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ABSTRACT 

Three-phase synchronous generators which convert mechanical energy into electrical 

energy are the main power sources of power systems. In this thesis a phase-domain syn

chronous generator model which is developed directly in the stator reference frame is pres

ented. The electrical and mechanical parts of a three-phase synchronous generator are 

separately modelled by two different, sets of differential equations which are discretized 

with the trapezoidal rule of integration. These two parts are linked together by the rotor 

position angle and the electromagnetic torque generated by the interactions of the different 

magnetic fields, resulting in a linear generator model. In order to represent the generator 

more accurately, the linear generator model is modified to include magnetic saturation ef

fects, resulting in a non-linear generator model. A formula is developed to account for the 

saturation as a function of the rotor angle and the total magnetomotive force angle. The 

machine parameters in the stator reference frame are obtained from the given characteristic 

quantities by a suitable data conversion scheme. To verify the linear generator model, a 

comparison between the simulation results of a three-phase short-circuit at the terminals of 

the machine obtained with the new linear model and the model in the EMTP is conducted. 
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Chapter One 

INTRODUCTION 

1.1 Motivation to Model Three-Phase Synchronous Generators 

Three-phase synchronous generators are rotating machines which convert mechanical 

power into three-phase alternating electrical power. They form the principal sources of 

electrical energy in power systems. Thus the performance of the generators greatly in

fluences the operation of the power network. To study the behaviour of the power system, 

the characteristics of the synchronous generators must be investigated very carefully. 

There are different established methods in modelling a three-phase synchronous gener

ator. However, most of these methods represent the generator in the rotor reference frame 

using Park's co-ordinate transformation to transfer the electrical quantities of the machine 

between the stator and the rotor reference frames. Although modelling a generator in the 

rotor reference frame makes the inductances of the magnetically coupled coils time invari

ant, the use of Park's co-ordinate transformation complicates the model. In order to more 

accurately and simply model a three-phase synchronous generator, the machine can be di

rectly represented in the stator reference frame. 

1.2 Work in this Thesis 

In this thesis a three-phase synchronous generator model is intended to be developed 

directly in the stator reference frame. The derivation of the differential equations and the 

development of the discrete-time model of the machine are also presented. To facilitate the 

development of a computer-based simulator, the generator model is developed in the high-

level computer language of Ada95. There are seven chapters in addition to this 
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introductory one in the thesis to describe the generator model in detail. 

In Chapter Two, the physical description of the electrical part of a three-phase syn

chronous generator is given briefly. Then the differential equations of the machine's electri

cal part are derived directly in the stator reference frame. To represent the machine's 

electrical part more accurately, in Chapter Three corrections on the differential equations 

of the machine's electrical part are made. In order to complete the mathematical description 

of the generator, the differential equations of the machine's mechanical part are derived in 

the same reference frame in Chapter Four. Based on the differential equations of a three-

phase synchronous generator, in Chapter Five the linear discrete-time model of the machine 

is developed in the stator reference frame with the trapezoidal integration rule. In the 

model development, the C D A method is applied in the computer algorithm[l,2]. In order 

to model the generator more closely, in Chapter Six the linear generator model is modified 

to include magnetic saturation effects in the machine. In modelling magnetic saturation ef

fects in the generator, magnetizing curves of the machine are assumed to be the only avail

able saturation data. To verify the generator model, in Chapter Seven the case of a 

three-phase short-circuit at the terminals of the generator is simulated by both the new 

model and the one in the EMTP. Finally, in Chapter Eight the conclusions of this thesis 

project are presented. 
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Chapter Two 

MATHEMATICAL DESCRIPTION OF THE ELECTRICAL PART 

2.1 Introduction 

A three-phase synchronous generator essentially consists of a field structure and a set 

of armature coils. The armature windings usually operate at voltages that are considerably 

higher than that of the field winding and thus require more space for insulation. They are 

also subject to high transient currents and must have adequate mechanical strength. There-
i 

fore, in practice, the field winding is mounted on the rotor and the armature windings are 

placed on the stator[3]. The field winding carries direct current to produce a rotational 

magnetic field in the air gap between the stator and the rotor. In addition to the field wind

ing there are two damper windings on the rotor: the D-damper winding and the Q-damper 

winding. The Magnetic axis of the D-damper winding coincides with the d-axis and the 

magnetic axis of the Q-damper winding is in parallel with the q-axis of the rotor. The 

damper windings are used to damp out the rotor's oscillations, to reduce overvoltages 

under certain short-circuit conditions, and to aid in synchronizing the machine. The three-

phase windings of the armature are distributed in space 120° apart around the periphery of 

the inner face of the stator. These six coils are magnetically coupled. In steady state oper

ation, when the rotor carrying the field winding's direct current is rotating at constant 

speed, a uniform rotating magnetic field is generated in the air gap between the rotor and 

the stator. Consequently, steady state voltages displaced by 120° in phase are produced in 

the armature windings, regardless of the speed of the rotational field. In this chapter, the 

differential equations of the generator's electrical part are derived. 
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2.2 Differential Equations of the Electrical Part 

Figure 2.1 shows the cross section of a salient pole three-phase synchronous 

generator. 

c-axis a 

Figure 2.1 Cross Section of a Salient Pole Three-Phase Synchronous Generator 

The electrical quantities of the generator can be represented mathematically. The der

ivation of the differential equations of the machine's electrical part are based on the follow

ing assumptions: 

(1) The armature windings are distributed around the periphery of the inner face of the 

stator in such a manner that their self and mutual inductances are sinusoidal func

tions of the rotor position angle. 

(2) The field structure windings are symmetrically placed about the d-axis and the q-

axis on the rotor such that their self inductances and the mutual inductances are con 
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stant; however, the mutual inductance between a field structure winding and an 

armature winding is a sinusoidal function of the rotor position angle. 

(3) The resistances of the six magnetically coupled windings are constant. 

(4) The effects of the stator slots on the variation of any rotor inductance with rotor 

position angle are neglected; 

(5) Saturation effects are not included (they are modelled in Chapter Six). 

(6) The effects of hysteresis and eddy currents are neglected. 

When the rotor is turning and its field winding is excited by a dc source, alternating 

voltages are induced in the armature windings. The voltage-current-flux relationships of the 

six magnetically coupled windings are given as follows: 

KO]=-[OT0]-4M)] (2.1.1) 

where 

KOI = 

v*(0 
vb(t) 
vc(0 (2.1.2) 

0 
0 

[R} = 

RA 0 0 0 0 0 
0 RA 0 0 0 0 
0 0 RA 0 0 0 
0 0 0 RF 0 0 
0 0 0 0 RD 0 
0 0 0 0 0 RQ 

(2.1.3) 
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[/(Ol = 

hit) 

ic(t) 

ID® 

Xb(t) 

M O 

*g(0 

(2.1.4) 

(2.1.5) 

va(t), vb(t), and vc(t) are the terminal voltages of phase-a winding , phase-b winding, and 

phase-c winding, respectively. 

v/t) is the terminal voltage of the field winding. 

R A , B^, R D , and R Q are the resistances of an armature winding, the field winding, the D -

damper winding, and the Q-damper winding, respectively. 

ia(t), ib(t), and ic(t) are the currents passing through phase-a winding, phase-b winding, and 

phase-c winding, respectively. 

i/t), iD(t), and iQ(t) are the currents passing through the field winding, the D-damper wind

ing, and the Q-damper winding, respectively. 

A,a(t), \(t), and Xc(t) are the flux linkages linking phase-a winding, phase-b winding, and 

phase-c winding, respectively. 

X/t), XJt), and XQ(t) are the flux linkages linking the field winding, the D-damper winding, 

and the Q-damper winding, respectively. 
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All the flux linkages in equation 2.1.5 are defined as follows: 

where 

[X(t)] = [Z(0][/(01 (2.2.1) 

[L(t)] 

Laa(t) Labi?) Lac(t) 
Lbaif) Lbb(t) Lbc(t) 

(0 Lcb(t) Lcc(i) 
Lfa(t) Lfbit) Lfc(t) 
LDa(t) LDb(f) LDc(t) 
LQait) LQb(t) LQc(t) 

Lafit) Laoit) LaQ(f) 
Lbf(t) LbD(t) LbQ(t) 
Lcf(t) LcD(t) LcQ(t) 
L^t) Lfoif) LjQii) 
Loit) LDD(t) LDQ(t) 
Lgfit) LQD(t) LQQ(J) 

(2.2.2) 

2.3 Calculations of the inductances 

The inductance matrix [L(t)] in equation 2.2.2 consists of stator self inductances, sta

tor mutual inductances, rotor self inductances, rotor mutual inductances, and stator-rotor 

mutual inductances. The rotor position does not influence the rotor self and mutual induc

tances; however, other inductances depend on rotor position. In order to simplify the 

model, the terms of order 3 and higher in the Fourier series of the inductances are ne

glected in the inductance calculations. Consequently, the inductances of a three-phase syn

chronous generator are defined as follows[4]: 

(1) stator self inductances: 

Laa(t)=Ls+Lm cos [29(f)] 

Lbb(t) =Ls+Lmcos 

Lcc(t)=Ls+Lmcos 

2Q(t)-f 

(2.3.1) 

(2.3.2) 

(2.3.3) 
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20(0-y 

26(0-^ 

:Lba(t) (2.4.1) 

•-Lea® (2.4.2) 

where 

0(t) is the rotor position angle with respect to the magnetic axis of phase-a winding. 

L S is the constant component of the self inductance of an armature winding. 

L M is the amplitude of the second harmonic component of the self inductance of an arma

ture winding. 

(2) stator mutual inductances: 

Lab(t) = -Ms +Lmcos 

Lac(t) - -Ms +Lmcos 

Lbc(f) = -Ms+Lmcos[2Q(t)]=Lcb(t) (2.4.3) 

where M s is the constant component of the mutual inductance between two armature 

windings. 

(3) rotor self inductances 

Lff(t) = Lf (2.5.1) 

LDD(t) = LD (2.5.2) 

LQQ(f) = LQ (2.5.3) 

where 

L F is the constant amplitude of the self inductance of the field winding. 

LD is the constant amplitude of the self inductance of the D-damper winding. 

L Q is the constant amplitude of the self inductance of the Q-damper winding. 



(4) rotor mutual inductances: 

LfD(t)=MR=LD/(f) 

LjQ(t) = 0 = LoA.f) 

LDQ(f) = 0 = LQD(f) 

(2.6.1) 

(2.6.2) 

(2.6.3) 

where 

M R is the constant mutual inductance between the field winding and the D-damper winding. 

(5) stator-rotor mutual inductances: 

Laf({) = M/cos [0(0] = Lfa(f) 

Lrffi = ̂ /cos [e(0 - 2£] = Lfi® 

Lc{t) = M/cos[e(0 - y ] = 

IOD(0 = Mz?cos[0(O] =LDa(t) 

LbD(t) =MDCOS 0(0-y 

LcD(i)=MDco$ 9 ( 0 - f 

= LDb(f) 

= LDc(t) 

LaQ(t) =Mesin[0(O] =LQa(i) 

LbQ(t) = M e s i n [0(0 - Y\ = LQb(f) 

LcQ(i) =Mesin[~0(O - ^1 = LQc(t) 

where 

(2.7:1) 

(2.7.2) 

(2.7.3) 

(2.7.4) 

(2.7.5) 

(2.7.6) 

(2.7.7) 

(2.7.8) 

(2.7.9) 

Mf is the amplitude of the mutual inductance between an armature winding and the field 

winding. 



M D is the amplitude of the mutual inductance between an armature winding and the D 

damper winding. 

MQ is the amplitude of the mutual inductance between an armature winding and the Q 

damper winding. 
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Chapter Three 

CORRECTIONS ON THE DIFFERENTIAL EQUATIONS 

3.1 Introduction 

Since the main magnetic path in a generator is a function of time, the reluctance of the 

path is not constant. The changes of the reluctance of the path also influence the machine's 

behavior. In this chapter, corrections on the differential equations of the electrical part are 

made according to the variations of the reluctance of the magnetic path. 

3.2 Inclusion of Reluctance Voltages 

Figure 3.1 shows the main magnetic flux path in a salient pole three-phase synchron

ous generator and Figure 3.2 shows the spatial positions of the magnetic axes of the six 

windings and the axis of the total magnetomotive force in the machine. 

d-axis 

> q-axis 

Figure 3.1 Main Magnetic Flux Path of a Salient Pole Three-Phase Synchronous Generator 

11 



b-axis 

c-axis 

Figure 3.2 Spatial Positions of the Magnetic Axes of the Six Windings 
and the Axis of the Total Magnetomotive Force 

If the flux linkages of the windings are assumed to be the function of the rotor posi

tion and the currents only, the flux linkages can be expressed by the following equation: 

[X(t)] = [X(Q,i)] (3.1.1) 

where 

0 = f ®(t)-dt (3.1.2) 
* to 

i=j%ia,ib,ic,if,iD,iQ) (3.1.3) 

co(t) is the angular frequency. 
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Hence, the time derivative of the flux linkage linking each winding becomes: 

| M 0 = ^ M e , 0 | e + S ^ M 6 , 0 | ^ (3.2) 

with j = 1, 2, 3, 4, 5, 6 (and k = 1, 2, 3, 4, 5, 6) standing for phase-a winding, phase-b 

winding, phase-c winding, field winding, D-damper winding, and Q-damper winding, 

respectively. 

By definition, we can also express the flux linkages of the windings as follows: 

[X(t)] = [L[Q(t)W(m (3.3.1) 

Again, the time derivative of the flux linkage of each winding is given by: 

j^jit) = £ (^[e(f)]|/i(0 + fLJk[Q(m(t)) (3.3.2) 

with j = 1, 2, 3, 4, 5, 6 (and k = 1, 2, 3, 4, 5, 6) standing for phase-a winding, phase-b 

winding, phase-c winding, field winding, D-damper winding, and Q-damper winding, 

respectively. 

Equation 3.2 and equation 3.3.2 must give the same value of jfijit). In deriving equa

tion 3.2 and equation 3.3.2, the variation of the reluctance of the magnetic path with re

spected to the d-axis is not considered. In a three-phase synchronous generator with a 

salient pole rotor, the path of the main magnetic flux is a function of time. Thus the math

ematical description of the machine needs to be corrected. 

Since the main magnetic flux path is varying with time, the flux linkages of the wind

ings should be redefined as follows: 

M M = WO, a,/)] . (3.4) 
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where 

i is the total current. 

a is the angle between the axis of the total magnetomotive force and the d-axis. 

By definition, the flux and the flux linkage of each winding have the following 

relationship: 

j = 1, 2, 3, 4, 5, 6 standing for phase-a winding, phase-b winding, phase-c winding, field 

<P(0, a, 0 is the total flux. 

<D/(0, a, /') is the flux through winding j . 

Yy is the angle between the axis of the total magnetomotive force and the magnetic axis of 

winding j. 

Hence, from equation 3.5.1 and equation 3.5.2 the time derivative of the flux linkage 

of each individual winding has the following expression: 

XJ{f) = NJ<I>J{Q,a,i) (3.5.1) 

where 

0 ; = O(0,a,/')cosY; (3.5.2) 

winding, D-damper winding, and Q-damper winding, respectively. 

—Xj(t) = VLj(t) + Vcorrection-j(t) (3.6.1) 

where 

(3.6.2) 

14 



Vcorrection-j(t) = 7Y ;COS(Y 7)^-O(e, CL, / ) — a (3.6.3) 

Comparing with equation 3.2 and equation 3.3.2, equation 3.6.1 becomes: 

dt 

JL 
4 W = 4 £ Ljk(f)h(t) +iV-/cos(Y;)̂ <D(0, a, z) |a (3.7) 

Hence, equation 2.1.1 should be corrected as follows: 

M O ] = - O T ( 0 1 - f [WO l won - h U O ] (3.8.1) 

where 

i ? a 0 O 0 0 0 
0 Ra 0 0 0 0 
0 0 Ra0 0 0 
0 0 0 Rf 0 0 
0 0 0 0 RD 0 
o o o o o >?e 

(3.8.2) 

[»(01 = 

ia(t) 

h(f) 

m 
iD(f) 
.'e(0 

(3.8.3) 

[£(0] = 

Laa(f) Lab(t) Lac(t) LaJ{t) LOD'I) LaQ(t) 
Lba(t) Lbb(t) Lbc(t) Lb/(f) LbD(t) LbQ(f) 

Lca(t) Lcb(t) Lcc(f) Lcf(f) LcD(t) LCQ(J) 
Lfa(t) Lfbit) Lfoii) Lffii) Lfoit) LfQ(t) 
LDa(i) LDb(f) LDc(t) Lpf(t) LDD(f) LDQ(t) 
LQa(t) LQb(t) LQc(t) Lgj(t) LQD(t) LQQ(i) 

(3.8.4) 
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[VrelW] =. (3.8.5) 

#flcos(p) 

A ^ c o s ( p - f ) 

7 v " c C O s ( p - y ) 

JV/cos ( a ) 

Nocosia) 
NQCOS (a -|) 

N „ N b i N c , Nj, N D , and N Q are the number of turns of phase-a winding, phase-b winding, 

phase-c winding, field winding, D-damper winding, and Q-damper winding, respectively. 

From equation 3.8.1 the equivalent circuit of the generator in the continuous time domain 

is given in Figure 3.3. 

al 

bl-

cl 

fl, 

Vf(t) 

DI 

Ql 

Vrel_a(t) , jM*)). 

Vrel_b(t) 

(-^+)—-

Vrel_c(t) 

f-^+Y— 

Vrel_f(t) 

Vrel_D(t) 

f-~+V— 

Vrel_Q(t) 

Ra 

Ra 

ia(t) 
±*2 

Ra i b ( t ) 

ic(t) 

b2 

Rf if(t) 

c2 

RD iD(t) 
D2 

RQ iQ(t) 
nQ2 

Figure 3.3 Equivalent Circuit of a Salient Pole Three-Phase Synchronous Generator in the 
Continuous Time Domain 
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[vre!(t)] is called the reluctance voltage matrix because it is due to the variations of the 

reluctance of the main magnetic flux path. For salient pole generators, the reluctance volt

ages exist to account for the changes of the reluctance of the main magnetic flux path. 

Note that this reluctance voltage term has not been accounted for in dqo analysis. 

3.3 Calculations of the Reluctance Voltages 

By definition, the total magnetomotive force in the air gap between the rotor and the 

stator is given by[5]: 

%Fa+Fb+Fc+Ff+FD+FQ (3.9) 

Where 

Fa, Fb, Fc, Ff, FD, and FQ are the magnetomotive forces generated by the currents in 

phase-a winding, phase-b winding, phase-c winding, field winding, D-damper winding, and 

Q-damper winding, respectively. 

With the magnetic axis of phase-a winding as reference, the total magnetomotive force 

at any instant t is obtained by the following equation: 

F=Fs+Fr=FZ$ (3.10.1) 

where 

F,= NaU0^0+Nbib(t)^+Neie0)^Y (3.10.2) 

Fr= A^XOZG + NDiD(t)ZQ + NQiQ(t)Z(Q -1) (3.10.3) 

The real part and the imaginary part of the total magnetomotive force are obtained by 

the following equations: 

Freai(t) = Fsreal(t)+Fr_reai(t) (3.11.1) 
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Fimg(t) = Fsjmg(t)+Frjmg(i) (3.11.2) 

where 

Fs_real(t) = NjM+Nbib(t)cos^f) +NMi)cos(,^) (3.1.1.3) 

Frrealit) = Nfl/ifr™ @) + NDiD(t)cOS (0) + NQIQWCOS (Q - | ) (3.11.4) 

F , / ^ ( 0 = ̂ / 6 ( 0 s m ( ^ ) + i V c / c ( 0 s i n ( ^ . (3.11.5) 

F r J w g ( O = A ^ O s i n ( 0 ) ^ ^ (3.11.6) 

Consequently, the amplitude and the angle of the total magnetomotive force are given 

by the following equations: 

F = ^ f i ) + F l g ( 0 (3.12.1) 

Once 0(t) and P(t) are known, ct(t) can be calculated by: 

a(O = 0(O-P(O (3.13) 

Since O(0,a,i) is the total magnetic flux passing through the main magnetic flux path, 

its value should be obtained from the available magnetizing curves. Figure 3.4 outlines the 

procedure to generate the curves of <D(0,a,i) vs a from the magnetizing curves in the un

saturated case. 
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Figure 3.4 Development of the Curves of <J>(6,a,i) vs a 

According to the magnetizing curves, the total flux and flux linkage of the six magneti

cally coupled windings have the following relationship: 

Me, a,/) 
0(6, a,/) = 

Na 
(3.14) 

Therefore, the partial derivative of the total magnetic flux with respect to a is given 

by: 

(3.15) 

Assuming that each phase winding has the same number of turns, from equations 3.8.5 

and 3.15 the reluctance voltages can be calculated as: 
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Vrelit)] = 

COS 

COS 

cos(3) 

( p - f ) 

( p - f ) . 
Nf t \ ^ c o s ( a ) 

^7 cos (a) 

(3.16) 
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Chapter Four 

MATHEMATICAL DESCRIPTION OF THE MECHANICAL PART 

4.1 Introduction 

The mechanical part of a three-phase synchronous generator consists mainly of a rotor 

core, a turbine (or turbines), and an exciter machine mass. The turbine (or turbines) and the 

exciter machine mass are attached to the shaft of the rotor of the generator. When the gen

erator is in operation, high pressure steam or water jets strike the turbine blades, forcing 

the rotor to rotate rapidly. The mechanical part of the generator is used to input mechanical 

power to the machine and its dynamic behavior affects the machine's performance. In this 

chapter, the differential equations of the mechanical part of a three-phase synchronous gen

erator are derived based on the assumption that the masses mounted to the shaft of the 

rotor are rigid bodies. 

4.2 Differential Equations of the Mechanical Part 

Figure 4.1 shows a schematic of the mechanical part of a three-phase synchronous 

generator [6]. 

turbinel 

\LJ 

turbine2 turbine3 

IX~\ 

\1 / 

Figure 4.1 Mechanical Part of a Three-Phase Synchronous Generator 
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In operation, a three-phase synchronous generator experiences forces on its shaft. The 

total torque on the shaft consists of the mechanical torque and the electrical torque. The 

former is the externally applied torque and the latter is the torque generated by the interac

tions of the magnetic fields. The total torque can be expressed as follows: 

[Kt)) = [Tm(t)] - [[Tg(t)] + [T^neM] (4.1) 

where [T(t)] is the total torque, [Tm(t)] is the mechanical torque input to the turbine 

(or turbines), [Tg(t)] is the electromagnetic torque of the generator, and [Texciter(t)] is the 

electromagnetic torque of the exciter machine mounted to the shaft of the rotor. 

According to the analogue of Newton's second law for angular motion, the mechanical 

part of the machine can be represented by the following differential equation[7,8]: 

[Jrn]^[Qm] + [Dm]j-t[Qm] + [Km][Qm] = [Kf)] (4.2.1) 

where 

m is the subscript standing for the mechanical side of the generator. 

[Jm] is the diagonal matrix of the moment of inertia of the masses mounted to the shaft of 

the rotor. 

[0M] is the diagonal matrix of the position angles of the masses mounted to the shaft of the 

rotor. 

[Dm] is the tridiagonal matrix of the damping coefficients of the fluid around the masses. 

[ K J is the tridiagonal matrix of the stiffness coefficients of the amortisseure springs be

tween the different masses mounted to the shaft of the rotor. 
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[T(t)] is the vector of the total torque on the shaft of the rotor. 

Explicitly, we have [JJ, [0J, [DJ , [ K J , and [T(t)] as follows: 

[V] = 

Ji 0 0 
0 J2 0 0 

0 
0 

[9„] = 

0 V l 0 
0 J„ 

9i 
e 2 

(4.2.2) 

(4.2.3) 

[Dm] = 

9 n-l 
9„ 

Di+D2 -D12 0 ... 
- D n D12+D2+D23 -D23 0 

0 
0 

0 0 / V i * D^i,n+Dn 

[Km] 

Kn -Kn 0 0 
-7^12 K12 +/V23 -K23 0 0 

0 0 —Kn-\ji Kn-l,n 

mm = 
Ut) 

Tturbine l(0 

Tturbine_sif) 

0 

0 

0 
Tgeit) 

0 

0 

0 
0 

(4.2.4) 

(4.2.5) 

(4.2.6) 

where 

s is the number of turbines mounted to the shaft of the rotor. 

Turbine s(t) is the mechanical torque input to turbine s. 
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Tge(t) is the electromagnetic torque of the generator exerted on the shaft of the rotor. 

Texc(t) is the electromagnetic torque of the exciter machine exerted on the shaft of the 

rotor. 

Equation 4.2.1 can be represented on the electrical side as well and the conversion be

tween the machine quantities on the mechanical side and those on the electrical side is done 

by the following relationships: 

[Je] = ¥ ^ , (4.3.1) 

[6e(0] = (f) [6,(0] (4.3.2) 

[De] 

[TM 

where 

the subscript e stands for the electrical side of the generator, 

the subscript m stands for the mechanical side of the generator, 

p is the number of poles of the generator. 

[Dm] 

'GO' 

J M 
(f)2 

(!) 

(4.3.3) 

(4.3.4) 

(4.3.5) 
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4.3 Calculations of the Electrical Torques 

The electrical torques on the shaft by the generator and the exciter are derived in dif

ferent manners. [Tg(t)] can be derived using the principle of conservation of instantaneous 

power. Let pe(t) be the electrical power generated by the generator at time t, pe(t) is ex

pressed as[9]: 

, pe(t)=[mTm<ff\+imT[Lm{jt[m) + wof (f we)] j [m (4.4) 

The instantaneous stored magnetic energy of the magnetically coupled coils is given 

by: 

w(f)=^[mf[Lmw)] (4.5) 

Differentiating both sides of equation 4.5 gives the following expression for the power 

obtained from the magnetic field: 

jWif) ^[i(t)f[Lmjt[i(t)] + ~[Kt)f[L(QW(t)] 

+ 2 [ / ( 0 ] T i [ z ( e ) 1 [ / ( 0 ] ( 4 6 ) 

I'I 

Since the transpose of a product of matrices is the product of the transposed matrices 

in reverse order and [L(0)] is a symmetric matrix, the following equation holds: 

i|[/(0]r[i(e)][z(0i = ̂ [/(0]r[̂ (e)]|[/(01 (4.7) 

Combining equations 4.6 and 4.7 gives: 

j-Wit) = [/(Of [I(e)](|[/(0]) .+ ̂ [Kt)]T(ft[L(Q)]) [/(Ol (4.8) 

From equations 4.4 and 4.8, the instantaneous power generated can be rewritten as 

follows: 
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Pe(i) = m f l W m + jW(f) + ±[/(0f(^[Z<B)]) [i(01 (4.9) 

Equation 4.9 indicates that electrical power generated consists three components: 

power dissipated in resistances of the windings, power in the magnetic fields, and power 

converted into mechanical form. The electrical power converted into mechanical form is 

given by: 

pge(t) = ± [ / ( 0 f f [ £ ( e ) ] [ / ( 0 ] = a > r „ ( o 

Applying the chain rule in calculus on [L(6)] gives the following equation: 

i [ i ( e ) ] = |[z(G)]f 

(4.10) 

(4.11) 

Since d0/dt is the angular velocity, from equations 4.10 and 4.11, the electrical torque 

of the generator on the shaft is given by: 

(4.12.1) 

Since there is only one generator mass, equation 4.12.1 can be put into a vector form 

as follows: 

0 

0 
Tge(t) 

0 

(4.12.2) 

When the field winding is excited by an exciter machine mounted on the shaft of the 

rotor, the torque applied on the shaft by the exciter machine must be considered. In oper

ation, the power input to the exciter machine from the turbine (or turbines) is: 

P « « ( 0 = ^««(0®» (4.13) 
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where ©m(t) is the rotational speed of exciter machine mass. 

By the law of conservation of energy, the power of the exciter machine obtained from 

the turbine (or turbines) is given by: 

(4.14) 

From equations 4.13 and 4.14 the torque exerted on the shaft of the rotor by the ex

citer machine becomes: 

Texcif) = (Qm (4.15) 

where R x c is the resistance of the winding of the exciter machine. 

Since there is only one exciter machine mass, the electrical torque of the exciter ma

chine can be also put into a vector form: 

[Texciterif)] 0 
0 

Texcit) 

(4.16) 
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Chapter Five 

DISCRETE-TIME MODEL OF THE GENERATOR 

5.1 Introduction 

Once the differential equations of a three-phase synchronous generator are available, 

they should be solved such that the machine's behaviour can be analyzed. These equations 

can be solved in either the frequency domain or the time domain which is used in the model 

development. In order to create a computer simulation program for a three-phase syn

chronous generator, the differential equations of the machine need to be discretized with 

some integration rule. In this chapter, the discrete-time model of a three-phase synchronous 

generator is developed using the trapezoidal rule of integration. The link between the elec

trical and mechanical parts is the rotor position angle and the electromagnetic torques ex

erted on the shaft of the rotor by both the generator and the exciter machine. 

5.2 Discrete-Time Model of the Electrical Part 

To solve the machine's electrical quantities in the time domain, equation 3.8.1 is dis

cretized by the trapezoidal integration rule, resulting in the following equation[10]: 

[vi (01 

[V2(0] 

2_ 
'At 

2_ 
At 

[R3(t)] [7?4(01 

P i O M 

['2(0] 

[VrellW] 
[VreaW] + 

[e»0>] 
(5.1.1) 

where 

[vi (01 = 

v a ( 0 

Vfc(0 

v c ( 0 

(5.1.2) 
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[v2(01 
v/0) 

0 
0 

(5.1.3) 

TMOl hit) (5.1.4) 

['2(01 (5.1.5) 

RA 0 0 
0 RA 0 
0 0' i? n 

+ 

^aa 
(t) Lab(t) Lacit) 

Lba(t) Lbb(t) Lbc(i) 
^ca 

(t) Lcb(i) Lcc(t) 

(5.1.6) 

[*2(0] 
Laf{t) Laoii) LaQ(f) 
Lbf(t) LbD(i) LbQ(t) 
Lcf(i) LcD(i) LCQO) 

(5.1.7) 

[tf3(/)] 
LfaW Ljbit) Lfc(f) 
LDa(t) LDb(t) LDc(i) 
LQa(i) LQb(i) LQc(f) 

(5.1.8) 

4(01 = f 
' RF 0 0 Lff{i) Lfoit) LjQ(f) 

0 RD 0 + LoAf) LDD(i) LDQ(i) (5.1.9) 

0 0 RQ _ Lgjit) LQD(t) LQQ(J) 

[Vrell(f)]=ft 
COS 

cos 

cos[J3(0] 
^(6,a5/)a(0 (5.1.10) 

[vre/2(0] = ^ 

^cos[a(0] 
^cos[a(0] 

NQ 

NA 

•cos [«(o-f] 

^X(0,a,Oa(O (5.1.11) 

Ra 0 0 Laa(t-At) Lab(t-•At) Lac(t--At) 
0 Ra 0 + Lba{t- At) Lbb(t- At) Lbc(t- AO (5.1.12) 

0 0 Ra _ Lca(t- At) Lcb(t- AO Lcc(t- AO 
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[R2(t-At)] = 

[R3(t-At)] = 

[R4(t-At)] = -f\ 

La/(t-At) Laoit-At) LaQ(t-At) 
Lbf(t-At) LbD(t-Ai) LbQ(t-At) 
Lcfit- At) LcD(t- At) Legit- At) 

Lfa(t-At) Lfh(t-At) LfC(t-At) 
LDa(t-At) LDb(t-At) LDc(t-At) 
LQa(t- AO LQb(t - AO LQc(t - AO 

(5.1.13) 

(5.1.14) 

' Rf 0 0 At) Ljoit- At) Lm(t- At) 
0 RD 0 + LDf(t- -At) LDD(t--At) Logit--At) (5.1.15) 

0 0 RQ . _LoM- ^At) LQD{t--Af) LQQ{t--At) 

[ei*-(01 = -j^{[R\(t-At)][i\{t-At)] + [R2(t-At)]ih(t-At)])- [v,(f-At)] (5.1.16) 

leiUt)] = ^fiRA-At)][UQ-At)] + [R4(t-At)][i2(t-At)])-[v2(t-At)] (5.1.17) 

[eihb(t)] = ft 

cos[p(r -Ar) ] 

cos [\3(t- At)- f] 
c o s [ p ( f - A 0 - f ] 

da 
X[Q(t - At), ait - At), i(t - At)]a(t -At) (5.1.18) 

[ ^ ( 0 ] = ft 

g c o s [ a ( f - A / ) ] 

g c o s [ a ( r - A r ) - f ] 

g c o s [ a ( . - A A - f ] 

•^X[Q(t - At), a(t - AO, i(t - At)]a(t -At) (5.1.19) 

[eih(t)] = [eiha(t)] + [e mO)] 

[eihii)] = [e2ha(t)] + [e2hb(t)] 

(5.1.20) 

(5.1.21) 

From equation 5.1.1, the terminal voltages [v,(t)] and currents [ij(t)] of the armature 

windings can be expressed in terms of the terminal voltages [v2(t)] and currents [i2(t)] of 

the field structure windings as follows: 

MO] = -[/V(0]['"i(01 + M01 (5-21) 

where 

[*«*.(')] = ̂ ([^1(0] - [R2(.t)][R4(t)rl[Ri(t)]) (5.2.2) 
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[«!«(/)] = ̂ ([/?2<d][^40]"1[v^(d]-[v^i(d]) (5.2.3) 

[exm = [R7{twRA(tw\[vm - [e2h(m (5.2.4) 

[em = [eUt)] + [exm + ievM (5-2.5) 

' From equation 5.2.1, the equivalent circuit of the three-phase synchronous generator 

in the discrete-time domain is obtained as shown in Figure 5.1. 

Va(t) [Requ(t)] 

Figure 5.1 Equivalent Circuit of a Salient Pole Three-Phase Synchronous 
Generator in the Discrete-Time Domain 

5.3 Discrete-Time Mode of the Mechanical Part 

' The differential equations of the generator's mechanical part also have to be discretized 

so that they can be solved together with the electrical equations in the time domain. By de

finition, the angular speed of the rotor rotation is given by: 

[ffl„(f)] = 4[e»(')] (5-3.1) 
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Discretizing equation 5.3.1 with the trapezoidal rule of integration produces the fol

lowing relationship between com(t) and 0m(t): 

0W(O = jam(t) + y © « ( f - AO + Qm(t- At) (5.3.2) 

Applying the trapezoidal rule of integration to equation 4.2.1 and solving for the angu

lar frequency results in the following equation." 

[©„(*)] = [A]'1 {[B(t)][(om(t - At)] + At[km][Bm(t - At)] + ^[TXt - AO]) (5.4.1) 

where 

[A] = [Jm] + f[Dm] + {^y[km] (5.4.2) 

[5(0] = f [T(t)] ~ {[Jm] - f[Dm] - (^) \km]) (5.4.3) 

To determine the electromagnetic torques of the generator and exciter, the rotor posi

tion 6 M at time t is needed. However, since the expressions defining the torque, equation 

4.2.1, are quadratic on the currents, an exact solution would require iterations. Iterations 

can be avoided if 0m(t) is predicted. Linear extrapolation can be applied to predict the rotor 

position angle from the values at two previous solution points: 

[0ra(O] = 2 [ e m ( r - A O ] - [ 0 O T ( / - 2 A O ] (5.5) 

Since the changes in mechanical quantities are much slower than those of the electrical 

quantities, the prediction of the rotor position does not introduce significant errors in the 

simulation results. 
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Chapter Six 

INCLUSION OF MAGNETIC SATURATION EFFECTS 

6.1 Introduction 

The saturation of magnetic paths also influences the performance of a three-phase syn

chronous generator. There are different ways to model saturation effects in a generator; 

however, a much simpler and direct method is possible when the machine equations are 

written in the phase-domain than in dqo co-ordinates. 

6.2 Preliminary Considerations of Magnetic Saturation Effects 

The following assumptions are considered acceptable in considering saturation in a 

synchronous machine[ 11,12,13 ]: 

(1) The total flux linkages of each magnetically coupled coil are the sum of the leakage 

flux linkages and the common mutual flux linkages. 

(2) The magnetic saturation depends on the total air gap flux linkages. 

(3) The leakage fluxes are not subject to magnetic saturation. 

(4) The inductances of the magnetically coupled windings maintain their sinusoidal depen

dence on the rotor position. 

(5) Hysteresis and eddy current effects are neglected. 

Normally, the only available data of magnetic saturation of a generator is the magne

tizing curves. Figure 6.1 shows the magnetizing curves on the d-axis and the q-axis of a 

typical generator[14]. 

33 



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
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Figure 6.1 Magnetizing Curves on the d-axis and the q-axis 
of a Three-Phase Synchronous Generator 

The saturation curves indicate the relationship between the total flux linkages and the 

total magnetizing current (or the total magnetomotive force). It is convenient for the analy

sis that follows to represent the magnetizing curves by analytical functions. Different func

tions can be used to approximate the saturation curves but one of the most accurate 

methods is to use proper polynomials. A polynomial function of degree n has the following 

general form[ 15]: 

p(x) =a0+a\x + a2X2 +... + a„x" (6.1) 

where a0, a„ e^,... an are the coefficients of the polynomial. 

In order to represent a given saturation curve along a given air gap position, a set of 

magnetizing current (or total magnetomotive force) values versus the corresponding flux 
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linkages is needed. The number of the data points must be at least equal to the degree of 

the chosen polynomial. From the given data points, a system of equations can be set up to 

satisfy equation 6.1: 

^l (*»J_l ) a0 a i ai . • a„ im_l 

X„(im_n) a0 ai a2 . . a„ I m_n 

where 

KOm J '1& t n e flux linkage corresponding to the magnetizing current i m n . 

Solving system 6.2 for the coefficients gives the approximating saturation curve. Since 

the magnetizing curves are continuous and smooth, using polynomials to fit the curves re

sults in accurate approximations. The fitting of the curves is simple and not time consuming 

with some available polynomial problem solver program. 

6.3 Generation of Magnetic Saturation Curves 

Since during transient conditions flux path in a three-phase synchronous generator 

with a salient pole rotor is changing with time, the magnetizing curves are also dependent 

on time. To include all possible flux path directions, a number of magnetizing curves 

should be provided. If only the magnetizing curves in the d-axis and the q-axis are avail

able, Other curves may be generated with some approximating techniques[16]. 

The reluctance of the flux path depends on the lengths of the air gap, the rotor core 

path, and the stator core path. Figure 6.2 shows all these paths in a generator. 
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q-axis 

• d-axis 

Figure 6.2 Lengths of the Different Sections in the Flux Path 

By definition, from Figure 6.2 the reluctance of the main magnetic flux path for a 

given angle a can be expressed as follows: 

Rrelfa) - Rrel_rotor(o) + Rrel_air-gap(cO + Rrel_stator(.CL) (6.3.1) 

where 

2h 

Rrel rotor ( a ) = 
2a |sin(a)| 

\lo\lrA \Xo\lrA 

1 4.9/ 2 H 

2b ' r + U Z |sin(a)| 
R rel_air-gap ( a ) = 

Rrel stator(.Ol) — 

[loA \loA 

Is 
2[i0\xrA 

(6.3.2) 

(6.3.3) 

(6.3.4) 

Rrei rotor(a)ls t n e reluctance of the rotor core path. 

Rrd air-g8P(a) * s t n e reluctance of the air gap path. 
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Rrd-stato/ct) is the reluctance of the stator core path. 

p.G is the permeability of the air gap. 

p r is the relative permeability of the core material of the rotor and the stator. 

2a is the length of the rotor core in the main magnetic flux path. 

2b is the total air gap in the main magnetic flux path. 

A is the cross section area of the main magnetic flux path. 

l r is the length of the rotor core on d-axis. 

1 is the air gap on the d-axis. 

l s is the magnetic path through the stator core. 

h is the width of the rotor on the q-axis. 

From Figure 6.2 it is clear that the reluctance of the main magnetic flux path has a 

constant value for some values of a as follows: 

. 7I -a0<a<a0 

RU*) = -L-j+-2s7.+ t J s - z o r <6A1> 

PoPr / l \XoA 2\i0\irA 
7 i - a 0 ^ a < 7 t + a 0 

where 

a 0 = arcsin(y^) (6.4.2) 

Therefore, from equations 6.3.1, 6.3.2, 6.3.3, 6.3.4, 6.4.1, and 6.4.2, the reluctance of 

the main magnetic flux path can be found by the following equation: 
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Rrei(a)=RA-RB |sin(a0)| 

RreiicO — RA —RB' sin (a) I 

-a c < a < a 0 

or 
7 t-a 0<a< 7 i + a 0 

-7 t + a 0 < a < -a 0 

or 
a0<o.<n-a0 

( 6 . 5 . 1 ) 

( 6 . 5 . 2 ) 

where 

RA = 

RE 

2(lr+2lg)Hr + ls 

2u,0\irA 
( 6 . 5 . 3 ) 

( 6 . 5 . 4 ) 

From equations 6 .5 .1 and 6 . 5 . 2 , the reluctances of the main magnetic flux paths on the 

d-axis and the q-axis are: 

1 
RrelJ = Rrel(a = 0) = RA -RB~ sin(a 0)| 

Rrel q = Rrel RA - RB 

( 6 . 6 . 1 ) 

( 6 . 6 . 2 ) 

Solving equations 6 .6 .1 and 6 . 6 . 2 , for R A and R g gives: 

p , / p /? / l + |sin(q 0)|Y 
RrelJ +RreLq + (Rrel_a 'Rrelj)^ _ 

^ = (Rrel-"-RreLd\l-\sm(a0)\J 

( 6 . 7 . 1 ) 

( 6 . 7 . 2 ) 

By definition, the total magnetic flux is given by: 

Rrel(a) N 
( 6 . 8 ) 

where N is the number of turns of the winding linking the flux. Normalizing F(0,a,i) 

with respect to the number of turns of the field winding gives: 
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UO = ^ ^ = « A » ) (6-9) 

Therefore, the combining equations 6.8 and 6.9 gives 

Rrei(a) = *"ormaf'aJl (6.10.1) 
A-normally, Ct, / ) 

where 

Xnormal(Q,a,i)='k(-Q>a>j) (6.10.2) 
JSa 

n̂onnai (Q>°M) is m e normalized flux linkages with respect to the number of turns of phase-a 

winding. 

By definition, the normalized flux linkages can be found by the following equation: 

Kormal®, 0, l) = ̂ / ( O , Ot,/) ( 6.11) 

Combining equations 6.5.1, 6.5.2, and 6.11 gives the following new expression for the 

normalized flux linkage in the range of a: 

?W^(9,a,0= tnormalJ^l> or (6.12.1) 

T7 (c\ \ -7t + a 0 < a < - a 0 

R A ~ R B \ J ^ ) \ ) a 0 < a < 7 i - a 0 

Equations 6.12.1 and 6.12.2 are used to generate other magnetizing curves when the 

magnetizing curves on the d-axis and q-axis are known. Therefore, these equations can be 

called magnetizing curve generating functions. Figure 6.3 shows some magnetizing curves 

produced by these equations based on the saturation curves in Figure 6.1. 
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F(p.u) 

Figure 6.3 A Series of Magnetizing Curves Generated by 
the Magnetizing Curve Generating Functions 

6.4 Inclusion of Magnetic Saturation Effects in the Generator Model 

Once the magnetizing curve at a given angle a is known, the magnetic saturation ef

fects can be incorporated in the model. The saturation curve is used to calculate the total 

flux linkages in the main magnetic path for different magnetizing currents (or magnetomo

tive forces). From the total flux linkages and the corresponding magnetizing currents (or 

magnetomotive forces), the changes of the inductances of the six magnetically coupled 

windings can be represented. 

There are different approaches to calculating the flux linkages from the given satura

tion curve. Figure 6.4 shows two different methods[17,18,19]. 
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Figure 6.4 Two Different Methods to Calculate Flux Linkages 

From Figure 6.4, \ o r m a l(t) can be expressed exactly as follows: 

Xnormalif) = Xnormal o 1 
(t)+Lsl(t)F„ormal(t) (6.13.1) 

where L s ](t) is the slope of the line tangent to the magnetizing curve at the operating point. 

However, using Ls\(t-At) instead of Lsi(t) results in a much different value of the 

normalized flux linkage: 

Xnormalif) — Xnormaljo 2(t) +Lsi(t-At)F„ormal(t) (6.13.2) 

Equation 6.13.2 is represented by the dotted line in Figure 6.4 which gives a too dif

ferent value of An o m i a l(t) from its true value. 

The other method to calculate A,nonnal(t) is also indicated in Figure 6.4. In this approach, 

the normalized flux linkage is calculated from: 
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Xnormalif) — X normal (t-At) + AXn0rmal (6.14.1) 

where 

AX„ormal = Lsl(t)[Fnormalit) -Fnormal(t ~ At)] (6.14.2) 

r sj\ Xnormalif) ~ Xnormalif ~ At) /a t A t\ 
"normalvJ " normalK! LM) 

L s2(t) is the slope of the line crossing the previous and the present operating points on the 

magnetizing curve and it also represents the total mutual inductance. 

When there are no magnetic saturation effects, the total flux linkages are given by: 

X„ormal_u(t) = LF„ormai(t) (6.15) 

where L is the slope of the air gap line. 

Combining equations 6.14.1 and 6.15 gives: 

Xnormal(t) - X„ormal(t - At) - ^Xn0rmalju(t - At) + ^X„ormal_u0) (6.16) 

The second presented method is preferred in the generator model because it calculates 

the flux linkages more accurately than the first presented method if the time step is small. 

After L s2(t) is determined, the flux linkages can be calculated, and consequently the induced 

voltages are calculated as follows: 

[v,*w(f)] = jfXif - At)] + ft[a(t)[L(t)]([im(t)] - Ut - At))] (6.17.1) 

where 

a(t) = ̂  (6.17.2) 

M)] = F ( 6 ' a , / ) = Fnormal(t) = Fnormal(Q, a, /) (6.17.3) Ay 
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To include the magnetic saturation effects in the synchronous machine, equation 3.8.1 

should be corrected as follows: 

[v(/)] =-[*][/(/)] 

-£t[[Ut - At)] +a(f)[L(t)]([im(t)] - [ /*( / - A*)])] -[vreiO)] (6.18) 

To verify the modelling of magnetic saturation effects in the proposed generator mod

el, the magnetizing curves on the d-axis and the q-axis in Figure 6.1 are used to perform 

the simulation of a three-phase short-circuit at the machine terminals of a typical genera

tor. The machine characteristic quantities are given in Table 6.1 [20]. The generator is ini

tially operated in steady state, then a three-phase short-circuit at the machine terminals 

occurs at t = 50 ms. Figures 6.5 and 6.6 show the terminal voltage and armature current of 

phase-a winding when saturation is included and excluded. 

machine data 

Sr = 200.0 M V A Xd= UOOOOOOOeOO pu Xq = 1.64000000e00pu 

V r = 13800.0 V X d = 2.3832400e-01 pu X q = L64000000e00 pu 

ifo = 935.016 A X"d= 1.846900e-01 pu X"q = 1.851510e-01 pu 

phase = 3 T'do = 6.194876e00 sec Tqo = O.OOOOOOeOO sec 

poles = 2 T"do = 2.87160e-02 sec T"qo =7.49600e-02 sec 

f= 60.0 Hz 

Ra= 1.0960000e-03 pu 

X o = 1.40000000e00 pu 

XI = 1.5000000e-01 pu 

single mass 

Jm = 7.632733e03 kg.m2 

Dm = O.OeOO Nm./(rad/s) 

Rexc = O.OOOOOOeOO pu 

Table 6.1 The Data of a Typical Three-Phase Synchronous Generator 
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Figure 6.5 Terminal Voltage of Phase-a Winding with and without Saturation 
Effects when a Three-Phase Short-Circuit Occurs a t = 50 ms 

14.0 " 
12.0 

10.0 

-4.0 I . ^ , : , _, I 

0.0 0.05 0.1 0.15 0.2 0.25 0.3 
t(s) 

Figure 6.6 Current of Phase-a Winding with and without Saturation Effects 
when a Three-Phase Short-Circuit Occurs a t = 50 ms 
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Figure 6.5 shows that the induced terminal voltage of phase-a winding without consid

ering saturation effects is higher than when saturation is included. From Figure 6.5 it can be 

been that the machine has been designed to operate in the saturated region in steady state. 

Figure 6.6 shows that for a three-phase short-circuit the current of phase-a winding ob

tained with the non-linear generator model is lower than that obtained with the linear mod

el when the short-circuit just occurs. As time increases, the difference between the currents 

given by the two models becomes smaller and finally the currents are equal to each other. 

Since the resistance of an armature winding is small compared to the synchronous 

reactance, the armature current lags the excitation voltage by almost 90°. Thus the stator's 

magnetomotive force almost opposes the field magnetomotive force. However, when the 

three-phase short-circuit first occurs, the armature currents are very large and the stator's 

magnetomotive force is larger than the field's. As a result, the combined magnetomotive 

force is still large and magnetic saturation takes place. As time elapses, the large oscilla

tions in the armature currents are damped out and the stator's magnetomotive force be

comes smaller. Consequently, the combined magnetomotive force becomes very small and 

no magnetic saturation occurs in the generator[21,22]. 

One practical implication of these results is that circuit breakers used to clear the fault 

have to initially sustain a smaller current than the value calculated without considering 

saturation and can, therefore, be more economically designed. 
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Chapter Seven 

COMPARISON OF THE NEW MODEL WITH THE EMTP 

7.1 Introduction 

The proposed model of a three-phase synchronous generator without magnetic satura

tion is developed directly in the stator reference frame (abc co-ordinates). To verify the 

model, its performance can be compared with that of available generator models. In this 

chapter, the proposed abc model of a three-phase synchronous generator is compared with 

the dqo model in the EMTP. In addition, A case of a three-phase short-circuit at the ma

chine terminals is simulated. 

7.2 Evaluation of the Proposed abc Linear Generator Model 

Since the proposed linear generator model directly represents a three-phase synchron

ous machine in the stator reference frame(abc co-ordinates), the inductances of the mag

netically coupled windings depend on the rotor position. In the algorithm development, the 

values of these inductances need to be recalculated at each time step of the solution. The 

rotor position is needed to be predicted; however, this prediction introduces very small 

error due to the several orders of magnitude difference between the mechanical and electri

cal time constants in the machine. 

A major advantage Of developing the machine equations directly in the stator reference 

frame is that these equations can be solved simultaneously with the rest of the power sys

tem network. Thus the network is solved in abc co-ordinates and most of the problems of 

predictions or iterations that exist when the machine equations are solved in dqo reference 

frame are ehminated. This issue is particularly important in the context of on-line or real-
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time simulators where the simulators are just turned on and expected to run continuously 

without losing numerical synchronization with the rest of the network. Working on abc 

co-ordinates also greatly simplifies the problem of representing the varying reluctance of 

the magnetic path between the rotor's d and q axis, as well as the different possible levels of 

saturation of these paths. A result of taking into account the difference in reluctance of the 

different magnetic paths is the inclusion of the "reluctance voltage" terms that do not ap

pear in the dqo formulation in the machine equations. These reluctance voltage terms do 

not exist during steady state operation because the resultant magnetomotive force is fixed 

with respect to the rotor axis, but it exists under transient conditions. 

7.3 Generator Model in the E M T P 

The model of a three-phase synchronous generator in the E M T P is based on a 

discrete-time model in the rotor reference frame (dqo co-ordinates). The machine quan

tities are transformed between stator and rotor reference frames. Modelling a generator in 

the rotor reference frame eliminates the dependence of the winding inductances on the 

rotor position. That is, the inductances of the magnetically coupled coils that constitute the 

machine are time invariant in the rotor reference frame and there is no need to recalculate 

their values at each time step of the solution. The transformation of the machine quantities 

between the rotor and stator reference frames requires the use of Park's co-ordinate trans

formation. As already indicated, a main disadvantage of this approach is that the machine 

equivalent circuit ( in dqo co-ordinates) cannot be solved simultaneously with the rest of 

the power system network (in abc co-ordinates). Prediction schemes are needed for the 

rotor position, current id(t), current iq(t), speed voltage ud(t), and speed voltage uq(t). 
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7.4 Test of a Three-Phase Short-Circuit at the Machine Terminals 

In order to assess the validity of the new generator machine model compared to the 

model in the EMTP, a three-phase short-circuit at the terminals of a three-phase synchronr 

ous generator was simulated. The machine description is given in Table 6.1. The generator 

is initially running in steady state and at time t = 5 ms, a three-phase short-circuit occurs 

at the machine terminals. Figures 7.1, 7.2, and 7.3 show the currents in the armature wind

ings. The currents of the field structure windings are shown in Figures 7.4, 7.5, and 7.6. Fi

nally, the torque on the shaft of the rotor and the rotor's speed are shown in Figures 7.7 

and 7.8. 

14.0 

-4.0 I i •—— _. . . 1 

0 0 0.05 0.1 0.15 0.2 0.25 0.3 
•- too . , x 

Figure 7.1 Current of Phase-a Winding Obtained with the New Model and the EMTP Model 
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Figure 7.2 Current of Phase-b Winding Obtained with the New Model and the EMTP Model 
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Figure 7.3 Current of Phase-c Winding Obtained with the New Model and the EMTP Model 
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Figure 7.4 Field Current Obtained with the New Model and the EMTP Model 
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Figure 7.5 D-damper Current Obtained with the New Model and the EMTP Model 
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Figure 7.6 Q-damper Current Obtained with the New Model and the EMTP Model 
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Figure 7.7 Torque on the Generator Shaft Obtained with the New Model and the EMTP Model 
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Figure 7.8 Rotor's Speed Obtained with the New Model and the E M T P Model 

The currents in the armature windings obtained with the new model are slightly higher 

than those obtained with the EMTP model. The field current obtained with the new model 

is also higher than the current obtained with the EMTP model. The damper currents ob

tained with the two models, however, are very close to each other. The torques obtained 

with the now model is also slightly higher than the torque obtained with the EMTP model. 

However, the rotor speed obtained with the new model is lower than that obtained with the 

EMTP. The differences obtained are mainly due to the reluctance voltage correction in the 

new model. Figures 7.9, 7.10, and 7.11 show the field current, the current in phase-a wind

ing, and the torque on the shaft obtained with the new model without the reluctance volt

age correction and with the EMTP model. The results in this case agree with each other 

well. 
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Figure 7.9 Current of Phase-a Winding Obtained with the New Model without 
Reluctance Voltage Correction Scheme and with the EMTP Model 
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Figure 7.10 Field Current Obtained with the New Model without Reluctance 
Correction Scheme and with the EMTP Model 
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Figure 7.11 Torque Obtained with the New Model without Reluctance 

Voltage Correction Scheme and with the EMTP Model 

These results indicate that the inclusion of the reluctance correction voltages in the 

generator model is important in modelling a salient pole three-phase synchronous machine. 

The new model directly establishes the discrete-time equations from the differential equa

tions of the machine in the stator reference frame. While the E M T P model formulates the 

discrete-time equations from the machine differential equations in the rotor reference frame 

with the help of Park's co-ordinate transformation. Consequently, the new model has an ad

vantage over the E M T P model in representing certain phenomena closely related to the 

machine's actual physical characteristics, such as saliency and saturation. 
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Chapter Eight 

CONCLUSIONS 

Three-phase synchronous generators are the main power sources in electric power sys

tems. Since the performance of these machines greatly influence the operation of the net

works, their accurate modelling is an important task. In this thesis a three-phase 

synchronous generator model has been built directly in the stator abc reference frame. It is 

a simpler generator model which does not need Park's co-ordinate transformation as con

ventional rotor-based dqo models. 

In the model development, the differential equations of the machine's electrical and 

mechanical parts were first obtained separately. These equations were then put together by 

the rotor position and the electromagnetic torques exerted on the rotor's shaft by both the 

generator and the exciter machine. To take the variation of the main magnetic flux path in 

the generator into account, the differential equations of the machine's electrical part were 

corrected to include the reluctance voltages. These additional voltages were obtained from 

magnetizing curves. The machine's differential equations were discretized with the trap

ezoidal rule of integration, resulting in a discrete-time linear generator model. Based on the 

available magnetizing curves, magnetic saturation effects at any angle a were included in 

the generator model, thus resulting in a more accurate non-linear generator model. In order 

to obtain the necessary machine parameters needed in simulations, Canay's data conversion 

scheme was applied[23]. The model was coded into a computer program using the high 

level language of Ada95. A comparison between the performances of the new generator 

model and that in the EMTP was conducted to verify the validity of the new model. A 

three-phase short-circuit at the machine terminals was simulated with the new model and 

the EMTP model. The results obtained agreed with each other well when the reluctance 
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voltage terms were not included in the model. Again, The non-linear generator model pro

duced conceptually consistent results of the behavior of a synchronous generator during a 

three-phase short-circuit. 
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APPENDIX A 

Flowchart Of The Computer Program For The New Generator Model 

START 

STATE 1 

I 
STATE 2 

END 

(a) Main Blocks of the Flowchart 

GET DATA 

DATA CONVERSION 

INITIALIZATION 

(b) Flowchart of State 1 
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(c) Flowchart of State 2 
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APPENDIX B 

E M T P Input File For The Three-Phase Short-Circuit Test 

* Case identification card 
THREE-PHASE SHORT-CIRCUIT A T T H E TERMINALS OF A THREE-PHASE 
SYNCHRONOUS GENERATOR 
* Time Card 
200.0E-6 2.0 1 
* Lumped RLC branch 
L O A D A 1.0E12 
L O A D B 1.0E12 
L O A D C 1.0E12 
BUS3A 1.0E-5 
BUS3B 1.0E-5 
BUSEC 1.0E-5 
$ = = = End of level 1: Linear and nonlinear elements = = = = = = = = = = = = 
* 
* Time-controlled switch 

G E N A L O A D A -1.0 9999.0 
GENB L O A D B -1.0 9999.0 
GENC L O A D C -1.0 9999.0 
L O A D A BUS3A 5.0E-2 9999.0 1.0E-3 
L O A D B BUS3B 5.0E-2 9999.0 1.0E-3 
L O A D C BUS3C 5.0E-2 . 9999.0 1.0E-3 

$ = = = End of level 2: Switches and piecewise linear elements = = = = = = = = 
* 
* S.M. Node names for armature windings (Card 1) 
50 G E N A 60.0 11267.65 -90.0 
* 
* S.M. Node names for armature windings (Card 2) 

GENB 2.0E2 1.38E1. 
* 
* S.M: Node names for armature windings (Card 3) 

GENC 
* 
* S.M. Impedances and time constants (Card 4) 

1.096E-3 1.5E-1 1.7 1.64 2.38324E-1 1.64 1.8469E-1 1.85151 
* 
* S.M. Impedances and time constants ( Card 5) 

6.194876 0.0. 2.8716E-2 7.496E-2 1.4 9.35016E2 
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* S.M. output for electrical variables (Card 6) 
11001110100 
* 
* S.M. Design parameters (Card 7) 

2 1 1 1 
* 
* . . . . . S.M. Mass data (Card 8,9, ect.) 

1.0 0.007632733E6 11 
$> > > End of Synchronous Machine data mark < < 
$ = = = End of level 3: Sources =.= = = = = = = = = = = = = = = = = = 
* 
* voltage-output nodes 

G E N A GENB GENC 
$ = = = End of level 4: User-defined voltage output = = = = = = = = = = = = 
$ = = = Level 5: End of data case = = = = = = = = = = = = = = = = == = 
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APPENDIX C 

Data Conversion 

This Appendix shows the data conversion procedure in E M T P Theory Book which 

was applied in the new generator model[24]. 

C.l Given Machine Characteristic Quantities 

According to IEEE or E E C standards, the available characteristic quantities of a gener

ator are: 

^(armature winding resistance), 

X,(armature winding leakage reactance), 

Xc(zero sequence reactance), 

Xd(synchronous reactance in d-axis), 

Xq(synchronous reactance in q-axis), 

Xd'(transient reactance in d-axis), 

Xq'(transient reactance in q-axis), 

Xd"(subtransient reactance in d-axis), 

Xq"(subtransient reactance in q-axis), 

Td'(transient short-circuit time constant in d-axis), 

Tq'(transient short-circuit time constant in q-axis), 
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Td"(subtransient short-circuit time constant in d-axis), 

Tq"(subtransient short-circuit time constant in q-axis). 

However, sometimes the open-circuit time constants are given instead of short-circuit 

time constants: 

Td0'(transient open-circuit time constant in d-axis), 

Tqo'(transient open-circuit time constant in q-axis), 

^"(subtransient open-circuit time constant in d-axis), 

Tqo"(subtransient open-circuit time constant in q-axis). 

C.2 Parameters in the Modified Rotor Reference Frame 

If one set of the time constants is available, the other can be obtained by the following 

equations when neglecting Ra: 

^ + 7 i = § 7 i + | l - . ^ + ^ j 7 ? ( C I ) 
Ad \ Ad AdJ 

I'do'll = TdT'dy, ( C 2 ) 

Tq0 + Jq0 — v/Tq-r (1 7̂ " + Y//)Tg (C.3) 
Aq Aq Aq 

X 77/ TV/ ,_ jt n*r2± (r A\ 
± qo1 qo q q y / / W - v 

> Aq 

In the dqo reference frame, the flux linkages in both the d-axis and the q-axis are given 

by the following equations: 
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XM LD Mdf Max, id® 
= May Lff MfD (C.5) 

ID® Man MfD LDD 

Lq MqQ 

_ M O . _MqQ LQQ . iQ(t) _ 
(C.6) 

where 

A.d(t) and Xq(t) are flux linkages linking the d-winding and q-winding, respectively. 

id(t) and iq(t) are the currents passing through the d-winding and the q-winding, 

respectively. 

L d and L q are the self inductances of the d-winding and the q-winding, respectively. 

Mjf is the mutual inductance between the d-winding and the field winding. 

is the mutual inductance between the d-winding and the D-damper winding. 

MfD is the mutual inductance between the field winding and the D-damper winding. 

M q Q is the mutual inductance between the q-winding and the Q-damper winding. 

In order to simplify the data conversion, the number of turns of the D-damper winding 

is chosen such that 

M^ = May (C.7) 

Traditionally, the field structure quantities are represented in the modified field struc

ture as follows: 

Xfin(i) = (C.8) 
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XDm(t) 

XQm(t)=l^kXQ(t) 

»e«(') 

MfD 

Hence, in the modified field structure equations C5 and C6 become: 

Xa(f) 

Xfin(t) 

Ld Mmd Mmd 

Mmd Lffm Mmd 

Mmd Mmd LDDm 
ifinif) 
iDm(t) 

Xq(t) Lq Mmq iq(t) 

Xqmif) _Mmq LgQm . iQmif) 

(C.9) 

(CIO) 

(C 11) 

(C.12) 

(C.13) 

(C.14) 

( C 1 5 ) 

(C.16) 

where 

Mmi and IVL̂  are the mutual inductances on the d-axis and the q-axis in the modified field 

structure, respectively. 

La™, LDDTO, md L-QOn, are the. self inductances of the field winding, the D-damper winding, 

and the Q-damper winding in the modified field structure, respectively. 

If k is known, the mutual inductance on the d-axis is given by: 

Lc = Ld - \kMf (C.17) 
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Mmd-Ld-Lc 

However, if k is not given, then Mmi becomes: 

Mmd=Ld~Ll 

On the q-axis, the common mutual inductance is simply given by: 

Mmq - L q ~Ll 

(C.18) 

(C.19) 

(C.20) 

Let R^, R ^ , and R ^ be the resistances of the field winding, the D-damper winding, 

and the Q-damper winding in the modified field structure, respectively. When k is not 

known, the voltage-current relationships of.the windings in the modified dqo reference 

frame are: 

vd{t) 
Vfit) 

0 

Ra 0 0 
0 Rfir, 0 

0 0 RDm 

m 

iftnif) 

JDmit) 

did?) 
' -y'd(t)' Ld Mmd Mmd dt ' -y'd(t)' 

Mmd Lffin Mmd 
d'ftnO) 

dt 
+ 0 

Mmd Mmd LoDm diDmi') 
dt 

0 
(C.21) 

vg(f) ' Ra 0 
0 0 RQm _ 

Lq Mmq 

Mmq LQQm 
dt + diQ(.t) + 

0 
L dt J 

0 
(C.22) 

Once is known, the two time constants of the "f-branch" and the "D-branch" 

can be found. These time constants are given as follows: 

T 2 = TD 

(C.23) 

(C.24) 
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where 

Lf=Lff-Mmd (C.25) 

LD=LDD-Mmd (C26) 

The parallel inductance of M ^ , L p and is given by the following equation: 

ML 
LparalleMJD = Ld-r/-Af-iLd-Mmd) (C.27) 

* do* do 

Once L p a r a l l e l M i D is available, T, and T 2 can be calculated as follows: 

Txn = fdj"J'""^<D
 (C.29) 

The parallel inductance of Mmd and L f is found by the following relationship: 

Mmd(T\ - Ti) 
•jparallelMf — / ^ \ 

^do + ^L-[}+i^;)T2 
(C.30) 

When L p a r a l l e l M £ D and L p a r a l l e l M f are known, L f and 1̂  are obtained by: 

, LparallelMf Mmd tr^ ~, i \ 

Lf=T7 T 7 IL) 

Mmd —LparallelMf 

LparallelMfD-LparalMf 

LD = — (C .J2) 
LparallelMf LparallelM/D 

Finally, the resistances and inductances in the modified field structure in the d-axis are: 

11 

RDm = kr (C.34) 
•'2 

Lffm-Lf+Mmd (C.35) 

6 8 



Loom — LD +Mmd (C.36) 

The inductance and the resistance of the Q-damper winding are obtained by the fol

lowing equations: 

J 1_-__L 
J" V T 

1 + 

pi LQQ-

Mi 
LQQm ~ 17 fit 

QO~ RQ. 

(C.37) 

(C.38) 

(C.39) 

C.3 Conversion of dqo Quantities to the Stator Reference Frame 

The machine parameters in the modified dqo reference frame are converted back to the 

unmodified field structure by the following equations: 

Lff= 

LDD 

LQQ 

3 k2 

iLppm 
3 k2 

2LQQm 
3 k2 

Rf=^ 3 k2 

RD 

RQ 

2 Ron 
3 k2 

2RQn. 
3 k2 

(C.40) 

(C.41) 

(C.42) 

(C.43) 

(C.44) 

(C45) 

Finally, the inductances in the dqo reference frame are converted back to the stator abc 

reference frame by the following equations: 
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MQ = j^MqQ 

Ls = 
Ld +Lq +L0 

Lm — 

3 

Ld-Lq 

Ms = 

(C.46) 

(C.47) 

(C.48) 

(C.49) 

(C.50) 

(C.51) 
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