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Abstract

The objective of this thesis is the investigation of image formation from squint mode, strip-

map synthetic aperture radar (SAR) data, and the extension of the recently developed chirp

scaling algorithm to accommodate problems in this type of imaging. In squint mode SAR,

the antenna is pointed forward or backward of the perpendicular position used in conventional

SAR, allowing different azimuth viewing angles of the surface. Squint mode has been used

previously in spotlight SAR imaging, but signal characteristics and efficient signal processing

for a spaceborne, strip-mapping squint mode SAR have not been thoroughly understood.

Several SAR processing algorithms are reviewed and analyzed to compare their processing

errors at high squint and the type of operations they require. This includes the range-Doppler,

squint imaging mode, polar format, wave equation and chirp scaling algorithms. In contrast

to other algorithms, the chirp scaling algorithm does not require an interpolator in either the

two-dimensional frequency domain or the range-Doppler domain, and it removes the range

dependence of range cell migration correction (RCMC) efficiently by taking advantage of the

properties of uncompressed linear FM pulses. Also, it achieves accurate processing for mod

erate squint angles by accommodating the azimuth-frequency dependence of secondary range

compression (SRC).

Next, the properties of the squinted SAR signal are investigated to determine their effect

on processing. A solution is presented for the yaw and pitch angles of the antenna which

minimize the Doppler centroid variation with range and terrain height. The residual variation

for a satellite platform is found to be negligible for an L-band SAR, while for C-band the

variation was moderate and some accommodation in processing may be required. Then, the

squinted beamwidth, which determines the azimuth bandwidth, is derived, and it is shown that

choosing the yaw and pitch angles to minimize Doppler centroid variation results in an azimuth
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bandwidth that is independent of range. The resulting azimuth bandwidth and pulse repetition

frequency (PRF), as a function of squint angle, is used to derive a fundamental limit on the

squint angle such that a received echo fits between adjacent transmitted pulses. For spaceborne

SAR. and a 40 km slant range swath, the squint angle is limited to about 35 degrees for L-band,

and 50 degrees for C-band.

The chirp scaling algorithm is then investigated by analysis and simulation, and extended

for processing high squint SAR data. The side-effects of chirp scaling include a range dependent

range-frequency shift which may result in a loss of range bandwidth if frequency components

are allowed to be shifted outside the window of the range matched filter.

The original chirp scaling algorithm approximates the range dependence of RCMC by as

suming a constant B parameter in the distance equation for an orbital geometry. This causes

a noticeable degradation in the point spread function for squint angles above about 15 degrees

for L-band and 30 degrees for C-band. To provide accurate RCMC at high squint angles in an

orbital geometry, the chirp scaling algorithm is extended so that the range dependence of the

B parameter is accommodated in RCMC, by including a higher order term in the chirp scaling

phase function.

Finally, the original chirp scaling algorithm neglects the range dependence of SRC, and this

affects the quality of processing for squint angles above 10 degrees for L-band and 20 degrees for

C-band. To solve this problem, the concept of nonlinear FM chirp scaling is introduced, in which

a nonlinear FM component is incorporated into the received range signal which interacts with

chirp scaling to remove the range dependence of SRC. This allows accurate processing of strip

map SAR data for squint angles up to the limitations imposed by the SAR imaging constraints.

Two methods of nonlinear FM chirp scaling are introduced. The nonlinear FM filtering method

introduces the nonlinear FM component by an extra filtering step during processing, and is more

accurate. The nonlinear FM pulse method incorporates the component into the transmitted

pulse, thus requiring no extra computation, although it is slightly less accurate. The processing

errors of both methods are analyzed and the expected performance is verified by the processing
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of simulated point scatterer data. In addition, conventional spaceborne SAR data from Seasat

was skewed to emulate the signal from a high squint SAR, and processed with the original chirp

scaling algorithm and the nonlinear FM chirp scaling algorithm. The resulting images show the

improvement in range resolution with nonlinear FM chirp scaling.
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Chapter 1

- Introduction

1.1 Background

1.1.1 SAR in Remote Sensing

Synthetic aperture radar (SAR) is a technique for creating high resolution images of the earth’s

surface. The data for a SAR image are collected by an aircraft or satellite with a side-looking

antenna, which transmits a stream of radar pulses and records the backscattered signal corre

sponding to each pulse. The received echoes are arranged in a rectangular format, with one

dimension being the pulse transmission time (along the flight track) and the other being the

delay time within an echo (cross track). This two-dimensional data set is then processed to

form an image. Since the moving antenna beam covers a strip of the earth’s surface, this type

of SAR imaging is referred to as strip-map SAR.

A SAR image represents the backscatter of microwave energy over the area of the surface

being observed, and this in turn depends on properties of the surface such as slope, roughness,

inhomogeneities, and dielectric constant [1]. These dependencies allow SAR imagery to be used

in conjunction with models of the scattering mechanism to measure various characteristics of

the earth’s surface. Also, an important aspect of SAR is that it is an active microwave sensor.

That is, it transmits its own energy in order to receive the backscatter, as opposed to passive

sensors which receive either the earth’s radiation or the reflected illumination from the sun.

Another advantage is the ability of microwaves to penetrate cloud cover. Overall, the ability to

form images day or night and in a variety of weather conditions makes SAR a valuable remote

sensing tool.

There are many applications of SAR imagery in the physical sciences. In oceanography, for
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Chapter 1. Introduction 2

example, images are analyzed to determine the direction and wavelength of ocean waves. Also,

in polar regions, SAR imagery can be used to distinguish between first-year ice and multi-year

ice, which is important for navigation. Geological applications include the classification of rock

type based on surface roughness, and the determination of large scale structural features. In

vegetated areas, the scattering mechanism depends on plant type and density, so that SAR

imagery can be applied to crop classification and the monitoring of deforestation. For an

overview of applications and for references, see [1] and [2].

The first spaceborne SAR was launched on the Seasat satellite by NASA in 1978. This

was followed by the shuttle imaging radar missions, SIR-A, SIR-B and SIR-C, in 1981, 1984

and 1994 respectively [3]. These missions demonstrated the usefulness of SAR as a remote

sensing tool, and inspired much interest in SAR around the world. There are currently two

satellites in orbit with SAR capability: the European Space Agency’s Earth Resources Satellite

(E-ERS-1) launched in 1991 [4], and Japan’s J-ERS-1 launched in 1992 [5]. Also, the Canadian

Space Agency is expected to launch it’s Radarsat satellite in 1995 [6]. Finally, in addition to

spaceborne platforms for SAR, airborne SAR’s are commonly flown in several countries.

Current SAR systems are being designed to obtain images at multiple wavelengths, polar

izations, and incidence angles [7]. This allows more information to be extracted from SAR

imagery because the scattering mechanisms are sensitive to these parameters. Another recent

development is the emergence of applications of SAR imagery which make use of the phase of

the image pixels. For example, the phase difference between images obtained using different

polarizations can be related to scene properties [8]. Also, in interferometric SAR, the phase

difference between images obtained at slightly different viewing angles can be related to terrain

height [9]. As the applications of SAR imagery become more sophisticated, the accuracy and

calibration of the images become more important. Thus, it is important that the processing of

the SAR data is done accurately throughout the image.
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1.1.2 SAR Processing

In the scene being imaged, the dimension along the flight path is referred to as azimuth, and

the dimension perpendicular to the flight path is referred to as range. Resolution in the range

direction is achieved by transmitting a large bandwidth pulse. To improve signal to noise ratio,

a long phase-encoded pulse such as a linear FM chirp is transmitted, and the received signal

is compressed in the range dimension by means of a matched filter [10, 11]. Without further

processing, the azimuth resolution would be limited to the beamwidth of the antenna. To

see how azimuth resolution can be improved, consider the signal received from a single point

scatterer. The moving platform is in a different position at each time a pulse is transmitted and

received. (Since the speed of light is much greater than the platform velocity, it is assumed that

transmission and reception of a pulse take place at the same azimuth position.) If the received

signal is coherently demodulated, then the phase of the received echoes will vary with respect

to azimuth position in a predictable manner. To compress the data in the azimuth direction,

this phase variation can be matched, and the received echoes can be processed like elements

in a phased array [12, 13]. The length of this synthesized array — called the aperture — is

determined by the amount of time the scatterer is covered by the antenna beam.

Processing is complicated by the fact that the distance to the point scatterer can vary over

the aperture by more than the range resolution. This is called range cell migration. Thus,

in order to form the synthesized array for a point scatterer, the data values along the range

migration curve need to be interpolated. Performing this operation for every point in the image

amounts to a two-dimensional correlation of the data with the signal that would be received from

a point scatterer — the point scatterer response. Also, because the point scatterer response

depends on the scatterer’s location in the range direction, this correlation must be range

variant. The aperture for a spaceborne SAR can be several thousands of samples long, so that

a direct time-domain implementation of this correlation is very computationafly expensive.

The objective of SAR processing algorithms is to make suitable approximations to the exact

correlation, so that images can be formed efficiently, but without noticeable degradation in
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image quality.

In conventional SAR, the antenna is pointed perpendicular, or broadside, to the flight path.

In this case the range migration is small enough for the point scatterer response to be nearly

in line with the azimuth direction in the signal data. As a result, approximations to the

exact correlation can be made which allow processing to be done in the azimuth-frequency and

range-time domain [14], [15]. This domain is a natural one for SAR, since the instantaneous

azimuth-frequency (or Doppler frequency) of the signal varies with the scatterer’s position

within the antenna beam. In this sense, SAR processing can be thought of as using the range-

time delay and the Doppler history of a scatterer in order to locate its position in the image.

The ability to operate in the azimuth-frequency domain greatly simplifies processing, because

of the availability of computationally efficient Fast Fourier Transform (FFT) techniques. Also,

the range-time domain allows for range-variant implementation of azimuth compression and

range cell migration correction.

In most SAR processing algorithms, however, the range-dependent interpolation required

in range cell migration correction is difficult to implement, and truncation of the interpolation

kernel causes a loss of range resolution and introduces artifacts into the image [16]. Recently, an

algorithm has been proposed which avoids this problem [17], [18], [19]. This algorithm, called

chirp scaling, makes use of the linear FM property of the transmitted pulses in order to scale

the range time axis at each azimuth frequency. This is done to remove the range-dependence of

range cell migration correction, so that the bulk of the correction can then be performed in the

two-dimensional frequency domain. Thus, the chirp scaling algorithm provides more accurate

processing while requiring only multiplication and FFT operations.

1.1.3 Squint Mode SAR

The squint angle is the angle by which the antenna is pointed forward or backward from the

broadside position. In conventional SAR, the squint angle due to antenna pointing errors

or earth rotation is less than four degrees. In squint mode SAR, however, the antenna is
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deliberately pointed forward or backward by as much as several tens of degrees. Squint mode

has previously been used in airborne platforms in conjunction with a type of SAR imaging

called spotlight SAR, in which the antenna is continuously steered to point at a fixed, small

area on the ground. Algorithms for processing spotlight SAR data, based on polar formatting,

can be used for high squint [20, 21, 22]. However, their application to strip map SAR data,

in which the squint angle is held fixed while collecting data from a large area, is difficult and

inefficient [23].

While strip-mapping squint mode is not currently used in spaceborne remote sensing SARs,

it has the potential to allow more information to be extracted from SAR imagery. Multiple look

angles in the azimuth direction enables the measurement of the azimuthal angle dependence of

backscatter, which would provide information about surface structure. Also, the ability to form

images from different viewing angles would aid in the interpretation of SAR imagery of complex

terrain [3]. Another possible application of squint is in beam coverage. By utilizing the squint

and elevation angles of the antenna, areas of the earth’s surface could be imaged within a single

sateffite pass that could not be covered with a conventional SAR geometry. However, before

squint mode SAR can become practical in a remote sensing context, the efficient processing

of strip-map SAR data acquired with a large squint angle needs to be better understood. For

remote sensing SARs, the approximations used in conventional SAR processing algorithms be

come invalid as the squint angle increases, leading to a degradation in image quality. This effect

becomes more noticeable at even moderate squint angles when the application of the imagery

places very demanding requirements on the accuracy of the processor. Thus, by investigating

the processing of squint mode SAR data, improvements can be made in processing accuracy

and efficiency that will benefit strip-map SAR processing in generaL Also, the investigation

of SAR imaging in the context of squint mode allows for a more general understanding of the

properties of the SAR signal.

Processing problems arise from the fact that with a large squint angle, the range migration

becomes very large, so that the point scatterer response follows an oblique trajectory in the
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two-dimensional data set. This causes higher order range-azimuth coupling terms to become

significant in the phase of the two-dimensional Fourier transform of the point scatterer response.

Thus the approximations that are used by conventional SAR processing algorithms lead to

significant degradations in the image. For moderate squint angles, processing can be improved

by performing some steps in the two-dimensional frequency domain [17], [24]. However, this

neglects the range-dependence of the coupling terms, which can cause significant degradation

in the image at higher values of squint. Among the algorithms that perform some steps in the

two-dimensional frequency domain, the chirp scaling algorithm makes use of a novel technique

to remove the range dependence of range cell migration correction. This algorithm has the

potential to process high squint SAR data, especially if the chirp scaling technique can be

extended to accommodate other range-dependencies in SAR processing. Such extensions include

the use of different types of transmitted pulses or filtering steps during processing that may

affect chirp scaling. The properties and limitations of this relatively new algorithm need to be

fully understood.

1.2 Thesis Objectives

The problem addressed in this thesis is the accurate processing of strip-map SAR data, ac

quired in squint mode from a spaceborne platform. In addition, the chirp scaling technique is

investigated to determine how it can be used to solve problems in processing high squint data.

The objectives of this thesis can be summarized as follows:

• Review the theory of SAR imaging and SAR processing algorithms, and describe the chirp

scaling algorithm.

• Investigate the effects of a squint mode imaging geometry on the SAR signal properties

and the processing of SAR data.

• Investigate the chirp scaling algorithm for conventional and high squint SAR. Implement

the chirp scaling algorithm on Seasat data.
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• Extend the chirp scaling algorithm to improve the accuracy of range cell migration cor

rection for more general imaging geometries.

• Present a new algorithm, based on the chirp scaling of nonlinear FM pulses, for accurately

processing squint mode SAR data. Implement the algorithm on simulated high squint

data.



Chapter 2

Theory of SAR Imaging

2.1 Introduction

The purpose of this chapter is to introduce notation and to provide a theoretical basis for

understanding strip-map SAR image formation. The following points are covered: First, the

general SAR imaging geometry is described, and the basic assumptions that are used to model

the SAR signal are presented. Some of these assumptions will be re-examined for the case of

high squint in a later chapter. Next, the topic of pulse compression is reviewed, as this provides

some of the concepts that are used in SAR processing. Then, a description is given of the

SAR exact correlation and the resulting point spread function. Finally, the technique of image

resampling to ground coordinates is briefly described.

2.2 SAR Signal Model

2.2.1 Point Scatterer Response

To describe the collection and processing of SAR data, it is convenient to consider the case of a

single point scatterer. This is sufficient to model the signal and the processing operations, since

the data which is used to form an image is the superposition of signals from a distribution of

point scatterers. To introduce the notation for describing the signal, consider the general SAR

imaging geometry shown in Figure 2.1, in which .a platform travels over the earth’s surface at

an altitude h, and with a velocity v. The side-looking antenna is pointed at an angle -y from

nadir, called the elevation angle. The beamwidth in elevation determines the width of the strip

on the surface being imaged, called the swath. The squint angle of the antenna, 6, is the angle

8
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Figure 2.1: General SAR imaging geometry.

from broadside to the direction of the beam center, and the beamwidth in azimuth determines

the exposure time of a scatterer during which the synthetic aperture can be formed. Let i

denote the azimuth-time variable, also called slow time, so that the position of the platform

along the flight path is given by vi, as shown in the figure. The azimuth position of a single

point scatterer is given by the azimuth-time at which the platform is closest to the scatterer, ‘jo.

In SAR data, the cross-track direction is measured from flight path to the scatterer — sometimes

called slant range — rather than the along the surface. The scatterer location in this dimension

is indicated by its closest approach range, r0, as shown in the figure. Letting c denote the speed

of light, the closest approach range-time of a scatterer is represented by t0 = 2ro/c. Thus, the

scatterer distribution that is being imaged has coordinates of (no, to).

For satellite SARs such as Seasat and ERS-1, the swath width on the surface is about

100 km, giving a change in closest approach range across the swath or range swath — of

about 40 km. The width of the footprint on the surface for a given platform depends on the

platform
closest approach

VT1

h

flight path

nadir

scatterer
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wavelength. For an L-band spaceborne SAR such as Seasat the aperture is about 20 km, and

for the ERS-1 C-band SAR it is about 5km.

To collect the data for a SAR image, pulses are transmitted periodically at a rate called

the pulse repetition frequency (PRF) as the platform moves in the azimuth direction. The

instantaneous range or distance from the platform to the scatterer changes with each pulse,

and for a scatterer at closest approach range r0, let this instantaneous distance be indicated by

R(—io; ro). Also, R(—io; ro) and the flight path are assumed to describe the platform motion

relative to the scatterer, including the effect of scatterer motion due to earth rotation. The

effect of earth rotation on the signal will be described briefly in a later section. An expression

for R(i — ‘io; ro) depends on the particular geometry of the platform motion. The simplest

geometry consists of a platform travelling in a straight line. This is referred to as a rectilinear

geometry, and is sufficient to describe the signal in an airborne SAR after motion compensation.

The distance equation in this case is given by:

R(r—rio;ro) /r+v2(i_,jo)2. (2.1)

A transmitted pulse can be expressed as

= Re[p(r)exp(j2ir for)], (2.2)

where r is the pulse travel-time or fast-time variable, fo is the carrier frequency, and p(r) is

the complex baseband representation of the pulse. For example, a linear FM pulse with a

rectangular amplitude of duration T is given by

p(r) = rect()exp(_j7rKr2), (2.3)

where K is the frequency rate. Since the speed of light, c, is much greater than the platform

velocity, it can be assumed that the platform is stationary during the transmission and reception

of a pulse. This is the ‘stop-start’ assumption, and has a negligible effect for moderate squint

angles [16]. Pulses received from a point scatterer are thus delayed by the round trip travel

time, 2R(i7
—

17o; ro)/c. This delay arises in both the complex baseband pulse and in the phase
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of the carrier. If the received signal is coherently demodulated, then the phase of the carrier as

it varies from pulse to pulse can be retained. The received SAIL signal from a point scatterer

at (ij,t0) in complex baseband form is represented as

d(, r) = u’w(
— — c)P[T

— 2R(
— ‘lo; ro)1exp[40R— o ro)1

(2.4)

In this expression, ci’ is the scatterer reflectivity, including range attenuation and the antenna

pattern in elevation. The function w(i) is the antenna pattern in azimuth, which weights the

pulses received from the scatterer as it passes through the footprint, and thus determines the

exposure time. Assume that the antenna beamwidth in the azimuth direction is , where

A is the wavelength and L is the antenna length in azimuth. For a rectilinear geometry,

the exposure time for small squint angles is

=.

(2.5)

The parameter in the antenna weighting represents the effect of the squint angle. At zero

squint, the scatterer is in the center of the beam when.the platform is in the closest approach

position. Thus, in this case is zero and the received SAIL signal is weighted in the azimuth

direction by w(i
— no). When the antenna is squinted by the angle 8, the time at which the

scatterer is in the center of the beam is offset from the closest approach time by i. In this case,

the signal is weighted in azimuth by w(
— —

i). For example, for a rectilinear geometry,

the beam center offset time is
= _r00)•

(2.6)

Note that for forward squint, the squint angle is positive and the beam center offset time, ,

is negative.

The azimuth phase in Equation (2.4) is proportional to the distance to the scatterer, R(i7 —

‘)o; ro), which can be broken into an azimuth-varying term, and a constant term equal to the

closest approach range:

R(?7—io;ro) = R(—io;ro)—ro. (2.7)



Chapter 2. Theory of SAR Imaging 12

It is the azimuth-varying term that allows SAR data to be compressed in the azimuth direction,

while the constant term can be incorporated into the scatterer reflectivity:

u = uexp(_240T0). (2.8)

This phase component of the complex image is used in SAR applications such as interferometry.

Using the above definitions, the SAR data received from a point scatterer at range r0 can

be represented by

d(, T) = u s(i
— ‘7o, r — t0;r0), (2.9)

where s(, r; r0) is the point scatterer response defined with respect to the closest approach

azimuth-time and dosest approach range-time, given by [15]

2Rj.(17; r0) —j4irfoR(,; r0)
s(, ‘r; TO) = w(ri — 7lc)P[T

—

] exp[ ]. (2.10)

The point scatterer response is a function of the temporal variables, i and 7, and is also

dependent on the scatterer’s range, ro. In practice, there may also be a slight dependence

on azimuth position. In spaceborne SAR, this is due to changes in the platform velocity and

altitude between different positions within the orbit. However, the effect of this variation on

forming an image is small, and will not be considered in the signal model, The point scatterer

response represents the dispersion of information from a point scatterer in the signal data, and

its form is illustrated in Figure 2.2. This figure shows the region of support of the received

signal, which is centered in azimuth-time at (o + ) and has an azimuth-time duration of

In range-time, the signal is delayed by the round trip travel time as shown by the range

migration curve, and has a duration equal to the pulse length, T. Increasing the squint angle

increases the magnitude of the beam center offset time, k, thus increasing the slope of the range

migration curve within the exposure time of the scatterer. In addition, since the azimuth phase

also depends on R(ii — 17o r0), increasing the squint angle results in an increase in the linear

component of this phase. This causes the SAR signal energy to by shifted in azimuth-frequency

to a value called the Doppler centroid.
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2r0
C

Figure 2.2: Point scatterer response.

The frequency content of the SAR signal in the range direction depends on the transmitted

pulse, p(r). In the azimuth direction, the instantaneous azimuth-frequency of the SAR signal

as the scatterer passes through the antenna beam can be found as follows: Express the platform

to scatterer distance as the magnitude of a vector, R(q
— ‘jo; ro). Then, taking the derivative of

the azimuth phase in Equation (2.10) to find the instantaneous azimuth-frequency, gives [25]

— —2fov.R(’1—71o;ro) 211
cR(’1—’1o;ro)

where v is the velocity vector of the platform and • represents dot product. The vectors v

and R define a plane in which the angle to the scatterer with respect to broadside is defined.

This angle changes as the scatterer passes through the beam, and will be referred to as the

instantaneous squint angle, 9(i
— 710). At the beam center, this is equal to the nominal squint

angle, 9. Since the broadside direction is perpendicular to the velocity vector, the instantaneous

azimuth-frequency in Equation (2.11) can be written as

2vfo sin(93(,
—

f,?—

t range migration
curve

2R(i1

received

110 •11O + 11c

C
(2.12)
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Thus, the signal energy is centered in azimuth-frequency at the Doppler centroid, f,, given by

2vfosin(8)
(2.13)

The azimuth bandwidth is the difference between the azimuth-frequencies at the edges of the

beam. Assuming a beamwidth of A/L, this can be expressed as

2v . A . A
= + -) — sin(O — -)), (2.14)

which for small squint angles is approximately

2v
(2.15)

In practice, the Doppler centroid is estimated from the SAR data, since the antenna pointing

accuracy is not sufficient to calculate it directly from the squint angle [26, 27]. In addition, the

SAR signal is sampled in the azimuth direction by the pulse repetition frequency (PRF). This

sampling rate is chosen to exceed the azimuth bandwidth, but can be many times less than the

Doppler centroid. This causes the signal energy to be wrapped around in azimuth-frequency, re

sulting in an ambiguity in azimuth-frequency equal to an integer multiple of the PRF. However,

the SAR transfer function depends on the actual, non-aliased value of azimuth-frequency, so

that techniques for resolving the Doppler centroid ambiguity have been developed [28, 29, 30].

Finally, it should be noted that the Doppler centroid of the signal also depends on the closest

approach range to the scatterer, and this will be discussed in detail in a later chapter.

2.2.2 Orbital Geometry

In spaceborne SAR, the orbital geometry of the platform motion, the earth’s curvature, and the

earth rotation must be taken into account. This affects the azimuth-time varying distance from

the platform to a scatterer, R(i; ro). In general, an equation for this distance as a function of

azimuth-time and closest approach range can be obtained from information about the satellite’s

orbit and the earth’s geometry [16]. In addition, coefficients of R(; ro) can be refined by

autofocus techniques [26].



Chapter 2. Theory of SAR Imaging 15

In modelling the SAR signal for processing purposes, it is useful to have a simple form for

R(i; ro) to allow derivation of processing algorithms. The equation that is used to represent

R(ri; ro) must be accurate enough to model the azimuth-varying phase and the range migration

in the point scatterer response, so that these effects can be accurately matched during SAR

processing. A good approximation for small to moderate squint angles can be obtained by fitting

a hyperbolic equation to R(; ro) at = 0, corresponding to the closest approach azimuth-time,

as follows:

R(ri; ro) /r + B(ro)q2, (2.16)

where B(ro) is a range dependent coefficient. Note that this equation represents a rectilinear

geometry when B is equal to the constant v2. On the other hand, in an orbital geometry the

parameter B(ro) can be interpreted as the square of a range-dependent ‘effective velocity’ in

modelling the point scatterer response [25, 31, 32, 33].

To illustrate the effects of an orbital geometry on the SAR signal properties, consider the

simple example of a circular orbit and a spherical, nonrotating earth, where re is the earth’s

radius and H = (Te + h) is the radius of the orbit. Circular or near circular orbits are useful for

remote sensing since they provide a nearly constant distance from the earth’s surface [34]. The

platform orbits the earth in an orbital plane, which can be thought of as rotating about the

earth’s center with an angular velocity of v/H. Denote the angle between the orbital plane and

the scatterer, measured at the closest approach position, by cr. This is related to the closest

approach range of the scatterer by:

r + H2 —

cxr(ro) = arccos[ ]. (2.17)

Since the antenna footprint can be thought of as rotating with the orbital plane, the fact that

the footprint is closer to the earth’s center means that it has a lower velocity than that of the

platform. This leads to the concept of the ground velocity of the antenna footprint, v9(ro),

which varies with the range from the platform:

vr cos[cr(ro)]
vg(ro)

= H
2.18
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This affects the exposure time of a scatterer, since the footprint passes over the the scatterer

with the ground velocity instead of the platform velocity [25]:

=

(2.19)

Finally, the distance from the platform to the scatterer can be shown to be:

R( — ; ro) = + H2 — (r + H2 — rg) cos(
v(— no)) (2.20)

This expression can be used to find a hyperbolic representation of R(i; ro), where the parameter

B(ro) in this case is given by

B(ro) = vvg(ro). (2.21)

Another aspect of spaceborne SAR is the earth’s rotation. In this case, the motion of the

platform with respect to the scatterer is determined by subtracting the scatterer’s velocity

vector due to earth rotation from the velocity vector of the platform. Since the direction of

the resultant can be different from the original direction of the platform, an antenna that was

pointed at right angles to the original direction may no longer be perpendicular to the resultant

velocity. Thus, the net effect of earth rotation is the introduction of a squint angle [25]. This

effect is greatest at the equator in the case of a polar orbit, where the squint angle is about

four degrees for a satellite altitude of about 800 km.

2.2.3 SAR Constraints

SAR imaging is subject to a fundamental constraint involving the azimuth resolution and the

swath width. The received echo from the scatterer distribution within the swath must be

short enough to fit between two consecutive transmitted pulses. Thus, for a given swath, this

places an upper bound on the PRF. However, the PRF must also be large enough to sample

the azimuth signal. Since the swath width depends on the antenna width in elevation, and

the azimuth bandwidth depends on the antenna length in azimuth, these constraints can be

combined to establish a minimum area for the antenna 112, 35, 13].
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2.3 Pulse Compression

The objective of SAR processing is the compression of the point scatterer response into a

narrow point spread function in order to obtain a high resolution image. Pulse compression

refers to the technique of compressing a long, phase-encoded signal by means of a matched

filter. This operation is performed on SAR. data in the range and azimuth directions. In range,

a transmitted pulse such as a linear FM signal is used to introduce the phase-encoding. This

provides a large range bandwidth which is needed to achieve high resolution, but with the

energy spread over a longer duration pulse so as to not exceed the peak power limitations of

the transmitter. This causes the time-bandwidth product of the pulse, which is equal to the

ratio of the lengths of the pulse before and after compression, to be significantly greater than

unity [10, 11]. Similarly in azimuth, the phase-encoding results from the the azimuth-varying

distance to the scatterer as discussed above, although azimuth compression must be performed

after range cell migration correction.

2.3.1 Matched Filter

To review the concepts of pulse compression, the operation of compressing a single received

pulse in the range-time dimension will be briefly described. Since pulse compression is a linear

filtering operation, it can be described in the frequency domain. Let the complex baseband

representation of the transmitted pulse be

p(r) = m(r)exp(jcb(r)), (2.22)

where m(T) is a slowly varying amplitude of duration T, and 4(r) is the phase modulation.

The Fourier transform is

P(fT)
= J m(r) exp(j(qp(r) - 2lrfTr))dr, (2.23)

where fT is the frequency variable corresponding to the range-time variable T. For large enough

time-bandwidth product signals, an accurate approximation to this integral can be found by
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using the method of stationary phase [10, 36]. Heuristically, the method of stationary phase

takes advantage of the fact that the main contribution to the integral occurs at a point, called

the stationary point, i-s, at which the derivative of the phase of the integrand is zero. At other

points, the integrand is oscillating rapidly so that adjacent cycles cancel, and the contribution to

the integral is negligible. In the above integral for the Fourier transform of p(r), the stationary

point is found by solving the equation

224
2ir dr

to give an expression for r in terms of fr. Note that given a frequency, f, the stationary

point is that time in the signal at which the. instantaneous frequency is equal to fT. Thus,

Equation (2.24) indicates a relationship between time and instantaneous frequency in large

time-bandwidth product signals.

Given the stationary point, the Fourier transform of p(T) can be written as

P(f) = GM(fT)exp(j(fT)), (2.25)

where the factor G is approximately a constant, and is given by

I 2ir jirsgn((r))
G

)I
exp( ). (2.26)

The function

M(f) = m(r) (2.27)

is the amplitude spectrum which determines the range bandwidth, and

= (r) — 2rrfr (2.28)

is the phase of the spectrum. As an example, consider the linear FM pulse with rectangular

amplitude shown earlier:

p(T) = rect()exp(_jirKr2). (2.29)

The stationary point is

= —fr/K, (2.30)
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which reflects the linear relationship between time and instantaneous frequency in a linear FM

signal. The Fourier transform is approximately

P(f) ex,/4)rect(j)exp(!) (2.31)

and the bandwidth is KT.

Consider matched filtering of a linear FM transmitted pulse, which can be expressed in the

frequency domain as

Hr(fr) P(fT)F*(fT) (2.32)

rect(j4), (2.33)

where Hr(fr) is the Fourier transform of the compressed pulse. Thus, after inverse Fourier

transformation the compressed pulse is

hr(T) sinc(KTr), (2.34)

which has a resolution width approximately equal to the inverse of the bandwidth. Pulse

compression removes the quadratic and higher order phase variation of the spectrum of the

received signal, leaving an amplitude spectrum that, when inverse Fourier transformed, gives the

narrow compressed pulse. An important characteristic of the compressed pulse is the tradeoff

between the resolution width .and the sidelobe level, which is determined by the shape of the

amplitude spectrum. A rectangular spectrum results in a sinc-shaped compressed pulse, which

has relatively high sidelobes. To control the shape of the amplitude spectrum during pulse

compression, the Fourier transform of the received signal can be multiplied by a weighting

function such as a Kaiser or Hanning window. In this case the matched filter can thought of as

matching the phase of the pulse spectrum and weighting the amplitude. The Fourier transform

of the compressed pulse is then expressed as

Hr(fr) P(fr)Wr(fr)exp(_j4p(fr)), (2.35)

where Wr(fr) is the weighting function.
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cerr peak phase error
(degrees) (degrees)

0 0
45 15
90 29
135 43

Table 2.1: Peak phase error in compressed pulse due to compression error.

2.3.2 Compression Error

Finally, the effect of a parameter error in the matched filter should be noted. In order to

achieve the best possible resolution after pulse compression, the phase of the pulse spectrum

must be matched accurately. For a linear FM pulse, this requires an accurate representation of

the frequency rate, K. If the frequency rate of the matched filter differs from the correct value

by an amount zK, then the spectrum of the compressed pulse is approximately

Hr(fT) = rect()exp(hI21iT), (2.36)

assuming 1K << K. The residual phase due to LK causes a broadening of the compressed

pulse and an increase in sidelobe level. The compression error can be characterized by the

maximum phase error at the edge of the frequency band, where fr =

err
= irZKT2

(2.37)

Figure 2.3 shows the amplitude of the compressed pulse and the per cent increase in 3dB

resolution width for several values of er• Note that a broadening is accompanied by a decrease

in the peak amplitude of the compressed pulse. Another effect of a compression error is the

introduction of a phase error in the compressed pulse. Table 2.1 shows the phase error at the

peak of the compressed pulse for several values of 4err•
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Figure 2.3: Effect of a quadratic phase error in pulse compression.

2.4 Exact SAR Correlation

2.4.1 Time Domain Correlation

Given the received data from a distribution of scatterers, SAR image formation consists of

compressing the signal from each scatterer into a narrow point spread function by means of

a correlation of the data with the range-dependent point scatterer response. To express this

operation, it is first convenient to represent the SAR data as a convolution of the distribution

of scatterer reflectivity, u(i0,to), with the point scatterer response:

d(i, T)
= Jf u(i, to)s(

—
— t0; ro)diodto. (2.38)

The time domain correlation of the data with the point scatterer response is written as

(1j, t1)
= JJ d(i1, r)s’(i — ij, r

—
tj; r)di1dr, (2.39)

where à(j, t1) is the processed image which is an estimate of the reflectivity in the scene.

The image dimensions, i and t1, correspond to the closest approach azimuth-time and closest
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approach range-time of points in the image, with r denoting the closest approach range corre

sponding to an image point at t. The correlation in Equation (2.39) is the most direct method

of image formation from SAR data, However, because of the large number of samples of the

point scatterer response, a time domain correlation is very computationally expensive, and in

general is not used in practice.

The relationship between the image and the scene can be found by substituting for d(i, r)

in Equation (2.39), giving

= JJ(iio,to)h(ii — ,7o,t1 — to;r,ro)dodto, (2.40)

where

—
— to; r, ro)

= fJ s( — ?lo,T — t0; ro)s*(77
— ij, r — t; r)didT. (2.41)

Thus, the processed image is related to the scene by a convolution with the point spread

function, h(ij, t:; r), which determines the quality of the processed image in terms of resolution,

sidelobe level, phase, and registration.

2.4.2 Frequency Domain Correlation

Next, some insight into the SAR correlation can be gained by considering the data in the two-

dimensional frequency domain. Also, SAR processing algorithms make use of the frequency

domain in one or both dimensions in order to improve processing efficiency. Let D(f,, fT) be

the Fourier transform of the SAR data, d(, r), where f, is the frequency variable corresponding

to azimuth-time, , and f1. is the frequency variable corresponding to range-time, T. Taking

the two-dimensional Fourier transform of Equation (2.38) gives

D(f,, fr) = Jf u(o, to)S2(f,),fT; ro) exp(—j27rf,o) exp(—j2irfto)dodto, (2.42)

where S2(f,1,f’.; ro) is the Fourier transform of the point scatterer response, s(i, r; ro). The

function S2(f,7,f’.; ro) is sometimes called the SAR transfer function for a scatterer at r0.
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The SAR transfer function can be evaluated by first Fourier transforming s(, T; ro) with

respect to T, as shown in Equations (2.25) to (2.28). Then, the result can be Fourier transformed

with respect to , where again the method of stationary phase can be used because the azimuth-

varying phase in the point scatterer response results in a large time-bandwidth product in the

azimuth direction [37, 38]. In this way, the SAR transfer function can be shown to have the

form

S2(f,f;ro) = GA(f,1,f)exp[j(f) +j(f,,f;ro)]. (2.43)

The factor G in this expression, given by

G
= Gpexp(_j/4)2(T

f)(l — 4(f)2B)_3/2, (2.44)

is a very slow function of frequency compared to the amplitude spectrum and can be treated

as a constant. The amplitude of the SAR transfer function is given by

A(f,,fr) M(f)W(f,
—

(2.45)

where M(fT) is the range-frequency amplitude spectrurri of the transmitted pulse. The azimuth-

frequency weighting, W(f,
— f,), is given by [37]

W(f
- f) = w(

2B
)(1

- 4(fo+f)2B) -
i). (2.46)

Thus, it is due to the antenna pattern since different directions within the antenna beam

correspond to different azimuth-frequencies in the signal. This weighting is centered on the

Doppler centroid, f,. Finafly, the phase of the SAR transfer function in Equation (2.43)

contains the phase of the pulse spectrum, and the SAR focussing phase, (f,7,f,; ro).

The SAR focussing phase can be shown to be [37, 39]

f; ro)
= —4ro(fo + T)(1

4(fo+f)2B(ro)
— 1), (2.47)

and is dependent on the scatterer’s range, r0. It is the phase of the SAR transfer function that

is most important in SAR processing, since it must be matched accurately in order to perform
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the correlation and obtain a focussed image. If the phase were independent of the scatterer’s

range, then SAR processing could be done simply in the two-dimensional frequency domain by

multiplying the data in Equation (2.42) by the conjugate phase, as is done in pulse compression.

Then, an inverse Fourier transformation would yield an image that is a bandlimited estimate of

the scene. However, the range variance of (f77,fT;r0) makes it difficult to do this for all points

in the image. For example, if D(f,7,fT) is multiplied by a conjugate phase that is calculated for

a particular range, then the result is an image in which only points at that range are accurately

focussed. Thus, the objective in SAR processing is the development of algorithms to accurately

match this phase for all ranges in the image, in an efficient manner.

2.4.3 Point Spread Function

The description of the SAR signal in the frequency domain can be used to find a description of

the two-dimensional point spread function of the processed image. If the range dependent phase

of the SAR transfer function is matched accurately, then an inverse two-dimensional Fourier

transform of the result gives the point spread function. For the narrow beamwidths in SAR,

the region of support of the signal spectrum is approximately rectangular, as illustrated for

small squint angles in Figure 2.4. Assuming rectangular functions for the amplitude weightings

M(fT) and W(f,7), the amplitude spectrum is a two-dimensional rectangular function, and the

point spread function is the two-dimensional sinc function whose contour plot is shown in the

figure.

It should be noted that the point spread function considered here is for the ‘single look

complex’ image, which is formed with the full azimuth bandwidth and is kept in complex

form. This is in contrast to the ‘multilooked’ image, in which separate images are formed from

subbands in azimuth-frequency, and then added together in magnitude. This is done to provide

an incoherent averaging of the image to reduce speckle [40].

The 3dB resolution width of the point spread function in the range and azimuth directions

is an important performance criterion. The resolution determines the minimum distance by
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Figure 2.4: Contour plots of two-dimensional amplitude spectrum and point spread function
for small squint.

which scatterers need to be separated in order for them to be distingished in the image, thus

indicating the level of detail that can identified in the scene. As mentioned, the resolution in

an accurately processed image is approximately the inverse of the bandwidth in the range and

azimuth directions. Letting the transmitted pulse bandwidth be denoted by the spatial

resolution in the slant range plane is

6T
= 2:fT

(2.48)

In azimuth, the spatial resolution on the surface is

=
(2.49)

which reduces to 6x = L/2 for a rectilinear geometry. In SAR, the azimuth bandwidth, and

hence the theoretical azimuth resolution, is independent of wavelength and (aside from the

range dependence of v2) of range.

During processing, an inaccurate matching of the phase of the SAR transfer function causes

degradation in the image, which can be characterized by various measurements of the point

spread function. First, processing errors can result in a broadening of the 3dB resolution
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width of the point spread function in range or azimuth. Another performance criterion is the

sidelobe level in the point spread function, which affects the ability, to distiguish scatterers in

an image when one of the scatterers is particularly strong. In addition, processing errors can

cause an error in registration, which refers to the relative position within the image of the

point spread function for a scatterer, compared with its expected location. Finally, the phase of

the point spread function is very sensitive to inaccuracies in processing. In applications which

require the complex image, a variation of the peak phase error with respect to scatterer location

leads to measurement errors and creates problems in postprocessing if phase discontinuities are

introduced [41]. Thus, applications which require the complex image place very demanding

requirements on the accuracy of the processor.

2.5 Image Resampling

If an image in spatial ground coordinates is required, then the processed image must be re

sampled. That is, points corresponding to a grid in ground coordinates are interpolated from

the image, a(i,t2). In azimuth, the ground coordinate is the distance along the surface in the

azimuth direction, x = v9i. Also, the closest approach range within the image is converted

to the distance along the surface in the cross track direction, y. As a simple example, assume

the scatterers lie on a smooth, spherical earth. Then, given a processed image, ôj, tj, the

mapping to ground coordinates for a circular orbit geometry is given by

àg(x, y) = ô(x/vg, + H2 — 2Hre cos(--)). (2.50)

In addition, the terrain height of a scatterer affects its closest approach range, and this effect can

lead to distortions in the image compared to ground truth. Thus, if information about terrain

height is available for the scene, then this can be used to obtain a more accurate mapping to

ground coordinates [42].



Chapter 3

SAR Processing Algorithms

3.1 Introduction

In this chapter, SAR processing algorithms are presented in a common notation in order to

compare the approximations they make for computational efficiency. Several SAR processing

algorithms are described. The first few algorithms are grouped together as ‘range-Doppler

domain’ algorithms, since they perform most of the processing steps in the range-time and

azimuth-frequency (Doppler) domain. Next, the polar format algorithm, which is used for

spotlight SAR data, is described in order to investigate its squint imaging capability in a strip-

mapping context. This is followed by a description of algorithms that have been derived using

the wave equation approach which originated in the field of seismic signal processing. Although

most of the chapter is review, one contribution that is made is the description of the relationship

between the polar format and wave equation algorithms for SAR processing. Finally, the chirp

scaling algorithm is described in detail. The notation and concepts for chirp scaling that are

presented here form the framework for the extensions to chirp scaling that are derived in later

chapters.

3.2 Range-Doppler Domain Algorithms

3.2.1 Mathematical Formulation

Many SAR processing algorithms perform important operations in the range-time and azimuth

frequency domain. This domain allows the coefficients in some processing steps to vary with

range, thus accommodating the range-dependence of the SAR transfer function. To provide a

27
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basis for describing these algorithms, it is first necessary to obtain a description of the SAR

point scatterer response in the range-time and azimuth-frequency domain. This can be found

by an inverse Fourier transformation of the SAR transfer function in the range direction. To

facilitate this, it is convenient to express the SAR focussing phase of Equation (2.47) as series

expansion in fT [37, 38, 41]:

(f,7,fr; TO) = o(f; To) + i(f; ro)fr + 2(f; ro)f + (f; ro)f + .... (3.51)

Since higher powers of f indicate higher order couplings between the range and azimuth direc

tions in the point scatterer response, the terms of such an expansion can be related to different

SAR processing steps. The first term in Equation (3.51) is given by

o(f;ro)
= _20T0(/1

- 4f)
-1). (3.52)

Since this term is independent of f,-, it corresponds to a one dimensional correlation in the

azimuth direction, or azimuth compression. To simplify notation, this phase can be combined

with the azimuth-frequency amplitude weighting in the SAR transfer function to define the

conjugate of the azimuth compression filter:

Fac(f,1;r0) = W(f,
— f,) exp[jo(f,; r0)]. (3.53)

The second term in Equation (3.51) is linear in fT, thus representing the range migration in

the signal relative to the scatterer’s location at to = 2r0/c, as a function of azimuth-frequency.

This coefficient can be expressed as

(f,1;ro) = —27r[rd(f,7;r0) — to], (3.54)

where rd(f,1;To) IS the total travel-time delay of the point scatterer response as a function of

azimuth-frequency, and this describes the range migration in the azimuth-frequency range-time

domain. The expression for the delay has the form

rd(f,1;ro)=
2r0

(3.55)
c7(f,, r0)
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where 7(fn; ro) is defined by

___________

c2f2
7(f; r0) =

— 4fB(ro)
(3.56)

(For a rectilinear geometry, 7 is the cosine of the instantaneous squint angle corresponding to

f,7). The removal of this linear phase term during processing corresponds to aligning the signal

energy into a line of constant range, so that azimuth compression can be performed. This step

is referred to as range cell migration correction (RCMC). Finally, higher order phase terms in

Equation (3.51) represent a range distortion which needs to be compensated by a secondary

range compression (SRC) filter [43, 44]. For moderate squint angles, it is sufficient to include

only the quadratic term, which is

ircrof2
42(f; ro)

= 2B(ro)f0373(f,7;r0)
(3.57)

Assuming a linear FM transmitted pulse with frequency rate K, this phase term can be com

bined with the phase of the Fourier transform of a linear FM pulse to define a modified frequency

rate, Km, which is azimuth-frequency and range dependent:

• = -+2(f;ro). (3.58)
.flmJ,TO) -fl

For high squint, the cubic phase term in Equation (3.51) can have a noticeable effect on sec

ondary range compression [45], and is given by:

—ircrof2

= 2fB(ro)75(f,1;ro)
(3.59)

Using the above definitions, assuming a linear FM pulse and keeping phase terms up to

the quadratic, the range-Doppler domain representation of the point scatterer response can be

found to be

S(f,7,T; r0) = Fac(f,7;ro)m[—j1(r— (rd — to))] exp[—jirKm(r — (Td
—

to))2]. (3.60)

In this domain, the signal consists of linear FM pulses of frequency rate Km(f,7;ro), delayed

by the range migration trajectory (rd(f,); r0) —
to), and multiplied by the azimuth compression
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term, Fac(f,7;ro). Finally, note that the modification of the range frequency rate to Km causes

a corresponding change in the length of the uncompressed range pulse, in the range-Doppler

domain, to:

Tm = 4-T. (3.61)

3.2.2 Range-Doppler With SRC

The range-Doppler algorithm was the first algorithm used for digital processing of spaceborne

SAR data, and is still the most commonly used SAR processing algorithm [14, 15]. The oper

ations of the range-Doppler algorithm consist of:

1. Range compression of received echoes via a range FFT, matched filter multiply, and range

inverse FFT. SRC is incorporated approximately by modifying the frequency rate of the

range matched filter to Km(f,1c;rref), assuming Km to be constant. This allows SRC to

be performed without an increase in computation.

2. Azimuth FFT. The received SAR data are stored in the format of successive range lines.

In this form, it is easier to access data in the range direction, especially if it is stored on

disk. Thus, in order to access lines of data in the azimuth direction for the azimuth FFT,

the data on disk must be transposed or ‘corner turned’.

3. RCMC by means of extracting data values along the range migration curve and shifting

them to the same range bin. This requires an interpolation between range data sam

ples, and the range dependence of RCMC means that the interpolating kernel is range

dependent. In addition, the interpolator is truncated for efficiency. Since the resulting

interpolation error depends on azimuth-frequency, this can introduce artifacts into the

image such as paired echoes of strong scatterers [16].

4. Azimuth compression by an azimuth matched filter multiply.

5. Azimuth inverse FFT.
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As mentioned, the range-Doppler algorithm makes the approximation of computing the

coefficient of the SRC filter at the Doppler centroid and at a reference range. This provides for

adequate focussing for the small squint angles experienced in conventional SAR. However, the

azimuth-frequency dependence of SRC begins to cause a degradation in focussing for moderate

values of squint [44, 39]. Considering a scatterer at the reference range, the error in matching

the quadratic phase of the SAR transfer function is

err(f,i, fr) = [‘2(f; r,.f)
— 2(f; rref)1f. (3.62)

This results in a range compression error with the accompanying broadening of the 3dB res

olution width, increased sidelobe level, and phase error. The compression error varies with

azimuth-frequency, being zero at the Doppler centroid and greatest at the edges of the azimuth-

frequency band. Thus, after azimuth compression, the result is an overall range broadening and

distortion of the point spread function. The azimuth-frequency dependence of SRC depends

on the wavelength. As an example, for an L-band spaceborne SAR such as Seasat, the overall

broadening exceeds 10 percent for squint angles above 6 degrees [44].

3.2.3 Squint Imaging Mode Algorithm

A modification of the range-Doppler algorithm, called the Squint Imaging Mode (SIM) algo

rithm, was proposed to overcome the problem of the azimuth-frequency dependence of SRC

and provide more accurate focussing for moderate squint angles [24]. In this algorithm, SRC is

performed as a separate step after range compression and azimuth FFT so that the SRC filter

can be calculated for each azimuth-frequency. Thus, after the azimuth FFT, SRC is performed

on each range line by a range FFT, multiply by the SRC filter, and range inverse FFT. The

ability to access range lines at this stage in processing requires extra corner turns before and

after SRC. The remaining steps of RCMC and azimuth compression proceed as in the original

range-Doppler algorithm, so that RCMC still requires a range-variant interpolator.

For the squint angles that can be accommodated by this algorithm, the cubic phase term

in Equation (3.51) may become noticeable, and this term can be incorporated into the SRC
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filter [45]. The SRC filter is calculated at the reference range, and the phase of the SRC filter

in the two-dimensional frequency domain becomes:

4’sRc(f, fT) = 2(f; rref)f + 3(f; (3.63)

This algorithm matches the phase of the SAR transfer function for scatterers at the refer

ence range. However, at high squint angles the range dependence of SRC becomes noticeable.

Assuming that the cubic phase term is still small enough that its range-dependence can be

neglected, the error in matching the phase of the SAR transfer function for a scatterer at r0 is

given by

‘.‘err(f,i, fT; ro) = [2(f; ro) 2(f; Tref)]f. (3.64)

This results in a range compression error at all azimuth-frequencies in the band, which increases

for scatterers located further away from the reference range. One way to accommodate this

error is to process smaller range blocks so that the range dependent SRC error within a block

does not become too large. However, at high squint the range dependence of SRC is severe

enough that the range blocks have to be quite small. Also, increasing squint increases the

amount of range migration, which increases the amount of throwaway in performing RCMC.

Thus, at high squint, block processing in range becomes inefficient.

Accommodation of the azimuth-frequency dependence of SRC requires some processing to

take place in the two-dimensional frequency domain, and this introduces the problem of the

range variation of the Doppler centroid. Figure 3.5 shows two range migration curves in the

range-Doppler domain, indicated by the dotted lines, for scatterers at different ranges. The

Doppler centroids at the different ranges are and f,72, respectively, and the corresponding

locations of signal energies are indicated by the heavy lines. The signals are wrapped around in

azimuth-frequency because of sampling by the PRF. If the Doppler centroid varies by more that

the amount by which the signal is oversampled, then the wraparound causes a single azimuth

frequency bin to contain signals at different ranges whose range migration delays and SRC

filters are calculated with different values of f,. This does not pose a problem for operations
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f
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PRF

Figure 3.5: Aliased range migration curves with Doppler centroid variation.

that are performed in the range-Doppler domain. However, in the two dimensional frequency

domain, this effect prevents accurate SRC from being performed across the entire range swath.

For small squint angles, Doppler centroid variation can be accommodated by processing smaller

range blocks. However, in squint mode SAR it is generally necessary to control the amount of

Doppler centroid variation by proper steering of the yaw and pitch angles of the antenna [24].

This will be discussed further in Chapter 4.

3.2.4 Time Domain SRC

Finally, there exists the possibility of a time domain filtering approach to SRC. Assuming the

range compression filter is calculated to include SRC at the Doppler centroid and at the reference

range, then residual SRC is needed to fully compress the signal at other azimuth-frequencies

and ranges. Residual compression of the signal can be performed by a range-variant, range-

time domain filter implemented in the range-Doppler domain [46]. This would accommodate

the azimuth-frequency and range dependence of SRC, as well as a variation in Doppler centroid.

However, such an approach would significantly increase the computational complexity and the

difficulty of implementation of the processor.

/
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3.3 Polar Format Algorithm

The polar algorithm was first derived for SAR imaging of rotating objects from a fixed or moving

platform [20]. It was applied to airborne spotlight SAR, which is a mode of SAR imaging in

which the antenna is continuously steered to point at a fixed, small area of the surface, in order

to obtain a very high resolution image. The polar algorithm is also related to the tomographic

approach to spotlight SAR processing [21, 22, 23]. The idea of polar processing can be described

briefly as follows: Consider a small area of scatterer distribution near a reference point in the

scene located at (77a, ta), where ta = 2ra/c is the closest-approach range-time. Each azimuth

position of the platform, and hence each range line in the data, corresponds to a certain viewing

angle to the reference point. Then, the samples of the Fourier transformed, compressed range

lines can be arranged on a polar grid, with each range line placed according to its viewing angle.

It can be shown that the result is a polar coordinate sampling of the two-dimensional Fourier

transform of the scene. Thus, by interpolating points from the polar format onto a rectangular

grid, the image can be obtained by a two-dimensional inverse FFT.

Now, consider applying this method to the strip-map SAR data described earlier by Equa

tion (2.38). First, the received pulses are range compressed, and the platform to scatterer

distance is normalized by the distance to the reference point. This can be done in the range-

frequency domain by the multiplication of range lines by the factor:

exp[j2ir(fo + f)R(ri
— ,; ra)/c]. (3.65)

The resulting data can be described by (noting that r0 = 2t0/c and ra = 2ta/c):

Da(1?,fr) = JJa’(uio,to)M(f)w(ii —770—
77c)e_j20 (i_i0o)_J_?i.;rd,lodto. (3.66)

The polar algorithm amounts to casting this expression into the form of a two dimensional

Fourier transform of the scene. To do this, the phase of the integrand in Equation (3.66) can be

considered as a function of scatterer position, (770, to), and expanded about the reference point.
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Assuming that B is constant, this gives

+ fr) [R(
— o; To) —

— a; Ta)] 2fa(
— a) + 2(fo + ft)(to — ta) + err, (3.67)

where the frequency variables, fa and ft, result from the change of variables defined by

fa
= 2B(fo +fT)(i — Tia)

(3.68)
CVTa + B(7

— ‘7a)

and

c(fo + fr)ta
(fo+ft) 2 22VTa+B(???la)

j(fo + fr)2
- (3.69)

By keeping only linear terms in the expansion, and making the change of variables, Equa

tion (3.66) becomes

D(fa, ft) ff cT(770,t0)M’(ft)W(fa — fac)€_320)_32t(t0_td?]0dto. (3.70)

Thus, a two-dimensional inverse Fourier transform with respect to the frequency variables fa

and ft provides the image. In Equation (3.70), the reflectivity distribution is given by

o(o,to) = u’(o,to)exp[—j2irfo(to — ta)], (3.71)

which includes the range dependent scatterer phase. The amplitude in the new range frequency

variable, ft is

M’(ft) M(/(f0+ ft)2
+

- fo). (3.72)

Also, the weighting in the frequency variable, fa, is given by

2j f
W(fa — fac(17)) = W(4B..aJC) + 1a — 7o — ‘) (3.73)

which is centered on the parameter

fac(7)) = 4Ba+
fi)( + ?1 — Ila) (3.74)
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which depends on the scatterer’s azimuth position, 7o. The dependence of the azimuth weighting

on the scatterer’s azimuth position is a consequence of the fact that the viewing angles used

to form a polar grid in the frequency domain are assumed to be those associated with the

reference point. Thus the fa variable only corresponds to true azimuth-frequency, f,1, for the

signal received from a scatterer at . For scatterers at other azimuth positions, fa is not

identical to f,7, with the result that the centroid of signal energy in fa depends on o• This

effect does not occur in spotlight SAR. because of the continuous steering of the antenna.

The higher order terms in the expansion in Equation (3.67), indicated by ‘err, represent

an error in the algorithm that increases for scatterers located away from the reference point

in either azimuth or range. The phase error term can be expressed as a function of frequency

variables and scatterer position as
c2 prc2 i t i : ‘ fa

(j

4 \12
“ ‘. — T’tj0 1_ Jt)7O — 7a) —

Yerr’Ja,J,71O,O)
— c2f2ta(f0 + ft)[1 + 4(fo+ft)2B]

The greatest effect of this error is a geometric distortion due to the range and azimuth regis

tration errors that vary with both the range and azimuth position of the scatterer [20]. This

distortion exists even at zero squint, and for L-band or C-band spaceborne data, the registra

tion error at a point 10 km away from the reference point is greater than 20 cells. Other effects

of this approximation are phase errors and small focussing errors that vary with azimuth and

range.

A problem which arises in applying the polar algorithm to strip-map SAR data is that the

width of the image in azimuth can be several times the aperture. Thus, the interval of viewing

angles experienced by all scatterers in the image is several times the interval of viewing angles

corresponding to a single scatterer at the reference point. This causes the interval of the fa
variable in Equation (3.68) to be several times greater than the normal azimuth bandwidth, as

indicated by the variation of fac with ,o. Thus, several times the number of frequency domain

points have to be interpolated, and the size of the inverse FFT is increased.

Converting from the polar format to the rectangular grid according to the change in variables

in Equations (3.68) and (3.69) requires interpolation in both directions in the frequency domain.
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Such interpolation has to be done very accurately to avoid artifacts in the image, and is thus

very computationaily expensive [21, 47]. For this reason, more efficient algorithms such as

convolution backprojection have been developed for tomographic processing of spotlight SAR

data [22]. However, since these algorithms still depend on a polar representation of the data,

it is not clear if they can be extended to strip-map SAR efficiently.

Finally, one way to process strip-map data using the polar algorithm is to divide the data

into subpatches, each a fraction of an aperture long, and process each subpatch with the polar

algorithm. However, this method requires a large amount of processing overhead in the required

filtering of each subpatch and in the mosaicing of subpatches to form an image [23].

3.4 Wave Equation Algorithms

3.4.1 Stolt Interpolation

An approach to SAR processing has been derived using wave equation techniques taken from the

field of seismic migration [32]. In this approach, scatterers distributed in azimuth and closest

approach range are assumed to be pulse sources, and the received SAR data are samples of the

resulting wavefield in the azimuth and travel-time dimensions. After two-dimensional Fourier

transformation of the data, each point in the two-dimensional frequency domain represents

the complex amplitude of a monochromatic plane wave with a certain frequency travelling in

a certain direction. Given the transformed data, then, each component wave can be back-

propagated or ‘downward continued’ to a particular range by the multiplication of each point

by a complex exponential [48, 49]. Inverse transformation of the result, evaluated at zero

travel-time, gives the wavefield at the desired range when the signal was emitted — that is, the

complex reflectivity of the scatterers at that range. Performing this operation for every value of

range in the image gives the processed image [50]. This method is general in that it can be used

even if the speed of propagation varies with range, as it can in a seismic context. If the speed

of propagation is constant, as in the SAR case (neglecting atmospheric effects), then a simpler
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procedure can be used. It can be shown that after properly moving data points in the two-

dimensional frequency domain — a technique known as Stolt interpolation — the downward

continuation of the data to aM ranges can be done simply by a two-dimensional inverse Fourier

transformation [47].

To understand this technique in the context of SAR processing, begin with the description

of the two-dimensional Fourier transform of the SAR data given in Equation (2.42). First, it

is convenient to define a reference closest approach range-time, tref = 2Tref/C, near midswath.

Then, the range-time location of a scatterer can be measured by t = to — tI The SAR data

can be focussed at the reference range by multiplying the transformed data by the conjugate

phase of the SAR transfer function at Tref. This is equivalent to downward continuation of the

data to Tref, and the result is

Drej (fii’ fr) = JJ (71o, t)G A(f,, fr)e3((fif o)4(f,,,fr ;ref))e2tj2f,0dtd0,

(3.76)

where now the range dimension in o is measured with respect to tref. The remaining unmatched

phase is due to the range dependence of the SAR transfer function. Referring to the definition of

the SAR focussing phase in Equation (2.47), (f,7,f,.; ro) varies linearly with ro if B is constant.

In this case, the phase in Equation (3.76) above can be written as a linear function of t:

[(f, fr; To)
- fT; r)] = -2t[(f0+ fr)2

-

- (Jo + fT)]. (3.77)

This linearity in t allows the expression in Equation (3.76) to be cast into the form of a

two dimensional Fourier transform by making the following change of variables in the range

frequency dimension:

ft = (J(fo + fr)2
-

- fo)• (3.78)

This gives:

D.ef(f?l, f) = ff o(io, t)G’A’(f, ft)e_i2 tAtj2 .f7710ditdri0, (3.79)

which is a Fourier transform of a bandlimited estimate of the scene. This is expressed as a

function of the frequency variables (f,7, fe), which correspond to the image dimensions (‘io, 1st).
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The amplitude spectrum which bandlimits the image is A’(f,7,ft) = A(f,7,f,.), and the nearly

constant factor G’ is given by

= GP2B(7
fT)

[(fo + fT)2 + (3.80)

Thus, the Stolt interpolation technique consists of interpolating points in the two-dimensional

transform of the data, and moving them to a grid in the frequency variables which correspond

to the two-dimensional Fourier transform of the image.

The comparison of the polar format and wave equation algorithms revealed a relationship

between them that has not been previously understood. Both algorithms involve a change

of variables in the frequency domain, with the objective of matching the range dependent

SAR transfer function in order to focus the data. In both cases, the linear component of

the range dependence of the SAR transfer function phase is matched by taking advantage

of the definition of the Fourier transform. In fact, as a function of the azimuth frequency

variable used in each case, it can be seen by comparing Equations (3.78) and (3.69) that the

range-frequency interpolations in both algorithms are equivalent. The difference between the

algorithms is in the definition of the azimuth-frequency variable. In the polar algorithm, it

is assumed that all scatterers are relatively close together so that the relationship between

azimuth-time and azimuth-frequency for all scatterers is assumed to be the same as that for the

scatterer at the reference point. The interpolation in azimuth in the polar algorithm does an

approximate conversion from azimuth-time to azimuth-frequency, and then the interpolation in

range-frequency provides the focussing. In the Stolt method, the requirement that the scatterers

be close together is removed by taking the azimuth Fourier transform of the data. Interpolation

is then done in only the range-frequency dimension to provide focussing.

3.4.2 Approximations

Interpolation of data in the frequency domain results in artifacts such as shading in the image

unless the interpolation is done very accurately [47]. Thus, the Stolt interpolation method

is very computationally expensive if implemented directly. For this reason, a wave equation
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algorithm for SAR processing has been derived which makes approximations in order to simplify

the Stolt method [32]. By approximating the change of variables in Equation (3.78) by

I c2f2
ft = f- — fo(1 —

— 4c2B)’
(3.81)

V Jo

the interpolation reduces to a simple range-frequency shift. This can implemented in the range-

Doppler domain by multiplying the data by the azimuth-frequency dependent complex expo

nential:
I c2f2

exp[—j2irtfo(1 — i/i
— 2 )]• (3.82)

y 4f0B

Considered in the azimuth direction in the range-Doppler domain, this operation is equivalent to

a residual azimuth compression that depends on range. In addition, the range-Doppler domain

allows any range dependence of B(ro) to be included in this residual azimuth compression.

Thus, this algorithm consists of first applying a two-dimensional frequency domain multiply

which downward continues the data to a reference range. This is equivalent to performing a

bulk range-invariant azimuth compression, RCMC, and SRC in the two-dimensional frequency

domain. This is followed by a residual azimuth compression in the range-Doppler domain. How

ever, because of the approximation to the change of variables that is made in this algorithm,

RCMC and SRC are performed accurately only at the reference range. Neglecting the range

dependence of RCMC allows it to be performed without an interpolator. However, the uncor

rected residual range migration can cause a noticeable error for moderate squint angles [39].

3.5 Chirp Scaling Algorithm

Approximations to SAR processing to eliminate the need for an interpolator, as in the approxi

mations to the wave equation approach, have left the range dependence of RCMC unaccommo

dated. Recently, the chirp scaling algorithm has been developed as a means to provide accurate

SAR processing without implementing an interpolator [17, 18, 19]. The chirp scaling algorithm

takes advantage of the properties of uncompressed, linear FM pulses in order to remove the

range dependence of RCMC. This is done by the multiplication of uncompressed range lines in
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the azimuth-frequency range-time domain by a chirp scaling phase function. Then, bulk RCMC

and SRC are performed in the two-dimensional frequency domain, and SRC is allowed to vary

with azimuth-frequency. Finally, azimuth compression is performed in the range-Doppler do

main. In this algorithm, all operations are performed with either multiply or FFT operations.

Also, as in the squint imaging mode algorithm, extra corner turns are required to access range

lines after the azimuth FFT, and to access azimuth lines before azimuth compression.

The chirp scaling technique is a way of removing the range dependence of RCMC. The

idea is to scale the range-time axis at each azimuth-frequency, using the property of linear

FM pulses, so that the range migration trajectories of scatterers at all ranges have the same

shape as the trajectory at a reference range. Once thisjs done, the remaining bulk RCMC

is range-invariant and can be done in the two-dimensional frequency domain. To develop a

mathematical representation of the chirp scaling algorithm, refer to the formulation of the

point scatterer response in the range-Doppler domain given in Equation (3.60). Also, let the

point scatterer response include the delay to the scatterer’s position, so that the representation

of the signal becomes

S(f,r;ro) = Fac(f,i;ro)m[i(r — r)]exp{—jwKm(r — Td)2]. (3.83)

For a scatterer at range r0, the range migration trajectory is denoted by rd(f,7;ro), as shown in

Figure 3.6. To simplify notation, define iref(f,j) to be the trajectory at the reference range, so

that Tref(f,7)= rd(f,7;rref). The objective of chirp scaling is to change the scatterer trajectory

at r0 to a desired trajectory, r8(f,1;ro), which has the same shape as the reference trajectory,

as shown in the figure. The desired trajectory intersects the original scatterer trajectory at

a reference azimuth-frequency, f,,.. This reference azimuth-frequency is the point along the

scatterer trajectory that is chosen for the final range-time location of the scatterer in the

image [37, 51, 52]. For small squint angles f,7r can be zero, so that the scatterer is registered

to to. However, for high squint angles the Doppler centroid is large enough that the delay due

to range migration can be on the order of the pulse length, causing problems for chirp scaling.

Thus, the reference azimuth-frequency should be in the vicinity of the Doppler centroid. Once
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Figure 3.6: Range migration trajectories in chirp scaling.

the trajectory has been scaled tor3(f,7;ro), the bulk RCMC is the same as the range migration

of the reference trajectory about the point at f,,.. In this sense, the desired scaled trajectory

for the scatterer at r0 can be expressed as

r3(f;ro) =Td(f,r;ro)+ [Tref(f,1)Tref(f,ir)J, (3.84)

where rd(f,7r; ro) is the scatterer position in the coordinate system determined by f,1r, and

[Tref(f,1) Tref(f,7r)] is the range-invariant bulk RCMC.

At each azimuth frequency, it is convenient to measure range-time from the reference tra

jectory. Let r(f,1;ro) be the delay from the reference trajectory to the scatterer trajectory at

r0, as shown in Figure 3.6, so that

Td(f,1;ro) = Tref(f) + r(f; ro). (3.85)

The purpose of scaling is to achieve the desired trajectory whose delay from the reference

trajectory is constant in azimuth-frequency, being equal to the delay at f,r. Thus, the desired
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trajectory for a scatterer at r0 can be written as

r3(f,7;ro) = Tref(f) + r(fr; ro). (3.86)

Comparing this to the original scatterer trajectory in Equation (3.85), it can be seen that the

objective of the scaling operation is to change r(f,7;ro) to r(f,7;ro) for scatterers at all

ranges. From the definition of the range migration trajectory in Equation (3.55), the reference

trajectory is given by

Tref(f,7)
= 2rref

(3.87)c7(f,7,Tref)

Now, by assuming that the B parameter is constant and equal to the value at the reference

range, that is B(ro) B(Trj), the original scatterer trajectory can be approximated by

rd(f,7;ro)
2r0

(3.88)
c7(f,1,rref)

By making this approximation, it is assumed that the delay to the range migration curve at a

particular azimuth-frequency varies linearly with r0. Thus, T(f,?; ro) and r(f,7r;ro) are both

assumed linear in (ro — rref), and are related by

r(f,1r;ro) = r(f,; ro)/of,7), (3.89)

where o(f,7) is an azimuth-frequency dependent scale factor:

— 7(f,ir;Tref)
a(f) — . (3.90)

7(f,; Tref)

Thus, given the assumption of a constant B, the desired trajectory is

r3(f;ro) 7ref(f)+
jr0). (3.91)

In this case, a linear scaling of each range-time axis, with respect to the reference trajectory, is

sufficient to remove the range dependence of RCMC.

Such a scaling can be achieved by taking advantage of the properties of linear FM pulses.

This is illustrated in Figure 3.7, which is a frequency-time diagram of a range line, at a particular

azimuth-frequency, containing two scatterers. One of the scatterers is at the reference range,
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Figure 3.7: Frequency-time diagram of range line with linear FM pulses.

the other is located away from the reference range. A frequency-time curve of a pulse is a

plot of instantaneous frequency versus time, which for a linear FM pulse is a straight line. In

the figure, the solid frequency-time curves correspond to the two pulses before scaling. Pulses

compress to the point where the frequency-time curve intersects the center frequency of the

range matched filter, shown by the solid squares for the pulses before scaling. Also shown in

the figure is the curve for the chirp scaling phase function. Multiplying the range line by the

chirp sca]ing phase function has the effect of shifting the frequency-time curves of the pulses,

and the curves after scaling are shown by the dotted lines. This shifting of the curves affects the

location of the compressed pulses after scaling, indicated in the figure by the open circles. The

shift in the location of the compressed pulses is range dependent, being zero for scatterers at

the reference range and increasing away from the reference range. This range-dependent shift

accomplishes the scaling effect.

If a linear scaling is required, as in the case of a constant B, and assuming that the frequency

rate in the range signal is range-invariant so that Km(f,; ro) Km(f,; rref), then the chirp

scaling phase function for a given range line is a quadratic phase function centered on the
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reference trajectory. Given the range-Doppler representation of the signal, S(f, r; ro), and

letting S(f,1,r; ro) be the chirp scaled signal, the scaling operation can be expressed as

Sa(f,i, r; ro) = S(f, r; ro) exp{—jirq2(f,1)(r— Tref)2j, (3.92)

where q2(f,1) is the coefficient of the chirp scaling phase function.

After multiplying S(f,7,T; ro) by the chirp scaling phase function, r; ro) is Fourier

transformed with respect to T to give the SAR transfer function of the chirp scaled signal. As

in Equation (3.51), the phase of the transfer function can be expanded in f to give terms that

correspond to processing steps. To derive the required value ofq2(f,7), consider the phase term

corresponding to RCMC. To simplify notation, let the range frequency rate, which is assumed

range-invariant and equal to the value at the reference range, be denoted by Kmrei(f,7). In the

chirp scaled signal, the resulting scaled trajectory for a scatterer at r0 can be shown to be

Kmref(f)
r(f;ro). (3.93)

Kmref(f,) +q2(f)

By comparing this with the approximation to the desired trajectory in Equation (3.91), it can

be seen that q2(f,2) can be chosen to give the required linear scale factor, a(f,7), as follows:

q2(f) Kmrej(f,){O(fr1)— 11. (3.94)

With the chirp scaling phase function thus defined, the chirp scaling algorithm can be de

scribed in detail. A block diagram is shown in Figure 3.8. First, the data is Fourier transformed

in the azimuth direction to get to the range-Doppler domain. Then range lines are multiplied

by the chirp scaling phase function. Next, a range FFT takes the chirp scaled data to the

two-dimensional frequency domain. Using the signal representation given by Equations (3.83)

and (3.92), the SAR transfer function of the chirp scaled signal becomes

S2(f,7,fT;ro) = M(fT )exp[—j21rrd(f,r; ro)f]
2

exp[—j2lr(rref(f,7)— Tref(f.,7r))fr] exp[jir I
t mref

Fac(f,1;ro) exp[j&(f,7;ro)]. (3.95)
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Figure 3.8: Block diagram of chirp scaling algorithm.
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The factors of this expression correspond to processing steps and properties of the range pulse.

The first factor is the amplitude spectrum of the range compressed pulse, M[(f,. — 5f,.)/aj, in

which the range bandwidth is scaled by a. At this point it is also shifted by an amount 5fT =

—q2Ir(f; ro), because of the chirp scaflng phase function multiply. Following the amplitude

spectrum is an exponential factor with a linear phase in f,- that gives the scatterer’s range

position in the image, rd(f,ir; ro). The next factor in Equation (3.95) has a linear phase in f

whose coefficient depends on azimuth-frequency, but not on range. This is the bulk RCMC

that can be removed by multiplying the signal by the conjugate of this phase term in the two-

dimensional frequency domain. Following this is an exponential with a phase that is quadratic

in f,-, which gives the range compression filter including azimuth-frequency dependent SRC.

In this filter the frequency rate has been multiplied by a. Assuming the frequency rate is

range invariant, range compression is performed by removing this phase term by a conjugate

multiply in the two-dimensional frequency domain. Finally, the azimuth compression filter is

indicated by Fac(f,?; ro), and this is augmented by a phase correction, (f5;r0). The correction

is necessary to remove a range dependent phase that is introduced into the data by the chirp

scaling phase function multiply. It is given by

(f,7;ro) = lrKmref(1 — )r(f,1;ro)2. (3.96)

The range dependence of azimuth compression and the phase correction can be accommodated

by performing these steps after a range inverse transform has taken the data to the range

Doppler domain. Finally, an azimuth inverse FFT provides the processed image.



Chapter 4

Considerations for High Squint

4.1 Introduction

The effects of a squint mode imaging geometry on SAR signal properties have not been thor

oughly understood. This chapter examines the effects of high squint on the signal properties,

signal modelling, and image properties in spaceborne SAR. Contributions of the chapter include

the following: First, a derivation of squint angle as a function of yaw, pitch, and elevation is

presented for the general case of large squint angles. Then a method for calculating the yaw and

pitch angles which minimize Doppler centroid variation with range and terrain height is derived,

and results are shown for residual variation which include the effect of antenna pointing errors.

Next the concept of squinted beamwidth is introduced. This is used to show the importance

of proper yaw and pitch angles for preserving desirable SAR signal properties and for satisfy

ing SAR imaging constraints. In addition to these contributions, other aspects of high squint

are investigated to provide a thorough understanding of squint mode SAR imaging. These

include the stop-start assumption, the representation of the platform to scatterer distance, the

two-dimensional data spectrum and image spectrum, and the point spread function.

4.2 Doppler Centroid Variation

4.2.1 Squint Angle Derivation

Squint is achieved with yaw and pitch rotations of the antenna from the broadside position,

where the yaw angle includes the contributions from both antenna pointing and the equivalent

yaw due to earth rotation [25]. The resulting squint angle also depends on the elevation angle

48
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Figure 4.9: Coordinate system showing elevation and squint of vector pointing from antenna
to scatterer.

to the scatterer within the beam. This elevation angle in turn is related to the closest approach

range and the height of the scatterer. Thus, the Doppler centroid, which is proportional to the

sine of the squint angle, varies with closest approach range and terrain height [53]. Variation

of the Doppler centroid with range causes problems for SAR processing in the two dimensional

frequency domain, as was noted in the previous chapter. In addition, Doppler centroid variation

with terrain height can lead to undersampling of the azimuth signal and azimuth ambiguities.

The characterization of Doppler centroid variations requires an expression for the squint

angle as a function of yaw, pitch, and elevation. Previous derivations of the squint angle have

used small angle approximations appropriate for the small yaw and pitch angles encountered in

conventional SAR [54, 55]. However, for squint mode, a general expression for the squint angle

is required. To find this, first define a coordinate syst for describing the vector which points

from the antenna to a scatterer, as shown in Figure 4.9. In this figure, let the x axis be parallel

to the flight vector, the z axis point to nadir, and the y axis point in the orthogonal cross

track direction. Then the elevation angle, and the squint angle, 0, form two coordinates of

a spherical coordinate system, the third coordinate being p, the vector length. The conversion

platform

y

x

flight path
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between this coordinate system and the rectangular one is given by the equations:

= psin(O)

y = pcos(0)sin(7)

z pcos(8)cos(7e)

p — 4Jx2+y2+z2

8 = arcsin(
X

x2 + y2 + z2

7e arctan(). (4.97)

Since squint can at most be ninety degrees forward or backward, 8 satisfies the condition:

— ir/2 < 8 < ir/2, (4.98)

and since the elevation angle is between nadir and horizontal, satisfies:

0 < y < ir/2. (4.99)

Yaw refers to a rotation about the z axis, and pitch is a rotation about the y axis. To find

the squint angle resulting from a yaw and pitch of the antenna, start with a vector pointing

broadside, so that 8 = 0, at an initial elevation angle of The initial coordinates in the

rectangular system are:

xo 0

XO = Ito psin(7j) . (4.100)

pCOS(7j)

Then, the effect of yaw or pitch can be found by multiplying the initial vector by the appropriate

rotation matrix. Letting donate the yaw angle, the yaw rotation matrix is

cos(’) sinQ) 0

— sin(b) cos(b) 0 , (4.101)

0 0 1
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and letting 6 donate the pitch angle, the pitch rotation matrix is

cos(6) 0 sin(6)

= 0 1 0 (4.102)

—sin(6) 0 cos(6)

Also, the yaw and pitch angles satisfy the conditions:

— ir/2 < & < ir/2, (4.103)

and

— ir/2 < 6 < ir/2. (4.104)

Assuming the yaw rotation is performed first and then the pitch, the resulting vector is given

by

Xyp = AAx0. (4.105)

Then, by substituting for xo from Equation (4.100), and expressing Xyp in the spherical co

ordinates defined in Equation (4.97), the squint angle can be expressed in terms of the yaw,

pitch, and initial elevation angles as

sin(8) = sinQy) sin(&) cos(6) + cos(7j) sin(6). (4.106)

Also, the final elevation angle of the resulting vector is given by

t (
tan(7) cosQ)

4 107an’y1
cos(6) — tan(7) sin(b) sin(6)

Note that for a given yaw and pitch, there is a relationship between the initial and final elevation

angles. The initial elevation can be expressed as a function of the final elevation by

— tan(7e)cos(6)
4108

— cos(&) + tan(7e) sin() sin(6)
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4.2.2 Minimization of Doppler Centroid Variation

Given the above formulation for the squint angle, the procedure for steering the antenna to a

desired squint angle at a desired elevation angle can be summarized as follows: in the broadside

position, tilt the antenna to the initial elevation angle, then apply the yaw rotation, followed by

the pitch rotation. From Equation (4.106) it can be seen that the same value of squint can be

achieved with many different combinations of yaw and pitch. Because of the problems caused

by Doppler centroid variation with range and terrain height, it is desirable to find those values

of yaw and pitch which minimize the variation of squint angle. The idea of properly choosing

the yaw and pitch angles to minimize the Doppler centroid variation with range was introduced

in [24], in which the angles were derived using the slope of the desired iso-Doppler line on a

fiat surface. However, a more general approach can be taken which involves minimizing the

variation of squint with respect to the final elevation angle within the beam. This includes

minimization of the Doppler centriod variation with both range and terrain height, and will be

shown later to have other beneficial effects on the SAR signal properties in squint mode.

In general, the squint variation is minimized at a particular elevation angle by setting

ôsin(6)
= 0, (4.109)

where sin(0) is defined in Equation (4.106), and the condition on 6 in Equation (4.98) has been

assumed. By making use of the relationship between and 7, and noting that 07j/ô7e is

nonzero and finite for the conditions given in Equations (4.103) and (4.104), it can be shown

that to minimize squint variation with elevation it is sufficient to satisfy:

0(6)
= 0. (4.110)

Then, evaluating Equation (4.110) gives the following relationship between yaw, pitch, and

initial elevation for minimizing the variation of squint angle with final elevation:

sin(’çb) = tan(7) tan(6). (4.111)



Chapter 4. Considerations for High Squint 53

Given a desired squint angle and a desired final elevation angle, the yaw, pitch, and initial el

evation angles represent three unknowns in the three Equations of (4.106), (4.107), and (4.111).

To simplify the solution, Equation (4.111) can be used to eliminate b from the equations, giving

the following two equations in the unknowns of 6 and 7j:

sin(8)
= sin(b)

(4.112)
cos(7j)

tan (-yj)
tan(7€) = (4.113)

cos(6)1 — tan2(7) tan2(6)

These two equations can be solved by Newtons method for solving sets of nonlinear equa

tions [56]. Only a few iterations are required, given a starting guess for the initial elevation

angle equal to the desired elevation, and a starting guess for the pitch angle equal to half the

desired squint angle. After finding the pitch and initial elevation angles, the required yaw an

le is found from Equation (4.111). Finally, assuming the yaw and pitch angles are chosen to

satisfy Equation (4.111), an expression for the squint angle which is independent of elevation

angle can be found. Substituting for j from Equation (4.111) into the expression for squint in

Equation (4.106), and rearranging, gives

cos(O) = cos(b) cos(6). (4.114)

In the derivation of the optimum yaw and pitch angles to minimize Doppler centroid vari

ation, the derivative of the squint angle was set to zero only at a particular value of elevation

angle, corresponding to the middle of the swath and a nominal terrain height. Thus, there is

a residual Doppler centroid variation at other elevation angles, leading to a Doppler centroid

error at the edges of the range swath and at different terrain heights. In addition, the optimum

yaw and pitch angles may not be achieved due to antenna pointing errors, which may increase

the residual Doppler centriod errors. To investigate these effects, a relationship between final

elevation angle to the scatterer, closest approach range, and terrain height needs to be deter

mined. For a rectilinear geometry, this relationship is simple and depends only on the altitude

of the platform. For an orbital geometry and spherical earth, refer to Figure 4.10, where H is
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platform

H

scatterer

Figure 4.10: Orbital geometry.

the distance of the platform from earth center, and v is the velocity of the platform relative to

the scatterer. The angle o to the scatterer is measured from the plane containing v and earth

center. The radius to the scatterer is given by (re + h) where r is the nominal earth radius

and h is the terrain height. The final elevation angle to the scatterer within the antenna

beam, is measured from nadir at the platform location. The closest approach range to the

scatterer is measured at the closest approach position. The squint angle to the scatterer is

assumed to be measured at the beam center, and R(; ro) is the distance to the scatterer. The

geometry of the figure can be used to find the the following relationship between -ye, r0, z\h

and 0 in an orbital geometry:

— (re + th) sin(cr(ro, zh))
sln(7e) —

R(ri; ro) cos(O)

vii
closest
approach

r0

(re+Ah)

earth center

(4.115)
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parameter value
altitude 800 km
earth radius 6378 km
platform velocity 7600 rn/s
antenna length 10.5 m
pulse length 34 us
pulse bandwidth 20 MHz
wavelength 0.235 rn (L-band)

0.056 rn (C-band)
oversampling rate 1.2

Table 4.2: Spaceborne SAR parameters.

In this expression, the definition of the angle ar is modified from the definition in Equation (2.17)

to include the height of the scatterer as follows:

(re + h)2 + H2 —

ür(ro,/h) = arccos[
2(r + h)H

(4.116)

To find the residual Doppler centroid variation for various desired squint angles, the yaw

and pitch angles were calculated for an elevation angle at midswath and nominal terrain height,

and antenna pointing errors were added. Then, assuming a circular orbit geometry and using

Equation (4.115), the elevation angle was calculated at the edges of a 40 km swath, and with a

terrain height change of z.h 1000 rn. This was used to find the difference in squint angle from

the desired squint angle, which in turn was used to find the residual Doppler centroid error. The

parameters used in the calculations are shown in Table 4.2, and were chosen to be representative

of spaceborne platforms such as Seasat and ERS-1, with wavelengths corresponding to L-band

and C-band, respectively. In addition, to determine how the results are affected by the elevation

angle to midswath, cases of near and far incidence are investigated. In the near incidence case,

the desired elevation angle is 21°, and for far incidence the desired elevation angle is 40°.

Figures 4.11 and 4.12 show the Doppler centroid error, in Hertz, versus squint angle for a

spaceborne platform at near and at far incidence. Results are also given for different values of

maximum antenna pointing error: zero degree error, +0.5 degree error, and +1 degree error.
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Figure 4.11: Doppler centroid error versus squint, due to range variation and height variation, at

near incidence. Solid curve indicates zero degree antenna pointing error, dashed curve indicates

+0.5 degree error, and dot-dash curve indicates +1 degree error.

For a given maximum antenna pointing error, the worst case Doppler centroid error is presented.

As can be seen, the proper use of yaw and pitch rotations achieve acceptable Doppler

centroid errors. The figures show the Doppler centroid error increasing as the wavelength

decreases and as the elevation angle decreases. The effect of an antenna pointing error is to

significantly increase the Doppler centroid error, even at zero squint. Variations in Doppler

centroid should be small compared to the PRF, which is typically at least 1000 Hz. In all

cases the effect of terrain height variation on the Doppler centroid is quite small compared to

the PRF, less than 5 percent even with a +1 degree antenna pointing error. At the edge of the
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Figure 4.12: Doppler centroid error versus squint, due to range variation and height variation,
at far incidence. Solid curve indicates zero degree antenna pointing error, dashed curve indicates
+0.5 degree error, and dot-dash curve indicates +1 degree error.
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range swath, the Doppler centroid error due to range variation is less than 10 percent of the

PRF in almost all cases, allowing the Doppler centroid variation with range to be neglected

in SAR processing. The exception is the case of C-band at near incidence, in which case some

accommodation of the range variation of the Doppler centroid would be required iii processing.

It is interesting to note that for squint angles above about thirty degrees, the sensitivity of

the squint angle to elevation angle begins to decrease, resulting in smaller Doppler centroid

errors for these values of squint. Finally, it should be noted that because of the dependence on

wavelength, the Doppler centroid errors for smaller wavelengths, such as X-band, would be quite

large. Thus, processing squint mode SAR data with such wavelengths would be particularly

difficult. In addition, for the satellite platforms considered here, the effect of terrain height is

small. However, the errors due to terrain height variation would be greater for a spaceborne

platform of lower altitude such as a space shuttle.

4.3 Signal Properties

4.3.1 Squinted Beamwidth

Signal properties such as azimuth bandwidth and exposure time depend on the change in

instantaneous squint angle, , to a scatterer as it passes through the antenna footprint. This

change in O experienced by a scatterer will be referred to as the squinted beamwidth. At low

squint, this is simply the azimuth beamwidth of the antenna in the slant range plane, A/L.

However, at high squint the squinted beamwidth depends on the orientation of the antenna

footprint with respect to the platform motion, which in turn depends on the yaw and pitch

angles used to achieve the squint.

Given a scatterer at closest approach range r0, let the instantaneous squint angle experienced

by the scatterer at the leading and trailing edges of the beam be denoted by O and 6_,

respectively, so the squinted beamwidth is zO = (O
—

9). The leading and trailing edges of

the beam are determined by pitch and yaw rotations of the zero squint vector, where a yaw

rotation of b + ‘ produces the leading edge and ib — produces the trailing edge. The yaw
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Figure 4.13: Squinted beamwidth. Illustration of elevation angles at beam edges before and
after squinting.

interval corresponding to the antenna beamwidth at the initial elevation angle is given by:

= A
(4.117)

L sinQy)

First, consider the rectilinear geometry shown in Figure 4.13. For a scatterer at a fixed

closest approach range, the elevation angle remains constant as the scatterer passes through

the footprint. Compare the lines of constant elevation through the footprint before and after

squinting. The line of constant shown by the solid line in the zero squint footprint gets

rotated to the dashed line in the squinted footprint. Similarly, a line of constant 7e experienced

by the scatterer in the squinted footprint corresponds to the rotated dashed line shown in the

zero squint footprint. Thus, the leading and trailing edges of the squinted footprint along the

line of constant Ye correspond to yaw angles of t’ ± , and the initial elevation angles of 7i+

and ‘y shown in the figure. For a given pitch and yaw rotation, final elevation angle, and yaw
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interval, arid yj can be found from Equation (4.108) as follows:

tan(7e) cos(5)
tanQy) = . (4.118)

cos(t + ) + tan(y) sin(1’ + ) sin(6)

From this result, the instantaneous squint angles at the beam edges can be found from

sin(6) = sln(7j±) sin( + —) cos(6) + cosQyi) sin(6). (4.119)

Since 6 is small, an expansion of sin(6) gives:

= sin(6) — sin(O_)
(4.120)

cos (6)

Then, substituting the definition of sin(&) into this equation, and expanding sin(b+ ), gives

— (sin(’y) — sinQy_)) sin(th) cos(6) + (cosQyj) — cos(yj_)) sin(s)

cos(6)

A cos(b) cos()
+ (4.121)

L cos(6)

Next, since —y) is small, the above expression for squinted beamwidth can be rearranged

to be

= (xi+ —
+

A cos(b)cos(6)
(4.122)

If the yaw and pitch angles are chosen to minimize the variation of squint with elevation

angle, then the first term in Equation (4.122) is negligible, and from the relationship in Equa

tion (4.114) the expression for squinted beamwidth reduces to

(4.123)

Thus, if yaw and pitch angles are optimized to minimize the variation of squint with elevation,

the squinted beamwidth remains at its zero squint value, independent of squint and elevation

angle. From the definition of the azimuth bandwidth of the data in Equation (2.12), the

bandwidth for high squint is related to the squinted beamwidth by

= 2v6cos(6)
(4.124)
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By maintaining a constant squinted beamwdith of A/L, the bandwidth becomes

2vcos(O)

= L
(4.125)

which is independent of range and decreases as the cosine of the squint angle. Thus, proper

selection of yaw and pitch angles to align the antenna footprint along an iso-Doppler line not

only minimizes Doppler centroid variation, but also preserves the property of SAR imaging that

the azimuth bandwidth is independent of range. Also, the dependence of azimuth bandwidth

on cos(O) will prove useful with respect to SAR imaging constraints in the next section.

In an orbital geometry, as seen from Equation (4.115), the relationship between elevation

angle and closest approach range depends on the instantaneous squint angle. For this reason,

a scatterer at a fixed closest approach range will have slightly different final elevation angles at

the leading and trailing edges of the beam, denoted by ‘ye+ and However, the same method

of determining the squinted beamwidth described above can be used, where and 7e— are

used to calculate Yj+ and ‘y, respectively. The only complication is that, since 7e+ and

depend on the instantaneous squint angles at the beam edges, an intial guess for zO is required

that is refined by iteration. Nevertheless, when these calculations were performed with the yaw

and pitch angles chosen to minimize the squint variation with elevation, the value of squinted

beamwidth was still found to be equal to ?/L, so that the effect of an orbital geometry on the

squinted beamwidth in this case is negligible.

To illustrate the effect of the use of optimal yaw and pitch angles on the azimuth bandwidth,

Table 4.3 shows the azimuth bandwidth as a function of sqUint angle for various cases. First,

the bandwidth was calculated by assuming that only a yaw rotation was assumed to achieve

the squint. Results are given for near and far incidence cases, corresponding to different ranges

for the same platform altitude, and the parameters of Table 4.2 were used in the calculations.

As can be seen, for the same squint angle the difference in bandwidth between near and far

incidence cases is significant. In contrast, the table also shows the bandwidth when yaw and

pitch angles are optimized to minimize the variation of squint with elevation. In this case, the

results for the near and far incidence cases were the same, and agreed with the expression for



Chapter 4. Considerations for High Squint 62

azimuth bandwidth (Hz)
squint yaw only yaw and pitch

( degrees) near incidence far incidence
0 1448 1448 1448
10 1559 1450 1426
20 1791 1443 1360
30 1969 1407 1254
40 1958 1248 1109
50 1640 934 931

Table 4.3: Azimuth bandwidth versus squint: Yaw rotation only; and with optimal yaw and
pitch.

bandwidth in Equation (4.125).

Finally, the squinted beamwidth determines the exposure time of the scatterer. To find a

relationship between squinted beamwidth and exposure time, first use the definition of instan

taneous azimuth-frequency with Equation (2.12) to determine a relationship between instanta

neous squint angle and azimuth-time:

sin(O8()) = R’(). (4.126)

At the beam center, this equation gives the relationship between squint angle and beam cen

ter offset time. For narrow beams, the relationship between instantaneous squint angle and

azimuth-time at the beam edges can be found be expanding both sides of Equation (4.126).

Rearranging the result gives the relationship between exposure time and squinted beamwidth:

= v cos(O)
(4.127)

4.3.2 SAR Signal Constraints

A fundamental constraint in SAR concerns the relationship between the range swath and the

azimuth sampling rate [12, 13]. This is illustrated in Figure 4.14, which shows how a received

echo which must fit into the time between the transmission of adjacent pulses. In this figure,

2LR/c is the difference between the largest and smallest possible travel times to scatterers
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Figure 4.14: Transmitted pulses and received echo.

within the beam. At a given azimuth-time, assuming a forward squint angle, the largest distance

corresponds to a scatterer at far range and at the leading edge of the beam, while the smallest

distance corresponds to a scatterer at near range at the trailing edge of the beam. For example,

let Tref be the closest approach range at midswath so that rref + r/2 and Tref — r/2 are the

closest approach ranges at the near and far ends of the swath. Then, the interval of possible

distances to scatterers is

= R(ij + /2; rref + r/2)
— R(i — j/2; Tref — r/2). . (4.128)

After convolution of the scatterers in the swath with the transmitted pulse, the length of the

received echo is (2R/c + T) as shown in the figure. In addition, a guard space, T8, is included

to allow for variations in the range delay of the signal and to allow some flexibility in choosing

the PRF. From the figure, it can then be seen that the constraint that must be satisfied by

the received signal and the PRF is:

2R 1
—+2T+T<

PRF’
(4.129)

where the PRF is equal to the azimuth bandwidth multiplied by the oversampling rate, o5.

In general, since the PRF decreases with antenna length, and the range swath decreases with

antenna width, this constraint leads to a minimum size for the antenna [12].
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The effect of a high squint angle on this constraint should be investigated. In general, for a

given closest approach range swath, r, the length of the received echo increases with squint.

This is due to the fact that when the swath is viewed at an angle other than perpendicular to

the flight path, the perceived distance between the near and far ends of the swath increases. In

addition, increasing the squint angle increases the amount of range migration. However, if yaw

and pitch angles are chosen such that the azimuth bandwidth is given by Equation (4.125), then

the PRF can be allowed to decrease as the cosine of the squint angle, allowing a greater time

between pulses. To describe the effect of squint on the condition in Equation (4.129), consider

a rectilinear geometry. In this case, LR can be expressed approximately as

Zr A’rre tan(O)
LR + , (4.130)

cos(6) Lcos(6)

where the first term is due to the viewing angle and the second term is due to range migration.

Substituting this expression into Equation (4.129) and using the expression for azimuth band

width in Equation (4.125), the maximum closest approach range swath that can be imaged for

a given squint angle can be derived:

zr <

+ [(2T + T5)(1 — cos(O))
—

tan(O)]. (4.131)

In this expression the first term gives the constraint at zero squint, and the second term shows

how it changes as squint increases.

For an orbital geometry, the appropriate distance equation R(i; ro) can be used in the

calculation of R in Equation (4.128). Then, for a given squint angle, the maximum value

of closest approach range swath, r, for which the condition in Equation (4.129) is satisfied

can be found. The results are shown in Figure 4.15, for L-band and C-band, and for near

and far incidence, where the parameters of Table 4.2 were used in the calculations. The value

of the guard space, T5, was near that of Seasat, = 200jis. Also, results are shown for

antenna lengths of 10.5 m and 12 m in order to indicate the effect of antenna length on the

constraint. Given a desired swath width, it can be seen from the figures that the SAR imaging
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constraint forms fundamental limitation on the squint angle for the given wavelength. A larger

wavelength increases the aperture, thus allowing more range migration, making the constraint

in Equation (4.128) more difficult to satisfy for the same range swath. For L-band the range

swath decreases rapidly for squint angles above 35 degrees, whereas for C-band the swath begins

to drop after about 50 degrees of squint.

4.4 Stop-Start Assumption

In modelling the SAR signal, it is assumed that the platform is stationary while a pulse is

transmitted and received. This assumption ignores the distance travelled by the platform

between the transmission and reception of the pulse, and the fact that the platform is moving

during the transmission and reception of the pulse. These approximations have a negligible

effect on the signal for small squint angles, but may become noticeable at high squint [16, 57j.

Thus, in squint mode SAR, it is necessary to know the effects of the stop-start assumption on

the signal, so that they can be correctly accounted for during processing.

First, consider the distance travelled b the platform between the transmission and recep

tion of the leading edge of the pulse. This effectively changes the length of the path travelled by

a pulse, so that it is no longer simply twice the distance from the platform to the scatterer at

one particular azimuth time. Figure 4.16 illustrates the actual path of the pulse between trans

mission and reception. Assume that the position of the platform at azimuth time i corresponds

to the position at the leading egde of the transmitted pulse. Then the distance to the scatterer

on the transmit path is the same as the platform to scatterer distance used above, R(i, ro).

Let the distance from the scatterer to the receive position be denoted by RR. Also, the figure

shows the part of the flight path between the transmission and reception of the pulse, where

the platform has travelled a distance of v(R(; ro) + RR)/c. Since this distance is relatively

small, assume that the flight path follows a straight line in the direction of the velocity vector

at azimuth time i. Finally, the angle from broadside to the scatterer is the instantaneous squint

angle, 6(77). With these definitions, the geometry of the figure can be used to show that the
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length of the path travelled by the pulse, 2R = (R + RR), is

2R(;ro) = 2R(ro)[1_— 1

2v sin(O) — 2v2 Vr cos2(cxr) — R2 sin2(6)

A cAll

VTI

receive

path

R(1;r

scatterer

Figure 4.16: Path travelled by pulse without stop-start assumption.

(4.132)

Note that R(i1;ro) can be considered as a modified platform to scatterer distance, that can be

used when modeffing the SAR point scatterer response as a function of azimuth-time.

Recall from Equation (2.11) that the Doppler centroid of the point scatterer response was

found by taking the derivative of the azimuth phase of the signal, when the scatterer was at

the beam center. Since the azimuth phase is proportional to the path length, an accurate

representation of the Doppler centroid as a function of squint angle should use the path length

in Equation (4.132). Neglecting the very small factor of ()2, and assuming a circular orbit

geometry, this gives a Doppler centroid of

(4.133)

The second term in this expression gives the change in Doppler centroid due to platfrom motion.

However, even for small wavelengths this term is at most a few Hertz, which is negligible.

Now consider the effect of the platform motion within the duration of the pulse itself.

Let r be the ‘fast-time’ time within the pulse, starting at the leading of the pulse when it is
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transmitted at azimuth-time . To find the effect of platform motion during transmission and

reception of the pulse, it is necessary to represent the instantaneous distance from the platform

to the scatterer as a function of T. To do this, the above derivation of the path length can be

applied to a point within the transmitted pulse, delayed from the leading edge by an amount r.

Then, the instantaneous platform to scatterer distance can be modelled as R(j + -; r0). This

can be used in the expression for the received echo from a point scatterer:

p(T
— 2R(2+ T))

exp[
—j4irf0(i +

(4.134)

Thus, the effect of the platform motion is a time dependent delay in the complex envelope of the

pulse, p(r), and in the phase of the carrier. This is the same problem that has been investigated

for nonimaging radar with respect to the returns from moving targets [11]. To investigate the

effect on the signal, the time dependent distance can be expanded in a series:

R( + r; ro) = R(i; ro) + Rj; ro) + R(i7;ro)r2, (4.135)

with terms corresponding to the instantaneous range (constant delay), range rate (linear in r),

and range acceleration (quadratic in r). The effect of the range rate and higher terms on the

complex envelope, p(T), is negligible. For example, for spaceborne SAR parameters and high

squint angles, including the range rate term in the argument of pQr) results in a change in the

frequency rate of a linear FM pulse of less than 0.01 percent. Furthermore, considering the

effect of the time dependent delay on the carrier phase, the change in frequency rate due to the

range acceleration term is very small compared to the frequency rate of the pulse. Thus, the

only noticeable effect of platform motion during pulse transmission and reception is the range

rate term in the carrier phase, which is simply a Doppler shift of the individual pulse.

The ability of a matched filter radar to measure the Doppler shift of a single pulse depends

on the length of the transmitted pulse [11]. In general, the Doppler resolution of a pulse is

roughly equal to the inverse of the pulse length, so for the pulses used in spaceborne SAR the

Doppler resolution of a pulse is about 30 kHz. Thus, Doppler shifts that are much less than

this will not significantly affect the received SAR signal. By substituting the range rate term
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into the carrier phase, the Doppler shift of a pulse can be shown to be 2R(cç,; ro)/A. Note

that this is the same as the expression for the instantaneous azimuth-frequency corresponding

to the azimuth-time . That is, the values of Doppler shifts of pulses received from different

points across the aperture span the interval of azimuth-frequencies in the SAR signal. For low

squint, the Doppler shifts are much smaller than the Doppler resolution of a pulse, and the

Doppler shifts can be neglected. For high squint, where the Doppler centroid can be on the

order of 100 kHz, the effect of the Doppler shifts is noticeable. However, if the received signal is

frequency-shifted in range to remove the Doppler shift corresponding to the center of the beam,

then only the variation of Doppler shifts across the aperture is important. This is equal to the

azimuth bandwidth, which is much less than the Doppler resolution of asingle pulse. Also, if the

variation of the Doppler centroid with range is minimized, then the Doppler shifts of received

pulse will not vary significantly with the closest approach range of the scatterers. Thus, the

effect of high squint on individual pulses can be accommodated by a constant, range-frequency

shift of the received signals.

4.5 Signal Model for SAR Processing

As mentioned in Chapter 2, satellite orbit information is used to determine an equation for the

platform to scatterer distance, R(i; ro). (If the platform motion between pulse transmission

and reception is taken into account, the modified distance equation that was described in the

previous section, R(j; ro), is used.) Also, it is desirable to have a relatively simple model for

the distance equation in the point scatterer response. In this section, an approach for using the

hyperbolic model of the distance equation for the case of high squint is discussed.

First, it should be noted that while an equation for R(i7; ro) is available as a function of

and r0. it is still necessary to determine the values of closest approach range and beam center

offset time, i, that correspond to each range bin in the data. Given the range gate delay to

the first sample the received echo, aild the number of samples to a given range bin, the travel

time along the beam center to the scatterer in that range bin can be found. Let this value be
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denoted by T,7, which is equal to 2R(ri; ro)/c. Also, the Doppler centroid can be related to the

derivative of R(ij; ro), as shown in Equation (2.11). Now, treating r0 and 71c as variables, the

measured values of r, and f can be used in the equations:

= R(i;ro)

= R’(; ro) (4.136)

to solve for closest approach range and beam center time for the given range bin [58].

The approach to modelling R(i; ro) that was described in Chapter 2 involved fitting a

hyperbolic function to the distance equation at the closest approach azimuth time. This gives

a very good approximation to the distance equation for small to moderate squint angles where

the equation is evaluated near the closest approach azimuth-time. However, at high squint the

hyperbolic equation that is fit at the closet approach time diverges from the actual distance

equation, as shown in Figure 4.17. The difference between the hyperbolic and the actual

equations over the aperture results in significant errors in phase, registration, range migration

correction, and focussing [33].

However, a hyperbolic model of the distance equation is particularly convenient to work

with. It provides an understanding of the imaging process by analogy with the wave-equation

methods. Also, it results in a convenient derivation of the chirp scaling algorithm. To use a

hyperbolic model of the distance equation at high squint, it has been proposed in [33] that a

hyperbolic equation can be fit to the distance equation at the beam center time, as shown in

Figure 4.17. That is, the distance equation is approximated over the aperture by

— m; ro) + B(i
— — h)2, (4.137)

where Th, B, and rj are range dependent parameters that are determined from the actual

distance equation as follows: Let

— o; r0) = R2(7
— o; ro) (4.138)

denote the square of the actual distance equation. The parameters are then found by equating

7 and its first and second derivatives, evaluated at the beam center time, to the corresponding
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values for (r + B(r1 — ?lh
— m)2). This gives the following expressions:

/ (R’(iic;ro))2
rh ro)

— 2l”(; ro)

R!(iic;ro)
‘17h = 71c ,,1?, (,;ro)

B = R”(7li; ro)/2. (4.139)

Note that in representing the distance equation by Equation (4.137), rh and (iio + ih) become

the effective closest approach range’ and ‘closest approach azimuth time’, respectively, of the

hyperbola. The point scatterer response can then be written with r as the closest approach

range variable and (77° + 1h) as the azimuth position. The Doppler centroid of the signal is

unchanged in the model since the slope of the distance equation is matched by the model at the

beam center. Processing then proceeds with the hyperbolic model, as described in Chapter 3.

For example, if the chirp scaling algorithm is used, the range position of the point spread

function after processing is

Td(fr Th(TO))
=

. (4.140)
C7(f,)r. rh)

The correction of the point spread function’s azimuth position from (m + ?7h) to 77o can be

done by including an appropriate linear phase term in azimuth frequency, during the azimuth

compression step in the range-Doppler domain. In the range direction, the fact that the point

spread function is registered in the rh variable can be taken into account, along with the

dependence of the registration on f,7r, during image resampling to ground coordinates. To

determine the accuracy of the hyperbolic fit to the distance equation over the aperture, Table 4.4

gives the resulting maximum azimuth phase error at the edge of the aperture as a function of

squint angle. Near and far incidence cases are presented with results for L-band and C-band.

As can be seen, the fit to the distance equation is sufficiently accurate for L-band up to about

40 degrees of squint, and for C-band up to 50 degrees.
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phase error (degrees)
near incidence far incidence

squint L-band C-band L-band C-band
0 0.0 0.0 0.0 0.0
10 0.5 0.0 1.0 0.1
20 1.3 0.1 2.7 0.2
30 3.5 0.2 6.2 0.4
40 12.3 0.7 30.7 1.8
50 79.7 4.6 340.0 19.8

Table 4.4: Maximum azimuth phase error at the edge of the aperture for hyperbolic fit to
distance equation at beam center time.

4.6 Spectrum and Point Spread Function

In Chapter 2, the amplitude spectrum and the point spread function of the processed image

were briefly described for small squint. For all but small squint angles, however, a description

of the spectrum requires a distinction between the data spectrum and the image spectrum.

This distinction is made explicitly in the wave equation approach to SAR processing, discussed

in Chapter 3. The dimensions of the raw SAR data are azimuth position and pulse travel

time, while in the processed image, the dimensions are azimuth position and range position.

After matching the phase of the SAR transfer function at a reference range, the Stolt algorithm

processes data by interpolating from the data frequency variables to those of the image. Thus,

it is the range variance of processing that maps the data spectrum to the image spectrum.

4.6.1 Data Spectrum

At high squint, the two dimensional region of support of the data spectrum poses an interesting

problem, which arises from the dependence of the Doppler centroid on range frequency, fT. To

see this, note that the Doppler centroid in Equation (2.13) was defined at the carrier frequency.

In the two dimensional frequency domain, however, the Doppler centroid can be determined
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for each range-frequency component as [30]

2v(fo + fT) sin(s)
(4.141)

This results in a skewed region of support of the data spectrum, as shown in Figure 4.18. Also,

because of the sampling of the azimuth signal, this skew can cause parts of the spectrum to cross

into the adjacent PRF band. Note that since all the repeated spectra are skewed the same way,

there is no actual aliasing of signal energy at this point. However, after range cell migration

correction and inverse transformation to the range-Doppler domain, the signal energy from the

repeated spectra are all aligned in the same range bin, and the corrected trajectories interfere

with each other. This results in aliasing in azimuth-frequency, and prevents the application

of the azimuth compression filter over all the azimuth frequencies in the signal. Finally, the

PRF cannot generally be increased enough to alleviate this problem, because of the SAR

imaging constraints discussed earlier. Thus, while the SAR data can be collected with an

azimuth sampling rate that decreases with squint angle, the processing of the data into an

image requires extra azimuth bandwidth to avoid aliasing. Note that this problem occurs for

any SAR processing algorithm, since the potential for aliasing is inherent in the signal.

This problem can be accommodated during processing by replicating the parts of the spec

trum that overlap, as illustrated in Figure 4.19. This produces a two dimensional spectrum

without overlap, removing the potential for aliasing during processing. Essentially, the azimuth

bandwidth is expanded to accommodate the nature of the squinted SAR signal. Also, this

replication of range lines can be done in the range-Doppler domain, before the range Fourier

transform. This allows all processing steps that depend on azimuth-frequency, such as chirp

scaling, to be performed correctly for all azimuth-frequencies in the signal. Then, the unwanted

pieces of duplicated spectrum, shown in the figure, can be removed in the two dimensional

frequency domain by applying a window.



Chapter 4. Considerations for High Squint 75

f
t overlap

/

/// fl_i

T -

‘.4

PRF

Figure 4.18: Skewed region of support of data spectrum.

f A repeated part
t I of spectrum

/ // //

/ f

______________

//

Figure 4.19: Replication of parts of spectrum to expand azimuth bandwidth.
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4.6.2 Image Spectrum

As mentioned, range variant processing maps the data spectrum to the image spectrum, as

indicated by the Stolt change of frequency variables in Equation (3.78). To give an illustration

of the image spectrum, consider the spectrum for a portion of the image that is small enough

that the B parameter can be considered constant in range, so that the change of frequency

variables in Equation (3.78) applies. The region of support of the image spectrum can then be

derived by combining the fT dependence of the Doppler centroid with the change of frequency

variables. First, in the two dimensional frequency domain, azimuth-frequency can be related

to instantaneous squint angle as follows:

ç 2v(fo + fT) sin(8) 142
i’ll— c (.

Then, by substituting this expression for f,, the Stolt change of frequency variables can be

expressed as

(fo + ft) = (fo + fT)V/1 -

sin2(s). (4.143)

This gives the mapping from the data spectrum to the image sprectum, as a function of 09, as

illustrated in Figure 4.20. Since the pulse bandwidth and the beamwidth do not change with

squint, the image spectrum for a high squint angle can be obtained from the zero squint spec

trum by rotating it along the arc shown in the figure. This representation of the image spectrum

agrees with the polar representation derived using the tomographic approach to spotlight SAR

imaging [21, 22, 59].

Thus, the effect of squint is a rotation of the system end-to-end transfer function (from scene

to image) in the two dimensional frequency domain. Accordingly, the point spread function

for high squint is the rotated sinc function shown in Figure 4.20. This means that the range

and azimuth resolution widths are approximately the same as for zero squint, but are measured

along different directions in the image than in the zero squint case.
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Chapter 5

Investigation of Chirp Scaling

5.1 Introduction

Chirp scaling is a relatively new algorithm for SAR processing, and several aspects of the

algorithm need to be investigated and more fully understood. This includes the image quality

that is achieved with the algorithm relative to conventional SAR processors. To this end,

a chirp scaling SAR processor was implemented in C’ on a Sun workstation, and was used

to process Seasat data, creating the first images produced with the chirp scaling algorithm.

In addition to implementing the algorithm, the assumptions and approximations used in the

derivation of the chirp scaling algorithm are investigated, especially for increasing squint angles.

Contributions of this chapter include the derivation of the side-effects of the chirp scaling phase

function multiply, and the processing errors due to the range dependence of the B parameter

in the signal model and the range dependence of secondary range compression. In addition, the

processing error due to a general pulse phase modulation error is derived, in order to determine

the effect of such pulse phase errors on chirp scaling.

5.2 Comparison with Range-Doppler

5.2.1 Image Quality At Low Squint

SAR data from the Seasat sateffite was processed with the chirp scaling processor, and with a

commercial range-Doppler processor called GSAR built by MacDonald Dettwiler. For a given

data set, the processing parameters for the chirp scaling processor were obtained from the

OSAR run on the same data. Thus, the outputs of the two processors could be compared in

78
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order to determine the image quality performance of the chirp scaling algorithm, relative to

that of the range-Doppler algorithm. Data from the Goldstone scene, a mountainous region

in California, was processed. The data are conventional SAR data at L-band, and the squint

angle is only about one degree, so that the SRC approximations made by the range-Doppler

algorithm are not significant. Figures 5.21 and 5.22 show images, 512 samples wide in each

direction, of a part of the Goldstone scene, formed with the range-Doppler and chirp scaling

algorithms, respectively. The images show the magnitude of the complex reflectivity, averaged

by a factor of four in the azimuth direction in order to provide the effect of ‘multilooking’, which

is commonly used to reduce speckle [40]. This scene contains an array of corner reflectors, as

can be seen on the right side of the images. The corner reflectors provide point scatterers which

caii be used to analyze the point spread functions corresponding to the different processors.

Also present in the scene is a very strong reflector, at the top of the image, which caused some

saturation of the SAR system. Visual inspection of the images show no noticeable differences

between them, except for the strong scatterer which produces artifacts in the range-Doppler

image due to the interpolator used in range migration correction.

Next, portions of the ‘single-look’ complex images around the corner reflectors were ex

tracted in order to examine the point spread functions of the processors. The image portion

centered on a particular corner reflector was input to a MATLAB point scatterer analysis pro

gram. This program first performed a two-dimensional interpolation to locate the peak of the

point spread function and measure the peak phase. Then slices through the peak were taken in

the range and azimuth directions, and these were used to measure the 3dB resolution width and

the sidelobe level of the point spread function in each direction. As an example, Figures 5.23 to

5.26 show the plots of a point spread function in range and azimuth for the range-Doppler and

chirp scaling algorithms, respectively. The results of analyzing six point scatterers in each

image are presented in Table 5.5. This gives the average resolution and integrated sidelobe ratio

(ISLR) in the range and azimuth directions for the GSAR and chirp scaling processors. ISLR.

is the ratio of the total power in the sidelobes to the power in the main lobe of the slice of the
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Figure 5.21: Seasat Goldstone scene processed with range-Doppler algorithm.



Chapter 5. Investigation of Chirp Scaling

E
N

4

range

Figure .5.22: Seasat Goldstone scene processed with chirp scaling algorithm.
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range azimuth phase (degrees)
algorithm resolution ISLR resolution ISLR mean/std.dev.

GSAR 1.259 -9.7 1.332 -11.1
3.4/10.0

chirp scaling 1.206 -9.6 1.289 -11.3

Table 5.5: Average resolution and integrated sidelobe ratio for range-Doppler and chirp scaling
processors, and mean and standard deviation of difference in peak phase.

point spread function in one direction. The difference in sidelobe level between the processors is

negligible, while the chirp scaling algorithm improves resolution by about four percent in range

and three percent in azimuth. The difference in range resolution is due to the interpolator in

the range-Doppler algorithm, since a truncated interpolating kernel has the effect of reducing

the range bandwidth for the given range sampling rate. It should be mentioned that the GSAR

processor that was used employed a four point interpolator. Increasing the interpolator length

to eight points reduces the artifacts and the loss of range bandwidth, at the cost of greater

complexity. Also shown in the table is the mean and standard deviation of the difference in

peak phase between the two processors, which is within the measurement error of the point

scatterer analysis program.

5.2.2 Azimuth Frequency Dependence of SRC

As discussed in Chapter 3, the chirp scaling algorithm differs from the range-Doppler algorithm

in terms of matching the phase of the SAR transfer function. In range-Doppler, the coefficient

of the SRC filter is calculated at the Doppler centroid, and kept constant in azimuth-frequency.

while the chirp scaling algorithm allows the SRC filter to vary with azimuth-frequency. For small

squint angles, this approximation to SRC in the range-Doppler algorithm does not introduce a

significant degradation in the image. As the squint angle increases, the mismatch in SRC causes

a range compression error in the range-Doppler domain. In the range direction, as mentioned

in Chapter 3, this causes an overall broadening and an increase in sidelobes in the point sprea.d
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Figure 5.27: Contour plot of point spread function for range-Doppler algorithm, spaceborne

L-band parameters, zero and 10 degree squint.

function. In addition, the variation of the compression error with azimuth-frequency results in

a degradation Of the point spread function in the azimuth direction as well. One effect is that

the peak phase error in the range compressed pulses varies with azimuth-frequency. At small

squint angles, this results in a linear phase error term in azimuth-frequency which causes a

small azimuth shift in the point spread function. In addition, the compression error reduces the

magnitude of the range compressed pulses towards the edges of the azimuth-frequency band.

This introduces an amplitude weighting of the azimuth spectrum that increase the azimuth

resolution width of the point spread function. For larger squint angles, the combination of the

range broadening, range sidelobes, and azimuth phase error results in a severe distortion of

the point spread function. This is illustrated in Figure 5.27, which shows two contour plots of

point spread functions for the range-Doppler algorithm, corresponding to zero and ten degrees

squint. The algorithm was used to process simulated point scatterer data corresponding to a

L-band, spaceborne SAR.

Finally, to compare the performance of the range-Doppler and chirp scaling algorithms,

both algorithms were used to process simulated point scatterer data for different squint angles.

Spaceborne SAR parameters representative of Seasat and ERS-1 were used in the simulation,
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Figure 5.28: Range resolution versus squint for range-Doppler and chirp scaling algorithms.

Scatterer at reference range. Top: k-band. Bottom: C-band.

with the scatterer placed at the reference range. The range resolution width of the point spread

function was measured to indicate processing performance. Resolution is measured in cells,

where one range cell is the theoretical 3dB resolution width of a sine function. Figure 5.28

shows plots of the range resolution versus squint angle, for range-Doppler and chirp scaling

algorithms used to process L-band and C-band data. For the L-band case. the approximation

to SRC in the range-Doppler algorithm begins to degrade the range resolution at squint angles

above five degrees. For C-band, the degradation becomes noticeable at squint angles above

thirty degrees.
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5.3 Side-Effects of Chirp Scaling

As discussed in Chapter 3, the chirp scaling algorithm accommodates the range dependence of

RCMC without an interpolating filter. However, as indicated in the SAR transfer function of

the chirp scaled signal in Equation (3.95), the multiplication by the chirp scaling phase func

tion introduces some side-effects into the range spectrum of the signal in the two-dimensional

frequency domain. These should be investigated to determine how significant they become at

high squint.

Side-effects of chirp scaling include a change in the range bandwidth by the scale factor,

c(f,), defined in Equation (3.90), and a range-frequency shift, 6fT = —q2(f)r(f,1;r). Here

q is the coefficient of the chirp scaling phase function alid r(f,; r) is the range-time delay

from the reference trajectory, where r is the closest approach range variable in the signal model.

Both these effects increase with wavelength and with squint angle. To ensure that the Nyquist

criterion is satisfied, the scale factor c should not increase the range bandwidth by more than the

oversampling rate of the signal, which is typically about twenty percent. The range-frequency

shift is range dependent, since a quadratic or higher order phase function causes a frequency

shift in the received pulse that varies with its delay from the reference trajectory. The shift is

zero at the reference trajectory and increases toward the edge of the range swath. Because of

the range dependence of the frequency shift, it cannot be compensated during range processing

in the frequency domain. Thus the shift must be small enough to keep the range-frequency

components of the signal below the Nyquist rate, in order to avoid a loss of range bandwidth

when processing with the range matched filter. Also, if frequency domain weighting to reduce

sidelobes is applied to the chirp scaled signal, the window must be wide enough to account for

this frequency shift.

Using the definition for q2(f,) in Equation (3.94), an expression for the frequency shift is

— 1}Kmref(f,)r(f,7;r). (5.144)

As a fraction of the range bandwidth, this frequency shift is equal to the ratio of the trajectory
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shift to the pulse length. The azimuth-frequency dependence of the frequency shift is given

mostly by the [a(f,) —1] term, since a is close to one. By using approximations in the definition

of a, this term can be shown to be

2

[a(f) - 1]
4;2B(J - f). (5.145)

Jo

Thus, the change in range bandwidth and the range frequency shift increase with the difference

between the azimuth-frequencies in the signal band and the reference azimuth-frequency, f,..

Intuitively, this can be seen from Figure 3.6 since the required amount of scaling increases with

azimuth-frequency difference from

If the reference azimuth-frequency is set equal to the Doppler centroid, then the effects of

chirp scaling are minimized for the given squint and wavelength. In this case, for the worst case

squint angles and wavelengths that were investigated, the change in range bandwidth and the

frequency shift were both less than two percent, which is negligible. In a later chapter, however,

it will be advantageous to choose a value of f0r outside of the azimuth-frequency band of the

signal. This increases the change in range bandwidth and the range frequency shift, and the

resulting constraint on the squint angle will be investigated in Chapter 7.

Finally, recall that after processing in the two dimensional frequency domain, a phase correc

tion is applied in the range-Doppler domain. This removes a range dependent phase, (f,; r)

that is left in the signal after chirp scaling. The phase correction term is given in Equation (3.96)

as a function of the range-time delay from the reference trajectory, r(f; r). The removal of

this phase requires a multiplication of the data by the conjugate phase term, and since the

phase is range dependent, this introduces a range-frequency shift in the data. This multipli

cation is done in the range-Doppler domain, where the range-time to a scatterer is measured

by r(f,7r; r). Thus, to find the range-frequency shift implied by the phase correction,

can be expressed as a function of r(f0r; r) by using the relationship between zr(f,1;r) and

T(f0r r) in Equation (3.89):

— (f,; r) = lrKmref[a — 1]ar2(f,r; r). (5.146)



Chapter 5. Investigation of Chirp Scaling 91

Then, taking the derivative with respect to T(fr; r), the range-frequency shift of the data

that results from removing the phase correction term can be shown to be

= —
1]KmrefT(f; r), (5.147)

which is equal to —afT. Thus, althollgh the range-frequency shift in the two dimensional fre

quency domain must be kept small enough to avoid a loss of range bandwidth in range com

pression, this shift is later corrected so that the range-frequency content of the processed image

is at the proper location.

5.4 Approximations in Chirp Scaling

In removing the range dependence of RCMC, the chirp scaling algorithm makes several approx

imations to the representation of the signal in the range-Doppler domain. First, an approxima

tion to the desired trajectory is made by assuming a constant value for the B parameter, which

affects the accuracy of range cell migration correction. Also, the modified range frequency rate,

Km, is assumed to be range invariant when computing the secondary range compression filter

and the chirp scaling phase function. Errors in range compression result in broadening and

increased sidelobes at ranges away from the reference range. Also, approximations in the chirp

scaling function result in errors in range cell migration correction that may become significant at

high squint angles. Errors in RCMC leave some signal energy dispersed in the range direction,

resulting in range registration errors and range broadening. Finally, at high squint angles, the

cubic term in the expansion of the SAR. focussing phase in Equation (3.51) may be significant.

In the range-Doppler domain, this becomes a nonlinear FM component in the received pulses

which may affect the assumption of linear FM in the chirp scaling algorithm.

5.4.1 Constant B Assumption

In this section, the R.CMC error due to the constant B assumption in chirp scaling is quantified.

This error is the difference between the desired trajectory, and its approximation used in deriving
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the chirp scaling phase function. From Equations (3.86) and (3.91), this can be shown to be

/ . — 7(f,; rj)(j; r)
TB err r) — Td(f, r)[ — 1]. (5.148)

7(f,; Tf)”f(f r)

The error increases with the difference in range from the reference range, and with the dif

ference in azimuth-frequency from the reference azimuth-frequency. The error described by

Equation (5.148) can be thought of consisting of a registration error, which is the error at the

Doppler centroid, and an error in RCMC over the azimuth-frequency band, which affects the

range resolution of the point spread function. If the reference azimuth-frequency is set equal

to the Doppler centroid, then the only error is the RCMC error within the signal band. If the

reference azimuth-frequency is placed outside of the signal band, then a registration error is

introduced, while the variation of RCMC error within the signal band changes only slightly.

In general, to avoid a noticeable range broadening of the point spread function, the in-band

RCMC error should be less than about a quarter of a cell [37].

To evaluate this error using spaceborne SAR parameters, the B parameter in the model

for the distance equation, as described in Chapter 4, was calculated for different squint angles

and ranges. A circular orbit geometry was used for this calculation, although it should be

noted that for deviations from a circular orbit, the rate of change of B with range can increase

significantly. The parameters of Table 4.2 were used in the calculations. The results are shown

in Table 5.6, for L-band and C-band, with the scatterer placed at the edge of the range swath

where (‘r
— rref) = 20 km. Also, the reference azimuth-frequency is placed outside the signal

band as will be described in Chapter 7. This indicates the in-band RCMC error that occurs

in the chirp scaling algorithm, while also showing the registration error that is introduced by

choosing fr as in Chapter 7. The registration and in-band RCMC errors are given relative to

a range resolution cell. In general, the error increases with squint and with wavelength. The

constant B approximation begins to cause noticeable broadening due to in-band RCMC when

the squint angle is about fifteen degrees for L-band, and about thirty degrees for C-band.
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Error (in cells) due to B variation
squint L-band C-band

(degrees) regist. in-band RCMC regist. in-band RCMC

10 0.24 0.13 0.06 0.03
20 1.02 0.36 0.28 0.09
30 3.92 0.97 1.12 0.23
40 18.6 3.42 5.9 0.83
50 64.6 5.93

Table 5.6: Registration and in-band R.CMC errors (in range cells) due to constant B approxi

mation in the desired trajectory in the chirp scaling algorithm.

5.4.2 Constant Range Frequency Rate Assumption

To investigate the effect of approximating the range frequency rate by a constant, assume that

the modified frequency rate at range r can be written as a linear function of range-time in the

range-Doppler domain:

Km(f,; r) = I(rnref(f) +I5(f)r(f; r), (5.149)

where K3 is the slope of the of the frequency rate with respect to range-time. K3 can be found

by taking the derivative of Krn(f; r) with respect to range-time, Td, and evaluating at the

reference range. Also, the range dependence of B modifies the slope of the range frequency rate

slightly. To express this, let B be modelled as a linear function of closest approach range,

B = Br + B3(r — Tref), (5.150)

where Br is the value at the reference range, and B3 is the slope. This gives the following

expression for K3:

Tref s
= A3o(f)[l

— B72(f; Trej) — 0.STrefBs(1
— 2(f; Tref))

(5.151)

where K30 is the slope for the case of a constant B (as in a rectilinear geometry), given by

j2 ( f 11 2i t
-- j f \ mref’J) iJ — )‘ Tref

‘s0Ji) = — 21 :
JO 7
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Using K, the point scatterer response in the range-Doppler domain, as given in Equation (3.83),

can be modified to include the range dependence of Km as follows:

S(f, T; r) = Fac(f; r)rn[’(r — Td)] exp{—jJ(mrf(T Td)2 —jK5r(r— Td)2]. (5.153)

Applying the chirp scaling phase function to this signal and then taking the range Fourier

transform gives the SAR transfer function of the chirp scaled signal, as in Equation 3.95. By

including Ii, in the derivation, extra terms are introduced in the phase of the SAR transfer

function that are not accommodated in the processing. These terms correspond to errors in

RCMC and SRC.

The RCMC error is given by

TK5(f; r)
=

[1 — ]T2(f; r), (5.154)
kmref ‘

which increases with the difference in range from rref, and with the difference in azimuth-

frequency from fc’r. This error is investigated in Table 5.7, which shows the registration error

and in-band RCMC error, in range cells, as a function. of squint angle for L-band and C-band

cases. The same parameters were used as in the investigation of the constant B assumption

described above. Also, the scatterer is assumed to be at the edge of the range swath, where

(r Tref) 20 km, and f is placed outside of the azimuth-frequency band. As can be seen,

the effect on RCMC of the constant frequency rate assumption in chirp scaling is less than the

effect of the constant B assumption described above. However, registration and in-band RCMC

errors become noticeable between twenty and thirty degrees squint for L-band, and at about

forty degrees for C-band.

Given the range frequency rate error due to K5, the SRC error term in the SAR transfer

function of the chirp scaled signal is given by

I c .

— rIc5r(f,1;r) 2
errkJ, Jr, T1

— 2I2 Jr
mref

This is a range quadratic phase error that occurs at all azimuth-frequencies, and increases with

the difference in the scatterer’s range from the reference range. Thus, the effect on the processed



Chapter 5. Investigation of Chirp Scaling 95

Error (in cells) due to Km variation
L-band C-band

squint regist. in-band RCMC regist. in-band RCMC
10 0.03 0.02 0.002 0.001
20 0.31 0.13 0.026 0.01
30 1.52 0.40 0.18 0.04
40 5.7 1.05 0.98 0.14
50 6.8 0.62

Table 5.7: Registration and in-band RCMC errors (in range cells) in the chirp scaling due to

range dependence of K2.

image is a range compression error that increases towards the edges of the swath. The effect

of a compression error was described in Chapter 2, as a function of the maximum quadratic

phase error at the edge of the range-frequency band. For the range compression error due to

the range dependence of SRC, the maximum quadratic phase error is shown in Table 5.8 for

different squint angles. Results are presented for L-band and C-band, assuming a scatterer

placed at the edge of the range swath, (r
— rref) = 20 km. To keep the range broadening to

within about five percent, this quadratic phase error should be less than about 90 degrees [44].

Beyond this, the broadening increases very rapidly. For an L-band SAR’, as the squint angle

increases beyond about 10 degrees, the quadratic phase errors shown in the table result in range

impulse response widths of several cells. For C-band radars, the problem is slightly less severe,

and a significant focussing error occurs for squint angles greater than about 20 degrees.

5.4.3 Linear FM Assumption

At high squint angles, the cubic term in the expansion of the phase of the SAR. transfer function

should be included. To investigate the effect of the cubic term, r)f, on chirp scaling, a

range-Doppler representation of the signal such as Equation (3.83) needs to be derived. From

the SAR transfer function, the range-Doppler domain representation is obtained by an inverse
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maximum quadratic phase error
(degrees)

squint L-band C-band
10 82 18
20 350 82
30 982 236
40 2461 645
50 2234

Table 5.8: Maximum quadratic phase error in SRC due to its range-dependence.

range Fourier transform:

S(f,r: r) = Fac(f; r)] M(f) exp[j2ir(r
— Td)f7 + j7rfr— +jq3f]df7. (5.156)

rn

Since the cubic term is relatively small, an approximation to the method of stationary phase

for evaluating this integral can be found, as shown in Appendix A. In the result, phase terms

up to the cubic in range-time are kept, giving the following range-Doppler representation of the

signal:

S(f,r; r) = F(f; r)m[(r — Td)1 exp[—jKm(r
— rd)2

— 2Crn(T
— rd)3], (5.157)

where the cubic coefficient, /Cm, is defined as

ACm(f;r) = (5.158)

Also, the effect of the cubic term on the amplitude has been ignored. Next, the chirp scaling

phase function is applied to the range-Doppler domain signal, and then the range Fourier

transform is taken to get the SAR transfer function of the chirp scaled signal:

S2(f, fT; r) = Fac(f; r)Jrn[(r — rd)}e_Im(T_T _j
3m(Trd)3q2(rTf)232wfT

(5.159)

Again, since the cubic term is small, an approximation to the method of stationary phase is used

to evaluate the integral. Appendix B describes the method of approximation for the general
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case of small higher order phase terms and a more general chirp scaling phase function. In the

case described here, however, a quadratic phase chirp scaling phase function is used, and for the

purposes of investigating the effect of Cm on the SAR transfer function only the phase terms

up to the cubic are kept in the solution. Compared to the SAR transfer function without the

cubic phase term shown in Equation (3.95), ZCm introduces the following extra phase terms

to the SAR transfer function, which are not accommodated in processing:
,

— 2irCmf
/eTr

— 3 33a ‘m

+2Cm — l)r(f;r)f

+2m — 1)2ZT2(f; r)fT

a3Km

+2Cm — 1)3r3(f;r)
33

The first term corresponds to a cubic phase term that needs to be included in the range

compression filter, and arises from the q3 term in the SAR transfer function. This is not

greatly affected by chirp scaling, and is only slightly range dependent. Thus it does not pose a

problem in processing. The second term is a quadratic phase error in range compression that

arises from the interaction of chirp scaling with the cubic phase term. Also, it is depends on

range as /T(f; r), and so cannot be accommodated in processing. Similarly, the third term is

an error in RCMC that results from the interaction of chirp scaling with the cubic phase term.

It depends on range as L\r2(f,; r), and so cannot be accommodated by the chirp scaling phase

function. Finally, the last term is a range dependent phase error, and can be accommodated in

the range-Doppler domain.

To determine the significance of these errors, Tables 5.9 and 5.10 show the results of calcu

lating these errors using spaceborne SAR parameters for L-band and C-band, respectively. The

left half of each table investigates the effect of the cubic phase term on range compression. The

first column in the table shows the total cubic phase error that would result if the cubic phase

term were not included in the range matched filter. The next column shows the difference in

cubic phase error between the edge of the swath and the reference range, which is the error that
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L-band
max. cubic phase error effects of chirp scaling

total difference quadratic maximum
squint phase error from rref phase error RCMC error

(degrees) (degrees) (degrees) ( degrees) ( cells)
10 29 0.2 2 0.0
20 142 0.2 12 0.01
30 500 9.0 48 0.08
40 1898 64.7 170 0.3.5

Table 5.9: Errors due to cubic phase term in SAR transfer function, L-band.

would occur if the cubic phase term in the range matched filter were calculated at the reference

range. This is calculated for (r — Tref) = 20km. As seen in the tables, the cubic phase term

should be included in the secondary range compression filter for squint angles greater than 20

degrees for L-band, and about 40 degrees for C-band. However, even in the worst case, the

range dependence of the cubic term in SRC can be neglected. Next, the right half of the tables

investigates the effects of the cubic phase term with chirp scaling. Shown are the maximum

range quadratic phase error and maximum error in RCMC (including registration and in-band

RCMC) at the edge of the swath. The reference azimuth-frequency was set outside of the

azimuth-frequency band. Of these errors, the quadratic phase error is the largest, and does not

become significant until about 30 degrees squint for L-band, and is negligible for C-band.

5.4.4 Simulations

To investigate the approximations in chirp scaling, point scatterer data was simulated for differ

ent squint angles, and with the scatterer placed at different distances from the reference range.

Spaceborne SAR parameters representative of Seasat (L-band) and ERS-1 (C-band) were used

in the simulation. The point scatterer response was generated using the signal model for higli

squint, spaceborne SAR described in Chapter 4. In this model, a circular orbit was assumed

in calculating the B parameter and the rate of change of B with range. The simulated data

was processed with the chirp scaling algorithm, with the reference azimuth frequency set equal
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• C-band
max. cubic phase error effects of chirp scaling

total difference quadratic maximum
squint phase error from rref phase error RCMC error

(degrees) (degrees) (degrees) (degrees) (cells)

10 2 0.03 0.02 0.00
20 8 0.1 0.2 0.00
30 27 0.2 1.1 0.00
40 103 0.97 5.6 0.00
50 .596 20.0 38.1 0.11

Table 5.10: Errors due to cubic phase term in SAR transfer function, C-band.

to the Doppler centroid. Also, to obtain the best possible results, the cubic phase term of the

SAR transfer function, calculated at the reference range, was included in the secondary range

compression filter. The measured range resolution, in cells, is plotted versus squint angle for

each case in Figure 5.29. In addition, the maximum sidelobe level in the range direction is

given for the different cases in Table 5.11. The azimuth resolution and sidelobe level were not

significantly affected by approximations in the chirp scaling algorithm. At the reference range,

the chirp scaling algorithm correctly matches the phase of the SAR transfer function, and the

theoretical resolution of one cell is achieved independently of squint. When the scatterer is

located away from the reference range, the range dependence of SRC degrades the resolution as

squint increases. For L-band, the resolution width increases rapidly for squint angles above 15

degrees for a scatterer at 10 km from the reference range, and above 10 degrees for a scatterer

at (r
—

rref) = 20 km. Similarly, for squint angles above 10 degrees, the sidelobe level increases

compared to the —13.2dB level of the sinc function. For C-band, resolution degrades for squint

angles above thirty degrees with (r
— Tref) = 10 km, and for (r — Tref) = 20 km the resolution

width increases rapidly for squints above 20 degrees. The sidelobe level increases for squint

angles above 20 degrees.
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resolution
(cells)

1.8

Figure 5.29: Simulation results of measured range resolution versus squint for chirp scaling

algorithm with scatterer at different distances from the reference range. Top: L-band. Bottom:

C-band.

Maximum sidelobe level in range (dB)

L-band C-band

squint r
—

= 10km r
— rref = 20km r

— Tref = 10km r
— rref = 20km

0 -13.2 -13.2 -13.2 -13.2

10 -12.8 -11.7 -13.2 -13.1

20 -7.0 -0.3 -12.7 -11.3

30 —
— -9.7 -3.5

40 —
— -0.8 —

Table 5.11: Simulation results of maximum sidelobe level in the range direction for the chirp

scaling algorithm with scatterer at different distances from the reference range.
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5.5 Effect of Pulse Phase Errors

The chirp scaling algorithm depends on properties of the transmitted pulse to achieve accurate

processing. In particular, a linear FM pulse of a specific frequency rate is assumed. Generally,

the pulse is generated with sufficient accuracy so that the broadening after pulse compression

is within specifications. However, the effect of pulse phase errors on the ability of chirp scaling

to perform accurate processing should be investigated.

Consider a transmitted pulse of the form

p(T) = m(T)exp[—jlrKT2—j2irs(r)j, (5.161)

where E(T) represents the error and is assumed to be much smaller than the total pulse phase.

To determine the effect of the error on chirp scaling, the SAR transfer function of the chirp

scaled signal is derived for this case. The Fourier transform of the transmitted pulse is obtained

by an approximation to the method of stationary phase for a general pulse phase error, shown

in Appendix C. To first order in e(r), the Fourier transform of the pulse is given by

P(fT) = M(fr)exp[4T-j2e()], (5.162)

where constants and the effect of on the amplitude have been ignored. Then, substituting for

P(f) in the form of the SAR transfer function in Equation (2.43), a range inverse transform

gives the range-Doppler representation of the signal. Again, using the approximation shown in

Appendix C, the range-Doppler domain signal is, to first order:

S(f, r; r) = Fac(f; r)m((r — rd)) exp[—jKrn(T
— Td)2 — j2&((r

— Td))]. (5.163)

Finally, S(f, T; r) is multiplied by the chirp scaling phase function, and the range Fourier

transform of the result is obtained as shown in Appendix C. This gives the SAR transfer

function of the chirp scaled signal. Compared to the expression for the SAR transfer function

in Equation (3.95), the pulse phase error introduces an extra phase term given by

— r
err _27rE[ — —-(1 — —)r]. (5.164)

aIx. A
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This expression can be used to find the effect on the processing accuracy due to the interaction

of the pulse phase error and chirp scaling. Note that even without chirp scaling, a processing

error exists due to the pulse phase error. In Equation (5.164), in the absence of chirp scaling, a

is equal to one, and the phase error of the SAR transfer function reduces to that of the Fourier

transform of the pulse, —27rE(). To see the effect of chirp scaling, then, what is important

is the difference between /,. in Equation (5.164) and

Given the form of err compared to the processing error without chirp scaling, the ef

fects of chirp scaling on certain types of pulse phase errors can be deduced. Note that in

Equation (5.164), an effect of chirp scaling is a shift of the processing error as a function of

range-frequency. Thus, if the pulse phase error E(r) is distributed more or less uniformly across

the pulse, as in a cyclic error, then the type of processing error that results is not changed by

chirp scaling. On the other hand, if E(r) has the form of a polynomial across the pulse, such

as a quadratic or cubic, then chirp scaling introduces lower order phase error terms in range

frequency, giving rise to errors iii RCMC and SRC.

First, consider an error in frequency rate, K, which results in a quadratic pulse phase

error given by

E(T)
=

(5.165)

Using this expression for r(r) to evaluate err gives

— ir/Kf
err —

—

________

2ir/Km 1
— 2

(1 — —)rfT
aI a

_____

— 1)2Ar2 (5.166)
K2 a

In the first term. which affects the range compression error due to K, the only effect of chirp

scaling is to modify the frequency rate error slightly. Also, the phase error represented by the

last term is very small. The second term, which is linear in fr, represents a range dependent

error in RCMC. Thus, this term shows how the ability of chirp scaling to remove the range

dependence of RCMC is affected by a quadratic pulse phase error. To investigate this error,
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Error due to quadratic pulse phase error
L-band C-band

squint regist. in-band RCMC regist. in-band RCMC
(degrees) (cells) (cells) (cells) (cells)

10 0.01 0.006 0.003 0.002

20 0.02 0.01 0.007 0.003

30 0.03 0.01 0.014 0.005
40 0.04 0.01 0.026 0.006

50 0.046 0.006

Table 5.12: Registration and RCMC errors (in cells) due to chirp scaling with quadratic phase

error in pulse. L-band and C-band spaceborne SAR parameters, with (r
— rref) = 20km

assume the frequency rate of the pulse is known to within 0.1 percent, giving a maximum

quadratic phase error in the pulse of about thirty degrees. Also, for purposes of investigating

the pulse phase error, the error due to the range dependence of Km is ignored. Table 5.12 shows

the registration and in-band RCMC errors as a function of squint angle, assuming the reference

azimuth-frequency is placed outside of the band. Results are shown for L-band and C-band,

for a scatterer at the edge of the swath where (r
— Tref) = 20 km. In all cases the errors are

too small to be noticeable.

Next, consider a small deviation from linear FM in the transmitted pulse, represented by a

cubic phase term:

E(T)
=

(5.167)

For purposes of investigating the effect of this term on chirp scaling, the cubic term of the SAR

focussing phase discussed earlier is ignored. Evaluating &rr with this form of r(r) gives

err
= 2C(fr

+ (1 —
(5.168)

3 crI A

This expression for err is the same as the one in Equation (5.160), except that the coefficient

C is used instead of SCm.

To determine the effect of a typical cubic pulse phase error on the accuracy of chirp scaling,

assume that zC gives a cubic phase error in the transmitted pulse of 10° rms, or a maximum
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cubic phase error at the pulse edge of 25 degrees [60]. The phase error terms in the SAR transfer

function of the chirp scaled signal can be computed from Equation (5.168). However, the effect

of LC is very small. Of the phase terms that arise from the interaction of the cubic term with

chirp scaling, the quadratic phase error due to z.\C is less than ten degrees for the worst case

wavelength and squint angle, and the RCMC error is less than 0.003 cells.

In general, the quadratic and cubic phase errors that are present in the transmitted pulse

are too small to affect the accuracy of chirp scaling. Thus, chirp scaling is robust to phase

errors in the transmitted pulse.



Chapter 6

Extensions to Chirp Scaling for RCMC

6.1 Introduction

In the derivation of the chirp scaling algorithm shown in Chapter 3, certain approximations were

made in removing the range dependence of RCMC. In particular, the equation for the desired

trajectory assumes that the B parameter is constant in range and eEual to its value at the

reference range. Also, the chirp scaling phase function is found by assuming the frequency rate,

Km is independent of range. These approximations do not introduce any noticeable degradation

for small squint angles. However, for the high squint angles investigated in Chapter 5, it was seen

that the effects of these approximations can become noticeable. Thus, for accurate processing at

high squint, the chirp scaling algorithm should be extended so as to remove these approximations

in its derivation. It has been shown numerically in [61] that a higher order term in the chirp

scaling phase function can achieve a nonlinear scaling of range lines, in order to accommodate

higher order range dependence RCMC. In this chapter, mathematical representation of the

higher order term in the chirp scaling phase function is derived. This is done by finding a more

accurate representation of the desired trajectory, and including the range dependence of Km

in the signal model. With this extension to the chirp scaling phase function, the SAR transfer

function of the chirp scaled signal is derived to show the effects on the processed signal.

6.2 Representation of Desired Trajectory

For a spaceborne geometry, the ability to process squint mode SAR data accurately requires an

accommodation of the range dependent B parameter in RCMC. As discussed in Chapter 3, the

objective in chirp scaling is to change the delay from the reference trajectory to the scatterer

105
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trajectory, T(f,; r), to a constant delay equal to zT(fr; r). This provides the desired trajec

tory, given by Equation (3.86), for scatterers at all ranges so that bulk RCMC can be performed

in the two-dimensional frequency domain. In the chirp scaling algorithm, the relationship be

tween T(f,; r) and r(f’r; r) was approximated by the expression in Equation (3.91), by

assuming tha.t B(r) B(rrej), which resulted in a linear scaling of range lines. In order to

achieve the desired trajectory more accurately for higher squint angles, and thus achieve more

accurate RCMC, the relationship between r(f,; r) and r(f,r; r) needs to incorporate the

range dependence of B(r).

To do this, first represent B(r) by the following quadratic function in range, with respect

to the reference range:

B(r) B + B3(r
— Tref) + Ba(T — Tref)2. (6.169)

Then, since the effect of B(r) on the range variance of RCMC is small compared to the linear

variation, it is sufficient to look for a higher order term in the relationship between i.r(f,; r)

and T(f’,r; r) which can be added to the approximatidn in Equation (3.91). This can be found

by expanding T(f,; r) and r(f,7r; r) in r about rref, keeping terms up to the quadratic:

r(f; r) a(f)(r — Tref) + b(f)(r
— Tref)2

r(fr; r) a(fr)(r — Tref) + b(fr)(T — Tref)2, (6.170)

The coefficients a(f,) and b(f) are given by

— 2 — Tref(1
— 2(f; Trej))Bs

a(f)
—

. 2/f.
C7LJ,i,Tref) 7 J,1,Tf)L)

b1
— —(1_y2(f,;rref))rBs TrefBa TrefB11 3(1—72(f,;rref))1

I +
— 2 + 2 Ji’

c73(f,-,;rrcf) Br Br Br 47 (f,;rrej)

and depend on the reference range and on the coefficients of the B(r) variation.

The equations in (6.170) can be used to find a relationship between r(f,; r) and r(f,7r; r)

as follows. The first of the equations is used to find an approximate solution for (r
— Tref) in

terms of r(f; r), by assuming that b(f,7) << a(f,). Then. by substituting this solution into
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the second equation, and keeping terms up to the quadratic, the follow relationship between

r(f,,; r) and ..T(fr; r) is obtained:

r(fr;r) +(f)r2(f;r). (6.172)
B I.

This expression is an extension of the linear relationship that was assumed in Equation (3.91),

and the scaling factors B(f) and /9(f,) can be shown to be:

a( f,)
aB(f,) =

akj,?r

=
- b(f)]. (6.173)

Here crB(f) represents a linear scaling, although it has been modified slightly from the scale

factor c(f) used in Chapter 3, in order to provide a first order correction for a range dependent

B. The quadratic factor, /3(f,), represents a higher order nonlinear scaling to account for the

nonlinear relationship between r(f,; r) and .r(f,r; r), which occurs in an orbital geometry

at high squint angles. Note that when B is constant so that B3 = 0 and Ba 0, the scaling

fa.ctors reduce to aB(f) = ck(f,) and (f,) = 0. Thus, a more accurate representation of the

desired trajectory is

T3(f; r) Tref(f) +
r)

+ (f)r2(f;r), (6.174)
aB(f)

which will be used later in the derivation of the higher order chirp scaling function.

As in the investigation of the constant B approximation in Chapter 5, the error in RCMC due

to the approximations in accommodating the range dependeice of B(r) should be determined.

This error is the difference between the desired trajectory, defined in Equation (3.86), and its

approximation in Equation (6.174). In addition, the relative importance of each of the terms in

the approximation can be determined, by calculating the error when only a linear scaling is used

(with the modified scaling factor cB), and the error when both the linear and quadratic scaling

factors are used. Table 6.13 shows the maximum RCMC error (the sum of both registration and

in-band RCMC error) for both types of approximation to the desired trajectory. The parameters



Chapter 6. Extensions to Chirp Scaling for RCMC 108

Error (in cells) due to B variation
L-band C-band

squint linear quadratic linear quadratic

( degrees) scaling scaling scaling scaling

10 0.01 0.000 0.002 0.000
20 0.03 0.000 0.008 0.000
30 0.11 0.000 0.03 0.000
40 0.52 0.001 0.16 0.000
50 1.88 0.005

Table 6.13: Maximum RCMC error (in range cells) due to the approximation to desired tra

jectory when using only modified linear scaling, and when using both linear and quadratic

scaling.

used in the calculations were the same as those in the investigation of the constant B assumption

in Table 5.6. The results are presented for L-band and C-band, with the scatterer at the edge

of the swath where (r — Tref) = 20 kn2, and the reference azimuth-frequency is placed outside of

the signal band. By comparing the results in Table 6.13 to those for the constant B assumption

in Chapter 5, it can be seen that accounting for the range dependence of the B parameter in

RCMC can lead to a significant improvement in processing. By using a linear scaling with the

modified scaling factor, c, the maximum RCMC error does not become noticeable until about

thirty degrees squint for L-band and about forty degrees squint for C-band. Furthermore, by

including the quadratic scaling factor, the maximum RCMC error is negligible for even the

largest values of squint.

6.3 Higher Order Chirp Scaling

Another approximation that was made in the derivation of the chirp scaling phase function was

that the modified frequency rate, Km, was assumed constant in range and equal to its value at

the reference range, Kmrej. The error in RCMC which results is described in Equation (5.154).

Since this error varies as the square of the range-time from the reference trajectory, it cannot be

accommodated by a modification to the linear scale factor in chirp scaling. To derive a higher
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order chirp scaling phase function which can accommodate the range dependence of Km, start

with the range-Doppler representation of the point scatterer response in Equation (5.153). This

expression for S(f,, T; r) includes the slope of the frequency rate in range-time, K8, to model

the point scatterer response more accurately. Then, let the chirp scaling phase function have

a quadratic and a cubic term, with coefficients ofq2(f,) and q3(f,), respectively. The range-

Doppler representation of the chirp scaled signal is then

S(f, r; r) = S(f, T; r) exp[—jq2(r—
— jq3(r

— Tref)3]. (6.175)

Now, the coefficients of the chirp scaling phase function which achieve the desired trajectory

are determined in the same way as q2(f,) was found in Equation (3.94). The chirp scaled

signal is first Fourier transformed in range. The evaluation of the transform using the method

of stationary phase is approximated by assuming that the cubic phase term in the integrand

is small, as shown in Appendix B. In the resulting SAR transfer function of the chirp scaled

signal, the phase term corresponding to RCMC is used to find the scaled trajectory:

= Tref(f)+
Jtmref

r(f;r)
Imref + q2

r2
113 ‘lsllmref

______________

2(
. (6 176)

(Kmref+q2) — (I(mref+q2)2— (Kmref+q2)3
r k ,r

The use of K in the signal model, along with the higher order term in the chirp scaling

phase function, have introduced a higher order term in /r(f,; r) in the representation of the

scaled trajectory. It is desired that this scaled trajectory match the desired trajectory in

Equation (6.174) as closely as possible. Thus, Equations (6.176) and (6.174) can be compared

and the terms equated. This gives two equations for the coefficients of the chirp scaling phase

function, q and q3, which can be solved to give:

q2(f) = Kmref(fi1)[QB(f,) — 1]

q3(f) = -

1]
-

f)Kmrej(f)/3(f (6.177)

These coefficients can be used in higher order chirp scaling to provide more accurate RCMC.
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With the above definitions of the chirp scaling coefficients, the range dependence of RCMC

is removed, and the SAR transfer function of the chirp scaled signal can be written as:

S2cr(f,fr;ro) = M( T
T)exp[—j21rTd(fr;ro)fr]

exp{—j2ir(rrj(f,)
— Tref(f,?r))fT]

jirf j2irq3f
exp[ + 3 3aBllmref 3B’mref

exp[-j( 22 + 3 )(f; r)f]
0B mref a mref

Fac(f,; ro) exp[j(f,; ro)j. (6.178)

As in the transfer function in Equation (3.95), the factors of this expression correspond to

processing steps and properties of the compressed pulse. The first three factors are the range

amplitude spectrum of the compressed pulse, a linear phase factor which gives the scatterer

position, and a linear phase factor representing the bulk RCMC. These are similar to the

corresponding factors in Equation (3.95). The next exponential corresponds to bulk range

compression, including SRC. This contains both a quadratic phase term and a cubic phase

term. The quadratic term corresponds to the linear FM pulse with its frequency rate modified

by B, while the cubic phase term has been introduced by the higher order term in the chirp

scaling phase function. Following the range compression factor is an exponential whose phase

is quadratic in f and varies linearly with the range-time from reference trajectory, r(f,; r).

Because of this range dependence, this factor cannot be accommodated in the two-dimensional

frequency domain and thus represents a processing error. The first term of this quadratic phase

error is due to the range dependence of SRC, and has been investigated in Chapter 5. The

second term of the error arises from the higher order term in chirp scaling. Thus, the use of

higher order chirp scaling to improve RCMC has an effect on the range dependent quadratic

phase error. However, this extra error term is very small compared to the range dependence

of SRC. Finally, the last factor in Equation (6.178) represents azimuth compression, which is

augmented by the phase correction factor. This is the same as in Equation (3.95), except that
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the phase correction is modified by the higher order chirp scaling as follows:

(f; r)
— Imref(1— ±)r(f; r)2

[WI(mref(1
—

—
r)3. (6.179)

The use of higher order chirp scaling provides accurate RCMC at high squint. However, the

phase of the SAR transfer function still contains quadratic phase error terms that correspond

to the range dependence of SRC and the effect of the higher order chirp scaling phase function.



Chapter 7

Nonlinear FM Chirp Scaling for Range-Variant SRC

7.1 Introduction

The processing errors of the chirp scaling algorithm for high squint SAR were investigated in

Chapter 5. It was found that the approximation with the greatest effect on the quality of the

point spread function was the assumption of a range-invariant frequency rate in SRC. At a

given distance from the reference range, the resulting quadratic phase error in the SAR transfer

function causes a rapid degradation of range resolution for large enough squint angles. Thus,

the accurate focussing of squint mode SAR data requires the accommodation of the range

dependence of SRC.

In the chirp scaling algorithm, the coefficients of thechirp scaling phase function were chosen

to remove the ra.nge dependence of RCMC. To accommodate the range dependence of SRC,

an extra degree of freedom is required in determining the phase of the SAR transfer function

of the chirp scaled signal. This chapter describes a solution to this problem in which a small

nonlinear FM component is incorporated into the received range signal. It is shown that the

interaction of the nonlinear FM with the chirp scaling operation introduces range dependent

quadratic phase term, corresponding to a range dependent change in frequency rate.

This is illustrated in Figure 7.30. As in Figure 3.7 in the description of the chirp scaling

algorithm, this figure shows a frequency-time diagram of a range line containing two scatterers.

In this case, the pulses are dominantly linear FM but also have a nonlinear FM component,

which gives a curvature to the frequency-time curves of the pulses. As before, pulses before

scaling are indicated by solid curves and pulses after scaling are shown by dotted curves. Also,

pulses compress to the point where the frequency-time curve intersects the center frequency
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Figure 7.30: Frequency-time diagram of range line with nonlinear FM pulses.

of the range matched filter. In addition, for compression, the frequency rate of the dominant

linear FM component of the pulses is determined by the local slope of the curve at the point

where the curve intersects the center frequency of the range matched filter. Chirp scaling has

the effect of shifting the frequency-time curves so that the point where a curve intersects the

center frequency of the range matched filter depends on the distance of the scatterer from

the reference range. In this case, because of the curvature introduced by the nonlinear FM

component, this also has the effect of changing the local slope of the curves at this point. In

this wa.y, the interaction of chirp scaling with a nonlinear FM component in the pulse produces

a range dependent frequency rate. Thus, by proper choice of the nonlinear FM component,

this can be made to cancel the error due to the range dependence of SRC, thereby achieving

accurate focussing for all ranges in the swath.

Two possible approaches to incorporating such a nonlinear FM component in the range

signal are proposed. The more accurate approach allows the component to vary with azimuth

frequency. This requires an extra filtering step in the two-dimensional frequency domain, and

so will be referred to as the ‘nonlinear FM filtering’ method. Another approach makes the
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approximation of assuming that the nonlinear FM component can be calculated at the Doppler

centroid and kept constant in azimuth frequency. In this case, the component can be introduced

by changing the phase modulation of the transmitted pulse according to the squint angle.

Thus the range dependence of SRC can be accommodated without added computation during

processing. In a sense, this approach uses the pulse phase modulation as a kind of preprocessing,

and will be referred to as the ‘nonlinear FM pulse’ method.

In this chapter, the more accurate nonlinear FM filtering method is first described. The

derivation of the nonlinear FM component required to cancel the range dependence of SRC is

presented, and the accuracy and limitations of the algorithm are discussed. In addition, it is

shown how nonlinear FM chirp scaling can be combined with the use of a higher order chirp

scaling phase function, as described in Chapter 6, to perform both RCMC and SRC accurately

for scatterers at all ranges. Also, the extra computation required for the nonlinear FM filtering

method is discussed. This is followed by a description of the nonlinear FM pulse method, where

the accuracy and limitations of this method are investigated. Also, for the nonlinear FM pulse

method, consideration is given to the accommodation of an error in the squint estimate used

to calculate the transmitted pulse, and to the effect on the method of a Doppler shift in the

pulse. Both methods are then investigated by processing simulated high squint data from a

point scatterer. Finally, to investigate the algorithm on real data, conventional SAR data are

skewed to emulate the data that would be received from a squint mode SAR, and processed

with the chirp scaling and nonlinear FM chirp scaling algorithms.

7.2 Nonlinear FM Filtering Method

7.2.1 Description

For nonlinear FM chirp scaling, a cubic phase term in range-frequency needs to be added to

the spectrum of the received signal. Also, to provide accurate processing, the nonlinear FM

corriponent should vary with azimuth-frequency. Iii the nonlinear FM filtering method, this is

done by filtering range lines at each azimuth-frequency with a cubic phase filter, before the chirp
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scaling phase function is applied in the range-Doppler domain. This filtering step is best done

in the range-frequency domain. Thus, compared to the original chirp scaling algorithm, this

algorithm requires the extra processing steps of a range FFT, a cubic phase filter multiply in

the two-dimensional frequency domain, and a range inverse FFT. After the cubic phase filtering

step, the processing steps are the same as in the chirp scaling algorithm, as illustrated in the

block diagram in Figure 7.31. As in the chirp scaling algorithm, this algorithm requires only

FFT and multiply operations.

To describe the nonlinear FM filtering method, start with the SAlt transfer function,

S2(f, fT; r), which corresponds to the received data from a point scatterer after the azimuth

FFT and the range FFT steps in Figure 7.31. The cubic phase filtering step is then represented

by

S2y(f, fT; r) S2(f, fT; r) exp[jY(f)f], (7.180)

where Y(f,) is the azimuth-frequency varying cubic phase coefficient, and S2y(f,, f; r) is

the filtered signal spectrum. In the expansion of the phase of the SAlt transfer function in

Equation (3.51), the cubic phase term represented by ç3(f; r) may be significant at high

squint angles and should also be included in the SAlt signal representation for nonlinear FM

chirp scaling. However, this term is still small enough that its range dependence can be safely

neglected, so it will be approximated by 3(f,; rref). Also, the definitions of the azimuth

compression filter, range migration trajectory, and modified range frequency rate that were

used in Chapter 3 can be used in representing the filtered signal spectrum:

Sy(f, fT; r) = Fac(f,7;r)M(fT) exp[—j2lrrd(f,1;r)fTj (7.181)

exp[j j exp[j(Y(f) + (f; Trej))f]. (7.182)
r)

In this expression, the cubic phase term from the SAR transfer function, , can be combined

with the cubic phase filter coefficient, Y(f,7), to define a modified coefficient as follows:

Ym(f) = Y(f) + 3(f; rref). (7.183)
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Figure 7.31: Block diagram of nonlinear FM filtering method.
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The modified coefficient, Ym(f,7), determines the nonlinear FM component that interacts with

chirp scaling.

Following the filtering step in the two-dimensional frequency domain, an inverse Fourier

transform ofS2y(f, fT; r) with respect to fT is required to take the data to the range-Doppler

domain. To simplify the evaluation of the transform, an approximation to the method of

stationary phase is used, as described in Appendix A, in which it is assumed that the cubic

phase coefficient is small. This leads to the following condition on Ym:

Ymi <<
2Y2T

(7.184)
Sm m

where Tm is the length of a pulse in the range-Doppler domain, and is defined in Equation (3.61).

In addition, when representing the range-Doppler domain signal, the range dependence of the

range frequency rate is modelled by K8. Thus, the range-Doppler representation of the filtered

signal is:

Sy(f,r;r) = Fac(f;r)m[(r — Td) + YmKref (r — )2]

exp[—jir(Kmrej +K8r)(r — Td)21

exp[—jYm(Kmref +K8r)3(r— Td)3]. (7.185)

This expression has the same form as the range-Doppler representation shown earlier in Equa

tion (5.153), except that a cubic phase term has been added to the pulse. Also, the pulse

amplitude in the range-Doppler domain is shifted slightly in range time because of the extra

quadratic range-time term in its argument. However, if IY,,j is less than just half of the bound

shown in Equation (7.184), then the range-time shift in the pulse is only a few percent of the

pulse length, and thus does not significantly affect processing.

The next step is the multiplication of the signal by the chirp scaling phase function. To

achieve the desired trajectory, a higher order phase function like the one derived in Chapter 6 is

used. However, in this case the coefficients of the phase function, q and q3, will depend on the

nonlinear FM component, since this affects how chirp scaling shifts the scatterer trajectories.
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The multiplication of the filtered signal by the chirp scaling phase function is represented as:

Sy(f, T; r) = Sy(f, T; r) exp[—jq2(f)(r
— Tref)2 — jq3(f)(T

— Tref)3]. (7.186)

After chirp scaling, Sy(f,, T; r) is Fourier transformed with respect to r to get the SAR transfer

function of the filtered, chirp scaled signal. Again, the stationary point is approximated by

assuming the cubic phase coefficient is small, as shown in Appendix B. The effect of assuming

a small cubic phase coefficient on processing accuracy will be investigated in the next subsection.

Given the phase terms in the resulting SAR transfer function, the nonlinear FM component

and the chirp scaling coefficients can be chosen to remove the range dependence of RCMC and

SRC. The phase term corresponding to RCMC gives an expression for the scaled trajectory,

as a function of r(f,;r). To remove the range dependence of RCMC, the z\r and

zT2 terms in (f,; r) are equated to the terms corresponding to the linear and quadratic

scaling factors in the desired trajectory in Equation (6.174). In addition, the range dependent

quadratic phase term corresponding to the SRC error, which is linear in r(f,1;r), is set to

zero. This gives a set of three equations for the coefficients, q, q3, and Ym. The first equation

gives the relationship between the linear scale factor, a, and the quadratic coefficient of the

chirp scaling phase function, q2:
‘mref = (7.187)

Imref + q2 a

Then, given the next two equations can be solved simultaneously for q3 and Y,:

‘3K
[KB(aB — 1)_YmKref(UB — 1)2q3] =

B mref

i,
[BKS

— YmKref(aB — 1) + q3] = 0. (7.188)
B mref

The solution to these equations gives the following expressions for the chirp scaling coefficients

and the nonlinear FM component:

q2 limref(aB 1)

—1) 2

2
— Bh1mref /3

— 3
(.189

Iimref(aB — 1)
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The cubic phase filter coefficient, Y(f,7), is then found from Equation (7.183). The coefficients

q(f),q3(f,), and Y(f,), define a nonlinear FM chirp scaling algorithm which accommodates

the range dependence of RCMC and SRC for high squint angles.

In the nonlinear FM filtering method, the SAR transfer function of the filtered, chirp scaled

signal then becomes

S2y(f, fr; r) = M(
—

) exp[—j2rd(fr; r)fT]

exp[—j2r(Tref(f,)
— Tref(f,r))fr]

jirf j2ir(q3+ YmIref)f,
exp[ + 33UBAmref 3B1mref

Fac(f,; r) exp[j$(f,7;r)]. (7.190)

The first factor is the range amplitude spectrum of the compressed pulse. Note that since the

nonlinear FM component was introduced by a phase multiply in the frequency domain, it does

not affect the range amplitude spectrum. Also, in representing the effect on the amplitude

spectrum of the chirp scaling phase function multiply, the small higher order scaling coefficient

has been ignored. The next two factors, as in Equations (6.178) and (3.95), correspond to

the scatterer position, and the bulk RCMC. Following these is an exponential factor which

contains quadratic and cubic phase terms in fr, and corresponds to bulk range compression

including SRC. As in Equation (6.178), the quadratic phase term corresponds to the linear FM

component of the range signal, with its frequency rate modified by cp. The cubic phase term,

in this case, results from both the higher order chirp scaling phase function and the nonlinear

FM component. Compared to Equation (6.178), the range dependent quadratic phase error has

been removed, and the application of the range matched filter provides accurate focussing for

scatterers at all ranges. Finally, the last two factors correspond to azimuth compression and

the phase correction, where now the phase correction is given by:

(f; r) Jmref( —

±)r(f; r)2
aB

— QB)]T(f r)3. (7.191)
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7.2.2 Limitations

Chirp scaling shifts scatterer trajectories to the desired trajectory. However, at the reference

azimuth-frequency these two trajectories intersect, so no scaling is actually required. That

iS, aB(f,7r) = 1 and /3(fr) = 0, so that the coefficients of the chirp scaling phase function

for this range line, q2(fr) and q3(f,), are both zero. In nonlinear FM chirp scaling, then,

there is no chirp scaling effect to interact with the nonlinear FM component at this range line.

This can also be seen from the expresion for the cubic phase coefficent in Equation (7.189),

which becomes very large as a approaches one. Thus, for nonlinear FM chirp scaling to work,

the reference azimuth-frequency must be placed outside of the azimuth-frequency band of the

signal. This increases the maximum amount of scaling that takes place across the signal band,

thus increasing the side-effects of chirp scaling.

Some approximations in the derivation of the algorithm become more accurate as the size

of the cubic phase coefficient decreases — that is, as the condition in Equation (7.184) is more

strongly satisfied. As defined in Equation (7.189), Ym depends on the scaling factors, oB and

, and on the slope of the range frequency rate. The scaling factors are affected by the choice

of the reference azimuth-frequency, so that the condition on the cubic phase coefficient can be

used to derive a constraint on f,r. Using the definition of Y,, Equation (7.184) can be shown

to be approximately equivalent to:

If - frI>>
KTfT1 (7.192)

for all azimuth-frequencies, f,, in the signal band. Then, recall from Equations (5.144) and

(5.145) that the side-effects of chirp scaling, consisting of a change in range bandwidth and

a range-frequency shift, both increase with f — f7rI. Thus, by ensuring a small cubic phase

coefficient, the side-effects of chirp scaling are increased, and this tradeoff must be investigated

to determine the limitations of the algorithm. It remains to find out how small the cubic phase

coefficient needs to be in order to achieve accurate processing, and this requires an expression

for the processing errors in nonlinear FM chirp scaling.
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To represent the processing errors, higher order phase terms in the SAR transfer function of

the chirp scaled signal are found by approximating the stationary point more accurately. First,

the filtered signal spectrum, S2y(f,, fT; r), is inverse transformed in range to obtain the range-

Doppler representation of the signal. In Appendix A, the higher order terms are included in

the approximation to the method of stationary phase, giving the more accurate representation

of the signal:

K Y K3
mref m mref 2

Sy(f,,T;r) = Fac(f,;r)m[
.

(r—)+
,

(r—)

exp[—jir(Kmrej +K5L\r)(r
— Td)2]

exp[—jYm((mref +I(5r)3(T — Td)3]

exp[—j7rY(Kmref +K5IT)5(T — Td)4]. (7.193)

This form of the signal includes a higher order phase term, with a Y coefficient, due to the

higher order term in the approximation of the stationary point. Also, the range dependence

of Km is modelled by its slope in range-time, K5. The cubic coefficient, Ym is assumed range-

invariant. The chirp scaling phase function is applied to this signal, and higher order terms in

f and r are maintained while finding the range Fourier transform, as shown in Appendix B.

In the resulting SAR transfer function, this introduces extra phase terms compared to the

expression in Equation (7.190), which are not taken into account during processing. Thus, they

represent processing errors due to approximations made in deriving the algorithm. The phase

error in the SAR transfer function is as follows:

err(f,fr;r) =

27r(2Kmref C4 +c3)Arf

+2r(3Krefc4 + 3Kmrf C3 —c2)r2f

—27r(2Knrefc4+ 3nrefC3 —
2IImrefC2 — ci)r3f, (7.194)

where the coefficients in this expression, c to c4, are given by:

I i r3 \2q3 + Im1mref) —

= 5r5
mr ef
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— (q3 — (aB l)YmKTef)(Ks — 2YmK,ref)
C3

— 4r4
aB1mref

— (q3
— (3QB l)YmI(ref)(I(s — YmKrej) — (K3

— 2YmIrf)2
—

3y3
Bmref

— 30BYmKref(Ks — YmKref) + (K — YmI(rei)(Ks — 2Ymliref)
Cl

— 2 r2
(7.195)

B1mref

Each of the phase error terms in Equation (7.194) corresponds to a higher power of f and a

higher order of variation in T than is accommodated in nonlinear FM chirp scaling. Note that

errors arise from both the size of the cubic coefficient, and from higher order range dependencies

in RCMC and SRC than are accommodated in the algorithm. In particular, the fourth power

and cubic phase errors are more sensitive to the size of Ym, and hence to the condition in

Equation (7.184). The quadratic and linear phase errors (RCMC and SRC errors) are more

range dependent.

The significance of these errors as a function of squint angle is shown for spaceborne SAR.

parameters in Table 7.14 for L-band and Table 7.15 for C-band. These show the maximum

phase error for the 4’th power, cubic, and quadratic phase errors, and the maximum RCMC

error for a scatterer at 20 km from the reference range. Also, the reference azimuth-frequency

was chosen so that the condition

)‘mI
< I21TmI

(7.196)

holds for all frequencies in the signal band. Thus the condition in Equation (7.184) is only

weakly satisfied. As can be seen from the tables, however, this is enough to keep the maximum

phase errors less than 90 degrees and the maximum RCMC error less than a tenth of a cell.

Thus, the processing errors at high squint are sufficiently small.

Next, for the same value of reference azimuth-frequency that was used to calculate the above

processing errors, the side-effects of chirp scaling were investigated for different squint angles.

Table 7.16 shows the percent change in range bandwidth, and the range-frequency shift as a

percentage of the range bandwidth, for spaceborne SAR parameters at L-band and C-band.

Also, as above, the scatterer was assumed to be at the edge of the range swath, 20 km from
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L-band
4’th power cubic quadratic RCMC
phase error phase error phase error error

squint (degrees) (degrees) (degrees) (cells)

10 0.4 0.0 0.3 0.00
20 2.9 0.4 4.0 0.00
30 12.6 3.2 20.1 0.01
40 55.6 18.5 71.9 0.06

Table 7.14: Maximum phase and RCMC errors for nonlinear FM chirp scaling.

__________

C-band
4’th power cubic quadratic RCMC
phase error phase error phase error error

squint (degrees) (degrees) (degrees) (cells)

10 0.1 0.0 0.1 0.00
20 0.6 0.1 0.3 0.00

30 1.8 0.2 1.9 0.00

40 6.1 1.0 10.2 0.01
50 28.9 7.1 54.2 0.06

Table 7.15: Maximum phase and RCMC errors for nonlinear FM chirp scaling.



Chapter 7. Nonlinear FM Chirp Scaling for Range-Variant SRC 124

the reference range. The side-effects vary slightly across the interval of azimuth-frequency that

is used in processing, and the values shown in the table are the maximum change in range

bandwidth and range-frequency shift across the azimuth band. The change in bandwidth and

frequency shift that can be tolerated depends on the width of the window in the range matched

filter, and on the range oversampling rate. To avoid aliasing, the fractional change in bandwidth

should be sufficiently less than the oversampling rate, which is typically about twenty percent.

As can be seen from the table, the worst case change in bandwidth is sufficiently less than the

oversampling rate, so this is not a problem. To accommodate some frequency shift, the window

in the range matched filter should be wider than the nominal range bandwidth, but of course

cannot be wider than the sampling rate. The range frequency shift, combined with the change

in bandwidth, ma.y be enough to take some frequency components outside of the window. This

results in a loss of range bandwidth, leading to a loss of range resolution and signal energy. To

keep frequency components within the fundamental interval of range-frequency, the side-effects

must satisfy the condition:

(oB— 1)
+ :9:; <., (7.197)

where fT is the frequency shift, f- is the range bandwidth, (B — 1) is the fractional change

in bandwidth, and OS IS the oversampling rate. Given an oversampling rate of about twenty

percent, this condition is satisfied by the worst case frequency shifts described in Table 7.16, so

the side-effects of chirp scaling have a negligible effect on processing with this method. Thus,

the nonlinear FM filtering method can achieve accurate processing for squint angles up to the

limitations imposed by the SAR imaging constraints and the signal model, which were discussed

earlier in Chapter 4.

7.2.3 Computation

In describing the nonlinear FM filtering method, the extra computation that is required should

be compared to other approaches. First, since this algorithm is an extension of chirp scaling,
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% increase in frequency shift
bandwidth (% of bandwidth)

squint L-band C-band L-band C-band
10 0.7 0.2 2.5 0.7
20 1.7 0.4 4.9 1.6
30 3.3 0.8 6.5 2.9
40 6.3 1.6 7.3 4.6
50 3.4 6.7

Table 7.16: Percent change in range bandwidth and percent range-frequency shift due to chirp
scaling with nonlinear FM filtering method.

the computation of the chirp scaling algorithm should be mentioned. Compared to the range-

Doppler algorithm, the chirp scaling algorithm requires fewer arithmetic operations since RCMC

is done with a phase multiply rather than an interpolator. If corner turning is required, the chirp

caling algorithm requires two extra corner turns. However, for higher squint, the chirp scaling

algorithm should be compared to the squint imaging mode algorithm, which also accommodates

the azimuth-frequency dependence of SRC. In this case, the number of corner turns in each

algorithm is the same, while the chirp scaling algorithm performs RCMC more efficiently.

Next, consider the nonlinear FM filtering method, which requires the extra computation of

a frequency domain filtering step in addition to the computation required by the chirp scaling

algorithm. To evaluate this algorithm, note that since the purpose of the nonlinear FM filtering

step is the accommodation of the range dependence of SRC, an alternative to this step is the

use of a time domain, range-variant filter which performs residual SRC in the range-Doppler

domain. Such a filter would be applied after azimuth-frequency dependent SRC was done in the

two-dimensional frequency domain, so that only the range dependence of SRC is accommodated.

In general, range-variant, time domain filtering is more difficult to implement than FFT’s and

multiplies, so that the nonlinear FM filtering method is advantageous from this point of view.

However, the number of operations can also be compared between the two approaches. For a

range line with N samples, the number of complex multiplications for the nonlinear FM filtering
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time
domain
filter
length 40

Figure 7.32: Time domain filter length required for less than 3 percent broadening, versus

maximum quadratic phase error in degrees.

step (consisting of a range FFT, range multiply, and range inverse FFT) is:

n0 = 2(log2(N))+N. (7.198)

The number of operations for the time domain filter depends the number of filter coefficients,

and this in turn depends on the compression error being compensated. Thus, it is first necessary

to know the time domain filter length needed for a given compression error. This was determined

by simulating a compressed pulse with a given maximum quadratic phase error, and then finding

the time domain filter length which resulted in a final resolution broadening of less than 3

percent. Figure 7.32 shows a graph of the required filter length, 1, versus the absolute value of

quadratic phase error, q1max. Also shown is a line that fits the points, which is given by

(7.199)

for max given in degrees. Then, the fact that the compression error varies across the range

line needs to be taken into account. The quadratic phase error due to the range dependence

30
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0 400 800 1200 1600

maximum quadratic phase error
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of SRC is given in Equation (5.155). In this expression let m be the number of samples from

the reference range, so that .T = m/fsr, where f is the range sampling rate. The maximum

quadratic phase error at sample m can then be expressed as

max = 5m, (7.200)

where & is the slope of the phase error per sample:

K f2= 180 2 r2
(7.201)

B mref Jsr

The total number of operations for the range line is the sum of the operations for all range sam

ples. Assuming the reference range is at midswath, then, the number of complex multiplications

required in the time domain filtering approach can be shown to be:

flops = 61\T + . (7.202)

Because of the appearance of K5, Kmref, and 0B in the definition of c&s, the amount of com

putation in the time domain SRC approach depends on the wavelength and the squint angle.

Figure 7.33 compares the computation of time domain residual SRC with that of the frequency

domain cubic phase filtering step. Each of the graphs in this figure shows a plot of the number

of complex multiplications versus the number of samples in the range line. The top graph

shows the results for L-band, and the bottom graph shows the results for C-band. As can be

seen, the number of operations in each approach is comparable. The nonlinear FM filtering

approach requires slightly more operations than the time domain approach for moderate squint

angles, and requires about half the computation of residual SRC at lugh squint. This, combined

with the ability to implement nonlinear FM filtering using FFT’s and multiplies, makes it an

attractive approach for high squint SAR processing.
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Figure 7.33: Computation of time domain SRC filter (t-d) versus frequency domain cubic phase

filtering step (ift). Top: L-band SAR at squint angles of 20 and 40 degrees. Bottom: C-band

SAR at squint angles of 30 and 50 degrees.
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7.3 Nonlinear FM Pulse Method

7.3.1 Description and Limitations

To avoid an increase in computation over that of the chirp scaling algorithm, the nonlinear

FM component can be incorporated directly into the transmitted pulse. However, this requires

the approximation that the nonlinear FM component be constant in azimuth-frequency. To

minimize the error due to this approximation, the component should be calculated at the

Doppler centroid. Thus, this requires the phase modulation of the transmitted pulse to be

modified according to the squint angle. This approach is feasible given digital signal generation

and an estimate of the squint angle from the attitude control of the antenna.

To determine the value of the nonlinear FM component in this case, the required cubic

phase coefficient of the SAR transfer function, as defined in Equation (7.189), is evaluated

at the Doppler centroid. Then, from Equation (7.183), the corresponding cubic phase filter

coefficent is determined:

—

3(f; Tref)
— ‘mJc)

— 2ir

It is desired to obtain the same effect on the signal as was obtained by filtering with the

cubic phase filter, except with the approximation of using a filter coefficient that is constant in

azimuth-frequency, Y. This can be done by using a transmitted pulse with a cubic phase term

in the phase modulation, as follows:

p(T) = m(r +YK2T2/4)exp[—jKr2— jYI(T]. (7.204)

In the pulse the amplitude is shifted by a small amount that depends on the cubic phase

coefficient, in order to span the same interval of instantaneous range-frequency as in the linear

FM case. Using this transmitted pulse, the two-dimensional Fourier transform of the received

SAR signal can be shown to be

S2y(f,, f; r) = Fac(f,; r)M(f) exp[—j27rrd(f; r)fT] (7.205)

2
exp{jK1. JT ] exp[j(Y + 3(f; rf))f]. (7.206)

m(fi, T)
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This expression is the same as the filtered signal in Equation (7.182), except for the constant

coefficient, Y. Finally, as before, the cubic term of the SAR focussing phase, (f,;
should be accounted for. This term can be combined with } to produce the modified cubic

phase coefficient of the SAR transfer function that interacts with chirp scaling:

2ir 2ir
Ymc(f,) = + (f,: rref). (7.207)

This modified coefficient Ymc(fq) plays the same role as Ym(f,) did in the nonlinear FM filter

ing method, although it will not be accurate for azimuth-frequencies other than the Doppler

centroid.

With the SAR data collected with the nonlinear FM pulse in Equation (7.204), the pro

cessing follows the same steps as the chirp scaling algorithm. The only differences from the

original chirp scaling algorithm that result from using this approach are the choice of the ref

erence azimuth-frequency, and the fact that the chirp scaling phase function coefficients are

the ones used in the nonlinear FM filtering method described above. The approximation of

using a cubic phase coefficient that is constant in azimuth-frequency has a negligible effect

on RCMC. However, the ability to remove the range dependent quadratic phase error is im

paired at azimuth-frequencies other than the Doppler centroid. Thus, in the SAR transfer

function of the chirp scaled signal, a range and azimuth-frequency dependent quadratic phase

error appears. This error is zero at the Doppler centroid and increases toward the edges of the

azimuth-frequency band. By substituting the definition of Ymc for Ym in the expression for the

range dependent quadratic phase term in the SAR transfer function, the phase error due to the

approximation in the nonlinear FM pulse method can be shown to be:

err(f,fT;r)
= 2Amref(B _1)r(f;r)

(Y(f ) —

(7.208)

By using the definitions of cxB(f,) and this error can be shown to be approximately:

7rIZT(f,7;r)(f,7
—

err(f, fT, r)
. (

B mrefJThD — Jrr

Note that because of the term in the denominator, the error can be made to decrease

by choosing a greater azimuth-frequency offset between the reference and the Doppler centroid.
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However, the side-effects of chirp scaling increase with this offset. This indicates a tradeoff

between the side-effects of chirp scaling and the focussing error due to the approximation in

this method.

Since the phase error varies across the azimuth-frequency band, the resulting broadening

of the range compressed pulses increases towards the edges of the band. After azimuth com

pression, this broadening is averaged in azimuth to get an overall range broadening in the

point spread function. This is similar to the effect of the approximation in the range-Doppler

algorithm, in which SRC is calculated at the Doppler centroid. This focussing error can be

characterized by the maximum phase error of the SAR transfer function in the two-dimensional

frequency domain, which is the maximum quadratic error in range-frequency, evaluated at the

edges of the azimuth-frequency band. To keep the overall broadening to less than five percent,

this maximum phase error should be less than about 120 degrees [44].

To investigate the tradeoff between side-effects and focussing error as a function of squint

angle, Tables (7.17) and (7.18) show the change in range bandwidth, range-frequency shift,

and maximum phase error due to the approximation in this method. The results are presented

for spaceborne SAR parameters at L-band and C-band, with the scatterer at the edge of the

swath where (r
—

= 20 km. Also, to achieve an acceptable level of error, the azimuth-

frequency offset from the reference, Jf — f, has to be increased compared to the value used

in the nonlinear FM filtering method. This corresponds to ensuring that the constraint in

Equation (7.184) is more strongly satisfied. In this case, for each squint angle, f,1,. was chosen

so that the condition

lYmi
< I21(TmI

(7.210)

was satisfied across the azimuth-frequency band. The side-effects vary across the azimuth

frequency band, and the table shows the maximum change in bandwidth and frequency shift.

For L-band, the processing error and increased side-effects in this method start to become

noticeable at thirty degrees squint, although performance is still acceptable. For C-band, the

side-effects and errors in this approach become noticeable at about forty degrees squint. Thus,
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____________ L-band
maximum

squint % bandwidth frequency shift phase error
(degrees) change (% of bandwidth) (degrees)

10 0.9 3.1 25.5
20 2.5 7.0 71.2

30 4.2 10.4 123.6
40 9.0 12.6 177.5

Table 7.17: Side-effects of chirp scaling and error due to approximation in the nonlinear FM

pulse method: Change in range bandwidth, range-frequency shift, and maximum quadratic

phase error at azimuth band edge.

C-band
maximum

squint % bandwidth frequency shift phase error

(degrees) change (% of bandwidth) (degrees)

10 0.2 0.9 7.3
20 0.6 2.4 21.5

30 1.4 5.0 43.1
40 2.9 8.6 80.3
50 6.7 13.3 158.5

Table 7.18: Side-effects of chirp scaling and error due to approximation in the nonlinear FM

pulse method: Change in range bandwidth, range-frequency shift, and maximum quadratic

phase error at azimuth band edge.

although the nonlinear FM pulse method is not as accurate as the nonlinear FM filtering

method, it can stifl achieve good focussing performance at high squint.

7.3.2 Accommodation of Error in Squint Estimate

In the nonlinear FM pulse method, the determination of the phase modulation of the trans

mitted pulse in Equation (7.204) requires a knowledge of the Doppler centroid, which in turn

requires an accurate knowledge of the squint angle. However, in spaceborne SAR, the antenna.

pointing direction can only be measured to within half of a degree or so, and a more accurate
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estimate of the Doppler centroid is obtained using the received data during processing [26].

Thus, an initial, inaccurate estimate of the Doppler centroid is used to calculate the cubic

phase coefficient of the transmitted pulse. If chirp scaling proceeds without accounting for this

erroroneous coefficient, the accommodation of the range dependence of SRC would be impaired,

with a corresponding degradation in image quality. Fortunately, the processing can be modified

so that errors in the initial estimate of the Doppler centroid can be accommodated without a

significant degradation in performance. To see how this can be done, note that the correct

value of Y depends not only on the Doppler centroid, but also on the value of frir that is used

during chirp scaling. Note that while an initial value of reference azimuth-frequency, based on

the initial estimate of Doppler centroid, was used to calculate Y, a different value of fr can

be used when processing the data. Thus, a value for f,r can be found such that the cubic

coefficient that is required for accurate nonlinear FM chirp scaling, is equal to the one that was

actually used in the transmitted pulse.

The appropriate value of f,r can be found as follows. Let the cubic phase coefficient for

nonlinear FM chirp scaling, as defined in Equation (7..189), be represented by Ym(fr,; f,). In

this form, the dependence on fr is due to the presence of the scaling factors, o and , in the

definition of Y,. At the Doppler centroid, Ym(fc; f,) can be thought of as a function of f,7r.

Thus, given the value of Y that was used in the transmitted pulse, it is required to find the

value of f, that satisfies the equation:

Yrn(fec; fijr) = Ycc, (7.211)

where, to simplify notation, is

cc = c + (7.212)

For the case of a constant B parameter, where a = and = 0, Equation (7.211) can be

solved explicitly to obtain

fr = [1
— (72)2], (7.213)
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where the terms k1 and k2 are defined as

—k1
— As

—
YccAmrej (7.214)

k2 = K8
— 2YccI(ref. (7.215)

More generally, for a range varying B, it was found that the required value of f,27. can be found

very accurately by the following iterative scheme:

1. Pick an initial estimate of reference azimuth-frequency, frj. This could be obtained from

the initial value of reference azimuth-frequency used in calculating the transmitted pulse,

or from Equation (7.213) for f, assuming a constant B.

2. Using the definition of }, write Equation (7.211) as

Ks(aB — 0.5)
—

___________

— CC+ 2 )
AmTef(B — 1) Amref(Bi 1)

where 0Bi and /3 are calculated using the initial estimate, f7j. This equation can be

solved explictly for B•

3. Given the value of cx found above, use the definitions of 0B and a(fr) in Equa

tions (6.173) and (6.171) to write the following equation for -y(f; rref):

a 2 rref(1
— ‘y2(fri; rrej))Bs

7(fir, rref)
= a(f,)

—(1
— 272(fri; Tref)Br

(7.217)

4. Use the value of y(f; Tref) found above to solve for a new value of fr.

5. Replace f,7rj with f, and repeat.

With this scheme it was found that at most four iterations are required to find the required

value of f’i-,r. Then, the cubic phase that was used in the transmitted pulse can be used in the

nonlinear FM pulse method to accommodate the range dependence of SRC.

Note that the value of fr required to make use of the transmitted pulse will be slightly

different than what would have been used if there were no error in the initial estimate of the
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L-band
maximum

squint % bandwidth frequency shift phase error
(degrees) change (% of bandwidth) (degrees)

10 0.9 3.2 27.6
20 2.5 7.2 75.6
30 5.5 10.8 133.3
40 11.3 13.2 197.8

Table 7.19: Side-effects and maximum phase error with f changed to accommodate a +1
degree squint estimate error.

Doppler centroid. The initial reference azimuth-frequency, used to calculate the transmitted

pulse, may have been chosen to achieve acceptable levels of side-effects and focussing error.

However, the change in fr to accommodate the error in squint estimate will cause a change

in the side-effects and in the approximation in the nonlinear FM pulse method. For example,

a change in f, toward the Doppler centroid will decrease the side-effects of chirp scaling but

increase the maximum phase error due to the approximation. A change in fr away from the

Doppler centroid will do the reverse. To investigate this, Tables 7.19 and 7.20 show the worst

case changes in range bandwidth, range-frequency shift and maximum phase error that result

from a ±1° error in measuring the squint angle. The same parameters as in Tables 7.17 and

7.18 were used in the calculations. The results do not differ significantly from those given

in the previous subsection for the case of no squint estimate error. Thus, the nonlinear FM

pulse method is robust to moderate errors in squint angle measurement for calculation of the

transmitted pulse.

7.3.3 Effect of Pulse Doppler Shift

The use of a nonlinear FM transmitted pulse raises the question of the effect of a Doppler

shift of a pulse on the matched filter output. A linear FM pulse is Doppler tolerant in that

the effect of a Doppler mismatch in the matched filter is a shift in the compressed pulse. For

a nonlinear FM pulse, the Doppler shift has the potential to cause a mismatch in the range
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C-band
maximum

squint % bandwidth frequency shift phase error

(degrees) change (% of bandwidth) (degrees)

10 0.2 0.9 7.7

20 0.7 2.5 22.1

30 1.4 5.1 44.6

40 3.0 8.9 85.2

50 7.2 14.3 179.4

Table 7.20: Side-effects and maximum phase error with f changedto accommodate a +1

degree squint estimate error.

matched filter [11]. To minimize the Doppler shift in the signals before processing, the received

signals are frequency shifted to remove the Doppler shift corresponding to the shift at the

estimated Doppler centroid. Even for an error in Doppler centroid estimate corresponding to a

one degree squint estimate error, the remaining Doppler shifts in the signals are much smaller

than the Doppler resolution of an individual pulse. Thus, as described in the section on the

stop-start assumption in Chapter 4, frequency shifting the received signals is sufficient to ensure

an accurate matching of a received pulse with the range matched filter.

To verify this, consider a transmitted pulse for the nonlinear FM pulse method, of the form

in Equation (7.204). Then consider the compression of a single received pulse which, after

frequency shifting of the received signal, has a remaining Doppler shift of fd. The spectrum of

the received pulse is given by

P(fT
-

6fd) = M(f - fd)exp[j
62

+jY(f
- fd)3]. (7.218)

Thus, with a compression filter matched to the transmitted pulse, the remaining Doppler shift

results in the following error terms in the phase of the compressed pulse spectrum:

err = 27r16fdf - 2ir(
-

Y6f)fT + 27r(
- }C6fd) (7.219)

To evaluate this error, assume Y is equal to it.s maximum value determined by the coiistraiiit

in Equation (7.210) for the nonlinear FM pulse method. Also, assume a one degree error in the
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squint estimate for frequency shifting the received signal. Then, for the worst case squint angle

and wavelength, the maximum quadratic phase error due to the remaining Doppler shift is less

than four degrees, which is negligible. Similarly, the change in pulse position and phase error

is very small. Thus, the use of a nonlinear FM pulse does not significantly impair the matched

filtering of the received signal.

7.4 Simulations

In order to verify the analytical results describing nonlinear FM chirp scaling, point scatterer

data was simulated and processed with the two different approaches. The point scatterer

response was generated using the signal model for high squint, spaceborne SAR described in

Chapter 4. In this model, a circular orbit was assumed in calculating the B parameter and the

rate of change of B with range. Data was generated for L-band and C-band SAR, to simulate the

signal from Seasat and ERS-1 platforms, respectively, and the scatterer was placed at the edge

of the swath with (r — rref) = 20 km. For the data that was to be processed with the nonlinear

FM filtering method, the point scatterer response was simulated using a linear FM pulse. For

the nonlinear FM pulse method, the data was generated with a nonlinear FM component in the

pulse, and a one degree error in the squint estimate was assumed in calculating the nonlinear

FM component. In all cases, rectangular amplitude weighting of the signal was used, and the

width of the window in the range matched filter was 13 percent larger than the nominal range

bandwidth. The results of processing the point scatterer data were then analyzed to determine

the effect of processing errors and chirp scaling side-effects on the point spread function.

First, the accuracy of processing can be illustrated by the shape of the point spread function.

Thus, to show the improvement in high squint SAR processing with nonlinear FM chirp scaling,

Figure 7.34 shows contour plots of three point spread functions which result from processing

simulated point scatterer data. The data was simulated at L-band and 25 degree squint, with

the point scatterer placed 20km from the reference range. Each of the contour plots corresponds

to a different approach in processing the data: the original chirp scaling algorithm, the nonlinear
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FM filtering method, and the nonlinear FM pulse method. As can be seen, the original chirp

scaling algorithm results in severe distortion of the point spread function at high squint for

scatterers away from the reference range, due to the range dependence of SRC. In contrast,

the point spread function for the nonlinear FM filtering method is accurately focussed, and has

the expected shape of a rotated sine function. The nonlinear FM pulse method shows a slight

distortion due to the approximation in the method, but is still adequately focussed.

Next, measurements of resolution, sidelobe level, registration, and phase were made on

the point spread functions that resulted from processing simulated high squint data with the

nonlinear FM filtering and nonlinear FM pulse methods. The following results are given for

the range direction, since the point spread function in the azimuth direction is not significantly

affected by the approximations in chirp scaling. Figure 7.35 presents plots of 3 dB range

resolution width, in cells, versus squint angle, where a range cell is the 3dB width of a sine

function. Results are shown for L-band and C-band, for the filtering and pulse methods of

nonlinear FM chirp scaling. Also, for comparison, the corresponding results for the original

chirp scaling algorithm are repeated from Figure 5.29. As can be seen, the use of nonlinear

FM chirp scaling dramatically improves the range resolution as a function of squint angle. The

resolution for the filtering method is practically independent of squint angle, for squints up to

the limitations described in Chapter 4. The approximation in the pulse method causes a slight

degradation in resolution for squint angles above 30 degrees for L-band, and above 40 degrees

for C-band.

Another effect of compression error is an increase in sidelobe level, and Table 7.21 shows

the maximum sidelobe level for the two nonlinear FM chirp scaling approaches, for different

squint angles at L-band and C-band. With accurate focussing, the rectangular weighting used

in the matched filter results in the —13.2 dB sidelobe level of a sine function. Compared to

the results for the original chirp scaling algorithm in Table 5.11, both methods of nonlinear FM

chirp scaling preserve a relatively low sidelobe level for high values of squint.

The focussing of a point scatterer response in the range direction is mainly affected by
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Figure 7.34: Contour plots of point spread functions for L-band at 25° squint, (T—rref) = 20km,
using original chirp scaling algorithm, nonlinear FM filtering method, and nonlinear FM pulse
method.
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Maximum Sidelobe Level in Range (dB)

L-band C-band

filtering pulse filtering pulse

squint method method method method

10 -13.2 -13.1 -13.2 -13.2

20 -13.2 -12.5 -13.2 -13.0

30 -12.8 -11.7 -13.2 -12.9

40 -13.2 -12.1

50 -13.1 -11.3

Table 7.21: Simulation results of measured maximum sidelobe level of point spread function in

range direction: nonlinear FM filtering method and nonlinear FM pulse method.
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Figure 7.35: Simulation results of measured range resolution in cells vs. squint angle in degrees:

(1) original chirp scaling algorithm; (2) nonlinear FM filtering method; and (3) nonlinear FM

pulse method.
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Range Registration Error (cells)
L-band C-band

filtering pulse filtering pulse

squint method method method method

10 0.00 0.00 0.00 0.00

20 0.01 0.02 0.00 0.00

30 0.03 0.05 0.00 0.01

40 0.00 0.02

50 0.04 0.07

Table 7.22: Simulation results of measured range registration error of point spread function:

nonlinear FM filtering method and nonlinear FM pulse method.

the accuracy of SRC. Errors in RCMC may contribute to broadening slightly, but are more

noticeable in their effect on the range registration of the compressed pulse. A registration error

is a shift in the location of the compressed pulse from its expected position, rd(fr; r). Since

an RCMC error is range dependent, a registration error increases toward the edge of the swath

resulting in a geometric distortion of the image. In order to verify the accuracy of RCMC

in the extensions to chirp scaling for orbital geometries, the range registration error of the

compressed pulse was measured as a function of squint angle for the two methods of nonlinear

FM chirp scaling. The results are presented in Table 7.22, for a scatterer at the edge of the

swath. Although the error is slightly larger for the nonlinear FM pulse method, both methods

of nonlinear FM chirp scaling give a very small registration error for squint angles up to 30

degrees for L-band, and up to 50 degrees for C-band.

Besides broadening, sidelobes, and registration, another performance criterion is the phase

of the compressed pulse, which is used in SAR. applications such as interferometry. Because

of phase errors due to additive noise, and the fact that phase is very sensitive to inaccuracies

in processing, a phase error of less than about 5 degrees indicates very good performance.

Table 7.23 shows the phase error in the compressed pulse at the expected peak sample for the

two nonlinear FM chirp scaling methods. In all cases, the phase error is very small, although

again the error in the nonlinear FM pulse method is slightly larger.
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Peak Phase Error (degrees)
L-band C-band

filtering pulse filtering pulse

squint method method method method

10 0.0 0.0 0.0 0.0
20 0.2 0.9 0.0 0.0

30 1.1 2.5 0.0 0.5
40 0.3 1.7

50 1.7 5.2

Table 7.23: Simulation results of measured phase error at expected peak sample of point spread

function: nonlinear FM filtering method and nonlinear FM pulse method.

Finally, to show the worst case range impulse responses for the nonlinear FM chirp scaling

methods, Figures 7.36 and 7.37 show plots of the amplitude of a slice of the point spread

function in the range direction, for L-band at 35 degree squint and for C-band at 50 degree

squint, respectively. As indicated by the previous results, in each case the range impulse

response for the filtering method is essentially the same as the theoretical siric function. Also,

the range impulse response for the pulse method is slightly distorted by the approximation in

this method.

Overall, the processing of simulated high squint data form a point scatterer has shown the

accurate focussing that can be achieved with nonlinear FM chirp scaling. In addition, the slight

distortion that results from the nonlinear FM pulse method demonstrates that this approach

can be used to achieve accurate processing at high squint, without increasing the amount of

computation.

7.5 Experiments With Skewed Seasat Data

7.5.1 Approach

The above results have shown the effectiveness of nonlinear FM chirp scaling on simulated

point scatterer data. Next, the performance of the algorithm on real data is investigated.
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Figure 7.36: Magnitude of range slice of point spread function for L-band at 350 squint,
(r — rref) 20km, using nonlinear FM chirp scaling: filtering method and pulse method.

Figure 7.37: Magnitude of range slice of point spread function for C-band at 50° squint,
(r — rrcf) = 20km, using nonlinear FM chirp scaling: filtering method and pulse method.
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Since suitable data from a squint mode, strip-mapping SAR was not available, the approach

was taken of skewing conventional SAR data in order to emulate squinted SAR data. This is

done by shifting the received echos in raw SAR data in such a way that the point scatterer

response in the data resembles that obtained with a high squint angle. This approach involves

approximations in the signal model, so that in general the reverse operation cannot be used to

remove the effect of squint from squint mode SAR data. However, for a short strip of data in

the azimuth direction, the approach is adequate for the purpose of demonstrating the ability of

nonlinear FM chirp scaling to process squinted SAR data.

The approach is illustrated in Figure 7.38, which shows the point scatterer responses from

two scatterers separated in azimuth, before and after skewing the data. The data are skewed by

shifting the received echos in range, by an amount that depends on the azimuth-time difference

from some fixed azimuth-time, Tlref. This changes the apparent trajectory of the point scatterer

response to correspond to that of a high squint angle. In addition, the data are multiplied by an

azimuth varying phase factor, in order to make the azimuth phase term of the point scatterer

response consistent with the high squint implied by the shifted data. After skewing, both point

scatterer responses in Figure 7.38 have shapes that correspond to high squint data. However,

the response that is located farther from Tiref is also shifted in its range position. Thus, the

closest approach range that is used to process this response will not accurately match the range

with which this signal was generated. The most significant effect of this range mismatch is an

azimuth compression error, which will cause an azimuth broadening for scatterers located away

from 1)ref. For this reason, only a narrow strip in the azimuth direction is used.

7.5.2 Signal Model

Each range line of the SAR data is shifted by multiplying its Fourier transform by a linear

phase factor that depends on the azimuth time of that range line. Thus, including the azimuth

varying phase factor, this means the skewing of the data is accomplished in the range-frequency
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range origina’ responses

r(1- ulret)

s(, r) = — — c)p[T
— 2R5(— o; ro)1exp[40 1 — o; ro)1

(7.221)

where the distance equation of the skewed data is:

R3(i
— 11o; ro) = — ‘]o ro) + r3(i — Iiref). (7.222)

First, by taking the derivative of the azimuth phase term, the Doppler centroid of the skewed

data can be shown to be

f = f + —, (7.223)

where f is the Doppler centroid of the original data. Next, to obtain a model of the point

scatterer response that can be used for processing, a hyperbolic equation can be fit to the

A

azimuth

skewed responses

Figure 7.38: IHustration of skewed SAR data.

domain by multiplying the Fourier transform of each range line by:

-j4w(fo + fT)exp[ r8(i
— ?lref)], (7.220)

where r5 is the slope of the skew. Consider the signal received from a scatterer at with

an original distance equation of R(i
— o; ro). After skewing the data, the signal will have the

form:

2r
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distance equation of the skewed data using the method described in Chapter 4. That is, a

hyperbolic model of the distance equation is found such that

R8(?7
— m; ro) Rh(71

— — Tlh; rn), (7.224)

where

— — h) = + Bh(
—

110
— 11h)2. (7.225)

The parameters r, Bh, and T/h, of the hyperbolic are found by equating R and its first and

second derivatives, evaluated at 1 = (ho + i), to the corresponding values for R. Note that

since R depends on Tiref, the resulting model for the point scatterer response will depend on

the azimuth position of the scatterer with resect to Tlref. Thus, an approximation is made in

which the model is evaluated for the signal whose energy is centered on href. This corresponds

to ignoring the shift in the range position of the point scatterer response described above. Then,

setting Tlref = (io + ) gives the following expressions for the parameters of the signal model of

the skewed data, as a function of the slope of the skew, r, and the parameters of the original

data, r0, B, and llc:

Bh =

B
+ r8)2 + 2

Br
2

+ Br r0 + B11

Bij + + Bi
=

= + B — Bh(11
— hh)2. (7.226)

With the hyperbolic model of the distance equation, the point scatterer response of the skewed

data becomes

— ho — ‘lh; rh) —i4lrfoRh(h — ho — m; rh)
$(17,r) = W(11—(ho+11h)(h1c—hh))p[T ]exp[ 1’

(7.227)

where the azimuth and range position of the scatterer are assumed to be (ho + Ilk) and

respectively. Also, the beam center offset time has been changed to (j
— Ilk), corresponding to

a higher squint angle.
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7.5.3 Results

The above approach was used to skew conventional, spaceborne SAR data from the Seasat

satellite. The Seasat SAR was operated at L-band, and the data was obtained over the city of

Vancouver, B.C. The original squint angle of the data was about 3 degrees, and the data was

skewed to emulate a squint angle of 25 degrees.

The skewed data was processed with the original chirp scaling algorithm, and with the

filtering method of the nonlinear FM chirp scaling algorithm. In each case, the signal model

for processing the data was determined as shown above. The data was filtered to reduce

the azimuth bandwidth to 1100Hz, compared to the FRF of 1647Hz. This was done to

reduce the length of the azimuth matched filter thereby reducing the overhead for producing

a narrow azimuth strip of an image, and to avoid aliasing in the image spectrum as described

in Chapter 4. To register the image correctly in azimuth, a linear phase term was added to

the azimuth compression filter to remove the offset ri. Finally, the skew was removed from the

image after processing, to retain the origillal shape of features in the image.

Figures 7.39 and 7.40 show the results of processing with the original chirp scaling algorithm

and the nonlinear FM chirp scaling algorithm, respectively. The single-look complex images

that were produced were detected and averaged in the azimuth direction by a factor of four,

in order to achieve the effect of multilooking that is commonly used to reduce speckle. Small

portions of the processed images were extracted to show the detail, and the images shown in

the figures are 256 samples in azimuth by 575 samples in range. The width of the images

in the azimuth direction is about 4.5 km, and the difference in slant range across the image

is about 3.9 km. Also, in each case the reference range was set to be 20 km from the center

of the image. For the original chirp scaling algorithm, this distance from the reference range

results in a noticeable degradation in the image due to the range dependence of secondary range

compression. The blur in the image is particularly noticeable at points and at edges that run

perpendicular to the range direction. In contrast, the image formed with nonlinear FM chirp

scaling is much better focussed. For comparison, Figure 7.41 shows an image formed with the
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Figure 7.39: Image of Vancouver scene formed from skewed data with the original chirp scaling

algorithm, with the reference range 20 km from the center of the image.

original chirp scaling algorithm, but with the reference range in the center of the image. Since

the image formed with the nonlinear FM chirp scaling algorithm is comparable to the image

with the reference range at the center, this shows that nonlinear FM chirp scaling successfully

accommodates the range dependence of SRC.

. range
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Figure 7.40: Image of Vancouver scene formed from skewed data with the nonlinear FM chirp

scaling algorithm, with the reference range 20 km from the center of the image.

Figure 7.41: Image of Vancouver scene formed from skewed data with the original chirp scaling

algorithm, with the reference range at the center of the image.
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Chapter 8

Conclusion

8.1 Summary

The objective of this thesis has been the investigation of the processing of squint mode strip-map

SAR data, particularly by extending the chirp scaling algorithm. The following is a summary

of the work contained in the thesis.

The theory of strip-map SAR imaging has been reviewed, in which SAR processing has

been presented in terms of matching the range dependent phase of the SAR transfer function.

Then, SAR processing algorithms were reviewed and compared according to how accurately

they match the phase of the SAR. transfer function, and the type of processing operations

they require. Range-Doppler domain algorithms accommodate the range-dependence of some

processing steps in the range-Doppler domain, and generally use an interpolator to perform

RCMC. In the range-Doppler algorithm, approximations are made in SRC by assuming that

the SRC filter is invariant in both azimuth-frequency and range. The squint imaging mode

algorithm is more accurate by allowing SRC to vary with azimuth-frequency, while still assuming

it to be invariant in range. The polar format and wave equation algorithms match the range

dependent phase by an interpolation in the two-dimensional frequency domain, in order to take

advantage of the definition of the Fourier transform. The relationship between the polar format

and wave equation algorithms has been shown. In the polar algorithm, scatterers are assumed

to be close enough together that the relationship between azimuth-time and azimuth-frequency

is given by that at a reference point. However, this assumption makes the polar algorithm

unsuitable for strip-map SAR data. The Stolt algorithm is more general in the sense that

the azimuth-frequency domain is obtained by a Fourier transform of the data in the azimuth

150
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direction. Then, a range-frequency domain interpolation provides focussing. However, since

frequency domain interpolation is computationally expensive, approximations have been made

to the Stolt method to avoid interpolation. The resulting algorithm also avoids interpolation

in the range-Doppler domain during RCMC, but the approximation means that RCMC and

SRC are calculated at a fixed range, and the error in RCMC becomes noticeable for moderate

squint angles. The chirp scaling algorithm has been developed recently as a means of providing

accurate RCMC without an interpolator, and this has been described in detail. The chirp scaling

algorithm also allows SR.C to vary with azimuth-frequency, although it is still calculated at a

fixed range.

Next, the effect of squint mode on SAR signal properties was considered. In particular, the

effect on the Doppler centroid and the azimuth bandwidth of the yaw and pitch angles used to

achieve the desired squint angle were described. The squint angle was derived as a. function of

yaw, pitch, and elevation. Also, to minimize Doppler centroid variation with range and terrain

height, a solution was presented for the yaw and pitch angles which minimizes the variation

of squint with elevation angle within the beam. The, Doppler centroid error tha.t results at

the edge of the swath or at a terrain height change of 1000 km was calculated as a function of

desired squint angle, including the effects of antenna pointing errors. It was found that for a

satellite platform the effect of terrain height variation was negligible. In addition, for L-band,

even with pointing errors up to one degree, the maximum Doppler centroid error at the edge

of the swath was less than 10 percent of the PRF. For C-band, the Doppler centroid variation

in range was acceptable for the far incidence case, but was as high as a third of the PRF in

the near incidence case. The yaw and pitch angles also affect the squinted beamwidth, or the

change in instantaneous squint angle seen by a scatterer as it passes through the footprint. A

general expression for the squinted beamwidth was derived. Also, it was shown that minimizing

the variation of squint with elevation angle preserves, in squint mode, the SAR signal propertry

of an azimuth bandwidth that is independent of range. This gives an azimuth bandwidth that

decreases with squint, which turns out to be an important property with respect to satisfying
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the SAR imaging constraint. For a given range swath, wavelength, and antenna length, the

SAR signal constraint places a fundamental limit on the squint angle. For typical spaceborne

SAR parameters at L-band, this is about 35 degrees, and for C-band it is about 50 degrees.

Other effects of high squint on the SAR signal were investigated. The effect of the stop-

start assumption on the distance equation was examined, and the main effect of platform motion

during the pulse was shown to be a Doppler shift of a received pulse. At high squint this can

become significant compared to the Doppler resolution of an individual pulse. However, by

frequency shifting the received signal to remove the shift corresponding to the beam center, the

only effect is the variation of the pulse Doppler shift across the aperture, which is negligible.

Next, a method for modelling the distance equation at high squint was discussed in which a

hyperbola was fit to the equation at the beam center tinie. This gives a good approximation

to the distance equation over the aperture for squint angles up to 40 degrees for L-band and

50 degrees for C-band. However, it requires the definition of a new closest approach range

variable that needs to be taken into account when resampling to ground coordinates. Finally,

the difference between the data spectrum and the image spectrum at high squint was discussed.

The region of support of the data spectrum has the form of a parallelogram, where the width of

the spectrum is equal to the azimuth bandwidth. However, the total spectrum spans an interval

of azimuth-frequencies that may be greater than the PRF, so that during processing some

range-frequency lines at the edges of the spectrum may need to be repeated to avoid aliasing in

azimuth. The image spectrum, which results after range-variant processing, was shown to be

a rotation of the zero-squint spectrum along an arc in the two dimensional frequency domain.

The corresponding point spread function for high squint is a rotated sinc function, so that

range and azimuth resolutions are measured in different directions in the image than they are

for zero squint.

The chirp scaling algorithm wa.s implemented on Seasa.t data, and the image quality was

compared with that of a commercial range-Doppler processor. Visual inspection of the images

showed the effects of the truncation of the interpolator in the range-Doppler algorithm. Also,
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point scatterer analysis of the images of corner reflectors showed that the range resolution

of the chirp scaling algorithm was about four percent better than that of the range-Doppler

algorithm. Next, the performance of the algorithms as a function of squint angle was compared

for simulated point scatterer data. For a scatterer at the reference range, the range resolution

of the chirp scaling algorithm was equal to the theoretical resolution independently of squint

angle. For the range-Doppler algorithm, resolution began to degrade at about five degrees

squint for L-band, and at thirty degrees for C-band.

The side-effects and approximations of the chirp scaling algorithm were then investigated.

It was shown that an effect of the chirp scaling phase function multiply was a change in range

bandwidth by the scale factor. Also, in the two-dimensional frequency domain, the signal

experiences a range-frequency shift that varies with the range of the scatterer, which must

be small enough to avoid a loss of range bandwidth when matched filtering in the frequency

domain. Both these effects are small when the reference azimuth-frequency is at the Doppler

centroid. Also, the range-frequency shift is later removed in the range-Doppler domain by

the phase correction step. The approximations in chirp scaling were shown to consist of: 1)

approximation to the desired trajectory by assuming a. constant B parameter; 2) assumption of

a range-invariant range frequency rate, affecting SRC and the calculation of the chirp scaling

phase function; and 3) assumption of linear FM by ignoring the cubic phase term in the SAR

transfer function. The effects of these approximations were calculated as a function of squint

angle. The constant B assumption introduced noticeable RCMC errors for squint angles above

about 15 degrees for L-band and 30 degrees for C-band. The effect of the linear FM assumption

was fairly small, the most noticeable effect being the introduction of a quadratic phase error

above 30 degrees squint for L-band, and was negligible for C-band. Of all the approximations,

the SRC error due to assuming a range-invariant frequency rate was found to have the most

significant affect on performance as the squint angle increased. For a scatterer at the edge of

the swath, resolution degraded rapidly for squint angles above 10 degrees for L-band and above

20 degrees for C-band. These results were verified by processing simulated point scatterer data.
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Finally, since the chirp scaling algorithm depends on a linear FM pulse, the effect of deviations

from linear FM and a specified frequency rate in the transmitted pulse were investigated. A

general form for the phase error in the SAR transfer function due to a pulse phase error was

derived. In general, the effects were found to be small, indicating that chirp scaling is robust

to errors in the transmitted pulse.

The chirp scaling algorithm was extended to provide accurate RCMC at higher squint angles.

The range dependence of the B parameter was taken into account to derive a more accurate

representation of the desired trajectory, and the range dependence of Km was included in the

signal model. Then, a higher order phase term was included in the chirp scaling phase function.

Expressions for the chirp scaling coefficients were determined by equating terms of the scaled

trajectory and the desired trajectory, thus removing higher order range dependence of RCMC.

The resulting RCMC error in this case is negligible, although the higher order chirp scaling

adds a small term to the range dependent quadratic phase error.

Finally, a new approach to accommodating the range dependence of SRC was introduced,

providing an accurate and efficient algorithm for processing high squint data. This approach

makes use of a nonlinear FM component in the range signal while chirp scaling. The equations

for the nonlinear FM component and the coefficients of the chirp scaling phase function can be

solved simultaneously so that both SRC and RCMC are performed accurately across the range

swath. To allow the nonlinear FM component to vary with azimuth-frequency, an extra filtering

step is required during processing to introduce the component in the two-dimensional frequency

domain. This approach, called the nonlinear FM filtering method, is the most accurate. Also,

the extra computation required is favourable compared to a range-variant, time domain SRC

filter, especially since the nonlinear FM filter method of chirp scaling requires only FFT and

multiply operations. Alternatively, the nonlinear FM component can be introduced directly into

the transmitted pulse, so that no extra computation beyond that of the chirp scaling algorithm

is required. This is called the nonlinear FM pulse method, and it makes the approximation of

calculating the nonlinear FM component at the Doppler centroid. The nonlinear FM component
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is calculated for the transmitted pulse using the estimate of the squint angle available at that

time. Then, during processing, an error in the squint estimate can be accommodated by

adjusting the reference azimuth-frequency. This changes the chirp scaling phase function to

correspond to the nonlinear FM component that was actually used in the transmitted pulse,

thus providing the correct compensation of range dependent SRC.

In chirp scaling, the amount of scaling increases with the azimuth-frequency difference from

the reference azimuth-frequency. In order for there to be a nonzero chirp scaling effect at

all azimuth-frequencies in the band, which can interact with the nonlinear FM component in

the signal, nonlinear FM chirp scaling requires the reference azimuth-frequency to be placed

outside of the signal band. In addition, the effect of the approximation in the nonlinear FM

pulse method decreases as the reference azimuth-frequency is moved further from the signal

band. However, the increased scaling with greater (f, — f,) means that the side-effects of chirp

scaling increase. Thus, the algorithm is limited by the range dependent range-frequency shift

that is introduced by the chirp scaling phase function, since this must be small enough to keep

the range-frequencies in the signal less than the Nyquist rate. Otherwise some signal energy

and range bandwidth are lost when multiplying the data by the range matched filter in the

frequency domain.

Both methods of nonlinear FM chirp scaling were used to process simulated point scatterer

data for a scatterer at the edge of the swath. The nonlinear FM filtering method is more

accurate, and can process data with a negligible increase in resolution width or sidelobes for

squint angles up to 35 degrees for L-band and 50 degrees for C-band. The nonlinear FM pulse

method is less accurate, and requires a reference azimuth-frequency such that a greater range

frequency shift is introduced. Nevertheless, the effect on resolution width is negligible for squint

angles up to about 30 degrees for L-band and 40 degrees for C-band, and is still acceptable for

higher squint. Furthermore, both methods of nonlinear FM chirp scaling resulted in negligible

errors in range registration and peak phase of the point spread function. Thus, nonlinear FM

chirp scaling can provide accurate processing for squint angles up to the limitations imposed by
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the SAR imaging constraints. In addition, the nonlinear FM pulse method provides adequate

focussing at no extra cost in computation.

Finally, the nonlinear FM chirp scaling algorithm was verified on real data. Since no suitable

squinted data was available, conventional SAR data from the Seasat satellite was skewed in order

to emulate squinted data, and then processed with the original chirp scaling algorithm and the

filtering method of nonlinear FM chirp scaling. In each case the reference range was set to be

20 km from the center of the image, and the resulting images show the improvement in range

resolution with nonlinear FM chirp scaling.

Overall, this thesis has shown how strip-map, squint mode SAR data can be collected

such that SAR. imaging constraints can be satisfied, and signal properties that are useful for

processing are preserved. In addition, nonlinear FM chirp scaling provides a means of accurately

and efficiently processing squint mode SAR data.

8.2 Contributions

The following is a list of the major contributions of the thesis:

• Understanding of the relationship between the polar algorithm and the Stolt interpolation

algorithm as applied to SAR processing.

• Derivation of yaw and pitch angles to minimize Doppler centroid variation as a function of

elevation angle, thus minintizing Doppler centroid variation with range and terrain height.

• Derivation of the squinted beamwidth and azimuth bandwidth as a function of yaw and

pitch. Understanding of the importance of choosing yaw and pitch that minimize Doppler

centroid variation, in order to maintain an azimuth bandwidth that is independent of

elevation and that decreases with squint to satisfy SAR imaging constraints.

• Derivation of side-effects, and errors due to approximations in chirp scaling.

• Derivation of the effect of general pulse phase errors on the SAR. transfer function due to

chirp scaling.
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• Extension of the chirp scaling algorithm for accurate RCMC, which allows for a range

variant B in an orbital geometry and a. range variant range frequency rate.

• Introduction of the concept of nonlinear FM chirp scaling to accommodate the range

dependence of SRC. Development of the nonlinear FM filtering method of chirp scaling

and the derivation of squint limitations due to the range-frequency shift.

• Introduction of the nonlinear FM pulse method for squint mode SAR data collection

and processing, including the accommodation during processing of an error in the squint

estimate.

8.3 Further Work

SAR processing requires knowledge of processing parameters describing the distance equation

and the Doppler centroid. It is possible that a high squint imaging geometry or the use of

the chirp scaling algorithm may affect the estimation of these parameters, and this should be

investigated. In addition, the considerations for squint mode data collection and processing

that have been presented in this thesis should be verified on actual lugh squint data.

The thesis has been concerned with spaceborne platforms. However, the considerations and

processing for high squint data apply equally well to airborne platforms, and comparable results

could be obtained for airborne SAR.. A consideration in this case is motion compensation, and

its effect on high squint, strip-map SAR processing could be investigated.

It may be possible to apply the concept of chirp scaling and nonlinear FM chirp scaling to

other fields. For example, it may be possible to apply chirp scaling concepts t.o t.he interpolation

required in spotlight SAR, thus improving the efficiency. Other imaging applications that may

benefit include seismic processing and tomography.

Finally, the applications of squint mode SAR imagery should be investigated. With real

high squint data, the effect of different azimuth viewing angles on the measurement of various

surface properties could be studied.
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Appendix A

Approximation to Inverse Fourier Transform With Cubic Phase Term

In this appendix, the approximation to the method of stationary phase is described for evalu

ating the range inverse Fourier transform of a SAR. transfer function with a cubic phase term.

Thus, it is desired to approximate the solution to the integral:

c2 y
Sy(f,r;r) Fac(;r)fM(fr)exp[i2((r_ T)fT + + f)]df, (A.228)

m 3

where M(fT) is the amplitude, Td is the signal delay, Km is the frequency rate, and is the

cubic phase coefficient. The equation for the stationa.ry point is

(r — rd) + + Ymf = 0, (A.229)

which ha.s the solution

f
=

+
1

— 4KY(r — Td). (A.230)
m -m m

For small enough , assume that the condition

— r < 1 (A.231)

is satisfied for all values of r within the pulse. Since the pulse length in the range-Doppler

domain is Tm, this leads to the condition on Y, that is given in Equation (7.184). Then, using

the expansion

= 1- - - - .., xj < 1, (A.232)

the stationary point can be approximated by

1(m(T — Td) — YmK(T — rd)2 — 2YrnK(r — rd)3. (A.233)
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From the method of stationary phase, the range inverse transform is found by substituting for

the stationary point in the integrand. Since amplitude generally varies more slowly than phase.

fewer terms in the approximation to the stationary point are used in the amplitude than in the

phase. An expression for the range inverse transform then becomes

Sy(f,r;r) = Fac(f;r)/11
+ 2YK(r — Td)I[m(

— Td) — YmK(T — Td)2]

exp{—jKm(r — — }K(r — rd)3 — j}K(r — Td)4].

(A .234)

Finally, because of the condition on Yrn, the square root term in the result which arises from

the method of stationary phase is not greatly affected by the cubic phase term. Thus this is

nearly an constant and will be neglected. Also, using the definition of M(f) in terms of the

pulse amplitude, the result can be expressed as

Sy(f,r;r) = F(f;r)m[(r — Td) — mm(T Td)2]

exp[—jI((r — rd)2 — çYmk(r — rd)3 — jYK(r — rd)4].

(A.235)



Appendix B

Approximation to Fourier Transform With Higher Order Phase Terms

Given the range-Doppler signal derived in Appendix B, the purpose of this appendix is to

derive the range Fourier transform of this signal after the chirp scaling phase function has been

applied. The result is the SAR transfer function of the chirp scaled signal. In this appendix,

higher order terms than those actually used.in processing are derived, in order to evaluate

the processing errors of the nonlinear FM chirp scaling algorithm in Chapter 7. The higher

order phase terms in the range-Doppler signal in Equation (A.235) are shown to decrease as

higher powers of a small parameter, and this is used to find an approximation in the method

of stationary phase for evaluating the Fourier transform.

The result in this appendix is found for a chirp scaling function with both quadratic and

cubic terms, given by

exp[—jq2(r— Tref)2 — q3(r — Tref)3]. (B.236)

The use of a cubic term in the chirp scaling function is described in Chapters 6 and 7. Thus,

given the range-Doppler signal in Equation (A.235), the integral that needs to be evaluated is

S2y(f,f;r) = Fac(fn:r)frn[(r — rd) — YmK(T
— rd)2]

exp[—j2irf7r—
j7rKm(T

— rd)2 — jrq2(r — Trf)2]
—j2ir j2rr

exp[ — Td) —
—-—q3(r — Tref) I

exp{—jrYK(r
— Td)4]dT. (B.237)

Furthermore, to model the range dependence of the range frequency rate, Km will be expressed

as

= Ikmrcf + KsZT (B.238)
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as described in Chapter 5. Also. it will be assumed that

Kr < imref,. (B.239)

so that the approximation

(Kmrej +I5T) Arnref(1 + (B.240)
m ref

can be made.

The stationary point is found by solving:

0 = f + (Kmrf +A8T)(T Td) + q2(r — Tref)

+Ym(Kmref +K5Lr)3(T — Tref)2 + q3(r — Tref)2

+2i(Krnref + Kr)5(r— rd)3. (B.241)

To approximate the solution for the stationary point, it is first necessary to rearrange this

equation so that a small parameter can be identified. To do this, normalize the range time by

the pulse length in the range-Doppler domain. That is, let C be a. normalized time variable so

that
TYrf (B.242)

Then, from the condition on Ym in Equation (7.184), let

( YmKeTm. (B.243)

With these definitions, and keeping terms up to €2 or an equation for the stationary

point in normalized time can be found to be

o = 2€2C3 (B.244)

3K3r q3 -2 9

+e(1 + + r3 — 6rnAmrejT)C
1 mref m k mref

+(1 + + — 2YmI ref r(1 +
3T)

+ 6KrefT2)C
-1mref Amref rnref

______

Kr r 2 3Ki.r 2
m

— (1 + ) + YmKmref(1 + 1 ) — 2YmKrej).
£m1m 1mref ‘m Imref
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This cubic equation in has the form

2E23 + €aC2 + bc + a 0, (B.245)

in which the cubic and quadratic coefficients include higher powers of the small parameter a.

An approximate solution to this equation can be found by iterating, keeping terms up to €2.

Begin by solving for the first power of C taking higher powers to the other side of the equation:

a ca 2
2a2

C — — —

. (B.246)

Then substitute this approximation for into the higher order terms on the right hand side of

the equation:
a €a c ea22 2e2 c3 —

—

— --(— — --c ) — —--(—) . (B.24e)

Repeating this iteration once more and rearranging gives the following approximate solution

for ç:
a aac2 2e2c3(1 — a2)

(B.248)

Substituting for the coefficients, a, b, and a, and then using the definition of ç gives the sta

tionary point.

Substituting the stationary point into the integrand gives the SAR transfer function of the

chirp scaled signal. T simplify the form of the solution, let it be represented as

S2y(f,f;r) Fac(f;r)M(fTT)

exp[j5(f,7.f; r) + jc(f, fT; r) + j9err(f, fr; r)]. (B.249)

Here fT; r) is the phase for the original chirp scaling algorithm without the cubic phase

term, including scatterer position:

8(f,f;r) = — 2( + Tref)fr
—

I(rnrej(l — *)r2. (B.25o)
aBArnref

Here a is the modified linear scaling factor derived in Chapter 6, and for a constant B it

reduces to c. It is related to only the quadratic coefficient of the chirp scaling phase function,
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q, as shown in Chapter 7. The f; r) term in the SAR transfer function includes terms

that arise from that cubic phase term, and which are used in processing in the nonlinear FM

chirp scaling algorithm:

‘ / t 7 3 :3
L7rq3-r- m mref)JT

&tLb(f?l,fT;r)
= 3 3j3B mref

— 3 p2
(0.5Ks —1rnIrnref(B — 1) +q3)rf

clB kmref

— 3 (Ka(a 1)
— }mImref(aB — 1)2

—q3)r2fr
cr mref

—(1.5K8aB(aB — 1)2
— YmIrej(B — i) +q3)T3. (B.251)

As shown in Chapter 7, the nonlinear FM coefficient, Ym and the cubic coefficient of the

chirp scaling phase function, q3, are chosen to remove range dependencies of RCMC and SRC.

Finally, f’-; r) represents higher order terms in f and r than are accommodated in

the nonlinear FM chirp scaling algorithm, and thus represent processing errors:

err(f,fr;r) =

27r(2Kmrefc4+c3)rf

+27r(3Ir€fC4 + 3limrefC3 —c2)r2f

—2r(2KfC4 ± 3rçC3 —2limrefc2 — ci)T3f. (B.252)

The coefficients in this expression, c1 to c4, are given by:

— (q3 + YmKref)2— Brnref
C4

— 5 T5

B’ mref

(q3
— (B — 1)YmIrirj)(Ks — 2YraI(ref)

C3 = 4 r4
B’ mr€f

(q3 — (3GB — 1)YmKref)(Ks — Ym1nrj) —
— 2YmIrej)2

C2
— 3v3

B 1mref

= 3 m”Tef(1—
— —

(B.253)
aBI1mef



Appendix C

Approximation to Fourier Transform With General Pulse Phase Error

In this appendix the SAR transfer function of the chirp scaled signal is derived for the case of

a general, small phase modulation error in the transmitted pulse. Thus, a transmitted pulse of

the form

p(r) = m(r) exp{—jirKr2— j2irE(r)] (C.254)

is assumed.

First, the Fourier transform of the pulse is found, which requires evaluation of the integral:

P(fT)
= f m(T) exp[—jKr2— j2E(r) — j2frJdr. (C.255)

The equation for the stationary point is

AT + r’(T) + fT = 0, (C.256)

for which an approximate solution is desired. To take advantage of the fact that the pulse error

is small compared to the pulse phase, let E(r) be represented as

E(T) = €p(r), (C.257)

where € is a small parameter. First, approximate the solution for the stationary point by

iterating, in which r is solved for as follows:

- ‘(-/ - p’(T)). (C.258)

Then, to evaluate this expression further, expand the second term iii a series about p2 to give

the following result after the first iteration:

T
-

+f2p(T)pf(r). (C.259)

168
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Proceeding in this way, it can be seen that higher order terms in the approximation decrease as

higher powers of the small parameter €, thus forming an asymptotic expansion for the stationary

point. Keeping only the first term in € and substituting for the stationary point in the integrand

gives an approximation for the Fourier transform of the pulse:

P(fT) = M( )exp{T _j2E(T)], (C.26O)

where the effect of the pulse phase error on the amplitude has been ignored.

The next step is the substitution of P(f1.) into the expression for the SAR transfer function

in Equation (2.43), and an inverse range Fourier transform of the result to get the range-Doppler

domain representation of the signal for this case. Thus, the integral

S(f, r; r) = F0(f; r) fM(fT) exp{j2f(r — rd) + —

j2(T)]df, (c.261)

needs to be evaluated, and the stationary point is found from

(r - Td) + + E(4) =0. (C.262)
m

Using the method of approximation described above and keeping first order terms. an approx

imation to the stationary point is

- rfl /

Jr Arn(T — Td) —
E ((r — rd)). (C.263)

Substituting this into the integrand, the range-Doppler signal becomes

S(f, r; r) Fac(f; r)m[(r
— rd)1 exp{—jKm(r rd)2 — j2rE((r — Td))]. (C.264)

Finally, the chirp scaling phase function,

exp[—j7rq2(r— Tref)21 (C.265)

is applied and a range Fourier transform is taken of the result to get the SAR transfer function

of the chirp scaled signal:

S20(f. fr; r) = F(f; r) J m[(r — rd)] exp[—jKm(r — rd)2 — jq2(r — Tref)2]

exp[_j2irE(i(r
— rd)) — j27rfrr}dr. (c.266)
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The stationary point is found from

Km(r — Td) + q2(r — Tref) + E’(T — Td)) + fT = 0, (C.267)

which has the following approximation, using the method described above:

T + + Tref — — (1 — --)r). (C.268)
ak aI K a

In this expression, the relationship between a and the coefficient of the chirp scaling function,

q has been used to simplify notation. Substituting for the stationary point in the integrand

gives the SAR transfer function. The result is the same as the expression in Equation (3.95),

except for an extra phase term which represents the processing error due to the pulse phase

error:

err = 27rEH4— (1 — --)Tj. (C.269)
aK K a




