
OPTIMAL CONTROL OF DYNAMIC SYSTEMS THROUGH THE

REINFORCEMENT LEARNING OF TRANSITION POINTS

By

Kenneth M. Buckland

M.A.Sc. (Electrical Engineering) University of British Colnmbia

B.Sc. (Electrical Engineering) University of Calgary

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES

DEPARTMENT OF ELECTRICAL ENGINEERING

We accept this thesis as conforming

to the required standard

...

THE UNIVERSITY OF BRITISH COLUMBIA

April 1994

© Kenneth M. Bnckland, 1994

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

(Signature)

Department of

The University of British Columbia
Vancouver, Canada

Date

DE-6 (2/88)

Abstract

This work describes the theoretical development and practical application of transition

point dynamic programming (TPDP). TPDP is a memory-based, reinforcement learning,

direct dynamic programming approach to adaptive optimal control that can reduce the

learning time and memory usage required for the control of continuous stochastic dynamic

systems. TPDP does so by determining an ideal set of transition points (TPs) which

specify, at various system states, only the control action changes necessary for optimal

control. TPDP converges to an ideal TP set by using a variation of Q-learning to assess

the merits of adding, swapping and removing TPs from states throughout the state space.

This work first presents how optimal control is achieved using dynamic programming,

in particular Q-learning. It then presents the basic TPDP concept and proof that TPDP

converges to an ideal set of TPs. After the formal presentation of TPDP, a Practical

TPDP Algorithm will be described which facilitates the application of TPDP to prac

tical problems. The compromises made to achieve good performance with the Practical

TPDP Algorithm invalidate the TPDP convergence proofs, but near optimal control poli

cies were nevertheless learned in the practical problems considered. These policies were

learned very quickly compared to conventional Q-learning, and less memory was required

during the learning process.

A neural network implementation of TPDP is also described, and the possibility of

this neural network being a plausible model of biological movement control is speculated

upon. Finally, the incorporation of TPDP into a complete hierarchical controller is

discussed, and potential enhancements of TPDP are presented.

11

Table of Contents

Abstract ii

List of Figures x

Acknowledgements xii

Dedication

1 Introduction 1

1.1 Dynamic Programming Control 1

1.2 The Transition Point Dynamic Programming Approach 2

1.3 The Format of this Work 3

1.4 Brief Summary of Contributions 4

2 Q-learning 5

2.1 Dynamic Programming Control 5

2.1.1 Control as a Markov Decision Process 5

2.1.2 Markov Decision Processes and Optimal Control 7

2.1.3 The Optimality Equation 8

2.1.4 Solving the Optimality Equation 9

2.2 Direct DP Control 10

2.2.1 Direct and Indirect DP 10

2.2.2 Direct DP in the form of Q-learning 11

2.2.3 Convergence of Q-learning 12

111

3 Transition Point Dynamic Programming (TPDP)

3.1 General Description of TPDP

3.1.1 Inspiration

3.1.2 The Shape of the Uniform Region

3.1.3 The Benefits of TPDP

3.1.4 TPDP and Inertia

3.2 The Goal of TPDP

3.2.1 Transition Points (TPs)

14

14

18

18

20

21

21

22

23

23

24

25

27

28

28

2.2.4 Exploration in Q-learning 13

2.2.5 One-step Q-learning 14

2.3 The Characteristics of Q-learning

2.3.1 Q-learning is Direct DP Control

2.3.2 Q-learning Can Be Implemented as Memory-Based Control .

2.3.3 Q-learning is Reinforcement Learning .

2.3.4 Q-learning Addresses the Credit Assignment Problem

2.3.5 Q-learning is Adaptive Optimal Control

2.3.6 Q-learning and Temporal Differences . .

2.3.7 Q-learning and Noise

2.4 Practical DP Control

2.4.1 The Curse of Dimensionality

2.4.2 Associative Content Addressable Memories (ACAMs)

2.4.3 Amalgamation of States

2.4.4 Approximation of Evaluation Functions

2.4.5 Prioritized Exploration

2.4.6 Replaying Experiences

Boundaries

29

29

29

31

32

33

34

34

iv

4 Practical TPDP 69

3.2.2 Environments 34

3.2.3 Closed State Spaces 35

3.2.4 Optimal Closed State Spaces 37

3.2.5 Minimal TP Optimal Control 37

3.2.6 Summary of the TPDP State Sets 38

3.3 The Specific Operation of TPDP 39

3.3.1 Pursuing Minimal TP Optimal Control 39

3.3.2 TPDP is a Form of Q-learning 40

3.3.3 Determining the Q-values of TPs 41

3.3.4 Determining the Evaluation Function Values of TP States . . 43

3.3.5 Swapping TPs 45

3.3.6 The Result of Continued TP Swapping 49

3.3.7 The Limitations of TP Swapping 52

3.3.8 Adding TPs 53

3.3.9 Removing TPs 57

3.3.10 Preparing External States 59

3.3.11 Minimal TP Optimal Control is Guaranteed 61

3.3.12 Summary of TPDP Operation 63

3.4 The Characteristics of TPDP 64

3.4.1 The Characteristics Shared with Q-learning 64

3.4.2 A Minimal Form of Direct DP Control 64

3.4.3 TPDP is Action Centered 65

3.4.4 TPDP and Temporal Differences 66

3.4.5 Continuous State Spaces and TPDP 66

V

4.1 The Practical TPDP Approach 69

4.1.1 The Problem With the Theoretical Form of TPDP 69

4.1.2 Concurrent Assessment of TP Modifications 70

4.1.3 Conventional Q-learning and Practical TPDP 70

4.1.4 Minimal TP Optimal Control and Practical TPDP 71

4.2 The Specific Operation of Practical TPDP 72

4.2.1 Using Weights to Concurrently Assess TPs 72

4.2.2 Policy TP Determination 73

4.2.3 Exploration in Practical TPDP 74

4.2.4 General Operation of the Practical TPDP Algorithm 76

4.2.5 Delayed Updating 79

4.2.6 The Practical TPDP Exploration Parameters 80

4.2.7 The Other Practical TPDP Parameters 84

5 Application of Practical TPDP 86

5.1 The Race Track Problem 86

5.1.1 Description of the Problem 86

5.1.2 A Discrete-time Stochastic Dynamic System Formulation 88

5.1.3 A Continuous Version of the Problem 88

5.1.4 Problem Specifics Used During Practical TPDP Application . 89

5.1.5 The Practical TPDP Algorithm Parameters Used 91

5.1.6 Evaluation of Performance on the Problem 91

5.2 Performance on the Race Track Problem 92

5.2.1 Comparing Practical TPDP and Conventional Q-learning 92

5.2.2 Near Optimal Performance of Practical TPDP 95

5.3 Practical TPDP and Generalization 99

vi

5.3.1 Generalization by Copying

5.3.2 Generalization by Copying in the Race Track Problem

5.3.3 Practical TPDP Glitches on the Race Track Problem

5.3.4 A Performance Metric

5.3.5 Comparing Generalization Levels With the Performance Metric

5.4 Practical TPDP and TP Allocation

5.4.1 TP Allocation in the Race Track Problem

5.4.2 Superfluous TPs

5.4.3 Stopping Learning

5.4.4 Arbitrarily Limiting the Number of TPs

5.4.5 Placing a Price on TPs

5.4.6 Eliminating Suboptimal TPs

5.4.7 TP Allocation in a One-Dimensional Race Track Problem . .

5.5 Varying the Practical TPDP Algorithm Parameters

6 Neural TPDP

6.1 A Neural Network Design for Direct DP

6.1.1 Neural Networks and Evaluation Function Approximation

6.1.2 A Neural Network Design for State Space Control

6.1.3 ACAM Operation of the Neural Network Design

6.1.4 Implementing Mutual Inhibition

6.1.5 Synapses as TPs

6.1.6 The Full Implementation of Neural TPDP

6.1.7 Allocating Identification Neurons

6.1.8 Parallel Processing and Neural TPDP

6.2 Analysis of Neural TPDP

123

123

• . . . 123

• . • • 124

127

127

129

• . . . 130

132

133

• . . . 134

99

100

101

102

103

104

104

105

107

108

109

111

113

116

vii

6.2.1 The Localized Operation of Neural TPDP 134

6.2.2 Generalization by Copying in Neural TPDP 135

6.2.3 Elemental and Composite Actions 136

6.3 Biological Plausibility 139

6.3.1 A Possible Model of Biological Movement Control 139

6.3.2 Increasing the Localized Operation of Neural TPDP 143

‘7’ Practical TPDP as Part of a Complete Hierarchical Controller 149

7.1 Practical TPDP Facilitates Lower Movement Control 149

7.1.1 Context Lines 149

7.1.2 A Sketch of the Complete Hierarchical Controller 151

7.2 Using Higher Level Knowledge 151

7.2.1 Guided Learning 151

7.2.2 Implementing Guided Learning in Practical TPDP 152

7.2.3 Gross Inverse Models 153

7.2.4 Optimality Criteria and Higher Knowledge 156

7.2.5 Dynamic Optimality Criteria 159

8 Conclusion 161

8.1 The Main Benefit of TPDP 161

8.2 The Main Disappointment of TPDP 162

8.3 Direct DP Optimal Control with TPDP is Practical 163

8.4 Contributions of this Work 163

8.5 Future Work 164

Glossary 166

List of Variables 175

vu’

Bibliography 182

A Proof of the Convergence of the TPDP Version of Q-Learning 190

B Full Description of the Practical TPDP Algorithm 195

B.1 General Operation of the Practical TPDP Algorithm 195

B.2 The Practical TPDP Algorithm 195

B.3 The Stack Updating Procedure 200

ix

List of Figures

3.1 Stylized Application of TPDP to a Phase Plane Control Task 31

3.2 Sample Immediate Cost Error Factors 68

4.3 The Practical TPDP Algorithm 77

4.4 The Stack Update Procedure 78

5.5 A Race Track 87

5.6 Performance of Practical TPDP and Conventional Q-learning 94

5.7 Performance of Practical TPDP and Delayed Updating Q-learning . . 95

5.8 Performance on a Discrete Version of the Problem 96

5.9 Performance of Practical TPDP 96

5.10 Five Typical Race Track Routes After 300 Epochs 97

5.11 Five Typical Race Track Routes After 800 Epochs 97

5.12 Five Typical Race Track Routes After 1300 Epochs 97

5.13 Five Typical Race Track Routes After 1800 Epochs 98

5.14 Performance of Practical TPDP With and Without Generalization. . 101

5.15 The Effect of Changing Pr(ogeneraijze> 0) 103

5.16 TP Allocation as Practical TPDP Learning Progressed 105

5.17 The Effect of Limiting TP Allocation 109

5.18 The Effect of Incorporating a TP Allocation Cost 111

5.19 The Effect of Eliminating Suboptimal TPs 112

5.20 The One-Dimensional Race Track and Its Phase Plane 113

5.21 Limiting TP Allocation on the One-Dimensional Race Track 115

x

5.22 Performance of Practical TPDP on the One-Dimensional Race Track 115

Pr(uswaTp > 0)

Pr(JaddTp > 0)

Pr(exteii> 0)

Pr(crchuLge> 0)

a

117

117

119

120

120

121

121

122

6.31

6.32

6.33

6.34

6.35

7.36

7.37

7.38

7.39

B.40

B.41

A Generic Neuron Model

A Neural Network Design for State Space

The Localized Operation Practical TPDP

147

154

154

158

158

205

206

5.23 TP Positioning in the One-Dimensional Race Track

5.24 TP Positioning with a 25% TP Allocation Limit

5.25 The effect of Changing ãdelay

5.26

5.27

5.28

5.29

5.30

The

The

The

The

The

Effect of

Effect of

Effect of

Effect of

Effect of

Changing

Changing

Changing

Changing

Changing

Control

Algorithm

124

125

145

146The Localized Operation Stack Update Procedure

Performance of Practical TPDP with Increased Localized Operation .

The Biased Action Specifications Used for Guided Learning

Performance of Practical TPDP During Guided Learning

A Roughly Optimal Path on the Race Track

Performance of Practical TPDP with Increased Optimality Information

The Practical TPDP Algorithm

The Stack Update Procedure

xi

Acknowledgements

I would like to thank the following people:

John Ip, my very good friend and kindred spirit, for his extensive help with
the proofs in this thesis — and for our discussions in general.

My supervisor, Peter Lawrence, for providing many insights into reality.

The members of my thesis committee, David Lowe, Mabo Ito and Chris Ma,
for their suggestions, and for taking the time to be involved in this work.

The taxpayers of Canada for their financial support.

All of those whose ideas and work have been of fundamental importance to
my own and to this thesis, especially Marvin Minsky, Andrew Barto, James
Albus and, always, Ayn Rand.

xii

Dedication

This thesis, and all the best of my effort behind it,
is dedicated to my wonderful wife, Heather.

All in one, the best of women.
Full instinct of woman, self refined.
Lovely, healthy, firm, with thick hair and broad smile.
Unique air and look, deeply warming and exciting.
That quirky something.
A grand passion for adventure, worldwide and domestic.
New possessions she adores, choosing clothes and things for home.

The best of mothers, caring, careful, informed, and always a full heart.
Scientific in mind, practical, but a wide streak of creativity.
Art comes easily in boldness, flow and color.
And inventions that amuse, yet always have good purpose.
Trusting, reliable, loyal, relentlessly supporting.
A strong, natural sense of the decent and the right.
I love her fully.

xlii

Chapter 1

Introduction

1.1 Dynamic Programming Control

Dynamic programming (DP) methods can be used to optimally and adaptively control

linear and non-linear systems (Barto et al., 1991). In such applications, DP methods are

used to determine the expected cost for each action that may be taken in each state.

The action that has the lowest expected cost is then selected as the optimal action.

Specifically, the determination of the optimal action for each state is formed as a Markov

decision process to which DP methods can be applied (Watkins, 1989).

DP methods are effective in determining optimal actions in this manner. The problem

with DP control is that, in a state space of any size, the learning time required to

determine the optimal actions can be extensive (Barto et al., 1991). Another problem

is that the amount of memory required to store the DP computational elements can be

enormous (Barto et al., 1991).

Many different approaches have been taken to solve these two problems. A common

approach is to use functional approximation to facilitate generalization of the expected

costs being learned (Barto et al., 1989, 1990c, Anderson, 1989a, 1989b, 1993, Werbos,

1990, Chinchuan et al., 1990, Yee, 1992, White et al., 1992, Thrun et al., 1993). Such

generalization reduces the learning time required to determine the optimal actions. Ap

proaches have also been developed that partition the state space in ways which reduce

the amount of memory required for representation (Moore, 1991, Chapman et al., 1991).

1

Chapter 1. Introduction 2

Generally such partitioning approaches also reduce the learning time required because

they group states together, facilitating the simultaneous (as opposed to individual) learn

ing of optimal policies for all of the grouped states. Other approaches to reducing the

learning time include ones where learning is focused on the regions of the state space

where it will produce the best results (Moore et al., 1993, Yee, 1992), and approaches

where previous experiences are replayed (Lin, 1991a). Sections 2.4.3 through 2.4.6 will

describe these various approaches in more detail.

1.2 The Transition Point Dynamic Programming Approach

This work describes another approach to reducing the learning time and memory usage

required for DP control. Transition point dynamic programming (TPDP) operates by

placing DP computational elements only at locations in the state space where changes

to the action being specified are required for optimal control. The resulting reduction

in memory usage decreases learning time because learning time is normally related to

the number of DP computational elements (see Section 3.1.3). TPDP is thus a memory-

based control approach (see Section 2.3.2) that can control a system using a minimal

amount of memory’.

TPDP employs reinforcement learning (see Section 2.3.3) to determine the proper

placement of the DP computational elements that specify the control action changes. As

a reinforcement learning approach TPDP can learn optimal control policies when the

final outcome of a control sequence can be judged, but the desired intermediate actions

are unknown. This capability typically requires longer learning times relative to other

approaches (see Section 2.3.3). As a result, TPDP may not be the best control approach

to take if the desired intermediate actions are known.

1Assuming a fixed, finely resolved state space (see Section 3.1.3).

Chapter 1. Introduction 3

TPDP operates as a direct DP controller that does not employ an explicit system

model (see Section 2.2.1). TPDP is thus a form of Q-learning (Watkins, 1989).

TPDP is best suited to learning control policies for continuous stochastic dynamic

systems — systems that have inertia. Some examples of systems to which TPDP control

could be successfully applied are robot manipulators, chemical process control, hydraulic

system control and flight control. The conditions under which TPDP operates best are

described in Section 3.1.4.

1.3 The Format of this Work

TPDP will be described and demonstrated in this work in the following manner:

Chapter 2 DP will be described in detail, particularly direct DP in the form of

“Q-Learning”. The problems of DP will be discussed, as well as solu

tions to them that have been investigated by others.

Chapter 3 TPDP will be described in detail. The inspiration behind TPDP will

be explained, and proof that TPDP converges on optimal control poli

cies will be presented.

Chapter 4 A practical form of TPDP will be described, and an algorithmic imple

mentation of that practical form presented.

Chapter 5 The effectiveness of TPDP will be demonstrated on two problems. In

the process, many characteristics of TPDP will be illustrated.

Chapter 6 TPDP was developed in the context of neural network control. The

relationship of TPDP to neural networks will be described, as well as

a neural network implementation of TPDP.

Chapter 1. Introduction 4

Chapter 7 The incorporation of TPDP into a complete hierarchical controller will

be described, and some attributes and capabilities of such a controller

will be discussed.

Chapter 8 In conclusion, the overall attributes of TPDP will be described.

1.4 Brief Summary of Contributions

The development of TPDP is the main contribution of this work. The originality of

TPDP is that it specifies only the control action changes necessary for the optimal control

of continuous stochastic dynamic systems. As a result, when learning optimal control

policies for such systems, TPDP requires less time and less memory than conventional

Q-learning.

In the course of developing TPDP a number of additional contributions have been

made:

1. The development of “generalization by copying” to facilitate generalization during

TPDP learning, and to thereby increase the rate at which optimal actions are

learned.

2. The development of a neural network implementation strategy for direct DP con

trollers — including TPDP controllers.

3. The development of approaches for the incorporation of TPDP into a complete

hierarchical controller, including an investigation of the ways in which high level

control knowledge can aid TPDP in learning optimal policies for the lowest level of

control.

Chapter 2

Q-learning

This Chapter will provide the background information about dynamic programming (DP)

and Q-learning required for the explanation of transition point dynamic programming

(TPDP). It will also describe some of the solutions to the problems of DP, and the

characteristics of Q-learning that are shared with TPDP.

2.1 Dynamic Programming Control

2.1.1 Control as a Markov Decision Process

The purpose of this Chapter is to present a control paradigm in which optimal control

can be achieved by treating the control action determination in each state as a Markov

decision process (Ross, 1983). When control action decisions are framed as Markov deci

sion processes, optimal control policies can be determined using dynamic programming

(DP) methods. Q-learning (Watkins, 1989, Watkins et al., 1992), which is the standard

direct form of DP (see Section 2.2.1), and which is the basis for transition point dynamic

programming, will be described fully.

Consider a discrete-time stochastic dynamic system with a finite state set S = 1, ..., ii

(Barto et al., 1991). A controller sends action’ specifications to this system, which act

as inputs to the system and affect its state in some way. At time step t this system is

in state i S, where the controller selects an action u from the possible actions U(i)

‘Control actions will be referred to as “actions” throughout this work.

5

Chapter 2. Q-learning 6

in that state; u U(i). As a result of the application of action u, the system makes

a transition to some state j E S in the next time step (t + 1). The probability of a

transition occurring from state i to each state j as a result of u is the state transition

probabilityp3(i,u); 0 p3(i,u) 1. Ifp3(i,u) isO, a state transition is not possible from

state ito state j as a result of action u. If pj(i, u) is 1, the state transition resulting from

action u is a deterministic one that always moves the system from i to j. For all actions

u taken in state i it is true that:

= 1 (2.1)
jES

As a result of the application of action u in state i, an immediate cost c(i, u) is

incurred. The state transition probabilities pj(i, u) and the immediate costs c(i, u) are

both functions of only the system state i and the action u taken in that state (Ross,

1983, Barto et al., 1991).

The goal of a controller applied to such a system is to determine, for each state i,

a policy action (i) € U(i) that should always be taken to fulfill some control task (or

task) required of the system. The control task could be to move the system along some

trajectory, or to direct the system to some target state. The set of policy actions over

the entire state space S constitutes the policy2 1tt; t = [t(1), ..., p(n)].

Given a policy ,i, and some initial state i, the sequence of states that the system can

move through after leaving i forms a “Markov chain” (Narendra et al., 1989) based on

the state transition probabilities. Because this Markov chain is the result of the policy

action selection, the control process is referred to as a “Markov decision process” (Ross,

1983, Barto et al., 1991).

2Control policies will be referred to as “policies” throughout this work.

Chapter 2. Q-learning 7

2.1.2 Markov Decision Processes and Optimal Control

Given a discrete-time stochastic dynamic system as described, an optimality criteria is

required that can be used as a basis for an optimal policy determination. The optimality

criteria used throughout this research was the “expected total infinite-horizon discounted

cost”. Other criteria, like total cost or average cost, can be used in Markov decision

processes (Ross, 1983, Watkins, 1989), but DP controllers typically use the expected

total infinite-horizon discounted cost. The expected total infinite-horizon discounted

cost resulting if policy t is applied from state i onward is the evaluation function value:

V(i) = E {7tc(St,1t(St))Iso = i] (2.2)

Where ‘y, 0 y 1, is the discount factor of future immediate costs c(i, u), and St is the

state at time step t. The notation “E,” indicates that V(i) is based on the expected

costs that will be incurred, given that policy is applied from state i onward.

The set of evaluation function values V(i) for each state i E S over the entire state

space S is known as the evaluation function and is denoted ; V, = [4(1), ..., V(n)].

The evaluation function indicates, for each state, the expected total infinite-horizon dis

counted cost that will result from the existing policy 1u.

To facilitate optimal control, a policy ,u must be determined that minimizes the

evaluation function value V(i) for each and every state i. The policy that achieves this

is the optimal policy, denoted 1z*; z9 = [,a*(1),
...,

a*(n)j. Such a policy depends on 7,

and it may not be unique — more than one action in each state may result in the same

minimal expected total infinite-horizon discounted cost (Ross, 1983).

The optimal evaluation function values for each state i that result from the optimal

policy t’’ are denoted (i). The set of these values over the entire state space S

constitutes the optimal evaluation function V*; VrL* = {.(1), ..., V*(n)].

If an optimal policy is determined that minimizes V(i) for each state i, and 4(i) is

Chapter 2. Q-learning 8

composed of future immediate costs as indicated in Equation 2.2, then the immediate

costs (in conjunction with the discount rate j) are the basis upon which the optimal

policy is determined. As a result, the control task (see Section 2.1.1) that the policy

leads the system to perform is inherently defined by the setting of the immediate costs.

Generally, lower immediate costs are associated with target states, or with states along

desired trajectories, resulting in policies that direct the system towards those states.

2.1.3 The Optimality Equation

A method of determining V,i is required to determine an optimal policy p, and to

thereby facilitate optimal control. As will be explained, once V is known, the optimal

policy it” can readily be determined.

Q-values (Watkins’ notation, 1989) are defined as3:

Q(i,u) c(i,u) +7p(i,u)V(j) (2.3)
jEs

The Q-value Q(i, u) is the expected total infinite-horizon discounted cost if action u is

taken in state i and policy p is followed in all states thereafter (Barto et al., 1989).

To facilitate optimal control, the policy action p(i) for each state i should be the

action that has the lowest Q-value for that state. The policy action p(i) should therefore

be an action which satisfies:

Q(i,p(i)) = mm Q(i,u) (2.4)
uEU()

If the policy actions determined in this manner are always taken, the evaluation function

value V(i) for each state i will be the Q-value of the policy action p(i):

3A more precise notation for Q-values would be “Qv,. (i, u)”, but for the purpose of clarity “Q(i, u)”
will be used throughout this work.

Chapter 2. Q-learning 9

V(i) = Q(i,j(i)) (2.5)

= mm Q(i,u) (2.6)
uEU(i)

= u) (2.7)
jES

The evaluation function T/ resulting from the determination of policy actions in this

manner will actually be an optimal evaluation function (Ross, 1983). This is true because,

if Equation 2.7 is recursively expanded out along the Markov chain extending from state

i, V(i) will consist entirely of sums of minimum costs. As a result of this, the optimal

evaluation function is defined by:

V*(i) = mm Q*(j) (2.8)
uEU(:)

= u)
[C(iU) +7EPi(iu)V*(i)] (2.9)

JES

Equation 2.9 is one form of the Bellman Optimality Equation” (Bellman, 1957). The

goal of DP, in all its variations, is to solve Equation 2.9 for each state i to determine .

(Barto et al., 1989). Once V has been determined, the optimal Q-values4Q*(j, u) can be

determined using Equation 2.3, and the optimal action *() E U(i) can be determined

for each state i by finding those actions which satisfy Equation 2.4. The optimal policy

is thereby determined.

2.1.4 Solving the Optimality Equation

The goal of DP is to solve Equation 2.9, the Bellman Optimality Equation, for each

state i to determine the optimal evaluation function V1. and thereby determine the

more precise notation for optimal Q-values would be “Qv. (i, u)”, but for the purpose of clarityQ*(j u)” will be used throughout this work.

Chapter 2. Q-learning 10

optimal policy . The standard approach is that of value iteration (Barto et al., 1991).

Value iteration is a successive approximation procedure where an evaluation function

approximation Vk is updated so that it converges on

Following Barto et al. (1991), Vk is defined as the estimate of V,* at stage k (k =

0, 1, ...) of the approximation computation. Where Vk(i) is the approximate optimal

evaluation function value of state i at stage k, the successive approximation procedure is

defined as follows:

Vk+l(i) = mm Qvk(i,u) (2.10)
uEU(z)

= mm c(i,u)+7p(i,u)Vk(j) (2.11)
UEU(:)

jES

Updating the evaluation function in this manner is referred to as backing-up the costs

because, for each state i, Vk(i) is updated with the evaluation function value approxima

tions Vk(j) of the states j that the system may make a transition to after taking action

u U(i) in state i (Barto et al., 1991).

2.2 Direct DP Control

2.2.1 Direct and Indirect DP

The description of DP so far has focused on systems where an explicit model of the

system response is known or has been learned using system identification (Ogata, 1970).

This model is defined by the state transition probability values pj(i, u), which indicate

the probability of a transition occurring from state i to state j if action u is employed

in state i. Controllers which use such explicit models are indirect controllers (Sutton,

1991, Sutton et al., 1992, Barto et al., 1991, Narendra, 1992). Explicit models can be

constructed using methods more compact than simple probability tables, but for the sake

of brevity it will be assumed throughout this work that they are not.

Chapter 2. Q-learning 11

Direct controllers do not use explicit models of the system response. Instead they

directly determine how to control the system by making observations of how the system

responds to the various actions in the different system states (Sutton et al., 1992, Barto

et al., 1991). Direct DP controllers function by repeatedly observing the actual costs

that are incurred when an action u U(i) is employed in state i (Barto et al., 1989).

2.2.2 Direct DP in the form of Q-learning

A standard way to implement direct DP controllers is using Q-learning (Watkins, 1989,

Watkins et al., 1992). Q-learning operates as follows. In Equation 2.8, the optimal

evaluation function value . (i) is determined in each state i by equating it to the lowest

of the optimal Q-values Q*(i, u) in that state. Direct DP control is thus possible if the

optimal Q-values can be determined without the use of an explicit system model. This

is done by making successive approximations of the optimal Q-values. Where Qj(i, u)

is the approximate Q-value of taking action u in state i at time step t, the successive

approximation update is defined as follows5:

1[1 —
u)] Q(i, u) + u) [c(i, u) +7Vt(st+i)1 if i = t, U = Ut

Qt+i(i,u) =

I.. Qt(i, u) otherwise

(2.12)

Where at(i,u), 0 < ct(Z,U) < 1, is the update rate, and where V(s+i) is the approxima

tion of the evaluation function value of the state .sti that the system (actually) makes

a transition to after action U 15 applied in the current state s. Using successive approx

imations of the Q-values, successive approximations of the optimal evaluation function

values VL (i) for each state i are determined with:

V+1(i) mm Qt+i(i,U) (2.13)
uEU(z)

5Because direct observation of the system response is being made, each time step t corresponds to an
approximation computation stage k.

Chapter 2. Q-learning 12

Because the system is stochastic, and Q-learning does not employ an explicit system

model, St+1 cannot be known or predicted until the state transition actually occurs. Q
value updating in Q-learning thus depends on observation of the actual response of the

system in terms of transitions made from one state to the next, as well as the costs

incurred during those transitions.

By using direct experience of the response of a system to update the Q-values of a

direct DP controller (Equation 2.12), and then by using these Q-values to update the

approximation of the optimal evaluation function values 14(i) for each state i (Equation

2.13), Q-learning can converge to the optimal evaluation function V. and thereby deter

mine an optimal policy (Barto et aL, 1991). This is done without the formation of any

explicit models of the system response. Information about the stochastic behavior of the

system is contained implicitly in the Q-values as part of the costs that are experienced

as a result of the stochastic state transitions.

2.2.3 Convergence of Q-Iearning

Watkins (1989, et al., 1992) has proven that Q-learning will converge to the optimal

Q-values necessary for optimal control under the following conditions:

1. Every state i and action u € U(i) combination must be attempted an infinite

number of times as learning progresses.

2. The immediate costs c(i, u) must be bounded for each action u E U(i) in state i.

3. It must be true that 0 <7 < 1.

4. It must be true, for each action u E U(i) in each state i at time step t, that

0< ct(i,u) <1, and that crt(i,u) —*0 as t —* 00.

Chapter 2. Q-learning 13

5. Where k is the time step in which a Q-value Qnk(i,’u) is updated (i St u = Ut)

for the kth time, it must be true that, for each action u E U(i) in state i:

= 00, [nk(i,U)12<00 (2.14)

2.2.4 Exploration in Q-learning

Because Q-learning relies on actual experience of state transitions and immediate costs to

determine optimal Q-values, the possible policies must be thoroughly explored to ensure

that optimal Q-values are converged to. To that end, it is required that Q-learning

controllers have a non-zero probability of visiting every state i E S, and employing every

possible action a U(i) in that state for all time (Watkins et al., 1992). This is the first

Q-learning convergence condition given in Section 2.2.3.

The exploration that is performed in Q-learning must result in a thorough search of

the possible policies. While this exploration can be extensive, it is not strictly exhaustive

because every possible sequence of action specifications does not have to be attempted

(Barto et al., 1989, 1993). The backing-up of the evaluation function values (see Section

2.1.4) facilitates thorough exploration using only transitions from one state to the next.

In Q-learning, when the evaluation function approximation 4 is close to being opti

mal, it is not normally worthwhile to continue exploring state and action combinations

whose Q-values are large relative to other Q-values for the same state. Such state and

action combinations are unlikely to be part of the optimal policy and the probability of

exploring them should be reduced as learning progresses — although not to 0. Doing so

is particularly desirable if reasonable, near optimal, control of the system is valued dur

ing the continuing learning process. Determining how frequently such state and action

combinations should be explored is part of a fundamental problem in optimal adaptive

Chapter 2. Q-learning 14

control (Thrun, 1992, Barto et aL, 1991). This problem concerns balancing the ex

ploration needed to ensure that optimal control is achieved with the desire to provide

reasonable control (Michie et al., 1968). In the context of Q-learning, many different

exploration strategies have been investigated (Watkins, 1989, Sutton, 1990, Barto et al.,

1990a, 1990c, 1991, Kaelbling, 1990).

2.2.5 One-step Q-learning

The form of Q-learning presented thus far is “one-step Q-learning” (Watkins, 1989). It

is the simplest form of Q-learning, where Q-values are updated immediately after each

action is applied using the evaluation function value V(i) of the next state encountered.

More complex forms of Q-learning are described by Watkins (1989) and mentioned briefly

in Section 2.3.6.

The simple one-step form of Q-learning, as well as discretized memory-based represen

tation of the state space (see Section 2.3.2), will be the approach to Q-learning assumed

throughout this work. The reason for this is that the transition point dynamic program

ming (TPDP) controller that will be described makes use of Q-learning in a complicated

way. To keep the analysis of TPDP as clear as possible, it is therefore best to use the

simplest form of Q-learning.

2.3 The Characteristics of Q-learning

2.3.1 Q-learning is Direct DP Control

As explained in Section 2.2.2, Q-learning is direct DP control. Q-learning operates with

out the use of explicit system models. This leads to Q-learning having a number of

advantages and disadvantages when compared to indirect DP controllers. These will be

described in this Section.

Chapter 2. Q-learning 15

Q-learning Requires Less Memory

One significant advantage of Q-learning over indirect DP control is that, because the sys

tem model is implicitly contained in the Q-values, an explicit and separate representation

of the model is not necessary (Watkins, 1989). This can greatly reduce the amount of

memory required for a DP controller (Barto et al., 1990b)6. In stochastic control applica

tions, for each possible action a E U(i) in each state i, indirect DP controllers must store

a state transition probability pj(i, a) for each state j that may be reached as a result of

action a. If any action made in any state has some probability of causing a transition to

every other state, the number of state transition probability values that must be stored

is (Watkins, 1989):

worst-case number of state transition probability values =

iES uEU(i)

Where jS is the number of states in the state space S. In addition to these state

transition probabilities, indirect DP controllers must store an evaluation function value

for each state i.

Q-learning must store a Q-value for each possible action a € U(i) in each state i:

number of Q-values 1
iES uEU(i)

Q-learning must also store an evaluation function value for each state i. The worst-

case difference then between the memory requirements of Q-learning and of indirect DP

controllers consists of the difference between the worst-case number of state transition

probabilities that must be stored for indirect DP control and the number of Q-values

that must be stored for Q-learning. The former is SI times larger than the latter.

In practice it is unlikely that the worst-case number of indirect DP state transition

probabilities need to be stored. Some state transitions may be impossible, or of such

6Under the assumption stated in Section 2.2.1 that explicit models are always constructed using
probability tables.

Chapter 2. Q-learning 16

low likelihood that they can be ignored. Even so, the best case memory requirement for

indirect DP is when only one state transition is possible for each action u U(i) in each

state i. In this deterministic case the memory requirement for indirect DP control is

only as low as that of Q-learning. Furthermore, considerable computational effort might

be required to determine just which state transition probabilities are important for an

indirect DP controller to store (Watkins, 1989).

Q-learning is Computationally Simpler

The implicit models in Q-learning controllers are updated continuously as state transi

tions, and their associated costs, are observed. Indirect DP controllers, with their explicit

models, do not have this feature. As a result, computational steps must be taken in such

controllers to ensure that the model is kept up to date (Barto et al., 1990b, 1991). “This

computation is inherently complex, making adaptive methods in which the optimal con

trols are estimated directly7more attractive” (Sutton et al., 1992).

The Task-Specificity of Implicit System Models

While Q-learning controllers require less memory than indirect DP controllers because

their system model is contained implicitly in their Q-values, there is a disadvantage in

this approach to system modeling. The disadvantage is that, because an explicit model

is not available, that model cannot be used in all the different control tasks that a system

may be required to perform.

Most DP controllers, both indirect and direct (Q-learning), can oniy perform one

control task at a time. If more than one control task is required of a system, control

must be shifted from one DP controller to another. If indirect DP control is being applied

to a system, the same system model can be used by all of the DP controllers fulfilling

70f which Q-learning is one.

Chapter 2. Q-learning 17

the various control tasks. In contrast, the system model in Q-learning cannot be used

in different control tasks because that model is implicitly stored in the Q-values and the

Q-values are specific to each control task.

The value of being able to develop a general purpose system model can be questioned

however if the extensive memory requirements of explicit models are considered. Section

7.2.3 will present more analysis of the modeling issue.

Off-Line Updating and Q-learning

Another disadvantage of Q-learning is that the evaluation functions of controllers em

ploying Q-learning cannot be updated off-line (Barto et al., 1991). That is, they cannot

be updated when the controller is not controlling the system. As described by Barto

et al. (1991), off-line updating is the backing-up of costs that can be done when indi

rect DP control is being employed. Indirect DP controllers have explicit system models

containing state transition probabilities. If these transition probabilities are accurate,

they can be used at any time to facilitate the backing-up of costs (see Section 2.1.4).

It is not necessary to make actual observations of system state transitions to perform

back-ups as state transitions can effectively be simulated. By reducing the amount of

actual experience required to learn optimal policies, off-line back-ups can greatly reduce

the time required to learn those policies.

Because the system model in Q-learning controllers is contained implicitly in the Q
values, distinct state transition probabilities that could be used for off-line back-ups are

not available. As a result, off-line updating cannot be performed. Updating in Q-learning

can only occur when the system is being controlled and actual state transitions are being

observed — unless of course an explicit system model is learned in addition to the implicit

model of Q-learning (Sutton, 1991).

Chapter 2. Q-learning 18

2.3.2 Q-learning Can Be Implemented as Memory-Based Control

Multi-dimensional tables that associate an action u E U(i) with each state i can be

used to control systems regardless of any non-linearities in those systems (Atkeson, 1989,

1991). Such controllers, whose table dimensions correspond to the state dimensions of

the system being controlled, are called memory-based controllers. They represent states

in a completely localized way (Atkeson, 1989).

Q-learning controllers can be implemented as memory-based controllers that operate

by associating a table entry with each state i e S. In each entry they store Q-values

Q(i,u) that directly reflect the costs that will be incurred when each action u E U(i) is

applied in state i. Q-learning is well suited to such implementation.

Like other memory-based DP controllers (Moore, 1991), memory-based Q-learning

controllers typically handle continuous state spaces by discretizing them (Baker et al.,

1992). This discretization facilitates the representation of the states in a tabular format

(Barto et al., 1991).

The table entries associated with each state in a DP controller will be referred to as

DP elements.

2.3.3 Q-learning is Reinforcement Learning

Q-learning is inherently reinforcement learning (Sutton et al., 1992). Q-learning operates

by determining Q-values, and from them evaluation function values (see Section 2.2.2).

Referring to Equation 2.2, the costs in this Equation that are discounted and summed

are the immediate costs c(i, u). These immediate costs constitute a scalar reinforcement

signal that the controller receives as a result of the actions that it specifies the system

should take. Aside from observable changes in the state of the system, this is all the

information which Q-learning controllers receive.

Chapter 2. Q-learning 19

In contrast to reinforcement learning approaches like Q-learning, supervised learning

approaches (error propagation methods for example, Rumeihart et al., 1986) receive

complete information about what the desired output (in the case of controllers this is

the optimal action) is at any point in time (Williams, 1986, 1987a). When such full

information is available it can result in faster learning than the scalar reinforcement

signal of reinforcement learning (Williams, 1987b). If desired output information is not

available however, supervised learning approaches cannot be utilized (Anderson, 1989a).

As a result, “reinforcement learning is clearly more generally applicable than supervised

learning” (Williams, 1987b).

An example of a learning application where reinforcement learning is necessary is

that of a novice snowboarder. A person in such a situation may not know exactly what

movements he should make to stay erect, but he certainly knows when he has fallen. In

this case the discomfort of the fall constitutes a negative reinforcement signal.

The reinforcement learning capability of Q-learning facilitates the learning of optimal

policies without any of the optimal actions being known in advance. Such learning is not

possible with supervised learning approaches.

Another potential advantage of reinforcement learning approaches over supervised

learning approaches occurs when many outputs are equally desirable in response to a

given input (in the case of controllers this is when more than one action is optimal in

a given state). In such a situation reinforcement learning approaches can learn any of

the appropriate outputs, while supervised learning approaches must learn one arbitrarily

chosen desired output (Williams, 1987a, 1987b). The increased flexibility of reinforcement

learning approaches in such situations has the potential to result in faster learning.

Finally, an important difference between reinforcement learning and supervised learn

ing approaches is that supervised approaches typically follow learning gradients to deter

mine their input to output mappings (Rumeihart et al., 1986). Reinforcement learning

Chapter 2. Q-learning 20

approaches do not, so they must employ mechanisms which ensure full exploration of

the mapping possibilities (Williams, 1987a)8. An advantage of not following learning

gradients is that (most) reinforcement learning approaches will not prematurely settle on

local minima (or maxima) — a problem which confronts the gradient-following supervised

learning approaches (Rumelhart et aL, 1986).

As described by Barto (1992), Q-learning is an Adaptive Critic Method. Adaptive

Critic Methods are reinforcement learning approaches that include a mechanism for an

ticipating future reinforcements. Some common citations made to sketch out the course

of development of Adaptive Critic Methods include: Samuel (1959), Michie et al. (1968),

Widrow et al. (1973), Barto et al. (1983), Sutton (1988) and Watkins (1989).

2.3.4 Q-learning Addresses the Credit Assignment Problem

The basic idea of reinforcement learning (see Section 2.3.3) is to increase or decrease

the likelihood of a controller specifying a given action based on whether positive or

negative reinforcement normally results from that action (Mendel, 1973). The difficulty

lies in determining how much each action, of all those taken in the time proceeding the

reinforcement, should be credited (positively or negatively) with the outcome. This is

the credit assignment problem (Minsky, 1985), and it has a structural and a temporal

component (Williams, 1987b).

Q-learning addresses both components of the credit assignment problem by backing

up evaluation function values V(i). This backing-up distributes, in reverse, credit for

incurred costs, and the distribution is simultaneously structural and temporal. The state

transition probabilities pj(i, u) and the discount factor determine the amount of credit

assigned to each state for each incurred cost (see Sections 2.1.1 to 2.1.4).

8Exploration issues are discussed in Section 2.2.4.

Chapter 2. Q-learning 21

2.3.5 Q-learning is Adaptive Optimal Control

Q-learning is an adaptive optimal control approach (Sutton et at., 1992, Barto et aL,

1991). That Q-learning provides optimal control has been discussed throughout this

Chapter (also see White et at., 1992). Q-learning is also adaptive in providing optimal

control because the model that Q-learning makes of a system is implicitly contained in

the Q-values (Barto et at., 1991). As the system changes, those changes will be reflected

in the updating of the Q-values. At any instant in time, a controller using Q-learning

will be converging on the optimal policy for the system that exists at that time.

Indirect DP controllers do not provide adaptive optimal control as readily as Q
learning controllers. To adaptively follow system changes such controllers must contin

ually modify their explicit system model. Depending on the exact approach taken, this

may require complete recalculation of both the model and the optimal policy based on

that model (Barto et al., 1991). This can be extremely computationally expensive if the

system changes with any regularity.

2.3.6 Q-Iearning and Temporal Differences

Q-learning is a form of temporal difference learning (Sutton, 1988, Watkins, 1989, Dayan,

1991). Temporal difference learning is notated as TD() (Sutton, 1988). To learn ex

pected total infinite-horizon discounted costs, TD() updating of Q-values is performed

as follows (derived from Watkins, 1989):

Qt+i(st, ut) = [1
— cvt(st, at)] Qt(st, Ut) + (2.15)

at(st,Ut) (c(St+k,ut+k) + (1
—

Where \, 0 A < 1, is the weighting of future experiences.

In the Q-learning methods described in this work, A will be set to 0, resulting in

TD(0) (Sutton, 1988). Setting A to 0 in Equation 2.15 converts it into the familiar form

Chapter 2. Q-learning 22

of Equation 2.12. TD(O) updates the values being learned using oniy the information

obtained in the next time step, t + 1. In one application Sutton (1988) found that TD)

worked best at X values around .3, but as explained by Watkins (1989) using anything

but TD(O) to update Q-values requires considerably more computational effort.

Watkins (1989) also pointed out that setting ,\ to 1 in Equation 2.15 results in Q
value updating based simply on the sum of the actual infinite-horizon discounted costs

experienced (see Equation 2.2). TD(1) learning then does not use any evaluation func

tion values V(i) in the Q-value updating. As the evaluation function values are only

approximations of the optimal evaluation function until convergence on that function is

complete (see Section 2.1.4), TD(1) avoids the use of approximate evaluation function

values.

2.3.T Q-learning and Noise

In a system being controlled with a Q-learning controller, where actions u E U(i) are

specified by the controller for each state i that the system enters, there are four ways in

which noise can affect control of the system:

1. Noise can perturb the controller specification of the action u E U(i) applied to the

system.

2. Noise can perturb the response of the system to the action u e U(i).

3. Noise can perturb the immediate costs c(i, u) returned to the controller as a result

of the action u that it took in state i.

4. Noise can perturb controller observation of the system state so that the controller

inaccurately assesses which state the system is in.

Chapter 2. Q-learning 23

The first three potential effects of noise are intrinsic to the control of discrete-time

stochastic dynamic systems. These noise components are what make the state transitions

stochastic (Barto et al., 1989). As such, these effects of noise are inherently handled by

Q-learning. As Q-learning proceeds to learn optimal Q-values, these effects of noise

are experienced and amalgamated into the expected costs that the Q-values reflect. As

long as a system controlled by Q-learning is controllable to the extent desired (where

controllability is in part affected by the first two types of noise), Q-learning will converge

on a policy that provides optimal control in those noise conditions.

The fourth effect of noise is not addressed by Q-learning. Such noise affects the

observability of the system, not its stochastic response, and it cannot be incorporated

into the implicit model of the system (Kaelbling, 1990). All controllers are vulnerable

to this type of noise however, and it is fairly safe to say that, as an optimal control

approach, Q-learning can handle it as well as any.

More generally, “dynamic programming is the only exact and efficient method avail

able to solve the problem of [cost minimization] over time in the general case where noise

and nonlinearity may be present” (Werbos, 1990).

2.4 Practical DP Control

2.4.1 The Curse of Dimensionality

In order to facilitate DP control, memory must be allocated to store the DP elements

necessary for every state i E S. These memory entries constitute the table described

in Section 2.3.2. Normally the table structure is defined by the state space dimensions

and the resolution of each of those dimensions. As the number of dimensions increases,

the total memory requirement increases exponentially (Barto et al., 1991, Moore, 1991).

Chapter 2. Q-learning 24

Bellman (1957) called this the “curse of dimensionality”. This curse haunts DP con

trollers when they are applied to systems that have anything but the most restricted of

state spaces.

As the number of states and their associated DP elements grow, the curse of di

mensionality also increases the learning time required for DP controllers to converge to

optimal policies (Moore, 1991, Yee, 1992). This is because DP controllers must perform

a certain amount of computation for each state.

As described, the curse of dimensionality results in extensive memory usage and pro

tracted learning times. To make DP control practical these problems must be addressed.

Sections 2.4.2 to 2.4.6 describe work done by others to that end.

2.4.2 Associative Content Addressable Memories (ACAMs)

Associative content addressable memories (ACAMs) can be used to significantly reduce

the memory requirements of memory-based controllers (Atkeson, 1989), including DP

controllers. ACAMs are not addressed in the manner of standard memories, but are

“content-addressable in that part of the contents of the memory are used to select the

rest of the memory” (Atkeson et al., 1988). In the case of DP controllers, an ACAM

would use the state information to select the memory entry containing the DP element

information associated with that state (see Section 2.3.2).

ACAMs are able to reduce the memory requirement of memory-based controllers,

including DP controllers, because systems fulfilling specific control tasks may never enter

significant portions of the fully expanded state space defined by their state space dimen

sions (see Section 2.3.2). It may even be impossible for the system to reach some of the

defined states. As a result, if ACAMs are employed to contain the DP elements, memory

entries need only be allocated for those states that actually are encountered as the con

trol task is fulfilled (Atkeson, 1989). Such allocation may result in far less memory being

Chapter 2. Q-learning 25

used than would be required if a full tabular memory is employed (see Section 2.3.2).

ACAMs can be implemented using specialized hardware; although such hardware is

rarely used. ACAMs can also be simulated using massively parallel computers like the

Connection Machine (Atkeson, 1989, Hillis, 1985). Hashing techniques can be employed

to simulate ACAMs (Standish, 1980). Korf (1990) applied hashing in a heuristic search

algorithm that operated basically like an indirect DP controller. Neural networks can

also be designed to operate as ACAMs, as will be described in Sections 6.1.2 and 6.1.3.

2.4.3 Amalgamation of States

Within a state space S there may be groups of neighboring states that are all relatively

unimportant in terms of the fulfillment of the required control task (Moore, 1991). That

is, these states may be ones that the system is not likely to enter during the normal

course of task fulfillment and, as a result, the evaluation function values V(i) associated

with them need not be exact. If inaccuracies in the evaluation function are tolerable, it is

possible to amalgamate groups of such states together together and treat each group like

a single state for the purposes of DP control. Such amalgamation reduces the memory

required for DP control (Chapman et al., 1991, Moore, 1991) and increases the rate of

learning (Singh, 1992a). The rate of learning is increased because it can progress in all

of the amalgamated states simultaneously instead of just one state at a time (Chapman

et at., 1991).

There are two difficulties to such an approach (Buckland et at., 1993). One is deter

mining which states are of limited enough importance to be included in an amalgamation

without optimal control being seriously affected. The other difficulty is ensuring that the

amalgamated states each have similar enough evaluation function values T/(i) that the

sharing of the same value across all of them will not distort the overall evaluation func

tion V. (Anderson, 1989a) in a way that significantly perturbs the learning of the optimal

Chapter 2. Q-learning 26

policy throughout the entire state space (Buckland et at., 1993, Moore, 1991). Deter

mining which states can prudently be amalgamated, and then determining appropriate

amalgamation groupings requires computational effort beyond that necessary to learn

optimal policies. The extent of that extra effort must be weighed against the benefits of

amalgamation.

Moore (1991) used “trie” data structures (Omohundro, 1987) to facilitate variable

resolution in the evaluation function used by an indirect DP controller. The resolution

of the evaluation function was made finer in states that were projected as being closer

to the optimal trajectory of the system concerned. Such variable resolution effectively

amalgamates the states that are coarsely resolved.

Chapman et at. (1991) recursively split the state space of a system that was repre

sented by many binary dimensions. This splitting resulted in a binary tree of Q-values.

Each node in this tree which was not split down to an irreducible size was effectively

an amalgamation of the unsplit states it contained. The splitting decisions were based

on statistics gathered regarding differences in the reinforcements received within unsplit

states.

Mahadevan et al. (1992) investigated two techniques that involved state amalgama

tion. In one, all of the Q-values within a fixed Hamming distance of the current state

were updated, resulting in an amalgamation effect. In the other, statistical clustering was

used to flexibly group states in close proximity to each other that had similar Q-values.

Buckland et at. (1993) investigated a number of Q-learning approaches that used

statistics gathered regarding differences in reinforcements received. These statistics fa

cilitated both the splitting and combining of state amalgamations. These investigations

were of limited success because the computational effort required to make the amalga

mations was often extensive and it disturbed the computations being made to learn the

optimal actions (Buckland et at., 1993).

Chapter 2. Q-learning 27

2.4.4 Approximation of Evaluation Functions

Up to this point the evaluation function V, of DP controllers has been described as

consisting of separate evaluation function values V,(i) for each state i. The curse of

dimensionality makes such discrete representation of the evaluation function impractical

for state spaces of any size however (see Section 2.4.1), so the evaluation function is

normally parametrically approximated in some way (Barto et al., 1989, 1990c, Anderson,

1989a, 1989b, 1993, Werbos, 1990, Chinchuan et at., 1990, Yee, 1992, White et at., 1992,

Thrun et at., 1993). In addition to reducing memory usage, such parametric approxima

tion facilitates generalization between the states (Barto et al., 1989), thereby increasing

the rate of learning.

Many different approaches to evaluation function parametric approximation have been

taken. Barto et at. (1989) have formulated how to generally apply TD methods (Sutton,

1988) to evaluation function parametric approximation. This formulation includes ap

proximation with supervised learning neural networks (Barto et at., 1989). Werbos (1990)

has done work utilizing such supervised learning in DP controllers. Watkins (1989) and

Tham et al. (1993) used the CMAC neural model (Albus, 1975a, 1975b) for evaluation

function and Q-value parametric approximation.

The evaluation function can also be approximated in other ways. Yee (1992) has used

hierarchical binary trees and hierarchical neural networks to that end.

The main drawback of evaluation function approximation approaches is that the ap

proximating mechanisms themselves typically require extensive computational effort to

develop a reasonably accurate approximation. Further, evaluation function approxima

tion often invalidates any proofs that have been made of the convergence of a DP con

troller to an optimal policy (Barto et at., 1991).

Chapter 2. Q-learning 28

Evaluation function approximation is made even more difficult in Q-learning con

trollers because of the fact that Q-values are a function of action as well as state, and

an additional action dimension must be included in any approximation that represents

Q-values

2.4.5 Prioritized Exploration

Another way to increase the rate of learning in DP controllers is to explore the state

space in ways that concentrate the learning effort on those states where learning will

produce the best results. As exploration is essential to Q-learning, many researchers

have developed highly effective exploration strategies (see Section 2.2.4). In addition to

this work however, much work has been done that focuses on exploration in DP controllers

in general.

Sutton (1990), Kaelbling (1990) and Yee (1992) have done work on associating ac

curacy information with the costs being backed-up to indicate which back-ups are the

most likely to enhance learning. Along similar lines, Peng et aL (1992) and Moore et al.

(1993) have used the size of the change that occurs with each cost update to prioritize

the future exploration of the state that update was associated with. The largest changes

in cost were given the highest priority.

2.4.6 Replaying Experiences

If real-time computation constraints make it possible, the rate of learning in DP con

trollers can be increased by replaying past experiences and making new updates based

on those experiences (Lin, 1991a, 1991b). This approach requires that the details of past

experiences be stored somehow.

Chapter 3

Transition Point Dynamic Programming (TPDP)

This Chapter will present a full description of transition point dynamic programming

(TPDP), including proof of its convergence to optimal control policies. The description

will rely on the explanation of DP and Q-learning presented in Chapter 2, but this

Chapter will not be a direct extension of Chapter 2. Instead the background information

of Chapter 2 will be utilized as required to explain TPDP.

3.1 General Description of TPDP

3.1.1 Inspiration

Transition point dynamic programming (TPDP) was developed as a solution to the ex

tensive memory use and protracted learning time that results from the “curse of dimen

sionality” in DP controllers (see Section 2.4.1). The TPDP concept arose out of an

approach (Buckland et al., 1993) to direct DP where artificial neurons were connected

in a network, with each neuron operating as a separate DP element (see Section 2.3.2) —

in fact, each neuron operated as an ACAM (see Section 2.4.2). Various techniques were

employed that modified the neural connections so that groups of neighboring states in

the state space that had similar control requirements could be amalgamated (see Section

2.4.3). Such groups had to have evaluation function values V(i) for each state i that

were very similar, as well as the same optimal action (Buckland et at., 1993).

These attempts at neural network amalgamation of neighboring states where largely

29

Chapter 3. Transition Point Dynamic Programming (TPDP) 30

unsuccessful because the computational effort required to make the amalgamations was

often extensive and it disturbed the computations being made to learn the optimal actions

(Buckland et aL, 1993). This research lead to the realization however that individual

states on the boundaries of a state space region could be used to specify the action

employed throughout that region. That is, if there existed uniform regions of states that

all had the same optimal action (or the same set of optimal actions1), that action could

be specified at the states on the boundary of a uniform region and then be maintained

as long as the system remained within that uniform region. So at every boundary state

where a uniform region might stochastically be entered from states outside that region,

a new action is specified. The action thus specified is then maintained until the uniform

region is left and another uniform region is entered (where another set of boundary states

specifies the next action). As the system moves about each uniform region, it may pass

through dormant states that are not on the boundary. These dormant states make no

change in the action specification, they simply leave it the same. They have no DP

elements associated with them at all (see Section 2.3.2). This is the fundamental idea

behind TPDP.

States that are neither boundary states nor dormant states, are external states. As will

be explained in Section 3.2.4, external states are not entered during system movement.

Figure 3.1 illustrates the TPDP concept when movement control of a “car” on a one

dimensional track is desired. The car, with some initial positive velocity to the right,

must pass Position A and return to the left. The “transition points” (see Section 3.2.1)

in Figure 3.1 (represented by boxes) are located at all boundary states. The shaded

regions indicate all of the states that the system can possibly move through given the

actions specified at the boundary states and the stochastic response of the car. Shaded

‘The simplifying assumption that there is only one optimal action in each uniform region will generally
be made throughout this work. The existence of more than one optimal action does not alter the
operation of TPDP in any way.

Chapter 3. Transition Point Dynamic Programming (TPDP)

states without transition points are therefore dormant states. Uniform regions consist of

adjacent boundary states where the same action is specified, as well as the shaded region

through which that action is maintained before another boundary is encountered (see

Figure 3.1). Boundary states that do not seem to be on the main state transition routes

(the one identified in Figure 3.1 for example) ensure that any stochastic deviations from

those routes are realigned. Unshaded states are external states.

3.1.2 The Shape of the Uniform Region Boundaries

The boundaries that are constructed in TPDP are multi-dimensional surfaces that may

range from smooth to highly irregular. The boundaries surfaces need not be closed, as

boundaries only have to exist at states where a uniform region can possibly be entered

from states outside that region.

+

31

Dormant
State

Uniform
Region

Boundary
State

A
Position

The control task shown on this phase plane is to start
with a positive velocity, pass position A, and return.

Each II is a transition point (TP).

Figure 3.1: Stylized Application of TPDP to a Phase Plane Control Task

Chapter 3. Transition Point Dynamic Programming (TPDP) 32

3.1.3 The Benefits of TPDP

The main benefit of the TPDP approach is that, where uniform regions exist, they can

be represented by a relatively small number of DP elements (depending on the shape

of the boundaries and the size of the uniform regions they encompass). This reduction

in memory usage results in an accompanying reduction in the learning time required

to learn optimal policies (see Section 2.4.3 and Chapman et al., 1991). Further, this

reduction in memory usage is accomplished without having to expend any computational

effort determining how states should be amalgamated (Buckland et al., 1993). As will

be explained in Sections 3.3.2 through 3.3.11, the determination of whether a state is

a boundary state or a dormant state can be made as part of the computations that

determine the optimal actions for each state.

Another benefit of TPDP is that the boundary states learn optimal actions indepen

dently of each other, and these determinations are made with the same fine resolution

that they would be if the state space was fully represented with a DP element associated

with every single state. In contrast, approaches that amalgamate states to achieve mem

ory and learning time reductions result in coarse resolutions in some regions of the state

space. These coarsely resolved regions can perturb the learning of the optimal policy

locally and throughout the entire state space (see Section 2.4.3).

In general, TPDP learns optimal action change specifications where those specifica

tions can be accurately placed in highly resolved state spaces. By learning only action

changes, TPDP is able to “compress” the necessary action specifications and minimize

its use of memory. Further, the time constant of those action change specifications (the

temporal separation between them as the system moves through the state space) can

vary in an unlimited way throughout the state space (as long as it is greater than the

state space resolution).

Chapter 3. Transition Point Dynamic Programming (TPDP) 33

3.1.4 TPDP and Inertia

TPDP is best suited to control applications where reasonably sized uniform regions exist.

Such regions are most likely to be found in continuous control applications where the

system exhibits inertia. In such applications, the inertia of the system limits the effects

of any actions instantaneously specified by individual states if those action specifications

are different from the specifications of neighboring states. In other words, no single state

can make much of a difference in terms of controlling (optimally or otherwise) the system.

As a result, optimal actions are initiated and maintained over relatively long periods of

time as the system moves through many states.

Continuous dynamic systems with inertia are thus ideally suited to TPDP as it was

described in Section 3.1.3. Applied to such systems, TPDP can determine the finely

resolved uniform region boundaries necessary for optimal control, and it can learn the

optimal actions for the boundary states. Some examples of systems to which TPDP

control could be successfully applied are robot manipulators, chemical process control,

hydraulic system control and flight control.

TPDP is not well suited to control applications that exhibit little or no system inertia,

and that do not have large uniform regions. Much DP work has been concerned with

optimal decision-making (backgammon playing is one example, Tesauro, 1991). The

actions taken in decision-making tasks can drastically alter the state of the system, and

it is not commonplace in such tasks for the optimal action to be the same for more than

one time step. As a result, uniform regions in such control applications are ill-defined.

In general terms, TPDP performs best on continuous state space stochastic control

applications (that have been discretized as described in Section 2.3.2) and performs poorly

on inherently discrete control applications — applications that are better described as

decision tasks. Kaelbling (1990) makes a distinction similar to this between “statistical

Chapter 3. Transition Point Dynamic Programming (TPDP) 34

learning” (the former), and “symbolic learning” (the latter).

3.2 The Goal of TPDP

3.2.1 Transition Points (TPs)

A transition point (TP) is simply the association of an action (a TP action, 1LTP E U(i))

with a state. A state i with such an association is called a TP state2. More than one

TP may be associated with each state, but one TP at each state must be chosen as the

policy TP (z(i) = uTp(i), the action of the policy TP). Dynamic systems can be entirely

controlled using TPs.

Not all of the states in a system being controlled with TPs need have TPs associated

with them. Those which do not are called non-TP states2. Controllers that employ TPs

must maintain the last action specified by a TP when the system moves through non-TP

states.

Both Barto et al. (1991) and Watkins (1989) have suggested something similar to

TPs, but neither fully investigated the concept.

3.2.2 Environments

A system being controlled by TPs is defined as having an environment in which it oper

ates. Environments include:

1. The system under consideration.

2. A set of starting states Ss C S that the control task may start from, as well as the

probability of it being started from each of these states and the specification of the

actions to be taken in those states. The starting states Ss must include at least

one state (Ss 0), and may include the entire state space S (S = 5).

2These state definitions will be made somewhat more exclusive in Section 3.2.3.

Chapter 3. Transition Point Dynamic Programming (TPDP) 35

3. A set of absorbing states SA C S at which the control task terminates. There need

not be any absorbing states
— SA can be an empty set (SA = 0). When an absorbing

state is encountered the task is restarted at one of the starting states Ss according

to the starting probabilities.

4. A mechanism that ensures that each of the TP actions UTP U(i) at each TP

state i has some finite non-zero probability of being employed each time state i is

entered by the system.

5. A mechanism that ensures that each of the starting states Ss is revisited with some

finite non-zero probability as the control task continues to run. Such a mechanism

is necessary if states exist from which the system cannot reach all of the starting

states Ss through some sequence of TP actions3,and from which the system cannot

reach any of the absorbing states 5A through some sequence of TP actions. Such

states represent regions in the state space that can be entered but not left. The

mechanism required when such states exist is one that, after some large number of

state transitions, terminates the control task and restarts from one of the starting

states S.

Barto et. al. (1991) describe something like an environment, although not to this

level of specificity.

3.2.3 Closed State Spaces

Given a valid environment and a set of TPs, if all of the starting states Ss are continually

revisited with some finite non-zero probability, and if state transitions are made from the

starting states Ss using the TP actions (with each TP action TP E U(i) being employed

in each state i with some finite non-zero probability), then eventually every state that

3The sequence of actions to each starting state may include passage through other starting states.

Chapter 3. Transition Point Dynamic Programming (TPDP) 36

can be reached from the starting states Ss using the TP actions will be reached. This set

of states is called the closed state space Sc C S. The closed state space Sc includes all

the starting states Ss (Ss C Sc C 5) and any states that the system can reach through a

sequence of transitions from the starting states. In Figure 3.1 the shaded states represent

a closed state space.

In a valid environment, the closed state space Sc is defined entirely by the starting

states Ss, the existing set of TPs, and the system state transition probabilities (see

Section 2.1.1). The closed state space Sc can include all of the states S. States not in

the closed state space Sc are the external states SE C S (SE fl Sc = 0). External states

are never visited.

The TP states SB are properly defined as being states within the closed state space

Sc that have TPs (SB C Sc C S)4. Similarly, the non-TP states SD are properly defined

as being states within the closed state space Sc that do not have TPs (SD C Sc C S)4.

TPs associated with external states are called ineffectual TPs because they cannot

affect the movement of the system — being outside the closed state space Sc the system

never reaches them.

The relationships between these various state sets are as follows:

S—SCUSE, ScflSE—O (3.16)

SC=SBUSD, SBflSD—O (3.17)

That is, none of the state sets SB, SD, SE overlap, and together they constitute the entire

state space S.

4The containment of these states within Sc was not part of the Section 3.2.1 state definitions.

Chapter 3. Transition Point Dynamic Programming (TPDP) 37

3.2.4 Optimal Closed State Spaces

If an optimal control policy has been determined that specifies an optimal action

it*(i) for each state i, those optimal actions can be used to completely define a set of

TPs. That is, one action (the optimal action) can be made the TP action in each state

i (up(i) = 1*()). If the TPs so defined are employed in a valid environment that has

starting states Ss and absorbing states SA, a closed state space Sc. C S will result that

is the optimal closed state space. This optimal closed state space includes all of the states

that can be visited if the optimal actions (the TP actions) are employed after the system

moves from one of the starting states S5.

Any states outside of the optimal closed state space S. are optimal external states

SE* C S (Sc. fl SE. 0) which are never visited if the optimal control policy p is

followed. As a result, using memory to represent these optimal external states in any

way is unnecessary for the purposes of optimal control.

3.2.5 Minimal TP Optimal Control

Consider a state i in the optimal closed state space Sj. defined by an optimal set of TPs.

The entry actions Ue() of that state consist of all the actions that have some non-zero

probability of leading to a transition from some other state in Sc to state i5. If every

entry action u E Ue() is one of the possible actions in state i (Ue() C U(i))6 and is also

an optimal action if applied in state i, then no TP is necessary at state i. That is, if no

action is specified at state i, actions specified previously and maintained through that

state (see Section 3.2.1) will be optimal.

This is again the fundamental idea behind TPDP: that optimal control can be fa

cilitated even in states that specify no actions as long as all the actions that cause a

5This definition of entry actions U€(i) also holds in closed state spaces that are not optimal.
6This assumption shall be used throughout this work.

Chapter 3. Transition Point Dynamic Programming (TPDP) 38

transition to such states, if maintained, are optimal actions for those states.

In an optimal closed state space S0. defined by an optimal set of TPs, the optimal

TP states are SB. C Scm. If every unnecessary TP is removed from Sc., a minimal set of

TPs results, and minimal TP optimal control has been achieved. The optimal TP states

in this case are the boundary states SB C Sc. (see Section 3.1.1). The boundary states

SBO are thus a special case of the optimal TP states SB when optimal control has been

achieved with a minimal set of TPs.

Correspondingly, in an optimal closed state space S0. defined by an optimal set of

TPs, the optimal non.-TP states are SD* C Scm. When minimal TP optimal control has

been achieved the non-TP states are the dormant states SDO C Sc (see Section 3.1.1), a

special case of SD.. As explained in Section 3.1.1, the TPs at the boundary states ensure

that optimal actions are employed throughout the uniform regions that these dormant

states reside in.

3.2.6 Summary of the TPDP State Sets

This Section will summarize the various state sets involved in TPDP and describe how

they change when minimal TP optimal control is achieved. Given an arbitrary set of

TPs, the various state sets are:

Sc Closed state space that results from the environment and the existing TPs.

SB TP states in the closed state space Sc.

SD Non-TP states in the closed state space Sc

SE External states outside S0 (which may or may not have TPs).

Chapter 3. Transition Point Dynamic Programming (TPDP) 39

As described in Section 3.2.5, minimal TP optimal control involves these state sets:

Sc* Optimal closed state space that results from the environment and the TPs.

SBO Boundary states in the optimal closed state space Sc that have the minimal

TPs required for optimal control (special case of the optimal TP states SB*).

SDO Dormant states in the optimal closed state space Sc that do not require

TPs (special case of the optimal non-TP states SD*).

SE* External states outside Sc (which may or may not have TPs).

In terms of the various state sets, the following is achieved when the set of TPs is

transformed into a minimal TP optimal control set:

1. The closed state space Sc defined by the environment and the TPs becomes an

optimal closed state space Scm.

2. The set of TP states SB C Sc becomes the set of boundary states SB C Sc.

3. The set of non-TP states SD C Sc becomes the set of dormant states SD C Sc,

leaving no unnecessary TPs within Sc*.

4. The set of external states SE becomes the set of optimal external states SE*.

3.3 The Specific Operation of TPDP

3.3.1 Pursuing Minimal TP Optimal Control

The goal of TPDP is to achieve minimal TP optimal control for any system operating

within a valid environment. TPDP pursues this goal by performing two main tasks:

1. Locating the set of boundary states SBO that require TPs for optimal control.

2. Determining an optimal TP action for each boundary state i E SB•

Chapter 3. Transition Point Dynamic Programming (TPDP) 40

In other words, the right TPs must be found for the right states. Given an arbitrary

set of initial TPs, TPDP modifies that set so that it is transformed into a minimal TP

optimal control set. Modifications can include the addition and removal of TPs, and the

swapping of one TP for another (each specifying different actions) at the same state i.

These modifications are performed one at a time in arbitrary order, and can continue

indefinitely.

During the modification process at most one TP is associated with each state at any

given time. Although Section 3.2.1 stated that more than one TP could be associated

with each state, the single TP restriction is part of the formal definition of TPDP — it

will be relaxed in Chapter 4. This restriction implies that the one TP at each state will

always be the policy TP ((i) = wrp(i) for each TP state i).

Clearly a sequence of TP modifications can be specified that will transform any initial

set of TPs into a minimal TP optimal control set. For example, if the minimal TP optimal

control set were known, TPs could be added to any states that were known to require

them, and then all of the TPs could be swapped for ones specifying optimal actions.

The difficulty is that the minimal TP optimal control set is not likely to be known. The

purpose of TPDP then is to discover it. Sections 3.3.2 through 3.3.11 will explain how

TPDP does so, and provide proof that TPDP will always achieve minimal TP optimal

control.

3.3.2 TPDP is a Form of Q-learning

Q-learning (see Chapter 2) cannot be directly applied to learn optimal policies in con

trollers that use TPs. The irregularities caused by the addition, swapping, and removal

of TPs would perturb any convergence of Q-learning to an optimal policy. Q-learning

is used as a component process of TPDP however. Specifically, Q-learning can be em

ployed to learn the Q-values (see Section 2.1.3) of TPs (see Section 3.3.3). Q-values can

Chapter 3. Transition Point Dynamic Programming (TPDP) 41

be associated with TPs to indicate the costs that result when the actions specified by

those TPs are employed. In TPDP, Q-values are utilized in this manner to determine

the relative merits of different TPs and to thereby indicate prudent modifications to the

existing set of TPs. Sections 3.3.3 through 3.3.11 will describe fully how this is done.

Because TPDP employs Q-values, and because it updates these values using a varia

tion of the Q-value updating Equation 2.12 (see Section 3.3.3), it is a form of Q-learning

(see Chapter 2). TPDP is not strictly Q-learning however, because it does not associate

a Q-value Q(i, u) with each possible action u E U(i) in each state i. Instead it associates

Q-values only with the state and action combinations defined by the existing set of TPs.

3.3.3 Determining the Q-values of TPs

Given an arbitrary set of TPs, and the closed state space Sc that they define in a

valid environment, Q-learning can be employed to determine the Q-values of each TP

in Sc. That is, Q-learning can be used to determine the exact expected infinite-horizon

discounted cost (see Section 2.1.2) that results from the action that each TP specifies.

This is done by performing Q-learning while using only the actions specified by the

existing set of TPs to control the system. Unlike conventional applications of Q-learning,

the different actions possible in each state are not randomly attempted. Only the TP

actions are used.

As a result, the set of possible actions in each state i is effectively reduced to U(i) =

{uTp(i)}. In this context only one action is possible in each state, so it must be the

“optimal” action (u*(i) = uTp(i) for each state i). The motivation behind using Q
learning in TPDP is therefore to have it converge to the exact Q-values for each action

specified by the TPs in the course of trivially deciding that these actions are the “optimal”

ones (see Chapter 2).

Used in this manner, Q-learning cannot learn overall optimal policies. As explained

Chapter 3. Transition Point Dynamic Programming (TPDP) 42

in Section 3.3.2 however, it is not intended that Q—learning do so in TPDP. Instead it is

used as a component process of TPDP.

Determining TP Q-values in this manner has two significant ramifications regarding

ineffectual TPs and non-TP states respectively. Ineffectual TPs, like all of the external

states SE, will not be included in the Q-learning process. As defined by the existing set of

TPs and the environment, the reduced Markov decision problem addressed by Q-learning

in the manner described simply does not reach these external states (whether they have

ineffectual TPs or not). As a result, these states do not in any way affect the Q-values

of the TPs at TP states in Sc

The second ramification is that because non-TP states SD do not have any TPs or TP

actions, there are no Q-values that can be determined for these states. Unlike the external

states however, the non-TP states do affect the Q-values being determined for TPs at

the TP states. This is because actions specified in the TP states and then maintained

through non-TP states result in overall state transition probabilities to other TP states

that are a result of the state transition probabilities of the intermediate non-TP states.

But regardless of the various routes that the system may stochastically take from one TP

state, through non-TP states, to another TP state, the overall probability of each such

transition is fixed. If Q-learning is employed, all of the fixed overall TP state transition

probabilities will be included in the various TP Q-values as direct observation of the state

transitions and associated costs are made (see Section 2.2.2). As a result, the Q-value

updating Equation 2.12 need only be modified to bypass the non-TP states:

d—1

[1— at(i,u)]Qt(i,u) + at(i,u) {(7mc(s÷u)) +Vt(st+d)]

Qt+d(i,U)
= if i = St,IL Ut

Qt(i,U) otherwise

(3.18)

Chapter 3. Transition Point Dynamic Programming (TPDP) 43

Where d is the number of time steps after a TP state is left before another TP state is

encountered. During that time the system moves through non-TP states. If Equation

3.18 is used for Q-learning, the non-TP states will be treated as inherent parts of the

dynamic response of the system. The difference between Equation 2.12 and Equation

3.18 is the replacement of:

d—1

c(i, u) + 7Vt(st+i) with (7’c(st, u)) +7dVt(st+d)

If d is set to 1, reflecting the case where a transition is made directly from one TP state to

another with no intervening non-TP states, these Equations are the same. The Q-value

updating Equation 2.12 is thus a special case of the TP updating Equation 3.18.

Proof of the convergence of Q-learning using the TP updating Equation 3.18 is pre

sented in Appendix A. This proof is based on the work of Jaakkola et al. (1993).

3.3.4 Determining the Evaluation Function Values of TP States

As explained in Section 3.3.1, at most one TP is associated with each state during the

operation of TPDP. As a result, the evaluation function value (i) of each TP state

i E SB C Sc is (based on Equation 2.6):

V(i) = Q(i, (i)) (3.19)

Where j(i) is the one TP action uTp(i) at each state i.

Further, the following relationship can be established between the evaluation function

values of two TP states:

V(i) = Q(i,1L(i)) = C(i, {j}) + i(i,j)V(j) (3.20)

Where the excluded cost C,(i, {j}) is the expected cost of all state space transitions from

state i that can occur with policy (see Equation 2.2) — excluding those after state j has

Chapter 3. Transition Point Dynamic Programming (TPDP) 44

been encountered, and (i,j) is the participation factor of V(j) in 1’(i):

II—i
(i,j) = II 7pxk+l(xk,(i)) (3.21)

rEX(i,j) k=O

Where X(i,j) is the set of all possible state transition routes £ from state i to state j

(E X(i,j)), = [so, x1, ..., x,] is one possible state transition route from state ito state

j of variable length n (S = i,x = j), and is the number of states along each such

route.

The participation factor Equation 3.21 represents the summed overall probability of

each state transition route that can be taken from state i to state j, attenuated by the

discount factor -y at each transition step. Participation factors will always fall between

0 and 1 (0 i,j) < 1). The maximum value of participation factors is 1 because

Equation 3.21 has its maximum value when y is 1. When y is 1, Equation 3.21 becomes

the overall probability of eventually making a transition from state i to state j. This

probability is between 0 and 1. The minimum value of participation factors is 0 because

all the elements of Equation 3.21 are positive.

Returning to Equation 3.20, the term (i,j)V(j) then represents the portion of the

expected total infinite-horizon discounted cost (see Section 2.1.2) at state i that occurs

after the system has made a transition to state j. The evaluation function value V(j) of

state j reflects those costs, and the participation factor ensures that they are discounted

appropriately for inclusion in the determination of V(i).

Equation 3.20 can be readily extended to include an arbitrary number of states:

V(i) = C(i, J) + i,j)V(j) (3.22)
jEJ

Where J C S is the arbitrarily chosen set of states for which explicit representation is

desired in the evaluation function value computation of state i.

Chapter 3. Transition Point Dynamic Programming (TPDP) 45

3.3.5 Swapping TPs

By making use of TP Q-values (determined as described in Section 3.3.3), the swapping

of TPs can be facilitated. TP swapping occurs when a TP associated with a state is

exchanged for another TP, specifying a different action, at that same state.

Swapping Rule: TP swapping is performed by using Q-learning to deter

mine the Q-value of an existing TP. Then that TP is replaced with a trial TP

and Q-learning is used to determine the Q-value of the trial TP. If the Q-value

of the trial TP is less than that of the old TP, a swap is made. Otherwise the

swap attempt is aborted.

Theorem 3.1: When a TP swap is made according to the Swapping Rule

in a valid environment, the evaluation function values (i) of all of the TP

states i E SB C Sc will be monotonically reduced7.

Proof: When a TP swap is made, the evaluation function value V,(j) of the

swapped TP at state j is reduced as a direct result of the Swapping Rule and

of the fact that T4(j) = Q(j,p(j)) where (j) is the one TP action uTp(j) at

state j (Equation 3.19).

The evaluation function values (i) of all the other states i can be ex

pressed in terms of V(j) (Equation 3.20):

V(i) = C(i, {j}) + (i,j)V(j)

Where neither C,(i, {j}) nor i,j) will be altered as a result of the TP

swap at state j. This is because both of these values are the result of costs

and state transitions probabilities encountered before a transition is made to

state j (see Section 3.3.4).

7”Monotonically reduced” will mean “reduced or kept the same” throughout this work.

Chapter 3. Transition Point Dynamic Programming (TPDP) 46

As a result, when V(j) is reduced, the evaluation function values V,(i) of

all the other states i E SB C Sc will also be monotonically reduced. D

It is possible to attempt TP swaps at more than one state concurrently. Such con

current swapping may be necessary to break up deadlocks which can occur if the costs

experienced by more than one TP are dependent on each other, and none of the TPs can

make a beneficial swap until the others have done so. To make concurrent swap attempts

the Swapping Rule is applied simultaneously at each of the states concerned.

Theorem 3.2: Any and all TP swaps that are made according to a concur

rent, but individual application of the Swapping Rule in a valid environment

will result in the evaluation function values V,(i) of all of the TP states

i e SB C Sc being monotonically reduced.

Proof: Equation 3.22 can be readily expanded to:

= C(i, (SG U SG’)) + + r(i,j)V(j) (3.23)
jESG JESGI

Where SG (the aborted swap states) is the set of TP states for which a TP swap

was attempted but aborted (SG C SB), and SG’ (the accepted swap states)

is the set of TP states for which a TP swap was attempted and accepted

(SG’ C SB; SG fl SG’ = 0).

Equation 3.23 indicates the evaluation function value V,(i) of each TP

state i before any TP swaps were made. When the complete set of TP swaps

was attempted, the evaluation function value of each TP state i was the

following:

i(i,j)Vi(j)+ > q(i,j)V(j) (3.24)
jESa jESG,

Chapter 3. Transition Point Dynamic Programming (TPDP) 47

Where ‘ indicates that the attempted TP swaps altered existing policy ,u.

Now to prove that the evaluation function values of all the TP states i

are monotonically reduced if a subset of the attempted TP swaps is accepted

(based on individual application of the Swapping Rule to each swap attempt),

an iterative approach will be employed determine what the resultant evalua

tion function values are — based on the evaluation function values before the

swap attempt and on those determined during the swap attempt8. The iter

ative calculation will concern only the evaluation function values V(i) of the

states i for which a TP swap was attempted (i E (SG U SG’)). The iterative

calculations are defined as follows:

C(i, (SG U SG’)) + (i,j)Vk(j) + i,j)V(j) V i S
T/ — jES0 jESGI
Vk+11i) —

> i(i,j)Vk(j)+ r’(i,j)V(j)
jESG jES0,

(3.25)

The combined usage of C(i, (SG U SG’)), C,i(i, (SG U SG’)), p(,j) and

i,j) values in Equation 3.25 is valid because of the nature of the composi

tion of the evaluation function values. The state space transitions occurring

from aborted swap states i E SG will be the same up to the point where they

encounter other states j (SG U SG’) where swaps were attempted. Thus, for

those states (i e SG), C,(i, (SG U SG’)) and (i,j) will remain the same.

Similarly, after a subset of the swaps are accepted, the state space transi

tions occurring from accepted swap states i E SGI will be the same as those

experienced during the concurrent swap attempt up to the point where they

encounter other states j E (SG U 50’) where swaps were attempted. Thus, for

those states (i E SG’), C,i(i, (S0 U SG’)) and iW(i,j) will remain the same.

8This iterative approach does not represent a form of Q-learning, as it has nothing directly to do
with the learning of an optimal policy. It is employed simply in the context of this proof.

Chapter 3. Transition Point Dynamic Programming (TPDP) 48

Equation 3.25 is therefore valid for use in iterative calculations. The initial

values for these calculations are:

I1’(i) ViESG
Vo(i) = (3.26)

j V(i) ViESG’

Now since 1’(i) for states i S is based on evaluation function values

V(j) for states j SG’ (see Equation 3.23) that existed before TP swaps

were made at those states (j SG’), and since the initial iterative value Vo(j)

is lower than V(j) for each state j E SG’, Vi(i) for all states i E SG is sure

to be lower than Vo(i) (Vo(i) = V(i)). Similar analysis can be made to show

that Vi(i) for all states i SG’ is sure to be lower than Vo(i) (Vo(i) = V(i)).

In turn, since V1(i) is lower than Vo(i) for all states i E (SG U SG’), V2(i)

will be lower than V1 (i) for all states i. Each iterative cycle k will likewise

result in a monotonic reduction of Vk(i) for each state i E (SGUSGI). None of

the iterative evaluation function values Vk(i) will ever go below 0 because all

of the elements of Equation 3.25 are positive. Therefore, Vk(i) for each state

i E (SG U SG’) will converge on some positive value below Vo(i). The exact

value each converges on is not important — what is important is that it is lower

than (i) for all states i E SG, and lower than V’(i) (with V(i) < V(i))

for all states i E SG’.

Because the evaluation function values for all states i E (SG U SG’) will be

monotonically reduced when a subset of the swaps are accepted, and because

evaluation function values at all TP states where a swap was not attempted

will also be monotonically reduced (based on a simple application of Equation

3.22 to those states), the evaluation function values for all TP states will be

monotonically reduced. 0

Chapter 3. Transition Point Dynamic Programming (TPDP) 49

Swapping can change the set of states in the closed state space Sc. That is, TP

swaps can change the shape of Sc. The actions specified by swapped TPs may direct

the system into states that had previously been external to Sc, and it may also direct

the system entirely away from states that had previously been part of Sc• Such changes

are desired if an optimal policy is sought. They result when new state transition routes

outside Sc have been found that result in lower costs than those available inside Sc. The

swapping of TPs makes these lower cost routes permanently available.

Changes in the closed state space Sc do not affect the validity of Theorems 3.1 and

3.2 because ineffectual TPs associated with states outside Sc (see Section 3.2.3) do not

have Q-values. These states are never reached with the existing set of TPs, and it is thus

meaningless to associate any sort of costs with them. As a result, if TPs are included in

(or excluded from) Sc as the result of TP swapping, nothing can really be said about

the changes in their Q-values.

3.3.6 The Result of Continued TP Swapping

Using the Swapping Rule, swaps can be concurrently attempted at one or more TP

states in Sc (see Section 3.3.5). Each time swaps are made the evaluation function value

V(i) (Equation 3.19: V(i) = Q(i, (i))) of each TP state i E Sc will be monotonically

reduced. Consecutive TPs swaps therefore result in a continuous monotonic reduction of

the evaluation function values of the TP states within Sc•

Theorem 3.3: Given any initial set of states with TPs, including TP states

SB C Sc and external states SE with ineffectual TPs, successive randomly

attempted concurrent TP swaps at those states, each made according to the

Swapping Rule in a valid environment, will result in a TP action being asso

ciated with every TP state in the closed state space Sc that has the lowest™

Chapter 3. Transition Point Dynamic Programming (TPDP) 50

expected total infinite-horizon discounted cost possible at that state (for that

set of states with TPs).

Intuitively Theorem 3.3 seems valid because if monotonic reduction of the evaluation

function values continues for all of the TP states in Sc (according to Theorem 3.2),

eventually the lowest possible value will be reached for each TP state. The issue is made

complicated however by the fact that TP swaps can change the states included in Sc

(see Section 3.3.5). Thus it has to be proven that, regardless of such changes to Sc, the

lowest cost action will be determined for every TP state in some sort of lowest cost Sc.

Basically, Sc has to be “anchored” in some way.

Proof: There are three cases to be considered for each of the starting states

i E Ss from which state transitions begin:

1. The starting state i E Ss is a TP state.

2. The starting state i Ss is not a TP state, but the actions specified in

this state (defined as part of the environment) result in stochastic state

transitions that lead to one or more TP states.

3. The starting state i e Ss is not a TP state, and the actions specified in

this state (defined as part of the environment) do not result in stochastic

state transitions that lead to any TP states.

In the third case actions are never specified by TPs as the system moves

through the state space, so there is no way to swap TPs. The claims made

in Theorem 3.3 are therefore moot.

In the first and second case the system will either start at a TP state,

or a TP state will be reached after a number of state transitions from the

starting state i E Ss. In the second case the costs experienced before a TP

Chapter 3. Transition Point Dynamic Programming (TPDP) 51

state is encountered cannot be altered by any TP swaps. In both cases the

environmental definition and the state transition probabilities ensure that a

fixed set of initial anchored states (TP states) will always be reached. As a

result, these anchored states will remain part of Sc — regardless of any TP

swaps made.

Considering the anchored states, Theorem 3.2 guarantees that the evalua

tion function values V(i) of these states will be monotonically reduced by any

combination of TP swaps made in Sc (whichever other states may included

in Sc at any time). Successive randomly attempted TP swaps will eventually

reduce the evaluation function values of the anchored states to their lowest

possible levels (given the set of states with TPs). This is true because the

monotonic reduction process will never stop before that point. Any interde

pendent relationships that may develop between the TPs, preventing further

evaluation function value reductions, can and will always be broken by some

randomly attempted simultaneous swapping of all of the interdependent TPs.

In the worst case, given enough random attempts, a simultaneous TP swap

attempt will inevitably be made where the TP at every TP state is swapped

for a TP specifying (coincidentally) the lowest cost action for that state.

Once the evaluation function values of the anchored states have been

monotonically reduced to their lowest possible levels (given the set of states

with TPs), it will also be true that the evaluation function values of all of

the other TP states in Sc will be at their lowest possible levels (regardless of

the shape of Sc at that time). This is true because, according to Equation

3.20, the evaluation function value of every anchored state can be defined us

ing the evaluation function value of every other TP state. Therefore, for the

Chapter 3. Transition Point Dynamic Programming (TPDP) 52

evaluation function value of every anchored state to be minimized, the evalu

ation function value of all other TP states in Sc must be minimized (noting

that every TP state in Sc is reached through transitions from at least one

anchored state — otherwise it would not be part of Sc).

Finally, since the evaluation function value of every TP state in the closed

state space Sc will inevitably be reduced to its lowest possible level (given

the set of states with TPs), it must be true that an action having the lowest

expected total infinite-horizon discounted cost is associated with every TP

state in Sc (see Equation 2.6). 0

3.3.7 The Limitations of TP Swapping

Section 3.3.6 presented proof (Theorem 3.3) that, in a valid environment with a given

initial set of TP states, continual randomly attempted TP swapping eventually leads to

the lowest cost action being associated with all TP states i E Sc There is no guarantee

however that the resultant set of TPs are a minimal TP optimal control set (see Section

3.2.5), or that the closed state space Sc they define is the optimal closed state space Sc*.

There are two reasons for this:

1. It may be necessary to associate new TPs with some of the non-TP states SD

(converting them to TP states) to make SB match SB* (see Section 3.2.6).

2. There may be state transition routes through the external states SE that result in

lower costs than those available through the closed state space Sc, and it may not

be possible to discover those routes without first associating some ineffectual TPs

(see Section 3.2.3) with external states. These ineffectual TPs may be necessary

so that the system can be directed through the available low cost routes in the

external states.

Chapter 3. Transition Point Dynamic Programming (TPDP) 53

The first reason why minimal TP optimal control might be prevented, which necessitates

the addition of TPs, will be addressed in Section 3.3.8. The second reason, which requires

some sort of structuring of the ineffectual TP configurations in the external states SE,

will be addressed in Section 3.3.10.

3.3.8 Adding TPs

TPs are added in a manner very similar to how they are swapped. The Q-value Q(i, uTp)

that results when a trial TP is associated with a non-TP state i E SD is determined and

compared to an assessment of the costs that result when no TP is associated with state

i. This comparison procedure is made difficult however by the fact that, since a non-TP

state has no TP, it has no Q-value associated with it that can be used to determine

the costs incurred when there is no TP. As a result an B-value is instead determined.

R-values are determined the same way that TP Q-values are, using the Q-value updating

Equation 3.18 with only notation change:

/d—1

[1
— crt(i)1 R(i) + at(i) u)) +7dv(sd) if =

Rt+d(z) = n=O

R(i) otherwise

(3.27)

Where d is the number of time steps after the non-TP state i is left before a TP state is

encountered, and ‘u is an action specified at some time step before t.

Evaluation function values are not generated from R-values. It is not necessary to

do so as neither R-value nor Q-value updates make use of evaluation function values at

non-TP states — the states R-values are associated with.

To illustrate that the R-value updating Equation 3.27 will converge on exact R-values

that indicate the costs incurred if no action is specified in a given non-TP state, entry

action probabilities first have to be explained. Entry action probabilities p(i, n) indicate,

Chapter 3. Transition Point Dynamic Programming (TPDP) 54

for a given state i, the probability of the system arriving at i as the result of an action

U E Ue() specified in some previous TP state, relative to the probability that the system

will arrive at i at all. This means that:

> p(i,u) = 1 (3.28)
ttEUe (i)

Entry action probabilities are entirely a function of the existing set of TPs and the

environment, as these determine the probability of the system making state transitions

from the starting states Ss to TP states where action u E Ue() can result in a transition

to i. The entry action probabilities p(i, u) for any state i can thus be altered by any

modification of the existing set of TPs.

The entry action probabilities p(i, u) for a system operating with a given set of TPs in

a valid environment will be fixed. As a result, a non-TP state i can be considered to be

a TP state that specifies a non-action action . The state transition probabilities pj(i,)
that result from this non-action action will be a product of the entry action probabilities

and the system state transition probabilities, and they too will be fixed:

= p(i,’u)pj(i,U) (3.29)
uEU6(i)

If a non-TP state i can be considered to be a TP state that specifies a non-action action

ü which results in fixed state transition probabilities p3(i,), then Q-learning can be

applied (as described in Section 3.3.3) to learn the Q-value Q(i, i1) that results from that

action. A Q-value determined in this manner is in fact an R-value. So Equation 3.27,

which is essentially the TP updating Equation 3.18, can be employed to learn the R-value

of a non-TP state.

With exact R-values available, the addition of TPs can be made according to the

following Addition Rule.

Chapter 3. Transition Point Dynamic Programming (TPDP) 55

Addition Rule: TP addition is performed by using Q-learning to determine

the R-value of a non-TP state. Then a trial TP is placed at that state and

Q-learning is used to determine the Q-value of that TP. If the Q-value of the

trial TP is less than or equal to the R-value, the TP is added. Otherwise the

addition is aborted.

Even though the evaluation function value V,j(i) (Equation 3.19: V(i) Q(i,i(i)))

of a state i with a newly added TP will be less than or equal to the R-value of that state

before the TP was added (as a result of the Addition Rule), the addition of a TP to a

state does not necessarily result in monotonic reduction of the evaluation function values

of the other TP states. Consider that the R-value R(i) for a non-TP state i is a product

of the Q-values of the entry actions to that state:

R(i) = p(i,’u)Q(i,u) (3.30)
UEUe (1)

Now if there existed two TP states a and b that always made a transition to non-TP state

i with the same action, a E Ue() for one and ub € U€(i) for the other, with Q(i, Ua)

being lower than Q(i, ub), then it may be possible to add a TP to state i that has an

intermediate Q-value Q(i, uTp) between Q(i, ua) and Q(i, ub). In this case, depending on

the entry action probabilities (see Equation 3.30), the R-value R(i) of state i might be

higher than Q(i, uTp). The TP would then be added (as a result of the Addition Rule),

increasing the costs experienced by TP state a as it reduced the costs experienced by TP

state b (see Equation 2.2). In this example the low costs of entry action Ua are balanced

by the high costs of entry action ub so that the overall R-value (see Equation 3.30) of the

non-TP state is higher than the Q-value of the TP added to it. Such a scenario may be

unlikely, but this example illustrates that the addition of a TP to a state, done according

to the Addition Rule, may result in an increase in the costs experienced by other TP

Chapter 3. Transition Point Dynamic Programming (TPDP) 56

states. These increased costs will be reflected in the evaluation function values of those

states.

Theorem 3.4: When a TP addition is made to state i e SD C Sc according

to the Addition Rule in a valid environment, either the Q-value Q(i, uTp) of

the added TP will be less than the Q-value Q(i, u) of at least one entry action

U E Ue(), or Q(i,uTp) = Q(i,u) Vu E Ue().

Proof: By contradiction. For Theorem 3.4 not to be true Q(i, uTp) must be

greater than Q(i, u) for at least one entry action u E Ue(), and equal to all

of the rest. If such were the case then:

p(i,u)Q(i,’uTp) > p(i,u)Q(i,’u) (3.31)
uEUe(i) EUe(i)

Which, because of Equation 3.28, means that:

Q(i,uTp) > p(i,u)Q(i,u) (3.32)
UEUe (1)

Considering Equation 3.30, this means that:

Q(i,uTp) > R(i) (3.33)

Which is a violation of the Theorem 3.4 assumption that the Addition Rule

is adhered to. D

Theorem 3.4 illustrates why TPs must be added. If an addition attempt is successful

then the costs incurred when the system encounters state i will either remain the same

for all entry actions u Ue(), or will be reduced for at least one entry action. In the

former case the evaluation function values of all the TP states in Sc will remain the same

and the addition of the TP will do no harm. In the latter case some of the evaluation

function values of the TP states may be increased as a result of the TP addition, but the

Chapter 3. Transition Point Dynamic Programming (TPDP) 57

addition is necessary to facilitate eventual optimal control of the system. This is because,

without a TP at state i, there would be no way to reduce the costs incurred when the

system encounters that state as a result of any entry actions u E Ue() whose Q-values

are higher than Q(i, UT?). If some of the entry action Q-values are lower than Q(i, UT?),

a swap will eventually occur at state i for a TP with a Q-value the same or lower than

that of the lowest entry action.

Theorem 3.5: A TP addition can always be made to a state i € SD C S’

according to the Addition Rule in a valid environment.

Proof: A TP addition can always be attempted where the action UT? associ

ated with that TP has a Q-value Q(i, UT?) that is as low as the lowest Q-value

Q(i,u) of all the entry actions u € Ue() in state i. The Q-value Q(i,uTp) of

such a TP is certain to be less than or equal to the R-value R(i) of non-TP

state i because the R-value, according to Equation 3.30, is composed of the

entry action Q-values — all of which are the same or higher than the Q-value

of the action the TP specifies. As a result, the Addition Rule will ensure that

the TP is added. This will occur even if all of the entry action Q-values are

the same as Q(i, UT?). In that case the R-value R(i) of non-TP state i will

be equal to Q(i, wpp), which is sufficient for the Addition Rule. C

3.3.9 Removing TPs

In order to achieve minimal TP optimal control it may be necessary to remove TPs. Some

TPs may be unnecessarily associated with dormant states SD. TP removal is performed

in a manner reverse that of TP addition.

Removal Rule: TP removal is performed by using Q-learning to determine

the Q-value of a TP. Then removal of that TP is attempted and Q-learning is

Chapter 3. Transition Point Dynamic Programming (TPDP) 58

used to determine the R-value of the resultant non-TP state. If the R-value

of the trial non-TP state is less than or equal to the Q-value of the TP, the

TP is removed. Otherwise the removal is aborted.

Even though the R-value of a state i with a recently removed TP will be less than or

equal to the evaluation function value V,j(i) of that state when it had a TP, the removal of

TPs does not necessarily result in monotonic reduction of the evaluation function values

of the other TP states. This is true for the same reasons that it is true of TP addition

(see Section 3.3.8). Briefly, TP removal can reduce the costs incurred when the system

encounters a state with some entry actions while increasing those incurred with others.

Theorem 3.6: A TP can only be removed from the state i € SB C Sc it is

associated with, according to the Removal Rule in a valid environment, if at

least one entry action u € Ue() has a Q-value Q(i, u) less than the Q-value

Q(i, uTp) of that TP, or if Q(i, wrp) = Q(i, u) V E Ue().

Proof: By contradiction. For Theorem 3.6 not to be true the Q-value

Q (i, UTP) of a removed TP must be less than Q(i, n) for at least one entry

action u E Ue(), and equal to all of the rest. If such were the case then:

p(i,u)Q(i,uTp) < p(i,u)Q(i,u) (3.34)
UEUe(i) uEU€(i)

Which, because of Equation 3.28, means that:

Q(i,uTp) < p(i,u)Q(i,u) (3.35)
uEU (1)

Considering Equation 3.30, this means that:

Q(i,nTp) <R(i) (3.36)

Which is a violation of the Theorem 3.6 assumption that the Removal Rule

is adhered to.

Chapter 3. Transition Point Dynamic Programming (TPDP) 59

The overall effect of the Addition and Removal Rules is that TPs may be added

and removed from states continuously depending on how their Q-values compare with

the R-values of the states concerned at any given time. Once the lowest Q-value TP

is associated with a state however, it cannot be removed unless all of the entry actions

U E U(i) have the same low Q-value. If the state is not a dormant state, this will never

occur.

3.3.10 Preparing External States

Sections 3.3.8 and 3.3.9 described how TPs are added to non-TP states SD within Sc,

and how they will be adopted permanently if those states are not dormant states. Such

additions ensure that, after extended TP swapping, the lowest cost actions are associated

with every TP state in Sc (Theorem 3.3). There is no guarantee however that the

resulting set of TPs defines an optimal closed state space SC.. To guarantee this, all of

the state transition routes external to Sc. (through SE) must be tried to ensure that none

exist that have lower costs than those available within Sc. If lower cost routes are found,

TP modifications must be made to change the shape of Sc so that it will include them.

In a given environment, access to external states SE is facilitated by making TP

modifications in S that direct the system into the external states. External states that

cannot be accessed by TP modifications are not of concern as they simply cannot be

reached in the existing environment.

Theorem 3.7: If some external states are entered in a valid environment as

the result of a TP addition, swap or removal attempt at state i E SC C 5,

and the Q-value or R-value of the attempted TP modification is less than

the Q-value or R-value normally experienced at state i, then the TP will be

modified according to the Addition, Swapping or Removal Rule (whichever

Chapter 3. Transition Point Dynamic Programming (TPDP) 60

is appropriate) to include the external states in Sc.

Proof: The immediate costs experienced in the external states SE are no

different from those experienced in Sc (see Equation 2.2). As a result, the

Q-values and R-values determined during TP addition, swap or removal at

tempts are the same regardless of whether external states are entered or not.

The Addition, Swapping and Removal Rules will therefore operate in exactly

the same manner, making the TP modification if it has been found to result

in a lower Q-value or R-value than that normally experienced. D

Theorem 3.7 is fairly self-evident. It was presented mainly to clarify the situation

with external states — specifically that they are no different from internal states in terms

of experienced costs. This assumption was implicitly made in Theorems 3.1 through 3.6

because the TP modifications that each of these Theorems described could have included

entry into external states.

So external states can readily be included in Sc if state transition routes through

them result in low enough costs. TP additions, swaps and removals in the existing closed

state space Sc will facilitate the inclusion of any low cost external state routes. There

is a difficulty that arises from assessing external state routes in this manner however.

This is that lower cost transition routes through the external states may not be readily

available. It may not be a simple matter of just entering the external states to discover

the lower cost routes. Instead it may be necessary to have some ineffectual TPs already

in place that can guide the system through convoluted low cost routes. Only then might

some low cost routes be discovered.

TP modifications in the external states do not affect the costs experienced in the closed

state space Sc (see Section 3.3.3), so ineffectual TP configurations can be modified freely

in the external states to prepare low cost routes.

Chapter 3. Transition Point Dynamic Programming (TPDP) 61

If random TP configurations are successively adopted in the external states and if a

TP configuration is possible that results in a lower cost state transition route through

these states, eventually this configuration will be discovered by a TP modification in Sc

and the lower cost route will be adopted. It may be desirable to prepare external state TP

configurations in a more structured manner however — a manner that facilitates quicker

discovery of the lower cost routes. This can be done by somehow modifying external

state TP configurations that have already been found to be of relatively low cost, or it

can be done by employing some knowledge of the system response.

3.3.11 Minimal TP Optimal Control is Guaranteed

Combining the results of Sections 3.3.3 through 3.3.10 a guarantee of TPDP converging

to optimal control and achieving minimal TP optimal control (see Section 3.2.5) can be

made9:

Theorem 3.8: Given any initial set of TPs in a valid environment, by se

quentially making random TP addition, swap and removal attempts at states

in the closed state space Sc according to the Addition, Swapping and Re

moval Rules, and by simultaneously randomly configuring ineffectual TPs in

the external states SE, optimal control of the system will be converged to and

minimal TP optimal control will be achieved.

Proof: Theorem 3.8 is true because a worst-case achievement of minimal TP

optimal control is always possible given a long enough random sequence of

TP modifications. It can occur as follows:

1. TPs are randomly and sequentially added to every boundary state SB

in Sc. Such additions can always be made (Theorem 3.5).

9Assuming that accurate Q-values and R-values can be determined during the TPDP process (see
Sections 3.3.3 and 2.2.3, and Appendix A).

Chapter 3. Transition Point Dynamic Programming (TPDP) 62

2. Ineffectual TPs are randomly configured to be at every boundary state

SB in SE. Such TPs can be added at any time (see Section 3.3.10).

3. Repeated, randomly attempted TP swapping monotonically reduces the

evaluation function values of all TP states in Sc to their lowest possible

levels, and thereby results in the lowest cost action being associated with

every TP state (Theorem 3.3). During this process all low cost routes

through the external states will be incorporated into Sc (Theorem 3.7).

4. As TPs are associated with all of the boundary states SBG, when lowest

cost actions are associated with all of the TP states, optimal control is

achieved (see Section 3.2.4). This optimal control will be permanently

maintained because TP additions, swaps and removals cannot be made

that will increase costs above the optimal costs experienced with optimal

control (Theorems 3.4, 3.2 and 3.6 respectively).

5. Randomly attempted TP removals eliminate all of the unnecessary TPs

at the dormant states SDO in Sc, reducing the TP states to the boundary

states SB. At this point minimal TP optimal control is achieved. Such

unnecessary TPs can always be removed (Theorem 3.6).

After minimal TP optimal control is achieved, random TP additions may

repeatedly add unnecessary TPs to the dormant states SDO. Such is possible

according to Theorem 3.4, but it will not affect the optimal control of the

system and eventually these TPs will be randomly removed again.

While TP additions and removals may continue after minimal TP optimal

control is achieved, no TP swaps will occur. This is because the Swapping

Rule prevents TP swaps after the lowest cost action is associated with any

TP state concerned. D

Chapter 3. Transition Point Dynamic Programming (TPDP) 63

The proof of Theorem 3.8 is based on an unlikely sequence of random TP modifications

being made. This sequence will inevitably occur however, given enough random TP

modifications. Unfortunately the complexities of the TPDP process require that such a

brutish proof be made.

In practice however, it is highly probable that TPDP can achieve minimal TP optimal

control in a much more straight-forward way. This is because, if Theorems 3.1 through

3.7 are considered, the Addition, Swapping and Removal Rules all tend to either mono-

tonically reduce costs or to ensure the continuance of important low cost TPs. Effectively

then, TPDP “locks-in” any cost reductions discovered. As a result, TPDP steadily de

termines a set of TPs that will provide minimal TP optimal control. Further, in contrast

to the sequence of events described in the proof of Theorem 3.8 that span the entire state

space, in most applications (ones without any complex cost interdependencies between

large numbers of states) TPDP can operate in a piecemeal manner, reducing the costs

experienced in small regions of the state space independently of other small regions. Ev

ery such set of small reductions contributes to the overall advancement towards minimal

TP optimal control.

3.3.12 Summary of TPDP Operation

Section 3.3.8 described how TPs can be added to non-TP states in the closed state space

Sc so that actions can be specified at every state where such specification is required

for optimal control. Section 3.3.10 detailed how ineffectual TPs can be configured in

the external states SE to prepare state transition routes through SE which may result

in lower costs than those available in Sc. Section 3.3.5 described how TP swaps are

made, and Section 3.3.6 explained how repeated TP swaps monotonically reduce the

evaluation function values of the TP states within Sc. Section 3.3.9 explained how TPs

could be removed from states if they were not required for optimal control, facilitating

Chapter 3. Transition Point Dynamic Programming (TPDP) 64

the minimization of the set of TPs.

Together these TPDP operations result in: the “filling out” of Sc so that it acquires

all of the TPs necessary for optimal control; the configuration of TPs in SE to facilitate

the inclusion of lower cost external state transition routes in Sc; the swapping of TPs

so that optimal control can be achieved; and the removal of unnecessary TPs. When

combined, these operations lead to minimal TP optimal control.

3.4 The Characteristics of TPDP

3.4.1 The Characteristics Shared with Q-learning

Because TPDP is a modified form of Q-learning, it has many of the characteristics that

Q-learning has. As described in Chapter 2, these include the fact that TPDP is:

• direct dynamic programming control

• memory-based control

• reinforcement learning control

• a solution to the credit assignment problem

• adaptive control

3.4.2 A Minimal Form of Direct DP Control

Like Q-learning, TPDP employs no explicit system models (see Section 2.2.1), so it uses

less memory than indirect dynamic programming controllers (see Section 2.3.1). Beyond

this however, TPDP is likely to use substantially less memory than Q-learning in the

same continuous control applications. This is true for two reasons. The first is that

TPDP stores only individual TPs; that is, the single Q-value, R-value and action that a

Chapter 3. Transition Point Dynamic Programming (TPDP) 65

TP associates with a given state. Q-learning on the other hand stores a complete set of

Q-values for each state — although it does not have to store R-values.

The second reason that TPDP can use less memory than Q-learning is that, if an

ACAM is employed to store the TPs (see Section 2.4.2), TPDP can take advantage of

uniform regions in which dormant states exist. Such dormant states require no TPs, and

TPDP can thus save memory for each dormant state. Even though Q-learning can take

advantage of the ACAM storage of Q-values (see Section 2.4.2), it cannot take advantage

of this further saving. It must store the Q-values of every state encountered during

control of the system.

The nature of the system being controlled determines how much of a memory saving

is possible if TPDP is employed instead of Q-learning. The advantages of TPDP are

reduced if there are few uniform regions in which dormant states exist (see Section 3.1.4),

or if there are few possible actions U(i) in each state i.

3.4.3 TPDP is Action Centered

Unlike most DP approaches to control, TPDP is highly focused on the consequences of

actions. Determining optimal actions is the final goal of any DP controller, but most are

primary concerned with learning an evaluation function that leads indirectly to optimal

policy determination. TPDP is directly concerned with evaluating specific TPs; that is,

evaluating specific actions taken in specific states. This is true of Q-learning controllers in

general, but it is especially so with TPDP because of the emphasis on adding, swapping

and removing TPs that are associated with specific actions.

Because TPDP focuses on the effects of actions instead of on the determination of

an evaluation function, the evaluation function approximation techniques described in

Section 2.4.4 are not really appropriate for TPDP. In general, TPDP is a very concrete,

memory-based approach to control.

Chapter 3. Transition Point Dynamic Programming (TPDP) 66

3.4.4 TPDP and Temporal Differences

Section 2.3.6 described Q-learning in the context of temporal difference learning. It was

explained in that Section how conventional one-step Q-learning (see Section 2.2.5) is

a form of TD(O) learning. The relationship of TPDP to temporal difference learning

is less clear. This is because the updating that occurs in TPDP involves evaluation

function values that can be further than a single time step away from the state being

updated (see Equation 3.18). TPDP is thus not TD(O) learning. TPDP is also not

TD(1) learning because it does not update using only the actual costs experienced after

an action has been specified in a given state (see Section 2.3.6). TPDP updates with

a series of immediate costs followed by a single evaluation function value, so it is some

hybrid of TD(O) and TD(1) learning — maybe “stretched TD(O) learning”.

Even though TPDP lies in the middle ground between TD(O) and TD(1), it would

be inaccurate to describe it as TD() learning (Sutton, 1988). This is because it does

not make updates using combinations of immediate costs and evaluation function values

(see Equation 2.15).

3.4.5 Continuous State Spaces and TPDP

As explained in Section 3.1.4, TPDP performs best on continuous state space stochastic

control applications. To facilitate control on these applications however, the continuous

state space must be discretized, with each state dimension being divided into a number

of intervals (see Section 2.3.2). Furthermore, TPDP operates by sampling the system

state in discrete time intervals. So while TPDP operates on continuous systems, it does

so by sampling a discretized state space in discrete time intervals. As long as the level

of discretization is fine enough in both space and time, this approach can be successfully

employed to control continuous systems.

Chapter 3. Transition Point Dynamic Programming (TPDP) 67

Up to this point the description of TPDP has involved only the time step interval

of 1 that is conventionally used with discrete state spaces. In continuous state spaces

control is resolved with a general time step interval T. The time step interval can be

made as short as is necessary (given the practical limitations of the controller hardware)

to effectively follow the continuous response of the system. As TPDP performs best in

continuous state spaces, the general time step interval T will be used henceforth in the

description of TPDP.

An incidental result of reducing the time step interval T is that the Q-values deter

mined by any DP controller employing Q-learning will be changed. Even though the

same immediate costs c(i, u) will be experienced as the system moves about the state

space, the immediate costs experienced over shorter intervals will be added to the total

infinite-horizon discounted cost and discounted more frequently. This can greatly alter

the Q-values Q(i, u) that are learned for each action u taken in each state i if updating

Equations 2.12 or 3.18 is employed. To roughly compensate for this effect the following

equations can be used to calculate new c’(i, u) and ‘ values from the old ones when a time

step interval change has been made and it is desired that the same total infinite-horizon

discounted costs be experienced:

c’(i,) = c(i,u)- (3.37)

7’ = (3.38)

Equation 3.38 will result in accurate discounting of the evaluation function value

Vt(st+d) that is included in updating Equations 2.12 and 3.18’°. The immediate cost

components in these equations will not be discounted entirely accurately however. As

suming that a constant immediate cost per unit time is experienced over all time step

intervals, and that is an integer, the following factor of error will be incurred in the

10When the update occurs after exactly r and d time steps respectively.

Chapter 3. Transition Point Dynamic Programming (TPDP) 68

7=0.8 7=0.9
=io =1oo =io =ioo

d = 1 -9.4% -10.3% -4.6% -5.0%
d = 10 -41.8% -45.8% -29.9% -32.8%

Figure 3.2: Sample Immediate Cost Error Factors

immediate cost portion of updating Equations 2.12” and 3.18:

immediate cost error factor =
.

7d 1 — 7d 1
(339)

T 71 7—1

Figure 3.2 presents some immediate cost error factors predicted by Equation 3.39 for

some and values.

‘1For Equation 2.12 d is always 1.

Chapter 4

Practical TPDP

This Chapter will present a description of a practical form of TPDP. The theoretical form

of TPDP presented in Chapter 3 has a number of limitations that make it impractical

for use in real control applications. These limitations are addressed in the practical form

of TPDP.

4.1 The Practical TPDP Approach

4.1.1 The Problem With the Theoretical Form of TPDP

TPDP was theoretically described in Chapter 3 as a method of learning a minimal set of

TPs that could provide optimal control of a system in a valid environment (see Section

3.2.2). As such it was shown that TPDP is certain to arrive at this minimal set if

random TP additions, swaps and removals are continually made over an indefinite but

finite period of time (see Section 3.3.11). The problem with this approach is that each

TP addition, swap1 and removal requires the determination of exact Q-values and R

values. For such values to be determined, Q-learning must be allowed to progress with

the existing set of TPs until Q-values and R-values have been converged upon which are

exact or negligibly close to being exact. This can take a considerable period of time, and

this process must be repeated for each TP addition, swap and removal. As a result, the

theoretical form of TPDP described in Chapter 3 is not very practical in terms of being

‘Of which more than one can be made concurrently (see Section 3.3.5).

69

Chapter 4. Practical TPDP 70

a viable control approach.

4.1.2 Concurrent Assessment of TP Modifications

To solve the problem of the protracted learning time required by the theoretical form

of TPDP, many TP modifications (additions, swaps and removals) can be assessed con

currently. That is, Q-learning can be employed not just to determine the Q-values and

R-values for a single TP modification, but instead to learn these values for a number of

concurrent modification attempts. Further, modification attempts, and the learning of

the values required for them, need not be initiated simultaneously. The determination of

each value can be made part of the Q-learning process whenever new TP modifications

are randomly attempted. This approach is called Practical TPDP.

Practical TPDP basically consists of a continually running Q-learning process, where

Q-learning is used to learn a constantly changing set of TP Q-values and R-values2.These

values are used in the assessment of randomly attempted TP modifications. The TPs

being assessed at any one time (with their associated Q-values and R-values) constitute

the assessment group.

Practical TPDP can result in more than one TP being simultaneously associated with

a state. As a result a policy TP (see Section 3.2.1) must be determined that defines the

policy action p(i) (see Section 2.1.1) for each state i.

4.1.3 Conventional Q-learning and Practical TPDP

To the extent that the Q-learning process is continuous in Practical TPDP (instead of

consisting of successive rounds of Q-learning in the manner of the theoretical form of

TPDP), and to the extent that a policy action 1t(i) may have to be chosen from actions

2A separate R-value must be associated with each TP at the same state when concurrent evaluations
are made (see Appendix Section B.3, Lines 20 to 33). As a result, the R-value notation must be modified
accordingly: R(i) becomes R(i, u).

Chapter 4. Practical TPDP 71

specified by a number of TPs associated with the same state i, Practical TPDP is like

conventional Q-learning. Practical TPDP is unlike conventional Q-learning however in

that the addition, swapping and removal of TPs completely disrupts the convergence to

optimal values that occurs in conventional Q-learning (see Section 2.2.3).

4.1.4 Minimal TP Optimal Control and Practical TPDP

As explained in Section 4.1.3, Practical TPDP disrupts the convergence to optimal values

that occurs in conventional Q-learning. As a result, exact Q-values and R-values are not

sure to be determined in Practical TPDP (see Sections 3.3.3 and 2.2.3, and Appendix A),

making the proof that minimal TP optimal control will be achieved with the theoretical

form of TPDP (Theorem 3.8) inapplicable to Practical TPDP. No extended proof has

been developed that can surmount the complex Q-value and R-value interdependencies

that exist in Practical TPDP. So no proof exists that Practical TPDP is certain to achieve

minimal TP optimal control.

Nonetheless, it is reasonable to assume that Practical TPDP will achieve minimal TP

optimal control. The reasons why this is true are the same reasons why the theoretical

form of TPDP is likely to achieve minimal TP optimal control more readily than through

the unlikely sequence of events described in Theorem 3.8 (see Section 3.3.11). Basically,

the addition, swapping and removal of TPs tends to steadily reduce the costs experienced

during system control and to “lock-in” these cost reductions3. This will occur whether

these TP modifications are made based on the exactly determined Q-values and R-values

of the theoretical form of TPDP, or on values that are determined in the concurrent man

ner of Practical TPDP. Chapter 5 will present some demonstrations of the effectiveness

of Practical TPDP.

31n fact, the proofs presented in Chapter 3 were developed mainly to indicate what could be expected
(although not guaranteed) with Practical TPDP.

Chapter 4. Practical TPDP 72

4.2 The Specific Operation of Practical TPDP

4.2.1 Using Weights to Concurrently Assess TPs

The main difficulty that arises when TPs are concurrently assessed is that of determining

when an assessment is complete. That is, when the Q-values and R-values associated

with each TP have been learned well enough for a TP modification to be made based on

them. The technique employed to address this problem is to associate a weight w(i, u)

with each TP that indicates the general merit of that TP. The basic idea of weights is to

facilitate the random addition of trial TPs to a TP assessment group with a low initial

weight Wjjj. The Q-values and R-values of the TPs in the assessment group are then

learned in an ongoing Q-learning process, and the TP weights are adjusted heuristically

using those values:

1. New TPs are given an initial weight of wjp.jtj1; 0 < wjpjj < Wmax.

2. Each time the Q-value of a TP is updated (whenever the system enters the state

associated with that TP and takes the action it specifies), the weight w(i, u) of that

TP is incremented if Q(i, u) <R(i, u) and decremented otherwise.

3. Each TP weight w(i, u) is limited to a maximum value of Wmax.

4. If a TP weight w(i, u) is decremented to 0, the TP is removed.

The TP weights are limited to a maximum value of Wmax to prevent them from becoming

so large that they cannot readily be reduced again if the system or the learning situation

changes.

A simpler approach to TP modification assessment might have been to associate

some sort of counter with the Q-values and R-values of each TP that indicated how

many times they had been updated. These counters could then be used in assessment

Chapter 4. Practical TPDP 73

decisions. Similar techniques were discussed in Section 2.4.5. The approach using weights

was chosen because it facilitated the prompt removal of TPs that were clearly not prudent

for a state to employ, and because it allowed for an ongoing assessment of each TP as

conditions changed.

4.2.2 Policy TP Determination

After each change in TP weights or Q-values, the policy TP for the state associated with

that TP has to be redetermined. This is done by considering all of the TPs with weights

w(i, u) greater than or equal to Wt1J (Wipjtjaj < W < Wmax), and finding the one with the

lowest Q-value Q(i, u). The threshold value Wthr prevents new and untested TPs from

being made policy TPs (see Section 4.1.2). This decision process is formalized as finding

a TP whose associated action UTP fulfills:

mm Q(i,u) Vu with w(i,u) Wthr (4.40)
uEU(:)

If no TPs exist whose weights fulfill this criteria (w(i, u) Wthi.), the policy TP is

determined by finding the TP whose weight is closest to Wt. This decision process is

formalized as finding the TP whose associated action fulfills:

max w(i,u) Vu with w(i,u) >0 (4.41)
uEU(:)

If a state has only one TP associated with it, that TP will always be the policy TP.

Regarding the formalities of the theoretical form of TPDP presented in Chapter 3, this

combined approach to TP assessment (see Section 4.2.1) and policy TP determination

results in TP additions when a TP is associated with a non-TP state. TP swaps result

when, according to Equations 4.40 and 4.41, the policy TP at a state is changed. And

TP removals result when the single TP associated with a state (which must be the policy

TP) is removed.

Chapter 4. Practical TPDP 74

4.2.3 Exploration in Practical TPDP

There are two basic types of exploration which must be performed in Practical TPDP.

The first, as described in general terms in Section 2.2.4, is to continually try the actions

that can be performed in each state i. In the case of Practical TPDP, this means that the

actions specified by all of the TPs associated with each state must be continually tried.

Thorough exploration of this type is readily ensured by randomly selecting between the

TP actions associated with each state encountered. Practical TPDP makes such random

selection, so this type of exploration will be discussed no further.

The second type of exploration involves the identification of new TPs that should be

assessed by Q-learning. Such TPs can lead to policy improvements, and they can be

associated both with TP states and non-TP states. There are two modes of this type of

exploration, internal exploration and external exploration.

The purpose of internal exploration is to identify TPs that may reduce the costs

experienced within the closed state space Sc defined by the existing set of policy TPs

(see Section 3.2.1). Internal exploration is performed by randomly trying sequences of

actions in Sc that are not specified by the existing set of TPs. If such experimental

sequences of actions result in lower costs than would have been experienced with the

existing set of TPs, new TPs that specify the experimental actions are associated with

the states where those actions were applied. Those TPs, and the actions they specify,

are then fully assessed using Q-learning — they are made part of the assessment group.

This process is described in detail in Appendix Section B.3.

The purpose of external exploration is to associate TPs with external states SE (see

Section 3.2.1) to prepare state transition routes that can be followed by the system

through those states. Such preparation may be necessary for the discovery of lower cost

routes through the external states (see Section 3.3.10). External exploration is performed

Chapter 4. Practical TPDP 75

by having the system make random action specifications in SE until a TP is encountered.

When a TP is encountered, a new TP is associated with the state where the last random

action was specified. This TP then indicates a route that the system can follow to return

to the closed state space Sc when it is moving through the external states SE. Over time

such TP allocations will build upon each other to indicate complete routes through the

external states SE TP allocations are made in the external states in this conservative

manner to ensure that the number of TPs allocated does not become excessive. Excessive

allocation would occur, for example, if TPs were allocated every time a new action was

specified during external exploration.

Generally, internal exploration can be viewed as a way of ensuring that uniform region

boundaries (see Section 3.1.1) are located correctly. That is, ensuring that the TPs that

define these boundaries are associated with exactly the right states and that they should

not be shifted slightly in the state space. Internal exploration also ensures that absolutely

optimal actions are specified at the boundaries. External exploration can be viewed as

a way of ensuring that no state space transition routes are available in SE that result in

lower costs than those already being followed in Sc.

As described, internal and external exploration result respectively in the allocation

of new, lower cost TPs in the closed state space Sc, and in the arbitrary allocation of

TPs in the external states SE. In reality the correspondence between the two modes of

exploration and the portion of the state space S in which the TPs are allocated is rather

rough. This is because there is no practical way to fully discriminate between Sc and

SE during the operation of Practical TPDP. This is not a problem however, because the

clear demarcation of these two regions was not found to be required for the successful

operation of Practical TPDP (see Chapter 5).

Chapter 4. Practical TPDP 76

4.2.4 General Operation of the Practical TPDP Algorithm

Figure 4.3 presents a complete algorithm for Practical TPDP that makes use of the TP

assessment method described in Section 4.2.1, the policy TP determination method de

scribed in Section 4.2.2, and the internal and external exploration described in Section

4.2.3. This Practical TPDP Algorithm is employed once for every learning trial (sequence

of state transitions from the starting states Ss to the absorbing states SA4), and it repeat

edly calls the Stack Updating Procedure presented in Figure 4.4. The “stack” (Standish,

1980) contains time step, state and action information about all TPs that are encoun

tered in the period between every set of Q-value, R-value and weight updates requested

by the Practical TPDP Algorithm (see Appendix Section B.2). When the Practical

TPDP Algorithm requests an updating, the Stack Updating Procedure performs it using

the contents of the stack. Appendix Section B.2 fully describes the Practical TPDP

Algorithm, and Appendix Section B.3 fully describes the Stack Updating Procedure it

calls.

The general operation of the Practical TPDP Algorithm is as follows. The Practical

TPDP controller can be in one of three exploration modes. The mode in effect at any

time is identified by the variable explore as ‘none’, ‘internal’ or ‘external’. When no

exploration is occurring actions are randomly chosen from those specified by the TPs at

the states encountered. The immediate costs incurred when those actions are taken are

observed, and the Q-values, R-values and weights of the TPs specifying those actions are

updated accordingly. Internal and external exploration (see Section 4.2.3) are randomly

initiated in the midst of this process and are allowed to continue until a TP state is

encountered. Internal and external exploration facilitate the allocation of new TPs that

can be further assessed.

4A trial can also be terminated by a mechanism that ensures that all of the states are continually
visited, as explained in Section 3.2.2, but such terminations will not be dealt with in this Chapter.

Chapter 4. Practical TPDP 77

1. randomly choose starting state E Ss
2. choose a starting action u0 E U(s0)
3. if (state has a TP): ‘none’ explore
4. otherwise: ‘external’ explore
5. 0 t, 0 tupdate, 0 tItTp

10. while St 15 not an absorbing state SA:
11. if (state St St—T) or (state St = 5t—T for time Ttk):

20. if (state t has a TP):
21. if (UswapTp > 0):
22. update-stack(explore, t, Q(s, f’(st)), Vexpected)

23. ‘internal’ explore
24. randomly choose action Ut e U(s)
25. push-on-stack(t, 5, Ut, 0)
26. otherwise if (explore ‘none’) or (t > tupdate)

27. update-stack(explore, t, Q(st, It(St)), Vexpecte)

28. ‘none’ = explore
29. t + Ode1ay tupdate

30. randomly choose action Ut from TP actions in U(s)
31. push-on-stack(t, 5, Ut, ‘true’)
32. otherwise: push-on-stack(t, 5t, Ut, ‘false’)
33. Q(st,p(st)) Vexpecteci, Q(st,iz(st)) =‘ ‘IS-TP

34. t = tfrsf

40. if (state .s has no TP) and (explore ‘none’) and (athange> 0):
41. if (explore = ‘external’): flush-stack
42. randomly choose action Ut E U(s)
43. push-on-stack(t, 5, Ut, 0)
50. if (state s has no TP) and (explore = ‘none’) and (addTp > 0)
51. update-stack(’none’, t1astTP, V1astTP, 0)
52. if (Oexternai> 0): ‘external’ = explore
53. otherwise: ‘internal’ = explore
54. randomly choose action Ut E U(s)
55. push-on-stack(t, st, Ut, 0)
60. t+T=t
61. (Vexpected — C(St, Ut)) Vexpecteci

62. observe system for new state s
63. update-stack(explore, t, S, Vexpected)

Figure 4.3: The Practical TPDP Algorithm

Chapter 4. Practical TPDP 78

[Parameters passed: explore, t, Vupdate, Vexpected]
1. while (time at top of stack t, t): pop-off-stack(t3,is, u3, specified3)
2. Vupdate Gtotal

10. while (there are entries in stack):
11. pop-off-stack(t5,i, u.,, specified5)
12. while (t> t3):
13. 7Cotaj+c(is,us) ‘ 0totai

14. t—Tt

20. if (explore = ‘none’):
21. for (each TP action u E U(i5) in state i3):
22. if(u=u3):
23. (1 — cr)Q(i3,u5) + aCtotaj Q(i, u5)
24. if (Q(i5,u3)< R(i3,u8)):
25. w(i5,u5) + 1 = w(i5,u5)
26. if (w(i3,u) > wmax): Wmax w(i5,u5)
27. otherwise:
28. w(i5,u3)—1 = w(i5,u5)
29. if (w(is, u5) = 0): remove the TP
30. if [(state i5 has only one TP) and (specified5= ‘false’)] or

[(u u3) and (another TP at state i. specifies u8)]:
31. (1 — c)R(i5,u) + aCtotai = R(i5,u)
32. for (each TP action u E U(i5) in state i5):
33. if [(w(i3,1u(i3)) < wi) and (w(i5,u) > w(i5,z(i5)))] or

[(w(i5,u(i3)) w) and (w(i5,u) w) and
(Q(i5,u) < Q(i3,p(i5)))]: u =‘ ,u(i5)

40. if (state i has TPs) and (memory can be allocated) and
(explore ‘internal’) and (C031 < Q(i8,(i5))):

41. allocate a new TP at state i with action u,
42. C0 = Q(i, u5), C01 R(i5,s)

43. Wjnjtjal = w(i5,u5)
44. if (w(i5,u8) > w(i5,1z(i5))) or w(i3,u5) wt): u5 = [L(i5)

50. if (state i5 has no TPs) and (memory can be allocated) and
[((explore = ‘internal’) and Vupdate < Vexpected)) or (explore = ‘external’)]:

51. allocate a new TP at state i5 with action u5
52. C0j= Q(i5,u5),C05.1 = R(i5,u5)
53. = w(i3,u3)
54. = (i3)

Figure 4.4: The Stack Update Procedure

Chapter 4. Practical TPDP 79

4.2.5 Delayed Updating

It was found, during experimental work with Practical TPDP, that updating the stack

as soon as a new TP was encountered (see Equations 3.18 and 3.27) resulted in poor

performance. This was because the TP states were frequently close together, and one

was often encountered soon after another had been left. This resulted in the specified

action being changed after only brief intervals, which prevented observation of the costs

which each action specification would incur if they had time to truly affect the system.

As explained in Section 3.1.4, actions specified for short durations cannot really affect

systems that have inertia. In response to this, delayed updating was incorporated into

Practical TPDP. Delayed updating prevents updating for a reasonable period of time,

facilitating Q-value and R-value updating with longer term cost consequences.

Delayed updating is facilitated with the use of an update time tupdate (see Figure 4.3).

Instead of simply applying a TP action at a given TP state and updating the Q-values, R

values and weights of that TP as soon as another TP state is encountered, tupdate is used

to maintain the action specified by the TP and delay updating. The delay may continue

as state transitions are made through many TP states. This is in fact the primary reason

why a stack is employed in Practical TPDP5.The stack records the information related

to all of the TPs that are encountered in the period before the update time tupdate has

been reached.

The update time tupdate is set (see Appendix Section B.2, Lines 20 to 34) by adding a

random positive delay parameter crdelay to the current time step t. Section 4.2.6 describes

how the random distribution of de1ay is determined. Once tupdate is set, stack updating

and changes in the action specification are prevented until t exceeds tupdae (unless internal

or external exploration is initiated).

5The stack is also used to record all of the action specifications made during internal exploration.

Chapter 4. Practical TPDP 80

Update times are not used during internal and external exploration because all ex

ploration is terminated as soon as a TP state is encountered. This is done because

internal and external exploration are not performed to assess existing TPs. Exploration

is performed to determine if new TPs should be allocated for future assessment, and this

determination can only be made based on the evaluation function values of the TP states

at the start and end of the exploratory transition sequences through the state space (see

Appendix Section B.3). In other words, all exploration takes place during transition

sequences between TP states.

If a given TP is the only TP associated with a state, and updating is not occasionally

delayed when the system enters that state, then the action associated with that TP

will always be chosen for specification when that state is entered. This will preclude all

updating of the R-value of that TP (see Appendix Section B.3). This is another reason

why delayed updating is necessary.

4.2.6 The Practical TPDP Exploration Parameters

Of the various parameters in the Practical TPDP Algorithm that must be adjusted to

ensure effective algorithm performance, the exploration parameters were found during

experimental work to be the most important (see Chapter 5). This Section will describe

these parameters, and present guidelines for their determination.

The Delay Parameter

As explained in Section 4.2.5, ‘7delay is a random positive delay parameter added to i to

determine the next update time tupdate. Basically, tupdate determines how often updates

should occur. The distribution of de1ay can be uniform or Gaussian6,with the mean

de1ay entirely depending on the system being considered. The value of Udelay must be set

6With negative values being made equal to zero.

Chapter 4. Practical TPDP 81

high enough to ensure that the long term consequences of the action specified by each

TP can be observed in the system under consideration (see Section 4.2.5). It must not

be set so high however that the action specified by each TP is frequently maintained well

beyond the boundaries of the uniform region (see Section 3.1.1) that it is best suited for.

This would result in the costs experienced after actions are specified being unnecessarily

high.

Generally, &delay is related to the natural modes of the system being controlled. If the

action specification must change after an average interval ofT11If0for a given system to

be optimally controlled (that is, it takes an average time ofT1ç0to cross each uniform

region), then Practical TPDP is most effective when:

de1ay = Tuniform (4.42)

A rough value for Tjf0can be determined by considering the general response charac

teristics of the system concerned. A rough value is sufficient, as Practical TPDP is not

overly sensitive to the setting of this parameter (see Section 5.5).

The Swap Parameter

The random swap parameter swap-TP (see Appendix Section B.2), which has some fixed

probability Pr(oswapTp > 0) of being greater than zero each time it is considered, deter

mines whether or not internal exploration is initiated at TP states. This probability must

be set low enough to ensure frequent updates of the TPs already associated with each

state, and high enough to facilitate thorough exploration of alternative TP possibilities

at each state. Experimental work with Practical TPDP (see Chapter 5) indicated that a

0.2 probability ofc7swapTP being greater than zero generally produced good results — that

is, internal exploration should be initiated once every five times that a TP is encountered.

Chapter 4. Practical TPDP 82

The Initiate Parameter

The random initiate parameter add-TP (see Appendix Section B.2), which has some

fixed probability Pr(Jaad..Tp > 0) of being greater than zero each time it is considered,

determines whether or not exploration (internal or external) is initiated at non-TP states.

This probability must be set low enough to ensure that the updating of existing TPs is

not constantly interrupted, and high enough to facilitate thorough exploration of new TP

addition possibilities. As °add-TP is considered every time step during which the system is

not in a TP state, the cumulative probability of exploration (internal or external) being

initiated between TP states must be adjusted to be appropriate for the system under

consideration.

Experimental work with Practical TPDP (see Chapter 5) indicated that the best

results were obtained when the cumulative probability of exploration was 0.5 or higher

when the system passed through the first non-TP state encountered after leaving a TP

state. This facilitated the addition of new TPs that could subtly refine the boundary

state locations (see Section 3.1.1). By employing dqujck, the number of time steps required

to pass through a single state at the highest system velocity, a formula for Pr(JadaTp > 0)

can thus be determined:

0.5 = 1 — [1 — Pr(uadaTp > J)]dquiCk

Pr(uaddTp > 0) = 1 — 51/dquick (4.43)

Using Equation 4.43 to determine a value for Pr(Jadd’rp > 0) can result in the updat

ing of existing TPs constantly being interrupted early in the learning process when the

TPs are well spaced out. At this time refinement of the boundary locations is unneces

sary and undesirable. A method of varying Pr(oaad.Tp > 0) as learning progresses would

therefore be valuable. Such a method was not developed during this work however.

Chapter 4. Practical TPDP 83

The External Parameter

Once internal or external exploration is initiated at non-TP states (based on the random

parameter OaddTp), the probability Pr(uexteni > 0) of the random external parameter

exterxia1 being greater than zero determines whether or not external exploration is initiated

instead of internal exploration (see Appendix Section B.2). Experimental work with

Practical TPDP (see Chapter 5) indicated that a 0.5 probability of extema1 being greater

than zero generally produced good results — that is, when exploration is initiated at

non-TP states, internal and external exploration should be chosen with equal likelihood.

The Route Change Parameter

During internal and external exploration, the probability Pr(uchange> 0) of the random

route change parameter o’cllange being greater than zero determines whether or not a new

experimental action is specified during each time step (see Appendix Section B.2). As

c1-tange is considered every time step during exploration, the cumulative probability of an

action change must be adjusted so that action changes are made at intervals that reflect

the ability of the system concerned to respond.

Like the delay parameter ãdelay, Pr(uchange > 0) is related to the natural modes of

the system being controlled. Experimental work with Practical TPDP (see Chapter 5)

indicated that the best results were obtained when there was a 0.5 cumulative probability

of an action change occurring after the same action had been specified for one fifth of

Tuniform, the average time required to cross each uniform region:

0.5 = 1 — [1 — Pr(ochge> o)]TUIUf0ITfl/(5T)

Pr(ochge> 0) = 1 —

(444)

Chapter 4. Practical TPDP 84

4.2.7 The Other Practical TPDP Parameters

The Learning Rate

The learning rate o should be set high enough to facilitate some learning, but not so high

that the results from each learning experience can drastically alter what has already been

learned. Learning rate values are commonly set around 0.3, and this value was found

to produce good results during experimental work with Practical TPDP (see Chapter

5). There is no reason why this value should not produce equally good results in any

application of Practical TPDP.

The Weight Parameters

The weight parameters must be set so that when a new TP is added to the assessment

group with an initial weight of that TP will be quickly removed if its R-value is

thereafter less than its Q-value (see Section 4.2.1). The threshold value w above which

a TP can be considered as a potential policy TP for a given state (see Section 4.2.2) must

be set high enough so that a newly added TP must be updated a number of times before

it can reach that threshold. The maximum weight value Wmax must be set so that the

weight of a TP can be quickly reduced below w if a system change reduces its merit

(see Section 4.2.1). Experimental work with Practical TPDP (see Chapter 5) indicated

that the following weight parameter values produced good results:

= 2

WtFj. = 10

Wmax = 20

There is no reason why these values should not produce equally good results in any

application of Practical TPDP.

Chapter 4. Practical TPDP 85

The Same State Limit Parameter

The parameter Ttk is used to initiate exploration when the system has been “stuck” in

the same state for too long (see Appendix Section B.2). It should be set so that Ttk is

a time period longer than that for which the system under consideration would normally

be expected to stop.

Chapter 5

Application of Practical TPDP

This Chapter will describe the application of Practical TPDP to two different control

tasks. These applications allow the characteristics of Practical TPDP to be analyzed and

described.

5.1 The Race Track Problem

5.1.1 Description of the Problem

Gardner (1973) described a problem called Race Track which Barto et al. (1991) later

modified for the application of DP controllers. As described by Barto et al. (1991), Race

Track consists of a “track” like the one shown in Figure 5.5. A single “car” starts at the

left of the track shown, accelerates down the length of it, and finishes after making a left

turn. Each square in this track represents a position that the car can move to. The four

positions where the car can start are the starting states Ss (with all velocities zero). The

absorbing states SA include all four finishing positions, with different velocities possible in

each position. When one of the finishing positions is reached the problem is terminated.

Collisions with the walls are handled by leaving the car at the point of collision and

setting its velocity to zero1. As explained by Barto et al. (1991), this implies that the

car cannot leave the track except by reaching the finishing positions.

As the car moves down the track its horizontal and vertical accelerations can be
1Litigation is not a concern in this problem.

86

Chapter 5. Application of Practical TPDP 87

Finishing
Positions

Starting
Positions

controlled, with the velocity of the car in both directions being limited. This limitation

ensures that the state space S of the problem is finite (Barto et aL, 1991), although wall

collisions will inherently limit the velocities possible on the track shown in Figure 5.5.

Any acceleration specification has a probability Pineffective of having no effect on the car

during the time step in which it is applied. This makes the problem stochastic.

The control task is to control the horizontal and vertical accelerations of the car so

that it runs the length of the track in the minimum possible time. This optimality criteria

is established by imposing the same immediate cost c(i, u) = 1 for all actions u E U(i)

taken in each state i, with the exception of actions taken in the absorbing states SA.

All actions taken after reaching the absorbing states SA, for all future time, result in

immediate costs of c(i, u) = 0. The discount rate y is set to 1. As a result, the lowest

possible costs are incurred when the car runs the length of the track in the minimum

possible time.

Figure 5.5: A Race Track

Chapter 5. Application of Practical TPDP 88

5.1.2 A Discrete-time Stochastic Dynamic System Formulation

Following Barto et al. (1991), the Race Track problem can be described as having a state

space S consisting of states St = [Xt, Yt, t, ‘t1, where xt and Yt are the horizontal and

vertical position of the car respectively at time step t. The possible actions U(i) are

the same for each state i and consist of u — [zi, up], where both ‘u and u, are in the

set {—a, 0, a}, and where a is a constant. With velocity limitations of thL and the

following state transition will occur at time step t with probability 1 — pineffective:

Xt+T = max(—L, min(thL, + uT)))

Yt+T max(—L, min(L, + uT)))

Xt+T = Xt + Xt+TT

Yt+T Yt + Yt+TT (5.45)

If the acceleration specifications have been ineffective (probability pineffective), the following

state transition will occur at time step t:

Xt+T =

Yt+T = Yt

Xt+T = Xt + Xt+TT

Yt+T = lit + yt+TT (5.46)

Given the state transitions described by Equations 5.45 and 5.46, if a, XL, YL, T and

the initial state values [xc,, yo, o, ‘o] are all integers, the state values will always remain

integers.

5.1.3 A Continuous Version of the Problem

As explained in Section 3.1.4, TPDP performs best in continuous state spaces. Therefore,

to fully demonstrate Practical TPDP, it was applied to a continuous version of the Race

Chapter 5. Application of Practical TPDP 89

Track problem. To make the problem continuous, the time step interval T in Equations

5.45 and 5.46 is made infinitesimally small.

When this is done there is no guarantee that the state values will remain illtegers.

As a result, in order to control the car with a finite number of DP elements (see Section

2.3.2), the state values must be quantized into discrete intervals. For this application of

Practical TPDP the state values were simply rounded-off to the nearest integer.

Making the state space continuous changes the total infinite-horizon discounted costs

experienced as described in Section 3.4.5. Equations 3.37 and 3.38 were used to compen

sate for these effects during Practical TPDP solution of the Race Track problem.

By making the time step interval T small, and thereby making the Race Track problem

continuous, the system state is prevented from drastically changing between time steps.

In the discrete-time (T = 1) version of the problem considered by Barto et al. (1991) the

car velocity could instantaneously change, and the car could move from one position to

another one many squares away without passing through the positions in between. If the

time step interval T is made small, state space transitions are restricted to occur only

between neighboring states, and both of these behaviors are eliminated. As explained

in Section 3.1.4, this is necessary for the effective operation of TPDP. If drastic state

changes are possible, uniform region boundaries cannot be established.

5.1.4 Problem Specifics Used During Practical TPDP Application

The track used for Practical TPDP application was the one used by Barto et at. (1991).

It is the track shown in Figure 5.5. Continuous movement was approximated by setting

T = 0.05. This setting was small enough to ensure that state transitions could only be

made between neighboring states, but large enough to ensure that the problem simulation

time did not become exorbitant.

With T set to 0.05 on this track the system can enter roughly 15440 discretized states.

Chapter 5. Application of Practical TPDP 90

The car was started in one of the four starting positions with zero velocity, each of which

was chosen with equal probability.

When Practical TPDP was applied to the Race Track problem, the various problem

parameters were generally set to the values used by Barto et al. (1991):

= 1 (this value is unaffected by the y compensation Equation 3.38)

0 for all actions taken in the absorbing states SA

c(i, u) 3 for any actions that lead to a wall collision

1- = 0.05 for all other actions (based on Equation 3.37)

Pineffective = 0.1

a=1

XL = 6

= 6

As indicated, the immediate cost c(i, u) incurred when an action lead to a wall collision

was set to 3. In the discrete-time (T = 1) version of this problem considered by Barto et

al. (1991), no extra cost was incurred other than that which resulted from the additional

time required to accelerate the car again. When the problem was made continuous, the

collision cost of 3 was used because the ability of the car to accelerate was changed. This

change lead to the uninteresting result that the total cost incurred was roughly the same

whether the car swept smoothly around the left turn or whether it accelerated fully into

the right wall, collided with it, and then accelerated again to reach the finishing positions.

The collision cost of 3 made the latter strategy much less attractive.

Chapter 5. Application of Practical TPDP 91

5.1.5 The Practical TPDP Algorithm Parameters Used

During solution of the Race Track problem, the Practical TPDP Algorithm parameters

(see Sections 4.2.1, 4.2.5, 4.2.6, 4.2.7, and Figures 4.3 and 4.4) were set to:

de1ay = 2.5

Pr(JswaTp > 0) = 0.2

Pr(Jadd..Tp > 0) = 0.25

Pr(externai> 0) = 0.5

Pr(Jchange> 0) = 0.1

= 0.3 V t,i,u

= 2

Wthr 10

Wmax = 20

Ttck = 1

The random parameter de1ay had a uniform distribution from 0 to 5 (see Section 4.2.6).

The values for Odelay and Pr(uthge> 0) were based on a T1f0value of 2.5 being used

in Equations 4.42 and 4.44 respectively. The value for Pr(craddTp > 0) was based on

a dquick value of 3 being used in Equation 4.43. The rest of the parameter values were

chosen based on preliminary experimentation.

5.1.6 Evaluation of Performance on the Problem

It was not expected that Practical TPDP would learn absolutely optimal policies for the

Race Track problem — this would have taken far too long. Instead near optimal policies

were sought. To evaluate the performance of Practical TPDP as it learned such near

Chapter 5. Application of Practical TPDP 92

optimal policies, successive trials were simulated that included one run of the car from

the starting positions to the finishing positions. After every set of 20 such learning trials,

500 test trials were simulated where Practical TPDP learning was suspended and the

policy learned up to that point was employed to control the car. The average track time

of the car down the track during the 500 test trials was used as an indication of how well

the policy had been learned. The combination of 20 learning trials followed by 500 test

trials was called an epoch, and it was also used by Barto et al. (1991).

All test trials were terminated in which a total cost of more than 500 was experienced

before the car arrived at the finishing positions. Further, during testing, only actions

specified by policy TPs (see Section 4.1.2) with weights w(i, u) greater than were

applied to the system.

5.2 Performance on the Race Track Problem

5.2.1 Comparing Practical TPDP and Conventional Q-learning

Figure 5.6 shows the average track time results (see Section 5.1.6) when both Practical

TPDP and conventional Q-learning were applied to a continuous version (see Section

5.1.3) of the Race Track problem. As explained in Section 5.1.4, the track shown in

Figure 5.5 was used, as well as the problem parameters presented in that Section. The

Practical TPDP Algorithm parameters used were those presented in Section 5.1.5. The

parameters and exploration method used for conventional Q-learning were those employed

by Barto et al. (1991) on this same track during their discrete-time (T = 1) experiments.

Figure 5.6 shows that Practical TPDP learned a near optimal policy much faster than

conventional Q-learning. This comparison is somewhat inequitable however, because the

conventional Q-learning approach used (Barto et al., 1991) is best suited for discrete-time

(T = 1) applications. When the time step interval T is made small enough to make the

Chapter 5. Application of Practical TPDP 93

problem approximately continuous (see Section 3.4.5), state transitions are made only

between neighboring states. As a result, Q-value updating is performed by conventional

Q-learning using only the immediate costs experienced after short periods of time. This

makes learning a near optimal policy very difficult (see Section 4.2.5). This problem was

solved in Practical TPDP by making use of delayed updating and its randomly chosen

update time tupdate (see Section 4.2.5). In order to make the comparison between Practical

TPDP and conventional Q-learning more equitable, this delayed updating approach was

added to conventional Q-learning.

The average track time results after delayed updating was incorporated into conven

tional Q-learning are presented in Figure 5.7. Figure 5.7 shows that the performance

of conventional Q-learning on the continuous Race Track problem was indeed improved

by adding delayed updating to it, but that Practical TPDP still learned a near optimal

policy considerably faster. The reason for this, as explained in Section 3.1.3, is that

conventional Q-learning associates a DP element with every possible state and action

combination. Practical TPDP only associates DP elements (in the form of TPs) with a

fraction of this total, and thus enjoys the benefit of not having to make DP computations

for all of them.

Considering total computational effort, to complete 1500 epochs (with no test trials)

on the Race Track problem Q-learning without delayed updating required 983 CPU

seconds on a Sun SPARCstation 10, Q-learning with delayed updating required 229

CPU seconds, and Practical TPDP required 528 CPU seconds. As explained, Q-learning

without delayed updating is not well suited to application in such continuous state spaces,

and the protracted learning times which result necessitate more computational effort.

More computational effort was required for Practical TPDP than for Q-learning with

delayed updating because its computations are more complex (see Chapter 4). In real

time control applications however, the learning time, not the total computational effort,

Chapter 5. Application of Practical TPDP 94

100

E
F

C-)
Ct5
i 50
ci)
Cu
ci)
>

0
2500

Epoch Number
Figure 5.6: Performance of Practical TPDP and Conventional Q-learning

is likely to be the larger concern.

Finally, as a matter of interest, Figure 5.8 shows the average track time results when

both Practical TPDP and conventional Q-learning were applied to the discrete-time

version of the Race Track problem considered by Barto et al. (1991)2. The average

track time performance of conventional Q-learning in this case was, not surprisingly,

very similar to that obtained by Barto et al. (1991). As shown in Figure 5.8, Practical

TPDP again learned a near optimal policy much faster than conventional Q-learning.

One fact is not clear in Figure 5.8 however. This is that, even though Practical TPDP

settled on a policy much sooner than conventional Q-learning, the average track time that

resulted from that policy remained roughly constant, and it was slightly higher than the

average track time that conventional Q-learning was able to achieve after 2000 epochs.

2The immediate cost schedule used by Barto et al. (1991) on this problem was used as well.

0

Chapter 5. Application of Practical TPDP 95

100

ci)
E
F
-‘
C.)

50
ci)
c3)

ci)
>

0
0 2500

Epoch Number
Figure 5.7: Performance of Practical TPDP and Delayed Updating Q-learning

Undoubtedly this reflects an inability of Practical TPDP to learn an absolutely optimal

policy in this discrete-time application. This is not a concern however, as Practical TPDP

was not developed to operate in such discrete-time applications (see Section 3.1.4).

5.2.2 Near Optimal Performance of Practical TPDP

Figure 5.9 again shows the average track time results when Practical TPDP was applied

to the Race Track problem. This Figure indicates that after Practical TPDP settled on

an initial average track time of around 17, and maintained that track time for roughly

600 epochs, a learning transition occurred that reduced the average track time to around

14. To illustrate why this distinct learning transition occurred, Figures 5.10, 5.11, 5.12

and 5.13 show five typical car paths down the length of the track after 300, 800, 1300

and 1800 epochs respectively of Practical TPDP learning.

Chapter 5. Application of Practical TPDP 96

ci)
2
H

0

H
0)

0)
>

a)
E
H

0

j2O
0)

Cu
ci)
>

100

50

0
0 2500

Epoch Number
Figure 5.8: Performance on a Discrete Version of the Problem

30

10
0 300 800 1300 1800 2500

Epoch Number
Figure 5.9: Performance of Practical TPDP

Chapter 5. Application of Practical TPDP 97

Starting
Positions

Starting
Positions

Starting
Positions

Finishing
Positions

Finishing
Positions

Finishing
Positions

Figure 5.10: Five Typical Race Track Routes After 300 Epochs

Figure 5.11: Five Typical Race Track Routes After 800 Epochs

Figure 5.12: Five Typical Race Track Routes After 1300 Epochs

Chapter 5. Application of Practical TPDP 98
Finishing
Positions

Starting
Positions

After 300 epochs (Figure 5.10) Practical TPDP had learned the policy of fully accel

erating the car down the track, colliding with the right wall, and then accelerating the

car towards the finishing positions. After 800 epochs (Figure 5.11) Practical TPDP was

still employing this same basic policy, but it had started learning to curve the car path

upward. This reduced the time required to reach the finishing positions once the right

wall had been struck. Figure 5.11 also shows the path taken by a car when it recovered

from a collision with the top wall after attempting to curve upward too much.

After 800 epochs the learning transition began. The learning transition consisted of

Practical TPDP learning that if the car was not accelerated horizontally to full speed

(full speed is 6, see Section 5.1.4) while moving towards the right wall, it could be

accelerated upward beginning at roughly the track midpoint to produce a smooth left

turn into the finishing positions. By making such a turn the car could avoid collision

with any walls, and reach the finishing positions in the shortest possible time. Figure

5.12 shows five typical car paths taken after 1300 epochs of learning, in the midst of

the learning transition. Some paths included smooth turns; others were like the collision

paths taken after 800 epochs. After 1800 epochs the learning transition was complete.

Figure 5.13 shows that smooth turns were consistently made at this stage of Practical

TPDP learning.

Figure 5.13: Five Typical Race Track Routes After 1800 Epochs

Chapter 5. Application of Practical TPDP 99

The learning transition described illustrates fully the exploration issues discussed in

Section 4.2.3. Basically what occurred during the Practical TPDP learning process was

that an initial low cost policy was learned quickly (that of fully accelerating, colliding

with the right wall, and moving towards the finishing positions — at 300 epochs, see Figure

5.10). The TPs specifying this low cost policy defined a closed state space Sc. Once

this policy had been learned, internal exploration within Sc lead to reductions in the

costs experienced when it was followed (800 epochs, see Figure 5.11). As this occurred,

external exploration resulted in the placement of ineffectual TPs that could guide the

car along an even lower cost path (smoothly turning — 1800 epochs, see Figure 5.13). At

around 1300 epochs enough such TPs were in place for a learning transition to be made.

Figure 5.9 shows that the near optimal policy was not consistently followed after

about 2000 epochs. The average track time increased sporadically after 2000 epochs.

This was due to the continued allocation of superfluous TPs, a problem which will be

discussed in Section 5.4.2.

5.3 Practical TPDP and Generalization

5.3.1 Generalization by Copying

Section 2.4.4 described how the ability to generalize is often incorporated into DP con

trollers by parametrically approximating the evaluation function. It was further explained

that such parametric approximation typically requires extensive computational effort for

the approximation to be learned, and that parametric approximation is particularly dif

ficult to incorporate into Q-learning controllers. This is because Q-values are a function

of action as well as state, and an action dimension must also be included in any approx

imation that represents Q-values. As a result of all this, parametric approximation was

never investigated in the development of Practical TPDP.

Chapter 5. Application of Practical TPDP 100

Another type of generalization is possible with Practical TPDP however. This is to

bias the selection of the random actions attempted during exploration (see Section 4.2.4

and Appendix Section B.2) towards actions already specified by TPs in the state space

vicinity around the state where the random action is being attempted. This type of

generalization is called generalization by copying. Generalization by copying is highly

localized in terms of the state space regions over which generalizations are made, but it

can be extremely effective when used in Practical TPDP. This is because, when Practical

TPDP is applied to the continuous state space systems to which it is best suited (see

Section 3.1.4), it is likely that a TP that has been found to be worthwhile at one state

will also be worthwhile if duplicated in neighboring states.

5.3.2 Generalization by Copying in the Race Track Problem

Generalization by copying was attempted during Practical TPDP solution of the Race

Track problem. Whenever an action had to be randomly chosen during internal or

external exploration, the states adjacent to the one where the random action was being

attempted were inspected. If any of them had TPs, and the random generalization

parameter genera1ize was greater than zero, generalization by copying was performed.

Specifically, an action was chosen, with equal probability for each choice, from all the

actions specified by TPs in the adjacent states. Generalization by copying was only

performed on random occasions (according to the random value of cTgeneraljze) to prevent

the internal and external exploration processes from losing too much vigor. That is, to

ensure that they were not biased too frequently.

Figure 5.14 illustrates the results of attempting generalization by copying during

Practical TPDP solution of the Race Track problem, with Pr(ugeneraijze > 0) = 0.2.

Figure 5.14 shows that generalization by copying can increase the rate at which Practical

TPDP learns a near optimal policy.

Chapter 5. Application of Practical TPDP 101

30

E
F
-

C)

j2O

Cu

>

10
0 2500

Epoch Number
Figure 5.14: Performance of Practical TPDP With and Without Generalization

5.3.3 Practical TPDP Glitches on the Race Track Problem

Inspection of Figure 5.14 reveals that there are short duration glitches in the average track

time at epochs 709, 2164 and 2328. While these glitches were the result of attempting

generalization by copying during Practical TPDP, they appeared during many other

experiments in which Practical TPDP was applied to the Race Track problem. They

were caused by the removal of TPs associated with zero velocity wall states (states that

had zero velocity and a position immediately next to a wall). Such TPs were crucial

because they specified actions that started the car moving again once it had collided

with a wall. When they were removed during Practical TPDP learning, and the car

entered the states they were associated with during test trials, the car would remain in

those states until the test trial was aborted. This lack of movement resulted in large

costs being incurred, which produced the glitches seen in Figure 5.14.

Chapter 5. Application of Practical TPDP 102

Glitches did not result when TPs were removed from other states because the car

would continue to move through those states whether TPs specified new actions in them

or not. Thus, it was the definition of the Race Track problem that lead to the occurrence

of the glitches. If the cars had bounced off the walls for example, instead of stopping

completely, the glitches would not have occurred. As they were a result of the Race Track

problem definition, glitches also occurred when conventional Q-learning was applied to

the Race Track problem. In the case of conventional Q-learning, they resulted when the

policy action at the zero velocity wall states did not accelerate the car away from the

wall. Figures 5.6 and 5.8 show many glitches in the average track time resulting from

conventional Q-learning. In fact, it was the rapid convergence of Practical TPDP to a

near optimal policy that makes the Practical TPDP glitches appear so onerous. The

glitches rise up in stark contrast to the generally settled average track time curve.

Any number of techniques could be employed to prevent glitches in the Practical

TPDP solution of the Race Track problem. TP removal could be prevented in zero

velocity states for example. No such techniques were investigated however, as the problem

was not considered to be particularly serious. It was mainly a result of the peculiarities of

the Race Track problem definition, not a result of some fundamental failing of Practical

TPDP. Further, the rapid recovery of Practical TPDP when glitches occurred was seen

as further evidence of the viability of the TPDP approach.

5.3.4 A Performance Metric

To determine the level of generalization by copying (Pr(crgeneraijze > 0)) that produced

the best results during Practical TPDP solution of the Race Track problem, a perfor

mance metric was developed that facilitated quantitative comparison between the results

obtained when different versions of Practical TPDP were employed. This performance

metric was designed to indicate when the learning transition had been made (see Section

Chapter 5. Application of Practical TPDP 103

2500 I I I

2 2000

0.8 1.0
Probability of Generalization by Copying During Exploration

Figure 5.15: The Effect of Changing Pr(ugenerajjze> 0)

5.2.2). That is, when Practical TPDP had learned to smoothly turn the car, as opposed

to colliding with the right wall. The performance metric was based on the first 100 test

trials in which the average track time was less than 14. The average number of epochs

required for the first 100 such track times was used as the performance metric.

5.3.5 Comparing Generalization Levels With the Performance Metric

Using the performance metric described in Section 5.3.4, Figure 5.15 was generated to

illustrate the performance results from different levels of generalization by copying. That

is, Figure 5.15 illustrates the results of varying the probability that the random parameter

genera1ize was greater than zero. The portions of the curve which are missing from Figure

5.15 indicate Practical TPDP solutions of the Race Track problem where the average

track time was not found to be less than 14 at least 100 times within 2500 epochs.

Chapter 5. Application of Practical TPDP 104

It was found that generalization by copying had the general effect of increasing the

rate at which an existing policy was refined. That is, generalization by copying aided

the internal exploration process in determining the lowest cost TPs for the closed state

space Sc (see Section 4.2.3). It did so by focusing the internal exploration on action

specifications that were already known to have merit. However, by restricting exploration

to the actions already being specified in the various regions of Sc, generalization by

copying inhibited external exploration and the discovery of alternative low cost routes

through the state space (see Section 4.2.3). External exploration inherently requires

more vigorous experimentation. As a consequence of this, Figure 5.15 indicates that a

generalization by copying level of 0.2 produced the best results during Practical TPDP

solution of the Race Track problem.

The 0.2 level of generalization by copying did not result in the lowest overall perfor

mance metric value however. The 0.6 level did. But the low performance metric value

resulting from the 0.6 level was the spurious result of a near optimal policy being dis

covered exceptionally and fortuitously early in the Practical TPDP learning process. As

Figure 5.15 indicates, at a generalization by copying level of 0.7 a near optimal policy was

not found at all (no performance metric value was determined within 2500 epochs). The

low performance metric value resulting from the 0.6 level is therefore not an indication

that such a high level of generalization by copying is likely to produce superior results.

5,4 Practical TPDP and TP Allocation

5.4.1 TP Allocation in the Race Track Problem

Figure 5.16 shows the percentage of TPs allocated as Practical TPDP learned a near

optimal policy for the Race Track problem. This percentage was based on the fact that

roughly 15440 states could be entered during movement of the car around the track

Chapter 5. Application of Practical TPDP 105

30 30

2 —1
Hnn

C.) a
C)

I

10 10

0 0
0 2500

Epoch Number
Figure 5.16: TP Allocation as Practical TPDP Learning Progressed

considered, and that 9 actions were possible in each state. As a result, it was possible

for 138960 TPs to be allocated.

5.4.2 Superfluous TPs

Figure 5.16 shows that the percentage of TPs allocated during Practical TPDP solution

of the Race Track problem continued to increase after epoch 1500, when the learning

transition had certainly occurred (see Section 5.2.2) and a near optimal policy had ba

sically been learned. In any application of Practical TPDP, TP allocation will continue

(likely with a decreasing rate of allocation, see Figure 5.16) until every state in the system

concerned has at least one TP associated with it. There are two reasons for this.

The first reason for continued TP allocation is that the R-value of any TP specify

ing an optimal action will always be the same or higher than the Q-value of that TP

Chapter 5. Application of Practical TPDP 106

(theoretically, see Theorem 3.6). If it is higher, then that TP will rightfully never be

removed (see Figure 4.4). If it is the same, then that TP is unnecessary (see Sections

3.2.5 and 3.3.9). But any small system disturbance (noise, or a new suboptimal TP for

example) will make it higher. As a result, TPs specifying optimal actions at dormant

states (see Section 3.1.1) are rarely removed, and as new TPs specifying optimal actions

are continually added to the closed state space Sc (as a result of internal exploration,

see Section 4.2.3), the number of TPs in Sc will continue to grow.

The second reason for the continued allocation of TPs is that one TP is allocated

every time external exploration occurs (see Section 4.2.3). As Practical TPDP learning

progresses, this will result in TPs being allocated at states more and more remote from

the closed state space Sc.

Continued TP allocation is undesirable because it results in Practical TPDP using

more memory than is necessary, and that additional memory usage does not typically

facilitate any real improvement in system performance. In fact, continued TP allocation

can negatively affect any near optimal policies that have been learned. This can be seen

in Figure 5.16, where the average track time sporadically increased after a near optimal

policy had been learned (around 1800 epochs). Such distortion of the policy results

when new TPs, specifying suboptimal actions, are allocated at states between those

where optimal actions are already being specified by TPs. Eventually these new TPs will

be removed, or replaced by TPs specifying optimal actions, but until that happens they

perturb the policy that has been learned, increasing the costs experienced by the system.

Continued TP allocation can also prevent the removal of TPs at dormant states

(see Sections 3.2.5 and 3.3.9) specifying optimal actions. As described previously in

this Section, the removal of such TPs is prevented when system disturbances increase

their R-values. The allocation of new TPs specifying suboptimal actions creates such

disturbances, so the continued allocation of new TPs can deter the removal of older,

Chapter 5. Application of Practical TPDP 107

unnecessary TPs.

In general, once a near optimal policy has basically been learned, there is little point in

Practical TPDP allocating any more TPs. Continued allocation will have the undesirable

effects described, and while there is some possibility that each new TP can increase the

optimality of the existing policy, this is not a significant concern. This is because the

action specified by each new TP, even if it is optimal (and many will not be), can at

best slightly improve the overall policy. If the system being controlled has any inertia,

and TPs have already been allocated that result in a near optimal policy, then new TPs

placed between the existing TPs can only specify short duration control adjustments that

will have very limited effect (see Section 3.1.4). As the addition of such TPs is not really

worthwhile, continued TP allocation should be prevented in some way.

Sections 5.4.3 through 5.4.5 present a number of ways in which continued TP alloca

tion can be prevented in Practical TPDP.

5.4.3 Stopping Learning

The simplest way to prevent continued TP allocation in Practical TPDP is to arbitrarily

stop the Practical TPDP learning process at some point and retain the policy which

has been learned up to that point. Such an approach requires the ability to judge the

optimality of the existing policy so that the stopping decision can be made. Such an

approach also rules out adaptive control as it cannot be applied to a system which is

changing. Both of these requirements can be met in many potential applications of

Practical TPDP however.

A variation to stopping learning is to steadily decrease the level of internal and exter

nal exploration by varying the random exploration parameters appropriately (see Section

4.2.6). This approach requires some knowledge of an appropriate rate of exploration re

duction.

Chapter 5. Application of Practical TPDP 108

5.4.4 Arbitrarily Limiting the Number of TPs

Another approach to preventing continued TP allocation is to arbitrarily limit the number

of TPs which can be allocated. Considering Figure 5.16, it would seem reasonable to

limit the percentage of TPs allocated during solution of the Race Track problem to the

percentage at which the learning transition to a near optimal policy occurred (see Section

5.2.2). The TP allocation at that point was around 24%. When arbitrary TP limitation

was attempted during Practical TPDP solution of the Race Track problem, allocation

limits between 20% and 30% produced good results. At an allocation limit of 20% the

learning transition occurred sooner, and the sporadic increases in the average track time

after the learning transition occurred were reduced. The average track time curve at

the 20% allocation limit was generally lower and flatter. This was due to the prevention

of superfluous TPs, as described in Section 5.4.2. As the allocation limit was increased

from 20% to 30%, where the allocation of new TPs was not limited much at all (see the

percentage of allocation curve in Figure 5.16), these beneficial effects subsided.

Reducing the allocation limit below 20% resulted in increased glitching (see Section

5.3.3) and, eventually, severe disruptions in the learning of a near optimal policy. With

an allocation limit of 10% the learning transition (see Section 5.2.2) did not occur within

2500 epochs. Figure 5.17 shows the results of a 15% TP allocation limit. This 15%

allocation limit resulted in the learning transition being made at roughly the same point

at which it was made when no allocation limit was applied (a point later than that which

resulted from a 20% allocation limit). The average track time curve was lower and flatter

than that which resulted when there was no allocation limit however.

Chapter 5. Application of Practical TPDP 109

30 30

E -

F-20 20
-

C) =0
C)

H /
/

3) /
10 /ci) /

> I

0 0
0 2500

Epoch Number
Figure 5.17: The Effect of Limiting TP Allocation

5.4.5 Placing a Price on TPs

The rate of TP allocation can be reduced by placing a cost on the allocation and preser

vation of each TP. This is done by adding an allocation cost Callocation to the following

values upon which decisions are based in the Stack Updating Procedure (see Appendix

Section B.3, Figure 4.4):

1. Line 24: (Q(i3,u3) < R(i3,ne)) becomes (Q(i3,u8) + CJjocatjon < R(i3,t8))

2. Line 40: (Ctotai < Q(i3,1(i3))) becomes (Ctotai + Callocatjon < Q(is, i(i3)))

3. Line 50: (Vupaate < Vexpected) becomes

Vupdate + Callocation < Vexpected)

Change 1 results in TPs being removed if their Q-value is not at least Cocatjofl lower than

their R-value. Change 1 thereby increases the likelihood that TPs specifying optimal

Chapter 5. Application of Practical TPDP 110

actions at dormant states will be removed (see Section 5.4.2). Changes 2 and 3 prevent

the allocation of new TPs as a result of internal exploration unless the costs experienced

during the exploratory state space transitions were COcatjOfl lower than the costs which

would normally have been experienced.

Figure 5.18 shows the result of employing an allocation cost Cajiocation of 0.1 during

Practical TPDP solution of the Race Track problem. Doing so had the effect of making

the learning transition (see Section 5.2.2) occur sooner than when there was no allocation

cost, as well as reducing the sporadic increases in average track time after the learning

transition had occurred. The average track time curve when Cocatjofl was set to 0.1

was generally lower and flatter, although it did include many more glitches (see Section

5.3.3). The increased number of glitches was due to the allocation cost increasing the

likelihood that TPs at zero velocity wall states would be removed (see Sectioll 5.3.3). All

of these results were due to the prevention of superfluous TPs, as described in Section

5.4.2. Figure 5.18 indicates that the expected reduction in TP allocation did in fact

result from the use of the allocation cost. Overall, employing an allocation cost of 0.1

during Practical TPDP solution of the Race Track problem proved to be very beneficial.

Allocation costs above 0.1 resulted in the learning transition (see Section 5.2.2) not

being made before 2500 epochs had passed. This occurred because the allocation cost

deterred TP allocations that were necessary for the learnillg of a near optimal policy.

Extensive glitching also occurred as increasing allocation costs increased the likelihood

that TPs at zero velocity wall states would be removed (see Section 5.3.3).

The allocation cost approach to reducing TP allocation results in suboptimal polices

being learned because it effectively makes reduction of the number of TPs part of the

optimality criteria. This prevents Practical TPDP from learning optimal policies that

are full in accordance with the optimality criteria. This effect, making TP allocation

part of the optimality criteria, may be exactly what is desired in some applications of

Chapter 5. Application of Practical TPDP 111

30 30

a)
E —I
Hnn nn

C) =
0
0

g
E10 10w-...
t1

0

0 0
0 2500

Epoch Number
Figure 5.18: The Effect of Incorporating a TP Allocation Cost

Practical TPDP however.

5.4.6 Eliminating Suboptimal TPs

As explained in Section 4.1.2, Practical TPDP can result in more than one TP being

simultaneously associated with a state. As learning progresses in Practical TPDP, and

a near optimal policy is learned, a policy TP will be selected for each state that specifies

an optimal action (see Section 4.2.2). At this point the actions specified by other TPs

associated with the same states no longer need to be considered. As a result, the TPs

specifying suboptimal actions can be eliminated. Eliminating such suboptimal TPs will

reduce the amount of memory used by Practical TPDP, and have few other effects.

There are innumerable ways in which suboptimal TPs can be identified and elimi

nated. One approach that was attempted during Practical TPDP solution of the Race

0
2500

Chapter 5. Application of Practical TPDP 112

30 30

. -

20 20>

10 10

0
0

Epoch Number
Figure 5.19: The Effect of Eliminating Suboptimal TPs

Track problem was to randomly eliminate TPs whose Q-value was greater than the Q
value of the policy TP. Such elimination was done randomly in order to ensure that

Practical TPDP was provided with some time (stochastically determined) in which to

fully learn the Q-values of each TP. Figure 5.19 shows the results of eliminating subop

timal TPs in this manner, with each suboptimal TP having a 0.25 probability of being

eliminated each time its Q-value was updated. Figure 5.19 indicates that eliminating the

suboptimal TPs, aside from reducing the sporadic increases in the average track time

after the learning transition had occurred (see Section 5.2.2), had almost no effect on the

learning of a near optimal policy — as compared to when elimination was not performed.

The allocation of TPs was significantly reduced however.

Chapter 5. Application of Practical TPDP 113

6

0
00
ci)
>

-6

Position

I Ii I — i 1111 III I

Starting Finishing
Position Position

(must have zero velocity)

Figure 5.20: The One-Dimensional Race Track and Its Phase Plane

5.4.7 TP Allocation in a One-Dimensional Race Track Problem

In order to observe the actual allocation of TPs in Practical TPDP, it was applied to a

one-dimensional Race Track problem. This track is shown at the bottom of Figure 5.20.

For this problem the car was started at the starting position with a randomly chosen

integer velocity from 0 to 6 (motion towards the right had a positive velocity). It then

had to move horizontally until it arrived at the finishing position with zero velocity. Aside

from the different track, all of the Race Track problem and Practical TPDP parameters

were kept the same as those used on the more complex track described in Sections 5.1.1

to 5.1.6. As a result, the car could enter 420 states, and with 3 actions possible in each

state, it was possible for 1260 TPs to be allocated.

Above the track shown in Figure 5.20 is a phase plane that indicates the horizontal

position and velocity of the car as it moves about the track. The state of the car on

the one-dimensional track is fully described with these two values, thus facilitating the

Chapter 5. Application of Practical TPDP 114

two-dimensional representation of the system state space in the form of the phase plane.

Figure 5.20 also shows the phase plane traces resulting from typical runs of the car

down the track after 200 epochs of Practical TPDP learning of the optimal policy. The

trace produced when the initial velocity was set to 6 (the highest initial velocity possible,

and the one with the top trace in Figure 5.20) indicates that the car moved past the

finishing position and then returned to it. This was due to the fact that, with that

initial velocity, the car simply could not decelerate in time to avoid passing the finishing

position. The optimal policy in that case was to return to the finishing position as quickly

as possible.

Figure 5.21 shows the phase plane traces resulting from typical runs of the car after

Practical TPDP with a 25% TP allocation limit (see Section 5.4.4) had been applied to the

one-dimensional Race Track problem for 200 epochs of learning. Comparing this figure

to Figure 5.20, it is clear that the 25% TP allocation limit inhibited the learning of a near

optimal policy. Figure 5.22 shows the average track time and TP allocation results when

Practical TPDP was applied to the problem both with and without a 25% TP allocation

limit. This figure indicates that the average track time sporadically increased once a near

optimal policy had been learned with the 25% TP allocation limit. TP allocation limits

higher than 25% resulted in performance comparable to that which resulted when there

was no allocation limit.

Both the TP allocation percentage curves (Figures 5.16 and 5.22) and the lowest

feasible TP allocation limit were higher when Practical TPDP was applied to the one

dimensional track than they were when it was applied to the more complex track (see

Sections 5.4.1 and 5.4.4). This was mainly due to the fact that on the one-dimensional

track, with only three possible actions in each state, the 25% TP allocation limit resulted

in an average of 0.75 TPs being allocated per state. In contrast, the more complex track,

with nine possible actions in each state, had an average of 2.25 TPs per state (at the

Chapter 5. Application of Practical TPDP

6

C-)
oO
a)
>

Position

115

IllI I I I Ill I I II I I I 11114 hIll I

Starting
Position

Finishing
Position

(must have zero velocity)

Figure 5.21: Limiting TP Allocation on the One-Dimensional Race Track

30

ci)
2
H

0

H
El)
0)
E210
El)
>

0
0

Epoch Number

75

-1
-D

50>
0
C)
51)

0
D

0
200

20

: ; :1:

-6

50 100 150

Figure 5.22: Performance of Practical TPDP on the One-Dimensional Race Track

Chapter 5. Application of Practical TPDP 116

25% TP allocation limit). The difference in the feasible TP limit was also due to the

fact that there were fewer external states that did not require TPs (see Section 3.2.4),

relative to the total number of states, in the one-dimensional Race Track problem.

Finally, Figures 5.23 and 5.24 show the location of the policy TPs in the phase plane

after 200 epochs of Practical TPDP learning both with and without a 25% TP allocation

limit. The tails extending from each TP in these figures indicate the phase plane trace

that resulted when the system was started at the center of each TP state, the action

specified by the policy TP was applied to it, and state transitions were allowed to continue

(without the stochastic interference of noise) until another TP state was encountered.

Both figures show that the policy TPs generally specified actions that directed the car to

the finishing position. Both figures also show that many policy TPs in the upper-right

and lower-left corners of the phase planes did not specify such actions. In some cases

the policy TPs in these regions actually specified actions that accelerated the car away

from the finishing position. This was because, when the car was in those states, it could

not decelerate in time to prevent collision with the ends of the track. As a result, the

optimal policy was to accelerate, causing the collision to occur sooner, so that movement

towards the finishing position could begin as soon as possible.

Figure 5.23 indicates that a TP was allocated for almost every state when there was no

TP allocation limit. Figure 5.24 shows the more interesting TP positioning that resulted

when TP allocation was limited.

5.5 Varying the Practical TPDP Algorithm Parameters

Figures 5.25 to 5.30 indicate the results, in terms of performance metric values (see

Section 5.3.4), of varying the Practical TPDP Algorithm parameters during different

solutions of the complex Race Track problem (see Sections 5.1.1 to 5.1.6). While each

Chapter 5. Application of Practical TPDP

C..)
0
ci)
>

Position

t.-T.-.-i.-T .-i ‘.1.- .-I.

1.1vJrJ.1i -I..i
•‘

S .11 •i.

.j.1w’ea..?
- SW L [L f1 •1 f t £ t

‘ ‘
‘ Ii’ ‘E! I • ‘•

‘• t-• t-• r ‘• •

‘ ..

• • • • • r rr rri ‘ • • • N t •i—t• • • i . . .

. • .1-.!•. • . i • . • . .1 .1-il-i
— — —+‘— —4+——+—+

• •t1 • irr ‘• •• ‘r •rt’rrr •
•f • ‘• • •• •j}zfff. ifT it T I

I I[[1 II [I I I I I

Finishing
Position

(must have zero velocity)

117

C)
0
ci)
>

6

0

-6

I I I II II — II III II

Starting Finishing
Position Position

(must have zero velocity)

Figure 5.23: TP Positioning in the One-Dimensional Race Track

Position

6

0

-6

I •I.•I•.
•:4 .P • -

- ._1.4. • • - q • • • • • • • • •
.

• /I[Wj I I •.

LL LI J•
.. . ‘.r. . ‘.1’. .‘. . ‘. ‘.‘. I / . . .
— — — —I — — — . 4•• •r• •.1r.j. A-i • -. • •i

- • •IE. •E1 • • • Lt • • •j . • - • - . •
• - • I [• • • • •
I. I .1—.... ..

----- -

i — ; — ; •
— a . — S • — — — S S S S • • S

Starting
Position

Figure 5.24: TP Positioning with a 25% TP Allocation Limit

Chapter 5. Application of Practical TPDP 118

parameter was varied the others were maintained at the settings specified in Section

5.1.5. The parameters wjjjj, Wt and Wmax were not analyzed in this way because these

parameters, as long as they were set to reasonable values (see Sections 4.2.1, 4.2.2 and

4.2.7), had little effect on the learning performance of Practical TPDP.

Missing sections of the curves shown in Figures 5.25 to 5.30 indicate parameter set

tings for which a performance metric value (see Section 5.3.4) was not determined within

2500 epochs. This means that the average track time was not determined to be less than

14 more than 100 times within 2500 epochs, and that the learning transition (see Section

5.2.2) had thus not occurred.

As explained in Section 4.2.6, for each application of Practical TPDP add-TP must be

adjusted to match the time required to pass through the high velocity states in the system

under consideration, and chge must be adjusted so that the action changes specified

during internal and external exploration are made at intervals that reflect the ability of

the system concerned to respond. As a result, both of these parameters must be tuned

to suit the problems to which Practical TPDP is applied. As can be seen in Figures 5.27

and 5.29 there was a fairly wide range of settings over which both parameters produced

good performance on the complex Race Track problem.

The setting of the parameter 0de1ay also depends on the dynamic characteristics of

the system to which Practical TPDP is being applied (see Section 4.2.6). Figure 5.25

indicates however that the performance of Practical TPDP was fairly independent of the

setting of this parameter during solution of the complex Race Track problem.

Of the various parameters, Practical TPDP was found to be most sensitive to the

setting of swap-TP (see Figure 5.26). Normally, the main concern with such sensitivity

would be that a suitable parameter setting will be difficult to determine when Practical

TPDP is applied to different problems. This is not a concern with swap-TP however,

because Oswap-TP does not have to be adjusted to match the system to which Practical

Chapter 5. Application of Practical TPDP 119

2500

2000

1500

1000
0

0- 500

0
0 1 2 3 4

Average Update Time Delay
Figure 5.25: The Effect of Changing de1ay

TPDP is being applied. It simply sets the balance between the evaluation of TPs already

associated with each state, and the internal exploration of other TP possibilities for those

states (see Section 4.2.6 and Appendix Section B.2). Setting Pr(JswaTp > 0) to 0.2

produced good results during Practical TPDP solution of both Race Track problems,

and the 0.2 setting should result in reasonable performance in most applications.

Figure 5.28 indicates, uninterestingly, that the setting of addTP does not have to be

precise. Figure 5.30 indicates, unsurprisingly, that the learning rate o should be set high

enough to facilitate some learning, but not so high that the results from each learning

experience can drastically alter what has already been learned.

5

Chapter 5. Application of Practical TPDP 120

2500 I I I I

.s 2000

1500

1000
0

0- 500

0
I I

0.0 0.2 0.4 0.6 0.8 1.0
Probability of Internal Exploration Being Initiated at TP

Figure 5.26: The Effect of Changing Pr(crswaTp > 0)

2500 I I I

S 2000

1500

1000
0

0.. 500

0
I I

0.0 0.2 0.4 0.6 0.8 1.0
Probability of Exploration Being Initiated at Non-TP State

Figure 5.27: The Effect of Changing Pr(oaaaTp > 0)

Chapter 5. Application of Practical TPDP 121

2 I I I I

2000

1500

1000
0

U)
0- 500

0 I

0.0 0.2 0.4 0.6 0.8 1.0
Probability of Exploration Mode Being External

Figure 5.28: The Effect of Changing Pr(oextern> 0)

2500 I I I I

2000

1500

1000
0

ci
0- 500

0
I I

0.0 0.2 0.4 0.6 0.8 1.0
Probability of New Action Being Specified During Exploration

Figure 5.29: The Effect of Changing Pr(Jchange> 0)

Chapter 5. Application of Practical TPDP 122

2500

2000

1500

1000
0

ci)
0 500

0—
0.0 0.2 0.4 0.6 0.8 1.0

Learning Rate
Figure 5.30: The Effect of Changing a

I I

Chapter 6

Neural TPDP

TPDP was developed in the context of neural network control. This Chapter will describe

how Practical TPDP can be implemented with a neural network. Some characteristics

of this neural implementation, as well as its biological plausibility, will be discussed.

6.1 A Neural Network Design for Direct DP

6.1.1 Neural Networks and Evaluation Function Approximation

As explained in Section 2.4.4, neural networks have been used extensively to parametri

cally approximate the evaluation function of DP controllers. Such approximation facili

tates generalization of the evaluation function and combats the “curse of dimensionality”

(see Section 2.4.1) by eliminating the need for the evaluation function to be represented

by an individual value V(i) at each state i (see Section 2.4.4).

As further explained in Section 2.4.4, the main drawback to evaluation function ap

proximation is that the approximating mechanisms themselves typically require exten

sive computational effort to develop a reasonably accurate approximation. If parametric

approximation is being done with neural networks, the computational effort of approxi

mation is that required for network training (for example Rumeihart et al., 1986).

Evaluation function approximation is more difficult in Q-learning controllers, includ

ing TPDP controllers, because Q-values are a function of action as well as state, and

an additional action dimension must be included in any approximation that represents

123

Chapter 6. Neural TPDP 124

INPUTS OUTPUT

Q-values (see Section 2.4.4). In the case of TPDP controllers, evaluation function ap

proximation is inherently more duffcult because TPDP focuses on the effects of actions

instead of on the determination of an evaluation function (see Section 3.4.3).

As a result of all this, evaluation function approximation was not attempted during

this research, neither with neural networks or with any other approach. A neural network

design that could directly facilitate Practical TPDP control was developed however, and

it will be discussed in Sections 6.1.2 to 6.1.8. In fact, as mentioned in Section 3.1.1,

this neural network design actually led to the development of TPDP. TPDP evolved

out of attempts to modify neural connections so that groups of neighboring states with

similar control requirements could be amalgamated and represented with one neuron

(Buckland et al., 1993). The general neural network design used for the attempts at such

amalgamation is what will be presented.

6.1.2 A Neural Network Design for State Space Control

A generic neuron model is presented in Figure 6.31. In general terms, a neuron is a

device which accepts a number of inputs and passes these inputs through some function

to produce an output. A generic neuron model of this type can be used as the constituent

element of a controller as shown in Figure 6.32.

The state lines shown in Figure 6.32 carry binary signals, and each represents a

Figure 6.31: A Generic Neuron Model

Chapter 6. Neural TPDP

STATE LINES

Cl)
-J

z
0

0
Iz
0
C)

Figure 6.32: A Neural Network Design for State Space Control

125

quantized interval of one dimension of the state space. As a result, each state space

dimension is represented by a group of such state lines, one for each interval of the

dimension. One state line in such a group will always be high (active) while all of the

others are low (inactive), indicating which interval of the dimension the system is in. A

single high state line in every group of state lines fully defines the state of the system.

As indicated in Figure 6.32, identification neurons inspect the state lines. Each of

them is responsible for identifying a particular state i. They output a high signal when

the system enters the state they are responsible for. The function of the identification

neurons is to act as and-gates. They and together a single state line from each group (each

state space dimension) to identify when the system is in the state i uniquely identified

by that set of state lines. Only one identification neuron outputs a high signal at any

IDENTIFICATION
NEURONS

given time because each one identifies a separate state, and the system can only be in

Chapter 6. Neural TPDP 126

one state at a time.

The driving neurons specify the actions that control the system. When appropriate,

each one signals with a high binary signal that a specific action should be performed.

The action specified by each driving neuron u is always the same, and it is different from

those specified by the other neurons. To prevent more than one driving neuron from

specifying an action at the same time, they are connected to mutually inhibit each other

(see Figure 6.32, Feldman et al., 1982). The inhibiting signals are randomly perturbed

slightly to resolve deadlocks between driving neurons that are equally active’.

The outputs of the identification neurons are connected as inputs to the driving

neurons, and the point of connection is called a synapse2.Whenever one of the inputs to

a driving neuron is high, that neuron is active and is capable of outputting a high signal

to specify an action. If it is the victor of a mutual inhibition contest with any other

driving neurons that may be active, it is able to do so. The driving neurons thus act

as (mutually inhibiting) or-gates, allowing a number of different identification neurons

(only one of which outputs a high signal at any given time) to specify the same action.

The connections between the identification neurons and the driving neurons — the

synapses — define how the system is controlled. When a system state is identified, a

high signal is passed from the corresponding identification neuron, through one or more

synapses, to a number of driving neurons. The driving neurons that are activated as

a result engage in a mutual inhibition contest to determine which action will actually

be specified. If each identification neuron is connected to only one driving neuron, the

resulting network operates in exactly the manner of the control paradigm described in

Section 2.1.1.

1A11 active driving neurons are equally active in the neural network design described up to this point.
This will not remain true as the design is more fully developed however.
2The input connection points on the identification neurons are not, by this definition, synapses. The

reason for this is presented in Section 6.1.5.

Chapter 6. Neural TPDP 127

Overall the neural network performs an and-or function. Similar network designs

have been investigated by others — Minsky (1985) and Ayestaran et at. (1993) are two

examples. Further, the mutual inhibition between the driving neurons results in a form

of competitive learning (Rumeihart et at., 1985).

6.1.3 ACAM Operation of the Neural Network Design

A controller implemented with a neural network in the manner being described is in

herently a memory-based controller (see Section 2.3.2). Specifically, it operates as an

ACAM (see Section 2.4.2). The identification neurons act as self-activating table entries,

specifying through the driving neurons3 the action that is appropriate for the state to

which they attend. Because they are self-activating, the number of identification neurons

allocated need only be the number required to specify an action in each state that the

system actually enters. As a result, the total amount of memory required for control can

be reduced below what would be necessary if a full table were employed. This is one of

the main rationales for implementing a controller with this type of neural network.

6.1.4 Implementing Mutual Inhibition

There are a number of ways in which signal level determination can be made in a mutually

inhibiting neural network controller. This Section will describe a simple and effective

heuristic approach (developed during this research, although similar to work done by

others — for example Feldman et at., 1982) that facilitates parallel computation, in each

of the driving neurons, of the mutual inhibition contest victor. It is based on the following

update equation for the driving neuron output mt(u) of each driving neuron u at time

3The number of driving neurons will always be fixed — there must be one for each possible action.

Chapter 6. Neural TPDP 128

step t:

mt+i(u) = min(1,max(kat(u),m(u) + + mt(u) — mt(v)j)) (6.47)
vEU

Where at(u) is the activity level of driving neuron u at time step t, ic is the low-grade

output factor, b is the updating rate, and U is the set of actions specified by all of the

driving neurons. Normally i should be set to around 0.1 to keep the low-grade neuron

output low and unintrusive.

The activity level at(u) is the result of or-ing together the inputs to each driving

neuron u (see Section 6.1.2). It is the signal level that each driving neuron would output

if it was not being mutually inhibited by the other driving neurons. The activity level

at(u) is multiplied by the low-grade output factor i to determine a weak low-grade output

level (see Equation 6.47) that each driving neuron should output to indicate that it is

active (see Section 6.1.2).

When all of the driving neuron outputs mt(u) are at a low level, updating Equation

6.47 will increase all of them. The output level of each will continue increasing until,

for each neuron, + rn(u) — > m(v) <0. When each driving neuron reaches this
vEU

balancing point its output Tflj(U) will begin decreasing. The output level of each driving

neuron at the beginning of the mutual inhibition contest determines how soon each neuron

reaches its balancing point. The lower the initial output level of each neuron, the sooner

it will reach its balancing point.

As the mutual inhibition contest continues, all but one of the driving neurons will

reach a balancing point. This neuron will be the mutual inhibition contest victor, and

its output level will continue increasing until it reaches 1. Equation 6.47 ensures that

this high level in the victorious driving neuron results in all of the other driving neuron

outputs being reduced to their low-grade output level Kat(u).

For Equation 6.47 to produce these results, it must be ensured that the combined

Chapter 6. Neural TPDP 129

low-grade output levels of all the inhibited driving neurons are not enough to affect the

neuron output mt(uvjctor) of the mutual inhibition contest victor. This is ensured when

(from Equation 6.47):

+
— [mt(v)Iworstcase] 0 (6.48)

vEU

+1-[(IUI-1)+1j 0 (6.49)

2(IUI— 1)
(6.50)

Where UI is the number of driving neurons.

The driving neuron which emerges victorious from the mutual inhibition contest will

always be the one that had the highest output level mt(u) at the start of the contest. As

the starting level equals the low-grade output level lat(u), and t is a constant, the victor

of the mutual inhibition contest will always be the driving neuron u with the highest

activity level at(u). Since all active driving neurons will have the same nominal activity

level of 1, at(u) is actually determined by multiplying the output from the driving neuron

or-ing function by a uniformly distributed random value ranging from 0 to 1. Randomly

perturbing the activity levels in this manner ensures that the mutual inhibition contest

victor will be chosen randomly from amongst the active driving neurons.

6.1.5 Synapses as TPs

An optimal policy (see Section 2.1.2) is manifested ill the neural network controller being

described (see Figure 6.32) by making the right connections between the identification

neurons and the driving neurons. That is, the right set of synapses must be determined

for the network. Practical TPDP can be used to determine what this set should be.

To facilitate Practical TPDP learning of optimal policies in the controller being de

scribed, each synapse is treated like a TP. Q-values Q(i, u), R-values R(i, ‘a) and weights

Chapter 6. Neural TPDP 130

w(i, u) are associated with each synapse and are used together to determine the merit of

the single state/action combination that the synapse defines. For a given synapse/TP,

the state i associated with that TP is the state attended to by the identification neuron

outputting to the synapse, and the action u that the TP specifies is the action specified

by the driving neuron to which that synapse is attached. Because synapses are essentially

TPs in this context, the term “synapse” will henceforth refer to TPs4.

The Q-value and R-value of each synapse reflect the costs experienced each time a

high signal passes through that synapse (Section 6.1.6 will describe this more fully). The

weight value w(i, u) of each synapse is modified based on the Q-value and R-value of

that synapse (see Section 4.2.1), and indicates the integrity of the synapse. A low weight

indicates a new, untested synapse, or a synapse that has been found to lack merit. A

high weight indicates a synapse that has been found to be worthwhile. When the weight

of a synapse is decremented to zero that synapse is removed. The synapse weights are

not used to modulate the signals going through the synapses in any way.

6.1.6 The Full Implementation of Neural TPDP

Section 6.1.5 presented the idea that Practical TPDP can be used to learn optimal policies

in the neural network controller being described if synapses are treated like TPs. This

neural implementation of Practical TPDP is called Neural TPDP. Neural networks can

be used to implement Practical TPDP without the basic functionality of the Practical

TPDP Algorithm being affected in any way (see Sections 4.2.4, Appendix Sections B.2

and B.3, and Figures 4.3 and 4.4). That is, a Neural TPDP controller will function

exactly like a Practical TPDP controller, with the same Q-value, R-value and weight

updates being made in what is effectively just a different processing environment. This

4This is why the term “synapse” is not applied to identification neuron input connections — “synapse”
has a special meaning related to TPs that does not apply to such connections.

Chapter 6. Neural TPDP 131

Section will explain in detail how such is done.

Basically, all states identified by identification neurons are TP states (see Section

3.2.1). The identification neurons that identify such TP states always output to at least

one synapse. To ensure that action specifications are maintained as the system moves

through non-TP states between TP states, which is a fundamental requirement of TPDP

(see Section 3.1.1), the driving neurons must have some positive feedback. Such positive

feedback ensures that, once a driving neuron has won a mutual inhibition contest (see

Section 6.1.4), it will continue to specify the same action until another mutual inhibition

contest occurs. If Equation 6.47 is used to determine the mutual inhibition contest

winner, the required positive feedback occurs.

Movement of the system through the state space occurs as a result of successive

mutual inhibition contests between the driving neurons (see Section 6.1.2). Each such

contest is initiated when the current mutual inhibition contest victor flash reduces its

output from 1 to its low-grade output level Iat(u) (see Equation 6.47). Mutual inhibition

contests are initiated when the system is in a TP state, but not at every TP state. As

explained in Section 4.2.5, the random parameter de1ay is used to maintain the same

action specification while the system passes through a number of TP states. This is

done so that the costs resulting from each action specification can be observed over an

interval of reasonable length. Delayed updating is facilitated in Neural TPDP by flash

reducing the output of the mutual inhibition contest victor (see Section 6.1.6) only when

the system is in a TP state and t > tupdate (see Section 4.2.5). The former condition is

indicated to the mutual inhibition contest victor by the presense of at least one non-zero

low-grade signal on its mutual inhibition inputs (see Section 6.1.4).

The Q-value of each synapse is updated (using Equation 3.18) when that synapse

becomes active and the driving neuron that it is connected to is the mutual inhibition

contest victor. When the Q-value of a synapse is updated, the weight of that synapse is

Chapter 6. Neural TPDP 132

updated as well (according to the rules of Section 4.2.1). The R-value of each synapse is

updated (using Equation 3.27) when that synapse becomes active and the driving neuron

that it is connected to is a mutual inhibition contest loser. In this way the evaluation

of each synapse is performed according to the Practical TPDP Algorithm (see Appendix

Section B.2).

Internal and external exploration (see Section 4.2.3) are facilitated by using the ran

dom exploration parameters0swap-TP and add-TP to determine when exploration should

occur (Section 4.2.6). To initiate exploration the activity level at(u) of each driving neu

ron u is set to a uniformly distributed random value between 0 and 1. This ensures that

each action specification will be chosen with equal probability during exploration. When

this is done the output of the mutual inhibition contest winner is also flash reduced.

Action specification changes during exploration are facilitated by using the random ex

ploration parameter0change to determine when new mutual inhibition contests should be

initiated in the same manner.

The random exploration parameter externa1 is used to select between internal and

external exploration when exploration is initiated in non-TP states (see Appendix Section

B.2, Lines 50 to 55, and Section 4.2.6).

If the results of internal or external exploration indicate that new TPs should be

allocated (see Section 4.2.3), such is performed by adding synapses that connect the

identification neurons with the driving neurons.

6.1i Allocating Identification Neurons

As well as being able to add synapses that correspond to the allocation of new TPs,

Neural TPDP must be able to allocate new identification neurons. This is necessary

when the first TP associated with a state is allocated (see Figure 6.32). Similarly, Neural

TPDP must be able to deallocate identification neurons whell the last TP associated

Chapter 6. Neural TPDP 133

with a state is removed. Driving neurons need not be allocated or deallocated because

each of them permanently specifies a different control action.

An interesting alternative Neural TPDP design that does not require identification

neuron allocation involves making the driving neurons more complex so that they can

perform the state identification function. The driving neurons can be modified to operate

as and-or gates, first and-ing together state lines to identify individual states, and then

or-ing together the results to combine the identification signals in the usual manner

(see Section 6.1.2). Similar neuron designs have been investigated by others for entirely

different applications (for example Feldman et al., 1982). If driving neurons of this type

are employed, identification neurons are not required at all. The price paid for this

simplification is that the mechanisms required to identify each state must be replicated

at every synapse related to that state.

6.1.8 Parallel Processing and Neural TPDP

Aside from the fact that Neural TPDP operates like an ACAM (see Section 6.1.3), an

important rationale for using Neural TPDP is that such an approach facilitates the

parallel processing possible with neural networks. To do so a universal “stack” is not

used, as described in Section 4.2.4, to store the information necessary for Q-value and R

value updating. Instead, the relevant information is stored locally by each neuron so that

updating can occur in a parallel fashion. Some information still has to be distributed to

all of the neurons however. This information includes the immediate costs experienced,

the mode of exploration, the fact that an update should be made, and the evaluation

function value V(i) of the state i that the system is in.

Chapter 6. Neural TPDP 134

6.2 Analysis of Neural TPDP

6.2.1 The Localized Operation of Neural TPDP

As described in Section 6.1.2, Neural TPDP fulfills its function as a controller through

the connections between the identification neurons and the driving neurons (see Figure

6.32). It is thus the connectivity of the Neural TPDP network that matters the most.

This flexible connectivity is altered based on the synapse weights w(i, n), which indicate

the integrity of each connection. This type of operation is very different from conven

tional neural networks (the popular error propagation method for example, Rumeihart

et al., 1986, Fahiman et al., 1987), which are normally fully interconnected with fixed

connections, and which use their weights to modulate the signals passing through each

connection. The neurons in such networks work together to process the signals input to

the network. In contrast, only one identification neuron and one driving neuron in Neural

TPDP output a high signal at any one time. Neural TPDP thus functions using localized

operation (Baker et al., 1992, Schmidhuber, 1990b). Other neural network designs that

have localized operation include CMAC (Albus, 1975a, 1975b, Kraft et al., 1992) and

radial basis function networks (Poggio et al., 1990, Girosi et al., 1989).

Related to the localized operation of Neural TPDP is the fact that identification

neurons and driving neurons output binary signal levels. This is different from the

continuous signal levels output by most neural networks.

The main disadvantage of localized neural network designs is that such networks

cannot readily make generalizations (Jacobs et al., 1991). Conventional neural networks

in contrast excel at making generalizations (Baker et al., 1992). The localized operation of

Neural TPDP precludes the formation of generalizations between states and the actions

specified in those states5. Section 6.2.2 will present a way in which generalization by

5This is different from the evaluation function approximation that Practical TPDP also precludes (or

Chapter 6. Neural TPDP 135

copying (see Section 5.3.1) can be facilitated with Neural TPDP however.

The main advantages of localized neural network designs are that repeated training

sessions are not required to facilitate generalization (Baker et al., 1992), and that learning

in one region of the input to output mapping does not affect other parts of the mapping

(Baker et al., 1992, Ayestaran et al., 1993). In conventional neural network designs, gen

eralization results from the network learning, through repeated presentation of training

vectors, how it should adjust its weights to produce the desired input to output mapping

for all of the training vectors.

6.2.2 Generalization by Copying in Neural TPDP

Section 5.3.1 described how generalization by copying can be facilitated in Practical

TPDP by biasing the selection of the random actions attempted during exploration (see

Section 4.2.4 and Appendix Section B.2, Lines 20 to 34, 40 to 43, and 50 to 55) towards

actions already specified by TPs in the state space vicinity around the current state.

This type of generalization is facilitated in Neural TPDP by modifying the identification

neurons so that they operate as enhanced and-gates. The goal of this modification is to

have each identification neuron output a low-grade signal when the system is in a state

close to that which it identifies. Such low-grade signals are passed through synapses

to the driving neurons connected to each partially activated identification neuron, and

indicate to those driving neurons that they should modify their activity levels at(u) to

bias the random action selection (see Section 6.1.6).

There are many ways in which low-grade signals can be produced in the identification

neurons. One way is to define the identification neuron function as follows:

Ot() = [J [(1 — 6)z(l) + 6] (6.51)
1EL(i)

at least makes very difficult — see Sections 2.4.4 and 6.1.1).

Chapter 6. Neural TPDP 136

Where Ot() is an identification neuron output at time step t, L(i) is the set of state lines

connected as inputs to identification neuron i, Zt(l) is the signal level of each state line

1 E L(i) at time step t, and 6 is the desired low-grade signal level.

Equation 6.51 results in the output of the identification neurons being 69ow, where

ni0 is the number of input state lines 1 L(i) which have low signal levels. If 6 is set

to 0.1, and the driving neurons bias their activity levels at(u) only when they receive

low-grade input signals of at least 0.1, generalization by copying will result between all

immediately adjacent states.

Once it has been determined that a driving neuron should bias its activity level

during random action selection (see Section 6.1.6), a biasing technique must be employed.

Normally when mutual inhibition contests are used to randomly select actions during

exploration the activity levels at(u) of each driving neuron are set to a random value

between 0 and 1 (see Section 6.1.6). To bias the random action selection, bjas random

values between 0 and 1 are generated for each driving neuron that has a sufficient low-

grade signal, and the highest one is used as the activity level at(u) for that neuron. This

increases nbI-fold the likelihood of each driving neuron biased in this manner being the

victor of the mutual inhibition contest.

6.2.3 Elemental and Composite Actions

The neural network implementation of Practical TPDP brings to light one important

consideration in TPDP control, and in control in general. In the Race Track problem

presented in Sections 5.1.1 through 5.1.3 the possible actions U(i) in each state i were

u = un], where both u and u, were in the set {—a, 0, a}, and where a was a constant.

Each action was thereby a composite action constructed from simpler elemental actions.

That is, each action u consisted of an elemental action ur in the x direction, and an

elemental action u, in the y direction. In real controllers there is often a limit to the

Chapter 6. Neural TPDP 137

number of composite actions that can be constructed out of elemental actions. When

that limit is reached the action specification in each state must be made using a number

of elemental actions or less complex composite actions.

In conventional Q-learning controllers (see Chapter 2) the amount of memory available

limits the complexity of the composite actions. The amount of memory required for

control is proportional to the number of composite actions that can be constructed from

the elemental actions, and this number grows exponentially with the number of elemental

action dimensions. Basically, a Q-value must be stored for each composite action in

each state. As a result, the amount of memory available determines how complex the

composite actions can be.

Other types of memory-based controllers (see Sections 2.3.2 and 2.4.2), ones which do

not allocate a memory entry for each state/composite action combination, do not suffer

from exponentially increasing memory requirements as the number of elemental action

dimensions grows. An example of such memory-based controllers would be a Practical

TPDP controller operating as an ACAM (see Section 2.4.2). Such a controller would

only allocate memory entries to associate a small number of composite actions with each

state (often just one), and it may not associate any actions with some states. In the case

of Neural TPDP, each memory entry would correspond to a synapse.

As an ACAM control approach (see Section 6.1.3), Neural TPDP does not experience

exponentially increasing memory requirements as the number of elemental action dimen

sions grows. But the number of composite actions possible with Neural TPDP is limited

for another reason. This reason is that Neural TPDP uses one driving neuron for each

composite action, and having too many such driving neurons would make implementa

tion of the neural network impractical. The same problem does not occur when Practical

TPDP is implemented using tables (see Section 2.3.2), because each table entry can con

sist of an arbitrary list of elemental action specifications defining a composite action. As

Chapter 6. Neural TPDP 138

a result, the number of possible composite actions is limited only to the number of TPs

in Practical TPDP.

Aside from memory usage concerns, complex composite actions can make the learning

of an optimal policy more difficult in any controller. If, for example, a TPDP controller

is presented with the task of learning an optimal snowboarding policy, the composite

actions available could include hj, a hip elemental action combined with a left thumb

elemental action, and Uhf, the same hip elemental action combined with a right thumb

elemental action. The TPDP controller would then have to determine the Q-values, R

values and weights for composite actions uhi and Uhr. Clearly it would be more effective

to learn these values for only the hip elemental action uh.

Conversely, separating complex composite actions into elemental actions (or into

smaller composites of elemental actions) results in credit assignment (see Section 2.3.4)

being made more difficult. If an undesirable snowboarding outcome occurs, it must be

determined whether the hip elemental action uh or the torso elemental action u was

responsible for this result. This determination is difficult, and it is normally made using

extensive observation of the outcomes when various combinations of elemental actions

are attempted. It may be that TPDP, with it Q-values and R-values, is very well suited

to credit assignment determination. This is because these values indicate not only the

results incurred when an elemental action is taken, but the results incurred when it is

not taken. This extra information, which few learning controllers make use of, may be

of great use in assigning credit properly. This issue requires further research.

Chapter 6. Neural TPDP 139

6.3 Biological Plausibility

6.3.1 A Possible Model of Biological Movement Control

Neural TPDP is, arguably and speculatively, a plausible model of biological movement

control and refinement. Specifically, Neural TPDP can be viewed as a model of how

muscle control signals are learned and generated at the lowest levels of control in the

brain. Neural TPDP functions by making synaptic connections between identification

neurons that identify states and driving neurons that output action signals. Each such

synapse is either maintained or discarded based on evaluations of whether or not the

state/action association it makes improves the control of the system. These evaluations

are made in a way that solves the credit assignment problem (see Section 2.3.4) — a

necessity in biological control. Further, the action specified by each synapse is maintained

until another state is encountered in which an action is specified. As a result, a limited

number of synapses can define entirely how the system is controlled, and these synapses

can be modified based on observations of the system response. This is a very simple but

effective approach to movement control and refinement, and as such it may be a plausible

model of biological control.

Beyond the intuitive appeal of Neural TPDP as a model of biological movement

control, Neural TPDP has the following specific attributes which add to its plausibility

as a biological model. Many of these attributes were discussed in relation to Q-learning

and the theoretical form of TPDP in Sections 2.3.1, 2.3.2, 2.3.3, 2.3.5, 3.4.1 and 3.4.2.

Minimal Use of Memory

As a direct DP control approach, Neural TPDP avoids the extensive use of memory that

is required for indirect DP control (see Sections 2.2.2 and 2.3.1). The memory savings

inherent in Neural TPDP go much further however. Because Neural TPDP operates as a

Chapter 6. Neural TPDP 140

ACAM (see Sections 2.4.2 and 6.1.3), it only allocates memory at those states which are

actually entered during control of the system. It does not require a full, multi-dimensional

table to produce the non-linear control advantages that result from memory-based control

(see Section 2.3.2). Further, because of the way in which actions are specified and then

maintained in TPDP (see Section 3.1.1), Neural TPDP can achieve optimal control by

allocating memory at only a limited number of uniform region boundary states (see

Section 3.4.2).

Reduced memory usage in Neural TPDP means that the number of synapses required

for control are reduced. By making a limited number of connections between identifica

tion neurons and driving neurons, Neural TPDP can achieve optimal control. Further,

because reduced memory usage increases the rate of DP learning (see Section 2.4.1),

reduced numbers of synapses increase the rate of learning in Neural TPDP.

Rapid Learning of Preliminary Policies

Section 5.2.2 illustrated that one of the main attributes of Practical TPDP is that it

learns effective preliminary policies very rapidly. Neural TPDP, as a way of implementing

Practical TPDP, shares this attribute, and it is an important one in terms of making

Neural TPDP a plausible model of biological movement control. This is because the

early learning of reasonably effective policies has obvious survival value for biological

systems.

In many control applications, biological and otherwise, the ability to rapidly learn

effective preliminary policies may be the most important attribute of a controller. Once

such a preliminary policy is learned, it can be refined and optimized as more learning

effort is exerted. As an example, consider a casual and a professional snowboarder.

The former wishes to rapidly acquire a level of competence in the sport by learning an

effective but suboptimal policy. The latter wishes to highly refine his skills in the sport,

Chapter 6. Neural TPDP 141

and is willing to go through considerable training effort to do so. In the context of Neural

TPDP, the professional performs much more extensive exploration, and allocates a larger

number of synapses as he seeks to learn an absolutely optimal policy.

Localized Operation and Reinforcement Learning

As explained in Section 6.2.1, the neurons in Neural TPDP operate in a localized way.

Further, Neural TPDP, as a form of Q-learning, is a reinforcement learning approach

(see Section 2.3.3). These two characteristics of Neural TPDP mean that it can learn

optimal policies with each neuron operating in parallel, and with only limited amounts of

information being passed between the neurons (other than the direct identification neuron

to driving neuron synaptic signaling). Such localized operation and limited information

passing are necessary for any plausible model of biological movement control (Alkon,

1989, Alkon et al., 1990, Schmidhuber, 1990a). Neural network designs which do not

operate in a localized way, like the ubiquitous error propagation method (Rumelhart et

al., 1986), require learning supervisors and complex information passing routes that are

unlikely to exist in biological movement controllers.

The only information that the neurons in Neural TPDP require from external sources

is the state information and a universally distributed reinforcement signal. The reinforce

ment signal indicates the immediate costs c(i, u) incurred as the system moves about the

state space.

The internal information that Neural TPDP passes includes the mode of exploration,

the evaluation function value V(i) of the state i that the system is in, and the fact

that an update of Q-values, R-values and weights should be made. The last item of

information can be inferred indirectly by each driving neuron if they observe the action

specification changes indicated by their mutual inhibition inputs (see Figure 6.32), and

combine that information with their knowledge of the exploration mode (see Appendix

Chapter 6. Neural TPDP 142

Section B.2 and Figure 4.3).

In summary, aside from the explicit network connections shown in Figure 6.32, Neural

TPDP operates with only the following information being passed between the neurons:

the immediate costs c(i, u), the mode of exploration, and the evaluation function value

V(i) of the state i that the system is in. All three of these items of information are uni

versally distributed, and can thus be equated to hormone levels in a biological movement

controller. As a result, the neurons in Neural TPDP operate in a highly independent

manner. In contrast, most other neural network designs involve complex supervisory

systems and information flows that do not seem biologically plausible6.

Continuous State Space Control

As explained in Section 3.1.4, TPDP operates best in continuous state space control

applications. As biological movement controllers operate entirely in continuous state

spaces, this attribute of Neural TPDP is an important part of its plausibility as a model

of biological control.

Adaptive Control

As a form of Q-learning, Neural TPDP is an adaptive control approach (see Section

2.3.5). This attribute is an essential one in any model of biological movement control

because biological controllers are clearly adaptive.

Composite Action Learning

Any plausible model of biological movement control must have the ability to learn op

timal policies using elemental actions, or partial composites of elemental actions (see

6Fidelity to biological systems is admittedly noi the goal of most artificial neural models however.
Practical application on non-biological problems is instead the concern.

Chapter 6. Neural TPDP 143

Section 6.2.3). This is because biological systems, with their enormous number of el

emental actions, could not possibly operate using composite actions constructed from

every combination of elemental actions. Unfortunately, although Neural TPDP seems

well suited to learning with elemental actions, this capability has not yet been thoroughly

investigated.

6.3.2 Increasing the Localized Operation of Neural TPDP

One aspect of Neural TPDP which has not been discussed up to this point is how the

policy synapse (the policy TP) (i) is determined for each state i. There are a number of

ways in which policy synapses can be determined, but all are rather involved. One method

of determination will be presented in this Section, and then a simplifying approach to

Neural TPDP which does not require policy synapse determination will be described.

This simplification will be combined with an additional simplification to increase the in

dependent operation of the Neural TPDP neurons. Such increased independent operation

makes Neural TPDP even more biologically plausible.

One way to determine the policy synapse is to have each identification neuron i

occasionally output some sort of special signal (a bursty one perhaps) when the system is

in the state i identified by that neuron. This special signal indicates to all of the driving

neurons activated by that identification neuron that they should modulate their activity

levels at(u) not with a random value (see Section 6.1.4), but with 1 — ‘
. This

Qmax-possible

modulation will result in the mutual inhibition contest victor being the driving neuron u

whose synapse has the lowest Q-value Q(i, u). This result, which indicates which synapse

is the policy synapse z(i) in state i, can then be noted at all network locations where

this information is of consequence.

To avoid the complexity of policy synapse determination, Neural TPDP can be mod

ified to operate without policy synapses (i), or the evaluation function values V(i)

Chapter 6. Neural TPDP 144

determined from them; V(i) = Q(i,1t(i)). This is done, at each state i where an update

is performed, by updating not with V,.(i) but with the Q-value Q(i, u) of the action u

that is actually specified at that state (see Appendix Sections B.2 and B.3).

A Neural TPDP implementation difficulty similar to that of policy synapse determi

nation is the problem of informing each synapse as to whether or not other synapses are

associated with the same state that it is. This synapse allocation knowledge can be ac

quired by each synapse through inspection of the mutual inhibition inputs to the driving

neuron to which they are attached. But this determination is again rather involved. To

avoid this complexity, the use of synapse allocation knowledge can also be eliminated

from Neural TPDP.

Eliminating both the use of policy synapses and the use of synapse allocation knowl

edge requires changes to the Practical TPDP Algorithm, as well as to the Stack Updating

Procedure it calls (see Section 4.2.4, and Appendix B). The necessary changes are pre

sented in Figures 6.33 and 6.34.

Regarding the changes, when internal exploration is initiated at a TP state, a policy

action is first selected, and then a random action is reselected (Lines 22 and 25 of the

modified Practical TPDP Algorithm, see Figure 4.3). This is done so that stack updating

can be performed using a Q-value of an existing TP (Line 23). If this were not done,

the randomly chosen exploration action might not have a TP associated with it, and the

stack could not be updated. The other algorithm modifications will not be explained in

detail as they are fairly straight-forward.

Figure 6.35 presents the results of using the modified Practical TPDP Algorithm to

solve the Race Track problem described in Sections 5.1.1 to 5.1.3 (using the parameters

defined in Sections 5.1.4 and 5.1.5). One further modification had to be made to the

Practical TPDP Algorithm to obtain these results. The random selection of TP actions

had to be biased towards TPs with high weight values w(i, u) when no exploration was

Chapter 6. Neural TPDP 145

1. randomly choose starting state so E Ss
2. choose a starting action u0 E U(so)
3. if (state has a TP): ‘none’ = explore
4. otherwise: ‘external’ = explore
5. 0 t, 0 tupdae

10. while s is not an absorbing state SA:
11. if (state St .St—T) or (state St = 5t—T for time Tt&):

20. if (state t has a TP):
21. if (t7swap-TP > 0):
22. randomly choose action Ut from TP actions in U(s)
23. update-stack(explore, t, Q(st, Ut), Vexpected)

24. Q(st,ut) Vexpecte
25. randomly re-choose action Ut E U(st)
26. ‘internal’ ‘ explore
27. push-on-stack(t, 5, Ut, 0)
28. otherwise if (explore # ‘none’) or (t > tupdate):

29. randomly choose action ‘Ut from TP actions in U(s)
30. update-stack(explore, t, Q(st, Ut), Vexpectea)

31. Q(st,u) Vexpecteci
32. ‘none’ =- explore
33. t + °ieiay =‘ tupdate

34. push-on-stack(t, 5, Ut, ‘true’)
35. otherwise: push-on-stack(t, 5, Ut, ‘false’)

40. if (state s, has no TP) and (explore ‘none’) and (Uchange> 0):
41. if (explore = ‘external’): flush-stack
42. randomly choose action Ut E U(s)
43. push-on-stack(t, 5, Ut, 0)
50. if (state st has no TP) and (explore = ‘none’) and (UacldTp > 0):
51. flush-stack
52. if (cTexternai> 0): ‘external’ = explore
53. otherwise: ‘internal’ explore
54. randomly choose action Ut E U(s)
55. push-on-stack(t, .St, Ut, 0)
60.
61. (Vexpected — C(St, Ut)) Vexpected

62. observe system for new state s

63. update-stack(explore, t, St, Vexpected)

Figure 6.33: The Localized Operation Practical TPDP Algorithm

Chapter 6. Neural TPDP 146

[Parameters passed: explore, t, Vupdate, Vexpecteci]
1. while (time at top of stack t, t): pop-off-stack(t,, is, u,, specified,)
2. Vupdate :=. Ctotai

10. while (there are entries in stack):
11. pop-ofF-stack(t,, i,, u,, specified,)
12. while (t > t,):

13. 7Ctota.i + c(i,, u,) Ctotai

14.

20. if (explore = ‘none’):
21. for (each TP action u € U(i,) in state i,):
22. if (u =
23. (1 — cr)Q(i,, u,) + cCtotaj Q(i,, u,)
24. if(Q(i,,u,) > R(i,,u,)):
25. w(i,, u,) + 1 = w(i,, u,)
26. if (w(i,, u,) > wmax): Wmax ‘ w(i,, u,)
27. otherwise:
28. w(i,, u,) — 1 = w(i,, u,)
29. if (w(i,, u,) 0): remove the TP
30. if (specified, = ‘false’) or (u u,):
31. (1 — c)R(i,, u) + cvCt0t,,ci R(i,, u)

40. if (memory can be allocated) and
[((explore = ‘internal’) and Vupciate < Vexpected)) or (explore = ‘external’)]:

41. allocate a new TP at state i, with action U,

42. Ctotai =‘. Q(i,,u,) = R(i,,u,)
43. = w(i,, u,)

Figure 6.34: The Localized Operation Stack Update Procedure

Chapter 6. Neural TPDP 147

30

E
F

0

F
a)

G)
>

10
0 2500

Epoch Number
Figure 6.35: Performance of Practical TPDP with Increased Localized Operation

occurring. This was necessary to ensure that the Q-values used for stack updating were

predominantly ones whose high weight values indicated that they were associated with

near optimal actions. In effect, this biasing resulted in evaluation function values being

used for the updating.

To bias the random action selection, w(i, u)2 random values from 0 to 1 were generated

for each driving neuron u, where w(i, u) was the weight of the active synapse attached to

each driving neuron. The highest of these values was then used to modulate the activity

level at(u) of that driving neuron. This resulted in the probability of each action being

selected being proportional to the square of w(i, u) (see Section 6.1.6).

Figure 6.35 indicates that the modified Practical TPDP Algorithm performed very

Chapter 6. Neural TPDP 148

well. The learning transition (see Section 5.2.2) occurred later than it did with conven

tional Practical TPDP, but the average track time curve was generally flatter. Consid

ering how little information was passed between neurons in the modified algorithm, it is

surprising that it performed as well as it did.

In Section 6.1.7 it was suggested that Neural TPDP could be made simpler if identi

fication neurons were not used at all, and the driving neurons were instead designed to

operate as and-or gates. The driving neurons could then perform the state identification.

As described in Section 6.1.7, this design change would eliminate the need to determine

when identification neurons should be allocated and deallocated. This change would also

increase the independence of the neurons in Neural TPDP because any identification

neuron allocation mechanism would require synapse allocation knowledge. Using a net

work design that does not employ identification neurons would eliminate the need for

this knowledge, as well as the information routes that pass it.

Chapter 7

Practical TPDP as Part of a Complete Hierarchical Controller

This Chapter will describe how Practical TPDP can be incorporated into a complete

hierarchical controller. The attributes and capabilities of such a controller will also be

presented.

7.1 Practical TPDP Facilitates Lower Movement Control

It was speculated in Section 6.3.1 that Neural TPDP may be a plausible model of lower

movement control in biological systems. If such is the case, the question that arises is how

Neural TPDP would function as part of a complete hierarchical controller. This Chapter

will discuss this issue, and while it will do so frequently in the context of biological

controllers, the arguments presented could be equally well applied to the incorporation

of Practical TPDP in any hierarchical controller. The terms “Practical TPDP” and

“Neural TPDP” will therefore be used interchangeably in this Chapter, with the latter

indicating a biological controller context.

7.1.1 Context Lines

Inherently, to function as a low level movement controller within a hierarchical controller

(Albus, 1983, 1988, 1991), Neural TPDP must be able to perform more than one control

task on the same system. If it cannot, the hierarchical control layers above it, which

decide which specific low level tasks should be performed, have no purpose.

An effective way to facilitate the performance of more than one task with the same

149

Chapter 7. Practical TPDP as Part of a Complete Hierarchical Controller 150

Neural TPDP controller is to have context lines (similar to input from the “plan units”

in Massone et al., 1989) descending from higher levels of control. Each context line

is associated with a single task, and when higher levels of control have decided that

a particular task should be performed, the appropriate context line is made high. As

only one task can be performed at a time, only one context line can be high at a time.

Context lines are used with state lines (Singh made a similar combination, 1991b) as

input to the identification neurons of a Neural TPDP controller (see Section 6.1.2 and

Figure 6.32). A single context line is used as an input to each identification neuron, and

because of the and-ing function of these neurons, it will act as an identification “enabler”.

By connecting the same context line to all of the identification neurons involved in each

control task, the context lines can be made to act as task enablers, preparing complete

sets of identification neurons to make the state/action associations (through their driving

neuron synaptic connections — see Section 6.1.2) appropriate for each task.

As Neural TPDP learning progresses, the set of identification neurons enabled by each

context line learns the optimal policy for the task associated with that context line. This

learning is based on the immediate costs incurred whenever that context line is high. It

is therefore assumed that there is some consistent relationship between when the higher

levels of control activate each context line, and the situation that the system is in (as

reflected in the immediate costs incurred). For example, it is assumed that the higher

levels of control would not indicate a snowboarding task when the system is relaxing on

the beach and requires a beer.

If Practical TPDP is implemented as a memory-based controller (see Section 2.3.2),

the context line function can be included in the controller by making use of additional

table dimensions.

Chapter 7. Practical TPDP as Part of a Complete Hierarchical Controller 151

7.1.2 A Sketch of the Complete Hierarchical Controller

The complete model of a controller incorporating Neural TPDP is that of a hierarchical

controller where the abstract control decisions are made, based on sensor information,

at higher levels of control. As a result of these abstract control decisions, a context line

is activated that enables a set of identification neurons. These identification neurons are

individually activated based on state line signals, and specify control actions through the

driving neurons (see Section 6.1.2 and Figure 6.32). The set of identification neurons

thus enabled is the set which makes the appropriate state/action associations for the

control task indicated by the context line. Neural TPDP learns these associations by

observing the costs incurred whenever each context line is high, and by modifying its

synapses accordingly (see Sections 6.1.2 and 6.1.5).

7.2 Using Higher Level Knowledge

In a hierarchical controller incorporating Neural TPDP, the relationship between the

levels of control extends beyond the high levels deciding which context lines should be

activated (see Section 7.1.1). The high levels can also aid the lowest level (Neural TPDP)

in learning optimal policies (the use of high level knowledge has been investigated by,

among others, Lin, 1991a, 1991b, Utgoff et al., 1991). Sections 7.2.1 through 7.2.5 will

describe some ways in which this can occur.

7.2.1 Guided Learning

One way in which higher levels of control can aid the lowest level in learning optimal

policies is by guiding the exploration that occurs in the lowest level. If the higher levels

Chapter 7. Practical TPDP as Part of a Complete Hierarchical Controller 152

possess some knowledge’ about what an optimal policy is, in general terms, this knowl

edge can be passed to the lowest of control to direct exploration. This is called guided

learning.

As a general example of guided learning, consider a novice snowboarder. The task

confronting that snowboarder is to learn an optimal snowboarding policy. If the snow-

boarder has abstract knowledge of generally how to position his body, that knowledge

can be passed to his lower movement controller through conscious positioning and con

scious exertions of force. Such conscious intervention biases learning exploration, and

can greatly increase the rate of learning. If such were not the case, the jobs of many a

snowboarding instructor (whose verbal messages guide conscious positioning) would be

in jeopardy.

7.2.2 Implementing Guided Learning in Practical TPDP

In the case of Neural TPDP, guided learning is facilitated by having the higher levels of

control transmit signals down binary biasing lines connected, one each, to the driving

neurons. These lines bias the mutual inhibition contests that are an essential part of

exploration (see Section 6.1.6) by increasing the activity level at(u) of the driving neuron

u to which they are connected (see Section 6.1.4). If higher levels of control possess

knowledge’ that a certain action will result in good performance if applied in a certain

state, and the system enters that state, a high signal is transmitted down the biasing line

connected to the driving neuron which specifies the appropriate action. This increases

the activity level at(u) of the driving neuron, which in turn increases the likelihood that

the desired action will be specified as a result of a mutual inhibition contest at that state

(see Section 6.1.2).

1llow the higher levels of control obtain and store this knowledge is immaterial — this description
is concerned only with how such knowledge can be passed down to the lowest level of control (Neural
TPDP) and used effectively.

Chapter 7. Practical TPDP as Part of a Complete Hierarchical Controller 153

To control movement, Neural TPDP learns state/action associations which direct the

controlled system through its state space. Initially, before optimal state/action associa

tions have been learned, higher levels of control may have knowledge of the general tra

jectory that the system should follow. That knowledge can be utilized, through guided

learning, to direct learning exploration along the general trajectory. As learning pro

gresses along the general trajectory, Neural TPDP “fleshes out” the trajectory by adding

and modifying synapses that define specific optimal state/action associations (see Sec

tions 6.1.2 and 6.1.5) along it. Optimal control can be achieved by this means — without

exhaustive exploration being necessary.

Figure 7.37 presents the results of applying Practical TPDP, with guided learning,

to the Race Track problem described in Sections 5.1.1 to 5.1.3 (using the parameters

defined in Sections 5.1.4 and 5.1.5). Guided learning was facilitated by biasing the

random selection of actions during exploration so that the actions shown in Figure 7.36

were selected 50% of the time. The actions shown in Figure 7.36 were not optimal, they

were simply intelligent guesses (made by this researcher) at the optimal actions. Figure

7.37 indicates that guided learning was indeed very effective in increasing the rate of

learning.

‘7.2.3 Gross Inverse Models

As a direct DP control approach, Practical TPDP does not develop an explicit system

model to facilitate control (see Sections 2.2.2 and 2.3.1). In Section 2.3.1 it was stated

that an explicit model of a system is very useful if that system has to perform many tasks.

This is because that model can be utilized for every task, and the modeling knowledge

acquired learning the optimal policy for each task can be used by the others.

The problem with such a general purpose model is that, if it is the only model used

in all tasks, it must be highly resolved. That is, it must have fine enough resolution

Chapter 7. Practical TPDP as Part of a Complete Hierarchical Controller

Figure 7.36: The Biased Action Specifications Used for Guided Learning

30

G)
E
I
-

C)

,20

as
ci)
>

10
0

Epoch Number
2500

154

y

Starting
Positions

x

Finishing
Positions

HH

liii —-

IHH EHHEEEHEEEEEEEEEEEEHEEE

C—
/

A: bias [1, 0] B: ‘11bias 1 [—1, 1] if th > 2.5
B: Ubi = [1, —1] 1 0 otherwise
C: Ubi = [1,0] [—1, 11 if < —2.5

F: Ubias
= {D: lLb = [1, 1] 0 otherwise

Figure 7.37: Performance of Practical TPDP During Guided Learning

Chapter 7. Practical TPDP as Part of a Complete Hierarchical Controller 155

to be of use in each and every task. This could result in a very prohibitive memory

requirement. To reduce this memory requirement, a variable resolution model could be

employed (Moore, 1991). Such a model would have increased resolution in the states

associated with those tasks that the system must perform. But if it did, there is some

question as to whether or not it is really a general purpose model. That is, few knowledge

sharing benefits may result from combining the variable resolution models determined

for each task.

Alternatively, a controller can be constructed that has two levels of modeling. In the

context of Practical TPDP, such a controller would operate as follows. Higher levels of

control would employ Practical TPDP, at the lowest level of control, to develop a gross

inverse model (for further description of inverse models see Aboaf et al., 1988, Moore,

1992). This model would be developed by having Practical TPDP learn policies that move

the system to a general set of states or gross positions (by doing so gross inverse models

are similar to the variable temporal resolution models investigated by Singh, 1992a). The

movement to each such gross position would constitute a single control task, and would

have a context line (see Section 7.1.1) associated with it — a gross position context line.

The controller would learn a complete gross inverse model by learning the policy required

to reach every interesting region of the state space. The resulting gross inverse model

would provide the controller with general knowledge of how to control the system.

Once a gross inverse model has been developed, that model can be used by high levels

of control to generally direct the system when policies for specific tasks must be learned

(this is similar to the approaches taken by Singh, 1991a, 1991b, 1992b, Schmidhuber,

1990b). In other words, gross inverse models facilitate guided learning (see Sections 7.2.1

and 7.2.2).

In Section 7.2.2 the use of bias lines that activated driving neurons was described

as a way to facilitate guided learning in Neural TPDP. An alternative approach is to

Chapter 7. Practical TPDP as Part of a Complete Hierarchical Controller 156

modify the neural design so that multiple context lines (see Section 7.1.1) can be acti

vated simultaneously. Specifically, modify the design so that one primary context line

can be activated fully to indicate what specific task is being performed, and secondary

context lines can be partially activated to bias the random action selections during ex

ploration. If a gross inverse model exists, higher levels of control can partially activate,

at the appropriate time, gross position context lines associated with the intermediate

gross positions that the system should reach during completion of a specific task. This

will partially activate one or more identification neurons, which will in turn partially

activate a number of driving neurons. The end result will be the biasing of the mutual

inhibition contest between the driving neurons (see Section 6.1.2), biasing the random

action selection to actions that take the system to the intermediate gross positions.

7.2.4 Optimality Criteria and Higher Knowledge

Section 7.2.1 described how higher levels of control can aid the lowest level in learning

optimal policies by using knowledge of optimal actions to bias the random action selection

during exploration. This biasing approach was called guided learning. There is another

way in which high level, abstract knowledge can aid low level learning. If the optimal

actions are not known, but extensive general knowledge of the desired system behavior

exists in higher levels of control1, this knowledge can be used to increase the rate at

which the optimal policy is learned (Barto, 1992).

Consider the Race Track problem described in Sections 5.1.1 to 5.1.3. The car in

that problem experiences the same immediate cost every time step until it reaches the

finishing positions. When it has reached those positions it experiences no further costs.

As a result, the optimal behavior of the car is to reach the finishing positions as soon as

possible. Practical TPDP and conventional Q-learning learn this policy by backing-up

the costs (see Section 2.1.4) that will be experienced before the car reaches the finishing

Chapter 7. Practical TPDP as Part of a Complete Hierarchical Controller 157

positions. Accurate estimates of these costs, in the form of evaluation function values (see

Section 2.1.2), are initially learned in the states that the car enters immediately before

encountering the finishing positions. These accurate evaluation function values are then

used in the learning of other accurate evaluation function values in states progressively

further away from the finishing positions. As accurate evaluation function values are

learned for each state, optimal actions can be determined. The learning of the optimal

policy thus backs-up from the finishing positions.

Because the learning of the optimal policy backs-up from the finishing positions,

protracted periods of back-up time can pass before optimal actions can be determined

for states distant from those positions. If higher levels of control have extensive general

knowledge of the desired system behavior however, this back-up time can be reduced. For

example, if it is known that the car in the Race Track problem should make a left turn

(even though the actions facilitating that turn are not known), that knowledge can be

used to modify the optimality criteria that the controller is presented with. Figure 7.38

indicates a roughly optimal path that the car should follow for the Race Track problem

described in Sections 5.1.1 to 5.1.3 (using the parameters defined in Sections 5.1.4 and

5.1.5). Figure 7.39 shows the average track time results (see Section 5.1.6) when Practical

TPDP was applied to this Race Track problem, and the immediate costs at car positions

along the path shown in Figure 7.38 were reduced to one quarter their normal level (see

Section 5.1.4).

Figure 7.39 indicates that the learning transition (see Section 5.2.2) occurred much

sooner when lower immediate costs were incurred at car positions along the path shown

in Figure 7.38. This is because the path provided additional optimality information, and

it acted as a source from which accurate evaluation function values could be backed-up.

As a source of accurate evaluation function values, it was much closer to a large number of

states than the finishing positions were, so the backing-up time was reduced accordingly.

Chapter 7. Practical TPDP as Part of a Complete Hierarchical Controller

II

1111111111111111111

Figure 7.38: A Roughly Optimal Path on the Race Track

0
Epoch Number

2500

30

a)
E
F
-

C)

F-
ci)

ci
>

10

158

Finishing
Positions

Sti11ir’ig
I II

Positions

______ ____________

-1

-I

IIIIIIIIIIIIIIIIIIIIII

i{ii I III

I I I I I I I I I [

111111 I liii I 11111111111 I

Figure 7.39: Performance of Practical TPDP with Increased Optimality Information

Chapter 7. Practical TPDP as Part of a Complete Hierarchical Controller 159

The use of additional optimality information in the Race Track problem illustrates

how optimality information from higher levels of control can aid in the learning of optimal

policies. If prudent (or optimal) state space trajectories which lead to the arrival at goal

states are known, but the actions that will result in those trajectories are not known, those

trajectories can be incorporated into the optimality criteria. This is done by reducing the

immediate costs experienced by the lowest level of control when the system is following

those trajectories.

7.2.5 Dynamic Optimality Criteria

As learning progresses in a controller which incorporates Practical TPDP, the controller

can continually make abstract, high level observations (or predictions) about the optimal

behavior of the system. These observations may include the determination or expansion

of prudent state space trajectories (see Section 7.2.4), where expansion may involve iden

tifying trajectories that lead to other trajectories. All of this knowledge can be utilized

in the learning process by dynamically modifying the optimality criteria presented to the

lowest level of control (Practical TPDP).

In fact, optimal control can be viewed as a race between higher levels of control and

the lowest level of control. As higher levels continually develop more comprehensive and

informative optimality criteria, and the lowest level strives to learn the optimal policy

for the optimality criteria that the higher levels have developed at any one time.

In a complete hierarchical controller, the emphasis should be placed on the higher

levels of control rapidly developing the optimality criteria. This is because even small

enhancements in the optimality knowledge can drastically reduce the learning time re

quired to learn optimal policies. The lowest level of control operates in highly resolved,

Chapter 7. Practical TPDP as Part of a Complete Hierarchical Controller 160

continuous state spaces, and learning at this level is inherently laborious, requiring ex

haustive experimentation and exploration. At higher levels however, where the optimal

ity criteria is developed, the state space is abstracted into large, discrete, grossly defined

blocks. High level control frequently consists of polar decisions. One such decision, “If I

lift my snowboard nose higher, I will turn quicker”, can be made without exhaustive ex

perimentation, and when incorporated into the optimality criteria it can have enormous

impact on how rapidly the optimal policy is learned at the lowest level.

It would seem that human intelligence is a fine example of the importance of em

phasizing the development of optimality criteria (at the highest levels of control) over

optimal policy determination (at the lowest level). Humans develop incredibly complex

optimality criteria which facilitate the learning of policies for amazingly involved tasks.

The lower movement controllers used to perform these tasks are little different from those

found in many other mammals (especially other primates), but the tasks humans per

form are far more involved. This difference is entirely a result of humans developing more

complex optimality criteria.

Chapter 8

Conclusion

8.1 The Main Benefit of TPDP

The main benefit of TPDP is that it learns near optimal policies very rapidly. This was

demonstrated throughout Chapter 5 in applications of Practical TPDP. As described in

Section 5.2.1, Practical TPDP learned near optimal policies for the Race Track problem

much more quickly than conventional Q-learning.

The main reason that Practical TPDP rapidly learns near optimal policies is that a

few initial TP allocations (made during early learning exploration) can direct the system

along state space transition routes which are generally good (see Section 5.2.2). After

such routes have been discovered, further TP allocations can be made along them which

“flesh out” the policy, making it optimal at all points. This sequence of events results

in Practical TPDP very quickly directing its learning effort to regions of the state space

where that effort will produce the best results.

The hazard of learning optimal policies in this manner is that the learning effort

can sometimes be concentrated on suboptimal state space transition routes which were

discovered early on, while undiscovered, truly optimal routes are ignored. The external

exploration of Practical TPDP is a way of preventing this (see Section 4.2.3).

Aside from the way in which it rapid focuses learning effort, Practical TPDP also

learns near optimal policies quickly because it makes evaluation function value back-ups

(see Section 2.1.4) between states which are widely separated (see Chapter 3). This

161

Chapter 8. Conclusion 162

results in faster learning.

It was speculatively suggested in Section 6.3.1 that the rapid learning of good pre

liminary policies makes TPDP a plausible model of biological movement control and

refinement.

8.2 The Main Disappointment of TPDP

The main disappointment of TPDP was that it did not, in practise, result in the signifi

cant memory usage reductions that were hoped for (see Chapter 5). The reason for this

was that superfluous TPs were continually added to the state space after a near optimal

policy had basically been learned — a result of the way in which Practical TPDP operates

(see Section 5.4.2). In Sections 5.4.3 to 5.4.6 a number of improvements were suggested

and demonstrated which combat this problem.

The absence of a significant reduction in memory usage in TPDP is exacerbated by

the fact that, for each state/action association made by a TP, more memory is required

for TPDP than for Q-learning. That is, for every TP, two floating point values (the Q
value and R-value) and one integer (the weight) must be stored. In contrast, Q-learning

requires only one floating point value (the Q-value) for each state/action association.

Further, to take advantage of the sparsity of TPs in the state space, Practical TPDP

is best implemented with an ACAM (see Sections 2.4.2 and 3.4.2). This requires the

additional storage of two integers (the discretized state and action) as ACAM address

fields. Q-learning can also be implemented with an ACAM if at least one integer (the

discretized state) is stored as an address field. Assuming that floating point values require

twice the storage space of integers, and ignoring the many different ways in which both

Practical TPDP and Q-learning can be implemented with ACAMs, Practical TPDP

must allocate no more than 40% of the maximum number of TPs (one for each possible

Chapter 8. Conclusion 163

state/action combination) to require less memory in a given application than Q-learning.

This was achieved in both of the applications of Practical TPDP described in Chapter 5.

8.3 Direct DP Optimal Control with TPDP is Practical

Adaptive optimal control is very desirable, but DP approaches to such control, while

theoretically possible, are often impractical. The main reasons are that they require too

much memory, too much learning time, or both. Direct DP approaches like Q-learning

require less memory than indirect approaches (see Sections 2.2.1 and 2.2.2), but often

require more learning time to compensate for the lack of an explicit system model. As

described in this work however, TPDP is a direct DP approach that increases the rate of

learning by focusing the learning effort and increasing the distance over which back-ups

are made (see Section 8.1). This increase in the rate of learning could make TPDP a

practical alternative in many control applications.

If Practical TPDP is incorporated into a complete hierarchical controller (see Chapter

7), the rate of learning can be increased still further by employing guided learning (see

Section 7.2.1), and by passing high level optimality knowledge to the lowest level of

control — the level at which Practical TPDP operates (see Section 7.2.4).

8.4 Contributions of this Work

The main contribution of this work is the development of TPDP. This development

includes proof of the fact that TPDP is sure to achieve minimal TP optimal control (see

Chapter 3), as well as formulation of the Practical TPDP Algorithm (see Chapter 4). No

proof exists that Practical TPDP is sure to achieve minimal TP optimal control, but the

Theorems of Chapter 3 were developed in such a way that they make the achievement of

minimal TP optimal control seem highly likely when Practical TPDP is employed.

Chapter 8. Conclusion 164

In addition to the development of TPDP and the Practical TPDP Algorithm, the

following contributions were also made:

1. “Generalization by copying” was developed and demonstrated as a way of facilitat

ing generalization in Practical TPDP (see Sections 5.3.1 and 5.3.2).

2. Neural TPDP was developed as a neural implementation of Practical TPDP (see

Chapter 6). This development included the design of a neural model which could

be used for control (see Section 6.1.2), a neural mechanism that facilitated mutual

inhibition contests (see Section 6.1.4), and a neural mechanism that facilitated

generalization by copying (see Section 6.2.2).

3. Incorporation of Practical TPDP into a complete hierarchical controller was in

vestigated (see Chapter 7), and the ways in which high level control knowledge

could be made use of in such a controller were developed and demonstrated. These

included “guided learning” (see Section 7.2.1), “gross inverse models” (see Section

7.2.3) and the use of high level optimality knowledge (see Section 7.2.4).

4. A number of approaches were developed and demonstrated that combat the allo

cation of superfluous TPs in Practical TPDP (see Sections 5.4.2 to 5.4.6).

8.5 Future Work

There are a number of ways in which this work could be continued:

1. Complete proof that Practical TPDP achieves minimal TP optimal control could

be developed — a daunting task.

2. Techniques other than generalization by copying (see Section 5.3.1) could be devel

oped which further extend the ability of TPDP to make generalizations.

Chapter 8. Conclusion 165

3. The problem of the allocation of superfluous TPs in Practical TPDP (see Section

5.4.2) could be more fully investigated, possibly leading to the development of a

complete strategy to combat this effect.

4. The incorporation of Practical TPDP into a complete hierarchical controller could

be more fully investigated (see Chapter 7), possibly leading to the use of TPDP

ideas in higher levels of control. Specifically, TPs could be used to specify actions

of varying abstractness at all levels of control. This is a particularly promising

direction.

In general, the idea behind TPs is expressed as: “Try this for a while and see what

happens”. TPDP provides a framework in which controllers that operate using this

principle can be developed.

Glossary

Addition Rule: a rule guiding the addition of new TPs (see Section 3.3.8).

DP: dynamic programming.

DP element: a memory entry associated with a single state for the purposes of dynamic

programming control.

Neural TPDP: a neural network implementation of Practical TPDP (see Chapter 6).

Practical TPDP: a specific practical approach to TPDP (see Chapter 4).

Practical TPDP Algorithm: an algorithm that facilitates Practical TPDP control.

Q-learning: a direct DP method (see Chapter 2).

Q-value: Q(i, u); the expected total infinite-horizon discounted cost if action u is taken

in state i and the current policy is followed in all states thereafter.

R-value: R(i); the expected total infinite-horizon discounted cost if no new action is

specified in state i and the current policy is followed in all states thereafter.

Removal Rule: a rule guiding the removal of TPs (see Section 3.3.9).

Stack Updating Procedure: a procedure called by the Practical TPDP Algorithm.

Swapping Rule: a rule guiding the swapping of TPs (see Section 3.3.5).

TP: transition point — the association of an action UTP with a state i.

TP action: ‘uTp; the action associated with a TP.

166

Glossary 167

TP states: SB; states associated with TPs.

TPDP: transition point dynamic programming.

aborted swap states: SG; the set of TP states for which a TP swap was attempted

but aborted.

absorbing states: SA; states where system transitions are terminated.

accepted swap states: SG’; the set of TP states for which a TP swap was attempted

and accepted.

action: (control action) the action a controller specifies that a system should perform.

activity level: at(u); the signal level that each driving neuron would output if it was

not being mutually inhibited by the other driving neurons.

addition: adding a TP to a closed state space Sc.

allocation cost: cocatjon; a cost placed on the allocation and preservation of each TP.

anchored states: TP states which are always reached from the starting states Ss (con

sidered in the proof of Theorem 3.3).

assessment group: the set of TPs being evaluated at any one time as Practical TPDP

learning progresses.

back-up time: the time required for accurate cost estimates to be backed-up.

backing-up: the backwards movement of cost estimates that results from updating the

cost estimates at each state using evaluation function values of later states.

balancing point: the point at which the output of a driving neuron stops increasing

and starts decreasing during a mutual inhibition contest.

Glossary 168

biasing lines: lines carrying binary signals, each one of which can increase the activity

level of a single driving neuron in order to bias mutual inhibition contest outcomes.

boundary: a set of boundary states associated with the same uniform region.

boundary states: SB; states where TPs specify an action that will be used throughout

a uniform state space region.

closed state space: Sc; the states which can be reached in a valid environment with a

given set of TPs.

composite action: an action consisting of a number of elemental action specifications.

context lines: lines carrying binary signals, each one of which indicates if the system

is to perform a specific task.

control task: a task that the system is to perform.

controller: a mechanism controlling a system or plant.

delay parameter: aaelay; a random positive parameter added to time step t to determine

the update time tupdate.

delayed updating: the delaying of Q-value, R-value and weight updating until longer

term costs can be observed.

direct controllers: controllers which use implicit system models.

discount factor: y; the attenuation factor used for future immediate costs.

dormant states: SDO; states within a uniform region that are not boundary states — no

actions need be specified at them.

Glossary 169

driving neuron output: rnt(u); the output level of driving neuron u at time step t.

driving neurons: neurons that each specify a separate action — they or together outputs

from identification neurons attending to states for which their action is appropriate.

elemental action: actions representing the finest control action resolution possible.

entry action probability: p(i, u); the probability that action u led to the arrival of

the system at state i (in a valid environment, with the existing set of TPs).

entry actions: Ue(i); all the actions that can result in a transition to state i from some

other state (in a valid environment, with the existing set of TPs).

environment: a set of conditions under which TPDP operates (see Section 3.2.2).

epoch: a set of 20 learning and 500 testing trials.

evaluation function: ; the set of evaluation function values V(i) over the entire

state space S.

evaluation function value: V(i); the expected total infinite-horizon discounted cost

if the existing policy is applied from state i onward.

excluded cost: C,(i, J); the expected cost of all state space transitions from state i

that can occur with policy z — excluding those after all states j in the arbitrarily

chosen set of states J have been encountered.

expected evaluation function value: Vexpected; an estimate of what the evaluation

function value will be at the next TP state.

experienced cost: C0t; the total infinite-horizon discounted cost experienced after

the system leaves each of the states recorded in the stack.

Glossary 170

external exploration: learning exploration intended to discover low cost state transi

tion routes through the external states SE.

external parameter: uextena]; a random parameter used to determine whether or not

external exploration is initiated instead of internal exploration.

external states: SE; states outside the closed state space Sc.

flash reducing: instantaneous reduction of the output of a driving neuron from 1 to its

low-grade output level — ends inhibition of other driving neurons by that neuron.

generalization by copying: generalization by attempting actions, during learning ex

ploration, which have been found effective in nearby states.

generalization parameter: generaJjze; a random parameter used to determine whether

or not generalization by copying should be performed.

gross inverse model: a general system model consisting of knowledge of the actions

necessary to move the system to a number of gross positions.

gross position: a loosely defined set of neighboring states.

gross position context lines: context lines that specify that the control task is to

reach a gross position.

guided learning: prudent exploration choices made during learning based on higher

level control knowledge.

high: an active binary signal.

identification neuron output: oj(i); the output level of each identification neuron i

at time step t.

Glossary 171

identification neurons: neurons that inspect binary state lines, each identifying a sep

arate state.

immediate cost: c(i, u); the cost incurred when action u is applied in state i.

indirect controllers: controllers which use explicit system models.

ineffectual TPs: TPs associated with external states SE.

initiate parameter: uaddTp; a random parameter used to determine whether or not

exploration is initiated at non-TP states.

internal exploration: learning exploration intended to discover cost-reducing TPs that

should be added to the closed state space Sc.

learning transition: a distinct change in the learning of the optimal policy which oc

curred during application of Practical TPDP (see Section 5.2.2).

localized operation: the independent operation of neurons in certain types of neural

network designs.

low: an inactive binary signal.

low-grade output factor: i; the parameter used to adjust the low-grade output level.

low-grade output level: the output signal of driving neurons which are active but

inhibited by another driving neuron.

memory-based controllers: controllers which use look-up tables that associate actions

with states.

minimal TP optimal control: optimal control with TPs when all unnecessary TPs

have been removed.

Glossary 172

non-TP states: SD; states not associated with TPs.

off-line: calculations which a controller makes when it is not busy controlling the system.

optimal Q-value: Q*(j, u); the Q-value when the policy is optimal.

optimal TP states: SB*; states associated with TPs when the policy is optimal.

optimal action: 1L*(i); the policy action at state i when the policy is optimal.

optimal closed state space: Sc*; closed state space when the policy is optimal.

optimal control: control of a system when that control is optimal with regard to some

optimality criteria.

optimal evaluation function: 14,j*; the evaluation function when the policy is optimal.

optimal evaluation function value: V*(i); the evaluation function value of state i

when the policy is optimal.

optimal external states: S; the external states when the policy is optimal.

optimal non-TP states: SD*; the non-TP states when the policy is optimal.

optimal policy: *; a policy that provides optimal control.

optimality criteria: cost criteria which defines when optimal control has been achieved.

participation factor: i(i,j); a factor which indicates how much of the evaluation

function value V(i) of state i depends on the evaluation function value V(j) of

another state j with policy u.

performance metric: used during the performance evaluation of Practical TPDP (see

Section 5.3.4).

Glossary 173

phase plane: a two-dimensional diagram showing the position and velocity of a system.

policy: p; the set of policy actions p(i), over the entire state space, that the controller

specifies in each state i.

policy TP: the one TP at each TP state which specifies the policy action.

policy action: it(i); the action that the controller specifies in state i (when learning

exploration is not occurring).

policy synapse: a policy TP in Neural TPDP.

possible actions: U(i); the set of actions that can be performed in each state i.

removal: removing a TP from a closed state space Sc.

route change parameter: change a random parameter used to determine whether or

not a new experimental action is specified during exploration.

starting states: Ss; states in which a system is started.

state lines: lines carrying binary signals, each one of which indicates if the system is in

a specific quantized interval of one dimension of the state space.

state space: 5; the set of all states that the system can enter.

state transition probability: pj(i, u); the probability that a transition will occur to

state j if action u is applied in state i.

swap parameter: swap-TP a random parameter used to determine whether or not in

ternal exploration is initiated at TP states.

swapping: exchanging one TP for another in a closed state space Sc.

Glossary 174

synapse: a connection between the output of an identification neuron and the input of

a driving neuron — acts as a TP, associating an action with a state.

synapse allocation knowledge: the knowledge each synapse requires as to whether or

not other synapses are associated with the same state.

task: (control task) a task that the system is to perform.

time step interval: T; the time between two control time steps.

transition point: (TP) the association of an action UTP with a state i.

trial: a complete set of system state transitions from starting states to absorbing states.

uniform region: a region of neighboring states where the same action is optimal.

update rate: u); the rate at which a Q-value or R-.value is updated in Q-learning.

update time: tupdate; the time step when the next Q-value, R-value and weight update

should occur.

value iteration: a successive approximation approach for determining the evaluation

function (see Section 2.1.4).

weight: w(i, u); the merit of the TP associating action u with state i.

List of Variables

€Vt(, u) update rate: the rate at which a Q-value or R-value is updated in Q-learning.

7 discount factor: the attenuation factor used for future immediate costs.

6 the low-grade signal level which is sought from an identification neuron.

i,j) participation factor: a factor which indicates how much of the evaluation

function value V(i) of state i depends on the evaluation function value V,1(j)

of another state j with policy p.

low-grade output factor: the parameter used to adjust the low-grade out

put level.

p policy: the set of policy actions p(i), over the entire state space, that the

controller specifies in each state i.

optimal policy: a policy that provides optimal control.

policy action: the action that the controller specifies in state i (when learn

ing exploration is not occurring).

optimal action: the policy action at state i when the policy is optimal.

p(i, u) entry action probability: the probability that action u led to the arrival of

the system at state i (in a valid environment, with the existing set of TPs).

175

List of Variables 176

0add-TP initiate parameter: a random parameter used to determine whether or not

exploration is initiated at non-TP states.

change route change parameter: a random parameter used to determine whether

or not a new experimental action is specified during exploration.

0delay delay parameter: a random positive parameter added to time step t to de

termine the update timetupdate.

externa1 external parameter: a random parameter used to determine whether or not

external exploration is initiated instead of internal exploration.

genera1ize generalization parameter: a random parameter used to determine whether

or not generalization by copying should be performed.

swap-TP swap parameter: a random parameter used to determine whether or not

internal exploration is initiated at TP states.

C1(i, J) excluded cost: the expected cost of all state space transitions from state i

that can occur with policy t — excluding those after all states j in the arbi

trarily chosen set of states J have been encountered.

C0 experienced cost: the total infinite-horizon discounted cost experienced af

ter the system leaves each of the states recorded in the stack.

L(i) the set of state lines connected as inputs to identification neuron i.

Q(i, u) Q-value: the expected total infinite-horizon discounted cost if action u is

taken in state i and the current policy is followed in all states thereafter.

Q*(j u) optimal Q-value: the Q-value when the policy is optimal.

List of Variables 177

R(i) R-value: the expected total infinite-horizon discounted cost if no new action

is specified in state i and the current policy is followed in all states thereafter.

S state space: the set of all states that the system can enter.

SA absorbing states: states where system transitions are terminated.

SB TP states: states associated with TPs.

SB* optimal TP states: states associated with TPs when the policy is optimal.

SB boundary states: states where TPs specify an action that will be used

throughout a uniform state space region.

Sc closed state space: the states which can be reached in a valid environment

with a given set of TPs.

Sc* optimal closed state space: closed state space when the policy is optimal.

SD non-TP states: states not associated with TPs.

SD* optimal non-TP states: the non-TP states when the policy is optimal.

SDO dormant states: states within a uniform region that are not boundary states

— no actions need be specified at them.

SE external states: states outside the closed state space Sc

SE* optimal external states: the external states when the policy is optimal.

SG aborted swap states: the set of TP states for which a TP swap was at

tempted but aborted.

List of Variables 178

SG’ accepted swap states: the set of TP states for which a TP swap was at

tempted and accepted.

Ss starting states: states in which a system is started.

T time step interval: the time between two control time steps.

Tstuck the time period for which no system movement will be permitted before ex

ploration is initiated.

Tuniform the average time required to cross each uniform region.

U(i) possible actions: the set of actions that can be performed in each state i.

Ue() entry actions: all the actions that can result in a transition to state i from

some other state (in a valid environment, with the existing set of TPs).

evaluation function: the set of evaluation function values V(i) over the

entire state space S.

optimal evaluation function: the evaluation function when the policy is

optimal.

V,(i) evaluation function value: the expected total infinite-horizon discounted

cost if the existing policy is applied from state i onward.

(i) optimal evaluation function value: the evaluation function value of state

i when the policy is optimal.

Vexpected expected evaluation function value: an estimate of what the evaluation

function value will be at the next TP state.

List of Variables 179

X(i,j) the set of all possible state transition routes from state ito state j.

at(u) activity level: the signal level that each driving neuron would output if it

was not being mutually inhibited by the other driving neurons.

c(i, u) immediate cost: the cost incurred when action u is applied in state i.

Cocatjon allocation cost: a cost placed on the allocation and preservation of each TP.

d the number of time steps between TP states.

dquick the number of time steps required to pass through a single discretized state at

the highest system velocity.

i a particular system state.

j a particular system state.

k iteration number.

1 a state line.

mt(u) driving neuron output: the output level of driving neuron u at time step t.

Ot(Z) identification neuron output: the output level of each identification neu

ron i at time step t.

p3(i, u) state transition probability: the probability that a transition will occur to

state j if action u is applied in state i.

Pineffective the probability that a specified car acceleration instruction had no effect (see

Section 5.1.2).

List of Variables 180

the state at time t.

t time step: the current time step.

tlastTP the last time step in which a TP state was encountered.

tupdate update time: the time step when the next Q-value, R-value and weight up

date should occur.

u an action taken in a given state.

Tp TP action: the action associated with a TP.

a hypothetical non-action action.

w(i, u) weight: the merit of the TP associating action u with state i.

wijj the initial setting of a TP weight (see Section 4.2.1).

Wmax the maximum value of a TP weight (see Section 4.2.1).

WtI a threshold TP weight value (see Section 4.2.2).

the horizontal position of the car at time step t (see Section 5.1.2).

the horizontal velocity of the car at time step t (see Section 5.1.2).

XL the horizontal velocity limit of the car (see Section 5.1.2).

a possible state transition route between two states.

Yt the vertical position of the car at time step t (see Section 5.1.2).

the vertical velocity of the car at time step t (see Section 5.1.2).

List of Variables 181

IlL the vertical velocity limit of the car (see Section 5.1.2).

Zt(l) the signal level of state line 1 at time step t.

Bibliography

Aboaf, E. W., C. 0. Atkeson and D. J. Reinkensmeyer (1988), “Task-level robot learn
ing”, Proceedings of the 1988 International Conference on Robotics and Automation, vol.
2, 1988, PP. 1309-1310.

Albus, J. S. (1975a), “A new approach to manipulator control: the cerebellar model artic
ulation controller (CMAC)”, Transactions of the ASME, vol. 97, Sept. 1975, pp. 220-227.

Albus, J. S. (1975b), “Data storage in the cerebellar model articulation controller
(CMAC)”, Transactions of the ASME, vol. 97, Sept. 1975, pp. 228-233.

Albus, J. S. (1983), “A structure for generation and control of intelligent behavior”,
Proceedings of the IEEE International Conference on Computer Design: VLSI in Com
puters, Port Chester, New York, 1983, pp. 25-28.

Albus, J. 5. (1988), “The central nervous system as a low and high level control system”,
NATO ASI Series: Sensors and Sensory Systems for Advanced Robots, vol. F43, ed.: P.
Dario, Berlin: Springler-Verlag, 1988, pp. 3-20.

Albus, J. S. (1991), “Outline for a theory of intelligence”, IEEE Transactions on Sys
tems, Man, and Cybernetics, vol. SMC-21, no. 3, May/June 1991, pp. 473-509.

Alkon, D. L. (1989), “Memory storage and neural systems”, Scientific America, July,
1989, PP. 42-50.

Alkon, D. L., K. T. Blackwell, 0. S. Barbour, A. K. Rigler and T. P. Vogl (1990),
“Pattern-recognition by an artificial network derived from biologic neuronal systems”,
Biological Cybernetics, vol. 62, 1990, pp. 363-376.

Anderson, C. W. (1989a), “Learning to control an inverted pendulum using neural net
works”, IEEE Control Systems Magazine, vol. 9, no. 3, Apr. 1989, pp. 31-37.

Anderson, C. W. (1989b), “Towers of Hanoi with connectionist networks: learning new
features”, Machine Learning: Proceedings of the 6th International Conference, San Ma
teo, California: Morgan Kaufmann Publishers, 1989, pp. 345-350.

182

Bibliography 183

Anderson, C. W. (1993), “Q-learning with hidden unit restarting”, Advances in Neural
Information Processing Systems 5, San Mateo, California: Morgan Kaufmann Publish
ers, 1993, pp. 81-88.

Atkeson, C. G. and D. J. Reinkensmeyer (1988), “Using associative content-addressable
memories to control robots”, Proceedings of the 27th Conference on Decision and Con
trol, Austin, Texas, Dec. 1988, pp. 792-797.

Atkeson, C. G. (1989), “Learning arm kinematics and dynamics”, Annual Review of Neu
roscience, vol. 12, 1989, pp. 157-183.

Atkeson, C. G. (1991), “Using locally weighted regression for robot learning”, Proceedings
of the 1991 IEEE International Conference on Robotics and Automation, Sacramento,
California, Apr. 1991, pp. 958-963.

Ayestaran, H. E. and R. W. Prager (1993), “The logical gates growing network”, Re
port CUED/F-INFENG/TR 137, Cambridge University Engineering Department, Cam
bridge, July 1993.

Baker, W. L. and J. A. Farrell (1992), “An introduction to connectionist learning control
systems”, Handbook of Intelligent Control, eds.: D. A. White and D. A. Sofge, New York:
Van Nostrand Reinhold, 1992, pp. 35-63.

Barto, A. G., R. S. Sutton and C. W. Anderson (1983), “Neuronlike elements that can
solve difficult learning control problems”, IEEE Transactions on Systems, Man, and Cy
bernetics, vol. 13, no. 5, 1983, pp. 835-846.

Barto, A. G., R. S. Sutton and C. J. C. H. Watkins (1989), “Learning and sequential de
cision making”, COINS Technical Report 89-95, University of Massachusetts, Sept. 1989.

Barto, A. G. and S. P. Singh (1990a), “Reinforcement learning and dynamic program
ming”, Proceedings of the 6th Yale Workshop on Adaptive and Learning Systems, Yale,
1990, pp. 83-88.

Barto, A. C. and S. P. Singh (1990b), “On the computational economics of reinforcement
learning”, Connectionist Models: Proceedings of the 1990 Summer School, San Mateo,
California: Morgan Kaufmann Publishers, 1990, pp. 35-44.

Barto, A. G., R. S. Sutton and C. J. C. H. Watkins (1990c), “Sequential decision prob
lems and neural networks”, Advances in Neural Information Processing Systems 2, San
Mateo, California: Morgan Kaufmann Publishers, 1990, pp. 686-693.

Bibliography 184

Barto, A. C., S. J. Bradtke and S. P. Singh (1991), “Real-time learning and control us
ing asynchronous dynamic programming”, COINS Technical Report 91-57, University of
Massachusetts, Aug. 1991.

Barto, A. 0. (1992), “Reinforcement learning and adaptive critic methods”, Handbook
of Intelligent Control, eds.: D. A. White and D. A. Sofge, New York: Van Nostrand
Reinhold, 1992, pp. 469-491.

Barto, A. 0., S. J. Bradtke and S. P. Singh (1993), “Learning to act using real-time
dynamic programming”, Department of Computer Science, University of Massachusetts,
Jan. 1993.

Bellman (1957), Dynamic Programming, Princeton: Princeton University Press, 1957.

Buckland, K. M. and P. D. Lawrence (1993), “A connectionist approach to direct dynamic
programming control”, Proceedings of the IEEE Pacific Rim Conference on Communi
cations, Computers and Signal Processing, Victoria, Canada, 1993, vol. 1, pp. 284-287.

Chapman, D. and L. P. Kaelbling (1991), “Input generalization in delayed reinforcement-
learning: an algorithm and performance comparisons”, Proceedings of the 12th Inter
national Joint Conference on Artificial Intelligence, Sydney, Australia, Aug. 1991, pp.
726-731.

Chinchuan, C., C. Y. Maa and M. A. Shanblatt (1990), “An artificial neural network
algorithm for dynamic programming”, International Journal of Neural Systems, vol. 1,
no. 3, 1990, pp. 211-220.

Dayan, p. (1991), “Navigating through temporal difference”, Advances in Neural In
formation Processing Systems 3, San Mateo, California: Morgan Kaufmann Publishers,
1991, pp. 464-470.

Fahlman, S. E. and 0. E. Hinton (1987), “Connectionist architectures for intelligence”,
Computer, Jan. 1987, pp. 100-109.

Feldman, J. A. and D. H. Ballard (1982), “Connectionist models and properties”, Cog
nitive Science, vol. 6, 1982, pp. 205-254.

Gardner, M. (1973), “Mathematical games”, Scientific American, 228:108, Jan. 1973.

Bibliography 185

Girosi, F. and T. Poggio (1989), “Networks and the best approximation property”, Ar
tificial Intelligence Laboratory, Massachusetts Institute of Technology, A.I. Memo No.
1164, C.B.I.P. Paper No. 45, Oct. 1989.

Hillis, W. D. (1985), The Connection Machine, Cambridge, Massachusetts: MIT Press,
1985.

Jaakkola, T., M. I. Jordan and S. P. Singh (1993), “On the convergence of stochastic
iterative dynamic programming algorithms”, Advances in Neural Information Processing
Systems 5, San Mateo, California: Morgan Kaufmann Publishers, 1993.

Jacobs, R. A. and M. I. Jordan (1991), “A competitive modular connectionist archi
tecture”, Advances in Neural Information Processing Systems 3, San Mateo, California:
Morgan Kaufmann Publishers, 1991, pp. 767-773.

Kaelbling, L. P. (1990), Learning in Embedded Systems, Ph.D. Thesis, Stanford Univer
sity, Department of Computer Science, Stanford, California, Tech. Rep. TR-90-04, 1990.

Korf, R. E. (1990), “Real-time heuristic search”, Artificial Intelligence, vol. 42, 1990, pp.
189-211.

Kraft, L. 0. W. T. Miller and D. Dietz (1992), “Development and application of CMAC
neural network-based control”, Handbook of Intelligent Control, eds.: D. A. White and
D. A. Sofge, New York: Van Nostrand Reinhold, 1992, pp. 215-232.

Lin, L. J. (1991a), “Programming robots using reinforcement learning and teaching”,
Proceedings of the 9th International Conference on Artificial Intelligence, Cambridge,
Massachusetts: MIT Press, 1991, pp. 781-786.

Lin, L. J. (1991b), “Self-improvement based on reinforcement learning, planning and
teaching”, Machine Learning: Proceedings of the 8th International Workshop, eds.: L.
Birnbaum and G. Collins, San Mateo, California: Morgan Kaufmann Publishers, 1991,
pp. 323-327.

Mahadevan, S. and J. Connell (1992), “Automatic programming of behavior-based robots
using reinforcement learning”, Artificial Intelligence, vol. 55, 1992, pp. 311-365.

Massone, L. and E. Bizzi (1989), “A neural network model for limb trajectory forma
tion”, Biological Cybernetics, vol. 61, 1989, pp. 417-425.

Bibliography 186

Mendel, J. M. (1973), “Reinforcement learning models and their applications to control
problems”, Learning Systems: A Symposium of the AACC Theory Committee, 1973, pp.
3-18.

Michie, D. and R. A. Chambers (1968), “BOXES: an experiment in adaptive control”,
Machine Intelligence 2, eds.: E. Dale and D. Michie, Oliver and Boyd, 1968, pp. 137-152.

Minsky, M. L. (1985), The Society of Mind, New York: Simon and Schuster, 1985.

Moore, A. W. (1991), “Variable resolution dynamic programming: efficiently learning
action maps in multivariate real-valued state-spaces”, Machine Learning: Proceedings of
the 8th International Workshop, eds.: L. Birnbaum and 0. Collins, San Mateo, Califor
nia: Morgan Kaufmann Publishers, 1991.

Moore, A. W. (1992), “Fast, robust adaptive control by learning only forward models”,
Advances in Neural Information Processing Systems 4, San Mateo, California: Morgan
Kaufmann Publishers, 1992, pp. 571-578.

Moore, A. W. and C. 0. Atkeson (1993), “Prioritized sweeping: reinforcement learning
with less data and less real time”, Machine Learning, Oct. 1993.

Narendra, K. S. and M. A. L. Thathachar (1989), Learning Automata: An Introduction,
New Jersey: Prentice-Hall, 1989.

Narendra, K. S. (1992), “Adaptive control of dynamical systems using neural networks”,
Handbook of Intelligent Control, eds.: D. A. White and D. A. Sofge, New York: Van
Nostrand Reinhold, 1992, pp. 141-183.

Ogata, K. (1970), Modern Control Engineering, Englewood Cliffs, New Jersey: Prentice
Hall, 1970.

Omohundro, S. M. (1987), “Efficient algorithms with neural network behavior”, Complex
Systems, vol. 1, 1987, pp. 273-347.

Peng, J. and R. J. Williams (1992), “Efficient search control in Dyna”, College of Com
puter Science, Northeastern University, Mar. 1992.

Poggio, T. and F. Girosi (1990), “Networks for approximation and learning”, Proceedings
of the IEEE, vol. 78, no. 9, Sept. 1990, pp. 1481-1497.

Bibliography 187

Ross, 5. (1983), Introduction to Stochastic Dynamic Programming, New York: Academic
Press, 1983.

Rumeihart, D. E. and D. Zipser (1985), “Feature discovery by competitive learning”,
Cognitive Science, vol. 9, 1985, pp. 75-112.

Rumeihart, D. E., G. E. Hinton and R. J. Williams (1986), “Learning internal repre
sentations by error propagation”, Parallel Distributed Processing, eds.: D. E. Rumeihart
and J. L. McClelland, Boston: MIT Press, 1986, vol. 1, pp. 318-362.

Samuel, A. L. (1959), “Some studies in machine learning using the game of checkers”,
IBM Journal on Research and Development, 1959, pp. 210-229.

Singh, S. P. (199hz), “Transfer of learning across compositions of sequential tasks”, Ma
chine Learning: Proceedings of the 8th International Workshop, eds.: L. Birnbaum and
G. Collins, San Mateo, California: Morgan Kaufmann Publishers, 1991, pp. 348-352.

Singh, S. P. (1991b), “Transfer of learning by composing solutions of elemental sequential
tasks”, Department of Computer Science, University of Massachusetts, Dec. 1991.

Singh, S. P. (1992a), “Scaling reinforcement learning algorithms by learning variable
temporal resolution models”, Proceedings of the 9th Machine Learning Conference, eds.:
D. Sleeman and P. Edwards, July 1992.

Singh, S. P. (1992b), “The efficient learning of multiple task sequences”, Advances in
Neural Information Processing Systems 4, San Mateo, California: Morgan Kaufmann
Publishers, 1992, pp. 251-258.

Schmidhuber, J. (1990a), “A local learning algorithm for dynamic feedforward and re
current networks”, Report FKI-124-90, Institut für Informatik, Technische Universität
München, Munich, Germany, 1990.

Schmidhuber, J. (1990b), “Learning algorithms for networks with internal and external
feedback”, Connectionist Models: Proceedings of the 1990 Summer School, eds.: D. S.
Touretzky et. al., San Mateo, California: Morgan Kaufmann Publishers, 1990, pp. 52-61.

Standish, T. A. (1980), Data Structure Techniques, Reading, Massachusetts: Addison
Wesley Publishing Company, 1980.

Sutton, R. S. (1988), “Learning to predict by the methods of temporal differences”, Ma
chine Learning, vol. 3, 1988, pp. 9-43.

Bibliography 188

Sutton, R. S. (1990), “Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming”, Machine Learning: Proceedings of the 7th
International Conference, eds.: L. Birnbaum and G. Collins, San Mateo, California:
Morgan Kaufmann Publishers, 1990, pp. 216-224.

Sutton, R. S. (1991), “Integrated modeling and control based on reinforcement learning
and dynamic programming”, Advances in Neural Information Processing Systems 3, San
Mateo, California: Morgan Kaufmann Publishers, 1991, pp. 471-478.

Sutton, R. S., A. 0. Barto and R. J. Williams (1992), “Reinforcement learning is direct
adaptive optimal control”, IEEE Control Systems Magazine, vol. 12, no. 2, Apr. 1992,
pp. 19-22.

Tesauro, G. J. (1991), “Practical issues in temporal difference learning”, Research Report
RC 17223 (#76307), IBM Research Division, T. J. Watson Research Center, Yorktown
Heights, New York, 1991.

Tham, C. K. and R. W. Prager (1993), “Reinforcement learning methods for multi-linked
manipulator obstacle avoidance and control”, Engineering Department, Cambridge Uni
versity, Cambridge, Mar. 1993.

Thrun, S. B. (1992), “The role of exploration in learning control”, Handbook of Intelligent
Control, eds.: D. A. White and D. A. Sofge, New York: Van Nostrand Reinhold, 1992,
pp. 527-559.

Thrun, S. B. and A. Schwartz (1993), “Issues in using function approximation for rein
forcement learning”, Proceedings of the th Connectionist Models Summer School, Hills-
dale, New Jersey: Lawrence Erlbaum Publisher, Dec. 1993.

Utgoff, P. E. and J. A. Clouse (1991), “Two kinds of training information for evaluation
function learning”, Proceedings of the 9th Annual Conference on Artificial Intelligence,
San Mateo, California: Morgan Kaufmann Publishers, 1991, pp. 596-600.

Watkins, C. J. C. H. (1989), Learning from Delayed Rewards, Ph.D. Thesis, Cambridge
University, Cambridge, England, 1989.

Watkins, C. J. C. H. and P. Dayan (1992), “Q-learning”, Machine Learning, vol. 8, 1992,
pp. 279-292.

Bibliography 189

Werbos, P. J. (1990), “Consistency of HDP applied to a simple reinforcement learning
problem”, Neural Networks, vol. 3, no. 3, 1990, pp. 179-189.

White, D. A. and M. I. Jordan (1992), “Optimal control: a foundation for intelligent
control”, Handbook of Intelligent Control, eds.: D. A. White and D. A. Sofge, New York:
Van Nostrand Reinhold, 1992, pp. 185-214.

Widrow, B., N. K. Gupta and S. Maitra (1973), “Punish/reward: learning with a critic
in adaptive threshold systems”, IEEE Transactions on Systems, Man, and Cybernetics,
vol. 3, no. 5, 1973, pp. 455-465.

Williams, R. J. (1986), “Reinforcement learning in connectionist networks: a mathemat
ical analysis”, ICS Report 8605, Institute for Cognitive Science, University of California,
San Diego, June 1986.

Williams, R. J. (1987a), “A class of gradient-estimating algorithms for reinforcement
learning in neural networks”, Proceedings of the IEEE First International Conference on
Neural Networks, San Diego, California, 1987, vol. 2, pp. 601-608.

Williams, R. J. (1987b), “Reinforcement-learning connectionist systems”, Technical Re
port NU-CCS-8’7-3, College of Computer Science, Northeastern University, Boston, Feb.
1987.

Yee, R. C. (1992), “Abstraction in control learning”, COINS Technical Report 92-16,
University of Massachusetts, Mar. 1992.

Appendix A

Proof of the Convergence of the TPDP Version of Q-Learning

Proof of the convergence of Q-learning performed using TP updating Equation 3.18 is

based on the dynamic programming convergence proofs developed by Jaakkola et. al.

(1993). Theorem 1 of Jaakkola et. al.’s work (1993) is:

Theorem 1: A random iterative process = (1 — c(x))z(x) +

3(x)F(x) converges to zero w.p.1 under the following assumptions:

1. The state space is finite.

2. cr(x) = co, Zc(x) < oo, = cc, Z5(x) < co, and

E{/3(x)IP} E{a(x)P} uniformly w.p.1.

3. WE{F(x)IP}Uw <YWLnWW, where -y e (0,1).

4. Var{F(x)P} K(1 + IIWw)2,where K is some constant.

Here P = {z, ..., F,_1, ..., c_.i, ••8fl—i, ...} stands for the past at step

n. F(x), o(x) and 3(x) are allowed to depend 011 the past insofar as the

above conditions remain valid. The notation II w refers to some weighted

maximum norm.

The proof of Jaakkola et. al.’s Theorem 1 will not be presented (see Jaakkola et.

al., 1993), but the convergence of Q-learning performed using TP updating Equation

3.18 will be proven by relating the updating process to the converging stochastic process

defined by Theorem 1.

190

Appendix A. Proof of the Convergence of the TPDP Version of Q-Learning 191

Theorem A:’ Updating Q-values with the following form of the TP updating

Equation 3.182:

d— 1

Qt+d(st, Ut) [1
— t(St, Ut)] Qt(st, Ut) + t(St, Ut) [(7c(st+n Ut)) +7dv(s)]

(A.52)

results in convergence to optimal Q-values Q*(s, U) if:

1. The state and action spaces are finite.

2. at(s,U) — cc and c(s,U) <cc uniformly w.p.1.

3. Var{c(s, u)} is bounded, and c(s, U) > 0 V s, u.

4. If -y = 1 all policies lead to a cost free absorbing state w.p.1.

Proof: By subtracting Q*(st, Ut) from both sides of updating Equation A.52

and by defining:

L(s, U) = Qt(s, U) — Q*(s U)

Ut)
=

(‘7nc(st+ Ut)) + -yd V(s d) —

Q*(
Ut)

updating Equation A.52 can be seen to have the form of the process in

Jaakkola et. al.’s Theorem 1 with /3t(S, U) = c(s, U).

Conditions 1 and 2 of Jaakkola et. al.’s Theorem 1 are met by conditions 1

and 2 of Theorem A, so it remains to be shown that F(s, U) has the properties

required by Theorem 1 — those defined by its conditions 3 and 4.

1Theorem A closely follows the conventional Q-learning theorem presented by Jaakkola eL at. (1993).
2This form is Equation 3.18 with a few minor notation changes.

Appendix A. Proof of the Convergence of the TPDP Version of Q-Learning 192

To show that condition 3 of Jaakkola et. al.’s Theorem 1 is met, we have:

E{Ft(s,u)} = Ct(s,SB) + i7(s,j)4(j)
— Ct(s,SB) —
i7(s,j)V(j)

jES2 jESB

= ‘t(s,j)(Vt(j) — (A.53)
jES2

Where C(s, SB) is the excluded cost of state transitions from state s to the TP

states SB (with all costs incurred after the TP states SB are encountered being

excluded from the total — see Section 3.3.4), and 71t(s,j) is the participation

factor of TP state j in the evaluation function value of state s (see Section

3.3.4).

Manipulating E{F(s, u)} produces:

E{Ft(s,u)}I = r(s,j)(V(j)
—

jES2

>
jES2

it(s,j)IminQt(j,v)_rnjnQ*(j,v)I
jES2

?7t(s,j)maxQt(j,v) — Q*(j,v)I (A.54)

The maximum value the right hand side of Equation A.54 can have is when

a one-step transition is made, w.p.1, to a TP state j that has the largest Q
value error (max IQt(j, v) — Q*(j, v)I) of all the TP states SB. Using weighted

maximum norm weights of 1 the following can thus be stated:

IIE{Ft(s,u)}Uw ymaxmaxlQt(j,v) — Q*(jv)I (A.55)

HE{Ft(s, u)}IIw ‘(j, v)IIw (A.56)

Since the notation of v)Iw can be arbitrarily changed to It(S, u)IIw,
condition 3 of Jaakkola et. al.’s Theorem 1 is met.

Appendix A. Proof of the Convergence of the TPDP Version of Q-Learning 193

To show that condition 4 of Jaakkola et. aL’s Theorem 1 is met, we have:

d—1

Var{Ft(s,u)} = Var{ (E7nc(sflu))+7dVt(sd) — Q*(s,u)so =

< 3Var{7nc(snu)so } +3Var{7dVi(sd)so =

K1 + 3Var{7dvt (sd)J s0 = (A.57)

Where K1 is a constant reflecting the fact that the variance of the immediate

costs incurred is bounded as a result of conditions 3 and 4 of Theorem A.

Continuing on (and assuming throughout that s0 =

Var{Ft(s, u)} K +3 ç II Pxk+l (xk, u))(7Iv(i) — E{7dv(})2

iESB EX(s,j)

(A.58)

Where X(s,j) is the set of all possible state transition routes from state s
to TP state j (X(s,j)), = [x0,x1,...,x,] is one possible state transition

route from state s to TP state j of variable length n (xo = s, x,-, = j), and j

is the number of states along each such route.

The maximum value the right hand side of Equation A.58 can have is

when a one-step transition is made, w.pJ, to a TP state j that has the

largest evaluation function value V(j) of all the TP states SB, and when the

expected value of .ydT/(s) is 0. Using weighted maximum norm weights of 1

the following can thus be stated3:

/
Var{Ft(s,u)} Ki+3(ymaxVt(j)—0

\‘ I

Var{Ft(s,u)} K1 +32(mxV(j)) (A.59)

3The outcome is the same if (j) is minimized and the expected value of 7dVL(sd) is maximized.

Appendix A. Proof of the Convergence of the TPDP Version of Q-Learning 194

By again using weighted maximum norm weights of 1, the bound of con

dition 4 of Jaakkola et. al.’s Theorem 1 can be expressed as follows:

K(1 + IItIIw)2 = i(1 +maxmaxlQt(s,u) —

K(i +maxlminQt(s,u) _minQ*(s,u)l)

> K(1+maxIV(s)-V*(s)) (A.60)

Since the notation of Equation A.60 can be arbitrarily changed to:

2
K(1 + IItUw)2 K(i +mxIVt(j) - (A.61)

Equations A.59 and A.61 can be employed to verify that condition 4 of

Jaakkola et. al.’s Theorem 1 is met:

2 2
K1+372(mxVt(j)) K(1 +mxVt(j) -V.(j)I) (A.62)

Equation A.62 is true because conditions 3 and 4 of Theorem A ensure that

the maximum value of V(j) for any state j is bounded — the left hand side

of Equation A.62 is therefore also bounded. The right hand side of Equation

A.62 always has a value of at least K, and K can be arbitrarily increased to

exceed the left hand side bound. As a result:

Ki+372(maxVt(j)) K(1+mxIVt(i)_*(i)I)

Var{Ft(s,u)} K(1 + IItIw)2 (A.63)

condition 4 of Jaakkola et. al.’s Theorem 1 is therefore met. U

Appendix B

Full Description of the Practical TPDP Algorithm

Appendix Section B.2 fully describes the Practical TPDP Algorithm, and Appendix

Section B.3 fully describes the Stack Updating Procedure it calls.

B.1 General Operation of the Practical TPDP Algorithm

This Appendix Section repeats part of Section 4.2.4.

The general operation of the Practical TPDP Algorithm is as follows. The Practical

TPDP controller can be in one of three exploration modes. The mode in effect at any

time is identified by the variable explore as ‘none’, ‘internal’ or ‘external’. When no

exploration is occurring actions are randomly chosen from those specified by the TPs at

the states encountered. The immediate costs incurred when those actions are taken are

observed, and the Q-values, R-values and weights of the TPs specifying those actions are

updated accordingly. Internal and external exploration (see Section 4.2.3) are randomly

initiated in the midst of this process and are allowed to continue until a TP state is

encountered. Internal and external exploration facilitate the allocation of new TPs that

can be further assessed.

B.2 The Practical TPDP Algorithm

Considering the Practical TPDP Algorithm presented in Figure B.40 (a conveniently

located copy of Figure 4.3):

195

Appendix B. Full Description of the Practical TPDP Algorithm 196

Lines 1 to 5

These lines initialize the algorithm by chosing a starting state s0 and a starting action

uo E U(so) for the trial. They also set a number of algorithm variables to starting

values. These include explore; t, the time step; tupdate, an indicator of when the next

stack updating should occur; and tlastTP, the last time step in which a TP state was

encountered.

The variable explore is initialized to ‘external’ if the starting state s0 has no TP

because an initial TP action must be specified for the exploration mode to be made

‘none’. The exploration mode ‘external’ results in random movement of the system

through the state space until a TP state is encountered. This is a reasonable behavior

if there is no TP associated with the starting state which specifies some sort of initial

action.

Lines 10 to 11, and 60 to 63

These lines determine when the calculations are made for Practical TPDP. Calculations

are made whenever the system enters a new state, or after a period Ttth has passed in

the same state (Line 11). The latter condition is used to prevent Practical TPDP from

permanently remaining in the same state, continually specifying the same action. Line

10 ensures that Practical TPDP calculations continue until the system has reached one

of the absorbing states SA.

Line 61 is used to update the expected evaluation function value Vexpected, a running

estimate of what the evaluation function value (i) will be at the next TP state i

encountered. This estimate is based on the evaluation function value of the last TP state

encountered (Line 33) and the immediate costs experienced since then. The update of

Vexpected is done recursively and is based on Equation 2.2.

Appendix B. Full Description of the Practical TPDP Algorithm 197

Line 63 calls the Stack Updating Procedure (Figure B.41.) to perform a final updating

when an absorbing state has been reached.

Lines 20 to 34

These lines define the three algorithm operations that can be performed when the system

encounters a TP state.

The first operation (Lines 22 to 25) is to initiate internal exploration at the current

state. This operation is performed when the value of the random parameter SWaTP 5

greater than zero (Line 21). The value of swapTP has some fixed probability of being

greater than zero each time it is considered’.

When internal exploration is initiated the stack is updated using the evaluation func

tion value V(s) ((St) = Q(s, it(St))) for the current state St (Line 22, see Appendix

Section B.3). Then the explore variable is set to indicate the mode of exploration oc

curring (Line 23), and an experimental action Ut 1S randomly chosen from the set U(s)

(Line 24). Finally, the current time step, state and action information is stored on the

stack for future updating (Line 25).

The second operation (Lines 27 to 31) is to randomly choose an action from those

specified by the TPs at the current state st (Line 30). This facilitates evaluation of the

TP specifying that action. To prepare for such evaluation the stack is updated (Line

27), and the explore variable is set to indicate that no internal or external exploration is

occurring (Line 28). The current time step, state and action information is also stored

on the stack for future updating (Line 31).

The second operation is always performed if internal or external exploration has been

occurring (excluding internal exploration which has just been initiated — in Lines 21

to 25), and it terminates all such exploration (Line 26). The second operation is also

‘Section 4.2.6 describes how the random distribution of °swap-Ti’ is determined.

Appendix B. Full Description of the Practical TPDP Algorithm 198

performed if no exploration has been occurring, but the update time tupdate has been

reached (see Section 4.2.5).

The third operation (Line 32) is performed if neither of the other operations is. That

is, the third operation is performed only if no exploration is occurring and the update

time tupdate has not yet been reached. This operation involves simply storing the current

time step, state and action information in the stack for future updating. When the

stack update is performed, the Q-values, R-values and weights will be updated for each

state identified in this manner. As will be explained in Appendix Section B.3, this is

done because even though no actions are specified in the states concerned, it will still be

possible to update some of the Q-values, R-values and weights associated with them.

The specified field stored in the stack entry during the third operation is set to ‘false’

to indicate that no action was specified at the state concerned (Line 32). This field is set

to ‘true’ when the second operation, that of choosing a TP action, is performed (Line

31). This field is set to a null value (0) when the first operation, the initiation of internal

exploration, is performed (Line 25). This is because the value of this variable has no

meaning when exploration is occurring (see Appendix Section B.3).

Finally, Lines 33 and 34 update variables Vexpected, V1astTP and tlast-TP — all of which

are based on the last TP state encountered. The expected evaluation function value

Vexpecteci is a running estimate of what the evaluation function value V(i) will be at the

next TP state i encountered. As explained earlier in this Appendix Section (Lines 10 to

11, and 60 to 63), this estimate is set to the evaluation function value of the last TP state

encountered (V(s) = Q(st, IZ(St))), and then recursively updated as immediate costs are

experienced (Line 61).

The variable t1Tp indicates the time step in which the last TP state was encountered.

This variable is used if internal or external exploration is initiated between TP states.

It facilitates a stack update using the evaluation function value of the last TP state

Appendix B. Full Description of the Practical TPDP Algorithm 199

encountered (see Appendix Section B.3).

Lines 40 to 43

These lines are used to make random changes in the route followed through the state

space during internal and external exploration. Route changes are made when explo

ration is already occurring, and the system is making state transitions through non-TP

states. The determination of when to make route changes is made based on the random

parameter chge, which has some fixed probability of being greater than zero each time

it is considered (Line 40)2.

When a route change is made a new experimental action is randomly selected (Line

42), and the current time step, state and action information are stored on the stack to

record the change (Line 43). If external exploration is occurring, the stack is first flushed

so that only the last action specified will be stored on it when a TP state is encountered

and a stack update is performed (Line 41). As explained in Section 4.2.3, this ensures

that only the last action specified before a TP state is encountered is allocated a TP.

Lines 50 to 55

These lines are used to initiate internal and external exploration when the system is

making state transitions through non-TP states. The determination of when to initiate

this exploration is made based on the random parameter add-TP, which has some fixed

probability of being greater than zero each time it is considered (Line 5O).

When exploration is initiated the stack is updated using the time step t1Tp in

which the last TP state was encountered (Line 51). Then the determination of whether

the exploration should be internal or external is made based on the random parameter

2Section 4.2.6 describes how the random distribution of °change is determined.
3Section 4.2.6 describes how the random distribution of °dd-Tp is determined.

Appendix B. Full Description of the Practical TPDP Algorithm 200

externai, which has some fixed probability of being greater than zero each time it is

considered (Line 52). Finally, a new action is randomly selected (Line 54) and the

current time step, state and action information are stored on the stack to record the

change (Line 55).

B.3 The Stack Updating Procedure

The Stack Updating Procedure (see Figure B.41 — a conveniently located copy of Figure

4.4) operates by retrieving state and action combinations from the stack in reverse of

the order in which they were experienced and recorded. As a result, updating begins at

the last TP state encountered before the stack update was initiated, and the experienced

cost 0totaj (the total infinite-horizon discounted cost experienced after the system leaves

each of the states recorded in the stack) can be recursively calculated starting with the

evaluation function value Vupdate of that last TP state (Lines 2 and 13). The recursively

calculated is used during updating in various ways, depending on the mode of

exploration in effect.

Parameters passed

The Stack Updating Procedure is passed four parameters by the Practical TPDP Al

gorithm. These are explore, the mode of exploration occurring when the stack update

was requested; the updating time step t, which is initialized to the time step when the

last TP state was encountered; Vupate, the evaluation function value of the last TP state

encountered; and Vexpected, the running estimate of what the evaluation function value

V(i) will be at the next TP state i encountered (see Section B.2).

The mode of exploration passed to the Stack Updating Procedure as explore is always

4Section 4.2.6 describes how the random distribution of0extemal is determined.

Appendix B. Full Description of the Practical TPDP Algorithm 201

the same as the mode of exploration that was occurring when each of the stack entries

was stored. This is because the stack is updated every time the mode of exploration is

changed (see Section B.2 and Figure B.40).

Lines 1 to 2

Line 1 removes all entries from the stack whose time step t equals or exceeds the initial

value of t — the time step when the last TP state was encountered. This operation will

only have an effect if the current state is a non-TP state and stack entries have been

recorded since the last TP state was encountered. It removes all such entries because,

unless the system is at a TP state, no evaluation function value will be available with

which these non-TP states can be updated.

Line 2 initializes the value of C0j.

Lines 10 to 14

These lines determine which state should next be updated as entries representing the

states are retrieved from the stack. For each recorded state the values t.9, i3, ‘u.s and

specified3 are retrieved from the stack (Line 11). The experienced cost is also recursively

calculated by discounting C03.1 and adding the immediate cost c(i5,u3) to it for each

time step (Lines 12 to 14).

Lines 20 to 33

These lines perform the updating of states when no internal or external exploration has

been occurring. If, at the state i5 being updated, a TP exists that specifies an action

corresponding to the action u taken in that state, the Q-value of that TP is updated

(Line 23). This is done whether the TP itself specified the action, or whether it had been

Appendix B. Full Description of the Practical TPDP Algorithm 202

specified previously at another TP state. In either case the Q-value can legitimately

be updated based on the consequences of that action being applied to the system. The

Q-value updating is done according to the TP updating Equation 3.18, and the update

makes use of 0total• Incorporated in is both the evaluation function value Vupdate

of the last TP state encountered by the system, and the immediate costs experienced as

the system moved from i3 to that state. Once the Q-value updating has been performed,

the weight of the TP concerned is updated according to the rules presented in Section

4.2.1 (Lines 24 to 29).

Lines 30 to 31 are used to update R-values according to the R-value updating Equation

3.27. If there is only one TP associated with state i3, and it did not specify an action when

state i5 was encountered (as indicated by specified5;see Appendix Section B.2, Lines 20

to 34), the R-value of that TP is updated. If there is more than one TP associated with

state i and one of them specifies the action w that was taken in state i3, the Ft-values

of all of the other TPs are updated.

These two cases facilitate updating that is very effective in producing R-values that

can be used to assess the merits of each TP. The former case results in the R-value for a

single TP at state i reflecting the costs incurred if that TP did not exist. This R—value

can then be directly compared to the Q-value of the single TP to assess the value of that

TP. The latter case results in the R-value for each TP associated with state i5 reflecting

the costs incurred when other TPs at state i specify an action. The R-value calculated

for a TP in this manner can be compared with the Q-value of that TP to assess the

value of that TP relative to the other .TPs. If this comparison reveals that the Q-value

of a TP is higher than its Ft-value, then it is known that other TPs at state i result in

lower costs. The TP is removed as a result. The elimination of high Q-value TPs in this

manner results in the R-values of the remaining TPs being lowered, which leads to more

TP removals. Eventually a single TP will remain, and it will then be assessed solely on

Appendix B. Full Description of the Practical TPDP Algorithm 203

the basis of the costs that will be incurred if it is removed (as described previously). This

whole process is basically one of competitive learning (Rumelhart et. al., 1985).

Finally, the policy TP for each state i8 identified in the stack must be determined (see

Section 4.2.2). Lines 32 to 33 make this determination using Equations 4.40 and 4.41.

Lines 40 to 44

These lines perform the updating of TP states when internal exploration has been oc

curring. At most one such state, the oldest state in the stack, will be identified during

each stack update. This is because all exploration is terminated when a TP state is

encountered, and the only TP state stored on the stack during internal exploration will

be the one in which the exploration was initiated (see Section B.2 and Figure B.40).

If internal exploration is initiated in a TP state i8, the merit of the route taken

through the state space during that exploration can be determined simply by comparing

the experienced cost Ctoai with the evaluation function value V(i3)(T(i8)= Q(i8,t(i3)))

of that state. If Ct0tai is less than Q(i3,t(i3)) (Line 40), then the action u3 specified at

the initiation of the internal exploration is worthy of further consideration and a TP is

allocated to specify that action at the TP state concerned (Line 41).

The Q-value and R-value of any TPs allocated are initially set to Ctota.i (Line 42).

This is the best initial estimate of the Q-value. The R-value is also set to this value

so that it will diverge away from the initial Q-value to become higher or lower. If the

true R-value of a TP is higher than its true Q-value, and it is initialized to some value

lower than the initial Q-value, it will have to be updated until it exceeds the Q-value.

During the period that it remains lower than the Q-value, the weight of that TP will be

fallaciously decreased (the TP may even be removed as a result). In a similar manner,

the weight of a TP may be fallaciously increased if its R-value is initialized to some value

higher than its initial Q-value. Initializing the Q-values and R-values of each TP with

Appendix B. Full Description of the Practical TPDP Algorithm 204

the same value is therefore the best strategy.

When a new TP is allocated its weight is initialized to wjj (Line 43). This weight

is also compared to the weight of the policy TP to see if the new TP should be made

the policy TP (Line 44). This comparison is a reduced version of the comparison made

in Line 33, with the reductions resulting from conditions that are sure to be met when a

new TP is being allocated.

Lines 50 to 54

These lines perform the updating of non-TP states when internal or external exploration

has been occurring.

If external exploration has been occurring, the stack will only have one entry (see

Appendix Section B.2, Lines 40 to 43). For the reasons presented in Section 4.2.3, a new

TP is unconditionally allocated at the appropriate state to specify the action indicated

by that stack entry.

If internal exploration has been occurring, the merit of the route taken through the

state space during that exploration can be determined by making use of the expected

evaluation function value Vexpected (see Figure B.40 and Appendix Section B.2, Lines 10

to 11, and 60 to 63). If the actual evaluation function value of the TP state encountered,

Vupdate, is lower than Vexpected (Line 50), then the route taken through the state space

during the internal exploration was a low cost one and the actions specified along that

route are worthy of further consideration. In this case new TPs are allocated to specify

each such action at the states where they were specified during exploration.

When new TPs are allocated at non-TP states, the allocation operations are the same

as those performed when allocating new TPs at states that already have TPs (Lines 41

to 44). The oniy difference is that, being the only TPs at the states concerned, the new

TPs are automatically made the policy TPs (Line 54).

Appendix B. Full Description of the Practical TPDP Algorithm 205

1. randomly choose starting state ü E Ss
2. choose a starting action u0 E U(so)
3. if (state has a TP): ‘none’ = explore
4. otherwise: ‘external’ explore
5. 0 t, 0 tupdate, 0 tlastTP

10. while s is not an absorbing state SA:
11. if (state s .9t—T) or (state St = 8t—T for time Ttk):
20. if (state s has a TP):
21. if (UswaTp > 0):
22. update-stack(explore, t, Q(s, It(st)), Vexpectea)
23. ‘internal’ explore
24. randomly choose action Ut E U(s)
25. push-on-stack(t, 5, t, 0)
26. otherwise if (explore ‘none’) or (t > tupaate):
27. update-stack(explore, t, Q(s, I1(st)), Vexpected)
28. ‘none’ =‘ explore
29. t + Udelay tupdate
30. randomly choose action Ut from TP actions in U(s)
31. push-on-stack(t, 5, Ut, ‘true’)
32. otherwise: push-on-stack(t, s, Ut, ‘false’)
33. Q(st,LL(st)) Vexpecteci, Q(st,p(st)) = V5ti’p
34. t

40. if (state s, has no TP) and (explore ‘none’) and (Uchge> 0):
41. if (explore = ‘external’): flush-stack
42. randomly choose action Ut E U(s)
43. push-on-stack(t, 5, Ut, 0)
50. if (state s has no TP) and (explore = ‘none’) and (cTaddTp > 0):
51. update-stack(’none’,tItTP, V1atTp, 0)
52. if (7extema1> 0): ‘external’ = explore
53. otherwise: ‘internal’ z explore
54. randomly choose action Ut E U(s)
55. push-on-stack(t, 5t, Ut, 0)
60. t+T=t
61. (Vexpected — C(St, Ut)) Vexpected
62. observe system for new state st
63. update-stack(explore, t, .St, VexpecLed)

Figure B.40: The Practical TPDP Algorithm

Appendix B. Full Description of the Practical TPDP Algorithm 206

[Parameters passed: explore, t, Vupdate, Vexpected]
while (time at top of stack t3 t): pop-off-stack(t5,i, u5, specified3)
Vupdae

while (there are entries in stack):
pop-off-stack(t5,js, u, specified)
while (t > t5):

7Gtotaj + c(i3,u5) =

t—Tt

if (explore = ‘none’):
for (each TP action u é U(i3) in state i5):

if (u = u3):
(1 —)Q(i5,u3) + crCtotai = Q(i5,u5)
if (Q(i5,u) < R(i3,u5)):

w(i3,u.9) + 1 =‘ w(i3,u5)
if (w(i3,u5)> Wmax) Wmax = w(i5,u5)

otherwise:
w(i3,u5)—1 = w(i3,u3)
if (w(i3,u3) = 0): remove the TP

if [(state i has oniy one TP) and (specified3=
[(u u3) and (another TP at state i5 specifies

(1 — c)R(i5,u) + aCtotaj = R(i5,u)
for (each TP action u E U(i5) in state i5):

if [(w(i5,t(i5)) < Wt1,) and (w(i5,u) > w(i5,t(i3)))] or
[(w(i5,1u(i5)) ‘wh1.) and (w(i5,u) > W.) and
(Q(i5,u) < Q(i5,.t(i5)))]: u = i(i5)

40. if (state i5 has TPs) and (memory can be allocated) and
(explore = ‘internal’) and (Ctotai < Q(i5,jz(i8))):

41. allocate a new TP at state i3 with action u
42. 0totai Q(i5,u5), = R(i3,u5)
43. Winitial w(i5,u5)
44. if (w(i3,u3) > w(i5,p(i3))) or w(i3,u9) wt): z& = IL(i3)

50. if (state i3 has no TPs) and (memory can be allocated) and
[((explore = ‘internal’) and Vupaate < Vexpected)) or (explore = ‘external’)]:

allocate a new TP at state i3 with action u
C01 = Q(i3,u3), Ctotai =‘ R(i5,u3)
wjj = w(i5,u.3)

1.
2.

10.
11.
12.
13.
14.

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

31.
32.
33.

‘false’)] or

51.
52.
53.
54.

Figure B.41: The Stack Update Procedure

