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Abstract 

A well-known method for symbol detection involving signals received over a number of 

independent diversity branches perturbed by additive white Gaussian noise is Maximum Ratio 

Combining ( M R C ) . Two other diversity schemes, Simple Transmit Diversity (STD) and 

Maximum Ratio Transmission (MRT), have recently been proposed. The performances of these 

three schemes are compared. The STD scheme, which is applicable only to two transmit antennas, 

is shown to have the same error performance as M R C with the same diversity order when perfect 

channel estimates are available. The MRT scheme with ./V transmit and one receive antennas is 

shown to have the same performance as M R C with N receive antennas, but M R T with one 

transmit and N > 1 receive antennas or MRT with N > 1 transmit and M > 1 receive antennas do 

not perform as well as M R C . 

The performance degradations of M R C , STD and MRT due to errors in estimating the 

channel parameters are analyzed and compared. It is found that STD is significantly more suscep

tible than M R C and MRT to errors in the channel estimates. 

An improved scheme for MRT (IMRT) and a new optimal maximum ratio transmission 

and combining scheme (MRTC) are proposed. In the IMRT scheme, the same transmit weighting 

functions are used as in MRT. At the receiver, M R C combining rules are used to choose the 

weights for the received signals. The MRTC scheme maximizes the SNR using optimal transmit 

and receive weighting factors. Simulation results indicate that both IMRT and M R T C provide 

significant performance improvements over MRT. 



iii 

Table of Contents 

Abstract ii 

Table of Contents iii 

List of Tables v 

Acknowledgment vi 

Chapter 1 Introduction 1 

1.1 Frequency Diversity 3 

1.2 Time Diversity 3 

1.3 Space Diversity 4 

1.3.1 Selection Diversity 5 

1.3.2 Feedback Diversity 6 

1.3.3 Equal Gain Diversity 6 

1.3.4 Maximal Ratio Combining 7 

Chapter 2 Performance Comparison with Perfect Channel Estimation 8 

2.1 Review of Maximal Ratio Combining (MRC) 9 

2.2 Review of Simple Transmit Diversity (STD) 12 

2.2.1 Two-Branch STD 12 

2.2.2 STD With Two Transmit and Receive Antennas 14 

2.3 Review of Maximum Ratio Transmission (MRT) 15 

2.4 Performance Comparison with Perfect Channel Estimates 18 

Chapter 3 Performance with Imperfect Channel Estimation 23 

3.1 B P S K Modulation 23 

3.1.1 M R C 24 



IV 

3.1.2 STD 25 

3.1.3 M R T 26 

3.1.4 Channel Model 27 

3.1.5 Numerical Results with BPSK modulation 28 

3.2 QPSK Modulation 32 

3.2.1 M R C 33 

3.2.2 STD 35 

3.2.3 M R T 36 

3.2.4 Numerical Results with QPSK modulation 36 

Chapter 4 Two New Diversity Schemes 39 

4.1 Improved MRT (IMRT) Scheme 39 

4.2 New Maximum Ratio Transmission and Combining (MRTC) Scheme 41 

4.3 Numerical Results 45 

Chapter 5 Conclusion 48 

5.1 Main Thesis Contributions 48 

5.2 Topics for Further Study 49 

Glossary 51 

Bibliography 56 

Appendix A. Means and Variances of MRC and STD Decision Variables 59 

Appendix B. Comparison of (3.5) and (3.9) 62 



V 

List of Tables 

Figure 1.1 Principles of selection diversity from [2] 5 

Figure 1.2 Basic form of feedback diversity 6 

Figure 2.1 M R C with M receive antennas 10 

Figure 2.2 The two-branch STD scheme with one receiver 13 

Figure 2.3 STD with two receive antennas 14 

Figure 2.4 MRT with N transmit and M receive antennas 16 

Figure 2.5 Comparison of theoretical and simulation results 19 

Figure 2.6 BER's of M R C and MRT schemes with diversity order of two 20 

Figure 2.7 SER's of M R C , STD and MRT with diversity order of four. 21 

Figure 3.1 BER's of M R C and STD schemes as a function of SNR for a randomly 

chosen set of parameter values 30 

Figure 3.2 BER's of M R C and STD schemes as a function of ESR for SNR = 4 

and lOdB 31 
Figure 3.3 BER's of M R C and STD schemes as a function of SNR for four different 

ESR values 32 

Figure 3.4 SER's of M R C and STD schemes as a function of SNR for ESR = -20 

and - lOdB 37 

Figure 4.1 IMRT with two transmit and two receive antennas 40 

Figure 4.2 MRTC with two transmit and two receive antennas 42 

Figure 4.3 SER performances of 4-branch M R C , MRT, IMRT and MRTC 46 

Figure B . l Illustrating (B.5) 55 



VI 

Acknowledgment 

I would like to express my sincere thanks and deep gratitude to my thesis advisor, Dr. 

Cyril Leung, for his guidance and encouragement. His critical reviews and many constructive 

suggestions were very essential to the completion of this work. This work was partially supported 

by NSERC Grant OGP0001731. 

Friends and fellow students have certainly made my studies here a memorable and 

interesting one. I would like to thank Mr. Kelvin Ho, Mr. Cyril Iskander, Mr. Lawrence Chen, Mr. 

Peter Chong, Mr. Shailesh Sheoran, Mr. Dave Martin and other people in the Communication 

Group for their support and help. 

Finally I would like to thank my parents, Mr. Xixian Feng and Mrs. Shuhua Liu, my sister, 

Ms. Xiaol i Feng and her family, for their constant love and encouragement. They, too, have 

played a significant role in the completion of this work. 



Chapter 1 Introduction 1 

Chapter 1 Introduction 

In recent years there has been an explosive growth in the mobile communication market 

worldwide. This demand is expected to grow unabated over the next decade as new services are 

offered and new markets developed. Multipath fading is a major obstacle to the efficient and 

reliable transmission of data over many radio channels. Possible solutions to this problem are to 

increase the transmission power, antenna size, or antenna height [1]. These solutions may not be 

compatible with the need for portability and reduced energy consumption. Another standard 

technique which can be used to mitigate the effects of fading is diversity. The motivation behind 

diversity techniques is that we provide several independent paths, hence there are hopefully 

always some paths that may have strong signals so as to reduce the probability that all the signal 

components will fade simultaneously. 

Depending on the propagation mechanism, there are several effective diversity techniques. 

Independent transmission paths suitable for the diversity method could be obtained by using 

different frequencies, different transmission times or spatially separated antennas. In most scatter

ing environments, space diversity (antenna diversity) is a practical, effective and widely applied 

technique for reducing the effects of multipath fading [2]. A l l the discussion for diversity has been 

premised on the assumption that the fading processes among the diversity branches are mutually 

statistically independent. The absence of correlation between the branches is an important desired 

feature for diversity techniques, since it would not help the receiver to have additional copies of 

the signal if the copies are all equally poor [3]. In practice, there will be some cases in which this 

cannot be achieved, for example, insufficient antenna spacing (due to siting limitation in spaced 

antenna diversity). A number of papers have appeared in this subject area [4], [5], [6], [7]. Bit 
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error rate (BER) performance of space diversity systems with channel correlation was studied in 

[4]. In [5], numerical results demonstrate the impact of the different correlation coefficients in 

combating fading and reducing co-channel interference (CCI). In [6], a maximum likelihood 

sequence estimation receiver structure was derived for the case of correlated diversity sources. 

A brief introduction to alternative diversity techniques is given in the latter part of this 

chapter. 

In Chapter 2, related studies found in the literature are reviewed. A classical approach, 

maximal ratio combining (MRC), involves the use of multiple antennas at the receiver. The 

signals received at the various antennas are weighted such that the signal-to-noise ratio (SNR) of 

their sum is maximized. The major problem with using M R C is the cost, size, and power of the 

remote units. Simple transmit diversity (STD) is a simple but effective scheme proposed by 

Alamouti [8]. In STD, a pair of symbols is transmitted using two antennas during the first time 

unit, and a transformed version of the pair is transmitted during the second time unit to obtain a 

MRC-like diversity. Two transmit and M receive antennas are used for the generalization of the 

STD scheme so as to provide a diversity of the order of 2M. A scheme called maximum ratio 

transmission (MRT) is suggested by Lo [9]. MRT can be generalized to any number of antennas 

for both transmission and reception. 

In Chapter 3, bit error rate (BER) performances for M R C , STD and MRT are compared. 

The B E R degradations due to imperfect channel estimates are analyzed. Both B P S K and QPSK 

modulation methods are considered. The analysis starts with the simplest case, two branch 

diversity, and then is generalized to multiple branches. 
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In Chapter 4, an improved M R T (IMRT) scheme and a new optimal maximum ratio 

transmission and combining scheme (MRTC) are introduced. Symbol error rate (SER) perfor

mances of these two new schemes are presented and compared with those of M R C and MRT. A 

summary of the main results of this work and some suggestions for possible future work appear in 

Chapter 5. 

1.1 Frequency Diversity 

In frequency diversity, the information bearing signals is transmitted on more than one 

carrier frequency. If the frequency separation is larger than the coherence bandwidth, independent 

fading variations can be assumed [10]. In [11], coherence bandwidth is defined as a statistical 

measure of the range of frequencies over which the channel can be considered "flat". Those 

spectral components passed through the "flat" channel are subject to an approximately equal gain 

and a linear phase shift. For the mobile radio case with a coherence bandwidth on the order of 

500kHz, it has been measured that the separation between the branches has to be at least 

1 ~ 2MHz [2]. The advantages of the frequency diversity over the space diversity is the reduction 

of the number of antennas. However, to achieve M branch diversity, the bandwidth and transmit

ting power required will be M times larger. Therefore, this technique is not commonly used for 

land mobile communication systems in which spectrum efficiency and power savings are 

important issues. 

1.2 Time Diversity 

In time diversity, the information bearing signal is repeatedly transmitted so that the 

multiple repetitions of the signal undergo nearly independent fading, thereby providing diversity. 
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It has been shown in [12], [13] that the required time slot interval is at least as great as the recipro

cal of the fading bandwidth, or 0.5/fd, in the mobile radio case to obtain diversity branch 

signals, where fd is the maximum Doppler frequency. Time diversity is effective for C D M A 

systems, where the multipath channel provides redundancy in the transmitted message. However, 

it is less effective when the channel is slowly varying because a very long time slot interval is 

necessary to obtain sufficient diversity gain. Moreover, when the mobile is stationary, we may 

obtain no diversity gain at all. 

1.3 Space Diversity 

Space Diversity is another effective approach to combat multipath fading. It has histori

cally been the most commonly used form of diversity in mobile radio link base station [14]. 

Sufficiently spaced antennas are an attractive means of obtaining this diversity advantage since 

they do not incur bandwidth expansion. The method is based upon the principles of using two or 

more attennas in order to receive uncorrected signals. Conventional cellular radio systems consist 

of elevated base station antennas and mobile antennas close to the ground. The existence of a 

direct path between the transmitter and the receiver is not guaranteed and the possibility of a 

number of scatterers in the vicinity of the mobile suggests a Rayleigh fading signal. At the 

mobiles, an antenna spacing greater than X/2 is sufficient to achieve very low fading correlation 

between branches [10], [14], [15], whereas 50X, and 100A, are necessary at the base station [16]. 

Space diversity can be implemented at either the mobile terminal or base station, or both, depend

ing on the particular combining technique used and degree of the signal enhancement required. In 

[17], the research results show that theoretically, space diversity (with optimum combining) can 

substantially increase the capacity of most interference limited wireless communication systems. 
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The following combining techniques have been considered in the literature. 

• Selection Diversity 

• Feedback Diversity 

• Equal Gain Diversity 

• Maximal Ratio Combining 

1.3.1 Selection Diversity 

Referring to Figure 1.1, M receivers are used to achieve M branch diversity. The diversity 

branch having the highest instantaneous signal to noise ratio (SNR) is connected to the output [2]. 

In practice, a selection diversity system cannot function on a truly instantaneous basis. It must be 

designed so that the internal time constants of the selection circuitry are shorter than the recipro

cal of the signal fading rate [11]. The drawback of this scheme is its sub-optimal performance 

since it does not use all of the branch channel information. 

Transmitter 

V V 

R R R receiver 

LOGIC 

T 
output best one of the M receivers 

Figure 1.1 Principles of selection diversity from [2]. 
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1.3.2 Feedback Diversity 

6 

V Y 

control Comparator 

mean 
signal level 

Instantaneous 
signal level 

Receiver 

1 

Figure 1.2 Basic form of feedback diversity. 

As shown in Figure 1.2, the feedback diversity scheme is similar to selection diversity. A 

feedback link is provided to switch between transmitting antennas at the remote station within a 

limited amount of time delay. Instead of always using the best of M signals, the M signals are 

scanned in a fixed sequence until one is found which is above a predetermined threshold. This 

signal is then demodulated until it falls below a certain threshold and the scanning process is 

initiated again. This scheme avoids excessive switching when both antennas are in simultaneous 

fades [11]. The performance of this scheme is not as good as those obtained by other methods but 

it requires only one receiver. 

1.3.3 Equal Gain Diversity 

In equal gain combining, signals from all the branches are coherently combined using the 

same weighting factor. The signals received over the diversity channels are co-phased and added 

up. The performance of this method is marginally inferior to that of maximal ratio combining and 

superior to that of selection diversity. 
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1.3.4 Maximal Ratio Combining 

It was stated that in selection diversity only one of the diversity branch signals is used for 

demodulation. In contrast, in M R C , all the branch information is used to improve the overall 

performance. The signals from the received antenna elements are co-phased and weighted so as to 

maximize the overall SNR [1]. Owing to the recent development of the pilot signal-aided scheme 

as well as DSP technologies, the maximum combining schemes can be implemented with a 

simple hardware configuration [18], which is especially effective for base station to implement 

three branch diversity or more. 



Chapter 2 Performance Comparison with Perfect Channel Estimation 8 

Chapter 2 Performance Comparison with Perfect Channel 
Estimation 

The maximal ratio combining (MRC) approach uses a maximal-ratio combining receiver 

to process the signals received at multiple antennas. The signals from the received antenna 

elements are cophased and weighted according to their individual signal voltage to noise power 

ratios. The realization of this combiner is based on the assumption that the channel state is known 

perfectly [19]. 

In some applications, e.g. the third generation cellular communication systems currently 

under development, such a receive diversity scheme may not be desirable for the mobile handsets 

because of cost, size and power considerations. A simple transmit diversity (STD) scheme [8], 

which uses two transmit antennas and M receive antennas, was proposed. There is no feedback 

required from the receiver to the transmitter. It was shown that, for a fixed level of radiated power 

per transmit antenna, this STD scheme has the same BER as M R C with the same diversity order. 

The STD scheme can be generalized so as to include any number of receive antennas, but cannot 

be easily extended to more than two transmit antennas. 

The maximum ratio transmission (MRT) scheme [9] can be applied to any number, N, of 

transmit antennas and any number, M, of receive antennas, even though feedback is required 

from the receiver so that the transmitter can estimate the channel. For convenience, we refer to 

this a s a ( i V x M ) MRT scheme. 

Those aspects of the M R C , STD and MRT schemes which are necessary in this study are 

briefly reviewed in this section. Following [8], a complex baseband representation of the systems 
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is used. The channel diversity branch from antenna n at the transmitter to antenna m at the 

receiver is denoted by hnm = anme nm, in = 1...N, m= I...M), where anm is the amplitude 

gain of the diversity branch and 0 is the phase distortion introduced by the channel. 

Systems that coherently combine independent signals from spatially separated antennas 

have better carrier statistics and less random F M than selection diversity systems [2]. Coherent 

combining systems do not suffer degradation from phase transients that are inherent in antenna-

switching systems. It has been shown in [12] that absolute phase coherent detection gives the best 

theoretical B E R performance for BPSK and QPSK with a given number of diversity branches 

under flat Rayleigh fading conditions. Therefore, Coherent detection is considered to be more 

desirable when a large number of diversity branches are employed, and is used for those schemes 

reviewed in this section. Noncoherent detection is also used in practice. In this study, we use 

coherent detection. 

2.1 Review of Maximal Ratio Combining (MRC) 

Figure 2.1 shows the baseband representation of the M R C scheme with a diversity order of 

M. The signal received on branch i corresponding to the transmission of a signal s0 is 

r\i,MRC = hlis0 + n i > i = l - M , (2.1) 

where {«•, i = I...M} are outcomes of independent complex Gaussian random variables (r.v.) 

representing noise and interference. 

Through the thesis, we use uppercase letters to denote r.v.'s and the corresponding 
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lowercase letters to denote their samples. The combined signal sQ M R C is then defined as 

channel 1 ^ur^u 
estimator 

" 2 , 

channel 
estimator 

\h, u r~\nn >0 

channel ft-iMf-tym 
estimator *\jy 

Receiver 

>) H 

- K * — H 

•Kx—H 

*S0,MRC 

Figure 2.1 M R C with M receive antennas. 

M 

~s0,MRC ~ ^^\ir\i,MRC 
i= 1 
M 

= yLh*i(huso+ni) 
i= 1 

f M \ M 

Vi = l J i = 1 

(2.2) 

where ^ • denotes the complex conjugate of hu. The theoretical analysis of the error perfor

mance for a binary digital communications system with diversity has been discussed in [1][19] 

assuming Rayleigh faded diversity channels. The instantaneous output signal to noise ratio (SNR) 

from the combiner was shown to be the sum of the instantaneous SNR's on the individual 

branches, 
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M 

Y = £ Y I , - . ( 2 - 3 ) 
I = 1 

With coherent binary PSK, the output of the maximal ratio combiner can be expressed as a 

single decision variable in the form 

UMRC = Re(So,MRc), ( 2 . 4 ) 

where Re(So, MRC) denotes the real part of So, MRC • The data bits to be transmitted are assumed 

to be independent and equally likely to be 0 or 1. 

The B E R is the probability of that UMRC is less than zero, i.e. 

P(l) = 2 ( V 2 Y ) , (2.5) 

where 

Y = 2 
Vi = 1 J 

(2.6) 

2 
where £ is the signal energy, and <5N is the variance of the real or imaginary components of Nt. 

2 
The noise variance o"yy has been assumed to be identical for all branches. It is assumed that the 

average energy gain of each diversity channel is the same, i.e. E(a1{) = x. The average SNR per 

branch is then written as 
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(2.7) 
'N 

The p.d.f of r , / r ( y ) , is derived in [1][19] as 

1 M - l 

f M - 1 Y -Y/YO 
/ r m " ( M - l ) ! M e 

i o 

(2.8) 

The B E R can be evaluated by averaging the conditional error probability given in (2.5) 

over the fading channel statistics in (2.8), i.e. 

= J j > ( Y ) / r ( Y W Y (2.9) 

The integral of (2.9) can be simplified as indicated in [20] 

M -

Pe = 2 d - ) 
M '"^ \(M-\+i 

i = 0 V i 
(2.10) 

where 

u = 
l + Y o 

(2.11) 

2.2 Review of Simple Transmit Diversity (STD) 

The system with two transmit and one receive antennas is introduced in this section. The 

generalization to a system with diversity order of 2M can be achieved by using the combiner for 
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one receive antenna and adding the combined signals from M receive antennas. 

2.2.1 Two-Branch STD 

In the STD scheme, two bits represented by s0 and s-^ are sent simultaneously during two 

consecutive bit periods. In the first bit period, sQ is sent from antenna A and s1 is sent from 

* * 

antenna B . In the second bit period, the signals sent from antennas A and B are -Sj and s0 

respectively. 

s0 

-Sj* noise 

Figure 2.2 The two-branch STD scheme with one receiver. 

Figure 2.2 shows the baseband representation of the STD scheme with a diversity order of 

two. Assuming that the channel fading does not change significantly during two consecutive bit 

periods, the received signals are 

r0,STD - ^\lsQ + ^ l ^ l + n l 
* * 

r\,STD = ~ h \ \ s \ + ^2150 + n2 
(2.12) 
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where nx and n2 are complex random variables representing receiver thermal noise and interfer

ence. 

(2.13) 

It is proposed in [8] that the decoding of s0 and s] be based on sQ S T D and J, S T D respec

tively, where 

_ * * 
SO,STD = hur0STD + h 2 l r l S T D 

2 2 * * 
= ( a n + a 2 1) SQ + hnn^ + h21n2 

_ * * 
S1,STD = ^ 2 1 r 0 , STD ~ h\\r\, STD 

2 2 * * 
= (OCJJ + a 2 1) 5j - hlln] + h2]n2 • 

Those combined signals are then sent to the decision device. The STD scheme yields the 

same BER as M R C for a fixed value of the power radiated per transmit antenna assuming that the 

channel gains hu and h2X can he perfectly estimated by the receiver. 

2.2.2 STD With Two Transmit and M Receive Antennas 

Two transmit and M receive antennas can be used to yield a diversity order of IM. The 

case of two transmit and two receive antennas is shown in Figure 2.3. 

The encoding and transmission sequence of the information symbols are identical to the 

case of one receiver. The received signals at the two receive antennas are: 

R\,STD = ^\lS0 + H2\sl + " l 
* * 

R2,STD = -hus] + h2ls0 +n2 

- u u ( 2 , 1 4 ) 

R3,STD ~ " ^ O + "22^1 + N3 
* * 

R4, STD = ~^\2sl + ^22S0 + N4> 
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noise 

channel 
w estimator 

hji h21 

' i r 
S0,STD S0,STD 

—• combiner w decision 
device w 

decision 
device 

k i \ S1,STD 

h22 

channel 
w estimator 

Figure 2.3 STD with two receive antennas. 

where rl S T D and r3 S T D are the signals received in the first symbol period, r2 5 r z ) a n d r4 S T D 

are the received signals corresponding to the second symbol period. The output signals from the 

combiner are achieved as: 

^0, STD = ^ l l r l , S 7 D + ^21 r 2, STZ) + ^12 r 3, S7T) + ^22 r 4, STD 
2 2 2 2 * * * * 

= (ocjj + oc 1 2 + oc21 + oc2 2) 5 0 + hntix + / i 2 1 « 2

 + ^i2 n3 + h22nA 

_ * * * * 
^l,STD = n2\r\,STD~ nl\r2,STD+^22r3, STD ~^l2r4, STD 

2 2 2 2 * * * * 
= ( a n + a 1 2 + a 2 1 + a 2 2 ) .Sj - h l l n 1 + h2Xn2-hun4 + h22n3 . 

(2.15) 

Equation (2.15) shows that those two combined signals are the summation of the 

combined signals from each receive antenna. The combiner with two transmit and M receive 

antennas can be built by using the combiner for each receive antenna, and then adding the 

combined signals from all the receive antennas to obtain a diversity order of 2M. 
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2.3 Review of Maximum Ratio Transmission (MRT) 

The MRT scheme [9] can be applied to a system with N transmit and M receive antennas. 

The channel can be represented by a channel coefficient matrix, 

H= 

hu ... hlM 

hNl ... hNM 

(2.16) 

where hnm, n = 1, 2, N,m = 1, 2, M represents the channel from antenna n at the 

transmitter to the antenna m at the receiver. 

Figure 2.4 MRT with N transmit and M receive antennas. 

As shown in Figure 2.4, the source signal s is weighted by a ( N x 1) transmit weighting 

vector V before transmission, where V is defined as 
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V = -a{HW)H. (2.17) 

where a = \HW\, which is the length of the vector HW, is a normalization factor to ensure that 

the transmission power is normalized to an average value, and W is a (M x 1) receive weighting 

vector. The superscript H in (2.17) denotes the Hermitian operation, i.e. complex conjugate 

transposed. The transmitted signal vector can be expressed as 

st = -(HW)H, (2.18) 
_ a 

and the received signal vector as 

r = -{HW)HH + n, (2.19) 
a 

where n = [nl, nM] is the noise vector. The received vector components are then weighted 

and sent to the combiner. The estimate of the signal is given by 

J = -(HW)HHW + nW 

MRT A \ -> - — ( 2 2 Q ) 

= as + nW 

The overall output SNR can be written as 

WW " , , 
Z h i 
i= 1 

2 
where y 0 M R T = • To maximize the y in (2.21), It is concluded in [9] that W should satisfy 
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the condition \w w2\ = • • • = \WM\ > A N D 

N 

X hPiKt 
i = 1 (2.22) N 

i= 1 

where p and q take on values in the set { 1, 2, ..., Af} . 

2.4 Performance Comparison with Perfect Channel Estimates 

The BER's of M R C , STD and MRT with diversity orders of two and four are compared in 

this section. It is assumed that each channel undergoes independent slow fading, whose amplitude 

is Rayleigh distributed. The interferences and noises are modeled as additive complex white 

Gaussian random variables. The complex channel gains hnm, n = 1, 2, N, m = 1, 2, M 

can be perfectly estimated by the receiver and/or the transmitter. 

The theoretical B E R performance of M R C is given by (2.10), and plotted in Figure 2.5. 

The simulation results for two-branch M R C and STD are also shown and agree very closely with 

the theoretical M R C curve. 

Figure 2.6 shows BER's for two-branch M R C and MRT with uncoded coherent BPSK. It 

can be seen that the diversity schemes provide substantial improvement over the no diversity case. 

The improvement increases with SNR. For BER= 10 , there is an improvement of about 8 dB. 

M R C and STD are about 0.5 dB more efficient than M R T ( N x M = 1 x 2) at BER= 10"2. From 

Figure 2.5 and Figure 2.6, we can see that STD and (N x M = 2 x 1) MRT have the same perfor-
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10 

10 
-4—» 

o 

PQ 

10 

10 

-i 1 1 1 r 

STD(NxM=2xl) simulalion results o 
MRC(NxM= 1 x2) simulation results + 

theoretical refills 

SNR (dB) 

10 12 14 

Figure 2.5 Comparison of theoretical and simulation results, 

mances as (N x M = 1 x 2 ) M R C . This is proved at the end of this section. It is interesting to note 

that the BER performance of (N x M = 1 x 2 ) MRT is worse than that of (N x M = 2 x 1) MRT. 

The symbol error rate (SER) curves for diversity order four M R C , STD and MRT with 

Q P S K modulation are plotted in Figure 2.7. It can be seen that M R C ( / V x M = 1 x 4 ) , 
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Figure 2.6 BER's of M R C and MRT schemes with diversity order of two. 

MRT (TV x M = 4 x 1), and STD(N x M = 2 x 2 ) have the same performances for a given value 

of the average power radiated per transmit antenna as shown below. For MRT with diversity order 

of four, the SER performances are given for three different cases (i.e. (N x M = 1 x 4 ) , 

(N x M = 2 x 2) and ( J V x M = 4 x l ) ) . Comparing these cases, it can be seen that MRT with 

only transmit diversity ( i V x M = 4 x l ) gives the same SER performance as M R C , and that 
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Figure 2.7 SER's of MRC, STD and MRT with diversity order of four. 

MRT with both the transmit and receive diversity (N x M = 2 x 2) gives the worst SER perfor

mance. The performance of M R T wi th (NxM = 1 x 4 ) is i n f e r i o r to that of 

(N x M = 4 x 1) MRT and superior to that of (N x M = 2 x 2). For SER= 10" 3, there is a 0.9 dB 

degradation for M R T ( N x M = 1 x 4 ) and 1.3dB for M R T ( N x M = 2x2) compared to 
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M R T ( i V x M = 4 x 1). 

From Figure 2.6 and Figure 2.7, we notice that for (A^x 1) MRT, the error probability is 

the same as that of M R C with the same diversity order. For (TV x 1) MRT, the weighting function, 

W j , at the receiver is set to 1 for convenience. Then, we have from (2.21) 

l = \ a , (2.23) 

M 

where a2 = \H\2 = ocfj. The overall SNR y can then be written as 
i = l 

I ( M ' ^ 

°JVV« = 1 J 

(2.24) 

which is the same as (2.6), the output SNR from M R C combiner. From (2.9), we can see that Pe 

is a function of fr(y). Since the output SNR p.d.f. for both (1 x N) M R C and ( i V x l ) MRT are 

the same, they have the same error performance. 



Chapter 3 Performance with Imperfect Channel Estimation 23 

Chapter 3 Performance with Imperfect Channel Estimation 

It is of practical importance to study the performance degradations which result from the 

use of imperfect channel estimates. The BER's of M R C , STD and MRT with channel estimation 

errors are now analyzed. Two modulation methods B P S K and QPSK are considered in the 

analysis. We begin with the performance analysis for those three schemes. The channel model to 

be used in the analysis is then described. Performance results are compared in the last section. A 

two-branch diversity model is discussed in this section. 

The estimated complex channel gains are expressed as 

Km = hnm + znm,n,m= 1,2 , (3.1) 

where znm = $nme^"m represents the estimation error for the diversity branch from the n th 

transmit antenna to the m th receive antenna. 

3.1 BPSK Modulation 

We first derive the B E R for given values of hnm, n, m= 1, 2 and znm, n, m= 1,2. The 

results can then be used to obtain the B E R when hnm and znm are drawn according to any 

arbitrary probability distribution. It can be shown in [21] that the maximum likelihood decision 

rule, which minimizes the BER, is equivalent to choosing sQ = 1 if Re(s0) > 0 and choosing 

sQ = -1 otherwise, where denotes the combined signal. 
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3.1.1 MRC 

24 

The decision r.v. for M R C is denoted by UMRC = RC(SQ M R C ) . For given values of sQ, 

h n , h l 2 , z u and z 1 2 , we have from (2.2) and (3.1) that 

- * * 
^0,MRC = ( ^ l l + Z l l ) r0, MRC + (̂ 12 + Zu) r\,MRC 

2 2 * * 
= ( « H + "12)̂ 0 + ^ l l ^ l l ^ O + 1̂2̂ 12-̂ 0 ( 3 , 2 ) 

+ (hn+zn)Nl + (hn + z n ) N 1 . 

After simplification, the mean and variance of the decision r.v. can be written as 

E(UMRC) = [(a?, + a i 2 ) +oCi iP 1 1 cos(0 n -4> H ) 

and 

° u m c

 = [ a 2

1 + (3 2

1 +2a 1 1 (3 1 1 cos (e 1 1 - ( | ) n ) 

+ a 2

2 + p 2

2 + 2a 1 2 (3 1 2 cos(9 1 2 - ( l ) 1 2 ) ]a^ 

Since UMRC has a Gaussian distribution, the BER is given by 

where 

(3.3) 

(3.4) 

a = (a2

n + a 2

2 ) + a 1 1 p 1 1 c o s ( 0 1 1 -tyn) + a 1 2 p 1 2 c o s ( e ] 2 - ( t ) 1 2 ) , (3.6) 
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1 f° - y 2 / 2 

and <2(JC) = - = e dy. A detailed derivation of (3.3) and (3.4) is given in Appendix A . 

3.1.2 STD 

Recall that in the STD scheme, two bits sQ

 a n d * i are simultaneously transmitted. By 

symmetry, the BER's for both bits are equal so that we only need to consider the B E R for one of 

the bits, say bit s0. Denote the corresponding decision r.v. by USTD = Re(S0i STD). For given 

values of s0, sx, hn , h2l, zu and z2l, we have from (2.13) and (3.1) that 
So, STD = (^11+^n) rQ,STD + (^21 + z 2 1 ) r 1, STD 

= (<A\ +U2\)SQ + ZuhUs0 + z2\h2\sQ + z n h 2 \ s \ (3-7) 
* * 

- z2lhnsx+{hu+zn) Nl + (h2l+z2l) N2 . 

After simplification (see details in Appendix A.) , it can be shown that the mean of the 

decision r.v. can be written as 

E(USTD)= [ ( a 2 j + a 2 1 ) + a 1 1 ( 3 1 1 c o s ( e 1 1 - ( j ) n ) + a 2 1 p 2 1 c o s ( 0 2 1 - 4 i 2 1 ) ] 5 o 

(3.5) 

+ [ a 2 1 p n c o s ( 0 2 1 — <t> 11) — a 1 1 p 2 1 c o s ( 0 1 1 -(t)̂ )]̂ !. 
2 

The variance of USTD can be shown to be the same as the variance, ^uMRC' °f ^'MRC a s g i v e n m 

(3.4). Since USTD has a Gaussian distribution, the BER for STD is given by 

(3.9) 

where a is given by (3.6) and 
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b = a 2 1 (3 1 1 cos(6 2 1 - ( ) ) 1 1 ) -a 1 1 (3 2 1 cos(0 1 1 -<|>21). (3.10) 

3.1.3 MRT 

It was shown in Section 2.4 that the B E R performance for the (7V x M = 1 x 2 ) case is 

worse than that for the {N x M = 2 x 1) case. Furthermore, the (TV x M = 2 x 1) case has the 

same performance as two-branch M R C and STD, when perfect channel estimates are available. 

The (7V x M = 2 x 1) case is considered in the following theoretical analysis to compare the 

system sensitivity performance with M R C and STD. 

From the description of M R T ( N x M = 2 x l ) in Section 2.3, the weighting functions at 

the transmitter can be written as 

V i = 

v 2 = 

hu 

* 
L2\ 

The weighting function at the receiver can be normalized to 1 in this case. When the channel 

estimates are erroneous, the estimated v., i = 1,2 can be expressed as 

(fci i+Zn) 
v, = 

J\hn+zn\2 + \h2l+z 
* 

(h2l +z 2 1 ) 

2 
211 (3.12) 

V2 = 

^ n + z n f + l ^ i + ^ i l 2 

From Section 2.3, the combined signal r.v. can then be written as 
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So, MRT = v l s 0 h u + v 2 s Q h 2 l + /Y j 

\hu\2 + hnzu + \h2\\2 + h2lz2\ (3- 1 3) 

*l\hu+zn\2 + \h2l+z2l\ 

The corresponding decision r.v. is denoted as UMRT = Re(Soi MRT) • For given values of s0, hn , 

h2l, zu and z 2 1 , we have from (3.13) that 

=vrr N h l ^ + l ^ l ^ + ^ ^ l l ^ l l + / ?2l4) 
E(UMRT) = 1 2 2 *0 

# 1 1 + Z l l | +1̂ 21+2211 

_ [(«?i +«2i) + « i i ! 3 n c o s ( 9 1 1 - 0 1 1 ) + a 2 1 (3 2 1 cos(9 2 1 - ( | ) 2 1 ) ]5 o 

*lan + P i i + 2 a 1 1 P 1 1 c o s ( e , 1 -<(>„) + a 2 1 + p 2 1 + 2a 2 ] (3 2 1 cos(0 2 1 -<|>21) 

2 2 
and G f ; = G N . With (3.4) and (3.6), the mean o f UMRT can be expressed as 

(3.14) 

E(UMRT) = • (3.15) 

The BER for MRT is then given by 

Pe,MRT = Q[^-\ (3-16) 

3.1.4 Channel Model 

As described in Section 2.4, a Rayleigh faded channel model is assumed. The channel 

gains h , n= 1 ...N, m= 1 ...M are then modeled as complex Gaussian r.v.'s. The fading 
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processes among the (N x M) diversity channels are assumed to be independent. At the receiver, 

an ideal coherent detector is assumed. The signal in each branch is corrupted by an additive zero-

mean white Gaussian noise process. 

3.1.5 Numerical Results with BPSK modulation 

From (3.5) and (3.16), it can be seen that (N x M = 1 x 2 ) M R C and {NxM = 2x\) 

M R T have identical channel error sensitivity performances. For two-branch STD, using the 

symmetry of the Q(.) function, it can be shown from (3.5) and (3.9) that PetsTD-^e,MRC' 

STD has a higher BER than M R C and M R T ( N x M = 2 x 1), if a is positive. Details are given in 

Appendix B . From (3.6), a is positive for $ik<aik,i = 1,2, k = 1,2, since c o s ( . ) > - l . 

Typically, the magnitude of the estimation error will be small compared to that of the channel gain 

and the STD will have a higher BER. 

For presentation of the numerical results, we consider two cases. For case 1, the channel 

gains and estimation errors are fixed with values chosen at random other than to ensure 

$ik < aik, i = \,2,k = 1, 2. The BER's for M R C and STD can be calculated using (3.5) and 

(3.9) respectively. 

For the second case, a Rayleigh faded channel is used and the channel estimation errors 

zik, i = 1,2, k = 1,2 are modeled as samples of independent complex Gaussian r.v.'s. The 

estimate hnm, n = 1,2, m = 1,2, gain amplitude and phase shift of the n —> m th channel can be 

derived either from the transmission of a pilot signal or from demodulation of the information 

bearing signals received in previous signaling intervals [19]. The BER's for M R C and STD can 
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then be obtained by averaging (3.5) and (3.9) respectively over the probability distributions for 

aik, Bilc, $ik, and §ik, i = \,2,k= 1,2. These samples are al l independent. The samples 

aik,$ik,i = \,2,k= 1,2 are Ray le igh distr ibuted and Qik,fyik,i = 1,2, k = 1,2 are 

uniformly distributed in [0, 2n]. 

2 

The variances of the real and imaginary components of Hik and Zik are denoted by <3H 

and a z . The signal-to-noise ratio (SNR) and the estimation error-to-signal ratio (ESR) are 
2 2 2 2 

defined as (EBGH)/<5N and GZ/GH respectively, where Eb is the bit energy. Since \Hik\ has 
2 2 

zero mean, here we have oH = E[\Hik\ ]. 

Figure 3.1 shows the BER as a function of SNR for Case 1. For the parameter values 

_3 

shown in the figure caption, it can be seen that at a BER of 10 , STD is worse than M R C by 

about 1.5 dB. 

The results for Case 2 are shown in Figure 3.2 and Figure 3.3. When perfect channel 

estimates are available, M R C and STD have the same BER, given by (2.10). For two branch 

diversity 

1 3 / SNR If SNR Y / 2
 r-i 

. + 7 T - T ^ • ( 3 - 1 7 ) e, perfect 2 4^1+ SNR 4 U + SNR) 

In Figure 3.2, the BER's of the M R C and STD schemes are plotted as a function of ESR for 

SNR = 4 and 10 dB . From (3.17), the B E R values of SNR = 4 and 10 dB are 1.69 x 10"2 



Chapter 3 Performance with Imperfect Channel Estimation 30 

\ 
\ 
\ 

I A " I i i i I i i i l i i i I i i i 1 1 1 1 — d > 
0 2 4 6 8 10 

SNR (dB) 

Figure 3.1 BER's of M R C and STD schemes as a function of SNR for a randomly chosen set of parameter values: 

hQ = - 0.43 - 1.66j, hx = 0.13 + 0 . 2 9 z 0 = - 0.811 + 0.842j, z, = 0.841 - 0.027j. 

and 1.6 x 10 respectively. It can be seen that the B E R increases quite rapidly with ESR for 

ESR > -10 dB . For SNR = 10 dB and BER = 10~2, there is a 2 dB degradation for STD 

compared to M R C . 
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Figure 3.2 BER's of M R C and STD schemes as a function of ESR for SNR = 4 and 10 dB . 

Figure 3.3 shows the BER's of the M R C , STD and MRT (TV x Af = 1 x 2 ) schemes as a 

function of SNR for four different values of ESR. The curve for MRT(iV x M = 2 x 1) with 

perfect estimate appears in Figure 2.6 and has been omitted from Figure 3.3 to reduce cluttering. 

At low ESR values, estimation error tend to be small and there is little difference in the BER's 
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between M R C and STD. At ESR = -10 dB and BER= 10~2, there is a 3.5 dB degradation for 

STD and 0.6 dB for M R T ( N x M = 1 x 2 ) compared to M R C . It can be seen that the difference 

increases fairly rapidly with SNR. 

From Figure 2.6, we can see that with perfect channel estimation, STD has better B E R 

performance than MRT(7V x M = 1 x 2 ) ; however, with imperfect channel estimation, MRT may 

have a lower B E R than STD. For ESR •= -20 dB , the B E R performance for STD is still better 

than that for MRT, but the difference decreases with SNR. It can be seen that for SNR > 10 dB , 

the B E R for STD is almost the same as that for MRT. For ESR = -10 dB , STD has a better B E R 

performance than M R T only for SNR < 2 dB . We concluded that STD is more sensitive to 

channel estimation errors than M R C and MRT. It is interesting to note that M R C and MRT show 

similar sensitivity to channel estimation errors. 

3.2 QPSK Modulation 

The performance sensitivity to channel error estimates for M R C , STD and M R T with 

QPSK modulation is now considered. We first derive the symbol error rate (SER) for given values 

of znm, n= \...N,m= 1 ...M. The results are then used to obtain SER when znm is drawn 

according to any arbitrary probability distribution. Gray coding is used in this study. For a given 

symbol error, the most probable number of bit errors is one, subject to the mapping constraint 

[22]. In the analysis below, we make use of the fact that coherent demodulation ideally results in 

the two messages being separated at the outputs of the quadrature mixers [23]. Thus, the transmit

ted signal for a QPSK system can be viewed as two binary PSK signals. 
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Figure 3.3 BER's of MRC and STD schemes as a function of SNR for four different ESR values: 

(i) ESR = - o o dB, i.e. perfect estimate, MRC and STD 

(ii) ESR = -20 dB 

(Hi) ESR = -10 dB 

(iv)ESR = -3 dB 

3.2.1 M R C 

For given values of sQ, hn , h n z n and z 1 2 , the combined signal can be written as in 
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(3.2). After simplification, the means and variances of the decision r.v.'s can be written as 

34 

E[Re(S0,MRc)] = [(oc n + a 2

2 ) +a 1 1P 1 1cos(0 1 1-(t) 1 1)+a 1 2p 1 2cos(e 1 2-(t) 1 2)]5 o 

2 2 (3.18) 
E[Im(S0tMRC)] = [ ( a n + a 1 2 ) + a 1 1 p 1 1 s i n ( e 1 1 - ( t ) 1 1 )+a 1 2 P 1 2 s in ( e ] 2 -4 ) 1 2 ) ]5 0 , 

where Re(So, MRC) denotes the real part of So, MRC a n a " Im(Sot MRC) denotes the imaginary part 

of S0, MRC and 

°MRC = [ a 2 i + p 2 i + 2 a n p 1 1 c o s ( 0 1 1 - ( t ) 1 1 ) 

+ a 2

2 + p 2

2 + 2 a 1 2 p 1 2 c o s ( 0 1 2 - 4 ) 1 2 ) ] a 2

v , 
(3.19) 

2 
which is the same as Gn in (3.4). 

Since both Re(sMRC) and Im(~sMRC) are Gaussian distributed, the BER ' s of the two 

symbol bits are given by 

PMRC, b «• eGr-) 
P MRC,bit! = Q{~Z J' 

(3.20) 

where 

c = a n + a
2

2 + 7 2 a i i P ] 1 c o s ( 0 n - § n + 7 t / 4 ) + ^ a i 2 p 1 2 c o s ( 0 1 2 - < j ) 1 2 + n/4) 

2 2 ( 3 - 2 1 ) 

d = a n + a ] 2 + 72anp ] 1 s i n ( 0 1 1 -(t>n + 7 t / 4 ) + ^ a i 2 p 1 2 s i n ( 0 1 2 - ( | ) 1 2 + 7i /4) . 

The SER can then be derived as 
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PMRC, QPSK ~ 1 - ( 1 - PMRC, bitO( 1 ~ P MRC, bitl) • (3.22) 

3.2.2 STD 

For given values of s0, s, , hu , h2i, z n and z 2 1 , we have the combined signal r.v. 

S T D as in (3.7). After simplification, the means for the decision symbol bits can be expressed 

as 

E[Re(S0!sTD)]= [(an +o t2 i ) +oc 1 1p 1 1cos(0 1 1-4) 1 1) + a 2 1 | 3 2 1 c o s ( e 2 1 - ( | ) 2 1 ) ] 5 o 

+[a 2 1(3 1 ]cos(0 2 ]-(|) 1 1)- a n (3 2 1 cos(0 1 1 - ( | ) 2 1 ) ]5 1 

E[Im(S0tSTD)] = [(a 2 ! + a 2 1 ) + a 1 1 P 1 1 s i n ( 0 1 1 -<t)11)+a21(321sin(021 -4> 2 1 ) ]5 0 

+[a 2 1 p H s in(0 2 1 - ( ) ) „ ) - a 1 1 p 2 1 s in(0 1 1 - ( ] ) 2 1 ) ] 5 1 . 

2 2 
The variance O^TD ^ ̂ e s^me as GMRQ in (3.19). The BER s of the two symbol bits are given as 

4 ^MRCJ 4 ^MRCJ 4 \-°MRCS * ^°MRC 

4 y^MRcJ 4 y°MRCJ 4 ^°MRCS 4 V ° M R C 

2 
(3.24) 

where 

el = V2a 2 i P n cos(0 2 1 - § n + 7t/4)-A/2anp 2 1cos((|) 2 1 - 0 U + K / 4 ) 

e2 = 72a 2 ip ] ] cos(0 2 1 - ( | ) n -7 t / 4)-72anP 2 1 cos ( ( l )2 1 - 0 ^ -n/4) 

1 1sin(0 2 1 - ^ n + 7t /4)-72anP 2 1 sin((|)2 1 - 0 n +K/4) 

f2 = ^ a 2 i p ] 1 s i n ( 0 2 1 - ( ( ) , ] - 7 t / 4 ) - ^ a n P 2 1 s i n ( ( | ) 2 1 - 0 i i - 7 t / 4 ) 

c and d are given in (3.21). The SER can then be written as 
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PSTD, QPSK = 1 - ( 1 - PSTD, bitO^ ~ P STD, bill) • (3.26) 

3.2.3 MRT 

The outcome of the combiner has been given in (3.13). The means of i\e(So, MRT) a r*d 

Itn(So, MRT) can be written as 

[(a2j + a2!) + a 1 1 (3 1 1cos(e 1 1 -$u) + a 2 1 p 2 1cos(0 2 1 - <)) 2 1)]J 0 

E[Re(S0yMRT)]= - 2 2 

Jan + P n + 2a 1 1 p 1 1cos (0 1 1 -$n)+a2l + p 2 1 + 2a 2 1P 2 1cos(0 2 1-4> 2 1) 

[(a2j + a 2 1 ) +a 1 1P 1 1sin(6 1 1 -<^ n) + a 2 1 p 2 1 sin (0 2 1 - ( ) ) 2 1 ) ] 5 0 

£[/m(5 0,Afi?r)] = , 2 2 : 

f n + Pn + 2a 1 1 p 1 1cos (e 1 1 -(j)u)+a21 + p 2 1 + 2a 2 1 p 2 1 cos (6 2 1 - <|>21) 

(3.27) 

2 

The variance for those two decision bits are identical to oN. Thus, the BER's for those two 

symbol bits can be derived as 

PMRT,bit\ - 2^ 

P MRT, bit! ~ Q 

MRC 

d 
°MRC 

(3.28) 

where c and d are as given in (3.22). The SER can then be obtained as 

PMRT, QPSK = 1 ~ ( 1 - PMRT, 1 ~ PMRT, bill) (3.29) 

3.2.4 Numerical Results with QPSK modulation 

We can see from (3.20) and (3.28) that MRT ( i V x M = 2 x l ) has the same B E R and 
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Figure 3.4 SER's of M R C and STD schemes as a function of SNR for £Sfl = -20 and -10 dB . 

SER performance as M R C (NxM = 1 x 2 ) . From (3.20) and (3.24), using the same procedure 

derived in Appendix B., it can be shown that 

PSTD, bill -PMRC, bit\ 

PSTD, bit! - PMRC, bit! , 
(3.30) 
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if c and d are positive. The SER's for M R C and STD with imperfect channel estimates are shown 

in Figure 3.4, using the same channel model as in Section 3.1.4. The SER performance for STD is 

worse than that for M R C , as in the case of BPSK. Figure 3.4 shows that the SER difference 

between the two schemes increases with SNR and ESR. 
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C h a p t e r 4 T w o N e w D i v e r s i t y S c h e m e s 

A number of diversity combining schemes have been devised to exploit the uncorrelated 

fading exhibited by separate antennas in a space diversity array. The Maximal Ratio Combining 

(MRC) scheme is known to be optimal in the sense that it yields the best statistical reduction of 

fading of any linear diversity combiner [14]; however, the M R C technique has so far been 

exclusively for receiving applications. The Maximum Ratio Transmission (MRT) scheme is 

proposed for a system using both transmit and receive diversity [9]. In the M R T scheme, the 

weighting factors wt, i = 1 . . .M, in Figure 2.4, are set to have equal absolute values, i.e. 

|w,| = |w 2 | = •••= | w M | ; the absolute values are set to 1 for simplicity. However, it should be 

noted that this constraint affects the maximum SNR. An improved M R T scheme (IMRT) is 

proposed in Section 4.1. In the IMRT scheme, the receiver weights the signals on different 

branches according to M R C , but uses the same transmit weighting factors as in Figure 2.4. A new 

optimal maximum ratio transmission and combining (MRTC) scheme is then proposed in Section 

4.2, which maximizes the SNR using optimal transmit weighting function and a MRC-like receive 

weighting function. Here we use a (NxM = 2x2) model to illustrate its operation. The SER 

performance of the new scheme together with that of the IMRT is discussed in Section 4.3. 

4.1 Improved MRT (IMRT) Scheme 

In MRT, the received signals on all diversity branches are equally weighted. In this 

section, an improved MRT (IMRT) scheme is proposed in which the signals on each branch are 

weighted by a factor proportional to the received signal amplitude. 

In the IMRT scheme, the two received signals in a (N x M = 2 x 2) MRT scheme can be 
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viewed as two inputs for another MRC combiner. The system model is shown in Figure 4.1. 

40 

SIMRT 

: w2g2 

Figure 4.1 IMRT with two transmit and two receive antennas 

The weighting factors kt,i =1 ,2 are the products of the weighting factors 

w•, i = 1,2 from MRT and gi, i = 1, 2. The values of gt ,i= 1,2 are set according to the 

M R C rules. From (2.17), the transmit weighting factors are 

1 * 
v l = SW\hU+W2h\l) 

1 * 
v 2 = -(wlh2l+w2h22) , 

(4.1) 

2 2 2 2 2 
where a = | /z u | + | /J 1 2 | +|^2i| + l^nl + 2 ^11^12 + ^21^22 , and Wj = w2 = 1 

The combined signal is then given as 
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~SIMRT = (sv1hn+sv2h2l+nl)kl + (svlhl2 + sv2h22 + n2)k2 

= (svxhxl + sv2h2l + nx)wxgx + (svxhl2 + sv2h22 + n2)w2, 

s, 
= ; ^ i i | 2 + h i | 2 + 

+ s-(\hn\2 + \h22\2 + 

n\\n\2 + ^21^22 

n\\n\2 + n2\n22 )g2

 + W282n2-

(4.2) 

According to the combining rule in M R C , the optimum weight for each branch has a 

magnitude proportional to the signal magnitude and inverse to the branch noise power level [1], 

here we choose 

si = ( h i i 2 + h i i 2 + 

2 2 
#2 = (\hn\ +\h22\ + 

nlln\2 + ^21^22 

^11^12 + ^21^22! 

)/a 

)/a. 
(4.3) 

The combined signal can then be written as 

^IMRT- ~ ( | ^ l l | + | ^ 2 l | + 

a 
^11^12 + ^21^22 

+ ^ ( | ^ 1 2 | 2 + \h22^ + 1^11^12 + h2\h2^) + k2n2> 
a 

) + kxnx 

2 
(4.4) 

where kx = wxgx, k2 = w2g2. The IMRT is actually a combination of a MRT and a MRC-like 

receiver. 

4.2 New Maximum Ratio Transmission and Combining (MRTC) Scheme 

It has been shown in Section 4.1 that the IMRT scheme can improve the output SNR by 

using a MRC-l ike weighting function at the M R T receiver. However, the improvement is not 

optimal for maximizing SNR when multiple transmit and multiple receive antennas are used. In 

this section, we introduce a new maximum ratio transmission and combining scheme (MRTC) 
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with both optimal transmit and receive weighting functions. 

42 

: Wi!• \i2 

SMRTC 

Figure 4.2 MRTC with two transmit and two receive antennas 

As shown in Figure 4.2, = 1,2 are the transmit weighting factors, and /,-,/= 1,2 

are the receive weighting factors. The two received signal components can be written as 

rx = {t\hu + t2h2X)s 

r2 - (*1^12 + h^22)s-
(4.5) 

The weighting functions, /,-,/= 1, 2 at the receiver, are chosen according to the M R C scheme, 

i.e. 

lx = (tlhn+t2h21) 
* 

l2 = (t\hn + t2h22) 
(4.6) 

The combined signal can then be written as 
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~SMRTC = l\(r\ + n0 + l2(r2 + n2) • (4J) 

2 
Assuming that each receiving branch has the same average noise power oRN, which is the 

2 2 
sum of the powers, oN, in real and imaginary components, the total noise power aNT is simply 

the weighted sum of the noise in each branch [11]. Thus, 

2 

i= 1 

The SNR, y, at the output of the combiner can be written as 

y = r2/o2
NT, (4.9) 

where r = /,(txhn + t2h2l)s + l2(txhX2 + t2h22)s• Using Schwarz Inequality [24], y is 

2 
maximized when /• = r/GRN, which leads to 

( 2 2 2 f 
X ri/aRN 2 2 2 

Y = Hr - = S " T - = 5 > f . < 4 1 0 > 

The SNR at the output of the diversity combiner is simply the sum of the SNR's for each receiving 

branch, i.e. SNR = SNRX + SNR2. From equation (4.5), we have 

SNRX = \txhix + t2h2l\ ^/GRN 

2 2 ( 4 , 1 1 ) 

SNR2 = \txhn + t2h22\ ^/o 
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where C, is the signal energy. Maximizing SNR is then equivalent to maximizing 

2 2 K= \txhu +t2hlx\ +\tlhl2 + t2h22\ (4.12) 

i . 2 I .2 
with respect to tx and t2 subject to the transmit power constraint, i.e. \tx\ + \t2\ < 1 . 

We use the same complex representation for hnm = Ctnme nn, n, m=l, 2 as in previous 

chapters. The transmit weights t{, i = 1,2 can be represented by t• = \|/,-e7*', / = 1,2. With the 

2 2 2 2 
constraint \tx\ + \t2\ =1, i.e. + \ j / 2 = 1, A' can be expressed as 

K = y(9ii + <l>i) , „ ;'(e2i + <t>2) 2 
+ 

7(6,2 + <t>l) 7(922 + <t>2) 
¥ l t t i 2 « + ¥ 2 « 2 2 e 

= \|/2a2

1+y2a2]+2\|/1\|/2a11a21cos(011+(|)1-e21-())2) 
2 2 2 2 

+ V|/ja 1 2 + \|/2oc22 + 2\|/ 1\)/ 2a 1 2a 22cos(0 ]2 + <t>i - ©22~ ^2) 

= \\f2(a2

u + a2

2) + y2

2(a2

21 + «L) + V i ¥ 2 2 , 

where Q = 2 a n a 2 i c o s ( 0 n + (j), - 0 2 1 -^>2) + 2ai 2 a 2 2cos (0 1 2 + <|>i-622_ ^2) • S ince 

V|/2 = Jl-\\f\, equation (4.13) can be re-written as 

K = \ i / 2 ( a 2
1 + a 2

2 ) + ( l - x | / 2 ) ( a 2
1 + a22) + 2 v | / i A / 1 - V ? - ( 4 - 1 4 ) 

For given values of hnm = anme "m, n, m=l, 2, we wish to maximize K w.r.t. , (j)] and <|)2. 

To find the stationary points of \\fx, §x and (J>2, we set the partial derivation , and to 
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zero [25]. From = 0 and = 0, we have the same equation 

tan(d> -<)>) = a n a 2 i s i n ( 9 n - 9 2 i ) + a i 2 a 2 2 s i n ( 9 i 2 - e 2 2 ) = D ( 4 1 5 ) 

1 2 - a j j a ^ s i n t O i , - 0 2 1 ) - a 1 2 a 2 2 s i n ( 0 1 2 - 0 2 2 ) 

Thus, the optimal solution for K depends only on the difference A between (j)j and <j)2. From 

(4.15), in the interval (-K, it), there are two roots for A , which is (atanD) and either 

(atanD + n) or (atanZ) - n). From = 0, we have 
3Vi 

¥ 2 = l ± V l - 4 / ( 4 + C 2 ) ; ( 4 1 6 ) 

2 2 2 2 2 where C = 2 ( a n + a 1 2 - ot21 - a 2 2 ) / 2 . Since 0 < \\fx > 1, K will obtain its maximum value 

at one of the four possible points \ 0, (1 ± Vl - 4 / ( 4 + C 2 ) ) / 2 , 1 i . Since 2 depends on A , for 

each A , there are four possible y's. In our simulation, the eight possible points are compared to 

select the proper weighting functions which maximize the function K. 

4.3 Numerical Results 

The channel, interference and noise models are the same as those described in Section 

3.1.4. QPSK is used in the simulation. It is assumed that perfect knowledge of channel fading 

coefficients are available to both transmitting and receiving stations. A (N x M = 2 x 2) diversity 
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model is used in this section. 

The symbol error rate (SER) curves are shown in Figure 4.3. It can be seen that IMRT and 

0 2 4 6 8 

SNR (dB) 

Figure 4.3 SER performances of 4-branch M R C , MRT, IMRT and MRTC 

MRTC offer significant improvements over MRT. At a SER of 10 3 , IMRT and M R T C are about 

0.5dB and 0.6dB more efficient than M R T ( / V x M = 2 x 2 ) . With optimal transmit weighting 
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function, M R T C exhibits a slightly better SER performance than IMRT. Among the schemes 

shown in Figure 4.3, M R C (N x M = 1 x 4 ) has the best performance. 
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C h a p t e r 5 C o n c l u s i o n 

5.1 Main Thesis Contributions 

In this thesis, the effects of channel estimation errors on error probability performance of 

M R C , STD and MRT were studied. An improved scheme for MRT and a new optimal maximum 

ratio transmission and combining scheme were proposed. 

• The M R C scheme yields the best statistical reductions of fading for any linear diversi

ty combiner. However, a major problem with using the receive diversity approach in a 

cellular communication system is the cost, size and power of the mobile units. The 

STD and MRT schemes allow implementations of diversity without requiring multiple 

antennas at the receiver. This is attractive for small mobile handsets. The error proba

bility performances of the three diversity schemes were compared in this thesis. The 

STD scheme has previously been shown to have the same BER as the M R C scheme 

with the same diversity order when perfect channel estimates are available. For MRT, 

when multiple antennas are used at the transmitter and only one antenna at the receiv

er, i.e. (N> 1,M = 1), the BER performance is shown to be the same as that of M R C 

with the same diversity order. When multiple antennas are used at the receiver, the 

BER performance is much worse than that for the (N > 1, M = 1) case. For a 4th or-

_3 

der diversity scheme, at BER=10 , there is a 0.9 dB degradation for 

MRT(7V x Af = 1 x 4 ) and 1.3 dB for MRT(7V x M = 2 x 2) compared to 

M R T ( / V x M = 4 x 1). 
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• The performance sensitivity of M R C , STD and MRT to channel estimation errors was 

studied. It was shown that (N > 1, M = 1) MRT has the same BER as M R C , whereas 

STD can have a significantly worse performance than M R C when the channel cannot 

be estimated accurately. With BPSK, at a BER of 10~3 , STD is worse than M R C by 

about 1.5 dB. The BER and SER degradations for STD increase rapidly with ESR and 

SNR relative to M R C . 

• Two new schemes, IMRT and MRTC, which yield improved error performances com

pared to the MRT scheme were proposed. In IMRT, the same transmit weighting func

tion as in MRT is used. Unlike MRT, M R C combining is applied at the receiver. This 

results in a substantial error performance improvement over MRT. The MRTC scheme 

is an optimal maximum ratio transmission and combining scheme. It maximizes the 

SNR using both optimal transmit and receive weighting factors. For a 

(NxM = 2 x 2 ) system, at BER=10~ 3, IMRT and MRTC are about 0.5dB and 

0.6 dB more efficient than MRT(/V x M = 2 x 2). With an optimal transmit weighting 

function, MRTC was shown to have a slightly better SER performance than IMRT. 

5.2 Topics for Further Study 

• For (N> \,M> 1) MRT, further theoretical analysis of the error performances due to 

channel estimation errors would be useful. 

• The sensitivity to channel estimation errors for the IMRT and MRTC schemes needs to 

be investigated. 
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• The results of this thesis is based on the assumption that channel fadings are indepen

dent. It would be interesting to study the effects of correlated fades on performance 

with and without channel estimation errors. 
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Glossary 

Acronyms 

B E R - Bit Error Rate 

BPSK - Binary Phase Shift Keying 

CCI - Co - Channel Interference 

C D M A - Code Division Multiple Access 

dB - decibel 

ESR - Estimation Error to Signal Ratio 

IMRT - Improved Maximum Ratio Transmission 

M R C - Maximal Ratio Combining 

MRT - Maximum Ratio Transmission 

MRTC - Maximal Ratio Transmission and Combining 

QPSK - Quadrature Phase Shift Keying 

SER - Symbol Error Rate 

SNR - Signal to Noise Ratio 

STD - Simple Transmit Diversity 
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Notations 

fd - Maximum Doppler frequency 

X - Wave length 

N - Number of transmit antennas 

M - Number of receive antennas 

hnm - Diversity branch gain from transmit antenna n to receive antenna m 

anm - Amplitude of hnm 

dnm - Phase of hnm 

r\i MRC ' Received signal on branch 1 —> i in M R C scheme 

SQ, 5J - Transmitted signals 

ni - noise and interference on branch i 

s0 m r c - Signal output from M R C combiner 

y - output SNR from combiner 

j u - SNR on 1 - M branch 
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UMRC ' Decision r.v. for M R C 

°UMKC - V A R I A N C E 0 F UMRC 

C, - Signal energy 

2 

aN - Variance of the real (or imaginary) components of 7V(-

y 0 - Average SNR per branch 

/r(Y) -p.d.fof r 

PMRC, QPSK ' SER for M R C 

Pe - BER 

r • S T D - Received signal on branch / in STD scheme 

•*o STD ' 1̂ STD ' Signal outputs from STD combiner 

H - Channel coefficient matrix 

V - Transmit weighting vector 

W - Receive weighting vector 

" - Hermitian operation 
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st - Transmitted signal vector 

n - Noise vector 

sMRT - Signal output from MRT combiner 

a - A normalization factor 

hnm - Estimated complex branch gain 

znm - Estimation error for the n x m branch 

(3 n w j - Amplitude of zn 

§nm - P h a S e 0 f 

USTD ' Decision r.v. in STD scheme 

UMRT ' Decision r.v. in MRT scheme 

Re(S0, MRC) - Real part of S0, MRC 

Im(S0, MRC) - Imaginary part of 50, MRC 

g • - Receive weighting function in the IMRT scheme 

~SIMRT ' Signal output form IMRT combiner 
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~SMRTC ' Signal output from MRTC combiner 

ti - Transmit weighting factor in the MRTC scheme 

/• - Receive weighting factor in the MRTC scheme 

°RN ' Average noise power in each receive branch in the MRTC scheme 

<5NT - Total noise power in the MRTC scheme 
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A p p e n d i x A . M e a n s a n d V a r i a n c e s o f M R C a n d S T D D e c i 
s i o n V a r i a b l e s 

Here we derive the means of the decision r.v.'s for MRC and STD, as given in (3.3) and 

(3.8) respectively, and the variance which is given in (3.4). For MRC, using hnm = anme nm and 

znm = $nme^nm, n,m = 1,2 , (3.3) can be written as 

•>0, MRC = («H + a 1 2 ) * 0

 + a l l e P\\e s0 + a l 2 e P\2e s0 
(A.l) 

+(hu+zn) Nx + (hn + zn) N2 . 

The decision r.v. UMRC can then be expressed as 

U MRC = Re(S0,MRc) 

= (a2

n + a 2

2 ) 5 o + a 1 1 (3 1 1 cos(0 1 1 -(t) 1 1 )5 o + a 1 2 p 1 2 c o s ( e 1 2 - ( l ) 1 2 ) ^ o (A.2) 

+ Re[(/z n + z n )*/Vj] + Re[(hl2 + z12)*N2]. 

Since the channel noise is zero mean Gaussian, the mean of UMRC can be derived as 

E(UMRC)= t ( a i i + «i2) + « i iPnCos (0 1 1 -<j>n) + a12fJ,2cos(812-<|>12)].s0, (A.3) 

which is the same as (3.3). 

The variance of UMRC can be expressed as 
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= E[Re2(c\Nx) + Re2{C2N*2)] , 

where we assume Cx = (hn + z n ), C 2 = (h2l + z 2 1 ) , and the noise processes in the diversity 

branches are assumed to be statistically independent with equal powers. Let 

Nl = X1+jYl ; C 1 = Ux+jVx 

N2 = X2 + jY2;C2= U2 + jV2, 

where 

U{ = a 1 1 c o s 0 1 ] + PjjCos^jj 

U2 = ot 2 1 cos0 2 1 + P 2 i c o s ( t ) 2 i 

Vx = oc n s i n 0 n + PjjSin^n 

V2 = a 2 1 s in0 2 1 + p21 sin<l)21, 

we can then write 

(A.5) 

(A.6) 

G 2

U m r c = E[(XlUl + YlVl)2 + (X2U2+Y2V2)2] 

= U\E{X\) + V]E{Y2

X) + U\E{X\) + V2

2E{Y2

2) 

= oJ,(f72 + y 2 + r/2 + v2) (A.7) 

= °^ aii + Pii +2a 1 1p 1 1cos(0 1 1 -(()„) 

+ a 1 2 + p2
2 + 2a 1 2p 1 2cos(0 1 2 - <j)12) ] 

where E{x])= E{Y\)= E(X\)= E{Y\)= G 2

N . 
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F o r S T D , the comb ined s ignal g iven in (3.7) can be writ ten as 

7, ,2 2 N fiun -J<t>n _ ^ ' e 2 i Q ^21 
So, STD = ( « H +CL2l)sQ + ane P n g $ 0

 + a 2 1 g P2\e S0 

+ a 2 1 e " ' e 2 ' P 1 1 e ^ n s l - a u e ^ u $ 2 \ e ^ 2 l s \ (A-8) 

+(hn+zn) Nl + (h2l+z21) N2 . 

The dec is ion r.v., USTD, is 

U STD = Re(So,STD) 

= («11 + a 2 i ) ^ 0

 + a l l P l l c o s ( e i l - 4 > n ) ^ O +
 a 2 l P 2 1 c o s ( 0 2 1 - ^ 2 1 ) ^ 0 

(A.9) 

+ a 2 1 p n c o s ( 9 2 1 — 4>n>*i - a n P 2 i c o s ( e n - ( t ) 2 i ) 5 i 

+ Rc[(hu+zu)*Nl]+Re[(h2]+z20 N*] . 

The mean of USTD can then be der ived as 

E(USTD)= [ ( a 2 j + a 2 1 ) + a 1 1 p 1 1 c o s ( 0 1 1 - ( ( ) „ ) + a 2 1 p 2 ] c o s ( 0 2 1 - ( t ) 2 1 ) ] 5 o 

+ [ a 2 1 p n c o s ( 0 2 1 -tyu) - a 1 1 p 2 1 c o s ( 0 1 1 -$21)]sx, 

wh ich is the same as (3.8). 

T h e der ivat ion o f the var iance o f USTD is the same as that for UMRC. 
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A p p e n d i x B . C o m p a r i s o n o f (3.5) a n d (3.9) 

Here we compare the BER's of M R C and STD, as given by (3.5) and (3.9) respectively, 

using the symmetry property of the Q(.) function, which is defined as 

Q(x) = - L f Y ^ V (B.l) 

From (3.5) and (3.9), to prove that Pe S T D > Pe M R C when a is positive is equivalent to 

proving that 

U MRC MRC MRC 

The inequality (B.2) can be further written as 

Q(c)<±[Q(c + d) + Q(c-d)],c>0, (B.3) 

where c = —-—, d =—-— . Assuming that c, d > 0, i.e. a, b > 0, we have 
U MRC U MRC 

Q(c)-Q(c + d) = ^Lf+ e~y/2dy 
J2KJC 

Q(c-d)-Q(c) = -Lf e~y/2dy. 
J2KJc-d 

(B.4) 

Due to the symmetry property of the Q(.) function, we can see from Figure B . l that 



Figure B. l Illustrating (B.5) 


