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Abstract

The thesis describes a new approach to paper machine process data analysis using one-
dimensional and two-dimensional discrete wavelet transforms. These techniques have been adapted

* from a general theory that has been developed in recent yéars on the application of wavelets to signal
analysis. Application areas in which the theory was first applied have included image processihg and

bandwidth compression for communications.

Two main applications of the discrete wavelet transform have been analyzed in this thésis. First,
an analysis of the use of wavelefs for processing scanned data representing basis weight and moisture
variations on a paper machine has been carried out. It has been shown that wavelets are effective for
the detection of process signals in noisy data, so leading to better estimation and visualization of the
machine direction and cross machine variations in process data. The second main application of the
method has been to allow significant compression of the process data without diminishing the ability
to reconstruct accurate profiles. It has been shown that the compression method can be embedded into

the estimation algorithm, producing excellent results without a major expense in computation time.

It has been shown that, in both applications, the new methods produce results superior to
the industrially accepted procedures. For ‘appropriate choice of wavélets, profile estimates are
improved over those obtained using exponential filtering or other standard' analysis methods. The
data compression technique presents a new concept in paper machine data analysis and the author is
not aware of any previous references to this subject. The ability to reduce data storage r¢quirements
is of importance in mill-wide process moniforing systems.

A comprehensive analysis of the proposed algorithms has been carried out on a variety of
simulated data sets for which the true process variations are known. Industrial data has also been

analyzed and it is apparent that the method had many desirable characteristics.
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Chapter 1

Introduction

1.1 Measurement of Paper Properties

In the final stage of paper manufacturing, after pulping and bleaching have taken place, the
mixture of water and fibre (stock) is delivered to the paper machine where moisture is first removed
by drainage and mechanical pressing and then dried to produce a sheet of paper formed at the reel.

A simplified diagram of a paper machine is given in Figure 1.1.

Dry line
v

. Press section

Calender stack
//7 P

O-frame

Figure 1.1: Paper Machine

To achieve uniformity and high quality in the paper produced, hundreds of control loops are
needed as well as experienced operators. The most important control loops are those that maintain
paper properties such as basis weight (mass of fibre per unit area) and moisture content (percent of
water in the overall mass of paper sheet) close to the target values assigned for the grade of paper

produced.
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Paper Sheet Sensor path ,
relative to sheet
\ [\ Cross direction
/ \ / Machine direction
Sensor off-sheet

Figure 1.2: Sensor path

The sensor (see Figure 1:1) travels across the sheet (cross direction or CD). During one scan
(one pass over the sheet) the sensor makes between 20 and 3000 uniformly spaced measurements
(Morgan [30]). A scan period can vary from 10 to 60 seconds, depending on the installation. The
speed of paper sheet is up to 25 m/s or more than a hundred times the sensor speed The combination
of the paper trajectory (in machine direction or MD) and the sensor movement (in CD) produces
the zigzag pattern of measurements presented in Figure 1.2. This non-uniformly spaced sampling

represents a major problem in estimation and control.

. The MD variations, introduced by pressure fluctuations and consistency variations in the approach -
system and headbox are considered to be time-dependent, fast and independent of the CD position.
Control action in MD direction is normally taken at least every scan. Changes in CD profiles, coming
from nonuniformity in the headbox, slice lip, pressing and drying, are considered to be relatively
slow, indeed nearly time-invariant. In practice, a CD control action is taken every 2 to 4 scans
(Taylor [36], Jonsson [22]). Faster detection of MD upséts is increasingly desirable with changes
in paper machine design. |

It is obvious (see Figure 1.2) that the measured' sequehce of values contains information about
both MD and CD variations. Decoupling the machine directipn variations from the cross direction

variations is not a trivial task.

1.2 Review of Standard Estimation Methods

Many estimation methods have been developed for processing scanned data since automatic
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control of paper machines was introduced. Most industrial estimators are based on the Exponential
Multiple Scan Trending (EXPO) algorithm (Dahlin {4]). Assurhing slowly changing, zero mean CD
profiles, this algorithm (see Appendix A) carries out exponential filtering of MD data at each CD
position and produces CD profiles that are considered reasonably acceptable by the industry. The

MD estimate, defined as the mean value of a scan, is available at the end of each scan.

Most recent algorithms (Lindeborg [25], Chen [2], Natarajan [32], Dumont [15], Jonsson [22],
Morgan [30], Wang [37]) use stochastic models for basis wéightland moisture ‘variations. They
can estimate CD (Least Squares filter) and/or MD profiles (Kalman filter), with the MD estimations
updated at each data point [30, 37], leading to improved MD control bandwidth. The results of
the estimation method described in this thesis are compareci to the results obtained by the EXPO
algorithm and the Estifﬁation and Identification of Basis ‘Weight and Moisture Content (EIBMC)

algorithm [37, 30]. The details of the latter are given in the Appendix B.

1.3 Motivation

Recent trends in actuator design have allowed control systems for paper machines to involve
an increased number of measurements and control signals. Increases in resolution for both sensors

and actuators are the general trend. The increased resolution potentially leads to an improved overall

’control of paper machines if the multivariable control issues can be addressed effectively [36]. The

increased amount of information causes problems in data processing (slows down the estimators and

controllers), visualization of the process information, and in data storage. While the advances in

computer technology tend to provide us with enough computing power, the visualization and data

storage demands are becoming increasingly important. The machine operators benefit from a better

presentation of the process data in order to be able to detect any change in the quality of final

product. An ’enhanced’ image of the two-dimensional (CDxMD) datais an important tool as part of
the operator interface. The enhancements may include data filtering to provide ’smooth’ images or
to extract some other features, for example sudden changes in paper quality, or streaks. This type of
data processing will lead to better diagnostics and feature recognition, first by the human operators

and then, possibly, by the automated systems.
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Quality control aﬁd production monitoring is increasingly important with the introduction of new
standards (ISO-9001). Being able to record production and to trace back the events that céﬁsg:d a
change in the paper quality has becorﬁe essential for the paper companies. Data compression methods
that provide an efficient data storage and retrieval method are desirable.

In this thesis a novel way of handling scanned paper machine data is introduced. An effort has
been made to provide a framework that unites the estimation, visualizations, and déta storage of the
paper machine process data using wavelet analysis techniques. These techniques have been taken

from the image processing literature and adopted to our purposes.

1.4 QOutline of Thesis

An introduction to wavelet theory and its applications is given in the second Chapter. The third
Chapter presents the results achieved by using wavelet filtering on simulated and industrial data.
Applications of wavelets in paper machine p;ocess data compression and in the control of i)aper
machines are presented in Chapter 4. The conélusions and the final remarks are given in Chapter
5. Models of basis weight and moisture variations, as well as the EIBMC and EXPO algorithms

are given in appendixes.
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Wavelet Theory

In recent years wavelet theory has been established as a unified framework for a number of

techniques used in different disciplines of science:

«  Signal Processing (multiresolution analysis, subband coding, pyramid échemes) v

»  Applied Mathematics (multigrids for solving partial differential equations, approximation
theory, grids)

. Physiés (the theory of coherent states)

»  Statistics (regression)

The roots of what is today known as wavelet theory can be found in the work done in the early
1930’s (Littlewood-Paléy techniques) or cven‘earlier (1910, work done by A. Haar [17]). In the early
1980’s, these different techniques were unified as wavelet theory. At that time, the word wavelet was
suggested by Alex Grossman and Jean Morlet. In mid 1980’s, a new orthogonal wavelet expansion
was constructed by Pierre-Gilles Lemari¢ and Yves Meyer [24] and, by the end of the decade, Ingrid
Daubechies [5] gave a method for the construction of wavelets, nonzero only on a finite interval and
with arbitrarily high but fixed regularity. Most of the work carried out in applying wavelet theory in
the detection of signals in noise, and in data compression has been published in the last five years.

In this Chapter an introduction to wavelet theory, one- and two-dimensional discrete wavelet
transforms, wavelet filtering, and data compression is given, with an emphasis on the irhplementation'

issues.

2.1 Definitions

The inner product of two elements x, y of a real or complex linear space Y is denoted (z,y)

and has the following properties:

x,y) > 0, whenever z # 0

z,y) = (y,2)

@
(i)

(
{

(iii) (az,y) = afzr,y) , a is a scalar
(

(v) (@ +y,2) = (2,2) + (3,2)
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The norm, denoted ||y||, can be defined as ||y|| = (y, y) 3 In an inner product space, two elements
z,y € Y are defined to be orthogoﬂal (denoted x L y)if (z,y) = 0. Let {y;} be a set of mutually
orthogonal ((y;,y;) = 0, i # j) elements in an inner product space Y. Define e; = y; /||yill, then
each e; has unit norm and the set {e;} is called an orthonormal set.-

A Hilbert space is a linear space on which an inner product has been defined, with a norm derived

from the inner product and which is complete in this norm. L? is a Hilbert space with inner product

(2,5) = / d(Wyt)ds @.1)

T
where the functions z,y are defined and integrable on a domain I. 12 is a Hilbert space with inner

product , ,
0o ,
(@,y) = > ziyi 2.2)
i=1

The condition number k of an operator T is defined as k = ||T||- || T~?||- An operator is unitary

if T* = T71.

2.2 Wavelets as Basis Functions

Any signal in a Hilbert space can be approximated by a weighted sum of basis functions. The
accuracy of the approximation will depend upon the class of signals, the choice of basis functions

and the number of terms.
N
HEOEDIA HES (2:3)
i=1

Different sets of basis functions will lead to different sets of coefficients ¢;. Two classes
of representation are, fdr‘example, the samplingvfunction and the sinusoid function. The signal
representation by using sinusoids as the basis function is known as Fourier transform. This transform
reveals information only about the signal’s frequency content over the entire interval. On the other
‘hand, the signal representation by a weighted sum of sampling functions will contain information
only about the time domain behavior. This can be eiplained by comparing the functions’ support
(support is the interval over which a function is nonzero). The sampling function has inﬁnitesimally

small support and so produces precise time information but no frequency data. The sinusoids have

infinite support and so provide spectral information but cannot establish time-domain variations. In
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many cases é set of basis function that is.a’compromise between these two extreméé can be used to
track both spectral and time-domain disuirbances. These functions should have finite support (good
time resolution) of adjustable width {18] (gOod frequency resolution). »

One such a set of basis functions is called wavelets. Wavelets.‘are created by scaling and
translating the sarhe prototype function ¥(z) known as the mother wavelet. The scale factor is
normally chosen to be a power of two, yielding the desired cascade octavé band-pass filter structure.
For the discrete wavelet transform, all the integer shifts of ¥(z) have to be considered. Therefore,

the wavelet decomposition of the signal is given by
Fl@) =Y cir¥ji(a) 24)
.k

where

Uju(z) = 280 (P — k) = 280 (2 (2 — 277k)) @.5)

The coefficient 27k is a dyadic point. The multiplier 2% is needed to make the basis orthonormal.

The wavelet coefficients c;i are computed by the continuous wavelet transform, which is the

inner product of the signal f(z) and the basis function ¥;i(x).

Let the time and the fréquency resolutions be defined (in rms sense) as

T 2g()dt
At= | =—— "~ (2.6)
J lg(t)|*dt

J wC(w)Pdw

Aw = = _ 2.7
J 1G(w)*dw

where g(t) and G(w) are basis function and its Fourier transform respectively. The denominators
represent the energies of g(¢) and G(w) revsp'ectively. The product of time and frequency resolutions

is lower bounded [34] (Eq. 2.8).

(2.8)

DN | =t

AtAw >

Eq. 2.8 is sometimes referred to as the uncertainty principle, or Heisenberg inequality. It implies

that time and frequency resolutions cannot be controlled independently.

7
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|
% 2.3 Wavelet Properties
|

Up to this moment, the choice of the mother wavelet ¥(x) has not been discussed. The choice
of the function ¥(z) depends on the wavelet properties that are best suited to a particular problem.
Some of the most important properties of wavelets are given below. For a more detailed discussion

of wavelet properties see the work of Jawerth and Sweldens [20].

Orthogonality (¥, ¥(- — 1)) = &) directly links the L? norm of a function to the norm of its

FHENIIIILF 2.9)

The fast wavelet transform, using orthogonal wavelets, is a unitary transformation. Orthogonality

wavelet coefficients by

is also important in numerical calculations. An error present in the initial data will not grow
under the transformation, and stable numerical computations are possible. In the multiresolution
analysis orthogonality means that the projection operators into the different subspaces yield optimal
o approximations in the L? sense.

Compact support is needed to guarantee that the summations in the fast WT are finite (i.e.
wavelet ﬁlters have finite impulse responses).

Symmetry is required for the generalized linear-phase filters (to prevent phase distortion).

Smoothness is a very important property for wavelet filtering (de-noising) and compression
applications. A function is said to have M degrees of smoothness if its M th derivative is continuous
at all points. The reconstructed version of a function will be ‘much smoother if the wavelet itself
has a higher degree of smoothness. A higher degree of smoothness corresponds to better frequency
localization of the filters. |

Number of vanishing moments N for a sequence {gi} is given by Eq. 2.10 and is connected to
the smoothness of the wavelet (and vice versa). A higher number of vanishing moments corresponds
to a higher degree of smoothness. |

S gk =0, fr0<p< N , ©(2.10)
k : ‘ _

There is a trade-off among these properties and they are held to varying degrees by different

families of wavelets. There are many researchers working on the wavelet design. Fundamental
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and pioneering work has been done by Daubechies [6, 8, 5, 7], Meyer [29, 28], Cohen [3] and
Wickerhauser [38].
Having chosen the appropriate wavelet, one can move towards the implementation of the discrete

wavelet transform.

2.4 Implementation of the Discrete Wavelet Transform

The paper machine sensor provides a sequence of discrete measured values. Therefore, an
efficient algorithm for the discrete wavelet transforfn (DWT) is needed. Mallat’s pyramid algorithm
[26] has been used in this thesis and it will be described in this section. Let the sequence s; be

HP,.,
s (2~

Sk | LP .,

_>(_ : >_> HP‘-=2 .
~ LP
H —P@—» [ X

(ol

I

v

o |
3 .
&

7
i

Figure 2.1: Block diagram of one-dimensional DWT.

of the length n = 2V. The block diagram of a one-dimensional discrete wavelet transform (DWT)
is given in Figure 2.1. It requires two properly designed wavelet filters: G— high pass filter and
H— low pass filter, both of the length M. Examples of such filters are given in Figure 3.1 and

Appendix C. These two filters are not independent since:

where gp ‘and hn are filter coefficients of G and H respectively. The DWT is implemented by

filtering the signal followed by down-sampling by a factor of 2 (Figure 2.1 and Eq. 2.12).

M-1
HP, =Y Gissrir

1=0 B

Mot R 2.12)
LP = Z hiSok—i ' '
Ci=0 . ’

If the length of the original sequence s is n then the lowpass (LP) and the highpass (HP) component

are each of the length n/2. This procedure of filtering and down-sampling can be repeated recursively
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on the LP components of the signal. After N iterations the length of the lowpass and highpass

components becomes equal to 1. The wavelet coefficients are given by:

w={LPi=N,HPj=n,HPj=n_1,..., HPj=1} (2.13)

- HPj=j°-1 —>®—> G Sy
: LP -
HPJ-=,-°—>@—> G o0 8 —p H

LP frigt
H
LP i=i°—>'®—> H

Figure 2.2: Block diagram of one-dimensional inverse DWT.

The inverse DWT is depicted in Figure 2.2. It is accomplished by upsampling of fhe highpass and
lowpass components by inserting a zero after each element, and convolving the upsampled lowpass
and highpass signals with the filters H and G respectively. The filter pair (H, () is related to the
forward DWT filter pair (f{, C~¥)

Il
‘F?
2

an
' (2.14)

Il
=

B

The fast DWT requires O(n) operations. An actual algorithm in pseudo code is given in [20].

A two-dimensional DWT can be accomplished by two separate one-dimensional transforms [18]

as presented in Figure 2.3.

Ay )™ {2 along y, —» 5, (%)

»H(x )1 12 along x, 5, (65

Gly 112 along y, - S50

s(x.) >

Hiy Y42 aldng A ma LD

L G(x 2 |2 along x, [ §,(x¥) [

~

Gy, )1 12 along y, [ 5,(%

Figure 2.3: Block diagram of two-dimensional DWT.

When implementing the filtering of a signal by the filters H, G’ a choice has to be made regarding

the signal padding at the ends of the sequence. A signal padding assumption is needed because both,

10
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the filter and the signal lengths are finite. When the filter passes the last signal value (s5)

: hl'h2'h3 h4“A ) )
Sp—4 Sp—3 Sn—2 Sn-—-1 .Sn X1 T2 T3 (2-15)

some values {1, z2,z3, ...} have to be added at thel end of the signal. The simplest solution would
be to pad zeros. Padding zeros introduces a discontinuity at that point and it is quite unlikely that
zeros are a natural extensions of the signal. Knowing how sensitive the DWT is in registering
discontinuities, which is a reason for usiﬁg the DWT in the first place, it is likely that this artificial
insertion will introduce a significant error.

A better appfoach is to consider the function to be periodic (i.e. 1 = 81, X2 = 82, ...).
Again, it will cause no error only if .the behavior of the signal at s; and s, do match. Other much
more advanced approaches to this problem, are summarized in [20] (Meyer’s boundary wavelets,

Dyadic boundary wavelets).

2.5 Detection of Signals in Noise and Data Compression

_ ¢
The signal representation in wavelet domain can become very compact with only a few coeffi-

cients being needed to represent a complex signal (Figure 2.4). By contrast, broadband components

associated with noise have their energy dispersed over the coefficients (Figure 2.5).

Function Blocks (MakeSignal.m, WaveLab) . Wavelet coefficients
6 " . - - 0 " T : "
St ] 1 -1 - |
J o Y- | , |
' | |
_3 1 T
3t ' !
-4 1 I | . I L
21 |
._5 - l T - | i I 1
1r
_6 1 |r .
0= -7 . ,
o )
_2 i L i L _9 2 L L "
0 02 04 06 08 1 0 02 04 06 08 1

Time Time

Figure 2.4: Signal in time-domain and its wavelet coefficients
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This property makes the wavelet transform very suitable for estimation and data compression.
By reducing (shrinking) the wavelet coefficients it is possible to remove the “less significant” features
of a signal, most likely noise. Therefore an estimated, noiseless, signal can be obtained after the
inverse DWT.

The fact that the signal energy is concentrated in a relatively small percentage of its wavelet

coefficients, naturally led to the implementation of wavelets in data compression.

2.5.1 De-Noising

The term De-Noising describes, in an informal way, the various schemes which attempt to reject
noise by damping or thresholding in the wavelet domain [11]. Different methods of wavelet filtering
are very well documented in vthle literature. Most of the implemenfations are based on the work done
by Donoho and Johnstone at Stanford University. They have shown [13, 12, 14, 10] that for the

signal model:
¥i = fi + o¢, i=1,...,n (2.16)

jid . . . . . ' . .
where &; ~ N(0,1) is Gaussian white noise, the non-linear wavelet-coefficient thresholding produces

estimates f that are nearly optimal in the {* sense.

Function Blocks with additive white noise Wavelet coefficients in presence of noise
7 - . T ' 0 .
6 -1 |
5 r _2 _ | T 1 l
o | ,
3 a
-4 1 I | I I L
di sl
-5 e | l - I ] | |
1 L
__6 - | Ly .
OW |
—1 i _7 1 L y
_2 | _8 1 J A
-3 ' : L : . -9 . . ' .
0 02 04 06 08 1 0 02 04 06 08 1
Time : Time .

Figure 2.5: Noisy signal in-time-domain and its wavelet coefficients
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The wavelet regression estimator that is suggested by the Stanford group is based on a three-step

procedure:

1. Find DWT of ¥y = (y1,..-,%n)
w=Wy @2.17)

where operator W represents the wavelet transform;
2. Create a new set of wavelet coefficients w* by a non-linear modification of w;

3. Reconstruct an estimate of f by applying the inverse DWT to w*:
f=wlw @18

The step 2 is the most important part of the regression. Donoho and Johnstone have proposed
thresholding of wavelet coefficients as the primary method of the modification. They have established

that this method works because:

1. The DWT of Gaussian white noise is again white noise. Thus, it is evenly spread over
all coefficients (every empirical wavelet coefficient contributes noise of variance ¢ but
only a very few wavelet coefficients contribute signal [14].

~2.  The real signal fis represented by a small number of nonzero coefficients.

To achieve successful estimation, a threshold has to be found based on the estimated noise level.

2.5.1.1 Thresholding methods

There are two main types of thresholding: Hard T) kresholding and Soft Thresholding.

Hard thresholding keeps all the coefficients that are greater than the threshold and sets the others

to zero. Expressed in the standard Matlab™ notation, it is given by
Whara = w + (abs(w) > threshold) : (2.19)

Soft thresholding sets all the coefficients smaller than the threshold to zero and shrinks the others

by the threshold value. It is given by
Wiot = Sign(w) - (abs(w) — threshold) - (abs(w) > threshold) (2.20)

13




Chapter 2: Wavelet Theory

It is very comrﬁon to apply thresholding only on the higher-resolution coefficient levels, keeping
the lower-ﬁequency content of the signal intact. |

It is obvious that these methods are highly non-linear. The soft thresholding is the [? optimal
non-linear function in the wavelet domain to apply if one requires the resulting function to be at
least as smooth as the original, noise-free one. Hard thresholding yields better I? performance but
does not guarantee the smoothnéss property. In practice, hard thresholding méy produce estimates
containing “blips” and other irreghlarities that may not be visually appealing.

Another method of thresholding, proposed by Lang et al. [23], uses a shift invariant DWT for
the noise reduction. Authors have shown that this méthod, when combined with hard thresholding,
gives better noise suppression without oversmoothing of the details. This method calculates the
DWT for all the shifts of the signal, followed by the usual hard thresholding and inverse DWT.
Then, it averages the resulting estimates. When properly impleménted, shift invariant DWT requires
O(NlogN) operations and storagé space for NlogN coefficients compared to O(N) operations and

storage space for N coefficients required for classical DWT.

2.5.1.2 Threshold Selection

Donoho and Johnstone have established [13, 10] several methods of threshold selection.

Universal Threshold or VisuShrink is given by

tuniv = 01/2log(n) . : (2.21)

where n is the sample size (2N) and & is the noise-level estimate. The authors have proposed
median absolute deviation (MAD) method for the noise level estimation [13] from the finest scale

of empirical wavelet coefficients (wy)
6 = Median(|wy|)/0.6745 | | 2.22)

This is a robust estimator which produces visually appealing (hence the name VisuShrink), very
smooth, estirhates. The same threshold is applied to all the levels. It has been shown that this -
method tends to underfit (oversmooth) the data [31]. A

SureShrink is an adaptive threshold-selection procedure [13]. A different threshold is applied

at each resolution level leading to smoothness-adaptive estimates. It uses Stein’s Unbiased Risk

14




Chapter 2: Wavelet Theory

Estimate for threshold choice. An implementation of SURE algorithm is given in the Matlab file:
ValSUREThresh.m which is part of the wavelet toolbox developed at Stanford University [1]. At
each level of resolution the algorithm checks whether there is enough signal to compute the SURE

threshold. If there is, tsure 15 used, otherwise £y, is used. This method also tends to underfit.

There are some other methods, proposed by different authors. Nason [31] has suggested two
methods. One uses SURE procedure on all the coefficients simultaneously. It is called GlobalSure.
‘This procedure results in reasonable performance with respect to mean square error.. The second

method is based on Cross-Validation. The same paper presents a comparative study of these methods.

For all the threshold-selection procedures described above, the noise model is assumed to be as
in (2.16). In case of correlated noise Johnstone and Silverman [21] have proposed a level-adaptive

threshold:

t; = 5;1/2 - log(n) 2.23)

where n is the data sample size and s; is the standafd deviation of the wavelet coefficients at j' level.-
Another method that can be used in the case of correlated noise, if the noise structure is known,
is to use a prewhitening transformation followed by' universal thresholding. waéver, the wavelet
decomposition of the signal in the original domain may possess sparsity properties that are lost in
the prewhitening transformation, and the advantages of using wdvelet de-noisiﬂg on the prewhitened

data would then be diminished [21].

2.5.1.3 De-Noising of Two-Dimensional Signals

The same methods described in the preceding sections can‘ be used for two-dimensional signals.
Donoho [10] proposed the same three step procedure described in 2.5.1, but applied to two-
dimensional image data

Yir i = fivis + O€iy i,
i1=1,...,m ' (2.24)
2=1,...,my

iid . . . . . L
where z;, ;, ~ N(0,1) is Gaussian white noise and the sample size n is given byn = mims.
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2.5.2 Compression

Data compression is one of the most common apphcatlons of wavelet theory. The ability of the
DWT to compress the signal energy in a small number of coefficients makes it a natural cho1ce for

data compression. There are two basic types of data compression, lossless and lossy.

Lossless compression is used when an exact reconstruction of the signal is needed. In con-
trast, lossy compression allows small errors in the reconstruction, in an attempt to achieve higher

compression ratios.

T 1
| e
S5 0) — DWT [ Threshold < Encoder. —f—+
| |
| Compressor : } Sparse
B S Matrix
| | .Storage
|
-~ N l . ]
S5 1) < i IDWT {— Decoder <—-4‘—,
|
|
! Decompressor }

y Figure 2.6: Block diagram of a eompressqr/decqmpressor without a quantizer.

In this thesis, only lossy_eompression will be considered. The reason for this should be apparent
from the previous section (2.5.1). The goal is to try to reconstruct the’ sighal from the noisy data.
Most of the time it is only the reconstructed signal that is of interest and the “loss” should be the
noise. The de-noising procedures reduce the number of nonzero elements, therefore making it an

*_excellent candidate for compression.

There are two possible methods to implement data compresSion' on _the proeeSs data. One method |

is to use the procedure denicted in Figure 2.6. The encoder’s rc_)le is to losslessly compress.the sparse
matrix of quantized coefficients. For the fast executlon simple run-length (Pratt [33]) codlng of

. zero-valued coefficients has been proven very effective.

~ This simple procedure, when applied to the industrial data used later in this thesis, reduces the

percentage of nonzero coefficients in the DWT to 5% (i.e. the signal is represented hy 5% of its DWT .

vcoefﬁc'ients). The remaining coefficients can be stored in a Matlab™

compression ratio of 13:1. Because the wavelet transform and de-noising procedure are an integral

part of the estimator, no additional computing time is required.

16
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Chapter 2: Wavelet Theory

Another method used in image compression is shown in Figure 2.7.

s(x.y) ——{ DWT [ Threshold [ Quantizer F— Encoder —v——+

Compressor : Sparse
CCTTTCIITIIIIIIITIIIIIIITIIIIIIIIIIITTTC | Mati
‘ S aininieii it . : , | Storage
: Lo @ o)
~ ’ . I
s(x.y) = i IDWT [—Dequantizer— Decoder <—v———,| v
| l
| Decompressor. :

Figure 2.7: Block diagram of a compressor/decompressor with a quantizer.

This method adds one additional step, quantization, into the compression procedure. By
quantization of nonzero DWT coefficients fnuch higher compressipn- ‘ratios are achievable at the
expense of an additional error. A quantizer is a function thét maps mény input values into a smaller
set of output values. This mapping is generally a staircase function (Figure 2.8). It takes a continuous
variable v and maps it into a discrete variable u* which takes values from a finite set of reconstruction

levels {r1,72,...,rr} (Jain [19]).

\ A

|

|

|

: 1
‘,_,_,7 te ten

Figure 2.8: Quantizer mapping function.

If the value of u is between two decision levels (ti,tr+1] the quantizer will map it into a
single regonstruction level 7 (Figute 2.8). The quantizer mapping is irreversible — for the given
reconstruction level (a quantizer output) the input value cannot bé uniquely determihed. Thus, an
additional distortion of the original signal is introduced. Therefore, the quantizer should be designed
in ‘such. a way that it minimizes the distortion. In the case of wavelet transform, where the significant
information a‘bout the signal is carried by the high magnitude wavelet coefficients, it is obvious that

the quantizer should have more reconstruction levels dedicated for those coefficients than for the low

17



Chapter 2: Wavelet Theory

magnitude ones. One design method, the optimum mean square quantizer (LLOYD-MAX) design,
is given in [19]. ‘

The decompressor (Figure 2.7) applies- decoding (unique) and dequantization (non-unique) to
come up with a set of wavelet coefficients w] (note: wi # w*). ‘

The compression of process data differs from the compression in image processing. The image
processing compression should be optimized in a sense of accounting for the Human Visual System
(Marr [27]) while the goal of proceés data pompression is to preserve the ihformation about the
process.

For additional information on wavelet data compression one can refer to the overview given by

Hilton et al. [18].
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Chapter 3

Analysis of Paper Machine Process Data

The first part of this chapter will be used to introduce the application of wavelet estimation
methods to paper machine data analysis. A Matlab™ toolbpx has been developed so that different
algorithms, described in the previous chapter, can be tested. Test data sets have been used to verify
the algorithms and to comparé their results to those obtained by using the industrially accepted

estimators (EXPO, EIBMC).

3.1 Matlab™ Toolbox for Wavelet Analysis of Paper Machine Data

A set of Matlab™ functions and scripts has been developed to provide quiqk access to variety
of different wavelet de-noising techniques and different test Vdata sets. Even :though this software
is based on the Rice Univefsity Wavelet Toolbox [16] and WaveLab [1] only three functions from
those toolboxes are used in the final version of the software (two-dimensionalvDWT and IDWT from
the Rice Wavelet Toolbox and SURE threshold selection from the WaveLab). Most of the functions
have been rewritten to adjust the algorithms to handle paper machine data (two-dimensional data
with x and y dimensions of different, non-power of two, lengths). By selecting different options in

the front-end interface procedures many different setups can be tried .
Two different thresholding methods can be used:

1. hard thresholding,
2. soft thresholding.

Four different methods of noise estimation and threshold selection are available:

1. standard deviation of the wavelet coefficients at the finest resolution multiplied by
2 x log (n), |
2. VisuShrink procedure (see Chapter 2)
3. MultiMAD, resolution-dependent thresholding using MAD noise iestiimator (Eq. 2.22) to
estimate the noise standard deviation at each resdlution level,

4. SureShrink (see Chapter 2)
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Chapter 3. Analysis of Paper Machine Process Data

and filters created from four different mother wavelets can be used:

1. Haar wavelet,

2. Daubeshies orthogonal wavelets,
3. Coiflets,
4. Symmlets.

The above wavelet filters are depicted in Figure 3.1. For more information about the mother

wavelets used the reader may refer to the original papers [8, 5, 9].

Haar . Daubechies 4
1 1
0.8 » 05
0.6
0
04
02 =0.5
0 -1
1 12 14 1.6 18 2 1 2 3 4
Daubechies 6 - Symmlet 6
1 1
0.5 0.5
0 0
-0.5 -0.5
-1 -1 -
1 2 3 4 5 6 2 '4 6 8 10 12
Symmlet 8 Coiflet 2
1 1
0.5 0.5
0 0
-0.5 . =0.5
-1 . -1 g
5 10 15 2 4 6 8 10 12
Coiflet 3
| A
1]
-0.5

5 10 15 !

Figure 3.1: Wavelet filters used in the analysis.

The results of wavelet de-noising procedures are compared to the estimations obtained by the

EXPO algorithm and, in some cases, to those obtained by the EIBMC algorithm. Only a few tests
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were done using the EIBMC since, for a fair comparison, the EIBMC algorithm needs to be properly
tuned and the test data sets have to be created by using the proposed models (see Appendix B). The
veriﬁéation process called for some extreme-case input signals. Hence, not all data sets used for the
wavelet estimator testing were created by the given models. Note that both EIBMC and EXPO are

recursive algorithms, whereas wavelet filtering is a batch operation at present.

3.1.1 Padding of the Two-Dimensional Signals

As mentioned in the previous chapter the fast DWT and IDWT procedures need input data sets

of dimensions D (2L1, 2L2). Paper machines rarely give this kind of output. Therefore, some kind of

- extrapolation is needed so data can be padded up to the proper size. The padding by the repetition

of the last data point in each particular direction has been chosen because it is simple to implement
and it reduces the boundary errors due to the periodic nature of the input signals assumed by the
DWT algorithm. The extra data points are removed after the de-noising. This procedure caused
many of the boundary wavelet coefficients to be set to zero (signal becomes constant in that direction
setting high-pass signal component to zero). Thus, the original MAD algorithm (Eq. 2.22) had to be

modified so that all the zero coefficients are removed before the median is calculated.

3.2 Applying Wavelet De-nois_ing to Simulated Scanned Data

Verification of ‘the proposed algorithms has beeﬁ conducted on the various sets of the simulated
data. Data sets were designed in such a way thaf they provided signals with enough complexﬁy so that
the estimator could be properly evaluated. The test data alsb contained the features that commonly
éppear on a paper sheet (streaks, bumps and grade changes). All the data sets have been zigzag
sampled and presented to the estimator as if they had been coming from a paper machine scanner.

The data processing has been done in batch mode. A matrix of data points of the size D(n,m)

is taken, padded to the size Dy (2V,2M), where 2V > n and 2 > m, and sent to the estimator.

3.2.1 Edge Effects and Step Changes

The first data set has been created in such a way that the edge effects (errors from the signal
periodicity assumed by DWT) and the effects of sharp (sudden) changes in profiles can be studied.

The target values (noiseless data) are shown in Figure 3.3. This data set contains a very well
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deﬁned.CD profile which differs greatly at the edge sensors (sensors #1 and #120) and it has a sharp
discontinuify at the sensor #60. TheAMD profile is a sine function of time, with an amplitude of
1. At the MD position 29 the CD profile flattens up by 50% (sudden change in CD profile — the
amplitude being changed froml 1 to 0.5). The number of scans for all test data sets is 58 and the
number of sensors is 120. Consequently, four data points were padded to each end of every CD
‘profile and 3 scans were padded before and after the real signal.

This signal is corrupted with white noise z;, ;, W N (0,02) where 02 = (0.2)>. The composite
signal (CD + MD), before and after adding the noise, is shown in Figure 3.2.

This noisy signal has been processed by using different wavelet estimators and the results
compared to those obtained by the EXPO. For a svignal containing such abrupt changes it was expected
that the Haar wavelet would perform very well. This has been confirmed by the experiments (see
Tables 3.2 and 3.3). The estimated profiles as well as the real signals are given in Figure 3.3. The

MD profiles are calculated as scan averages.
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MD+CD Target Profile

Test data
Blbow

120

0 o Sensors

|
MO

Test data

(=)
(=}

120

0 o Sensors

Figure 3.2: Edge effects: CD+MD before and after the noise has been added.
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Comparison of mean scan errors
0.45 T T I T I
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Figure 3.4: Edge effects: estimation errors as functions of time (scan number).

The Haar wavelet given in Table 3.3 has been used. The thresholds and the estimated noise

standard deviations, used for de-noising, are given in Table 3.1. Figure 3.4 depicts the mean

Levels | Threshold G(c =0.2)
1 0.75 0.19
2 0.64 0.18
3 0.63 0.20
4 0.50 0.19
5 0.25 | 0.12

Table 3.1 Edge effects: thresholds and estimated noise at each resolution level.

estimation error (per scan) as a function of time (scan position). The error -calculation formula

is given in Equation 3.1
CDerr;; = |CD;; — CDestimated; j|, i=1...n;j=1...m (3.1)

where CDerr; ; is the absolute value of estimation error at the i scan and j™ sensor. For each

scan the mean value has been plotted.

_— 1 &
CDerr; = — 2; CDerrij | (3.2)
]:

25


file:///CDij

Chapter 3 _ Analysis of Paper Machine Process Data

L J= \/Z Y CD%rri; - | (3.3)
The overall errors (Equation 3.3) were: ' ' " L

Jisaw = 0.86, ‘

(3.4)
J exrpo = 9-6

and the mean error at each scan was less then 1% of the ‘.signal amplitude. Therefore, the signal was

successfully recovered from the noisy data. -

A number of tests using different methods of thresholding,'threshold selections, and witﬁ avariety
of different mother wavelets of different lehgths, has been run for each_data set.. Some of the results
are summarized in the Tablé 3.2. For the Symmlets and Coiflets the number in the fourth column

represents the wavelet type not the actual length.

Two tables, summarizing the test results, are given for each data set. The first table al_ways shows
the results obtained by the same set‘ of the wavelet filters and is used for comparison of the filter ;
perfonnancéé on different data sets. The second table displays the representatifzesof four different
wavelet filters that have produced the best résults, i.e. smallest errors, for that data set.

The Haar wavelet used invthis example has produced the best results, as expected, but a number
of different conﬁgufations have performed very well. When véry smooth wavelet filters have been

used, the estimation error would tend to go up with an increased number of resolution levels. This

happens when thresholding starts to affect the low-frequency paft of the signal (trying to smooth out

the signal made of sharp edges).b

Wavelet Thresholding Threshbld Wavelet Resolution Jeipo
.‘ method estimation . | length/type ‘ levels -
Daubechies | soft std 6 - .3 - 0.85
Daubechies | - soft | MultiMAD 6 3 | L4
Symmlet ~ soft Costd 6 3 0.85
Symmlet soft MultiMAD 6 3 1.19
Coiflet soft _ std '3 3 0.83
. Coiflet | soft ~ MultiMAD 3 3 1.27
Haar. soft MultiMAD 2 2 046 -

Table 3.2 Edge effects: summary of the results
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It can be seen that the errors at the edges of the signal are very small. This may be attributed to
the signal padding and to the wavelet length. For a filter length of two, only one data point has to

be padded to the signal at any time — consequently only one point can be wrong.

Wavelet Thresholding Threshold | Wavelet Resolution Ti:
method estimation length/type levels

Daubechies hard MAD 4 2 0.70

Symmlet hard MAD 6 3 0.72

Coiflet hard Costd 2 3 0.66

Haar ~soft MultiMAD 2 5 0.09

Table 3.3 Edge effects: best filter performances.

To contrast. the results shown in Figures 3.3 and 3.4, in Figures 3.6 and 3.5 are shown the
results of the estimation obtained by using the Coiflet filter described in Table 3.3. As expeéted,
the filter with a higher degree. of smoothness yielded much smoother estimates causing a decrease
of ’sharpness’ at the points of discontinuity (sensor #60 and scan #29). The overall estimation error
was higher than in the first case but still significantly better than for the EXPO estimator. The filter

length has also contributed to the edge effect errors.

Comparison of mean scan errors
045 T . T T T

0.4 | : : [~ — Wav |

0.35
0.3
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£ 025

8 02
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0.1

0.05

Figure 3.5: Edge effects: estimation errors as functions of time (scan number) for a smooth estimator.
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3.2.2 Smooth Surfaces

The second data set, depicted in Figure 3.7, has been created with the intention of testing the
wavelet estimator on some smoother surfaces with a constant signal to noise ratio. The profiles
CD =1-sinfcp, 6cp € [0, 67]

(3.9
MD =1-sinfyp, Oupé€ [0;271']

were corrupted by the additive white noise z;, ;, o N (0,0?%) where o = (0.5)* which was much
higher than in the first data set. The estimation has been done by the Symmlet filter using MultiMAD
procedure (see Table 3.5). The thresholds and the estimated noise are given in Table 3.4. The

estimation errors are shown in Figure 3.9 while the estimated profiles are given in Figure 3.8. -

Levels | Threshold (o = 0.5)
1 1.56 0.40
2 1.44 0.40
3 1.87 0.60

Table 3.4 Smooth surfaces:; thresholds and estimated noise at each resolution level.

Wavelet Thresholding Threshold Wavelet Resolution - Jeipo
method estimation length/type ~levels

Daubechies soft std 6 3 0.51
Daubechies soft MultiMAD 6 3 0.51
Symmlet soft . std 6 3 0.39
Symmlet soft MultiMAD 6 3 0.39
Coiflet soft std 3 3 042
Coiflet soft MultiMAD 3 3 0.42
Haar soft MultiMAD 2 2 0.95

Table 3.5 Smooth surfaces: summary of the results

Even though the signal to noise ratio was low, the estimated profiles were very close to the
original ones and, due to the filter smoothness, very smooth. The overall errors were:
Jwaw = 6.22,

- (3.6)
Jeapo = 16.03 .
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3.7

Jwav = 0-39Jézpo
Wavelet Thresholding Threshold Wavelet Resolution 7 J
method estimation length/type levels
Daubechies soft std 6 3 0.51
Symmlet soft MultiMAD 6 3 0.39
Coiflet soft MultiMAD 3 3 0.42
Haar ~ soft MultiMAD 2 2 0.95

Table 3.6 Smooth surfaces: best filter performances.
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MD+CD Target Profile

0 ¢ Sensors

Test data

120

0 o Sensors

Figure 3.7: Smooth surfaces: composite profiles with and without noise.
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) Comparison of mean scan errors
0.4 T ¥ T . T 1
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Figure 3.9: Smooth surfaces: estimation errors.

3.2.3 Grade Profile Change

This data set, shown in Figure 3.10, has been used with the wavelet estimator to see how the

estimator behaves when a step change of amplitude 2 is introduced in the MD profile. The profiles

CD =0.3-cosbcp, bcp € [0,27] .
3.8)
MD =0.3-sinfyp, HMD € [0, 2n]

were corrupted by additive white noise with variance that was very high compared to the profile
amplitudes: o2 = (0.2)°. The estimation has been done using the Symmlet filter and MultiMAD
procedure (see Table 3.9). The thresholds and the estimated noise are given in Table 3.7. It is
interesting to note that the VisuShirink threshold that would apply to this case was 0.66. Table 37
shows that a threshold of thié size was applied only at one resolution level. All the other threshold
levels were lower. Therefore, a VisuShrink estimator would oversmooth the signal in this case. This

agrees with the theory given in Chapter 2. The estimation errors are shown in Figure 3.13 while

33



Chapter 3: Analysis of Paper Machine Process Data

Levels Threshold G(c =0.2)
1 0.61 0.16
2 0.60 0.17
3 0.66 0.21
4 0.49 0.19
5 0.38 - 0.19

Table 3.7 Grade change: thresholds and estimated noise at each resolution level.

the estimated profiles are given in Figures 3.11 and 3.12. The overall error for the EXPO filter was

ngpo - 6.42.
Wavelet Thresholding Threshold Wavelet Resolution 7 J
| method estimation length/type levels
Daubechies soft std ' 6 3 0.49
Daubechies soft MultiMAD 6 3 0.39
Symmlet soft " std 6 3 0.50
Symmlet soft MultiMAD 6 3 0.38
Coiflet soft . - std 3 3 0.51
Coiflet soft MultiMAD 3 3 0.38
Haar soft MultiMAD 2 2 071
Table 3.8 Grade change: summary of the results
Wavelet Thresholding | Threshold Wavelet Resolution - 7 J
method estimation 1ength/typé levels
Daubechies soft MultiMAD -6 4 0.20
Symmlet soft MultiMAD 8 5 0.17
Coiflet soft - MultiMAD 2 4 0.19
Haar soft MultiMAD 2 3 0.50

Table 3.9 Grade change: best filter performances.
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MD+CD Target Profile
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Figure 3.10: Grade change data set: CD+MD before and after the noise has been added.




Chapter 3: Analysis of Paper Machine Process Data

‘sopyoid pajewnsa :39s ejep 159} a8ueyd opeln :y°g danSig

ueog

0S

(Aepy) @reWInSa aryoid 0D

0S

SI0SUSS

SuedS

0S

IR

09 0s or 0t 0c 0l 0 0 o
. : : . - 0 0S
I | " gt 0
dxo"qW —
....... AN —|- - 11
an—
................................................ m.—
i i i i N R
uoseredwoo ayyoid QN (dxg) ayewnsa opyoid gD
SI10SUS B surog SI0SUQS i

argoid @D 1981k,

suedg

36



Chapter 3: Analysis of Paper Machine Process Data

‘(soSeuur) soqyoid pajewnss :)as ejep 1s9) afueyo apein gy’ dandig

ueods SI0SUQS
09 0s or 0t 0T 01 oc 0zl 001 08 09 oy 0T
........ el 1 T ey
dxo"qIN —
....... ABMTAIN =155 o s ie v s s Sa nen o]
an —
B s s S U3 s AP L1 T e bs DA SR m.—
: w . w w z e i P— B PR —_—_
uoseredwod ajyoid QN (dx3) arewnse ayyoid @D
SI0SUdS SI0SUAS
0zl 001 08 09 or 0z 0 0Tl 001 08 09 oy 0T

TR D IO SFeAats S i duE AR A g .. EE Sk O@ G e e ke yis vis R R P A I e e & T RRATSITE 5
(AepL) @1eWINSa opyoid @D aqyoad D 1981,

37



Chapter 3: Analysis of Paper Machine Process Data

Comparison of mean scan errors
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Figure 3.13: Grade change test data set: estimation errors.

3.2.4 Data Created by the Moisture Variation Model (MVM)

This data set (the profiles are shown in Figure 3.15) has been created by the MVM. The input

parameters and the profiles are given by:

CD =1-sinf¢cpexp(—0.03 x k)

k=1...58, (scan#)

bcp € [0, 67)

o . (3.9)
=it I 08T

@=0.5,

w % N(0,0.1%)

The estimation has been done by the Coiflet filter using MultiMAD procedure (see Table 3.12). The
thresholds and the estimated noise are given in Table 3.10. The VisuShrink threshold that would
. apply to this case was 0.27. Again, only one threshold (Table 3.10) used in this case was of that

size. The threshold used on the lowest resolution level was much higher than the other two and was
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the result of the estimator trying to. filter out the coloured noise introduced in (3.9). The estimation

Levels Threshold a
1 0.20 0.05
2 0.31 0.09
3 0.65 0.21

Table 3.10 MVM test data: thresholds and estimated noise at each resolution level.

errors are shown in Figure 3.14 while the estimated profiles are given in Figure 3.15. The overall

errors for the EXPO and the EIMBC estimators were

Jozpo = 11.43
(3.10)
Jeibme = 0.94 - Je:cpo

It can be seen, from the given results, that the wavelet estimator performed very well compared to
the both EXPO and EIBMC algorithms regardless of the fact that a priori knowledge of the moisture
model and coloured noise has not been used. A possible improvement would be to include the noise
model in the threshold-estimation procedures by increasing or lowering the threshold, at different
resolution levels, by prescheduled coefficients based on the noise model. The wavelet estimated
profiles were much smoother and without the artificial CD shapes that can be seen on the EIBMC
estimated results (see Figure 3.16). Therefore, if the estimated signals were to be used for control,

the smooth profiles would prevent unnecessary CD control actions.

Wavelet Thresholding Threshold Wavelet Resolution Je;l —~
method estimation length/type levels
Daubechies - soft std , 6 3 0.78
Daubechies | soft MultiMAD 6 3 0.69
Symmlet soft std 6 3 0.79
Symmlet soft MultiMAD 6 3 0.74
Coiflet soft - std 3 3 0.76
Coiflet soft MultiMAD 3 3 0.67
Haar soft MultiMAD 2 2 0.89

Table 3.11 MVM test data: summary of the results
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Wavelet Thresholding Threshold Wavelet Resolution : J.i —~
method estimation - length/type levels

Daubechies soft std 6 5 0.66

Symmlet soft std 6 5 0.68

Coiflet © soft MultiMAD 3 3 0.67

Haar soft MAD 2 5 0.76

Table 3.12 MVM test data: best filter performances.

Comparison of mean scan errors

0.35 ! ; g : .
..................................................................... - — Wav _
0.3 | <= Eimc

0 10 20 A 30 40 50 60

Figure 3.14: MVM test data: estimation -errors.
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CD profile #30

20 40 60 80 100 120
Scan number

Figure 3.16: MVM test data: CD profiles.

3.2.5 Bumps and Streaks

The ability of the wavelet estimator to localize some characteristic patterns on a paper sheet has
been tested using the data set given by Equation 3.11. This data set simulates a narrow streak in

MD and two actuator bump changes.

The simulation results are given in Figures 3.17 and 3.18, and performances of different estimators
and their respective' errors of estimation are shown in Tables 3.13 and 3.14. Results shown in the
Figures are obtained by the Coiflet estimator whose parameters are given in Téble 3.14. Hard
thresholding has been used with the threshold set at 0.754 and the estimated noise standard deviation
was 0.18 (true value was 0.2). This signal was a very difficult test for the estimators because of
its smoothness combined with some very short and/or narrow features. If the signal had contained
flat profiles with the same bumps and the streak, then the Haariwavelet would have performed the
best. In this case, as in the most of the other tests, the performance of the selected group of wavelet
estimators is similar to the best performances for that data set. The wavelet estimator has successfully
localized the test patterns of short duration. Estimatioﬁ of the streak is not as effective as by the EXPO
algorithm, although the contrast between smooth surfaces, the bumps, and the streak is impressive.

EXPO is effective in detecting these variations since it carries on no CD smoothing.
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(3.11)

CD =0.2-cosfcp, 6cp € (0,27
MD =0.3"sinfyp, 6mp € [0,27]
oc=0.2
15 bump :
amplitude = 1
scan  $#30...39
sensor #30...34
2" bump
amplitude = -1
scan  #20...23
sensor #80...85
Streak :
amplitude = 0.6
scan #1...58
sensor #60...61
Wavelet Thresholding Threshold Wavelet Resolution 71_
method estimation length/type levels
Daubechies soft std 6 3 0.82
Daubechies soft MultiMAD 6 3 0.99
Symmlet soft std 6 3 0.86
Symmlet soft MultiMAD 6 3 0.99
Coiflet soft std 3 3 0.85
Coiflet soft MultiMAD 3 3 1.00
Haar soft MultiMAD - 2 2 1.04

Table 3.13 Bumps and streaks: summary of the results
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Wavelet Thresholding |- vThre_shold . Wavelet Resolution Je;]po
' - method estimation length/type” | , levelé

Daubechies. hard 'MAD 6 3 0.74

‘Symmlet - hard MAD | 8 3 0.78
Coiflet hard ostd 2 3 0.73
Haar - hard - std 2 2 0.85

© Table 3.14 Bumps and streaks: best ﬁlfer performah'cés.
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3.3 Wavelet Analysis of Industrial Data

3.3.1 Choice of an Estimator

For almost all the tested cases, the selected group of wavelet estimators performed significantly
better than the EXPO filter. The purpose of this testing was to show that even thoﬁgh we cannot
- choose a single optimal wavelet estimator for all the signals, dne can be chosen from the selected
group (given in the tables showing the summary results) and still achieve a good performance. When
the features that have.to be extracted are known (when looking for certain patterns on the sheet) an
appropriate wavelet estimator can be selected from the table showing the best filters for each particular
job. In this way a substantially better performance (compared to the conventional estimators) can be
achieved, as has been shown for the given examples. This approach to the filter selection is now

“used when the estimators to be implemented on the industrial data are selected.

3.3.2 Pulp Machine Moisture Content Data

This data set is collected from a pulp machine manufacturing thick pulp [22] with the target value
of 640.6 g/m?. Slice lip opening at the headbox was 15 cm. The headbox was 4.43 m wide with
design speed of 184 m/min. The CD moisture control system was a Devronizer with 25 actuators
each of a width of 15.24 cm. One scan took 34 seconds to complete. It has been recorded (from the

actuator positions) that two CD bumps have occurred:

1. sensor #20, scans #19-31,
2. sensor #87, scans #13-30.

Three different Wa§elet estimators were used and their results were compared to the EXPO and
EIBMC estimators. The chosen estimators are given in Table 3.15. The first estimator produced
the results given in Figures 3.19, 3.20 and 3.21. This filter yielded very smooth results. The MD
streak that can be seen in the scan #8 was picked up by the CD profile. It was concluded that this
filter oversmooths data in the low-frequency range and consequently the number of resolution levels
for the other two cases have been dropped to two. It has been observed, during the experiments,
that the adaptive wavelet filtering methods work more reliably when the number of resolution levels

has been kept low. It is well known [13, 10] that for adaptive filtering to work well, the number
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of resolution levels used for de-noising must be much smaller than the maximum possible number
of decomposition levels.

The other two filters (shown here for the comparison) have been more effective in the localization
of bumps and the streaks on the paper sheet. The results obtained by the second filter have been
shown in Figures 3.22 and 3.23 while Figures 3.24 and 3.25 demonstrate the fesults achieved by
the Symmlet filter. |

Threshold

Wavelet

Wavelet Thresholding Resolution
method estimation length/type levels
Daubechies soft std 6 3
Daubechies soft MultiMAD 6 2
Symmlet soft MultiMAD 6 2

Table 3.15 Filters used to analyze the industrial data.

The ’Wavelet filters have shown a superior performancé compared to the conventional estimators
when it came to the bump localization (see Figures 3.23 and 3.25). The size of the real bumps, based
on the known positions of the actuators and their widths, was 13x4.8 and 18x4.8 for the first and
the second bump respectively. Both, EXPO and EIBMC have shown signs of dispersing the bumps
over a much greater number of scans although the width of the bumps was preserved. The wavelet

estimators have detected the bump amplitude much better than the other two estimators.
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Figure 3.19: Pulp machine moisture data: estimated profiles.
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3.3.3 Grade Change for a Paper Machine

This data set is collected from a newsprint machine during a grade change with the dry weight
control system in auto mode. Data used for the analysis was the basis weight in grams per square
meter. There were 141 sensors and data was collected during 189 scans. Th’is data set was much larger
than those previously analyzed so that it was possible to select estimators that used more resolution
levels for de-noising. A Coiflet3 filter has been used and soft thresholding has been applied on 5
resolution levels using a threshold ¢ = &\/m where the standard deviation has been
estimated from the wavelet coefficients at the finest resolution level: & = std(w #). The results are
’ shown in Figures 3.26 and 3.27. The estimated CD profiles look very srﬁooth, and it is possible to
see that some of the MD change has found its way into the CD profile. This has happened because
the MD profiles were calculated (and updated) once per scan. An alternative method of MD profile

éstimation will be proposed in the next Chapter in order to avoid this difficulty.
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Raw MD+CD Profile
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Figure 3.26: Paper machine basis weight data.
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Chapter 4

Other Applications of Wavelets in Paper Making Process

4.1 Compression of Paper Machine Data

The theoretical background needed for the understanding of the compression algorithms used in
this chapter has been given in Section 2.5.2. In this chapter some of the more practical aspects of the
process-data compression method, as well as the results achieved will be given. Both compression
methods given in Section 2.5.2, (compression with and without quantizer) have been used. It has
been assumed that the input data has been measured and stored in 16-bit format. All the calculations

have been done using double precision (Matlab™’

s default precision). The software has been
written in such a way that quantizer resolution could assume any value. Only three resolutions
have been used for the test purposes: 8;, 12— and 16-bit. The 16-bit resolution has been used
as the reference, yielding the compression ratio of 1:1. The 12-bit resolution corresponded to a
compression ratio of 1.33:1 and 8-bit resolution resulted in a compression factor of 2:1. All the

above mentioned compression ratios are in addition to the compression achieved by the thresholding

of wavelet coefficients and the encoding of data into sparse matrices.

Case Wavelet Threshold Wavelet Resolution
estimation type/length levels
1. Daubechies std 6 3
2. Daubechies | MultiMAD 6 3
3. Symmlet - ostd 6 3
4, Symmlet MultiMAD 6 3
5. Coiflet std 3 3
6. Coiflet MultiMAD 3 3
7. Haar MultiMAD 2 2

The examples used in Chapter 3 have been used to test the ability of the wavelet compressor to

compress different types of signals. The results are summarized in Tables 4.17 to 4.21. The wavelet

Table 4.16 Key table

filters used here are given in Table 4.16.
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16-bit 12-bit 8-bit
Case compress. Teompress compress. Teompross compress. ‘ Jcorﬁpress
ratio Jexpo ratio Jexpo ratio Tezpo
1. 30.00 0.85 40.00 0.85 60.00 1.17
2. 50.80 1.15 67.74 1.15 101.61 1.43
3. 28.06 0.85 '37.42 0.85 56.13 1.02
4, 52.33 1.19 69.77 1.19 104.66 1.32
5. 27.08 0.82 36.11 0.83 54.16 0.85
6. 52.73 1.27 70.30 1.27 105.45 1.29
1. 13.57 0.46 18.09 046 27.13 0.58
Table 4.17 Edge effects: summary of compression results
16-bit 12-bit 8-bit
Case compress. Teompross compress. Teompress compress. Jeompress
ratio erpo ratio ~ Jeapo ratio - Jeapo
1. 5043 0.51  67.25 0.51 100.87 0.66
2. 50.80 0.51 67.74 0.51 101.87 0.66
3. 49.36 0.39 65.82 0.39 98.72 0.51
4. 51.56 0.39 68.74 0.39 103.11 0.51
5. 49.01 042 65.35 042 98.03 0.43
6. 53.54 042 71.38 042 107.08 0.42
7. 13.57 0.95 18.09 0.95 27.13 0.96

Table 4.18 Smooth surfaces: summary of compression results

The actual quantization used here is given by this four-step procedure (for a data set D):

1. find tmin = min(D) and tmez = maz(D)
2. At = (tmaz = tmin)/ (2bits — 1) |
3. Di = D~ tmin |

4. D. = floor(Dy/At)

where the variable bits represents the resolution in the number of bits and the function floor rounds

the given number to the first integer smaller or equal to the number.
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The reconstruction (de-quantization) algorithm is given by

D' = D, x At + tin “4.1)
16-bit 12-bit 8-bit

Case compress. Teompress compress. | Foomarass compress. Jeompress
ratio Jewpo ratio Jexpo . ratio Jexpo
1. 19.39 0.49 25.85 0.49 38.77 0.51
2. 50.08 0.39 67.74 0.39 101.61 0.42
3. 16.93 0.50 22.58 0.50 33.87 0.53
4. 51.56 0.38 68.74 0.38 103.11 0.42

5. 17.66 0.51 23.55 051 - 35.33 053
6. 53.54 0.38 71.38 0.38 107.08 0.90
7. 13.57 0.71 18.09 0.71 27.13 0.71

Table 4.19 Grade change: summary of compression results
16-bit 12-bit “8-bit

Case compress. Jcompress cqmpress. Teompress compress. Feompress
ratio - Jempo ratio rpo ratio expe
1. 6.98 0.78 931 0.78 13.97 0.82
2, 48.00 0.69 64.00 0.69 96.00 0.74
3. 6.87 0.79 9.16 0..79 13.74 0.85
4. 44.38 0.74 59.18 0.74 88.77 0.80
5. 6.81 0.76 9.09 0.76 13.63 0.76
6. 4596 0.67 61.28 0.67 91.91 0.67
7. 12.58 0.89 16.78 0.89 25.17 0.89

Table 4.20 MVM test data: summary of compression results

It can be concluded, from the given results, that very high compression ratios are achievable by

the proposed algorithms. The additional errors introduced by the quantization of wavelet coefficients

are very small even when the resolution is reduced to a half (8-bit). In most cases the increase in

errors is negligible for the 12-bit resolution, and around 1 to 2 percent for the 8bit resolution. A

significant jump in errors sometimes happens when the compression ratios reach 80 to 100. It should

be noted that in almost all the cases — even for the higheét compression ratios, the overall relative

61



Chapter 4: Other Applications of Wavelets in Paper Making Process
error stayed below one, suggesting that even for those cases the achieved accuracy of estimation after '

compression was better than obtained by the EXPO algorithm without compression.

Adaptive methods (MultiMAD) have given much better results (Table 4.20) due to their ability
to adjust the thresholds at different levels. The method moved to higher thresholds at some resolution .

levels so setting more wavelet coefficients to zero (see Table 3.10 for an example).

16-bit 12-bit 8-bit
Case | compress. | | compress. | | compress. |

ratio Teapo ratio erpe ratio Jeapo
1. 41.18 0.86 5491 0.86 82.37 0.87
2. 51.56 1.06 68.74 1.06 103.11 1.07
3. 38.88 091 51.84 0.91 71.77 0.91
4, 51.56 1.06 68.74 1.06 103.11 1.07
5. 36.63 0.89 48.84 0.89 73.26 0.91
6. 53.13 1.07 - 70.84 1.07 - 106.26 1.08
7. 13.51 1.11 18.02 1.11 27.03 1.11

Table 4.21 Bump data: summary of compression results

The tést data set created by the MVM is used to show the \;isual effects of the compression. This
data set has been chosen because of its richness in MD and CD frequencies yielding relatively smaller
compression ratios (Table 4.20). The results described are achieved by the filter #6 (compression
ratio of 81.5:1). The energy distribution of the signal is shown in Figure 4.1(a), and is very close
to normal distribution. Figures 4.1(b) and 4.1(c) depict, respectively, wavelet coefficients before and
after the thresholding has been done (Note different scales in (a?;, (b) and (c)!). It is obvious, from
the given diagrams, hoW wavelet compression operates. Thé wavelet coéfﬁéients are so concentrated
in the quantizatién amplitude levels 50 to 75 that it had to be “zoomed in” to be able to see the
low-frequency (high magnitude/energy) wavelet coefficients. The quantization level 62 corresponded
to the wavelet coefficient of the zero magnitude. There were 2194 coefficients at this level. Even
more impressive are the results after the thresholding was done. All the coefficients that used to be
grouped around the zero value are now reduced to zero. There is only one peak at the level 62 and

8049 coefficients have that value. This compression resulted in only 143 nonzero coefficients.
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Raw data at 8—bit resolution
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Figure 4.1: MVM data set: energy distribution

An alternative way to show the ability of wavelets to compress a given 2D signal can be seen in
_Figure 4.2. This figure depicts the wévelet coefficient distribution in a two-dimensional image. Each
small black square represents one nonzero wavelet coefficient. The meaning of different regions,
marked in Figure 4.2, can be understood by comparison to the diagram given in Figure 4.3 which is
related to the calculation of the t\No;dimensional DWT (see Figure 2.3). The entire rectangle would

be occupied by nonzero coeflicients prior to compression.
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Location of non—zero wavelet coefficients -
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Figure 4.2: MVM data set: distribution of nonzero wavelet coefficients.
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Figure 4.3: 2D DWT: coefficient sforage.'
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The two-dimensional wavelet transform decomposes a signal into a low-frequency (average)

signal (f L) and three high-frequency (detail) signals which are directionaly sensitive [18]:

fiy — emphasizes horizontal, CD-position dependant, features,
fuL — emphasizes vertical, time-dependant, features,

fyy — emphasizes diagonal, mutually-dependant, features.

This directional sensitivity is an artifact of the frequency ranges they contain.
It can be seen (Figure 4.2) that only a few nonzero coefficients lay outside of the 2, frequency
component. It can be confirmed, from Figures 4.4 and 4.5, that the errors are indeed very small and

visually they appear as a kind of fuzzyness surrounding the estimated profiles.
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Compression has been also tested on the industrial data set given in Section 3.3.2. The
compression ratios and the errors are given in Table 4.22. The filters are given in the same order as
in Table 3.15. In this case the errors (Eq. 3.3) were calculated based on the estimated signal obtained
by the same filter since the signal is not known. The errors were very small — even the largest one
(case #1) corresponds to an average per sample error of 12.42/(60 * 118) = 0.0018 in comparison

to the standard deviation of the estimated signal which was around 0.7.

Figures 4.6 to 4.9 are obtained by the filter #3 from Tables 3.15 and 4.22 at the 8bit resolution.
It is impossible to see any difference between compressed and non-compressed images. There is

only one wavelet coefficient (Figure 4.7) left outside of the li1, region.

Based on the results shown, it is easy to see that the proposed comi)ression method, which is
a natural part of the estimation process, yields high compression with almost no additional errors.
Different compression strategies may be developed to assire the smallest possible error and the
highest compression ratio, based on the use to be made of the stored data. If data is to be used as
a simple image-record of the productioﬁ, good results may be achieved by simply selecting 2—5%
of the largest wavelet coefficients before thresholdihg. This would produce a constant compression
ratio. If the record showing the estimated profiles is to be kept, then the data processing described in
this section can be used (estimation followed by compression, using the same wavelet coefficients).
If there is a need to keep data with high-frequency componeﬁts still present, thresholding may be
done by selecting the threshold conservatively (i.e. vone half of the one automatically selected by the

estimator) and by using non-adaptive methods. This filtering would remove a portion of the noise

but would still achieve a useful compression ratio.
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(a) Raw data at 8-bit resolution
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Figure 4.6: Pulp machine moisture data: energy distribution
16-bit 12-bit 8-bit
Case compress. compress. compress.
. Jcomprcss . Jcompress . Jcompress
ratio ratio ratio :
1. 11.13 0.06 17.77 0.19 26.66 12.42
2. 13.62 0.01 18.16 042 27.24 2.37
3 13.72 0.00 18.24 0.06 27.44 0.89

Table 4.22 Pulp machine moisture data: summary of compression results
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Location of non—zero wavelet coefficients
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Figure 4.7: Pulp machine moisture data: distribution of nonzero wavelet coefficients.
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4.2 Wavelet Estimation for Control Purposes

The wavelet estimator presented in Chapter 3 produced very good results with low estimation
errors and at high éxecﬁtion speeds. Those estimates, in the form of two- and three-dimensional
images can provide a paper machine bperator with a much better view of the production quality. The
operator-acts oh the basis of this improved information leading ultima@"cely to better control and paper .
quality. The estimator, as given in Chapter 3, worked in the batch mode oﬁ a relatively large number
of data samples (more then 50 scans and more then 110 sensor measurements per scan) and was quite
suitable for the above purposes. Some modifications to the proposed algorithms'are needed for the
estimation to become more appropriate for use in real-time control. Those modifications concentrate
on more practical issues such as the speed of MD profile updates and the handling of edge effects.

This is mainly a topic for future research. One possible approach to this problem is given as follows.

The CD profiles should be estimated as shown in Chapter 3. The number of scans that need
to be used for each CD profile calculation depends on the filter length and it should be at least in
the range of 2 to 3 filter lengths. The most recent estimates of the signal are the most important
because these are the samplés needed for the controller to respond at the highest rate. Hence, better
handling of those data samples may be needed (i.e. using Meyer’s boundary -wavelets or Dyadic
boundary wavelets). After the CD proﬁ}e is calculated (once per scan, batch mode) the MD profiles
may be estimated by subtracting the CD profile from the raw data and using the result as an input to
a one-dimensional wavelet de-noising procedure. This approach may lead to MD estimation at each
sample point instead of once per scan. An example 6f the MD profile estimation at.each sample and
its comparison to the scan average method is given in Figure 4.10. The data set used in this example
was given in Section 3.2.2 (Smooth Surfapés). The true MD profile, its scan average estimate, as
well as the high resolution,estimatels achieved by the proposed method are shown in Figure 4.10(b).
The raw MD profile is shown in Figure 4.10(a) for comparison. The same method was applied to

the pulp machine data (Section 3.3.2). The results as shown in Figure 4.11(a)-(b).

The wavelet estimator will thus enable more frequent MD estimates. The MD controller will

then be able to operate with reduced time delay and possibly with increased bandwidth.

A second possible benefit is in CD control, where the profile estimate, after decomposition into

wavelet components, can be matched to CD actuator spacing and response characteristic.
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(a) Raw MD profile
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Figure 4.10: Smooth surfaces: high resolution MD estimation
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" Figure 4.11: Pulp machine moisture data; high resolution MD estimation
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Chapterv 5

Conclusion

The thesis describes a new approach to paﬁer machine process data analysis using one-
dimensional and two-dimensional discrete wavelet transforms. These techniques have been adapted
from a general theory that has been developed in recent years on the application of wavelets to signal
analysis. Application areas in which the theory was first applied have included image processing and

bandwidth compression for communications.

Two main applications of the discrete wavelet traﬁsform have been analyzed in this thesis. First,
an analysis of the use of wavelets for processing scanned data representiﬁg basis weight and moisture
variations on a paper machine has been carried out. It has been shown that wavelets are effective
for the detection of process signals in noisy data, S0 leading to better estimation and visualization
of the machine direction and cross machine variations in process data. The second main application
of the method has been to allow significant compression of the process data without diminishing
the ability to reconstruct accurate profiles. It has been shown that the compression method can be
embedded into the estimation algorithm, producing excellent results without a major expense in the

computation time.

It has been shown that, in both applications, the new methods produce results superior to
the indﬁstrially accepted procedures. For appropriate choice of wavelets, profile estimates are
improved over those obtained using exponential filtering or other staﬁdard analysis methods. The
data compression technique presents a new concept in paper machine data analysis and the author is
not aware of any previous references to this subject. The ability to reduce data storage requirements

is of importance in mill-wide process monitoring systems.

A comprehensive analysis of the proposed algorithms has been carried out on a variety of
simulated data sets for which the true process variations are known. Industrial data has also been

analyzed and it is apparent that the method had many desirable characteristics.

The following properties have been shown for the wavelet estimator:

»  The estimator reduces the error of estimation compared to the existing algorithms, when

“applied to test data.
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+  When applied to inclustrial data, the method presents van excellent visual interface to the
paper making bprocess. Operatorbdata presentations are an important part of process control
systems, and it is belleved that ‘wavelet analysis gives excellent visual insight into process
variations, . 1nsrght srgmﬁcantly better than is ava1lable 1n current systems.

*  The wavelet decomposition can be closely related to cross machine actuator responses. It
is expected that a'.cross machine control method based on an appropriate wavelet analysis
will allow profile upsets to be matched to actuator settings. |

" »  The algorithm is computationally .fast, wlli_ch allows real time analysis. The need for a
recursive form may be .avoided. |

«  The method hasl)een shown to ‘be applicable to basis Weight and moisture estimation
using datak»from a scanning sensor. It is to be expected that it could be used for the

~ analysis of other process variables. |

. Unlike marly estimation methods based on least squares techniques; wavelet analysis is
»robust in its performance and does not require additional tuning once it has been properly

installed. -
The wavelet eompression algorithm has been shown to have the following advantages:

*  The method is veryefl‘eetive with compression ratios greater than 25:1 (up to 100:1) and
with the error of estimation, after decompression, remaining lower than the corresponding
error for an exponential filter based algorithm without compression. |

e Data corrlpression is an integral part of the estimator procedure, and therefore requires -
very little additional computat1on time. o

» The algorlthm provides an effectwe tool for the visualization of productlon variations
over large time perrods. It follows that it can be used to seareh for the poss1b1e causes
of disturbances and faults.

+ The algorithm can'be adjusted to provide a minimum error or a constant compression
ratlo allowing it to be tailored to particular applications.

. Data compress1on w1ll become ‘increasingly 1mportant with the 1ntroduct10n of new, high

speed sensors that generate large volumes of data. A related advantage is the ability to

reduce time for data transfers over the local area networks used in modern machines.




Chapter 5: Conclusion

There are many possible extensions to the research presented here. Steps that might be taken to

improve the effectiveness of the algorithms are described in the following:

~+  Thereisa néed for better handling of the edge effects for the given DWT algorifhms.

» For real time data analysis it is désirable that recursive versions of the algorithms replaée
the batch procedures.

«  An organized procedure for incorpofating knowledge of the process and noise models into
the estimation procedures is needed.'

. Asthe theory associated with wavelet decomposition advances, there is a need to evaluate
new appfoaches., For ¢xample, there is a case for’ exploring new waveletvtechnique‘s such
as wavelet packet analyéis [38] and second generation wavelets [35]. |

o It is likely the use of wavelet estimation algorithms in au;comatic control applications will
allow sensor and actuator spatial and femporai bandwidths to be matched.

+  The existing threshold estimatprs that were used and play a critical role in data compfession '
and noise elimination can still be _irﬁprovéd. In some cases (for example the SURE

technique), the results were not as expected and there is a'need for further development

of this part of the method.
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Appendix A Exponential Multiple Scan Trending (EXPO) Algorithm

The equations describing the algorithm (Dah_lin‘[l]) are:

o 1Y | -
¥{m) = N;Dn(m) | - (A.1)
§"(m) = p(D"(m) — ¥(m)) + (1~ p)s"(m 1)
where: ’

D™(m) is the measured value (moisture content or basis weight) at scan m and CD position n;

Y(m) is the mean value of scan m;

N is the total number of samples (déta bdxes) in a CD;

s™(m) is the filtered CD profile of scan m at data box n; and

p is the exponential filter weighting factor, 0 < p < 1;

The weighting factor is usually chosen from the region p < 0.3. This eliminates the MD

variations from the CD profiles but also slows down the CD profile estimation.
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Appendix B * Estimation and Identification of Basis Weight and
Moisture Content (EIBMC) Algorithm

B.1 Process Models

Process model used to describe the moisture variation in the EIBMC algorithm is based on.
Lindeborg’s [3] moisture variation model ‘(MVM). It has been shown [6] that the same model, with
some modifications, can be applied to basis weight. In this thesis only the necessary equations,
describing the process models and the EIBMC algorithm are given, For the detailed discussion one

«can refer to the original papers [3, 6, 2, 4].

Machinedirection

wet-end «— reel

A
Cross direction
\ B
Figure B.1: Data indexing
B.1.1 Moisture
The MVM for dry-end variations is
Yk =Pk + (1+ Bpf)ur + vk | (B.1)

where
n is data box number (CD-position);
k is sample number or time instant A(_kT);
y? is the difference between measured value at CD position n and time k, and the variable
set point; »

‘B is a measure of the non-linearity between the CD and MD variations;
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p} is pseudo-profile at position n and time k;
ur is MD value at time k;
vp ~ N(0, R) is the measurement noise and model mismatch;
It is assumed that Py = {p},pZ,...,pY } and B change slowly [3]. The first order model of

the MD variations is giveﬁ [5] as
up = 4 + & : , (B.2)
where

% is the mean moisture content in the MD,;

& is a zero mean stochastic process given by:

&k = a1 + wr, wg ~ N(0,q) _ (B.3)
The parameter a and the variance q depend on the paper machine.

The model in state space form is given by

Tpy1 = Az + Wi
Y. = Pk +Ck.’L‘k + Vg

i P 10 ‘To _
= s = ) Wi = '
wk LJ 0 a} ¢ lwk] | 8.5

Ci =1 1] + Bpi)

~ where

B.1.2 Basis Weight

It has been shown [6] that the previously described moisture model (B.1.1) can be modified
to accommodate basis weight estimation by increasing the order of the disturbance (second order

ARMA), setting B=0 and absorbing the state % into the ARMA model. The ARMA model is given

as

(1-a1g7! = a2g ) ue = (1+brg™" +bag ™)y . B9

Thus, the state space model for the basis weight becomes:
Tpy1 = Az + Wy

cup = Cxp + wi B.7)

Yr = Pp +uk + vk
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where

B.2 The EIBMC Algorithm

B.2.1 Moisture

The moisture version of the EIBMC algorithm is

Epjp—1 = AZp_1jk—1
g1 =1 1]&gp—1
Pp =1+ By
Vek—1 = Pr—1 + Ci_adjk—1
1

nyn\2
V" = _yn — a('(ka ) —§(V" 2
A 1+ Ve (yp)® Ho= o)

oV (v = )
1+ (yp)vn

ATL AT

Dk =Dp—1 +

cp=(1+Bs) 1]

L S’

k= T
orma(ep) +R

T
Te-1(CP) c,%qu) AT 4 Q
cria(cp) +R

Ep= A<Zk—1 -
Sk = Brjp—1 + Kk (vk — (Pr + ChEijr—1))
e = [1 1]&kk
where

T @1 O
Q=E{WwWl} =
0 ¢

The equations are given in the order of their execution.
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(B.9)

(B.10)

B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)




B.2.2 Basis Weight

The basis weight version of the EIBMC algorithm is

Trp—1 = ATp—1jk-1
tigje—1 = CZg|k—1

AT n . A
Yklk—1 = Pr-1 + Ukjk—1

1 a(V")
yr = SV s(v"
NV TRt
o +aV."(yz—@;;|k_l)
pk‘ _pk—l 1+Vn
T
K; = Y1 C
CTp_1CT+R
: : 2k—1CTCTe1\ 1
S.=AlY, {— ——e—— |A
k ( 1 onneTrR )Y T

Erpk = Trp—1 + Ki (vE — (PR + Cgpi—1))
Ugpk = Cgjk

where

2 biby
Q=E{WW{}=| " ol
biby b}

The equatlons are given in the order of their executlon
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(B.23)

“(B.24)

(B.25)

(B.26)

(B.27)
(B.28)

(B.29)

(B.30)



(1]

(2]

(3]

[4]

(5]

[6]

References -

E. Dahlin. Computational methods of a dedicated computer system for measurement and
control on paper machines. In 24th Engineering Conferenée, TAPPI, pages 62.1-62.42, San
Francisco, California, Sep 1969.

G. A. Dumont, M. S. Davies, K. Natarajan, C. Lindeborg, F. Ordubédi, Y. Fu, K. Kristinsson,
and A. Jonsson. An improved algorithm for estimating paper machine moisture profiles using
scanned data. In 30th IEEE Conference on Decision and Control, Brighton, England, Dec
1991.

C. Lindeborg. A process model of moisture variations. Pulp and Paper Canada, 4:T142-147,
1993.

S. T. Morgan. Estimation and identification for machine direction control of basis weight and
moisture. Master’s thesis, The University of British Columbia, June 1994.

K. Natarajan, G. A. Dumont, and M. S. :Davies. An algorithm for estimating cross and machine

. direction moisture proﬁles for paper machines. In IFFAé/E ORS Symposium, pages 27-31,
Beijing, PRC, Aug 1988.

X. G. Wang, G. A. Dumont, and M. S. Davies. Modelling and identification of basis weight

variations in paper machines. IEEE Transactions on Control System Technologies, June 1993.

87




Appendix C Wavelet Filter Coefficients

Haar :
0.70710678118655
0.70710678118655

Daubechies (4)
0.48296291314453
0.83651630373781
0.22414386804201
-0.12940952255126

Daubechies (6) .
0.33267055295008
0.80689150931109
0.45987750211849
-0.13501102001025
-0.08544127388203

- 0.03522629188571

Symmlet (6)
0.01540410932734
0.00349071208433
-0.11799011114841
-0.04831174258600

0.49105594192764
0.78764114102879
0.33792942172824
0.07263752278660

-0.02106029251270

0.04472490177075

0.00176771186440

0.00780070832477

Symmlet (8)
0.00188995033290
-0.00030292051455
-0.01495225833679
0.00380875201406
0.04913717967348
-0.02721902991681
-0.05194583810788
36444189483596
77718575169975
48135965125920
06127335906791
14329423835105
00760748732528
03169508781035
00054213233164
.00338241595136

)
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Coiflet (2)
0.01638733646360
-0.04146493678196
-0.06737255472228
0.38611006682299
0.81272363544940
0.41700518442367
0.07648859907867
-0.05943441864674
0.02368017194645
0.00561143481942
0.00182320887071
0.00072054944537

Coiflet (3)

-0.00379351286449

0.00778259642733

0.02345269614184

-0.06577191128186

-0.06112339000267
.40517690240961
.79377722262562
.42848347637762
.07179982161931
.08230192710689
.03455502757306
.01588054486362
.00900797613666
.00257451768875
.00111751877089
.00046621696011
.00007098330314
~00003459977284
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