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Abstract 

This thesis is concerned with the analysis and evaluation of adaptive silence deletion as a 

means to compress telephone voice signals bandlimited to the range 200-3400 Hz. Speech 

is accompanied by noise arising from various environmental factors such as poor reception, 

interference of radio signals from mobile or cordless units, audible mechanical or social activities 

in the surroundings, and the conventional crosstalk and hum in the telephone system. 

A speech compression system based on significant modifications to an existing silence dele

tion algorithm has been implemented. Effects of the various system parameters on the operation 

of the system, as applied to telephone speech samples, are studied and analyzed graphically. 

Quality of the speech compression is assessed with subjective listening tests. With minimal al

gorithmic complexity and delay, the application of silence coding together with 4-bit A D P C M 

speech coding can compress uncoded telephone speech from an original bit rate of 128 kbps 

down to 16 kbps. 

Analysis of system performance shows that a processing frame size of 8 to 16 milliseconds 

yields the best combination of speech quality and compression efficiency. A set of system 

parameters is found to give robust performance in a wide range of operating environments, with 

different or varying speech and noise levels. Good playback quality resulting from compressed 

speech recorded in quiet and also in noisy environments is achieved at 50 percent compression, 

equivalent to half the bit rate of A D P C M . 
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Chapter 1 

Introduction 

Speech and audio signals comprise a significant portion of the content of telecommunication 

transmission and storage. Recent years, in particular, have witnessed a rapid growth in the 

insatiable demand for voice communication, mostly spurred by the popularization of cellular 

mobile communication and an upsurge of interest in multimedia content in data networks. 

More than ever, there is a need to conserve bandwidth in both wired and wireless telecom

munication networks, and to conserve disk space in voice storage systems. There has been a 

large increase in research and development in the coding of wideband speech (7-kHz bandwidth) 

for audioconference applications, and of high-fidelity audio signals (20-kHz) for the coding of' 

compact disc (CD) quality material. However telephone speech, limited to a bandwidth of 

3.2 kHz (200 Hz to 3.4 kHz), remains the most widely used and in demand audio source. 

For conventional data primarily in the form of text, many effective lossless coding (or com

pression) schemes exist [1, 2]. Speech, however, is a difficult material to compress, and all speech 

coding schemes are information lossy. As Shannon shows in his seminal work on information 

and coding theory [3, 4], a signal source could be coded with zero error at a data rate equal 

to or greater than the entropy (a measure of the information content of the source). Speech 

and audio signals are examples of infinte-alphabet, analog sources, for which the encoding error 

tends to approach zero only at an infinite bit rate. 

It is possible to achieve significant compression of speech at the expense of some distortion. 

Compression of audio signals always involves tradeoffs between signal quality, coding efficiency, 

complexity, and delay; these are the attributes most often considered in evaluating the perfor

mance of any speech coding system [5, 6]. Signal quality is that perceived by a human receiver, 

1 



Chapter 1. Introduction ' 2 

often measured on a five-point absolute quality or relative impairment scale. Efficiency, the 

main objective of coding, is expressed as a reduction in bandwidth (in Hz, Hertz) or bit rate 

(in bps, bits per second) of the original signal source. Complexity of the coding algorithm is 

the computational effort required to implement the encoding and decoding processes in signal 

processing hardware, typically measured in terms of arithmetic capability (in instructions per 

second that the machine is'capable of executing) and memory requirement (in bytes). Finally, 

it takes time to buffer (algorithmic delay), to encode and decode (processing delay), and to 

transmit speech (communication delay), which afJ contribute to the one-way system delay [6]. 

In the absence of echo control, one-way delay should not exceed 25 ms for network telephony. 

1.1 Speech Compression 

Audio telephony signals (bandlimited to 200-3400 Hz) are sampled at 8 kHz (compared to the 

16 kHz for teleconferencing and 44.1 kHz for compact discs). The analog-to-digital converter 

output is often a linear pulse-code-modulated ( P C M ) signal, with a resolution of 16 bits per 

sample (65536 levels divided into 32767 positive and 32768 negative levels of uniform step size). 

The resulting bit rate of 128 kbps serves as a reference bit rate for uncoded speech [7]. 

Taking advantage of the redundancies inherent in speech signals, many methods of digital 

speech coding have been developed, and standards created. 

To better tailor the quantization levels to the non-Gaussian dynamics of speech, a compres-

sor/expandor system (compandor) for quantization was standardized in the C C I T T 1 Recom

mendation G.711, in 1972. The 64 kbps 8-bit ^-law 2 companded P C M is generally taken as a 

standard for toll or network quality representation of the speech waveform [8, 9]. 

By exploiting the strong correlation between v speech samples, and further adapting the 

quantization step size to the nonstationary nature of speech, adaptive differential P C M sys

tems ( A D P C M ) were developed. The G.721 4-bit A D P C M coder was standardized in 1984 

1 The International Telephone and Telegraph Consultative Committee, predecessor of the Telecommunication 
Standardization Sector of the International Telecommunications Union (ITU-T). 

2^-law for North America and Japan, A-law for the rest of the world. 
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(and revised in 1986) [10], followed by the 5-bit,-3-bit, and 2-bit versions (G.723 and G.726). 

Embedded A D P C M , which enables bit dropping and hence the option of a variable bit rate for 

congestion control, became a standard in 1990 (G.727) [11]. While 5-bit and 4-bit A D P C M 

systems provide toll quality speech at 40 and 32 kbps, respectively, the 3-bit and 2-bit versions 

at 24 kbps and 16 kbps do not have as consistent a quality. 

Combining the techniques of linear predictive coding (LPC) with the principle of vector 

quantization (essentially the block source coding scheme of Shannon [4]), code-excited linear 

prediction ( C E L P ) provides toll quality speech at 16 kbps or even lower rates [12, 13]. In 

1992, the C C I T T adopted the 16 kbps low-delay C E L P ( L D - C E L P ) as a standard (G.728) 

[14]. And between 1995 and 1996, 8 kbps conjugate-structure algebraic-code-excited linear-

prediction ( C S - A C E L P ) , along with a 6.3 and 5.3 kbps speech coder, were finally approved as 

ITU Recommendations G.729 and G.723.1, respectively [6]. 

Current research is now focused on achieving toll quality speech at and below 4 kbps, 

employing techniques such as sinusoidal coding and waveform interpolation [7]. 

1.2 Silence Compression 

Speech coding at medium to low bit rates (16 kbps and lower) often entails considerable al

gorithmic complexity and processing delay. Many of the new applications of speech coders, 

including cellular telephony and voice storage systems, do not require a fixed bit rate. One 

simple and effective way of compressing speech for these applications involves removal of the 

numerous silence intervals which are present in speech between sentences, phrases, words, and 

even syllables. These silences contain insignificant acoustic energy or speech content, appropri

ately defined. Of course, a simple mapping between linguistic units in a spoken language and 

written language does not always exist [15], and silence intervals in speech do not necessarily 

correspond to word textual boundaries. Separate words may coalesce into one when spoken, 

and intra-word silence intervals also exist, particularly, before the stop consonants / p / , / b / , 

/ k / , / g / , / t / , and / d / . That is partly why endpoint detection for isolated word recognition is 
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such a challenging problem. Figures 1.1 and 1.2 show the waveform of the phrases "the navy 

attacked" and "two factors here," respectively, sampled at 8 kHz and linearly quantized to a 

precision of 16 bits per sample. The silence intervals seem to dictate a grouping of the spoken 

X 10* 

6 0 0 8 0 0 
T i m e (ms) 

Figure 1.1: Waveform of the phrase "the navy attacked." 

Figure 1.2: Waveform of the phrase "two factors here." 
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words rather as "the na vyat ta eked" and "twofac torshere." 

Regardless of where the silence intervals occur, normally a reduction in bandwidth or bit 

rate of the speech signal can be achieved by removing silence intervals before transmission or 

storage. Decompression of the signal at the point of reception or retrieval involves expanding 

or regenerating the silence intervals at the appropriate energy level. 

In a time-sharing system that assigns channels, on demand, to active sources, silence inter

vals are those periods when the channel is assigned to another, non-silence source. A statistical 

multiplexor allocates the use of a channel according to the activity of the various users. There 

is no need to record the position and length of a silence interval; silence begins when a user is 

switched off from the channel, and it ends when the user is switched back on. Assuming that 

the background noise is stationary and its general charateristics are known, a random "comfort 

noise" [7] can be supplied at the receiving end, to approximate the original silence intervals, 

when the channel is re-assigned to another user. 

In general, however, the length and energy level are transmitted (or stored) at the occurrence 

of a silence interval. This coding of the silence interval into non-speech data is called silence 

compression or silence coding. Silence coding is akin to run length coding [1], where a special 

marker is inserted to indicate a run of silence, followed by two numbers indicating the silence 

length and energy level. There is overhead associated with this information, but by coding only 

silence intervals greater than a minimum length, a significant reduction in average bit rate can 

be guaranteed. 

1.3 Background 

Silence detection, also known variously as speech detection, voice activity detection (VAD) , 

and endpointing has long been an essential component of many speech processing systems. 

Detecting the presence or level of speech in a background of noise is a problem common to 

variable rate speech coding [16, 17] and speech recognition [18, 19, 20], while packet-switched 

transmission systems [21] and voice mail systems [22, 23, 24] can benefit from a reduction in bit 
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rate and storage space, respectively, that results from its use. More recently V A D has found 

much application in cellular and satellite mobile telephony [25, 26, 27, 28], particularly since the 

introduction of code division multiple access ( C D M A ) for digital cellular telephony [7, 29, 30]. 

The first studies on silence intervals in telephone conversations date back to the work of 

Norwine and Murphy in 1938 [31]. Since then, efforts to increase channel capacity for voice 

communications have resulted in time assignment speech interpolation (TASI) systems [32] in the 

1960s and later, combined with digital speech coding techniques, in digital speech interpolation 

(DSI) systems [33]. Studies have-shown that, in a typical two-way telephone conversation, 

speech is present at most 50% of the time in each direction of transmission [34, 35]. By 

efficiently using the silence intervals, the channel capacity can be doubled in circuit-switched 

voice transmission [35]. In speech interpolation systems the speech detector generates on-off 

patterns to enable assignment of channels to active users. 

Early silence detection algorithms detect silence/speech by comparing the signal level, the 

signal energy or its envelope, the zero crossing rate, or the combinations of these with pre

set threshold values [36, 37, 38]. Over time, silence detectors have grown in sophistication. 

Both Fariello [39] and Jankowski [40] employed peak detection. Un and Lee [41] developed a 

speech/silence discriminator based on counting bit alternations of the bit stream from linear 

delta modulation. Lamel's improved endpoint detector for isolated word recognition uses four 

energy thresholds to define the presence of an "energy pulse," which is a speech-like burst of 

energy [42]. Yatsuzuka [43] designed a speech detector for D S I - A D P C M systems that utilizes 

the periodicity of the sign bit sequences of the input signal. The logarithmic energy is used in 

Hahn's speech detector [44]. 

In 1976 Atal and Rabiner proposed a statistical pattern recognition approach to the voiced-

unvoiced-silence classification of speech [45, 46]. Since then many researchers have taken a 

statistical-decision approach to the problem of silence detection [47, 20, 48]. Parameters per

tinent to the characteristics of the speech signal, such as speech energy, autocorrelation, and 

even predictor coefficients are estimated in a training phase. Actual measurements of these 
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parameters are then made for each data frame. Classification of the data frame is made on 

a statistical basis, by deciding how likely are the measured parameters to deviate from the 

pattern estimates. These estimates are updated regularly, in order for the detector to adapt to 

the nonstationary nature of both the signal and ambience. 

As computing power increases, more computationally demanding techniques have been em

ployed to detect voice activity. Huang [49] used the Walsh spectra of speech data as the basis 

for detecting endpoints of isolated utterances. Haigh [50] reported on the success of a cepstral 

based algorithm. Exploiting the nonlinearities in the speech production model, Rangoussi de

veloped a speech detector based on the non-zero third-order statistics of speech signals [51, 52]. 

The Teager energy measure is used in Ying's endpoint detection algorithm [53]. 

Amidst all this research with increasingly complex silence detectors, Gan [23, 54], Savoji 

[18], Rose [24, 31], Taboa'da [55], and Jacobs [56] have illustrated the feasibility and effectiveness 

of a simple design, using the conventional short-time energy and zero-crossing rate, the average 

magnitude factor ( A M F ) , and a few adaptive factors. 

1.4 Outline of Thesis 

This thesis is concerned with the performance of an adaptive silence compression algorithm as 

applied to speech recorded from the telephone network, which may include various kinds of 

noise ranging from radio interference to crosstalk. With low computation demands, an average, 

bit rate around 16 kbps can be achieved. 

Our silence deletion algorithm is based in large part on the one previously used by Rose 

[24, 31].' Modifications introduced accommodate the real-time coding of speech and silence 

frames, enable further savings on memory usage and computation, and adapt to the more 

erratic noise characteristics of actual telephone recordings. While focussing on algorithmic 

simplicity, the present thesis develops an in-depth understanding of silence detection in various 

noisy environments and brings insight to the choice of system parameters under such conditions, 

emphasizing particularly the segmentation size considerations for speech and silence intervals. 
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Informal subjective listening tests have been performed in evaluating the speech quality of the 

system. 

Chapter 2 describes the components of an adaptive silence detector. Chapter 3 discusses 

implementation al issues for a proposed speech compression system based on silence deletion. 

Chapter 4 is a study of the internal dynamics as well as compression characteristics of the 

system, with speech samples recorded in various situations from telephone lines. Chapter 5 

presents the organization and results of subjective listening tests conducted to evaluate the 

perceived quality of the speech which has been compressed, transmitted and reconstituted. 

Chapter 6 summarizes the findings of this thesis and suggests some topics for future work. 



Chapter 2 

Detection of Silence Intervals 

Silence detection really involves identification of those periods of time when voice activity is 

absent; background noise, however, may be present [20]. Speech in general, and telephone 

conversations in particular, consists of intermittent talkspurts separated by pauses or periods 

of silence. The process of identifying when talkspurts occur is called voice activity detection 

(VAD)[7] . 

A silence detector in general performs measurement of specific characteristics of the speech 

signal (producing short-time statistics), compares these to threshold values, and declares an 

acoustic segment as speech or silence according to whether a statistic is below or above a 

threshold. 

Depending on the speaker and the communication environment, the telephone speech signals 

can undergo variations in characteristics from call to call, or even within the duration of a single 

call. A n adaptive silence detector maintains dynamic thresholds that track the current state of 

the speech signal. 

2.1 Decision Criteria 

Based on the general characteristics exhibited by the presence and absence of voice activity, 

two standard statistics have been developed for use as the decision criteria for discriminating 

speech from background noise. These are the signal energy and the zero-crossing rate [57, 9]. A 

new criteria, the average magnitude factor ( A M F ) , was adopted with slight modification from 

the work of Jacobs, Eleftheriadis and Anastassiou [56] for consideration in this thesis. 

9 
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The silence detector processes the input stream of samples by dividing them into non-

overlapping data frames, each of size K. The three statistics are evaluated for each frame. If 

the signal energy E, or the zero-crossing rate Z, or the A M F exceeds a certain threshold, the 

frame will be declared as speech; otherwise, the frame will be dismissed as silence. 

(When the silence detector is incorporated into the silence deletion algorithm, decision of 

whether to code the frame as speech, or to discard it, will be made also in accord with the 

current state of the silence deletion algorithm.) 

2.1.1 Signal Energy 

In voiced speech, the signal x(t) generally exhibits relatively large signal energy, which can be 

characterized as its short-time energy. With the squaring operation in its calculation(VJ x2{t)), 

the short-time energy is particularly sensitive to large signal levels; this problem is often solved 

by using the short-time average magnitude instead [9, 31, 58]. Eliminating the squaring opera

tion also simplifies calculation, which may be critical in a real-time implementation [31]. Since 

this short-time average magnitude gives a good indication of the short-time energy, it will be 

loosely referred to as the signal energy in this thesis. It is calculated as follows: 

where Xj is the j-th sample in a frame. Typically, speech remains stationary for frames on the 

order of 20 milliseconds [58]. For speech signals sampled at 8 kHz, therefore, the frame size K 

must not exceed 8 X 20 = 160 samples. 

Figures 2.1(b) and 2.2(b) are plots of the signal energy of the speech waveforms shown in 

Chapter 1 (calculated for a frame size of K = 32). The signal energy, when above threshold, 

indicates the presence of speech; the threshold has a value related to the silence energy. 

2.1.2 Zero-crossing Rate 

The zero-crossing rate can be regarded as an indicator of the frequency content of the input 

signal. For unvoiced fricatives and stop consonants, the short-time energy is relatively low and 
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"apr31 b": (a) Speech Sample 

I I I I I I I 
1600 1800 2000 2200 2400 2600 2800 

(b) Short-time Magnitude (E) of the Speech Sample 
6000 | 1 1 1 1 - 1 1— : : - r 

. 1600 1800 2000 2200 2400 2600 2800 

(c) Zero-crossing (2) of the Speech Sample 
0-81 1 1 1 1 1 r 

1600 1800 2000 2200 2400 2600 2800 
Time (ms) 

Figure 2.1: The phrase "the hayy attacked" (a) sampled at 8 kHz, with (b) its signal energy, 
(c) zero-crossing rate, and (d) average magnitude factor calculated for a frame size of 4 ms. 



Figure 2.2: The phrase "two factors here" (a) sampled at 8 kHz, with (b) its signal energy, 
zero-crossing rate, and (d) average magnitude factor calculated for a frame size of 4 ms. 
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concentrated mostly in the high frequency region. In a background of ambient noise arising 

from air movement, the high frequencies in fricatives have a higher zero-crossings rate. Gan 

[23] has found the zero-crossing rate to be effective in detecting the presence of speech in a 

noisy background. 

The zero-crossing rate [9, 58] is calculated as follows: 

z =

 1 * S g n ( ^ ~ ^ ( ^ J - 1 ) ! (2 2) 
^ j-1 ^ 

where 
i 

+ 1, if a; > 0 sgn(x) = (2.3) 
— 1, if a; < 0 

and Xj is the j - t h sample in a speech frame. Rate Z is the average number of zero-crossings 

per speech sample. Figures 2.1(c) and 2.2(c) are plots of the zero-crossing rate of the example 

speech waveforms, calculated for a frame size of K = 32. From the latter figure, a peak in 

zero-crossing rate can be found in the interval 10900-llOOOms, which corresponds to the V 

sound in the word "factors" (see Figure 1.2). 

As a criteria for silence detection, the zero-crossing rate indicates the presence of speech 

above a Z-Threshold, Zj. 

2.1.3 Average Magnitude Factor 

The variability in the signal-to-noise ratio, a result of the differing environments in which speech 

is recorded, makes it difficult, and sometimes impossible, to select an optimal energy threshold. 

With noisy channel or weak signal reception, the long-term averages cannot reliably track the 

speech and silence energies. This will be discussed further in Section 4.5. Meanwhile, we 

consider an alternative detection criteria, the average magnitude factor ( A M F ) . 

The application of the A M F in a silence detection algorithm was conceived with packets 

of /u-law P C M encoded speech data in mind [56, 59]. A M F is a low complexity calculation 

which operates directly in the non-linear /u-law domain. In data networks and in the telephone 
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backbone network in North America, speech samples are conveniently available in /z-law P C M 

format. • 

The encoder function of an ITU G.711 /z-law P C M quantizer appears in Figure 2.3. (Sec

tion 3.2.1 describes /z-law P C M . ) The one's complement function takes y as an input and 

Figure 2.3: The /z-law encoder function with 16-bit signed integer input x and 8-bit unsigned 
integer output y. 

(2.4) 

produces the output z according to the formula 

V, for 0 < y < 128 

y - 255, for 128 < y < 255. 

In binary representation, z is found by inverting each bit in y. The one's complement function 

is plotted in Figure 2.4. The function that results from cascading /z-law encoding with Equa

tion 2.4, plotted in Figure 2.5, is called the magnitude factor (MF) of x [56]. A mathematical 

description of M F is thus derived from Figure 2.5 and Equation 3.11: 

f - logf lH-M -J^— ) 
I V l X m a M/y if Y > n 

log(l-rM) m a x ' 1 -
(2.5) M R -

1 -
log 1+^ 

l 1/ v if y . / n 
log(l+/x) . J m a x ' 1 1 ^3 <• U 
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Figure 2.5: The magnitude factor (MF) function with 16-bit signed integer input x and 8-bit 
signed integer output z. 



Chapter 2. Detection of Silence Intervals 16 

where Xj is the j - t h sample in a frame, ji = 255, and Xmax and Ymax are the maximum values 

in the input and the ouput, respectively. 

Here we deviate from Jacobs [56] by defining the A M F as the M F averaged over a speech 

frame (K speech samples), as opposed to the low-pass filtered M F signal. 

1 l< 
AMF=-YlMFj . . . (2.6) 

./ i 

(The low-pass filter achieves a similar averaging effect.) This simplifies calculation and speeds 

up processing time, with no noticeable detriment to the effectiveness of the silence-detecting 

power of the A M F . Figures 2.1(d) and 2.2(d) are plots of the A M F , which indicates the presence 

of speech when it drops below a threshold. This threshold value is related to the A M F of the 

silence intervals. • • 

The approach taken by Jacobs et al., based on the smalT and large-signal behaviour of the 

speech waveform in the //-law (i.e. logarithmic) domain, offers a feasible means to handle the 

large variability of speech amplitude levels. Using the logarithms of the actual' data values 

reduces the variability exponentially. In the linear domain, the values of speech and silence 

energies can vary tenfold or more1 from one speech sample to another because of noise or 

bad signal transmission. Performing calculations in the logarithmic domain can be seen as an 

extension of the concept of reducing sensitivity to signal level variation, previously applied in 

using the short-time average magnitude instead of the short-time energy. 

Figures 2.6 and 2.7 show two speech samples of contrasting signal amplitudes, each accom

panied by short-time statistics. Note that while the range of the signal energy in Figure 2.6 

spans a few tens of thousands and, in Figure 2.7, a few hundreds in the latter, that of the A M F 

remains within ±100 in both cases. 

'In one extreme case, a hundredfold difference is observed between two speech samples. 
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Figure 2.6: A speech sample of (a) large amplitude, with its (b) signal energy, (c) zero-crossing 
rate, and (d) average magnitude factor, all calculated for a frame size of 4 ms. 
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"Imiz236.dat": (a) Speech Sample 
1500, 1 1 • 1 

1 1.05 1.1 1.15 1.2 1.25 
Time (ms) x 1 Q4 

Figure 2.7: A speech sample of (a) small amplitude, with its (b) signal energy, (c) zero-crossing 
rate, and (d) average magnitude factor, all calculated for a frame size of 4 ms. 
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2.2 Adaptive Thresholds 

As noted earlier [45, 31], a,fixed detection threshold does not give reliable and consistent com

pression results when variation occurs in speech or background noise levels. For the silence 

detector to be useful in different speech environments or under different noise conditions, the 

detection thresholds are adaptive to the varying speech characteristics. Adaptation is accom

plished through maintenance of good estimates of the long-term averages for the energy and 

A M F statistics, and by using threshold hysteresis. 

2.2.1 Long-term Averages , 

As described earlier, the signal energy E and A M F are compared to specific thresholds, and 

these comparisons are then used as criteria for silence detection. For these thresholds to adapt 

to fluctuations in speech and background noise levels, they must be calculated from long-term 

energy and A M F averages. A larger energy factor (hence a higher threshold) or lower A M F 

threshold factor generally lowers the probability that a frame will qualify as speech. 

The relationships between the thresholds and their respective long-term averages are as 

follows: 

E-Threshold = ET • MAX(SilAvg, SphAvg/U) . . (2.7) 

AMF-Threshold = LT • MW(SilAMF, SphAMF + 59) (2.8) 

M A X ( z , y ) 

MW(x,y) 

where 

t 

x, if x > y 

y, otherwise, 

x, if x < y 

y, otherwise. 

SilAvg and SilAMF are the long-term averages of the signal energy and A M F for silence, and 

SphAvg and SphAMF are those for speech. 

(2.9) 

(2.10) 
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In most circumstances, tracking the silence averages would be sufficient. A threshold should 

reflect the level of a criteria expected of silence. Exceeding the threshold indicates sufficient 

deviation from the pattern of silence, that speech is probably present. Rose [31] suggested 

adapting the energy threshold to the current speech level too, so that silence could still be 

detected in speech with low background noise and widely fluctuating speech level. The constant 

13 in Equation 2.7 was called the SpeechScale [31], and was chosen experimentally without much 

explanation. 

In fact this SpeechScale factor can be treated as a rough upper bound on the signal-to-

noise ratio (SNR) of speech energy relative to noise energy (in this case, 201og10(13) « 22dB). 

Equation 2.7 dictates that, if the long-term silence energy SilAvg drops below a specified level, 

the energy threshold will adapt to the speech energy instead, so as to maintain a satisfactory 

amount of silence compression. 

In the same spirit, the SpeechScale factor has now been incorporated into the calculation of 

the AMF-Threshold. From the iz-law characteristic equation (Equation 3.11), 

where the approximation on the last line can be made for large signals (p\x\ >• ^ m a x ) [60]. 

Taking x' = x/13, 

y\ = lcO)l 
Yy max 

c(x')\ 

c 

l o g ( M l ^ l ) - l o g ( 1 3 ) 
log(l + / i ) . max 
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For p. = 255 and Y m a x = 128, 

\y'\ ~ M - 5 9 . 

Comparing Figure 3.3 and 2.5, one sees that in the M F function, through the combined effects of 

the G.711 encoder and the ones's complement function, the fi-law characteristic gets shifted (for 

negative a;) and flipped (for positive x). A decrease in the /it-law magnitude is thus translated 

into an increase in A M F . Thus the rationale for adding 59 to SphAMF in the calculation of the 

AMF-Threshold (Equation 2.8). 

In all, four long-term averages have to be evaluated over the entire speech sample during 

compression: two for silence and two for speech. The period over which an average is calcu

lated has to be small enough to track the variability of the characteristic and large enough 

to withstand short-term fluctuations. Period length therefore determines the sensitivity of the 

statistic. It has been found [31] that the long-term statistics for speech should be averaged over 

a period of approximately one second, and for background noise or silence over a 128 ms period. 

Table 2.1 is constructed for the various combinations of frame sizes and averaging periods (in 

number of frames); values are given in powers of two to facilitate real-time implementation on 

a digital signal processor. In general, the silence and speech averaging periods, SilAvgPrd and 

Table 2.1: Various frame sizes with matching averaging periods. 

Frame Size (K) SilAvgPrd SphA vgPrd 
128 8 64 
64 16 128 
32 32 256 
16. 64 512 
8 128 1024 
4 256 2048 

SphAvgPrd can be calculated from the frame size K as follows: 

SilAvgPrd = 1024/K 

SphAvgPrd = 8192/it' 

(2.11) 

(2.12) 
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The importance of maintaining good estimates of the various long-term averages for si

lence (and for speech too) cannot be overemphasized. These long-term averages are constantly 

updated. A l l frames classified as silence and speech contribute to the long-term averages for 

silence and speech, respectively. Since the speech/silence classification is based on threshold 

values, and hence on the long-term averages, defining long-term averages on the basis of the 

classification risks the danger of a vicious circle (or positive feedback), as warned by Southcott 

[26]. Whether or not this affects the performance of the adaptive thresholds in practice will be 

discussed in Section 4.5. 

In calculating the speech energy average, many samples with uncharacteristically low energy 

or zero-crossing rate have been included, along with those more representative of speech. A 

frame is classified as speech if either one of its criteria exceeds the threshold. 

While the speech average is not really crucial to the operation of the silence deletion algo

rithm, the silence average is critical, and does not tolerate being corrupted in similar ways. To 

prevent possible corruption of the silence energy and A M F averages by inclusion of spurious 

high-energy frames, a critical factor Ec can be used [54, 31]. A more stringent qualification for 

classified as silence is that the frame energy statistic E falls below a critical level, Ec-SilAvg, 

in order for a frame to be included in the calculation of the long-term silence averages. The 

included frame must also meet the other criteria, of course. 

2.2.2 Threshold Hysteresis and Hangover 

Speech onset often shows a larger signal energy than does the termination [31]. To exploit this 

characteristic, hysteresis in the energy threshold can be implemented; in Figure 2.8, two energy 

threshold factors, Eo and E\, are used in place of Ej. The higher one (E\) is used during silence 

intervals, for detecting speech onset, to prevent triggering by noise. To minimize end-clipping, 

a lower one (Eo) is used during speech, for detecting the termination of an utterance. 

Similarly, Lj can be replaced with the dual factors Lo and L\ \ the lower factor L0, though, 

will be used to detect speech onsets, while the higher one, L\, is for detecting silence (Figure 2.9). 
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E0 

S I L E N C E 

S P E E C H 

Signal Energy 

Figure 2.8: The E-Threshold hysteresis. 

Lo 

S P E E C H 

S I L E N C E 

Average Magnitude Factor 

Figure 2.9: The AMF-Threshold hysteresis. 

To facilitate detection of weak stop consonants, which sometimes trail a speech utterance, 

it is sometimes beneficial for speech thresholds (EQ and L^) to hang over for H frames. It 

has been found that a non-zero hangover H is useful for large frame sizes where the consonant 

energy becomes blurred in the surrounding silence, but may compromise silence detection with 

small frame sizes [31]. 

While the hysteresis and the hangover are included in our implementation, we will not spend 

time to duplicate or to refute previous findings. These fine-tuning parameters will instead be 

left at their default values (E\ = EQ and Ec = 1.5), which suffice in our study. 
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2.3 Silence Detector 

The decision of the silence detector is based on. one or more of the three criteria presented above. 

In a speech communication system, it is usually more important to transmit information than 

to conserve bandwidth by removing redundancy. Therefore, to minimize clipping, speech should 

be declared whenever one or more of the criteria (short-time statistics) exceed its threshold. 

The signal energy and the A M F are never used in conjunction, however, because there is 

much duplication of functionality between them. They are different measures of the same thing, 

namely, the signal amplitude. Instead they will be evaluated one against the other in silence 

compression performance, and their effectiveness in detecting speech/silence will be studied in 

Sections 4.3 and 4.6. 

In summary, the operation of the adaptive silence detector is controlled by eight adjustable 

parameters: the frame size K, the threshold factors EQ^, ZT, £O,I> the critical factor Ec, and 

the hangover H. 



Chapter 3 

A Speech Compression System Based on Silence Deletion 

This chapter deals with the implementation of a speech compression system employing silence 

coding. 

Based on the silence detector described in the previous chapter, a speech compression system 

has been built using an I B M P C / A T compatible computer, a Spectrum TMS320C30 DSP board, 

and a simple signal amplifier. The system can record speech from the telephone line to a disk 

file, encode, decode, and play back the audio data file through a loudspeaker or a telephone 

handset. 

The DSP board has built-in A / D and D / A converters, and is responsible for data acquisition 

and playback. The computer controls data flow and buffering, performs disk operations, and 

is responsible for encoding and decoding the audio files. Software implementing the speech 

compression system is listed in Appendix B. 

The functional blocks of the system can be visualized using the data flow diagram in Fig

ure 3.1. By their functionality, the blocks can be further grouped into three: algorithmic control, 

coding and I/O (input/output), and analog-to-digital interfacing. 

3.1 Silence Deletion Algorithm 

The speech compression system described in this thesis is based in part on a previous silence 

deletion algorithm [24, 31]. Modifications have been made to enable real-time coding of speech 

and silence frames, to demonstrate further savings on memory usage and computation, and 

to adapt to the more erratic noise characteristics in an actual telephone recording. Figure 3.2 

shows a control flow diagram of this new silence deletion algorithm. Following is a legend for 

25 
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• Figure 3.1: Speech compression system with silence coding. 

some of the undefined variable names in the figure: 

Statistic(s)—-one or more of the short-time statistics: the signal energy. E, the 

zero-crossing Z, and the A M F .. 

Threshold(s) — one or more of their corresponding thresholds: E-Threshold, Z-

Threshold(= ZT), and AMF-Threshold 

SpeechAvg(s) — the long-term averages for speech: SphAvg and SphAMF 

SilenceAvg(s) j—the long-term averages for silence: SilAvg and SilAMF 

Energy — short-time energy E or long-term silence energy average SilAvg, de

pending on context 

UnclassifiedSum(s).— accumulated sums for the unclassified frames: UnclassifiedSum and 

Unclassified AMF 

Other variable names either have been defined in the previous sections, or will be defined later. 

The silence detector or. voice activity detector (VAD) is at the heart of the speech compres

sion system, dictating whether the incoming signal is to be treated as speech or as silence. As 

described in the previous chapter, its basic function is to compare the short-time statistics to 

some thresholds (which are based on long-term averages), and then to decide: speech or silence. 

The algorithm operates on.a frame:by-frame basis; that is, with a minimal algorithmic delay 

[6] of one frame size~(-^- ms). 
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(START) 

Initialize frame buffer 
Set State = SILENCE 

Set ThresholdMode = SILENCE 
Set SilenceLen = SpeechLen = CriticalLen = 0 

. Set UnclassifiedSum(s) = CriticalSum = 0 

Read a data frame into buffer 
Calculate Statistic(s) for current frame 

Set SpeechAvg(s) = Silence Avg(s) = Statistic(s) 

Calculate Threshold(s) 
Add Statistic(s) to Unclassified3um(s) 

Increment SpeechLen 

Add Energy to CriticalSum 

Increment SilenceLen 

S P E E C H SILENCE 
State? 

Generate silence code 
with SilenceLen and the 

[current SilenceAvg Energy 
Set SilenceLen = 0 

Encode current frame 
and SilenceLen previous 

frames as speech 
Update SpeechAvg(s) 

Add SilenceLen to SpeechLen 
|Set SilenceLen = CriticalLen = 0| 

Set UnclassifiedSum(s) 
— CriticalSum = 0 

Set State = S P E E C H 
Encode current frame 

and (SpeechLen-1) 
previous frames as speech 

Update SpeechAvg(s) 
Set CriticalLen = 0 

Set UnclassifiedSum(s) 
— CriticalSum — 0 

SILENCE ^s . S P E E C H 
State? 

Discard current frame 
and SpeechLen previous 

frames as silence 
Update SilenceAvg(s) 

Add SpeechLen to SilenceLen 
|Set SpeechLen =• CriticalLen = 0| 

Set UnclassifiedSum(s) 
= CriticalSum = 0 

Set State = SILENCE 
Discard current frame 

and (SilenceLen-1) 
previous frames as silence 

Update SilenceAvg(s) 
|Set SpeechLen = CriticalLen = 0| 

Set UnclassifiedSum(s) 
= CriticalSum = 0 

Set ThresholdMode = S P E E C H 

Encode SilenceLen 
outstanding frames 

as speech 

Set ThresholdMode = SILENCE 

Add SpeechLen to SilenceLen 
Generate silence code 

with SilenceLen and the 
current SilenceAvg Energy 

( END ) 

Figure 3.2: The silence deletion algorithm. 
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In the context of the silence deletion algorithm, two additional constraints have to be sat

isfied before final decision can be made: the minimum silence and minimum speech duration 

[31, 54]. M consecutive silence frames must be detected before the system changes state to 

SILENCE and finally declares them all to be silence frames; similarly, N consecutive speech 

frames have to be recognized by the detector before the system switches to-SPEECH state and 

classifies them all as speech frames. . 

The minimum speech constraint imposes a limit on the shortest duration of speech that is 

considered to convey useful information, while the minimum silence constraint puts a similar 

limit on the shortest run of silence that can be efficiently coded. (As noted earlier, there is an 

overhead associated with each silence code.) It will be shown in Section 4.4 that increasing M 

and N has an effect similar to increasing the frame size K. 

The values of M and N must be well matched. While a low talkspurt frequency can be 

facilitated by using a larger M, setting M too much higher than N can lead to a very low 

percentage of declared (as opposed to detected) silence, hence a very low compression rate. 

Similarly, excessive, clipping of speech will result if N is too much larger than M. By choosing 

M and N judiciously, the speech compression system can be tailored to suit different sensitivity 

requirements for speech and for silence. 

By allowing the algorithm to reverse a decision of the detector, the minimum speech and 

silence constraints provide an escape from the positive feedback (refer to Section 2.2.1), breaking 

the inter-dependency between the long-term averaging and the silence detector. The worst 

problem with the silence detector is to mistake a speech frame for silence and to subsequently 

update the silence averages with statistics of the mistaken frame; this could cause the thresholds 

to adapt to the characteristics of speech, thereby making it easier and easier for speech frames 

to pass as silence—in a vicious circle! Granted that it is much harder for a speech frame to. 

pass unnoticed by the detector, the problem is made even less likely by updating the long-term 

averages according to the final decision of the silence deletion algorithm, which may differ from 

that of the silence detector module if M > 1 and/or TV > 1. 



Chapter 3. A Speech Compression System Based on Silence Deletion 29 

The internal state of the silence detector (ThresholdMode) may therefore differ from the 

state of the system (State). The dual thresholds of the detector, when in use, will be invoked 

by ThresholdMode according to Table 3.1. 

Table 3.1: The silence detection threshold modes. 

ThresholdMode Energy Threshold Factor A M F Threshold Factor 
SPEECH Eo Li 
SILENCE Ei Lo 

3.1.1 System Initialization 

In the first iteration, all long-term averages are initialized to the values of the statistics of the 

first data frame. 

Simulation has shown that it is necessary to initialize.the long-term averages to meaning

ful values, rather than to some arbitrary estimates hard-coded in the system. Difference in 

communication environments renders any hard-coded estimates useless at best, and very often 

detrimental to system performance. For example, if SilAvg has been initialized to a certain 

pre-determined value which is too low for the noise level at hand, background noise will be mis

taken for speech. If this situation persists, SilAvg will not have the opportunity to be updated 

to any higher values, while SphAvg wiD track the signal energy of the input signal, regardless 

of whether it is speech or silence. Eventually, zero compression will be the likely result (see 

Section 4.5). 

At the start of each execution, therefore, the system initializes the long-term averages SilAvg, 

SphAvg, SilAMF, and SphAMF to the statistics of the first data frame for short-time energy 

and A M F . The initial State will be set to SILENCE. 
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3.1.2 Calculation of Long-term Averages 

In calculating long-term signal averages (for tracking the varying speech and background noise 

levels), Rose [31] proposes measures to minimize both the calculation time and the memory 

storage requirement. The long-term average at time t over n data frames can be calculated as 

A(t) = ?& (3.1) 

where 

S{t) = , E* (3-2) 

is the sum of the n values-for the individual frames. A simplification noted by Rose [31] is: 

A(t + l ) = E t + l + S ® - E t + 1 - n . (3.3) 

It is required that all n samples contained in the average are temporarily stored in memory. A 

block averaging scheme is then proposed to group each m samples into a block, saving memory 

by a factor of m [31]. 

The present thesis proposes an efficient averaging calculation that can dispense with all 

the memory storage for either individual frame averages or the block averages. Note that, in 

updating the long-term average for each new data frame, 

Et+l + S(t) - Et+l-n . 
A(t + 1) 

n 
Et+i + nA(t) -.Et+i-n 

n 
Et+1 + (n - l)A{t) 

71 
(3.4) 

for a sufficiently large n. This makes it unnecessary to store the n frame averages Et+\-n, • • • ? Et. 

With the minimum silence/speech constraints (M and N) and the critical threshold require

ment (Ec), the number of frames to be included in each averaging calculation may differ from 

one. -Ej+i in Equation 3.4 will be replaced by the sum of all unclassified frames with energy 

below the critical level; the number of frames will be the total of unclassified frames minus 

those that exceed the critical energy level. Values for the averaging period n have been given in 
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Table 2.1, Figures 2.11 and 2.12. The four long-term averages of the system are thus updated 

as follows: 

SilAvq = TTTT-T—^—• X (UnclassifiedSum — CriticalSum y SilAvaPrd V J SilAvgPrd 

+SilAvg x (SilAvgPrd— UnclassifiedLen + CriticalLen^j (3-5.) 
SilAMF = } „ , X (UnclassifiedAMF- Critical AMF 

. SilAvgPrd V 

+SUA MF x (SilAvgPrd — UnclassifiedLen + CriticalLen)j (-3-6) 

UnclassifiedSum-f SphAvg x (SphAvgPrd — UnclassifiedLen) 
S p h A v g = ! — : ; — ( 3 - 7 ) 

„ , UnclassifiedSum + 'SphAMFX (SphAvqPrd — UnclassifiedLen) . 
SphAMF = ^ S p / ^ p r / " ' ( 3 - 8 > 

UnclassifiedLen is determined from the counters SilenceLen and SpeechLen in Figure 3.2, which 

count the number of frames judged by the detector as silence and speech, respectively; silence 

frames remain unclassified until SilenceLen reaches M, and speech frames, until SpeechLen 

reaches N. 

Therefore, in the four boxes in Figure 3.2 where SpeechAvg(s) and SilenceAvg(s) are updated, 

the value of UnclassifiedLen is, sequentially from left to right in the figure, SilenceLen + 1, 

SpeechLen, SpeechLeh+ 1, and SilenceLen. The minimum speech and silence constraints ensure 

that SilenceLen < M and SpeechLen < N always hold in the above operation (i.e. when 

updating the long-term averages). Therefore, the choice of M and N is restricted by the 

following inequalities: 

SilAvgPrd > M A X ( M , N) \ (3.9) 

SphAvgPrd > M A X ( M , N) • (3.10) 

where the values of SilAvgPrd and SphAvgPrd are given in Table 2.1 and Equations 2.11 and 

2.12. 

CriticalLen is the counter for unclassified frames whose energy level and A M F could pos

sibly corrupt the silence averages. Instead of saving the individual frame statistics, these are 

accumulated in CriticalAvg and CriticalAMF for later subtraction from the UnclassifiedSum(s). 
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Experimental results have shown that the above approximations (Equations 3.5, 3.6, 3.7, 

3.8) produce good estimates of the long-term averages that are comparable to those calculated 

from the stored samples or blocks. 

Since floating long-term averages are the sole means by which the system adapts to the 

varying speech and noise levels, it is of vital importance that quantization effect in their calcu

lations be minimized. The precision of fixed-point data varies with the size of the stored data or 

the resultant value after an operation. Rounding or truncation can engender significant errors, 

and this becomes an issue especially in the calculation of long-term averages of the A M F and 

of the silence energy, mainly due to their smaller values (in the range of a few tens to a few 

hundreds). 

In one instance, with a relatively noise-free speech recording, the already-small silence aver

age energy (around 100) consistently gets updated to smaller and smaller, values until it can no 

longer serve to differentiate between silence and speech frames. This is the effect of accumulated 

truncation errors in fixed-point division. r~>. 

To solve this problem, either intermediate scalings (to make better use of the machine 

precision) or floating-point arithmetic must be implemented. The latter approach has been 

taken in this implementation. 

3.1.3 System Parameters 

Now that the silence deletion algorithm has been fully described, a summary of all the adjustable 

parameters is presented in Table 3.2. ' 

3.2 Coding of Speech and Silence Frames 

Silence compression results in variable-rate coding. There are two coding modes, one for silence 

and background noise, and one for active speech. This section goes into more details about the 

two coding modes. 
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Table 3.2: Adjustable parameters of the silence deletion algorithm. 

Name Symbol Type and Range Suggested Values 
Frame Size K integer > 2 powers of 2 
E- Threshold Factors Eo,i real number > 0, E\ > EQ 2.0. 
Z- Threshold Factor ZT real number > 0 0.7 
AMF-Threshold Factors £o,i real mimber> 0, L \ > LQ 0.75 
Critical Energy Factor Ec 

real number > 0 1.5 
Hangover H integer > 1 1 
Minimum Silence M integer > 1 1 
Minimum Speech N • integer > 1 1 

3.2.1 Speech Coding 

Two speech coding formats are supported in this speech compression system: the G.711 64-kbps 

jti-law P C M , and the G.726 32-kbps 4-bit A D P C M . 

//-Law P C M 

In linear quantization, the step size A is chosen to accommodate the dynamic range of the 

speech signal. Much resolution is thus wasted in coding the relatively few peaks. 

As a stationary random process, the signal.amplitude of speech is far from uniformly dis

tributed [9]; it is in fact closer to the Laplace or the Gamma distribution. The result is that, 

with linear or uniform quantization, low-level signals such as fricatives will have a relatively 

large quantization error. It turns out that logarithmically spaced quantization levels give a 

near-optimal signal-to-quantization noise ratio [60]. 

From a speech perception point of view, more quantization noise is perceived for signals of 

small amplitude than for signals of large amplitude due to a masking effect [61] in the perception 

of the human ear. A louder signal masks the quantization noise. Quantizing the signal samples 

on a logarithmic scale exploits this masking effect, such that the step size between quantization 

levels becomes progressively larger with increasing amplitude. 

Historically, non-uniform quantization was achieved by first compressing the signal x using 
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a non-uniform compressor characteristic c(-), quantizing the compressed signal y — c(x) em

ploying a uniform quantizer, and then expanding the quantized version of the compressed signal 

using a non-uniform transfer characteristic c _ 1 ( - ) that is inverse to that of the compressor [60]. 

Hence the name companding: compressing and expanding. 

A standard logarithmic (or pseudo-logarithmic [60]) coding characteristic is the /z-law com

pander: 
log(l + M I T M ) 

C ( X ) = S g n ( : C ) log(l + /0 y" iax' ( 3- 1 1 } 

where the function sgn(a;) is as defined in Equation 2.3. The /z-law characteristic function with 

u, = 255 is plotted in Figure 3.3. In an actual implementation, such as the one defined in the 

-1 -0.8 -0.6 -0.4 . -0.2 0 0.2 0.4 . 0.6 0.6 1 
x/Xmax 

Figure 3.3: The /z-law compressor characteristic. 

ITU Recommendation G.711, piecewise linear approximations to the /z-law characteristic are 

used in the conversion between linear P C M and /z-law P C M formats, and /z .= 255 has been 

chosen to provide a good approximation to the piecewise characteristics for an 8-bit resolution 

[62, 60, 63]. As such, the /z-law code consists of a sign bit, a 3-bit segment number (to identfy 

the piece of linear approximation), and a 4-bit level number (the level within a segment), and 
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all the bits are inverted in transmission. That is why the actual G.711 /i-law coder produces a 

different mapping (Figure 2.3) to the one given in Equation 3.11 and Figure 3.3. 

Relative to linear quantization, /j-law quantization yields a 24-dB reduction in quantization 

noise power [57]; as a result, 8-bit />law P C M produces speech of quality comparable to that of 

12-bit linear P C M [9] for nominal input levels. From another point of view, accurate resolution 

of large signals is sacrificed for improved resolution of low level signals (see Figure 3.4). 

x 10 4 

41 1 1 1 1 1 1 1 

2 - i -

- 2 -

- 3 -

_41 i i i i 1 1 1 1 
- 4 - 3 - 2 - 1 0 1 2 3 4 

x (Encoder input) 1 0 « 

Figure 3.4: Resolution of the /i-law function: 16-bit signed integer input x encoded to 8-bit 
unsigned integer, which is then decoded to 16-bit signed integer r. 

A D P C M 

Variance of the quantization error is a function of the input speech signal variance. Unfor

tunately, in coding speech, the exact value of the input variance is not known in advance; 

moreover, it tends to change with time. 

With a fixed set of near-optimal quantization step sizes, //-law P C M yields a good signal-

to-quantization noise ratio over a broad range of input variances [60]. Since speech in the long 
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term is not a stationary stochastic process, a time-invariant quantizer is still not ideal. For a 

more efficient waveform coding, we turn to adaptive quantization. 

A n adaptive quantizer has a time-varying step size A(n) that adapts to the changing input 

variance cr^(n) [60]. A feedforward adaptive quantizer adjusts its step size for each signal sample 

based on a short-term temporal estimate of the input speech signal variance (for example, using 

the short-term autocorrelation estimator), so that 

A ( n + l ) = A(n)a 3 . (n- | - l ) , (3.12) 

where a\{n + 1) is an estimate of the variance for the next sample at time n + 1 (and ax(n + 1) 

estimates the standard deviation). A feedback adaptive quantizer employs the output of the 

quantizer in the adjustment of the step size: 

A ( n + 1 ) = A(n)a(n), (3.13) 

where the scale factor a(ii) depends on the previous quantizer output. 

To further exploit the redundancy in speech waveforms, differential coding or predictive 

coding can be used. By exploiting the inter-sample correlation in speech waveforms, it is 

possible to achieve an increased SNR at a given bit rate; or equivalently, a reduced bit rate 

for a given requirement of SNR. In differential pulse code modulation ( D P C M ) a signal s{n) is 

represented by the difference samples, 

e(n) = s(n) - s(n - 1) (3.14) 

The variance in the error signal e(n) can further be reduced with the use of linear prediction 

(LP) , which produces an estimate of the current sample 

P 
s(n) = ^2 a(i)s(n — i) (3.15) 

t'=i 

based on the past P samples. The prediction error samples 

e(n) — s(n) — s(n) (3.16) 
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will be transmitted instead. As a refinement, incorporating the error samples in the prediction 

yields an even better estimate 

P Q 
s(n) = ^2a(i)s(n-'i) + ̂ 2b(i)e(n-i). (3.17) 

i=l i=l 

The two sets of coefficients {a(i)} and {b(i)} are selected to minimize some function of the error 

sequence e(n), such as the mean squared error (MSE) [58]. 

Making the predictor adaptive improves performance still more. In adaptive D P C M (AD

P C M ) , the coefficients of the predictor can be changed periodically to reflect the changing 

signal statistics of the source. The ITU Recommandation G.726 has established a standard for 

a 32-kbps 4-bit A D P C M scheme, which employs an adaptive feedback quantizer and a predictor 

with two poles and six zeros (P = 2 and Q = 6 in Equation 3.17). A gradient algorithm is 

employed to adaptively adjust the coefficients of the pole-zero predictor [10]. 

In our implementation, to facilitate the coding of 4-bit data on the digital computer, a 

constraint has been placed on the frame size, such that K must be an even number. 

3.2.2 Silence Coding 

To allow for the insertion of artificially generated silence frames with matching signal energy 

during expansion of compressed speech, each deleted silence interval is replaced by a silence 

code of a fixed length. This silence ,code adds compression overhead, making sometimes coun

terproductive removal of short silence intervals. This can be controlled by adjusting the frame 

size K and the minimum silence/speech parameters M and N. 

The coding of silence intervals follows previous practice [31]. In addition, allowance has 

been made for A D P C M speech coding. The format of the silence code is shown in Figure 3.5. 

Silence Code Flag 16-Bit Silence Length 16-Bit Silence Energy 

Figure 3.5: Silence code format. 

The length in number of frames is recorded in an unsigned 16-bit integer, which puts an 

upper limit on the duration of uninterrupted silence. As shown in Table 3.3, a reasonable length 
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Table 3.3: Maximum lengths of silence allowed by the silence code. 

Frame Size (A') Maximum Length of Codable Silence 
0.5ms (4) • 32.76s 
1ms (8) l m 5.53s 

2ms (16) 2m 11.07s 
4ms (32) 4m 22.14s 
8ms (64) 8m 44.28s 

16ms (128) 17m 28.56s 

of silence can be coded for all practical frame sizes. 

Immediately following the silence length is another unsigned 16-bit integer, the silence 

energy, which indicates the energy level (in 16-bit linear P C M ) of the background noise in the 

silence interval. The inclusion of this value makes it possible to supply a random "comfort noise" 

[7] during playback, to approximate the original silence intervals which have been discarded 

during coding. 

Each silence code is prefixed by a flag to distinguish it from ordinary speech data. To be 

detected from within a stream of codewords for speech data, this flag should take on the value 

of an impossible or otherwise unused combination of speech codewords. 

Silence Code Flag for Linear P C M 

For linear P C M coded speech data on the telephone network, the concatenation of the most 

positive 16-bit signed integer with its negative complement forms a very unlikely sequence. The. 

ordered 2-tuple (32767,-32767), or 7FFF8001 1 in hexadecimal, can thus serve as the silence 

code flag. 

Speech on the general telephone network is bandlimited to between 200 and 3400 Hz. The 

chosen silence code flag, at a sampling rate of 8000 times per second, corresponds to successive 

samples separated by half a period of a 4000-Hz monotone signal at maximum amplitude, which 

1Note that byte order is machine-dependent. Care should be exercised in reading and writing order-specific 
data such as the silence code flag on computer systems: in general, PC's are little endian, while UNIX workstations 
are big endian. 
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can never occur naturally in telephone speech. 

Silence Code Flag for /z-law P C M 

By thesame argument, the pair of 8-bit unsigned integers (128,0) (8000 in hexadecimal) can 

be used as the silence code flag for /z-law P C M coded speech. However, due to the piecewise ap

proximation in digital /z-law companding, a range of linear P C M values besides (32767, —32767) 

•are mapped into the /z-law P C M 2-tuple (128,0). Table 3.4 lists part of the mapping between 

the input and output of an ITU G.711 /z-law P C M coder. Therefore successive samples of a 

Table 3.4: Mapping of a G.711 8-bit /z-law P C M coder. 

16-bit linear input 8-bit /z-law output 
-32768 0 

-31612 0 
-31611 1 

31611 129 
31612 128 

32767 128 

4000 Hz monotone signal at ^767 ° ^ t n e maximum amplitude can also produce the silence code 

flag at the output of the /z-law P C M coder. So can successive samples of a maximum amplitude 

monotone at frequency / given by 

f 
32767 sin(7r-^—) = 31612,or (3.18) 

v 8000 ; v ' 

f = 3321.9Hz, (3.19) 

as shown in Figure 3.6. Even though a 3321.9 Hz signal falls within the bandwidth of telephone 

speech, the probability of a natural occurrence of the silence code flag has been found to be 

negligible [31]. A special marker could be appended as-an indicator—emulating the practice 
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Amplitude 

Time (s) 

Figure 3.6: Calculation of the lowest frequency / that can produce the silence code for //-law 
P C M (with no overloading in the signal). 

of character-based and bit-oriented framing in data networks [64]—to the end of any naturally 

occurring silence code flag. 

For our purposes (analysis and evaluation of system performance), this has not been imple

mented, and no error has been encountered either. 

A signal which exceeds the maximum input range of the analog-to-digital ( A / D ) converter 

could produce the silence code flag at an even lower frequency. According to the following 

relationship for a 16-bit A / D converter 

f 
A s i n ( 7 r - i — ) = 32767, (3.20) 

v 8000 ; v ' 

the frequency / can be made arbitrarily small by pushing the amplitude A above 32767. But of 

course, signal overloading of the A / D would have occurred long before the amplitude reached 

those high levels. To avoid severe degradation in speech quality, out-of-range amplitudes are 

often clipped by some protection circuit before A / D conversion. The silence code flag being 

produced by overloaded signals of low frequency is therefore even less likely. 

Silence Code Flag for A D P C M 

For A D P C M coded speech, the strategy of combining the largest and smallest valued codes to 

produce the flag no longer applies. Due to the nature of differential coding, the "most positive" 
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and "most negative" numbers represent values of the difference signal rather than those of the 

speech signal itself, and their occurrence is as frequent as that of any other codeword. 

Yet, an impossible combination of speech values presents itself: examined arbitrary streams 

of 4-bit A D P C M .coded speech data shows that there is no zero codeword present. In fact, the 

revision of C C I T T Recommendation G.721 in 1986 has eliminated the all-zero codeword 2, thus 

changing the quantizer from 16 levels to 15 [10]. The 4-bit zero codeword can therefore act as 

the silence code flag; to facilitate data transfer, a full byte zero (that is, the concatenation of 

two 4-bit zero A D P C M codewords) is used to indicate silence. 

3.3 Silence Insertion and Decoding 

Compared to the silence deletion algorithm, decompression or expansion of silence-compressed 

speech is relatively simple. It consists of differentiating between silence codes and frames of 

speech data, and decoding them accordingly. 

Figure 3.7 shows a flowchart of the silence insertion algorithm. Before each frame is read, 

(START) ' 

Check input data 

NO *Z X . YES 
—̂  ? 

Read data frame 
Decode and write.out 

data frame 

Read Length and Energy 
Expand and write out 

silence 

I « W O | ^ J of da ta^ ' 

T Y E S 

( END ) 

Figure 3.7: Decoding of silence-compressed data. 
2The reason was that North American networks could not handle long strings of 0s. 



Chapter 3. A Speech Compression System Based on Silence Deletion 42 

the silence code detector looks ahead for any "impossible sequence" of speech code, which 

signifies a silence code. If a silence code is found, the next four bytes will be read as two 16-bit 

unsigned integers, the first representing the number of frames of silence to be re-generated, 

and the second, the average energy level (in 16-bit linear P C M ) of the background noise. The 

decoder then proceeds to generate the specified amount of background noise (or silence)—the 

"comfort noise"—at the specified energy level, using a white noise generator based on the linear 

congruential method [31, 65]. In this study, the amount of background noise, and the level of the 

noise energy, can optionally be varied. The possibility and feasibility of inserting random noise 

of shorter duration and/or of lower energy than in the original will be explored by subjective 

listening in Chapter 5. 

3.4 Peripherals 

This section covers the analog-to-digital ( A / D ) and digital-to-analog ( D / A ) interface of the 

system. Before it is fed to the DSP I/O port, the signal from the telephone line is amplified by 

a differential amplifier with matching input impedance (600 fi), from the millivolt range to a 

few volts. 

3.4.1 Filtering and Sampling 

For many signals, including speech, the highest frequency component is not distinctly known 

and it is therefore necessary to band-limit the signal by filtering it prior to digitization. The 

analog filter employed in such a situation is normally called an anti-aliasing or pre-sampling 

filter. 

Speech in general contains frequency components with significant energies up to about 

10 kHz; however most energy is below 5 kHz. Depending on the application, the sampling rate 

fs for speech will normally lie in the range 6-20 kHz. Telephone speech (bandlimited to the 

range of 200-3400 Hz) is typically sampled at fs = 8 kHz, and a pre-sampling (lowpass) filter 

is therefore required to remove frequency components above the Nyquist frequency / s / 2 . 
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The analog inputs and outputs are provided with variable 4th order lowpass filters on the 

Spectrum TMS320C30 DSP board [66]. Equal resistor values are used to give a Butterworth 

(maximally flat) response with a 24 dB per octave roll-off in the stop band. The cutoff frequency 

fc and the resistor values R are related follows: 

fc = 61.2/12 (3.21) 

The filters are adjusted to have a cut-off frequency at 3.44 kHz (with 17.8 kJ7 resistors). 

Since signals coming from the telephone line is already bandlimited to below 3.4 kHz, the in

put lowpass filter acts primarily as a pre-sampling safeguard against extraneous noise. The out

put lowpass filter, on the other hand, is responsible for smoothing out the quantized waveform 

produced by the D / A converter, which contains an abundance of high frequency components. 

3.4.2 Quantization and Coding 

The amplitude of the sample values is converted into digital form using a finite number of 

binary digits (bits). This process of representing a real value in the continuous domain by a 

discrete value with finite step-size is called quantization. The reconstructed signal is therefore 

bound to differ from the original signal. The amount of distortion introduced is quantization 

noise, which is reduced as the number of bits increases. 

The number of bits used affects the speech quality as well as the number of bits per second 

(bit rate) required to store or transmit the digital signal. The on-board A / D produces linearly 

quantized 16-bit P C M samples, and at a sampling rate of 8 kHz, this results in a bit rate of 

128 kbps, which can be interpreted as a reference bit rate for uncoded speech [7]. 
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Analysis of System Performance 

This chapter presents an analysis of the performance of the speech compression system as 

applied to speech samples recorded from the telephone line. 

The internal dynamics of the silence deletion algorithm will be studied, including the in

tricacy of choosing system parameters, how silence detection is affected by noise, threshold 

adaptation, and the segmentation and compression of speech data. 

Rabiner and Sambur [37] showed that visual examination of the speech waveform alone does 

not always lead to correct discrimination of the speech and silence intervals. When the various 

system variables and statistics of the speech signal (energy, zero-crossing, A M F ) are plotted 

along with the waveform, however, visual examination can provide many useful insights into the 

operation of the silence deletion algorithm. The following analyses will threrefore be supported 

strongly by graphical aids. 

4.1 Frame Size and Delay 

In a speech coding system, the time spent in buffering data is called the algorithmic delay, while 

that spent in computing a result is called the processing delay [6]. A larger frame buffer gives 

rise to a longer algorithmic delay. A smaller frame size, on the other hand, means that there 

are more individual frames to be considered for speech/silence classification, and to be input 

and output (I/O); all these lead to a longer processing delay overall. The choice of the frame 

size is therefore of the utmost importance to the performance of the system. 

Although previous work has favoured the small frame size of K = 4 (equivalent to 0.5 ms) 

[31], this will be shown to be a poor choice, in terms of both compression efficiency and speech 

44 
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quality. 

Short-time statistics are sensitive to frame size. The frame is essentially a rectangular 

window, and good temporal resolution requires a short window while good frequency resolution-

calls for a long window [9]. -

If K is too small—on the order of a pitch period or less—the short-time statistics will 

fluctuate very rapidly depending on exact details of the waveform. If K is too large—on the 

order of several pitch periods—the short-time statistics will change very slowly and thus will 

not adequately reflect the changing properties of the speech signal. Unfortunately this implies 

that no single value of K is entirely satisfactory because the duration of a pitch period varies 

from about 16 samples (at an 8-kHz sampling rate) for a high pitch female or a child, up to 

200 samples for a very low pitch male. With these shortcomings in mind, Rabiner [9, p. 122] 

suggests that a suitable practical choice for the frame size is 10-20 ms in duration; that is, for 

a sampling rate of 8 kHz, K =80-160. 

Figure 4.1 shows the waveform of the phrase "the porch steps" along with its short-time 

average zero-crossing rate calculated for the frame sizes of 4 (0.5 ms), 8 (1 ms), 16 (2 ms), 32 

(4 ms), 64 (8 ms), and 128 (16 ms). As noted in [31], the zero-crossing rate is counter-productive 

for silence deletion at small frame sizes. This is as expected since, as shown in the figure, only 

at larger frame sizes does the zero-crossing rate display any useful features that correspond to 

the speech waveform. 

At small frame sizes where K = 4 or 8, the zero-crossing curve is rather jagged and shapeless, 

and it is difficult to make use of the erratic jumps for silence/speech discrimination. Occasional 

peaks could indicate either noise or fricative consonants. At K = 32 and above, the final 's' 

sound of "steps" begins to exhibit well-defined peaks between 5600 ms and 5800 ms. 

Figures 4.2 and 4.3 show the short-time average magnitude and the A M F , respectively, at 

various frame sizes, for the phrase "the wide road." These short-time statistics fluctuates 

widely at smaller frame sizes. The A M F , in particular, appears to be usable only at frame sizes 

above K = 16. 
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Figure 4.2: The phrase "the wide road" with its short-time average magnitude E calculated for 
# = 4,8,16,32,64,128. 



Figure 4.3: The phrase "the wide road" with its A M F calculated for K = 4,8,16,32,64,128. 
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Comparisons of speech quality for the four frame sizes K = 4,16,64,128 are made by 

subjective listening described in Chapter 5. 

4.2 Zero-crossing Rate 

Speech includes frequency components with significant energies up to 10 kHz, with most of the 

energy below 5 kHz. Only unvoiced fricative and aspirated sounds exhibit significant spectral 

energy above 5 kHz [57]. The zero-crossing rate is sensitive to these high-frequency features of 

speech. 

The mean short-time zero-crossing rate is 49 and 14 per 10 ms for unvoiced and voiced 

speech, respectively [9]. In practice, some researchers consider speech frames above 3700 zero-

crossings per second (or 0.46 per sample for a sampling rate of 8 kHz) as containing unvoiced 

sounds [67]. Rose [31] has reported that the zero-crossing criteria would cause faulty detection 

at small frame sizes, and the results of the previous section confirm this erratic behaviour. 

Zero-crossing criteria are therefore studied for larger frame sizes. 

For the present thesis, a Z-Threshold of 0.7 crossing per sample has produced good results. 

Setting it at a lower value would cause unwanted silence frames to be classified as speech. 

Figure 4.4 shows how the zero-crossing criteria helps to detect the final 's ' sound in the phrase 

"the porch steps", with the system parameters set at K = 64, EQ = E\ = 2, and ZT — 0.7 

(EC = 1.5 and H = M = N = 1 by default). In the figure, 

• the first row plots the speech signal with the decision of the silence deletion algorithm 

superimposed as a square wave, 

• the second shows how the short-time average magnitude E exceeds E-Threshold when 

there is voice activity 

• the third shows the long-term energy averages SilAvg and SphAvg, 

• the fourth, how the short-time average zero-crossing Z exceeds Z-Threshold when there 

is significant high-frequency content in the signal, and 
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x 10 clear.dat: Signal and Decision Logic (Low:SII_ENCE, High:SPEECH) 
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Figure 4.4: Silence deletion , of the phrase "the porch steps" using the energy and the 
zero-crossing criteria. 
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• the fifth displays the contents of the counters SilenceLen and SpeechLen, the accumulated 

length of consecutive silence frames and speech frames. 

The utility of zero-crossing criteria becomes doubtful when using the signal energy criteria 

by itself enables detection of all the speech and silence frames. Figure 4.5 is a similar series of 

plots, showing silence deletion at work on the same phrase ("the porch steps"), this time with 

the Z-Threshold disabled (Z? is set at 0.95, beyond the reach of the present zero-crossing rate). 

The zero-crossing is also strongly affected by D C offset in the analog-to-digital converter, 

60-Hz hum in the signal, and any noise that may be present in the digitizing system [9]. Shown 

in Figure 4.6 is a run of the silence deletion algorithm on a speech sample with a noisy hum in 

the background. The zero-crossing rate experiences a drastic reduction, down to below 0.4 per 

sample. Figure 4.7 illustrates how a low-frequency periodic noise can "mask" a high-frequency 

signal of low amplitude. The hum provides an "envelope" to the low-amplitude signal, effectively 

preventing the signal from crossing zero more often than the fundamental frequency of the hum. 

Noise common in telephone speech has a similar effect on the zero-crossing rate. Figure 4.8 

shows the silence deletion of the same phrase "the porch steps", this time with pre-added noise 

recorded from telephone conversations on cordless handsets. The zero-crossing of the final 's' 

sound drops below the 0.7 threshold, escaping notice of the silence detector. 

In an attempt to circumvent difficulty with verying zero-crossing rates, the zero-crossing 

threshold has been made to adapt to the changing environment—with disastrous results. Due to 

the fast fluctuating nature of the short-time zero-crossing measure, an adaptive threshold often 

cannot respond quickly enough to changes and remain stuck at a low level, causing subsequent 

silence frames to be all classified as speech. Zero-crossing adaptation has subsequently been 

abandoned in our study. 

The zero-crossing rate is used for refined endpointing of words with fricative beginnings and 

endings. It has been found to be ineffective for telephone speech [42], and our study confirms 

this judgement. The telephone speech bandwidth (200-3400 Hz) already limits the amount of 
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Figure 4.5: Silence deletion of the phrase "the porch steps" using the energy criteria alone 
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Figure 4.6: Silence deletion of speech with a background hum. 
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Figure 4.7: The hum reducing the zero-crossing rate 

energy carried by unvoiced speech sounds. Considering the levels and variety of noise in modern 

telephony, the zero-crossing criteria is problematic rather than helpful in silence delineation. 

4.3 Signal Energy Versus Average Magnitude Factor 

The signal energy and the A M F are different measures of the same property, namely the signal 

amplitude. They can be considered to work, respectively, in the linear and logarithmic domains. 

This section illustrates their differences and similarities. 

Figure 4.9 shows silence deletion of the phrase "the porch steps" using the A M F criteria, 

with the parameters K = 64 and Lo = L\ = 0.9. As short-time statistics, the A M F and the 

signal energy seem to possess different temporal resolutions. The A M F tends to be more prone 

to follow small fluctuations in the signal: it manages to convince the AMF-Threshold of the 

existence of a few more speech frames after the phrase proper has ended, by dipping a few more 

times below the threshold. Sensitivity to temporal variations in the signal is of course related 

to the frame size K. This suggests that at a larger frame size, the A M F may have an even more 

similar performance to the signal energy. (The effect of the frame size on segmentation, which 



Chapter 4. Analysis of System Performance 55 

Z (J & Z-Threshold ( ) 
11 1 1 1 1 r 

0.2 

SilenceLen (-ve) & SpeechLen (+ve) 

- 6 0 0 1 ' 1 1 1 • L_ 1 

4800 ' 5000 5200 5400 5600 5800 6000 
Time (ms) 

Figure 4.8: Silence deletion of the phrase "the porch steps" with added noise, using the energy 
and the zero-crossing criteria. 
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Figure 4.9: Silence deletion of the phrase "the porch steps" using the A M F criteria. 
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differs slightly for the energy criteria and for the A M F criteria, will be studied in Section 4.4.) 

But other than the few extraneous mistaken speech frames, the A M F criteria produces a 

deletion profile similar to that of the signal energy; all the major voice activity regions are 

reported (compare Figures 4.9 to 4.5, with the rows on SilenceLen and SpeechLen perhaps 

giving a better indication of their resemblance). 

4.4 Segmentation Analysis 

The silence deletion algorithm segments a speech signal into one of two categories: silence 

and speech. Segments of each category are coded differently: speech coding (/z-law P C M 

or A D P C M ) is performed speech segments, while each silence segment is compressed into a 

silence code. Even though a "comfort noise" with an adaptive energy level is supplied during 

decoding, it is only an approximation to the original silence interval characteristics. There 

is often a perceptible transition between speech and silence segments. The frequency of this 

transition is a function of the segmentation size, which is therefore an important parameter for 

speech quality. 

The frame size K has a major influence on segmentation. Because classification of speech 

samples is done on a frame basis, K defines the smallest unit for segmentation; for example, 

when K = 128 (16 ms), no segment can possibly be less than 16 ms. 

The other key parameters relative to segmentation size are the minimum numbers of con

tiguous silence and speech frames, M and N. The limiting segmentation size for K = 4 and 

M = N = 8 is (4)(8) = 32 frames (i.e. 4 ms), however the mean segmentation size for these 

values is apparently larger than that for a setting of K = 32 and M = N — 1. Both alternatives 

give the same actual minimum segment size. But the probability of 8 consecutive speech (or 

silence) frames at K = 4 is smaller than that of one speech (or silence) frame at K = 32. 

Short-time statistics exhibit a greater variability at smaller window (frame) size. 

Simulations run on a six-second speech sample ("DEC23A_x.dat"), at various combinations 

of K, M and N, produced a 50% deletion of silence frames. For each run, the mean segmentation 
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Table 4.1: Mean segmentation size of silence deletion using the signal energy criteria E. 

Mean Segmentation Size (ms) / #o,i 
M,N K = 4 K = 8 K = 16 K = 32 K = 64 K = 128. K - 250 

1. 6.1920 /1.85 15.8311 / 1.9 33.8983 / 2 60.6061 / 2.2 146.3415/ 2.3 181.8182/2.3 222.2222/2.68 
2 19.5440/1.9 36.8098/ 2 80 /2.1 146.3415/2.2 171.4286/2.25 222.2222/'2.3 285.7143/3.15 
3 36.3636/ 1.9 72.2892 / 2.1 146.3415/2.2 193.5484/ 2.2 206.8966/2.213 260.8696/2.3 315.7895/3.36* 
4 59.4059/1.9 105.2632/2.05 181.8182/2.2 193.5484/ 2.2 240 / 2.1 285.7143/ 2.6 
5 82.1918/1.9 162.1622/2.05 193.5484/2.2 206.8966/ 2.2 240 / 2 285.7143/ 2.6 
6 109.0909/1.9 181.8182/2.05 193.5484/2.1 222.2222/2.05 260.8696/2.042 315.7895/3.3 
7 127.6596/1.9 181.8182/2.05 206.8966/2.1 222.2222/2.05 285.7143/ 2.5 352.9412/3.4 
8 162.1622/1.9 181.8182/2.05 206.8966/2.1 240 /2.05 285.7143/3.15 400 /3.35 
9 162.1622/1.9 181.8182/2.1 206.8966/1.9 240 /2.05 285.7143/3.15 400 / 3.6 

10 181.8182/1.9 193.5484/2.05 222.2222/1.85 240 /2.05 285.7143/3.15 
11 181.8182/1.9 206.8966/2.05 222.2222/1.85 240 /2.05 285.7143/3.15 
12 193.5484/1.9 222.2222/2.05 222.2222/1.85 260.8696/ 2.3 
13 206.8966/1.9 222.2222/ 1.8 222.2222/1.85 260.8696/2.43 
14 206.8966/1.9 222.2222/ 1.8 222.2222/1.85 285.7143/2.43 
15 222.2222/1.9 222.2222/1.9 240 / 1.7 285.7143/2.43 
16 222.2222/1.9 222.2222/1.9 240 / 1.7 285.7143/2.43 
17 222.2222/1.9 240 /1.9 240 /1.75 285.7143/ 3 
18 222.2222/1.9 240 /1.9 240 /1.75 285.7143/ 3 
19 222.2222/2.0 240 /1.9 240 /1.75 
20 222.2222/2.0 240 /1.93 240 / 1.8 
21 222.2222/1.9 240 /1.93 260.8696/1.8 
22 222.2222/1.8 240 /1.93 260.8696/1.8 
23 240 /1.65 240 /1.95 260.8696/1.95 
24 240 /1.65 240 /1.96 
25 240 /1.65 240 /1.96 
26 240 /1.65 240 /1.96 
27 240 / 1.7 240 /1.96 
28 240 / 1.7 
29 240 / 1.7 
30 240 / 1.7 
31 240 /1.64 
32 240 /1.64 
33 240 /1.64 
34 240 /1.64 
35 240 / 1.7 
36 240 / 1.7 
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size, based solely on the energy criteria, is tabulated in Tables 4.1. Also listed is the value of the 

threshold factor i?o,i a t which a 50% silence deletion is achieved. In a few cases, the threshold 

factor has been adjusted to the precision of a number of decimal places, in an attempt to reduce 

deviation from 50% to less than 0.1% a. Thus, for a 6000-frame speech sample, 3000 ± 30 data 

frames are deleted as silence. Achieving a 50-50 division of speech and silence frames helps 

to give an overall unbiased mean segmentation size. The speech sample has a speech/silence 

content ratio of approximately 1:1. 

The threshold factor _Eo,i tends to increase across the columns (i.e. for increasing frame 

size K)—at least while M, N are small. Not much of a trend, though, can be discerned down 

the rows (i.e. for increasing M,N); the factor value fluctuates, generally ending on a high 

value, when any further increase in segmentation size would be too large to allow a 50% silence 

deletion. Of course, by its very nature a larger frame size produces a larger segmentation size, 

and therefore the column ends shorter to the right side of the table. The mean segmentation 

sizes in Table 4.1 are plotted in Figure 4.10. 

The mean segmentation sizes of performing silence deletion on the same speech sample, this 

time using the A M F criteria, are tabulated in Tables 4.2 and plotted in Figure 4.11. The 

Table 4.2: Mean segmentation size of silence deletion using the A M F criteria. 

Mean Segmentation Size (ms ) / Lo;i 
M,N K = 4 K = 8 K = 16 K = 32 K = 64 K = 128 K - 250 

1 1.2823 / .95 2.4783 /.85 9.1047 /.88* 25.5319/.89* 72.2892 / .87 133.3333/ .8 206.8966/ .78 
2 5.3619 /.9567* 14.8883 / . 8 8 38.7097 / .92 98.3607 /.92* 153.8462/.88* 222.2222/ .81 260.8696/ .78 
3 23.9044/ .95* 56.0748 /.92 113.2075/ .92 162.1622/.94* 206.8966/.91* 260.8696/ .83 315.7895/.752 
4 75.9494/ .95* 139.5349/.92 171.4286/ .93 181.8182/.94* 260.8696/ .9 285.7143/ .78 
5 109.0909/ .92 181.8182/.94 222.2222/ .93 240 /.94* 240 /.88* 285.7143/.77 
6 153.8462/ .92 222.2222/.91 240 /.94* 240 /.94* 285.7143/ .88 285.7143/.74* 
7 181.8182/ .94 240 /.86 240 / .91 285.7143/.89* 285.7143/.85 
8 222.2222/ .98 240 /.86 240 /.91- 285.7143/.88* 285.7143/ .85 
9 240 / .88 

10 240 / .88 
11 240 / .86 

A M F criteria, as pointed out earlier (Section 4.1), is too unstable at small frame sizes [K =4 

'An asterisk * in the table indicates where such an attempt has failed. 
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Figure 4.10: Mean segmentation size of silence deletion using the signal energy criteria E. 



Figure 4.11: Mean segmentation size of silence deletion using the A M F criteria. 
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and 8) to be of use in silence deletion. However, when it is coupled with larger values of M and 

N, surprisingly, the segmentation results are not very different from those achieved with larger 

frame sizes. The minimum silence and speech constraints put a lower limit on the segment 

size, making silence deletion using small frame sizes more feasible. Even so, maintaining a 50% 

compression as M,N increases becomes difficult, and is impossible above M, N = 8. (This 

situation is slightly better with frame sizes of K > 16.) 

Although the A M F initially (at M, N = 1) gives smaller segmentation sizes than does the 

signal energy, moving down each column shows that the A M F sizes soon overtake the energy 

sizes. This further supports the claim that the A M F , as a criteria, is less flexible than the signal 

energy; A M F surely provides a narrower choice of segmentation sizes. 

Compression of other speech samples may yield mean segmentation sizes different from 

those in Tables 4.1 and 4.2; segmentation size varies with the speech sample. The tables do 

display a recurrence of the same numbers, in different columns, and even between the two 

tables. Apparently, segmentation occurs at discrete levels of segmentation sizes. The same 

values occurring in different columns and in different tables suggest that similar results of 

silence deletion are achieved at those settings. For example, consider the mean segmentation 

size of 181.8182 ms, achievable at the various settings shown in Table 4.3. 

Table 4.3: Combinations of parameters that produce a segmentation size of 181.8182 ms. 

Detection Criteria K M,N 
Signal energy 4 10,11 

A M F 4 7 
Signal energy 8 6,7,8,9 

A M F 8 5 
Signal energy 16 '4 

A M F 32 4 
Signal energy • 128 1 

Visualize a speech sample as recorded on a magnetic tape, with the tape then being cut 

into segments of speech and silence; the segments are then aligned along the x-axis with the 
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speech segments pointing up and the silence segments pointing down, to yield a segmentation 

profile. The similarities among the results of silence deletion at the above settings can be 

seen by comparing the segmentation profiles as shown in Figure 4.12. Aside from the exact 

same number of segments detected, these profiles also have very similar features; for instance, 

they all show a long segment pointing downward near the middle (which corresponds to the 

approximately one-second pause in the original speech sample), and a similar combination of 

speech and silence segments near the end. By contrast, Figure 4.13 shows a very different 

segmentation profile of the same speech sample for a 50%-deletion resulting in a mean size of 

98.3607 ms. 

Figures 4.14, 4.15, and 4.16 show the analytical details in the silence deletion of three of 

the above settings, that have all resulted in a mean segmentation size of 181.8182 ms. Note, 

in particular, how M and N compensate for the instability of the criteria at small frame size, 

by imposing a minimum requirement on SilenceLen and SpeechLen before the system changes 

state. 

Compression of other speech samples has shown a similar correspondence of segmentation 

size between settings of small K and large M, N, and those of large K and small M,N. While 

informal listening tests have verified their similar compression quality, they have also indicated 

some occasional end-clippings in settings with large M,N. 

In conclusion, it is found that in silence deletion, the effective segmentation size, rather than 

the frame size, determines achievable speech quality. With a suitable selection of the minimum 

silence and speech constraints, M and N, the same segmentation size is achievable at different 

frame sizes. A l l things being equal, it is therefore wiser to use the largest K possible for the 

desired segmentation size, by setting M , N = 1, which gives the smallest processing delay (due 

to fewer number of frames and therefore I/O operations). Non-unity (and differing) values of 

M and N are recommended only for applications where different segmentation sizes for silence 

and speech are desired. 
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Figure 4.12: Segmentation profiles for silence deletion using the energy criteria E at the settings: 
K = 4 M,N = 10, K = 16 M,N = 4, K = 128 M,N = 1, and for silence deletion using the 
A M F criteria at the settings: K = 4 M, N = 7, K = 8 M, N = 5, K = 32 M , N - 4 . 
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Figure 4.13: Segmentation profile for silence deletion using the A M F criteria at the setting of 
K = 32 M,N = 2. 

4.5 Initialization and Recovery from Detection Error 

Silence detection depends on a good estimate of the speech and background noise (silence) 

levels. Previous work has used preset values for initializing S'ilAvg and SphAvg [31]. 

Initialization is an issue particularly when the speech compression system has to deal with 

speech with atypical levels of energy, or background noise. Judging by the variability of energy 

levels in different telephone conversations, preset values are often poor estimates. Figure 4.17 

shows a poorly initialized execution of the silence deletion algorithm, with disastrous results. 

The silence, or more accurately here, noise energy has been grossly underestimated. The 

5peec/i5ca/e-factored SphAvg helps to sustain the energy threshold at a reasonable level for 

a short while, and detects two silence intervals; however it does not give enough time for the 

SilAvg to adapt to the significantly higher noise level (i.e. higher than the preset value for 

SilAvg). As a result, the system regards the remaining signal as speech. 

Ultimately, this problem is associated with the fault-tolerance of the silence detector: how 

many wrong decisions can it take before its stability falters. Mistaking silence frames for 

speech not only reduces the compression rate; such an error also can cause subsequent failure 

in recognizing silence frames by.lowering the long-term speech energy average. This effect is 

illustrated in Figure 4.17. Southcott [26] also cautioned about the danger of updating speech 
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Figure 4.14: 50% silence deletion of the sample "DEC23A_x.dat" using the signal energy criteria, 
at K = 4 and M,N = 10. 



Chapter 4. Analysis of System Performance 67 

Figure 4.15: 50% silence deletion of the sample "DEC23A_x.dat" using the signal energy criteria, 
at K = 128 and M,N = 1. . 
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Figure 4.16: 50% silence deletion of the sample "DEC23Ajx.dat" using the A M F criteria, at 
K = 32 and M, N = 4. 
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Figure 4.17: Silence deletion of sample "aprl8c.dat" with preset initialization values for the 
long-term averages. 



Chapter 4. Analysis of System Performance 70 

and silence averages based on silence detector decisions. The A M F criteria is no less sensitive 

to improper initialization; in fact, results seem worse. 

It could also happen that the speech energy has been set initially too high, resulting in total 

deletion of the entire speech sample. Figure 4.18 shows such a case, where the speech has little 

noise, but a low energy level. 

While no amount of fine-tuning seems able to find preset values that suit all situations, one 

simple solution is to intialize the long-term averages to values of the first data frame; that is, 

to initialize the averages at run-time, instead of prior to program execution. This is found to 

be a most reliable initialization strategy. 

The same speech sample (" jul l8A.dat"), compressed with silence deletion initialized at 

run-time, is shown in Figure 4.19. The low speech energy level is no longer a problem. The 

energy averages evidently adapt easily, albeit with delay, to current speech and noise levels. 

This dynamic initialization also allows recovery from detection errors. The noisy speech sample 

"aprl8c.dat", previously shown in Figure 4.17, is compressed in Figures 4.20 and 4.21 with 

run-time initialization. Although SilAvg is now initialized to a higher-than-nominal value, 

leading to the mis-classification of several major speech activity regions, it manages to return 

eventually to the appropriate level, enabling the algorithm to get back on track (at 2600 ms). 

This is far more desirable than an all-on or ail-off consequence of an unrecoverable detection 

error. 

Initializing the long-term averages according to the first data frame works well in 99% 

of cases, because most applications would not begin a transmission in the middle of a voice 

activity region. From the curve for the long-term averages, however, it takes about one second 

for SpeechAvg to adjust and adapt to the nominal speech level. We will investigate next how 

long it takes for the silence deletion system to adapt,, at initialization, to the speech and noise 

levels in the worst-case scenario—that is, when compression begins in the middle of a phrase. 

Figures 4.22, 4.23, 4.24, and 4.25 show the silence deletion of an abruptly begun speech 

sample, at frame sizes ranging from K = 128 to K = 4 ( M = N = 1 and all other system 
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Figure 4.18: Silence deletion of sample "jull8A.dat" with preset initialization values for the 
long-term averages. 



Chapter 4. Analysis of System Performance 72 

jul18A.dat (run-time initialized): Signal and Decision Logic (Low:SILENCE, High:SPEECH) 

5000 

E < 

E (J & E-Threshold ( ) 

600 

m 400 

E 200 < 

SilAvg (J, SphAvg ( ) & SphAvg/SphScale (_.J 
~i r ~i r n r 

_i : i_ _j u 

2(J&Z-Threshold ( ) 

|-1.5 

1h 

IS 0.5 
rr 

400 

1 200 

o 0 

-200 

SilenceLen (-ve) & SpeechLen (+ve) 

Figure 4.19: Silence deletion of sample "jull8A.dat" with run-time initiahzation values for 
the long-term averages. 



Chapter 4. Analysis of System Performance 73 

x io* apr18c.dat (run-time initialized): Signal and Decision Logic (Low:SILENCE, High:SPEECH) 

E < 

-2h 

E (_) & E-Threshold (_ J 
1 

" \ I , R . . . . N . . . . . 

\ V — 

\ ^ ^ ' ~ N 

- - \ 

1 

" \ I , R . . . . N . . . . . 

\ V — • ^ JL/.1 

1 1 1 1 1 1 1 1 1 

a> 4000 

E 2000 < 

SilAvg (J, SphAvg (_ J & SphAyg/SphScale (_.J 

800 1000 1200 
Time (ms) 

2000 

Figure 4.20: Silence deletion of sample "aprl8c.dat" with run-time initialization values for 
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Figure 4.21: Silence deletion of sample "aprl8c.dat" with run-time initialization values for 
the long-term averages (ii). . 
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parameters set at default values, too). The surprising result is that a smaller segmentation size 

does not facilitate a quicker adaptation of the long-term averages, even though fewer instances 

of mis-classification seem to have occurred than with larger frame sizes. Adaptation of the 

averages is still mainly a function of the averaging period (one second for speech and 128 ms for 

noise [31]). It takes approximately one second, regardless of segmentation size, for either the 

speech or the silence average to come to its nominal level. Correct detection of speech begins 

somewhat earlier, fortunately. 

4.6 Rate of Compression 

Together with playback speech quality, the most important performance measure of a speech 

compression system is the amount of compression achieved. Compression with silence deletion 

results in a variable bit rate, because the amount of compression depends on the amount of 

silence in the speech signal, which varies with the speaker's activity. 

Studies [34, 35] have shown that for a normal casual two-person telephone conversation 

the speech and silence periods are about 40% and 60% respectively, and implementations of 

silence deletion algorithms [54, 23, 31, 24] suggest that, for typical speech samples, optimal 

compression occurs with removal of 40-50% of the original acoustic material. 

The following sections discuss how the compression rate is affected by various factors. A 

choice between the two detection criteria, the signal energy and the A M F , will then be presented. 

4.6.1 Effects of Detection Threshold 

Whatever the frame (segmentation) size, the detection threshold ultimately determines the 

amount of compression achieved. There is no guarantee that a particular threshold level will 

always achieve a prespecified compression rate. The relationship between compression rate and 

threshold value varies with the speech sample. 

In silence compression, it is desirable to remove all silence intervals between sentences, 

between words, and if possible within words (intra-word silences), as long as there is not much 
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Figure 4.22: Silence deletion of sample "abrupt.dat" with run-time initialization, at a frame 
size of K = 128. 
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Figure 4.23: Silence deletion of sample "abrupt.dat" with run-time initialization, at a frame 
size of K = 64. 
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Figure 4.24: Silence deletion of sample "abrupt.dat" with run-time initialization, at a frame 
size of K = 16. 
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Figure 4.25: Silence deletion of sample "abrupt.dat" with run-time initialization, at a frame 
size of K = 4. 
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of an adverse effect on speech quality. Speech quality assessment is the topic of the next chapter. 

Here we present data to show the compression rates and how to control these. 

Silence deletion has been performed on a diverse selection of speech samples, with different 

threshold settings (and no speech coding; i.e. speech frames remain in linear P C M form). The 

signal energy and the A M F criteria have been used independently, and the resulting compression 

rates (for a frame size of K = 64) are plotted in Figures 4.26, 4.27, and 4.28. In the figures, 

the ratio of silence frames to total frames is plotted in solid lines, the ratio of silence codes 

(i.e. the number of silence intervals) to total frames with plus signs, and the actual reduction 

in size, in dotted lines. The compression characteristics of the energy criteria are shown on 

the left column, and those of the A M F criteria, the right. This is a more revealing plot than 

simply plotting the percentage of compression, because silence codes can sometimes make a 

noticeable contribution to the final size (especially at small frame sizes); at the same time, the 

silence frames ratio generally gives a good estimate of the compression rate. For the present 

case (K = 64), the silence frames ratio approximates the reduction curve so well that the dotted 

line almost always conincide with the solid line. This is because the physical size of a silence 

code (6 bytes)—the overhead—is negligible compared to that of a data frame (128 bytes). 

As shown, the energy threshold has a more predictable, consistent pattern, with a use

ful range of from 1.5 to 2.5, normally yielding a compression rate of approximately 40% to 

60%. The variation is mostly attributable to characteristics of the speech sample; for example, 

"apr l6 .da t" is a noisier sample, " lmiz237.dat" has a rather alow energy level, "sepl4d.dat" 

contains few talkspurts in the midst of silence, and "nov01.dat" is a highly concentrated 

recorded message with few pauses for breath. It can be seen from the compression curves that, 

for all applications, Eotj = 2.0 is a good threshold. 

By contrast, the A M F threshold behaves rather erratically. Its range of useful values is 0.7 

to 0.9, but even the rather conservative value of 0.8 does not yield any consistent compression 

percentage. At a threshold factor of 0.8, the compression rate drops to 0% for one sample and 

rises to 90% for another (see "aprl6" and "DEC03G", respectively, in Figure 4.26), while often 
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Compression Analysis of K64MN1 
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Figure 4.26: Compression rate against threshold factors, for a frame size of K — 64 (i). 
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Figure 4.27: Compression rate against threshold factors, for a frame size of K = 64 
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Compression Analysis of K64MN1 
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Figure 4.28: Compression rate against threshold factors, for a frame size of K = 64 
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staying at a ineffectively low level (see "aug04" in Figure 4.27, "pr incess" and "sepl4d" in 

Figure 4.28). In all those cases the energy criteria gives a good and consistent compression 

rate. It can be concluded from its compression characteristics alone, that the A M F is not very 

reliable. 

4.6.2 Effects of Frame Size 

While the energy threshold factor determines the general rate of compression, the frame size 

exerts its influence, through the segmentation size, on the number of segments, and hence 

the number of silence codes generated. With a smaller frame size, more silence codes can be 

expected, which imposes a larger compression overhead. The compression characteristics for 

silence deletion at K — 4 are plotted in Figures 4.29, 4.30, and 4.31. The figures show the 

compression rates versus the threshold factors for the same 15 speech samples as shown in 

Figures 4.26, 4.27., and 4.28. ~ 

A brief comparison between the two sets reveals one major difference: for the smaller frame 

size ( i i = 4), the reduction curves (in dotted lines) are significantly lower than the silence 

frames ratios. The compression overhead is much higher because the silence code size is large 

compared to the size of a deleted segment (a ratio of 6:8). For silence deletion using the energy 

threshold, the actual reduction in size is typically 5-10% lower than that achievable at K = 64, 

and sometimes even 20% lower. The compression overhead is even larger if the A M F criteria 

is used instead. 

Silence compression at a small frame size (i.e. small segmentation size) is inefficient. Speech 

frames encoded by /z-law P C M or A D P C M will actually experience an overall increased size. 

For a frame size of K = 4 (0.5 ms), a coded speech frame takes up (4)(1) = 4 bytes for /z-law 

P C M , and (4)(0.5) = 2 bytes for A D P C M , whereas a silence code is 6 bytes long. Small silence 

frames are often deleted individually; a segment that could have been coded as speech in 2 or 4 

bytes is then represented by a 6-byte silence code. This is obviously a misuse of silence deletion. 
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Figure 4.29: Compression rate against threshold factors, for a frame size of K = 
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Figure 4.30: Compression rate against threshold factors, for a frame size of K = 4 (ii). 
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Figure 4.31: Compression rate against threshold factors, for a frame size of K = 4 (iii). 



Chapter 4. Analysis of System Performance 88 

4.6.3 Effects of Background Noise Level 

Crosstalk, radio reception from the cordless or mobile unit, and noise in a sometimes changing 

background, are some of the factors that can conspire to add to silence detection difficulties. 

Rarely is noise absent in any telephone conversation, especially with the advent of wireless 

phones for domestic use and cellular phones. Users of such telephones are familiar with the 

noise associated with poor radio signal reception, which is not unlike that encountered in F M 

radio broadcasts. 

Noise can be present, including that from machinery or other sources, such as in a car, on 

the road, or in a public place. 

When speech signal originates from a poorly grounded telephone handset, noise in the form 

of a low hum may intrude. In one experimental setting, a 60 Hz hum, possibly coming from 

the the power lines, is found in the speech signal on the telephone line. 

Figures 4.32 and 4.33 plot the compression characteristics of silence deletion on speech with 

progressively more background noise. In each figure, the compression curve of the original 

speech sample is presented at the top, followed underneath by those of progressively noisier 

samples (made by artificially adding noise to the original). The left and right hand columns 

apply to compression with the energy and A M F criteria, respectively. In both figures, as the 

speech gets progressively noisier, there is an increase in compression rate using the energy 

criteria; as the SNR drops from about 22 dB in the original to 7 dB or 6 dB in the noisiest 

sample, the compression rate increases by almost 20% (at a threshold factor of 2.0). With the 

A M F criteria, however, the compression rate decreases; at the A M F threshold factor of 0.8, 

compression declines by over 30% as the noise increases. 

In most applications involving noisy speech, the detection characteristics of the energy 

criteria is preferable to that of the A M F criteria. Speech corrupted by noise has lost much 

information already; preserving corrupted information with precious storage or transmission 

capacity would be uneconomical under most circumstances. And it will be shown in Chapter 5 

that noisy speech can withstand over-compression without much noticeable degradation. 
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Figure 4.32: Compression characteristics of progressively noisier speech samples based on the 
sample "DEC23Ajx.dat" (compressed at K = 64, M = N = 1) 
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DEC23D_s with Noise 
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Figure 4.33: Compression characteristics of progressively noisier speech samples based on the 
sample "DEC23D_s.dat" (compressed at K = 64, M = N = 1) 



Chapter 5 

Subjective Listening Evaluation 

As the amount of compression increases, playback quality of the compressed speech deteriorates. 

There comes a point at which the loss in quality or intelligibility ceases to be a reasonable cost 

for the amount of compression achieved; optimal compression occurs somewhere before this, 

when both the compression factor and the speech quality are satisfactory. 

Speech quality has many perceptual dimensions, the most important ones being intelligi

bility and naturalness of the speech. Perceived speech quality eventually has to be determined 

subjectively by the listener. 

In recent years, in an attempt to develop inexpensive methods for the characterization of 

communication systems and to supplement or possibly replace conventional subjective assess

ments, efforts have been made to derive some objective measures of speech quality [68, 69]. 

Notable ones include those based on the cepstral distance, on the coherence function, on the 

concept of mutual information, on pattern recognition concepts [70, 71], on wider band (such 

as 4-tone) SNR measurements, and on amplitude jitter [72]. As yet, it has not been possible 

to devise an objective criterion that correlates well with speech quality for a variety of speech 

coders and input signals; consequently, listening tests conducted with human subjects yielding 

the mean opinion score (MOS) remain the standard procedure for the evaluation of speech 

quality [7, 24, 23, 73, 26, .25, 6, 5, 74, 11]. 

5.1 Objectives 

Conducting subjective tests is expensive and time consuming. In designing the tests, we must 

first have our goals clearly identified, partly in anticipation of the possible test outcomes. The 

91 
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tests serve, on the one hand, to discover the perceived quality of reproduced speech, and on the 

other, to confirm expected results. 

In our evaluation of the present speech compression system, we are concerned with the 

quality of speech that results from the application of silence deletion to telephone speech, as 

affected by varying coding and decoding parameters, and by differing speech quality of the 

source. 

On the application level, there are five adjustable parameters in a silence compression sys

tem: the amount of compression, the amount of silence re-inserted on playback, the energy level 

of the re-inserted silence, the coding method for speech frames, and the segmentation size. 

While it can be expected that optimal compression with full re-insertion of all silence in

tervals at the original noise level, will result in the best quality in compressed speech, we will 

investigate how much degradation is perceptible with over-compression, shortened silence in

tervals upon playback, and reduced noise levels in playback. 

As suggested earlier, speech quality is affected to a large extent by the segmentation size, 

and hence by the frame size. Compression using a range of frame sizes will be evaluated. In 

addition, the effect of silence deletion on speech coding—in particular on A D P C M — w i l l be 

investigated. It is strongly suspected that A D P C M , because of its adaptive nature, is adversely 

affected by small frame sizes. A few tests will be conducted to confirm this suspicion. 

Finally, all comparisons will be made between the compression results of a clear original 

sample and those of a noisy one. The robustness of the system against background noise can 

thus be evaluated. 

5.2 Scoring 

The most commonly performed tests are the absolute category rating (ACR) listening tests 

[75, 6] in which the subjects listen to short stimuli (typically eight seconds each),.and rate the 

quality of these speech samples on a five-point scale shown in Table 5.1. Responses selected by 

each listener are coded with the'rating numbers, and the arithmetic average over all scores for 



Chapter 5. Subjective Listening Evaluation 93 

a given test condition yields the mean opinion score (MOS). 

Table 5.1: Quality rating scale for an absolute category rating (ACR) test. 

Description Rating 
Excellent 5 
Good 4 
Fair 3 
Poor 2 
Bad , 1 

Since our evaluation includes speech with high levels of background noise, a degradation 

category rating (DCR) test appears more appropriate for our purposes. Following the practice 

of other researchers [76, 75, 6], a set of modified MOS ratings (Table 5.2) have been used. A 

Table 5.2: Quality rating scale for a degradation category rating (DCR) test. 

Description Rating 
As good as, or better than the "Good" sample 5. 
Good, but not as good as the "Good" sample 4 
Fair (somewhere between 4 and 2) 3 
Bad, but not as bad as the "Poor" sample 2 
As bad as, or worse than the "Poor" sample 1 

slight modification to the standard D C R test has been made, in providing two reference samples 

instead of one; the "Good" reference is the original unprocessed sample, while one of the over-

compressed and under-expanded samples has been chosen as the "Poor" reference. This serves 

to normalize the five-point scale, so as to fully utilize its entire range. 

5.3 Organization and Results 

There are five variables in total, to be studied for each of the clear and noisy samples. The 

variables and the values they take on are shown in Table 5.3. Permutations of the first four 

amount to 2 x 2 x 2 x 4 = 32 samples. Add to that.the four A D P C M coded samples, one for 
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Table 5.3: Variables subjectable to evaluation by listening tests. 

Variable Values 
Amount of compression 
Amount of re-inserted silence 
Energy level of re-inserted silence 
Frame size (K) 
Speech coding 

.50%, 60% 
100%, 50% 
100%, 50% (of original) 
4, 16, 64, 128 
/x-law P C M , A D P C M 

each frame size, and we have 36 samples altogether. 

Two sets of 36 processed samples each have been generated, one for the clear original and 

one for the noisy original. Both original speech samples contain the following sentences: 

The wide road shimmered in the hot sun. 

Place a rosebush near the porch steps. 

which have been chosen from a set of phonetically balanced Harvard sentences, recommended 

by the I E E E [77]. The first sentence is spoken by a male, the second by a female, both of whom 

are Western Canadian native speakers of American English. 

The listening test is divided into two sessions, the first presenting samples generated from 

the clear sample, the second, from the noisy sample. The setup is installed on the same A T 

compatible personal computer, as is the speech compression system. 

In each part, the 36 samples are completely randomized in their order of presentation. 

At the beginning the listener hears a "Good" sample and a "Poor" sample for reference and 

orientation. The listening test proper then begins, with the processed samples presented one 

by one. After hearing each processed sample, the listener can choose to 

• replay the processed sample any number of times, or 

• replay the "Good" reference sample any number of times, or 

• replay the "Poor" reference sample, again any number of times, or 
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• grade the processed sample with a number according to Table 5.2. 

Following grade assignment, the test will proceed with the next processed sample, until the end 

of the session. The option to replay the reference speech samples any number of times allows a 

more accurate grading for each sample. 

For each part of the test, the original unprocessed speech sample serves as the "Good" 

reference. The "Poor" sample is the one compressed at 60%, with 50% re-inserted silence at 

50% of the original noise level, processed at a frame size of K = 4; this combination is believed 

to produce the worst quality, which is confirmed unanimously by all test subjects. 

There were 29 subjects who took the listening test, consisting of native and non-native 

English speakers. These include staff and student members of the Electrical and Computer 

Engineering Department, and others from the university campus. Appendix A includes the 

instructions they received, and their individual test sample scores. 

Tables 5.4 and 5.5 summarize the the parameters subject to evaluation by listening tests,, 

their permutations, and the corresponding sample number. A mean opinion score (MOS) and 

the associated standard deviation, calculated from the 29 scores, are shown at the end of each 

row of the tables. Standard deviation are less than 1.0 for 90% of all samples, suggesting 

general consistency of our listening group. 

5.3.1 Speech Coding 

A D P C M does not provide a static, constant mapping between coded values and samples of the 

uncoded waveform. A D P C M basically records the difference between samples, with as little 

quantization error as possible. Because of an adaptative feedback mechanism, the error is kept 

small in the long term. But adaptation takes time, so the error is often large at the beginning 

of each adaptation period. 

Silence deletion divides a speech signal into segments of speech and silence, necessitating 

the A D P C M coder to restart the adaptation process at the beginning of each speech segment. 

This multiplies the instances of large errors. 
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Table 5.4: Results of Subjective Listening.Test Part 1 (samples produced from a relatively clear 
original). 

Sample 
% Compressed % Re-ins Sil % Sil Energy Frame Size (A) Score 

Sample 50 60 100 50 100 50 128 64 16 4 ADPCM Mean Std Dev 
01 v7 V V V 4.00 0.89 
02 v7 v7 • v7 v7 v7 3.72 0.84 
03 s/ v7 V- v7 3.90 0.94 
04 v7 V v7 v7 v7 3.72 0.88 
05 v7 V V v7 3.69 0.97. 
06 V V 7 . V v7 v 7 3.34 0.86 
07 V V v7 v7 3.24 1.06 
08 v7 V V v7 v7 3.03 0.98 
09 v7 v7 v7 2.31 0.85 
10 v7 v7 v7 v7 3.14 0.88 
11 V V V v7 2.79 0.82 
12 v7 v7 v7 v7 2.52 0.83 
13 V V v7 V 3.48 0.91 
14 v7 v7 V 7 v7 3.69 0.85 
15 v7 V v7 v7 3.59 0.95 
16 V v7 V v7 3.24 0.91 
17 V V V v7 2.03 0.68 
18 v7 V V v7 2.66 0.81 
19 v7 v7 V v7 2.24 0.69 
20 V V v7 v7 2.45 1.02 
21 V V7 v7 v7 3.93 0.92 
22 V v7 v7 4.14 0.74 
23 V v7 V v7 3.24 0.87 
24 v7 V • v7 2.83 0.71 
25 V s/ V v7 2.45 0.57 
26 V v7 v7 2.90 0.72 
27 V v7 v7 1.66 0.67 
28 v7 V V v7 1.17 0.47 
29 V v7 V v7 3.86 0.83 
30 v7 v7 V v7 3.79 0.77 
31 V v- V v7 2.90 0.77 
32 V V V v7 2.59 0.95 
33 V V V v7 2.14 0.69 
34 v7 V V v7 2.79 0.82 
35 v7 v7 v7 1.48 0.69 
36 v7 v7 V v7 1.07 0.26 
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Table 5.5: Results of Subjective Listening Test Part 2 (samples produced from a relatively noisy 
original). 

Sample % Compressed % Re-ins Sil % Sil Energy Frame Size (K) ADPCM Score Sample 50 60 100 50 100 50 128 64 16 4 ADPCM Mean Std Dev 
01 V s/ V V 4.17 0.76 02 V y y 3.45 0.78 03 y V V y 3.55 0.78 04 V y 3.45 0.78 05 V V y 3.76 0.95 06 V , V y y 3.66 1.11 07 V V y 3.59 1.05 08 V y y. 2.48 0.83 09 3.41 0.82 10 V y • V y 3.38 0.78 11 V V y 3.69 0.93 12 V y 3.24 0.99 13 V V V 3.21 0.86 14 V V V y 2.97 0.78 15 y 3.34 0.81 16 V V V y 3.21 1.01 17 y V V 3.07 0.92 18 V V y 3.07 0.75 19 V V V y 3.41 0.82 20 V y 3.10 0.82 21 V V V 3.48 0.74 22 V y V y 3.38 0.68 23 V V V y 2.48 0.91 24 V V V y 1.79 0.86 25 V V V 3.14 0.83 26 V y 2.83 1.00 27 V V V y 1.97 0.87 28 V V V y 1.10 0.31 29 V V V V 3.14 0.95 30 V V V y 3.17 0.76 31 y V y 2.48 0.74 32 V y 1.72 0.80 33 V V V V 2,69 0.71 34 V y 2.52 0.69 35 V V y . y 1.69 0.66 36 V y y 1.03 0.19 
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Figure 5.1 illustrates the success and failure of A D P C M in reproducing small segments of 

the original speech signal, after the application of silence deletion. On top is the uncoded speech 
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Figure 5.1: Silence compressed speech recovered with different speech codings: //-law P C M and 
A D P C M . 

waveform, followed below by ones decoded from the silence-compressed waveforms with /z-law 

P C M and A D P C M speech coding, respectively. The square wave indicates the speech and 

silence intervals; the low and high edges correspond to the silence and speech coded portions, 

respectively. It can be seen that, while /z-law P C M is able to reproduce virtually all the 

speech segments, A D P C M fails miserably on segments shorter than 2 ms. Apparently, it takes 

approximately 1 ms for the A D P C M coder to successfully follow the waveform. 

One expects A D P C M coding to be less successful than P C M when incorporated into silence 

deletion, especially at frame sizes of less than 2 ms, or K < 16, which yield a smaller segmen

tation size and hence more segments. However, test results show a perceived degradation of 

file:///hfi/l/
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around 0.2 MOS unit for A D P C M coded samples at all frame sizes. (Compare Samples 1/3/5/7 

with Samples 2/4/6/8 in both tables; see Figure 5.2.) The quality of speech compressed at small 

frame sizes suffers significantly solely from smaller segmentation; added degradation of A D P C M 

at small frame sizes is therefore not perceptible. ' 
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Figure 5.2: Comparison of MOS between A D P C M and /x-law P C M . 

5.3.2 Amount of Compression 

Over-compression (about 60%) is likely to result in speech of poorer quality than is optimal 

compression of around 50%; we are interested in quantifying the resulting incremental degra

dation. , • 

Comparison is made between Samples 1/3/5/7 and 9-12, 13-16 and 17-20, 21-24 and 25-28, 

and between 29-32 and 33-36 (plotted in Figure 5.3). One observes that noisy speech samples 

can withstand more compression with little perceptible degradation. Over-compressing the 
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clear sample results in a decrease of 1.0-1.5 MOS units, while the noisy sample experiences a 

drop of only 0.5 MOS unit. 
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Figure 5.3: Comparison of MOS between 60% and 50% silence compression. 

5 . 3 . 3 Amount of Re-inserted Silence 

Re-insertion of half of the silence intervals (by expanding each silence interval to half its original 

length) results in faster playback. Comparing Samples 1/3/5/7 with 21-24, and 9-20 with 

25-36 (shown in Figure 5.4), reveals that, as long as the quality of the original sample is 

good, speeded playback is generally acceptable. The frame size, however, has to be kept at 

K > 16; compression with smaller K produces an effect similar to over-compression, which 

usually requires full expansion of the compressed silences. 

When the re-inserted comfort noise is reproduced at half its original energy level, a faster 

playback can enhance speech quality. In particular, compare the scores between Samples 
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29/30/33/34 and 13/14/17/18 in Table 5.4. 

5.3.4 Ene rgy L e v e l of Re- inser ted Silence 

The re-insertion of comfort noise improves speech quality in playback [23, 7]. Re-inserting half 

as much noise energy as in the original sample engenders a degradation of less than half an 

MOS unit in most cases. (Compare Samples 1/3/5/7 to 13-16, 9-12 to 17-20, and 21-28 to 

29-36, plotted in Figure 5.5.) 
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Figure 5.5: Comparison of MOS between 50% and 100% silence energy in expansion. 

5.3.5 Segmentat ion Size 

Contrary to previous findings [31], the smallest segmentation size does not produce the best 

reconstructed speech quality on telephone recorded samples, especially with faster playback. In 



Chapter 5. Subjective Listening Evaluation 103 

fact, it often gives the worst quality. Comparisons can be made among each subgroup of four 

samples in Tables 5.4 and 5.5 (shown in Figure 5.6). 

K=4(J.K=16( ), K=64 (_•_). K=128 (..) 

Various Samples 

Figure 5.6: Comparison of MOS between 4 frame sizes. 

Small frame sizes may excel over larger ones when, over-compressing a noisy speech sample 

(compare Samples 19 & 20 with 17 & 18, in Table 5.5). But even this advantage rarely occurs. 

Generally, K = 64 (frame size of 8 ms) gives the best all-round performance, with K = 128 

following in second place. 

5.3.6 Background Noise 

Source quality is characterized by the signal-to-noise ratio (SNR). A higher level of background 

noise decreases the SNR of the speech signal while increasing the difficulty of silence (or voice 

activity) detection. 

Speech samples with background noise can be recorded either from a noisy environment, 
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or by adding prerecorded noise to clean speech samples. For noise levels at least 10 dB below 

the speech level, people's talking behaviour is not yet changed by the Lombard effect, and 

synthetically added noise can serve as a good approximation of the ambient noise [75]. 

The noisy sample used in this study is created from the clear sample by adding pre-recorded 

telephone noise. This has been found to provide the necessary control over the SNR for our 

investigations. While the clear sample is measured to have a 22-dB SNR, the noisy one has 

been created with an SNR of 10 dB. 

Comparison between Table 5.4 and Table 5.5 (plotted in Figure 5.7) shows that the speech 

compression system works well with clear speech, and even better with noisy speech. A 50% 

compression can be achieved with a small degradation of about one rating unit. 
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Figure 5.7: Comparison of MOS between clear and noisy samples. 



Chapter 6 

Conclusions 

A speech compression system based on adaptive silence deletion has been implemented, as a 

tool for analysis and evaluation. The design of the system emphasizes simplicity over state-of-

the-art coding efficiency, but still enables reduction of telephone speech from an uncoded rate 

of 128 kbps down to 16 kbps with a little more than one MOS rating unit of degradation (see 

Samples 2 and 4 in Table 5.4). The following sections summarize the major findings of the 

analysis and evaluation, and suggests some topics for future research. 

6.1 Summary of Findings 

Three low-complexity criteria for silence detection have been studied: the short-time average 

magnitude (or energy) E, the short-time average zero-crossing rate Z, and the average magni

tude factor ( A M F ) . Our findings confirm that the limited usefulness of the zero-crossing rate is 

restricted to relatively noise-free speech processed at large frame sizes (over 2 ms), and therefore 

is generally ineffective for telephone speech. 

The A M F has been considered as an alternative to the energy criteria. Due to its finer 

temporal resolution, it behaves rather erratically at small frame sizes, but offers comparable 

detection performance to the energy criteria when longer frames are processed. Use of the 

A M F , however, is handicapped by inconsistent compression performance. A good threshold 

factor cannot be found that yields reliable compression for all levels of background noise. The 

signal energy therefore remains the best criteria in the arena of low complexity silence detection. 

Efficient calculations of the long-term averages of key parameters have been implemented, 

resulting in a reduction in storage requirement (for buffering) and an algorithmic simplification. 

105 
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Other aspects of silence compression have been studied as well. 

Dynamic initialization at run-time has been found to be much more reliable and robust than 

static initialization with preset values. With run-time initialization, the long-time averages are 

set to values that are never too far away from the actual speech and noise levels. In the worst 

case, it takes about one second for the averages to adapt to any new levels of speech and noise. 

Segmentation of the compressed speech has been studied. The segmentation size is found 

to be dependent on the frame size (it'), the minimum length of silence ( M ) , and the minimum 

length of speech (N). The best results are obtained with M = N = 1. 

Contrary to previous findings [31], speech quality and compression efficiency have been 

found to peak at a frame size of between K = 64 and K = 128; that is, between 8 and 16 ms. 

Based on the compression characteristics of various speech samples recorded from the telephone 

network, the optimal energy threshold factor WE = 2.0, which typically yields a compression 

of from 40% to 60%, depending on the speech content of the sample. It works well in a wide 

range of operating environments, with different or varying speech and noise levels. 

6.2 Future Work 

The present work has left open several areas for future research. With recent advances in 

speech coding techniques, some low bit rate coders have been standardized (e.g. L D - C E L P 

and C S - A C E L P ) . How well silence deletion can be integrated into these systems remains to be 

studied. 

The silence compression algorithm does not include security measures against bit errors or 

malicious attacks. The effect of bit errors on a silence compression system can be investigated 

and quantified. One serious pitfall with the present system lies in silence expansion: one six-byte 

silence code could generate up to seventeen minutes of silence, which would use large amounts of 

storage space or channel capacity on the receiving end. Computer hackers could easily exploit 

this loophole to hoard disk space in such a voice storage system, or could deactivate a voice 

channel by flooding it with noise expanded from fraudulent silence codes. 
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A limit could be imposed on the amount of silence that can be coded, but this strategy 

ultimately defeats the purpose of silence compression. Alternatively, an error-detection mech

anism or digital authentication scheme could be proposed for use with the silence compression 

system. 

Finally, silence compression creates a compressed source with variable bit rate. The issues 

of buffering, delay, and bit rate control could usefully be addressed. 
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Appendix A 

Listening Tests 

A . l Instructions 

A session of subjective listening test consists of two parts, each presenting 36 test samples to 

the subject for evaluation. Prior to Part 1 of the test, the subject is given the instructions 

shown in the following screen dump (Figure A . l ) . Part 2 has exactly the same instructions. 

S I L E N C E C O M P R E S S I O N 
S U B J E C T I V E L I S T E N I N G T E S T 1 

INSTRUCTIONS: 
Thank you f o r t a k i n g p a r t i n t h i s l i s t e n i n g t e s t . For your 
o r i e n t a t i o n , you w i l l f i r s t hear the "Good" sample and the 
"Poor" sample through the telephone handset. A s e r i e s of 36 
speech samples w i l l then be played back to you one at a time. 
A f t e r h e a r i n g each sample you can do one of the f o l l o w i n g . 

• Rank the q u a l i t y of the speech sample w i t h a number: 
5 - As good as, or b e t t e r than the "Good" sample 
4 - Good, but not as good as the "Good" sample 
3 - F a i r (somewhere between 4 and 2) 
2 - Bad, but not as bad as the "Poor" sample 
1 - As bad as, or worse than the "Poor" sample 

• Or i s s u e a o n e - l e t t e r command: 
G - P l a y the "Good" r e f e r e n c e sample again 
P - P l a y the "Poor" r e f e r e n c e sample again 
R - Replay the c u r r e n t sample 

Press any key to proceed 

Figure A . l : On-screen instructions for the subjective listening tests. 

A. 2 Scores 

A total of 29 subjects took the test and their contributions are recorded in Tables A . l and A.2. 
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Table A . l : Individual scores for Subjective Listening Test Part 1. 

S . ' S 
a t 
m ' d 
p R M D 
1 C W A C S E C K S J P H M C S R M J D S G T C A E K E G C 0 e 
e L D L B C S L L T C L C N N S L N W M W S C L C S B W S C S v 

04 4 4 5 3 4 4 4 4 4 4 4 5 3 3 4 4 3 3 5 3 3 5 4 2 4 4 4 4 1 3 72 0 88 
07 2 3 5 3 3 4 3 4 3 5 2 4 2 2 4 5 4 2 4 2 4 4 3 2 4 3 4 3 1 3 24 1 06 
27 1 3 1 3 1 1 2 2 2 1 2 2 1 2 1 2 1 1 2 2 3 2 1 2 1 1 2 2 1 1 66 0 67 
24 2 3 3 4 3 4 2 3 2 4 2 4 2 2 3 2 3 2 3 3 4 3 2 2 3 3 3 3 3 2 83 0 71 
01 5 3 4 2 4 5 4 5 5 3 3 3 4 4 5 5 5 3 5 4 4 5 4 3 5 3 4 4 3 4 00 0 89 
32 2 4 2 2 3 3 2 3 2 5 2 4 2 2 1 3 4 1 3 2 3 3 1 2 3 2 3 3 3 2 59 0 95 
34 3 3 2 4 3 3 4 3 3 2 2 2 1 3 2 4 2 3 3 3 2 3 4 2 3 2 2 4 4 2 79 0 82 
12 2 2 4 3 2 3 2 3 3 2 2 3 2 1 2 3 1 2 4 2 2 4 3 2 4 2 3 3 2 2 52 0 83 
13 4 3 4 4 4 3 3 4 4 5 3 4 2 2 4 5 2 3 4 3 2 5 5 3 3 3 3 4 3 3 48 0 91 
31 2 3 3 3 3 3 3 3 3 5 3 4 3 2 2 4 4 2 3 2 3 4 2 2 3 2 3 2 3 2 90 0 77 
10 4 2 4 4 3 3 3 4 4 2 3 2 2 2 3 2 2 3 4 4 3 4 3 3 4 4 3 5 2 3 14 0 88 
14 4 3 5 3 5 4 4 4 4 4 4 4 3 3 4 4 2 3 5 4 2 5 4 3 4 4 3 4 2 3 69 0 85 
09 3 2 5 1 2 3 2 3 2 2 3 2 2 2 3 1 2 2 3 1 2 4 2 2 3 2 2 2 2 2 31 0 85 
35 2 1 1 3 2 3 1 2 1 1 2 1 1 1 1 1 2 1 1 2 1 1 2 2 1 3 1 1 1 1 48 0 69 
16 3 3 4 4 3 5 3 4 3 5 2 4 2 2 3 4 3 2 5 3 3 4 3 3 3 4 3 2 2 3 24 0 91 
23 2 3 4 4 3 5 3 4 2 5 3 4 2 2 3 4 3 3 4 4 4 3 4 3 2 3 3 3 2 3 24 0 87 
19 2 1 3 2 2 1 2 3 3 2 2 2 1 1 2 3 2 2 3 3 2 3 3 2 3 3 2 3 2 2 24 0 69 
28 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 3 1 1 1 1 17 0 47 
08 2 3 5 2 3 4 3 4 4 4 2 4 2 2 3 2 3 2 4 3 3 4 2 2 5 4 3 2 2 3 03 0 98 
20 1 1 2 3 2 4 2 3 3 2 2 2 2 1 2 5 1 2 3 2 2 4 2 2 4 4 3 3 2 2 45 1 02 
21 3 4 2 5 4 5 3 4 4 5 3 4 3 5 4 5 3 4 4 5 4 4 4 3 5 5 3 5 2 3 93 0 92 
05 3 4 5 3 4 5 4 4 5 3 4 4 2 3 4 4 4 3 5 4 3 4 3 3 5 5 3 3 1 3 69 0 97 
33 3 2 1 2 3 2 3 3 2 2 2 2 1 2 1 2 3 3 3 1 2 2 3 2 1 3 2 2 2 2 14 0 69 
11 3 5 4 3 3 2 3 3 3 2 3 2 2 2 3 3 2 2 '4 3 1 4 3 2 3 3 3 3 2 2 79 0 82 
06 3 3 5 2 3 4 3 4 4 4 3 4 3 3 4 3 3 2 5 2 3 4 3 3 5 4 3 3 2 3 34 0 86 
22 3 5 4 5 5 5 4 4 3 5 3 4 3 5 4 5 4 5 4 4 5 4 4 4 5 4 3 4 3 4 14 0 74 
25 3 2 2 3 3 3 2 3 2 3 2 3 1 2 2 2 2 2 3 2 3 3 3 3 2 3 2 3 2 2 45 0 57 
36 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 07 0 26 
15 3 5 4 4 3 5 3 4 4 4' 3 3 2 3 3 5 3 2 4 3 2 5 3 4 5 4 3 5 3 3 59 0 95 
18 2 2 3 3 2 2 3 3 3 2 3 2 2 1 2 4 2 2 4 4 2 4 3 3 3 4 2 3 2 2 66 0 81 
26 3 4 2 4 3 4 3 3 3 2 2 2 2 3 2 4 3 4 3 2 3 3 3 3 4 3 2 3 2 2 90 0 72 
02 5 3 5 3 4 4 4 5 4 .3 5 3 4 3 4 5 4 3 4 4 3 4 3 3 5 3 2 3 3 3 72 0 84 
03 4 3 5 4 3 4 5 4 5 5 5 5 3 3 5 5 3 2 4 2 4 5 4 4 4 3 3 4 3 3 90 0 94 
29 3 3 5 4 5 4 4 4 4 5 3 4 3 5 4 5 4 4 2 4 3 4 4 4 5 3 2 4 4 3 86 0 83 
30 3 4 5 4 4 4 4 4 4 5 3 4 3 4 3 5 4 4 2 4 3 4 3 4 5 4 2 4 4 3 79 0 77 
17 2 1 2 2 2 2 4 3 2 2 2 2 1 2 2 2 2 1 3 2 1 3 2 2 1 2 2 3 2 2 03 0 68 
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Table A.2: Individual scores for Subjective Listening Test Part 2. 

S , S 
a t 
m d 
p R M D 
1 C W C S E C M A S J P H M C S R M J D S G T C A E K E G C 0 e 
e L D B C S L T L T C L C N N S L N W M W S C L C S B W S C S v 

01 4 5 4 4 4 4 3 5 5 3 2 5 4 4 4 4 4 5 5 5 3 4 4 4 5 5 4 5 4 4 17 0 76 
20 2 5 3 3 4 2 4 3 4 3 3 4 2 3 2 3 2 2 4 3 3 4 2 3 4 4 3 3 3 3 10 0 82 
05 3 4 5 5 5 3 3 5 5 3 2 4 3 3 4 4 3 2 3 5 3 5 3 5 4 4 3 4 4 3 76 0 95 
28 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 10 0 31 
31 2 3 3 2 3 3 4 3 3 3 3 3 3 1 2 1 2 2 1 2 3 2 2 3 3 3 2 3 2 2 48 0 74 
10 3 3 5 3 4 4 3 5 3 3 3 3 3 3 3 3 4 4 2 4 2 4 3 3 4 4 2 4 4 3 38 0 78 
14 4 4 4 4 3 4 4 4 3 2 3 2 2 3 2 2 2 2 3 3 2 3 4 3 3 3 2 3 3 2 97 0 78 
24 1 2 3 2 2 1 3 1 2 5 2 2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 2 2 1 79 0 86 
02 3 4 4 4 3 3 3 5 4 2 3 4 3 3 3 4 4 2 4 5 3 4 3 4 3 4 2 4 3 3 45 0 78 
35 2 2 3 1 2 2 2 1 2 1 2 1 2 1 1 1 2 2 1 2 2 2 1 3 1 3 1 2 1 1 69 0 66 
22 3 4 5 4 3 3 4 3 3 4 3 4 4 4 3 3 3 3 2 4 3 3 4 4 3 4 2 3 3 3 38 0 68 
11 3 4 4 4 5 4 3 5 4 5 2 3 3 3 3 5 4 3 2 4 4 5 4 4 5 4 2 3 3 3 69 0 93 
08 2 3 3 3 3 1 2 4 3 4 3 2 2 2 3 3 3 1 2 3 1 3 2 3 3 3 1 2 2 2 48 0 83 
30. 3 3 4 3 3 4 4 3 4 3 2 3 3 3 3 3 2 4 2 4 4 2 3 4 5 3 2 3. 3 3 17 0 76 
15 3 5 3 3 4 3 4 5 4 3 3 3 3 3 3 2 3 3 4 3 2 3 3 4 5 4 3 4 2 3 34 0 81 
18 3 3 4 3 4 3 4 3 3 3 3 3 2 2 3 2 2 4 5 4 2 3 3 3 4 3 2 3 3 3 07 0 75 
34 2 3 4 3 2 3 3 1 3 2 3 2 2 2 2 3 2 3 2 3 2 2 3 4 3 2 2 2 3 2 52 0 69 
12 2 4 3 4 5 2 4 5 4 4 3 2 3 3 3 3 3 2 3 3 3 5 2 4 5 3 2 2 3 3 24 0 99 
13 3 5 3 3 4 4 3 5 4 3 3 3 2 3 2 2 2 3 4 3 2 4 3 4 4 4 3 3 2 3 21 0 86 
32 1 3 2 1 3 2 2 1 2 2 1 4 2 1 2 1 1 1 1 3 1 1 2 2 2 2 2 1 1 1 72 0 80 
36 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 03 0 19 
29 3 3 5 3 3 4 4 2 4 4 3 2 3 3 3 2 2 5 1 3 4 3 4 4 3 4 3 2 2 3 14 0 95 
07 3 3 4 4 4 2 3 5 5 4 3 3 3 4 5 5 4 1 2 4 4 4 2 4 5 5 3 3 3 3 59 1 05 
16 2 4 2 3 5 2 4 4 5 3 3 3 3 2 2 3 3 1 4 4 3 4 2 4 5 4 3 3 3 3 21 1 01 
17 4 3 4 3 4 3 4 3 3 2 2 3 3 3 1 2 2 4 4 4 2 4 .2 4 3 3 3 5 2 3 07 0 92 
21 3 4 5 4 3 4 4 3 3 3 3 4 4 4 4 2 4 2 3 4 3 4 3 4 4 4 3 4 2 3 48 0 74 
06 2 5 5 5 4 3 3 5 5 3 2 4 3 3 4 5 4 2 3 5 3 5 3 4 5 3 2 4 2 3 66 1 11 
19 2 •5 5 3 4 3 4 4 4 3 3 3 2 3 3 3 2 3 5 3 3 4 3 4 4 4 3 '4 3 3 41 0 82 
33 3 4 4 3 3 3 4 2 3 3 3 2 3 2 3 2 2 3 1 3 2 2 3 3 2 2 2 3 3 2 69 0 71 
25 4 4 5 3 3 3 4 3 3 3 3 3 4 3 3 2 1 5 2 3 3 3 3 4 3 3 2 3 3 3 14 0 83 
03 4 3 5 4 4 3 3 5 4 2 3 4 3 4 3 4 4 3 4 5 3 4 3 4 4 3 3 3 2 3 55 0 78 
27 2 3 3 2 2 2 2 2 1 1 2 4 3 1 1 2 1 2 1 2 3 4 2 2 1 2 1 2 1 1 97 0 87 
09 4 4 4 4 4 3 4 5 3 4 2 3 3 3 4 3 4 4 2 4 3 4 2 3 3 3 2 5 3 3 41 0 82 
23 1 3 4 3 3 2 4 2 2 5 3 3 3 2 2 2 1 1 2 3 3 2 2 3 2 2 2 3 2 2 48 0 91 
04 4 4 5 4 4 3 3 5 4 2 3 4 3 4 3 3 4 3 3 4. 2 3 3 4 4 4 2 3 3 3 45 0 78 
26 3 3 5 3 3 3 4 4 3 2 3 3 3 3 2 1 1 5 1 2 4 3 3 3 2 3 2 2 3 2 83 1 00 



Appendix B 

System Software 

The majority of computer codes have been written in the C programming language. These 

include a prototyping simulator, and the software for the speech compression system proper. 

B . l The Simulator Program 

A simulator program has been written that runs on U N I X (SunOS) and on MS-DOS. Compar

isons of the diagnostic data show occasional minor discrepancies between program executions on 

the two different computing environments (SunOS on a Sparc I P X , and MS-DOS on a PC486), 

possibly due to different machine precisions in floating-point numeric representations. 

The simulator can also produce analytical data, which have been used extensively in Chap

ter 4. 

There are three simulator programs: 

• silence deletion based on the energy criteria ( s i l d e l . c ) 

• silence deletion based on the A M F criteria (mulawdel. c) 

• silence insertion ( s i l i n s . c) 

Byte order conversion is done by r o t a t e l 6 . c . G.711 /x-law conversion is provided by g711.c 

of Section B.2.2. 

B.2 The Speech Compression System 

The speech compression system consists of software written in TMS320C30 assembly code and 

in the C programming language. 
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B.2.1 TMS320C30 Assembly Codes 

The A / D and D / A functions of the Spectrum TMS320C30 DSP board are controlled by software 

written in the TMS320C30 assembly code (playrec. asm). These routines are loaded onto the 

DSP board by the speech compression, system, which executes control and passes data through 

memory-mapped addressing. 

B.2.2 C Codes 

Codes for the speech compression system have been modularized into the following: 

• main module (scs.c) 

• command interpreter (user interface) (shell.c) 

• , user interface helper routines (gui.c) 

• processing routines (process. c) 

• I/O routines (data_io. c) 

• speech coding routines (g711. c, g72x. c, g721. c) 


