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Abstract

Software Implementation of Multi-Processor Fault Tolerance for Real-Time processing is

addressed in this thesis with the research focused on:

• Fault-Tolerant cells as building blocks that can survive concurrent transient physical

faults and permanent failures in large parallel processing systems with potential for

real-time processing.

• Efficient group communications for redundant data exchanges through multiple

communication links that connect the group peers.

• Transparent fault-tolerance.

• On-Line Forward Fault-Repair using the live execution image from the non-

faulty peer with a bounded delay.

By systematically connecting the redundant processing modules, the architecture of-

fers regularity and recursiveness which can be used as building blocks for construction of

fault-tolerant parallel machines.

The communication service protocols take advantage of redundant linkages to ensure

reliable and efficient message deliveries among the fault-tolerant abstract transputer peer

nodes through the concept of activity observation. The multiple redundant linkages

provide a means for parallel communications. This is essential for redundant information

exchanges in fault-tolerance. The activity observation concept further reduces the

effort for reliable message delivery and simplifies the system design. As a result, messages

are dynamically and optimally routed when link failure or processor failure occurs.

ii



Through the group communication mechanism underlying the platform, application

processes on each FTAT peer node are transparent to details that they are replicated,

repaired upon fault detections, and reintegrated after fault repair. Based on a dynamic

Triple Modular Redundancy scheme, each application process can survive up to two con-

current faults under the assumption that the probability of two faulty peer applications

having the same fault is very small.

In a large interconnected network, the cost of fault-tolerance can be very expensive

in terms of time and communication due to the cost of either synchronization or roll-

back recovery. The use of redundant live execution images to repair the faulty module

guarantees forward fault recoveries.
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Chapter 1

Introduction

Computers have been widely applied in almost every aspect of our daily life due to the

rapid development of the computer hardware technologies and enormous decrease in their

costs. However, applications such as aircraft control, nuclear power station control, and

spacecraft control etc. can not afford potential catastrophe in which human lives are

at stake, caused by computer faults. Computer fault-tolerance has been an important

research area for many years and is the subject of this thesis.

1.1 The Overview Of The Thesis

In this thesis research, we target a system that meets the following requirements:

• Transparent protection to the applications from limited permanent module failures,

transient and intermittent physical faults based on multiple modular redundancy.

• A systematic structural architecture that easily fits into parallel machines.

• Transparency to applications of the underlying fault-tolerant architecture to facil-

itate parallel processing.

• Deterministic system behavior for real-time processing.

To meet the above requirements, we built an experimental system based on systemat-

ically connected redundant modules with multiple linkages in hardware and a structural

1



Chapter 1. Introduction^ 2

approach in software as building blocks. Such a building block is called Fault Tolerant

Abstract Transputer (FTAT). Through the designed multi-link group communication

mechanism, an application on top of the system gets transparent fault tolerance services

that encapsulate acceptance testing, fault masking, possible fault-repairing, reintegrating

the repaired module, and inter-FTAT replicated process message-passing. The system

is also abstracted with a consistent view of a transputer to its applications through the

mechanism, providing an easy model for programming fault tolerant parallel processing

under the system.

The multi-link group communication is designed with the concept of activity ob-

servation, gaining much improved communication reliability and good performance in

redundant data distribution. Activity observation is explained in detail in chapter 3.

Generally speaking, it uses extra ACKs as the drivers for reliable data distribution and

efficient group synchronization.

A dynamic Triple Modular Redundancy (TMR) scheme employed in the system makes

it possible for an FTAT to be tolerant of two concurrent faults based on four transputers.

The on-line forward fault-repair, described in detail in chapter 5, greatly extends the

life of the system, repairing unlimited sequential transient physical faults without check-

pointing and roll-back recovery. It guarantees forward fault recovery and eliminates the

nondeterminism due to roll-back recovery that is common to most current fault-tolerant

distributed systems. Our reliability analysis, in chapter 6, has shown a remarkable im-

provement in systems reliability by the use of forward fault-repair.

The interesting approach to process migration for volatile on-line fault-repair sepa-

rates applications from their run-time environment at a minimal cost, making applica-

tions relocatable during run-time.

In this thesis, chapter 1 introduces the research by discussing the major design issues,

reviewing the related work, and introducing our approaches and their rationals. Chapter
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2 describes our system architecture. The design of the scatter and gather service for

one-to-many and many-to-one pattern communication, which is the core of the multi-

link group communication protocol, is discussed in chapter 3. The swap service and

the FTAT services, together with the scatter and gather service constituting the multi-

link group communication mechanism, are discussed in detail in chapter 4. Chapter

5 describes the fault-repair scheme in which the volatile run-time context is used to

achieve forward fault-recovery. A brief reliability analysis is conducted on the multi-

link group communication design and on forward fault-repair for its contribution to the

system reliability in chapter 6. The multilink group communication design is formally

represented in Predicate/Transition net, a variation of Petri Net, and is informally shown

to be correct. Chapter 8 discusses the performance results of the two major components,

the scatter and gather service as well as the on-line forward fault-repair, in term of time

and amount of communication. These two components are the major contributions in this

research. The thesis is concluded in chapter 9, which gives a summary of our conclusions.

1.2 Major System Design Issues

1.2.1 Fault Type

There are many fault types in computer systems such as permanent faults, transient

faults, software design errors, human operation errors, etc. The errors which result from

these faults may have a catastrophic effect on the system.

Hardware faults (physical faults) include short circuits between two leads, open cir-

cuited transistor junctions, alpha particle impact on dynamic MOSFET memory cells

[7][10]. These errors most often appear as changes in the patterns of zeros and ones that

represent the information. Other errors are time based; e.g., information fails to arrive

or arrives at the wrong time [10]. Errors that are not detected and eliminated within the
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system are likely to lead to the failure of the systems. In addition, faults due to tempo-

rary environmental conditions are hard to repair because the hardware is undamaged. It

is this attribute of transient faults that makes them of interest [7].

It has been observed that more than 75% of faults occurring in a system are transient

in nature [16], and it is known that more than half of all failures are intermittent [11].

Therefore, the system reliability greatly depends on its recoverability from these faults.

Permanent or solid failures should be removed, with related parts, from the system.

For these reasons, transient physical faults are the major fault type to be dealt in this

thesis.

1.2.2 Parallel Processing System Architecture

In recent years, the price of hardware has dropped to the point where non-self-checked

computation redundancy, that can guarantee the computation integrity, can be intro-

duced into commercial machines. Spatial redundancy [7][10] provides the potential for

efficient fault detection and recovery if the redundancy is fully exploited. To be tolerant

of concurrent faults, a system usually needs more processing modules than double of the

number of concurrent faults to be tolerated. However, among independent modules, two

concurrent faults on different modules are unlikely to be the same as suggested in [22].

The cost of fault tolerance in a large parallel processing system can be very expen-

sive due to either synchronization or checkpointing and roll-back recovery. Since the

probability of system failure increases rapidly with the number of processors [7], it is im-

portant to incorporate structural fault-tolerance in medium- to large-scale multiprocessor

computers.
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1.2.3 Multilink Group Communication and Real-Time Processing

Real-Time applications have strict requirements over the system's response to the ser-

vice requests. Timeliness is the major characteristic for real-time systems. Asynchronous

recovery does not offer any timeliness characteristic as a recovery may cause a nondeter-

ministic delay because of a chain of roll-backs [8][18] in worst cases. Synchronous ones

will have more overhead in synchronization and cooperation. The difficulty in efficient

synchronization [17] means additional cost in terms of development effort and operation

overhead. Efficient group communication technique should be developed for multiple

modular redundancy fault tolerance.

It is shown in [5][21] that the more processors or computers are involved in coopera-

tion to achieve a certain goal, the higher the overhead is. Redundant messages flowing

among these replicas are essential for fault-masking but are desired to be transferred

at minimal cost, especially for masking redundancy. As a result of a structural fault-

tolerance approach, the memberships of a group at a level in the structure can be well

defined. The communication among the members can also be simplified so as to minimize

the synchronization overhead.

Multi-links for communication provides the potential for fault-tolerant communica-

tion. Efficient multilink group communication in support of an architecture of structural

fault-tolerance in large parallel processing systems is a key issue to systems design.

1.2.4 Transparency of Fault Tolerance

In many fault-recovery systems, the designers of applications are required to explicitly

program for recovery; e.g., by writing code to take checkpoints and to restore the internal

states from the checkpoints after detection of fault, error or a failure, and by organizing

computations as transactions and periodically committing them. Transparent recovery
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[12] on the other hand, hides the details of checkpointing and fault occurrences in the

underlying hardware from the programmer. The application development effort for fault-

tolerance is thus greatly reduced.

Parallel programs are non-trivial to design and develop on a large parallel processing

machine. It is even harder to program parallel processing with fault-tolerance require-

ments. Also, the costs in the software overhead of fault-tolerance and the development

effort can be much higher than those in a single processor case. A structural development

approach structures the system with different levels of abstractions in a modular way.

Hence, the effort paid for fault-tolerance in development and operation of the overall

system can be greatly reduced.

As system grows in sophistication, the advantages of transparent recovery increases.

Transparent fault-tolerance service will be more significant for fault-tolerant parallel ma-

chines in the near future. In such systems, a simple programming model provided by

the transparency to the architecture means great convenience for the developments of

fault-tolerant parallel-processing.

1.2.5 Forward Fault Repair

As a support of the architecture transparency, faulty applications should be repaired and

reintegrated into the system smoothly.

On-line fault repair on most concurrent systems is done through system reconfigura-

tion and can run into problems when spares are exhausted. Checkpointing and roll-back

recovery may cause a nondeterministic chain of roll-backs in a global system that requires

deterministic behavior of a system and is not suitable for systems of time constraints.

On-line fault-repair means that both the availability and reliability of the system

have to be maintained during run-time even when transient faults or failures occur.
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When high degree of redundancy is used for fault-tolerance, the redundant run-time in-

formation should be exploited to the maximum to achieve an on-line forward fault-repair.

Consequently no computation is wasted.

In this research project we have addressed the problems of:

• efficient multi-link group communication for redundant data distribution among

the modules within a structurally built fault-tolerant cell.

• transparent fault-tolerance with dynamic Triple Modular Redundancy (TMR).

• on-line forward faulty process repair using the redundant live execution image.

Section 2 describe the previous related work. Section 3 introduces our approach to

the systematically structured multiple-modular-redundancy fault-tolerance under real-

time constraints, the transparency to the fault-tolerant architecture, and the on-line

forward fault repair.

To aid in the discussion, we use the following terms consistently throughout the

following chapters:

• Peer Module or Peer Node — a redundant module.

• Peer system — the system on each redundant module.

• System — the system that comprises the four redundant modules, called a Fault-

Tolerant Abstract Transputer (FTAT), cooperating to provide a single transputer

abstraction.

• The overall system — the target system built with FTATs to form a fault-tolerant

multiprocessing system.
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1.3 Previous Related Work Review

The previous work is reviewed under the separate topics to distinguish different areas

addressed.

1.3.1 Fault-Tolerant Architecture

There are quite a few successful commercial fault-tolerant systems on the market today.

Tandem's non-stop systems [26] package the CPU, memory, bus, and I/O controller as

replaceable modules operated by message-based distributed operating system. I/O device

controllers are dual-ported, accessible from either port. All the modules are connected

by the dual-bus called "dynabus" with on-line repair features. The approach eliminates

any single point vulnerability and is dynamic in its "primary and standby" architecture.

However, it is difficult to build very large systems based on this architecture [26].

Stratus [26] employs a "pair and spare" architecture. The major functions on the

system are replicated four times in independent and identical modules in a hierarchical

way. At the first level, two modules form a paired function unit with each employing

self-checking. Then the two function units work as "primary and standby" with on-line

transparent repair. In the system, self-checking is employed throughout the system; but

"pair and spare" is applied only to the CPUs and memory. It is based on a ring type

of local area network, a message-based system. Nonetheless performance is degraded as

the number of processing modules increases because of communication bottleneck.

Much other research has been done in the fault-tolerance area. An interesting ap-

proach in [14] suggested that a high abstraction module based on a petri-net can be

used as an observer. This abstract model can preserve the specification redundancy

through design diversities for software fault detection. Although not providing a full

fault-coverage, it is useful for detection of software design errors.
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Based on transputers, the DRAT system [28] is implemented in a ring connection for

On-Line Transaction Processing (OLTP) applications. Each data processor has a recovery

processor associated with it. The recovery processor is connected in a separate link route

from the data base processing path to avoid link traffic bottleneck. Nevertheless, the

separation of the recovery ring [28] from the data ring makes the system vulnerable to

multiple link failures and node failures. In addition, the system is also difficult to be

reconfigured to mask processing module failures.

The fault-tolerant processor described in [27] is built based on Triple Modular Redun-

dancy (TMR). However, it is not designed to be used as building blocks for construction of

large systems. It does not provide transparency to its underlying hardware architecture.

The system can only mask faults by reconfiguration.

1.3.2 Group Communication Facilities

In order to support replicated distributed programs [19], a replicated procedure call

mechanism is developed. The client group and server group, which are termed troupes,

can exchange messages among the troupe members on the collective unit basis through

the call. The members act as a logical unit and are brought in step by the call. The

group communication mechanism deals with the design issues such as those in sending

and receiving between different troupes. These systems are based on a LAN, which is

vulnerable to the communication link failure.

1.3.3 Transparency in Fault-Tolerance Architecture

Transparent recovery in distributed systems is recognized to be of great convenience since

a programmer does not have to explicitly "arrange" for taking checkpoints and recovering

from the consistent state backup.
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Compiler assisted checkpointing [15] is a technique to provide transparent checkpoint-

ing. The compiler generates sparse potential checkpoint code with adaptive checkpointing

to reduce the size of the checkpoints. The volatile logging technique in [29] can hide the

programmer from the fault-recoveries.

1.3.4 On-Line Forward Fault-Repair

On-line fault-repair is attractive because it provides continuous services to the application

even in the face of failures, provided that the majority of the redundant modules still work

correctly. Conventional fault-tolerant computer systems usually use a checkpointing and

roll-back recovery scheme or use primary and hot-standby to replace the faulty modules.

In a system with a high degree of redundancy, it is desirable to exploit the redundancy

to the maximum so as to provide forward fault-recoveries. The non-determinism due to

roll-back and recovery can be eliminated if the non-faulty volatile states of the application

can be used to repair the transient faults in the redundant modules. Process migration

is an ideal technique for the on-line forward fault-repair.

Process migration has been used mainly for load balancing [23][24][25] However,

the technique has the potential to support fault-repair. Many systems that support

process migration are based on shared virtual memory [23] [24] [25]. The memory paging

mechanism supported by the hardware is very useful in reference rebinding problems

[23]. On the other hand, the cost is very high for maintaining the shared virtual memory

on distributed systems and accessing disk I/O, since every object on such systems is

persistent and requires concurrency control to ensure its consistency under concurrent

access [2].

Highly Availability Transputing Systems [1] provides dynamic fault recovery for MIMD

parallel machines. However, it does not provide forward fault recovery to avoid waste of

computation due to recoveries and retries.
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1.4 Our Approaches In Meeting The Requirements And Their Rationals

We approach the major issues previously identified by the following:

• To facilitate fault tolerant parallel processing,

— a systematically structural architecture to yield regularity and recursiveness.

— transparent fault tolerance service to provide an easy programming model.

• To meet time constraints,

— efficient multilink group communication for redundant data distribution to

reduce communication overhead.

—efficient group synchronization through cooperation among well defined pro-

cessors of small sized group to reduce synchronization overhead.

— forward fault recovery by the of the redundant live execution image to elimi-

nate the nondeterminism due to roll-back recoveries.

• To maintain high reliability,

— a dynamic TMR to tolerate concurrent faults.

— forward fault repair to tolerate sequential transient physical faults.

We discuss our approaches to the design issues in separate topics for different areas

in the same order as in section 1.3.

1.4.1 Multiple Modular Redundancy

As hardware cost decreases and microprocessing power soars (the recent DEC RISC

microprocessor Alpha is rated 200MIPS), micro based parallel processing systems with
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fault tolerance will become in demand. This is not only because they can be built from

the off-the-shelf chips, but also they offer much more powerful capabilities when they are

bound with parallel processing techniques while paying moderate cost in performance for

fault-tolerance and guaranteeing reliability.

Since the probability of system failure increases very rapidly with the number of

processors [7], it is important to incorporate structural fault-tolerance into medium- to

large-scale computer [30]. A natural way of building a large system is to build smaller

units first and then to construct bigger units from the smaller units in a hierarchical

fashion.

Transputers are 32-bit RISC microprocessors with on-chip communication facilities

as part of its architecture. They offer multiple links of high speed serial communication

channels and can be built into parallel systems easily to provide nearly scalable processing

power. This architecture makes transputers suitable for interconnection in hardware

without high cost and provides the potential for fault-tolerance. DSP processors with

multiple on-chip communication links and high processing power have been developed

by Texas Instruments.

This may be an indication that multiple link processors will play a more and more

important role in parallel processing as well as in fault-tolerance in the future. We choose

the transputers because its architecture offers very good inter-connectivity for parallel

machine construction, the message passing based communication and its availability in

the department.

The experimental system platform is based on the transputers hosted on a Sun work-

station. Four transputers form a Fault-Tolerant Abstract Transputer (FTAT). Each

transputer has four on-chip serial communication links that are bidirectional with sup-

port from dedicated DMA controllers, at a data rate of 20Mbits/sec./link. An FTAT

is based on four transputers which are fully connected in a systematic way, which is
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described in detail in chapter 2. The modular group FTAT cooperates among its well

defined members to minimize the overhead in fault tolerance and synchronization.

This abstract transputer FTAT can be used as a building block to build a large parallel

processing system. It can also be used as a non-stop type of a computer system with the

potential for real-time processing. In our system, the software distributed over the four

redundant processor units hides all of the details of application replication, fault-masking,

on-line forward fault-repair and reintegration after repair.

On message-based distributed systems, fault-recovery may involve roll-backs of a

group of processes based on the checkpoints [8]. All the invocations to other processes,

since the last consistent checkpoint, must be undone in order to eliminate the effect of a

fault. This has a drawback that the recovery may take a nondeterministically long delay

and wastes a lot of computation time on the overall global system. This approach is not

suitable for real-time processing in a large parallel processing system.

Our approach is to try to confine the fault within the module on a process basis to

avoid expensive global recoveries. Before each output from an FTAT, fault detection is

conducted and only the correct output is sent. Each application process is a fault-tolerant

object on the system. Inter-process communication is protected by error control in the

protocols. A faulty process is repaired by using the run-time context of a non-faulty peer

instead by undoing and then retrying of the last failed attempt. Hence, forward recovery

is guaranteed. Our on-line fault-repair mechanism repairs the faulty module on a process

basis instead of through pure reconfiguration.

1.4.2 Multilink Group Communication

A group communication mechanism is essential to enable the group members to commu-

nicate and reach agreement on the state of the applications running on top of the system

despite random communication delays and failures. The mechanism should make the
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behavior of the group indistinguishable from that of a non-redundant processing mod-

ule [17] in order to implement the desired replication transparency. Multi-link group

communication provides an essential means for redundant data distribution.

To achieve efficient multilink group communication, ACKs are broadcast to all the

other peers in response to each data packet received, to create the transmission redun-

dancy in the form of control packets and to spread the communication status of the

receiver for efficient synchronization. The redundant ACKs creates more opportunities

for the intended receiver to take active action. Packet loss can be detected promptly

and can be possibly claimed back in parallel. The low cost in using ACKs as "hints"

for optimal packet loss claiming outperforms sender-initiated dynamic packet routing in

term of both time and communication.

1.4.3 Transparency

To provide a simple programming model, the service abstractions designed are similar

to the conversation construct in [13] for a distributed recovery block spanning several

processes. Applications need only to hand in the result or intermediate result for accep-

tance testing and determine its "pace" to use (call) the service primitives to achieve the

degree of reliability in computation integrity and fault coverage [6].

The system provides Read and Write calls which performs the communication func-

tions to read from and write to external FTATs. The write call encloses a set of symmetric

operations among the four peer modules within an FTAT. It also provides a dummy call

that only invokes the fault-tolerance functions implicitly without actually sending out

the result to other FTATs. This allows computations to run on its own logical phases.
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1.4.4 On-Line Forward Fault Repair

By incorporating process migration techniques into the system, a faulty application pro-

cess can be repaired by using the volatile execution image from a non-faulty one. This

guarantees a forward fault repair. The approach to fault repair in our system is novel

and interesting. The availability of the redundant modules subject to sequential faults is

unlimited, thus the life time of the system is greatly extended.

In process migration, one of the difficult problems is to cope with pointer references

in the run-time context of a process. The problem is handled by the use of a pointer

reference stack in conjunction with a set of resource management information tables

maintained by the system. The architecture of a transputer with distributed memory

provides only one linear address space without any memory paging mechanism support.

The shared virtual memory solution is not practical if not impossible here.

The difficult reference rebinding problems in process migration are handled through

the system's resource management information and run-time facility of the so called

"pointer reference stack". The pointer creations are tracked by the system all the way

down the current execution path. Our approach is to separate the applications from their

run-time physical environment so that they can be moved around easily and effectively

at minimal cost.



Chapter 2

System Architecture

This chapter discusses the fault-masking architecture and software architecture on our

Fault-Tolerant Abstract Transputer (FTAT). By systematically connecting the redundant

modules through the multilinks on each processor, the architecture designed is regular

and recursive. The resultant architecture preserves the original transputer architecture.

The FTATs are easily to be constructed into large parallel processing systems without

creating a complex view of the system.

The system software implements an abstraction of a transputer while providing fault-

tolerance services transparently. The overall system yields low cost for fault tolerance

due to the avoidance of roll-back recovery and the small scale of synchronizations and

cooperation among well defined group members.

2.1 General Assumptions

In order to focus on the issues identified, the system was designed under the following

assumptions:

• The processing modules based are computers with private memory, 4 bidirectional

communication links and a copy of the operating system.

• The application processes are statically created in the same order on each of the

processing modules of an FTAT.

16
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• Applications are allowed to use physical pointers residing only on the run-time

stack.

• The FTAT system software is assumed to have omission failure semantics [6]. Ar-

bitrary failures [3][17] are not considered in the system design.

• The application processes are cooperative as opposed to collaborative.

The system is built via an structural approach for both hardware and software. It pro-

vides a many-to-many inter-FTAT communication mechanism to carry out the redundant

data distribution with the omission failure semantics [17]. A set of group communication

primitives, called the scatter and gather services, are furnished as generic primitives for

the reliable redundant data distribution and synchronization in the event of link failures

and processor failures.

2.2 System Hardware Architecture

The hardware redundancy is based on four transputers so connected that from any in-

dividual transputer the scan of others is straight forward. Each transputer has its node

number. Each board has four transputer nodes with their own private memory. The

transputers are numbered from 0 to N sequentially in combination with a board number.

Links 1 to 3 of a transputer are used as FTAT internal links leaving link 0 as a FTAT

link. The relation between node numbers Peer#, board numbers FTAT#, and link num-

bers InternalLink# in the configuration of the system can be defined by the following

formulas:

FTAT# = [Peer# ± 4];

InternalLink# = (RemotePeer# — LocalPeer#) mod 4;
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RernotePecr# = (InternalLink# + LocalPeer#) mod 4;

FTATLink# = LocalPeer# mod 4;

As we can see, the architecture offers regularity and recursiveness, which makes it

easy to build a parallel machine with the FTATs.

The hardware architecture is shown on the left side in Figure 2.1. On the right is

shown the an example of the architecture applied in a grid connection.

Figure 2.1: Hardware Architecture

2.3 System Software Architecture

Figure 2.2 shows the programming model as seen by systems programmers. The pro-

gramming model is defined as following: Each transputer within an FTAT is a peer

module. All four peer modules within one FTAT run an identical set of application
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processes. We say that the set of applications are replicated over the peer modules. Each

of these replicated processes is called a replica process. The four replica processes are

collectively called a replicated process which is identified by a unique ID.

Figure 2.2: The system architecture of an FTAT

The system software implements the abstraction of an transputer with fault toler-

ance over the four peer modules. This provides to application programmers a simple

programming model for developing fault tolerant parallel processing applications based

on FTATs just like on individual transputers, while the system takes care of the fault

tolerance requirements within the FTATs. On the right side of Figure 2.1 is an example

of part of a mesh connected application system based on the FTATs as building blocks.

For each message packet, the sender is called the originator of the message packet,

and the destination receiver the receiver of the packet. A peer module that has noticed
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such a delivery is called the observer of the packet. These terms are used in the following

chapters using the definitions given here.

Since a replicated process is a logical unit on the system, it must be identified uniquely

so that an operation in group can be recognized by the system which provides the services.

The ID of each replica process is formed by concatenating the peer module ID and process

ID on the peer system. From the system assumption, the application processes are created

on all peers of an FTAT in the exactly same order. So the same sequence number is be

assigned to the same replica process. This results in much simplified design: the process

ID can be used as the ID for the replicated process ID, since the replicated process

identification is no longer a major issue.

The system is built on top of the hardware architecture defined above. The structural

approach can greatly reduce the work to obtain overall system fault-tolerance when a

multiprocessor or massively parallel system is built. The higher levels of a large system,

constructed with the building blocks, need only to take care of the optimal routing of

messages and the reliable delivery of packets between FTATs. Moreover, the system

ensures that the received packet on an FTAT will not be lost due to peer module crash

right after its reception. It is the receiving FTAT's responsibility to ensure the correct

and optimal delivery of the message.

The four transputers in an FTAT work in dynamic TMR under the assumption that

two modules having the same fault simultaneously is very small due to the autonomy

of each module. Each peer system must get one and only one vote in the majority

consensus to assert "non-faulty". The output from the FTAT masks any fault in the

system automatically. Once a fault is detected, the peer system sends a request for

repair to one of the non-faulty peers and the on-line fault-repair process is started.
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Highly Efficient Multiple-Link Group Communication

This chapter describes our contribution with respect to efficient redundant data distri-

bution among group members through the multiple link connections. The concept of

activity observation used in the protocol design provides receiver-initiated dynamic

packet rerouting. This may lead to possible parallel claim of lost packets via optimal

routes, low cost by using ACKs as rerouting drivers and better synchronization among

the group peers.

3.1 Communication System Structure

The system has 3 layers in its implementation of the communication services. The physi-

cal layer provides a blocking call that requires an exact matching count of data transferred

by both parties of the communication. Based on this layer the link layer communication

primitives are developed. On top of the link layer communication services, the FTAT

group communication network layer packages three logical level of services to provide the

transparency to the underlying service details.

3.2 Link Channel Communication Layer

The link layer service provides a reliable communication packet channel. It preserves the

packet sending order, employs flow and error control, and guarantees the correct reception

of the packets carried. It works with a watchdog that monitors the link status through
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the associated watchdog timer. This layer is not discussed in detail since it is based on

well defined principles [9].

The packet address header at the link layer is quite simple since it is a point-to-point

communication. One thing worth mentioning is the link status vector which is a bit-

mapped link indicator packaged into an integer. During the packet exchanges, the link

status vector provides to adjacent peers about the link status of third party peers as well

as about themselves.

3.3 The FTAT Group Communication Service Layer

The FTAT network layer provides the service primitives that enclose several rounds of

group communications, fault-detection, fault-masking, on-line fault-repair and reintegra-

tion after repair. In addition, they bring the replica processes over the peer processors

into synchronization. The layer has three logical levels packaged in it for parallelism.

As mentioned earlier, the replica processes of an application must be uniquely iden-

tified individually and collectively. The FTAT service calls on behalf of the replica

processes must also be uniquely identified. With these identifications, the group commu-

nication among the peers can be recognized as either scatters or gathers, and processed

accordingly.

Each FTAT layer packet has an address header consisting of 3 parts: the originator

(original sender on the message), the source (the last sender which could be a forwarder),

and the receiver (the eventual receiver). As part of message identification, each packet

has a logical ID which consists of the message ID, process ID, and FTAT No.

There are two types of packets flowing in an FTAT: message packets, and control

packets. Control packets are those such as ACKs, NAKs, and SPECIAL; the latter is

used for prevention of loop sending during dynamic packet rerouting when the destination
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is not reachable.

To achieve reliable and efficient group communication through multiple link connec-

tions, a concept of activity observation is devised. The concept of activity observa-

tion is basically the use of extra ACKs from the recipients as the observations of scatter

operations. Here a group send (scatter), or a group scatter of the related data packet(s)

is defined as a logical activity. The use of ACKs from the group member recipients

results in low cost and high reliability in dynamic packet routing in the event of link

failures. The concept also enables the system to detect peer application failure and to

result better timeliness in group synchronization.

3.4 Group Communication

A group communication mechanism is essential to enable the group members to commu-

nicate and reach agreement on the state of the applications running on top of the system

despite random communication delays and failures. The mechanism should make the

behavior of the group indistinguishable from that of a non-redundant processing module

[17] in order to implement the desired replication transparency.

Much research has been done recently on group communication. The V system [20][23]

exploited the use of one-to-many group communication. Replicated procedure call in

[25] was developed for many-to-many pattern calls including one-to-many call from each

group member and handling many-to-one call by each. The group communication services

needed in this thesis should be able to handle both one-to-many and many-to-one calls

through the multiple links. However, the information distribution is among the group

members instead between different groups.

Multi-link group communication provides an essential means for redundant data dis-

tribution. A many-to-many communication call involves two subproblems: 1) a group
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broadcast from one-to-many through all the internal links; this is termed here as "scat-

ter" of the message, and 2) the handling of a many-to-one call from the point of view of

a receiving group member; this termed as "gather". The peer processors in the FTAT

form a group. In [19], the issues related to the group send and receive are identified as

follows:

• Scatter should be a blocking call so that the return point is the synchronization

point for the group.

• Gather must solve the following two problems:

I. The receiver must be able to distinguish unrelated call messages from ones

that are part of the same group call.

2. When one call message of a group call arrives, the receiver must be able to

determine how many other call messages to expect as part of the same group

call.

Although the applications and services in our system are performed on the same set

of machines instead of in the form of RPCs (remote procedure call), the same issues

also apply. The multiple linkage among the group members makes the problem more

complicated. A link failure in a local area network may result in a network partition.

However in the multiple link case, a network can still be connected.

A complete swap exchange involves the following steps among all peer modules of a

group through the internal links within an FTAT:

• Each group member scatters the message to all other peer modules.

• Each group member gathers the messages from all other peer members.
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• Each group member scatters the ACKs to all others in response to each data packet

received.

• Each group member gathers the ACKs from all others.

Although the third step does not seem necessary here, it is designed on purpose for the

concept of activity observation.

To detect these failures, normal techniques are based on timers. First, link failure

can be asserted when no communication is heard on a link for a period of certain time.

Secondly, a processor failure exhibits failure of all links and vice versa.

Arbitrary failures may mean that the faulty peer system is malicious. To simplify

the design and to concentrate on the issues identified in the introduction of this thesis,

arbitrary failures in the system are not considered in our design. When this type of faults

occurs, the protocol here may fail to work.

In this research, the focus is on the highly efficient multi-link parallel group com-

munication, the transparent fault-tolerance services and the on-line forward fault-repair.

We assume that the FTAT network layer have the omission failure semantics [17]. This

assumption can be implemented by employing self-checking technique to the FTAT net-

work layer to avoid arbitrary failures. The Petri-Net based Observer suggested in [14]

can be one of the candidate techniques.

3.5 Activity Observation

The concept of activity observation is designed to help the system to handle link fail-

ures, processor failure, and peer process failure in group communication. These failures

may affect the membership of the related peer in group communication and hence the

correct operation of the protocol.
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The concept of activity observation works in the following way. When a peer

initiates a new logical activity, it scatters the data packet to the group peers. The

receivers scatter the ACKs in response to a data packet packet in order to quickly spread

the observation of the activity. Activity observation serves two purposes:

• To achieve efficient and reliable packet delivery in the event of link failures or

processor failure.

• To help identify the application, whose participation is expected by the others of

the group, from the list of applications running on the system.

• To detect the failure of a peer process whose attention is expected by the other

peers in group communication.

Since a packet may go through a third, or even a fourth peer module, to reach the

destination in the face of link failures, the receiver must be able to quickly identify the

link through which to ACK the packet forwarded by the last sender. The ACK packet

keeps the originator and the logical ID of the message as well as the last sender. The

originator and the logical ID together identify the scattered message and the last sender

tells where the ACK is to be returned to. It is very likely that the last sender remains

the best route to ACK a claimed packet. This way, when an observed ACK is received

the observer gets enough detail about the activity of the observed peer application to

respond correctly.

Figure 3.3 describes the relations among the peers during a scatter operation and

explains the concept of activity observation. When a packet is scattered, each receiving

peer, upon the correct reception, will scatter an ACK to the other peers including the

originator (original sender) and the other two peers which act as packet observers. The

extra two ACKs serve as the observation of the logical activity.
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1. A complete logical swap in an
1RPCWrite operation.

2. Scattering of a logical swap operation
from node 0.

 

3. ACKing a scatter from node 0
and observation of ACKs.

 

Figure 3.3: The relations among the FTAT peer modules during a scatter operation.
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Since each "scatter" is paired with "gathers" on the other sides, the pairs enforce the

synchronization among all the peers. At the receiving side, the "gather" is completed

when all the expected packets have arrived from all the other peers. On the sending side,

when all the direct ACKs have arrived at the originator a scatter operation is completed.

If a peer module does not receive a packet due to link failure but received the related

ACK from another peer, the receiving peer can now actively claim the missing packet

from the known recipient instead of waiting for originator to reroute the packet. The

logical ID and the originator ID, carried in the observed ACK packet header, can identify

which of the data packets gathered is being claimed.

The use of the extra ACKs yields redundancy of a sending activity in the form of the

control packets. The status about the other peers in the group communication can be

known from these ACKs. In addition, the scatter and gather operations are all engaged

with all the internal links in a "symmetrically complementary" pattern, i.e., all receivers

listen to and the sender talks to all the working internal links. This form of balance helps

functional clarity of the scatter and gather services in the system design and enhances

the timeliness of the group synchronization.

It is necessary to keep the process executions on all the peers in close step for real-time

processing. The synchronized execution can produce better timeliness, better throughput

and deterministic behavior of the group communication. For real-time systems, timeliness

is most important. In contrast, in an asynchronous system a fault can not be detected

promptly and an latent fault may result in great waste of computation due to a possible

chain of roll-back recovery.

As a result, the following advantages are obtained:

• low cost in transferring ACKs for packet rerouting.
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• optimal routing of a claimed packet from a known recipient with an adjacent work-

ing link.

• in case of multiple link failures, dynamic rerouting of a packet may be done in

parallel since it is a receiver-initiated operation.

• prompt detection of lost packets.

• effective timeliness in synchronization, which is essential for real-time processing.

3.5.1 Operation When All Peers Are Available

As mentioned earlier, scatter is an operation that broadcasts a data packet to the rest of

the group members as receivers.

When a peer scatters a packet, the receivers scatter ACKs through all internal working

links connecting the other 3 peers. The extra two ACKs would seem to be an extra

overhead in the operation. However since they can be broadcast in parallel, only a small

increase (caused by two extra ACKs) in time is seen. Moreover, the redundant ACKs

help the distribution of data reliably and efficiently through the concept of activity

observation.

At the receiver side, when all ACKs have arrived and the packet is received and

ACKed, the end of the gather operation in response to a scatter is triggered. On the

other end, receipt of all direct ACKs by the originator, will trigger the end of the scatter.

In this process, each receiving peer will receive 1 message and two observed ACKs, and

the originator will receive 3 direct ACKs in response to the scattered message.

3.5.2 Operation When a Link Failure Occurs
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1. A complete logical swap exchanges
the same set of logical messages

2. Node 0 is the originator of the scattered
message.

Link Failure^ACK Observer

3. Node 2 and 3 are the receivers of the
scattered message, but node 1 is only an
observer.

Figure 3.4: Observing undergoing activities
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When a link failure occurs in an FTAT, such as the case shown in Figure 3.4, the watchdog

will detect it eventually after at most two probing periods by the link layer. After the

scatter operation is started, the peer on the receiving end of the failed link may observe

the ACK(s) from the adjacent receiving peer(s). When link failure is detected, the peer

system is ready to use the Observed ACK to claim a lost packet from a known recipient

of the packet. The above process is illustrated in Figure 3.5.

When the lost packet is eventually received, the direct ACK in response to the packet

must be received by the originator since it confirms the correct reception of the packet

concerned. Indirect ACKs are not important because they serve only as the observation

of a reception for possible lost packet claim or identification of the application.

Only direct ACKs must be delivered to the destination even in case of link failures

because of its importance to the originator. They represent memberships in the group

communication. The direct ACK is handled in the following way. The claimer of a lost

packet first returns the ACK to the forwarder since it is very likely that the latter still

has a working link to reach the originator. Tithe forwarder becomes no longer reachable,

the only link left is tried. Nonetheless, new link failure may occur and a known recipient

may not be able to reach the originator. In section 4.7.1, the further link failure handling

is discussed.

In the service mechanism, there is a filter process that forwards any packet to an

appropriate link if it is not destined to the peer module where it has currently arrived.

Within the address header of a packet, the source ID part of the header tracks the last

sender as the packet gets delivered to peers along the route.

3.5.3 Operation When Multiple Link Failure Occurs

Multiple link failures may result in a network partition. In the system, an even network

partition is not considered in our design for simplicity. Processor failure is assumed when
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3. Observer waiting IPC WRITE
operation initiated from inside

Figure 3.5: Lost packet claiming
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Figure 3.6: Multiple link failure handling
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all its internal links appear to have failed because an all-link failure exhibits the same

behavior as a processor failure does.

Consider first the simple case of a processor's two links failing as shown in Figure 3.6.

After the peer scatters a data packet to the available working links, only one peer receives

it. ACKs are then scattered by the recipient to all the working internal links in response

to the packet. Now if the other two links to the recipient are working, the other two

peers observe the reception through the ACKs.

A simultaneous claims for the packet observed from both receiving peers are now

possible. The recipient sends the data packet to the two peers in response to the reception

of the Lost Claim packets. The ACKs returned to the originator (direct ACK) are also

directed to the recipient as a known peer reachable from the originator. This shows that

this method may result in possibly better performance (parallel vs sequential) and hence

is much better than single sender-controlled rerouting.

When the ACKs are scattered from the lost claimer, the ACK destined to the orig-

inator is first sent to the peer that provided the claimed packet. It is then forwarded

by the peer who should have a working link to reach the originator, provided that no

further link failure occurred so far. Tithe link between the two claimers is working, the

observed ACK from either should be received by the other. By now, both claimers should

have gathered the set of packets, i.e., one message packet and two observed ACKs. The

previous recipient should now also have gathered the packets in response to the scatter,

and the originator should have gathered all the direct ACKs.

The second scenario in Figure 3.7 is the case of link failures which result in a single

line connection in the network. This is the worst case for the performance of the FTAT

protocol. This time the third peer will first observe the reception of the packet. A

successful claim by the claimer from the second peer triggers the scatter of the claimer's

ACKs to all the working internal links. The direct ACK is routed to the second peer.
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1. Node 1 scatters PDU and Node 2
receives and ACKs it.

2. Only Node 2 receives PDU and Node 3
observes and claims it

LostClaimer LostClaimer

 

3. Node 3 receives and ACKs the PDU,^4. Node 1 receives the PDU and ACKs
and Node 1 observes, and claims it.^ the reception of the PDU

Figure 3.7: Multiple link failure handling 1
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Now suppose the fourth peer has observed the reception by the third. The above

process applies again. This time, since there is no link connection between the second

and fourth peer modules, only the ACKs to the third peer and the originator are sent

while the one to the second is dropped according to the protocol. Eventually the direct

ACKs will reach the originator as long as the network remains connected.

In Figure 3.8, the direct ACK is returned to a claimee but this time the link is not

working any longer. The algorithm is designed so that if any other link is still working,

then the ACK is forwarded to that link, otherwise the ACK will have to be returned to

the link through which it came. The original ACK sender now will have to try the only

link left to the peer to reach the originator.

To prevent a possible loop in sending between the claimee and the claimer given the

link between them is still working, the ACK is turned into a special packet so that it

can be recognized and dropped if it is to be sent again. Since there is only one chance

left, there is no need to send the ACK if the last attempt has failed.

3.5.4 Operation When A Processor Failure Occurs

When a processor fails, we shall assume in this case that when a peer system has crashed

nothing can be heard from any of its links. A peer system should always be ready

for processor failures so that time is not wasted on idle waiting. Processor failures are

always checked first before a decision is made to wait any further for the events from the

corresponding peer module.

The knowledge about the status of a peer is also available from the other peers. The

detection of a processor failure is essential in order to stop meaningless waiting or sending

attempts. For this purpose, at the lowest layer, each time a packet (data packet, control

packet, or probe packet) is exchanged, the current knowledge about link status of all

peers is attached to the header of the packet. Each peer periodically updates the link
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1. Node 0 scatters the PDU, and Node 1
^

2. Node 3 observes and claims it.
and 2 receives and ACKs it.

3. The link to reach node 0 from node 2 has^4. Now the Direct ACK can reach the
failed. The Direct ACK is routed to node 1.^ originator.

Figure 3.8: Multiple link failure handling 2
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status vectors as packets get exchanged with other peers. A failed peer processor will be

excluded from the group membership in the protocol operation until it is repaired.

3.6 Timer Handling

In the detection of a packet loss due to link failure or processor failure, timers are usually

involved in a message-passing multi-computer system. In [4], timers associated the group

communication introduce difficulties in group synchronization. Packets may come in

early, or late within the time out period because of the autonomy of each peer and the

transputer communication protocols. If only one timer is used for group receiving, an

early packet can trigger the timer, but a late packet from the other two links can also

trigger the time out [4]. A second timer is proposed so that a two phase timeout can be

used to allow early packets or late packets resulting from the looseness in synchronization.

Because ACKs are used extensively for activity observation, more timers would be

needed for each of the packet sent on each link. This would increase more complexity and

overhead in the synchronization management. In our system design, the use of the link

status eliminates the timers associated with "scatter". However, this requires that the

underlying communication service ensure the correct delivery of the packets once they

are on route unless the link has failed. This is achieved by our link layer service.

To detect link failures and peer failures, a watchdog mechanism is built in the link

layer. There is a watchdog monitoring the link status. With the link status and the

concept of activity observation, the FTAT network layer handles link failure and

processor failure in the communication.

A watchdog timer is associated with each link and gets reset when a correct packet is

received from the corresponding link. When a pending link output queue is empty, the

write worker will send a probe packet to each link on a periodic basis. Once a link failure



Chapter 3. Highly Efficient Multiple-Link Group Communication^39

is detected, the associated failure flag is turned on.

Another set of timers is employed to detect peer processes' failures. Each application

process has an associated timer. If a packet as an observation of a new FTAT service

arrives at a peer module, an associated timer for the identified process is started so as to

detect the replica process failure to participate in the group communication.



Chapter 4

FTAT Services with Transparent Fault-Tolerance

The fault-tolerance services provide transparency to the underlying architecture, data

exchanges among the peer modules, and possible on-line forward fault-repairs. The

system implements dynamic TMR with a spare (hot-standby). The resultant system can

survive up to two concurrent faults and unlimited sequential transient faults.

Location transparency hides the hardware redundancy from programmers. Fault-

transparency masks faults occurring in the underlying hardware. Replication trans-

parency relieves the programmer from having to cope with the details of the cooperation

and synchronization among the peer modules.

The FTAT service primitives are based the scatter and gather services. For efficiency

and parallelism, the scatter and gather services are not implemented as service abstrac-

tions in order to reduce the overhead in the cooperation and increase the parallelism in

the FTAT network layer.

The synchronization points of scatter and gather operations trigger the state transi-

tions in operation of the FTAT protocols. Application processes are synchronized at the

application service interfaces. These interfaces enclose a series of scatters and gathers

operations, fault detection and fault-repair if any fault occurred. Special buffers with

structured states are designed to facilitate these services.

40
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4.1 Swap Operation Based on the Scatter&Gather Mechanism

Based on scatter and gather operations, the swap operation (all-to-all exchange) is

defined. A swap operation involves symmetric scatter-and-gather by all peers in the

FTAT and includes:

• scattering the data packet.

• receiving the related data packets from all other working peers.

• scattering ACKs in response to the reception of each of the related data packets.

• gatherings for all of the peers: one gather for the scatter and three gathers corre-

sponding to scatters from the other peers.

The synchronization point is the point where data packets and ACK packets from all

other peers have arrived. Due to the autonomy of each peer, which may be driven by

different external events from the connected FTATs, each peer may be running different

application process at a particular time, so some peer may be the first in the initiation

of a logical activity. The activity observation can tell the other peer systems to bring

up the related application process to participate. Eventually the replica processes will

become active as result of the buffer allocations and round robin service fashion.

The swap service is formally defined in chapter 7 using Petri Nets. It is also shown

to be correct.

4.2 FTAT Services

The network layer FTAT communication manager is based on the scatter and gather

mechanism described in the previous chapter. The cooperation among the four peers
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requires several rounds of information exchanges to ensure the correct operation of the

protocols. The system services provide two primitives: IRPCWrite and IRPCRead.

For inter-FTAT packet routing, there is a routing table on each peer system that

records the current network distances to the other FTATs in the overall system. This

table is dynamically established as inter-FTAT packets are exchanged. It is not an major

issue to be addressed and is not discussed in this thesis.

4.2.1 IRPCRead Service

For IRPCRead, the reading peer, on behalf of an FTAT with an adjacent FTAT, scatters

the received packet to the other peers. It then waits for the ACKs to arrive from the other

peers before ACKing the sending FTAT. This gives the sending FTAT an opportunity to

reroute the packet in case the reading peer crashes right after the reception of the packet,

thereby preventing packet loss. A receiving peer of an inter-FTAT packet is called "the

initiator" of the IRPCRead operation. It does not ACK the sending FTAT until all the

other peers of the receiving FTAT have correctly received the packet.

After the sending FTAT gets ACKed, all the peers of the receiving FTAT will start

state exchanges and attempt, in turn, to deliver the packet based on the representative

selection rule. The selection rule decides which next best peer to deliver a packet based on

the current routing table. After the selected peer has tried to deliver the packet, a round of

state exchange (swap state packets) is performed to update the current distributed states

of the service until all attempts have failed or a delivery is successful. It is the receiving

FTAT's responsibility to ensure the further delivery of the packet to the destination.

If a packet reaches the destination FTAT, the peers will try to deliver the packet to

the receiving process. If it arrives at only an FTAT on its way to the destination, the

peers will try one after another in turn by the representative selection rule.
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4.2.2 IRPC Write Service

IRPCWrite constitutes an output operation from an FTAT. The IRPCWrite service is

similar to the IRPCRead except that the first step is a many-to-many complete data

exchange among the peers of the outputting FTAT. A majority consensus is then per-

formed on the data exchanged by all peers before the data is sent to another FTAT. The

rest of operations are the same as those for IRPCRead.

An IRPC Write packet becomes an IRPCRead at the next FTAT on its way to the

destination. This is natural since the next FTAT is the reader of the IRPCWrite.

The FTAT services are based on the swap operations described in the previous section.

Its formal definition of the protocol design is given and discussed in chapter 7.

4.3 Start of Service Operations

When an application process calls an FTAT service for either Inter-FTAT communication

or fault testing, it gets blocked until the system finishes with the service and returns

control. Before an application is rescheduled a resumption point is taken for later repair

or control resumption. For details about the resumption point, please refer to section 5.2.

There are two important lists in the system: the application channel list and the buffer

set list. They are all system resources. The channels in the application channel list blocks

the processes upon their calling for FTAT services. The buffer set list comprises of a list

of grouped buffers for many-to-many pattern data exchange buffering.

Depending on the service called, the application waits on its corresponding associated

channel. A buffer set must be acquired before the request can be processed. A buffer set

is a set of buffers that can hold all data packets as well as ACKs from all the other peers

for a group communication. The so called "structurally stated buffer sets (SS buffer) are

designed for this purpose and is discussed in section 4.4. Only the service requests that
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have acquired such buffer sets are processed by the system. These two stages are due to

limited buffer resources and deadlock avoidance in the buffer allocations.

The peer system scans through the channel list looking for pending service requests.

If such a request is found, a structurally stated buffer set (SS buffer set) for the service

is assigned for it if any is available. The system then scans through the SS buffer sets to

perform the actual service.

Once a service request is in processing, there are two types of swapping of packets:

data packets and state packets. The first step of an FTAT service is the data distribution

followed by a series of the state exchanges. To the scatter and gather service, the data

packets and the state packets here are same.

4.4 Structurally Stated Buffer Set

Since there are limited system resources and the group communication services require a

large amount of memory, only a limited number of service requests can be processed at

any one time. Such a limitation must allow the avoidance of possible deadlocks due to

resource allocations at the system level.

4.4.1 The Group Communication Buffer Consumption Requirements

Each transputer link is actually two separate channels, one for each direction. This avoids

communication confusion, which results in failure of the link communication protocols.

Concurrent in-bound and out-bound communications can be carried om the link. Each

communication on an FTAT link represents a logical operation. To allow concurrent in-

bound and out-bound communications with other FTATs, separate buffers are necessary.

To reach agreement on a group decision, synchronization among the peer applications

must be enforced at some point. The observation of activities again helps to identify the
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applications being served by other peer systems. Limiting the number of the requests

being processed concurrently is a way to enforce synchronization of the group members

on the services, provided that service fairness is ensured by the system.

When each service primitive is called, the calling process is blocked on the correspond-

ing channel. Once a service call is being processed, all peers must be able to buffer all

necessary information related to the service call for the purpose of fault-detection, mask-

ing and loss claiming. This data redundancy requires more than four times of memory

than the single data packet does in an FTAT service.

If all service requests are processed concurrently, the limited memory resource on each

peer module becomes exhausted. Therefore it is impossible to process all service calls at

the same time. But what should be the minimum number of service requests that can

be processed by the system concurrently? This question is resolved in the next section

4.4.2 The Deadlocks And Deadlock Avoidance

To avoid deadlocks, each service request to be processed must be able to acquire a set of

buffers distributed over all the peer modules. This means that the initiation of a system

service by a peer should be honored by all the other peers in order to proceed with the

service request. Another interpretation is that all the peer systems should ultimately

serve the same set of service requests in order to avoid cyclic waits among the peers.

A partial acquisition of a buffer set in the system means that different service re-

quests are being processed by different peer systems. Cyclically dependent waits are

consequently formed between parties, with different service requests being served. A

deadlock could result because the peer has to wait forever for the attention of all the

other group peers for the service while some of them are expecting another service from

the first peer!

Due to the autonomy of each peer module, service requests from different applications
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may be processed on different peer systems. To see how the independence of the peers

may affect the system, imagine the following situation of an FTAT concerned in a mesh

connected network. All the four adjacent FTATs are trying to pass something into the

FTAT. Supposing that the FTAT peers all read at the same time, a SS buffer set is

reserved for each of the abstract FTAT links on each of the four peers. If the system only

has one SS buffer set, each peer allocates the SS buffer set for the FTAT it is responding

to. A deadlock results from the above situation since no service initiative from a peer is

honored by all the other peers within the FTAT.

To avoid deadlocks in buffer allocations, the solution is to ensure the same set of

service requests are served by all the working peers. Since there are two concurrent

channel communications (In-bound and Out-bound) on each link, there will have to be

two separate distributed buffer sets.

As can be seen easily, there are at least four possible concurrent service requests

being processed at a time for each type of service primitive in the system. Therefore

the minimum number of buffers on each peer is four for each type of service primitive

if only one service initiation is allowed on each peer. Through activity observation, the

service requests being processed by the other peers can be passively started. All the

peers eventually reach agreement on which service requests to process without much

negotiation and any deadlock.

4.4.3 The Service Buffer Set Design

As mentioned before, different types of buffer sets are used for different services: namely,

write buffers and read buffers. A Write buffer set require more memory than a read

buffer does because it has to be able to hold packets exchanged with all the other peers.

In the system design, each peer system is allowed to initiate one service at a time for

each service type. All observed services through the concept of activity observation
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should also be processed during the same period. As a result, the processing of same

set of service requests is always guaranteed. Hence, up to 4 services of each type can be

dealt with by the system concurrently.

This buffer design helps the system to enforce synchronization among the FTAT peers.

Because up to only four outstanding service requests can be processed at any time on the

system, other processes are either blocked or in execution (ready state and eventually

will be blocked). The absent processes, which have passively acquired a service of the

system, will ultimately be brought up on each peer. Therefore, the peer systems are

brought into synchronization.

In the design we assume that applications are responsible for avoiding deadlocks at

its logical level.

Service fairness is also very important to ensure the timeliness of the system. As men-

tioned in section 4, there are two important lists in the system: the application channels,

and the SS buffer sets. The requests from the applications should get fair services so that

they can behave deterministically. The same is true for the structurally stated buffer sets.

Consequently, both application channel scanning and buffer set scanning are processed

in a round-robin fashion.

4.5 Structured States

As the services proceed, different events can occur. These events have impact on the

later operations and have to be recorded as states. Because the three logical levels of the

FTAT network layer are implemented as one, the states of the system are structured. A

collection of similar events can contribute to the occurrence of some (aggregate) event.

For each data packet sent on an internal link, 3 ACKs are expected for it. For each data

packet received, two extra ACKs accompany it. The arrivals of the 3 direct ACKs trigger
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the event ACKGathered.

The aggregate state should be efficiently triggered without constantly polling all in-

dividual states. For this reason, the states of the FTAT services are structured. For

example, the end of a complete swap is indicated by the event that all data and ACK

packets from all working peers have arrived.

The structured state transitions are triggered by the possible inter-FTAT events,

changes of link status and processor status. Whenever a new event for some state has

occurred, it is checked to see if the transition condition is met for its aggregate state.

The system handles the inter-FTAT events similar to responding to interrupts.

4.6 Fault Masking

In the system, we assume that the network layer is implemented with omission failure

semantics [17] so that the key issues identified in the introduction can be focused. When

faults are detected in any of the peers, they will show up in the distributed status after

the first round of the states exchange. The peers then attempt to deliver the packet in

turn according to the Representative Selection Rule explained below. The correct result

of the system is always present at any given time, provided that no more than two faults

occur at the same time.

4.6.1 Selection of the Representative & State Swapping

Once the majority consensus is done in the FTAT, the peers will select a representative

to deal with the next FTAT to deliver the output to the best possible route based on the

dynamically established routing tables.

The distributed algorithm to select the representative peer is based on the states
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exchanged among the FTAT peers after the data packet distribution. A state packet

contains the result of the majority consensus for the application, and the distance to

reach the destination FTAT from the peer. A peer is elected if its status is not marked

"FAILED", its distance is the shortest and the module number the smallest.

4.6.2 State Swapping

After the majority consensus is done, the status of each of the replica processes is de-

termined by the system. The first round of swap is performed with such information as

the outcome of the majority consensus and the distance to the destination FTAT. Then

the representative peer currently selected will try to deliver the packet to the destination

on behalf of the FTAT, while all the others wait for the outcome of its attempt. The

representative peer broadcasts the outcome together with the distance to the destination

FTAT. This process is called state swapping because the data exchanged form the

distributed states of the system.

After the attempt to deliver the packet, the status of the peer for the particular service

is marked "FAILED" if the attempt fails due to link failure or processor failure. Such

a peer will be excluded from the set of candidates eligible to serve as the representative

later. The next one will then be selected. This process continues until an attempt is

successful or all the peers have been used.

Here the state "FAILED" means the failure of a delivery attempt instead of the failure

of a peer process.

4.7 Failure Handling

The FTAT protocols must be able to provide correct services even in the face of link

failures and processor failures. If the failures are left undetected, the group members in
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communication may be confused, and/or the group membership may not be consistent

any longer among the peers. Consequently, the protocols will fail.

4.7.1 Link Failure

In the system, the transputer links are monitored by a Watchdog with associated watch-

dog timers. Each time a packet is received, the watchdog timer is reset. If the buffer

queue is empty, the writer worker process will send "probe" packets periodically. If the

link is dead, the timer will never get reset. Thus, eventually link failures will be detected

by the watchdog timer.

Repairing a failed link involves resetting the link channel and rescheduling both pro-

cesses. Normally a process blocked on a failed link never comes back. However, the

blocked process has to be rescheduled in order to proceed. A simple link channel reset

may result in the loss of the process since its break point is stored in the link channel

port address. To solve this problem, we save a resumption point before calling the com-

munication instruction. When the failure is detected, the channel can be reset and the

blocked process is rescheduled by the system from the resumption point saved.

4.7.2 Processor Failure

Processor failure detection is not straight-forward since a conclusion can only be drawn

based on the link status from the other working peers. During each packet exchange

between the peers, the distributed link statuses are passed to the receiving peers. This

link status vector is maintained by the system watchdog and updated by the peer system.

The entry for the local peer in the link status vector is maintained by the watchdog.

Whenever a link failure is detected, the corresponding bit is set to indicate the failure.

The other entries in the vector are updated by the peer system when such a vector is

received from another peer. The entry for the provider peer of the vector can be directly
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copied. However, if a link fails, no link status vector can be received from the link. When

a link failure is detected, the peer on the other side becomes "suspicious". In this case,

the entry has to be worked out based on view of the third party peers. Only when all

the other peers shows that its link with the suspicious peer has failed, then the failure of

the peer can be asserted.

To ensure that the protocol works properly, the updating of the link status about an

unreachable peer is designed as below:

/**************** Link Status Vector Updating Algorithm ****************/

; Peer is the sender of the currently received link status vector.

; Local is the receiving peer.

; LinkVector is the local Link Status Vector.

; ReceivedVector is the received Link Status Vector.

FOR ( PeerScan = 0 TO 3 )

IF ( PeerScan = Peer ) CONTINUE;

IF ( PeerScan = Local ) CONTINUE;

link = (PeerScan - Local) MOD 4;

IF ( LinkVector[Local] [link] = BAD )

IF ( ReceivedVector[Peer] [(PeerScan-Peer) MOD 4] = BAD )

LinkVector[PeerScan][(Peer-PeerScan) MOD 4] = BAD;

ELSE

LinkVector[PeerScan] = ReceivedVector[PeerScan];

AnotherPeer = Peer XOR PeerScan XOR Local;

IF ( LinkVector[Local] [(AnotherPeer-Local) MOD 4] = BAD )
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LinkVector[AnotherPeer][(PeerScan-AnotherPeer) MOD 4]

= LinkVector[PeerScan][(AnotherPeer-PeerScan) MOD 4];

ENDIF

ENDELSE

ENDIF

ENDFOR

Using the link status vector, the status of a peer can be determined be the algorithm

given below:

/********** Node Failure Detection Algorithm *************/

; Peer specifies the "suspicious" peer

; Local is the receiving peer.

; LinkVector is the local Link Status Vector.

; NodeStatus is the Node Status Vector.

NodeVector[Peer] = BAD;

IF ( LinkVector[Local][(Peer-Local) MOD 4] = BAD )

FOR ( PeerScan = 0 TO 3 )

IF ( PeerScan = Peer ) CONTINUE;

IF ( PeerScan = Local ) CONTINUE;

link = (PeerScan - Local) MOD 4;

IF ( LinkVector[PeerScan][link] = GOOD )

IF ( LinkVector[PeerScan][(Peer-PeerScan) MOD 4] = GOOD )

NodeVector[Peer] = GOOD;

EXIT;
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ELSE

AnotherPeer = Peer XOR PeerScan XOR Local;

IF ( LinkVector[PeerScan][(AnotherPeer-PeerScan) MOD 4] = GOOD )

IF ( LINKVector[AnotherPeer][(Peer-AnotherPeer) MOD 4] = GOOD )

NodeVect or [Peer] = GOOD;

EXIT;

END IF

END IF

ENDELSE

END IF

ENDFOR

ELSE

NodeVect or [Peer] = GOOD;

ENDELSE

To see that these algorithms are necessary, let us examine the following scenario: the

peer concerned is trying to determine the link status of a third party peer A. Suppose the

link between the two has failed. Peer B is also not reachable from the peer concerned,

but peer C is. The link status vector provided from peer C shows that the link between

A and C is also dead, how the status of peer A can be worked out. The peer can not

determine the status of peer A until all other working peers are consulted. If peer B sees

peer A is alive, then peer A is alive since it is still connected to the system.



Chapter 5

On-Line Forward Fault-Repair

The on-line forward fault-repair in the system aims at exploiting the spatial redundancy

to repair faulty application processes. Forward fault-recoveries for real-time systems are

achieved by using the volatile data redundancy, without checkpointing and roll backs,

to handle transient and intermittent physical faults. To accomplish such fault repair,

some of the issues that are common to Process Migration [23][24][25] must be solved,

as identified in the introduction. The challenge here is that the fault-repair has to be

able to handle reference rebinding problems [23], without use of shared virtual memory.

We have developed a scheme to separate the application processes from their run-time

physical environment so that their contexts are movable for fault-repair.

For on-line fault-repair, both the availability and the reliability of the system are to

be maintained. In this research, the repair aims at not only reconfiguring the redundant

modules but also retaining the availability of the redundant modules, unless permanent

failures have occurred to the majority modules.

The system recovers the faulty processes by using the redundant volatile data in the

run-time environment, the resource management information during the run-time of the

system and the Pointer Reference Stack (PRS). Some restrictions to the applications

on the system are imposed in order to focus on the development of the fault repair

mechanism and reduce the complexity of the processing:

• Processes are required to be loaded and created statically in the same order.

54
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• No global sharing data are allowed among the processes.

• Global data variables for each application process have to be bound in a single data

structure.

• Physical pointers, allowed in a process, are only those created on the run-time

stack.

• Physical pointers are not allowed in the heap allocations, but can be replaced by a

logical pointer implementation.

• Global physical pointers are prohibited in the programs.

However these restrictions are not necessary for volatile fault-repair. Any of these re-

strictions can be removed at more processing cost.

5.1 Issues in Fault Repair

For fault-repair from the system level, the semantics of the high level logical faults are

difficult to know. As a result, it is hard to do an incremental fault recovery and full

recovery has to be employed. In addition, the repaired process has to be reintergrated

into the system without interfering with smooth running of the system.

Many fault-tolerant systems use check-pointing and roll-back schemes. As mentioned

earlier, these types of systems pay a high cost in check-pointing by logging or journaling

[7][8] through persistent storage. In addition, the system has to undo previous operations

through roll backs until the effect of a fault is totally eliminated. Such recoveries may

require a chain of global roll-backs when distributed group cooperations or collaborations

are involved. However, the time previously spent for the operations being undone is

wasted.
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To preserve the timeliness of the system, we use the volatile execution image to

repair the faulty process. This approach is especially useful for fixing transient faults

which cause only damage to the volatile states of a processing module.

Using the run-time context of a process on one peer module to repair a faulty process

on another is not simply a matter of copying the run-time context. A difficult problem

that needs to be solved is pointer reference rebinding [23]. In the V system [23] and the

Accent system [25], shared virtual memory is used to deal with the pointer handling.

A shared virtual memory implements disk-based (persistent) data objects. It is usu-

ally based on a memory page-addressing mechanism so that the essential context can

be used immediately. A non-existent pointer reference can be "paged in" later from the

shared virtual memory upon a page-fault interrupt. The data of the pointer reference is

then copied to the local memory cache.

This seems to be a simple solution but it burdens the system in the following ways:

• Shared virtual memory itself suffers expensive overheads in maintaining the data

consistency between memory cache and disk storage distributed over the machines

[2].

• Since the run-time process contexts are also persistent data objects, copy-on-

demand [23] may result in extra disk I/O access. In addition, the startup costs

becomes observable for intermittent disk I/O access if the reference straddles sev-

eral memory pages due to the nature of copy-on-demand.

• Shared virtual memory can cache a virtual memory page only on a page basis. This

means more intermittent remote virtual memory page requests to be processed,

which takes more time than does consecutive loading of the context.

Volatile fault-repair is difficult since the run-time pointer references are hard to cope

with. When pointers are copied to another machine they become meaningless unless
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both machine carry exact memory images. They may be pointing to different data in

stead of those that are bound to the process.

5.2 The Processing of The Fault Repair

The fault repair is started by the peer system which has detected a fault in a peer

application process. The peer sends a repair request to one of the non-faulty peers and

the repair is started. While the repair is be performed, the other peers wait until the

fault repair is completed.

The consistent volatile part of a replicated process can be provided by the masking

redundancy FTAT and can be used to fix a faulty peer process. While the corresponding

memory parts can be copied from one process to another, pointers have to be readjusted

to point to the same logical data because of the different memory images on the different

peers due to their autonomy. The problem is how the pointers can be handled correctly

and efficiently.

By the assumed restrictions, each peer should have the same image for the code part

as in the memories on all the peer modules. Since the global data is bound in a single

structure and contiguously laid out in memory, the only things needed are the reference

and the size of the structure. All the global data of a process can be given by a single

reference, moved around and updated as one entity without having to know the sizes

and semantics of particular data. The information about the global data is part of an

entry in a process management table. Process management tables are maintained by

the system for the conventional process management [33]. All memory heap allocations

for each process are maintained in its associated resource allocation table. The resource

allocation tables, common to operating systems, provides the sizes and addresses of heap

allocations
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A repairing table is prepared by the repairing peer when the repair is started. This

table contains the information such as the address and the size of the run-time stack,

information about the resource allocation table, the address and size of the global data

for each process, and information about the Pointer Reference Stack (PRS), etc.

The table is then packaged and delivered to the faulty site, followed by the run-time

stack, the global data for the process, the heap allocations and the PRS. The resource

allocations bound to the faulty process are released and then reallocated to be certain of

the same resource allocations for both the faulty process and the repairing process. The

received copy overrides the corresponding items at the faulty site. The pointers used in

the process are then relocated to complete the repair.

On a transputer, when a process is rescheduled, the microcoded scheduler of the

transputer pushes all the registers onto the stack of the process and the stack pointer,

work space pointer [34], yields the resumption point of the peer process. A resumption

point of the repairing peer process is taken before the FTAT service is started as stated

in section 4.3. Because the repaired process is consistent with the repairing process, this

resumption point is used for the repaired peer process to resume control.

In essence, the correct handling of pointer references must ensure the following two

conditions exist between the two parties involved, after the fault-repair:

• The corresponding referenced data in both parties should be consistent.

• The corresponding pointers should point to the same logical data.

As long as these conditions are met, the repaired process will be in a consistent states

with the other peers, no matter what have happened to the pointers and their referenced

data in the past. Therefore no "undo" or roll-back is necessary.
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5.3 Handling Resource Rebinding Problems

In order to be able to move the process context around among the peers, the system has

to keep track of all the resource allocations, the birth and death of the pointers on the

stack, in addition to those for the regular system management.

From the assumed restrictions, use of global pointers are prohibited in applications

for simplicity. Pointers in heap allocations are not allowed but can be replaced by the

logical number implementations. The pointers on the run-time stack are dynamically

established during the run-time of a program. Only pointers used in the current execution

path appear on the run-time stack. Other pointers vanish as the stack pops after return

from procedures.

The resource allocation information is maintained in the resource allocation tables by

the system when a system resource is allocated to the application processes. There is

one such table for each application process. Only memory heap resource is considered in

our system.

Only those pointers currently used along the process execution path are relocated.

Hence, the number of pointers to be processed is minimal. The PRS, the process tables,

and the resource allocation table, together with the assumed restrictions, facilitate the

separation of applications from the run-time physical environment.

From the fault repair process, the first thing to be relocated is the PRS of the faulty

process, because the PRS holds a copy from another peer. It gives the list of the addresses

of the pointers used in the process. The local PRS overwritten by the received PRS must

correctly locate the pointers residing on the run-time stack. The addresses of the run-

time stacks for both peer processes are available, so it is quite easy to relocate these

pointers by the difference of their address values.

PRSs lists all the pointers that need to be relocated. These pointers may point to
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different type of memories, including the global data area, the run-time stack, and the

memory heap allocations. They should be processed accordingly. Global data references

and references of data on the run-time stack are simple. The references of data in the

heap allocations have to be processed corresponding to the referenced allocations.

Starting with scanning the received PRS, the referenced heap allocation is looked up in

the received resource allocation table for a pointer given by the PRS. The identification of

the allocation also locates the corresponding local resource allocation. The corresponding

pointer from the local PRS can be then relocated by the information about the local

resource allocation and the allocation in the received resource allocation table.

5.4 Pointer Reference Stack

The PRS is designed for tracking the pointer creations during the program execution

so that the system can use the information in the PRS to handle a minimal number of

pointers. The PRS records the pointer creations all the way along the process execution

path. It contains information such as the pointer value, the type of resources pointed to.

Use of PRS can be automated through a compiler so that PRS operations can be

done transparently. The introduced overhead is not noticeable to a program since it is

only called twice (push and pop) per pointer per function call.



Chapter 6

Reliability Analysis

6.1 System Reliability

Reliability modeling for the system is derived with the following system parameters and

module parameters:

System Parameters:

c — the probability that a fault in the system is detected.

r — the conditional probability that a fault is repaired after its detection in the

system.

Module Parameters:

t — time

A — fault rate during power-on.

The reliability analysis of the system is based on the assumptions given below:

• All modules are identical and have the same reliability.

• Fault distributions Rm(t) for all modules are exponential and identical, i.e. R, =
et.

• Fault detection and repair are done instantly.

• All modules are independent of each other except when a repair occurs.
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• The time between two consecutive acceptance tests <T, where T is some constant.

• All modules are symmetric with respect to each other since they are fully connected.

• c and r are constant.

To obtain the system reliability Rrc, we first calculate the system failure probability

Fcr. The system failure probability has three components. The first part F1 is caused by

concurrent faults that occur during T. The second F2 is the sequential fault effect that

occurs over time t where t > T. The last one, F3, results from fault repairs, correspond-

ing to the case when faults occur on two modules. One fault is detected while the other

is not and the undetected fault is on the repairer. The successful repair then results in

the propagation of the fault and ultimately the failure of the protocol.

The derivation of F1

The faults that occur during the time between two consecutive acceptance tests, T, are

defined as concurrent faults since they have to be dealt with concurrently. If more than

two concurrent faults occur during the time period of T, the system crashes. F1 is the

probability that all four modules have faults or three out of the four modules have faults

during T.

This is can be obtained from the probability that faults occurred on all the peers

during a period T plus the probability that three faults occurred on any three of the four

peers. The first term in Eq. 6.1 below determines the former while the latter is given

by the second term.

F1 =(1 — Rm)4 + (4 ) [1 — Rni]3fen, if t < T^(6.1)
3
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Substituting Rin with e'' in Eq. 6.1,

F1 ,---- (I — cAt)4 + 4( [1 _ e—At]3e—At t < T (6.2)
3

The derivation of F2

The sequential faults are repaired by the on line repair mechanism. Transient faults

can be tolerated and the faulty modules are made available again to the system after

being repaired. The failure probability F2 comes from the situation in which the system

has suffered two sequential faults, but has been unable to detect or recover from these

faults and a third fault occurs. In this case, the system can no longer perform majority

consensus correctly based on the dynamic TMR scheme.

Since all modules are symmetric to each other, each of the sequential fault occurrence

sequences has the same probability. There may be 4! such sequences, so F2 is the sum of

all of the sequences. The fault detection probability c and the probability of successful

repair r can change the system failure probability substantially, as can be seen below.

F2 := 4![(1—c)-Fc(1—r)J2 I t —d (1—Em) f t —d (1—R,) f t —,d (1—Rm)Rmdt3dt2dti t > To dti^n dt2^a at3
(6.3)

where (1 — c)--1- c(1 — r) is the probability that a fault is not detected, or is detected but

not repaired on a peer module. After two such faults have occurred, a third module fault

crashes the system immediately due to the dynamic TMR scheme.

Substituting II, with et in Eq. 6.3,

F2 = [ ( 1 — c) + c (1 — r)]2[1 — 6e-2At -4- 8e-3At_ 3eitj if t> T^(6.4)—x,

We can further simplify Eq. 6.4 and obtain the following:

F2 = [ ( 1 — c) + c (1 — 012(1 — e-At)3(1 + 3e-Ai) t > T^(6.5)



F3 = 2 x -i-
1 ( 4

2
c)cr(1 — Rm)211,2 t <T^(6.6)
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The derivation of F3

F3 is the probability that when faults occur on only two modules one of them is detected

while the other is not and the latter appears to have successfully repaired the former

using its run-time context. This condition results in the propagation of the fault on the

latter and ultimately the failure of the protocol due to the dynamic TMR scheme. F3

results from the cases when two and only two concurrent faults occur. It is obtained

as given below under the assumption that the repairer is selected from the non-faulty

modules with equal probability:

The system failure probability is:

{ Fi + F3 if t < T
F=^ (6.7)

F2^if t > T

Thus the reliability is _FP = 1 — F. Here, Eq. 6.2 and Eq. 6.6 are probabilities over the

time period T. Eq. 6.5 reflects the contribution to the reliability from the on-line forward

fault repair. The higher values of the probability c and r, the lower the system failure

probability.

Figure 6.9 shows that the reliability increases remarkably by the on-line forward fault

repairing even when the fault-detection probability and the fault repair probability are

lower than 0.5. The curve in "*" in the figure is the reliability of one module.

6.2 Network Connection Reliability

The probability that packet exchanges between a pair of nodes can still be conducted in

the event of link failures in the network is defined as the connection reliability R.
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The connection reliability between any two peers of the network within an FTAT

is enhanced by employing the concept of activity observation. A packet sent from a

scatter is transformed into three redundant signals: one original packet plus two extra

ACKs. This gives three chances for the receiver to know or receive the packet and take

proper actions. As a result, the reliability of the connection, between any two peers in

the system, is increased by the use of redundant ACKs.

Let R1 be the reliability of a transputer link, and R, be the reliability of the connection

between the two peer across a link. Assume all transputer links have the same link
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reliability RI. The probability of a connection failure is obtained and explained below:

F, = (1 — R1)3 + 2(1 — R1)2/01 — R1)2 + R1(1 — R1)21
^

(6.8)

Starting with the view from a node of a connection in the network, the first term is

the probability that all links of the concerned node in the connection have failed. The

second term is the probability that the other two nodes can not provide a route for the

connection due to their link failures, assuming that these two nodes are symmetric and

independent of each other as well as of the node pair of the connection.

Eq. 6.8 can be further simplified to the following:

F, = (1 — R1)3(1 + 2(1 — TO)Ri)^ (6.9)

So the connection reliability R, is:

R, = 1 — (1 — R1)3(1 + 2(1 — R?)Ri)^(6.10)

There are five possible routes in all possible link failures provided that the system

is still connected. The extra ACKs, scattered in response to a data packet received,

transform the transmission into four more opportunities to let the intended receiver take

proper active actions.

Assuming that the link fault distribution is exponential, R1 is then e-A'. Figure 6.10

shows the contribution from the activity observation scheme based on the multiple link

group communication. The dotted line is the link reliability RI, and the solid line is the

connection reliability R.
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Chapter 7

Petri Net Model of the FTAT Multilink Group Communication

In this chapter, the FTAT protocol is formally defined using Petri Nets. By playing with

tokens in the net of the protocol modeled, one can derive all the behavior. Using certain

properties of Petri Nets, the protocol design is informally shown to be bounded and live.

The implementation of the design demonstrates that it is functional. Consequently, the

design is shown to be correct.

Petri-Nets are a useful modeling tool for describing the dynamic behavior of con-

current systems. A variation called the Predicate/Transition PetriNet (Pr/T Net) [31]

allows the formal treatment of individual tokens, their changing properties and relations.

A Pr/T net can greatly reduces the model size and is very useful in replicated/redundant

processing modeling, especially for systems with multiple redundant or duplicated mod-

ules.

Pr/T net is developed from normal Petri Net theory. It differs from the latter in

that inscriptions are allowed to places (predicates), transitions, as well as arcs between

places and transitions. The inscription can be a formal sum of tuples of individual to-

kens/variables. Upon transition, individual variables inscribed to the arc are substituted

by the corresponding individual tokens that meet the condition inscribed of the transi-

tion, removed from the predicate, or deposited into the predicate.

The Pr/T net model of the system is structured into three levels of abstraction, i.e.,

the scatter and gather, the swap, and the FTAT services. Each of these levels serves

the basis for the higher level, with the scatter and gather at the lowest in the model.
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This structure is followed in the analysis of the system model. The scatter and gather

service is the processing core of the multilink group communication for the interactions

among the group peers. The swap protocol is based on the scatter and gather services,

and provides service to the IRPCWrite and IRPCRead protocols. Our discussion starts

with the scatter and gather protocol to hide the higher levels from the details of the peer

interactions for easy analysis.

First the following notational convention is used in the Pr/T net inscriptions:

• fle,(< 60, el, e2, ...en) where 0 <i < n specifies all the elements with respect to all

the values of ei;

• H(S), where S is a set, specifies all the elements available in the set.

• S, specifies the set of all the elements in S excluding s.

• IXI is a function that gives the number of elements in X where X is a set.

The discussion of the system model assumes the following:

• the protocol is built on top of a reliable packet channel. The channel guarantees the

correct delivery of packets and preserves the order, in which they are sent, without

any duplicates.

• in order to concentrate on the protocols and simplify the analysis, the transfer

of packets through bidirectional link channels are abstracted by a single virtual

predicate (a place) to simplify the analysis.

To aid in presenting the model in different layers, the following notation is used:

• The predicates with a ground sign I are from other nets in a different level of

structure.
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• A packet token is used with the format < Sd, Rc, Or, Pk > where

Sd - the sender.

Rc - the receiver.

Or - the originator of the relate data packet.

Pk - the packet type which is the one of the following:

pack - data packet.

ACK - acknowledgement packet.

claim - lost claim packet.

special - an ACK packet being returned to its forwarder.

7.1 Modeling Scatter & Gather Operations

The following predicates are used in the protocol modeling:

• Receivers: the receivers of a scatter operation.

• Sender: the sender of a scatter operation.

• PacketInQue: the sender(s) has sent the packets to the specified receivers through

the proper channels. This is a virtual predicate to hide the direct link connections.

The following is assumed: once a packet (a token) is in the predicate, it will fire

to the proper predicate corresponding to the given destination provided the corre-

sponding link has not failed. When a linkage has broken (link failure), a token (a

packet) in this predicate disappears if it is routed to the failed link.

• ReceivedPackets: the receiver has received the data packets from the sender.
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• ObservedACKs: the receiver has received the ACKs from other receivers involved

in the same scatter.

• DirectACKs: the sender has received the ACK(s) from receiver(s) of the scatter

operation.

• Gathered: the receiver has received all the packets, from all the other peers related

to a scatter operation (ACKs and the data packet).

• ACKGathered: the sender has received all the ACKs in response to its scatter

operation.

• LinkOK: the links are known to be working properly on the processor.

• LinkBad: the link(s) are known to be dead on the processor.

• NodeBad: the processing module(s) is known to have crashed.

Figure 7.11, figure 7.12 and figure 7.13 together show the Pr/T net model of the

scatter and gather protocol. The model depicts the behavior of the scatter and gather

service in terms of the direct interactions among the redundant peer modules of an FTAT.

It consists of three parts in a modular fashion. The main part, given in Figure 7.11,

defines the behavior under no-failure conditions. The link failure handling part, shown

in Figure 7.12, describes the behavior when link failures occur. The invariants part,

defined in Figure 7.13, represents the invariant assertions about the system using the

"dead" transitions [31]. "Dead" transitions are conceivable facts but impossible events

of the model.

In the figure, set L is the set of working links; set R is the set of peers of an FTAT

which is equal to P; and s E S = P. For ease of representation, the set notation is used

to show the individual tokens so as to fit in the diagram.
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Figure 7.11: Scatter & Gather Pr/T net Model

7.1.1 Boundedness

Definition: A P/T-net N is called bounded if MN is finite and there exists n E N such

that for all M E [MN > and all s E SN, M(3) < n, where M is a marking, [MN > the

set of all derivable markings of the net.

First it is clear that there are finite number of predicates in the scatter and gather

Pr/T-net model (SG net). Without considering the link failure handling part of the

net, the net NsG consists of single loops in one direction. PacketInQue is a virtual

predicate. Therefore the number of markings that can be derived from this net is finite,
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Figure 7.12: The link failure handling part of Scatter Sz Gather Pr/T net

i.e., [Mivs, > is finite. We then need to prove that any marking M E [MN,G > is finite.

Assume at the initial marking Mo we have:

Mo =M(Sender)+M(Receivers)+M(LinkOK)

= s+Rs-I-L;

Then we follow the firings to the possible markings in NSG:

=M(Receivers)+M(LinkOK)+M(PacketInQue);

M2 =M(Receivers)+M(LinkOK)+M(PacketInQue)+M(ReceivedPackets);

M3 =M(Receivers)+M(LinkOK)+M(PacketInQue)d-

M(ReceivedPackets)+M(ObservedACKs)+M(DirectACKs);

M4 =M(LinkOK)+M(PacketInQue)+M(ACKGathered)+

M(ReceivedPackets)+M(ObservedACKs)+M(Gathered);

M5 =M(ACKGathered)+M(Receivers)+M(LinkOK);

At any time in the net,
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Figure 7.13: The invariant part of the Scatter & Gather Pr/T net model

M(Sender) 5_ Isl;

M(Receivers) 5_ IRs1;

M(LinkOK) < ILI;

M(PacketInQue) 5_ IsI * ILI + IRsI;
M(ObservedACKs) <^* LI — ILI,

M(Gathered) < IRs1 — ILi;

Now it is very easy to see that any marking M E [MNsG > is a finite number n E N,

since any finite linear combination of finite numbers is still finite number. Hence the net

NsG is bounded.

7.1.2 Liveness

Definition: Under any marking M E [MN >, if there always exists an enabled transition,

then the net is called live.

Deadlock can result when the set of transitions directed into a set of predicates belongs

to, or equals the set of the transitions directed out from the same set of predicates, i.e.,

-S C S. [32].
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The possible deadlock can only result from the following two situations: 1) waiting for

a direct ACK from a "dead" peer. 2) waiting an observed ACK on a channel of broken

link.

Sender side

The sender gets blocked at DirectACKs predicate. Link failure handling can guarantee

the delivery of the data packet as well as the ACKs, unless the receiver crashes. The

NodeBad predicate can prevent the net from entering the "deadly" situation of waiting

for the response from that failed processing module. Consequently, the sender is always

live (deadlock free).

Receiver side

A receiver depends on the sender as well as the other receivers. LinkBad predicate

eliminates the dependency on a receiver for an observed ACK as soon as the failure of

the link is detected. The Activity Observation concept is reflected in the link failure

handling part of the net model and guarantees the correct reception of the data packet

provided that the receiver concerned is still connected to the FTAT network. The link

status is monitored and maintained by the peer system periodically. Once a link failure

is detected, the waiting on the channel of that link is terminated by depositing a token

for that link into ObservedACK. Therefore, the net for the receiver has always at least

one enabled transition M E [MNs, >. The system is thus deadlock free.

7.1.3 Link Failure Handling

Since this part of the model, shown in Figure 7.12, is mainly responsible for correct

transfer of packets between peer systems involved in a group communication, it simply
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shows the rerouting of data packets and ACKs when link failures occur. When an ob-

served ACK is received, a lost claim packet is sent at the transition t12 to request the

data packet from the known recipient. After the data packet is received, the ACK is then

passed to the recipient that provided the data packet.

Deadlock occurs when an ACK, being forwarded, loops back and forth around the

working peers without a way to reach the originator. This condition is prevented by the

detection of the special packet. A special packet can only be sent to a new peer module

but never returned. If there is no way for the packet to be forwarded, it is dropped, from

the assumption about the PacketInQue. This can only happen when the originator is

no longer connected to the system. When such failure is detected, the scatter can proceed

as the transition t9 deposits the expected token in DirectACK in Figure 7.11.

When a direct ACK is received and not addressed to the current receiver, it is routed

to the best available link. This is reflected by the condition inscribed to the transition

ti2 : Rc r AND Rc =---- Or.

The availability of the data packet for possible lost claim is ensured by the transition

t6. As long as the receiver system has working links with the other receivers within the

FTAT it will wait for the observed ACKs from them. This yields the opportunity for

determining the status of other peers or providing the data packet upon request.

On the other hand, if the link is broken, there is no need to wait since the purpose of

an observed ACK is for knowledge of link connections in the system. Transition t8 serves

this purpose.

7.2 Modeling the Complete Swap Service

In [31][321, a special set of places, called S-invariant set, is defined. This set has the

special property that the total joint token count in the net remains invariant during the
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transition firings of the net. It can be used to show the boundedness of a net. One of

its properties is, as a proofed theorem in [32], that if an net N is covered by S-invariants

then the net is bounded.

A P/T net is said to be covered by S-invariants if, for each place 3 e SN, there exists

a positive S-invariant i of N with i(s) > 0. This is defined in [32].

The model here describes the behavior of the complete swap service based on the

scatter and gather services. Figure 7.14 shows the Pr/T net model of the swap service

protocol, Nswap. In the model, the following predicates are used:

• SEMPTY: the buffer for swap is empty.

• SACKOBSERVED: the ACK(s) observed is/are in the buffer.

• SPDULOSTCLAIM: the buffer is expecting a lost packet from the claim.

• SPDUOBSERVED: a data packet has arrived in the buffer.

• SACKSCATTERED: ACKs have been scattered for the buffer.

• SACKGATHERED: the buffer has gathered packets from all the peers.

7.2.1 Boundedness

For a simple analysis, we can ignore the predicates from the scatter and gather net since

they remain the same after the related transitions fire. The swap net does not change

markings of the underlying net. A simplified net of the model is therefore shown in

Figure 7.15.

We now construct the incidence matrix [31] and try to find an S-invariant. The

invariant vector i can be acquired by solving the linear equation: Ns' „„p x 7 = ii.
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Figure 7.15: Swap operation POT simplified net model
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The incidence matrix and the invariant vector of the net Nswap are shown in Table 7.1

where all the elements in the invariant vector are greater than zero. Using the definition

and the property stated at the begining of section 7.2, which are given by definition (a)

and theorem (d) of Section 6.2 in [32], we know that the net is covered by S-invariants

and therefore draw the conclusion that it is bounded.

Predicate/Transition 0 t1 t2 t3 t4 t5 t6 t7 Invariant
SEMPTY -1 -1 4 1

SACKOBSERVED 1 -1 -1 1
SPDULOSTCLAIM 1 -1 1
SPDUOBSERVED 1 1 1 -1 1

SACKSCATTERED 1 -1 1
SACKGATHERED 1 -4 1

Table 7.1: Incidence Matrix and Invariants

7.2.2 Liveness

If we were to ignore the predicates used from the underlying net as in Section 7.2.1, under

any marking in the net, there is always at least one transition enabled in Ns„cip as can

be seen directly from Figure 7.15. However, the firings are dependent on the underlying

net, as the net is driven by the token movements of the underlying net. Therefore we

need to prove that given this dependency, under any marking M E [M.— Swap >, there is

always at least one transition enabled in Nsw„p.

First we know that the underlying SG net is deadlock free as proved in Section 7.1.2

and 7.1.3 of this chapter. Secondly, the order that the predicates are marked with the

related tokens from the underlying net is in the same partial order as the possible firing

sequence in this net. This can be shown by ordering the token movements in partial order

and comparing the orders from both nets. We start the ordering from the initial states
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of the system, SEMPTY and Sender/Receivers in the direction of the transitions:

• For Nsump, we have the partial order sequence: SEMPTY, {SACKOBSERVED,

SPDUOBSERVED, SPDULOSTCLAIM}, SACKSCATTERED, SACK-

GATHERED.

• For the SG net: {Sender, Receivers}, PacketInQue, fReceivedPackets,

PacketInQuel, {ACKGather, ObservedACK}, Gathered.

Note that the elements in brackets are equal in the partial ordering. In the sequence

for the SG net, the PacketInQue is a virtual predicate and is ignored in our analy-

sis. The unused predicates are eliminated from the sequence. Now we have: {Sender,

Receivers}, {ReceivedPackets, ObservedACK}, Gathered.

We assume at the start of the swap service, the initial predicate marking is set to

SEMPTY, Sender, Receivers for the Swap net and the SG net, respectively. Also

we assume that the firings of the enabled transitions in Nsv,„p is always performed before

those in the SG net. This assumption is made to simplify the analysis of the model and

can easily be transformed into an implementation of the design.

Under any marking M E i—Nrm swap >, there is at least one transition t is enabled as

long as the attached predicate from the SG net has the related token. By the previous

assumption, (11,SwapNet is always marked before (t)sGNet. Since the partial ordering of

the SG net reflects the firing sequence and the SG net is deadlock free, then (1)3GNet

will be eventually marked, i.e., t is enabled. Thus, there exists at least one transition

enabled under any marking M E [MNsw, > in the nets considered. Therefore, the Swap

net is then live, deadlock free.
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7.3 The FTAT Service Modeling

The FTAT services, IRPCRead and IRPC Write, are based on the Swap mechanism de-

scribed in the earlier section. They provide the services for inter-FTAT communications.

Using a similar method used in Section 7.2, the model is now shown deadlock free. The

model, NFTAT, has two parts for the services modeled and is shown in Figure 7.16 and

Figure 7.17.

In the following analysis, only the net model for IRPCWrite service is shown. The

IRPCReac service model can be analyzed in a similar way.

7.3.1 B oundedness

NFTAT has a limited number of predicates in a single directed transition loop. The net

is basically a single loop type of transitions, except between one particular section of the

loop. Between predicates PDUGATHERED and STATEGATHERED there exists

an embedded loop which may loop n+1 times, where n is the number of the working

peer modules. This results from the transition condition All Stat -= DONE or All Stat

= FAILED. This transition condition ensures that if all modules have tried and failed to

deliver a packet, the service is aborted. Consequently, the number of possible markings

is finite.

For each predicate in the net, the deposit and removal of a token is always balanced

as can be seen from the model. Without considering the effects from Ns,,,,p, the incidence

matrix and its invariant vector of the net are shown in Table 7.2. Since all the invariants

in the corresponding predicates are greater than zero, the net is said to be covered by

S-invariants according to the definition (a) in Section 6.2 of [32]. By the theorem (d) of

Section 6.2 of [32], the net NF,' TAT is bounded.

Now let us examine the effects stemming from N s ,, ap on the net NFTAT. It is obvious
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Predicate/Transition t0 ti t2 t3 t4 t5 t6 t7 tg t9 t10 tn. Invariant
EMPTY -1 -1 -1 1 1

PDUOBSERVED 1 1 -1 1
ACKOBSERVED 1 -1 1
NOTSENTYET 1 1 -1 1

PDUSCATTERED 1 -1 1
PDUGATHERED 1 -1 1 1

STATESCATTERED 1 -1 1
STATEGATHERED 1 -1 -1 1
ApplicationPending 1 -1 1

Table 7.2: FTAT Incidence Matrix and Invariants

that Nswap does not change the total joint token count in the net NFTAT and nor does

NFTAT in Nswap. Net NFTAT is thus bounded.

7.3.2 Liveness

For simplicity in the analysis, the swap net Nswap is ignored first. Figure 7.18 shows the

net model without Ns„,,p. In NFTAT) each predicate has an arc to some transition t, and

for any predicate with a marking greater than zero, the followed transition is enabled

since each transition t has only one predicate in its 1. As a result, NFTAT would be a

deadlock free net without Nstuap connected.

Now we examine NFTAT with Nstocip connected. We still assume that the transitions

enabled in NFTAT are always fired before those in the underlying nets until the NFTAT

transitions are disabled due to the markings of the underlying nets. This assumption can

be easily translated into an implementation and greatly helps the structured analysis by

making the modules less dependent on others and without distorting the model from the

design.
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Figure 7.18: IRPCWrite Service Pr/T simplified net model
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Firstly, the firing sequence is ordered from the initial states of the system in par-

tial order. The result ordering is EMPTY, {ACKOBSERVED, PDUOBSERVED,

ApplicationPending}, NOTSENTYET, PDUSCATTERED, PDUGATHERED,

whereas in Section 7.2.2 the ordering was SEMPTY, {SACKOBSERVED, SP-

DUOBSERVED, SPDULOSTCLAIM}, SACKSCATTERED, SACKGATH-

ERED. By the fact that NFTAT is a deadlock free net without Nswap connected, then

for any marking M E [MN, > in NFTAT, there exists some transition t that is to beFTAT
enabled by some predicate in N sw„p. Thus we have (t)FTATNet > 0 and (1)

Secondly, note that the firing sequence between to to t7 of NFTAT is in the same

partial ordering with that of N sp, i.e., for any tn in the FTAT net NF/ TAT, n—i '̂tn

and .tn^.tn+i in both nets respectively; the transition loop, t7 to to, is only dependent

on SACKGATHERED from Nswap.

Since Nsv,„p is deadlock free, as shown earlier in Section 7.2.2, eventually the (1)swapNet

becomes marked. That is, the transition t is enabled. Since t is some transition that

would be enabled under any marking M E [MN, TAT >, we draw the conclusion that un-

der any marking [MAT_-FTAT >, there exists some enabled transition t in the FTAT model.

The FTAT model has thus been shown to be live.

SwapNet^0.



Chapter 8

Performance

In this chapter, we analyze the performance of the major components of the system in

term of time and amount of communication. The multilink group communication and

the on-line forward fault-repair are the major research issues addressed in this thesis.

A brief analysis of the performance of the former is carried out quantitatively and the

on-line forward fault-repair is analyzed qualitatively. The generic communication service

measurements are listed last.

The performance analysis of the multi-link group communication demonstrates how

the concept of activity observation improves the performance in the communication.

The on-line forward fault repair is analyzed to see how the system performance is en-

hanced because of the repair and how the performance of the on-line forward repair itself

is improved by the use of volatile data redundancy as opposed to the use of virtual shared

memory.

The operations of the FTAT are mainly based on the scatter and gather mechanism

built for group communication over multiple link connections. The bidirectional commu-

nication links are all supported by dedicated DMA controllers which allow concurrent

broadcast on all the links. The distribution of redundant messages are parallelized and

most of the operations are symmetric with respect to all the other peers within an FTAT.

In this chapter, a simple performance analysis of the system is conducted. For the

multilink group communication, the analysis of a worst performance case and a best

performance case are given and contrasted with what the performance would be without
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Trans
Time
out Trans^Trans

Figure 8.19: Scatter without activity observation in a single link connection

activity observation (A.0.).

The following definitions are used in the performance analysis:

• Ttrans — the transmission time for a data packet.

• TACKtrans — the transmission time for an ACK packet.

— the transmission time for a lost claim packet.

• Ttimeout — the time period which if exceeded, results in a decision that a packet is

lost.

8.1 Scatter and Gather

A scatter operation consists a broadcast on all the FTAT internal links from a peer and

a reception of all the ACK packets from the other peers. The packet transmission on

each link takes about the same amount of time since they are sent concurrently.

Assuming that T4- orans is far greater than Tchiim, TACKtrans, and Treroute, then the major

cost is mainly contributed by Ttrans. In the following analysis, the packet processing time

and the channel setup time are all assumed to be negligible.

• Single link failure:

The time cost for a scatter without (A.0.) is:
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Figure 8.20: Scatter with activity observation and a single link connection

T 
Ttrans Ttirneout {Trans + TACKtransi * 2 > 3Ttrans

^(8.11)
With A.O. it is:

T Ttrans Tclatrn Ttrans TACKtrans * 2^2Ttrans^(8.12)

The overall time for the scatter operation with A.O. takes one less packet of data

transmission than it would without A.O. at the cost of a lost claim packet. Tdaim
is the same as TACKtrans. An increase of the processing speed is about 30% in this
case.

• Single line connection in the system resulting from Multiple link failures:

From Figure 8.19, the time cost for a scatter without A.O. is:

T = Ttrans Ttirneout 4 * Ttrans + 3* TACKtrans^5Ttrans
^(8.13)

From Figure 8.20 with A.O. it is:

^T --= 
Ttrans iTtrans TACKtrans ?Claim] * 2 + 3 * TACKtrans^3Ttrans^(8.14)

Here, the scatter operation without A.O. would take 6 data packet transmissions in

the network. Considering that some of the transmissions are parallel in time, the
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effective time consumption is about 5 times of a data packet transmission, while

that for the scatter with A.O. is only about 3. This is a nearly 50% decrease in

communication traffic and a 40% increase in the processing speed.

• Parallel lost claiming from the recipient with multiple link failures in the network:

From Figure 8.19, the time cost for a scatter without A.O. is:

T Ttrans + 4 * Ttrans + 3 * TAcKtrans] 5Ttrans
^(8. 1 5)

From Figure 8.21 with A.O. it is:

T 
Ttrans TACKtrans Tclairn Trans + 3 * TAcKtrans 2Ttrans

^(8.16)

This is the most significant case with respect to performance. The scatter without

A.O. would take 5 data packet transmissions while with A.O. it takes only 3 in

actual transmission. The effective time consumed is 2 times of a packet transmission

because some of the transmission are in parallel. This results in a nearly 40%

decrease in communication consumption and a 60% increase in the processing speed.
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8.2 Swap

When no failures occur in the system, a complete swap of information takes slightly more

time than a scatter operation since every peer in the group does the same operations

symmetrically.

The extra costs are caused by the transmission of two extra ACKs over each link in

each direction and the processing time for these extra ACK packets from all the other

peers. If the average data packet is far longer than ACK packets and the processing time

of ACK packets are negligible, then the cost is mainly due to the transmission of the

data packet.

8.3 On-line Fault-Repair

On-line forward fault-repair involves selection of the repairer node, initiation of the repair

request, packing of volatile data, delivering these data in packets, overwriting the context

of the faulty process and relocating pointers in the context. Volatile data of a process

includes global data, heap allocations, run-time stack, pointer reference stack, as well as

the resource management table.

The repair service provides full context repair. Its performance is dependent on the

size of context. The process of packing and delivering is much faster than disk accessing

since memory access is faster than disk I/O, and the data communication (2.5MB/s) is

faster than disk I/O. Compared with commonly used process migration schemes such as

those used in the V system or the Sprite system[23][25], our approach has the following

advantages:

• no checkpointing and roll-back is necessary for fault recovery.

• no disk I/O access is required.
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• no shared memory consistency maintenance overhead is suffered.

• pointer adjustments is done in one batch.

• pointer references rebinding are performed on a resource allocation basis instead of

a pointer basis.

8.4 Generic Communication Performance Measurements

The generic communication operations have been measured with and without link fail-

ures for the operations such as scatter & gather, swap and IRPCWrite. No significant

difference has been observed between the first two. However the measured results are

not the optimal performance for the protocol, realizing that the implementation can be

further tuned for best results.

Table 8.3 shows the results of our implementation which can be further optimized.

The processing overhead seems to be the major factor. However, our quantitative analysis

shows an interesting potential performance gain for the multi-link group communication

protocol. Our implementation is still subject to tuning to get the best performance.

Measured Time\ Service Scatter Si Gather Swap IRPCWrite
without link failure 20ms 27 ms 128ms

with link failure 21ms 30 ms 140ms

Table 8.3: Generic Operation Performance Measurements



Chapter 9

Conclusions

The FTAT architecture yields a systematic architectural approach to fault-tolerance sys-

tems. The regularity and recursiveness of the architecture makes it easy to use the

architecture as building blocks to build large multiprocessing systems.

The multilink group communication mechanism provides redundant and parallel data

distribution and group synchronization. The concept of activity observation employed

in the design greatly improves the communication mechanism to provide efficient and

reliable data distribution in the face of link failures and processor failures. The major

gains can be summarized as follows:

• Packet rerouting is initiated by the receiver in response to the observation of a

recipient of the data packet in a group communication. A lost packet is always

"claimed" from a known recipient and the route is always the optimal.

• The low cost in transferring the ACKs, which used as "hints" for packet rerouting,

greatly reduces the network operation overhead.

• Because of the receiver-initiated dynamic rerouting, parallel "claims" of a lost

packet by multiple intended receivers are possible.

• The elimination of the many timers that otherwise would be needed for reliable

redundant data distribution, reduces the overhead and complexity of the protocol

implementation.
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• The scatter and gather operation for the distribution of a data packet makes the

sender and receivers symmetrically complementary, which yields better timeliness

in group synchronization.

The reliability analysis of the multilink group communication of the system shows that

the connection reliability in the group communication between any pair of the modules is

increased. The concept of activity observation in the design of the protocol is shown to

have the potential of considerable performance gain and high communication efficiency.

The transparency in fault-masking provides a simple programming model to the pro-

grammers for fault tolerant applications, especially for parallel programming applica-

tions. The dynamic TMR scheme used makes the system tolerant of two concurrent

faults without using more than four processors. The underlying mechanism of the on-

line fault-repair makes the system tolerant of unlimited sequential transient physical

faults with smooth reintergration of the repaired module, unless permanent failures oc-

cur on majority modules. Our reliability analysis has shown that system reliability can

be improved remarkably with on-line forward fault-repair.

The design of the multilink group communication protocol has been formally repre-

sented by Petri Nets in a structured modular way. The nets are shown informally to

be bounded and deadlock free, and the implementation demonstrates that the design

is functionally correct. Hence, the design is shown to be correct. The use of Predicate

Transition Net which is a variation of Petri Net allows us to represent the model in simple

diagrams and to give proofs in a simple way.

The on-line fault-repair eliminates faults on the process basis without roll-back of

previous operations. Some of the similar issues in process migration are approached

in a different way. By separating an application process from its run-time physical en-

vironment at a minimal cost, the live execution image can be used to repair the faulty
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process to guarantee forward fault recovery. This is very attractive for real-time process-

ing because of the following:

• No computation is wasted because the forward recovery occurs without any roll-

back.

• Pointer reference rebinding is performed on a resource allocation basis instead of a

pointer basis.

• Using volatile redundancy saves the cost of accessing persistent I/O devices.

• No shared virtual memory has to be used, thus concurrency control overhead is

eliminated.

There is still much work that can be done in the future:

• The experimental system is subject to optimization for best performance.

• Investigation is needed on how system's reliability relies on the acceptance test pace

under different module reliabilities. Since high fault coverage can be achieved at

the cost of communication and comparisons, this may provide a guide line for the

best performance while meeting the reliability requirements.

• The system itself is vulnerable to faults, thus highly efficient self-checking tech-

niques should be exploited to cause the system to have crash-failure semantics.

• Efficient fault detection techniques of high coverage are needed for forward fault-

repair to achieve high reliability.
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