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Abstract 

The thesis describes a new approach to paper machine process data analysis using one-

dimensional and two-dimensional discrete wavelet transforms. These techniques have been adapted 

from a general theory that has been developed in recent years on the application of wavelets to signal 

analysis. Application areas in which the theory was first applied have included image processing and 

bandwidth compression for communications. 

Two main applications of the discrete wavelet transform have been analyzed in this thesis. First, 

an analysis of the use of wavelets for processing scanned data representing basis weight and moisture 

variations on a paper machine has been carried out. It has been shown that wavelets are effective for 

the detection of process signals in noisy data, so leading to better estimation and visualization of the 

machine direction and cross machine variations in process data. The second main application of the 

method has been to allow significant compression of the process data without diminishing the ability 

to reconstruct accurate profiles. It has been shown that the compression method can be embedded into 

the estimation algorithm, producing excellent results without a major expense in computation time. 

It has been shown that, in both applications, the new methods produce results superior to 

the industrially accepted procedures. For appropriate choice of wavelets, profile estimates are 

improved over those obtained using exponential filtering or other standard analysis methods. The 

data compression technique presents a new concept in paper machine data analysis and the author is 

not aware of any previous references to this subject. The ability to reduce data storage requirements 

is of importance in mill-wide process monitoring systems. 

A comprehensive analysis of the proposed algorithms has been carried out on a variety of 

simulated data sets for which the true process variations are known. Industrial data has also been 

analyzed and it is apparent that the method had many desirable characteristics. 
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Chapter 1: Introduction 

Chapter 1 

Introduction 

1.1 Measurement of Paper Properties 

In the final stage of paper manufacturing, after pulping and bleaching have taken place, the 
mixture of water and fibre (stock) is delivered to the paper machine where moisture is first removed 
by drainage and mechanical pressing and then dried to produce a sheet of paper formed at the reel. 
A simplified diagram of a paper machine is given in Figure 1.1. 

Reel 

Figure 1.1: Paper Machine 

To achieve uniformity and high quality in the paper produced, hundreds of control loops are 
needed as well as experienced operators. The most important control loops are those that maintain 
paper properties such as basis weight (mass of fibre per unit area) and moisture content (percent of 
water in the overall mass of paper sheet) close to the target values assigned for the grade of paper 
produced. 
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Chapter I: Introduction 

Paper Sheet Sensor path 
relative to sheet 

Cross direction 

Machine direction 

Sensor off-sheet 

Figure 1.2: Sensor path 

The sensor (see Figure 1:1) travels across the sheet (cross direction or CD). During one scan 

(one pass over the sheet) the sensor makes between 20 and 3000 uniformly spaced measurements 

(Morgan [30]). A scan period can vary from 10 to 60 seconds, depending on the installation. The 

speed of paper sheet is up to 25 m/s or more than a hundred times the sensor speed. The combination 

of the paper trajectory (in machine direction or MD) and the sensor movement (in CD) produces 

the zigzag pattern of measurements presented in Figure 1.2. This non-uniformly spaced sampling 

represents a major problem in estimation and control. 

The M D variations, introduced by pressure fluctuations and consistency variations in the approach 

system and headbox are considered to be time-dependent, fast and independent of the CD position. 

Control action in M D direction is normally taken at least every scan. Changes in CD profiles, coming 

from nonuniformity in the headbox, slice lip, pressing and drying, are considered to be relatively 

slow, indeed nearly time-invariant. In practice, a CD control action is taken every 2 to 4 scans 

(Taylor [36], Jonsson [22]). Faster detection of M D upsets is increasingly desirable with changes 

in paper machine design. 

It is obvious (see Figure 1.2) that the measured sequence of values contains information about 

both M D and C D variations. Decoupling the machine direction variations from the cross direction 

variations is not a trivial task. 

1.2 Review of Standard Estimation Methods 

Many estimation methods have been developed for processing scanned data since automatic 
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Chapter 1: Introduction 

control of paper machines was introduced. Most industrial estimators are based on the Exponential 

Multiple Scan Trending (EXPO) algorithm (Dahlin [4]). Assuming slowly changing, zero mean C D 

profiles, this algorithm (see Appendix A) carries out exponential filtering of M D data at each C D 

position and produces CD profiles that are considered reasonably acceptable by the industry. The 

M D estimate, defined as the mean value of a scan, is available at the end of each scan. 

Most recent algorithms (Lindeborg [25], Chen [2], Natarajan [32], Dumont [15], Jonsson [22], 

Morgan [30], Wang [37]) use stochastic models for basis weight and moisture variations. They 

can estimate CD (Least Squares filter) and/or M D profiles (Kalman filter), with the M D estimations 

updated at each data point [30, 37], leading to improved M D control bandwidth. The results of 

the estimation method described in this thesis are compared to the results obtained by the E X P O 

algorithm and the Estimation and Identification of Basis Weight and Moisture Content (EIBMC) 

algorithm [37, 30]. The details of the latter are given in the Appendix B . 

1.3 Motivation 

Recent trends in actuator design have allowed control systems for paper machines to involve 

an increased number of measurements and control signals. Increases in resolution for both sensors 

and actuators are the general trend. The increased resolution potentially leads to an improved overall 

control of paper machines i f the multivariable control issues can be addressed effectively [36]. The 

increased amount of information causes problems in data processing (slows down the estimators and 

controllers), visualization of the process information, and in data storage. While the advances in 

computer technology tend to provide us with enough computing power, the visualization and data 

storage demands are becoming increasingly important. The machine operators benefit from a better 

presentation of the process data in order to be able to detect any change in the quality of final 

product. An 'enhanced' image of the two-dimensional (CDxMD) data is an important tool as part of 

the operator interface. The enhancements may include data filtering to provide 'smooth' images or 

to extract some other features, for example sudden changes in paper quality, or streaks. This type of 

data processing will lead to better diagnostics and feature recognition, first by the human operators 

and then, possibly, by the automated systems. 
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Chapter 1: Introduction 

Quality control and production monitoring is increasingly important with the introduction of new 

standards (ISO-9001). Being able to record production and to trace back the events that caused a 

change in the paper quality has become essential for the paper companies. Data compression methods 

that provide an efficient data storage and retrieval method are desirable. 

In this thesis a novel way of handling scanned paper machine data is introduced. A n effort has 

been made to provide a framework that unites the estimation, visualizations, and data storage of the 

paper machine process data using wavelet analysis techniques. These techniques have been taken 

from the image processing literature and adopted to our purposes. 

1.4 Outline of Thesis 

An introduction to wavelet theory and its applications is given in the second Chapter. The third 

Chapter presents the results achieved by using wavelet filtering on simulated and industrial data. 

Applications of wavelets in paper machine process data compression and in the control of paper 

machines are presented in Chapter 4. The conclusions and the final remarks are given in Chapter 

5. Models of basis weight and moisture variations, as well as the EIBMC and E X P O algorithms 

are given in appendixes. 
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Chapter 2 

Wavelet Theory 

In recent years wavelet theory has been established as a unified framework for a number of 

techniques used in different disciplines of science: 

• Signal Processing (multiresolution analysis, subband coding, pyramid schemes) 

• Applied Mathematics (multigrids for solving partial differential equations, approximation 

theory, grids) 

• Physics (the theory of coherent states) 

Statistics (regression) 

The roots of what is today known as wavelet theory can be found in the work done in the early 

1930's (Littlewood-Paley techniques) or even earlier (1910, work done by A . Haar [17]). In the early 

1980's, these different techniques were unified as wavelet theory. At that time, the word wavelet was 

suggested by Alex Grossman and Jean Morlet. In mid 1980's, a new orthogonal wavelet expansion 

was constructed by Pierre-Gilles Lemarie and Yves Meyer [24] and, by the end of the decade, Ingrid 

Daubechies [5] gave a method for the construction of wavelets, nonzero only on a finite interval and 

with arbitrarily high but fixed regularity. Most of the work carried out in applying wavelet theory in 

the detection of signals in noise, and in data compression has been published in the last five years. 

In this Chapter an introduction to wavelet theory, one- and two-dimensional discrete wavelet 

transforms, wavelet filtering, and data compression is given, with an emphasis on the implementation 

issues. 

2.1 Definitions 

The inner product of two elements x, y of a real or complex linear space Y is denoted (x, y) 

and has the following properties: 

(i) (x, y) > 0 , whenever x ^ 0 

(ii) (x,y) = (y,x) 

(iii) (ax, y) — a(x,y) , a is a scalar 

(iv) (x + y,z) = (x, z) + (y, z) 

5 



Chapter 2: Wavelet Theory 

The norm, denoted ||y||, can be defined as ||y|| = (y, y)¥. In an inner product space, two elements 

x, y £ Y are defined to be orthogonal (denoted x _L y) if y) = 0. Let {y,-} be a set of mutually 

orthogonal ((yi,yj) — 0, i ^ j) elements in an inner product space Y. Define e,; = yi/||y»:||, then 

each e, has unit norm and the set {es-} is called an orthonormal set. 

A Hilbert space is a linear space on which an inner product has been defined, with a norm derived 

from the inner product and which is complete in this norm. 1? is a Hilbert space with inner product 

(x,y) = Jx{t)y(t)dt (2.1) 

where the functions x, y are defined and integrable on a domain I. I2 is a Hilbert space with inner 

product 
oo (z> v) = X]XiVi (2-2) i=i 

The condition number k of an operator T is defined as k = | |T| | • 1|. A n operator is unitary 

if T* = T~l. 

2.2 Wavelets as Basis Functions 

Any signal in a Hilbert space can be approximated by a weighted sum of basis functions. The 

accuracy of the approximation will depend upon the class of signals, the choice of basis functions 

and the number of terms. 

N 

f(x)^^2c^i(x) (2.3) 

Different sets of basis functions will lead to different sets of coefficients c;. Two classes 

of representation are, for example, the sampling function and the sinusoid function. The signal 

representation by using sinusoids as the basis function is known as Fourier transform. This transform 

reveals information only about the signal's frequency content over the entire interval. On the other 

hand, the signal representation by a weighted sum of sampling functions will contain information 

only about the time domain behavior. This can be explained by comparing the functions' support 

(support is the interval over which a function is nonzero). The sampling function has infinitesimally 

small support and so produces precise time information but no frequency data. The sinusoids have 

infinite support and so provide spectral information but cannot establish time-domain variations. In 
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Chapter 2: Wavelet Theory 

many cases a set of basis function that is a compromise between these two extremes can be used to 

track both spectral and time-domain disturbances. These functions should have finite support (good 

time resolution) of adjustable width [18] (good frequency resolution). 

One such a set of basis functions is called wavelets. Wavelets are created by scaling and 

translating the same prototype function ^(x) known as the mother wavelet. The scale factor is 

normally chosen to be a power of two, yielding the desired cascade octave band-pass filter structure. 

For the discrete wavelet transform, all the integer shifts of *&(x) have to be considered. Therefore, 

the wavelet decomposition of the signal is given by 

(2.4) 

where 

Vjk(x) = 2iV(2jx-k) =2*V(2j(x-2-jk)) (2.5) 

The coefficient 2~3 k is a dyadic point. The multiplier 2 s is needed to make the basis orthonormal. 

The wavelet coefficients Cjk are computed by the continuous wavelet transform, which is the 

inner product of the signal f(x) and the basis function &jk(x). 

Let the time and the frequency resolutions be defined (in rms sense) as 

At = 

\ 

- O O 

oo 

; w)\2dt 
(2.6) 

Au 
J uj2\G{uj)\2du 

/ \G{u)\2du 
(2.7) 

where g(t) and G(u) are basis function and its Fourier transform respectively. The denominators 

represent the energies of g(t) and G(u) respectively. The product of time and frequency resolutions 

is lower bounded [34] (Eq. 2.8). 

At Aw > -
~ 2 

(2.8) 

Eq. 2.8 is sometimes referred to as the uncertainty principle, or Heisenberg inequality. It implies 

that time and frequency resolutions cannot be controlled independently. 
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2.3 Wavelet Properties 

Up to this moment, the choice of the mother wavelet has not been discussed. The choice 

of the function ^(x) depends on the wavelet properties that are best suited to a particular problem. 

Some of the most important properties of wavelets are given below. For a more detailed discussion 

of wavelet properties see the work of Jawerth and Sweldens [20]. 

Orthogonality - /)) = <5/) directly links the L2 norm of a function to the norm of its 

wavelet coefficients by 

The fast wavelet transform, using orthogonal wavelets, is a unitary transformation. Orthogonality 

is also important in numerical calculations. An error present in the initial data will not grow 

under the transformation, and stable numerical computations are possible. In the multiresolution 

analysis orthogonality means that the projection operators into the different subspaces yield optimal 

approximations in the L2 sense. 

Compact support is needed to guarantee that the summations in the fast WT are finite (i.e. 

wavelet filters have finite impulse responses). 

Symmetry is required for the generalized linear phase filters (to prevent phase distortion). 

Smoothness is a very important property for wavelet filtering (de-noising) and compression 

applications. A function is said to have M degrees of smoothness i f its M t n derivative is continuous 

at all points. The reconstructed version of a function will be much smoother i f the wavelet itself 

has a higher degree of smoothness. A higher degree of smoothness corresponds to better frequency 

localization of the filters. 

Number of vanishing moments TY for a sequence {gk} is given by Eq. 2.10 and is connected to 

the smoothness of the wavelet (and vice versa). A higher number of vanishing moments corresponds 

to a higher degree of smoothness. 

k 

There is a trade-off among these properties and they are held to varying degrees by different 

families of wavelets. There are many researchers working on the wavelet design. Fundamental 

8 
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Chapter 2: Wavelet Theory 

and pioneering work has been done by Daubechies [6, 8, 5, 7], Meyer [29, 28], Cohen [3] and 

Wickerhauser [38]. 

Having chosen the appropriate wavelet, one can move towards the implementation of the discrete 

wavelet transform. 

2.4 Implementation of the Discrete Wavelet Transform 

The paper machine sensor provides a sequence of discrete measured values. Therefore, an 

efficient algorithm for the discrete wavelet transform (DWT) is needed. Mallat's pyramid algorithm 

[26] has been used in this thesis and it will be described in this section. Let the sequence Sk be 

HP j-2 ' 

1=2 

• • • 

HP i = 

LP i : 

Figure 2.1: Block diagram of one-dimensional DWT. 

of the length n = 2N. The block diagram of a one-dimensional discrete wavelet transform (DWT) 

is given in Figure 2.1. It requires two properly designed wavelet filters: G — high pass filter and 

H — low pass filter, both of the length M. Examples of such filters are given in Figure 3.1 and 

Appendix C. These two filters are not independent since: 

9n = nh\-n (2.H) 

where gn and hn are filter coefficients of G and H respectively. The DWT is implemented by 

filtering the signal followed by down-sampling by a factor of 2 (Figure 2.1 and Eq. 2.12). 

M - l 

HPk = ^ 9iS2k-i, 

M-l 

LPk = ^2 hiS2k-i 
i=0 

(2.12) 

If the length of the original sequence Sk is n then the lowpass (LP) and the highpass (HP) component 

are each of the length n/2. This procedure of filtering and down-sampling can be repeated recursively 
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on the LP components of the signal. After N iterations the length of the lowpass and highpass 

components becomes equal to 1. The wavelet coefficients are given by: 

w = {LPj=N, HPj=N, HPj=N-i, • • •, HPj=1} (2.13) 

HP, 

L P * 

L P M 
• ( t 2 ) - ^ H 

, - ^ f 2 ) - » > H 

Figure 2.2: Block diagram of one-dimensional inverse DWT. 

The inverse DWT is depicted in Figure 2.2. It is accomplished by upsampling of the highpass and 

lowpass components by inserting a zero after each element, and convolving the upsampled lowpass 

and highpass signals with the filters H and G respectively. The filter pair (H, (?) is related to the 

forward DWT filter pair (H, G) 

9n= 9-n 
(2-14) 

hn — h—jj 

The fast DWT requires 0(n) operations. An actual algorithm in pseudo code is given in [20]. 

A two-dimensional DWT can be accomplished by two separate one-dimensional transforms [18] 

as presented in Figure 2.3. 

r— H(yk) 12 along yk 
— * -

H(XK) — » > 12 along xk 
— * - — * • 

— * • G(yk) 12 along yk — • 

—»*- i2 along xk — » -

H(yk 
12 along yk 

G(yk 
12 along yk 

Figure 2.3: Block diagram of two-dimensional DWT. 

When implementing the filtering of a signal by the filters H,G a choice has to be made regarding 

the signal padding at the ends of the sequence. A signal padding assumption is needed because both, 

10 



Chapter 2: Wavelet Theory 

the filter and the signal lengths are finite. When the filter passes the last signal value (s n ) 

h\ h-2 /13 fi4 
. . . S „ _ 4 S „ _ 3 Sn-2 Sn-l Sn X\ X2 £ 3 . . . 

(2.15) 

some values {x\, X2, £ 3 , . . . } have to be added at the end of the signal. The simplest solution would 

be to pad zeros. Padding zeros introduces a discontinuity at that point and it is quite unlikely that 

zeros are a natural extensions of the signal. Knowing how sensitive the DWT is in registering 

discontinuities, which is a reason for using the DWT in the first place, it is likely that this artificial 

insertion will introduce a significant error. 

A better approach is to consider the function to be periodic (i.e. x\ = s\, x'% = S2, ...). 

Again, it will cause no error only i f the behavior of the signal at s i and sn do match. Other much 

more advanced approaches to this problem, are summarized in [20] (Meyer's boundary wavelets, 

Dyadic boundary wavelets). 

2.5 Detection of Signals in Noise and Data Compression 

The signal representation in wavelet domain can become very compact with only a few coeffi­

cients being needed to represent a complex signal (Figure 2.4). By contrast, broadband components 

associated with noise have their energy dispersed over the coefficients (Figure 2.5). 

Function Blocks (MakeSignal.m, WaveLab) 
6 1 

Wavelet coefficients 

0.2 0.4 0.6 0.8 
Time 

0 

-1 

-2 

-3 

-4 

-5 

-6 

-7 

-8 

-9 
0.2 0.4 0.6 0.8 

Time 

Figure 2.4: Signal in time-domain and its wavelet coefficients 
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Chapter 2: Wavelet Theory 

This property makes the wavelet transform very suitable for estimation and data compression. 

By reducing (shrinking) the wavelet coefficients it is possible to remove the "less significant" features 

of a signal, most likely noise. Therefore an estimated, noiseless, signal can be obtained after the 

inverse DWT. 

The fact that the signal energy is concentrated in a relatively small percentage of its wavelet 

coefficients, naturally led to the implementation of wavelets in data compression. 

2.5.1 De-Noising 

The term De-Noising describes, in an informal way, the various schemes which attempt to reject 

noise by damping or thresholding in the wavelet domain [11]. Different methods of wavelet filtering 

are very well documented in the literature. Most of the implementations are based on the work done 

by Donoho and Johnstone at Stanford University. They have shown [13, 12, 14, 10] that for the 

signal model: 

Vi = fi + crei, i — 1,. . . , n (2.16) 

where e; l~ N(0,1) is Gaussian white noise, the non-linear wavelet-coefficient thresholding produces 

estimates / that are nearly optimal in the I2 sense. 

Function Blocks with additive white noise 
7. 

0 0.2 0.4 0.6 Oi 
Time 

Wavelet coefficients in presence of noise 
0 

-1 

-2 

-3 

-4 

-5 

-6 

-7 

-8 

-9 

_i_ T 

-Ir-

T " 

I 1 I ' r~r 

,,1. , 

•A—JTA-

0 0.2 0.4 0.6 Oi 
Time 

Figure 2.5: Noisy signal in time-domain and its wavelet coefficients 
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Chapter 2: Wavelet Theory 

The wavelet regression estimator that is suggested by the Stanford group is based on a three-step 

procedure: 

1. Find DWT of y = (yi,...,y„) 

u = Wy (2.17) 

where operator W represents the wavelet transform; 

2. Create a new set of wavelet coefficients UJ* by a non-linear modification of UJ; 

3. Reconstruct an estimate of / b y applying the inverse DWT to UJ*: 

f = WTu* (2.18) 

The step 2 is the most important part of the regression. Donoho and Johnstone have proposed 

thresholding of wavelet coefficients as the primary method of the modification. They have established 

that this method works because: 

1. The DWT of Gaussian white noise is again white noise. Thus, it is evenly spread over 

all coefficients (every empirical wavelet coefficient contributes noise of variance a2 but 

only a very few wavelet coefficients contribute signal [14]. 

2. The real signal / is represented by a small number of nonzero coefficients. 

To achieve successful estimation, a threshold has to be found based on the estimated noise level. 

2.5.1.1 Thresholding methods 

There are two main types of thresholding: Hard Thresholding and Soft Thresholding. 

Hard thresholding keeps all the coefficients that are greater than the threshold and sets the others 

to zero. Expressed in the standard Matlab™ notation, it is given by 

ui*hard — ui • (abs(ui) > threshold) (2-19) 

Soft thresholding sets all the coefficients smaller than the threshold to zero and shrinks the others 

by the threshold value. It is given by 

ui*soft = sign(u>) • (abs(uj) — threshold) • (abs(uj) > threshold) (2.20) 
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It is very common to apply thresholding only on the higher-resolution coefficient levels, keeping 

the lower-frequency content of the signal intact. 

It is obvious that these methods are highly non-linear. The soft thresholding is the I2 optimal 

non-linear function in the wavelet domain to apply i f one requires the resulting function to be at 

least as smooth as the original, noise-free one. Hard thresholding yields better I2 performance but 

does not guarantee the smoothness property. In practice, hard thresholding may produce estimates 

containing "blips" and other irregularities that may not be visually appealing. 

Another method of thresholding, proposed by Lang et al. [23], uses a shift invariant DWT for 

the noise reduction. Authors have shown that this method, when combined with hard thresholding, 

gives better noise suppression without oversmoothing of the details. This method calculates the 

DWT for all the shifts of the signal, followed by the usual hard thresholding and inverse DWT. 

Then, it averages the resulting estimates. When properly implemented, shift invariant DWT requires 

O(NlogN) operations and storage space for NlogN coefficients compared to O(N) operations and 

storage space for N coefficients required for classical DWT. 

2.5.1.2 Threshold Selection 

Donoho and Johnstone have established [13, 10] several methods of threshold selection. 

Universal Threshold or VisuShrink is given by 

tuniv = cryj2log(n) (2.21) 

where n is the sample size (2N) and a is the noise-level estimate. The authors have proposed 

median absolute deviation (MAD) method for the noise level estimation [13] from the finest scale 

of empirical wavelet coefficients (ojf) 

a = Median(\uf\)/0.67i5 (2.22) 

This is a robust estimator which produces visually appealing (hence the name VisuShrink), very 

smooth, estimates. The same threshold is applied to all the levels. It has been shown that this 

method tends to underfit (oversmooth) the data [31]. 

SureShrink is an adaptive threshold-selection procedure [13]. A different threshold is applied 

at each resolution level leading to smoothness-adaptive estimates. It uses Stein's Unbiased Risk 
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Estimate for threshold choice. A n implementation of SURE algorithm is given in the Matlab file: 

ValSUREThresh.m which is part of the wavelet toolbox developed at Stanford University [1]. At 

each level of resolution the algorithm checks whether there is enough signal to compute the SURE 

threshold. If there is, tsure is used, otherwise tuniv is used. This method also tends to underfit. 

There are some other methods, proposed by different authors. Nason [31] has suggested two 

methods. One uses SURE procedure on all the coefficients simultaneously. It is called GlobalSure. 

This procedure results in reasonable performance with respect to mean square error. The second 

method is based on Cross-Validation. The same paper presents a comparative study of these methods. 

For all the threshold-selection procedures described above, the noise model is assumed to be as 

in (2.16). In case of correlated noise Johnstone and Silverman [21] have proposed a level-adaptive 

threshold: 

where n is the data sample size and Sj is the standard deviation of the wavelet coefficients at j t h level. 

Another method that can be used in the case of correlated noise, i f the noise structure is known, 

is to use a prewhitening transformation followed by universal thresholding. However, the wavelet 

decomposition of the signal in the original domain may possess sparsity properties that are lost in 

the prewhitening transformation, and the advantages of using wavelet de-noising on the prewhitened 

data would then be diminished [21]. 

2.5.1.3 De-Noising of Two-Dimensional Signals 

The same methods described in the preceding sections can be used for two-dimensional signals. 

Donoho [10] proposed the same three step procedure described in 2.5.1, but applied to two-

dimensional image data 

tj = Sj sjl • login) (2.23) 

i , . . . , m i (2-24) 

1,... ,m2 

where zi iid N(0,1) is Gaussian white noise and the sample size n is given byn = m\m2. 
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2.5.2 Compression 

Data compression is one of the most common applications of wavelet theory. The ability of the 

DWT to compress the signal energy in a small number of coefficients makes it a natural choice for 

data compression. There are two basic types of data compression, lossless and lossy. 

Lossless compression is used when an exact reconstruction of the signal is needed. In con­

trast, lossy compression allows small errors in the reconstruction, in an attempt to achieve higher 

compression ratios. 

DWT H Threshold H Encoder 

Compressor Sparse 
Matrix 
Storage 

IDWT Decoder IDWT Decoder 

Decompressor 

/ Figure 2.6: Block diagram of a compressor/decompressor without a quantizer. 

In this thesis, only lossy.compression will be considered. The reason for this should be apparent 

from the previous section (2.5.1). The goal is to try to reconstruct the" signal from the noisy data. 

Most of the time it is only the reconstructed signal that is of interest and the "loss" should be the 

noise. The de-noising procedures reduce the number of nonzero elements, therefore making it an 

, excellent candidate for compression. 

There are two possible methods to implement data compression on the process data. One method 

is to use the procedure depicted in Figure 2.6. The encoder's role is to losslessly compress the sparse 

matrix of quantized coefficients. For the fast execution, simple run-length (Pratt [33]) coding of 

zero-valued coefficients has been proven very effective. 

This simple procedure, when applied to the industrial data used later in this thesis, reduces the 

percentage of nonzero coefficients in the DWT to 5% (i.e. the signal is represented by 5% of its DWT 

coefficients). The remaining coefficients can be stored in a Matlab™ sparse matrix achieving the 

compression ratio of 13:1. Because the wavelet transform and de-noising procedure are an integral 

part of the estimator, no additional computing time is required. 
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Another method used in image compression is shown in Figure 2.7. 

CO' 

DWT H Threshold H Quantizer H Encoder 

Compressor 

s(\,yj' IDWT M Dequantizer— Decoder 

co'. 

Sparse 
Matrix 
Storage 

Decompressor 

Figure 2.7: Block diagram of a compressor/decompressor with a quantizer. 

This method adds one additional step, quantization, into the compression procedure. By 

quantization of nonzero DWT coefficients much higher compression ratios are achievable at the 

expense of an additional error. A quantizer is a function that maps many input values into a smaller 

set of output values. This mapping is generally a staircase function (Figure 2.8). It takes a continuous 

variable u and maps it into a discrete variable u* which takes values from a finite set of reconstruction 

levels { r i , T2, TL} (Jain [19]). 

tk U 

Figure 2.8: Quantizer mapping function. 

If the value of u is between two decision levels (tk,tk+i] the quantizer will map it into a 

single reconstruction level tk (Figure 2.8). The quantizer mapping is irreversible — for the given 

reconstruction level (a quantizer output) the input value cannot be uniquely determined. Thus, an 

additional distortion of the original signal is introduced. Therefore, the quantizer should be designed 

in such a way that it minimizes the distortion. In the case of wavelet transform, where the significant 

information about the signal is carried by the high magnitude wavelet coefficients, it is obvious that 

the quantizer should have more reconstruction levels dedicated for those coefficients than for the low 
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magnitude ones. One design method, the optimum mean square quantizer (LLOYD-MAX) design, 

is given in [19]. 

The decompressor (Figure 2.7) applies decoding (unique) and dequantization (non-unique) to 

come up with a set of wavelet coefficients CJ* (note: CJ* ^ CJ*). 

The compression of process data differs from the compression in image processing. The image 

processing compression should be optimized in a sense of accounting for the Human Visual System 

(Marr [27]) while the goal of process data compression is to preserve the information about the 

process. 

For additional information on wavelet data compression one can refer to the overview given by 

Hilton et al. [18]. 
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Chapter 3 
Analysis of Paper Machine Process Data 

The first part of this chapter will be used to introduce the application of wavelet estimation 

methods to paper machine data analysis. A Matlab™ toolbox has been developed so that different 

algorithms, described in the previous chapter, can be tested. Test data sets have been used to verify 

the algorithms and to compare their results to those obtained by using the industrially accepted 

estimators (EXPO, ED3MC). 

3.1 Matlab™ Toolbox for Wavelet Analysis of Paper Machine Data 

A set of Matlab™ functions and scripts has been developed to provide quick access to variety 

of different wavelet de-noising techniques and different test data sets. Even though this software 

is based on the Rice University Wavelet Toolbox [16] and WaveLab [1] only three functions from 

those toolboxes are used in the final version of the software (two-dimensional DWT and fDWT from 

the Rice Wavelet Toolbox and SURE threshold selection from the WaveLab). Most of the functions 

have been rewritten to adjust the algorithms to handle paper machine data (two-dimensional data 

with x and y dimensions of different, non-power of two, lengths). By selecting different options in 

the front-end interface procedures many different setups can be tried . 

Two different thresholding methods can be used: 

1. hard thresholding, 

2. soft thresholding. 

Four different methods of noise estimation and threshold selection are available: 

1. standard deviation of the wavelet coefficients at the finest resolution multiplied by 

y/2 * log (n), 
2. VisuShrink procedure (see Chapter 2) 

3. Mul t iMAD, resolution-dependent thresholding using M A D noise estimator (Eq. 2.22) to 

estimate the noise standard deviation at each resolution level, 

4. SureShrink (see Chapter 2) 
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and filters created from four different mother wavelets can be used: 

1. Haar wavelet, 

2. Daubeshies orthogonal wavelets, 

3. Coiflets, 

4. Symmlets. 

The above wavelet filters are depicted in Figure 3.1. For more information about the mother 

wavelets used the reader may refer to the original papers [8, 5, 9]. 

Haar Daubechies 4 

Figure 3.1: Wavelet filters used in the analysis. 

The results of wavelet de-noising procedures are compared to the estimations obtained by the 

E X P O algorithm and, in some cases, to those obtained by the EIBMC algorithm. Only a few tests 
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were done using the EIBMC since, for a fair comparison, the EfBMC algorithm needs to be properly 

tuned and the test data sets have to be created by using the proposed models (see Appendix B). The 

verification process called for some extreme-case input signals. Hence, not all data sets used for the 

wavelet estimator testing were created by the given models. Note that both EIBMC and E X P O are 

recursive algorithms, whereas wavelet filtering is a batch operation at present. 

3.1.1 Padding of the Two-Dimensional Signals 

As mentioned in the previous chapter the fast DWT and IDWT procedures need input data sets 

of dimensions D ( 2 L l , 2 1 , 2 ) . Paper machines rarely give this kind of output. Therefore, some kind of 

extrapolation is needed so data can be padded up to the proper size. The padding by the repetition 

of the last data point in each particular direction has been chosen because it is simple to implement 

and it reduces the boundary errors due to the periodic nature of the input signals assumed by the 

DWT algorithm. The extra data points are removed after the de-noising. This procedure caused 

many of the boundary wavelet coefficients to be set to zero (signal becomes constant in that direction 

setting high-pass signal component to zero). Thus, the original M A D algorithm (Eq. 2.22) had to be 

modified so that all the zero coefficients are removed before the median is calculated. 

3.2 Applying Wavelet De-noising to Simulated Scanned Data 

Verification of the proposed algorithms has been conducted on the various sets of the simulated 

data. Data sets were designed in such a way that they provided signals with enough complexity so that 

the estimator could be properly evaluated. The test data also contained the features that commonly 

appear on a paper sheet (streaks, bumps and grade changes). A l l the data sets have been zigzag 

sampled and presented to the estimator as i f they had been coming from a paper machine scanner. 

The data processing has been done in batch mode. A matrix of data points of the size D(n,m) 

is taken, padded to the size D\ (2N, 2M), where 2N >n and 2M > ra, and sent to the estimator. 

3.2.1 Edge Effects and Step Changes 

The first data set has been created in such a way that the edge effects (errors from the signal 

periodicity assumed by DWT) and the effects of sharp (sudden) changes in profiles can be studied. 

The target values (noiseless data) are shown in Figure 3.3. This data set' contains a very well 
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defined C D profile which differs greatly at the edge sensors (sensors #1 and #120) and it has a sharp 

discontinuity at the sensor #60. The M D profile is a sine function of time, with an amplitude of 

1. At the M D position 29 the C D profile flattens up by 50% (sudden change in C D profile — the 

amplitude being changed from 1 to 0.5). The number of scans for all test data sets is 58 and the 

number of sensors is 120. Consequently, four data points were padded to each end of every C D 

profile and 3 scans were padded before and after the real signal. 

This signal is corrupted with white noise Zilti2 ~ N(0,a2) where a2 = (0.2) 2. The composite 

signal (CD + MD), before and after adding the noise, is shown in Figure 3.2. 

This noisy signal has been processed by using different wavelet estimators and the results 

compared to those obtained by the EXPO. For a signal containing such abrupt changes it was expected 

that the Haar wavelet would perform very well. This has been confirmed by the experiments (see 

Tables 3.2 and 3.3). The estimated profiles as well as the real signals are given in Figure 3.3. The 

M D profiles are calculated as scan averages. 

22 



Chapter 3: Analysis of Paper Machine Process Data 

MD+CD Target Profile 

0 o Sensors 

Raw MD+CD Profile 

Figure 3.2: Edge effects: CD+MD before and after the noise has been added. 
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Comparison of mean scan errors 

Figure 3.4: Edge effects: estimation errors as functions of time (scan number). 

The Haar wavelet given in Table 3.3 has been used. The thresholds and the estimated noise 

standard deviations, used for de-noising, are given in Table 3.1. Figure 3.4 depicts the mean 

Levels Threshold <r(<7 = 0.2) 

1 0.75 0.19 

2 0.64 0.18 

3 0.63 0.20 

4 0.50 0.19 

5 0.25 0.12 

Table 3.1 Edge effects: thresholds and estimated noise at each resolution level. 

estimation error (per scan) as a function of time (scan position). The error calculation formula 

is given in Equation 3.1 

CDerrij = \CDij — CDestimatedij\, i = 1... n; j = 1... m (3.1) 

where CDerrij is the absolute value of estimation error at the i t h scan and j t h sensor. For each 

scan the mean value has been plotted. 

I m 

CDerrj = — > CDerri, (3.2) 
j=l 

25. 

file:///CDij
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J = ^ 2 2 C D 2 ( I R R ' - J (3-3) 

The overall errors (Equation 3.3) were: 

Jwav — 0.86j 
(3-4) 

Jexpo = 9.6 

and the mean error at each scan was less then 1% of the signal amplitude. Therefore, the signal was 

successfully recovered from the noisy data. 

A number of tests using different methods of thresholding, threshold selections, and with a variety 

of different mother wavelets of different lengths, has been run for each data set. Some of the results 

are summarized in the Table 3.2. For the Symmlets and Coiflets the.number in the fourth column 

represents the wavelet type not the actual length. 

Two tables, summarizing the test results, are given for each data set. The first table always shows 

the results obtained by the same set of the wavelet filters and is used for comparison of the filter 

performances on different data sets. The second table displays the representatives of four different 

wavelet filters that have produced the best results, i.e. smallest errors, for that data set. 

The Haar wavelet used in this example has produced the best results, as expected, but a number 

of different configurations have performed very well. When very smooth wavelet filters have been 

used, the estimation error would tend to go up with an increased number of resolution levels. This 

happens when thresholding starts to affect the low-frequency part of the signal (trying to smooth out 

the signal made of sharp edges). 

Wavelet Thresholding Threshold Wavelet Resolution J 
J expo 

method estimation length/type levels 

Daubechies soft std 6 • 3- 0.85 

Daubechies soft Mul t iMAD 6 3 1.14 

Symmlet soft std 6 . 3 0.85 

Symmlet soft Mul t iMAD 6 • 3 1.19 

Coiflet soft std 3 3 0.83 

Coiflet soft Mul t iMAD 3 3 1.27 ' 

Haar soft Mul t iMAD 2 2 0.46 

Table 3.2 Edge effects: summary of the results 
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It can be seen that the errors at the edges of the signal are very small. This may be attributed to 

the signal padding and to the wavelet length. For a filter length of two, only one data point has to 

be padded to the signal at any time — consequently only one point can be wrong. 

Wavelet Thresholding Threshold Wavelet Resolution J 
t 

« expo. method estimation length/type levels 

Daubechies hard M A D 4 2 0.70 

Symmlet hard M A D 6 3 0.72 

Coiflet hard std 2 3 0.66 

Haar soft Mul t iMAD 2 5 0.09 

Table 3.3 Edge effects: best filter performances. 

To contrast the results shown in Figures 3.3 and 3.4, in Figures 3.6 and 3.5 are shown the 

results of the estimation obtained by using the Coiflet filter described in Table 3.3. As expected, 

the filter with a higher degree, of smoothness yielded much smoother estimates causing a decrease 

of 'sharpness' at the points of discontinuity (sensor #60 and scan #29). The overall estimation error 

was higher than in the first case but still significantly better than for the E X P O estimator. The filter 

length has also contributed to the edge effect errors. 

Comparison of mean scan errors 

Figure 3.5: Edge effects: estimation errors as functions of time (scan number) for a smooth estimator. 
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3.2.2 Smooth Surfaces 

The second data set, depicted in Figure 3.7, has been created with the intention of testing the 

wavelet estimator on some smoother surfaces with a constant signal to noise ratio. The profiles 

CD = 1-sin 6CD, 6CD£[0M] 
(3.5) 

MD = 1 • sin 0MD, 0MD € [0, 2TT] 

were corrupted by the additive white noise Zilti2 *~ 7Y(0, <J2) where a2 = (0.5) 2 which was much 

higher than in the first data set. The estimation has been done by the Symmlet filter using Mul t iMAD 

procedure (see Table 3.5). The thresholds and the estimated noise are given in Table 3.4. The 

estimation errors are shown in Figure 3.9 while the estimated profiles are given in Figure 3.8. 

Levels Threshold a(a = 0.5) 

1 1.56 0.40 

2 1.44 0.40 

3 1.87 0.60 

Table 3.4 Smooth surfaces: thresholds and estimated noise at each resolution level. 

Wavelet Thresholding Threshold Wavelet Resolution J 
J expo 

method estimation length/type levels 

Daubechies soft std 6 3 0.51 

Daubechies soft Mul t iMAD 6 3 0.51 

Symmlet soft . std 6 3 0.39 

Symmlet soft Mul t iMAD 6 3 0.39 

Coiflet soft std 3 3 0.42 

Coiflet soft Mul t iMAD 3 3 0.42 

Haar soft Mul t iMAD 2 2 0.95 

Table 3.5 Smooth surfaces: summary of the results 

Even though the signal to noise ratio was low, the estimated profiles were very close to the 

original ones and, due to the filter smoothness, very smooth. The overall errors were: 

Jwav = 6.22, 

(3.6) 
J expo — 16.03 
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Jwav — 0.3QJ~expo (3-7) 

Wavelet Thresholding Threshold Wavelet Resolution J 
J expo 

method estimation length/type levels 

Daubechies soft std 6 3 0.51 

Symmlet soft Mul t iMAD 6 3 0.39 

Coiflet soft Mul t iMAD 3 3 0.42 

Haar soft Mul t iMAD 2 2 0.95 

Table 3.6 Smooth surfaces: best filter performances. 
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Figure 3.7: Smooth surfaces: composite profiles with and without noise. 
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Comparison of mean scan errors 

Figure 3.9: Smooth surfaces: estimation errors. 

3.2.3 Grade Profile Change 

This data set, shown in Figure 3.10, has been used with the wavelet estimator to see how the 

estimator behaves when a step change of amplitude 2 is introduced in the M D profile. The profiles 

CD = 0.3 • cos 6CD, OCD € [0, 2TT] 

MD = 0.3 • s in6 M D, 0MD€[O,2TT] 

(3.8) 

were corrupted by additive white noise with variance that was very high compared to the profile 

amplitudes: a2
 = (0.2) 2. The estimation has been done using the Symmlet filter and Mul t iMAD 

procedure (see Table 3.9). The thresholds and the estimated noise are given in Table 3.7. It is 

interesting to note that the VisuShrink threshold that would apply to this case was 0.66. Table 3.7 

shows that a threshold of this size was applied only at one resolution level. A l l the other threshold 

levels were lower. Therefore, a VisuShrink estimator would oversmooth the signal in this case. This 

agrees with the theory given in Chapter 2. The estimation errors are shown in Figure 3.13 while 
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Levels Threshold <j(cr = 0.2) 

1 0.61 0.16 

2 0.60 0.17 

3 0.66 0.21 

4 0.49 0.19 

5 0.38 0.19 

Table 3.7 Grade change: thresholds and estimated noise at each resolution level. 

the estimated profiles are given in Figures 3.11 and 3.12. The overall error for the E X P O filter was 

Jexpo — 6.42. 

Wavelet Thresholding Threshold Wavelet Resolution J 
Jexpo 

method estimation length/type levels 

Daubechies soft std 6 3 0.49 

Daubechies soft Mul t iMAD 6 3 0.39 

Symmlet soft std 6 3 0.50. 

Symmlet soft Mul t iMAD 6 3 0.38 

Coiflet soft std 3 3 0.51 

Coiflet soft Mul t iMAD 3 3 0.38 

Haar soft Mul t iMAD 2 2 0.71 

Table 3.8 Grade change: summary of the results 

Wavelet Thresholding Threshold Wavelet Resolution j 
J expo 

method estimation length/type levels 

Daubechies soft Mul t iMAD 6 4 0.20 

Symmlet soft Mul t iMAD 8 5 0.17 

Coiflet soft Mul t iMAD 2 4 0.19 

Haar soft Mul t iMAD 2 3 0.50 

Table 3.9 Grade change: best filter performances. 
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MD+CD Target Profile 

0 o Sensors 

Raw MD+CD Profile 

0 o Sensors 

Figure 3.10: Grade change data set: CD+MD before and after the noise has been added. 
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Figure 3.13: Grade change test data set: estimation errors. 

3.2.4 Data Created by the Moisture Variation Model (MVM) 

This data set (the profiles are shown in Figure 3.15) has been created by the MVM. The input 

parameters and the profiles are given by: 

CD = 1 • sin 6CD exp (-0.03 * k) 

k = 1... 58, (scan#) 

6CD G [0, 6TT] 
I (3-9) 

u = 0.5, 

w ~ iV(0,0.12) 

The estimation has been done by the Coiflet filter using MultiMAD procedure (see Table 3.12). The 

thresholds and the estimated noise are given in Table 3.10. The VisuShrink threshold that would 

apply to this case was 0.27. Again, only one threshold (Table 3.10) used in this case was of that 

size. The threshold used on the lowest resolution level was much higher than the other two and was 
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the result of the estimator trying to filter out the coloured noise introduced in (3.9). The estimation 

Levels Threshold a 

1 0.20 0.05 

2 0.31 0.09 

3 0.65 0.21 

Table 3.10 M V M test data: thresholds and estimated noise at each resolution level. 

errors are shown in Figure 3.14 while the estimated profiles are given in Figure 3.15. The overall 

errors for the E X P O and the EJMBC estimators were 

Jexpo = 11.43 
(3.10) 

Jeibmc — 0.94 • Jexpo 

It can be seen, from the given results, that the wavelet estimator performed very well compared to 

the both E X P O and EfBMC algorithms regardless of the fact that a priori knowledge of the moisture 

model and coloured noise has not been used. A possible improvement would be to include the noise 

model in the threshold-estimation procedures by increasing or lowering the threshold, at different 

resolution levels, by prescheduled coefficients based on the noise model. The wavelet estimated 

profiles were much smoother and without the artificial CD shapes that can be seen on the EfBMC 

estimated results (see Figure 3.16). Therefore, i f the estimated signals were to be used for control, 

the smooth profiles would prevent unnecessary CD control actions. 

Wavelet Thresholding Threshold Wavelet Resolution j 
Jexpo 

method estimation length/type levels 

Daubechies soft std 6 3 0.78 

Daubechies soft Mul t iMAD 6 3 0.69 

Symmlet soft std 6 3 ; 0.79 

Symmlet soft Mul t iMAD 6 3 0.74 

Coiflet soft std 3 3 0.76 

Coiflet soft Mul t iMAD 3 3 0.67 

Haar soft Mul t iMAD 2 2 0.89 

Table 3.11 M V M test data: summary of the results 
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Wavelet Thresholding Threshold Wavelet Resolution j 

method estimation length/type levels 

Daubechies soft std 6 5 0.66 

Symmlet soft std 6 5 0.68 

Coiflet soft Mul t iMAD 3 3 0.67 

Haar soft M A D 2 5 0.76 

Table 3.12 M V M test data: best filter performances. 

Comparison o f mean scan errors 

1 

i 1 
E x p 
W a v 

— E i m c 
I 

1 

1 
E x p 
W a v 

— E i m c 

I 

1 

I \ 

I 

y ' s . . . ;../.> _ 
V • ^~*y 

j _ 

i i 
11 : i i 1 1 1 • ' 
0 10 20 30 40 50 60 

Scan 

Figure 3.14: M V M test data: estimation errors. 
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CD profile #30 

Scan number 

Figure 3.16: M V M test data: CD profiles. 

3.2.5 Bumps and Streaks 

The ability of the wavelet estimator to localize some characteristic patterns on a paper sheet has 

been tested using the data set given by Equation 3.11. This data set simulates a narrow streak in 

M D and two actuator bump changes. 

The simulation results are given in Figures 3.17 and 3.18, and performances of different estimators 

and their respective errors of estimation are shown in Tables 3.13 and 3.14. Results shown in the 

Figures are obtained by the Coiflet estimator whose parameters are given in Table 3.14. Hard 

thresholding has been used with the threshold set at 0.754 and the estimated noise standard deviation 

was 0.18 (true value was 0.2). This signal was a very difficult test for the estimators because of 

its smoothness combined with some very short and/or narrow features. If the signal had contained 

flat profiles with the same bumps and the streak, then the Haar wavelet would have performed the 

best. In this case, as in the most of the other tests, the performance of the selected group of wavelet 

estimators is similar to the best performances for that data set. The wavelet estimator has successfully 

localized the test patterns of short duration. Estimation of the streak is not as effective as by the E X P O 

algorithm, although the contrast between smooth surfaces, the bumps, and the streak is impressive. 

E X P O is effective in detecting these variations since it carries on no C D smoothing. 
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CD = 0.2 • cos 0CD, 6CD e [0, 2TT] 

MD = 0.3 • sin6MD, OMD G [0,2TT] 

CT = 0.2 

1st bump : 

amplitude = 1 

scan #30. . . 39 

sensor #30. . . 34 

2nd bump: (3.11) 

amplitude = — 1 

scan #20. . . 23 

sensor #80. . . 85 

Streak : 

amplitude = 0.6 

scan # 1 . . . 58 

sensor #60. . . 61 

Wavelet Thresholding Threshold Wavelet Resolution J 
Jexpo 

method estimation length/type levels 

Daubechies soft std 6 3 0.82 

Daubechies soft MultiMAD 6 3 0.99 

Symmlet soft std 6 3 0.86 

Symmlet soft MultiMAD 6 3 0.99 

Coiflet soft std 3 3 0.85 

Coiflet soft MultiMAD 3 3 1.00 

Haar soft MultiMAD 2 2 . 1.04 

Table 3.13 Bumps and streaks: summary of the results 
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Wavelet Thresholding Threshold Wavelet Resolution J 
Jexpo 

method estimation length/type levels 

Daubechies hard M A D 6 3 0.74 

Symmlet hard M A D 8 3. 0.78 

Coiflet hard std .2 3 0.73 

Haar hard std 2 2 0.85 

Table 3.14 Bumps and streaks: best filter performances. 
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3.3 Wavelet Analysis of Industrial Data 

3.3.1 Choice of an Estimator 

For almost all the tested cases, the selected group of wavelet estimators performed significantly 

better than the E X P O filter. The purpose of this testing was to show that even though we cannot 

choose a single optimal wavelet estimator for all the signals, one can be chosen from the selected 

group (given in the tables showing the summary results) and still achieve a good performance. When 

the features that have to be extracted are known (when looking for certain patterns on the sheet) an 

appropriate wavelet estimator can be selected from the table showing the best filters for each particular 

job. In this way a substantially better performance (compared to the conventional estimators) can be 

achieved, as has been shown for the given examples. This approach to the filter selection is now 

used when the estimators to be implemented on the industrial data are selected. 

3.3.2 Pulp Machine Moisture Content Data 

This data set is collected from a pulp machine manufacturing thick pulp [22] with the target value 

of 640.6 g/m 2. Slice lip opening at the headbox was 15 cm. The headbox was 4.43 m wide with 

design speed of 184 m/min. The CD moisture control system was a Devronizer with 25 actuators 

each of a width of 15.24 cm. One scan took 34 seconds to complete. It has been recorded (from the 

actuator positions) that two CD bumps have occurred: 

1. sensor #20, scans #19—31, 

2. sensor #87, scans #13—30. 

Three different wavelet estimators were used and their results were compared to the E X P O and 

EIBMC estimators. The chosen estimators are given in Table 3.15. The first estimator produced 

the results given in Figures 3.19, 3.20 and 3.21. This filter yielded very smooth results. The M D 

streak that can be seen in the scan #8 was picked up by the CD profile. It was concluded that this 

filter oversmooths data in the low-frequency range and consequently the number of resolution levels 

for the other two cases have been dropped to two. It has been observed, during the experiments, 

that the adaptive wavelet filtering methods work more reliably when the number of resolution levels 

has been kept low. It is well known [13, 10] that for adaptive filtering to work well, the number 

47 



Chapter 3: Analysis of Paper Machine Process Data 

of resolution levels used for de-noising must be much smaller than the maximum possible number 

of decomposition levels. 

The other two filters (shown here for the comparison) have been more effective in the localization 

of bumps and the streaks on the paper sheet. The results obtained by the second filter have been 

shown in Figures 3.22 and 3.23 while Figures 3.24 and 3.25 demonstrate the results achieved by 

the Symmlet filter. 

Wavelet Thresholding Threshold Wavelet Resolution 

method estimation length/type levels 

Daubechies soft std 6 3 

Daubechies soft Mul t iMAD 6 2 

Symmlet soft Mul t iMAD 6 2 

Table 3.15 Filters used to analyze the industrial data. 

The wavelet filters have shown a superior performance compared to the conventional estimators 

when it came to the bump localization (see Figures 3.23 and 3.25). The size of the real bumps, based 

on the known positions of the actuators and their widths, was 13x4.8 and 18x4.8 for the first and 

the second bump respectively. Both, EXPO and EfBMC have shown signs of dispersing the bumps 

over a much greater number of scans although the width of the bumps was preserved. The wavelet 

estimators have detected the bump amplitude much better than the other two estimators. 
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Raw MD+CD Profile 

0 o Sensors 

MD+CD Profile estimate (Wav) 

Figure 3.19: Pulp machine moisture data: estimated profiles. 
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3.3.3 Grade Change for a Paper Machine 

This data set is collected from a newsprint machine during a grade change with the dry weight 

control system in auto mode. Data used for the analysis was the basis weight in grams per square 

meter. There were 141 sensors and data was collected during 189 scans. This data set was much larger 

than those previously analyzed so that it was possible to select estimators that used more resolution 

levels for de-noising. A Coiflet3 filter has been used and soft thresholding has been applied on 5 

resolution levels using a threshold t = (j-^/2 * log (n * m) where the standard deviation has been 

estimated from the wavelet coefficients at the finest resolution level: a = std(u>f). The results are 

shown in Figures 3.26 and 3.27. The estimated CD profiles look very smooth, and it is possible to 

see that some of the M D change has found its way into the CD profile. This has happened because 

the M D profiles were calculated (and updated) once per scan. A n alternative method of M D profile 

estimation will be proposed in the next Chapter in order to avoid this difficulty. 
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Raw MD+CD Profile 

MD+CD Profile estimate (Wav) 

Figure 3.26: Paper machine basis weight data. 
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Chapter 4 

Other Applications of Wavelets in Paper Making Process 

4.1 Compression of Paper Machine Data 

The theoretical background needed for the understanding of the compression algorithms used in 

this chapter has been given in Section 2.5.2. In this chapter some of the more practical aspects of the 

process-data compression method, as well as the results achieved will be given. Both compression 

methods given in Section 2.5.2, (compression with and without quantizer) have been used. It has 

been assumed that the input data has been measured and stored in 16-bit format. A l l the calculations 

have been done using double precision (Matlab™'s default precision). The software has been 

written in such a way that quantizer resolution could assume any value. Only three resolutions 

have been used for the test purposes: 8—, 12— and 16-bit. The 16-bit resolution has been used 

as the reference, yielding the compression ratio of 1:1. The 12—bit resolution corresponded to a 

compression ratio of 1.33:1 and 8—bit resolution resulted in a compression factor of 2:1. A l l the 

above mentioned compression ratios are in addition to the compression achieved by the thresholding 

of wavelet coefficients and the encoding of data into sparse matrices. 

Case Wavelet Threshold Wavelet Resolution 

estimation type/length levels 

1. Daubechies std 6 3 

2. Daubechies Mul t iMAD 6 3 

3. Symmlet std 6 3 

4. Symmlet Mul t iMAD 6 3 

5. Coiflet std 3 3 

6. Coiflet Mul t iMAD 3 3 

7. Haar Mul t iMAD 2 2 

Table 4.16 Key table 

The examples used in Chapter 3 have been used to test the ability of the wavelet compressor to 

compress different types of signals. The results are summarized in Tables 4.17 to 4.21. The wavelet 

filters used here are given in Table 4.16. 
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Case 

16-bit 12-bit 8-bit 

Case compress, 

ratio 
Jcompress 

Jexpo 

compress, 

ratio 
Jcompress 

Jexpo 

compress, 

ratio 
Jcompress 

Jexpo 

1. 30.00 0.85 40.00 0.85 60.00 1.17 

2. 50.80 1.15 67.74 1.15 101.61 1.43 

3- 28.06 0.85 37.42 0.85 56.13 1.02 

4. 52.33 1.19 69.77 1.19 104.66 1.32 

5. 27.08 0.82 36.11 0.83 54.16 0.85 

6. 52.73 1.27 70.30 1.27 105.45 1.29 

7. 13.57 0.46 18.09 0.46 27.13 0.58 

Table 4.17 Edge effects: summary of compression results 

Case 

16-bit 12-bit 8-bit 

Case compress, 

ratio 
Jcompress 

Jexpo 

compress, 

ratio 
Jcompress 

Jexpo 

compress, 

ratio 
Jcompress 

Jexpo 

1. 50.43 . 0.51 67.25 0.51 100.87 0.66 

2. 50.80 0.51 67.74 0.51 101.87 0.66 

3. 49.36 0.39 65.82 0.39 98.72 0.51 

4. 51.56 0.39 68.74 0.39 103.11 0.51 

5. 49.01 0.42 65.35 0.42 98.03 0.43 

6. 53.54 0.42 71.38 0.42 107.08 0.42 

7. 13.57 0.95 18.09 0.95 27.13 0.96 

Table 4.18 Smooth surfaces: summary of compression results 

The actual quantization used here is given by this four-step procedure (for a data set D): 

1. find t m i n = min(D) and tmax — max(D) 

2. A t = (tmax ^min)/(2 l ) 

3. Dj = D — tmin 

4. Dc = floor(Di/At) 

where the variable bits represents the resolution in the number of bits and the function floor rounds 

the given number to the first integer smaller or equal to the number. 
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The reconstruction (de-quantization) algorithm is given by 

D' = Dc* At + tmin (4-1) 

Case 

16-bit 12-bit 8-bit 

Case compress, 

ratio 
Jcompress 

Jexpo 

compress, 

ratio 
Jcompress 

Jexpo 

compress, 

ratio 
Jcompress 

Jexpo 

1. 19.39 0.49 25.85 0.49 38.77 0.51 

2. 50.08 0.39 67.74 0.39 101.61 0.42 

3. 16.93 0.50 22.58 0.50 33.87 0.53 

4. 51,56 0.38 68.74 0.38 103.11 0.42 

5. 17.66 0.51 23.55 0.51 35.33 0.53 

6. 53.54 0.38 71.38 0.38 107.08 0.90 

7. 13.57 0.71 18.09 0.71 27.13 0.71 

Table 4.19 Grade change: summary of compression results 

Case 

16-bit 12-bit 8-bit 

Case compress, 

ratio 
Jcompress 

Jexpo 

compress, 

ratio 
Jcompress 

Jexpo 

compress, 

ratio 
J compress 

Jexpo 

1. 6.98 0.78 9.31 0.78 13.97 0.82 

2. 48.00 0.69 64.00 0.69 96.00 0.74 

3. 6.87 0.79 9.16 0..79 13.74 0.85 

4. 44.38 0.74 59.18 0.74 88.77 0.80 

5. 6.81 0.76 9.09 0.76 13.63 0.76 

6. 45.96 0.67 61.28 0.67 91.91 0.67 

7. 12.58 0.89 16.78 0.89 25.17 0.89 

Table 4.20 M V M test data: summary of compression results 

. It can be concluded, from the given results, that very high compression ratios are achievable by 

the proposed algorithms. The additional errors introduced by the quantization of wavelet coefficients 

are very small even when the resolution is reduced to a half (8—bit). In most cases the increase in 

errors is negligible for the 12-bit resolution, and around 1 to 2 percent for the 8-bit resolution. A 

significant jump in errors sometimes happens when the compression ratios reach 80 to 100. It should 

be noted that in almost all the cases — even for the highest compression ratios, the overall relative 
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error stayed below one, suggesting that even for those cases the achieved accuracy of estimation after 

compression was better than obtained by the EXPO algorithm without compression. 

Adaptive methods (MultiMAD) have given much better results (Table 4.20) due to their ability 

to adjust the thresholds at different levels. The method moved to higher thresholds at some resolution 

levels so setting more wavelet coefficients to zero (see Table 3.10 for an example). 

Case 

16-bit 12-bit 8-bit 

Case compress, 

ratio 
J compress 

Jexpo 

compress, 

ratio 
Jcompress 

Jexpo 

compress, 

ratio 
Jcompress 

Jexpo 

1. 41.18 0.86 54.91 0.86 82.37 0.87 

2. 51.56 1.06 68.74 1.06 103.11 1.07 

3. 38.88 .0.91 51.84 0.91 77.77 0.91 

4. 51.56 1.06 68.74 1.06 103.11 1.07 

5. 36.63 0.89 48.84 0.89 73.26 0.91 

6. 53.13 1.07 70.84 1.07 106.26 1.08 

7. 13.51 1.11 18.02 1.11 27.03 1.11 

Table 4.21 Bump data: summary of compression results 

The test data set created by the M V M is used to show the visual effects of the compression. This 

data set has been chosen because of its richness in M D and C D frequencies yielding relatively smaller 

compression ratios (Table 4.20). The results described are achieved by the filter #6 (compression 

ratio of 81.5:1). The energy distribution of the signal is shown in Figure 4.1(a), and is very close 

to normal distribution. Figures 4.1(b) and 4.1(c) depict, respectively, wavelet coefficients before and 
k 

after the thresholding has been done (Note different scales in (a), (b) and (c)!). It is obvious, from 

the given diagrams, how wavelet compression operates. The wavelet coefficients are so concentrated 

in the quantization amplitude levels 50 to 75 that it had to be "zoomed in" to be able to see the 

low-frequency (high magnitude/energy) wavelet coefficients. The quantization level 62 corresponded 

to the wavelet coefficient of the zero magnitude. There were 2194 coefficients at this level. Even 

more impressive are the results after the thresholding was done. A l l the coefficients that used to be 

grouped around the zero value are now reduced to zero. There is only one peak at the level 62 and 

8049 coefficients have that value. This compression resulted in only 143 nonzero coefficients. 
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80-

| 60-

*8 20-o U 

Raw data at 8-bit resolution 
_ i i 

50 100 150 200 
Wavelet coefficients at 8-bit resolution 

250 

100 150 
Quantization level 

Figure 4.1: M V M data set: energy distribution 

An alternative way to show the ability of wavelets to compress a given 2D signal can be seen in 

Figure 4.2. This figure depicts the wavelet coefficient distribution in a two-dimensional image. Each 

small black square represents one nonzero wavelet coefficient. The meaning of different regions, 

marked in Figure 4.2, can be understood by comparison to the diagram given in Figure 4.3 which is 

related to the calculation of the two-dimensional DWT (see Figure 2.3). The entire rectangle would 

be occupied by nonzero coefficients prior to compression. 
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Location of non-zero wavelet coefficients 

20 40 60 
Sensors 

80 100 120 

Figure 4.2: MVM.data set: distribution of nonzero wavelet coefficients. 
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Figure 4.3: 2D DWT: coefficient storage. 
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The two-dimensional wavelet transform decomposes a signal into a low-frequency (average) 

signal (fix) and three high-frequency (detail) signals which are directionaly sensitive [18]: 

fLH — emphasizes horizontal, CD-position dependant, features, 

fnL — emphasizes vertical, time-dependant, features, 

fHH — emphasizes diagonal, mutually-dependant, features. 

This directional sensitivity is an artifact of the frequency ranges they contain. 

It can be seen (Figure 4.2) that only a few nonzero coefficients lay outside of the f \ L frequency 

component. It can be confirmed, from Figures 4.4 and 4.5, that the errors are indeed very small and 

visually they appear as a kind of fuzzyness surrounding the estimated profiles. 
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Compression has been also tested on the industrial data set given in Section 3.3.2. The 

compression ratios and the errors are given in Table 4.22. The filters are given in the same order as 

in Table 3.15. In this case the errors (Eq. 3.3) were calculated based on the estimated signal obtained 

by the same filter since the signal is not known. The errors were very small — even the largest one 

(case #1) corresponds to an average per sample error of 12.42/(60 * 118) = 0.0018 in comparison 

to the standard deviation of the estimated signal which was around 0.7. 

Figures 4.6 to 4.9 are obtained by the filter #3 from Tables 3.15 and 4.22 at the 8—bit resolution. 

It is impossible to see any difference between compressed and non-compressed images. There is 

only one wavelet coefficient (Figure 4.7) left outside of the 111 region. 

Based on the results shown, it is easy to see that the proposed compression method, which is 

a natural part of the estimation process, yields high compression with almost no additional errors. 

Different compression strategies may be developed to assure the smallest possible error and the 

highest compression ratio, based on the use to be made of the stored data. If data is to be used as 

a simple image-record of the production, good results may be achieved by simply selecting 2—5% 

of the largest wavelet coefficients before thresholding. This would produce a constant compression 

ratio. If the record showing the estimated profiles is to be kept, then the data processing described in 

this section can be used (estimation followed by compression, using the same wavelet coefficients). 

If there is a need to keep data with high-frequency components still present, thresholding may be 

done by selecting the threshold conservatively (i.e. one half of the one automatically selected by the 

estimator) and by using non-adaptive methods. This filtering would remove a portion of the noise 

but would still achieve a useful compression ratio. 
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(a) Raw data at 8-bit resolution 
300 

(c) Thresholded wavelet coefficients at 8-bit resolution 

Quantization level 

Figure 4.6: Pulp machine moisture data: energy distribution 

Case 

16-bit 12-bit 8-bit 

Case compress, 

ratio 
Jcompress 

compress, 

ratio 
Jcompress 

compress, 

ratio 
Jcompress 

1. 11.13 0.06 17.77 0.19 26.66 12.42 

2. 13.62 0.01 18.16 0.42 27.24 2.37 

3. 13.72 0.00 18.24 0.06 27.44 0.89 

Table 4.22 Pulp machine moisture data: summary of compression results 

69 



Chapter 4: Other Applications of Wavelets in Paper Making Process 

Location of non-zero wavelet coefficients 
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Figure 4.7: Pulp machine moisture data: distribution of nonzero wavelet coefficients. 
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4.2 Wavelet Estimation for Control Purposes 

The wavelet estimator presented in Chapter 3 produced very good results with low estimation 

errors and at high execution speeds. Those estimates, in the form of two- and three-dimensional 

images can provide a paper machine operator with a much better view of the production quality. The 

operator acts on the basis of this improved information leading ultimately to better control and paper 

quality. The estimator, as given in Chapter 3, worked in the batch mode on a relatively large number 

of data samples (more then 50 scans and more then 110 sensor measurements per scan) and was quite 

suitable for the above purposes. Some modifications to the proposed algorithms are needed for the 

estimation to become more appropriate for use in real-time control. Those modifications concentrate 

on more practical issues such as the speed of M D profile updates and the handling of edge effects. 

This is mainly a topic for future research. One possible approach to this problem is given as follows. 

The C D profiles should be estimated as shown in Chapter 3. The number of scans that need 

to be used for each CD profile calculation depends on the filter length and it should be at least in 

the range of 2 to 3 filter lengths. The most recent estimates of the signal are the most important 

because these are the samples needed for the controller to respond at the highest rate. Hence, better 

handling of those data samples may be needed (i.e. using Meyer's boundary wavelets or Dyadic 

boundary wavelets). After the CD profile is calculated (once per scan, batch mode) the M D profiles 

may be estimated by subtracting the CD profile from the raw data and using the result as an input to 

a one-dimensional wavelet de-noising procedure. This approach may lead to M D estimation at each 

sample point instead of once per scan. An example of the M D profile estimation at each sample and 

its comparison to the scan average method is given in Figure 4.10. The data set used in this example 

was given in Section 3.2.2 (Smooth Surfaces). The true M D profile, its scan average estimate, as 

well as the high resolution estimates achieved by the proposed method are shown in Figure 4.10(b). 

The raw M D profile is shown in Figure 4.10(a) for comparison. The same method was applied to 

the pulp machine data (Section 3.3.2). The results as shown in Figure 4.11(a)-(b). 

The wavelet estimator will thus enable more frequent M D estimates. The M D controller will 

then be able to operate with reduced time delay and possibly with increased bandwidth. 

A second possible benefit is in C D control, where the profile estimate, after decomposition into 

wavelet components, can be matched to CD actuator spacing and response characteristic. 
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(a) Raw MD profile 

(b) MD profile comparason 
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Figure 4.10: Smooth surfaces: high resolution MD estimation 
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Figure 4.11: Pulp machine moisture data: high resolution MD estimation 
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Chapter 5 

Conclusion 

The thesis describes a new approach to paper machine process data analysis using one-

dimensional and two-dimensional discrete wavelet transforms. These techniques have been adapted 

from a general theory that has been developed in recent years on the application of wavelets to signal 

analysis. Application areas in which the theory was first applied have included image processing and 

bandwidth compression for communications. 

Two main applications of the discrete wavelet transform have been analyzed in this thesis. First, 

an analysis of the use of wavelets for processing scanned data representing basis weight and moisture 

variations on a paper machine has been carried out. It has been shown that wavelets are effective 

for the detection of process signals in noisy data, so leading to better estimation and visualization 

of the machine direction and cross machine variations in process data. The second main application 

of the method has been to allow significant compression of the process data without diminishing 

the ability to reconstruct accurate profiles. It has been shown that the compression method can be 

embedded into the estimation algorithm, producing excellent results without a major expense in the 

computation time. 

It has been shown that, in both applications, the new methods produce results superior to 

the industrially accepted procedures. For appropriate choice of wavelets, profile estimates are 

improved over those obtained using exponential filtering or other standard analysis methods. The 

data compression technique presents a new concept in paper machine data analysis and the author is 

not aware of any previous references to this subject. The ability to reduce data storage requirements 

is of importance in mill-wide process monitoring systems. 

A comprehensive analysis of the proposed algorithms has been carried out on a variety of 

simulated data sets for which the true process variations are known. Industrial data has also been 

analyzed and it is apparent that the method had many desirable characteristics. 

The following properties have been shown for the wavelet estimator: 

• The estimator reduces the error of estimation compared to the existing algorithms, when 

applied to test data. 
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• When applied to industrial data, the method presents an excellent visual interface to the 

paper making process. Operator data presentations are an important part of process control 

systems, and it is believed that wavelet analysis gives excellent visual insight into process 

variations, insight significantly better than is available in current systems. 

• The wavelet decomposition can be closely related to cross machine actuator responses. It 

is expected that a cross machine control method based on an appropriate wavelet analysis 

will allow profile upsets to be matched to actuator settings. 

• The algorithm is computationally fast, which allows real time analysis. The need for a 

recursive form may be avoided. 

The method has been shown to be applicable to basis weight and moisture estimation 

using data from a scanning sensor. It is to be expected that it could be used for the 

analysis of other process variables. 

• Unlike many estimation methods based on least squares techniques, wavelet analysis is 

robust in its performance and does not require additional tuning once it has been properly 

installed. 

The wavelet compression algorithm has been shown to have the following advantages: 

• The method is very effective with compression ratios greater than 25:1 (up to 100:1) and 

with the error of estimation, after decompression, remaining lower than the corresponding 

error for an exponential filter based algorithm without compression. 

• Data compression is an integral part of the estimator procedure, and therefore requires 

very little additional computation time. 

• The algorithm provides an effective tool for the visualization of production variations 

over large time periods. It follows that it can be used to search for the possible causes 

of disturbances and faults. 

• The algorithm can be adjusted to provide a minimum error or a constant compression 

ratio, allowing it to be tailored to particular applications. 

• Data compression will become increasingly important with the introduction of new, high 

speed sensors that generate large volumes of data. A related advantage is the ability to 

reduce time for data transfers over the local area networks used in modern machines. 
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There are many possible extensions to the research presented here. Steps that might be taken to 

improve the effectiveness of the algorithms are described in the following: 

• There is a need for better handling of the edge effects for the given DWT algorithms. 

• For real time data analysis it is desirable that recursive versions of the algorithms replace 

the batch procedures. 

• An organized procedure for incorporating knowledge of the process and noise models into 

the estimation procedures is needed. 

As the theory associated with wavelet decomposition advances, there is a need to evaluate 

new approaches. For example, there is a case for exploring new wavelet techniques such 

as wavelet packet analysis [38] and second generation wavelets [35]. 

• It is likely the use of wavelet estimation algorithms in automatic control applications wil l 

allow sensor and actuator spatial and temporal bandwidths to be matched. 

• The existing threshold estimators that were used and play a critical role in data compression 

and noise elimination can still be improved. In some cases (for example the SURE 

technique), the results were not as expected and there is a need for further development 

of this part of the method. 
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Appendix A Exponential Multiple Scan Trending (EXPO) Algorithm 

The equations describing the algorithm (Dahlin [1]) are: 

sn(m) = p{Dn(m) - Y(m)) + (1 - p)sn(m - 1) 

(A.1) 

where: 

Dn(m) is the measured value (moisture content or basis weight) at scan m and CD position n; 

Y(m) is the mean value of scan m; 

N is the total number of samples (data boxes) in a CD; 

sn(m) is the filtered CD profile of scan m at data box n; and 

p is the exponential filter weighting factor, 0 < p < 1; 

The weighting factor is usually chosen from the region p < 0.3. This eliminates the M D 

variations from the CD profiles but also slows down the CD profile estimation. 
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Appendix B Estimation and Identification of Basis Weight and 

Moisture Content (EIBMC) Algorithm 

B.l Process Models 

Process model used to describe the moisture variation in the ELBMC algorithm is based on 

Lindeborg's [3] moisture variation model (MVM). It has been shown [6] that the same model, with 

some modifications, can be applied to basis weight. In this thesis only the necessary equations, 

describing the process models and the ELBMC algorithm are given, For the detailed discussion one 

can refer to the original papers [3, 6, 2, 4]. 

Machine direction 
wet-end " reel 

Cross direction 

k+1 k-1 

Figure B . l : Data indexing 

B.l.l Moisture 

The M V M for dry-end variations is 

Vk=Pk + £ + BPk>k + vk 
(B.l) 

where 

n is data box number (CD-position); 

k is sample number or time instant (kT); 

yl is the difference between measured value at C D position n and time k, and the variable 

set point; 

B is a measure of the non-linearity between the CD and M D variations; 
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pi is pseudo-profile at position n and time k; 

ut is M D value at time k; 

vk ~ N(0, R) is the measurement noise and model mismatch; 

It is assumed that P k = {p\,v\, • • • ,Pk] a n d B change slowly [3]. The first order model of 

the M D variations is given [5] as 

Uk = u + & (B.2) 

where 

u is the mean moisture content in the M D ; 

£jk is a zero mean stochastic process given by: 

& = a£k-i +Wk, Wk ~ N(0, q) 

The parameter a and the variance q depend on the paper machine. 

The model in state space form is given by 

xk+i = Axk + Wk 

Vk=Pk+ C%xk + vk 

(B.3) 

where 
11 ' "1 0" 

Xk A = 
h . 0 a. 

0 

(B.4) 

(B.5) 

Cl = [l \\{l + BVl) 

B.1.2 Basis Weight 

It has been shown [6] that the previously described moisture model ( B . l . l ) can be modified 

to accommodate basis weight estimation by increasing the order of the disturbance (second order 

A R M A ) , setting B=0 and absorbing the state u into the A R M A model. The A R M A model is given 

as 

( l - aiq'1 - a2q~2)uk = ( l + biq'1 4- hq~2)wk (B.6) 

Thus, the state space model for the basis weight becomes: 

xk+i = Axk + Wk 

Uk = Cxk + Wk 

Vk=Pk+Uk + vk 

(B.7) 
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where 

A 
a\ 1 

a2 0 
C = [l 0] 

Wk 

B.2 The E I B M C Algorithm 

B.2.1 Moisture 

The moisture version of the ELBMC algorithm is 

(B.8) 

where 

Xk\k-i = Axk_i\k_i 

Uk\k-i = I1 l]^fc|fc-i 

ipk = 1 + Buk\k-l 

Vk\k-i = Pk-i + Cfc-i*fc|fc-i 

V " = -Vn - + p-s(vny 

avnrk(yn

k-yn

klk^) 
Vl = pg- i + 

i + V » 

= ( l + B p j ) [1 1] 

Sfc-i(C^)T 

" • q ? E f c _ 1 ( q ? ) T - r J J 

Wfc|fc = [1 1 ]xk\k 

Q = E{WkWk

r] = 
[91 0 

.0 <?J 

The equations are given in the order of their execution. 

(B.9) 

(B.10) 

( B . l l ) 

(B..12) 

(B.13) 

(B.14) 

(B.15) 

(B.16) 

(B.17) 

(B.18) 

(B.19) 

(B.20) 
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B.2.2 Basis Weight 

The basis weight version of the EIBMC algorithm is 

where 

Xk\k-i = Axk-\\k-i 

uk\k-\=Cxk\k_1 

Vk\k-1 = Vk-\ + Uk\k-\ 

V n = \yn _ Q ( y " ) 2

 + 0 _ fitynf 

A 1 + Vn . • ' 

Vk — Pk-\ + _ 

Ki 

1 + vn 

C T f c _ i C T + .R 

Xk\k = Xk\k-i + K*k {Vk ~ {Pk + Cxk\k_i)) 

Uk\k = Cxk 

Q = E{WkWk

T) = 

The equations are given in the order of their execution. 

tk\k 

b\ hb2 

hh b\ 

(B.21) 

(B.22) 

03.23) 

(B.24) 

(B.25) 

(B.26) 

(B.27) 

(B.28) 

(B.29) 

(B.30) 
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Appendix C Wavelet Filter Coefficients 

H a a r 
0 . 7 0 7 1 0 6 7 8 1 1 8 6 5 5 
0 . 7 0 7 1 0 6 7 8 1 1 8 6 5 5 

D a u b e c h i e s ( 4 ) 
0 . 4 8 2 9 6 2 9 1 3 1 4 4 5 3 
0 . 8 3 6 5 1 6 3 0 3 7 3 7 8 1 
0 . 2 2 4 1 4 3 8 6 8 0 4 2 0 1 

- 0 . 1 2 9 4 0 9 5 2 2 5 5 1 2 6 

D a u b e c h i e s ( 6 ) 
0 . 3 3 2 6 7 0 5 5 2 9 5 0 0 8 
0 . 8 0 6 8 9 1 5 0 9 3 1 1 0 9 
0 . 4 5 9 8 7 7 5 0 2 1 1 8 4 9 

- 0 . 1 3 5 0 1 1 0 2 0 0 1 0 2 5 
- 0 . 0 8 5 4 4 1 2 7 3 8 8 2 0 3 

0 . 0 3 5 2 2 6 2 9 1 8 8 5 7 1 
S y m m l e t ( 6 ) 

0 . 0 1 5 4 0 4 1 0 9 3 2 7 3 4 
0 . 0 0 3 4 9 0 7 1 2 0 8 4 3 3 

- 0 . 1 1 7 9 9 0 1 1 1 1 4 8 4 1 
- 0 . 0 4 8 3 1 1 7 4 2 5 8 6 0 0 

0 . 4 9 1 0 5 5 9 4 1 9 2 7 6 4 
0 . 7 8 7 6 4 1 1 4 1 0 2 8 7 9 
0 . 3 3 7 9 2 9 4 2 1 7 2 8 2 4 

- 0 . 0 7 2 6 3 7 5 2 2 7 8 6 6 0 
- 0 . 0 2 1 0 6 0 2 9 2 5 1 2 7 0 

0 . 0 4 4 7 2 4 9 0 1 7 7 0 7 5 
0 . 0 0 1 7 6 7 7 1 1 8 6 4 4 0 

- 0 . 0 0 7 8 0 0 7 0 8 3 2 4 7 7 

S y m m l e t ( 8 ) 
0 . 0 0 1 8 8 9 9 5 0 3 3 2 9 0 

- 0 . 0 0 0 3 0 2 . 9 2 0 5 1 4 5 5 
- 0 . 0 1 4 9 5 2 2 5 8 3 3 6 7 9 

0 . 0 0 3 8 0 8 7 5 2 0 1 4 0 6 
0 . 0 4 9 1 3 7 1 7 9 6 7 3 4 8 

- 0 . 0 2 7 2 1 9 0 2 9 9 1 6 8 1 
- 0 . 0 5 1 9 4 5 8 3 8 1 0 7 8 8 

0 . 3 6 4 4 4 1 8 9 4 8 3 5 9 6 
0 . 7 7 7 1 8 5 7 5 1 6 9 9 7 5 
0 . 4 8 1 3 5 9 6 5 1 2 5 9 2 0 

- 0 . 0 6 1 2 7 3 3 5 9 0 6 7 9 1 
- 0 . 1 4 3 2 9 4 2 3 8 3 5 1 0 5 

0 . 0 0 7 6 0 7 4 8 7 3 2 5 2 8 
0 . 0 3 1 6 9 5 0 8 7 8 1 0 3 5 

- 0 . 0 0 0 5 4 2 1 3 2 3 3 1 6 4 
- 0 . 0 0 3 3 8 2 4 1 5 9 5 1 3 6 



Coiflet(2) 
0.01638733646360 
-0.04146493678196 
-0.06737255472228 
0.38611006682299 
0.81272363544940 
0.41700518442367 
-0.07648859907867 
-0.05943441864674 
0.02368017194645 
0. 00561143481942 
-0.00182320887071 
-0.00072054944537 

Coiflet(3) 
-0.00379351286449 
0.00778259642733 
0.02345269614184 
-0.06577191128186 
-0.06112339000267 
0.40517690240961 
0.79377722262562 
0.42848347637762 
-0.07179982161931 
-0.08230192710689 
0.03455502757306 
0.01588054486362 
-0.00900797613666 
-0.00257451768875 
0.00111751877089 
0.00046621696011 
-0.00007098330314 
-0.00003459977284 


