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Abstract 

This thesis develops a novel predictive control strategy called Sampled-Data Generalized Pre­

dictive Control (SDGPC). SDGPC is based on a continuous-time model yet assumes the projected 

control profile to be piecewise constant, i.e. to be compatible with zero order hold circuit. It thus 

enjoys both the advantage of continuous-time modeling and the flexibility of digital implementation. 

SDGPC is shown to be equivalent to an infinite horizon LQ control law under certain conditions. 

For well-damped open-loop stable systems, the piecewise constant projected control scenario adopted 

in SDGPC is shown to have benefits such as reduced computational burden, increased numerical 

robustness etc. When extending SDGPC to tracking design, it is shown that future knowledge of 

the setpoint significandy improves tracking performance. A two-degree-of-freedom SDGPC based 

on optimization of two performance indices is proposed. Actuator constraints are considered in an 

anti-windup framework. It is shown that the nonlinear control problem is equivalent to a linear 

time-varying problem. The proposed anti-windup algorithm is also shown to have attractive stability 

properties. Time-delay systems are treated later. It is shown that the Laguerre-filter-based adaptive 

SDGPC has excellent performance controlling systems with varying time-delay. An algorithm for 

continuous-time system parameter estimation based on sampled input output data is presented. The 

effectiveness and the advantages of continuous-time model estimation and the SDGPC algorithm over 

the pure discrete-time approach are highlighted by an inverted pendulum experiment. 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

M o d e l Based Predictive Control ( M B P C ) has achieved a significant level of success in industrial 

applications during the last ten years. This has inspired the academic community to investigate the 

theoretical foundations of M B P C . As a result, a wealth of exciting stability results have been obtained 

for the last couple of years. It is safe to say that a solid theoretical foundation for model predictive 

control has now been established. 

One of the many explanations of the success of M B P C is that predictive control is an open 

methodology. That is, within the framework of predictive control, the predictive controller can be 

closely tailored to meet different requirements of a particular problem. A s a result, quite a few 

predictive controllers have been proposed. Some of the well-known predictive controllers are G P C 

( Generalized Predictive Control [13]), D M C ( Dynamic Matrix Control [15]), M o d e l Predictive 

Heuristic Control [61], etc. A l l of these controllers are developed in a discrete-time context. That 

is, a l l the controller designs start with a discrete-time model which can be obtained either by direct 

identification from the discrete input output data or by discretizing a continuous-time model. Although 

most of the industrial processes are continuous in nature, the discrete-time approach of M B P C is a 

natural choice since most of the M B P C algorithms need computer implementation. However, the 

selection of the sampling interval in digital control is not a trivial task. Moreover, it has been 

pointed out that in applications where fast sampling is needed, the discrete-time model in ^-domain 

is not a good description of the underlying continuous-time process since the poles and zeros of the 

continuous-time system are mapped to the unit circle as the sampling interval A goes to zero. It 

is thus not a surprise to see a resurgence of interest in continuous-time model based methods [33] 

[32]. Efforts have also recently been made to unify discrete-time and continuous-time methods under 

the name of 6-operator [50]. 
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Chapter 1: Introduction 

One of the few continuous-time results on M B P C is the work done by H.Demircioglu and 

P.J.Gawthrop [18] in which Continuous-time Generalized Predictive Control ( C G P C ) was developed 

based on Laplace transfer function model. Multivariable C G P C [19] and modified C G P C with 

guaranteed stability are also available [16]. However, results on continuous-time M B P C are still very 

limited compared with its discrete-time counterpart. There is still no reported real life application 

of continuous-time M B P C to the best of the author's knowledge. This is perhaps partly due to 

the fact that it assumes the projected future control inputs to be of a polynomial type which is not 

compatible with the widely used zero-order hold device in digital control equipment. A s a result, 

the digital implementation of C G P C unavoidably introduces approximations which often demand a 

small sampling interval. This demand wi l l result in computation difficulties in some applications. 

Nonetheless, continuous-time modelling is still appealing even for the purpose of digital control 

since physical relevance of the model parameters is retained and it is easier to identify partially-

known systems in a continuous-time setting. This motivates us to develop a M B P C algorithm based 

on continuous-time modelling while assuming the projected future control scenario to be piecewise 

constant, i.e. to be compatible with the zero-order hold device. The model form is chosen to be a 

continuous-time state-space equation instead of a continuous-time transfer function for two reasons. 

First, it is easier to deal with time-delay in time domain. Second, Laguerre network naturally has a 

state space form in time domain. Actuator constraints are not considered in the problem formulation 

initially, rather they are incorporated into the scheme later in the framework of anti-windup design. 

1.2 Literature Review 

Historical background as well as current trends in Mode l Based Predictive Control ( M B P C ) 

are reviewed in this section. The concept of predictive control originated in the late seventies with 

the seminal papers on D M C [15] by Cutler and Ramaker and on M o d e l Predictive Heuristic Control 

[61], by Richalet et al. The common features of predictive control are: 

1. A t each "present moment" t, a forecast of the process output over a long-range time horizon 

is made. This forecast is based on a mathematical model of the process dynamics, and on the 

future control scenario one proposes to apply from now on. 

2 ' 



Chapter 1: Introduction 

2. The control strategy is selected such that it brings the predicted process output back to the 

setpoint i n the "best" way according to a specific control objective. Most often this is done by 

minimizing a quadratic performance index. 

3. The resulting control is then applied to the process input but only at the present time. A t the 

next sampling instant the whole procedure is repeated leading to an updated control action with 

corrections based on the latest measurements. This is called a receding horizon strategy. 

Another school of thought in predictive control, whose objective is to design the underlying 

controllers in an adaptive control context, emerged almost independently at about the same time. 

Peterka's predictive controller [58], Ydstie's extended-horizon control [84], Mosca etaWs M U S M A R 

[53] and the G P C [13] of Clarke et al. are all in this category. The continuous-time counterpart 

of G P C called C G P C is reported in [18]. However, the completely continuous-time design seems to 

l imit its applicability. The structures of all the M B P C algorithms are the same but differ in details. 

For example, the D M C [15] uses a finite step response model and M o d e l Predictive Heuristic Control 

[61] uses impulse response model while G P C [13] on the other hand uses an A R T M A X model. 

M a n y application of M B P C are reported in the literature and several companies offer M B P C 

software. The survey paper by Garcia [31] et al. examines the relationship between several 

M B P C algorithms and industrial applications are also reported. A more recent paper by Richalet 

[62] presented two classical applications of M B P C . B y the late eighties, M B P C had secured a 

widespread acceptance in process industry despite the lack of firm theoretical foundation, which 

is quite remarkable. It is acknowledged [51] that there is no useful general stability results for the 

original formulation of M B P C . In fact it was shown in [4] that G P C has difficulty controlling systems 

with nearly cancelled unstable poles and zeros. Although such kind of systems are difficult to control 

for any control methods, it nonetheless showed that G P C has some serious shortcomings. Bitmead et 

al. [4] suggested using the traditional infinite horizon L Q G instead. The infinite horizon approach, 

albeit with guaranteed stability property, is less appealing in applications where some input and/or 

state constraints exist. A finite horizon with terminal state constraints is proposed independently by 

a group of researchers [14, 60, 52, 54]. The survey paper [11] by Clarke covers the most recent 

advances in M B P C . A bibliography of M B P C and related topics from 1965 to 1993 is also appended 
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Chapter 1: Introduction 

in that paper. A book entitled " Advances in Model-Based Predictive Control " [11], edited by Clarke 

is based on the presentations made at a conference wholly devoted to recent advances in M B P C . It 

is a complete collection of the latest results on M B P C . A s pointed out by Clarke [11], M B P C can 

handle real-time state and actuator constraints in a natural way. This is an active research topic which 

has important practical implications. It is predicted [51] that M B P C w i l l emerge as a versatile tool 

with many desirable properties and with a solid theoretical foundation. 

It is worth pointing out at this point that most of the M B P C algorithms are not robust synthesis 

methods i n the sense that there is no explicit incorporation of realistic plant uncertainty description in 

the problem formulation. Recent developments in the theory and application ( t o control) of convex 

optimization involving Linear Matr ix Inequalities (LMI) [7] have opened a new avenue for research 

in M B P C . M u c h of the existing robust control theory can be recast in the framework of L M I s and the 

resulting convex optimization problem can be solved very efficiently using the recent interior-point 

methods. It is thus not surprising to see that results on M B P C using convex optimization ( as opposed 

to conventional linear or quadratic programs ) have begun to appear in the literature [40, 75]. This 

is certainly a promising research filed for M B P C . 

Literature reviews on related topics such as receding horizon L Q control, Laguerre filter based 

modelling and control, anti-windup scheme, control of time-delay systems and continuous-time system 

identification based on sampled input output data w i l l be given when these topics are introduced. 

1.3 Contribution of the Thesis 

The contributions of this thesis can be summarized as follows. 

1. A new predictive control strategy is developed in a sampled-data framework. The resulting 

algorithm, S D G P C , has guaranteed stability property. Its relationship with infinite horizon L Q 

regulator is established clearly. S D G P C enjoys the advantage of continuous-time modeling and 

the flexibility of digital implementation. 

2. A two-degree-of-freedom S D G P C based on optimization of two performance indices is proposed. 

Its servo performance and disturbance rejection performance can be tuned separately. Based on 

4 



Chapter 1: Introduction 

this design, an and-windup scheme is developed with guaranteed stability properties. The novel 

approach used here is to transform the nonlinear problem into a time-varying linear problem. 

This scheme has important practical implications as wel l as theoretical interests. 

3 . The one-degree-of-freedom S D G P C is extended to tracking system design. 

4. Control of time-delay systems is treated in detail. A practically appealing Laguerre filter based 

adaptive S D G P C algorithm is developed. 

5. A n algorithm to estimate the parameters of continuous-time system based on sampled input output 

data is presented. Fast time-varying parameters can also be estimated under this framework. The 

effectiveness and the advantage of continuous-time model estimation and the S D G P C algorithm 

over the pure discrete-time approach are highlighted by an inverted pendulum experiment. 

1.4 Out l ine of the Thesis 

Chapter 2 presents the Sampled-Data Generalized Predictive Control algorithm S D G P C . Its 

relationship with infinite horizon L Q regulator and stability property are analyzed in detail. Simulation 

and tuning guidelines are also given by examples. 

Chapter 3 extends the One-Degree-of-Freedom (ODF) S D G P C to tracking problems resulting 

in a Two-Degree-of-Freedom (TDF) design formulation. The T D F - S D G P C can track non-constant 

reference trajectories and/or disturbances with zero steady state error. When the future setpoint 

information is available, the T D F - S D G P C has a concise form and the tracking performance can be 

improved dramatically. 

Chapter 4 considers control of time-delay systems. The direct approach, in which time-delay 

appears explicitly in,the model, and Laguerre filter modeling approach are proposed. The Laguerre 

filter based adaptive S D G P C is particularly appealing in that its computation burden is independent 

on the prediction horizon. 

Chapter 5 deals with another important issue in process control: actuator constraints. A S D G P C 

algorithm based on two performance indices is proposed. The control problem is interpreted as a 

nominal servo performance design plus an integrator compensation for disturbances and modeling 

5 
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error. This algorithm under the framework of anti-windup design effectively transforms the con­

strained control problem into an unconstrained time-varying control problem whose stability can be 

guaranteed—a pleasant result. Examples are presented to show the effectiveness of the algorithm. 

Chapter 6 proposes a method to estimate the parameters of a continuous-time model based on 

sampled input output data. It is argued that even i f the controller design is based on discrete-time 

model, it is always desirable to estimate the continuous-time model before discretization. A n inverted 

pendulum is successfully controlled by SDGPC based on a continuous-time model estimated using 

the algorithm developed in this chapter. 

Chapter 7 summarizes the thesis and gives suggestions for future research. 

6 
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Chapter 2 

Sampled-Data Generalized Predictive Control (SDGPC) 

The poor numerical property of discrete-time models based on shift operator for fast sampling 

applications was shown by Middleton and Goodwin [50, pp. 44]. This is no surprise since the 

discrete-time model coefficients could be badly conditioned under fast sampling [50, pp. 46]. One 

solution is to use the 8 operator. The 8 operator offers superior numerical property and has great 

resemblance in model coefficients with its continuous-time counterpart [50, pp. 46]. Gawthrop [32] on 

the other hand argued that a continuous-time process is best represented by a continuous-time model 

and took the complete continuous-time approach, for example, in the formulation of Continuous-time 

Generalized Predictive Control ( C G P C ) [18] in which the user selected future control scenario is of 

a polynomial form. This approach requires approximation in digital implementation and may cause 

unacceptable errors for large sampling interval. The S D G P C approach given in this chapter w i l l be 

based on continuous-time modeling while assuming a piecewise constant projected control scenario 

thus enjoying the advantages of both sides. 

This chapter is organized as follows. S D G P C is formulated in section 2.1. Section 2.2 studies 

the stability properties of S D G P C . Section 2.3 gives interpretations for the S D G P C law i n its integral 

form. Simulations are presented in section 2.4 to give tuning guidelines of S D G P C . Section 2.5 

concludes the chapter. The work in this chapter was summarized in [46]. 

2.1 Formulation of S D G P C 

In order to highlight the basic ideas behind S D G P C , we only consider SISO systems here. 

However, the extension to M I M O systems is straightforward. The system being considered is 

described by a state-space equation 

x(t) = Ax(t)+Bu(t) 

y(t) = cTx(t) (2.1) 

dim(x) — n 

1 



Chapter 2: Sampled-Data Generalized Predictive Control (SDGPC) 

In order to introduce integral action in the control law, an integrator is inserted before the plant 

to give the augmented system 

if = AfXf + Bfud 

IJf = CT

fXf (2.2) 

Where 

xf = 

dim(xf) = nf = n + 1 

Xd(t) = i(t), ud(t) = ii(t), e(t) = y(t)-w 

'xd' ' A 0 ' 'B~ 

_ e _c T 0_ . 0 . 
0 1 ] 

(2.3) 

A n d w is the constant setpoint. 

We further assume that the projected future control derivative ud(t) is piecewise constant over 

the period of Tm = jf- with values ud.(l),u<i(2) • • •ua(A r

u) as in Fig.2.1. The benefit of assuming 

piecewise constant control derivative is that it w i l l result in a continuous control signal. 

Setpoint 

Predicted output 

SDGPC projected controls U d 

Texe T m T p Time 

Figure 2.1: The projected control derivative 

We cal l Tp the prediction horizon or prediction time and Nu the control order which is the 

allowable control maneuvers over the prediction horizon. In Fig.2.1, Tm is called the design sampling 

interval since the resulting S D G P C law, as w i l l be shown in section 2.2, is equivalent to a discrete-

time receding horizon control law based on (2.2) with sampling interval Tm provided that the first 

control u , i ( l ) is injected into the plant for a duration of Tm. However this is not necessarily so, the 

first control Ud ( l ) can actually be injected into the plant for a shorter time interval Texe which we 
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w i l l cal l it the execution sampling interval. Texe is the implementation sampling interval ( i n contrast 

to design sampling interval ) and can take any value on [0, Tm]. 

Similar to al l other model based predictive control approaches, S D G P C is based on minimizing 

a performance index: 

Note that the above optimization problem is a standard finite time linear quadratic regulator 

problem in terms of the augmented plant model (2.2). 

One of the key concepts in the formulation of model based predictive control is the receding 

horizon strategy. However, special to S D G P C is that there are two ways to implement the receding 

horizon strategy. That is, after the projected control vector [ud(l),Ud(2) • •-Ud(iVu)] is obtained, 

either of the following strategies can be used: 

1. The first control ud ( l ) is applied to the plant for a time duration of Tm. 

2. The first control Ud(l) is applied to the plant for a time duration of Texe which is a fraction of 

the design sampling interval Tm. 

The first case is equivalent to a digital control law with sampling interval Tm as w i l l be shown 

in the next section. In the second case, Texe can be smaller than Tm and when the execution time 

TeXe 0, it w i l l become a continuous time control law. This approach thus has the potential to 

solve the numerical problem for the pure discrete-time approach, as we mentioned at the beginning 

of this chapter, in fast sampling applications. 

Wi th the above preparations, we are in a position to derive the S D G P C law. 

The projected future control derivative in Fig.2.1 can be described mathematically as: 

(2.4) 

o 

Subject to : 

xf(t + Tp) = 0 (2.5) 

ud{t) = H(t)ud 

9 
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where 
H(t) = [H1(t) H2(t) •••Hi(t)---HN.(t)} 

Ud = [Ud(l) U d(2) • • • u d ( i ) • • • Ud(iV„)] 
(2.7) 

Hi(t) 
f l (i-l)Tm<t<iT„ 

{ 0 otherwise 
i = 1, 2,---Nu 

T — IjL 
m " Nu 

(2.8) 

Based on the system model (2.2) and the projected control scenario (2.6), we have the following 

T-ahead state prediction: 

Where 

i 

xd(t + T) = eATxd(t) + J eA{?-^Bud{r)dT 

o 
T 

= eATxd(t) + (J eA^BH{r)dr)xxA 

o 

T T 
= eATxd(t) + [ f e A ^ B H 1 (r)dr ••• J eA(T-^BEK(r)dT]nd 

eAI xd(t) + T(T)u d 

r(T) nxN„ 

l l 

J eW-^BH^dT-.- j eA^T-^BHNtt(T)di 
nxiV„ 

(2.9) 

(2.10) 

r ( T ) B xiV„ 

jeA(T-r)dTB. 0 . Q . . . 0 
0 

TfeA(T-r)dTB. j eA{T-r)(WB. Q . . . 0 
0 T , „ 

/" e^-^drB; ••• j e ^ ^ d r B 
.0 (7V„-l)Xm 

0 < T < Tm 

7?JI ^ 7" < 2T'7n 

(iV u - l ) r m <T <Tf 

(2.11) 

10 



Chapter 2: Sampled-Data Generalized Predictive Control (SDGPC) 

With xd(t + T), e(t + T) can be obtained: 

Where 

i 

e(t + T) = e(t) + cT j xd(t + r)dr 

o 

T 

= e(t) + J eATdTxd(t) + cTro(T)ud 

o 

T 
T 0 (T) = J T(T)dr 

o 
Recall ing the cost (2.4), we define the Hamiltonian: 

H(t,rj) = J(t) + riTxf(t + Tp) 

= J [e(t) + cTA-l(eAT - l)xd{i) + cTro(T)ud]2 dT 

+ j XujHT(t)H(t)uddT + T]'1 

eA1»xd{t) + T(Tp)ud 

e(t) + (?A-1(eAT> - I)xd{t) + cTT0(Tp)nd_ 

^ e t iu7 = ®i iftf = 0> w e n a v e t n e optimal solution for ud: 

u d = Kdxd(t) + Kee(t) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

where 

Kd = -K1^K3Td + TgK2 

eATr 

cTA-l(eATp _ty 

-0-

< KzTe + TgK2 • < KzTe + TgK2 

0 

. 1 . 4 

Td = Jrl(T)ccT{eAT - IJA-'dT, Te = JTT

0{T)cdT 

T9 = 
r(T) 

- i 

Ki J Tl(T)ccTT0(T)dT + \ J HTHdT 

K2 = [TjKiTg) \ 7 C 3 = I - TgK2TgK\ 

(2.16) 

11 
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ob>—^ 

x=Ax+Bu X T x=Ax+Bu c' 

1 
Observer 

Figure 2.2: The implementation scheme 

Fig.2.2 shows the S D G P C law (2.15) in a block-diagram form: 

A s we mentioned earlier, the control law (2.15) does not necessarily need to be implemented 

with the design sampling interval Tm. When the execution sampling interval Texe goes to zero, we 

can take integration on both sides of (2.15) to obtain an integral control law (2.17) in terms of the 

state and the control signal of the original systems (2.1). 

u(t) = Kdx(t) + Ke f e{r)dr + 

The block diagram of control law (2.17) is shown in F ig . 2.3 

(2.17) 

<x>EHI] & u x=Ax+Bu X J x=Ax+Bu J 

-TK51-

Figure 2.3: The integral control law 

The constant term 770 in (2.17) is unspecified and has no bearing oh the problem in the sense 

that it neither affects the closed loop eigenvalue nor the asymptotic property of e(t) —• 0 as t —• 0 

provided that the integral control law (2.17) is stabilizing. However, we can make use of the above 

fact and let rjo be proportional to the constant setpoint w. The effect is that a system zero can be 

placed i n a desired location to improve the transient response of the closed system under control 

law (2.17). The scheme is depicted in Fig.2.4. Details on how to select the feedforward gain Kw 

in Fig.2.4 w i l l be discussed in section 2.3. 

12 
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w 
=Ax+Bu 

Figure 2.4: Zero placing strategy 

S D G P C was developed above by minimizing the cost (2.4) subject to end point state constraints 

(2.5). Another approach is to include the end point state in the cost functional: 

J{t) = j' [e2(t + T) + Xu2(t + T)]dT + jxT(t + Tp)xf(t + Tp) (2.18) 

o 

Substitute equations (2.6) (2.9) (2.12) into performance index (2.18), we have 

J{t) = J e{t) + J eATdrxd(t) + c T T 0 ( T ) u d 

o L o 

dT+ 

J \u/HT(t)H(t)uddT+ 
0 

eAT>xd(t) + r ( T > H 

left) + J eA*dTxd{t) + cTro{Tp)xid 

0 0 
Let gjĵ - = 0, we have the solution for u ( 1 : 

u d = -K(Tdxd(t) + Tee(t)) 

eAT"xd(t) + r ( T p ) u d 

e(t)+ feATdrxd(t) + cTT0(Tp)ud 

-1 

K=\J TTccTY0dT + \J HTHdT + T r r ( T p ) r ( T p ) + 7 r ^ ( r p ) c c T r o ( T p ) 

,0 

(2.19) 

(2.20) 
Td = JTT

0ccTA-1 (eAT -I)dT + yrT(Tp)eAT> + (Tp)ccT A~'(eAT> - I) 

o 

Te = J TT(T)dTc + 1rT(Tp)c 

o 

Where T, Fa, H are defined by equation (2.10), (2.13), (2.7) respectively. Obviously, when 

7 —• oo, control laws (2.20) and (2.15) become equivalent. 

13 
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The main point of this section is that by selecting the projected control derivative scenario to 

be piecewise constant, a predictive control law S D G P C can be designed based on continuous-time 

modelling without causing any difficulty for digital implementation. This is in sharp contrast to C G P C . 

2.2 Stabil i ty Properties of S D G P C 

Stability results for G P C with terminal states constraints (or weighting) are available both for 

discrete-time [11, 12, 52] and continuous-time [16]. A natural question is whether S D G P C possesses 

such stability properties. This question w i l l be answered in this section. The basic idea is to show that 

S D G P C is equivalent to a stabilizing discrete-time receding horizon L Q control law. The important 

work of Bitmead et al. [4] is included in Appendix A for completeness. Those results are used to 

establish the stability property of S D G P C in section 2.2.1. 

2.2.1 Stabil i ty of S D G P C with control execution time Texe = Tm 

The S D G P C stability problem is attacked by first applying a transformation to convert the 

S D G P C problem to a discrete-time receding horizon problem, then making use of the stability results 

summarized in Theorem A . 10 and Corollary A.2. The transformation is based on the work of Levis 

et al. [43] in which the infinite horizon problem was treated. 

Recal l the state augmented system described by equation (2.2) 

dim(xf) = nf = n + 1 

Assuming that the execution sampling interval Texe under S D G P C control is the same as the 

design sampling interval Tm, the discrete-time equivalent of the augmented system (2.21) is then 

if = AfXf + BfUd 

(2.21) 

Xf(i+l) = <f>Xf(i) + rud(i) 

2//(0 = Cfxf(}) 
(2.22) 

With 
T, 

(2.23) 

o 

14 
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Recal l the cost functional (2.4) with Q = CfCT-

J(t) = J [xT(t + T)Qxf{t + T) + uT(t + T)Rud{t + T))dT (2.24) 

o 

Subject to : xf(t + Tp) = 0 

With the projected control scenario described by (2.6) as in Fig.2.1, the cost (2.24) can be 

expressed as the sum of Nu integrals: 

J(t) = f [xT(t + T)Qxf(t + T) + uT(t + T)Rud(t + T)]dT 

= / [xT

f{t + T)Qxf(t + T) + u^(t + T)Rud{t + T)]dT 
• A «/ 

(2.25) 

i = 0 iTm 

Define 

xf(i) = xf(t + iTm), u d ( i ) = ud(t + iTm), i = 0,l,---Nu-l (2.26) 

The integrals in (2.25) can be expressed as 

(••+i)rm 

J [xj(t + T)Qxf{t + T) + uT

d{t + T)Rud(t + T)] dT 

= J [xT(i + r)Qxf(i + T) + uj(i + r)Rud(i + r)] dr 

(2.27) 

The inter-sampling behavior Xf(i + r ) of system (2.22) is a function of x(i) and ud(i) as follows 

T 

xf(i + T) = eAfTx(i) + J eA>{T-^B}ud(i)ds (2.28) 

o 

Substitute equation (2.28) into equation (2.27), we have 

15 
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(••+1)T„ 

J [xT(t + T)Qxf(t + T) + uT(t + T)Rud(t + T)] dT 
iTm 

= J [xT(i + T)Qxf(i + T) + uJ(i + T)Rud(i + T)]dT 

0 
= xT(i)Qxf(i) + 2xT(i)Mud(i) + uJ(i)Rud(i) 

(2.29) 

where 

Q = J eAfTQeA'Tdr, M = J eAJTQ J eA'f 

o o Lo 
Tm r T -I r T 

R = TmR + Bj J J eAVdt Q J eA'fdt 

Bfdr 

0 LO J LO 
Finally the continuous-time cost (2.24) has the form 

(2.30) 

drBt 

J(t) = J [xT(t + T)Qxf(t + T) + uT(t + T)Rud{t + T)]dT 

o 

= YI UT(i)Qxf(i)+2xT(i)Mnd(i) + nJ(i)Rud(i) 

(2.31) 

i=0 

Remarks: 

1. These weighting matrices are time-invariant as long as Tm is constant. The symmetric and 

positive semi-definite or positive definite properties of Q, R are preserved in Q, R. 

2. Even i f the control weighting R = 0 in the original cost functional, there always is a non-zero 

weighting term R in the equivalent discrete-time cost. 

Note that there is a cross-product term in the discrete-time cost (2.25) involving Xf(i) and ud(i). 

However, by some transformation [43], the cross-product term can be removed to form a standard 

discrete-time cost. 

Define 
Q = Q- MRTlMT 

# = $ - v i r l M T 

v(i) = R-1MTxf{i) + ud(i) 

(2.32) 

16 
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B y substituting equation (2.32) into system equation (2.22) and the associated cost (2.25), we 

obtain 

xf(i + 1) = $xf(i) + Tv(i) 

yf(i) = cjxf(i) (2.33) 

dim(xf) = rif = n + 1 

and cost functional, 

iV„-l 
i=0 

J(t)= £ \^(i)Qxf(i) + vT(i)Rv(i) 

xf(Nu) = 0 

(2.34) 

For clarity, the above derivation is summarized in Table 2.1 

17 
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Problem 
Formulation S D G P C 

Discrete-time receding horizon L Q 
control 

System equation 

xf — AfXf + Brud 

dim(xf) = rif = n + 1 

x / ( i + l) = $ x / ( i ) + rv(i) 

»/(0 = cJx/(0 
dim(x}) = rif = n + 1 

Performance index 

m = 

y + T)Qxf(t + T) + uT

d{t + T)R.ud(t + T)]dT 
o 

J(t) = 

£ [xf(i)Qxf(i)+vT(i)Rv(ij\ 

Final state 
constraint xf(T„) = 0 xf(Nu) = 0 

$ = e AfTm^ T = J e A j r B f d T 

in 
o 

Bfdr 

Relationships 
T 

Q 

T 
fe^dt drBf 

J 
.0 

J 
.0 

Q = Q- MR-lMT 

$ = * - r j ^ M 3 , 

v(i) = R-1MTxf(i) + ud(t) 

Table 2.1 Comparison of S D G P C and discrete-time receding horizon L Q control 

We summarize the above results as follows: 

lemma 2.1 

When the execution time interval Texe is equal to the design sampling interval Tm, the SDGPC 

problem can be transformed to a standard discrete-time receding horizon LQ control problem as 

summarized in Table 2.1. 
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From lemma 2.1, it is clear that the stability problem of S D G P C boils down to finding the 

conditions i n terms of system (2.1) under which Theorem A.10 holds. We have following results 

to serve this purpose. 

Lemma 2.2 investigates the controllability and observability of the integrator augmented system 

(2.2). The proof of the controllability part can be found in [59]. The proof of the observability part 

is straightforward as given below. 

lemma 2.2 ( Power et al. [59] ) 
If the original system (2.1) with triple (A,B,cT) is 

a. both controllable and observable 

b. there is no system zeros at the origin 

then the augmented system (2.2) with triple (^Af, Bf, cT^j is also controllable and observable. 

Proof: The proof for controllability of (Af,Bf) can be found in Power and Porter [59]. The 

observability matrix of (A, cT) is 0AcT = [ cT; AcT; A2cT • • • An~1cT]nxn, with rank(OAcT) = n -

/ rp\ Olxn 1 / \ 
The observability matrix of (Af,cT) is 0AfCr — . Obviously, rank\0AjCTJ = 

/ [OACT 0 „ x i j 
n + 1, and the pair ^Af,cT^j is observable. • 

Remark: Condition b is intuitively obvious. If violated, there is no way that the system output 

of (2.1) can be driven to a nonzero setpoint. Or in terms of the augmented system (2.2), the state 

e(t) with nonzero initial value can not be driven to the origin. 

The following theorem is due to Kalman et al [38]. 

Theorem 2.1 ( Kalman et al [38] ) 
Let the continuous-time system (2.2) be controllable. Then the discrete-time system (2.22) is 

completely controllable if: 

Im(\i{A] - \j{A}) * np-
J m (2.40) 

n = ± 1 , ± 2 , . . . . 

whenever Re(Xi{A} - Xj{A}) = 0. 
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lemma 2.3 ( Anderson et al. [3, pp. 354] ) 

Assume ( $ , T ) given by equation (2.23) is controllable, then ($,r) given by (2.32) is also 

controllable. 

Proof: The proof is obvious. Recall $ = $ - TR~1MT, the controllability of a controllable 

pair ($,r) can not be changed by state feedback. • 

lemma 2.4 ( Levis et al. [43] ) 

Q > o. 
Proof: Since Q > 0, R > 0, so every integrand in (2.25) 

(i+l)Tm 

Ii= j [xJ(t + T)Qxf(t + T) + uT(t + T)Rud(t + T)]dT 

= xj(i)Qxf(i) + 2xT

f(i)MvLA(i) + uJ(i)Rud(i) 

is nonnegative for any ud(i). Let u<i(i) = —R~1MTXf(i), We have from equation (2.41) 

= + 2 x J ( i ) M u d ( z ' ) + uJ(i)Rud(i) 

= xT

f(i) (Q - irlMT)xf(i) (2.42) 

= xJ(i)Qxf(i) > 0 

for any Xf(i). So Q > 0. • 

Lemma 2.5 establishes the observability of the pair ( $ , <5) and the observability of the augmented 

system (2.2). This is a special case of the results for periodic time-varying systems given by A l -

Rahmani and Franklin [2] in which multi-rate control strategy is used. A simpler proof based on the 

if-controllabil i ty and observability concept [6] [37] is given in the following. 

lemma 2.5 

Assume the controllability conditions of Theorem 2.1 hold, then ($, Q) is observable if and only 

if the pair (^Af,cJ^j of equation (2.2) is observable . 

Sufficiency: Assume ($,<Q) is observable but (Af,Q) is not, then there exists an eigenvalue 

A of $ associated with a nonzero eigenvector z such that <3>z = Xz and QeAftz = 0 for any r > 0 
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[6]. It then follows from equation (2.30) that Qz = 0, MTz = 0. From equation (2.32), we have 

®z = Xz, Qz = 0. So A is unobservable in ( $ , Q ) l 3 7 ! - This contradicts the assumption. 

Necessity: Assume ( A / , Q) is observable but ( $ , Q) is not. Let A be an unobservable eigenvalue 

of $ and z ^ 0 be an associated eigenvector. We have $z = Xz, Qz = 0. Recal l equation (2.41), 

let Xf(i) = z, \id(i) = —R~lMTz, we have 

(t+i)r,„ 

Ii= J [xT(t + T)Qxf{t + T) + uT(t + T)Rud(t-rT)]dT 
« T » (2.43) 

= xT(i)Qxf(i) + 2xT(i)Mud(i) + uJ(i)Rud(i) 

= zTQz = 0 

Since Q > 0, R > 0, equation (2.43) implies / xT(T)Qxf(r)dT = J uT(T)Rud(T)dT = 0. 
o o 

Tm 

Further, J uT(T)Rud(r)dT = z T M R ~ 1 (TmR)R~1MT2 = 0. Since £ - 1 ( T m i ? ) . R - 1 > 0, we 
0 

have M T 2 = 0. From equation (2.32), zTQz - zTMRr1MTz - zTQz = 0 and $ z = 

- TR-^M^z = $ z = A* . From equation (2.30), z r Q z = 0 implies QeAt*z = 0. But 

the existence of z ^ 0 such that $ 2 = A2, QeAftz = 0 contradicts the observability assumption 

o f ( A / , Q ) . • 
N o w , we are in a position to state the main stability property of S D G P C . 

Theorem 2.2 
For systems described by equation (2.1), if 

a. The triple (A,B,cT) is both controllable and observable. 

b. There is no system zero at the origin. 

c. The control execution time Tm is selected such that the condition in Theorem 2.1 is fulfilled, 

then the resulting closed loop system under SDGPC is asymptotically stable for Nu > n + 1. 

Proof: According to lemma 2.1, S D G P C of system (2.1) is equivalent to receding horizon 

control of discrete-time system (2.33). Thus we need only to prove the stability of the receding 

horizon control problem for system (2.33) with performance index (2.34). Conditions a. and b. 

guarantee the controllability and observability of the integrator augmented system (2.2) according to 

21 



Chapter 2: Sampled-Data Generalized Predictive Control (SDGPC) 

lemma 2.2. From condition c. and Theorem 2.1, it is apparent that the discrete-time counterpart of 

(2.2) given by (2.22) is also controllable and observable. Applying lemma 2.3-2.5, it is obvious that 

Q > 0, R > 0 in (2.34), is controllable and is observable. A p p l y Theorem A.10 

proves the theorem. • 

2.2.2 Proper ty of S D G P C with control execution time Texe < Tm 

In section 2.1, we mentioned that the execution sampling time interval Texe, i.e. the time' interval 

with which the plant is actually being sampled, can take any value on [0, Tm]. The case of Texe < Tm 

w i l l be analyzed in this section. This strategy is very similar in spirit to the wel l known G P C 

design practice of selecting a smaller control horizon than the prediction horizon in which case the 

computation burden can be greatly reduced. Fig.2.5 illustrates these two closely related strategies. 

Setpoint 

Figure 2.5: Comparison of SDGPC and GPC strategy 

G P C [13] design is based on minimization of the following performance index 

J(N) = (y(t + w(t + i)f + A [Au{t + i)}2 (2.44) 
i=N. i=0 

Ni can always be selected as zero. The prediction horizon N2 corresponds to the prediction time 

Tp in S D G P C . The control weighting A has the same meaning in S D G P C but the control horizon 

Nu has a quite different interpretation as is clearly illustrated in Fig.2.5. In S D G P C , Nu is the 

number of controls that w i l l cover the whole prediction horizon Tp, while in G P C it is the number of 
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controls that only cover a portion of the prediction horizon after which the control is kept constant 

or the increment of controls is kept zero. A n d in S D G P C the control execution time Texe is not 

necessarily equal to the design sampling time Tm. It is also possible to assume the projected controls 

in S D G P C design have the same form as that of G P C , or any other form, say a polynomial up 

to certain degree. However, the advantage of choosing piecewise constant equally spaced controls 

over the entire prediction horizon is that in doing so the S D G P C problem can be transformed into a 

discrete-time receding horizon L Q problem for which powerful stability analysis methods in optimal 

control theory can be utilized and improved numerical property can be expected because a larger 

design sampling interval Tm is used. 

Refer to Fig.2.5, both S D G P C and G P C use Nu = 4. Both S D G P C and G P C update their 

control every Texe seconds. Both S D G P C and G P C use the same prediction horizon: N2*Texe = Tp. 

The difference is that the design sampling interval in S D G P C is Tm = 4 * Texe, i.e. four times as 

large as the execution time. Both of them have the effects of reducing computational burden and 

damping the control action. However, S D G P C w i l l have superior numerical property when Texe 

is small because S D G P C is computed based on a larger design sampling interval Tm while G P C 

is still based on Texe. Another advantage of S D G P C is that although neither of them has stability 

claim when Nu < N2 or Texe < Tm, we know that the same S D G P C law does have guaranteed 

stability when Texe = Tm. Whi le it is very natural to choose Texe < Tm in S D G P C design under the 

framework of receding horizon strategy, it is almost unthinkable for any other controller synthesis 

method to design a stabilizing control law for one sampling interval but to apply it to the process with 

another sampling interval. It is well known that discrete-time design methods based on z-transform 

w i l l encounter numerical problems when the sampling interval is small [50]. In S D G P C , a larger 

design sampling interval Tm can be used to improve numerical property while implementing it with 

a shorter sampling interval Texe. Although there are no general stability results for Texe < Tm, 

extensive simulation examples w i l l be presented in next section to offer guidelines of selecting Tm 

and Texe. A s a by-product, those simulations w i l l also shed some light on the selection of sampling 

interval in digital control in general. 
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2.3 Interpretation and Stability Property of the Integral Control Law 

The integral control law (2.17) was obtained by integrating both sides of (2.15) under the 

assumption that T e x e —• 0. However, (2.17) itself can be interpreted as a solution of a we l l formulated 
t 

predictive control problem for system (2.1). Define integral Ie = J (y(r) — w)dr, where the lower 

l imit of the integral was left blank to indicate that Ie can take any initial value, as the new state of 

system (2.1), the augmented system becomes: 

xj = AfXj + BfU + Bvw 

y=[cT 0]xx 

dim(xi) = n + 1 

(2.45) 

Where 
X 'A 0 ' 'B' ' 0 ' 

XJ = , Bf = , BV = 

Je. c T 0. 
, Bf = 

. 0 . - 1 . 
(2.46) 

Where w is the constant setpoint. Notice that the augmented system matrices Af,Bf are exacdy 

the same as of that in (2.2). The objective of the control is to let the output y(t) of system (2.1) track 

the constant setpoint w without steady state error. Thus at equilibrium, the following relations hold: 

lim y(t) = i/oo = w 
t—too 

and 

l im u(i) = tia 
t—too 

l im Ie(t) = I0 
t—*oo 

l i m x(t) = XQ, 
t—too 

J/oo — W — C XQQ 

0 = AXQO + BUQO 

(2.47) 

(2.48) 

where Uoo-Zooj^oo are constants whose value can not be determined a priori based on the 

nominal plant parameter matrices (A, B,cT) and the setpoint because of the unavoidable modelling 

errors. A sensible approach is thus to define the shifted input, the shifted state respectively as 
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u'(t) — u(t) — u, •oo 

x'(t) = x(t) — X, 00 
(2.49) 

I'e(t) = Ie{t) - f 00 

y'(t) = y(t) - w 

Solving (2.49) for u,x,Ie,y, substituting the results into (2.45), and using (2.48) it is not difficult 

to find that the shifted variables satisfy the equations 

The shifted equilibrium of (2.50) is at zero as that in (2.2) and a predictive control problem can 

be wel l formulated by minimizing a quadratic performance index 

A n d at the end of the prediction horizon Tp, the state of (2.50) should be constraint to be zero, 

that is x'j(t + Tp) = 0. 

Although the above problem is well defined, it is still very inconvenient, to say the least, to obtain 

the control law due to the unknown equilibrium point U Q O , x^, 1^. A more effective formulation 

should thus have a model which accommodates the fact that at the equilibrium, the input, output and 

the state are a l l constant but at the same time should not explicitly have those unknown constants 

in the model. Taking derivative of both sides of the first equation of (2.45) w i l l just do that. The 

resulting equivalent system model has the form 

x' 
(2.50) 

(2.51) 

o 

if = AfXf + Bfiij + Bvw (2.52) 

where 
Xd(t)-x(t), ud(t) = u(t) 

eW = 2/(0 ~w, xf = 

(2.53) 

e 
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For constant setpoint as we assumed, w — 0 and (2.52) is exacdy the same as (2.2). The only 

modification needs to be made is that the observation matrix should be cj in (2.3). The S D G P C 

problem for (2.2) and the associated performance index (2.4) can thus be interpreted as a sensible 

way to circumvent the unknown equilibrium difficulty encountered in the control problem defined by 

(2.50) and (2.51). According to Theorem 2.2, the control law (2.15) stabilize system (2.1). Similar 

results can be said about control law (2.17): 

Theorem 2.3 
For systems described by equation (2.1) and the integral control law (2.17), if 

a. The triple (A,B,cT) is both controllable and observable. 

b. There is no system zero at the origin. 

c. The control execution time Texe is equal to the design sampling time Tm and is selected such that 

the condition in Theorem 2.1 is fulfilled. 

d. Zero-th order hold is used when applying (2.17) to system (2.1). 

then the resulting closed loop system under the integral control law (2.17) is asymptotically stable 

for Nu > n + 1. 

Proof: When the integral control law (2.17) is applied to (2.1) with zero order hold, the resulting 

closed loop system matrix w i l l be the same as that of by applying (2.15) to (2.1). This can be seen 

readily by comparing equations (2.2) and (2.45) considering that fact that the disturbance term Bvw 

i n (2.45) w i l l not affect the stability of the closed loop system. Since system (2.1) is stable under the 

control of (2.15) according to Theorem 2.2, it w i l l be stable as wel l under the control of (2.17). • 

We mentioned in section 2.1 that the unspecified term in 770 in (2.17) can be used to place a zero 

to improve the transient response of the closed loop system. In the following we show that there is 

a sound mathematical basis for doing so. 

Consider system (2.52) and the cost (2.18), the T-ahead state predictor is described by (2.54) 

with u<* given by (2.7). 
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xf(t + T) = eA'Txf(t) + Du(T)w(t) + T(AfBf,T)ud 

T 

DU{T) = j eA*T-^BvdT 
(2.54) 

where T(Af,Bf,T) is given by (2.11) with A, B replaced by Af,Bf. 

Without detailed derivation, the optimal control to system (2.52) can be obtained as 

K = Kxf Le(<) 
+ Kpw{t) 

where 

K = 

Kxt = KHXJ 

Kp = KHp 

J TT(T)cfcjT{T)dT + \J HT(T)H(T)dT + 7 r T ( T p ) r ( T p ) 

\ ° 0 J N*xN, 

Hxt — — 

HB = -

J TT(T)cfcJeAfTdT + 7rT(Tp)eA'T» 

J TT(T)cfc^Du(T)dT + jTT(Tp)Du(Tp) 

(2.55) 

(2.56) 

The counterpart of the optimal control sequences (2.55) with respect to system (2.45) is given by 

u* = K Xf 
x(t) 

+ l<0w(t) 
lJe(T)dT_ 

The first control which is the only one being applied to the plant is 

(2.57) 

u*(l) = Kxx(t) + Ke j e{r)dT + K0(l)w(t) (2.58) 

where Kx denotes the first n entries of the first row of the Nu x (n + 1) matrix KXf, Ke is 

the last element of the first row of Kr 
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The effect of Kp{l) in (2.58) is to add a zero at Ke/Kp(l) from reference w(s) to output y(s) 

[28 , p.559]. Since Kp(l) does not affect the eigenvalues of the closed loop system matrix, meaning 

that it can take any value in addition to the one being computed by equation (2.56). This provides 

one extra degree of freedom in the design. 

Example 2.3.1: In this simulation, the plant with transfer function 

G{s) = 3 _ (2.59) 

is being controlled using control law (2.58) with the following design parameters 

The resulting feedback gains are: 

Nu = l 

Tp — 6s 

Texe = 0.1s (2.60) 

A = 1 0 " 4 

7 = 100 

Kx = -[0.2839 0.8628 0.8776] 
(2.61) 

Ke = -0 .2993 

The eigenvalues of the augmented closed-loop matrix Af + Bf[Kx Ke] are at: 

•1.0523 ± 0 . 0 6 5 3 t 

-0 .8697 

-0.3096 

(2.62) 
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Fi g . 2.6 shows the control results for two different values of the feedforward term Kp, i.e. Kp = 0 

and Kp = _ 0 * c

0 9 6 = 0.9668. The latter Kp places a zero which cancels the last pole -0 .3096 of 

the closed-loop system matrix resulting a faster response which can be seen from F ig . 2.6. 

1 1 1 

Setpoint Output: Kp = 0.9668 

w 

> / 
> / 

I / 

; y 

X \ / 

»/\ Output: Kp = 0 
* \ / 

\ s / 

1 1 1 1 1 - -

10 20 30 40 50 60 (S) 

Control: Kp = 0.9668 
Control: Kp = 0 

_ 5I 1 1 1 1 1 1 
0 10 20 30 40 50 60 (s) 

Figure 2.6: Zero placement in SDGPC 

2.4 Simulat ions and Tuning Guidel ines of S D G P C 

Refer to Fig.2.7, the design parameters of S D G P C are: Prediction time Tp, design sampling 

interval Tm, execution sampling interval Texe, and control weighting A. The control order Nu is 

related to prediction time and design sampling interval by -/V„ = If the final states weighting is 

used other than final states constraint as in performance index (2.18), there is an additional design 

parameter 7 . This is the approach used in [17] where 7 served as the tuning parameter to damp the 

control action. However in S D G P C , we would rather fix 7 to a very large value which corresponds 

to the states constraint case since this is crucial to guarantee stability. The task of reducing excessive 

control action can be accomplished by selecting Texe < T m , which is equivalent to putting infinite 
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weighting on controls with sampling interval Texe and only allowing control to vary every Tm time 

units. This w i l l be shown later by example. 

w Setpoint 

SDGPC projected controls 

Ud(Nu) 

T e x e T m T p TilTIG 

Figure 2.7: The projected control derivative 

Example 1: The aim of the first example is to show the effects of the S D G P C design parameters 

on the control performance, and compare S D G P C with infinite horizon L Q control. The process 

being controlled is 

G(s) = (2.63) 

It is assumed that this process has to be controlled with a relatively fast sampling interval Texe = 0.2s 

in order to have fast disturbance rejection property. It is also assumed the states of the process is 

available for measurements and the derivatives of the states are computed by the state space equivalent 

of system model (2.63) 

- 3 - 3 - r "1" 

xd(t) = 1 0 0 a:(*) + 0 

. 0 1 0 . .0. 

u(t) (2.64) 

Fig.2.8 shows the step response of the plant. 
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Time (sees) 

Figure 2.8: Step response of example 1 

Simulation 1: 

S D G P C of plant (2.63) with the following design parameters 

Nu = 6 

(2.65) 
Tp = 1.2s 

Tm — Texe — 0.2s 

A = 10~ 5 , 0 . 01 ,0 .1 ,0 .5 ,10 1 0 

According to Theorem 3 in section 2.2, Nu should not be smaller than 4 to ensure stability. A l s o 

from Fig.2.8, the final prediction horizon Tp = 1.2s is very short for this plant. 

Fig.2.9 shows the control results. 
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2 

1 

0 

-1 

1000 

500 

0 

-500 

-1000. 

It is obvious from Fig.2.9 that this control law is unacceptable in practice because of the large 

magnitude of the control action. Also notice that increasing the control weighting is not effective in 

damping the control since the prediction horizon Tp is too short. It can be seen from Fig.2.9 that 

between 40 (s) and 50 (s) even a control weighting of 1 0 1 0 can not penalize the control action. This 

is because when Tp is small, the end point states constraints dominate the control law calculation 

whereas the performance index (2.4) has little effect on the controls. Since we can not reduce the 

control order Nu because of the stability requirements, the only option is to increase the prediction 

horizon Tp. Simulation 2 shows the results. 

Simulation 2: 

S D G P C of plant (2.63) with 

Nu = 21 

Tp = 4.2s 
(2.66) 

Tm — Texe = 0.2s 

A = 1 0 - 5 , 0 . 0 1 , 0 . 1 , 0 . 5 , 2 
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The prediction horizon is selected to cover the significant part of the step response. See Fig.2.8. 

The design sampling interval and the execution sampling interval are the same as i n simulation 1. 

Fig.2.10 shows the results. 

^=0.00001 1 
X=0.01 

1 1 
X=0A 

X=0.5 X=2 ^=0.00001 

/ \ / \ -
1 t 1 1 

10 20 30 40 50 (S) 

50 (s) 

Figure 2.10: Simulation 2 of example 1 

The results shown in Fig.2.10 are good except that the control law involves calculation of a 

21 x 21 matrix inversion, a significant increase in computation burden compared with simulation 1. 

Simulation 3: 

Simulation 3 shows the S D G P C of plant (2.63) with 

N„ 

Tp = 4.2s 

Tm = 0.7s 

^exe = 0.2$ 

A = 1 0 - 5 , 0 . 0 1 , 0 . 1 , 0 . 5 , 2 . 

(2.67) 
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The prediction horizon is the same as in simulation 2 but the control order equals the one in 

simulation 1. That means the design sampling interval T,„ = = 0.7s and the execution sampling 

interval remains to be 0.2s as in simulation 1 and 2. 

X=0.00001 

\ 
X=0.01 h=0.S X=2 X=0.00001 

\ / \ / \ • 
1 1 1 1 

0 10 20 30 40 50 (s) 
(a) 

Figure 2.11: Simulation 3 of example 1 

The good results in Fig.2.11 suggest that selecting Tm > Texe is a useful strategy to reduce 

computation burden and at the same time damping the control action. More simulations w i l l be 

presented to support this claim in example 2. 

Simulation 4: 

It is interesting to compare S D G P C with infinite horizon L Q R with the performance index 
OO r -I 

J = ~~ w) + m which the only tuning parameter is control weighting A since 

infinite horizon is used. Plant (2.63) is discretized with sampling interval 0.2s as previous simulations. 

Control weighting varies as indicated in Fig.2.12 
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^=0.00001 X=0.01 X=0.1 X=0.5 X=2 

/ \ / \ • 
I 1 1 1 

10 20 30 40 50 (s) 

50(s) 

Figure 2.12: Simulation 4 of Examplel: infinite horizon L Q R 

Compare Fig.2.12 with Fig.2.10 and Fig.2.11, it can be seen that infinite horizon L Q R has visible 

overshoot for small control weighting A whereas increase A slows down the response significantly. 

However, this is not suggesting that S D G P C has inherent advantage over infinite horizon L Q R , after 

a l l they are the same as analyzed in section 2.2.1. However, it might be easier to tune S D G P C than 

L Q R since there are fewer design parameters in S D G P C ( prediction horizon, control order etc. ) 

than that in L Q R ( al l entries of the weighting matrices ). 

Example 2: Two plants are simulated in this example. The first one is a non-minimum phase 

wel l damped open loop stable system. 

Gi(s) = (2.68) 
( s + 1) 

The second one is an open loop unstable system with imaginary poles. 

G ' " > = ( » - + 0 . 4 , + 9) < " » 

Simulation 1: Plant (2.68) is controlled by S D G P C with the following design parameters: 
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Nu = 5 

Tp = 5s 

Tm = Is 

A = 0.1 

(2.70) 

In the first 15 seconds, the execution sampling interval Texe is equal to T m , and after that Texe 

is reducing every 15 seconds as illustrated in Fig.2.13 

1 
Texe = 1 s 

\ 
1 1 

Texe =0-8s 
1 1 

AT e x e =0.5s 
r 

T e x e=0.2s 
1 1 
ATexe=0-01s 

1 
Texe = 1 s 

\ / 

1 1 
ATexe=0-01s 

i U i i i i i i 
10 20 30 40 50 60 70 (s) 

(a) 

Figure 2.13: Simulation of plant (2.68) 

This simulation shows that for well damped stable system ( l o w pass plant) when fast sampling 

is needed, S D G P C can offer both low computation load and high implementation sampling rate by 

selecting Texe < Tm. 

Simulation 2: Plant (2.69) is studied. First the following group of design parameters is used. 
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Nu = 5 

Tp = 5s 

Tm = Is 

A = 0.1 

The execution time Texe varies as illustrated in Fig.2.14 

2i 1 , 1 
Texe =1s Texe =0.5s Texe =0.2s 

(2.71) 

100(s) 

Figure 2.14: Simulation of plant (2.69) 

100(s) 

Fig.2.14 shows that when the execution sampling interval Texe is equal to the design sampling 

interval Tm, the performance is good. A s Texe decreases the performance deteriorates and the 

system becomes unstable when Texe = 0.2s. Considering the plant (2.69) has an unstable pole with 

time constant of 1 second and has a lightly damped mode with resonance frequency of 0 .4759Hz, 

the design sampling interval Tm = Is is relatively large. Two things can be told by the results in 

Fig.2.14 for unstable and/or lightly damped systems. First, when the sampling interval Tm is relatively 

large, selecting Texe < Tm can cause performance deterioration or even instability. Second, even 

Texe = Tm is not a good choice for such a system. Since changing sampling interval can be viewed 

as a perturbation to the sampled-data system, the performance deterioration in Fig.2.14 means that the 

closed4oop system under S D G P C with sampling interval Tm — Is is sensitive to plant uncertainties. 
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The next simulation suggests that for systems with unstable and/or lightly damped poles the design 

sampling interval Tm should be at most one third of the unstable pole time constant or the sampling 

rate be 6 times that of the resonant frequency. 

Simulation 3: 

Plant (2.69) is controlled with the following design parameters. 

Nu = l 

Tp - 2.1s 

Tm = 0.3s 
(2.72) 

A = 0.1 

The sampling interval Tm is reduced to one third of the unstable pole time constant. Fig.2.15 

shows the results. 

Texe =0.3s 
r i 1 1 1 

Texe=0.1s 
i 

Texe=0.01s 

A / 

t i l l ! 

10 20 30 40 50 60 (s) 

Figure 2.15: Simulation of plant (2.69) 

60 (s) 

It can be seem from Fig.2.15 that when Tm is reduced to 0.3s for this plant, good results are 

obtained regardless of the changing of the execution time. 

The conclusion drawn from these two examples is that for stable wel l damped systems, the design 

parameters can be selected primarily based on performance and computation load considerations and 
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the execution time can be selected flexibly. For unstable and/or lightly damped systems, i n addition 

to performance and computation load considerations, there is an upper bound on the design sampling 

interval Tm restricted by the unstable pole time constant or the resonant frequency. There is no 

explicit formula available for the bound yet. But a rule of thumb is to select Tm less than one third 

of the unstable time constant or make ^ larger than 6 times the highest resonance frequency. 

Example 3: 

This example shows the ability of S D G P C to control systems with nearly cancelled unstable 

zeros and poles. G P C w i l l encounter difficulty controlling this k ind of systems [4, pp. 102]. 

The plant being controlled is 

s - 0.9999 

Design parameters: 

G2(s) 
(s - l)(2s + 1) 

Nu = 6 

Tp = 2.4s 

(2.73) 

T — T OAs 
(2.74) 

A = 0.5 

30 (s) 

25 30 (s) 

Figure 2.16: Simulation of plant (2.73). 
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S D G P C can control this plant without any difficulty. 

2.5 Conclus ion 

A t the beginning of this chapter, we mentioned that there are some problems with pure discrete-

dme approach when fast sampling is needed. A new predictive control algorithm S D G P C was thus 

formulated based on continuous-time modeling while assuming a piecewise constant control scenario. 

Better numerical property can be expected since when fast sampling is needed, the control law can 

actually be designed based on a larger sampling interval. S D G P C relates continuous-time control and 

discrete-time control in a natural way thus enjoys the advantage of continuous-time modeling and 

the flexibility of digital implementation at the same time. Under mi ld condition, S D G P C is shown 

to be equivalent to an infinite horizon L Q control law thus it has the inherent robustness property 

of an infinite horizon L Q regulator. However, the finite horizon formulation of S D G P C makes it 

convenient to handle various input and states constraints. Moreover, l ike other predictive control 

methods, the tuning of S D G P C is easy and intuition based. The design of S D G P C in this chapter is 

a one-degree-of-freedom design. Various extension w i l l be made in the following chapters. 
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Chapter 3 

S D G P C Design for T rack ing Systems 

In process control, the main objective is to regulate the process output at a constant level subject 

to various types of disturbances which is known as regulator problem. There is another type of control 

problem known as tracking or servo problem where it is required that the output of a system follow a 

desired trajectory in some optimal sense. This servo problem does occur in process industry , albeit 

not as often, such as the change of paper grade from a basis weight of 8 0 g / m 2 to l O O g / m 2 i n paper 

production. Another important class of problem in process control which also fits into the framework 

of tracking control is the feed forward design problem when the disturbance information is available. 

The optimal tracking problem in the linear quadratic optimal control context was wel l formulated 

[41] [3]. But they were either in continuous-time or discrete-time framework. It is thus worthwhile 

to formulate the tracking problem in the context of sampled-data generalized predictive control. The 

S D G P C algorithm we developed in chapter 2 is a special case of tracking system design in which 

the desired trajectory is a constant setpoint. A wider class of trajectories w i l l be considered here. 

Trajectory following problems were classified in three categories in Anderson and Moore [3]. 

We follow the same treatment in this chapter. If the plant outputs are to follow a class of desired 

trajectories, for example, al l polynomials up to a certain order, the problem is referred to as a servo 

problem; i f the desired trajectory is a particular prescribed function of time, the problem is called 

a tracking problem. When the outputs of the plant are to follow the response of another plant (or 

model), it is referred to as the model-following problem. However, the differences between them 

are rather subde in principle. 

3.1 The Servo S D G P C Prob lem 

Given the n-dimensional SISO linear system having state equations 

x(t) = Ax(t)+Bu(t) 
(3.75) 

y(t) = cTx(t) 
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The augmented system is described by 

Where 

Xf = 

if — AfXf + BfUd 

Vf = °Tfxf 

dim(xf) = rif = n + 1 

xd(t) = i(t), ud(t) = u(t) 

' Cf 

(3.76) 

'xd~ 'A 0" 'B' 
, *f = . Bf = 

.y. _cT 0. 
. Bf = 

. 0 . 
[0 0 1] (3.77) 

Note that the system output y(t) rather than the tracking error e(i) = y(i) — r(t) is augmented 

as the system state since the setpoint r(t) is no longer constrained to be constant. 

Suppose the reference signal is the output of a p-dimensional linear reference model 

w = Fw 
(3.78) 

r(t) = RTw 

with the pair [F, RT] completely observable. 

Assume that the future projected control derivative is piecewise constant in the time interval 

[t,t + Tp] as illustrated in F ig . 3.17, the S D G P C servo problem is to find the optimal control vector 

u d = [ u d ( l ) ud(2) • • • ud(Nu)]T such that the following performance index is minimized. 

J = l(y{t + Tp) - r(t + Tp))2 + 1X

T

d{t + Tp)xd(t + Tp) 

+ J [(y(t + T)-r(t + T))2 + \u2

d(t-rT) dT 
(3.79) 

To solve this optimization problem, we need the T-ahead state prediction for both the plant (3.76) 

and the reference (3.78). Recall that the projected control scenario in F ig . 3.17 can be written as 

ud(t) = H(t)ud (3.80) 

where 
H(t) = [E1(t) H2(t) •••Hi(t).--HN.(t)) 

Ud=Ki(i) u d (2) • • • u d ( i ) • • • u d(iV„)] 
(3.81) 
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Setpoint 

SDGPC projected controls Ud (t) 

T p Time 

We have 

where 

Figure 3.17: The projected control derivative 

1 (t - l ) T m < t < iTm 

Hi(t) = 
L 0 otherwise 
i = l,2,---Nu 

T 
m ~ Na 

Xf(t + T) = eA'Txf(t) + J eA'(T-^Bfud{r)di 

= eA'Txf{t) + T(AfBf,T)vLd 

T(Af,BfT) = 

T 
feAf(T-T)dTBf. Q.Q...Q 
0 

TJ eAf(T-r)dTBf. j eAj(T-T)dTBf. 0 . . . o 

0 Tm 

TfeAf(T-r)dTBf.... J eAAT-r)drBf 

o (ivB-i)rm 

And the reference state prediction is simply 

0 < T < Tm 

Tm<T< 2Tm 

(Nu - l ) T m < T < Tf 

(3.82) 

(3.83) 

(3.84) 

w(t + T) = eiflw{t) 
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Consequently the output predictions are as follows. 

y(t + T) = cTxf(t + T) 

Xd(t + T) = CTXf(t + T) = [Inxn0)nxnxf(t + T) 

r(t + T) = RTw(t + T) 

Substitute equations (3.86) and (3.87) into the performance index (3.79) 

(3.86) 

(3.87) 

J = 

J [cT

feA'Txf{t) + cTT{Af,Bf,T)ud - RT eFT w{t)]2 dT 

o 
T 

+A J [uTHT(T)H(T)ud]dT 

o 

+7[cTeA'T>xf(t) + cTT(Af,Bf,Tp)ud - RTeFT"w(t)]2 

+1[cTeA'T>>xf(t) + cTr(Af,Bf,Tp)ud]T[cTeA'T*xf(t) + cTT(Af,Bf,Tp)ud] 

Take the derivative of J with respect to u^ 1 

dJ _ 

dud 

j [TT{T)cfcTT{T)ud + TT{T)cf{cTeA'Txf{t) - RTeFTw(t))]dT 

+A j HT(T)H(T)dT 

+j[TT(Tp)cfcTr(Tp)ud + rT(Tp)cf{cTeA'T>xf(t) - RTeFT*w(t))} 

+ 7 [r T (r p )c d C Jr(2> d + rT(Tp)CdcJeA^xf(t)] 

The optimal S D G P C tracking control solution u*d is given by 

~xd(ty 
ud = Kww(t) + KXs 

ly(t) J 

(3.88) 

(3.89) 

(3.90) 

Af,Bf are dropped (tomT(Af,Bf,T) for clarity 
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where 

Kw — - f t Hw 

KXf = KHX/ 

y 1 

= I J VT(T)cfRTeFTdT + jFT(Tp)cfR TeFTp 

JV„xp 

K = \ J rT(T)cfcjT(T)dT+X f HT(T)H(T)dT + jTT(Tp)F(Tp) 

\ (3.91) 

I 
HXJ = - \ J TT(T)cfcJeA'TdT + >yTT(Tp)eA'T> 

NuXTlf 

A s shown in F i g . 3.18, the servo S D G P C law (3.90) has one feedforward term in addition to a 

usual feedback term as in the regulator case. This is what is known as a two-degree-of-freedom design 

method. A l so note that equation (3.91) clearly shows that the feedback gain KXf is independent of 

the trajectory reference model (3.78). 

zoh 
w= Fw w(t) 

r(t)= RTw 
H ^ ^ ' ^ V ^ y ' i H I l ^ x=Ax+Bu 

KY, KY, Observer x t Observer 

Figure 3.18: The servo SDGPC controller 

So far we have assumed that the state w of the reference signal is available for measurement. In 

practice, however, often only an incoming signal is at hand. For this case, a state estimator may be 

constructed with the pair [F, RT] completely observable. Then the state estimator and the static feed 

forward gain Kw can be combined to give a dynamic feedforward controller as illustrated in F i g . 3.19 

r(t) 
Feedforward 
controller 

zoh 

x=Ax+Bu 
X T x=Ax+Bu c' 

Ky, Ky, Observer Observer 

Figure 3.19: The dynamic feedforward controller implementation 
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When the reference model (3 

0 • 

1 • 

78) is given by 

• 0 0 " 

• 0 0 

1 ^ -* pxp 

,RT = {0 0 l ] j (3.92) 

the reference trajectory w i l l be the class of signals consisting of al l polynomials of degree (p— 1). 

The state w(t) w i l l be consisting of the incoming signal r(t) and its derivatives up to the order (p — 1) 

= •- ^ <t)f- (3.93) 

Clearly, the S D G P C algorithm developed in chapter 2 is a special case where r(t) — 0, that 

is, F = 0,RT = 1. 

A s mentioned earlier, for general F and RT, a state estimator may be needed to construct the 

state of the incoming signal. However, when F and RT are given by (3.92) with p = 2, a simple 

structure can be obtained. 

According to the receding horizon strategy, only u ^ ( l ) , the first element of the optimal control 

ud, is applied to the plant. For 

0 0 

1 0 

RT = [0 1] 

(3.94) 

, from equation (3.90), we have 

u j ( l ) = [7^ (1 ,1 ) 1 ^ ( 1 , 2 ) ] 
r(t) 

r('). . y ( ' ) 
(3.95) 

where KXf(l,:) denotes the first row of matrix KXJ in equation (3.91). 

A closer look at Hw and HXf in equation (3.91) reveals that the last columns of eFT and eA>T 

are [0 T]T and [0 0 • • • T]£ x l because the last columns of F and Af are a l l zeros. Thus, 

the last columns of CfRTeFT in Hw is equal to the last column of matrix CfCJ"eAfT in HXf. A s an 

immediate consequence, Kw(l,2) and A ' X / ( l , n / ) in equation 3.95 are of the same amplitude but 

with opposite signs. Let KTd = Kw(l, l),KTty = Kw(l,2),KXd = KXf(l, 1 : n ) , we have 

uj(l) = Krdf(t) + Kr,y[r(t) - y(t)) + KXdxd(t) (3.96) 
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Here KXf(l, 1 : n) denotes the first n elements of the first row of matrix KXf. 

For small execution sampling time, the optimal servo S D G P C law (3.96) can be written in 

another form as 

Compare with the optimal S D G P C solution (2.17) in chapter 2, control law (3.97) has an 

additional feedforward term KTdr(t). 

It should be noted that although the servo S D G P C solution (3.97) is derived for ramp signal 

f(t) = 0, it does not necessarily yield zero tracking error for a ramp even asymptotically. The reason 

for this is that there is only one integrator in the controller (3.97) which can only track constant 

reference with zero steady state error [73]. According to the internal model principle, there must 

be a model of the exogenous signal included in the control law for robust zero error tracking and 

disturbance rejection. A s most of the discrete-time predictive control algorithms, S D G P C has the 

ability to track a general class of reference trajectory with zero steady state error. The spirit of this 

approach is state augmentation. That is, by including the equations satisfied by the external signal 

into the system model, a new system model in the e r r o r space [28] with new coordinates can be 

obtained and the S D G P C design procedure can then be applied. In the following, the servo S D G P C 

problem which incorporates double integrators in the control law is presented to show the procedure. 

Consider the plant described by 

(3.97) 

x{t) = Ax(t)+Bu(t) 

y{t) = cTx(t) (3.98) 

dim(x) = n 

The augmented system is described by 

xz = Azxz + Bzuz 

(3.99) 

dim(xz) = nz = n + 2 
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Where 

uz(t) = u(t) 
"x~ • A Onxl Onxl ' •B-

y , AZ = T C1 0 0 , Bz = 0 

.y. -Olxn 1 0 . . 0 . 

, £ = [0 0 1] 
(3.100) 

Assume that the reference trajectory is given by 

w = Fw 

r(t) = RTw 
(3.101) 

where 
0 0 0' 

1 0 0 

.0 1 0. 

,RT = [0 0 l],w(t) = 

r(t) 

r(t) 

r(t). 

(3.102) 

Similarly, assume that the future projected uz(t) over [t,t + Tp] is piecewise constant as illus­

trated in F ig . 3.17, the objecdve is to find the optimal control vector uz = [u*(l) uz(2) • • •uz(Nu)]T 

such that the following performance index is minimized. 

\ 2 i t ' (4. i T> \ * / ± i T 1 \ *\ 2 
J = 7(y(t + Tp) - r(t + TP)Y + 7(y(t + Tp) - f(t + TP)Y 

+JxT(t + Tp)x{t + Tp) + J {(y(t + T)-r(t + T))2+ \u2

z(t + T) dT 
(3.103) 

Again , we need the T-ahead state prediction for both the plant (3.99) and the reference (3.101) which 

are given by 

l 

cx(t + T) — eA'Txz(t) + J eA'(T-^Bzuz(r)dr 

o 

= eA>Txz(t) + r{Az,Bz,T)uz 

and 

(3.104) 

(3.105) w(t + T) = eFTw(t) 

T(AZ,BZ,T) is given by equation (3.84) with Af,Bf replaced by AZ,BZ. 

The optimal solution to the performance index (3.103) is given below without detailed derivation: 
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•f(ty •x(ty 

u* = Kw r(t) + Kx. m 

-y(t). 

(3.106) 

where 

Kw = KHU 

Kx, = KHX 

K = \ J TT(T)czcTT(T)dT + X J HT {T)H(T)dT + ̂  {Tp)T(Tp) 

- l 

NuxNu 

Hw = I jrT(T)c2RTeFTdT + jTT(Tp) 
0 

-̂ 2x2 

(3.107) 

eFTr 

n,x3 
JV„x3 

H * . = - [ f FT (T)czcT eA*T dT + jTT (Tp)eA'Tp 

Nuxnf 

We are concerned about the first row of Kw and KXz since only the first element of 

the optimal control vector u* is applied to the plant. Consider the equalities Kw(l,2) = 

-KXa(l,nz-l),Kw(l,3) = -Kx,(l,nz) and let KT = Kw{l,l),Kty = Kw(l,2),Kr,v = 

KW(1,3),KX = KXl(l, 1 : n), the first control in (3.106) has a simplified form: 

uj(l) = Krr(t) + KrA+M ~ »(*)] + KrM*) ~ y(01 

+Kxx(t) 

(3.108) 

Or in terms of the control input to the original plant (3.98) when the execution time goes to 

zero, we have by integrating both sides of equation (3.108) twice, 

t t V 

u*(l) = Krr(t) + Kr,y J V(T) - y(r)}dr + Kr,y J J [r(r) - y(r))dTdv ( 3 1 Q Q ) 

+Kxx(t) 

Fol lowing is an example of servo S D G P C design to track a ramp reference signal. 
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Example 3.1.1 The plant being controlled has the transfer function 

Control law (3.109) is used with the design parameter 

Text* = O.lS 

Tp = 3s 

(3.110) 

(3.111) Nu = e 

A = 0.001 

7 = 1000 

F i g . 3.20 shows the reference and the output, tracking error and the control input. Clearly zero 

steady state error is obtained. 

Reference and output 

-10 

0 5 10 15 20 25 30 35 40 45 50 

Figure 3.20: Servo SDGPC of plant (3.110)-double integrator 

For comparison, the servo S D G P C law with single integrator (3.97) is designed with the same 

group of design parameters given in (3.111). The control results are illustrated in F i g . 3.21 in which 

steady state error can be clearly observed. 
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Reference and output 

5 10 15 20 25 30 35 40 45 50 

Figure 3.21: Servo SDGPC of plant (3.110)-single integrator 

3.2 The Model Following S D G P C Problem 

There is another kind of tracking system called the model following problem. It is a mild 

generalization of the servo problem of section 3.1. In the framework of SDGPC, the problem is 

to find the control vector for the system (3.76) which minimizes the performance index (3.79), 

where r(t) is the response of a linear system model 

*!(*) = Ai*i(t) +Sit (*) 

r(t) = Cfz1(t) 

to command input i(t), which, in turn, is the zero input response of the system 

i 2(*) = A2z2(t) 

*'(<) = CTz2(t) 
as indicated in Fig. 3.22 

Command 
Signal 

Desired 
Trajectory 

(3.112) 

(3.113) 

z 2 = A 2 z 2 

/'= CJ

2z2 

z, = A , z , + B,/ 

r= C T z , 

Figure 3.22: Desired trajectory for model-foil owing problem 

51 



Chapter 3: SDGPC Design for Tracking Systems 

The two systems described by ( 3.112 ) and ( 3.113 ) can be combined into a single linear 

system with state space equation 

where 

Z = [ZT z2 ]> A 

z(t) = Az(t) 

r(t) = CTz(t) 

Ax B&f 
,CT=[Cf 0] 

(3.114) 

(3.115) 
0 A2 

With equation (3 .114 ), the model following problem is identical to the servo problem in section 

3.1. 

The following example shows the design procedure of the model following problem and the 

control results. 

Example 3.2.1 The plant being controlled is an unstable third order process with transfer function 

G(s) 
1 

s 3 - 1 

The reference model has the following transfer function 

(3.116) 

G(s) = 
s 2 + 4.5s + 2 

The step response r(t) of the reference model to input co is given by 

w(t) = 
"-4.5 - 2 ' '2" 

w(t) + 
1 o . 

w(t) + 
0. 

c o 

r(t) = [0 l]w(t) 

w(t) 

(3.117) 

(3.118) 

Or in the form of equation (3.114), the above state space equation can be rewritten as 

•o 0 0 ' 

x(t) = 2 - 4 . 5 - 2 x(t) 

.0 1 0 . 

(3.119) 

r(t) = [0 0 l]x(t) 
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(3.120) 

with x(t) = [co r r]T. 

N o w the control law (3.75) can be applied. The design parameters are: 

T p = 4s 

Nu = 20 

A = 0.001 

7 = 1000 

7 m = Texe = 0.2s 

where Tp is the prediction horizon, iV„ is the control order and A, 7 are the control weighting 

and final state weighting respectively. The execution sampling interval Texe is set to equal to the 

design sampling interval Tm since the plant being controlled is unstable. 

F i g . 3.23 shows the control results. 

Setpoint and outputs 

setpoint 
model response 

— plant output 

80 (S) 

Figure 3.23: Model following control of unstable third-order system 
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Example 3.2.1 The second example is a third order stable plant with transfer function 

1 

( * + l ) a 

The reference model is a second order under damped plant 

G(s) = (3.122) 
K J 4s 2 + 2.4s + 1 

The design parameters are again 

Tp = 4s 

Nu = 20 

A = 0.001 ( 3 1 2 3 ) 

7 = 1000 

Tm = Texe = 0.2s 

Fig. 3.24 shows the setpoint, reference model response, plant output and the control signal. 
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Setpoint, reference model and plant outputs 

0 10 20 30 40 50 60 70 80(s) 

Control signal 
51 1 1 1 1 1 1 1 

_51 1 1 1 1 1 1 1 1 
0 10 20 30 40 50 60 70 80 (s) 

Figure 3.24: Model following control of stable third-order system 

3.3 The T r a c k i n g S D G P C Prob lem 

It is we l l known that when the future setpoint is available the tracking performance can be 

improved radically. Similarly, future values of disturbance can be utilized for better disturbance 

rejection. Practical examples for which future setpoints are available can be found in areas such as 

robot manipulator applications, high speed machining of complex shaped work pieces and vehicle 

lateral guidance control problems [77, 76, 57]. Predictive control is a natural candidate in these 

applications since it explicitly accommodates the future values of setpoint in its formulation. However, 

the setpoint preview capacity of predictive control has not been fully exploited before since i n 

process control applications, where predictive control has blossomed, disturbance rejection is the 

major concern and the future disturbances are often unknown. 

The S D G P C tracking problem is formulated as follows. 
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For the system (3.75) and its augmented plant (3.76), with the desired trajectory r(t) available 

in the range [t,t + Tp], the S D G P C tracking problem is to find the optimal control by minimizing 

the performance index (3.79). 

Assuming that the projected ud(t) in [t, t + Tp] is given by (3.80) as illustrated in F ig . 3.17, the 

performance index (3.79) can be written as 

J = 

J [cT

feA'Txf{t) + cJT(Af,Bf,T)nd - r(t + T)]2dT 

o 

+\ J [uTHT(T)H(T)ud]dT 

o 

+1[cT

}eA^xf{t) + cTT(Af,Bf,Tp)ud - r(t + Tp)]2 

+j[<$eA'T'xf(t) + cT

dT{Af,BhTp)nd}T[cT

deA^xf{t) + c^T(Af,Bf,Tp)nd] 

(3.124) 

Take the derivative of J with respect to u^, we have 

dJ 
dud 

J [YT{T)cfcTT{T)ud + YT(T)cf{cTeA'Tx}{t) - r(t + T))]dT 

+A J HT (T)H(T)dT 

+1[rT(Tp)cfcTT(Tp)ud + rT(Tp)cf(cTeA'T>xf(t) - r(t + Tp))] 

+y[rT(Tp)cdcJr(Tp)ud + TT(Tp)cdcJeA^xf(t)] 

The optimal S D G P C tracking control solution u r f is given by 

nd = fr(t) + KXf 

xd(t) 

Ly(0 

(3.125) 

(3.126) 
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where 
fr(t) = KHt 

Kxf = KHXf 

K= \J YT{T)c}cT

fT{T)dT + \ J HT(T)H(T)dT + -yrT (TP)T(TP) 

/Tr \ (3-127) 

Ht = \J rT(T)cfr(t + T)dT + 7TT(Tp)cfr(t + Tp) 

j TT (T)cfCT eAfT dT + jTT (Tp)eAfTp 

With receding horizon strategy, the feedforward term fr(t) needs to be computed at every time 

instant. Simple numerical integration algorithm such as Euler approximation can be used without 

compromising the performance of the controller. A s we mentioned at the beginning of this section, 

use of the future setpoint information can improve the tracking performance, sometimes significandy. 

The following example compares the tracking performance of two controllers one of which utilizes 

the future setpoint information and the other one does not. 

Example 3.3.1 

The plant in Example 3.1.1 is used again with the following transfer function 

1_ 

(* + l ) a 

First, control law (3.97) is used with the design parameter 

G(s) = \ 3 (3.128) 

T^e.xe. — 0.25 

Tv = 6s 

Nu = 10 (3.129) 

A = 0.001 

7 = 10000 

F i g . 3.25 shows the setpoint and the output, the tracking error and the control input under 

control law (3.97). 
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Figure 3.25: Servo SDGPC of plant (3.128) 

N o w the tracking control (3.126) which utilizes the future setpoint information is designed with 

same design parameters given in (3.129). 

F ig . 3.26 shows the results. 

Reference and output 

— i 1 1 r 

l l l l I 1 i_ 
0 10 20 30 40 50 60 70 

Tracking error 

0 

-1 

Figure 3.26: Tracking SDGPC of plant (3.128) 
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Compare F ig . 3.25 and F ig . 3.26, the improvements in tracking error are obvious. A l so notice 

that the control effort in F ig . 3.26 is smoother due to the preview ability. 

The improvements can be explained as follows. A t current time t, knowing the future setpoint 

information r(t + T) is equivalent to knowing the current setpoint and al l its derivatives up to an 

arbitrarily large order. Indeed any future setpoint value r(t + T) can be calculated using Maclaurin 
oo 

series expansion r(t + T) = r(t) + ^ r (tfjr- 1° control law (3.97), it was assumed that the 

future setpoint is a ramp. In another words, only the first derivative of the setpoint is assumed to be 

available. It is thus natural to expect performance improvements for complex setpoint when tracking 

control law (3.126) is used. However, these two control laws w i l l not differ from each other for 

ramp signal. This can be confirmed by comparing F ig . 3.27 and F ig . 3.28 which show the results of 

plant (3.128) being controlled by (3.97) and (3.126). It can be seen that the tracking errors are the 

same for these two control laws at steady state while the tracking errors under control (3.126) at the 

transition region around time 10s are smaller since the setpoint here is no longer pure ramp signal. 
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Reference and output 

40 

20 

0 

0 5 10 15 20 25 30 35 40 45 50 

Tracking error 

0.11 i 1 1 1 1 1 1 1 1 1 

Control input 

40 

20 

0 

0 5 10 15 20 25 30 35 40 45 50 

Figure 3.28: Tracking SDGPC of plant (3.128) 

It should be pointed out that the tracking performance of the servo control law (3.97) can not be 

improved significantly by simply increasing the order of the reference model (3.94) without knowing 

the future setpoint information. For model order p > 2, the setpoint derivatives w i l l be needed in 

the computation of control law (3.97). In such case a state observer of the reference model (3.94) 

can be constructed with desired dynamics. However, no matter how fast the dynamics of the state 

observer is, there is still no anticipation ability in this approach and thus the transient tracking error 

can not be reduced efficiently. On the other hand, the knowledge of the future setpoint can also be 

used in the design of control law (3.97) in which case the setpoint derivatives can be estimated using 
C O 

the Maclaurin series expansion r(t + T) = r(t) + r^(*)7T i« a l e a s t squares sense. 
k=i 

3.4 The Feedforward Design of S D G P C 

When the disturbances can be measured, the control performance can be improved radically 

by util izing this information compared with the use of feedback only. The reason is that there are 

inherent delays in a l l dynamic systems. It is always better to cancel the disturbance before it is 

observed at the output. Feedforward disturbance rejection also alleviates the burden of feedback 

disturbance rejection so that the design of the feedback loop can concentrate on robustness issues. 
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Here is the formulation of the feedforward design of S D G P C . Given the n-dimensional SISO 

linear system having state equations 

x(t) = Ax(t)+Bu(t) + Bvv(t) 

y(t) = cTx(t) 

where v(t) is a measurable disturbance satisfying state space equation 

/?(«) = W(3(t) 

= DT(3{t) 

with dimension np. 

The integrator augmented system is described by 

i f = AfXf + BfUd + Bfuvd 

XJf = cjxf 

dim(xf) = rif = n + 1 

xd(t) = i(t), ud(t) = ii(t), ud(t) = i>(t) 

(3.130) 

(3.131) 

(3.132) 

Where 

xf = 
~xd' 'A 0" B' 'Bu 

.y. c T 0. . 0 . . 0 . 
(3.133) 

cf = [0 • • • 0 1 ] 

Fol lowing the arguments in section 3.1, the T-ahead state predictor based on equation (3.132) 

can be written as follows: 

T T 

J V — V f 

0 0 

l 1 

Xf(t + T) = eA'Txf(t) + J eA^T-^BfUd(r)dr + J eA^T-^Bhvd{r)di 

= e */(*) + J cA^T-T^BfVd(t + r)dr + T{AfBf,T)ud 

(3.134) 

Where F(Af,Bf,T) is given by equation (3.84), and ud is piecewise constant as illustrated in 

F ig . 3.17. vd(t + T) can be obtained from state equation (3.131) as 

r3(t + r) = eWr$(t) 

vd(t + r) = DTeWrp(t) 
(3.135) 
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The T-ahead state predictor can be obtained by substituting equation (3.135) into (3.134): 

xf(t + T) = eA'Txf(t) + Dv{T)P{t) + T(AfBf,T)ud 

T 

DV{T) = j eA^T-^Bfi/DTeWTdr 
(3.136) 

With the above state predictor, the feedforward S D G P C problem is to minimize performance 

index (3.79) subject to the measurable disturbance v{t). 

Based on (3.136) and (3.87), the performance index (3.79) can be written as 

J = 
T, 

J [cT

feA'Txf{t) + cTDv{T)P(t) + cJF(T)nd - RTeFTw(t)f'dT 

+ A J [udHT(T)H(T)ud] dT 

o 

+y[cTeA>T*xf{t) + cT

fDu{Tp)P{t) + cTT{Tp)ud - RTeFT"w(t) 

+1\cTeA'T>xf{t) + cT

dDv{Tp)P{t) + cT

dY{Tp)nd^[cT

deA'T-xf{t) + <$Du(Tp)p(t) + cT

dT{Tp)ud 

(3.137) 

Take the derivative of J with respect to u,j and let it be zero 

8J 
dnd 

*p 

J [ r r (T)c / C J r (T)u d + rT(T)cf(cTeA'Txf(t) + cTDu(T)!3(t) - RTeFTw(t))]dT 

+ A j HT(T)H(T)dT 
(3.138) 

+j[TT(Tp)cfcTT(Tp)ud + rT(Tp)cf(cTeA'T>xf{t) + cTDv{Tp)p(t) - RTeFT>w(t)}} 

+ 7 [TT(Tp)cdcjT(Tp)ud + TT{Tp)cdcT

deA'T>xf(t) + rT(Tp)cdcjDu(TPP(t)\ 

The optimal S D G P C tracking control solution u r f is given by 
~xd(ty 

u*d = Kww(t) + KXf 

y{t) J 
(3.139) 

62 



Chapter 3: SDGPC Design for Tracking Systems 

where 

Kw — KHW 

KXf = KHXJ 

Kp = KHp 

T, 

K=\J TT{T)cfcT

fT(T)dT + \ J HT(T)H(T)dT + yTT (TP)T(TP) 

Hw=\J VT(T)cfRTeFTdT + yTT (Tp)cfRTeFT" 

- l 

N„xNa 

Nuxp 

HX} = - \ j TT (T)cfCT eAfT dT + \Tp)eA^ 

I N„XTlf 

\ 
) 

) 

(3.140) 

H0 = -IJ TT{T)c}cT

fDv{T)dT + 7TT(Tp)Du(Tp) 

Nuxriff 

Notice again that, like the setpoint feedforward term Kw, the inclusion of the disturbance 

feedforward termKp does not affect the state feedback gain KXf. The control action given by 

(3.139) is the derivative of the control to the original plant. For small sampling interval, the direct 

control acdon can be obtained by integrating both sides of (3.139) resulting in, 

z 

u*(l) = KXf(l, 1 : n)x(t) + J [KWW(T) + KXf(l,n + l)y(r)]dr + Kp(3(t) (3.141) 

Here KXJ(1,1 : n) denotes the first n elements of the first row of matrix KXf. 

Normally, the states (3(t) of the disturbance model (3.131) are not available. A state observer 

with gain L can be constructed to give the states estimates p(t) as follows 

J3(t) = W(}(t) + L(v(t) - DTp{t)) (3.142) 

The observer gain L is selected such that the matrix W — LDT is stable and has desired dynamics. 

Fol lowing are some examples which show the effects of feedforward disturbance rejection. 
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Example 3.4.1 

The plant being controlled is 

G(s) = (3.143) 

The disturbance is generated by a white noise passed through an integrator. However, in the 

design of the control law, the disturbance is assumed to be constant. That is v(t) — 0. 

The design parameters are 

Texe — 0.2s 

Tp = 6s 

(3.144) 

A = 0.001 

7 = 1000 

The control law takes the form of (3.141). F ig . 3.29 shows the control results. The effect 

of the disturbance feedforward can be seen clearly by comparing the first 50 seconds of the figure 

where feedforward gain Kp was set to zero and the rest of the figure where Kp is set to the value 

as computed. 

Output and setpoint 

0.5 

o 

-0.5 

-1 

• without feedforward • with feedforward-

10 20 30 40 50 60 70 80 90 100 (s) 

Control signal 

10 20 30 40 50 60 70 80 90 100 (s) 

Figure 3.29: Disturbance feedforward design 
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This example shows how disturbance feedforward can improve the control performance dramat­

ically even with a simple and inaccurate disturbance model. The next example shows that further 

performance improvements can be made with more accurate disturbance model. 

Example 3.4.2 

The plant being controlled is 

G(s) = -L- (3.145) 

The disturbance is sinusoidal with known frequency. The state space model of the disturbance is: 

fct) 
0 - 4 

1 0 
!/(*) = [0 1 ]/?(*) 

(3.146) 

The observer gain LT = [1 4.5] is selected such that the eigenvalues of the observer closed 

loop matrix W — LDT are set to - 2 , - 2 . 5 respectively. 

The control law design parameters are 

0.2s 

Tp = 3.5s 

Nu = 10 

A = 0.001 

7 = 1000 

(3.147) 

First, the correct disturbance model (3.146) was used to design the control law (3.141) and then 

a constant disturbance model i>{i) — 0 was used. The corresponding control results can be seen from 

the F ig . 3.30. A s expected, the performance deteriorates in the time span between 50 seconds and 

100 seconds as a wrong disturbance model is used. 
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Figure 3.30: The effect of disturbance model 

3.5 Conc lus ion 

In this chapter, various tracking problems are formulated in the framework of S D G P C . Tracking 

control problems generally have two-degree-of-freedom design structure. However, the feedback part 

of the tracking problem is equivalent to the regulator problem which has one-degree-of-freedom design 

structure provided that the design parameters are the same. When information about the future setpoint 

are available, tracking performance can be radically improved. This is because knowing the future 

setpoint is equivalent to knowing the exact states information of the state equation describing the 

setpoint. When the disturbance is available for measurement, the disturbance rejection performance 

can be improved dramatically by using feedforward design. 
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Chapter 4 

Control of Time-delay Systems and Laguerre Filter Based Adaptive SDGPC 

Time-delay, or dead time, occurs frequently in industrial processes and in some cases, is rime-

varying. Time-delay poses one of the major challenges for the design of robust process control 

systems. In discrete-time, time-delay systems have the form: 

G { q ) = vM q-*i*r>+ +- + ( 4 1 4 8 ) 

where k — integer(Tj/A) is the delay in samples and Td, A are the delay time and sampling 

rime respectively. For unknown time-delay, k can be either estimated directly [24] or via the extended 

B polynomial approach in which the leading coefficients of the B polynomial in (4.148) up to order 

k would be a l l zero. In continuous-time, time-delay can be approximated by a low order rational 

approximation such as Pad6 approximation [66]. Laguerre filter was introduced into systems theory 

first by Wiener in the fifties [82] and has been popular recently [87, 80, 48, 49]. In particular it can 

approximate time-delay systems efficiently. With the time-delay known or being modeled properly, 

model based predictive control strategies provide an effective way of controlling such systems. In 

this chapter, we give two approaches to the control of time-delay systems. The direct approach in 

section 4.1 is based on general state space model and assumes the time-delay is known. Emphasis 

w i l l be placed on the Laguerre filter based adaptive control given in section 4.2. 

4.1 The Direct Approach 

The S D G P C approach to deal with time-delay systems is formulated as follows. 

The system model considered is: 

x(t) = Ax(t)+Bu(t - rd) 

y(t) = cTx(t) (4.149) 

dim(x) = n 

A n d the augmented system is given by 
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Where 

Xf(t) = AfXf(t) + BfUd(t - Td) 

yf(t) = cTxf(t) 

dim(xf) = rif — n + 1 

xd(t) = x(t), ud(t - rd) - u(t - Td), e(t) = y(t)-w 

xf = 
~xd~ 'A 0' 'B' 

» Bf = 
_ e 0. . 0 . 

,cT = {0 0 1] 

w is the constant setpoint and rd is the time delay in the system. 

Consider the performance index 

(4.150) 

(4.151) 

J(t) = J [e2(t + T) + Xud(t-rT)]dT-rjxT(t + Tp)xf(t + Tp) (4.152) 

w 

Past controls 

\ 

Setpoint 

Predicted output 

Projected control derivatives 

Time - Td Xd T p - T d Tp 

Figure 4.31: Graphical illustration of SDGPC for systems with delay 

Assume the projected control signal to be piecewise constant as illustrated in Fig.4.31. For 

simplicity, we assume the dme delay rd has an integral number Nd of the design sampling interval 

Tm. That is Nd = A t present time t = 0, for a prediction horizon Tp, define 
•* m 

ud(T) = H(T)ud 0 < T < T p - r d 

ud{T) = HTd{T)uTi — Td <T < 0 
(4.153) 
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where 
H(T) = [H1(T) H2(T) •••Hi{T)---HNST)} 

HTi(T) = [H(_Nd){T) H(_Nj+1)(T) ...2T(0(r) •.•*•<_!)( T)] 

U d = h i ( i ) u d (2) • • • u d ( i ) • • • u d ( 7 V u ) ] T 

U r d = [ u T d (-Nd) u r d {-Nd+l) • • • u T d (i) • • • u T d (-1)]T 

1 (t - l ) T m <T<iTm 

Hi(T) = 

H(i){T) 

(0 otherwise 
i = 1,2,---NU 

T - T P ~ T 

f 1 iTm<T < (i+l)Tn 

(4.154) 

(4.155) 

. 0 otherwise 
i=-Nd, -Nd + 1, 2,-1 

With the system equation (4.150) and the control scenario (4.153), the T-ahead states prediction 

can be obtained: 

xd(t + T) = eATxd(t) + r T d ( T ) u T d + r u ( T ) u d 

where 

(4.156) 

rr,(r) = 
u u 

J eA^BH(_Nd){r)dr... J e A ^ ) B H ^ ^ d t (4.157) 

T-Td T—Td 

-I nxNu 

r „ ( T ) = J eA(T-T'-T)BH1(T)dT--- J eA(T-T<-T)BHNa{r)di 

0 0 

T> rd 

r „ ( T ) = [0 0 0---0] B X j V i i 0<T<rd 

The predicted error between system output and the setpoint is: 

e(t + T) = e(t) + cT eArdr j xd(t) + cTT{Td)o{T)nT<i + cTT(u)o(T)nd 

(4.158) 

(4.159) 
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Where 

o 
T 

r(u)o(T) = J Tu{r)di 

\ (4.160) 

Substitute equations (4.156) (4.159) into cost function (4.152), the optimal control vector can 

be obtained as: 

u d = -K(Tdxd(t) + Tee(t) + T T d u T d ) 
-1 

K = \ J
 TUoccTr(u)odT + \ T m i N M + 7 r ^ T p ) r u ( T p ) + 7 r f u ) o ( r p ) c c T r ( u ) o ( T p ) 

Td = J rfu)ocJA-' ( e ^ - I)dT + 7 ^ ( T p ) e ^ + l T j u ) o { T p ) c c T ( e ^ - / ) 

Td 

Te = /rfu)o(r)drc + 7rfu ) o(rp)c 
Td 

T 

?Td = J Tfu)occTr{Td)odT + 1 T l ( T p ) T ^ 

(4.161) 

Remark: 

Systems with delay can also be treated in a L Q R setting. For example, the continuous-time 

system model (4.150) can be first transformed into a discrete one without delay by augmenting 

the past controls up to time rd as the new system states, resulting in a system of order Nd + rif as 

equation (4.162). WhereA^ = rd is the time-delay and Tm is the design sampling interval 
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as illustrated in Fig.4.31. 

'xf(k + l) 

.UTd(*+l) 

/ e^Bfdri 0 0 

0 

0 

0 

0 

1 0 

0 1 

0 0 

yf(k) = [cj 0] 

'0" 

0 
" * / ( * ) " 

0 + 0 
. U T d ( f c ) . 

. 1 . 

ud(k) 

(4.162) 

xf(k) 

uTd (k) 
u£ (k) = [ud(k - Nd) ud(k -Nd + 1) ud(k-l)} 

Based on system equation (4.162), either finite horizon or infinite horizon discrete-time L Q R 

solution can be found. The problem with the infinite horizon case is the singularity of the 

transition matrix of system (4.162) [55]. For the finite horizon case, the computation time could 

increase significantly due to the increase of the system order. A l so notice in Fig.4.31 that although 

the projected controls in the time interval [Tp — Td,Tp] have no effect on the performance index 

(4.152), but due to the reverse-time iteration of the associated Riccati Difference Equation, the 

recursion has to go through the whole horizon whereas in the S D G P C approach , only the controls 

in the time interval [0, Tp — rd] are computed. 

4.2 The Laguer re F i l t e r M o d e l l i n g A p p r o a c h 

The use of orthogonal series expansion, particularly Laguerre expansion has become increasingly 

popular in system identification and control particularly for control of systems with long and time-

varying time delay. Briefly speaking, given a open loop stable system with transfer function G(s), 

its Laguerre filter expansion is 

G ( , ) = f > ^ ( ± Z * ) ^ (4.163) 
^ s +p s+p 
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The truncated expression of equation (4.163) can be expressed in a network form as depicted 

in Fig.4.32. 

u ( t ) /2p x , ( t ) s - p X , ( t ) ^ s - p ( t ) 

^ s + p • s + p s + p 

y ( t ) 
Summing C i r c u i t 

Figure 4.32: Laguerre Filter Network 

Where p is the time scale selected by the user. The Laguerre network consists of a first-order 

low-pass filter followed by a bank of identical all-pass filters. Its input u(t) is the process input. 

The Laguerre states defined in Fig.4.32 as xi(t),X2(t), • • • xj^(t) are weighted to produce the output 

which matches the output of the process being modeled. The set of Laguerre functions is particularly 

appealing because it is simple to represent, is similar to transient signals, and closely resembles Pad6 

approximants. The continuous Laguerre functions, a complete orthonormal set in L2[0, oo), i.e. w i l l 

allow us to represent with arbitrary precision any stable system [21]. 

A n y stable process can be expanded exactly in an infinite Laguerre series regardless of the 

value of the time scale p. However, when a truncated series with expansion number N is used, an 

immediate problem is the choice of the time scale used to ensure a fast convergence rate. Parks 

[56] gave a procedure to determine the optimal value of the time scale based on two measurements 

of the impulse response of the process being approximated. For open loop stable non-oscillatory 

systems with possibly long and time-varying time delays a real number p is sufficient to provide 

good convergence results. Fu and Dumont [29] gave an optimal time scale for discrete-time Laguerre 

network and proposed an optimization algorithm to search for the optimal complex time scale p when 

the process being modeled is highly under damped. 

Since the Laguerre network has a state space representation, any state space design method can be 

applied to the controller design. Dumont and Zervos [22] proposed a simple one step ahead predictive 

controller based on discrete-time Laguerre filters. This algorithm has been commercialized and is 
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routinely used in pulp and paper mills [21]. Dumont, F u and L u [23] proposed a G P C algorithm 

based on nonlinear Laguerre model in which the linear dynamic part is represented by a series of 

Laguerre filters and the nonlinear part is a memoryless nonlinear mapping. Simulation shows it has 

superior performance over the linear approach for systems with severe nonlinearity such as the chip 

refiner motor load control problem and the pH control problem. Recently, Finn, Wahlberg and Ydstie 

[27] reformulated Dynamic Matr ix Control ( D M C ) based on a discrete-time Laguerre expansion. In 

this section, we propose the S D G P C algorithm based on continuous-time Laguerre filter modelling. 

It is shown that the resulting control law is particularly suitable for adaptive control applications in 

that its computation burden is independent on the prediction horizon used in the S D G P C design. 

Define xT(t) = [xi(t) 13(f) . . . xN(t)]. From Fig.4.32, we have the following state space 

expression of the Laguerre network: 

where 

x(t) = Ax(t)+Bu(t) 

y(i) = cTx(t) 

A = 

-p 0 

-2p -p . 

-2p -2p . 

0 

0 

~P-* NxN 

B = 

V2p-

(4.164) 

(4.165) 

(4.166) 

JVxl 

cT = [ci c2 • • - C J V ] 1 X J V 

With the time scale p being properly selected, the Laguerre spectrum cT = [ci C2 • • • C J V ] 

can be estimated based on the input output of the process. In fact, notice that the equation 

y(t) = cTx(t) in (4.164) is already in a regression model form, various Recursive Least Squares 

algorithm can be applied. We settled for the recent E F R A ( Exponential Forgetting and Resetting 

Algori thm ) [68] which w i l l be described in chapter 6, section 6.1. 
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N o w the S D G P C design procedure can be readily applied to the Laguerre state space equation 

(4.164). The intended application of Laguerre filter based S D G P C is adaptive control where the 

Laguerre coefficients cT — \c\ ci •• • c^]lxN are estimated on-line using E F R A [68]. We show in 

the following that the on-line computation burden is actually independent on the prediction horizon Tp. 

The main computation involved in the calculation of (2.16) is integration. For example the 

integration / TT(T)ccTT0(T)dT in K\. B y some simple manipulations, we have: 
o 

Tp 

J TT(T)ccTT0(T)dT = 

o 

T, 
cT'JiafdTc 

0 
(4.167) 

where 7^ jj are the ith and j t h column of r o ( T ) = [71 72 • • • 7 i v J n X j y u . The integral / njJdT 
0 

can be computed off-line and stored. The other integrals in the calculation of (2.16) can be treated 

similarly so that the on-line computation burden of the control law (2.15) is independent on the 

prediction horizon Tp. 

Although Laguerre filter modeling is known for its capability of dealing with dead time, however 

for long time-delay, it requires a large number of Laguerre filters causing problems such as slow 

convergence rate in the Laguerre coefficients estimation and increasing the control law computation 

burden. A n effective way of dealing with this problem is to use the delayed control u(t — rd) as the 

input to the Laguerre network in Fig.4.32 resulting in a system model: 

x(t) = Ax(t)+Bu(t - rd) 
(4.168) 

3/(*) = cTx(t) 

Where rd can be either estimated or just a rough guess based on prior knowledge about the 

process. Only the uncertainty of the time-delay needs to be taken care of by Laguerre network 

modeling. Based on system model (4.168), the S D G P C for time-delay systems in Section can be 

applied. 

Example 4: 

Adaptive Laguerre based S D G P C is shown in this example. The plant is given by 
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G4(s) = e -sT 0.5s 
(4.169) 

Where the dead time T varies from 5.5s to 4.5s as illustrated in Fig.4.33. Four Laguerre filters 

with pole p = 1.2 are used. The delay is assumed to be 5s in the design. Thus the system model 

can be described as 

x(t) = 

•-1.2 0 0 o - 1.5492-
- 2 . 4 -1.2 0 0 1.5492 

x(t) + 
- 2 . 4 - 2 . 4 -1.2 0 

x(t) + 
1.5492 

. - 2 . 4 - 2 . 4 - 2 . 4 -1.2. .1.5492. 

u(t - 5) 
(4.170) 

y(t) = c1 x(t) 

where cT is the Laguerre filter coefficients vector which w i l l be estimated using R L S . The 

algorithm developed in section 4.1 w i l l be used. The design parameters are: 

Td - 5s 

Texe — 0.25s 

Tp = l i s 
(4.171) 

Nu = 6 

A = 1 

7 = 1000 

where 7 is the end point states weighting. 

Fig.4.33 shows the plant output and the reference, the control input to the plant and the control 

derivative , the estimated Laguerre coefficients. Between 0 to 80 seconds, the dead time is 5.5 

seconds, between 80 to 160 seconds T is changing to 5 seconds and after 160 seconds it is reduced 

to 4.5 seconds. A s can be seen, the performances are very good in al l three cases. B y using the prior 

delay knowledge, less Laguerre filters can be used resulting in quick convergence in the coefficients 

estimation and thus less transients in the response. 
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-5. 

T=5.5s' T=5s -T=4.5s 
J l 

0 50 100 ^ 150 200 (s) 

Figure 4.33: Simulation of plant (4.169) 

The simulation was performed with the same conditions as the previous run except measurement 

noise was added at the output. Fig.4.34 shows the system output, setpoint and the estimated Laguerre 

parameters. The algorithm still performs well in the presence of noise. 

Output and setpoint 

50 100 150 200 

Estimated Laguerre coeffi. with forgetting:0.98 

50 100 150 200 

Figure 4.34: Simulation of plant (4.169) with measurement noise 
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4.3 Conc lus ion 

M o d e l based predictive control can deal with time-delay systems effectively and S D G P C is no 

exception. Laguerre network requires little a priori information about the system and is able to 

model varying dead times. The adaptive Laguerre filter based S D G P C developed in section 4.2 is a 

suitable candidate for most process control applications. 
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Chapter 5 

A n t i - w i n d u p Design of S D G P C by Op t imiz ing Two Performance Indices 

Actuation limits exist in almost all practical control systems. For example, a motor has limited 

speed, a valve can only operate between fully open and fully close etc. Other than these physical 

actuator limitations, there are constraints which are imposed by production requirements. On the 

other hand, most of the available controller design methods ignore the existence of the saturation 

nonlinearity. When large disturbances occur or, the operating conditions are changed over a wide 

range, it may happen that the theoretical controller output goes beyond the actuator limits. A s a 

result, the control system is effectively operating in open-loop as the input to the plant remains at its 

l imit regardless of the controller output. When this happens, the controller output is wrongly updated. 

For example, i f the controller has integral action, the error w i l l continue to be integrated resulting in 

a very large integral term. This effect is called controller windup. The windup difficulty was first 

experienced in the integrator part of PID controllers. It was recognized later that integrator windup is 

only a special case of a more general problem. In fact, any controller with relatively slow or unstable 

modes w i l l experience windup problems i f there are actuator constraints [20]. The consequence of 

windup is either significant performance deterioration, large overshoots or sometimes even instability 

[8]. Various compensation schemes have been proposed. The anti-reset windup method was proposed 

by Fertik and Ross [26]. Astrom and Wittenmark [63 pp. 184-185] suggested resetting the integrator 

at saturation to prevent integrator windup for PID controllers. A general approach where an observer 

is introduced into the controller structure to prevent windup was proposed by Astrom and Wittenmark 

[63 pp. 369-373]. The " conditioning technique" was proposed by Hanus [36] and it was found 

that the conditioned controller can be derived as a special case of the observer-based approach [8]. 

However, as pointed out in [39], many of these schemes are by and large intuition based. Rigorous 

stability analyses are rare and there is no general analysis and synthesis theory. Several attempts 

have been made to unify anti-windup schemes notably by Walgama and Stemby [81] and Kothare 

et al. [39]. 
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Since the S D G P C control law (2.17) has integral action it w i l l also encounter windup difficulties 

in the case of actuator saturation unless measures are taken. A systematic approach that takes into 

account the input constraints right from the start of the problem formulation is the constrained model 

based predictive control [69]. This is in fact one of the main advantages of using model based 

predictive control strategy. However, one difficulty which comes with this approach is the increased 

complexity. The more common approach which most of the afore mentioned schemes adopt is the 

two steps paradigm. That is, the linear controller is designed ignoring control input nonlinearities 

first and then anti-windup algorithm is added to compensate for the performance degradation due to 

constraints. This w i l l also be the method of attack used here. 

This chapter is organized as follows, in section 5.1, a S D G P C algorithm based on two perfor­

mance indices is given in which the "nominal" response of the closed-loop system and the integral 

compensation performance can be designed independently. This was motivated by the work reported 

in [1, 34, 35, 30] , in which a control algorithm with the structure of state feedback plus integral 

action was developed where the state feedback and the integral feedback gain can be tuned sepa­

rately. However, that work was in the framework of continuous-time infinite horizon L Q control. 

The S D G P C approach, however, has a quite different formulation procedure and an interpretation 

which naturally leads to a novel anti-windup compensation scheme presented in section 5.2. The 

importance of this anti-windup scheme is that under some reasonable assumptions, the overall "two-

degree-of-freedom" S D G P C and the anti-windup scheme guarantee closed-loop stability. Section 5.3 

concludes the chapter. 

5.1 S D G P C Based on Two Performance Indices 

The primary goal of introducing integral action in the design of S D G P C is to ensure zero static 

error for systems tracking a non-zero constant setpoint subject to constant disturbances and modeling 

error to some degree. If there are neither modeling error nor disturbances, there is no need to introduce 

an additional integral state. However, models are inevitably wrong and there are always disturbances 

acting on the plant thus integral action is always needed. Nevertheless, the argument is that the 

controller can be designed for good servo step response performance assuming perfect modeling and 
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no disturbance. Integral action, on the other hand can be added on to compensate for step and impulse 

disturbances and for modeling error. The key idea is to have the servo performance and disturbance 

rejection performance tuned independently. In other words, changing the servo performance shall 

not affect the disturbance rejection performance or vice versa. 

5.1.1 O p t i m i z i n g Servo Performance 

Consider system (2.1) 

x(t) = Ax(t)+Bu(t) 

y{t) = cTx(t) (5.172) 

dim(x) = n 

The system is required to track a constant setpoint r H . If there is no system zero at the origin, a 

constant uo can be found for any ro to hold the system state at xo such that [41]: 

0 = AXQ + Bua 

yQ - cTx0 = r 0 

(5.173) 

Define the shifted input, the shifted state and the shifted output respectively as 

u(t) = u(t) — UQ 

x(t) = x(t) - x0 (5.174) 

! / ( 0 = 2/(0 - r o 
Substitute (5.174) into (5.172) and using (5.173), the shifted variables satisfy the equations 

x(t) = Ax(t)+Bu(t) 

y(t) = cTx(t) (5.175) 

dim(x) - n 
A sensible control objective for the system (5.175) is to minimize the following performance 

index 

1v 

J(t) = j3xT(t + Tp)x(t + Tp) + J {[y(t + T ) ] 2 + X3[u(t + T ) ] 2 } d T (5.176) 
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where U(T),T € [£,/ + T p] is confined to be piecewise constant as u<i(t) in (3.76) which is 

depicted in F i g . 3.17. Fol low the same arguments as that of servo S D G P C in chapter 3, section 3.1, 

the optimal control vector u* which minimizes (5.176) can be written as 

u* = Ksx(t) (5.177) 

with 

(5.178) 

where T(T) is a n x Nu matrix given by (2.11) and H(T) is given by (2.7). Nu is the control 

order as defined before. 

Since only the first element of u* is applied to the plant according to receding horizon strategy, 

define F as the first row of the Nu x n feedback matrix Kx 

F = Kx(l,l:n) (5.179) 

The time-invariant control law for the shifted system is thus 

u(t) = Fx(t) (5.180) 

Control law (5.180) has guaranteed stability when applied to (5.175) with sampling interval Tm 

according to Theorem 2.3. When the design sampling interval Tm is small, the continuous-time 

control law also stabilizes the system as shown by simulation in chapter 2, section 2.4. This can be 

thought of as a procedure of designing continuous-time control law based on sampled-data control i n a 

reverse way of the conventional approach of designing discrete-time control law based on continuous-

time design method. For the sake of clarity, (5.180) w i l l be applied to (5.175) with Texe —* 0. This 
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way, the spirit of the anti-windup scheme which w i l l be given in the next section can be shown more 

clearly and comparisons can be made with that of the familiar three term PID control law. 

In terms of the original system variables, control law (5.180) can be written from (5.174): 

u(t) = Fx(t) + UQ- FxQ (5.181) 

It is easy to see from (5.181) that there is a constant term u'0 = uo — FXQ in the control law. 

It can be shown [41pp.270-276] that 

u'0 = - i i - i cT{-A)-LB r 0 (5.182) 

where A is the closed-loop system matrix 

A=A+BF (5.183) 

The term cT(—A)~lB in (5.182) is the static gain of the close-loop system with transfer function 

Hc(s) = cT(sI-A) lB (5.184) 

from the constant term u 0 to the output. That is 

Hc(0) = cT(-A)~lB (5.185) 

The nonexistence of system zero at the origin ensures that Hc(0) is nonsingular and thus 

guarantees the existence of such a constant term u'0 given by (5.182) which makes (5.173) hold 

at steady state. The transfer function from the constant setpoint ro to the output is 

y(s) — i7~ 1(0)c T(s/ - A) lB = H-l($)Hc{s) (5.186) 
ro(s) 

where the steady state gain is one. 

Thus the optimal control law without integral action for (5.172) is 
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u{t) = Fx(t) + # c

_ 1 ( 0 ) r 0 (5.187) 

The control law (5.187) is not "robust" in the sense that when there are either disturbances or 

modeling error, the output of system (5.172) at steady state w i l l differ from the setpoint ro. This is 

where integral control given in the next subsection kicks in. 

5.1.2 Optimizing Disturbance Rejection Performance 

Define the integral state z(t): 

The integral state augmented system of (5.172) is 

(5.188) 

•i(ty ' A 0" 'B~ 
u(t) + 

' 0 ' •i(ty 
= + u(t) + 

At). -cT 0 . A*). . 0 . 
u(t) + 

_1_ 
ro 

A*) 

At)} 

(5.189) 

y(t) = {cT o] 
Compare with (2.3) where the integrator was inserted before the plant, the integrator i n (5.189) 

is added after the plant. See. Fig.5.35. 

x=Ax+Bu <sHIr y . A 

Figure 5.35: Graphical illustration of (5.189) 

The last term [0 l ] T r o in (5.189) can be ignored since the control law for (5.189) w i l l have 

integral term which w i l l eliminate any constant disturbance like [0 1 ] T r o . Thus we w i l l work on 

the disturbance rejection control law based on the following equations 

At)' ' A 0" At)' 
+ 

'B' 

At). -cT 0 . At). . 0 . 
At) 

y(t) = [cT 0] 

(5.190) 
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What we are looking for is a control law that consists of two terms un(t),v(t). The first term 

un(t) is the nominal control given by (5.187) which ensures nominal servo performance. The second 

term v(t) is responsible for disturbance rejection and modeling error compensation. That is 

u(t) = un(t) + v(t) 

= Fx(t)+H-1(0)rQ + v(t) 

Substitute (5.191) into (5.190), we have 

(5.191) 

' A 0" At)' 

At). T 
—c1 0 . At). 

+ 

[F 0] 
At) 

At)} 
+ tf-i(0)r0 + v(t) 

Again ignoring the constant disturbance term [B 0]THC

 a (0) ro , we have from (5.192) 

(5.192) 

At)' 'A + BF 0" Aty B' 

= 
Aty 

+ 
At). -cT 0 . At). . 0 . 

v(t) 

The disturbance rejection state feedback control law for (5.193) w i l l have the form of 

I At)' 

(5.193) 

v(t) = [L1 L2] 
At) 

Without loss of generality, assume L2 = £,Li = £_L. i.e. 

\x{t) 
v(t) = f[L 1] 

The closed-loop system of (5.193) under control (5.195) is 

(5.194) 

(5.195) 

At)' 

At). 

A + BF + fBL fB 

• T 0 —c 

The criteria for the disturbance rejection control (5.195) are that 

(5.196) 

1. It should not alter the nominal servo performance given by (5.187). i.e. the eigenvalue of the 

closed loop system (5.196) should contain the eigenvalues of A given by (5.183) 

2. It should at the same time give good disturbance rejection properties 
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Defining the new state CW as 

CW = Lx(t) + z(t) 

and substituting (5.197) into (5.193), the new state equation is 

(5.197) 

.CW. 

A + BF 0 •X(ty ' B ' 
+ 

.CW. LB. 
v(t) (5.198) 

Substitute control law (5.195), where £, L are yet to be decided, into (5.198). The closed loop 

system is 

A + BF ( 5 1 \x(t)' 

L(A + BF) - cT $LB J LC(0. 
To fulfill criterion 1, it is obvious that L(A + BF) — cT has to be a zero vector, i.e. L should 

be given by 

.CW. 
(5.199) 

L = cT(A + BF)'1 (5.200) 

Since (A + BF) is the nominal closed loop system matrix which is stable, it is always possible 

to find L from (5.200). The closed loop system equation is thus 

.CW. 

det 

.CW. 

= det[sln - (A + BF)](s - £LB) = 0 

(5.201) 
'A + BF £B 

0 t\LB_ 

The eigenvalues of (5.201) are the solutions of 

Sln - (A + BF) -£B 

0 s-£LB_ 

That is, the eigenvalues of (5.201) are those of (A + BF) and one at £LB. Given the desired 

pole location pz, the feedback gain £ can be easily decided by 

(5.202) 

i=Pt{LB)-1 

The gain £ can also be given by applying S D G P C method to the following equation 
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C(t) = LBv(t) (5.204) 

The performance index is 

J = JrC2(t + Tp) + J [C2(t + T) + Xrv2(t + T)]dT (5.205) 

o 
Apply ing the formulae (5.178) with design parameters 

Nu = l 

Xr = 0 

7r = 0 
(5.206) 

to (5.205), we have 

^ - ^ ( L B ) - 1 (5.207) 

The closed loop pole is at pz = - ^ A . 

The overall control law (5.191) which takes into account both servo performance and disturbance 

rejection performance is thus 

u{t) = (F + £L)x(*) + t;z(t) + Krr0 (5.208) 

Where F is given by (5.179) and 

L = cT(A + BF)-1 

1 5 
i = -^riLB)~l (5.209) 

J-P 

KR = H~l(0) = - ]cT(A + BF)-1B\ _ 1 = -(LB)~L 

We summarize the above results in the following theorem. 
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Theorem 5.1 
For the system given by (5.172) and the augmented system (5.190) 

1. The eigenvalues of the closed loop system under control law (5.208) are those of A + BF and 

pz = ((LB). Where F and ( are obtained by minimizing two performance indices (5.176) and 

(5.205) respectively using SDGPC method. L is given by (5.209). 

2. The system transfer function from reference r o to system output y(i) under control law (5.208) is 

the same as that of the nominal case (5.186). i.e. KrcT(sIn — (A + BF))-1B. 

Proof: 

1. The closed loop system equations of (5.190) under control law (5.208) are: 

~A + BF + (BL B(' 

- c T 0 

y(t) = [cT 0] 

x(0" At)' 'B' 

+ 
At). . 0 . 

x(t) 

[z(t) 

(5.210) 

A p p l y the similarity transformation defined by nonsingular matrix T = 

loop system matrix 

~A + BF + (BL B(' 

In 0 

-L 1 

Adose 
— C 0 

Aclose — T Ac\oseT 
A + BF + £BL - ZBL 

L(A + BF) - cT + £LBL - £LBL (LB _ 
A + BF £B 

0 £LB 

The eigenvalues of Aciose are given by 

det sln+i -
A + BF £B 

0 (LB 
•sIn-(A + BF) -(B • 

0 s-(LB. 
det[sln - (A + BF)]det(s - (LB) = 0 

det 

to the closed 

(5.211) 

(5.212) 

(5.213) 
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So the eigenvalues of Adose are eigenvalues of A+BF and (LB. Since similarity transformation 

does not change the eigenvalues of a matrix, it is clear that the eigenvalues of Aaoae = 
A + BF + t]BL Bf 

are those of A^ogg. This completes the proof of statement 1. 
-cT 0 J 

2. Substitute control law (5.208) into system equations (5.189), we have 

•x(ty 

At). 

A + BF + tBL B£ 

0 

'BKr' 
+ 

At). 1 

y(t) = [cT 0] 
•(0 

(5.214) 

A p p l y transformation 
-*(<)• 'In 0' At)' 

—L 1 At). 

L * ( * ) J 

to (5.214), we have 

•x(ty 

At). 

A + BF B( 

0 LBt] 

y(t) = [cT o] 

•x(ty ' BKr ' 
+ 

X(t). _LBKr + l_ 
ro 

At) 

At) 

(5.215) 

Using (5.209), we have LBKT + 1 = 0, the closed loop transfer function from ro to y(t) is thus 

r S/ n - (A + BF) -B£ 
[cT 0] 

-] -1 'BKr' 

0 0 s- LBt] 
• [sln -(A + BF))-1 [sln - (A + BF^B^s - LB£)~ 

(s - LBZY 

BKT 

0 

(5.216) = l °31 
= cT[sIn -(A + BF)]-1BKT 

This completes the proof of statement 2. • 

Remark: 

Statement 2 implies that the integral term in control law (5.208) adds a systems pole as wel l 

as a system zero at (LB. However, the integral term adds a blocking zero at the origin from the 

reference (or disturbance) to the tracking error e(t) = ro — y(t) thus ensures zero steady state error 

for constant reference signal and/or constant disturbance. 

Theorem 5.1 says for a changing £, £ t , the eigenvalues of the closed loop system are those of 

A + BF, which are constant, and a time-varying pole atp*, = (tLB. For stable A + BF and a stable 

pz given by £, as long as the sign of £ t stays the same as £, then the eigenvalues of the closed loop 
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system matrix (5.211) are stable at any instant of time. However, this does not guarantee the stability 
\A + BF + £tBL B^t' 

of the rime-varying A£,O S (. = 

eigenvalues of A(t) have rea 

[9, pp.411]. For the particular Al

clo,e = 

That is, for time-varying x(t) = A(t)x(t), i f the 

negative parts for each t, then x(t) = A(t)x(t) is not necessarily stable 
'A + BF + StBL Bit' 

, we have the following theorem. 
o 

Theorem 5.2 

For the system (5.172) and the augmented system (5.190) under control law (5.208) with constant 

setpoint and with constant F, which stabilizes A + BF, and time-varying £t, if 

1. & is such that the time-varying pole pZt = (tLB is always negative, i.e. pZt = (tLB < 0, and 

f LBZt(T)dT f LB£t(r)dT 

2. £t (<) e ° is bounded and l i m ft( i)e° = constant exponentially, 
t—too 

then the closed loop system (5.214) is exponentially stable. 

Proof: For the closed loop system 

we have 

•±(ty 

.C(0. 

A + BF B(t{t) 

0 LB(t(t) 

^ = LB£t(t)dt 

•*(*)• 

.CO. 

C(t) = C(0)e° 
/ LBUr)dr 

(5.217) 

(5.218) 

Condition 1. ensures l i m J LB(t(r)dT is a negative constant ( not necessarily -oo ) which means 
t—too 

l i m ((t) = constant 
t—too 

(5.219) 

from (5.218). For the states x(t), we have 

x(t) = (A + BF)x(t) + B$t(t)C{t) 
t 

x(t) = e(A+BF»x(0) + J e(A+BF^-^B(t(T)C(T)dT 
(5.220) 
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Because A + BF is stable and l i m = constant (or 0) according to condition 2., which 
t—»oo 

means we have a stable system subject to an input which is either exponentially vanishing or goes 

to a nonzero constant exponentially. Thus 

i.e. exponentially stable at its equilibrium point. • 

Theorem 5.2 w i l l be used to construct an anti-windup scheme in next subsection. 

In the process industries, most processes are wel l damped open-loop stable systems. For such 

systems, the " mean level " control [13], i.e. the control law which does not alter the process poles, 

may be desirable since more aggressive control requires large input amplitude. The following theorem 

gives the S D G P C version of " mean level " control. 

Theorem 5.3 

For system (5.172) with stable A and the augmented system (5.190), the mean level control law 

(5.223), i.e. the one with F = 0, is obtained with design parameters 

lim x(t) = a;^ [constant) (5.221) 

u 1 

O O 

(5.222) 
A 0 

7 0 
The mean level control law is: 

u(t) = {(L)x(t) + (z(t) + Krr0 (5.223) 

where £ is given by (5.207) and Kr = - [cTA~lB] 
- l 

Proof: 

For stable A and iV„ = 1, F(T) in (5.178) has a concise form: 

r(,4,T) = (eAT - ^A^B 

90 

(5.224) 



Chapter 5: Anti-windup Design of SDGPC by Optimizing Two Performance Indices 

Substitute (5.224) into (5.178), we have 

- l 

K = J [ ( t r V ^ A ^ B ) 2 - 2cTeATA-1BcTA-1B + {<FA~lB)A dT 
(5.225) 

= (h -I2 + h y 1 

Since A is stable, l i m eAT* = 0, thus both the first and the second integrals in (5.225) 
Tr->oo 

approach constant while 1$ approaches infinity as Tp —• 0 0 . Thus l i m K = 0. Similarly, it can be 
Tp—»oo 

shown that Hx approaches constant as Tv —+ 0 0 . So l i m F = l i m K * Hx = 0. • 

Remark: Although the mean level control law (5.223) does not change the system dynamics 

of the setpoint response from the open loop one, its disturbance rejection response can be tuned by 

selecting different £. Larger £ results in faster disturbance rejection rate. 

5.2 A n t i - w i n d u p Scheme 

F i g . 5.36 shows the control law (5.208) applied to a system subject to actuator constraints where 

' u(t), U m i n < u(t) < 
Umax 

u(t) = sat[u(t)] = < 
lmax: "•max (5.226) 

— u x=Ax+Bu T 

— ' 
x=Ax+Bu c 

Figure 5.36: Control subject to actuator constraints 

A s we mentioned earlier, u(t) consists of the nominal control term un(t) and the disturbance 

rejection control term v(t). i.e. 

u(t) = un(t) + v(t) 

un(t) = Fx(t) + Krro (5.227) 

v(t) = £(Lx(t) + z(t)) 
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We only consider open loop stable plants here as it is meaningless to design anti-wind up 

scheme for strictly unstable systems. It is impossible to stabilize a strictly unstable system regardless 

of whatever control strategy is applied when the system disturbance causes the input to saturate [47]. 

We first consider the case when u(t) is over the upper limit u m a x . 

Case 1: Do not reset integrator when both u(t) and un(t) exceed control limit. That is: 

««»el(0 = Z(*) {Z r e s e <( < ) = 

u(t)=um 

u(t) > u m a x and un(t) > um 

Jf< f J i l t e o ( 5 - 2 2 8 ) 

u(t) < u m i n and un(t) < u m i n or un(t) > u m a l , theni 

I u(t)=umin 

where u(r) is defined as the new controller output after integrator reset. 

Case 1 happens either when an unreachable setpoint is asked or the system suffers too large a 

disturbance. The system is effectively operated in open loop. If the input is saturated long enough, 

the output of the system w i l l be —cTA~1Bunm. 

Case 2: Reset integrator state when u(t) exceeds control limit but un(t) does not. Stop reset 

integrator when saturation is over. That is: 

1. When saturation occurs: 

i *re..i(«) = *(*) + " m V ( t ) 

u{t) > u m a x and u m i n < u„(t) < u m a x , theni 

u(t) < u m i n and u m i n < uH(t) < u m a x , thenl 
{u(t) = un(t) + ttLx(t) + zre3Ct(t)) 

2. After saturation is over, the control should be updated according to: 

z(t) = z(t) 
(5.230) 

u(t) = un(t) + £(Lx(t) + z(t)) 

We have the following theorem regarding scheme (5.229). 

Theorem 5.4 

Scheme (5.229) guarantees u(t) = u(t) where u(t) = sat[u(t)] is defined in (5.226). 

Proof: 
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Consider the case when u(t) > u m a x and u m i n < un(t) < u m a x , by direct calculation we have 

umax u(t) 
u(t) = un(t) + £ (^Lx(t) + z(t) + 

i J (5.231) 

= Umax + Un(t) + Lx(t) + z(t) - z(t) = Umax 

Thus u(t) = sat[u(t)] = u(t). • . 

Remark: 

Theorem 5.4 essentially claims that the nonlinear control problem with saturated u(t) can be 

transformed into a linear control problem by scheme (5.229). 

Case 3: Reset the feedback gain f but keep the integrator state unchanged when u(t) exceeds 

control limit but un(t) does not. After saturation is over, changing £ according to equation (5.233). 

That is: 

1. When saturation occurs: 

-»(*) 
I t £ _i_ Umax— " U J 

u(t) > umax and umin < u„(t) < umax, then< 

u(t) < umin and u„in < un(t) < umax, then 

« ( * ) = « „ ( * ) + (rc.ct{Lx(t) + *(*)) ( 5 2 n ) 

e C _1_ »m.n-»(t) 
preset — I -

u(t) = u„(*) + U..t(Lx(t) + z(t)) 

2. After saturation is over, the disturbance feedback gain £(t) should fulfill the following equation: 

f LBl(r)dr 

l{t)e<° = £ r e „ t ( < o ) < ^ B ( ' - ' o ) (5-233) 

where to denotes the time just when saturation is over, £ is the originally designed feedback gain 

without considering saturation. £reset{to) is the reset £ at to obtained from (5.232). 

lemma 5.1 

The integrator reset algorithm given by (5.229) and (5.230) is equivalent to the gain reset 

algorithm given by (5.232) and (5.233). 

We only prove the case when the control exceeds the upper limit u m a x . The case when u < u m t n 

can be proved in the same manner. 

Proof: 
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(5.235) 

1. When control is saturated, i.e. u(t) > umax. From Theorem 5.4, it was shown that (5.229) 

gives u(t) = umax. Whi le in (5.232), we have 

= un(t) + ((Lx(t) + z(t)) + umax - u(t) (5-234) 

— Umax 

So, both (5.229) and (5.232) give the same control action when u(t) > umax. 

2. After saturation is over, denote that moment as to, we have 

Ul(tn) = Un(to) + ((Lx(t0) + Zreset(to)) = Un(tn) + (C,reset{to) 

U2(to) = Un(to) + (reset(to){Lx(t0) + z(to)) = Un(t0) + (reset (*o)C(*o) 
where ui(*o),"2(<o) are the control obtained from (5.229) and (5.232) respectively. Since 

"i(*o) = "2(^0) as we just proved, we have 

£Crese<(*f)) = (reset(to)C(t(l) (5.236) 

The control given by (5.229) after to is 

"1 (0 = «n(<) + Z(reset(t) (5.237) 

where Creset(t) is given by (5.201) as: 

^reset(t) = LB((]reset(t) 

Creset{t) = ( r e s e t ^ 1 3 ^ (5.238) 

Ol(t) = «»(*) + (Uset{t^LB{t-U) 

Similarly, the control given by (5.232) after to is 

*2 (*) = « » ( * ) + £(*)<(*) (5.239) 

where at time to, ((to) = (reset{to)- After to, ((t) is described by (5.233). Final ly, we have 

J LBi{r)dT 

at) = LB|(OC(*). m = «to)e>° ( 5 2 4 0 ) 

/ LBl{T)dr 

u2(t) = un(t) + ({t)ato)^ 

For ((t) given by (5.233), it is easy to show that ui(t) = u2(t) using (5.236). 
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We conclude that the integral state reset algorithm described by (5.229) and (5.230) and the gain 

reset algorithm described by (5.232) and (5.233) give the same unsaturated control action during 

saturation period and thereafter and are thus equivalent. • 

Remark: Lemma 5.1 claims that the nonlinear control problem with saturated u(t) is equivalent 

to a linear time-varying control problem with the time-varying feedback gain given by (5.232) and 

(5.233). 

lemma 5.2 

For the gain reset scheme (5.232) and (5.233), the sign of€reset(t) during saturation and the sign 

of£(t) after saturation are the same as the sign of the originally designed £. 

Proof: 

1. During saturation, from (5.232), we have 

C (4\ /• , umax ~ u(t) U m a x — Un(t) / C O / 1 1 \ 

U s e t { t ) ~ * + Lx(t) + z(t) = Lx(t) + z(t) ( 5 - 2 4 1 ) 

Since umax — un(t) > 0 by assumption, we have 

freset(t)(Lx(t) + z(t))> 0 (5.242) 

We also have u(t) = un(t) + f(La:(f) + z(i)) > umax, thus 

i(Lx(t) + z(t))> (t) > 0 (5.243) 

Equations (5.242) and (5.243) hold at the same time only i f £ and fTe3et(t) have the same sign. 

2. After the saturation, from (5.233), it is obvious that 

eSLB(t-U) 

iresetih) J LBftT)dr 

e'<> 

> 0 (5.244) 

j LBS(r)dT 

since both e ^ - B ^ - M ) e<0 a r e greater than zero. Thus <f (t) has the same sign as £reset(to)• 
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We conclude that the signs of (, (Teset{t) and ((t) are al l the same. • 

Theorem 5.5 

The gain reset anti-windup scheme described by (5.232) and (5.233) and the equivalent integrator 

reset anti-windup scheme described by (5.229) and (5.230) are exponentially stable and gives zero 

steady state error for constant setpoint subject to constant disturbance. 

Proof: 

According to lemma 5.2, the time-varying ( t has the same sign as £. Since (LB < 0 by design, 

we havep 2 , = (tLB < 0 during all the stages of the algorithm. Further ( t "is bounded during saturation 

J LBi(T)dr 

and l i m ((t)e*<> = l i m (resetito)^13^'^ = 0 after saturation according to (5.233). Thus 

t—too t—too 

both condition 1. and condition 2. of Theorem 5.2 are met. The resulting time-varying linear control 

law is exponentially stable for the overall system, i.e. the linear system (5.172) with saturation 

nonlinearity as depicted in F ig . 5.36. The equivalent integrator state reset algorithm (5.229) and 

(5.230) is also exponentially stable. Further, since l i m = l i m (Lx(t) + z(i)) = constant 
t—too t—»oo 

t 
and l i m x(t) = constant, we have l i m z(t) = l i m J (ro — y(r))dT = constant, which means 

t—too t—too t—too 

l i m e(t) = l i m ( r 0 - y(t)) = 0. • 
t—too t—too 

Some examples are presented here to show the effectiveness of the T D F - S D G P C and the anti-

windup algorithm. 
Example 5.1 The first example is a simple integrator process. 

G(s) = - (5.245) 
s 

The actuator limits are ± 0 . 1 . 

Design the S D G P C algorithm with two performance indices using the same following design 

parameters 

Nu = l 

Tp = 1.5sec (5.246) 

A = 7 = 0 
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gives the control law 

u(t) = un(t) + v(t) 

un(t) = -y(t) + r0 (5.247) 

v(t) = -y(t) + z(t) 

Fig.5.37 shows the control results of control law (5.247) without anti-windup compensation. The 

overshoot in Fig.5.37(a) can be clearly observed. 

60 (S) 

60 (S) 

integral of tracking error 

1 1 1 1 1 

0 10 20 30 40 

(c) 

nominal control un(t) 

SO 60 

- I 1 i 1 -

- I 1 1 1 -

I 1 1 , 1 1 1 

0 10 20 30 40 SO 60 (S) (d) 

Figure 5.37: Example 5.1: Control law (5.247) without anti-windup compensation 

F i g . 5.38 shows the control results of control law (5.247) with anti-windup scheme. From F ig . 

5.38(c), the integral state is reset just after the 20 seconds mark at which time the nominal control 

is within the control limits. The effectiveness of the algorithm is obvious. 
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setpoint and output 

control 

integral of tracking error 

-integrator reset 

(c) 
60 ( S ) 

1 

0.5 

0 

-0.5 

nominal control 

30 

(d) 
60 (S) 

Figure 5.38: Example 5.1: Control law (5.247) with anti-windup compensation 

Example 5.2 The process for the second example is described by 

-_3 _3 _ r T 

x(t) = 1 0 0 x(t) + 0 

. 0 . 1 0 . .0. 

y(t) = [o o 
l]x{t) 

The actuator limits are: ±3.5 

For the nominal control law un(t), the design parameters are 
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Nu = 10 

Tp = 2sec. 
(5.249) 

A = 0.0001 

7 = 1000 

The resulting nominal control law is given by 

un(<) = Fx(t) + Krro 
(5.250) 

F = [-4.7599 -25.9369 -51.4516 ],Kr = 52.4516 

For the control v(t), the prediction horizon Tp is selected such that the pole is placed at —2 and 

f = 104.9031. the overall control law is 

un(t) = (F + £L)x(t) + Krr0 + £z(t) 
(5.251) 

= [-6.7599 -41.4567 -109.3254 }x(t) + 52.4516r 0 + 104.90312(f) 

The control results for the control law (5.251) with anti-windup algorithm are shown in F ig . 

5.39. The effectiveness of the anti-windup algorithm can be again observed by comparing F ig . 5.39 

with F ig . 5.40 in which no anti-windup algorithm is used. Notice the integral state reset in F ig . 

5.39(c) after each setpoint change. 
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setpoint and output 

60 (s) 

control 

10 20 30 
(b) 

60 (S) 

integral of tracking error 

60 (s) 

Nominal control 
100 

l \ 

-

0 
100 

7 V -

0 10 20 30 40 60 & 
(d) 

60 (S) 

Figure 5.39: Example 5.2: Control law (5.251) with anti-windup compensation 
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setpoint and output 

- 1 — 
r, -

1 
/ 

/ 

"\ 

\ ,s V ^ \J - -

10 20 30 
(a) 

control 

40 50 60 (S) 

integral of tracking error 

50 60 (s) 

nominal control 

Figure 5.40: Example 5.2: Control law (5.251) without anti-windup compensation 

The integrator reset algorithm has a strong similarity with the conventional anti-windup PID 

controller whose structure is depicted in Fig.5.41. 

Figure 5.41: Conventional anti-windup 

The performances of the conventional anti-windup algorithm and the proposed scheme are 

compared in next example. 
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Example 5.3 The plant being controlled is a simple integrator with random disturbance injected 

at the input. The saturation limits are ± 0 . 1 and the control law is given in equation (5.252) 

G(s) = I 

-0.1 < u(t) < 0.1 
t 

u(t) = -1.9998y(i) + 0.9998r„ + 0.9998 J (r 0 - y(r))dr 

u„(t) = -0.9998j/(t) + 0.9998r0 

(5.252) 

t 

v{t) = -y{t) + 0.9998 J (r 0 - y(n ))dr 

The reset gain K as depicted in Fig.5.41 is selected to ensure good performance for the 

conventional algorithm. Fig.5.42 shows the results. The first three plots are for the conventional 

methods with different reset gains. The observation is that although good performance can be obtained 

for properly selected gain K, it is nonetheless a nontrivial trial and error procedure. Moreover, the 

effect of changing K on the performance is "non-monotonic". This makes the tuning more difficult. 

O n the other hand, the proposed scheme gives excellent results in a straightforward manner as can 

be seen from the fourth plot of Fig.5.42. 

K=0.02 -^Xy2(t) = 0.7618 

0.2 0.4 0.6 0.8 ^ 1 1.2 1.4 1.6 1.8 

K=0.5 l £ y 2 ( t ) = 0 - 2 1 3 0 x 1 ° 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 

1 
K=10 -^xy 2(t) = ° - 3 5 7 5 

x 10 

Figure 5.42: Conventional anti-windup scheme vs proposed 
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We make some remarks to conclude this section. 

1. The stability result stated in Theorem 5.5 also applies to unstable systems provided that u m i n < 

un(t) < u m a x holds. However, for unstable plants, it is always possible to find a system state 

XQ such that un(t) = FXQ + Kr

ro > umax o r un{i) < umin- This w i l l drive the system in open 

loop mode thus destabilize the system. 

2. For open loop stable systems, it is also desirable to have 

un(t) = Fx(t) + KTrQ 

(5.253) 
Umin * N f n(i) <C Umax 

hold. This way, the anti-windup scheme leads to a graceful performance degradation compared 

with the unconstrained linear design. However, to fulfill (5.253), a smaller feedback gain F is 

required. The extreme case is the "mean-level" control given by Theorem 5.3 where F — 0, 

i.e. no control effort is made to make the servo response faster. This means that when input 

limits exist, a trade-off must be made to balance servo performance and disturbance rejection 

performance even for a two-degree-of-freedom design. 

3. Although the integral state reset scheme (5.229), (5.230) is equivalent to the gain reset scheme 

(5.232), (5.233), it is clear that the integrator reset scheme is much easier to implement. The 

gain reset scheme is also very important since it clearly shows that the original time-invariant 

nonlinear problem is equivalent to a time-varying linear problem which possesses nice stability 

property under reasonable assumption. 

4. Integral reset can also be used for bumpless transfer in process control. For manual control 

signal uman(t), the integral z(t) in control law (5.208) can be set as 

z(t) = U™an{t) - {F + ZL)x{t) - K r r ( i ^ ^ 

This way, the control law (5.208) tracks the operator action in manual mode and takes over the 

control task from the operator based on the last operator entered value whenever i n auto mode 

thus realizing bumpless transfer. 
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5.3 Conclus ion 

In this chapter, we developed a two-degree-of-freedom S D G P C algorithm based on two per­

formance indices. Based on this T D F - S D G P C algorithm, an anti-windup scheme was proposed in 

section 5.2. It is shown that the linear control law plus saturation nonlinearity is effectively equivalent 

to an unconstrained linear time-varying control law which leads to graceful performance degradation 

compared with the original linear unconstrained design while guarantees stability. It also clearly 

poses a trade-off design problem between the servo performance and the disturbance rejection per­

formance. The attractive features of this anti-windup scheme are its elegant simplicity, effectiveness 

and most importandy, guaranteed stability property. 
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Chapter 6 

Continuous-time System Identification Based on Sampled-Data 

System model is the centerpiece in all M o d e l Based Predictive Control algorithms. In the case 

of various S D G P C algorithms we developed in previous chapters, the system models being used 

are continuous-time state space ( or high order differential equation ) models. The continuous-time 

Laguerre filter identification and its associated Laguerre filter based adaptive S D G P C problem were 

treated i n chapter 4. The parameter estimation problem for general (stable or unstable) continuous-

time differential equation is discussed in this chapter. 

There is no doubt that discrete-time models have received more attention than their continuous-

time counterparts in the development of both identification theory and techniques. The theoretical 

results and algorithms available for discrete-time model parameter estimation are overwhelming [65, 

25, 45, 44, 72]. The continuous-time model identification problem using digital computers, on the 

other hand, has yet to reach the same level although the relevance and importance of continuous-

time system identification have been increasingly recognized in the recent years. A n earlier survey 

solely devoted to this subject can be found in P. C . Young [85]. A comprehensive review of recent 

developments in the identification of continuous-time systems was given by Unbehauen and Rao [79]. 

A book written by Unbehauen and Rao [78] attempts to present a simple and unifying account of a 

broad class of identification techniques for continuous-time models. 

Least squares (LS) is a basic technique for parameter estimation. The least squares principle, 

formulated by Gauss at the end of eighteenth century, says that the unknown parameters of a 

mathematical model should be chosen in such a way that 

the sum of the squares of the differences between the actually observed and the computed values, 

multiplied by numbers that measure the degree of precision, is a minimum [64J. 

The method is particularly simple i f the model has the property of being linear in the parameters. 

That is i f a model has the following form 

y{t) = y>i(i)0i + ip2(t)92 + ••• + M*)0n = ¥ > ( O T 0 
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where y is the observed variable, #1, #2, • • • , # n are unknown parameters, and , <pi, <p%, • • •, <pn 

are known functions that may depend on other known variables. The model is indexed by t, which 

often denotes time. The variables <pi are called the regression variables or the regressors and the 

model described by (6.255) is called a regression model. The vectors <pT(t),9T are defined as 

<pT(t) = [^(t) <p2(t) ••• <pn(t)} 
(6.256) 

eT = [el{t) e2(t) ••• en(t)] 
With pairs of observations and regressors {(y(i),<pi(i)), i = 1,2, • • • t}, the parameter estimation 

problem is to determine the parameters in such a way that the outputs computed from the model 

described by (6.255) agree as closely as possible with the measured variables y(i). The solution 

has a analytical form 

(6.257) 

where 
Y(t) = [y(l) y(2) ••• y(t)]T 

V r ( i ) ' 
(6.258) 

and the symbol " A " denotes estimates throughout die thesis. In view of real time application, 

the computation based on (6.257) can also be done recursively resulting in the so called Recursive 

Least Squares (RLS) algorithm. The regression model (6.255) is an algebraic (non-dynamic) equation 

which has two important properties: it is realizable in the parameters 0T and contains only realizable 

functions <pT(t) of the data. Usually there are two phases in applying the above least squares method 

to parameter estimation of dynamic models. The primary phase involves converting the dynamic 

equation into an algebraic equation. A n d the secondary phase involves solving these algebraic 

equations for the unknown parameters which is given by (6.257) or its recursive version. For 

systems described by a difference equation 

y( ' ) 
u(t) acq71 + aiqn~l H h an 

(6.259) 
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or equivalently 

y(t) _ frp + feig *H + bnq : n 
(6.260) 

u(t) aa + aiq-1 H b anq n 

where q is the difference operator, i.e. qy(t) — y(t + 1), the solution to the primary phase is 

obvious since the dynamic equation (6.260) already fulfills the requirement of the primary phase. 

For a continuous-time model given by 

where s is the differential operator, i.e. sy(t) = dy(t)/dt (also loosely interpreted here as 

the Laplace operator), the solution to the primary phase is not as simple since derivative operation 

sny(t) = dny(i)/dnt is not feasible. One way to circumvent this difficulty is to make continuous-to-

discrete conversion of the continuous-time model (6.261) first, and then estimate the parameters of the 

resulting discrete-time model. The parameters of the original continuous-time model can then be ob­

tained by a discrete-to-continuous time transformation. However, obtaining a continuous-time model 

from its identified discrete-time form is not without difficulties [70, 71] as the choice of sampling 

interval is not trivial. On the other hand several methods are available to make the continuous-time 

model (6.261) compatible with the requirement of the primary phase without changing the parameters 

(an • • • a „ ,bo---bn) [79, 79, 85]. Perhaps the most direct of these is the low-pass filter approach. 

The key idea is to choose a low-pass filter H(s) with a transfer function of sufficient relative degree to 

make snH(s) proper so that al l the signals sny(t), sn~1y(t), • • •, y(t), snu(t), s n - 1 u ( t ) , • • • , u(t) 

involved in (6.261) w i l l be feasible by passing through H(s). Thus a realizable, linear-in-the-

parameters form of equation (6.261) can be obtained. One particularly simple choice of the filter is 

the multiple integration filter l/sn. The initial condition problem associated with integration opera­

tion can be overcome by integrating the input/output signal over a moving time interval [to, to + T] 

[67]. In section 6.1, the continuous-time model (6.261) is transformed into a regression model by 

passing sny(t), sn~1y(t), • • •, y(t), snu(t), s n - 1 u ( f ) , • • • , u(t) through a multiple integration filter 

1/s". A n d the numerical integration formulae w i l l also be given. Section 6.2 introduces the recursive 

least squares algorithm E F R A [68] which stands for exponential forgetting and resetting algorithm. In 

y(t) _ b0sn + b1sn-1 + ••• + &, 'n (6.261) 
u(t) a0sn + a!*"" 1 -| \-a, •n 
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section 6.3, we develop a new algorithm to estimate fast time-varying parameters. A real life inverted 

pendulum experiment in section 6.4 shows the effectiveness of the algorithm presented in this chapter. 

6.1 The Regression Model for Continuous-time Systems 

Considering the system model (6.261), assuming the leading coefficient OQ is equal to 1. Let 

y(n\t) denotes the ra-th derivative of y(t), the system model being considered has the form 

y ( n )(0 + « iy ( n _ 1 ) (0 + • • • + any(t) = &ou(n)(0 + M ( n _ 1 ) ( * ) + ••• + bnu(t) (6.262) 

Define the multiple integral of signal y(t) over [to,to + T) as 

U+TU+T tj-i+T 

Iny(ta) = f J "' f y{tj)dtjdti-X---dt1 (6 263) 
t o tl tj — 1 

j = l , 2 , - - - n 

A p p l y In defined in (6.263) to both sides of (6.262), the resulting regression model is 

Iny(n)(to) = <pT(t0)9 (6.264) 

where 

<pT(to) = [-Iny(n-1)(to) ••• -Iny{to) J„U<»)(*o) ••• /„U(* 0)] 
(6.265) 

0 = [ai ••• an bo ••• bn] 

A s can be seen from (6.265), all the regressor entries are numerically feasible since derivation 

is no longer necessary. Since we are interested in computer implementation of the algorithm, the 

input/output data are only available at discrete sampling instants. However, this w i l l be enough to 

compute the regressor numerically. The trapezoidal rule w i l l be used for its simplicity in form and 

its satisfactory accuracy. Rather than giving the general formulae to compute the integrals i n (6.265), 

we only consider the case when n = 2 for the purpose of not hindering the basic principle. 

Assume / + 1 samples of signal y(t), y(0), y ( l ) , • • • y(l), are available on the interval [to, to + T] 

with sampling interval A = j as illustrated in Fig.6.43, then the integral hy(to) = / y(h)dti 

can be given numerically using trapezoidal rule as 
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•t0+T 

hy(to) = J y{h)dh « A £ y ( 0 - 0 . 5 ( y ( 0 ) + y(7)) 
Li=0 

(6.266) 

to t o + A U+T 

Figure 6.43: Graphical illustration of numerical integration 

Similarly, the double integration of y(t) over [to,to + T] can be given by 

t0+T U+T U+T 

hy(h) = J dtx J y(t2)dt2 = J [hy{h))dt 
to ti to 

• / 

i A hy(to + t 'A) - 0 . 5 J i y ( « 0 ) - 0 . 5 / i y ( t 0 + T ) 
Li=0 

where each hy(to + i A ) , i — 0 ,1 , • • • / in (6.267) can be computed using (6.266). 

Double integration of y(t) over [to, to + T] is given by 

U+T U+T U+T 

hy{to)= J dh J y{t2)dt2= J (yCti + T ) - ^ ! ) ) * ! 
to ti to 

= y{t0 + 2T) - 2y(tQ + T) + y(to) 

Double integration of y(t) over [to, to + T] is given by 

U+T U+T U+T 

hy(to)= J dtx J y(t2)dt2= j (y(*i+r)-y(ti))d<i 
to t] to 

= hy(to + T)-Iiy{to) 

(6.267) 

(6.268) 

(6.269) 

With these formulae (6.266)-(6.269), the regressors in (6.265) can be computed for n < 2. For 

n > 2, the corresponding equations can be obtained in a similar fashion. 

It is obvious that both the sampling interval A and the integration interval T affect the estimates. 

Sampling interval A directly affects the accuracy of the numerical integration (6.266) thus A should 
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keep small. However, too small A may also lead to inaccurate estimates due to round off error. A s 

a rule of thumb, the sampling interval should be chosen according to 

| r J < A < ! ( 6 ' 2 7 0 ) 

where T3 = ^- is the Shannon maximum sampling period [86]. In obtaining the regression 

model (6.264), the multiple integral operation In defined in (6.263), which functions as a pre-filter, 

is applied to both sides of system model (6.262). Intuitively, the bandwidth of the this pre-filter 

should match that of the system (6.262) so that the noise in the measurement data can be depressed 

and at the same time, without rounding off the "richness" of the input/output signal which contains 

the information about the dynamics of the system (6.262). The Laplace transform of the multiple 

integrator (6.263) over a time length of T is [67] 

(1 _ e - s T ) n 

4«01 - J - ^ U o i ( 6.2 7 I ) 

= =(»)£[(•)] 
It is clear from (6.271) that the integration span T of the multiple integrator / „ should be selected 

such that the bandwidth of the multiple integrator transfer function E(s) matches the bandwidth of 

the system being identified. 

6.2 The E F R A 

For the regression model (6.264), the standard R L S algorithm is given by the following for­

m u l a e ^ ] 

8(t0) = §(to - 1) + /<•(*(>) (WB)(*o) - /(to)̂ fl - 1)) 

P(to)={l-K(t0)<pT(ta))P(t(i-l) 

where P(0) is a large enough positive definite matrix. The statistical interpretation of the least-

squares method is that the initial covariance of the parameters is proportional to -P(O). 
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The R L S algorithm (6.272) can not track time-varying parameters effectively. A simple extension 

to (6.272) is to use a forgetting factor 0 < A < 1 to give more recent data more weight. The 

modified algorithm is given by 

0(tQ) = e{tQ - 1 ) + tf(*0)(WB)(*o) - v T ( ' oW*o - 1 ) ) 

K(to) = P ( t 0 M * o ) = ir+^Tp^l <6-273> 

A7 + y > r ( t o ) P ( * o - l M < o ) 

P ( t 0 ) = (I - K(t0)<pT{to))P(to - 1 ) /A 

A disadvantage of the exponential forgetting (6.273) is that the covariance matrix P may 

eventually blow up when the excitation is poor. The Exponential Forgetting and Resetting Algori thm 

( E F R A ) [68] of Salgado et al has been shown to have superior performance. It guarantees bounded 

covariance matrix P even when the excitation is poor. 

The E F R A is given by 

0(<o) = 0(<o - 1) + Km){l2y{n\to) - <PT(to)Hto ~ 1)) 

K ( t o ) - I + ^ o ) P ( t 0 - l M t o ) ( 6 - 2 ? 4 ) 

P(*o) = \p(tQ - 1) - K(to)<pT(t0)P(t0 - i ) + p i - 6P2(t0 - 1) 

There are four parameters in this algorithm to be chosen by the user. However, it is straightfor­

ward to select them in practice. The general guidelines are: 

1. a adjusts the gain of the estimators, typically a e [0.1,0.5] 

2. (5 is small, directly related to the smallest eigenvalue of P, typically (3 G [0,0.01] 

3. A is the usual forgetting factor, A e [0.9,0.99] 

4. 6 is small, inversely proportional to the maximum eigenvalue of P, typically S £ [0,0.01] 

The desirable features of E F R A are: 

1. Exponential forgetting and resetting 

2. A n upper bound for P, i.e. a nonzero lower bound for P - 1 

3. A n lower bound for P - 1 , i.e. a nonzero lower bound for P 
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6.3 Dealing with Fast Time-varying Parameters 

R L S with forgetting factor can deal with slow time-varying parameters effectively but w i l l 

encounter difficulties for fast time-varying parameters. In such cases it is advantageous to assume 

the parameters to be time-varying right from the start of the problem formulation. X i e and Evans 

[83] proposed an algorithm in a discrete-time setting assuming that the parameters are of the form of 

offset linear ramp. The moving horizon multiple integrator approach developed in section 6.1 w i l l be 

used to deal with the time-varying parameter case. Again for simplicity, a second order differential 

equation with time varying parameters is considered. 

Consider the equation 

y + a!(t)y + a2(t)y = bi(t)u (6.275) 

Assume that the time-varying coefficients ai(t), 6,-(t) have the form 

di(t) = aw + ant 

bi(t) = bi0 + but (6.276) 

te[0,Tres] 

over interval [to, to + Tres\. Obviously, equation (6.276) would be a very good approximation of 

ai(t), bi(t) i f Tres is reasonably small. Note that Tre3 is not necessarily the same as the integration 

span T in (6.263). Usually Tre3 > T. 

Substitute equation (6.276) into equation (6.275), we have 

V + a m y + ^ 2 0 2 / + a\\ty + a2\ty = bwu + bntu (6.277) 

App ly I2 defined in (6.263) on both sides of (6.277) over [t0, to + T], the following regression 

model can be obtained 

hy(to) = <pT(ta)e 
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where 

<pT(ta) = •hy{h) - hy(to) hu(ta) : - hty(to) - hty{h): htu(t0) 

aio a 20 1̂0 : an c-21 hi 

(6.279) 

The integrals l2y(to),l2y(ta),I2y(t(\),l2u(tQ) can be computed using formulae (6.266)-(6.269), 

while l2ty(t<)),hty(h),htu{to) are given as.follows 

t0+T U+T u+T t,+r 

hty{h) = j dh J ry{T)dr = J dta J rdy(r) 
to tj to 

U+TT u+T 

= J (Tvir))$+T- J v i * ) * 

to L ti 

U+T 

= J [(*! +T)y(t a + T)-<!!/(*!)-/u/^ijjdt! 
U 

U+T U+T 

hty(to) = J dh J ry(T)dr 

u u 

U+T U+T 

I2tu(to) = J dti J Tu(r)dT 

(6.280) 

With the regression model (6.278), either the standard R L S (6.272) or the E F R A (6.274) can 

be used. 

Recal l equation (6.276), apparently the offset linear ramp approximation of time-varying co­

efficients is valid only when Tre3 is small. Define Tres as the resetting period . A t each 

kTres, k = 0, 1, 2 • • •, it is necessary to reset parameter vector and covariance matrix as follows 
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aw(k + 1) = a1Q(k) + Tre3an(k) 

an(k + 1) = an(k) 

G2o(k + 1) = a2(\(k) + Tresa2\{k) 

a2i(k + 1) = a2i(k) (6.281) 

b1Q(k + l) = b10(k) + TTesbu(k) 

hi(k + I) = bu(k) 

P(k + 1) = KiP(k), I<! > 1 

It is important to select the resetting period Tres properly, the principle is that Tres must be 

chosen large enough to allow reasonable convergence of the parameters but the variation of the real 

parameters over the period of Tres should stay small so that the offset linear ramp is still a good 

approximation. The following example shows the effectiveness of this algorithm. 

Example 6.3.1 

Consider system (6.275) with parameters described by 

b(t) = 2 + 0.It, 0 < i < 3 0 s e c 

The simulation is performed in open-loop with P R B S signal as input, and the following settings: 

sampling interval A = 0.01 sec, integration interval T = 0.05sec and resetting period Tres = 0.08sec. 

The standard R L S algorithm (6.272) is used. 

The results are depicted in Fig.6.44. 

a i ( f ) = 2 + 1.5 * sin(0.27r*), 0 < t < ZQsec (6.282) 

a 2 = 1, 0 < t < 30sec 
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0 U 1 1 1 1 1 « 1 
0 5 10 15 20 25 30 (S) 

Figure 6.44: Estimation of time-varying parameters 

As can be seen from Fig.6.44, even the sinusoidally time-varying parameter can be tracked 

satisfactorily. This verifies the validity of our assumption in equation (6.276). 

6.4 Identification and Control of an Inverted Pendulum 

The control of an inverted pendulum is a classic topic in control engineering. There are many 

solutions available to this problem, for example PID, LQG, fuzzy logic etc. The SDGPC solution 

will be given in this section. The advantage of continuous-time parameter estimation over the 

discrete-time method is highlighted by the comparison between the two different approaches. 

Fig 6.45 is a picture of the experimental setup2 which is built on a used printer. The pendulum 

rod is mounted on the printer head and able to freewheel 360 degrees around its axis. The printer 

head is driven by a DC motor along the x axis. Both the printer head position x and the pendulum 

angel 6 are available for measurement through a LVDT and an encoder attached to the printer head. 

The control input to the system is the voltage applied to the DC motor. The purpose of the control is 

to keep the pendulum rod upward and at the same time keep the printer head at the center position. 

2 The author thanks Dr. A. Elnaggar who was then a research engineer at the Pulp & Paper Centre for making this experimental setup 
available. 
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Figure 6.45: The inverted pendulum experimental setup 

6.4.1 System Model 

The printer head position is proportional to the angular displacement of the D C motor. Thus the 

transfer function from the input voltage u(t) to the printer head position x(t) has the form 

Gm(s) = bo %\8j km 

u(s) s ( r m s + l) s2 + ais 
(6.283) 

Only two parameters bo,a-[ need to be estimated. 

A s for the relation between the printer head position x(t) and the pendulum angle 0(t), let us 

consider the downward pendulum first. 

F i g . 6.46 is an idealized sketch of the downward pendulum. Notice that at the equilibrium 

point Oo = 0, only the acceleration of the printer head M w i l l break the equilibrium. Suppose M is 

moving with acceleration x(t), observing on the moving M, the effect of x(t) on m is that it seems 
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as though there is a force mx(t) being applied on the other direction. Apply ing Newton's law i n the 

9 direction as indicated in F ig . 6.46, the torque balance is 

—mg * L sin0 — e9 + mx(t) * L cos 9 = ml?9 (6.284) 

where L, m are the length and the mass of the idealized pendulum respectively, g is the gravity 

constant and e is the friction coefficient. Assuming small 9, and linearizing it around 9$ = 0, 

equation (6.284) becomes 

Gdoum(^) — 

9 + ai9 + a29 = b'x(t) 

9{s) bs2 

x(s) s 2 + a\ s + a2 

£ 9 , 1 

(6.285) 

t mg 

Figure 6.46: Downward pendulum 

Similarly, the torque balance for the upward pendulum case is 

mg * L sin 9 — e9 + mx(t) * L cos 9 = mL29 (6.286) 

A n d the linearized model around 9o — 0 can be written as 
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6 + aiO - a26 = bx(t) 

(6.287) 

Figure 6.47: Upward pendulum 

Comparing Gdown(s) in (6.285) and Gup(s) in (6.287), it is easy to see that the parameters 

in . GdoWn(s) and Gup(s) are the same except for a sign difference in a2. This important a priori 

information is only preserved in the continuous-time model! Since the upward pendulum is open loop 

unstable, it is very difficult, if not impossible, to estimate Gup(s) direcdy without stabilizing it first. 

However, with continuous-time modeling, it is possible to estimate ai , a2 and b for the downward 

pendulum which is open-loop stable. The estimation results will be presented in the next subsection. 

6.4.2 Parameter Estimation 

The experiment was conducted on the downward pendulum. The input voltage applied to the 

DC motor is PRBS ( Pseudo Random Binary Sequence) signal with an amplitude of ± 1 volt and a 

length of 2 8 - 1 = 255 samples. The sampling interval A = O.lsec. Both the printer head position 

x(t) and the angle 6(t) are measured. For the model structure given by (6.283), the continuous-

time regression model (6.264) and the standard RLS (6.272) can be readily applied. The integration 
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interval T = 0.3sec. The input/output data and the estimated parameters bo,ai are depicted in F ig . 

6.48 where So = 10250, fii = 12.59. 

Input voltage to DC motor 

Parameter estimates 
201 1 1 : r — 

Figure 6.48: Parameter estimation of model (6.283) 

The estimated model from input voltage to printer head position is thus 

- 10250 814.09 
L ' m ~ + 12.59s " s(0.0794s + 1) 

Since the time constant r m = 0:0794sec is very small, (6.288) can be reasonably approximated by 

814.09 
Gm = (6.289) 

s 

For the identification of the system model from printer head position to pendulum angle, a 255 

sample P R B S signal with an amplitude of Iv is applied to the motor. The sampling interval is again 

A = O.lsec. The model parameters a\, a2 and b of G<* o u m(s) in (6.285) are estimated using algorithms 

given in previous sections in this chapter. The printer head position, the angle output data and the 
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estimated parameters a\, £2, b are depicted in F ig . 6.49 with d i = 0.01418, a 2 = 43.9627, b — 0.1125. 

1000 

-1000 

100 

Printer head position 

10 15 

Pendulum angle 

10 15 

Parameter estimates 

25 (s) 

25 (s) 

Figure 6.49: Parameter estimation of model (6.283) 

The identified model Gdown(s) is thus 

Gdown{s) — 
0.1125s2 

s2 + 0.01418s + 43.9627 

with poles at -0.0071 ± 6.6304z. 

The open loop unstable upward pendulum model (6.287) can be readily written as 

r (*\ °- 1 1 2 5 s 2 

Gup{s) = 

(6.290) 

(6.291) 
s2 + 0.01418s - 43.9627 

with poles at -6.6375,6.6233 which correspond to a time constant of approximately 0.15sec. 

The sampling interval of A = O.lsec we used in the experiment is relatively large for this system, 

either for the downward or the upward case. Unfortunately, that was the smallest sampling interval 

we can get due to the computer system limitations. 
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It is interesting to see how discrete-time estimation w i l l perform with the same experimental 

data. The discrete-time counterpart of system model (6.285) has the form: 

9(k) + adl9(k - 1) + adi9{k - 2) = 

bdix(k) + bd2x(k - 1) + bd3x(k - 2) 

9{k) bdi + bd,q-1 + bd3q~2 

(6.292) 

x(k) 1 + adlq~l + ad3q~2 

The MATLAB function ARX in the system identification toolbox was used on the same data set 

to identify the parameters in (6.292), i.e.: 

arx([9 x],[na nb nk]) 

na = 2,nb = 3,nk = 0 

The parameter estimates are 

[bd, bit bd3] = [0.093 -0 .1863 0.0923] 

[adl ad2] = [-1.5685 0.9663] 

F i g . 6.50 shows the step response of model (6.292) with estimated parameters. 

(6.293) 

(6.294) 

Figure 6.50: Step response of the estimated discrete-time model (6.292) 

F i g . 6.50 tells us that the system has a natural undamped frequency of 1.05. This agrees quite 

satisfactorily with what we have from the continuous-time identification approach. See (6.290) where 
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f = ̂ 43.9627 _ 10553. However, the damping factor is quite different from what we obtained in 

(6.290). From F ig . 6.50, the pendulum should settle in about 30 seconds when there is a step 

position input. Experiment shows that the pendulum oscillation w i l l last about 400 seconds after a 

hit on the printer head which agrees quite well with the continuous-time estimation results. A l so 

notice from F ig . 6.50 that there is a nonzero steady state gain in the estimated discrete-time model. 

This is obviously wrong. 

It has been shown that the system has two zeros at the origin, see (6.285). This important a 

priori information is also lost in the discrete-time modelling. A s a matter of fact, the continuous-time 

counterpart of the estimated discrete-time model with sampling interval A = 0.1 sec and zero-order-

hold is: 

0.093s2 + 0.2004s - 0.1036 
r (o.zio) 

s2 + 0.3428s + 41.91 

Compare (6.295) with (6.290), the superior performance of continuous-time identification for 

this example is obvious. 

6.4.3 Cont ro l l e r Design 

Define the states of the pendulum system and the input voltage to the D C motor as 

[0(t) 6(t) x(t) x(t)] and u(t) respectively, the state space description of the system can 

be written based on (6.289) and (6.291) 

•o-
0 

X 

.X. 

-0.01418 43.9627 0 0 

1 0 0 0 

0 0 0 0 

0 0 1 0 

"1 
•o--91.5851" 

0 0 

X 814.09 

.X. . 0 . 

ud(t) (6.296) 

where ud(t) = ii(t). 
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In the S D G P C framework, system (6.296) can be regarded as the integrator augmented system of 

• e • 
t 

= 

-0.01418 43.9627 0 

1 0 0 

0 0 0. 

• 9 • -91.5851" 

t /' + 0 

.814.09 . 

«(*) 

• e 
t 
Jo 
x 

x(t) = [0 0 1 ] 

A p p l y the final state weighting S D G P C (2.20) to (6.296) with design parameters: 

Nu = 6 

Tp = 1.2sec 

A = 1 

7 = 1 

The resulting control law is 

ud(t) = -[0.1905 1.2643 -0 .0069 -0 .0120] 

The control law (6.299) is implemented in the following form: 

• 0 1 

9 

x 

.x. 

u(t) = -0 .1905 * 9(t) - 1.2643 * J 9(T)<1T 

t 

+0.0069 * (x(t) - 1100) + 0.0120 * J (X(T) - 1100)<*7 

(6.297) 

(6.298) 

(6.299) 

(6.300) 

The number 1100 in (6.300) is the L V D T reading corresponding to the center position. 

The picture in Fig.6.52 shows the pendulum being successfully controlled by (6.300). Notice 

that the control law is fairly robust against a disturbance ( a plastic bag was placed on the top of the 

pendulum after (6.300) was applied ). The same control law can also stabilize the pendulum when 

the rod is stretched to twice the original length. See F ig . 6.51. 
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Figure 6.52: SDGPC of pendulum subject to disturbance 

It is found in the experiment that it is not difficult to stabilize the pendulum, i.e. keeping it 

upward. But it is not easy to control the printer head exacdy in the center position while keeping 

the pendulum upward. A l so notice that the system model we developed in subsection 6.4.1 is an 

idealized one with the assumption that the pendulum rod is a rigid body. A s the length of the rod 

increases, so does its flexibility. A n adaptive version of the S D G P C would have been more interesting. 

Unfortunately the experiment setup was only available for a limited period of time. Nevertheless, 

the experiment results show that the continuous-time model parameter estimation algorithm and the 

S D G P C algorithm are quite effective solving practical control problems. 

6.5 Conclusion 

Continuous-time system identification based on sampled-data is considered in this chapter. The 

moving horizon integration approach given in section 6.1 is a simple yet powerful method for 
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parameter estimation of a continuous-time model. Based on the regression model (6.264), various 

available recursive estimation algorithms such as the E F R A developed in discrete-time context can 

be readily applied. The algorithm we proposed in 6.2 can deal with fast time-varying parameters 

as was shown by simulation. A real life inverted pendulum experiment in section 6.3 showed 

the benefits of continuous-time identification, namely, effect use of a priori information etc. The 

identification method in this chapter together with the S D G P C algorithm offer an effective way 

for solving complicated control problems. In this way, the insight about the underlying inherent 

continuous-time process is never lost during the whole design process. It is the author's belief that 

even i f the control law is designed in discrete-time domain, it is always beneficial to identify the 

underlying continuous-time process first and then discretize it. The experiment presented in section 

6.3 can be regarded as a supportive example. 
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Chapter 7 

Conclusions 

A new predictive control approach was taken in this thesis. The important issue such as actuator 

saturation in practical applications was taken into account. The resulting algorithms have very 

important practical interests as wel l as nice theoretical properties. The work can be summarized 

as follows. 

1. A new predictive control algorithm, S D G P C , has been developed. It possesses the inherent 

robustness ( gain and phase margin ) and stability property of infinite horizon L Q regulator 

and at the same time, has the constraint handling flexibility of the finite horizon formulation, a 

feature unique to M B P C . S D G P C distinguishes itself from the rest of the M B P C family in that 

it is based on continuous-dme modelling yet assumes digital implementation. This formulation 

stresses the connection rather than the differences between continuous-time and discrete-time 

control. It has been shown by simulation that for a stable wel l damped process, the execution 

time Texe can vary from 0, which corresponds to continuous-time control, to the design sampling 

interval T m , which can be quite large, without affecting the servo performance significantly. This 

means that for a given prediction horizon Tp and desired sampling interval Texe, a larger Tm can 

be selected to reduce computation burden in adaptive applications. For unstable and/or lightly 

damped processes, however, Texe should be equal to T m . 

2. S D G P C for tracking systems has a two-degree-of-freedom design structure. This is achieved 

by assuming a different model for the reference signal and the disturbance. However, only one 

performance index is used to obtain the control law. Tracking performance can be improved 

radically when the future setpoint information is available. This is because knowing the future 

setpoint is equivalent to knowing the complete state information of the reference signal at present 

time. 

3. Another two-degree-of-freedom design extension to S D G P C was made. Contrary to the approach 

taken in tracking system design in which different models for reference and disturbance were 

assumed, two performance indices are used but assuming the reference and the disturbance 
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have the same model ( in this thesis, it is a simple constant). The servo performance and the 

disturbance rejection performance can be tuned separately by using different design parameters ( 

prediction horizon, control order, control weighting etc. ) for the two performance indices. The 

nonlinearity due to actuator constraints is considered in the framework of anti-windup design. 

The resulting scheme effectively transforms the nonlinear problem into a time-varying linear 

problem and was shown to have guaranteed stability property. Simulation results confirmed the 

effectiveness of the scheme. 

4. Control of time-delay systems was considered. Laguerre filter based adaptive S D G P C was shown 

to be particularly effective in dealing with time-delay systems. A priori information about the 

time-delay can be utilized to improve the control performance significandy. 

5. A continuous-time model parameter estimation algorithm based on sampled data was developed. 

Numerical integration on a moving interval was used to eliminate the initial condition problem. 

It was argued that even i f the controller design is purely in discrete-time, it is always beneficial 

to identify the underlying continuous-time model first before discretizing. A priori information 

about the physical system is best utilized in continuous-time modelling. The continuous-time 

model identification method and the S D G P C algorithm were applied to an inverted pendulum 

experiment. The results confirmed the benefits of continuous-time modelling and identification. 

Some future research suggestions are: 

1. Extend the work to multi-input multi-output systems. Although the author sees no major obstacles 

in doing so for most of the topics covered in the thesis, some efforts are needed to formulate 

the anti-windup scheme for M D M O case. 

2. Dealing with the trade-off between good tracking and disturbance rejection performance and, 

good noise suppression performance. This is a basic trade-off in any control systems design 

[3, pp. 112]. S D G P C was formulated in a deterministic framework. Deterministic disturbances 

such as impulse, step, ramp, sinusoidal etc. can all be handled in a straightforward manner i n 

the framework of S D G P C . The trade-off between good noise suppress performance and good 

disturbance rejection performance can be obtained by proper tuning of S D G P C to give the desired 
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closed-loop system bandwidth. For stochastic noise, the wel l known Kalman filter theory can be 

applied to estimate the system states. The deterministic treatment of S D G P C does not prevent it 

from using these results because of the Separation Theorem or Certainty Equivalence Principle 

[3, pp. 218]. For systems with colored noise, which is more often than not, the optimal Kalman 

filter can be designed based on the noise model provided that the noise model is known [4, pp. 

54]. Unfortunately, the noise model is often unknown and difficult to estimate. Estimation of 

the "true" system states subject to unknown colored noise poses one of the biggest challenges in 

process control applications. Thus how to utilize the available results and develop new one, in 

the framework of S D G P C , is certainly a. topic worth pursuing. 

3. Adaptive S D G P C . We only considered adaptive Laguerre filter based S D G P C in the thesis. Since 

the parameter estimation algorithm has been developed, it would be nice to see an adaptive version 

of S D G P C based on general transfer function description of systems. 

4. App ly the S D G P C algorithm to practical problems. Although initial experiment on an inverted 

pendulum showed the effectiveness of S D G P C and the associated continuous-time identification 

algorithm, only large scale industrial applications can be the final judge. 
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Appendix A Stability Results of Receding Horizon Control 

Appendix A . l and appendix A . 2 are based on [4]. 

A . l The Finite and Infinite Horizon Regulator 

Given a state-space model of a linear plant where F,G,H have proper dimensions. 

x(k + 1) = Fx(k) + Gu(k) (A.301a) 

y(k) = Hx(k) (A.301b) 

The finite horizon L Q regulator problem can be posed as follows. 

The performance index: 

J(N, x(k)) = xT(k + N)P0x(k + N)+ 
N-l 

{xT{k + j)QxT{k + j) + uT(k + j)Ru(k + j)} 
(A.302) 

The solution to the above optimal L Q problem may be given by iterating the Riccati Difference 

Equation ( R D E ), 

Pj+1 = FTPjF - FTPjG(GTPjG + R)~1GTPjF + Q 
(A.303) 

j = 0 , l , - . - JV -2 

from the initial condition PQ and implements the feedback control sequences given by 

u{k + N-j) = -(GTPj-1G + R)~lGTPj-iFx(k + N - j) 
(A.304) 

= Kj-.lX(k + N-j), j = 1,2, - •• N, 

where Pj is the matrix solution of R D E (A.303). Notice from the control sequence (A.304) that 

it iterates reversely in time compared with the direction of evolution of the plant (A.301). That is, 

in order to obtain the current control u(k), PN-I has to be solved first by iterating (A.303). The 

accumulated cost of (A.302) is given by PN which itself does not appear in the control law, 
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J{N,x(k))F = xT(k)PNx(k) (A.305) 

Similarly, the infinite horizon L Q regulator problem may be posed as the l imiting case of the 

finite horizon L Q problem (A.302), 

J(x(k))= l i m J(N,x(k)) (A.306) 
N—»co 

A n d the optimal solution can be obtained by iterating (A.303) indefinitely. Under mi ld assump­

tions, Pj converges to its limit P ^ which is the maximal solution of the Algebraic Riccati Equation 

( A R E ), 

P00 = FTP00F-FTP00G(GTP00G + R) 1GTPCX)F + Q (A.307) 

A n d a stationary control law is obtained as 

u(k) = - (GTPO0G + R)~1GTP00Fx(k) = Kx(k) (A.308) 

The following theorem regarding the stability property of the infinite horizon L Q control law 

(A.308) is due to De Souza et al [74]. 
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Theorem A.6 (De Souza et al [74]) 
Consider an infinite horizon LQ regulator problem with plant (A.301) and performance index 

(A.306), for the associated ARE, 

P = FTPF - FTPG(GTPG + R)~1GTPF + Q (A.309) 

if 

• [F,G] is stabilizable, 

• [F, Q1/2] has no unobservable modes on the unit circle, 

• Q > 0 and R > 0 , 

then 

• there exists a unique, maximal, nonnegative definite symmetric solution P. 

• P is a unique stabilizing solution, i.e. 

F -G(GTPG + R)~1GTPF (A.310) 

has all its eigenvalues strictly within the unit circle. 

The solution P above is called the stabilizing solution of the A R E (A.309). A l s o note that the 

matrix (A.310) is the state transition matrix of the closed loop system when the stationary control 

law (A.308 ) is applied to plant (A.301). Theorem A . 6 is the fundamental closed loop stability result 

for infinite horizon L Q control which w i l l be utilized to prove the stability result of receding horizon 

control in the following and the stability property of S D G P C thereafter. 

A.2 The Receding H o r i z o n Regulator 

From the discussions in appendix A . l , a number of facts about the finite horizon and infinite 

horizon discrete-time L Q regulator problem are clear. For the finite horizon case, the optimization 

task with cost function (A.302) is merely to find N control values which, in principle, may be found 

by finite-dimensional optimization which is referred as the "one shot" algorithm in most model based 
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predictive controllers. The control sequences may also be obtained by iterating the R D E (A.303) 

explicitiy from Pa to PN-2 using simple linear algebra. The resulting control law i n feedback form 

(A.304) is time-varying even i f the plant being controlled is time invariant. B y contrast, the infinite 

horizon problem involves an infinite-dimensional optimization or the solution of an A R E (A.307) 

which is computationally burdensome especially in adaptive applications. However, the control law 

of the infinite horizon problem is stationary and have guaranteed stability properties under mi ld 

assumptions. 

Receding horizon control is one method proposed to inherit the simplicity of the finite horizon 

L Q method while addressing an infinite horizon implementation and preserving the time-invariance of 

the infinite horizon feedback. In this formulation only the first element u(k) in the control sequences 

u(k),u(k + 1), • • • u(k + N — 1) is applied to the plant at time k and at time k + 1 the first control 

u(k + 1) in the control sequences u(k + l),u(k + 2), • • • u(k + N) is applied and so on. In terms 

of the finite horizon feedback control law (A.304), one has for the receding horizon strategy 

u(k) = K~N-.ix(k) 

- i ^ ( A 3 1 1 > 
= - {GTPN-1G + R) GTPN-XFx{k) 

which is a stationary control law. 

Note that there is still no word having been said about the stability of control law (A.304). In 

fact, receding horizon strategy does not guarantee stability itself. Motivated by the facts that the 

infinite horizon L Q control law has guaranteed stabilizing property and there are strong similarities 

between receding horizon control law (A.304) and infinite horizon L Q control law (A.308), i.e. both 

are stationary and have the same form, one has enough reason to wonder i f the stability result of 

infinite horizon L Q control summarized as Theorem A . 6 could be of any help to the stability problem 

of receding horizon control. For this we go to the important work of Bitmead et al [4]. 

Consider the R D E (A.303) 

Pj+i = FTPjF - FTPjG(GTPjG + R)~1GTPjF + Q 
(A.312) 

j = 0 , l , - - - J V - 2 

define 

QJ = Q-{PJ+I-PJ) (A.313) 
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, the R D E (A.312) w i l l have a form of an A R E , 

Pj = FTPjF - FTPjG(GTPjG + R)~1GTPjF + Qj (A.314) 

which is called Fake Algebraic Riccati Equation ( F A R E ) [4]. 

From Theorem A . 6 , the stability property of the solution of the above F A R E can be immediately 

established as follows. 

Theorem A.7 (Bitmead et al. [4, pp. 87] ) 
Consider the FARE (A.314) or (A.313) defining the matrix Qj. If Qj > 0, R > 0, [F,G] is 

stabilizable, - 1 / 2 

F,Qj is detectable, thenPj is stabilizing, i.e. 

Fj = F-G (GTPj G + R)~1GTPjF (A.315) 

has all its eigenvalues strictly within the unit circle. 

Clearly, i f the conditions in Theorem A .7 are met for j = N - 1, then the receding horizon 

control law (A.304) w i l l be stabilizing. 

However, further work needs to be done to relate the design parameters, i.e. the matrices Po,Q, R 

i n the performance index (A.302), to the conditions in Theorem A . 7 . The following results from 

[4] can serve this purpose. 

lemma A.3 (Bitmead et al. [4, pp. 88] ) 
r 1/2 

Given two nonnegative definite symmetric matrices Q\ and Qi satisfying Q\ < Q2 then F, Q^ 

detectable implies F,Qf detectable. 

The following corollary [5] which is an immediate result of lemma A . 3 tells that i f the solution 

of the R D E is decreasing at time j then the closed loop state transition matrix of (A.315) is stable. 

Corollary A.1 ( Bitmead et al. [5] ) 

r 1 /21 

If the RDE with [F, G] stabilizable, F, Qy' detectable and if Pj in (A.312) is non-increasing at 

j, i.e. Pj+i < Pj, then Fj defined by (A.315) is stable. 

134 



A l s o from [5], we have the following theorem regarding the monotonicity properties of the 

solution of the R D E (A.312). 

Theorem A.8 ( Bitmead et al. [5]) 
If the nonnegative definite solution Pj of the RDE (A.312) is monotonically non-increasing at one 

time, i.e. Pj+\ < Pj for some j, then Pj is monotonically non-increasing for all subsequent times, 

Pj+k+i < Pj+k, far all k > 0. 

The following result is immediate by combining Corollary A.1 and Theorem A . 8 . 

Theorem A.9 (Bitmead et al. [4, pp. 90] ) 
Consider the RDE (A.312), if 

• [F,G] is stabilizable 

[F, Qll2] is detectable 

• Pj+i < Pj for some j 

then Fk given by (A.315) with Pk is stable for all k > j. 

A s an immediate consequence of Theorem A.9, we see that i f Po in the design of receding 

horizon controller is selected in such a way that one iteration of the R D E w i l l result in P i < Po, 

then we have QQ = Q - (P\ - PQ) > Q and Qj > Q for any subsequent j > 0, this implies that 

Fj given by (A.315) is stable for any j > 0. 

A clever choice of Po which w i l l guarantee the monotonically non-increasing solution of R D E 

is to let Po = oo as first proposed by K w o n and Pearson [42] albeit in a very different framework. 

The result can be summarized as follows: 
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Theorem A.10 ( Kwon et al. [42] and Bitmead et al. [4, pp. 97] ) 
Consider system 

x(k + 1) = Fx(k) + Gu(k) (A.316a) 

y(k) = Hx(k) (A.316b) 

and the associated receding horizon control problem, i.e. minimize performance index 

J(N,x(k)) = 
JV-l 

(A.317) 
Y, {xT(k + j)QxT(k + j) + uT(k + j)Ru(k + j)} 

subject to final state constraint 

x(k + N) = 0 (A.318) 

assume Q > 0, R > 0, F is nonsingular and [F, G] is controllable, [F, Q] is observable, then the 

optimal solution exists and stabilizes the system (A.316) whenever N > n, where n is the dimension 

of system (A.316). 

The nonsingularity condition of F was removed in a recent paper by Chisc i and Mosca [10]. 

The following corollary is a natural consequence of Theorem A . 10 using the argument given 

by Demircioglu et al. [16]. 

Corollary A.2 

For system described by equation (A.316) with performance index 

there exists a positive number 7 such that for P o > 71, the closed loop system under the control 

law obtained by minimizing (A.319) is also stable. 

Proof: Since the pole location of the closed loop system under the optimal control law obtained by 

J(N, x(k)) = xT(k + N)PaxT(k + N) 

N-l (A.319) 

minimizing (A.319) is a continuous function of Pa, the closed loop system pole can thus be made 
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arbitrarily close to the limiting case of Pa = oo which is stable according to Theorem A. 10 by 

increasing Pa. Thus there always exists a positive number 7 such that for PQ > j l , the closed loop 

system is stable. 

Theorem A . 10 is used to investigate the stability properties of S D G P C in section 2.2.1. 
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