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Abstract 

This thesis describes the modeling, simulation, and control of an inverted, ceiling-mounted 

Stewart platform, which is designed to be a motion simulator. This hydraulically actuated 

Stewart platform is capable of providing 10 m/s2, 400 degree/s2 accelerations and 1 m/s, 

30 degree/s speeds to a 250 kg payload. 

The issues of modeling and control of such a platform are addressed here. The inverse 

kinematics and forward kinematics are studied first. The platform rigid-body dynamics are 

derived based'on the virtual work principle and then combined with the actuator dynamics to 

simulate the response of the Stewart platform given a pre-planned motion path. Design and 

implementation of the link-space controller are discussed and also validated using experimen­

tal data. Cartesian-space controllers are also addressed. Motion drive algorithms are finally 

addressed to complete the system's function as a motion simulator. 

When the controller is well tuned, the bandwidth of the system can reach about 9Hz along 

the vertical axis for a payload of about 140 kg. 
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Chapter 1 

Introduction 

The Stewart platform is a type of parallel manipulator, which consists of a mobile platform 

and a stationary base, connected to each other by six linear actuators (legs). A photo of the 

Stewart platform developed in the Robotics and Control Laboratory at UBC is presented in 

Figure 1.1. Since proposed by D. Stewart [1] in 1965, the platform has been used in many 

applications such as aircraft simulators, assembly workstations, mills, and robot wrists; it has 

also attracted considerable attention of researchers in different areas. 

In this project, an inverted, ceiling-mounted Stewart platform design was employed to build 

a one-person motion simulator. This Stewart platform is used to simulate the motion of heavy 

hydraulic equipment for the purpose of human factors and teleoperation work for the forest 

industry [2]. In addition, it can also be used to study virtual reality, motion algorithm, and 

control of parallel manipulators. The initial design of this project was described in [3]. It is our 

goal to study the kinematics and dynamics of the Stewart platform in details and successfully 

accomplish the control basing on a effective understanding of the actuator dynamics. With 

a successful control, we hope to achieve a good high-frequency response and high stability 

margin, so that this Stewart platform can have similar performance to that of commercial 

systems costing much more. 

In this first chapter we present a literature review of current research on Stewart platforms, 

and then we give a general description of the design and performance of our Stewart platform. 

1 
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Fixed 
Base 

Actuator 

Mobile 
Platform 

Figure 1.1: Stewart platform motion simulator 

1.1 Literature Review 

To the author's best knowledge, the 6 degrees-of-freedom (DOF) parallel manipulator was first 

described and built by Gough [4, 5] as part of a tire-testing machine. Stewart proposed a similar 

parallel architecture for use as a flight simulator, and 6 DOF parallel manipulators are generally 

called Stewart platforms. Several companies, including Canadian Aerospace Electronics (CAE) 

Ltd. and Moog Inc., have been using Stewart's design for flight simulators and entertaining 

motion simulators. However, there was no significant progress on the research of Stewart 

platform and other types of parallel manipulators until 1980's. A number of papers have been 

published on the kinematics, dynamics, and control of parallel manipulators since then. 
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The inverse kinematic equations (to determine the leg lengths given the position and ori­

entation of the mobile platform) of the Stewart platform are relatively easy to derive. There 

are several different approachs to this problem, according to the different selections of the co­

ordinate systems. Nguyen et al [6], Cleary et al [7], Fichter [8], Do and Yang [9, 10] have all 

derived the inverse kinematics based on their particular coordinate systems. 

Hence, the reachable workspace of the Stewart platform was studied by many researchers. 

The workspace of the platform was mapped out through methods based on a complete discretiza­

tion of the Cartesian-space [7, 9, 11]. A geometric approach for this problem was proposed by 

Gosselin et al [12]. This approach was extended by Merlet [13] to take into account all the 

constraints (i.e., the legs lengths range, mechanical limits on the joints, and legs interference) 

limiting the workspace. Merlet also showed how to perform a trajectory verification to check 

if the desired trajectory was inside the workspace [13]. However, if we consider the problem of 

singularities, which will be discussed later, the actual allowable workspace may be even smaller. 

When the Jacobian matrix of a manipulator loses ranks, the manipulator is said to be in a 

singular configuration. To determine these singular configurations, the classical method is to 

monitor the condition number of the Jacobian matrix. In contrast, several researchers tried 

to locate the singular configurations geometrically. Hunt described a singular configuration, 

in which case all the six lines associated to the robot links intersected one Une [14]. Fichter 

[11] described another singular configuration which is obtained by rotating the mobile platform 

around the vertical axis by an angle of ± | . Finally, this problem was successfully solved by 

Merlet in 1989 [15]. A new method based on Grassmann line geometry was proposed and it was 

shown that a singular configuration is obtained when the variety spanned by the lines associated 

to the robot links has a rank less than 6. Then, a set of geometric rules were used to establish 

the constraints on the position and orientation parameters that must be satisfied to obtain the 

various singular configurations [15]. 

The forward kinematic equations (to determine the position and orientation of the mobile 

platform given the legs lengths) of the Stewart platform have no known closed-form solution. 
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Several researchers found that solving the forward kinematics problem is equivalent to solving 

a 16i/i-order polynomial in one variable [16, 17, 18, 19, 20]. Merlet also presented a geomet­

ric proof to show that the number of assembly modes is at most 16 [20]. The order of the 

polynomial can be reduced to 8 if the mobile platform is restricted to be either above or be­

low the base. Unfortunately, because the numerical resolution of the equivalent polynomials 

requires significant computing time and yields many solutions, it seems that this approach is 

neither useful for finding the analytical solution of forward kinematics problem nor useful for 

the real-time control. In addition, this method can only be applied to parallel manipulators 

with triangular mobile platforms, and can not be extended to the more general case of parallel 

manipulators in which the mobile platform and the stationary base are both hexagons or other 

shapes. 

Cleary was able to avoid the forward kinematics problem of the Stewart platform by mount­

ing a passive serial linkage between the centers of mobile platform and stationary base and then 

monitoring the position and orientation of their prototype platform through sensors on the pas­

sive serial linkage [7]. But the achievable accuracy of this method is quite questionable. 

Another method of computing the forward kinematics is the iterative numerical method. 

Nguyen et al applied Powell's Direction Set Method to solve the nonlinear equations [6], while 

Dieudonne et al used Newton's method to converge to a solution [21]. Newton's method makes 

use of the platform's Jacobian matrix to update the estimations of the platform's Cartesian-

space parameters, and the result can converge to the required accuracy in a couple of iterations 

when a good starting point is given. We will apply Newton's method to solve the forward 

kinematics problem in this thesis. 

Do and Yang used Newton-Euler equations of motion to solve the inverse dynamics of the 

Stewart platform [10]. They also ran a simulation to compute the required actuating forces for 

given trajectories. Kai Liu et al used Lagrangian approach to derive the dynamic equations 

of the Stewart platform in Cartesian-space and then used Jacobian transformation to obtain 

the actuating forces in link-space [22]. Zhang and Song proposed a more efficient method for 
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manipulator inverse dynamics based on the virtual work principle [23]. We will apply the virtual 

work principle method to derive the inverse dynamics of the Stewart platform in our coordinate 

system. 

Although the inverse dynamics problem for the Stewart platform has been solved, it has not 

been used practically in the Cartesian-space controller design yet. A standard computed-torque 

control law in Cartesian-space was briefly discussed by Kai Liu et al in [22], but no further 

details were given. No other published paper on the Cartesian-space control of the Stewart 

platform has been found. 

In order to produce accurate motion cues, the motion simulator must be able to reproduce 

accelerations as much as possible within its limited motion range. This is done by applying 

the motion drive algorithm, commonly known as wash-out filter, to the original trajectory. 

Initially the motion drive algorithms employed linear filter elements with fixed parameters. 

In an attempt to overcome the limitations of linear formulations, nonlinear adaptive wash­

out algorithms were developed. The performances of different motion drive algorithms were 

investigated by Reid and Nahon et al [24]. 

1.2 System Description 

The geometry design of our motion simulator follows a standard 6-6 Stewart platform (both the 

mobile platform and the stationary base are hexagons), however, this simulator is inverted and 

suspended from the ceiling. The electrohydraulic actuators are under tension, so they are less 

likely to have buckling problems, allowing us to use narrower actuators. This inverted design 

also provides operators the easy entrance and exit, without the need for an access ramp. How­

ever, this inverted design makes the maintenance of ceiling-mounted hydraulic equipment more 

difficult, and there is a requirement for the ceiling's height and rigidity. The simulator uses six 

1.5 inch bore, 54 inch stroke electrohydraulic actuators controlled by three-stage, proportional 

valves. The hydraulic fluid for the actuators is supplied by a 30 gallon per minute (GPM), 2500 

pounds per square inch (PSI) power unit and two 10 gallon accumulators. Each actuator can 
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<T~5 Base T~~T> 

Figure 1.2: Inverted simulator geometry. 

provide as much as 4000 N force and 1.5 m/s velocity. The position sensor of each actuator is 

a Temposonic magnetostrictive wire transducer. 

The geometry of the simulator is shown in Figure 1.2. While the dimensions of the simulator 

are shown in Table 1.1. The notations used here are the same as those used in [3]. 

Table 1.1: Simulator Dimensions. 

Platform Radius, rp 0.668 m 
Platform Actuator Angle, *yp 53.45° 

Base Radius, T\> 1.133 m 
Base Actuator Angle, 7(, 7.75° 

Platform Nominal Height, hp 0.203 m 

As will be shown later, the simulator has the performance specified in Table 1.2. 
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Table 1.2: Simulator Performance. 

Displacement Velocity Acceleration 
x-axis ±0.2 m ± 1 m/s ±10 m/s2 

y-axis ±0.2 m ± 1 m/s ±10 m/s2 

z-axis ±0.2 m ± 1 m/s ±10 m/s2 

Roll ±20° ±30° / s ± 4 0 0 ° / s 2 

Pitch ±20° ±30° / s ± 4 0 0 ° / s 2 

Yaw ±20° ±30° / s ± 4 0 0 ° / s 2 

The remainder of this thesis is organized as follows. Chapter 2 discusses the kinematics 

of the Stewart platform, including the inverse kinematics and the forward kinematics. The 

inverse kinematics part is the same as derived in [3]. The forward kinemetics part revises the 

error in [3]. The singularity issues have been briefly discussed in [3] and are further discussed 

in this chapter; the issue of workspace is addressed as well. Chapter 3 gives the equations of 

the rigid body dynamics, where the dynamics of legs are included to give a complete model. 

A model of the electrohydraulic actuator is given in Chapter 4, where the valve dynamics are 

also included to give a more precise model. This model is validated using experimental data. 

The control approach, its implementation, and experimental results are discussed in Chapter 

5. Path planning issues are discussed in this chapter as well. The software simulation based on 

the model derived before is introduced in Chapter 6, the simulation code was initially written 

by P. Drexel [3] and was further modified by the author. Several case studies are performed to 

further compare software simulation results and experimental results. In Chapter 7, conclusion 

and plans for future works are presented. 



Chapter 2 

Platform Kinematics 

In this chapter we derive the inverse kinematic equations of the Stewart platform, and then 

give the definition and derivation of the Jacobian matrix based on our coordinate frames. 

Singularities of the platform and joints are also discussed. At last, the platform's forward 

kinematics are solved numerically, and the computing time is discussed. The notations used in 

this chapter and the following chapters are mainly taken from P. Drexel's thesis, for the purpose 

of consistency. 

2.1 Inverse Kinematics 

In this section we will use vector algebra to attain closed-form equations of the inverse kinematics 

of the Stewart platform, which map the position and orientation of the mobile platform to the 

lengths of the six actuators. This part has been done similarly in [3] and some other references. 

We just follow their derivations here. 

Figure 2.3 shows that two coordinate frames {P} and {B} are assigned to the mobile 

platform and the stationary base, respectively. The origin of the frame {P} is located at 

the centroid P of the mobile platform, the zp axis is pointing upward, and the xv axis is 

perpendicular to the Une connecting the centers of the two platform attached joints PA and Pp. 

Similarly, frame {B} has its origin at the centroid B of the base, the z axis is pointing upward, 

and the x axis is perpendicular to the Une connecting the centers of the two base attached joints 

BA and Bp. The configuration of the platform is specified by the position of the origin of frame 

{P} with respect to frame {B} and the orientation of frame {P} with respect to frame {B}. 

The position of frame {P} is represented by vector bdp = [x y z]T, which contains the Cartesian 

8 
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Figure 2.3: Vector definitions for inverse kinematics. 

coordinates x,y,z of the origin of frame {P} with respect to frame {B}. The orientation of 

frame {P} with respect to frame {B} can be described by the orientation matrix 6 R P , whose 

columns are the coordinates of basis axes of frame {P} in frame {B}. We define the position 
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of the center of ith platform attached joint P, with respect to frame {P} to be pp;, which is a 

fixed vector. Similarly, we define the position of the center of ith base attached joint Bi with 

respect to frame {B} to be bb;, which is also a fixed vector. Then, the ith actuator vector 6a;, 

which is the vector from the center of ith base attached joint Bi to the center of ith platform 

attached joint P,, can be expressed as, 

6a, = b R / P i + bdp - % (2.1) 

Since the centers of joints are arranged in pairs at 120 degree intervals around a circle, as shown 

in Figure 2.3, we then have, 

hp 
2 

and (2.2) 

and 

(2.3) rh cos rb sin 7 ^ 0 

where rp is the radius of the mobile platform circle, rb is the radius of the base circle, 7 p t - and 

7 b i are defined for each actuator as shown in Table 2.3, and hp is the nominal height of the 

platform. Note that (2.2) assumes that centroid P of the platform is vertically centered and 

that centers of the joints are at the top of the platform. 

Table 2.3: Platform and Base Actuator End Point Angles. 

i Ipi Ibi 

A 7 P = 53.45° lb = 7.75° 
B 120° - 7p 120° - 7 6 

C 120° + 7 p 120° + 7 b 

D -120° - l p -120° - 7 b 

E -120° + 7 p - 1 2 0 ° + 7 6 
F -1P - 7 6 

The platform's orientation matrix, R p , is defined using roll-pitch-yaw angles <f>p, 9p, and 

tpp. We specify the order of rotation as x — y — z: first yaw about the x axis through an 

angle ij;p, then pitch about the y axis through an angle 6P, and finally roll about the z axis 
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through an angle <f>p. Since the successive rotations are relative to the fixed frame, the resulted 

transformation matrix is given by, 

hRp(il>p,0p,<f>p) = 

c(f>p —s4>p 0 

s<f>p c<f)p 0 

0 0 1 

c6p 0 s0p 

0 0 

—s9p 0 c0p 

1 0 0 

0 cipp —stpp 

0 sipp ctpp 

cOpc<j)p sipps6pC(j)p — cipps4>p cippS0pc(f)p + sipps<fip 

c8pS<f>p sifipsOpScfip + c<ppc4>p ct})ps6pS(j)p — st/jpc(j)p 

—s9p sijjpc8p cippcOp 

(2.4) 

where c^p = cos ij}p, stpp = sin ipp, etc. We choose roll-pitch-yaw angles because they can 

easily reflect the platform's actual physical orientation and make things easier when we specify 

trajectories in the Cartesian-space. 

The length of actuator i can be easily obtained from (2.1), 

u /feo. r6o. (2.5) 

For each actuator, i — A...F, (2.5) expresses its length, given the platform's position and 

orientation. 

2.2 Platform Jacobian 

The velocity kinematics of parallel manipulators are also given by Jacobian transformations, as 

in the case of serial manipulators. However, unlike those of serial manipulators, the Jacobian 

matrices of parallel manipulators are generally defined as transformations from the velocities 

of platforms in the Cartesian-space to the velocities of actuators in the link-space. We define 

the Jacobian matrix of Stewart platform as, 

(2.6) 

where 1 is the six vector of actuator velocities, J is the platform's six by six Jacobian matrix, 
b \ p = bdp is the platform translational velocity and bu>p is the platform angular velocity. Note 

1 = J 
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that bup is written in terms of the derivatives of the platform's rotation angles as 

V = B 

4>P 

(2.7) 

where for the roll-pitch-yaw angle rotation matrix 6 R P defined above 

B = 

c9pc(f>p — sc/>p 0 

c6ps(f>p c(f)p 0 

-s6p 0 1 

(2.8) 

Each row of the Jacobian matrix corresponds to one of the platform's six actuators. We can 

obtain the ith row of the Jacobian matrix by differentiating both sides of (2.5), and substituting 

(2.1) into the result, 

1 2 b&.% b&-i b<*-i 

u 
( 6 R / P l + 6 d p - 6 b t ) T ((6u,p x bRp)ppi + 6 v p ) 

k 

( 6 R / p ; + bdp - b b i ) T ( 6v p) + ( 6Rp pP» + bdP ~ 6 b i ) T x (6Rppp,-)) 

U 

( 6R/p< + b d p - b b i ) T ( 6v p) + ( ( 6 R / P i ) x ( b R / P i + 6 d p - %))T (bup) 

U 
r 
6„ 

( 6 R / P i + 6 d p - bbt) ((bHpp

Pi) x ( 6d p - 6bi)) 

where 6 R P = bu>p X 6 R P and a • (b X c) = (c X a) • b have been applied. 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 
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Then, we can get the Jacobian matrix by putting together the velocities of six actuators, 

U 

IB 

ic 

ID 

IE 

IF 

( 6 R / P A + 6 d p - bbA) ((bR/PA) x (bdp - bbA)) 

(bR/pB + bdp - bbB)T
 ( ( 6 R P

P P B ) x (bdp - bbB)) 

(bR/PF + bdp -bbF)T
 ( ( 6 R / P F ) x (bdp - V ) ) : 

(2.14) 

or, 

1 = J ( 6 d p , 6 R p ) (2.15) 

where the Jacobian matrix depends on the platform's position bdp and orientation b R p . This 

result is the same as in [3]. 

2.3 Workspace and Singularities 

In this section we discuss the reachable workspace, mechanical constraints, and singularities in 

our system. We obtain a reachable workspace where the system is free of mechanical constraints 

and singularities that can be used for control system development. 

2.3.1 Reachable workspace 

Because of the length limits of the actuators, the Stewart platform has a limited reachable 

workspace. The boundary of this workspace is hard to describe, because it has 6 dimensions 

(x, y, z, ipp, 9P, (j>p). The positioning workspace (i.e., the region of the three-dimensional 

Cartesian-space that can be attained by a manipulator with a given orientation) has been 

described through methods based on complete discretization of the Cartesian-space [7, 9, 11]. 

For a given orientation, we can calculate the inverse kinematics of the Stewart platform at 

a certain position, and check if the resulted actuator lengths are within the limits so as to 

determine if that position is inside the reachable positioning workspace. Because the workspace 
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is continuous, we can map it out by discretizing the Cartesian-space by small enough steps. 

Figure 2.4 shows the positioning workspace of our Stewart platform when ipp = 6p = <f>p = 

0°. But the actual reachable workspace is much smaller because we have to allow rotational 

Workspace of the Stewart Platform when psi=the=phi=0 

2 2 

Position X (m) Position Y (m) 

Figure 2.4: Translational workspace of the Stewart platform when ifip = 0P = <f>p = 0°. 

movements. To search the boundary of the workspace, we first discretize the Cartesian-space 

by small enough steps and then we rotate the Stewart platform at each position to check if the 

actuator lengths derived from the inverse kinematics are still within the limits. The workspace 

becomes smaller when we allow larger rotational movements. Figure 2.5 shows the actual 

workspace of our Stewart platform when we set a range limit of —20° to 20° for ipp, 6P, and 

(f>p. For the purpose of a general usage, we only considered the limits of actuator lengths in the 

above definition of the reachable workspace. But the motion range of our system is also limited 

by other mechanical constraints. 
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Reachable workspace of Stewart platform when angles are from -20 to 20 

Position Y (m) 

Position X (m) 

Figure 2.5: Translational workspace of the Stewart platform with arbitrary angles from —20° 
to 20° 

2.3.2 Mechanical constraints 

Our Stewart platform is ceiling mounted, so its motion along the z axis is limited by the height 

of the room. Another constraint is the interference between actuators and the chair top, which 

is used to protect the operator. We have to consider these two types of constraints when 

we search the boundary of the safe workspace. Figure 2.6 shows the projection of the safe 

workspace on the y — z plane when there is no rotation. And Figure 2.7 shows the projection 

of the safe workspace on the y — z plane when ipp, 9p, and <f>p are from —20° to 20°. We can 

see that the safe workspace becomes much smaller when we allow rotations. We can achieve 

larger displacement and larger rotation in a pre-planned trajectory, if the displacement and the 

rotation are combined such that the pre-planned trajectory does not violate the mechanical 
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Projection of the workspace when there is no rotation 
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Figure 2.6: Projection of the safe workspace on the y — z plane when there is no rotation. 

Projection of the workspace when rotation angles are from -20 to 20 
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Figure 2.7: Projection of the safe workspace when ipp, 0P, and <j>p are from —20° to 20°. 

constraints. But when the platform is manipulated by a joy-stick, we would like to set the 
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translational and rotational limits to prevent mechanical damage We can define a cylindrical 

volume where the system is reachable and free of mechanical constraints. However, we have to 

check if there is any singularity inside that cylindrical volume. 

2.3.3 Singularities 

The singularities in the design of our Stewart platform include platform singularity and TJ-joints 

singularities. 

The platform singularity has been analyzed successfully by Merlet through Grassmann ge­

ometry [15]. The idea is that a parallel manipulator will be in a singular configuration if, and 

only if, there is a subset spanned by n of its lines which has a rank less than n . For exam­

ple, subset of rank 1 is a Une in the 3D space; subsets of rank 2 are either a pair of skew 

fines in the 3D space or lines lying in a 2D plane and passing through the same point on that 

plane. For a 2D parallel manipulator in Figure 2.8, the singular configuration is obtained when 

/ \ 
/ \ 

/ \ 

/ \ 
/ \ Mobile Platform 

Joint 

Base 

Figure 2.8: Singular configuration for the 2D parallel manipulator 

the three fines (actuators) intersect. If the mobile platform and the base are symmetric as 

shown in Figure 2.8, we get a singular configuration when the mobile platform and the base 
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are parallel. When a parallel manipulator reaches a singular configuration, it gains one or more 

uncontrollable degrees of freedom and will rotate and/or translate without a change in the ac­

tuator lengths. Merlet uses a set of geometric rules to establish the constraints on the position 

and orientation parameters that must be satisfied to obtain the various singular configurations. 

However, the calculation of such geometric rules is more complicated than that of the condition 

number of platform Jacobian, which is used in the classical method to determine these singular 

configurations numerically. By plotting the ratios of the largest to smallest condition number of 

platform Jacobian while varying two of the platform's six position and orientation parameters, 

we can obtain a graphical description of the platform's singular configurations. For example, 

Figure 2.9 shows a plot of the condition number ratios versus varying pitch angle 0P and roll 

angle <j)p for the platform at its nominal position (x = 0 m, y = 0 m, z = —2.5 m and ipp = 0°). 

(See Appendix D.3 for MATLAB source code). The "singularity boundary" is actually six-

pitch angle (degree) 

Figure 2.9: Condition number of the platform Jacobian versus pitch & roll angle 

dimensional, and thus hard to describe. However, by plotting condition number ratios versus 

two parameters while varying the other four parameters up to their limits, we can confirm that 

the cylindrical volume defined in the last section is free of singularity. So, we don't need to 
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monitor the condition number of the Jacobian as long as the motion of the Stewart platform is 

within that cylindrical volume. 

We use U-joints in the design of our Stewart platform, because U-joints provide a large range 

of motion and are relatively easy to manufacture [3]. However, there are singularities when the 

base of the U-joint and the attached actuator share a common axis. To prevent singularities, 

we should monitor the angle between axis of the U-joint base and axis of the attached cylinder, 

and prepare to stop the platform before it enters a singular configuration. 

We use the method of discretization again to study the singularities of the U-joints; a small 

enough interval is used to make sure that any possible singular point will be tested. 

Figure 2.10: Inverse of U-joint angle versus roll angle and z 

We come to the conclusion that there is no singularity for the U-joints attached to the base 
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within the whole possible workspace, and that there is no singularity for the U-joints attached 

to the mobile platform within the cylindrical volume we defined before. So, we do not need to 

monitor the angle of the U-joints as long as the motion of the Stewart platform is within that 

cylindrical volume. A plot of the inverse of U-joint angle of joint PA versus roll angle and z is 

shown in Figure 2.10. 

Thus, we obtain a cylindrical workspace that is safe and reachable. This workspace is 

when the chair is mounted; 

2.4 Forward Kinematics 

In this section we will study the forward kinematics of the Stewart platform, which map lengths 

of the six actuator to the position and orientation of the mobile platform. 

As mentioned before, there is no known closed-form solution to the forward kinematics of 

the Stewart platform. Dieudonne et al used Newton's method to solve the forward kinematics 

problem numerically [21]. The mathematics of this method is relatively straightforward, and 

the convergence is quadratic. It makes use of the platform's Jacobian matrix to update the 

estimations of the platform's Cartesian-space parameters, and the result can converge to the 

required accuracy in a couple of iterations when a good starting point is given. Here we 

use Newton's method for multiple equations and variables to calculate the platform's forward 

kinematics iteratively. 

For multiple equations and variables, Newton's method is 

where X is a vector of the variables we wish to estimate, g is a vector function which approaches 

zero as the estimation of X improves and j is the iteration count. For the Stewart platform 

described in this thesis, we select 

described by, -2.7m < Zp < -2.3m, -0.2m < yjxj + Yp

2 < 0.2m, and - 2 0 ° < i/)p,0p,<j>p < 20° 

(2.16) 

bdT ipp 9P 4>p 
(2.17) 
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and 

|| ( b R p (v>p, ep, <t>v) p

PA + bdp - bbA) || - 1 A \ \ B * A \ \ -U 

g(X) = 

|| ( f tR p f>p, c9p, <rip) P P F + bdp - bbF) || - lF 

— 

_ WWW-IF _ 

(2.18) 

where ba; is the estimated length of actuator i and Z; is the actual length of actuator i. By 

differentiating (2.18), we can obtain, 
r 

= J 
v p 

= J 
I 0 

p . 0 B 6p 

4>v 

(2.19) 

So, the partial derivative of g with respect to X is given by, 

flg(X) 
ax 

— "1 (xp, J/p, Zp, tpp, dp, (f)p) 
I 0 

0 B 
(2.20) 

Substituting (2.17), (2.18), and (2.20) into (2.16) gives the following iteration 

Xp Xp 

yP yP 

Zp 

tip ^p 

dp dp 

i+i 

I 0 

0 B - 1 

J - 1 

b*A\\-U 

B & F \ \ — IF 

(2.21) 

Given 1, we can obtain X = [xp, yp, zv, ifip, dp, <pp]T, provided that J and B are non-singular. 

Note that we can use the LU decomposition rather than compute the inverses of B and J 

explicitly. 

We should mention that there was an error in the forward kinematics derivation in [3], 

I 0 
where 

0 B _ 1 

is better than claimed in [3]. 

was not included in the equation of iteration. Actually, the converging rate 
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Now, we look into the computing time of the forward kinematics. For our system, we use 16 

bits A / D converters to convert the signals of actuator lengths, which range about 1.5 m. The 

resolution is about m, which is about 0.023 mm. The maximum velocity of each actuator 

is about 1.4 m/s. When the sampling frequency is 200 Hz, which is the one we are using, the 

maximum difference in actuator length between two adjacent sampling points is about ±7 mm. 

So, assuming that Newton's method converges along the trajectory, we can always have an 

estimated starting point within ± 7 mm in actuator length from the actual point. 

For a current platform configuration and corresponding actuator lengths, we add a dis­

placement of ± 7 mm to the length of each actuator to represent the worst case of actuator 

lengths at the next sampling point, and we use current platform configuration as the starting 

point to calculate the next platform configuration, which is according to the actuator lengths 

with additional displacement of ±7 mm, through the forward kinematics. Notice that we are 

calculating for 64 possible worst cases here. We record the largest estimation error in actuator 

length after two iterations, and then plot it versus x position and pitch angle in Figure (2.11). 

We can see that the estimation error after two iterations is far smaller than the resolutions 

of actuator length sensors. The results are similar for the trajectory near the boundary of the 

cylindrical volume defined before. We should say that the result after two iterations is accurate 

enough for the real-time control of our system. 

We can finish the computation of forward kinematics within 1 ms in our VME-based real­

time system. 

We derived the kinematics of the Stewart platform in this chapter. The workspace issue was 

studied in details and the result was used in the control program to ensure that the Stewart 

platform is always in the safe workspace. The numerical solution of the forward kinematics 

was evaluated using simulation, and it was concluded that result would reach the desired value 

after two iterations in the real-time control. 
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max leg length estimation error vs. positions 

pitch angle (radian) 0 0 x position (meter) 

Figure 2.11: Maximum possible estimation error in actuator length after two iterations of 
Newton's method 



Chapter 3 

Platform Dynamics 

In this chapter, we discuss the dynamic equations of the Stewart platform. A complete model 

of the inverse dynamics including the leg dynamics and the mobile platform dynamics is derived 

first, and a simplified model which only includes the mobile platform dynamics is given for the 

purpose of simulation and controller design. 

3.1 Complete Model 

We use the virtual work principle to formulate the dynamic equations of rigid body motion 

of the Stewart platform. A complete model of the inverse dynamics includes both the mobile 

platform dynamics and the leg dynamics. The diagram of a leg is shown in Figure 3.12. 

mobile platform 

Figure 3.12: Diagram of leg i 

24 
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Each leg consists of two parts: the upper fixed part with mass mu, and the lower moving 

part with mass mi. The distance from the base connection (the center of base attached joint) to 

the mass center of upper part is /„ while the distance from the platform connection (the center 

of platform attached joint) to the mass center of lower part is In the following dynamics 

analysis, the frictions in the actuators and U-joints are neglected to simplify the problem. Also 

we assume that the moment of inertia of leg i about the axis 6 a; is negligible and then each leg 

can be modeled as a slender rod. 

The virtual work 8w, done in translating the platform by the virtual distance bvp6t, rotating 

the platform by the virtual angle bu?v8t, and rotating the legs by the virtual angles bu>i6t, is 

6 

Sw = mp

bgT\St + J2(mlbSTb^u + rnu

bgTbviu)6t + 
i=l 

T 

fT\6t- | | | " | 6t-J2bnTbuiSt (3.22) 
»'=i 

where g is the gravity acceleration, 1 = [IAJB-,IC^DiIE,IF]T is the six vector of the actuator 

lengths, f is the six vector of the actuator forces, mp is the mass of the platform, 6 v p is the 

translational velocity of the platform, 6v;/ is the translational velocity of the lower part of leg i, 

6 V j U is the translational velocity of the upper part of leg i, bfp is the force acting on the center 

of mass of the platform, brp is the total torque acting about the center of mass of the platform, 
buip is the angular velocity of the platform, 6r,- is the torque acting about the base connection 

of each leg, and bu>i is the angular velocity of each leg around its base connection. Please notice 

that the effect of gravity is considered separately here. 

Now we derive the expressions of bvu and b v;„. Referring to Figure 3.12, we have 

h li, *u b (3.23) 

and 

a«7 = 
bai||-/;. 

a, (3.24) 

where ba z u is the vector from the center of ith base attached joint B{ to the mass center of ith 
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upper leg, and 6a;/ is the vector from the center of ith base attached joint Bi to the mass center 

of ith lower leg. 

Taking derivatives of the above equations and considering the derivatives of (2.1), 

I,s(bK/Pi)' (3.25) 

we then have 

Z ^ a ^ a ; 6 , | | 6 a i | | - / / 
| C l 2 | | C t j <X% 

a, 

- V a ^ [/,-S ( b R/p 2 )] + I , -S ( b R p

p

P t ) ' 

= h, 

and 

V | | 6 a i | | f , a i

X 6 a ( 

a, 

• â  az' / , -S ( 6 R / P i ) + l 6 ail ( 6 R / P * ) 

where S ^ R p

p p i j is the skew symmetric matrix of ^ 6 R p

p p i^ . 

The angular velocity of each leg around its base connection is given by, 

/ , - S ( b R / P i ) ] 6 a i X 6 a i _ ai x 

ba.T

b ~ 

(3.26) 

(3.27) 

ti (3.28) 
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And the torque about the base connection of each leg can be expressed as, 

bTi = (Iii + Iui) bUi + ilibU>i (3.29) 

where In is the inertia variable of the lower part of leg i, Iui is the inertia constant of the upper 

part of leg i, and 6a t- is given by taking derivatives of (3.28), 

ct% — t>i 
dp 

+ ii 
6 V V p 

+ ii 
6 b 

dp 

(3.30) 

When the effect of gravity is considered separately, the force acting on the platform can be 

expressed as, 

6fp = mp

ba.p (3.31) 

where mp is the mass of the platform and 6a p (three vector) is the translational acceleration of 

the platform's center of mass. 

The angular momentum of the platform with respect to the base frame is, by definition, 

blLp — bIp

bup — bTLp

plpRTbup (3.32) 

where pIp is the platform's inertia matrix expressed with respect to the platform frame and has 

the form 

P T -

o 0 

o n P y y o 

o 0 pl Vzz 

(3.33) 

Taking the derivative of (3.32) gives the torque on the platform as 

b

T p = bIp

bap + bup x ( V ^ p ) (3.34) 

where bap (three vector) is the angular acceleration of the platform about its center of mass and 

we assume that the inertia of the platform does not change with time in the platform frame. 

The principle of virtual work states that the work done by external forces (f; bfp,brp) cor­

responding to any virtual displacements (61;6d,6ip,86,64>) is zero (Sw = 0) [29]. Substituting 
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(2.6), (3.26), (3.27), and (3.28) into (3.22) and applying the principle of virtual work, we then 

have 

VL 

I 

o 
mpbS + J2 ( h * / V g + hiu

Tmu

bg) + JTf-

\ 
i=i 

- E ( * . - f ^ 
i=l 

St = 0 

We can ehminate the arbitrary time interval 6t and the arbitrary vector 

non-singular, we can express the actuator forces as, 

(3.35) 

If J is 

lP mbg - £ ( h a V g + hiu

Tmu

bg) (3.36) 

where the expressions of h;/, h,-u, tt-, 6r,-, bfp, and brp, can be found in (3.26), (3.27), (3.28), 

(3.29), (3.31), and (3.34), respectively. We now have obtained an expression of the actuator 

forces in the link-space in terms of the position, velocity, and acceleration of the platform in the 

Cartesian-space. This is the complete model of the inverse dynamics of the Stewart platform. 

The presented derivation is more straightforward, compared with the derivations in [10], [22], 

and [23]. The expression of final result is also simpler. However, the complete dynamic model 

is still a complicated one. We simplify the model in the next section by neglecting the leg 

dynamics. 

3.2 Simplified Model 

For our Stewart platform, the mass of the six legs is considerablly smaller than that of the mobile 

platform. In the rigid body dynamic equations, the leg dynamics part is more complicated and 

less important than the mobile platform dynamics part. If we neglect the leg dynamics, equation 

(3.36) becomes 

= (JT) - l 
6 f I 

TP 0 

\ 
mpg = ( J T ) 

- l mp

bSLp - mp

bg 

[ bIp

bap + bujp X (bIp

bup) 
(3.37) 
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We now check how much the leg dynamics affect the calculation of forces. Each leg weights 

about 15 kg. We assume that the payload weights 250 kg and is evenly distributed in a 

cylindrical volume with height of 1.0 meter and radius of 0.6 meter. We run the simulation with 

and without considering the leg dynamics, and plot the required forces for several trajectories. 

Figure 3.13 shows the actuator forces when the motion trajectory is from the home position with 

an acceleration of x — g. Figure 3.14 shows the actuator forces when the motion trajectory is a 

sinusoidal wave along the x axis with amplitude of 0.01 meter. Figure 3.15 shows the actuator 

forces when the motion trajectory is from the home position with an acceleration of y = g and 

also a sinusoidal pitch angle. We can see that the leg dynamics count less than 10%. So, we 
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Figure 3.13: Motion from the home position with an acceleration of x = g 
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The force of each actuator, with and without leg dynamics 
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Figure 3.14: Sinusoidal motion along x axis 

neglect the leg dynamics to avoid the huge computation in the simulation and real-time control. 

See Appendix D.4 for more details. 

If we define the matrices D and E as in [3], the simplified dynamic model can be expressed 

as the same as in [3], 

= ( ' T ) 
- l D 

ar 

\ 
+ E (3.38) 

where 

D 

mp 
0 0 

0 mp 0 

0 0 m 

0 

(3.39) 



Chapter 3. Platform Dynamics 31 

3000 r 

The force of each actuator, with and without leg dynamics 

2000 

1000© 

cr- 0 

CD 
(J . 
O 

L L -1000 

-2000 

-3000$ 

-4000 

..Oo.?.°°.?.9 

xx 
xx x : 

x 8 x x x b X 
^ x x x x : 

x x x x x 

••xx • 
X X 

X s, 
x x 

X X 
X X 

X x * x x £ 
X x X : 

0.05 0.1 0.15 0.2 
Time (second) 

0.25 0.3 

o Actuator A 

— Actuator B 

x Actuator C 

Actuator D 

Actuator E 

Actuator F 
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and 

E 

0 

0 
(3.40) 

mpg 
bup x (%bup) 

We discussed the dynamics of Stewart platform in this chapter. The platform dynamic 

equations were derived in a simpler way than previously reported ([10], [23] and [22]). The 

dynamic simulations were then employed to show empirically that the platform leg dynamics 

could be neglected in predicting system trajectories. This simplified the simulation work and 

real-time control. 



Chapter 4 

Actuator Dynamics 

The dynamics of electrohydraulic actuators are important in the control of the Stewart platform. 

In this chapter, we will derive the dynamic model of the electrohydraulic actuator, then linearize 

the model for the purpose of control and simulation, and in the last section we will validate the 

model using experimental data. 

4.1 Deriving the Model 

Each electrohydraulic actuator in our Stewart platform consists of an asymmetrical cylinder 

controlled by a proportional valve in a three-way configuration. Due to the financial limits, 

standard industrial cylinders with low-friction seals rather than the hydrostatic cylinders were 

used. The size of each cylinder is 1.5 inch bore, 60 inch stroke. The valves used are small 

size Rexroth 4WRDE three-stage proportional valves. Please refer to [3] for the details of the 

selection of these components. 

Sensors in the system include the magnetostrictive wire length transducer for the length 

of each actuator, the linear variable differential transducer (LVDT) for the main stage spool 

position of each valve, and the single port pressure transducer for the pressure of each cylinder's 

blind end. The detailed description of the sensors can be found in [3]. 

Electrohydraulic servo systems are difficult to model because of the presence of nonlineari-

ties. These nonlinearities include: nonlinear servo valve flow/pressure characteristics, variations 

in the trapped fluid volume in the system, the effects of nonlinear viscous and coulomb friction 

between the cylinder and the piston, and the effect of flow forces on the valve spool positions. 

32 
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We follow the standard mathematical approach presented in [30] and [31] to model the elec­

trohydraulic actuator. To analyze electrohydraulic servo systems, we should consider the effects 

of the following factors: the fluid flows through variable valve openings, the compressibility of 

fluid, the load forces and viscous frictions, and the dynamic responses from valve opening com­

mand values to actual valve spool positions. Here we study the hydraulic part first. Figure 4.16 

shows a typical three-way valve/cylinder connection. 

Valve 

Figure 4.16: Definition of three-way connection parameters. 

For the valve, assuming that there is no leakage, we can write the flow rate Qc from the 

valve to the blind end of the cylinder as 

Qc = Qi-Q2 (4.41) 

where Q\ is the flow rate from the supply pressure port to the cylinder and Q2 is the flow rate 
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from the cylinder to the tank. Using the orifice equation for turbulent flow [31], which is only 

valid for sharp edged orifices with adequately large flows, we can write expressions for Q\ and 

Qi as 

{ Cdw(U + Xv)Jj(Ps-Pc), Xv>-U 
Qi = < V (4.42) 

0, Xv < -77 

and 

Q 2 

Cdw(U-Xv)^p(Pc-Pt), XV<U 

0, xv > u 

where Cd is the discharge coefficient, w is the port width of the valve, U is the valve's underlap, 

Xv is the spool position of the valve with respect to the center, p is the density of fluid, Ps is 

the supply pressure, Pc is the controlled pressure at the blind end of the cylinder and Pt « 0 is 

the tank pressure. 

The compressibility of the fluid can be expressed as 

V = V u ~ J P ( 4 - 4 4 ) 

where /? is the bulk modulus of the fluid, P is the pressure in the container, Vu is the volume 

of the fluid before compression (equivalent uncompressed volume), and V is the compressed 

(measured) fluid volume. In our system, P = Pc is the pressure at the blind end of the 

cylinder, V is the total volume contained between the piston and the blind end of the cylinder, 

and Vu is the equivalent uncompressed volume. The transient flow rates associated with fluid 

compressibility are proportional to rates of change of pressure and may be expressed as 

Q* = J~dt ( 4 ' 4 5 ) 

where Qp is the transient flow rates associated with fluid compressibility, and /?, P and Vu are 

defined as before. 

The flow through the valve is the sum of the flow associated with the movement of piston 

(change in volume) and the flow associated with fluid compressibility. So we can express the 
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flow rate Qc from the valve to the blind end of the cylinder as, 

Qc = V + Qp = V + ^jPc 

Considering the load forces and viscous frictions, we have, 

(4.46) 

PCA - Psa = Ml + Bl + KI + f (4.47) 

where a is the annulus area between the piston rod and the cylinder wall, M is the mass of the 

load, B is the load's viscous damping coefficient, K is the spring constant of the load and / is 

an external force. We assume K — 0 in the modeling. 

We can solve the above equations for / by differentiating equation (4.47) and substituting 

(4.41), (4.42), (4.43), and (4.46) into the result. The derived equation is, 

1 
I 

M 
^ (cdwJh(xv,pc)-v) -Bi'-f 

where 

Vu 

V 

Pc. 

Ai, 

Ml + Bi + f + Psa 

h(Xv,Pc) = { 

-(U -Xv)y/P~^Tt, 

and L is the stroke length of the cylinder. 

The above equations can also be written as 

Xv < -U 

J = fo(i,i,ijJ,s) 

(4.48) 

(4.49) 

(4.50) 

(4.51) 

(U + XV)^P.-PC, XV>U 

{U + Xv) V-Ps -PC-(U- Xv) VPC - Pt, -U<XV<U (4.52) 

(4.53) 

where S represents the system parameters. 
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In addition to the dynamic response in the hydraulic part, we have a dynamic response 

in the electrical part. The valve spool position Xv is controlled through a D / A board, and is 

supposed to be proportional to the command value of VDA, which is the output of D /A board. 

However, the actual valve response is a dynamic one. The valve response can be approximately 

modeled as a second order closed-loop system with the transfer function 

where ue is the electrical undamped natural frequency and £ e is the electrical damping ratio. 

Parameters in this model can be estimated from the specification of the valve and then verified 

through the experiment. 

Combining the electrical part model with the hydraulic part model, we can finally obtain a 

fifth-order nonlinear model of the electrohydraulic system. 

4.2 L i n e a r i z i n g t h e M o d e l 

The above nonlinear model of the electrohydraulic system gives us a relatively complete de­

scription of the actuator dynamics. The hydraulic part of the model can be seen roughly as the 

combination of an integrator and a spring-damper system, while the electrical part is a second 

order closed-loop system. The natural frequency and damping ratio of the equivalent linear 

system determine most characteristics of the actuator dynamics. We now linearize the model 

to get a basic idea about the dynamic response of the actuator. 

We first linearize the function of Qc. The underlap U of the valve, which is 55.4 X 10 - 6 m, 

can be neglected in the calculation of flow rates. The controlled pressure Pc at the blind end of 

the cylinder is fast varying but within a small range for general maneuvers, so we can use the 

average value of Pc, which is about \PS, to represent Pc, where we assume APC < \PS. Then, 

the equation (4.41) becomes 

Xv(s) = 
1 

VDA(S) (4.54) 
Ul 2 UJe ' 

(4.55) 

where Kq is the defined flow gain. 
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We then define the initial value of Vu to be Vo and linearize the model about this particular 

operating point. From equation (4.55), (4.46), and (4.47), it is clear that, 

KgXv = ^ l + ^ i + A i (4.56) 

where Kq,Vo, M, A, (3, and B are all constant parameters. By taking Laplace transform of the 

above equation, we can get the transfer function 

where ut\ = A ^ J i s the hydraulic undamped natural frequency and ^ = Y A \ J - ^ J is the hy-

drauhc damping ratio. We validate this linearized model in the next section using experimental 

data and also identify the undetermined parameters in the model. 

4.3 Validating the Model 

We use spectral analysis on the single actuator system to validate its dynamic model. By using 

white noise as input signal and analyzing the cross spectral density between the output signal 

and input signal of the system, we can get an experimentally estimated transfer function of 

the system. This method has been mentioned in [32] and some other books. For the detailed 

derivation, please see Appendix B. 

In the experiment, the supply pressure is 400 PSI and the sampling frequency is 500 Hz. 

The cylinder rod weights about 5.5 kg, and a mass of 15.2 kg is attached to it as the additional 

load, so the total mass M as used in equation (4.57) is 20.7 kg. We first generate a band-

limited digital white noise signal using the Matlab software package, and then low-pass filter 

the white noise signal using a discrete second-order Butterworth filter with cut-off frequency of 

200 Hz. The processed white noise signal is then applied to the input of the system, i.e., the 

signal is used as the command value of the valve opening. The input signal and output signals 

are sampled at the frequency of 500 Hz for a long enough duration. At last, we perform the 

spectral analysis of the recorded input and output sequences in Matlab to obtain the estimated 

transfer function of the system. 
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We have two transfer functions in serial: one is from the command value of valve opening 

to the actual valve spool position, the other is from the valve spool position to the actuator 

length. The comparisons of simulation results (linearized models in the previous section) and 

experimental results are shown in Figure 4.17 and Figure 4.18. We can see that experimentally 

estimated transfer functions match theoretically derived transfer functions. The experiment is 

done around the operating point where the actuator length is lo = 2.47 m. In Figure 4.17, 

the length unit is meter, while the valve opening unit is voltage, which is from the valve spool 

position sensor signal and equals to 0.00035 meter. 

Bode Plot of the Cylinder Dynamics (from valve opening to cylinder length) 

and the Experimental Validation (by spectral analysis) 
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Figure 4.17: Simulation result and experimental result of the cylinder dynamics 

The system parameters that give the above simulation results are shown in Table 4.4. Please 

note that values of f3 and B are not easy to measure, and we identify their values by matching 

the simaltion results with experimental results. And the corresponding uy\ and ^ are given by, 

13 

VoM (l0 - L) x A M 
30Hz (4.58) 
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Bode Plot of the Valve Dynamics (from D/A command value to valve opening) 

and the Experimental Validation (by spectral analysis) 

-1 
i 
i 

a 
i 

1 1 1 T-t-*—_ 

1 1 1 1 1 1 
1 1 1 1 1 1 

i 

i ~ 

• i i i i 111 
i i i i i i 11 
i i i i i i 11 

^ - J 1 L J - L l i J 
1 1 1 1 1 1 1 

1~-
i 
i 

~1~ 1 

1 1 I 1 1 1 
1 1 1 1 1 1 

T T T T H 1 1 1 1 1 1 

i 
i 

— r _ _ 
i 

I ^ S S v l 1 1 1 1 1 1 

- - r - H * ^ r "1 ~ Slrnutatiarr~ 
1 1 KSI 1 1 J 1 _ _ _ ! _ _ 1 

--t-1 1 
i 

1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 

i 

i 
i 
i 

! Experiment ! M V J U 

I i i i i i i i 
10' 10* 

-50 

•8-100 
a 

°- -150 

-200 

F r e q u e n c y ( H z ) 

Figure 4.18: Simulation result and experimental result of the valve dynamics 

Table 4.4: Actuator System Parameters. 

Parameter Value Definition 
P 700 MPa Effective Fluid Bulk Modulus 
A 1.14 x I O - 3 m 2 Area of the Piston 
a 6.33 X 10~4 m 2 Annulus Area 

cd 0.432 Effective Discharge Coefficient 
w 5.7 mm Port Width of the Valve 
P 858.2 kg/m 3 Density of the Fluid 
L 1.37 m Stroke Length of the Cylinder 
B 2500 N s/m Viscous Damping Coefficient 
Ps 400 PSI Current Supply Pressure 
Pt 0 PSI Tank Pressure 
U 55.4 x 10~6 m Underlap of the Valve 

and 

Parameters of the valve dynamics are given by ue « 40iTz and fe « 0.6. They are also obtained 

by matching the simaltion results with experimental results. 

The effective discharge coefficient Cd is identified to be 0.432. And the flow gain Kq is then 
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given by, 

Kq = CdW « 0.14 m2/s (4.60) 

while KqlA m 122.8 /s is the gain from valve spool position (in meter) to the actuator velocity 

(in m/s). The equivalent gain from the command value of valve opening (in voltage) to the 

actuator velocity (in m/s) is given by 122.8 X 0.00035 = 0.043 m/s/volt. 

We derived the dynamic model of the electrohydraulic actuator in this chapter. We then 

linearized the model and validated it experimentally. Results showed that the linearized actu­

ator model and the experimental data fit each other well. This model is the base of the design 

of link-space controllers. 



Chapter 5 

Control Implementation 

Chapter 5 gives an overview of the control implementation on the Stewart platform. We in­

troduce the layout of our control system first, and then study the design and performance 

of different types of basic link-space controllers. The pressure-feedback link-space controller is 

then proposed to ensure the stability of the system, and its performance is studied via both sim­

ulation and experiment. The Cartesian-space control of the Stewart platform is also discussed. 

In the final section, we address the motion drive algorithm. 

5.1 Control Layout 

Our Stewart platform based motion simulator is hydraulically actuated. The hydraulic ac­

tuation system includes a hydraulic power supply unit, a fluid distribution system, and six 

electrohydraulic actuators. The electrical system includes an electrical signal distribution box, 

a VME-based real-time system running VxWorks, and a workstation serving as user interface. 

Figure 5.19 shows the whole motion simulator system. 

To ensure the safety of the motion simulator, a safety system is established, which includes 

"home" valves, isolation valves, pressure relief valves, motion limit switches, fluid temperature 

and level switches, a supply pressure transducer, and panic buttons. The safety system does 

not affect the performance of the simulator. Details of its design can be found in [3]. 

To simulate a motion using the Stewart platform, we should generate the motion trajectory 

in the Cartesian-space first. This trajectory can be a pre-planned one from the computer or 

a real-time one following the signal from the hand-control. The actual lengths of actuators 

are obtained from sensors through analog to digital converters. Then the control algorithm is 

41 
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Figure 5.19: Diagram of the Stewart platform based motion simulator 

performed either in Cartesian-space or link-space, and the command value of valve opening is 

derived for each actuator. By applying the derived command value to each valve through digital 

to analog converter, we can control the main-stage spool position of each valve, and hence the 

flow rate and the actuator length. 

In the control of Stewart platforms, link-space controllers are generally used because they 

are relatively easy to design. 

5.2 Basic Link-space Control 

In the link-space control, we should perform the inverse kinematics to convert the Cartesian-

space trajectory to the desired lengths of actuators, and then control each actuator individually 

to follow its desired length. In practice, most commonly used link-space controllers in the 
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control of hydraulically actuated Stewart platforms are Proportional-Integral-Derivative (PID) 

controllers and pre-filter controllers. Descriptions of various controllers can be found in [31], 

[30], and other books on the control of electrohydraulic actuators. 

5.2.1 PID controller 

Proportional gain (P) controller is the simplest approach to the control of electrohydraulic 

actuator. As we can see in Figure 5.20, the open-loop transfer function of the electrohydraulic 

actuator is nearly an integrator at low frequencies, i.e. the velocity of the actuator is nearly 

proportional to the control command value. So, a proportional gain controller with proper loop 

gain can make the closed-loop system stable. 

Open-loop frequency response of the actuator. Simulation result. 
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Figure 5.20: Linearized open-loop transfer function of the electrohydraulic actuator 

But variations in the volume of trapped fluid Vo, in the viscous damping coefficient B, and 

in the effective load inertia M introduce uncertainties in the natural frequency and damping 

ratio of the hydraulic resonant mode, which is caused by the fluid compressibility. Figure 5.21, 
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Figure 5.22, and Figure 5.23 show the effects of these uncertainties on open-loop transfer func­

tions of the electrohydraulic actuator when Vo, B, and M are varying from 0.5 to 2 times of 

their original values, respectively. 

Open-loop frequency response of the actuator, when VO changes 

Figure 5.21: Effects of variations in VQ from 0.5 to 2 times of its original value 

Open-loop frequency response of the actuator, when B changes 
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Figure 5.22: Effects of variations in B from 0.5 to 2 times of its original value 
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Open-loop frequency response of the actuator, when M changes 
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Figure 5.23: Effects of variations in M from 0.5 to 2 times of its original value 

In addition, we have to consider the nonlinearity and uncertainty of the flow gain which is 

assumed to be a constant Kq in the simulation. Figure 5.24 shows effects of variations in Vb, 

B, and M , when they are combined together. 

Open-loop frequency response of the actuator, when VO, B, and M change 

-50 

Figure 5.24: Effects of variations in Vb, B, and M 
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All these uncertainties influence the system response and then limit the achievable perfor­

mance. To guarantee robustness, we have to design the controller for the worst case condition, 

that is for the system with the highest flow gain and the highest resonant peak value. This 

design strategy sacrifices the performance at the low frequencies to provide robustness at high 

frequencies. The closed-loop system has a slow response due to the conservative loop gain. 

The loop gain in our design is 200 volt/meter, which means the computer system outputs a 

control command value of 1 volt for an length error of 1/200 meter. The closed-loop system is 

stable. Simulation curve of the closed-loop response and some experimental points are compared 

and shown in Figure 5.25. 

Closed-loop response of single actuator system with P controller (K=200) 
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Figure 5.25: Comparison of the simulation curve and some experimental points 

In the ideal case, we assume that all the six actuators have the same dynamic characteristics 

and move simultaneously. But in the practice, each actuator has slightly different parameters. 

Also the volume of trapped fluid Vb and the effective load inertia M are different for each 

file:///JJiU
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actuator, when actuator lengths are not equal to each other. So the six actuators do not have 

the same frequency response. Figure 5.26 shows the system response of a 0.5 Hz sinusoidal 

wave input along the z axis. We plot the the desired actuator lengths and the actual actuator 

lengths in the link-space. As we can see, there are slight differences in the actual actuator 

lengths, even though the desired actuator lengths are the same. 

System response of a 0.5 Hz sine wave along z axis. L ink-space plot 

2 521 1 1 i i ' ' i I 

0 0.5 1 1.5 2 2.5 3 3.5 4 
Time (sec) 

Figure 5.26: Link-space response of a sinusoidal wave input along the z axis. 

To check how this differences affect the motion trajectory, we perform the forward kinematics 

to convert the actuator lengths to the trajectory in the Cartesian-space. Figure 5.27 shows the 

same system response in the Cartesian-space, where only the translational displacements are 

plotted. We can see that levels of disturbances in x and y axis are acceptable. But when input 

frequency increases, the performance becomes worse. 
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System response in the Cartesian-space (input 0.5Hz, z) 

' JS" 1 \ " \ 1 

' 7 ^ ~t S \ ., [_ 
/ / ] \ \ Actual displacement i 

/ / ] « \ \A 
if j \ \ A 

t / 

/ 1 \ \ 1 

/ 1 \ \ f 

/ i v \ l 
^- ' i — ^ ;—\r 

/ 

I \! \ 
1 M \ 
! \ \ 

/ / 
/ / 

1 x \ 
Desired displacement in z \ \ 

/ 7 

/ / 

r 

L 

> < 

/ / 

jl , , 1 1 1 
0 0.5 1 1.5 2 2.5 

Time (s) 

Figure 5.27: Cartesian-space response of a sinusoidal wave input along the z axis. 

The system response in Cartesian-space of a 0.2 Hz sinusoidal wave input along the y axis 

is shown in Figure 5.28 

Figure 5.28: Cartesian-space response of a sinusoidal wave input along the y axis. 

A proportional derivative (PD) controller KpTjs + Kp can be used to improve the system 
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response at high frequencies. In the case where the valve response is very fast, i.e. u>e is much 

larger than u^, we can select the crossing frequency to be near the hydraulic undamped nat­

ural frequency LOH and apply the PD controller to introduce a nearly 90 degrees phase lead 

at that frequency so as to have enough phase margin and to stablize the closed-loop system. 

Unfortunately, our valve response is not fast enough, compared with hydraulic undamped nat­

ural frequency (ue « 1.40;^). The valve dynamics would introduce a substantial phase lag at 

the crossing frequency and make the closed-loop system unstable. So the PD controller is not 

applied. 

For some applications of electrohydraulic actuators, a proportional integrative (PI) con­

troller  Kp r>^+ Kp c a n b e u s e d to increase the open-loop gain at low frequencies and to improve 

the system response. However, the PI controller should be tuned carefully, because the open-

loop transfer function then contains a double integrator and can cause serious stability problems. 

Because the controller stability is critical for the motion simulator system, we prefer only to 

use a P controller to avoid risks with regard to stability. 

5.2.2 Pre-filter controller 

We now look at a feed-forward compensation controller which is generally used in tracking sys­

tems. Figure 5.29 shows a tracking control system with this type of feed-forward compensation 

controller. 

m~ 
B(s) 

— t O 
- A 

Figure 5.29: Block diagram of the tracking control system 
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The control law is 

u { s )  = i { s j l d { s ) + C M I M - ^ 

The steady state closed-loop response can be easily found to be l(s) = ld(s), when C(s) is 

not equal to — gj^- The feed-forward part of the controller helps to reduce and eliminate the 

tracking error, while the feedback part keeps the system stable and reduces disturbances. 

For the high order plant like our electrohydraulic system, which has a 5th order linearized 

model, it is not reasonable to fully realize the feed-forward controller, i.e. calculate up to 5th 

order derivatives of the desired trajectories. We can just omit the high order derivatives from 

the feed-forward, and this will only cause bounded error in tracking [33]. And we select the 

C(s) to be a constant C equal to the proportional loop gain. 

Without considering external force, we can rewrite the plant model Equation (4.57) as, 

L { s ) = ,(v + ^ K V + ^ + i ) ( 5 ' 6 2 ) 

So B(s) as in Figure 5.29 becomes while 

A(s) = s(^s2 + ^s + l)(\s2 + + 1) (5.63) 

Omitting the 3rd, 4th, and 5th order derivatives, we can obtain the control law of the simplified 

feed-forward compensation controller as 

•"•9 

- 2 6, , 2 ê̂  2 ( 1 )S + S k(s) + C(ld(s)-l(s)) (5.64) 

That is the same as the 2nd order pre-filter controller introduced in [2], which is 

VDA(s) = Kas2 + Kvs + Kp(ld(s) - l(s)) (5.65) 

Substituting the values of ŵ , £ e , and ue into the above equation and considering the 

open loop gain of 200, we can obtain the parameters of the pre-filter in Equation(5.65) as 

Ka = 0.19, Kv = 23.3, and Kp = 200. The stability margins remain the same as of the P 

controller with loop gain of 200. A simulation curve and some experiment points of the closed-

loop frequency response are plotted in Figure 5.30. Comparing the plot to Figure 5.25, we can 
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Comparison of simulation and experiments 
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Figure 5.30: Closed-loop response of single actuator system with pre-filter controller 

see that the closed-loop response is much improved. When the desired trajectory is pre-planned, 

the desired velocity and the desired acceleration are generally available, and we can apply the 

pre-filter off-line to save the in-loop computation time. 

The closed-loop response in the time domain is plotted in Figure 5.31, for the input frequency 

of 1.0 Hz. The response in time domain is not a perfect sinusoidal wave, because there are 

uncertainty and nonlinearity in the system. 

The system response changes dramatically when the system parameters change. The appli­

cation of such a controller requires a good identification of the system parameters. KA and KV 

should be finely tuned according to the system parameters. Unfortunately, this is not always 

the case when we apply the control algorithm. 

file:///-l-l
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Figure 5.31: Closed-loop response of system with pre-filter controller 

In the following section, we introduce the pressure-feedback control of electrohydraulic ac­

tuators which is an approach similar to the motor-shaft position control of elastic joints. 

5.3 Pressure-feedback Link-space Control 

To achieve better performance, one should be able to increase the loop gain and thus decrease the 

phase lag while still ensuring stability. As analyzed in the last section, the simple proportional 

gain controller becomes unstable if the loop gain is too high, because of the hydraulic resonant 

mode caused by the fluid compressibility. In this section, we introduce a new type of pressure-

feedback controller, which can ensure the stability of the system. The performance of such type 

of controller is studied via simulations and experiments. 
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5.3.1 Description of the controller 

It is known that end-point position control of a mass actuated by a motor through a flexible 

transmission has poor stability robustness, but motor-shaft position control has much better 

stability robustness. When the motor-shaft position is not directly available, it can be computed 

by measuring the end-point position and the stress on the motor shaft. A similar approach can 

be applied to the control of electrohydraulic actuators, where the compressibility of fluid is 

analogous to the flexibility of transmission, the actuator length is analogous to the end-point 

position, and cylinder pressure measurement is analogous to the stress measurement on the 

motor shaft. 

The measurement of uncompressed fluid trapped in the cylinder rather than the end-point 

position of the cylinder is used as the feedback signal. It turns out that such a control method 

is equivalent to a P/PD controller with negative pressure feedback. Its performance is much 

better as it allows for a much larger position loop gain while keeping the system stable. 

We revise the actuator model presented in Section 4.1 to provide the access to this new 

type of controller design. In this approach, Vu, the equivalent uncompressed volume of the fluid 

trapped between the valve opening and the blind end of the cylinder, is used as an intermediate 

variable. 

We rewrite the compressibility equation as in (4.44), 

(5.66) 

(5.67) 

Qc = K( i - (5.68) 

and when pressure P is a constant value, we have Qc = V. 

Considering the load forces and viscous frictions, we have, 

PCA - Psa = Ml + Bl + f (5.69) 
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Substituting (.5.69) into (5.66) and considering 

V = A(l-L) (5.70) 

we can get 

That is, 

V = Vu(l - Pc/0) = Vu (l - jj(Psa + Ml + Bl + f)j = A(l - L) (5.71) 

(V„M_uV£i_(l_L)]+ V^f = K ( , 7 2 ) 

1- Psa/A(3 \A2P ' A2f3 v ') 1 A(l - Psa 

When Vu is constant, i.e. Qc = 0, the actuator behaves like a spring-damper system. When 

Vu is relatively large and slowly varying, we can consider the actuator model as a spring-damper 

model with time varying parameters. The uncompressed fluid volume Vu and the external force 

/ are the inputs, while the length (I — L) is the output. The linearized time varying transfer 

function is 

L ( S ) ~ - i ^ + ^ + i ( 5 ' 7 3 ) 

where u>n = A y J i s the undamped natural frequency, £ = \j~$M 1S ^ E damping ratio, 

Kv = 1~Ps^lAf} is the volume gain, and Kj = is the force gain. 

This is equivalent to the following spring-damper system: where k = and the other 

parameters are the same as above. KVVU is the position input and kKjf is the force input to 

the system. 

To achieve the performance similar to that of the motor-shaft position control, the mea­

surement of uncompressed fluid trapped in the cylinder, Vu, rather than the end-point position 

of the cylinder, /, is used as the feedback signal. So the hydraulic resonance is avoided. 

The desired value of Vu is given by, 

Vud = A(ld - L) (5.74) 

where ld is the desired actuator length. 
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I - L 

Figure 5.32: Equivalent spring-damper system 

A simple pressure-feedback controller is given by, 

Xy — I\\ new {Viid Vy) (5.75) 

Substituting (5.66), (5.70), and (5.3.1) into the above equation and assuming /3 >> Pc, we can 

then further simplify the control law to be 

Xv — KnewA.{Jd /) p Pc (5.76) 

a proportional gain controller with negative pressure feedback. For certain fluid, the range of (5 

is generally given. To get the accurate value of /?, one can use parameter identification scheme. 

In the following sections, we study the performance of this new type of pressure-feedback 

controller via simulations and experiments. 

5.3.2 Simulation results and discussions 

We use Simulink to do the simulation. The diagram of single actuator system with proportional 

gain controller is shown in Figure 5.33. 

When the controller loop gain Kp is too high, the system starts to oscillate. Figure 5.34 

shows the oscillation when Kp = 800. 
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Figure 5.35 shows the diagram of the single actuator system with the pressure-feedback 

controller. 
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Figure 5.35: Single actuator system with pressure-feedback controller 

The system response of the pressure feedback controller is similar to that of the proportional 

gain controller, if the loop gains are the same and are small enough to keep system stable. One 

of the simulation results is shown in Figure 5.36, when the input is 2.0 Hz, and the loop gain 

is 200. We can see the significant phase lag. 

To improve the system performance, we should increase the loop gain. For the proportional 

gain controller, if we increase the loop gain to 600, the system response will become unstable. 

But for the pressure-feedback controller, when the loop gain is 1200, the system response is 

still stable, and the system performance is much improved. See Figure 5.37 for the simulation 

result. The performance of the proposed pressure-feedback controller is much better than that 

of a simple proportional gain controller as it allows for a much larger loop gain while keeping 

the system stable. 
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Sine response of pressure feedback controller, loop gain is 200 
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Figure 5.36: Response of single actuator system with pressure-feedback controller 

Sine response of pressure feedback controller, loop gain is 2000 
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Figure 5.37: Response of single actuator system with pressure-feedback controller 

The step responses for different step sizes are plotted in Figure 5.38. For the larger step 
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Figure 5.38: Step response of single actuator system with pressure-feedback controller 

size, the system reachs the steady state with a slightly larger overshot and a longer time. This 

is similar to the result when the proportional gain controller is applied. 

In Figure 5.39, we can observe a small oscillation in the valve opening, which is due to the 

second order valve dynamics. The frequency of the valve oscillation is according to the natural 

frequency of the valve dynamics. In our system, the natural frequency of valve dynamics is 

about 1.4 times of the hydraulic resonant frequency. We can achieve a better performance if a 

valve with higher natural frequency is used. 

The pressure-feedback would generate a steady-state tracking error due to the variance in 

the load/pressure. This effect of load could be compensated using the rigid body dynamic 

model of the Stewart platform. 

5.3.3 Experimental verification 

The pressure-feedback controller can stabilize the actuator system. 
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The valve opening in a step response 
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Figure 5.39: Valve step response when the pressure-feedback controller is used 

We have observed dramatic oscillation when we increased the loop gain of the proportional 

gain controller by 3 times to be 600. 

But for the pressure-feedback controller, we can increase the loop gain to 1200 while keeping 

the system stable. The experimental results of a single actuator are shown in Figure 5.40 and 

Figure 5.41 for the sinusoid input and step input, respectively. The loop-gain selected is 2000, 

and the closed-loop system has a cut-off frequency of about 15 Hz. 

Through experiments, we successfully proved that this new type of pressure-feedback con­

troller is practically useful. This approach of the pressure-feedback controller design can be 

applied to the general electrohydraulic actuator control to improve the performance and guar­

antee the stability. 
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Figure 5.40: Sine response when the pressure-feedback controller is used 

Figure 5.41: Step response when the pressure-feedback controller is used 



Chapter 5. Control Implementation 62 

5.4 Cartesian-space Controller 

In this section, we discuss the design of Cartesian-space controller. 

The desired trajectories of the Stewart platform are generally given in Cartesian-space. 

The feedback signals of the Stewart platform are generally obtained in link-space as actuator 

lengths/velocities. We can apply the inverse kinematics to derive the desired trajectories in link-

space, which can be done off-line in some cases, and use the link-space controller. Or, we can 

apply the forward kinematics to derive the actual position/orientation of the Stewart platform in 

Cartesian-space, and use the Cartesian-space controller. The Cartesian-based control schemes 

perform more computations in the loop and may run at a lower sampling frequency, this is a 

drawback of using the Cartesian-based methods. 

Block diagram of a simple Cartesian-space controller is shown in Figure 5.42. The error 

5X 
J 

81 
Compensator 

VbA Stewart 
Platform 
Dynamics 

J Compensator 
Stewart 
Platform 
Dynamics 

I A Forward < < | 
Kinematics 

Figure 5.42: Simple Cartesian-space control block diagram 

signal in Cartesian-space is transformed to link-space through the Jacobian matrix. When 

the compensator is the same as that in a link-space controller, the performance of this type 

of Cartesian-space controller is exactly the same as that of the link-space controller. For the 

control of the Stewart platform, where forward kinematics require more computation, this type 

of Cartesian-space controller is not recommended. 

Another type of Cartesian-space controller makes use of the error signal in Cartesian-space 

to compute the desired force F in Cartesian-space and then transforms it to r in link-space 

through the Jacobian matrix, see Figure 5.43. We can also apply the standard computed-torque 

control laws in Cartesian-space. But this type of controller requires actuators with force output, 
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Figure 5.43: Cartesian-space controller 

such as torque motors. For the electrohydraulic actuators we are using, the actuator dynamics 

can not be neglected, and the output force can not be controlled directly. So we were not able 

to apply the Cartesian-space controllers to our Stewart platform. 

5.5 Mot ion Drive Algori thm 

The ability of a motion simulator to produce accurate motion cues is determined by two fac­

tors, the physical constraints of the motion system and the characteristics of the motion drive 

algorithm [24]. As discussed in Section 2.3, our platform has a small motion envelope compared 

to the real excavator maneuvers being simulated, so it is necessary to modify the data from real 

excavator maneuvers by using a motion drive algorithm, which is commonly known as wash-out 

filter. 

Wash-out filters attempt to generate the most accurate motion cue possible within the phys­

ical constraints of the motion system. The inputs to the wash-out filters should be translational 

accelerations and angular velocities. It is generally agreed that these signals are the elements 

of motion that are sensed by humans [24]. 

Classical wash-out filters are presently used by most aircraft simulator manufacturers and 

are relatively straightforward. Classical wash-out filters employ linear high-pass and low-pass 

filters along with input scaling and limiting to constrain the simulator motions to be within 

the capabilities of the motion system hardware. The scaling and filter parameters are fixed 

and are selected so that the simulator response to a worst case input is adequately constrained. 
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Diagram of a simple classical wash-out filter is presented in Figure 5.44. 
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Figure 5.44: A classical wash-out filter configuration 

The translational acceleration signal and the angular velocity signal are both scaled and 

high-pass filtered to make the motion cue remain in the safe workspace of the motion simulator. 

There is a tilt-coordination channel passing the low-pass filtered translational acceleration to 

the rotation angles. The low frequency acceleration signals in X and Y direction are simulated 

by tilting the mobile platform and making use of the gravity to generate similar senses. 

The above classical wash-out filter only gives a basic idea about the motion cue genera­

tion. There are other types of motion drive algorithms, which are more complex and have 

better performances. There is still considerable opportunity for the improvement of motion cue 

generation. 

In this chapter, a high-performance controller using pressure feedback was developed. This 

controller was studied via both simulation and experiment. It was shown that the pressure-

feedback controller can ensure the stability of the system. Experimental results indicated that 

the frequency response of the Stewart platform using pressure-feedback controller was very good. 

This intuitive and simple approach could be useful in a wide range of hydraulic applications. 
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Simulation of Combined Dynamics 

The purpose of the software simulation is to simulate the response of the Stewart platform on the 

computer for given controller parameters and a pre-planned trajectory. This can help us study 

the performances of different types of controllers. To simulate the motion of Stewart platform 

on the computer, we should combine the actuator dynamics with the rigid body dynamics. 

6.1 Combined Dynamics 

To simplify the derivation, we will not consider the leg dynamics, because the leg dynamics part 

is more complicated and less important than the mobile platform dynamics part, as discussed 

in Section 3.2. Then the derivation is basically the same as that in [3]. 

We rewrite the rigid body dynamics (3.38) as, 

f=( j* ) D 
V "Ctr. 

+ E (6.77) 

where D and E are defined as in (3.39) and (3.40). 

The actuator dynamics are described by (4.48). We rewrite it for all the six actuators in a 

single vector, 

M l 

M(Cdw^h(Xv6,Pc6)-Ve) _ 

Bl - f (6.78) 

where 1 is a six vector of the actuator lengths and f is a six vector of the actuator forces. 

65 
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The derivative of (6.77) is given by, 

f = - ( j T ) _ 1 j r ( j r y - i 
/ b \ / b b' \ 

D B.p 
b 

+ E + ( J T) _ 1 D 
b 

+ D 
b' 

+ E 

V ) I OLp bctp / 

where 

and 

D 
0 0 

o s(V) 

E = 

D + D 

0 

0 

0 

0 0 

I° s T N) J 

(6.79) 

(6.80) 

(6.8i; 

bap x (bIpbuP) + bcjp x [bup x (V^P) + %baP) 

The Cartesian-space variables can be expressed in terms of the link-space variables, and vice 

versa. Detailed derivations can be found in Appendix C. If we express f in terms of link-space 

variables and substitute it into (6.78), the combined dynamics in link-space can be expressed 

as 

1 = MI + ( J T ) " 1 ^ - 1 ) " 

^(Ctw^hiX^P^-V,) 

+ 
^(cdWsfih{XV&,PC&)-V&) 

(_ B + (J R) - 1 J T (J T) _ 1 D - (J T) _ 1 D + 2 (J R) _ 1 DJ" 1 j) J " 1 ! + 

• ( (J T ) - 1 D - (J T ) _ 1 JT (J T ) _ 1 D - 2 ( J r ) _ 1 DJ" 1 j) J" 1 JJ-M + 

( j ^ ^ D J ^ J J -n - f ( J T ) - 1 J T ( J T ) _ 1 E - (J T ) _ 1 E} (6.82) 

where I is a six by six identity matrix. The combined dynamics are expressed as a set of six 

coupled, third order differential equations where the inputs are the six valve spool positions 

Xvi.. .XVQ. The valve position of each actuator is controlled by the command value VDA, and 

the valve response can be approximately modeled as a second order closed-loop system. So the 

model of the Stewart platform is a fifth order nonlinear system. 



Chapter 6. Simulation of Combined Dynamics 67 

It is also possible to model the Stewart platform in Cartesian-space, if we express f, 1, and 

1 in terms of Cartesian-space variables in (6.78). That model would be useful for the simulation 

when applying the Cartesian-space controller. 

We ran some simulations of the closed-loop system using link-space pressure-feedback con­

troller. The simulation code was original written by Drexel in the C language [3], and was 

further modified by the author for the new control structure. The simulation results and the 

experiment data are compared in the next section. 

6.2 Case Studies 

We compare the simulation results and the experimental results through case studies in this 

section. The pressure-feedback controller with the loop gain of 1200 is used. Lengths of the 

six actuators (link-space response) are plotted for each case, with both simulation results and 

experimental results. The responses in the Cartesian-space are also plotted for the first two 

cases. 

In the first case, we oscillate the platform along the x axis with an amplitude of 0.05 meter 

at 1.0 Hz. The simulation result is shown in Figure 6.45, while the experiment result is shown 

in Figure 6.46. 

We also plot the Cartesian-space in Figure 6.47. 

In the second case, we oscillate the platform about the z axis with an amplitude of 0.02 

meter at 1.0 Hz. The simulation result and experiment result are plotted in Figure 6.48 and 

Figure 6.49, respectively. And the Cartesian-space tracking is shown in Figure 6.50. Please 

notice that Figure 6.50 shows the displacement along the z axis rather than the actual position 

variable zp. 

In the third case, we apply a 0.005 meter step input to the platform's xv coordinate. The 

results are plotted in Figure 6.51 and Figure 6.52. 

In the fourth case, we apply a 0.005 radian step input to the platform's <j) coordinate. The 

results are plotted in Figure 6.53 and Figure 6.54. 
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Figure 6.45: Case 1: Sine wave response along x axis, simulation 
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Figure 6.46: Case 1: Sine wave response along x axis, experiment 
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Figure 6.48: Case 2: Sine wave response along z axis, simulation 
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Figure 6.49: Case 2: Sine wave response along z axis, experiment 
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Figure 6.50: Case 2: Cartesian-space response 
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Figure 6.51: Case 3: Step response of x, simulation 
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Figure 6.52: Case 3: Step response of x, experiment 
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Figure 6.53: Case 4: Step response of roll angle, simulation 
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Figure 6.54: Case 4: Step response of roll angle, experiment 



Chapter 7 

Conclusion and Future works 

In this thesis we have presented the modeling, simulation, and control of a hydraulically actu­

ated, ceiling-mounted Stewart platform, which is designed to be a motion simulator. 

The mechanical constraints, singularities, and the length limits of the actuators were studied. 

A cylindrical workspace where the system is free of mechanical constraints and singularities was 

obtained for control system development. We applied Newton's method to solve the platform's 

forward kinematics and concluded that the result would reach the desired value after two 

iterations in the real-time control. 

We also presented a derivation of the Stewart platform's complete rigid body dynamics. The 

derivation was straightforward and the result was relatively simple. We then showed through 

simulations that the leg dynamics can be neglected in this particular platform design. This 

simplified the simulation work and real-time control. 

A model of the electrohydraulic actuator was derived and then linearized for the purpose 

of simulation and control. The model was validated using experimental data. Results showed 

that the linearized actuator model and the experimental data fit each other well. This model 

is the base of the design of link-space controllers. 

Performance of the proportional gain controller was studied. The system response could 

be improved by pre-filtering the desired trajectory. To ensure the stability of the system, 

a pressure-feedback controller was proposed. The study showed that this pressure-feedback 

controller could stabilize the system, and it improved the system performance by allowing 

a higher loop gain. This intuitive and simple approach could be useful in a wide range of 

hydraulics applications. The preliminary experimental results indicated that the frequency 
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response of our Stewart platform using pressure-feedback control is very good. 

Some suggestions for further work include the following: 

• Improve the valve response by applying the closed-loop control based on the valve spool 

position 

• Investigate the use of on-line identification to determine the bulk modulus value and 

therefore the pressure gain 

• Study the robustness of the proposed pressure-feedback control to measurement errors 

and experimentally determine the system stability margins 

• Examine analytically and experimentaUy the effects of leg flexibility and platform rigid-

body dynamics on the link-space controllers 

• Further investigate the possibility of applying Cartesian-space controllers 

• Develop code for motion drive algorithms and simulate the excavator motion 
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Appendix A 

Derivatives of Jacobian 

We define the Jacobian matrix of Stewart platform as, 

1 = J (A.83) 

where 1 is the six vector of actuator velocities, J is the platform's six by six Jacobian matrix, 
6 v p = bdp is the three vector of the platform's translational velocity and bup is the three vector 

of the platform's angular velocity. 

Then, we can get the Jacobian matrix as in Section 2.2 

I'A 

" ( b R / P A + bdp - bbAy (( 6R/p,0 x (bdp - bbA))' 

1 = 

IB 

l'c 

I'D 

I'E 

lF 

or, 

( 6 R / P F L +
 bdp - bbB) ((bR/PB) x (bdp - bbB))' 

( 6 R / P F + bdp- bbF) T
 ( ( 6 R / P F ) X ( 6dp - bbFj)

:  

i = j ( 6 d p , 6 R p ) 

(A.84) 

(A.85) 

where the Jacobian matrix depends on the platform's position 6 d p and orientation 6 R P . 

The first and second derivatives of the Jacobian matrix are also useful for analyzing the 

platform's overall dynamics. The following are derivations of these derivatives. From (A.84), 

we can get 

U 

6 R / P i + bdp - hb{ 

[% - bdp) x ( 6 R/p 8 ) 
(A.86) 
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Using the quotient rule, we take the derivative of (A.86) with respect to time, and get 

b, u p x ( 6 R / P i ) + 6

V p 

v p x ( b R / P i ) + - 6 d p ) x (bup x ( 6 R / P i ) ) _ 

6 R / P i + 6 d p - 6 b i 

[ ( b b , - "dp) x ( 6 R / P i ) J h 

Equation (A.87) can be simplified using (A.86) to give 

b u p x ( b R / P i ) + bwp 

b v p x ( 6 R / P t ) + ( b b i - 6 d p ) x (bup x ( 6 R / P i ) ) 

(A.87) 

JTii 

(A.88) 

Finally, taking the transpose of (A.88), we have an expression for each row of the first derivative 

of the platform's Jacobian matrix, 

-i T 

J i l{ 
b u v x ( 6 R P

P
P I ) + 6 v p 

-bwp x ( 6 R / P j ) + (6b,- - bdp) x (bup x ( 6 R P
P

P I ) ) J 

JT = 

j j ^ d p , R p , v p , &p,i{J — 
(A.89) 

To derive the second derivative of the Jacobian matrix we start with (A.88) and use the quotient 

rule as before, giving 

b a p x (bRp

pPi) + b u p x ( 6 C J p x ( 6 R p p P i ) ) + 6 a p 

-bap x ( 6 R p

p P i ) - 2 6 v p x (bwp x ( 6 R p p P i ) ) + 

[% - bdp) x ( 6 a p x ( 6 R p p

P i ) + 

V x ( 6w px ( b R / P i ) ) ) 

bcop x ( 6 R p

p P i ) + 6 v p 

bvp x ( b R / P i ) + ( 6b 8- - b d p ) x (bup x ( b R / P i ) ) 

where 6 a p (three vector) is the translational acceleration of the platform's center of mass, 
bcxp (three vector) is the angular acceleration of the platform about its center of mass and /; is 

the acceleration of actuator i. 

- < 
(A.90) 
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Equation (A.90) is simplified using (A.88) to give 

J7 = 

bap x ( 6 R / P i ) +
 bojp x (bup x ( 6 R p p

P l ) ) + 6 a p 

- 6 a p x ( b R / P i ) - 2 6v p x ( 6 y p x ( 6 R p p

P ; ) ) + 

[ ( bbi - 6d p) x ( 6a p x ( f c R / p , ) + bup x (6wp x ( 6 R / P i ) ) ) 

2J • /» J / j 

(A.91) 

Finally, taking the transpose of (A.91), we have an expression for each row of the second 

derivative of the platform's Jacobian matrix 

J ib j b-rt b b b b j 'f\ 
i I t i p , - ^ p ? V p , ojp, a p , o j p , t 2 ' , t t ' i — 

-I T 

bap x ( b R / p i ) + 6 w p x ( 6 u ; p x (bRpPp8)) + % 

- 6 a p x ( 6 R p p P i ) - 26Vp x (6u;p x ( 6 R / P ; ) ) + - 2Jt-/,- - J j i 

(6bt- - bd p) x (6a„ x ( 6 R p p

P i ) +  bu;p x ( bup x ( 6 R p P P t ) ) ) 

- - - - J J J - ^ (A.92) 



Appendix B 

Spectral Analysis 

For a stationary stochastic process x(/), we can write the mean E{x(t)} and autocorrelation 

R(T) = RXX(T) = E{x(t + r)x*(t)} (B.93) 

The cross-correlation of two jointly stationary processes is 

Rxy{r) = E{x(t + r)y*(*)} = R*yx(-r) (B.94) 

The power spectral density (also called power spectrum) S(u>) or Sxx(u>) of a process x(t) 

is the Fourier transform of its autocorrelation: 

/

oo 
R(T)e-juJTdr (B.95) 

-co 

Since R(—T) = R*(T), we easily conclude from the above that S(u) is a real function. 

The cross spectral density Sxy(u) of two process x(t) and y(t) is the Fourier transform of 

their cross-correlation: 

/

oo 
Rxy(r)e-^dr = S*yx(u) (B.96) 

-oo 

We now study a given linear system with impulse response function h(t). When a process 

x(t) is applied to the input of this system, the resulting output y(i) is given by, 

/

oo poo 
x(t - a)h(a)da = / x(a)h(t - a)da (B.97) 

-oo J—eo 

The cross-correlation between y(i) and x(i) can then be expressed as 

Ryx(r) = E{y(t)x*(t — r)}, assuming stationariness 

/

oo 
x(t - a)x*(t - T)h(a)da} 

-oo 

81 



Appendix B. Spectral Analysis 82 

/

oo 
E{x(t - a)x*(i - r)}h(a)da 

-oo 

/
oo 

- a) - (< - T)]h(a)da 
-oo 

/
oo 

Rxx(i~ — a)h(a)da 
-oo 

= i M r ) * fc(r) (B.98) 

Similarly, we can obtain, 

Ryy(T) = Ryx(r) * h*(-T) (B.99) 

If x(i) is white noise, i.e. if Rxx{r) = <5(r), and = 0 for t < 0 (real causal system), 

then, 

Ryx{r) = h[r) (B.100) 

and transfer function of the system when s = jto can be expressed as 

1 h(t)e-^dt = / Ryx(t)e-jwtdt = Syx(u>) (B.101) 

0 J-oo 

Similarly, we can also obtain, 

l# O)! 2 = Syy(u) (B.102) 

By using white noise, which has a evenly distributed power spectral density, as input signal 

and analyzing the cross spectral density between output signal and input signal of the system, 

we can get an experimentally estimated transfer function of the system. 



Appendix C 

Transformations between Cartesian-space variables and link-space variables 

In the simulation and control of the Stewart platform, transformations between Cartesian-space 

variables and link-space variables are generaUy needed. We just summarize these transforma­

tions here. 

The transformation between the platform configuration X and the actuator lengths 1 can 

be done through inverse/forward kinematics. 

X = forwardJcinematics(l) (C.103) 

and 

1 = inverse-kinematics^X.) (C.104) 

And Jacobian matrix J can be derived from the platform configuration. 

The velocity level transformations are 

p (C.105) 
b, 

P 

and 

1 = J (C.106) 

And J can be derived as in the previous section. 

The acceleration level transformations are 

= J - 1 ! - J - 1 jji (C.107) 
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and 
b 6 

1 = 3 + J 
bup 

bap 

(C.108) 

And J can also be derived as in the previous section. 



Appendix D 

Matlab Source Code 

.1 InvKinematics.m 

f u n c t i o n [ l e n g t h ] = i n v k i n e m a t i c s ( x , y , z , p s i , t h e , p h . i ) 

'/, D e f i n e t h e sys tem p a r a m e t e r s 

gammapl = 5 3 . 4 5 ; */, u n i t i n d e g r e e 

gammap = [gammapl ,120-gammapl , 120+gammapl, - 1 2 0 - g a m m a p l , - 1 2 0 + g a m m a p l , - g a m m a p l ] ; 

gammabl = 7 . 7 5 ; '/, u n i t i n degree 

gammab = [gammabl ,120-gammabl , 120+gammabl, - 1 2 0 - g a m m a b l , - 1 2 0 + g a m m a b l , - g a m m a b l ] ; 

r p = 0 . 6 6 8 

r b = 1.133 

hp = 0 . 2 0 3 

'/, r a d i u s o f p l a t f o r m , i n m e t e r 

'/, r a d i u s o f b a s e , i n m e t e r 

'/, p l a t f o r m n o m i n a l h e i g h t , i n m e t e r 

s p s i = s i n ( p s i * p i / 1 8 0 ) 

c p s i = c o s ( p s i * p i / 1 8 0 ) 

s t h e = s i n ( t h e * p i / 1 8 0 ) 

c t h e = c o s ( t h e * p i / 1 8 0 ) 

s p h i = s i n ( p h i * p i / 1 8 0 ) 

c p h i = c o s ( p h i * p i / 1 8 0 ) 

'/, r o t a t i o n m a t r i x R 

b R p ( l . l ) = c p h i * c t h e ; 

b R p ( l , 2 ) = - s p h i * c p s i + c p h i * s t h e * s p s i ; 

b R p ( l , 3 ) = s p h i * s p s i + c p h i * s t h e * c p s i ; 

b R p ( 2 , l ) = s p h i * c t h e ; 

b R p ( 2 , 2 ) = c p h i * c p s i + s p h i * s t h e * s p s i ; 

b R p ( 2 , 3 ) = - c p h i * s p s i + s p h i * s t h e * c p s i ; 

b R p ( 3 , l ) = - s t h e ; 

b R p ( 3 , 2 ) = c t h e * s p s i ; 

b R p ( 3 , 3 ) = c t h e * c p s i ; 

'/. f i x e d v e c t o r o f pp 

p p ( l , : ) = r p * c o s ( g a m m a p * p i / 1 8 0 ) ; 

p p ( 2 , : ) = r p * s i n ( g a m m a p * p i / 1 8 0 ) ; 

p p ( 3 , : ) = [ h p / 2 , h p / 2 , h p / 2 , h p / 2 , h p / 2 , h p / 2 ] ; 
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'/, f i x e d v e c t o r o f bb 

b b ( l , : ) = r b * c o s ( g a m m a b * p i / 1 8 0 ) ; 

b b ( 2 , : ) = r b * s i n ( g a m m a b * p i / 1 8 0 ) ; 

b b ( 3 , : ) = CO, 0 , 0 , 0 , 0 , 0 ] ; 

*/. bdp 

bdp = [ x , y , z ] ' ; 

bDp = [ b d p , b d p , b d p , b d p , b d p , b d p ] ; 

'/, a c t u a t o r v e c t o r 

bA = bRp*pp +bDp - b b ; 

f o r i = 1 : 6 , 

l e n g t h ( i ) = n o r m ( b A ( : , i ) ) ; 

end 

D.2 F w d K i n e m a t i c s . m 

'/, System p a r a m e t e r s 

gammapl = 5 3 . 4 5 ; 

gammap = [gammapl ,120-gammapi , 120+gammapl, - 1 2 0 - g a m m a p l , - 1 2 0 + g a m m a p l , - g a m m a p l ] ; 

gammabl = 7 . 7 5 ; 

gammab = [gammabl ,120-gammabl , 120+gammabl, -120-gammab l , -120+gammab l , -gammab l ] ; 

r p = 0 . 6 6 8 ; 

r b = 1 .133 ; 

hp = 0 . 2 0 3 ; 

p p ( l , : ) = r p * c o s ( g a m m a p * p i / 1 8 0 ) ; 

p p ( 2 , : ) = r p * s i n ( g a m m a p * p i / 1 8 0 ) ; 

p p ( 3 , : ) = [ h p / 2 , h p / 2 , h p / 2 , h p / 2 , h p / 2 , h p / 2 ] ; 

b b ( l , : ) = r b * c o s ( g a m m a b * p i / 1 8 0 ) ; 

b b ( 2 , : ) = r b * s i n ( g a m m a b * p i / 1 8 0 ) ; 

b b ( 3 , : ) = [ 0 , 0 , 0 , 0 , 0 , 0 ] ; 

'/, E s t i m a t e d v a l u e o f C a r t e s i a n space v a r i a b l e s 

Assumed = [ 0 0 - 2 . 5 0 0 0 ] ; 

Assumedp = A s s u m e d ' ; 

'/, Number o f measured p o i n t s 

e n d i i = 8 0 ; 

F i n a l p = z e r o s ( e n d i i , 6 ) ; 

f o r i i = l : e n d i i , 

'/, Measured a c t u a t o r l e n g t h s 

G i v e n l = [ c u r r L e n g t h A ( i i , 1 ) , c u r r L e n g t h B ( i i , 1 ) , c u r r L e n g t h C ( i i , 1 ) , 
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currLengthD(ii,1), currLengthE(ii,1), currLengthF(ii,1) ] ; 
'/.Givenl = [ desLengthA(ii,1), desLengthB(ii, 1), desLengthC(ii, 1), 
'/. desLengthD(ii, 1), desLengthE(ii, 1), desLengthF(ii, 1) ]; 

fo r i r r =1:2, 

x = Assumedp(l); y = Assumedp(2); z = Assumedp(3); 
p s i = Assumedp(4); the = Assumedp(5); phi = Assumedp(6); 

sp s i = s i n ( p s i ) ; c p s i = cos(psi); sthe = sin(the); 
cthe = cos(the); sphi = s i n ( p h i ) ; cphi = cos(phi); 

'/, Rotation matrix 
bRp(l.l) = cphi * cthe; 
bRp(l,2) = -sphi * cpsi + cphi * sthe * sp s i ; 
bRp(l,3) = sphi * s p s i + cphi * sthe * cpsi ; 
bRp(2,l) = sphi * cthe; 
bRp(2,2) = cphi * cp s i + sphi * sthe * sp s i ; 
bRp(2,3) = -cphi * s p s i + sphi * sthe * cpsi ; 
bRp(3,l) = -sthe; 
bRp(3,2) = cthe * sp s i ; 
bRp(3,3) = cthe * cp s i ; 

bdp = [x,y,z] '; 
bDp = [bdp,bdp,bdp,bdp,bdp,bdp]; 

'/, Inverse kinematics of estimated Cartesian space variables 
bA = bRp*pp + bDp - bb; 
fo r i = 1:6, 
length( i ) = norm(bA(:,i)); 
end 

B ( l , l ) = cthe * 
B(l,2) = -sphi; 
B(l,3) = 0; 
B(2,l) = cthe * 
B(2,2) = cphi; 
B(2,3) = 0; 
B(3,l) = -sthe; 
B(3,2) = 0; 
B(3,3) = i ; 

'/, Jacobian 
f o r i = 1:6, 
J ( i , : ) = [ ( bRp*pp(:,i) + bdp - bb(:,i) )' ... 

(cross( bRp*pp(:,i), bdp-bb(:,i) ) ) ' ] / length ( i ) 
end; 
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'/, Forward kinematics 
Assumedp = Assumedp - inv( J * [eye(3) zeros(3,3) ; zeros(3,3) B ] ) * ... 

(length' - Givenl'); 

end 

'/. Result of one measured point 
F i n a l p ( i i , : ) = Assumedp'; 

end 

f i g u r e ; 
t=0:0.005:endii*0.005-0.005; 
p l o t ( t ' , F i n a l p ) ; 

D.3 Singularities.m 

function [SVRb,SVRp] = singu(x,y,z,psi,the,phi) 

'/. System parameters 

gammapl = 53.45; 
gammap = [gammapl,120-gammapl, 120+gammapl, -120-gammapl,-120+gammapl,-gammapl] ; 
gammabl = 7.75; 
gammab = [gammabl,120-gammabl, 120+gammabl, -120-gammabl,-120+gammabl,-gammabl] ; 

alphap = [0, 120, 120, -120, -120, 0]; 
betab = [60,60,180,180,-60,-60]; 

'/. U-joint angles 
j o i n t b = -45; 
Jointb = [ j o i n t b , j o i n t b , j o i n t b , j o i n t b , j o i n t b , j o i n t b ] ; 
j o i n t p = 45; */,45 f o r chair, 30 f o r t r i a n g l e . 
Jointp = [ j o i n t p , j o i n t p , j o i n t p , j o i n t p , j o i n t p , j o i n t p ] ; 

rp = 0.668; 
rb = 1.133; 
hp = 0.203; 

sp s i = sin(psi*pi/180); 
cpsi = cos(psi*pi/180); 
sthe = sin(the*pi/180); 
cthe = cos(the*pi/180); 
sphi = sin(phi*pi/180); 
cphi = cos(phi*pi/180); 

bRp(l,l) = cphi * cthe; 
bRp(l,2) = -sphi * cp s i + cphi * sthe * sp s i ; 
bRp(l,3) = sphi * spsi + cphi * sthe * cpsi ; 
bRp(2,l) = sphi * cthe; 
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bRp(2,2) = cphi * cpsi + sphi * sthe * spsi; 
bRp(2,3) = -cphi * spsi + sphi * sthe * cpsi; 
bRp(3,l) = -sthe; 
bRp(3,2) = cthe * spsi; 
bRp(3,3) = cthe * cpsi; 

) = rp*cos(gammap*pi/180); 
) = rp*sin(gammap*pi/180); 
) = [hp/2,hp/2,hp/2,hp/2,hp/2,hp/2] ; 

) = rb*cos(gammab*pi/180); 
) = rb*sin(gammab*pi/180); 
) = [0, 0, 0, 0, 0, 0]; 

pp(l, 
pp(2, 
pp(3, 

bb(l, 
bb(2, 
bb(3, 

bdp = 
bDp = 

[x, y, z] ' ; 
[bdp,bdp,bdp,bdp,bdp,bdp]; 

bA = bRp*pp +bDp - bb; 

'/, axis vectors of the upper U-joints 
bU(l, 
bU(2, 
bU(3, 

) = rb*cos(betab*pi/180); 
) = rb*sin(betab*pi/180); 
) = rb*tan(Jointb*pi/180); 

'/, axis vectors of the lower U-joints 
pL(l, 
pL(2, 
pL(3, 

) = rp*cos(alphap*pi/180) 
) = rp*sin(alphap*pi/180) 
) = rp*tan(Jointp*pi/180) 

bL = bRp*pL; 

'/, Singularity Value Ratios, unit in 1/rad. 
'/, SVR > 5 is according to angle < 11.5 degree. 

SVRb(l) = 1 / acos ( ( bU( ,l)/norm(bU( ,D) : > * < bA( , l)/norm(bA( ,D) ) 
SVRb(2) = 1 / acos ( ( bU( ,2)/norm(bU( ,2)) : > * < bA( ,2)/norm(bA( ,2)) ) 
SVRb(3) = 1 / acos ( ( bU( ,3)/norm(bU( ,3)) : > * [ bA( ,3)/norm(bA( ,3)) ) 
SVRb(4) = 1 / acos ( ( bU( ,4)/norm(bU( ,4)) : > * [ bA( ,4)/norm(bA( ,4)) ) 
SVRb(5) = 1 / acos ( ( bU( ,5)/norm(bU( ,5)) : > * [ bA( ,5)/norm(bA( ,5)) ) 
SVRb(6) = 1 / acos( ( bU( ,6)/norm(bU( ,6)) ; > * < bA( ,6)/norm(bA( ,6)) ) 

SVRp(l) = 1 / acos( ( bL(:,l)/norm(bL(:,1) 
SVRp(2) = 1 / acos( ( bL(:,2)/norm(bL(:,2) 
SVRp(3) = 1 / acos( ( bL(:,3)/norm(bL(:,3) 
SVRp(4) = 1 / acos( ( bL(:,4)/norm(bL(:,4) 
SVRp(5) = 1 / acos( ( bL(:,5)/norm(bL(:,5) 
SVRp(6) = 1 / acos( ( bL(:,6)/norm(bL(:,6) 

-bA(:,l)/norm(bA(:,1)) 
-bA(:,2)/norm(bA(:,2)) 
-bA(:,3)/norm(bA(: ,3)) 
-bA(:,4)/norm(bA(:,4)) 
-bA(:,5)/norm(bA(:,5)) 
-bA(:,6)/norm(bA(:,6)) 
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D.4 Dynamics.m 

'/, C a r t e s i a n space v a r i a b l e s 

x = 0 ; y = 0 ; z = - 2 . 5 ; 

d o t x = 0 ; d o t y = 0 ; d o t z = 0 ; 

d d o t x = 0 ; d d o t y = 0 ; d d o t z = 0 ; 

p s i = 0 ; t h e = 0 ; p h i = 0 ; 

d o t p s i = 0 ; d o t t h e = 0 ; d o t p h i = 0 ; 

d d o t p s i = 0 ; d d o t t h e = 0 ; d d o t p h i = 0 ; 

f o r j j = 0 : 0 . 0 1 : 0 . 3 ; 

*/, a c c e l e r a t i o n i n y d i r e c t i o n 

' / .ddoty = 9 . 8 ; 

' / .doty = j j * 9 . 8 ; 

*/.y = 0 . 5 * j j ~ 2 * 9 . 8 ; 

'/, a c c e l e r a t i o n i n x d i r e c t i o n 

' / .ddotx = 9 . 8 ; 

' / .dotx = j j * 9 . 8 ; 

*/.x = 0 . 5 * j j ~ 2 * 9 . 8 ; 

www=40; 

a a a = 0 . 0 1 ; 

x = a a a * s i n ( j j * w w w ) ; 

d o t x = a a a * w w w * c o s ( j j * w w w ) ; 

d d o t x = - a a a * w w w * w w w * s i n ( j j * w w w ) ; 

'/. s i n u s o i d a l t h e a n g l e 

* / , t he=aaa*s in ( j j * w w w ) ; 

' / ,dot the= a a a * w w w * c o s ( j j * w w w ) ; 

' / ,ddotthe=-aaa*www*www*s i n ( j j *www); 

s w i t c h = 0 ; 

'/, C a l l t h e Dynamics f u n c t i o n w i t h o u t c o n s i d e r i n g l e g dynamics 

F = D y n a m i c s ( d d o t x , d d o t y , d d o t z , d d o t p s i , d d o t t h e , d d o t p h i , . . . 

d o t x , d o t y , d o t z , d o t p s i , d o t t h e , d o t p h i , x , y , z , p s i , t h e , p h i , s w i t c h ) ; 

f o r c e d , j j * 1 0 0 + l ) = F ( l ) ; 

f o r c e ( 2 , j j * 1 0 0 + l ) = F ( 2 ) ; 

f o r c e ( 3 , j j * 1 0 0 + l ) = F ( 3 ) ; 

f o r c e ( 4 , j j * 1 0 0 + l ) = F ( 4 ) ; 
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f o r c e ( 5 , j j * 1 0 0 + l ) = F ( 5 ) ; 

f o r c e ( 6 , j j * 1 0 0 + l ) = F ( 6 ) ; 

s w i t c h = l ; 

'/, C a l l t h e Dynamics f u n c t i o n w i t h c o n s i d e r i n g l e g dynamics 

F = D y n a m i c s ( d d o t x , d d o t y , d d o t z , d d o t p s i . d d o t t h e . d d o t p h i , . . . 

d o t x , d o t y , d o t z , d o t p s i , d o t t h e , d o t p h i , x , y , z , p s i , t h e , p h i . s w i t c h ) ; 

f o r c e l e g d , j j * 1 0 0 + l ) = F ( l ) ; 

f o r c e l e g ( 2 , j j * 1 0 0 + l ) = F ( 2 ) ; 

f o r c e l e g ( 3 , j j * 1 0 0 + l ) = F ( 3 ) ; 

f o r c e l e g ( 4 , j j * 1 0 0 + l ) = F ( 4 ) ; 

f o r c e l e g ( 5 , j j * 1 0 0 + l ) = F ( 5 ) ; 

f o r c e l e g ( 6 , j j * 1 0 0 + l ) = F ( 6 ) ; 

end ; 

'/, P l o t t h e r e q u i r e d a c t u a t o r f o r c e s f o r b o t h cases 

f i g u r e ; h o l d o n ; 

p l o t ( 0 : 0 . 0 i : 0 . 3 , f o r c e ( l , : ) , ' y o ' ) ; 

p l o t ( 0 : 0 . 0 1 : 0 . 3 , f o r c e ( 2 , : ) , ' w — ' ) ; 

p l o t ( 0 : 0 . 0 1 : 0 . 3 , f o r c e ( 3 , : ) , ' g x ' ) ; 

p l o t ( 0 : 0 . 0 1 : 0 . 3 , f o r c e ( 4 , : ) , ' r : ' ) ; 

p l o t ( 0 : 0 . 0 1 : 0 . 3 , f o r c e ( 5 , : ) , ' c - ' ) ; 

p l o t ( 0 : 0 . 0 1 : 0 . 3 , f o r c e ( 6 , : ) , ' m - . ' ) ; 

p l o t ( 0 : 0 . 0 1 : 0 . 3 , f o r c e l e g ( l , : ) , ' y o ' ) ; 

p l o t ( 0 : 0 . 0 1 : 0 . 3 , f o r c e l e g ( 2 , : ) , ' w — ' ) ; 

p l o t ( 0 : 0 . 0 1 : 0 . 3 , f o r c e l e g ( 3 , : ) , ' g x ' ) ; 

p l o t ( 0 : 0 . 0 1 : 0 . 3 , f o r c e l e g ( 4 , : ) , ' r : ' ) ; 

p l o t ( 0 : 0 . 0 1 : 0 . 3 , f o r c e l e g ( 5 , : ) , ' c - ' ) ; 

p l o t ( 0 : 0 . 0 1 : 0 . 3 , f o r c e l e g ( 6 , : ) , ' m - . ' ) ; 

l e g e n d ( ' A c t u a t o r A ' , ' A c t u a t o r B ' , ' A c t u a t o r C , ' A c t u a t o r D ' , . . . 

' A c t u a t o r E ' , ' A c t u a t o r F ' , - 1 ) 

f u n c t i o n [ F ] = D y n a m i c s ( d d o t x , d d o t y , d d o t z , d d o t p s i , d d o t t h e , d d o t p h i , . . . 

d o t x , d o t y , d o t z , d o t p s i , d o t t h e , d o t p h i , x , y , z , p s i , t h e , p h i , s w i t ch) 

'/. System p a r a m e t e r s 

gammapl = 5 3 . 4 5 ; 

gammap = [gammapl ,120-gammapl , 120+gammapl, - 1 2 0 - g a m m a p l , - 1 2 0 + g a m m a p l , - g a m m a p l ] ; 

gammabl = 7 . 7 5 ; 

gammab = [gammabl ,120-gammabl , 120+gammabl, - 1 2 0 - g a m m a b l , - 1 2 0 + g a m m a b l , - g a m m a b l ] ; 

a l p h a p = [ 0 , 120 , 120, - 1 2 0 , - 1 2 0 , 0 ] ; 

b e t a b = [ 6 0 , 6 0 , 1 8 0 , 1 8 0 , - 6 0 , - 6 0 ] ; 
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r p = 0 . 6 6 8 

r b = 1.133 

hp = 0 . 2 0 3 

g = 9 . 8 ; '/, g a c c e l e r a t i o n 

'/, s w i t c h =1 o r =0 l o r w i t h o r w i t h o u t c o n s i d e r i n g l e g s ; 

m l e g = 1 5 * s w i t c h ; 

m l = m l e g * 0 . 2 ; */. mass o f l o w e r p a r t o f l e g 

mu = m l e g * 0 . 8 ; '/, mass o f u p p e r p a r t o f l e g 

l u = 0 . 4 ; '/, d i s t a n c e be tween u p p e r c e n t e r and c o n n e c t i o n 

11 = 0 . 8 ; '/, d i s t a n c e be tween l o w e r c e n t e r and c o n n e c t i o n 

7, assume t h e l o a d t o be 250 k g 

m p l a t f o r m = 2 5 0 . 0 ; 

p i p = m p l a t f o r m * [ 0 . 6 * 2 / 4 + 1 . 0 - 2 / 1 2 0 0 ; 0 0 . 6 * 2 / 4 + 1 . 0 - 2 / 1 2 0 ; 0 0 0 . 6 " 2 / 2 ] ; 

'/, v e l o c i t y 

bVp = [ d o t x ; d o t y ; d o t z ] ; 

'/, a c c e l e r a t i o n 
bACCp = [ d d o t x ; d d o t y ; d d o t z ] ; 

s p s i = s i n ( p s i * p i / 1 8 0 ) 

c p s i = c o s ( p s i * p i / 1 8 0 ) 

s t h e = s i n ( t h e * p i / 1 8 0 ) 

c t h e = c o s ( t h e * p i / 1 8 0 ) 

s p h i = s i n ( p h i * p i / 1 8 0 ) 

c p h i = c o s ( p h i * p i / 1 8 0 ) 

b R p ( l . l ) = c p h i * c t h e ; 

b R p ( l , 2 ) = - s p h i * c p s i + c p h i * s t h e * s p s i ; 

b R p ( l , 3 ) = s p h i * s p s i + c p h i * s t h e * c p s i ; 

b R p ( 2 , l ) = s p h i * c t h e ; 

b R p ( 2 , 2 ) = c p h i * c p s i + s p h i * s t h e * s p s i ; 

b R p ( 2 , 3 ) = - c p h i * s p s i + s p h i * s t h e * c p s i ; 

b R p ( 3 , l ) = - s t h e ; 

b R p ( 3 , 2 ) = c t h e * s p s i ; 

b R p ( 3 , 3 ) = c t h e * c p s i ; 

p p ( l , : ) = r p * c o s ( g a m m a p * p i / 1 8 0 ) ; 

p p ( 2 , : ) = r p * s i n ( g a m m a p * p i / 1 8 0 ) ; 

p p ( 3 , : ) = [ h p / 2 , h p / 2 , h p / 2 , h p / 2 , h p / 2 , h p / 2 ] ; 

b b ( l , : ) = r b * c o s ( g a m m a b * p i / 1 8 0 ) ; 

b b ( 2 , : ) = r b * s i n ( g a m m a b * p i / 1 8 0 ) ; 
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b b ( 3 , : ) = [ 0 , 0 , 0 , 0 , 0 , 0 ] ; 

bdp = [ x , y , z ] ' ; 

bDp = [ b d p , b d p , b d p , b d p , b d p , b d p ] ; 

bA = bRp*pp + bDp - b b ; 

'/, i n e r t i a 
I u i = m u * ( 2 * l u ) ~ 2 / 3 ; 

B ( i . i ) = c t h e * c p h i 

B ( l , 2 ) = - s p h i ; 

B ( l , 3 ) = 0 ; 

B ( 2 , l ) = c t h e * s p h i 

B ( 2 , 2 ) = c p h i ; 

B ( 2 , 3 ) = 0 ; 

B ( 3 , l ) = - s t h e ; 

B ( 3 , 2 ) = 0 ; 

B ( 3 , 3 ) = l ; 

'/. a n g u l a r v e l o c i t y 

bWp = B * [ d o t p s i ; d o t t h e ; d o t p h i ] ; 

d o t B ( l . l ) = - s t h e * c p h i * d o t t h e - c t h e * s p h i * d o t p h i ; 

d o t B ( l , 2 ) = - c p h i * d o t p h i ; 

d o t B ( l , 3 ) = 0 ; 

d o t B ( 2 , l ) = - s t h e * s p h i * d o t t h e + c t h e * c p h i * d o t p h i ; 

d o t B ( 2 , 2 ) = - s p h i * d o t p h i ; 

d o t B ( 2 , 3 ) = 0 ; 

d o t B ( 3 , l ) = - c t h e * d o t t h e ; 

d o t B ( 3 , 2 ) = 0 ; 

d o t B ( 3 , 3 ) = 0 ; 

'/, a n g u l a r a c c e l e r a t i o n 

b a l p h a p = d o t B * [ d o t p s i ; d o t t h e ; d o t p h i ] + B * [ d d o t p s i ; d d o t t h e ; d d o t p h i ] ; 

l o r i = l : 6 , 

'/, l e n g t h o f l e g s 

l l e g = n o r m ( b A ( : , i ) ) ; 

'/, C a l c u l a t i o n s o f v a r i a b l e s as shown i n dynamic e q u a t i o n s 

d o t b A ( : , i ) = c r o s s ( bWp, b R p * p p ( : , i ) ) + bVp; 

d d o t b A ( : , i ) = c r o s s ( b a l p h a p , b R p * p p ( : , i ) ) + . . . 

c r o s s ( b W p , c r o s s ( b W p , b R p * p p ( : , i ) ) ) + bACCp; 

d o t l l e g = ( b A ( : , i ) ' * d o t b A ( : , i ) ) / l l e g ; 
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'/.Ili(i) = ml*( lleg-2 + (ll e g - 2 * l l ) * l l e g + (lleg-2*ll) ' 2 )/3; 
I l i ( i ) = ml*( 3*lleg*2 + (2*11)*2 - 3*(2*ll)*lleg )/3; 

d o t l l i ( i ) = ml * (2*lleg-(2*ll)) * dotlleg; 

bWi(:,i) = cross( bA(:,i), dotbA(:,i) ) / (norm(bA(:,i))*norm(bA(:,i))); 

t i = cross( bA(:,i), [eye(3), cross(eye(3), bRp*pp(:,i)) ] ) ... 
/ (norm(bA(:,i))*norm(bA(:,i))); 

balphai =( ( bA(:,i)'*bA(:,i) )*( cross(bA(:,i), ddotbA(:,i)) ) ... 
- 2*( bA(:,i)'*dotbA(:,i) )*( cross(bA(:,i), dotbA(:,i)) ) )... 
/ norm(bA(:,i))*4; 

bTAUi = ( I l i ( i ) + Iui) * balphai + d o t l l i ( i ) * bWi(:,i); 

titimesbTAUi(:,i) = ti'*bTAUi; 

h i l = (ll/norm(bA(:,i))~3)*bA(:,i)*bA(:,i)'*[eye(3), cross(eye(3), ... 
bRp*pp(:,i))] + ( (norm(bA(:,i)) - ll)/norm(bA(:,i)) )* ... 
[eye(3), cross(eye(3), bRp*pp(:,i)) ]; 

hiu = (-lu/norm(bA(:,i))~3)*bA(:,i)*bA(:,i)'*[eye(3), cross(eye(3) , ... 
bRp*pp(:,i)) ] + ( (lu)/norm(bA(:,i)) )* ... 
[eye(3), cross(eye(3), bRp*pp(:,i)) ]; 

hmg(:,i) = hil'*ml*[0, 0, -g]' + hiu'*mu*[0, 0, -g] '; 
end; 

blp = bRp * pip * bRp'; 

bFp = mplatform * bACCp; 
bFp = bFp - mplatform * [0, 0, -g] '; 

bTAUp = blp * balphap + cross(bWp, (bIp*bWp)); 

*/, Platform dynamics 
for i=l:6, 
Jt(:,i) = [ ( bRp*pp(:,i) + bdp - bb(:,i) ); cross( bRp*pp(:,i), ... 

bdp-bb(:,i) ) ] / norm(bA(:,i)) ; 
end; 

'/. The required actuator forces for certain trajectory 
F = inv(Jt)*([bFp; bTAUp]+titimesbTAUi*[1;1;1;1;1;1] - hmg*[1;i;1;1;1;1]); 


