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Abstract

This thesis describes the modeling, simulation, and control of an inverted, ceiling-mounted
Stewart platform, which is designed to be a métion simulator. This hydraulically actuated
Stewart platform is capable of providing 10 m/s%, 400 degree/s? accelerations and 1 m/s,
30 degree/s speeds to a 250 kg payload.

The issues of modeling and control of such a platform are addressed here. The inverse
kinematics and forward kinematics are studied first. The platform rigid-body dynamics are
derived based on the virtual work principle and then combined with the actuator dynamics to
simulate the response of the Stewart platform given a pre-planned motion path. Design and
implementation of the link-space controller are discussed and also validated using experimen-
tal data. Cartesian-space controllers are also addressed. Motion drive algorithms are finally
addressed to complete the system’s function as a motion simulator.

When the controller is well tuned, the bandwidth of the system can reach about 9Hz along

the vertical axis for a payload of about 140 kg.




Table of Contents

Abstract

List of Tables

List of Figures
Acknowledg.ments

1 Introduction
1.1 Literature Review . . . . . . . . . . e e e e e e e e

1.2 System Description . . . . . . . . . . .. e e e e e e

2 Platform Kinematics

2.1 Imnverse Kinematics . . . . . . . . . . . . e
2.2 Platform Jacobian . . . . .. . L
2.3 Workspace and Singularities . . . . . . .. ... . Lo
2.3.1 Reachable workspace . . . . . . . . .. ... ..
2.3.2 Mechanical constraints . . . . . .. ... ... L e
2.3.3 Singularities . . . . . ... e e
2.4 Forward Kinematics . . . . . . . . . . . e e e e

3 Platform Dynamics
3.1 Complete Model . . . .. . . . . . e
3.2 Simplified Model . . . . . . . . . . e e e

4 Actuator Dynamiés

ii

vi

vil

11
13
13
15
17
20

24
24
28

32



4.1 Deriving the Model . . . . . . . . . .. .. 32

4.2 Linearizing the Model . . . . . . . . .. ... 36
4.3 Validating the Model . . . . ... .. ... ... ... ... .. ... e 37

5 Control Implementation 41
5.1 Control Layout . . . . . . . . . e e e e e 41
5.2 Basic Link-space Control. . . . . . . . . . . . . . e 42
5.2.1 PID controller . . . . . . . . . e e e e e 43

5.2.2 Prefilter controller . . . . . . . .. ... e 49

5.3 Pressure-feedback Link-space Control . . . . . . . . . ... ... .. .. ...... 52
5.3.1 Description of the controller . . . . . . . ... ... ... L. 53

5.3.2 Simulation results and discussions . . . .. ... .. ... 55

5.3.3 Experimental verification . . ... ... ... ... ... .. . . ... 59

5.4 Cartesian-space Controller . . . . . . . . . . . . . .. ... ... 62
5.5 Motion Drive Algorithm . . . . . .. ... .. ... L 63

6 Simulation of Combined Dynamics 65
6.1 Combined Dynamics . . . . . . . . . . . . e e e 65
6.2 Case Studies . . . . . . . . . e e e e e e 67

7 Conclusion and Future works 73
Bibliography 75
A Derivatives of Jacobian 78
B Spectral Analysis 81

C Transformations between Cartesian-space variables and link-space variables 83

D Matlab Source Code 85

v




D.1 ImvKinematics.m . . . . . . . . e &5

D.2 FwdKinematics.am . . . .. .. . . ... 86
D.3 Singularities.m . . . . . . oo i e e 88
D.4 Dynamics.m . . . . . . .. e 90




1.1
1.2

2.3

4.4

List of Tables

Simulator Dimensions. . . . . . . . . .« v v i e e e e e e e e e e e e

Simulator Performance. . . ... .. ... ... ...
Platform and Base Actuator End Point Angles. . . . ... ... .. ........

Actuator System Parameters. . . . . . . . . . . ... e e

vi



1.1
1.2

2.3
2.4
2.5

2.6
2.7
2.8
2.9
2.10
2.11

3.12
3.13
3.14
3.15

4.16
4.17
4.18

5.19

List of Figures

Stewart platform motion simulator . . . . ... ... ... ... ... ... ...

Inverted simulator geometry. . . .. ... ... ... ... ... ...

Vector definitions for inverse kinematics. . . . . .. . ... ... ... ...,
Translational workspace of the Stewart platform when %, = 6, = ¢, = 0°.. . . .
Translational workspace of the Stewart platform with arbitrary angles from -20°

10 20° oL e e e
Projection of the safe workspace on the y — z plane when there is no rotation. . .
Projection of the safe workspace when v, 8,, and ¢, are from —20° to 20°. . . .
Singular configuration for the 2D parallel manipulator . . . .. .. ........
Condition number of the platform Jacobian versus pitch & roll angle . . . . . . .
Inverse of U-joint angle versus roll angleandz . .. ... ... ..........
Maximum possible estimation error in actuator length after two iterations of

Newton’s method . . . . . . . . . . .

Diagram oflegi. . . . . . . . . . . . e
Motion from the home position with an acceleration of 2 =¢ ... ... ... ..
Sinusoidal motion along x axis . .. ... ... .. ... L.

Motion with constant acceleration along y axis and a sinusoidal pitch angle

Definition of three-way connection parameters. . . . ... ... ... .......
Simulation result and experimental result of the cylinder dynamics . . . ... ..

Simulation result and experimental result of the valve dynamics . . . . . . .. ..

Diagram of the Stewart platform based motion simulator . ............




5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41
5.42
5.43
5.44

6.45
6.46

Linearized open-loop transfer function of the electrohydraulic actuator . . . . . . 43
Effects of variations in Vj from 0.5 to 2 times of its original value ... ... .. 44
Effects of variations in B from 0.5 to 2 times of its original value . ... ... .. 44
Effects of variations in M from 0.5 to 2 times of its original value ... ... .. 45
Effects of variations in Vo, B,and M . . . . . . .. . ... ... .. ... ..., 45
Comparison of the simulation curve and some experimental points . . . ... .. 46
Link-space response of a sinusoidal wave input along the z axis. . . . . . ... .. 47
Cartesian-space response of a sinusoidal wave input along the z axis. . ... .. 48
Cartesian-space response of a sinusoidal wave input along the y axis. . . . .. .. 48
Block diagram of the tracking control system . ... ... ... .......... 49
Closed-loop response of single actuator system with pre-filter controller . . . .. 51
Closed-loop response of system with pre-filter controller . . . . .. ... .. ... 52
Equivalent spring-damper system . . . . . . .. ... ... ... ..., 55
Single actuator system with proportional controller . . . . . . ... ... ..... 56
The sine wave response of P controller, high loop gain . . . . . . . ... .. ... 56
Single actuatér system with pressure-feedback controller . . . . .. . .. .. ... 57
Response of single actuator system with pressure-feedback controller . . . . . .. 58
Response of single actuator system with pressure-feedback controller . . . . . .. 58
Step response of single actuator system with pressure-feedback controller . . . . . 59
Valve step response when the pressure-feedback controller is used . . . . ... .. 60
Sine response- when the pressure-feedback controller isused . ... ... ... .. 61
Step response when the pressure-feedback controller is used . . .. ... ... .. 61
Simple Cartesian-space control block diagram . . .. ... ... .. ... ..... 62
Cartesian-space controller . . . . . . . . . . . . ... . ... 63
A classical wash-out filter configuration . ... ... ... ... .. ........ 64
Case 1: Sine wave response along x axis, simulation . . . . ... .. ... ..... 68
Case 1: Sine wave response along x axis, experiment . . . ... ... e 68

viii




6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54

Case 1:
Case 2:
Case 2:
Case 2:
Case 3:
Case 3:
Case 4:

Case 4:

Cartesian-space TESPONSE . . . . . v v v v v v v v e e e e e 69
Sine wave response along z axis, simulation . . . . ... .. ... ..... 69
Sine wave response along z axis, experiment . . . ... .. ........ 70
Cartesian-space TeSPONSE . . . . .« .t v v v vt b e e e e e 70
Step response of x, simulation . . ... ... ... ... ... .. ..... 71
Step response of x, experiment . . . . . ... ... ... .. ... 71
Step response of roll angle, simulation . . . . ... ... .......... 72
Step response of roll angle, experiment . . . ... .. ... ........ 72

ix




Acknowledgments

My greatest debt of gratitude goes to my supervisor, Dr. Tim Salcudean, who has introduced
and guided me into this exciting project, and provided sound advice and invaluable critical
feedback. Without his help and encouragement, this thesis could not have been written.

Thanks are also to Alison Taylor, Simon Bachmann, and Icarus Chau, research engineers
in the Robotics and Control Laboratory at UBC, for their contributions to the project.

I would also thank professor Peter Lawrenece, Professor Farrokh Sassani, and my colleagues
in the lab for their advice and discussions.

I would like to acknowledge that this project was supported by the Canadian IRIS/PRECARN

Network of Centers of Excellence.

I dedicate this work to my parents.




Chapter 1

Introduction

The Stewart platform is a type of parallel manipulator, which consists of a mobile platform
and a stationary base, connected to each other by six linear actuators (legs). A photo of the
Stewart platform developed in the Robotics and Control Laboratory at UBC is presented in
Figure 1.1. Since proposed by D. Stewart [1] in 1965, the platform has been used in many
applications such as aircraft simulators, assembly workstations, mills, and robot wrists; it has
also attracted considerable attention of researchers in different areas.

In this pro, ject, an inverted, ceiling-mounted Stewart platform design was employed to build
a one-person motion simulator. This Stewart platform is used to simulate the motion of heavy
hydraulic equipment for the purpose of human factors and teleoperation work for the forest
industry [2]. In addition, it can also be used to study virtual reality, motion algorithm, and
control of parallel manipulators. The initial design of this project was described in [3]. It is our
goal to study the kinematics and dynamics of the Stewart platform in details and successfully
accomplish the control basing on a effective understanding of the actuator dynamics. With
a successful control, we hope to achieve a good high-frequency response and high stability
margin, so that this Stewart platform can have similar performance to that of commercial
systems costing much more.

In this first chapter we present a literature review of current research on Stewart platforms,

and then we give a general description of the design and performance of our Stewart platform.
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Fixed
Base

Actuator

Mobile
Platform

Figure 1.1: Stewart platform motion simulator
1.1 Literature Review

To the author’s best knowledge, the 6 degrees-of-freedom (DOF') parallel manipulator was first
described and built by Gough [4, 5] as part of a tire-testing machine. Stewart proposed a similar
parallel architecture for use as a flight simulator, and 6 DOF parallel manipulators are generally
called Stewart platforms. Several companies, including Canadian Aerospace Electronics (CAE)
Ltd. and Moog Inc., have been using Stewart’s design for flight simulators and entertaining
motion simulators. However, there was no significant progress on the research of Stewart
platform and other types of parallel manipulators until 1980’s. A number of papers have been

published on the kinematics, dynamics, and control of parallel manipulators since then.
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The inverse kinematic equations (to determine the leg lengths given the position and ori-
entation of the mobile platform) of the Stewart platform are relatively easy to derive. There
are several different approachs to this problem, according to the different selections of the co-
ordinate systems. Nguyen et al [6], Cleary et al [7], Fichter [8], Do and Yang [9, 10] have all
derived the inverse kinematics based on their particular coordinate systems.

Hence, the reachable workspace of the Stewart platform was studied by many researchers.
The workspace of the platform was mapped out through methods based on a complete discretiza-
tion of the Cartesian-space [7, 9, 11]. A geometric approach for this problem was proposed by
Gosselin et al [12]. This approach was extended by Merlet [13] to take into account all the
constraints (i.e., the legs lengths range, mechanical limits on the joints, and legs interference)
limiting the workspace. Merlet also showed how to _perform a trajectory verification to check
if the desired trajectory was inside the workspace [13]. However, if we consider the problem of
singularities, which will be discussed later, the actual allowable workspace may be even smaller.

When the Jacobian matrix of a manipulator loses ranks, the manipulator is said to be in a
singular configuration. To determine these singular configurations, the classical method is to
monitor the condition number of the Jacobian matrix. In contrast, several researchers tried
to locate the singular configurations geometrically. Hunt described a singular configuration,
in which case all the six lines associated to the robot links intersected one line [14]. Fichter
[11] described another singular configuration which is obtained by rotating the mobile platform
around the vertical axis by an angle of £7. Finally, this problem was successfully solved by
Merlet in 1989 [15]. A new method based on Grassmann line geometry was proposed and it was
shown that a singular configuration is obtained when the variety spanned by the lines associated
to the robot links has a rank less than 6. Then, a set of geometric rules were used to establish
the constraints on the position and orientation parameters that must be satisfied to obtain the
various singular configurations [15].

The forward kinematic equations (to determine the position and orientation of the mobile

platform given the legs lengths) of the Stewart platform have no known closed-form solution.
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Several researchers found that solving the forward kinematics problem is equivalent to solving
a 16th-order polynomial in one variable [16, 17, 18, 19, 20]. Merlet also presented a geomet-
ric proof to show that the number of assembly modes is at most 16 [20]. The order of the
polynomial can be reduced to 8 if the mobile platform is restricted to be either above or be-
low the base. Unfortunately, because the numerical resolution of the equivalent polynomials
requires significant computing time and yields many solutions, it seems that this approach is
neither useful for ﬁnding the analytical solution of forward kinematics problem nor useful for
the real-time control. In addition, this method can only be applied to parallel manipulators
with triangular mobile platforms, and can not be extended to the more general case of parallel
manipulators in which the mobile platform and the stationary base are both hexagons or other
shapes.

Cleary was able to .avoid the forward kinematics problem of the Stewart platform by mount-
ing a passive serial linkage between the centers of mobile platform and stationary base and then
monitoring the position and orientation of their prototype platform through sensors on the pas-
sive serial linkage [7]. But the achievable accuracy of this method is quite questionable.

Another method of computing the forward kinematics is the iterative numerical method.
Nguyen et al applied Powell’s Direction Set Method to solve the nonlinear equations [6], while
Dieudonne et al used Newton’s method to converge to a solution [21]. Newton’s method makes
use of the platform’s Jacobian matrix to update the estimations of the platform’s Cartesian-
space parameters, and the result can converge to the required accuracy in a couple of iterations
when a good starting point is given. We will apply Newton’s method to solve the forward
kinematics problem in this thesis.

Do and Yang used Newton-Euler equations of motion to solve the inverse dynamics of the
Stewart platform [10]. They also ran a simulation to compute the required actuating forces for
given trajectories. Kai Liu et al used Lagrangian approach to derive the dynamic equations

of the Stewart platform in Cartesian-space and then used Jacobian transformation to obtain

the actuating forces in link-space [22]. Zhang and Song proposed a more efficient method for
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manipulator inverse dynamics based on the virtual work principle [23]. We will apply the virtual
work principle method to derive the inverse dynamics of the Stewart platform in our coordinate
system.

Although the inverse dynamics problem for the Stewart platform has been solved, it has not
been used practically in the Cartesian-space controller design yet. A standard computed-torque
control law in Cartesian-space was briefly discussed by Kai Liu et al in [22], but no further
details were given. No other published paper on the Cartesian-space control of the Stewart
platform has been found.

In order to produce accurate motion cues, the motion simulator must be able to reproduce
accelerations as much as possible within its limited motion range. This is done by applying
the motion drive algorithm, commonly known as wash-out filter, to the original trajectory.
Initially the motion drive algorithms employed linear filter elements with fixed parameters.
In an attempt to overcome the limitations of linear formulations, nonlinear adaptive wash-
out algorithms were developed. The performances of different motion drive algorithms were

investigated by Reid and Nahon et al [24].

1.2 System Description

The geometry design of our motion simulator follows a standard 6-6 Stewart platform (both the
mobile platform and the stationary base are hexagons), however, this simulator is inverted and
suspended from the ceiling. The electrohydraulic actuators are under tension, so they are less
likely to have buckling problems, allowing us to use narrower actuators. This inverted design
also provides operators the easy entrance and exit, without the need for an access ramp. How-
ever, this inverted design makes the maintenance of ceiling-mounted hydraulic equipment more
difficult, and there is a requirement for the ceiling’s height and rigidity. The simulator uses six
1.5 inch bore, 54 inch stroke electrohydraulic actuators controlled by three-stage, proportional

valves. The hydraulic fluid for the actuators is supplied by a 30 gallon per minute (GPM), 2500

pounds per square inch (PSI) power unit and two 10 gallon accumulators. Each actuator can
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Figure 1.2: Inverted simulator geometry.

provide as much as 4000 N force and 1.5 m/s velocity. The position sensor of each actuator is
a Temposonic magnetostrictive wire transducer.
The geometry of the simulator is shown in Figure 1.2. While the dimensions of the simulator

are shown in Table 1.1. The notations used here are the same as those used in [3].

Table 1.1: Simulator Dimensions.

Platform Radius, 7, 0.668 m
Platform Actuator Angle, v, || 53.45°
Base Radius, 7y 1.133 m
Base Actuator Angle, v 7.75°
Platform Nominal Height, b, || 0.203 m

As will be shown later, the simulator has the performance specified in Table 1.2.
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Table 1.2: Simulator Performance.

| || Displacement ] Velocity | Acceleration |

X-axis +0.2 m +1m/s | +10 m/s?
y-axis +0.2 m +1m/s | +10 m/s?
z-axis +0.2 m +1m/s | 410 m/s?

Roll +20° +30°/s | £400°/s?
Pitch +20° +30°/s | +£400°/s?
Yaw +20° +30°/s | 4£400°/s?

The remainder of this thesis is organized as follows. Chapter 2 discusses the kinematics
of the Stewart platform, including the inverse kinematics and the forward kinematics. The
inverse kinematics part is the same as derived in [3]. The forward kinemetics part revises the
error in [3]. The singularity issues have been briefly discussed in [3] and are further discussed
in this chapter; the issue of workspace is addressed as well. Chapter 3 gives the equations of
the rigid body dynamics, where the dynamics of legs are included to give a complete model.
A model of the electrohydraulic actuator is given in Chapter 4, where the valve dynamics are
also included to give a more precise model. This model is validated using experimental data.
The control approach, its implementation, and experimental results are discussed in Chapter
5. Path planning issues are discussed in this chapter as well. The software simulation based on
the model derived before is introduced in Chapter 6, the simulation code was initially written
by P. Drexel [3] and was further modified by the author. Several case studies are performed to

further compare software simulation results and experimental results. In Chapter 7, conclusion

and plans for future works are presented.




Chapter 2

Platform Kinematics

In this chapter we derive the inverse kinematic equations of the Stewart platform, and then
give the definition and derivation of the Jacobian matrix based on our coordinate frames.
Singularities of the platform and joints are also discussed. At last, the platform’s forward
kinematics are solved numerically, and the computing time is discussed. The notations used in
this chapter and the following chapters are mainly taken from P. Drexel’s thesis, for the purpose

of consistency.

2.1 Inverse Kinematics

In this section we will use vector algebra to attain closed-form equations of the inverse kinematics
of the Stewart platform, which map the position and orientation of the mobile platform to the
lengths of the six actuators. This part has been done similarly in [3] and some other references.
We just follow their derivations here.

Figure 2.3 shows that two coordinate frames {P} and {B} are assigned to the mobile
platform and the stationary base, respectively. The origin of the frame {P} is located at
the centroid P of the mobile platform, the z, axis is pointing upward, and the z, axis is
perpendicular to the line connecting the centers of the two platform attached joints P4 and Pp.
Similarly, frame {B} has its origin at the centroid B of the base, the z axis is pointing upward,
and the z axis is perpendicular to the line connecting the centers of the two base attached joints
B4 and Bp. The configuration of the platform is specified by the position of the origin of frame

{P} with respect to frame {B} and the orientation of frame {P} with respect to frame {B}.

The position of frame {P} is represented by vector °d, = [z y 2]T, which contains the Cartesian
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Actuator

Figure 2.3: Vector definitions for inverse kinematics.

coordinates z,y, z of the origin of frame {P} with respect to frame {B}. The orientation of

frame {P} with respect to frame {B} can be described by the orientation matrix *R,, whose

columns are the coordinates of basis axes of frame {P} in frame {B}. We define the position
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of the center of i*" platform attached joint P; with respect to frame {P} to be Pp;, which is a
fixed vector. Similarly, we define the position of the center of i base attached joint B; with
respect to frame {B} to be °b;, which is also a fixed vector. Then, the i** actuator vector %a;,
which is the vector. from the center of i** base attached joint B; to the center of i** platform

attached joint P;, can be expressed as,
ba,- = bRppp,' + bdp - bbi (2.1)

Since the centers of joints are arranged in pairs at 120 degree intervals around a circle, as shown

in Figure 2.3, we then have,

T
Pp; = [ TpCOSYpi TpSINYp; %"— ] and (2.2)

and
b g '
b; = [ ThCOS Yy ThSIN Yy O ] (2.3)
where 7, is the radius of the mobile platform circle, ry is the radius of the base circle, ,; and
Yp: are defined for each actuator as shown in Table 2.3, and h, is the nominal height of the

platform. Note that (2.2) assumes that centroid P of the platform is vertically centered and

that centers of the joints are at the top of the platform.

Table 2.3: Platform and Base Actuator End Point Angles.

u I Ypi l Tbi ]
Yp = 53.45° | 7y = 7.75°
120° — v, 120° — 7
120° + v, 120° + 73
=120° — v, | —120° — v
—120° + v, | —120° 4+ v
7 —7b

Sllies| el NeiRe=1=

The platform’s orientation matrix, bRp, is defined using roll-pitch-yaw angles ¢,, §,, and

¥p. We specify the order of rotation as z — y — 2: first yaw about the z axis through an

angle v,, then pitch about the y axis through an angle ,, and finally roll about the z axis
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through an angle ¢,. Since the successive rotations are relative to the fixed frame, the resulted

transformation matrix is given by,

cpp —s¢p 0 cd, 0 s6, 1 0 0

bRp (¢pa by, d’p) = s¢p cop O 0 10 0 cpp —sty

. 0 0 1 ~sf, 0 céb, 0 s¥, cip

clpco,  sPpsbpcd, — cPpsdy, sy, + sppsdy

= clpsd,  spstysdy, + cppcdy  cihpsbysd, — shpedy (2.4)
—sb, spclp cthpcl,

where ¢, = cos,, s, = sin,, etc. We choose roll-pitch-yaw angles because they can

easily reflect the platform’s actual physical orientation and make things easier when we specify
trajectories in the Cartesian-space.

The length of actuator 7 can be easily obtained from (2.1),

T
;= Paill = Ve ba (2.5)

For each actuator, i = A...F, (2.5) expresses its length, given the platform’s position and

orientation.

2.2 Platform Jacobian

The velocity kinematics of parallel manipulators are also given by Jacobian transformations, as
in the case of serial manipulators. However, unlike those of serial manipulators, the Jacobian
matrices of parallel manipulators are generally defined as transformations from the velocities
of platforms in the Cartesian-space to the velocities of actuators in the link-space. We define

the Jacobian matrix of Stewart platform as,
(2.6)

where 1 is the six vector of actuator velocities, J is the platform’s six by six Jacobian matrix,

b

Vp = bdp is the platform translational velocity and *w, is the platform angular velocity. Note
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that bwp is written in terms of the derivatives of the platform’s rotation angles as
bp

w, =B ép (2.7)
Pp

b

where for the roll-pitch-yaw angle rotation matrix bRp defined above

clpcdp, —s¢p, 0
B= clsp, c¢g, 0 (2.8)
—sb, 0 1

Each row of the Jacobian matrix corresponds to one of the platform’s six actuators. We can
obtain the i** row of the Jacobian matrix by differentiating both sides of (2.5), and substituting

(2.1) into the result,

Ty T, "
12 bai ba,- ba,- ba,'

; = 5 o == (2.9)
:cRm+d—bﬁ¢%wmwww» oo
_ (Bet ) o (e ) (o Ch)
(R4, =) (vy) + (R x (RpPRi 4, — b)) () (2.12)
_ ; :

1 T T vy
= 1 [ (*Rp?pi + ', — b)) ((CR,Pp:) x (°dy — b)) ] b (2.13)
. P

where bRp =bw, x 'R, and a e (b x ¢) = (c x a) e b have been applied.
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Then, we can get the Jacobian matrix by putting together the velocities of six actuators,

i
[ [ (bR, b b T bR P b b T
B (PRy"pa +7d, —"ba)  (CR,Ppa) x (*d, - *ba))
. T T
b by _ b b by _ b b
i l.c _ | (ByPps +°d,='bp)  ((*Ry"ps) x (*d, - *bp)) 1
Ip bwp
. T T
lg 1 (bRpppF + bdp _ bbp) ((bRpppF) % (bdp _ bbF)) ]
| ir |
or,
bV
i=1J("d,,"R,) b P (2.15)
Wp

where the Jacobian matrix depends on the platform’s position bdp and orientation bRp. This

result is the same as in [3].

2.3 Workspace and Singularities

In this section we discuss the reachable workspace, mechanical constraints, and singularities in
our system. We obtain a reachable workspace where the system is free of mechanical constraints

and singularities that can be used for control system development.

2.3.1 Reachable workspace

Because of the length limits of the actuators, the Stewart platform has a limited reachable
workspace. The boundary of this workspace is hard to describe, because it has 6 dimensions
(z, y, 2, ¥p, b, ¢p). The positioning workspace (i.e., the region of the three-dimensional
Cartesian-space that can be attained by a manipulator with a given orientation) has been
described through methods based on complete discretization of the Cartesian-space [7, 9, 11].
For a given orientation, we can calculate the inverse kinematics of the Stewart platform at

a certain position, and check if the resulted actuator lengths are within the limits so as to

determine if that position is inside the reachable positioning workspace. Because the workspace
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is continuous, we can map it out by discretizing the Cartesian-space by small enough steps.
Figure 2.4 shows the positioning workspace of our Stewart platform when ¥, = 6, = ¢, =

0°. But the actual reachable workspace is much smaller because we have to allow rotational

Workspace of the Stewart Platform when psi=the=phi=0

(m)

4

Position

Position X (m) Position Y (m)
Figure 2.4: Translational workspace of the Stewart platform when 9, = 8, = ¢, = 0°.

movements. To search the boundary of the workspace, we first discretize the Cartesian-space
by small enough steps and then we rotate the Stewart platform at each position to check if the
actuator lengths derived from the inverse kinematics are still within the limits. The workspace
becomes smaller when we allow larger rotational movements. Figure 2.5 shows the actual
workspace of our Stewart platform when we set a range limit of —20° to 20° for v¥,, 6,, and
¢p. For the purpose of a general usage, we only considered the limits of actuator lengths in the
above definition of the reachable workspace. But the motion range of our system is also limited

by other mechanical constraints.
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Figure 2.5: Translational workspace of the Stewart platform with arbitrary angles from —20°
to 20°

2.3.2 Mechanical constraints

Our Stewart platform is ceiling mounted, so its motion along the z axis is limited by the height
of the room. Another constraint is the interference between actuators and the chair top, which
is used to protect the operator. We have to consider these two types of constraints when
we search the boundary of the safe workspace. Figure 2.6 shows the projection of the safe
workspace on the y — z plane when there is no rotation. And Figure 2.7 shows the projection
of the safe workspace on the y — z plane when v, 8,, and ¢, are from —20° to 20°. We can
see that the safe workspace becomes much smaller when we allow rotations. We can achieve

larger displacement and larger rotation in a pre-planned trajectory, if the displacement and the

rotation are combined such that the pre-planned trajectory does not violate the mechanical
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Projection of the workspace when there is no rotation

BNGhs ™~

fifidet e

€y

DT Tr T T Timmed by

9

1.8

1.6

1.4

1.2

1

y (m)

0.8

0.6

0.4

0.2

-1.5

Figure 2.6: Projection of the safe workspace on the y — z plane when there is no rotation.

Projection of the workspace when rotation angles are from -20 to 20
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Figure 2.7: Projection of the safe workspace when 1, 6,, and ¢,

But when the platform is manipulated by a joy-stick, we would like to set the

constraints.
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translational and rotational limits to prevent mechanical damage We can define a cylindrical
volume where the system is reachable and free of mechanical constraints. However, we have to

check if there is any singularity inside that cylindrical volume.

2.3.3 Singularities

The singularities in the design of our Stewart platform include platform singularity and U-joints
singularities. |

The platform singularity has been analyzed successfully by Merlet through Grassmann ge-
ometry [15]. The idea is that a parallel manipulator will be in a singular configuration if, and
only if, there is a subset spanned by n of its lines which has a rank less than n . For exam-
ple, subset of rank 1 is a line in the 3D space; subsets of rank 2 are either a pair of skew
lines in the 3D space or lines lying in d 2D plane and passing through the same point on that

plane. For a 2D parallel manipulator in Figure 2.8, the singular configuration is obtained when

pod
/ 1N\
VAR
/1N
/ | \
/ | \  Mobile Platform
=
Actuator
Joint
@
Base

Figure 2.8: Singular configuration for the 2D parallel manipulator

the three lines (actuators) intersect. If the mobile platform and the base are symmetric as

shown in Figure 2.8, we get a singular configuration when the mobile platform and the base
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are parallel. When a parallel manipulator reaches a singular configuration, it gains one or more
uncontroﬂablé degrees of freedom and will rotate and/or translate without a change in the ac-
tuator lengths. Merlet uses a set of geometric rules to establish the constraints on the position
and orientation parameters that must be satisfied to obtain the various singular configurations.
However, the calculation of such geometric rules is more complicated than that of the condition
number of platform Jacobian, which is used in the classical method to determine these singular
conﬁgurationé numerically. By plotting the ratios of the largest to smallest condition number of
platform Jacobian while varying two of the platform’s six position and orientation parameters,
we can obtain a graphical description of the platform’s singular configurations. For example,
Figure 2.9 shows a plot of the condition number ratios versus varying pitch angle 6, and roll
angle ¢, for the platform at its nominal position (z = 0m, y = 0 m, 2 = —2.5 m and 4, = 0°).

See Appendix D.3 for MATLAB source code). The “singularity boundary” is actually six-
g
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— 100
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Figure 2.9: Condition number of the platform Jacobian versus pitch & roll angle

dimensional, and thus hard to describe. However, by plotting condition number ratios versus
two parameters while varying the other four parameters up to their limits, we can confirm that

the cylindrical volume defined in the last section is free of singularity. So, we don’t need to
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monitor the condition number of the Jacobian as long as the motion of the Stewart platform is
within that cylindrical volume.

We use U-joints in the design of our Stewart platform, because U-joints provide a large range
of motion and are relatively easy to manufacture [3]. However, there are singularities when the
base of the U-joint and the attached actuétor share a common axis. To prevent singularities,
we should monitor the angle between axis of the U-joint base and axis of the attached cylinder,
and prepare to stop the platform before it enters a singular configuration.

We use the method of discretization again to study the singularities of the U-joints; a small

enough interval is used to make sure that any possible singular point will be tested.

Roll angle phi (degree) —200 -35 Z axis (m)

Figure 2.10: Inverse of U-joint angle versus roll angle and z

We come to the conclusion that there is no singularity for the U-joints attached to the base
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within the whole possible workspace, and that there is no singularity for the U-joints attached
to the mobile platform within the cylindrical volume we defined before. So, we do not need to
monitor the angle of the U-joints as long as the motion of the Stewart platform is within that
cylindrical volume. A plot of the inverse of U-joinf angle of joint P4 versus roll angle and z is
shown in Figure 2.10.

Thus, we obtain a cylindrical workspace that is safe and reachable. This workspace is
described by, —2.7m < Z, < —2.3m, —0.2m < m < 0.2m, and —20° < 1, 8,, b, < 20°

when the chair is mounted;

2.4 Forward Kinematics

In this section we will study the forward kinematics of the Stewart platform, which map lengths
of the six actuator to the position and orientation of the mobile platform.

As mentioned before, there is no known closed-form solution to the forward kinematics of
the Stewart platform. Dieudonne et al used Newton’s method to solve the forward kinematics
problem numerically [21]. The mathematics of this method is relatively straightforward, and
the convergence is quadratic. It makes use of the platform’s Jacobian matrix to update the
estimations of the platform’s Cartesian-space parameters, and the result can converge to the
required accuracy in a couple of iterations when a good starting point is given. Here we
use Newton’s method for multiple equations and variables to calculate the platform’s forward
kinematics iteratively. |

For multiple equations and variables, Newton’s method is

Xji1 = X, - (%) 8(X;) (2.16)

where X is a vector of the variables we wish to estimate, g is a vector function which approaches
zero as the estimation of X improves and j is the iteration count. For the Stewart platform

described in this thesis, we select

XT = [ saT 4, 8, ¢p] (2.17)
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and
| ("Ro (89,05, 85)7Pa + 5y =*ba) = La | | [Pl 14
g(X)= : = : (2.18)
1 PRy (5,85, 65) PPF +°dy — b ) || — I Parl ~ Ir
where %a; is the estimated length of actuator i and [; is the actual length of actuator i. By

differentiating (2.18), we can obtain,

[ b, 1
) .
v I 0
g=J3| "1=13 Qb.p (2.19)
bwp 0 B 0y
| & |
So, the partial derivative of g with respect to X is given by,
0g (X I 0
Bg( ) = J(Tp, Yp» 2, ¥ps Opy bp) 0 B (2.20)

Substituting (2.17), (2.18), and (2.20) into (2.16) gives the following iteration

Y Y

" ’ baall — La

K 7] ot : (2.21)
P P 0 B-!

0’” 0” bag| - Ir

Y4 Y4
L% 1, L ¢ o]

Given 1, we can obtain X = [xp,yp,zp,¢p,0p,¢p]T, provided that J and B are non-singular.
Note that we can usel the LU decomposition rather than compute the inverses of B and J
explicitly.

We should mention that there was an error in the forward kinematics derivation in [3],

I 0
where was not included in the equation of iteration. Actually, the converging rate

0 B!

is better than claimed in [3].
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Now, we look into the computing time of the forward kinematics. For our system, we use 16
bits A/D converters to convert the signals of actuator lengths, which range about 1.5 m. The
resolution is about ;—12 m, which is about 0.023 mm. The maximum velocity of each actuator
is about 1.4 m/s. When the sampling frequency is 200 H z, which is the one we are using, the
maximum difference in actuator length between two adjacent sampling points is about £7 mm.
So, assuming that Newton’s method converges along the trajectory, we can always have an
estimated starting point within +7 mm in actuator length from the actual point.

For a current platform configuration and corresponding actuator lengths, we add a dis-
placement of +7 mm to the length of each actuator to represent the worst case of actuator
lengths at the next sampling point, and we use current platform configuration as the starting
point to calculate the next platform configuration, which is according to the actuator lengths
with additional displacement of +7 mm, through the forward kinematics. Notice that we are
calculating for 64 possible worst cases here. We record the largest estimation error in actuator
length after two iterations, and then plot it versus z position and pitch angle in Figure (2.11).

We can see that the estimation error after two iterations is far smaller than the resolutions
of actuator length sensors. The results are similar for the trajectory near the boundary of the
cylindrical volume defined before. We should say that the result after two iterations is accurate
enough for the real-time control of our system.

We can finish the computation of forward kinematics within 1 ms in our VME-based real-
time system.

We derived the kinematics of the Stewart platform in this chapter. The workspace issue was
studied in details and the result was used in the control program to ensure that the Stewart
platform is always in the safe workspace. The numerical solution of the forward kinematics

was evaluated using simulation, and it was concluded that result would reach the desired value

after two iterations in the real-time control.
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Figure 2.11: Maximum possible estimation error in actuator length after two iterations of
Newton’s method




Chapter 3

Platform Dynamics

In this chapter, we discuss the dynamic equations of the Stewart platform. A complete model
of the inverse dynamics including the leg dynamics and the mobile platform dynamics is derived
first, and a simplified model which only includes the mobile platform dynamics is given for the

purpose of simulation and controller design.

3.1 Complete Model

We use the virtual work principle to formulate the dynamic equations of rigid body motion
of the Stewart platform. A complete model of the inverse dynamics includes both the mobile

platform dynamics and the leg dynamics. The diagram of a leg is shown in Figure 3.12.

mobile platform

Figure 3.12.: Diagram of leg i

24
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Each leg consists of two parts: the upper fixed part with mass m,, and the lower moving
part with mass m;. The distance from the base connection (the center of base attached joint) to
the mass center of upper part is /, while the distance from the platform connection (the center
of platform attached joint) to the mass center of lower part is /;. In the following dynamics
analysis, the frictions in the actuators and U-joints are neglected to simplify the problem. Also

we assume that the moment of inertia of leg i about the axis ®

a; is negligible and then each leg
can be modeled as a slender rod.
The virtual work dw, done in translating the platform by the virtual distance bvpét, rotating

the platform by the virtual angle ®w,ét, and rotating the legs by the virtual angles ®w;ét, is

6
fw = m,bgltv, 8t + Z (mlbgTbvil+ mubgTbvw) 6t +

=1
T
Tj 't vy S b T
116t — 6t =Y rTPw;bt (3.22)
pr bwp =1

where g is the gravity acceleration, 1 = [lA,lB,lc,lD,lE,lF]T is the six vector of the actuator
lengths, f is the six vector of the actuator forces, m, is the mass of the platform, bvp is the

translational velocity of the platform, ®v; is the translational velocity of the lower part of leg ,

5V;u is the translational velocity of the upper part of leg 1, bfp is the force acting on the center

b

of mass of the platform, °7, is the total torque acting about the center of mass of the platform,

b b

wp is the angular velocity of the platform, °7; is the torque acting about the base connection
of each leg, and ®w; is the angular velocity of each leg around its base connection. Please notice
that the effect of gravity is considered separately here.

Now we derive the expressions of ®v;; and ®vy,. Referring to Figure 3.12, we have

l
b U b
aiu = — ai (323)
1]
and
b
b °a:ll = Uy
a;] = —F—— 8, (3.24)
’ [RH]

where ?a;, is the vector from the center of i* base attached joint B; to the mass center of ith
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upper leg, and ®a;; is the vector from the center of 7** base attached joint B; to the mass center
of it lower leg.

Taking derivatives of the above equations and considering the derivatives of (2.1),
(3.25)

we then have

bv llba,TbA, b
- o
’ [ail|ba;ba; T [Pal

= (e st s (rm)] + Bt s ()] |

P
= R (3.26)
. wp
and
b _lubainéi ba lu
Viy = i a;
[Iba|ba; T bay 12|
= (=B —tata” [1,-5 (R,p)| + o [1,-S (Ryp))] v
”bai”bainai [IPaq]| * bw,
by,
= h;, (3.27)
b,

where S (bRp”pi) is the skew symmetric matrix of (bRppp,-).

The angular velocity of each leg around its base connection is given by,

X ba; x ba; ‘& X [I, -S (bRpppi)] vy
w; = b =

T
a;"ba; ba;” ba; bw,
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And the torque about the base connection of each leg can be expressed as,
b _ . R r b
= (Ilz + qu) a; + I;"w; (329)
where Ij; is the inertia variable of the lower part of leg ¢, I,; is the inertia constant of the upper
part of leg i, and ®a; is given by taking derivatives of (3.28),

a; = t; + t, (3.30)

When the effect of gravity is considered separately, the force acting on the platform can be

expressed as,

°f, = m,’a, (3.31)

where m,, is the mass of the platform and ®a, (three vector) is the translational acceleration of
the platform’s center of mass.

The angular momentum of the platform with respect to the base frame is, by definition,
*L, = "Lw, = "R,PL,RT%w, (3.32)

where PI, is the platform’s inertia matrix expressed with respect to the platform frame and has

the form
PLp s 0 0
PI, = 0 PL, O . (3.33)
0 0 P,

Taking the derivative of (3.32) gives the torque on the platform as
b _byb b by b
T = L o + "wp X ( I, wp) (3.34)

where e, (three vector) is the angular acceleration of the platform about its center of mass and
we assume that the inertia of the platform does not change with time in the platform frame.

The principle of virtual work states that the work done by external forces (f; bfp, brp) cor-

responding to any virtual displacements (61;éd,8v,86,6¢) is zero (§w = 0) [29]. Substituting
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(2.6), (3.26), (3.27), and (3.28) into (3.22) and applying the principle of virtnal work, we then

have
I b e T, b T, b T
mp g+2(hi1 m°g + hy” my g) +J°f-
0 =1
bt 6 . by,
-5 ()" 6t =0 3.35
b Z:( i) T ; ( )
) =1 Wy
bV
We can eliminate the arbitrary time interval 6t and the arbitrary vector Pl T s
b
Wp

non-singular, we can express the actuator forces as,

-1 °f 6 I 6
f= (JT) ) Y ) - LSS (hilelbg + hiuTmubg) (3.36)

Tp i=1 0 i=1
where the expressions of hy, hy,, t;, °r, ®f,, and ®7,, can be found in (3.26), (3.27), (3.28),
(3.29), (3.31), and (3.34), respectively. We now have obtained an expression of the actuator
forces in the link-space in terms of the position, velocity, and acceleration of the platform in the
Cartesian-space. This is the complete model of the inverse dynamics of the Stewart platform.
The presented derivation is more straightforward, compared with the derivations in [10], [22],
and [23]. The expression of final result is also simpler. However, the complete dynamic model
is still a complicated one. We simplify the model in the next section by neglecting the leg

dynamics.

3.2 Simplified Model

For our Stewart platform, the mass of the six legs is considerablly smaller than that of the mobile
platform. In the rigid body dynamic equations, the leg dynamics part is more complicated and
less important than the mobile platform dynamics part. If we neglect the leg dynamics, equation

(3.36) becomes

£=(30)" :i” - (I) mbg | = (37)7 b
p

(3.37)
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We now check how much the leg dynamics affect the calculation of forces. Each leg weights
about 15 kg. We assume that the payload weights 250 kg and is evenly distributed in a
cylindrical volume with height of 1.0 meter and radius of 0.6 meter. We run the simulation with
and without considering the leg dynamics, and plot the required forces for several trajectories.
Figure 3.13 shows the actuator forces when the motion trajectory is from the home position lwith
an acceleration of & = g. Figure 3.14 shows the actuator forces when the motion trajectory is a
sinusoidal wave along the z axis with amplitude of 0.01 meter. Figure 3.15 shows the actuator
forces when the motion trajectory is from the home position with an acceleration of § = g and

also a sinusoidal pitch angle. We can see that the leg dynamics count less than 10%. So, we

The force of each actuator, with and without leg dynamics
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Figure 3.13: Motion from the home position with an acceleration of 2 = ¢
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The force of each actuator, with and without leg dynamics
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X Actuator C
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Figure 3.14: Sinusoidal motion along x axis

neglect the leg dynamics to avoid the huge computation in the simulation and real-time control.

See Appendix D.4 for more details.

If we define the matrices D and E as in [3], the simplified dynamic model can be expressed

as the same as in [3],

£=(37) 7 [D| ¥ |+E (3.38)
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The force of each actuator, with and without leg dynamics
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Figure 3.15: Motion with constant acceleration along y axis and a sinusoidal pitch angle

and

E= (3.40)

bwy X (prbwp)

We discussed the dynamics of Stewart platform in this chapter. The platform dynamic

equations were derived in a simpler way than previously reported ([10], [23] and [22]). The
dynamic simulations were then employed to show empirically that the platform leg dynamics

could be neglected in predicting system trajectories. This simplified the simulation work and

real-time control.




Chapter 4

Actuator Dynamics

The dynamics of electrohydraulic actuators are important in the control of the Stewart platform.
In this chapter, we will derive the dynamic model of the electrohydraulic actuator, then linearize
the model for the purpose of control and simulation, and in the last section we will validate the

model using experimental data.

4.1 Deriving the Model

Each electrohydraulic actuator in our Stewart platform consists of an asymmetrical cylinder
controlled by a proportional valve in a three-way configuration. Due to the financial limits,
standard industrial cylinders with low-friction seals rather than the hydrostatic cylinders were
used. The size of each cylinder is 1.5 inch bore, 60 inch stroke. The valves used are small
size Rexroth 4WRDE three-stage proportional valves. Please refer to [3] for the details of the
selection of these components.

Sensors in the system include the magnetostrictive wire length transducer for the length
of each actuator, the linear variable differential transducer (LVDT) for the main stage spool
position of each valve, and the single port pressure transducer for the pressure of each cylinder’s
blind end. The detailed description of the sensors can be found in [3].

Electrohydraulic servo systems are difficult to model because of the presence of nonlineari-
ties. These nonlinearities include: nonlinear servo valve flow /pressure characteristics, variations
in the trapped fluid volume in the system, the effects of nonlinear viscous and coulomb friction

between the cylinder and the piston, and the effect of flow forces on the valve spool positions.

32
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We follow the standard mathematical approach presented in [30] and [31] to model the elec-
trohydraulic actuator. To analyze electrohydraulic servo systems, we should consider the effects
of the following factors: the fluid flows through variable valve openings, the compressibility of
fluid, the load forces and viscous frictions, and the dynamic responses from valve opening com-
mand values to actual valve spool positions. Here we study the hydraulic part first. Figure 4.16

shows a typical three-way valve/cylinder connection.

Valve

-

ey //////4@

<X—///////// ///////// /
PI;// 0, ’///L‘mﬁ//

N
3 \\\\\]§ O'U
N

Cylinder

Ps

fﬂ o Load

Figure 4.16: Definition of three-way connection parameters.

For the valve, assuming that there is no leakage, we can write the flow rate ¢). from the

valve to the blind end of the cylinder as

Qc=0C1—Q2 : (4.41)

where @)1 is the flow rate from the supply pressure port to the cylinder and @5 is the flow rate
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from the cylinder to the tank. Using the orifice equation for turbulent flow [31], which is only

valid for sharp edged orifices with adequately large flows, we can write expressions for ); and

Q2 as
Caow(U+ X))\ /2(Ps—P,), X,>-U
Q1= @l Wl ) (4.42)
0, X, <=U
and
Caw (U — X))+ /2(P.=P), X, <U
.= “! . ' (4.43)
0, X, >U

where Cj is the discharge coefficient, w is the port width of the valve, U is the valve’s underlap,
X, is the spool position of the valve with respect to the center, p is the density of fluid, P; is
the supply pressure, P, is the controlled pressure at the blind end of the cylinder and P; =~ 0 is
the tank pressure.

The compressibility of the fluid can be expressed as

V=V, - %P (4.44)

where 3 is the bulk modulus of the fluid, P is the pressure in the container, V, is the volume
of the fluid before compression (equivalent uncompressed volume), and V is the compressed
(measured) fluid volume. In our system, P = P, is the pressure at the blind end of the
cylinder, V is the total volume contained between the piston and the blind end of the cylinder,
and V,, is the equivalent uncompressed volume. The transient flow rates associated with fluid

compressibility are proportional to rates of change of pressure and may be expressed as

_ V.dP

Qp = Bt (4.45)

where (), is the transient flow rates associated with fluid compressibility, and 8, P and V,, are
defined as before.

The flow through the valve is the sum of the flow associated with the movement of piston

(change in volume) and the flow associated with fluid compressibility. So we can express the
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flow rate ). from the valve to the blind end of the cylinder as,

Qc:va:m%pc (4.46)

Considering the load forces and viscous frictions, we have,
P.A—Pa=Mi+Bl+Kl+f (4.47)

where ¢ is the annulus area between the piston rod and the cylinder wall, M is the mass of the
load, B is the load’s viscous damping coefficient, K is the spring constant of the load and f is
an external force. We assume K = 0 in the modeling.

We can solve the above equations for [ by differentiating equation (4.47) and substituting

(4.41), (4.42), (4.43), and (4.46) into the result. The derived equation is,

1 A 92 . .
l=+7 [% (de\/;h (X,, P.) — V) - Bi - f] (4.48)
where
P
V. ~ A(l—L)/(l——ﬂ-—>, (4.49)
Vv o= Al (4.50)
P = Ml+Blj1-f+Psa’ (451)

(U+XU)VPS_Pca XU>U
h(XvaPC) = (U+XU)VPS_PC_(U_XU)VPC_Pt’ -U<X,<U (4'52)

_(U_X’U)VPC_Pt) Xu<—U
and L is the stroke length of the cylinder.

The above equations can also be written as

= fo(1,i,1,£,1,5) (4.53)

where S represents the system parameters.
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In addition to the dynamic response in the hydraulic part, we have a dynamic response
in the electrical part. The valve spool position X, is controlled through a D/A board, and is
supposed to be proportional to the command value of Vp 4, which is the output of D/A board.
However, the actual valve response is a dynamic one. The valve response can be approximately

modeled as a second order closed-loop system with the transfer function

1
32+%s+1

Xu(s) = T

2
We

Vpa(s) (4.54)

where w, is the electrical undamped natural frequency and &, is the electrical damping ratio.
Parameters in this model can be estimated from the specification of the valve and then verified
through the experiment.

Combining the electrical part model with the hydraulic part model, we can finally obtain a

fifth-order nonlinear model of the electrohydraulic system.

4.2 Linearizing the Model

The above nonlinear model of the electrohydraulic system gives us a relatively complete de-
scription of the actuator dynamics. The hydraulic part of the model can be seen roughly as the
combination of an integrator and a spring-damper system, while the electrical part is a second
order closed-loop system. The natural frequency and damping ratio of the equivalent linear
system determine most characteristics of the actuator dynamics. We now linearize the model
to get a basic idea about the dynamic response of the actuator.

We first linearize the function of Q.. The underlap U of the valve, which is 55.4 x 107 m,
can be neglected in the calculation of flow rates. The controlled pressure P, at the blind end of

the cylinder is fast varying but within a small range for general maneuvers, so we can use the

average value of P, which is about %Ps, to represent P, where we assume AP, K %Ps. Then,

[ Ps
Qc = Cqw 7Xv = I(qu (455)

where K, is the defined flow gain.

the equation (4.41) becomes
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We then define the initial value of V,, to be Vj and linearize the model about this particular

operating point. From equation (4.55), (4.46), and (4.47), it is clear that,
VoM -~ VuB- .
I+ —1+ Al 4.56

where K, Vo, M, A, 3, and B are all constant parameters. By taking Laplace transform of the

KX, =

above equation, we can get the transfer function

K -
HXo(s) — ggsF(s) KV a(s) 5 F(s)
2

L(s) =

—%—‘21‘;33 + }—;92%32 +s s(u}—st + Qf—:s + 1)(;—382 + %S + 1) és
where wy, = A\/VOLM is the hydraulic undamped natural frequency and &, = % ﬁV_LM is the hy-

draulic damping ratio. We validate this linearized model in the next section using experimental

data and also identify the undetermined parameters in the model.

4.3 Validating the Model

We use spectral analysis on the single actuator system to validate its dynamic model. By using
white noise as input signal and analyzing the cross spectral density between the output signal
and input signal of the system, we can get an experimentally estimated transfer function of
the system. This method has been mentioned in {32] and some other books. For the detailed
derivation, please see Appendix B.

In the experiment, the supply pressure is 400 PST and the sampling frequency is 500 H z.
The cylinder rod weights about 5.5 kg, and a mass of 15.2 kg is attached to it as the additional
load, so the total mass M as used in equation (4.57) is 20.7 kg. We first generate a band-
limited digital white noise signal using the Matlab software package, and then low-pass filter
the white noise signal using a discrete second-order Butterworth filter with cut-off frequency of
200 Hz. The processed white noise signal is then applied to the input of the system, i.e., the
signal is used as the command value of the valve opening. The input signal and output signals
are sampled at the frequency of 500 H =z for a long enough duration. At last, we perform the

spectral analysis of the recorded input and output sequences in Matlab to obtain the estimated

transfer function of the system.
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We have two transfer functions in serial: one is from the command value of valve opening
to the actual valve spool position, the other is from the valve spool position to the actuator
length. The comparisons of simulation results (linearized models in the previous section) and
experimental results are shown in Figure 4.17 and Figure 4.18. We can see that experimentally
estimated transfer functions match theoretically derived transfer functions. The experiment is
done around the operating point where the actuator length is lg = 2.47 m. In Figure 4.17,
the length unit is meter, while the valve opening unit is voltage, which is from the valve spool

position sensor signal and equals to 0.00035 meter.

Bode Plot of the Cylinder Dynamics (from valve opening to cylinder length)
and the Experimental Validation (by spectral analysis)

Gain db

Phase deg

)
w
D
=]

Frequency (Hz)

Figure 4.17: Simulation result and experimental result of the cylinder dynamics

The system parameters that give the above simulation results are shown in Table 4.4. Please
note that values of # and B are not easy to measure, and we identify their values by matching

the simaltion results with experimental results. And the cofresponding wp, and &, are given by,

g g
on= A\ A\/(zo Ty A 30 (4.58)
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Bode Plot of the Valve Dynamics (from D/A command value to valve opening)
and the Experimental Validation (by spectral analysis)
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Figure 4.18: Simulation result and experimental result of the valve dynamics

Table 4.4: Actuator System Parameters.

Parameter Value Definition
B 700 MPa Effective Fluid Bulk Modulus
A 1.14 x 1073 m? Area of the Piston
a 6.33 x 107* m? Annulus Area
Cq 0.432 Effective Discharge Coefficient
w 5.7 mm Port Width of the Valve
p 858.2 kg/m3 Density of the Fluid
L 1.37 m Stroke Length of the Cylinder
B 2500 N s/m Viscous Damping Coefficient
P 400 PSI Current Supply Pressure
P 0 PSI Tank Pressure
U 55.4 x 107 m Underlap of the Valve
and
B | W
& Y A 0.323 (4.59)

Parameters of the valve dynamics are given by w, ~ 40H z and &, = 0.6. They are also obtained

by matching the simaltion results with experimental results.

The effective discharge coefficient Cj is identified to be 0.432. And the flow gain K, is then
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| Ps
K, =Cqw n ~ 0.14 m?/s (4.60)

while K,/A ~ 122.8 /s is the gain from valve spool position (in meter) to the actuator velocity

given by,

(in m/s). The equivalent gain from the command value of valve opening (in voltage) to the
actuator velocity (in m/s) is given by 122.8 x 0.00035 = 0.043 m/s/volt.

We derived the dynamic model of the electrohydraulic actuator in this chapter. We then
linearized the model and validated it experimentally. Results showed that the linearized actu-

ator model and the experimental data fit each other well. This model is the base of the design

of link-space controllers.




Chapter 5

Control Implementation

Chapter 5 gives an overview of the control implementation on the Stewart platform. We in-
troduce the layout of our control system first, and then study the design and performance
of different types of basic link-space controllers. The pressure-feedback link-space controller is
then proposed to ensure the stability of the system, and its performance is studied via both sim-
ulation and experiment. The Cartesian-space control of the Stewart platform is also discussed.

In the final section, we address the motion drive algorithm.

5.1 Control Layout

Our Stewart platform based motion simulator is hydraulically actuated. The hydraulic ac-
tuation system includes a hydraulic power supply unit, a fluid distribution system, and six
electrohydraulic actuators. The electrical system includes an electrical signal distribution box,
a VME-based real-time system running VxWorks, and a workstation serving as user interface.
Figure 5.19 shows the whole motion simulator system.

To ensure the safety of the motion simulator, a safety system is established, which includes
“home” valves, isolation valves, pressure relief valves, motion limit switches, fluid temperature
and level switches, a supply pressure transducer, and panic buttons. The safety system does
not affect the performance of the simulator. Details of its design can be found in [3].

To simulate a motion using the Stewart platform, we should generate the motion trajectory
in the Cartesian-space first. This trajectory can be a pre-planned one from the computer or

a real-time one following the signal from the hand-control. The actual lengths of actuators

are obtained from sensors through analog to digital converters. Then the control algorithm is
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Distribution
System
Base
Electrical Hydraulic Power
Box Supply
Actuator
ﬁ VME Cage
[ ()
/ AAAA Workstation
Chair
— Sparc 5 Board
Hand running VxWorks
Controls —— A/D Converter
— D/A Converter
Digital I/O

Figure 5.19: Diagram of the Stewart platform based motion simulator

performed either in Cartesian-space or link-space, and the command value of valve opening is
derived for each actuator. By applying the derived command value to each valve thrqugh digital
to analog cbnverter, we can control the main-stage spool position of each valve, and hence the
flow rate and the actuator length.

In the control of Stewart platforms, link-space controllers are generally used because they

are relatively easy to design.

5.2 Basic Link-space Control

In the link-space control, we should perform the inverse kinematics to convert the Cartesian-

space trajectory to the desired lengths of actuators, and then control each actuator individually

to follow its desired length. In practice, most commonly used link-space controllers in the
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Simulation result.
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Open-loop frequency response of the actuator.
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PID controller
Figure 5.20: Linearized open-loop transfer function of the electrohydraulic actuator

actuator. As we can see in Figure 5.20, the open-loop transfer function of the electrohydraulic
But variations in the volume of trapped fluid Vp, in the viscous damping coefficient B, and

Proportional gain (P) controller is the simplest approach to the control of electrohydraulic
actuator is nearly an integrator at low frequencies, i.e. the velocity of the actuator is nearly
proportional to the control command value. So, a proportional gain controller with proper loop
in the effective load inertia M introduce uncertainties in the natural frequency and damping
ratio of the hydraulic resonant mode, which is caused by the fluid compressibility. Figure 5.21,

control of hydraulically actuated Stewart platforms are Proportional-Integral-Derivative (PID)
controllers and pre-filter controllers. Descriptions of various controllers can be found in [31],

[30], and other books on the control of electrohydraulic actuators.
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Open-loop frequency response of the actuator, when VO changes
Frequency (Hz)
Open-loop frequency response of the actuator, when B changes

<l
-180—
-270

Bep eseyd

Figure 5.22, and Figure 5.23 show the effects of these uncertainties on open-loop transfer func-
tions of the electrohydraulic actuator when Vy, B, and M are varying from 0.5 to 2 times of
Figure 5.21: Effects of variations in V from 0.5 to 2 times of its original value
Figure 5.22: Effects of variations in B from 0.5 to 2 times of its original value

Chapter 5. Control Implementation
their original values, respectively.
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actuator, when actuator lengths are not equal to each other. So the six actuators do not have
the same frequency response. Figure 5.26 shows the system response of a 0.5 Hz sinusoidal
wave input along the z axis. We plot the the desired actuator lengths and the actual actuator
lengths in the link-space. As we can see, there are slight differences in the actual actuator

lengths, even though the desired actuator lengths are the same.

System response of a 0.5 Hz sine wave along z axis. Link—-space plot
264 T T ! T T T T

2.62

2.6

2.58

Length (meter)

2.56

2.54

252 ; ; ; ; ; ; ;
' Time (sec) . -

Figure 5.26: Link-space response of a sinusoidal wave input along the z axis.

To check how this differences affect the motion trajectory, we perform the forward kinematics
to convert the actuator lengths to the trajectory in the Cartesian-space. Figure 5.27 shows the
same system response in the Cartesian-space, where only the translational displacements are
plotted. We can see that levels of disturbances in 2 and y axis are acceptable. But when input

frequency increases, the performance becomes worse.
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System response in the Cartesian—space (input 0.5Hz, 2)
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Figure 5.27: Cartesian-space response of a sinusoidal wave input along the z axis.

The system response in Cartesian-space of a 0.2 H z sinusoidal wave input along the y axis

is shown in Figure 5.28

System response in the Cartesian-space (input 0.2Hz, y)
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Figure 5.28: Cartesian-space response of a sinusoidal wave input along the y axis.

A proportional derivative (PD) controller K,74s + K, can be used to improve the system
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response at high frequencies. In the case where the valve response is very fast, i.e. w, is much
larger than wy, we can select the crossing frequency to be near the hydraulic undamped nat-
ural frequency wyp and apply the PD controller to introduce a nearly 90 degrees phase lead
at that frequency so as to have enough phase margin and to stablize the closed-loop system.
Unfortunately, our valve response is not fast enough, compared with hydraulic undamped nat-
ural frequency (we & 1.4wy). The valve dynamics would introduce a substantial phase lag at
the crossing frequency and make the closed-loop system unstable. So the PD controller is not
applied.

For some applications of electrohydraulic actuators, a proportional integrative (PI) con-
troller 5"7':—3“{2 can be used to increase the open-loop gain at low frequencies and to improve
the system response. However, the PI controller should be tuned carefully, because the open-
loop transfer function then contains a double integrator and can cause serious stability problems.
Because the controller stability is critical for the motion simulator system, we prefer only to

use a P controller to avoid risks with regard to stability.

5.2.2 Pre-filter controller

We now look at a feed-forward compensation controller which is generally used in tracking sys-
tems. Figure 5.29 shows a tracking control system with this type of feed-forward compensation

controller.

Id A(s)

v+

\J

e O R T

Figure 5.29: Block diagram of the tracking control system
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The control law is

u(s) = BE §ld(s) + C(s)(la(s) = U(s)) (5.61)

The steady state closed-loop response can be easily found to be I(s) = l4(s), when C(s) is
not equal to —%%. The feed-forward part of the controller helps to reduce and eliminate the
tracking error, while the feedback part keeps the system stable and reduces disturbances.

For the high order plant like our electrohydraulic system, which has a 5th order linearized
model, it is not reasonable to fully realize the feed-forward controller, i.e. calculate up to 5th
“order derivatives of the desired trajectories. We can just omit the high order derivatives from
the feed-forward, and this will only cause bounded error in tracking [33]. And we select the
C(s) to be a constant C equal to the proportional loop gain.

Without considering external force, we can rewrite the plant model Equation (4.57) as

K—‘lVDA( )
L(s) = 5.62
(s) s(w%—s2+2§hs+1)( s2+—§—s+1) (5.62)
h
So B(s) as in Figure 5.29 becomes %, while
1 2 e
A(s) = s(5" + =2 5" s+ 1)( 24 is +1) (5.63)

W,

Omitting the 3rd, 4th, and 5th order derivatives, we can obtain the control law of the simplified

feed-forward compensation controller as

2€h 2£e

u(s) = Aq (=~ ) + 5| la(s) + C(la(s) - U(s)) (5.64)

That is the same as the 2nd order pre-filter controller introduced in [2], which is
Vpa(s) = Ko + Kys + Kp(lg(s) — 1(s)) (5.65)

Substituting the values of &, wy, &, and w, into the above equation and considering the
open loop gain of 200, we can obtain the parameters of the pre-filter in Equation(5.65) as
K, =0.19, K, = 23.3, and K, = 200. The stability margins remain the same as of the P

controller with loop gain of 200. A simulation curve and some experiment points of the closed-

loop frequency response are plotted in Figure 5.30. Comparing the plot to Figure 5.25, we can
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Response of the pre-filter controller (1.0 Hz input)
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Figure 5.31: Closed-loop response of system with pre-filter controller

In the following section, we introduce the pressure-feedback control of electrohydraulic ac-

tuators which is an approach similar to the motor-shaft position control of elastic joints.

5.3 Pressure-feedback Link-space Control

To achieve better performance, one should be able to increase the loop gain and thus decrease the
phase lag while still ensuring stability. As analyzed in the last section, the simple proportional
gain controller becomes unstable if the loop gain is too high, because of the hydraulic resonant
mode caused by the fluid compressibility. In this section, we introduce a new type of pressure-

feedback controller, which can ensure the stability of the system. The performance of such type

of controller is studied via simulations and experiments.
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5.3.1 Description of the controller

It is known that end-point position control of a mass actuated by a motor through a flexible
transmission has poor stability robustness, but motor-shaft position control has much better
stability robustness. When the motor-shaft position is not directly available, it can be computed
by measuring the end-point position and the stress on the motor shaft. A similar approach can
be applied to the control of electrohydraulic actuators, where the compressibility of fluid is
analogous to the flexibility of transmission, the actuator length is analogous to the end-point
position, ‘and cylinder pressure measurement is analogous to the stress measurement on the
motor shaft.

The measurement of uncompressed fluid trapped in the cylinder rather than the end-point
position of the cylinder is used as the feedback signal. It turns out that such a control method
is equivalent to a P/PD controller with negative pressure feedback. Its performance is much
better as it allows for a much larger position loop gain while keeping the system stable.

We revise the actuator model presented in Section 4.1 to provide the access to this new
type of controller design. In this approach, V,, the equivalent uncompressed volume of the fluid
trapped between the valve opening and the blind end of the cylinder, is used as an intermediate
variable.

We rewrite the compressibility equation as in (4.44),

V=V,- EPC (5.66)
B
and the flow equation as in (4.46),
V4 %pc (5.67)

From the above equations, ¢). and V,, are related by

and when pressure P is a constant value, we have Q). = V.

Considering the load forces and viscous frictions, we have,

P.A—Pya=Mi+Bi+f (5.69)
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Substituting (5.69) into (5.66) and considering
V= A(l- L) (5.70)

we can get

_ L

ﬂA(Psa + MI+ Bi + f)) = A(l - L) (5.71)

V:Vu(l_Pc/ﬁ)zvu (1

That is,

A M. V.B;
(VM VuB f=V. (5.72)

a7 (a0 D)

When V), is constant, i.e. ¢. = 0, the actuator behaves like a spring-damper system. When
V. is relatively large and slowly varying, we can consider the actuator model as a spring-damper
model with time varying parameters. The uncompressed fluid volume V,, and the external force

f are the inputs, while the length (I — L) is the output. The linearized time varying transfer

function is
_ K,Vu(s) — KfF(s)

L(s
(#) ;1:532+%s+1

(5.73)

where w, = A,/—%@A—,I is the undamped natural frequency, £ = % ﬁX*A‘,I— is the damping ratio,

K, = ﬁ%/—Ag is the volume gain, and K; = A—‘Q“E is the force gain.

This is equivalent to the following spring-damper system: where & = %‘ﬁ and the other
parameters are the same as above. K,V,, is the position input and kK f is the force input to
the system.

To achieve the performance similar to that of the motor-shaft position control, the mea-
surement of uncompressed fluid trapped in the cylinder, V,,, rather than the end-point position

of the cylinder, [, is used as the feedback signal. So the hydraulic resonance is avoided.

The desired value of V,, is given by,

Vud = A(ld - L) (5.74)

where [; is the desired actuator length.
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W A M B

Figure 5.32: Equivalent spring-damper system
A simple pressure-feedback controller is given by,
Xy = I('n,ew(Vud - Vu) (575)

Substituting (5.66), (5.70), and (5.3.1) into the above equation and assuming § >> P, we can
then further simplify the control law to be

KpewA(lyg— L)
——— P,
B

Xy = KnewA(ly — 1) — (5.76)

a proportional gain controller with negative pressure feedback. For certain fluid, the range of §
is generally given. To get the accurate value of 3, one can use parameter identification scheme.
In the following sections, we study the perform’a)nce of this new type of pressure-feedback

controller via simulations and experiments.

5.3.2 Simulation results and discussions

We use Simulink to do the simulation. The diagram of single actuator system with proportional
gain controller is shown in Figure 5.33.

When the controller loop gain K, is too high, the system starts to oscillate. Figure 5.34

shows the oscillation when K, = 800.
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To Workspace
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Figure 5.33: Single actuator system with proportional controller

Sine response of the simple proportional gain controller, K = 800
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Figure 5.34: The sine wave response of P controller, high loop gain




Chapter 5. Control Implementation 57

Figure 5.35 shows the diagram of the single actuator system with the pressure-feedback

controller.
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Figure 5.35: Single actuator system with pressure-feedback controller

The system response of the pressure feedback controller is similar to that of the proportional
gain controller, if the loop gains are the same and are small enough to keep system stable. One
of the simulation results is shown in Figure 5.36, when the input is 2.0 Hz, and the loop gain
is 200. We can see the significant phase lag.

To improve the system performance, we should increase the loop gain. For the proportional
gain controller, if we increase the loop gain to 600, the system response will become unstable.
But for the pressure-feedback controller, when the loop gain is 1200, the system response is
still stable, and the system performance is much improved. See Figure 5.37 for the simulation
result. The performance of the proposed pressure-feedback controller is much better than that

of a simple proportional gain controller as it allows for a much larger loop gain while keeping

the system stable.
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Sine response of pressure feedback controller, loop gain is 200
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Figure 5.36: Response of single actuator system with pressure-feedback controller

Sine response of pressure feedback controller, loop gain is 2000
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Figure 5.37: Response of single actuator system with pressure-feedback controller

The step responses for different step sizes are plotted in Figure 5.38. For the larger step
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Step response of the simplified pressure feedback controller
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Figure 5.38: Step response of single actuator system with pressure-feedback controller

size, the system reachs the steady state with a slightly larger overshot and a longer time. This
is similar to the result when the proportional gain controller is applied.

In Figure 5.39, we can observe a small oscillation in the valve opening, which is due to the
second order valve dynamics. The frequency of the valve oscillation is according to the natural
frequency of the valve dynamics. In our system, the natural frequency of valve dynamics is
about 1.4 times of the hydraﬁhc resonant frequency. We can achieve a better performance if a
valve with higher natural frequency is used.

The pressure-feedback would generate a steady-state tracking error due to the variance in
the load/pressure. This effect of load could be compensated using the rigid body dynamic

model of the Stewart platform.

5.3.3 Experimental verification

The pressure-feedback controller can stabilize the actuator system.
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x 1072 The valve opening in a step response
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Figure 5.39: Valve step response when the pressure-feedback controller is used

We have observed dramatic oscillation when we increased the loop gain of the proportional
gain controller by 3 times to be 600.

But for the pressure-feedback controller, we can increase the loop gain to 1200 while keeping
the system stable. The experimental results of a single actuator are shown in Figure 5.40 and
Figure 5.41 for the sinusoid input and step input, respectively. The loop-gain selected is 2000,
and the closed-loop system has a cut-off frequency of about 15 Hz.

Through experiments, we successfully proved that this new type of pressure-feedback con-
troller is practically useful. This approach of the pressure-feedback controller design can be

applied to the general electrohydraulic actuator control to improve the performance and guar-

antee the stability.
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Sine wave response of single actuator, experiment result
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Figure 5.40: Sine response when the pressure-feedback controller is used

Step response of single actuator, experiment result
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Figure 5.41: Step response when the pressure-feedback controller is used
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5.4 Cartesian-space Controller

In this section, we discuss the design of Cartesian-space controller.

The desired trajectories of the Stewart platform are generally given in Cartesian-space.
The feedback signals of the Stewart platform are generally obtained in link-space as actuator
lengths/velocities. We can apply the inverse kinematics to derive the desired trajectories in link-
space, which can be done off-line in some cases, and use the link-space controller. Or, we can
apply the forward kinematics to derive the actual position/orientation of the Stewart platform in
Cartesian-space, and use the Cartesian-space controller. The Cartesian-based control schemes
perform more computations in the loop and may run at a lower sampling frequency, this is a
drawback of using the Cartesian-based methods. |

Block diagram of a simple Cartesian-space controller is shown in Figure 5.42. The error

85X S Stewart
Xd+ S .J > Compensator&\» Platform !
_ Dynamics
X | Forward <
Kinematics

Figure 5.42: Simple Cartesian-space control block diagram

signal in Cartesian-space is transformed to link-space through the Jacobian matrix. When
the compensator is the same as that in a link-space controller, the performance of this type
of Cartesian-space controller is exactly the same as that of the link-space controller. For the
control of the Stewart platform, where forward kinematics require more computation, this type
of Cartesian-space controller is not recommended. |

Another type of Cartesian-space controller makes use of the error signal in Cartesian-space
to compute the desired force F' in Cartesian-space and then transforms it to 7 in link-space

through the Jacobian matrix, see Figure 5.43. We can also apply the standard computed-torque

control laws in Cartesian-space. But this type of controller requires actuators with force output,
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Figure 5.43: Cartesian-space controller

such as torque motors. For the electrohydraulic actuators we are using, the actuator dynamics
can not be neglected, and the output force can not be controlled directly. So we were not able

to apply the Cartesian-space controllers to our Stewart platform.

5.5 Motion Drive Algorithm

The ability of a motion simulator to produce accurate motion cues is determined by two fac-
tors, the physical constraints of the motion system and the characteristics of the motion drive
algorithm [24]. As discussed in Section 2.3, our platform has a small motion envelope compared
to the real excavator maneuvers being simulated, so it is necessary to modify the data from real
excavator maneuvers by using a motion drive algorithm, which is commonly known as wash-out
filter.

Wash-out filters attempt to generate the most accurate motion cue possible within the phys-
ical constraints of the motion system. The inputs to the wash-out filters should be translational
accelerations and angular velocities. It is generally agreed that these signals are the elements
of motion that are sensed by humans [24].

Classical wash-out filters are presently used by most aircraft simulator manufacturers and
are relatively straightforward. Classical wash-out filters employ linear high-pass and low-pass
filters along with input scaling and limiting to constrain the simulator motions to be within
the capabilities of the motion system hardware. The scaling and filter parameters are fixed

and are selected so that the simulator response to a worst case input is adequately constrained.
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Diagram of a simple classical wash-out filter is presented in Figure 5.44.
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Angular velocity HP filter TF1

Figure 5.44: A classical wash-out filter configuration

The translational acceleration signal and the angular velocity signal are both scaled and
high-pass filtered to make the motion cue remain in the safe workspace of the motion simulator.

There is a tilt-coordination channel passing the low-pass filtered translational acceleration to
the rotation angles. The low frequency acceleration signals in X and Y direction are simulated
by tilting the mobile platform and making use of the gravity to generate similar senses.

The above classical wash-out filter only gives a basic idea about the motion cue genera-
tion. There are other types of motion drive algorithms, which are more complex and have
better performances. There is still considerable opportunity for the improvement of motion cue
generation.

In this chapter, a high-performance controller using pressure feedback was developed. This
controller was studied via both simulation and experiment. It was shown that the pressure-
feedback controller can ensure the stability of the system. Experimental results indicated that

the frequency response of the Stewart platform using pressure-feedback controller was very good.

This intuitive and simple approach could be useful in a wide range of hydraulic applications.
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Simulation of Combined Dynamics

The purpose of the software simulation is to simulate the response of the Stewart platform on the
computer for given controller parameters and a pre-planned trajectory. This can help us study
the performances of different types of controllers. To simulate the motion of Stewart platform

on the computer, we should combine the actuator dynamics with the rigid body dynamics.

6.1 Combined Dynamics

To simplify the derivation, we will not consider the leg dynamics, because the leg dynamics part
is more complicated and less important than the mobile platform dynamics part, as discussed
in Section 3.2. Then the derivation is basically the same as that in [3].

We rewrite the rigid body dynamics (3.38) as,
-1
f=(37)" D +E (6.77)

where D and E are defined as in (3.39) and (3.40).
The actuator dynamics are described by (4.48). We rewrite it for all the six actuators in a

single vector,

2 (Cawy/2h(Xon, Pa) - V1)

M1 = -BI-f (6.78)

% (de\/gh (Xuey Pes) — Ve)

where 1 is a six vector of the actuator lengths and f is a six vector of the actuator forces.
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The derivative of (6.77) is given by,

b= () @) o] ee) e (@) B] | 4p| ¥ | b
bay, Pay bay
(6.79)
where
D= 0 0 D+D 0 0 (6.80)
o S (bwy) 0 ST (bw,)
and ) i
0
. 0
E= (6.81)
0
i ba, x (prbwp) + bw, % (bwp X (prbwp) + prbap) ]

The Cartesian-space variables can be expressed in terms of the link-space variables, and vice
versa. Detailed derivations can be found in Appendix C. If we express f in terms of link-space
variables and substitute it into (6.78), the combined dynamics in link-space can be expressed

as

. ‘3_ (defh (va Pcl) - Vl)

(M 1+ (37)° DJ-l) : +
6—'4 (de\/gh (Xve, Peg) — V6)
( B+ (3073 (30) D - (37) D42 (37)” DJ“lj) 31+
((JT D- (37737 (37) " D -2 (37)" DJ"IJ) I3t
(JT) DJ-1i3 Y+ (JT) T (JT)_l E-— (JT)~1 E} (6.82)
where I is a six by six identity matrix. The combined dynamics are expressed as a set of six
coupled, third order differential equations where the inputs are the six valve spool positions

X1 ... Xve. The valve position of each actuator is controlled by the command value Vp4, and

the valve response can be approximately modeled as a second order closed-loop system. So the

model of the Stewart platform is a fifth order nonlinear system.
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It is also possible to model the Stewart platform in Cartesian-space, if we express f, 1, and
1in terms of Cartesian-space variables in (6.78). That model would be useful for the simulation
when applying the Cartesian-space controller.

We ran some simulations of the closed-loop system using link-space pressure-feedback con-
troller. The simulation code was original written by Drexel in the C language [3], and was
further modified by the author for the new control structure. The simulation results and the

experiment data are compared in the next section.

6.2 Case Studies

We compare the simulation results and the experimental results through case studies in this
section. The pressure-feedback controller with the loop gain of 1200 is used. Lengths of the
six actuators (link-space response) are plotted for each case, with both simulation results and
experimental results. The responses in the Cartesian-space are also plotted for the first two
cases.

In the first case, we oscillate the platform along the z axis with an amplitude of 0.05 meter
at 1.0 Hz. The simulation result is shown in Figure 6.45, while the experiment result is shown
in Figure 6.46.

We also plot the Cartesian-space in Figure 6.47.

In the second case, we oscillate the platform about the z axis with an amplitude of 0.02
meter at 1.0 Hz. The simulation result and experiment result are plotted in Figure 6.48 and
Figure 6.49, respectively. And the Cartesian-space tracking is shown in Figure 6.50. Please
notice that Figure 6.50 shows the displacement along the z axis rather than the actual position
variable z,.

In the third case, we apply a 0.005 meter step input to the platform’s z, coordinate. The
results are plotted in Figure 6.51 and Figure 6.52.

In the fourth case, we apply a 0.005 radian step input to the platform’s ¢ coordinate. The

results are plotted in Figure 6.53 and Figure 6.54.
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Simulation of an oscillation along x axis
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Figure 6.45: Case 1: Sine wave response along x axis, simulation

Closed-loop response of an oscillation along x axis
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Figure 6.46: Case 1: Sine wave response along x axis, experiment
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System response in Cartesian space (1.0 hz sine wave along x axis)
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Figure 6.47: Case 1: Cartesian-space response

Simulation of an oscillation along z axis
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Figure 6.48: Case 2: Sine wave response along z axis, simulation
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Closed-loop response of an oscillation along z axis
2.605 ! ! ! ! !

2.6

2.595

2.59

Length (m)
N
N )
[4)] ]
e [4;]

2.575

2.57

2.565

256 ; ; : ; :
0 0.2 0.4 0.6 0.8 1
Time (second)

Figure 6.49: Case 2: Sine wave response along z axis, experiment

System response in the Cartesian—space (sine wave along z axis)
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Figure 6.50: Case 2: Cartesian-space response
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Figure 6.51: Case 3: Step response of x, simulation

Closed-loop response of a step along x axis
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Figure 6.52: Case 3: Step response of x, experiment
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Simulation of a step on phi angle
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Figure 6.53: Case 4: Step response of roll angle, simulation

R Closed-loop response of a step on phi angle
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Figure 6.54: Case 4: Step response of roll angle, experiment
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Conclusion and Future works

In this thesis we have presented the modeling, simulation, and control of a hydraulically actu-
ated, ceiling-mounted Stewart platform, which is designed to bé a motion simulator.

The mechanical constraints, singularities, and the length limits of the actuators were studied.
A cylindrical workspace where the system is free of mechanical constraints and singularities was
obtained for control system development. We applied Newton’s method to solve the platform’s
forward kinematics and concluded that the result would reach the desired value after two
iterations in the real-time coﬁtrol.

We also presented a derivation of the Stewart platform’s complete rigid body dynamics. The
derivation was straightforward and the result was relatively simple. We then showed through
simulations that the leg dynamics can be neglected in this particular platform design. This
simplified the simulation work and real-time control.

A model of the electrohydraulic actuator was derived and then linearized for the purpose
of simulation and control. The model was validated using experimental data. Results showed
that the linearized actuator model and the experimental data fit each other well. This model
is the base of the design of link-space controllers. |

Performance of the proportional gain controller was studied. The system response could
be improved by pre-filtering the desired trajectory. To ensure the stability of the system,
a pressure-feedback controller was proposed. The study showed that this pressure-feedback
controller could stabilize the system, and it improved the system performance by allowing
a higher loop gain. This intuitive and simple approach could be useful in a wide range of

hydraulics applications. The preliminary experimental results indicated that the frequency

73
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response of our Stewart platform using pressure-feedback control is very good.

Some suggestions for further work include the following:

e Improve the valve response by applying the closed-loop control based on the valve spool

position

¢ Investigate the use of on-line identification to determine the bulk modulus value and

therefore the pressure gain

e Study the robustness of the proposed pressure-feedback control to measurement errors

and experimentally determine the system stability margins

e Examine analytically and experimentally the effects of leg flexibility and platform rigid-

body dynamics on the link-space controllers

o Further investigate the possibility of applying Cartesian-space controllers

e Develop code for motion drive algorithms and simulate the excavator motion
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Appendix A

Derivatives of Jacobian

We define the Jacobian matrix of Stewart platform as,
i=3J (A.83)

where 1 is the six vector of actuator velocities, J is the platform’s six by six Jacobian matrix,
bv, = bdp is the three vector of the platform’s translational velocity and ®w, is the three vector
of the platform’s angular velocity.

Then, we can get the Jacobian matrix as in Section 2.2

L
. [ (b p b sm \L (rom p b b T
Is (*R,Ppa+°d, —*ba)  ((*RyPpa) x (bdy — ba))
: T T
b by _ b b by _ b b
i 1? _ (*R,*p5 + -dp bs)  ((R,?ps) x (*d, — b)) o | s
Ip : : bwp
: b p b s N\ (bp p b b T
5 | | (Rypr+td,—*br)  ((RyPpr) x (°d, —'bp)) |
| Ir |
or,
. bV
i=7(*d,,'R,) | " (A.85)
b
Wp
where the Jacobian matrix depends on the platform’s position ®d, and orientation *R.,.

The first and second derivatives of the Jacobian matrix are also useful for analyzing the
platform’s overall dynamics. The following are derivations of these derivatives. From (A.84),

we can get
b b b
1 R,Pp; +°d, — °b;
7T = T PTG (A.86)
| 60« ()
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Using the quotient rule, we take the derivative of (A.86) with respect to time, and get

o= L) bup x (Rypi) + v, -
' )" by, x (bRp”pi) + (bbi - bdp) X (bwp X (bRPppi))

*R,Ppi + °d, — by
(i =tdy) x (*Ry7p:)

Equation (A.87) can be simplified using (A.86) to give

I; (A.87)

bw, x (bRpppi> +bv,

o Lt (Rm) + (i) « (i x ()
i = li

(A.88)

Finally, taking the transpose of (A.88), we have an expression for each row of the first derivative

of the platform’s Jacobian matrix,

"up X ( pp’) + v, ' 3
ji (de7bRp,pr>bwp,ii) = —pr - (bRp”pi) + ( bi - bd;,) X ( Wp X (bRPppi»
(A.89)

To derive the second derivative of the Jacobian matrix we start with (A.88) and use the quotient

rule as before, giving

[ ba, x (bR,,Ppi) + bwy, x (bwp X (bRp”pi)) +ta, ]

|t x ("Re?pi) = 28w, x (bwp x (*Ry7pi) ) +

o (o=t0)x (o ()

LU o (twn x (Ropr))) - )
Puwp X (bRp” Pi) + v,

—bv, x (”Rp”pi) + (bbi - bdp) X (bwp X (bRPppi>)

where ®a, (three vector) is the translational acceleration of the platform’s center of mass,

3T - a7,

—JITL Y I (A90)

®a, (three vector) is the angular acceleration of the platform about its center of mass and I; is

the acceleration of actuator <.
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Equation (A.90) is simplified using (A.88) to give

bay X (bRppp,-) + bw, x (bwp X (bRp”pi)) + ba,

~tay (bRppp") —2'vp X (b“’P X (bRppPi)) t - 2371 - 37i;
jT (bbi - de) X (bap X (bRpppi) + bwp X (bwp X (bRpppi)))
;= T
(A.91)

Finally, taking the transpose of (A.91), we have an expression for each row of the second

derivative of the platform’s Jacobian matrix
. b b i
Ji (dp, "Ry, vy, b, Yoy, Py, iy ) =

bap X (bRp”pi) + bw, x (bwp X (bRpppi)) + bap
—ba, x (*Ry?p:) = 2'v, x (fwy x ("RyPpi) ) + — 2J,i; — 3]

(l?bi - bdp) X (bap X (bRpPpi) + bwp X (bwp X (bRp”pi)))

(A.92)

l;
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Spectral Analysis

For a stationary stochastic process x(t), we can write the mean E{x(¢)} and autocorrelation
R(7) = Rye(7) = E{x(t + 7)x*(t)} (B.93)
The cross-correlation of two jointly stationary processes is
Ray(7) = E{x(t + 1)y* (1)} = Ryo(-7) (B.94)

The power spectral density (also called power spectrum) S(w) or Sgzz(w) of a process x(t)

is the Fourier transform of its autocorrelation:

S(w) = /_ °:O R(r)e="dr (B.95)

Since R(—T1) = R*(7), we easily conclude from the above that S(w) is a real function.
The cross spectral density S;,(w) of two process x(t) and y(t) is the Fourier transform of

their cross-correlation:

Soy(w) = / 7 Ryy(r)e=Tdr = §5,(w) (B.96)

—00
We now study a given linear system with impulse response function h(t). When a process

x(t) is applied to the input of this system, the resulting output y(¢) is given by,

y(t) = /_ Z x(t — a)h(a)da = / ~ x(a)h(t - a)da (B.97)

The cross-correlation between y(¢) and x(¢) can then be expressed as

Ry (7)

E{y(t)x*(t — 1)}, assuming stationariness

E{ / x(t — a)x*(t — 7)h(a)da}
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= /_o:o E{x(t - a)x*(t — 7)}h(a)da

-/ °:o Rusl(t - @) = (t — 7)]h()da
- /_ °:o Raa(r — a)h(a)da
= Ryz(7)* h(7) (B.98)
Similarly, we can obtain,
Ryy(7) = Rye(T) * R*(—7) (B.99)

If x(t) is white noise, i.e. if R;.(7) = 6(7), and h(t) = 0 for ¢ < 0 (real causal system),

then,

Ry (1) = h(7) (B.100)
and transfer function of the system when s = jw can be expressed as
H(jw) = L{h(E)}omjo = / h(t)e~3tdt = / Rys(t)etdt = Sy(w) (B.101)
0 —~00

Similarly, we can also obtain,

|H(jw)|? = Syy(w) (B.102)

By using white noise, which has a evenly distributed power spectral density, as input signal

and analyzing the cross spectral density between output signal and input signal of the system,

we can get an experimentally estimated transfer function of the system.




Appendix C

Transformations between Cartesian-space variables and link-space variables

In the simulation and control of the Stewart platform, transformations between Cartesian-space

variables and link-space variables are generally needed. We just summarize these transforma-

tions here.

The transformation between the platform configuration X and the actuator lengths 1 can

be done through inverse/forward kinematics.

X = forward_kinematics(l)

and

1 = inverse_kinematics(X) -

And Jacobian matrix J can be derived from the platform configuration.

The velocity level transformations are

and

And J can be derived as in the previous section.
The acceleration level transformations are

b
a. “ P
Pl =3-3133i

b
ap

(C.103)

(C.104)

(C.105)

(C.106)

(C.107)



Appendix C. Transformations between Cartesian-space variables and link-space variables 84

and

i=3J +3J (C.108)

And J can also be derived as in the previous section.




Appendix D

Matlab Source Code

D.1 InvKinematics.m

function [length]l = invkinematics(x,y,z,psi,the,phi)

% Define the system parameters

gammapl = 53.45; % unit in degree
gammap = [gammap1,120-gammapl, 120+gammapi, -120-gammapi,-120+gammapl,-gammapi];
gammabl = 7.75; % unit in degree

gammab = [gammabl,120-gammabi, 120+gammabl, -120-gammabl,-120+gammabl,-gammabl];

rp = 0.668; % radius of platform, in meter
rb = 1.133; % radius of base, in meter
hp = 0.203; % platform nominal height, in meter

spsi = sin(psi*pi/180);
cpsi = cos(psi*pi/180);
sthe = sin(the*pi/180);
cthe = cos(the*pi/180);
sphi = sin(phi*pi/180);
cphi = cos(phi*pi/180);

% rotation matrix R

bRp(1,1) = cphi * cthe;

bRp(1,2) = -sphi * cpsi + cphi * sthe * spsi;
bRp(1,3) = sphi * spsi + cphi * sthe * cpsi;
bRp(2,1) = sphi * cthe;

bRp(2,2) = cphi * cpsi + sphi * sthe * spsi;
bRp(2,3) = -cphi * spsi + sphi * sthe * cpsi;
bRp(3,1) = -sthe;

bRp(3,2) = cthe * spsi;

bRp(3,3) = cthe * cpsi;

% fixed vector of pp

pp(1,:) = rp*cos(gammap*pi/180);

pp(2,:) = rp*sin(gammap+*pi/180);

pp(3,:) = [hp/2,hp/2,hp/2,hp/2,hp/2,hp/2];
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% fixed vector of bb

bb(1,:) = rb*cos(gammab*pi/180);
bb(2,:) = rb*sin(gammab*pi/180);
bb(3,:) = [0, 0, 0, O, 0, 0];

% bdp

bdp = [x,y,2z]’;
bDp = [bdp,bdp,bdp,bdp,bdp,bdp];

% actuator vector
bA = bRp*pp +bDp - bb;

for i =1:6,
length(i) = norm(bA(:,1));
end

D.2 FwdKinematics.m

% System parameters

gammapl = 53.45;

gammap = [gammapl,120-gammapl, 120+gammapl, -120-gammapl,-120+gammapl,-gammapi];
gammabl = 7.75;

gammab = [gammabil,120-gammabl, 120+gammabl, -120-gammabil,-120+gammabl,-gammabi];

rp = 0.668;
rb = 1.133;
hp = 0.203;

pp(1,:) = rp*cos(gammap*pi/180);
pp(2,:) = rp*sin(gammap*pi/180);
pp(3,:) = [hp/2,hp/2,hp/2,hp/2,hp/2,hp/2];

bb(1,:) = rb*cos(gammab*pi/180);
bb(2,:) = rb*sin(gammab*pi/180);
bb(3,:) = [0, 0, 0, O, 0, 0];

% Estimated value of Cartesian space variables

Assumed = [ 0 0 -2.5 0 0 0];
Assumedp = Assumed’;

% Number of measured points
endii=80;

Finalp = zeros(endii,6);

for ii = 1:endii,

% Measured actuator lengths
Givenl = [ currLengthA(ii,1), currLengthB(ii,1), currLengthC(ii,1),
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currLengthD(ii,1), currLengthE(ii,1), currLengthF(ii,1) 1;
%Givenl = [ desLengthA(ii,1), desLengthB(ii,1), desLengthC(ii,1),
% desLengthD(ii,1), desLengthE(ii,1), desLengthF(ii,1) 1;

for irr 1:2,

x = Assumedp(1); y = Assumedp(2); z = Assumedp(3);
psi = Assumedp(4); the = Assumedp(5); phi = Assumedp(6);

spsi
cthe

sin(psi); cpsi = cos(psi); sthe = sin(the);

cos(the); sphi = sin(phi); cphi = cos(phi);

% Rotation matrix

bRp(1,1) = cphi * cthe;
bRp(1,2) = -sphi
bRp(1,3) = sphi * spsi + cphi * sthe * cpsi;

* cpsi + cphi * sthe * spsi;
*
bRp(2,1) = sphi * cthe;
*
%*

bRp(2,2) = cphi * cpsi + sphi * sthe * spsi;
bRp(2,3) = -cphi * spsi + sphi * sthe * cpsi;
bRp(3,1) = -sthe;

bRp(3,2) = cthe * spsi;
bRp(3,3) = cthe * cpsij;

bdp
bDp

[x,y,z]’;
[bdp,bdp,bdp, bdp, bdp,bdp] ;

% Inverse kinematics of estimated Cartesian space variables
bA = bRp*pp + bDp - bb;

for i = 1:6,

length(i) = norm(bA(:,i));

end

B(1,1) = cthe * cphi;
B(1,2) = -sphi;
B(1,3) = 0;

B(2,1) = cthe * sphi;
B(2,2) = cphi;

B(2,3) = 0;
B(3,1) = -sthe;
B(3,2) =.0;
B(3,3) = 1;

% Jacobian
for i = 1:6,
J(i,:) = [ ( bRp*pp(:,i) + bdp - bb(:,i) )’ ...
(cross( bRp*pp(:,i), bdp-bb(:,i) ))’ 1 / length(i) ;

end;
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% Forward kinematics
Assumedp = Assumedp - inv( J * [eye(3) zeros(3,3) ; zeros(3,3) B] ) * ...

end

(length’ - Givenl’);

% Result of one measured point

Finalp(ii,:) = Assumedp’;

end

figure;

£=0:0.005:endii*0.005-0.005;

plot (¢’

, Finalp);

D.3 Singularities.m

function [SVRb,SVRp] = singu(x,y,z,psi,the,phi)

% System parameters

gammapl = 53.45;

gammap

=A[gammap1,120—gammap1, 120+gammapl, -120-gammap1l,-120+gammapl,-gammapi];

gammabl = 7.75;

gammab

alphap

betab =

[gammab1,120—gammab1, 120+gammabi, -120—gammab1,-120+gammab1,—gammab1];

= [0, 120, 120, -120, -120, 0];
[60,60,180,180,-60,-60];

% U-joint angles

jointb
Jointb
jointp
Jointp
rp = 0.
rb = 1.
hp = 0.
spsi =
cpsi =
sthe =
cthe =
sphi =
cphi =

bRp(1,1)
bRp(1,2)
bRp(1,3) = sphi
bRp(2,1) = sphi

= —-45b;

[jointb, jointb, jointb, jointb, jointb, jointb];
= 45; 45 for chair, 30 for triangle.

= [jointp, jointp, jointp, jointp, jointp, jointp];

668;
133;
203;

sin(psi*pi/180);
cos(psi*pi/180);
sin(the*pi/180);
cos(the*pi/180);
sin(phi*pi/180);
cos(phi*pi/180);

cphi * cthe;

*

-sphi * cpsi + cphi * sthe * spsi;
%*
*

spsi + cphi * sthe * cpsi;
cthe;
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bRp(2,2) = cphi * cpsi + sphi * sthe * spsi;
bRp(2,3) = -cphi * spsi + sphi * sthe * cpsi;
bRp(3,1) = -sthe;
bRp(3,2) = cthe * spsi;
bRp(3,3) = cthe * cpsi;
pp(1,:) = rp*cos(gammap*pi/180);
pp(2,:) = rp*sin(gammap*pi/180);
pp(3,:) = [hp/2,hp/2,hp/2,hp/2,hp/2,hp/2];
bb(1,:) = rb*cos(gammab*pi/180);
bb(2,:) = rb*sin(gammab*pi/180);
)

bb(3,:

fo, o, 0, o, 0, 0J;

bdp = [x,y,2]’;

bDp = [bdp,bdp,bdp,bdp,bdp,bdp] ;

bA = bRp*pp +bDp - bb;

% axis vectors of the upper U-joints
bU(1,:) = rb*cos(betab*pi/180);

bU(2,:) = rb*sin(betab*pi/180);
bU(3,:) = rb*tan(Jointb*pi/180);

% axis vectors of the lower U-joints
pL(1,:) = rp*cos(alphap*pi/180);

pL(2,:) = rp*sin(alphap*pi/180);
pL(3,:) = rp*tan(Jointp*pi/180);
bL. = bRp*pL;

% Singularity Value Ratios. unit in 1/rad.

%“ SVR > 5 is according to angle < 11.5 degree.

SVRb(1) = 1 / acos( ( bU(:,1)/norm(bU(:,1))
SVRb(2) = 1 / acos( ( bU(:,2)/norm(bU(:,2))
SVRb(3) = 1 / acos( ( bU(:,3)/norm(bU(:,3))
SVRb(4) = 1 / acos( ( bU(:,4)/norm(bU(:,4))
SVRb(5) = 1 / acos( ( bU(:,5)/norm(bU(:,5))
SVRb(6) = 1 / acos( ( bU(:,8)/norm(bU(:,8))
SVRp(1) =1 / acos( ( bL(:,1)/norm(bL(:,1))
SVRp(2) = 1 / acos( ( bL(:,2)/norm(bL(:,2))
SVRp(3) = 1 / acos( ( bL(:,3)/norm(bL(:,3))
SVRp(4) = 1 / acos( ( bL(:,4)/norm(bL(:,4))
SVRp(5) = 1 / acos( ( bL(:,5)/norm(bL(:,5))
SVRp(6) =1 / acos( ( bL(:,6)/norm(bL(:,6))

)7
))
))
))
))
))
):
)J
)J
):
)!
):

* O X X X w®

* ¥ ¥ ¥ X ¥

NN SN NN
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bA(:
bA(:
bA(:
ba(
bA(
bA(:

-bA(

-bA(:
-bA(:
-bA(:
-bA(:
-bA(:

,1)/norm(bA(:,1)) )
,2)/norm(ba(:,2)) )
,3)/norm(ba(:,3)) )

:,4)/norm(bA(:,4)) )
:,5)/norm(ba(:,5)) )

,6)/norm(bA(:,6)) )

:,1)/norm(bA(:
,2)/norm(bA(:
,3)/norm(ba(:
,4)/norm(bA(:
,5)/norm(ba(:
,6)/norm(ba(:

»1)) )
»2)) )
»3)) )
»4)) )
»5)) )
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D.4 Dynamics.m

% Cartesian space variables

x=0; y=0; z=-2.5;

dotx = 0; doty = 0; dotz = 0;
ddotx = 0; ddoty = 0; ddotz = 0;
psi=0; the=0; phi=0;

dotpsi=0; dotthe=0; dotphi=0;
ddotpsi=0; ddotthe=0; ddotphi=0;
for jj =0:0.01:0.3;

% acceleration in y direction
%ddoty = 9.8;

%doty = jj*9.8;
%y = 0.5%jj 2%9.8;

% acceleration in x direction
%ddotx = 9.8;

%dotx = jj*9.8;

%x = 0.5%jj 2%9.8;

wWww=40;

aaa=0.01;

x=aaa*sin(jj*www) ;
dotx= aaa*www¥cos(jj*wuw);

ddotx=-aaa*www*wwwksin(jj*www) ;

% sinusoidal the angle
%the=aaa*sin(jj*www);
%dotthe= aaa*www*cos(jj*www);

%ddotthe=-aaa*www*www*sin (jj*wew) ;
switch=0;

% Call the Dynamics function without considering leg dynamics
F = Dynamics(ddotx,ddoty,ddotz,ddotpsi,ddotthe,ddotphi,
dotx,doty,dotz,dotpsi,dotthe,dotphi,x,y,z,psi,the,phi,switch);

force(1,jj*100+1) = F(1);
force(2,3j*100+1) = F(2);
force(3,jj*100+1) = F(3);
force(4,jj*100+1) = F(4);
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force(5,jj*100+1) = F(5);
force(8,jj*100+1) = F(6);
switch=1;

% Call the Dynamics function with considering leg dynamics
F = Dynamics(ddotx,ddoty,ddotz,ddotpsi,ddotthe,ddotphi,
dotx,doty,dotz,dotpsi,dotthe,dotphi,x,y,z,psi,the,phi,switch);

forceleg(1,jj*100+1) = F(1);
forceleg(2,jj*100+1) = F(2);
forceleg(3,jj*100+1) = F(3);
forceleg(4,jj*100+1) = F(4);
forceleg(5,jj*100+1) = F(5);
forceleg(6,jj*100+1) = F(6);

end;

% Plot the required actuator forces for both cases
figure; hold on;

plot(0:0.01:0.3, force(1,:),’yo’ );
plot(0:0.01:0.3, force(2,:),’w—~’' );
plot(0:0.01:0.3, force(3,:),’gx’ );
plot(0:0.01:0.3, force(4,:),’r:’ );
plot(0:0.01:0.3, force(5,:),’c-");
plot(0:0.01:0.3, force(6,:),’m-.’ );
plot(0:0.01:0.3, forceleg(l,:),’yo’ );
plot(0:0.01:0.3, forceleg(2,:),’w—-" );
plot(0:0,01:0.3, forceleg(3,:),’gx’ );
plot(0:0.01:0.3, forceleg(4,:),’r:’ );
plot(0:0.01:0.3, forceleg(5,:), ’c-’);
plot(0:0.01:0.3, forceleg(6,:), ' m-.’ );

legend(’Actuator A’, ’Actuator B’,’Actuator C’,’Actuator D’,...
’Actuator E’,’Actuator F’ ,-1)
function [F] = Dynamics(ddotx,ddoty,ddotz,ddotpsi,ddotthe,ddotphi, ...
dotx,doty,dotz,dotpsi,dotthe,dotphi,x,y,z,psi,the,phi,switch)

% System parameters

gammapl = £53.45;
gammap = [gammapl,120-gammapl, 120+gammapil, -120-gammapl,-120+gammapi,-gammapi];
gammabl = 7.75;

1

gammab = [gammabl,120-gammabi, 120+gammabl, -120—gammab1,—120+gammab1,—gammab1];

1

alphap = [0, 120, 120, -120, -120, 0];
betab = [60,60,180,180,-60,-60];
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rp = 0.668;
rb = 1.133;
hp = 0.203;
g=9.8; % g acceleration

% switch =1 or =0 for with or without considering legs;
mleg=15*switch;

ml = mleg*0.2; % mass of lower part of leg
mu = mleg*0.8; % mass of upper part of leg
lu = 0.4; % distance between upper center and connection
11 = 0.8; % distance between lower center and connection

% assume the load to be 250 kg
mplatform = 250.0;

pIp = mplatform * [0.672/4+1.0°2/12 0 0; 0 0.672/4+1.0°2/12 0; 0 0 0.672/2];

% velocity
bVp = [dotx; doty; dotz];

% acceleration
bACCp = [ddotx; ddoty; ddotz];

spsi = sin(psi*pi/180);
cpsi = cos(psi*pi/180);
sthe = sin(the*pi/180);
cthe = cos(the*pi/180);
sphi = sin(phi*pi/180);
cphi = cos(phi*pi/180);

bRp(1,1) = cphi * cthe;
bRp(1,2)

fl

-sphi
bRp(1,3) = sphi * spsi + cphi * sthe * cpsi;

* cpsi + cphi * sthe * spsi;
*
bRp(2,1) = sphi * cthe;
*
*

bRp(2,2) = cphi * cpsi + sphi * sthe * spsi;
bRp(2,3) = -cphi * spsi + sphi * sthe * cpsi;
bRp(3,1) = -sthe;

bRp(3,2) = cthe * spsi;

bRp(3,3) = cthe * cpsi;

pp(1,:) = rp*cos(gammap*pi/180);
pp(2,:) = rp*sin(gammap*pi/180);
pp(3,:) = [hp/2,hp/2,hp/2,hp/2,hp/2,hp/2];

bb(1,:) = rb*cos(gammab*pi/180);
bb(2,:) = rb*sin(gammab*pi/180);
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bb(3,:) =
bdp = [x,
bDp = [bd

fo, 0, 0, 0, 0, 0];

y,zl’;
p,bdp,bdp,bdp,bdp,bdp] ;

bA = bRp*pp + bDp - bb;

% inertia
Iui = mu*

B(1,1)
B(1,2) =
B(1,3) =
B(2,1) =
B(2,2) =
B(2,3) =
B(3,1) =
B(3,2) =
B(3,3) =

(2%1u)"2/3;

cthe * cphi;
-sphi;

0;

cthe * sphi;
cphi;

0;

% angular velocity

blp = B *

dotB(1,1)
dotB(1,2)
dotB(1,3)
dotB(2,1)
dotB(2,2)
dotB(2,3)
dotB(3,1)
dotB(3,2)
dotB(3,3)

% angular
balphap =

for i=1:6

% length

[dotpsi; dotthe; dotphil;

= —sthe*cphi*dotthe - cthe*sphi*dotphi;
= —cphi*dotphi;

= 0;

= -sthe*sphi*dotthe + cthe*cphi*dotphi;
= —-sphi*dotphi;

= 0;

= —cthe*dotthe;

= 0;

= 0;

acceleration

dotB * [dotpsi; dotthe; dotphil + B * [ddotpsi; ddotthe; ddotphil;

bl

of legs

lleg = norm(bA(:,i));

% Calcula
dotba(:,i

ddotbA(:,

dotlleg =

tions of variables as shown in dynamic equations
) = cross( bWp, bRp*pp(:,i) ) + bVp;

i) = cross(balphap, bRp*pp(:,i)) + ...
cross(bWp, cross(bWp,bRp*pp(:,1i))) + bACCp;

(bA(:,1)’*dotbA(:,1))/11leg;
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%11i(i) = ml*( lleg~2 + (lleg-2*11)*1lleg + (lleg-2*11)~2 )/3;
I1i(i) = ml*( 3%1lleg™2 + (2%11)"2 - 3%(2*1l)*lleg )/3;

dotIli(i) = ml * (2%1lleg-(2*11)) * dotlleg;
bWi(:,i) = cross( bA(:,i), dotbA(:,i) ) / (norm(bA(:,i))*norm(bA(:,i)));

ti = cross( bA(:,i), [eye(3), cross(eye(3), bRp*pp(:,i)) 1 )
/ (norm(bA(:,i))*norm(bA(:,i)));

balphai =( ( bA(:,i)’*bA(:,1i) )*( cross(bA(:,i), ddotbA(:,i)) ) ...
- 2%( bA(:,i)’*dotbA(:,i) )*( cross(bA(:,i), dotbA(:,i)) ) )...
/ mnorm(bA(:,i))"4;

bTAUL = (I1i(i) + Iui) * balphai + dotIli(i) * bWi(:,i);

titimesbTAUi(:,i) = ti’*bTAUi;

hil = (11/norm(bA(:,1))"3)*bA(:,1i)*bA(:,i)’*[eye(3), cross(eye(3), ...
bRp*pp(:,i))] + ( (norm(bA(:,i)) - 11)/norm(bA(:,i)) )* ...
[eye(3), cross(eye(3), bRp*pp(:,1i)) 1;

hiu = (-lu/norm(bA(:,1i))"3)*bA(:,i)*bA(:,i)’*[eye(3), cross(eye(3), ...

bRp*pp(:,i)) 1 + ( (lu)/norm(bA(:,i)) )* ...
[eye(3), cross(eye(3), bRp*pp(:,i)) J1;

hmg(:,i) = hil’*mi*[0, 0, -g]l’ + hiu’*mu*[0, O, -gl’;

end;

bIp = bRp * pIp * bRp’;

bFp = mplatform * bACCp;

bFp = bFp - mplatform * [0, 0, -gl’;

bTAUp = bIp * balphap + cross(bWp, (bIp*bWp));

% Platform dynamics

for i=1:6,

Jt(:,i) = [ ( bRp*pp(:,i) + bdp - bb(:,i) ); cross( bRp*pp(:,i), ...
bdp-bb(:,1i) ) 1 / norm(bA(:,i)) ;

end;

% The required actuator forces for certain trajectory
F = inv(Jt)*([bFp; bTAUpl+titimesbTAUi*[1;1;1;1;1;1] - hmg*[1;1;1;1;1;1]);




