 001) is generated by applying input pattern and

select pattern once. To shift out any detected error in the path memory, input pattern and

select pattern are applied d - 1 times.

During the test procedure test.pathmemory, not only were the multiplexers tested with

all necessary test pattems from Table 5.2, but also the flip-flops were tested for loading

and holding "0"s and "l"s. Stuck-at-1 faults at the clock inputs are detected since the faults

create races. For stuck-at-0 faults, the outputs of the flip-flops are floating and do not produce

useful values, hence s-a-0 faults are detected.

From the pseudo code in procedure test.pathmemory it becomes apparent that the total

test length is three times the path memory length and is independent of the number of

states of the Viterbi decoder. A major advantage of this test algorithm is its simple set of

input vectors; only two different pattems for the multiplexer inputs and two pattems for the

multiplexer select lines. A very efficient implementation with slightly increased test time

uses the test counter to generate the test patterns. The stage, where 2' > 2d, generates a

constant output at least d times. Inverters to the inputs of the path memory create the input

pattern according to the procedure find.input.pattern. A decoder in the counter outputs a

single "1" to invert the select pattern once, when stage i has a transition.

5.4.2 Output Data Evaluation

Section 5.4.1 described a very efficient test algorithm for all possible single stuck-at faults

in a register exchange path memory. The fact that adjacent outputs of the path memory are

always complements can be exploited in a bit-by-bit comparison of the outputs. Then, an

X O R tree always outputs a "0" in the fault free case during a test session. This can be

used to compare the X O R tree output to "0" every clock cycle and eliminate any aliasing.

The X O R tree does not change the fact that the algorithm can detect any single stuck-at

fault because the X O R tree propagates single errors. In fact, the scheme will detect any odd

number of faults as long as the faults happen to be only in the path memory and not also

in the X O R tree. In the case of any even number of faults they will only remain undetected

if they produce the same error at the same stage (or pairs of stages) of the path memory.

s-1

s - 1 -
1 1 1 1

s - 1 -
1 1

1 1 1 1 1 1

s - 1 ^
—

s - 1 -
1 1 1 1

s - 1 -
1 1

detected double fault undetected double fault

- s - 0
s-0-

- s - 1

s-0
s-0-

detected double fault

s - M
T

detected quadruple fault

Figure 5.11 Examples of detected even number of faults and an undetected double fault.

SO that they cancel out in the X O R tree. Errors in different stages appear at the output at

different times and will therefore be detected by the X O R tree. Figure 5.11 shows some

examples of double and quadruple faults that are being detected and one that escapes. The

faults are abbreviated with s-1 for stuck-at-1 and s-0 for stuck-at-0.

A critical situation may happen if say for example the output of the X O R tree is stuck

0. Then, the test will always say "pass". This is no problem as long as this fault is the only

fault in the path memory, since the X O R tree has no role in mission mode. Any additional

fault in the path memory, however, will also stay undetected and thus cause the circuit be

mistakenly declared good.

A major improvement on the fault coverage for multiple stuck-at faults is possible by

substituting the X O R tree after the first column of XORs with a big A N D gate and compare

to a "1". Since adjacent outputs of the path memory are always complements, a parity

comparison of two adjacent outputs will always yield a "1". Any number of faults in the

path memory itself are detected, because the A N D gate outputs a "1", only if all inputs are

"1". Again, however, if the output of the A N D gate is stuck-at 1, no faults can be detected.

5.4.3 Algorithm Performance

In the case of an X O R tree as space compactor, the fault coverage for single stuck-at

faults after compaction is the same as before compaction, because the X O R tree does not

introduce any aliasing. A path memory storage element, consisting of a multiplexer and a

D-flip-flop with two clocks can have 16 single stuck-at faults at the gate level. Then, the

total number of single stuck-at faults in the path memory is 18,720, including the clock-

distribution tree. The overall detection rate after compaction for single stuck-at faults is

99.74%. The reason for not being 100% is that the multiplexers that inject the test patterns

are not tested for faults in normal mode.

The fault coverage for double fault can be easily calculated by first finding the total

number of double faults and then the number of escaped double faults. Since one storage

element has 8 pins (4 from multiplexer and 4 from D-flip-flop), the total number of nodes

n in the path memory is n = 8 x 16 x 72 = 9216. The total number of double faults is

2n{n - 1) = 169,850,880. The number of double faults escaping is only the number of

multiplexer select nodes times the number of nodes in the space compactor (21), beginning

at the outputs of the XORs. The total number of undetected double faults is 24,192, yielding

a fauh coverage of 99.98%.

The area overhead of this high performance test scheme is only 2% of the original path

memory area, including the multiplexers, the X O R tree, and extra wiring area.

5.5 Test for the Add-Compare-Select Block

The ACS block can be tested by a similar bit-by-bit comparison as the path memory.

Fault simulations showed that only two pseudo-random patterns have to be injected from

the test pattern generator into each of the ACSUs instead of the path metrics that are fed

back to achieve complete fault coverage of the ACSUs. The branch metrics (B M 00, B M

01, B M 10, B M 11), the symbol clock, and the ACCEPT PATH signal are pseudo-random

in test mode and do not need extra multiplexers for test patterns. Identical pseudo-random

patterns are injected into the ACSUs in parallel.

Figure 5.12 demonstrates the idea with an example of an eight-state Viterbi decoder with

butterfly-paired ACSUs. The branch metric input labels are based on the encoder of Fig.

2.1. Each A C S U , that receives the same branch metrics in the same order, e. g., top: B M

00, bottom: B M 11, generates identical output sequences. Viterbi decoders of eight states

or more have at least two ACSUs that generate the same output sequences. In Fig. 5.12

states 000 and 101, 100 and 001, 010 and 111, and finally 110 and O i l produce identical

output sequences. In this example, the output sequences after the second stage of an X O R

tree provide the all-zero sequences. The observation that the X O R tree outputs a zero, even

if the B M connection, the symbol clock connection, and the ACCEPT PATH connection was

not changed, saves as much as four multiplexers in each A C S U .

Any detected "1" at any time in the XOR-tree output indicates that an error has been

detected, and the chip can be discarded. The advantage of using an X O R tree as a space

compactor and no time compactor is that the X O R tree does not introduce aliasing for any

odd number of faults. Even numbers of faults remain undetected only when they produce

the same error at the same time as explained in Section 7.4.

B M 00
B M l l

B M l l
B M 00

B M l l
BMOO

B M 00
B M l l

B M O l
B M I O

B M I O
B M O l

B M I O
B M O l

B M O l
B M I O

000

100

001

101

010

110

O i l

111

..011010..

:J7~^ ..010111..

..001101..

:^ED~ "Oooooo..
..001101..

..010111..

..011010..

^ y ~ y - ..oooooo..
..110101..

"011001..

..101100..

z ^ Q - ..oooooo..
..101100..

i^r~y- "Oi iooi . .
..110101..

Figure 5.12 Example of the bit-by-bit comparison in the A C S block.

The total number of single stuck-at faults in the A C S U block including the XOR-tree-

space compactor is 3502. The achieved fault coverage is 98.6% after compaction. The

area overhead of the test is 5% of the A C S U block area, again including the X O R tree and

wiring area.

6. Prototype Chip

6.1 Chip Specifications

The Viterbi decoder has been integrated on a single chip in l.lfxm CMOS double metal

layer technology, partly using a standard cell library. The total chip size is 3.9 mm x 3.6

mm, or 14 mm^. The active core area is 9.5 mm^. The chip contains about 29,000 transistors

of which 19,000 are in the custom layout blocks. The expected clock speed is 100 MHz to

achieve a maximum decoding speed of 12.5 Mbits/s channel rate. For different code rates this

translates into 3 Mbits/s to 11 Mbits/s information rate. The chip has 30 pins of which 6 are

for power supply. The operation of the Viterbi decoder requires 11 pins, 3 more are needed

for the built-in self-test. 10 extra pins are provided for debugging possible design errors.

6.2 Design Tbols

The VLSI C A D system EDGE™ from CADENCE™ provided by the Canadian Micro­

electronics Corporation was used. Simulations of the standard cells were carried out with

SILOS II® logic simulator and custom layouts were simulated in HSPICE™. The SILOS®

fault simulator determined the fault coverage for the built-in self-test. Design, layout and

simulations were carried out on SUN SPARC 2 and SUN SPARC 10 work stations provided

by the Canadian Microelectronics Corporation.

6.3 Pin Description

The arrangement of the pads on the chip can be seen from Fig. 6.1. Arrows toward

S E L _ P A T H -
P A T H _ T E S T _ P A T -
H E L P _ P A T H _ C K 2 -
H E L P _ S E L _ M U X -

IN_LSB
IN-

IN_MSB
WRITE

C K
RESET

11 t w
th r< ^ , --I M M tEJ
Q Q Q
" O O O

o
u
Q
Z
O

O
U
Q

TEST
H E L P

S I G N A T U R E . O U T

M E M _ T E S T _ O U T
A C S _ T E S T _ O U T
END_TEST
BAD

Figure 6.1 Pad placement on the chip.

the chip indicate inputs, arrows pointing from the chip denote outputs. A commercially

produced chip would have only the bold face pads. They alone are necessary to form a

fully testable Viterbi decoder for variable rates. The additional pads increase observability

and controllability of the chip. In the case of a design error they help to narrow down the

location of the error. The following is a list of all pins and the corresponding description.

The number in the last column refers to the pin number of a 68-pin pin grid array as will

be shown in Appendix B.

Pad Name Description ^

ACS_TEST_OUT Output. Is the output of the bit-by-bit comparison of the

ACS block test. ACS_TEST_OUT = 1 if an error was 23

detected in the ACS block.

BAD Output. Is the test result of the complete BIST. B A D =

1 if an error was detected in the chip.

CK Input. Provides the overall chip clock. The required

clock format is "10" for one clock cycle.

END_TEST Output. Indicates the end of the self test. The chip is

said to be good if B A D = 0 and END_TEST =1.

H E L P Input. Control point to allow a external test of the path

memory, if HELP =1.

19

BR_01 Output. Outputs the value of the branch metric B M 01. 10

66

CODE 1, CODE 2, Inputs. Input the current code matrix here one column at

CODE 3 a time. CODE 1 corresponds to the MSB of the code

mapping (see Section 4.4). The code columns are 2, 4, 6

entered in channel symbol speed. A maximum of seven

columns are allowed.

21

GND_CORE Ground. Connects to the core area. 12, 46

GND_RING Grown J. Connects to the pad ring. 38

29

HELP_PATH_CK2 Input. Provides the second non overlapping clock for

external path memory testing if HELP = 1. Clock 1 is

the chip clock C K .

HELP_PATH_CK2
CK ^

1
1

r 1
1 1

r
1

56

H E L P _ S E L _ M U X Input. Takes the values for the multiplexer select lines

for external path memory test, when H E L P = 1.

H E L P _ S E L _ M U X is directly connected to the upper 58

half and via an inverter to the lower half of the

multiplexer select lines.

IN_MSB, IN, Inputs. The eight-level quantized channel symbols to be 62, 61,

IN LSB decoded. 60

MEM_TEST_OUT Output. Outputs the result of the bit-by-bit comparison

of the path memory test algorithm.

OUTCLK Output. Provides the clock of the the decoded

information bits. Can be used as write clock for a

first-in-first-out memory.

25

OUTPUT Output. Outputs the decoded information bits.

PATH_TEST_PAT Input. Takes the input pattern for external path memory

test, when HELP = 1. Connects to all path memory

inputs.

42

44

54

PATTERN_1 Output. One output of the pseudo-random test pattern

generator.

RESET Input. Global reset. A l l flip-flops are reset to state zero

in normal mode (when TEST = 0). In test mode (when

TEST = 1) it sets the circuit into the initial state for

identical signatures.

SIGNATURE_OUT Output. Gives the result of the multiple signature

analysis.

TEST Input. Switches between normal operating mode (TEST

= 0) and test mode (TEST = 1).

68

SEL_PATH Output. Output of the control block that is "1" when the

path metrics are selected at the inputs of the ACSUs and 52

is "0" when the partial path metrics are recirculated.

27

31

VDD_CORE Power. 5 V . Connects to the chip core. 14, 48

VDD_RING Power 5 V . Supplies the I/O pads with power. 40

WRITE Input. WRITE = 1 enables the user to enter the code

matrix. Each code column takes one channel symbol 64

period (= 8 clock cycles).

6.4 Chip Layout

Path Memory

BMU, Code Memory,
Control, Test, .•.

A C S

Figure 6.2 Floor plan of the Viterbi decoder.

Figure 6.2 shows the floor plan and Fig. 6.3 the metal 1 and metal 2 layers of the

fabricated chip. The path memory occupies almost half of the chip area and is placed on the

upper half of the chip. The ACS block can be seen in the lower right corner. The rest are

standard cells, placed by the Cadence™ Place and Route routine.

The fabricated chip is mounted on a 68-pin pin grid array package (PGA). Appendix

B shows the bonding diagram and the top and the bottom view of the packaged chip. The

circled pins indicate used pins.

6.5 Test Results

To verify that the Viterbi decoder is working in theory, the circuit was simulated with

SILOS n ® using encoded data as simulation input patterns. For the ACS block and the path

memory, which exist only as their layout, equivalent standard cell blocks were substituted.

Repeating these simulations with several different code rates, raised the confidence of proper

functionality.

Figure 6.3 Metal 1 and metal 2 layer of the chip that show the path memory on the upper half and the

A C S block in the lower right comer. The rest is placed by the Cadence™ Place and Route.

Unfortunately, the Place and Route function had a software error and did not connect

the output pads of the chip properly. The output pads have to be enabled by connecting

the E N A B L E pin to VDD- Place and Route connected all ENABLES together, but left them

floating. It is not possible to see any output signals of this prototype chip. Hence test results

are not available.

However, even without working output pads, estimations of the power consumption are

possible. The power consumption was determined by measuring the average current flowing

into the chip and multiplying by the supply voltage of 5V. The measurement was conducted

in two series. First, all four prototype chips were tested in normal mode for decoding an

imaginary 7/8 rate code. The 7/8 rate code gives the upper limit in power consumption in

mission mode, since 7 decisions are made in the ACSUs for 8 incoming channel symbols,

resulting in the highest clock frequency for the path memory flip-flops. A counter generated

the imaginary input symbols. Then, tests were repeated in test mode. In test mode, no inputs

are necessary (except a static TEST =1), since all test patterns are generated on-chip.

Since it is not possible to verify that the chip is working correctly, the power consumption

was also estimated by HSPICE™ simulations. Since it was not possible to simulate the

complete Viterbi decoder in one piece with HSPICE™, smaller blocks were simulated

separately. The total power dissipation is the sum of the power consumptions of all blocks.

Adding a simple "power meter", as can be seen in Fig. 6.4, eases the estimation of the

power consumption. The current-controlled current source is controlled by the current

flowing through node VDD and loads a capacitor. The integrated voltage at the capacitor,

multiplied with a scaling factor, is a measure of the used power in pWatts. The resistor is

necessary to provide a DC path to ground for the HSPICE™ simulation.

IpF 100 M E G

Figure 6.4 "Power meter" for HSPICE™ to estimate the power consumption.

Figure 6.5 shows the simulated, measured, and from the measurements extrapolated

power consumption of the Viterbi decoder. The measured power dissipation of all chips was

Power Consumption
400

350 -

300 -

O O measured
simulated

iKii\"\ i", estimated

20 40 60
Frequency [MHz]

80 100

Figure 6.5 Estimated power consumption up to the maximum frequencies.

within +/- 2 mW. To leave the figure readable, only the mean is shown in Fig. 6.5. For

normal mode both simulations and extrapolated measurements show good agreement over the

entire frequency range. 200 mW at maximum speed is reasonable for battery operated mobile

devices. The power consumption is not zero when the clock frequency is zero due to a static

power consumption of 30 mW in the path memory. The major disagreement of measured

and simulated power dissipation in test mode cannot be explained without the actual output

data to determine if, and if where, a mistake has happened that could explain the discrepancy.

7. Conclusion

This work described the development and design of a variable-rate Viterbi decoder of

constraint length K = 5 (memory order m = 4). The decoder supports any code rate ranging

from 7/8 to 1/4. The chip has been implemented in Northern Telecom's 1.2 /im CMOS

double metal layer process and occupies a total of 14 mm^. The architecture of the Viterbi

decoder is bit-serial node-parallel. The incoming 3-bit quantized channel symbols are input

in parallel, converted to a serial stream, and processed serially. This reduces the amount

of interconnect area substantially, as the add-compare-select (ACS) units are connected by

single wires only. High decoding speed is still achieved because the ACS operation is

carried out concurrently in each of the 16 states.

The decoder uses a modulo normalization of the path metrics that can be performed

within each ACS unit to prevent register overflow errors. This eliminates the need for

additional circuitry and long global wires. Custom layout of the complete ACS block and

butterfly pairing of ACS units reduced the silicon area to less than 50% of a standard cell

implementation.

The path memory is implemented using the register exchange technique. This technique

was adopted as it occupies less silicon area than a traceback method implementation. A

traceback path memory, however, is very attractive, if silicon area is not the first concern.

The advantage of a traceback memory, if its speed is sufficient, is that it can be implemented

using standard cell design automation tools and a tested macro cell static R A M . The register

exchange technique is based on the movement of information sequences through the path

memory, accomplished by trellis connected shift registers, one for each state. To reduce the

silicon area, the path memory is full custom layout. For the trellis interconnections between

consecutive memory stages, a new state relabelling technique that reduces the interconnect

area to 30% compared to a straightforward trellis wiring was proposed and adopted for the

design. The area reduction was accomplished by redrawing the trellis as sets of butterflies.

A major aspect of this chip is its very cost effective built-in self-test. The fault coverage

of the complete test before compaction for single-stuck-at faults at the logic gate level is

99% with a hardware overhead of only 5%. A very efficient, novel test algorithm is used

for the path memory. The test complexity is independent of the constraint length of the

Viterbi decoder and the specific input pattern can be derived from the test counter very

easily. Since adjacent outputs of the path memory always produce complement values in

test mode, a bit-by-bit comparison that avoids any aliasing can be used for output data

evaluation. The ACS block is tested by a similar bit-by-bit comparison. However, the input

patterns are pseudo random. The rest of the circuit is tested by pseudo-random patterns

and a multiple signature analysis scheme. After finding an appropriate initial state of the

test pattern generator and other flip-flops in the circuit, it is possible to check four identical

signatures. Compared to checking only one signature at the end of the test session, checking

four identical signatures has the advantage of reducing the probability of aliasing, while

avoiding complicated signature checking for four different references. Moreover, test time

can be reduced as faulty chips can be discarded as soon as a signature does not match the

reference. The only cost is a one-time logic simulation performed at design phase, while

saving recurring circuit overhead.

References

[Abr90] M . Abramovici, M . A . Breuer, A . D. Friedman, Digital Testing and Testable Design,
Computer Science Press, New York, 1990.

[Aga87] V . K. Agarwal, Y . Zorian, "An Introduction to an Output Data Modification
Scheme", in Development in Integrated Circuit Testing, Academic Press Limited,
1987, pp. 219-256.

[Bar87] P. H . Bardell, W. H . McAnney, J. Savir, Built-in Test for VLSI: Pseudorandom
Techniques, New York: John Wiley & Sons, Inc., 1987.

[Bha81] V . K . Bhargava, D. Haccoun, R. Matyas, P. Nuspl, Digital Communications by
Satellite, John Wiley & sons. New York, 1981, pp. 353^02.

[Bre92] M . A . Bree, D. E. Dodds, R. J. Bolton, S. Kumar, B. L . F. Daku, " A Modular Bit-
Serial Architecture for Large-Constraint-Length Viterbi Decoding", IEEE J. Solid-
State Circuits, \o\. SC-21, pp. 184-190, February 1992.

[Cai79] J. B. Cain, G. C. Clark, Jr., J. M . Geist, "Punctured Convolutional Codes of Rate
(n-l)/n and Simplified Likelihood Decoding", IEEE Trans. Inform. Theory, vol.
IT-25, pp. 97-100, January 1979.

[Cha89] H . J. Chao, C. A . Johnston, "Behavior Analysis of CMOS D Flip-Flops", IEEE J.
Solid-State Circuits, vol. SC-24, pp. 1454-1458, October 1989.

[Cog88] D. J. Coggins, B . S. Vucetic, D. J. Skellern, "Trellis Partitioning Scheme Based on
State Relabelling for Viterbi Decoding in VLSI" , in International Symposium on
Information Theory, IEEE Information Theory Group, p. 228, 1988.

[Cog89] D. J. Coggins, D. J. Skellern, R. A . Keaney, J. J. Nicolas, " A Comparison of Path
Memory Techniques for VLSI Viterbi Decoders", VLSI'89, Proc. of the IFIP TC

10/WG 10.5 Int. Conf. on Very Large Scale Integration, pp. 379-388, Munich,
FRG, August 1989.

[Col92] O. M . Collins, "The Subtleties and Intricacies of Building a Constraint Length 15
Convolutional Decoder", IEEE Trans. Commun., vol. COM-40, pp. 1810-1819,
December 1992.

[Eld59] R. D. Eldred, "Test Routines Based on Symbolic Logical Statements", Journal of
the ACM, 6, pp. 33-36, January 1959.

[Fet90] G. Fettweis, "Parallelisierung des Viterbi Decoders: Algorithmus und VLSI-
Architektur", VDE Fortschrittsberichte, Reihe 10, vol. 144, Diisseldorf, FRG:
VDE-Verlag, 1990.

[Fet91] G. Fettweis, H. Meyr, "High-Speed Parallel Viterbi Decoding: Algorithm and VLSI-
Architecture", IEEE Communications Magazine, pp. 46-55, May 1991.

[For73] G. D. Forney, Jr., "The Viterbi Algorithm", Proc. IEEE, vol. 61, pp. 268-278,
March 1973.

[Gei90] R. L . Geiger, P. E. Allen, N . R. Strader, VLSI Design Techniques for Analog and
Digital Circuits, McGraw-Hill Publishing Company, New York, 1990.

[Gul86] P. G. Gulak, E. Schwedyk, "VLSI Structure for Viterbi Receivers: Part I—General
Theory and Applications", IEEE J. Selected Areas in Communications, vol. SAC-4,
pp. 142-154, January 1986.

[Gul88] P. G. Gulak, T. Kailath, "Locally Connected VLSI Architectures for the Viterbi
Algorithm", IEEE J. Selected Areas in Communications, vol. SAC-6, pp. 527-537,
April 1988.

[Hag88] J. Hagenauer, "Rate-Compatible Punctured Convolutional Codes (RCPC Codes)
and their Applications", IEEE Trans. Commun., vol. COM-36, pp. 389-400, April
1988.

[Hay88] S. Haykin, Digital Communications, John Wiley & sons. New York, 1988, pp.
393^14.

[Ish87] T. Ishitani, K. Tansho, N . Miyahara, S. Kubota, S. Kato, " A Scarce-State-Transition
Viterbi-Decoder VLSI for Bit Error Correction", IEEE J. Solid-State Circuits, vol.
SC-22, pp. 575-581, August 1987.

[Iva92] A . Ivanov, S. Pilarski, "Performance of Signature Analysis: A Survey of Bounds,
Exact, and Heuristic Algorithms", Integration, the VLSI Journal 13, Elsevier Science
Publishers B. V. , 1992, pp. 17-38.

[Iva93] A . Ivanov, Y . Zorian, "Programmable Space Compaction for BIST", Symposium on
Fault Tolerant Computing, pp. 340-349, Toulouse, France, June 1993.

[Jir87] Y . Ji-Ren, I. Karlsson, C. Svensson, " A True Single-Phase-Clock Dynamic CMOS
Circuit Technique", IEEE J Solid-State Circuits, vol. SC-22, pp. 899-901, October
1987.

[Kal90] S. Kallel, D. Haccoun, "Generalized Type II Hybrid A R Q Scheme Using Punctured
Convolutional Coding", IEEE Trans. Commun., vol. COM-38, pp. 1938-1946,
November 1990.

[Kal93] S. Kallel, "Efficient Hybrid A R Q Protocols with Adaptive Forward Error Correc­
tion", IEEE Trans. Commun., in press.

[Kam93] T. Kameda, S. Pilarski, A . Ivanov, "Notes on Multiple Input Signature Analysis",
IEEE Trans. Computers, vol. C-42, pp. 228-234, February 1993.

[Kat92] M . Katoozi, A . W. Nordsieck, "Built-in Testable Error Detection and Correction",
IEEE J of Solid-State Circuits, vol. SC-27, pp. 59-66, January 1992.

[Lei92] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypercubes, San Madeo: CA, Morgan Kaufmann Publishers, Inc., 1992, pp. 730-
742.

[Li87] Y . K. L i , J. P. Robinson, "Space Compression Methods with Output Data Modifica­
tion", IEEE Trans, on CAD, vol. CAD-6, pp. 290-294, March 1987.

[Mag90] C. Magerle, "Implementierung des Viterbi Algorithmus", Diplomarbeit an der
technischen Universitat Wien, 1990.

[Pel91] D. Pellerin, M . HoUey, Practical Design Using Programmable Logic, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1991.

[Qua93] "Q1650C Viterbi Decoder" product description, Qualcomm Inc. 10555 Sorrento
Valley Rd., San Diego, C A 92121, USA, 1993.

[RadSl] C. M . Rader, "Memory Management in a Viterbi Decoder", IEEE Trans. Commun.
vol. COM-29, pp. 1399-1401, September 1981.

[Raj91] J. Rajski, J. Tyszer, "Experimental Analysis of Fault Coverage in Systems with
Signature Registers", Proc. 2nd European Test Conference, Munich, Germany, April
1991, pp. 45-51.

[Ros93] J. Rose, A . Gamal, A . Sangiovanni-Vincentelli, "Architecture of Field-
Programmable Gate Arrays", Proceedings of the IEEE vol. 81, July 1993,
pp. 1013-1029.

[Shu91] C. B. Shung, P. H. Siegel, H . K. Thapar, R. Karabed, " A 30-MHz Trellis Codec
Chip for Partial-Response Channels", IEEE J. Solid-State Circuits vol. SC-26, pp.
1981-1987, December 1991.

[Shu90] C. B . Shung, P. H. Siegel, G. Ungerbock, H. K. Thapar, "VLSI Architectures
for Metric Normalization in the Viterbi Algorithm", in Proc Int. Conf. Commun.,
Atlanta, GA, April 1990.

[Sny83] J. S. Snyder, "High-Speed Viterbi Decoding of High-Rate Codes", Proc. 6th
Int. Conf. Digital Satellite Communications, pp. Xn-16-XII-23, Phoenix, A Z ,

^ September 1983.

[Sta87] J. Stahl, H . Meyr, " A Bit Serial Viterbi Decoder Chip for the MBit/s Range", IEEE
Custom Integrated Circuits Conference, pp. 551-554, 1987.

[Sta91] "STEL-2040, STEL-2030A" Product of Stanford Telecom, Santa Clara, C A
95054-1298, USA, Commun. Magazine December 1991.

[Tsu93] B . Tsuji, "On Selecting Programmable Space Compactors for Built-in Self-Test
Using Genetic Algorithms", Master's Thesis, University of British Columbia, 1993.

[Tri93] S. Trimberger, " A Reprogrammable Gate Array and Applicatins", Proceedings of the
IEEE vol. 81, July 1993, pp. 1030-1041.

[Vit79] A . J. Viterbi, J. K. Omura, Principles of Digital Communications and Coding, New
York: McGraw-Hill, 1979, pp. 259-260.

[Wes88] N . H . E. Weste, K. Eshraghian, Principles of CMOS VLSI Design: A System
Perspective, Addison-Wesley Publishing Co., Reading M A , 1988, pp. 317-319.

[Wu92] Y . Wu, A . Ivanov, " A Fuzzy Multiple Signature Analysis Scheme for BIST", Proc.
1st Asian Test Symposium, Japan, November 1992, pp. 247-252.

[Wu93] Y . Wu, A . Ivanov, "Minimal Hardware Multiple Signature Analysis for BIST",
Proc. Ilth IEEE VLSI Test Symposium, Atlantic City, NJ, April 1993, pp. 17-20.

[Wu93a] Y . Wu, "On Multiple Intermediate Signature Analysis for Built-in Self-Test", Ph.D.
Thesis, University of British Columbia, 1993.

[Xil92] Xilinx, Incorporated, The Programmable Gate Array Data Book, Xilinx, Inc., San
Jose, CA, 1992.

[Yas81] Y . Yasuda, Y . Hirata, A . Ogawa, "Optimum Soft Decision for Viterbi Decoding",
Proc. 5th International Conference of Digital Satellite Communications, pp. 251-
258, Genoa, Italy, March 1981.

[Yas83] Y . Yasuda, Y . Hirata, K. Nakamura, S. Otani, "Development of Variable-Rate Viterbi
Decoder and its Performance Characteristics", Proc. 6th Int. Conf. Digital Satellite
Communications, pp. XII-24-XII-31, Phoenix, A Z , September 1983.

[Yas84] Y . Yasuda, K. Kashiki, Y . Hirata, "High-Rate Punctured Convolutional Codes for
Soft Decision Viterbi Decoding", IEEE Trans. Commun., vol. COM-32, pp. 315-
319, March 1984.

Appendix A. Cell Layouts

Simulations are carried out in HSPICE™ for 1.2/um CMOS technology. The ambient

temperature is 25° C. VDD = 5 V . A l l rise and fall times are measured when simulating the

cell with the maximum load that a cell has to drive. The rise and fall time here is defined

as the time between the input crossing the 2.5 V mark and the output of the load crossing

the 2.5 V mark. Inputs are driven by waveforms which have 0.5 ns rise and fall times.

Exclusive Or

OUT

Figure A . l X O R layout.

Silicon Area: 1000 /um^.

Rise time: 0.3 ns.

Fall time: 0.4 ns.

Load: 0.05 pF.

D-Flip-Flop

Figure A.2 Layout of a resetable D-flip-flop.

The long wire in poly-Si connecting the two transistors with CB is outside the cell, but

when the flip-flops are connected to a shift register, CB will feed the p-channel transistor

of the previous stage and the n-channel transistor of its own stage, making the poly-Si loop

unnecessary.

Silicon Area: 1470 fim^.
Rise time: 0.4 ns.

Fall time: 0.3 ns.

Load: 0.04 pF.

Path Memory Cell

C B C K

Figure A . 3 Layout of a path memory cell, consisting of a multiplexer on the left and a dynamic D-flip-flop on the right.

Silicon Area: 1813 /im^.

Rise time: 0.3 ns.

Fall time: 0.8 ns.

Load: 0.04 pF.

1-Bit Adder Cout SUM

Cin
Figure A.4 Adder layout.

Silicon Area: 3494 iivc?.
Rise time S U M : 1.7 ns.

Fall time S U M : 1.9 ns.

Rise time C A R R Y : 1.2 ns.

Fall time C A R R Y : 1.1 ns.

Load: 0.06 pF.

Multiplexer

Figure A.5 Multiplexer layout.

Silicon Area: 970 /im^.

Rise time: 0.6 ns.

Fall time: 0.5 ns.

Load: 0.04 pF.

Appendix B. Pin Locations and Bonding Diagram 107

Appendix B. Pin Locations and Bonding Diagram

• © 0 © ® ® © (Î4) 16 17

@ 1 3 5 7 9 11 13 15 18 ®
y — V bEiEK BCAIL

X — V

67 @ BOMEK IflME Ô3 20 @
65 @ 22 ®
63 @ 24 @
@ (60) 26 ®
59 ® 28 ®
57 ® 30 ®
55 @ 32 33

53 ® 49 47 45 43 41 39 37 35 34

51 50 (48) (44) (42) @) @) 36

Bottom View

of Chip

51 50 @ @ (g) @ @ (3 8) 36

53 ® 49 47 45 43 41 39 37 35 34

55 @ 32 33

57 @ 30 @

59 (58) 28 @ Top View

® ® ofChip
63 (62) 24 @

65 (64) 22 ®

67 PETER BCVIT 20 (g^
^ ^ BONEK JUNE 93 ^

^ 1 3 5 7 9 11 13 15 18 (19;

Figure B . l Pin location of the chip on a 68-pin P G A .

Appendix B. Pin Locations and Bonding Diagram 108

OTHER IDENTIFICATION FEATURES.

WAFER NUMBERS

DESIGN FILE REFERENCE

PACKAGE LID

no substrate connections required, a l l pins should be floating

WIRE ALLOY ^ ' / ' ^ Si DIA.
m A l / I l Si

.001" ELONG. 1.5 - n

.OP125" 1.5 - UX
T.S. Oms

""If

D/A PREFORM ALLOY ^"/2X Si RECOMMENDED SIZE W/B METHOD U.S.

BONDIMG DIAGRAM HOTES: 1. OIE ATTACH PAD SIZE:

2. • ZERO GROUND

26

.400 X .400

18

Figure B.2 Bonding diagram to match the pads on the silicon chip to the pins of the P G A package.

Appendix C. List of Acronyms

A C R Adaptive Coding Rate

ACS Add-Compare-Select

A C S U Add-Compare-Select Unit

AIR Adaptive Incremental Redundancy

A R Q Automatic-Repeat-Request

ASIC Application Specific Integrated Circuit

BER Bit-Error Rate

BIST Built-in Self-Test

B M Branch Metric

B M U Branch Metric Unit

bmw branch metric word width

BPSK Binary Phase Shift Keying

BSC Binary Symétrie Channel

C L B Configurable Logic Block

CMOS Complementary Metal Oxide Silicon

C P U Central Processing Unit

CUT Circuit Under Test

D M C Discrete Memoryless Channel

EEC Forward Error Correction

FILO First-In Last-Out

FMS analysis Fuzzy Multiple Signature analysis

F P G A Field Programmable Gate Array

I/O Input/Output

IC Integrated Circuit

LFSR Linear Feedback Shift Register

LSB Least Significant Bit

MINSR Multiple Input No-Feedback Shift Register

MISR Multiple Input Shift Register

MS Multiple Signature

M S B Most Significant Bit

NMOS N-typeMOS

P G A Pin Grid Array

P L A Programmable Logic Array

P L D Programmable Logic Device

P M Path Metric

PMOS P-typeMOS

pmw path metric word width

PSC Programmable Space Compactor

QPSK Quadrature Phase Shift Keying

P R O M Programmable Read Only Memory

R A M Random Access Memory

R C C Codes Rate Compatible Convolutional Codes

RCPC Codes Rate-Compatible Punctured Convolutional Codes

R C R C Codes Rate-Compatible Repetition Convolutional Codes

R O M Read Only Memory

SNR Signal-to-Noise Ratio

S R A M Static Random Access Memory

SS Single Signature

TPG Test Pattern Generator

VLSI Very Large Scale Integration

X O R Exclusive OR

