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Abstract

Fault coverage and fault simulation issues related to multiple signature analysis (MSA)

built-in self-test (BIST) schemes are treated here. A model to predict the fault coverage

is presented. Based on this model, the nature of the fault coverage for MSA is discussed.

The fault coverage of MSA is a function of both the signature sizes and the schedulings.

The problem of optimal signature scheduling in MSA to minimize fault simulation time

is discussed. Using the developed model, for an arbitrary circuit under test (CUT), given

the optimal scheduling positions, given the fault coverage data before data compaction,

and given an aliasing threshold, the optimal MSA for the CUT can be readily designed

in terms of signature sizes and number of signatures. Analysis and experimental results

are presented.
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Chapter 1

Introduction

Since the 1970s, a revolution in the field of digital circuit testing has been taking place.

This is a revolution that has not ceased, due to the increasing density of integrated

circuits (ICs). Pre-1970 circuit packages had perhaps one gate for each two or three

package pins. By 1980 the gate-to-pin ratio had not only reversed but also approached

20 gates per pin or more. At present, it is not unusual to find 100 gates or more behind

every pin [4]. The increase in package density causes a dramatic reduction per circuit

cost, but the percentage of those costs consumed by testing stubbornly increases [4] due

to the following reasons:

• Test generation for ICs becomes more and more expensive and difficult as the

density of the ICs increases. The test generation algorithms developed for small

scale integrated (SSI) or medium scale integrated (MSI) circuits, such as the D-

algorithm, are no longer suitable for very large scale integrated (VLSI) circuits.

• Test sequence length required becomes longer and longer as the density of the ICs

increases. The increase in test sequence length causes the increase in the required

storage for test pattern sets.

• The volume of test output response expands as the test sequence length increases.

The increase in the volume of test output response causes the increase in the storage

required for the output response, and as well as the increase in the complexity of

output response evaluation.

1
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• It is common for the number of memory elements in ICs to increase as the density

of ICs increase. The complexities of setting up the memory elements and observing

their logic values increase. Although test generation techniques for combinational

circuits are relatively mature, test generation techniques for sequential circuits are

still struggling.

In order to overcome the difficulties of VLSI testing, research on various aspects of

VLSI testing, such as test generation [15][20][21][25][56] and output response evaluation

[45][50][13][62], has been conducted actively for over two decades and is still of much

interest. From these efforts, the discipline known as design for testability (DFT) [57] has

emerged.

1.1 Design for Testability

In 1975, Phillip Writer of the Test Equipment Technical in San Diego first proposed [4]

the concept of DFT. DFT design techniques use a set of design constraints which lead

to more testable designs, especially in the case of sequential circuits. Since then, DFT

techniques have rapidly developed.

DFT techniques can be classified into (i) ad hoc design techniques; (ii) structured design

techniques. Ad hoc design techniques are just a collection of good design methods that

are manually applied with the judgement and skill of the designer. None of these ad hoc

methods completely solves the problem of testing sequential circuits or even combina-

tional circuits. For this reason, much more attention has been paid to structured DFT

techniques [58][38][18][11]. The most common structured DFT requires compliance to a

set of ground rules centered around a uniform design method for latches, generally known

as "scan design". The power of scan is that if the states of all latches can be controlled
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to any specific value and observed easily, then test generation and fault simulation of a

sequential circuit reduce to that of combinational logic. A control signal can switch the

memory elements from their normal mode of operation to a mode that makes them con-

trollable and observable. Known scan techniques are level sensitive scan design (LSSD)

[10], scan path [16], scan/set logic [51] and random-access scan [3].

With scan design, the test generation of sequential circuits can be reduced to the test

generation of combinational circuits. However, the test generation for combinational

circuits of VLSI complexity is still very expensive in terms of computing efforts. It

has been shown that the test generation problem for combinational circuits belongs to

the class of NP-complete problems [24]. In the worst case, problems of this class are

exposed to exponential increases in solution time as the size of the problem increases.

Pseudorandom testing is one of the possible ways used to avoid the test pattern generation

problem.

1.2 Pseudorandom Testing

Pseudorandom testing is the testing method which uses pseudorandomly generated test

vectors as test patterns. The pseudorandom test patterns can be generated by an au-

tonomous linear feedback shift register (ALFSR.) circuit or by a program simulating an

ALFSR [39]. Pseudorandom testing can be used to test both combinational and se-

quential networks. McCluskey et al. [39] discussed combinational circuit pseudorandom

testing. Losq [34] discussed sequential circuit pseudorandom testing. Pseudorandom

testing can be used either with external automatic test equipment (ATE) testing or with

self testing.
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1.3 Conventional IC Testing With Automatic Test Equipments

In the age of SSI and MSI circuits, the task of testing ICs was mainly fulfilled by ATEs.

Testing ICs using ATE includes several steps. First, a test pattern generation algorithm,

such as the D-algorithm [6], PODEM [20] or FAN [15], is employed to generate test

patterns for each possible modeled fault in the CUT. Second, the previously generated

test patterns are applied to the CUT and the resulting outputs are captured by the ATE.

Last, the outputs of the CUT are compared with the pre-calculated fault-free output

values to decide if the CUT is fault-free. While such test systems can yield excellent

performance, they tend to be self-obsolescent since (i) they are extremely expensive,

especially for the ATEs designed for circuits of VLSI complexity; (ii) they are made from

the same generic integrated circuits that they are designed to test. Hence, by the time

they are designed and built by their manufacturers, and purchased and installed by the

users, the leading edge of the integrated circuit technology has moved on, creating a test

system requirement that the "new" test system can only marginally satisfy. Based on

these factors, Bardell, et al. [4] pointed out that the test technology for VLSI must be

extended to include BIST in order for progress to continue.

1.4 Built-In Self-Test

BIST refers to those testing techniques in which additional hardware is added to a design

so that testing is accomplished without the aid of external test equipment. In BIST, both

the function of test pattern generation and the function of output response evaluation are

incorporated into the CUT. In order to avoid manipulating huge volumes of output data,

BIST uses compaction techniques to compact the output data. Examples of compaction

techniques include syndrome compaction [45], parity checking [50], signature analysis

[13].
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Figure 1.1: A Generic BIST Scheme

Fig. 1.1 illustrates a generic BIST scheme. The CUT is driven by the test pattern

generator (TPG) which generally consists of an ALFSR. The output response of the CUT

is compacted by an output data compactor (ODC). If the ODC consists of a parallel to

serial converter as well as a linear feed back shift register (LFSR) or a multiple input

shift register (MISR), the output response is shifted into the LFSR serially or into the

MISR in parallel. After the whole output sequence of the CUT is shifted into the LFSR

or MISR, the content of the LFSR or MISR forms the signature of the output response.

At the end, the signature is compared through a comparator (CMP) with the fault free

signature (FFS), which is prestored in on-chip memory elements, such as a ROM, to

make the final pass or fail decision.

BIST techniques can alleviate the problems of external testing schemes. First, since test

patterns are usually generated by an on-chip TPG, the time-consuming effort of test

pattern generation is avoided in the design cycle. An additional benefit of the built-

in TPG is that the internal nodes of the circuit under test are easily accessed by the
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generator and hence a higher fault coverage and shorter test time can be achieved [4].

Moreover, since the output responses are compacted first and the signature is compared

only once, the difficulty of storage and analysis of huge volume of both test pattern data

and pre-calculated fault-free test response data can be avoided. Thus, BIST can eliminate

the use of expensive external test equipment. BIST has another important advantage in

that the CUT is fed with test patterns at normal functional clock rate. Hence, BIST is

especially suitable for achieve high speed testing.

BIST approaches have been successfully applied to commercial products such as micro-

computers [30], signal processing chips [32], and have proved to be a very promising

technique. However, BIST is not perfect, and inevitably has weaknesses. Three main

drawbacks are:

1. Employing a compactor introduces aliasing, the phenomenon of a fault escaping

detection after compaction. Test effectiveness is degraded by aliasing.

2. Generally, BIST uses pseudorandom test patterns. Such test sets tend to be long

in order to achieve high test quality.

3. Due to compaction, required fault simulation efforts increase tremendously com-

pared to the case of no compaction.

Multiple signature analysis (MSA) has been proposed to overcome the above drawbacks

[22] [31] [33].

1.5 Multiple Signature Analysis

In [22], Hassan and McCluskey proposed a IVISA scheme to increase test quality. In [33] ,

Lee proposed a scheme of checking intermediate signatures to reduce the average testing
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time. In [31], Lambidonis et al. proposed a scheme of checking intermediate signatures

to reduce the fault simulation efforts for HIST drastically.

The concept of MSA proposed in [22] is different from that of intermediate signature

proposed in [33]. We review these schemes next, and then give a more general definition

of MSA.

1.5.1 Hassan's MSA

The MSA proposed in [22], referred to as Hassan's MSA here, is a signature analysis

scheme which checks two signatures from the same signature analyzer resulting from two

different input sequences. Fig. 1.2 illustrates the scheme. The CUT is driven by the

input sequences IS1 and IS2 serially. The resulting output sequence of IS1 is compacted

through the ODC to generate the signature of the output sequence. Then the signature

is compared by the comparator CMP with predetermined fault free signature FFS1. If

the two signatures differ, then the "fail" decision will be made and the test is completed.

If they are the same, the same process for IS1 will be repeated for IS2. Final "fail" or

"pass" decision will be made. Note that in Hassan's MSA scheme, the input sequences

IS1 and IS2 are two different sequences. The output sequences share the same ODC.

Figure 1.2: Hassan's MSA Model
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1.5.2 Lee's MSA

The intermediate signature analysis scheme proposed in [33] is a scheme which checks

more than one signature from the same signature analyzer at different stages of the test

process. Fig. 1.3 gives an example.

Figure 1.3: Lee's MSA Model

In Lee's MSA model, the input sequences are segments of one single pseudorandom test

sequence generated by a LFSR. Input sequence segment ISS1 is applied to the CUT first,

the output sequence of ISS1 is compacted through the ODC to generate the signature of

the output sequence. Then the signature is compared through CMP with the prestored

fault free signature FFS1. If the two signatures differ, then a "fail" decision is made and

the test completes. If they are the same, then the same process will repeat for ISS2 and

so on until either a "fail" decision is made or the whole test process completes with a

"pass" decision. Similar to Hassan's MSA model, Lee's MSA model has only one physical

ODC as well.

1.5.3 Generalized MSA

Generalized MSA scheme defined here is a. scheme which checks multiple signatures from

different signature analyzers at different stages of the test process. As illustrated in
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Fig. 1.4, for the generalized MSA, multiple FFSs (FFS1,^FFSn) are predetermined

and prestored in an on-chip ROM or in other forms of storage. The position of the

signatures, referred to as checkpoints [60], are predetermined as well. Whenever the

test session reaches a checkpoint, the signature of the output sequence from a certain

signature analyzer is compared to the related FFS, and a pass or fail decision is made. If

a fail decision is made, the test is terminated; otherwise, the test continues until either

a fail decision is made or the whole test is completed. Similar to Lee's MSA model, the

input sequences (ISS1, ISS2, ISSn) for a generalized MSA model are segments of one

single pseudorandom test sequence generated by a pseudorandom TPG. For generalized

MSA model, it is assumed that there are n physical ODCs, ODC1, ODC2, ODCn.

If the number of signature analyzer is one, the generalized MSA model becomes Lee's

MSA model.

Figure 1.4: A Generalized MSA Model
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1.6 Test Quality Measure

1.6.1 Fault Model

In order to perform functional testing, fault modeling is needed. Fault modeling refers to

a set of methodologies through which physical failures are represented by logic models.

The logic models used to represent physical failures are called fault models. The most

often used fault model is the single stuck-at model which allows any node to be stuck-at

logical zero (s-a-0) or stuck at logical one (s-a-1) [6].

1.6.2 Fault Coverage

One of the most commonly used test quality measure to evaluate testing schemes is fault

coverage. Fault coverage is defined as the percentage of modeled faults known to be

detected [38].

As mentioned in Sec. 1.4, compaction techniques are employed in almost all the BIST

techniques. Once compaction is introduced, the fault coverage before and after com-

paction generally differs due to the compaction information loss. Fault coverage before

compaction is performed is referred to as fault coverage before compaction. Fault coverage

after compaction is performed is referred to as fault coverage after compaction.

1.7 Motivation of This Thesis

1.7.1 Necessity of Exact Fault Coverage After Compaction

In general, a fault goes undetected if none of the input test patterns produces an incorrect

circuit output in the presence of the fault. With output response compaction, it is also

possible for a fault to fail detection even though the output response differs from the

fault-free response. This is known as aliasing, i.e., the case where the output response
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from a faulty circuit produces a signature that is identical to the signature of a fault-free

circuit.

Due to aliasing, the quality evaluation problem of the test techniques with compaction is

different from that of the test techniques without compaction. The effect of compaction

is traditionally characterized by aliasing probability [4], i.e., the probability that a fault

detected before compaction will escape detection after compaction. Different models have

been proposed for characterizing the aliasing behavior of various compaction schemes

[9][13][26][27][50][59].

Conventionally, the evaluation of the test quality after compaction is achieved by the

fault coverage before compaction and the aliasing probability of compaction. This causes

statistical uncertainty in the evaluation of test quality. It may be wasteful to spend

considerable hardware and software resources towards achieving a certain known fault

coverage before compaction and still end up with uncertainty of the fault coverage after

compaction [31]. Thus, Lambidonis et al. [31] proposed a methodology towards the

computation of exact fault coverage for signature analysis schemes. The results given

in [31] show that the proposed methodology can reduce the fault simulation time with

compaction significantly. Hence, exact fault coverage after compaction can be calculated

with feasible computation efforts.

1.7.2 Necessity of a Fault Coverage Loss Model for MSA

The MSA that the strategy in [31] exploits implies a higher hardware cost. In practice, the

allowable HIST overhead limits the total number of signature bits. Given the allowable

hardware overhead limit in terms of total number of allowable signature bits, a large

number of choices can arise in partitioning the total number of signature bits among

various intermediate signatures. The optimal partition of the total number of signature
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bits is required such that the fault simulation time with compaction is minimized and

fault coverage is maximized. However, before we can meet the requirements, we need

to explore the MSA aliasing behavior further since existing models for MSA aliasing

behavior [5] are inadequate.

In BIST with single signature analysis (SSA) [4], to compact an output sequence of length

/, the sequence is shifted bit by bit into a signature analyzer of size k. At the end of

the test process, the contents of the signature analyzer form the signature. Under the

assumption of the equally likely error model [4], the aliasing probability Pa is:

91—k^1

When 1 k, Pa 2-k.

Similarly, in BIST with MSA, assume that n signatures of sizes kl, k2,^kn, are checked

at check points 11, 12, ..., 4,. The total number of signature bits is k, i.e.,^ki = k.

Under the assumption of the equally likely error model [4], the aliasing probability for

the MSA is:
n 9li—ki

Pa =1-1 ^
9/, _1

(1.2)

When /i ki for i = 1, , n, the aliasing probability for the MSA 2- E:-.1 = 2-k.

The 2-k result is inadequate for some of the multiple signature analysis cases. In order to

illustrate this, an small experiment was done. Consider a case where only two signatures

are taken, the total number of signature bits is 4, the total test length is 213 = 8192,

the first signature taken at 28 = 256, and the second signature taken at the end of the

test. Fault simulation was done for two different signature bit distributions. For the first

signature bit distribution, both signatures are assigned 2 bits. For the second signature

bit distribution, the first signature has 1 bit, and the second signature has 3 bits. The
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D2(ki, k2) P. PG:
D2(2,2) 0.0780 0.0625
D2 (1, 3) 0.0668 0.0625

Table 1.1: Comparison of Abasing Probability

fault simulation results are presented in Table 1.1. D2(k1, k2) represents the signature

bit partition for a MSA scheme when the total number of signatures is 2. k1 denotes the

length of the first signature, and k2 denotes the length of the second signature. Pa is the

probability of aliasing and is calculated as the ratio of the total number of faults escaped

after compaction to the total number of faults detected after compaction. The Pa is

the average of ten trials for the ten ISCAS'85 (International Symposium on Circuits and

Systems) benchmark circuits [7] and _/=) is the aliasing probability calculated by using

2-k, which is given in [5].

From the results, we can see that the aliasing probabilities for the two experiments differ

even though the total number of signature bit is the same for the two experiments, i.e.,

k = 4.

In order to further explore MSA schemes, more accurate models are needed to depict the

aliasing behavior of the MSA schemes. In [61], one such model is developed. Although

the model developed in [61] accurately models the aliasing behavior of MSA schemes,

the density function of detection probabilities of the faults in a circuit is also required.

Usually, it is expensive to obtain a precise detection probability density function for

large circuits. In this thesis, a simplified model that only requires the fault coverage

information of a circuit without compaction is developed.
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1.8 Thesis Organization

This thesis proposes a model to predict the fault coverage of MSA. This model allows us

to discuss the aliasing behavior of MSA. Furthermore, the model enables the discussion

of the relationship between the aliasing behavior of MSA and the latter's acceleration of

fault simulation. The remainder of the thesis is organized as follows. Chapter 2 presents

a model to predict aliasing and the fault coverage for MSA. Chapter 3 presents a fault

simulation time model for MSA. Based on the model, a forward dynamic programming

algorithm is developed to yield the optimal signature scheduling to achieve minimal fault

simulation time. From the fault coverage prediction model presented in Chapter 2 and

the fault simulation time model presented in Chapter 3, trade-offs arise between fault

simulation time gain and the fault coverage. Chapter 4 concludes the thesis and points

out some directions for future work.



Chapter 2

Multiple Signature Fault Coverage Loss Model

2.1 Notations and Preliminaries

2.1.1 Notations

(k , n;^, ky;^. . ,1) MSA Scheme

A (k, n; kl,^, kr,;^,172) MSA scheme represents the following testing scheme: n

signatures are checked at the predetermined check points 11,12,^, /„, and that the sig-

natures are of sizes k1 , k2,^, kn, respectively. The total number of signature bits is

k.

(k , n;^, kn; 1) MSA Scheme

A (k, n;^. , kn; 1) MSA scheme represents the following testing scheme: n signatures

are checked at equidistantly scheduled check points^, ;I, and that the signatures

are of sizes 101, k2,^, kyi, respectively. The total number of signature bits is k.

(k,n;ki, , kn; 1; 0) MSA Scheme

A (k, n;^. . ,k; 1; 0) MSA scheme represents the following testing scheme: n signatures

are checked at optimal scheduled n check points, and that the signatures are of sizes

k2, , k , respectively. The optimal scheduled check points are calculated using the

optimal scheduling algorithm developed in chapter 3. The total number of signature bits

is k.

15
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(k ,n;^, kn; 1; 0; aliasing) MSA Scheme

A (k, n;^. . . , kn; 1; 0; aliasing) MSA scheme represents the following testing scheme: n

signatures are checked at optimal scheduled n check points, and that the signatures are of

sizes kl, k2, . . , km, respectively. The optimal scheduled check points are calculated using

the optimal scheduling algorithm developed in chapter 3. Aliasing effect is considered

when calculating the optimal scheduling. The total number of signature bits is k.

(k, n;^• • • , kn; 1; 0; no aliasing) MSA Scheme

A (k, n; kl,^, 42;1; 0; no aliasing) MSA scheme represents the following testing scheme:

n signatures are checked at optimal scheduled n check points, and that the signatures

are of sizes k1 , k2, , km, respectively. The optimal scheduled check points are calculated

using the optimal scheduling algorithm developed in chapter 3. Aliasing effect is not

considered when calculating the optimal scheduling. The total number of signature bits

is k.

(k, 1; k; 1) SSA. Scheme

A (k, 1; k; 1) SSA scheme represents the following testing scheme: a single k-bit signature

is checked at the end of test of length 1.

k2, . , kn) Partition

A Dn(ki, k2,^, kn) partition denotes the signature bit partition for the case where n

signatures are taken and the n signatures are of sizes 471, k2, . . , km, respectively.



for a total of k signature bits and a total of n signatures checkpoints is
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n — 1
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2.1.2 Signature Bit Partitions

There are a number of ways to partition the signature bits among a number of sig-

natures. For example, if the total number of signatures n = 8 and the total number

of signature bits k = 16, the number of possible signature partitions is 6435. For a

(k, n; k1,. • • , kri; li,. • . ,1,2) MSA scheme, the problem of finding the number of bit par-

titions is equivalent to determining how many different combinations of k'is exist which

satisfy the conditions:

• ki E {1 , 2, . . . , k } ,^1,9^

• ki = k;

• n < k.

The first condition gives a constraint on the length of each signature analyzer, i.e., the

length of each signature analyzer has to be an integer within range [1, id. The second

condition implies that the total number of signature bits is fixed. The third condition

gives a constraint on the total number of checked signatures.

Theorem 1: The number of possible partitions of signature sizes k1 , k2,^, k, (ki > 1)

Proof: Imagine k balls in a straight line with 1,7 — 1 spaces between those balls (see Fig.

2.5). We need to divide the k balls into Tt groups. Therefore, n — 1 dividers should be

put between the k balls under the constraint that for each space, at most one divider

can be put in. Then the number of ways of putting (n — 1) dividers in the (k — 1)

spaces between k balls equals the number of all possible partitions of signature lengths
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k2,. , kn. Obviously, the number of ways of putting (n — 1) dividers in the (k — 1)

spaces between k balls is ( k 1 ) .
n — 1

n-1 - 2
Dividers

0- I^0- ^0^ I.^0-^ •-0^0

n-1 = 2
^

balls
Dividers
^

k - 6

Figure 2.5: Balls and Dividers

Each ball in the proof above represents one signature bit. The number of balls between

any two adjacent dividers represents the number of signature bits allocated to some

signature, say, ki.

From Theorem 1, given k and n, the number of all possible partitions of kJ., k2,..., kn is

— 1)!
— 1)!(k — n)!.

(2.3)

Table 2.2 gives the number of partitions for different 71. with k = 16. Table 2.3 gives all

15 possible partitions for the k = 16, n = 2 case. k1 is the size of the first signature and

k2 is the size of the second signature.

2.2 Fault Coverage Model With Signature Analysis

In this section, we introduce some definitions and briefly review some results presented

in [49] and [61].
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n # of Partitions n # of Partitions
1 1 9 6435
2 15 10 5005
3 105 11 3003
4 455 12 1365
5 1365 13 455

3003 14 105
7 5005 15 15
8 6435 16 1

Table 2.2: Number of Partitions for k = 16

Possible Signature Bit Partitions (k = 16, n = 2)
k1
k2

1
15

2
14

3
13

4
12

5
11

6
10

7
9

8
8

9
7

10
6

11
5

12
4

13
3

14
2

15
1

Table 2.3: Possible Signature Bit Partitions for n = 2 and k = 16.

2.2.1 Basic Definitions

Definition 1: The detection probability of a fault is the probability of detecting an

existing fault by a single random test vector [49].

Detection probabilities of faults in a circuit can be represented by a density function

or distribution p(x) such that p(x)dx corresponds to the fraction of testable faults with

detection probability between x and x dx. Since x represents a probability, therefore:

p(x)dx = 1.^ (2.4)

2.2.2 Fault Coverage of Random Vectors

For the sake of completeness, we review a derivation from [49] next. Since there are

p(x)dx faults with detection probability .c, the mean coverage among these faults by a
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random vector is xp(x)dx [49]. Suppose we apply a sequence of random vectors to the

CUT. The mean coverage by the first vector is:

1

Jo 
xp(x)dx.^ (2.5)

Actual coverage by a random vector might be different from the mean by a random

quantity. However, the variance will be small for almost all circuits [49]. After removing

the faults detected by the first vector, the normalized number of the remaining undetected

faults UDT is:

UDT = 1 — xp(x)dx

Jo (1 — x)p(x)dx.^ (2.6)

Therefore, the distribution of detection probabilities of the remaining faults is (1—x)p(x).

Thus, the coverage of two random vectors is:

Y2 =^x(1 — x)p(x)dx

= f x[l + (1 — x)ip(x)dx.^ (2.7)

Similarly, we can find the coverage of 1 vectors to be:

= jo x[1 +(1 — x) (1 — x)2 . . . (1 — x)11p(x)dx

1 — f (1 — x)1 p(s)clx

= 1 — I(1),^ (2.8)

where I(1)^— x)1 p(x)dx.

2.2.3 Estimated Fault Coverage with Single Signature Analysis

Assuming a k-bit signature is checked after applying 1 random vectors to a CUT, the

asymptotic aliasing probability is p = 2-k under the equally likely error sequences as-

sumption [5]. If we denote the probability of no aliasing by ,13, i.e., j3 = 1 — p, then the
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fault coverage, FC*, after compaction when checking a single signature is:

FC* = i3y/

FC* = /3[1 — f(1 — x)1p(x)dx]

=^ (1 — I(1)).^ (2.9)

This result has been been verified experimentally by Rajski in [43].

2.2.4 Fault Coverage with Intermediate Signature Analysis

For a (k, n;^, kn,^,in) MSA scheme, assume that the aliasing probabilities as-

sociated with the n signature analyzers are • Prz, respectively, and the corre-

sponding probabilities of no aliasing are 3 3,- ,-2, • • • , 13n, where pi =^, 3j = 1 — pi and

i^1, 2, . . . , n. Then, similar to the analysis in Sec. 2.2.3, the expected fault coverage

after checking the first signature at 11 is:

FC1 =

FC1 = /31[1 —^(1 — x)i'p(x)dad

^

= 131[1 — I(l1)].^ (2.10)

The proportion of faults that remain undetected after checking the first signature is:

UDT1 = 1 — FC1

= 1 — 31(1 — f (1 — x)11p(x)dx)

=^[1 —3i + /31(1 — x)I1]p(x)dx.^(2.11)

The new distribution of the detection probabilities of the remaining faults can be repre-

sented by pi(x) = [1 — 3i + ,31(1— x)lp(x). Therefore, the fault coverage after checking
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the second signature at check point 12 is:

FC2^FC1 +132[UDT1 —1 (1 — x) 12 p1(x)]dx

= FC1 + /32 { UpTi^(1 — r)12 [1 — 131 + /31(1 — x)11]p(x)dx}

= [132 +131(1 - /32)] - 0 1 (1 -132 )1(10 -

02 (1 - )31)1(12) - /3021(11 + 12). (2.12)

Similarly, we can find the distribution of the detection probabilities of the remaining

faults, and the fault coverage after checking the third signature, and so forth. In general,

the fault coverage after checking the nth signature is:

n-1
FC =^+^Pi II (1^+^E^. • • t3i,Pik+i • •^+^+

^
(2.13)

i=1^j=i+1^k=1 Ak

where Ak^{(il, • • • ik ,ik+1) • • • in); 1 <z1,< • • •
^n, 1 < ik+1) < • • • < in, < n

and^• • • , ik) ik+1, • • • , in) is a permutation of (1, 2, ..., n)}. For example, if n = 4, k = 2,

then A2 =A(1,2,3,4),(1,3,2,4),(1,4,2,3), (2,3,1,4), (2,4,1,3),(3,4,1,211.

2.3 A Simplified Fault Coverage Model for Multiple Signature Analysis

In Sec. 2.2.4 a model for predicting the fault coverage for MSA is given. The model is

based on the knowledge of a density function of detection probabilities of the faults in a

circuit. Usually, it is expensive to obtain a precise detection probability density function

for large circuits. In [43], it has been shown that fault coverage with single signature

analysis can be well estimated by using the fault coverage before data compaction and

the aliasing performance of the signature analyzer. In this section, we present a simplified

model for predicting the fault coverage for MSA. As in [43], this model is also based on

the fault coverage before data compaction and the aliasing performance of the signature

analyzers.
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For a (k, n;^,^,in) MSA scheme, assume that the corresponding aliasing

probabilities associated with the n signature analyzers are P1, P2,•• • , pn, respectively.

Further, assume that, at the check points, the corresponding fault coverage before data

compaction is known to be F2, . Fri. The portion of additional faults detected

during the segment [/i_i, /i] of test patterns is thus Fi — F1_1, for i 1, 2, ... , n, with

F0 0. For example, at the check point 11, the percentage of faults detected is F1 —F0 =

F1, and the faults detected during segment [4,12] is F2 - F1 (see Fig. 2.6). According

to [43], if a signature is checked at l, Fipi of the faults detected in the segment [la, /1]

would be aliased. Assume that all the aliased faults will be redetected by the test vectors

during the segments [4_1, /i] for i = 2, 3, ... ,n. Consequently, after checking the second

signature at 12, the number of faults from F1 escaping detection due to the aliasing of the

two signatures would be F1p1p2. Thus, the portion of faults from F1 that would escape

detection after checking n signatures is:
ri

FcL,^H pi.^ (2.14)

Similarly, for the (F2 — F1) faults first detected in segment [4,12], after checking the

second signature at 12, (F2 — F1)p2 of the faults would he aliased due to data compaction.

Note that the aliasing of the first signature checked at 11 has no impact on the faults

detected after 11. Again, assuming that these aliased faults will be redetected by the test

vectors during segments /i], for i = 3, 4, , n, the portion of faults aliased from

(F2 — F1) when n signatures are checked is:

FCL2 = (F2 — Fi) H pj.^ (2.15)

In general, for the (F1—F1_1) faults first detected during the segment^lib the portion

of the faults aliased from these after taking 11 signatures is:

FCLi =(F1 —^H 7 ^
^i = 1,2,...,n.^(2.16)
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Figure 2.6: (a) Solid curve represents the fault coverage before data compaction. F1
denotes the fault coverage before data compaction at check point 11. F2 denotes the fault
coverage before data compaction at check point 12, and so on. (b) FCLi is the fault
coverage loss on (Fi — Fz_1) segment due to the n signatures. The total fault signature
loss FCL =E7,1_,FCL,
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Therefore, the total fault coverage loss, FCL, with n signatures is:

FCL = FCLi
i= 1

(Fi — Fi-1)11Pi.^ (2.17)
i=1

Since the final fault coverage before data compaction is Fri, the fault coverage, FC, for

MSA is:

FC = Fn— FCL

=^—^(Fi Fi-1) 11 Pi•
^(2.18)

i= 1

Eqn.2.18 gives a prediction for the fault coverage with multiple signature analysis. This

model is solely based on the knowledge of the fault coverage before data compaction and

the estimated statistical performance of the signature analyzer. The efforts needed to

calculate fault coverage before data compaction are much less than the efforts to calculate

exact detection probability. Thus, Eqn.2.18 is much simpler to compute compared to the

model discussed in Sec. 2.2.4. However, this simplified model is optimistic since we

assume that all the faults aliased by a signature at a check point /i are redetected during

later segments ii] for j = (i +1), (i +2), , n. In practice, this assumption may not

be true. Some faults aliased at 1 , may be redetected in some of the later segments, but

not necessarily in all of the segments. Some faults aliased at /i may not be redetected at

all. Check points are usually scheduled as ( /i — /ii) < (li+i — /i) for i = 1, , n, so as

to minimize either the required fault simulation time [31] or the average test time [33],

most faults detected in segment ii] are likely to be redetected in later segments.

Experimental results in Sec. 2.5.3 show that this model holds very well.
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2.4 Signature Bits Distribution vs. Fault Coverage

As Eqn.2.18 implies, the final fault coverage achieved with checking n signatures of sizes

k2,. , Ion depends on the scheduling of the check points 11,12,^, in and the signature

sizes k1 , k2,^, kn, i.e.,

FC = f^k„, ii, l2, . . ,^ (2.19)

Theorem 2: The expected fault coverage loss FC L for a. (k, n; kl,^,^, lri) MSA

scheme is greater than that for the (k,1;k;1) SSA scheme.

Proof: Assume that at the check points 11,12,^,L, the corresponding fault coverage

before data compaction is known to be F1, F2, .. , Fn, with F0 0.

According to Eqn. 2.17, the fault coverage loss, FCL*, after checking a single signature

at the end of test is:

FCL^F H p ,^ (2.20)

and, the fault coverage loss, FC L, for checking n signatures is:

FC L =^L
i=1
71 

(Fi —^11 Pi-
^ (2.21)

i=1^j=i

Hence,

FCL — FC L* = (E(Fj —^fl p) — (Fn M
J=i^i=1

1=1^ 1=2^ j=1

E(Fi^1-;.--1)(11P:1

i-1
(Fi —^pi(1 —^p.)^H pi > O.

Z =^3=1^•=1^3=1
(2.22)
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The equality holds when n =

Theorem 2 reveals that when checking multiple signatures at distinct check points to

either calculate the exact fault coverage of multiple signature analysis [31], or to reduce

the average test time [33], fault coverage is sacrificed if the same amount of hardware

overhead, i.e., measured in number of signature bits, is used.

Theorem 3: Given that the n check points are predetermined for a (k, n; k,^. . , kn; 11, 12,

MSA scheme, FCL for the MSA scheme is minimized when k1 = k2 =

=1 and kr, = k — n 1.

Proof: By Eqn. 2.17, we have,

T1.

FCL^)FCL
i=1

—

where pi =^, j = 1, 2, . . . , 72 .

Let

Hp',
.7=t

(2.23)

- Fi 
^i^1,...,n.^ (2.24)

Since fault coverage is monotonic in test length, ci > 0 for i = 1, . , n. Also since the

check points are predetermined, ci is fixed for i = 1,^, n.

Let

ti

i^1, 9, . . . , n.^ (2.25)



Since k > 1 for j

Also, we have,

(2.28)

(2.27)

Ti

> i — 1 +

E ki
J=1^J=1

= i — 1.

k

Ti
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By Eqn. 2.24 and 2.25, we have:

FCL = E eiti.^ (2.26)

Therefore,

— i^1,^i = 1, ... ,n. (2.29)

The equality holds when k1 -=- k2 =^= ki_i = 1.

 

kti =

> 9 -(k-i+1)

(2.30)

 

Since ci > 0,

Therefore,

citi > c12-(k-i+1). = 1,...,n.^(2.31)

(2.32)

Equality holds when k1 =^=^= 1.
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Dn(ki, k2,. . . , km) #o f D FF FCL
D,(1,1,...,k - n +1) 2k - n + 2 E7-1(Fi - Fi-i) f17=i Pi

Di(k) 2k 2-k

Table 2.4: Hardware Cost Analysis for Multiple Signature Schemes

Since k1 k2^= k, FCL is minimized when kJ. = k2 =^= kri_i = 1, and

kn k - n + 1. 0

Theorem 3 gives the optimal partition for a total number of k signature bits when n

signatures are checked, assuming that the check points are predetermined and fixed.

An example of the application of Theorem 3 follows. Let #ofDFF denote the number of

memory elements (flip-flops) required to implement the signature analyzers and to store

the FFSs. Checking a total of k bits of signature requires storing k bits of information.

This requires k latches or flip flops. Table 2.4 reports the fault coverage and hardware

requirements for the above optimal scheme and the single signature scheme.

From Table 2.4, we see that the fault coverage loss (FCL) of a (k, n; 1,1, ... , 1, k - n +

MSA scheme is greater than that of a (k, 1; k; l) SSA scheme, where pi =2-ki

However, the hardware cost of the former, measured in terms of the number of memory

elements, is less than the hardware cost of the latter as long as n > 2. For example, if

k = 16 and n = 5, the hardware cost of the (16,5; 1, 1, 1, 1,12; 11, , /5) MSA scheme is

29 D flip-flops, while the hardware cost of the (16, 1; 16;15) SSA scheme is 32 D flip-flops.

The hardware saving is 9%. Hardware saving is achieved at the expense of fault coverage

loss if the number of checked signatures is increased. If we embed the single-bit signature

analyzer in the k - n + 1 bit signature analyzer. then we can further decrease the number

of D flip-flops used by the (k, n; 1,1, . . . , 1, k - n + 1; /1,. , In) MSA scheme by 1, and

the hardware cost becomes 2k - 72 + 1. As long as 72 > 1, the hardware cost of the
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(k, n; 1, 1, . . . , 1, k — n^1; 4,^, lm) MSA scheme is smaller than that of the (k,1; k; ln)

SSA scheme.

Fig. 2.7 shows a single-bit signature analyzer embedded in a k —n+ 1 signature analyzer.

Fig. 2.7(a) and Fig. 2.7(b) show the 1-bit signature analyzer and the k-bit signature

analyzer, respectively. Fig. 2.7(c) shows a k-bit signature analyzer where any D flip-flop

(DFF) can be used as a 1-bit signature analyzer. The second DFF is arbitrarily chosen

as the embedded single-bit signature analyzer. It is easy to show that the asymptotic

aliasing probability of an embedded 1-bit signature analyzer is the same as the 1-bit

signature analyzer shown in Fig. 2.7 (a).

Theorem 4: Given a (k, n; k,. , km;^, I„) MSA scheme, the fault coverage loss at

the end of the test FCL is maximized when ki = k — n +1, k2 = k3 =^= kr, =1.

Proof: By Eqn. 2.17, we have,

FCL = FCLi

i = 1
— (2.33)

where pi = ^= 1, 2, . . . , 72.

Let

ci = F —^1,^,n.^ (2.34)

Since fault coverage is monotonic in test length, ci > 0 for i = 1,^,n. Also since the

check points are predetermined, ci is fixed for i^1.. , n.

Let

ii =



DFF
k-2

DFF ^
k -1

DFF^DFF •
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(a) Single Bit Signature Analyzer

DFF

(b) k-bit Signature Analyzer

DFF^DFF
1

DFF DFF
k-2

DFF ^
k -3

For example, arbitrarily chose the
second DFF as the single-bit signature
analyzer to form na embedded single-bit
signature analyzer.

(c) k-bit and 1-bit Embeded Signature Analyzer

Figure 2.7:^This figure shows the hardware costs to implement a
(k^n — 1, n;1,1,..., k; 11, . . . ,1,) MS A scheme. (a) is the block diagram of a single
bit signature analyzer. (b) is the block diagram of a k-bit signature analyzer. (c) shows
how to embed a single bit signature analyzer into a k-bit signature analyzer. DFF is a
D flip-flop.
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=^2-ki

= 2-
^

i= 1,2,...,n.^(2.35)

By Eqn. 2.34 and 2.35, we have:

FCL =^C
^ (2.36)

i=1

Since ki > 1 for j = 1,^, n,

1=7

n — i + 1. (2.37)

The equality holds when ki = k14.1 =-^=^=

Therefore,

ti , 2- Ein=k3 < = 2, ... , n.^(2.38)

(2.39)

Since ci > 0,

citi < ci2-(91-7+1),i = 9,3,^, n.

Therefore,

FCL = F12-ki F12-ki^ (2.40)

Equality holds when k2 =^= k„ = 1.

Since k1 k2^k, FCL^citi is maximized when k1 = k — n 1,

k2 =^= kn = 1. 0

Theorem 4 states that if k bits of signature are to be distributed among n signatures,

then the worst choice of distributions is where the first signature is of size k — n + 1 and

the remaining n — 1 signatures are of size 1. This would yield minimal expected fault

coverage.
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Circuit
Name

Circuit
Function

Total
Gates

Inputs
Lines

Output
Faults

Stuck-at
Faults

c432 Priority Decoder 160(18 EXOR) 36 7 864
c499 ECAT 202(104 EXOR) 41 32 998
c880 ALU and Control 383 60 26 1760
c1355 ECAT 546 41 32 2710
c1908 ECAT 880 33 25 3168
c2670 ALU and Control 1193 233 140 4448
c3540 ALU and Control 1669 50 22 6188
c5315 ALU and Selector 2307 178 123 9400
c6288 16-bit Multiplier 2406 32 32 12576
c7552 ALU and Control 3512 207 108 13048

Table 2.5: ISCAS'85 Benchmark Circuit Characteristics

2.5 Experimental Results

Most of the fault simulators that have been implemented use the stuck-at fault model

[55] [35] [36]. In the experiments presented here, we only consider single stuck-at faults

as well. A single stuck-at fault assumes a circuit failure corresponding to one line of the

circuit being permanently fixed at the logic value 0 or 1. A circuit with p lines thus has

2p possible single stuck-at faults. In our experiments, no fault collapsing [6] is done.

2.5.1 ISCAS'85 Benchmark Circuits

The combinational circuits used in our experiments are from the ISCAS'85 benchmark

circuits [7]. The characteristics of the ten benchmark circuits are given in Table 2.5.

The stuck-at faults in the last column of Table 2.5 is the complete set of single stuck-at

faults in the circuit. No equivalent fault collapsing is done. Circuit c499 and c1355 are

functionally equivalent. c499 uses XOR gates. while c1355 uses 4-NAND gates to realized

the XOR function.
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2.5.2 Experimental Cases

In this section, fourteen experiment cases are defined. Experiments on the fourteen

experiment cases were conducted and the results are reported in Sec. 2.5.3. The fourteen

experimental cases are:

1. (16,16; 1,^, 1; 2048) MSA

2. (16,8; 2,... , 2; 2048) MSA

3. (16,4; 4,... ,4;2048) MSA

4. (16,2; 8,8; 2048) MSA

5. (16,8; 1,^, 1, 9; 2048) MSA

6. (16,4; 1,1, 1, 13;2048) MSA

7. (16,2; 1,15; 2048) MSA

8. (16, 8; 9, 1,^, 1; 2048) MSA

9. (16,4; 13,1, ... , 1; 2048) MSA

10. (16,2; 15, 1; 2048) MSA

11. (16, 16; 1,^, 1; 2048; 0) MSA

12. (16,8; 2, ... , 2; 2048; 0) MSA

13. (16, 4; 4, ... , 4; 2048; 0) NISA

14. (16,2; 8,8; 2048; 0) MSA
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2.5.3 Results

In this section, the experimental results on the ten ISCAS'85 benchmark circuits for the

fourteen experimental cases are presented. The experimental results are listed in Tables

2.6 - 2.9, Tables 2.10 - 2.12 and Tables 2.13- 2.16. The definitions of the symbols used

in those tables are as follows:

• FCsinip denotes the fault coverage predicted by the simplified fault coverage model

for (k,n; ki,^, kn; 1) MSA.

• FCblia84 denotes the fault coverage predicted by the model presented in [5] for

(k, n;^, kn; 1) MSA.

• FCrns denotes the exact fault coverage determined by fault simulation for (k, n;

. . kn; 1) MSA.

• FC,isik denotes the exact fault coverage determined by fault simulation for

(k, n; 1, . , k — n + 1;1) MSA.

• FCmski denotes the exact fault coverage determined by fault simulation for

(k, n; k — n + 1,1, ... , 1; 1) MSA.

• FC,7,301 denotes the exact fault coverage determined by fault simulation for

(k, n;^kn; 1; 0; aliasing) MSA.

• FC,,„2 denotes the exact fault coverage determined by fault simulation for

(k,n;^kri; 1; 0; no aliasing) NISA.

• FC„ denotes the fault coverage obtained by fault simulation for (16,1; 16; 0 SSA.

• FC„ denotes the exact fault coverage before compaction.
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• Errsimp is the absolute value of the difference between FCsimp and FC,,,, i.e.,

Errsimp =1 ECsimp — FCms

• Errbha84 is the absolute value of the difference between FC bha84 and FCms, i.e.,

Errbha84^FCbha84 — FC,,„

• AveErrsimp is the average of Errsimp over the ten benchmark circuits.

• AveErrbha84 is the average of Errbhu84 over the ten benchmark circuits.

All the fault coverages obtained by fault simulation reported in this chapter are the

average of three trials. In the figures presented in this chapter, wherever it is appropriate,

cl denotes c432, c2 denotes c499, e3 denotes c880, c4 denotes c1355, c5 denotes c1908,

c6 denotes c2670, c7 denotes c3540, c8 denotes c5315, c9 denotes c6288, and c10 denotes

c7552.

Table 2.6 reports the fault coverage predicted by various models as well as the fault

coverage obtained by fault simulation for case 1. Table 2.7 presents the experimental

results for case 2, Table 2.8 for case 3, and Table 2.9 for case 4.

From the Errsimp and Errbha84 columns of Tables 2.6-2.9, the average difference between

Errsim,p and Errbh„84 is 0.0684% for (16.16; 1,^, 1; 2048) MSA, the average difference

between Errsimp and Errbh„84 is 0.0469%, for (16,8; 2,^,2; 2048) MSA, the average

difference between Err., mp and E7'rbh°84 is 0.0060%, for (16, 4; 4, ... , 4; 2048) MSA, the

average difference between Errsimp and Errbh,84 is 0.0013%, for (16, 2; 8, 8; 2048) MSA.

Although for small circuits, the difference is not significant, for large circuits, e.g., circuits

which have stuck-at faults over 10, 000, the difference can be significant. Figs. 2.13-2.14

present Errsimp and Errbh,84 for the ten benchmark circuits graphically. Also note that

as n increases, the model presented here gives better prediction than that model in [5].
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Table 2.10 presents the experimental results for case 5 and 8. Table 2.11 reports the

experimental results for case 6 and 9. Table 2.12 gives the experimental results for case

7 and 10. Tables 2.13-2.16 report the experimental results for case 11, 12, 13 and 14,

respectively.

Comparing the fault coverage reported in FC, columns in Tables 2.6-2.9, FCniski

columns in Tables 2.10-2.12, FC771301 and FCr1302 columns in Tables 2.13-2.16 with the

fault coverages reported in FC„ column in Table 2.6, we Can see that the fault coverage

for (k, n; k1,... , kri; 1) MSA is less than that for (k, 1; k; 1) SSA, which supports the claim

in Theorem 2.

Comparing the fault coverages in FC mslk column in Tables 2.10-2.12 with that in FC,.„,,

column in Tables 2.6-2.9, FC„„ki column in Tables 2.10-2.12, FC,,,,„1 and FC,,.9,2 columns

in Tables 2.13-2.16, we can see that the fault. coverage of (k, n; 1, . . . , 1, k — n 1; 1) MSA

are better than that obtained by other various MSA, which supports the claim in Theo-

rem 3.

Comparing the fault coverages in FC„,ski column in Tables 2.10-2.12 with that in FC„„

column in Tables 2.6-2.9, FC,sik column in Tables 2.10-2.12, FC„,„1 and FC„,,„2 columns

in Tables 2.13-2.16, we can see that the fault coverage of (k, n; k — n + 1,1, . . . ;1) MSA

are less than that obtained by other various MSA, which supports the claim in Theorem

4.

Comparing the fault coverages in the FC1301 columns in Tables 2.13-2.16 with that in

the FC„,s02 columns in Tables 2.13-2.16, and the FC,,,,s columns in Tables 2.6-2.9, we

can see that the fault coverage for a MSA is the function of signature scheduling.

Figs. 2.15 and 2.16 presents FC„, and FC„ for the four experimental cases. From the

figures we can see that given k, in 24 out of 40 trials, FC„is is less than FC„. In 5 out
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Circuit
Name

FCsimp

(%)
FCblia84

(%)
FC,,,,
(%)

FC88
(%)

FCnc
(%)

Errsimp
(%)

Errblza84

(%)
c432 98.8409 98.8411 98.6111 98.8426 98.8426 0.2298 0.2300
c499 99.1958 99.1969 96.3929 99.1984 99.1984 2.8029 2.8040
c880 97.3353 97.5932 97.3864 97.5947 97.5947 0.0511 0.2068
c1355 99.3515 99.3958 97.8844 99.3973 99.3973 1.4671 1.5114
c1908 98.1052 98.4413 95.9701 98.4007 98.4428 2.1351 2.4712
c2670 82.2073 82.2079 81.3699 82.2092 82.2092 0.8374 0.8380
c3540 94.8512 94.9458 94.3816 94.9095 94.9472 0.4696 0.5642
c5315 99.2545 99.2645 99.1986 99.2660 99.2660 0.0559 0.0659
c6288 99.4578 99.4578 99.4407 99.4593 99.4593 0.0171 0.0171
c7552 93.0237 93.0653 92.8342 93.0667 93.0667 0.1895 0.2311

AveErr mp = 0 8256%,^AveErrbha84 = 0.8940%

Table 2.6: Fault Coverages for (16, 16; 1,^, 1; 2048) MSA

Circuit
Name

FCsim,
(%)

FCblza84
(%)

FCms

(%)
FCss

(%)
FCric

(%)
Errsimp

(%)
Errbham

(%)
c432 98.8410 98.8411 98.8040 98.8426 98.8426 0.0370 0.0371
c499 99.1963 99.1969 99.0648 99.1984 99.1984 0.1315 0.1321
c880 97.4635 97.5932 97.3863 97.5947 97.5947 0.0772 0.2069
c1355 99.3540 99.3958 99.1882 99.3973 99.3973 0.1658 0.2076
c1908 98.2257 98.4413 97.7378 98.4007 98.4428 0.4879 0.7035
c2670 82.2074 82.2079 82.0669 82.2092 82.2092 0.1405 0.1410
c3540 94.8831 94.9458 91.5697 94.9095 94.9472 3.3134 3.3761
c5315 99.2581 99.2645 99.2660 99.2660 99.2660 0.0079 0.0015
c6288 99.4578 99.4578 99.4566 99.4593 99.4593 0.0012 0.0012
c7552 93.0414 93.0653 93.0257 93.0667 93.0667 0.0157 0.0396

AveErrsimp = 0 4378%,^AveErrbh.84 = 0.4847%

Table 2.7: Fault Coverages for (16.8; 2,^, 2; 2048) MSA
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Circuit
Name

FCsini,p
(%)

FCbha84

(%)
FCrris

(%)
FCss

(%)
FC'n,

(%)
Errsimp

(%)
Errbha84

(%)
c432 98.8411 98.8411 98.8426 98.8426 98.8426 0.0015 0.0015
c499 99.1965 99.1969 99.1984 99.1984 99.1984 0.0019 0.0015
c880 97.5528 97.5932 97.5947 97.5947 97.5947 0.0419 0.0015
c1355 99.3716 99.3958 99.3973 99.3973 99.3973 0.0257 0.0015
c1908 98.3199 98.4413 98.3270 98.4007 98.4428 0.0071 0.1142
c2670 82.2078 82.2079 82.1493 82.2092 82.2092 0.0585 0.0586
c3540 94.9170 94.9458 93.9190 94.9095 94.9472 0.9980 1.0268
c5315 99.2610 99.2645 99.2553 99.2660 99.2660 0.0057 0.0092
c6288 99.4578 99.4578 99.4593 99.4593 99.4593 0.0015 0.0015
c7552 93.0568 93.0653 93.0667 93.0667 93.0667 0.0099 0.0014

AveErrsimp = 0 1152%,^AceE 'rbha84 ,--- 0.1218%

Table 2.8: Fault Coverages for (16, 4; 4,^, 4; 2048) MSA

Circuit
Name

FCsimp
(%)

FCbha84

(%)
FC,,,s

(%)
FCss

(%)
FCric

(%)
Errsimp

(%)
Errbha84

(%)
c432 98.8411 98.8411 98.8426 98.8426 98.8426 0.0015 0.0015
c499 99.1969 99.1969 99.1984 99.1984 99.1984 0.0015 0.0015
c880 97.5898 97.5932 97.5947 97.5947 97.5947 0.0049 0.0015
c1355 99.3903 99.3958 99.3973 99.3973 99.3973 0.0070 0.0015
c1908 98.4240 98.4413 98.2744 98.4007 98.4428 0.1496 0.1669
c2670 82.2079 82.2079 82.2092 82.2092 82.2092 0.0013 0.0013
c3540 94.9402 94.9458 94.9095 94.9095 94.9472 0.0307 0.0363
c5315 99.2637 99.2645 99.2589 99.2660 99.2660 0.0048 0.0056
c6288 99.4578 99.4578 99.4593 99.4593 99.4593 0.0015 0.0015
c7552 93.0639 93.0653 93.0667 93.0667 93.0667 0.0028 0.0014

AveErrsimp = 0 0206%,^AvcErrbha84 = 0.0219%

Table 2.9: Fault Coverages for (16, 2; 8, 8; 2048) MSA
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Circuit
Name

FCrnslk
(%)

FCmskl

(%)
432 98.8426 97.8781
499 99.1984 97.5284
880 97.5947 96.6667
1355 99.3973 98.4379
1908 98.4007 96.9171
2670 82.2092 81.4299
3540 94.9095 94.3870
5315 99.2660 99.0461
6288 99.4593 99.2393
7552 93.0667 92.7039

Table 2.10: Fault Coverage Comparison for (16,8; 1,^, 1, 9; 2048) MSA and (16,8; 9,1,
, 1; 2048) MSA

Circuit

Name
F Critslk

(%)
F C rnskl

(%)
432 98.8426 95.5633
499 99.1984 95.5244
880 97.5947 94.1667
1355 99.3973 96.1255
1908 98.4007 94.7075
2670 82.2092 78.6271
3540 94.9095 91.8229
5315 99.2660 96.3404
6288 99.4593 96.1965
7552 93.0667 89.9908

Table 2.11: Fault Coverage Comparison for (16, 4; 1. 1, 1,13; 2048) MSA, and (16,4; 13,
1, 1, 1; 2048) MSA
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Circuit
Name

FCmsik

(%)
FCrnskl

(%)
432 98.8426 88.3102
499 99.1984 86.5063
880 97.5947 85.1326
1355 99.3973 87.6753
1908 98.4007 85.3325
2670 82.2092 70.9158
3540 94.9095 82.9617
5315 99.2660 86.7837
6288 99.4593 86.6836
7552 93.0667 81.3381

Table 2.12: Fault Coverage Comparison for (16, 2;1,15; 2048) MSA and (16, 2; 15, 1;
2048) MSA

Circuit
Name

FCmsoi

(%)
FCm802

(%)
432 n/a n a
499 96.2926 96.4262
880 96.4015 96.5909
1355 97.2448 97.8352
1908 95.6860 95.9806
2670 80.8603 80.8828
3540 93.6813 94.3762
5315 98.7624 99.0674
6288 n/a n/a
7552 92.7601 92.7958

Table 2.13: Fault Coverages for (16,16;1,... , 1;2048;0; aliasing) MSA and (16,16;1,...,
1;2048;0; no aliasing) MSA. For c432 and c6288, no optimal schedulings are available
for n = 16 and 1 = 2048. This will be dicussed in chapter 3.
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Circuit FCrnsoi FCmso2

Name (%) (%)
432 98.6497 98.6883
499 98.4302 98.4302
880 96.9129 96.9886
1355 98.8315 99.0652
1908 97.0749 97.4432
2670 81.9169 82.0069
3540 91.4135 90.5839
5315 98.6809 99.0780
6288 n/a n/a
7552 92.8316 92.8904

Table 2.14: Fault Coverages for (16,8; 2,^, 2;2048; 0; aliasing) MSA and (16,8; 2, ...
, 2; 2048; 0; no aliasing) MSA. For 6288, no optimal schedulings are available for n = 8
and 1 = 2048. This will be discussed in chapter 3.

Circuit
Name

FCrnsol
(%)

FC„so2
(%)

432 98.7269 98.7269
499 98.9980 99.1984
880 97.5379 97.5379
1355 98.8684 98.9299
1908 98.3376 98.3376
2670 82.1193 82.1193
3540 92.9379 92.9379
5315 98.8759 98.9575
6288 99.4063 99.4328
7552 92.8520 92.9542

Table 2.15: Fault Coverages for (16,4:4.-1. 4.4:2048: 0; aliasing) MSA and (16,4;4,4
4,4;2048; 0; no aliasing) MSA
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Figure^2.8:^Fault^Coverage^Comparison^for^(16,8; 1,^, 1,9; 2048),
(16, 8; 9, 1, . , 1; 2048), and (16, 8; 2,^, 2; 2048) MSA
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Figure 2.9: Fault Coverage Comparison for (16,4; 1, 1, 1, 13; 2048), (16, 4; 13, 1, 1, 1; 2048),
and (16, 4; 4, .. . , 4; 2048) MSA
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Figure 2.10: Fault Coverage Comparison for (16,2; 1, 15; 2048), (16,2; 15, 1; 2048), and
(16,2; 8,... ,8;2048) MSA
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Circuit
Name

FCrnsol

(%)
FCm802

(%)
432 98.7655 98.7655
499 99.1650 99.1650
880 97.4432 97.4432
1355 98.3850 98.3850
1908 98.0430 98.0430
2670 82.0444 82.0444
3540 94.6563 94.6563
5315 98.9397 98.9397
6288 99.2896 99.2896
7552 92.7575 92.7575

Table 2.16: Fault Coverages for (16,2;8,8;2048; 0; aliasing) MSA and (16,2;8,8;2048;0;
no aliasing) MSA

of 40 trials, FCms is the same as FC,. In 11 out of the 40 trials, FCms is greater than

FC„. When n is large, FCms has a better chance to be less than FCss•

Fig. 2.17 presents the FC,, for the four experimental cases. From Fig. 2.17, we can see

that when n = 16 and n = 8, FC,„ for 71 = 16 is less than that for n = 8 for 9 out of the

ten circuits, i.e., except for circuit c3540. FC,„ for n = 4 is very close to that for n = 2.

2.5.4 Fault Coverage Loss Model Accuracy

The fault coverage loss model for a MSA scheme presented in Sec. 2.3 is:

FCL =FCL

E(Fi — Fi-011Pj

= E(Fi —^H2-ki•

— F71-1)9—(kn—l+k")^(F"
— Fn_2)9—(k11-2+kn-1+kn)
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(F2 - F1)2_ 2+..+k) F19-k. (2.41)

As we can see from Eqn. 2.41, if F1 = F2 = • • = Fn, then FCL = F7,2-k, which

is the model presented in [5]. In other words, the FCL model presented in Sec. 2.3 is

sensitive to the fault coverage before compaction for the CUT, but the model presented

in [5] is not. Given a signature scheduling, when the fault coverage before compaction for

the CUT increases slowly, the FCL model gives a better prediction. Given a signature

scheduling, when the fault coverage before compaction for the CUT increases rapidly,

the FCL model and the model presented in [5] give similar predictions.

Test Length (1/32)

Figure 2.11: Fault Coverage Before Compaction for c432, c499, c880, c1355, and c1908
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Test Length (1/32)

Figure 2.12: Fault Coverage Before Compaction for c2670, c3540, c5315, c6288 and c7552
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Figures 2.11 and 2.12 give the fault coverage before compaction for the ten ISCAS'85

benchmark circuits. As we can observe from the figures, the fault coverage before com-

paction for circuits c880, c1908 and c1355 increase relatively slowly. The fault coverage

before compaction for circuit c6288 increases most rapidly among the ten circuits. From

Table 2.6, the Errsimp's for c880, c1908, and c3540 are 0.0511%, 2.1351% and 0.4696%,

respectively, while the Errbh„84's for the three circuits are 0.2065%, 2.4291% and 0.5642%,

respectively. The differences between Errsimp and Errbh,84 for these three circuits are

significant comparing to the differences for other circuits. From Table 2.7, similar con-

clusion can be drawn. Since the fault coverage before compaction for c6288 increases

most rapidly among the ten circuits, from Tables 2.6-2.9 we can see that the Errsimp and

Errbh„84 are the same for all the four cases.
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Figure 2.13: Fault Coverage Errors for (a) (16, 16; 1, ... 1; 2048) MSA; (b) (16,8; 2, ... , 2;
2048) MSA
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Figure 2.14:^Fault Coverage Errors for (c) (16, 4; 4,^, 4; 2048) MSA; (d)
(16, 2; 8, 8; 2048) MSA



Q.) 95

0

85

100m̂

a, 95_
C3)

>.°) 90
0

▪ 85as

* n=16 and k=16; k1=...=k16=1
o n=1 and k=16; k1=k=16

Chapter 2. Multiple Signature Fault Coverage Loss Model^ 52

O

* n=16 and k=16; k1=...=k16=1
o n=1 and k=16; k1=k=16

80
c1^c2^c3^c4^c5^c6^c7^c8

(a) <n=16 and k=16> vs. <n=1 and k=16>

80
c1^c2^c3^c4^c5^c6^c7^c8

^
C9
^c10

(b) <n=8 and k=16> vs. <n=1 and k=16>

Figure 2.15: Fault Coverage Comparison for MSA and SSA: (a) (16,16;1,... ,1;2048)
MSA and (16,1;16;2048) SSA; (b) (16.8: 2 ,^ 9' 2048) MSA and (16,1;16; 2048) SSA
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Figure 2.16: Fault Coverage Comparison for MSA and SSA: (a) (16,4;4,...,4;2048)
MSA and (16,1;16;2048) SSA; (b) (16.2;8,8;2048) MSA and (16,1;16;2048) SSA
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2.6 Conclusions

A prediction model for fault coverage of multiple signature schemes has been presented

in this chapter. From the model and the experimental results presented in this chapter,

the following conclusions can be drawn:

• The fault coverage for multiple signature analysis based schemes is a function of

both signature scheduling and signature size associated with each signature ana-

lyzer. Hence, when designing a IVISA BIST scheme, the signature scheduling and

signature sizes need to be considered.

• When the fault coverage before compaction for the CUT increases slowly, the model

presented in this chapter gives better fault coverage loss prediction than the model

presented in [5]. When the fault coverage before compaction for the CUT increases

rapidly, the model presented in this chapter gives similar prediction as the model

in [5].

• When the total number of signature bits are fixed, on average the fault coverage

loss increases with the number of signatures.

• When both the total number of signature bits and the number of signatures are

fixed, the partition of D(1, 1, ... 1, k — n + 1) yields the smallest total aliasing.

• When the total number of signature bits is fixed, taking a single signature at the

end of the test on average gives the best fault coverage.



Chapter 3

Multiple Signature Fault Simulation Time Model

The complexity of fault simulation in terms of the CPU time and the memory require-

ments is known to grow at least as the square of the number of gates in the circuit [29].

For VLSI circuits this may be a serious limitation. However, research has been done on

methods of reducing fault simulation time [2][28][54]. Circuit structure oriented methods

take advantage of the characteristics of circuit structure to improve fault simulation time

[41] [36]. On the other hand, modeling-oriented methods use a fault simulation time

model dependent on the nature of the fault simulator, and apply an optimal algorithm

to reduce fault simulation time [31][33]. In [31] such a fault simulation time model was

presented. The fault simulation time model was used in a recursive relationship to de-

termine the optimal schedulings for MSA schemes. However, the fault simulation time

model in [31] did not take abasing into account. In this chapter, we present a fault

simulation time model for MSA schemes which takes abasing into account. With the

presented fault simulation time model, the relationship between optimal scheduling and

aliasing for MSA schemes can be discussed.

3.1 Preliminaries and Definitions

In this section, we introduce some definitions and briefly review some of the results

presented in [31].

56
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3.1.1 Basic Definitions

Definition 1: The detection constant T is the average simulation time per pattern and

per fault for a given fault simulation algorithm.

Definition 2: Full fault simulation Tf„ii is the process of fault simulation without fault

dropping, i.e., a fault is dropped from further consideration as soon as it is detected by

the fault simulator.

The full fault simulation time, Tfull, is:

Tfuti = UT,^ (3.42)

where 1 is the total number of test patterns applied to the CUT and f is the number of

faults simulated.

Definition 3: No compaction fault simulation To is the fault simulation process without

compaction but with fault dropping.

Definition 4: The first detection constant rd. is the average fault simulation time per

pattern to simulate one fault until it is detected for the first time.

The no compaction fault simulation time To is given by

To^rd^[1 — F(. )1dx^ (3.43)

Jo F

where F(x) denotes the fault coverage obtained after x patterns have been applied to

the CUT, and Td is the average time per pattern to simulate one fault until it is first

detected.
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Definition 5: Multiple signature compaction fault simulation is the fault simulation

process with multiple signature compaction and fault dropping.

The multiple signature compaction fault. simulation time, T , is:

7,1 (1 - F(0) (1i+1 - li)
^

(3.44)
i=0

n-1

^

= TdRin^— E F(ii)( ^-

^Td[l —^F(ii)(41 —

where 11,12,^, in are check points. Obviously, in equals 1 since the last signature is

checked at the end of the test.

3.2 Time Model

The fault simulation time model is a function of the fault simulation process. Different

fault simulation schemes will yield different fault simulation time models. The fault

simulation process used in this section is parallel pattern single fault propagation(PPSFP)

[55J[54].

3.2.1 Fault Simulation Time Model for Multiple Signature Analysis

Given a (k,n; kl, . , kn;^,in) MSA scheme. assume that the corresponding aliasing

probabilities for each signature analyzer are pi, p2,^, pn, respectively, and that the

corresponding fault coverage before data compaction is known to be F1, F2,..., Fn at the

check points. Let the total number of faults of interest be f. Initially, there are f faults

to be simulated during the segment [10, /1]. Hence, the fault simulation time FST during

the segment [lo, id is:

(3.45)
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where /0 = 0, 11 corresponds to the first check point.

Since a signature of length k1 is taken at check point 11, f(Fi. — FCL1) faults will have

been detected after the first signature is checked at check point 11, by Eqn. 2.17. That

is, f (Fi — FC Li) faults will be dropped after the first signature is checked at check point

11, and f(1 — FC Li) remaining faults will be simulated during the segment /2].

Therefore, the fault simulation time for the segment Eli, /2] is:

FST2 = fr(12 - 11)(1 - F1 + FCL1).^(3.46)

Similarly,^— FCLi_i faults will be detected after the (i _ i\th) signature is checked.

Only f(1 — FC L _1) faults need to be simulated during segment [4_1, lib and the

fault simulation time for the segment [li_1, 4] is

FSTi^fr(li —^— Fi_1+ FCLi),^i^1,2,...^(3.47)

The total fault simulation time, FST, needed after n signatures have been checked at

11,12,^, 4, check points is:

FST^FSTi

-1
fr{/9, —^(41 — /i)Fi^(41 — /i)FCLil.^(3.48)

i=1
The first component in Eqn. 3.48 represents the fault simulation time needed if only one

signature was checked at the end of the test. The second component represents the fault

simulation time saving due to the fact that multiple signatures are checked and hence

partial fault dropping can be performed. The last component represents the impact of

aliasing due to multiple signature analysis.

Eqn. 3.48 predicts fault simulation time with multiple signature analysis. The model

is based only on fault coverage before compaction and the aliasing characteristics of the

signature analyzers used.
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3.2.2 Normalized Fault Simulation Time Model

In Sec. 3.2.1, a fault simulation time model is given. The total number of faults in the

fault set, f, and the average simulation time per fault and per pattern required until a

fault is first detected, r, are used as parameters of the model.

Definition 6: The normalized fault simulation time is the ratio of the fault simulation

time to the product of the number of faults in the fault set f and the detection constant

r.

By Eqn. 3.48, the normalized fault simulation time ,lst, is:

F STi 
fT

f st

Substituting Eqn. 2.17 into Eqn. 3.49, we have

n-1^ n-1

fst =1, —^- oFi +^-^(F.; - Fj_1) JJ Pk.^(3.50)
i=1^i=1^ k=j

The normalized fault simulation model from Eqn. 3.50 predicts the fault simulation time

with multiple signature analysis, given the fault coverage at the check points before data

compaction and the aliasing characteristics of the signature analyzers. In Sec. 3.2.3,

experimental results to justify this fault. simulation model are presented.

3.2.3 Justification of the Normalized Fault Simulation Model

In Sec. 3.2.2, a normalized fault simulation time model is given. Here, the concept of

fault simulation time ratio is introduced to validate the normalized fault simulation time

model.
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Definition 7: Fault simulation time ratio FSTratio is the ratio of the FST for a

(k, n;^. • , km;^• • • , l) MSA scheme to the FST for a (k, no;^• • • , /ono;^• • • ,lno)

MSA. no can be arbitrarily chosen as long as no < k. Note that once we have selected no,

the FST for (k, no; k1,. . • , kno;11, • • • MSA becomes the standard, FST's for other

MSA schemes should compare with it.

FSTrajjo can be used as a measure of the accuracy of the fault simulation time model.

By defining FSTratio, we can avoid the problem of determining the detection constant T

as well.

Tables 3.17 and 3.18 report FSTrajo's calculated from the normalized fault simulation

time model presented in Eqn. 3.48 and FSTratio's calculated from the exact fault sim-

ulations. We chose the FST for k = 16 and no = 16 as the denominator of FSTraiio.

The ratios are calculated for the n 16. 71 = 8, n. = 4, and n = 2 cases. The "Pre-

diction" columns report the FST„tio's calculated from the normalized fault simulation

time mode, while the "Actual" columns report the FSTratio's calculated from the exact

fault simulation. From the results presented in Tables 3.17 and 3.18 we can see that the

normalized fault simulation time model in Eqn. 3.48 gives a relatively good prediction

of fault simulation time ratios.

3.3 Equidistant Scheduling & Even Partitioning MSA

One possible way to schedule a IVISA scheme is to separate the check points evenly. This

is called equidistant scheduling. Meanwhile, the easist signature bit partition is even

partitioning. This is called even partitioning. One of the advantages of an equidistant

scheduling and even partitioning MSA is its associated implementation simplicity. We

discuss the fault simulation time for a special case of equidistant scheduling and equal

partitioning.
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Circuit n Prediction Actual
c432 16 1.0000 1.0000

8 1.2655 1.1315
4 1.9425 1.7895
2 3.5635 3.3475

c499 16 1.0000 1.0000
8 1.2195 1.0689
4 1.7877 1.5354
2 3.2193 2.8128

c880 16 1.0000 1.0000
8 1.2535 1.2108

1.8849 1.8730
2 3.3919 3.4172

c1355 16 1.0000 1.0000
8 1.2389 1.1221
4 1.8459 1.6792
2 3.2975 3.0148

c1908 16 1.0000 1.0000
8 1.1625 1.0786
4 1.5996 1.4715
2 2.6802 2.5018

Table 3.17: This table lists the fault simulation time ratios for n = 16, n = 8, n = 4, and
n = 2. The preselected case is no = 16. The results are for the 5 ISCAS'85 benchmark
circuits c432, c499, c880, c1355, c1908. The third column is the fault simulation time
ratio calculated from the normalized fault simulation time model in Eqn. 3.48, and the
last column is the fault simulation time ratio calculated from the fault simulation results.
All the results are averages of three trials.
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Circuit n Prediction Actual
c2670 16 1.0000 1.0000

8 1.1650 1.0482
4 1.3712 1.3120
2 2.0143 1.9296

c3540 16 1.0000 1.0000
8 1.1159 1.2441
4 1.4440 1.4941
2 2.2915 2.2890

c5315 16 1.0000 1.0000
8 1.2428 1.0158
4 1.8776 1.3805

3.4028 2.4750
c6288 16 1.0000 1.0000

8 1.2548 1.0429
4 1.9713 1.6013
2 3.6630 2.9930

c7552 16 1.0000 1.0000
1.1912 1.1846

4 1.6607 1.6566
2 2.7789 2.7791

Table 3.18: This table lists the fault simulation time ratios for n = 16, n = 8, n = 4, and
n = 2. The preselected case is n o = 16. The results are for the 5 ISCAS'85 benchmark
circuits c2670, c3540, c5315, c6288, c7552. The third column is the fault simulation time
ratio calculated from the normalized fault simulation time model in Eqn. 3.48, and the
last column is the fault simulation time ratio calculated from the fault simulation results.
All the results are averages of three trials.
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Definition 8: Dual even MSA is a equidistant scheduling and even partitioning multiple

signature analysis scheme.

3.3.1 Number of Signatures vs. Fault Simulation Time

Assume that n signatures are checked, that the total number of signature bits is k, and

that 1 test patterns are applied to the CUT. For dual even signature analysis, n signatures

of length are checked at i, = 1,2, ... , n.

Example 1: Assume that the total number of signature bits k = 16 and that the

test length 1 = 2048. There are four possible dual even multiple signature analysis

combinations:

• n = 16, ki^k2^= ki6 = 1. /1 = 128, /2 = 256,^,^= 1920,46 = 2048;

• n = 8, k1 = k2 = . = ks = 2. 11 = 256, 12 = 512,...,l7 = 1792, 18 = 2048;

• n = 4, k1^k2= k3= k4 = 4. 14 = 512, 12 = 1024, 13 = 1536, 14 = 2048;

• n = 2, lc]. = k2 = 8. /1 = 1024, 12 = 2048.

Let FST(n,k,l) denote the fault simulation time for the case where dual even multiple

signatures are used with n signatures, k signature bits, and test length 1. Table 3.19 lists

the experimental results of fault simulation time for the above four dual even multiple

signature cases. The experiments were conducted on the ISCAS'85 benchmark circuits.

The results are averages of three trials. From the results of Table 3.19, we can see that

FST(16, 16, 2048) < FST(8,16, 2048) < FST(4, 20.48) < FST(2, 2048).
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Circuits n F ST(n, k, 1)(sec) Circuits n FST(n, k, 1)(sec)
c432 16 n/a c2670 16 681

8 12 8 725
4 19 4 915
2 36 9 1367

c499 16 21 c3540 16 778
8 23 8 1030
4 35 4 1276
2 65 2 2056

c880 16 48 c5315 16 1626
8 58 8 1983
4 85 4 3026
2 155 9 5624

c1355 16 103 c6288 16 n/a
8 116 8 n/a
4 173 4 4308
2 311 2 7934

c1908 16 180 c7552 16 3754
8 195 8 4448
4 264 4 6220
2 449 2 10434

Table 3.19: Fault simulation time for four dual even multiple signature analysis cases.
The total number of signature bits k = 16, test length 1 = 2048. Fault simulation timeis in cpu seconds on a SPARC 2 workstation.
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3.4 Optimal Scheduling of Multiple Signature Analysis

In [31], a backward dynamic programming based recursive relationship for fault simu-

lation time prediction is presented. It is used to determine the optimal scheduling of

signatures. In this section, a similar dynamic programming based recursive relationship

for fault simulation time is presented. Unlike [31], it takes into account the effect of

aliasing by using a forward, instead of backward, dynamic programming based recursive

relationship.

3.4.1 Recursive Relationship

We now present a recursive relationship to determine the optimal scheduling of j 1

signatures based on the optimal scheduling of j signatures. The recursive relationship is

derived via a dynamic programming approach [12].

Assume that we have 1 test vectors labeled 1, 2, ... , /. We need to find the minimal

fault simulation time Topt[q, j 1] when j+ 1 signatures are optimally scheduled between

vectors 1 and q, and the (j +1)th signature is scheduled at vector q. lithe jth signature is

optimally scheduled at vector Po, then Topt[q, j 1] is the summation of two terms. The

first term is the minimal fault simulation time Topt[po, j] when j signatures are optimally

scheduled between vectors 1 and po, and the jth signature is scheduled at vector po.

The second term is the fault simulation time FST[po, q] to simulate 1 — F(p0) FC Li

faults between vectors Po and q without fault dropping. The possible scheduling for the

ith signature is at vectors j,j 1, ... — 1. The scheduling for ith signature which

yields the minimal value among Topt[j , j] F ST[j. q], T„t[j + 1,j] F ST[j + 1, q], . .

Topt[q — 1,j] F ST[q — 1, q], is the optimal scheduling Po for the jth signature. The

minimal value is Tut [po, j] F ST[po, q], i.e., Topt[q, j + 1]. In summary:

q -1
Topt[q, j^1] = min{ Topt[p, j]^F ST[p, q]).

p=3
(3.51)
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This recursive relationship is illustrated by Fig. 3.18 To use the above recursive relation-

ship, we start with j = 1. • For j 1, Topt[q, 1] = FST[1,q], where 1 < q <1. The optimal

scheduling is at vector q. To calculate FST[q, l] for 1 < q < 1, we need to perform I

fault simulations. For j 2, Topt[q, 2] is the minimal value of Topt[p, 1] F ST[p, q] for

1 < p < q — 1, where 2 < q < l. The value of p which corresponds to the minimal

summation is the optimal scheduling for the first signature. The second signature is

scheduled at q. To determine Topt[q, 2] for each q E [2,1], we need q —I fault simulations.

Similarly, for j = 3, ... , n, we can determine Topt[q,i + 1] and the optimal scheduling for

the jth signature.

The algorithm to calculate optimal scheduling is summarized as follows. Let Popt[q, j 1]

denote the optimal scheduling for the jth signature between vectors 1 and q with the

(j +1)th signature scheduled at vector q. The pseudo-code of the algorithm is presented

in Fig. 3.18.

The computation complexity of the fin dopt algorithm is 0(7212), while the computation

/
complexity of an exhaustive algorithm would be^. When l >> n, the latter

Ti -

would be 0(/(n-1))^0(/').

3.4.2 Optimal Scheduling vs. Aliasing

In the algorithm from [31], no aliasing effect was taken into account. In Sec. 3.4.1,

we presented a forward dynamic programming based algorithm that considers aliasing.

With the effect of aliasing, some of the optimal schedulings move towards the starting

point of the test as shown in Fig. 3.20.

To measure the movement quantitatively, we need to define a delta scheduling vector.

Definition 9: The scheduling vector SV for a (k, n;^ MSA scheme



Topt[q,1] = ST[1,q]

Checkpoint

1

E
•1■1 FST[p,q] Drop

theront 1 Checkpoint 2

Detected
F

1

Chapter 3. Multiple Signature Fault Simulation Time Model^ 68

Test Patterns

(a) Taking one signature at the end of test q. The
optimal fault simulation time Topt[q,1] equals
the fault simulation time for a single signature
taken at the end of the test. q is in the range of
[1, I], where 1 is the total test length.

Test Patterns

(b) Taking two signatures, one is taken between vector
1 and q, the other is taken at the end of test q. The
p value which yields the shortest fault simulation
time is the optimal point for the first check point.
The range of q is [2,1], since the first signature
should be checked at least at vector 1.

.9,
g

E 8

Figure 3.18: Optimal Scheduling of the First Signature of two signatures
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findopt(Fi,n,k,I,FCLi).
for(q=1 to 1) do

T0pt[q,1] = FST[q,1];
endfor
for(j=1 to n-1) do

for(q=j-1-1 to 1) do
tmpmin = 99999999; /* temporary storage */
for(p,j to q-1) do

Topt[q, 1 + 1] = Topt[p, j] + (1 — Fp + FCLi)(q — p);
if(tmpmin > Topt[q,i 1]) then

trnp,,„r, = Topt[q,^1];
Po = P;

endif
endfor
Popt[q,i + 1] = Po;
Topt[q, j^1] = tmp„ii„;

endfor
endfor

endfindopt

Figure 3.19: Optimal Scheduling Algorithm
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c1355 k=16 n=16
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Figure 3.20: This figure presents the movement of optimal scheduling positions when
aliasing is taken into account. The horizontal axis represents the test vectors. The
vertical axis represents the numbering of signatures, e.g., value i in the vertical axis
represents the ith signature.
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is the vector (4,12, , ln). The delta scheduling vector (5SV is the difference between

the SV for an optimal scheduled MSA SV with aliasing taken into account and the

SV for an optimally scheduled MSA without aliasing taken into account. The optimal

scheduling for a MSA is obtained using the algorithm shown in Figure 3.19.

Tables 3.20 and 3.21 list the SV's with abasing for 1/ = 16, n = 8, n = 4, and n = 2. The

signature partitioning is even signature partitioning and the total number of signature

bits is 16. Since we use a PPSFP fault simulator with 32 parallel patterns, the earliest

scheduling of signatures is at test vector 32. From Tables 3.20 and 3.21, we can see

that the check points for the first signature is always at 32. The reason is that the first

signature should be checked at a very early stage of the test so that a big portion of

modeled faults can be dropped early. If we used a non-parallel pattern fault simulator,

the first check point could be at a test vector earlier than 32. Some of the scheduling is not

available for some circuits with n = 16 and/or n = 8. This is due to the constraint we put

for searching for the optimal scheduling. The constraint is that the check points have to

be scheduled at a test vector on which at least one more fault has been detected compared

to the previous check points. If such points are less than the number of signatures n,

then there isn't an optimal scheduling for the given n.

Tables 3.22 and 3.23 report the 6SV's and the average SV's for the ten ISCAS'85

benchmark circuits. The average 6SV equals to the summation of all the elements of the

6SV divided by the dimension of the 6SV. For example, if 6SV = (0,0,0,0,0,32,384,0),
(0+0+0+0+0+32+384+0) -the average 6SV _ 02. The average 6SV gives a measure on the

8

overall movement of the optimal scheduling. The SSV's in Tables 3.22 and 3.23 are all

positive, i.e., the optimal schedulings with abasing move towards the starting point of

the test compared to that without abasing. When 71 increases, the movements become

more significant for most of the circuits. When n decreases, the movements become less
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Circuit n SV (with alia,sing)
c432 16 n/ a

8 32, 64, 96, 128, 160, 224, 448, 2048
32, 64, 128, 2048
32,2048

c499 16 32, 64, 96, 128, 160,192, 224, 256,
288, 320, 352, 384, 480, 512, 704, 2048

8 32, 64, 96, 128, 192, 288,480, 2048
4 32, 96, 192, 2048
2 32,64

c880 16 32, 64, 96, 128, 160, 192, 224, 256,
288, 320, 352, 384, 480, 640, 864, 2048

8 32, 64, 96, 128, 224,320,480, 2048
4 32, 128, 384, 2048
2- 32, 2048

c1355 16 32, 64, 96, 128, 160, 192, 224, 256,
288, 320, 352, 416, 512, 704, 1088, 2048

8 32, 64, 96, 128, 288,448; 704, 2048
4 32, 96, 384, 2048

32, 2048
c1908 16 32, 64, 96, 128, 160, 192, 224, 256,

288, 384,544, 704, 928, 1344, 1696, 2048
8 32, 64, 96, 224, 512, 736, 1248, 2048
4 32, 128. 736, 2048
2 32, 2048

Table 3.20: Optimal Scheduling of Signatures for c432, c499, c880, c1355, c1908 for MSA
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Circuit n SV (with aliasing)
c2670 16 32,64,96,128,160,192,224,256,

288,320,384,448,480,544,672,2048
8 32,64,96,128,160,224,384,2048
4 32,96,384,2048
2 32,2048

c3540 16 32,64,96, 128,160,192,224, 256,
288,320,352,448,544,672,1120,2048

8 32,64,96,160,352,576,1120,2048
32,160,512,2048

2 32,2048
c5315 16 32, 64, 96, 128, 160, 192, 224, 256,

288, 320, 352, 384, 416, 512, 832, 2048
8 32,64, 96, 128, 160, 288,512, 2048
4 32,96,352,2048
2 32,2048

c6288 16 n/a
8 n/a
4 32, 64, 96, 2048
2 32,2048

c7552 16 32,64,96,128,160,192,224,256,
288,320,352,384,512,640,1088,2048
32,64,96,128,160,288,640,2048

4 32,96,280,2048
2 32,2048

Table 3.21: Optimal Scheduling of Signatures for c2670, c3540, c5315, c6288, c7552 for
MSA.
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Circuit n SSV Average 6SV
c432 16 n/ a n/ a

8 0, 0, 0, 0, 0, 32, 384, 0 52
4 0,0,0,0 0
2 0,0 0

c499 16 0,0,0,0, 32,32,32, 64,64,
64,64,128,128,128,192,64,0

60

8 0,0,0,0,0,0,0,0 0
4 0,32,128,0 40
2 0,0 0

c880 16 0, 0, 0, 0, 0, 32, 32, 32,
32,64,128,160, 160, 224,96, 0

60

8 0, 0, 32, 96, 96, 64,160, 0 56
4 0,0, 0, 0 0
2 0,0 0

c1355 16 0, 0, 0, 0, 32, 32, 64, 96,
128,192,256,288, 256,384,320, 0

128

8 0, 0, 32,160, 128, 256,384, 0 120
4 0, 32, 32, 0 16
2 0,0 0

c1980 16 0, 0, 0, 0, 64, 96, 160, 288
384,352,384,416,320,128,128,0

170

8 0,32,192,320, 224,384,448,0 200
4 0,96,0,0 24
2 0,0

Table 3.22: Delta scheduling vectors (SV for circuits c432, c499, c880, c1355, c1908.
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Circuit n SSV Average SSV
c2670 16 0, 0, 0, 0, 0, 0, 0, 0,

0,0,0,32,64,128,64,0
18

8 0,0,0,32,64,160,288,0 68
4 • 0,0,0,0 0
2 0,0 0

c3540 16 0, 0, 0, 0, 0, 0, 64, 96
200,192,320,480,640,736,608,0

208

8 0,0,0,0,0,64,64,0 16
4 0,0,0,0 0
2 0,0 0

c5315 16 0, 0, 0, 0, 0, 0, 0, 32,
64,96,160,256,416,416,448,0

118

8 0, 0, 0, 32, 128, 128, 320, 0 76
4 0,32,0,0 8
2 0,0 0

c6288 16 n/a n/a
8 n/a n/a
4 0,64,256,0 80
2 0,0 0

c7552 16 0, 0, 0, 0, 0, 0, 0, 0,
32,64,160,256.332,448,352,0

104

8 0,0,0, 32.96,96,0,0 98
4 0, 32, 104, 0 34
2 0,0 0

Table 3.23: Delta Scheduling Vectors 8SV for c2670, c3540, c5315, c6288, c7552
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significant, and even becomes zero for n = 2. The most significant average movement

occurs for the circuit c3540 when n = 16, and the average movement is 208 vectors.

3.4.3 Fault Simulation Time vs. Scheduling

From Eqn. 3.48, the fault simulation time FST is a function of signature scheduling,

signature bit partitions, number of signatures and test length. We next briefly discuss

this relationship for three special cases:

1. Optimal scheduling with aliasing taken into account;

2. Optimal scheduling without aliasing taken into account;

3. Dual even MSA.

The second case is equivalent to the case discussed in [31] except that the check points

are confined to multiples of 32 test vectors.

Tables 3.24 and 3.25 report fault simulation time savings compared to the fault simulation

time for single signature of size 16 taken at the end of the test. All the fault simulations

are conducted on a SPARC 2 workstation. The table entry is the average of three trials.

fstsa, denotes the fault simulation time saving in the case of optimal scheduling with

aliasing taken into account, fsts' denotes the fault simulation time saving in the case

of optimal scheduling without aliasing taken into account, which is the case discussed

in [31], and fstesci, denotes the fault simulation time saving in the case of equidistant

scheduling.

According to the results listed in Table 3.24 and 3.25, we can draw the following conclu-

sions:
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Circuit n f st say (%) f st's,,,(%) f stL,(%)
c432 16 n/a n/a n/a

8 95.25 95.09 83.57
4 94.35 94.29 73.96
2 72.29 72.29 50.59

c499 16 90.88 91.16 84.01
8 93.45 93.26 82.60
4 90.27 91.85 73.77
2 58.62 58.62 50.66

c880 16 91.02 91.23 84.00
8 91.71 91.85 80.50
4 89.42 89.42 71.37
2 58.62 58.62 48.05

c1355 16 90.44 90.90 83.23
8 91.53 91.98 81.18
4 88.99 89.19 71.84
2 54.18 54.18 49.43

c1908 16 84.03 84.30 78.50
8 84.88 84.06 76.81

83.09 81.13 68.84
2 39.53 39.53 46.22

Table 3.24: Comparisons of fault simulation time saving for (i) optimal scheduling with
aliasing taken into account; (ii) optimal scheduling without aliasing taken into account;
(iii) equidistant scheduling. Note that f, ,Sisav < f 81'sav in some cases. This is because that
the FCL model under or over estimating the fault coverage loss in those cases. Results
for ISCAS'85 benchmark circuits c432, c499, c880, c1355, c1908 are presented.
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Circuit n fsts„,(%) ists'av(%) MLA)
c2670 16 76.87 76.58 70.03

8 77.65 77.96 68.07
4 76.47 76.15 59.17
2 30.18 30.18 39.83

c3540 16 85.10 85.42 78.96
8 81.75 81.31 72.14
4 79.83 79.90 65.49
2 32.83 32.83 44.38

c5315 16 90.41 90.42 84.59
8 89.58 89.35 81.21
4 82.12 86.08 71.36
2 77/a n/ a n/a

c6288 16 77/a n/a n/a
8 n/a n/a n/a
4 95.92 95.99 70.91
2 37.94 37.94 46.42

c7552 16 86.86 86.80 79.84
8 86.91 86.98 76.11
4 84.45 84.38 66.60
2 17.28 n/a 46.93

Table 3.25: Fault simulation time saving results for the ISCAS'85 benchmark circuits
c2670, c3540, c5315, c6288, c7552.
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1. With the PPSFP fault simulator, optimal scheduling yields 70 — 90% fault simula-

tion time saving compared to the fault simulation time of a single signature taken

at the end of test.

2. Optimal scheduling gives better fault simulation time than the case where no opti-

mal scheduling is performed regardless of whether abasing is taken into account or

not. With the PPSFP fault simulator, optimal scheduling yields an average of 7%

more savings than equidistant scheduling for the case with aliasing.

3. Although aliasing has some impact on the optimal scheduling, the impact in terms

of fault simulation time is not significant.

3.5 Fault Coverage Loss vs. Fault Simulation Time

Using the fault coverage loss model given by Eqn. 2.17 and the normalized fault simu-

lation time model captured by Eqn. 3.49, we can discuss the relationship between fault

coverage loss and fault simulation time. We need to use the normalized fault simulation

time model presented in Eqn. 3.48 here. The equation is rewritten as:

n-1

fst = in — — li)Fi _ li)FCLi. (3.52)

The second term is only a function of check points and F. The third term is a function

of check points and FCLi. FCLi is a function of F , the checkpoints, and signature

bit partitions. An example is given next to illustrate the relationship between fst and

FCL. The relationship can be used to determine 11 and kis for a MSA scheme given the

following conditions:

1. The FCL for the MSA scheme is less than a FCL threshold.

2. The hardware cost should be minimized.
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Example 2: We arbitrarily choose one of the ISCAS'85 benchmark circuits c1355 as an

example. The test length used in the example is 2048. Table 3.26 gives the fault coverage

data before compaction for c1355.

test length fault coverage(%)
128 88.3026
256 92.2017
384 93.6285
512 94.8831
640 96.0640
768 97.0480
896 97.4662
1024 97.9828
1152 98.4625
1280 98.6470
1408 99.0283
1536 99.0898
1664 99.3358
1792 99.3358
1920 99.3973
2048 99.3973

Table 3.26: Fault coverage data before compaction for c1355 circuit.

The signature scheduling used in this example is equidistant scheduling and the signature

bit partitions are even partitions. We discuss the fault simulation time and fault coverage

loss for the following four cases.

• n = 16, 2048 = 1 16
16

• n = 8, 1, = i 4( 2048 , s.8

• n =__ 4, i_^* , = , 4.20448

• n = 2,=^* 2048^•
= 1,2.2



Chapter 3. Multiple Signature Fault Simulation Time Model^ 81

Using the fault coverage loss model from Eqn. 2.17, and using the fault coverage data

before compaction listed in Table 3.26, we calculate the fault coverage losses for the total

number of signature bits k = 16,32, 64,128 for the four cases. The results are shown in

Fig. 3.21 and Table. 3.27.

k n FCL(%)
16 16 0.046318

8 0.043996
4 0.025748
2 0.007020

32 16 0.004979
8 0.004924
4 0.001218
2 3.293386e — 10

64 16 2.440702e — 04
2.440146e — 04

4 4.692333e — 06
2 7.668017e — 20

128 16 9.384729e — 07
8 9.384722e — 07
4 7.159540e — 11
2 4.156841e — 39

Table 3.27: FCL vs. k and n for c1355.

Suppose that we need to design a MSA scheme. We require that the FCL of the MSA

scheme is at most equal to the FCL of a k-bit (e.g., k = 16) SSA scheme, i.e., we need

to choose the fault coverage threshold such that,

FCL < (FC„ at vector2018) * 2-k
^

(3.53)

(FC„, at cector204S)* 9- 16

= 0.001516(%).
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By looking at Fig. 3.21 and Table 3.27, we can see that the following cases satisfy the

condition in Eqn. 3.54:

• When k = 16, none of the signatures satisfy the condition given in Eqn. 3.54.

• When k = 32, n = 4 and n = 2 would satisfy the condition given in Eqn. 3.54. n

2 partition will give a better fault coverage than n = 4 partition, but n = 4 partition

will yield shorter fault simulation time from the simulation results presented in

Tables 3.24-3.25.

• When k = 64, n = 16, n = 8, n = 4 and n = 2 will all satisfy the condition given in

Eqn. 3.54. From the simulation results presented in Tables 3.24-3.25, and analysis

presented in chapter 2, the n = 2 partition will give the highest fault coverage

among these four case, but the longest fault simulation time, and n = 16 will give

the fastest fault simulation time among these four cases, but will give the lowest

fault coverage.

• Whenk = 128: n = 16, n = 8, n = 4 and 11 = 2 will all satisfy the condition given

in Eqn. 3.54. n = 2 partition will give the highest fault coverage comparing to that

for n = 16, n = 8, and n = 4. However the n = 2 partition will yield the longest

fault simulation time. The n = 16 will give the shortest fault simulation time, but

will yield the lowest fault coverage.

When designing a MSA scheme, we need to consider (i) required fault coverage, (ii)

hardware overhead, (iii) fault simulation time. By giving the fault coverage threshold

in Eqn. 3.54, we set up the minimum acceptable fault coverage. Among some possible

choices, there are 10 out of 16 cases where the fault coverage is higher than the minimum

acceptable fault coverage. We need to design a test scheme that minimizes hardware over-

head and fault simulation time, and yet. satisfy the minimum acceptable fault coverage
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condition.

To obtain the shortest fault simulation time, we need n as large as possible. So, we select

n = 16. There are only two choices that remaining, k = 64, n = 16 and k = 128, n = 16.

Both choices satisfy the condition in Eqn. 3.54, but k = 64, n = 16 gives less hardware

overhead. Therefore, the best choice is k = 64, n = 16, i.e., checking 16 4-bit signatures.

Figure 3.21: Fault Coverage Loss vs. k and n. The horizontal axis represents the number
of signatures n, the vertical axis represents the logarithm of fault coverage loss.
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3.6 Conclusions

A fault simulation time model which takes into account the aliasing effect of signature

analyzers was developed in this chapter. There are at least two ways to schedule mul-

tiple signature analysis: (i) equidistant check points and (ii) optimally scheduled check

points. In this thesis, we have discussed these cases. For the equidistant scheduled mul-

tiple signatures, for fixed k, the fault simulation time decreases as n increases. For the

optimally scheduled multiple signature analysis, aliasing affects the optimally scheduled

check points slightly, but according to the experimental results, the impact on the fault

simulation time is generally less than 5%. Thus, aliasing effects when finding the optimal

scheduling check points can be ignored.
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Conclusions

The fault coverage model for multiple signature analysis (MSA) proposed previously in

this thesis allows us to predict the fault coverage for MSA more accurately than the

existing model derived from the assumption of equally likely error model especially for

large circuits. With the model, some interesting conclusions towards MSA can be drawn

and the conclusions are supported by fault simulation results. Furthermore, the model

can be used to aid the design of MSA schemes.

The fault coverage model for MSA developed in this thesis leads to the following con-

clusions. First, fault coverage for MSA schemes is a function of both checked points

scheduling and the signature lengths. Second, when the total number of signature bits is

fixed, aliasing increases when the number of signatures increases. Third, when both the

total number of signature bits and the number of signatures are fixed, the signature bit

partition of lc, k2 kn-1 — 1, kr, k — n + 1 yields the smallest aliasing.

The fault simulation time model developed in this thesis takes the aliasing effect of

signature analyzers into account. Two ways to schedule multiple signature analysis are:

(i) schedule the multiple signatures at equidistant check points, (ii) schedule the multiple

signatures at optimally scheduled check points. For the equidistantly scheduled multiple

signatures, fault simulation time decreases as the number of signatures increases for a

given total number of signature bits. For the optimally scheduled multiple signature

analysis, aliasing affects the optimally scheduled check points slightly, but the impact on
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the fault simulation time is generally less than 5% according to the experimental results.

Therefore, aliasing has negligible effects on finding the optimal scheduling check points.

If we only need to find the optimal scheduling check points for a MSA scheme, we can

use the fault simulation time model developed in [31].

4.0.1 Future Work

The basic ideas used in this thesis to develop the fault coverage prediction model for

multiple signature based schemes can be used to analyze other multiple compaction

schemes, such as multiple one's counting schemes, multiple partial syndrome schemes,

and even the hybrid multiple compaction schemes such as simultaneous signature and

syndrome compaction [44].
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