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Abst rac t 

In the context of engine fault detection and isolation, we focus on three main aspects: 

engine modeling and validation, engine parameter identification, and cylinder pressure 

waveform reconstruction. The problem of diesel engine modeling is solved using Euler's 

equation, under the assumption that the crankshaft is perfectly rigid. The model inputs 

are represented by the cylinder pressures and the output is the flywheel angular velocity 

fluctuation. 

Simulation results obtained with M A T L A B show a root mean square (RMS) error of 

0.0891 rad/sec between the estimated and the actual crankshaft angular velocity fluctu­

ation for the normal operating condition. The elimination of a strong sinusoidal trend 

for the faulty condition results in a RMS error range of 0.0973 rad/sec to 0.1836 rad/sec. 

The identification methods involved the off-line standard least-squares technique, the 

recursive gradient estimator and the on-line least-squares estimators with exponential for­

getting. The parameters of interest are engine inertia, and torque fluctuation. The RMS 

velocity error for the normal operation has a value of 0.0559 rad/sec, which represents 

approximately 30% improvement over the initial result, before identification. 

The issue of cylinder pressure waveform reconstruction is addressed. The inverse 

dynamics are solved by redefining the system input as the torque due to gas pressure. 

The cylinder pressure waveform is approximated by an impulse-like periodic function. 

We considered the problem of fault detection and isolation. The procedure uses 6 pressure 

templates. The estimated pressure variations are obtained using a standard least-squares 

technique. An under-fueling fault in the i-th firing cylinder can be determined exactly 

by the minimum value of the estimated pressure variation. 
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Using the pressure correction we are able to improve the estimation of the gas pressure 

torque. The RMS torque error for the normal operation reduces to 99.24 Nm. The case 

of an under-fueling fault is characterized by a reduced RMS torque error range of 85.7 

Nm to 198.1 Nm. 

The pressure waveform reconstruction is characterized by a RMS pressure error range 

of 0.155 M P a to 0.277 MPa for the normal operating condition. 

For each of the six under-fueling faults, the pressure waveform corresponding to the 

faulty cylinder is reconstructed. The RMS error range is of 0.155 MPa to 0.386 MPa. 
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Chapter 1 

Introduct ion 

dust and diesel 

rise like incense from the road— 

Bruce Cockburn, Dust and Diesel 

The reciprocating internal-combustion engine is one of the most common power pro­

duction systems. The diesel engine plays an essential role in commercial automotive 

applications. Engine condition monitoring systems have the potential to improve reli­

ability, lower maintenance costs, and improve safety by early detection of operational 

faults. Model-based condition monitoring permits the localization of faults within the 

engine and therefore aids in fault diagnosis. Our research is directed at developing and 

validating an effective diesel engine model for condition monitoring applications. In this 

project we analyze 6 different actuator faults and the normal operating condition. The 

actuator fault is defined as the phenomenon of cylinder under-fueling which has as a 

direct consequence, the reduction of cylinder peak pressure. We use both pressure and 

flywheel angular velocity measurements. Data correspond to a two-stroke diesel engine, 

D D C 6V 92TA, manufactured by the Detroit Diesel Corporation. The engine specifica­

tions and much of the test data were furnished by the Institute for Machinery Research, 

National Research Council. Some measurements were done using the test cell in the 

Engine Test Laboratory in the Department of Mechanical Enginering at the University 

of British Columbia. 

The concept of analytical redundancy emphasizes the use of accurate dynamic and 

1 



Chapter 1. Introduction 2 

static models for data processing and analysis. The major benefit is realized in the 

low cost and flexibility of a software versus a hardware implementation. A combination 

of analytical and physical redundancy is almost always necessary for a fault-tolerant 

system to maintain its function in the presence of certain failures. On the other hand, 

the paradigm of analytical redundancy has the advantage of fully exploiting the engine 

model and thus extracting information that otherwise might be difficult to obtain. This 

is the motivation for pursuing three directions of investigation: engine modeling and 

validation, parameter identification, and pressure waveform reconstruction. 

Thus, the second chapter of this thesis outlines the theory behind modeling tech­

niques and estimation procedures to be applied in our study and relates them to the field 

of fault detection and isolation. The analytical model-based approach is compared to 

knowledge-based methods and to neural network-based techniques. Parameter identifi­

cation techniques can be employed in the detection and isolation of incipient faults. The 

literature review provides the basis for our investigations by emphasizing the importance 

of preserving a physical relationship to the engine throughout the modeling and identifi­

cation processes. In this context, we also present the basic terms and specifications of the 

D D C 6V 92TA diesel engine and the D D E C II electronic engine controller, manufactured 

by Detroit Diesel Corporation. 

The third chapter of this thesis aims to present the model for the dynamics of an 

TV-cylinder diesel engine, emphasizing its features and properties from a system theory 

point of view. The system inputs are given by cylinder combustion pressures, Pi(9), 

i = 1,... TV. Its output is represented by the flywheel angular velocity fluctuation, Sio(0). 

Both are expressed as functions of the crank angle, 0. The model is then verified using 

the M A T L A B simulation package. The model effectiveness is assessed by measuring the 

standard deviation of the residual (root mean square error) and the ratio between the 

standard deviation of the residual and the standard deviation of the measured signal 
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(residual to signal ratio). In each of the 6 under-fueling faults, the velocity fluctuation 

residual is found to exhibit a strong sinusoidal trend which accounts for unmodeled 

torques. We attributed this harmonic torque fluctuation, A T , to the crankshaft vibration 

and the oscillatory behaviour of the dynamometer loading. 

The main goal of the fourth chapter is to describe a meaningful procedure for iden­

tification of engine parameters. Identification methods attempt to determine values for 

the unknown or uncertain system parameters using measurements of input and output 

signals. This concept is transferred to the field of engine fault detection and isolation 

through the assumption that the occurrence of a fault has as a direct consequence, changes 

of process parameters, which modify the system output. Therefore, parameter estimation 

techniques can be employed to detect incipient process faults. If the residual generator 

is implemented as a parametric identification procedure, then the residuals are repre­

sented by the output prediction errors. The decision making stage employs statistical 

comparisons between residuals and known fault signatures. Changes in parameter means 

and variances can be used as decision criteria. The identification problem is solved using 

the recursive gradient estimator and least-squares estimator with exponential forgetting. 

The results are presented in comparison with those obtained from the off-line standard 

least-squares estimator. The model parameters are functions of the crank-angle 9. The 

harmonic torque fluctuation, AT(6), and the total engine inertia, JE, are estimated. 

In the fifth chapter we analyze the model properties and the potential for solving 

the inverse problem of reconstructing the cylinder pressure waveform from noisy mea­

surements of crankshaft/fly wheel angular velocity. Because our model implements a 

multi-input single output (MISO) system, it is not possible to explicitly decouple the 

inverse dynamics. We have therefore considered two approaches. First, we redefine the 

system input and we rewrite the engine model as a single input single output (SISO) 

system. If the input pressure waveforms did not overlap, then one could imagine that 
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the system is SISO with sharp discontinuities at the end of each input period. The 

new input is then the torque due to gas pressure, Tp{0). Secondly, we approximate the 

pressure waveform with a periodic impulse-like continuous function. Using this latter 

template-based approach we are able to explicitly identify the condition of each cylinder 

and improve the torque estimation procedure. 

The sixth chapter summarizes the results and outlines the use of these three methods 

in a model-based engine condition monitoring system. 



Chapter 2 

Background 

Again, nothing, and again the machine 

asked me politely: "Do you have the password?" 

Umberto Eco, Foucault's Pendulum 

Several methods of verifying the correct functioning of the diesel engine have been used 

by engineers from the early stages of the engine's development. The majority of those 

techniques relied on experience and close observation of some important engine operating 

factors such as: temperatures, pressures, flows, noise and vibration. Deviations from the 

normal operating characteristics were then recognized and classified. 

Advances in transducers technologies and, in particular, the availability of low-cost 

embedded computer hardware has rendered feasible, the application of much more so­

phisticated condition monitoring schemes. 

In this chapter we introduce the definitions associated with fault diagnosis of systems 

and outline some methods applicable to diesel engines. The review of some recent engine 

condition monitoring applications puts the model-based approach into perspective by 

comparing it with knowledge-based methods and neural network-based techniques. In 

this context, we also present the basic terms and specifications of the D D C 6V 92TA 

diesel engine and the D D E C II electronic engine controller. We conclude the chapter by 

specifying the objective of our research in the general framework of model-based design 

for diesel engine fault diagnosis. 

5 



Chapter 2. Background 6 

2.1 Engine M o d e l i n g 

The diesel engine is a complex device for which it is difficult to write a comprehensive 

mathematical model. For this reason, most models presented in the literature are ap­

plication dependent. The laws of physics that govern a system represent an important 

modeling tool. Our modeling approach illustrates this aspect and is based on Euler's 

equations [1] applied to a generic internal combustion engine. These equations charac­

terize the rotational dynamics of a diesel engine and can be subsequently used to derive 

the relationship between cylinder pressures and flywheel/crankshaft angular velocity fluc­

tuation. The theory behind this approach is often applied to determine the equations of 

motions of any mechanical system [2]. Similar approaches dedicated to internal combus­

tion engines can be found in references [3], [4] and [5]. The use of such a model in condition 

monitoring applications seems feasible as long as the correspondence between the model 

and the physical engine is transparent. We are interested in three main aspects. The 

first deals with validating the direct engine model, i.e. given the actual pressure inputs 

we are interested in measuring the error between the actual and the estimated crankshaft 

angular velocity. A second goal for our investigation aims at estimating some important 

engine parameters (inertia, and load torque) given input-output measurements. The 

third goal of this project is to present a method for pressure waveform reconstruction 

using the model and noisy measurements of the crankshaft angular velocity. This offers 

the possibility of replacing the direct measurement of cylinder pressures. The estimated 

pressures could then be used for a variety of calculations including heat-release analysis, 

net engine torque estimation, and cylinder power output calculation. 
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2.2 Diesel Engine Characterist ics 

The design of a model-based fault diagnosis system takes into account the nature of faults 

to consider, the complexity of implementation, the robustness with respect to model 

inaccuracies, and the diagnosis performance index (number of false alarms). The model 

design is a critical step in the development of such a system. In this section we introduce 

some general diesel engine definitions and present some features of the D D C 6V 92TA 

diesel engine and D D E C II electronic controller. 

A diesel engine is a compression-ignition, reciprocating, internal-combustion engine. 

Four stroke diesel engines operate on a mechanical cycle [6, pp. 33-34] that has the 

idealized form shown in Figure 2.1. Each stroke is denned by the piston travel between top 

dead centre (TDC) and bottom dead centre (BDC). The induction stroke is characterized 

by constant pressure. The compression phase is followed by combustion at constant 

volume. The fuel is injected at the end of the compression stroke. Autoignition is 

made possible by a high compression ratio. After the expansion stroke the exhaust valve 

opens and the blow-down occurs at practically constant volume. The exhaust stroke 

takes place at constant pressure. Four-stroke diesel engines are used in many automotive 

applications. In a two-stroke engine the induction (entry of fresh air) and the exhaust 

(exit of burned gas) occur at the same time [6, pp. 274-323]. This phenomenon is called 

scavenging [7, pp. 213-215]. Some motorcycles, buses and locomotives are equipped with 

two-stroke diesel engines. The use of large two-stroke diesel engines is also common in 

marine applications. The advantages of two-stroke diesel engines are increased power 

output and high firing frequency. In our experiments we used the D D C 6V 92TA Detroit 

Diesel engine. Data were obtained from [3] and are illustrated in Table 2.1. This engine is 

turbocharged and uses in-cylinder fuel injection, therefore the scavenging is very efficient. 
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induction/exhaust 

V r,Vd 

vol) luKe 

F i g u r e 2 . 1 : I l l u s t r a t e s a P - V d i a g r a m of a n i d e a l f our s t r o k e - D i e s e l c y c l e ( f r om [6, p p . 34]). 

T h e s t r okes are : i n d u c t i o n (0—1) , c o m p r e s s i o n ( 1 - 2 ) a n d c o m b u s t i o n (2 — 3) , e x p a n s i o n (3 — 4) 

a n d b l o w - d o w n (4 — 1), a n d e x h a u s t (1 — 0) . Vd is t h e v o l u m e at t o p d e a d cen t re , a n d rv is t h e 

c o m p r e s s i o n r a t i o . 

T a b l e 2.1: G e n e r a l features o f the t u r b o c h a r g e d D D C 6 V 9 2 T A D e t r o i t D i e s e l E n g i n e . 

Type: two stroke 
Number of cylinders: 6 ( V ) 

Bore: 123 mm 
Stroke: 127 mm 
Displacement: 9.05 liters 
Compression ratio: 17 : 1 
Gross rated power output: 224 kW at 2100 rpm 
Friction power loss: 44.073 kW at 1800 rpm 
Overall mechanical efficiency: 84% 
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2.2.1 D a t a Acqu i s i t ion 

The test cell consists of a fully instrumented two-stroke diesel engine, D D C 6V 92TA, 

manufactured by Detroit Diesel Corporation (see Table 2.1). The engine is electronically 

controlled by two Detroit Diesel electronic controllers (DDEC II). Data used in our simu­

lation were furnished by the Institute for Machinery Research (IMR), National Research 

Council (NRC) and consist of cylinder pressures and flywheel angular velocity waveforms 

recorded at 1,200 rpm. The dynamometer torque was 990 Nm. There are 7 data sets, 

each corresponding to a certain engine condition. One set was obtained under normal 

operating conditions (baseline) and the other 6 were from operation with one cylinder at 

a time under-fueled by 10%. 

We also performed pressure measurements in the Engine Test Laboratory in the De­

partment of Mechanical Engineering at U B C using a dedicated, completely instrumented 

test cell. This system was not equipped to measure the crankshaft speed fluctuations. 

The sensing system is very important for the accuracy of the condition monitoring sys­

tem. Water-cooled piezoelectric pressure transducers were employed for measuring com­

bustion pressure development [8]. For model validation purposes, both cylinder pressures 

and instantaneous crankshaft speed must be obtained simultaneously during the test. We 

measured the mean engine speed and the crank angle (CA) in the Engine Test Labo­

ratory. A n update of the test cell is proposed in [9] and its description is detailed in 

Appendix A. 

2.2.2 Engine Con t ro l 

A comprehensive description of the Detroit Diesel Electronic Control (DDEC) system 

was reported in [10]. The fuel volume flow and timing are controlled via a solenoid 

actuator. Each cylinder receives approximately equal quantities of fuel. The main control 
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outputs are the beginning of injection (BOI) and the pulse-width (PW), i.e. duration 

of injection. Both depend on engine speed and torque. The top dead centre (TDC) 

corresponds to the minimum piston displacement, and the bottom dead centre (BDC) 

corresponds to the maximum piston displacement. The crank angle reference assumes 0 

degrees at T D C and 180 degrees at B D C . The variables to be controlled are the engine 

speed and throttle position. Magnetic induction sensors are used to pick-up the time 

reference signal (TRSs), at 73.5 degrees B D C for each cylinder. The control action is not 

synchronized with changes in engine speed, and this can generate injection delays. The 

gain-scheduling (open-loop) solution is chosen for mid-range engine speeds. The engine 

controller functions in closed-loop for idle and rated speeds (when maximum output 

power is produced). The control time is 13 msec. The compressor boost pressure value 

is used to limit the allowable PW, and thus to compensate for smoke emissions caused 

by an inefficient scavenging process. A fast injection reduces the smoke production, 

while a torque increase has the opposite effect. Smoke control considerations require 

the acquisition of the following engine data: oil pressure and temperature, water flow 

and temperature, and air inlet temperature. Noise is caused mainly by the combustion 

process, and is reduced by delaying the BOI, which results in moving the combustion 

towards the end of the compression stroke. 

2.3 Faul t Detect ion and Isolation in Con t ro l Systems 

Assume that the diesel engine can be described by a multi-input single output (MISO) 

model in the crank angle domain, 0. In this case, N defines the total number of cylinders, 

the model input is given by the N cylinder pressures, and the output is the crankshaft 

angular velocity fluctuation. We also assume that this dynamic system, V is characterized 
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by the equations: 

x'(9) 
dx{9) 

A(p, 9)x(9) + B(P, 9)u{9), x(0) = x0, (2.1) 

y(9) = c(p,x) (2.2) 

where x,x' G Rn, are the state and its derivative, respectively, p £ Rq describes the 

process parameters, u G RN represents the input, and y £ R the output. 

The tracking, or servo problem, can be stated as follows: design a control law, uc(9) 

such that V XQ G X C Rn, a measure of the tracking error, e(9) — yd{9) — y{9) is 

minimized, while x is maintained stable (bounded) [11, pp. 192-197]. The initial state is 

XQ, and ya{9) is the desired output trajectory. 

The stabilization or regulation problem is equivalent to the tracking problem for con­

stant yd{9). The control system refers, in general, to the following components: controller 

(C), process to be controlled (V), actuator (.4.) and transducer (T). 

A fault-tolerant control system is designed to take into consideration modeling inac­

curacies, measurement noise and possible sensor or actuator faults [12]. It incorporates 

a fault diagnosis (FD) module which has the ability to detect, isolate and identify com­

ponent malfunctions from observed symptoms. From a systems theory point of view, 

an abrupt fault is defined as a sudden jump in system response or parameters that do 

not necessarily correspond to a physical failure [13]. Biases or drifts are included in the 

category of incipient faults [12]. The process of observing (supervising) certain variables 

for diagnosis is called condition monitoring (CM). Figure 2.2 illustrates a block-diagram 

of a fault-tolerant control system. It is hierarchically structured, and the top level per­

forms the tasks of condition monitoring, fault diagnosis and fault accommodation. A 

fault-tolerant control system has to respond rapidly when a failure occurs. This design 

requirement has as a consequence, an increased sensitivity to measurement noise. Fault 

detection and isolation (FDI) are important steps in a fault diagnosis procedure. The 



Chapter 2. Background 12 

Figure 2.2: Illustrates a block-diagram of a supervised control system. The condition monitor­
ing and fault diagnosis module allows the detection and isolation of component malfunctions. 
The controller is designed to exhibit robustness with respect to modeling inaccuracies and faulty 
sensors. 

first implies the acknowledgement .that a system component is defective (alarm) and the 

second locates the fault, i.e. differentiates between certain possible faults and determines 

the source of the failure [13]. The extent of the failure is evaluated as tolerable, condi­

tionally tolerable or intolerable in the identification stage. System reorganization (fault 

accommodation) employs the substitution of the faulty component with a healthy one, if 

the fault is intolerable. Fault diagnosis and control could be carried out using a minimum 

set of measurements. In order to satisfy the requirements of high reliability and safety it 

is necessary to provide a degree of redundancy. The concept of physical (hardware) re­

dundancy refers to the use of arrays (duplex, triplex, etc) of sensors for the measurement 

of the same variable. The concept of analytical redundancy refers to the use of process 

models and redundant functional relationships between plant variables of interest. The 

analytical (software) redundancy has the advantage of low cost and weight, flexibility 
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and portability. Its reliability is strongly dependent on model accuracy. A combination 

of analytical and physical redundancy is almost always necessary for a fault-tolerant con­

trol system to maintain its function in the presence of certain system failures. There are 

model-based, knowledge-based and neural network-based fault detection and isolation 

schemes. Model-based fault detection and isolation algorithms make use of measurable 

process inputs and outputs, nonmeasurable state variables, nonmeasurable process pa­

rameters and nonmeasurable characteristic quantities [14]. The detection and isolation 

tasks are accomplished with the help of estimation algorithms developed from a priori 

knowledge of the system to be controlled. Thus, a central issue is the correct definition 

of the normal process. A l l these estimation techniques focus on the model accuracy. 

There are two types of model uncertainties: structured or parametric and unstruc-

tured or unmodeled dynamics. An adaptive or a sliding-mode control scheme can com­

pensate for the parametric uncertainties [11, pp. 276]. H°° optimization takes into ac­

count a general perturbation model [15]. The principle of adaptive control (AC) is the 

continuous modification of the plant model and control law in response to parameter vari­

ation. The parameters can be identified explicitly (self-tuning AC) or implicitly (model 

reference AC) . 

2.4 Trends in Engine Cond i t ion M o n i t o r i n g 

The spread of electronic engine control modules (ECMs) in the 1980s, led mainly by 

the United States Clean Air Act, facilitated the incorporation of computers in cars and 

made possible the notion of up-integration (powertrain and vehicle control modules) and 

fault-diagnosis with the benefit of higher reliability [16]. In the U.S., the California Air 

Resource Board On-Board Diagnostic-II ( C A R B OBD-II) legislation had a powerful effect' 

on new developments for automotive digital electronics. Thus, "zero emission" vehicles, 
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with sophisticated diagnosis tools and better human interfaces are expected by the end 

of this decade. The airline industry is a pioneer in the field and many ideas have now 

been transferred to portable commercial power machinery applications in fields such as 

naval, agriculture, mining, oil-well, road-building. The new trends are also encouraged 

by a more demanding consumer in the automotive market and by the increased degree 

of automation in manufacturing and process control. 

Most recent engine fault detection and isolation applications use: model, knowledge 

or neural network-based techniques [17]. This classification isn't exhaustive but repre­

sents the methods with which we are most familiar. The model-based approach employs 

techniques for state and/or parameter identification. The state can be estimated using 

a Luenberger observer (the deterministic case) or a Kalman filter (the stochastic case). 

Parameter identification methods are suitable for early detection of incipient faults, while 

state estimation techniques are commonly used for detection of abrupt faults. The con­

cepts of state and parameter estimation are interchangeable to a certain extent. In the 

field of fault detection and isolation the estimation errors define the process of residual 

generation. The phase of decision making is accomplished by statistical threshold tests. 

A review of the state of the art of model-based fault diagnosis methods for jet engine 

systems can be found in [18, 19]. The authors emphasize engine sensor failures as the 

most critical problem to deal with. In the aerospace industry, there is a lot of interest in 

replacing the hydro-mechanical controllers with fault-tolerant electronic ones for aerojet 

engine systems. A n example is the so-called full authority digital electronic controller 

(FADEC) for gas turbines. It controls the fuel flow rate and the exhaust nozzle area. The 

measured variables include: pressures, flows, temperatures and compressor shaft speed. 

A model-based fault diagnosis scheme for this complex non-linear system has been tested 

at NASA. It uses a Kalman filter for residual generation and a generalized likelihood ratio 

for decision making. It is therefore capable of detecting abrupt faults, but not dealing 
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with the issue of incipient faults. Research in the field of engine fault detection and isola­

tion is currently connected under the auspices of an international Technical Cooperation 

Panel with the participation of the Commonwealth countries and the United States [18]. 

In [20], the authors focus on a robust solution to the fault detection and isolation 

problem using the "disturbance decoupling" principle. The residual generator is a Lu-

enberger state observer and the weighted output estimation error represents the fault 

indicator. This approach doesn't take into consideration the presence of measurement 

noise, and assumes a measurable system state. 

A combination of model and knowledge-based methods is used in [21] for the devel­

opment of a condition monitoring system for a Spey SMI A marine gas turbine engine. 

There are three components that define the overall structure: the signal processing sub­

system (SPS) which collects and processes the raw sensor data, the signal identification 

subsystem (SIS) which makes use of linear engine models and SPS information to calcu­

late engine parameters and performance, and the monitoring and diagnosis system (MDS) 

which gives a symbolic interpretation of the SIS output. This approach doesn't exploit 

the possibility of using dynamic models and their ability to predict system behaviour. It 

focuses mainly on the issue of explicit fault classification by means of rule-based tech­

niques. 

The subject of engine sensor faults or failures in automotive applications is treated 

in [22]. The authors introduce a model-based fault detection and isolation method for 

internal combustion engines. Residuals are generated using the eigenstructure assignment 

method, which is equivalent to the unknown input observer technique. These detection 

niters are used to localize failures in the throttle position and in the manifold absolute 

pressure sensors. 

A n attempt at diagnosis of the supercharger of a diesel engine is reported in [23]. 

The expert-system is tested on board a French Navy ship. There are four variables to be 
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monitored: atmospheric pressure, temperature, accelerator position and engine speed. A 

"qualitative state" is associated with each of these parameters. The observed and the 

expected qualitative states are compared and then a decision is made using forward chain 

inference rules. 

A neural network-based method is used in [24] to develop the classification of me­

chanical faults in newly manufactured engines. Data acquisition includes the following 

measurements: intake and exhaust manifold pressures, the crankcase air pressure and 

the oil pressure. These five waveforms are monitored by a neural network-based super­

visor. The 29 classes consist of 28 different faults and the normal operating condition. 

The training is performed by the error back-propagation algorithm [25]. The informa­

tion concerning the different faults is embedded in the network weights, but there is no 

explicit way of translating these values into physically meaningful parameters. 

Our approach to the problem of engine fault diagnosis is based on the concept of 

parameter estimation. We are interested in early detection of faults that manifest as 

parameter biases or drifts. The engine model is developed as a continuous-time dynamic 

system, with parameters that have a physical relevance. 

2.5 Res idua l Generat ion and Decision M a k i n g 

A model-based fault detection and isolation procedure consists of two phases: residual 

generation (RG) and decision making (DM) [12]. First, the effect of the fault is am­

plified in order to make it recognizable (determine a fault signature). This is obtained 

by processing the sensor signals. The processed measurements are called residuals or 

fault indicators [26]. If the residual generator is designed as a parametric identifica­

tion procedure, then the residuals are represented by the output prediction errors. The 
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decision can be accomplished by a simple threshold test or by statistical methods. Con­

sider the system described by (2.1)—(2.2) and assume that u(9) and y(9) are measurable, 

zero-mean signals. We also assume that a fault has as a direct consequence, changes 

of process parameters, p and/or state, x(9), which modify the system output y(9) [17]. 

Therefore, either state or parameter estimation techniques respectively can be used to 

detect incipient or abrupt process faults. 

2.5.1 State Estimation-Based Techniques 

State estimation-based residual generators include: the parity space method, dedicated 

observer approach, and fault detection filter approach [12]. The problem of discerning 

between different faults or between faults and other disturbances can be solved using 

the disturbance decoupling principle. If we take into account the effect of perturbations, 

(2.1)-(2.2) can be rewritten: 

x'{9) = A(p, 9)x(8) + B(p, 9)u{9) + d{9), x(0) = x0j (2.3) 

y(9) = c(p,x)+n(9), (2.4) 

where d G Rn and n G R describe the process and measurement noise, respectively. Both 

are considered unknown. In the stochastic case, d, and n are assumed zero-mean, indepen­

dent white Gaussian processes. The estimator of the system normal state (see (2.3)-(2.4)) 

has the following form: 

x'{9) = A(p, 9)x{9) + B(p, 9)u{9) + H(9)(y - y), x(0) = x0, (2.5) 

y(9) = c(p,x), (2.6) 

where H(9) G Rn is the feedback gain. The state and the output estimation errors are 

given by: 

x' = A(p,9)x + d(9)- H(9)y, 
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y = y -y = c(p, x) - c(p, x) + n{9). 

The condition monitoring system supervises the evolution of the residual (innovation) 

y. The fault detection can be the result of certain statistical tests performed on the 

residual: chi-squared test, or generalized likelihood ratio test [13]. Another approach 

consists of designing the gain H{6) with the objective of amplifying the effect of certain 

failures in y rather than providing good state tracking. Such observers are called Beard-

Jones failure sensitive filters. Assume d{9) = dfa with 6 ; the i-th column of b, i.e. the 

fault corresponds to a bias in the i-th actuator. The expression for the residual becomes 

y' = (A(p, 9) — H(9))y + dibi, if y = x. For H(6) = A(p, 9) + a0In, y has the orientation 

of bi and a magnitude proportional to dj. The gain design procedure is similar to the 

disturbance decoupling problem [13]. 

2.5.2 Parameter Est imat ion-Based Techniques 

Identification methods attempt to find suitable approximations to the parameters asso­

ciated with real systems. Let p be an estimate of the process parameter vector p. The 

output prediction is y = c(p,x) and the prediction error is y = y — y — y — c(p,x). The 

parameter estimation problem can be formulated as the minimization of a generalized 

prediction error function, E [27]. The necessary zero gradient condition for the minimum 

is: 

VpE\p=p = 0. (2.7) 

From (2.7).the parameter estimates, p, have to be determined. An analytical solution 

is tractable if c is linear in p, i.e y(9) = c(p,x) = $(9)p with $ e Rlxq [27]. In this 

case y = <&(9)(p — p) = $(9)p, where p is the parameter estimation error. The gradient 

estimators and the least-squares estimators with exponential forgetting are characterized 
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by good robustness with respect to noise and parameter variation [11, pp. 367-369, 380-

381]. The simplest parameter estimator is the gradient estimator. In this case, the 

parameter adaptation law is given by: 

^ = - * 0 V p £ = - * o $ T y , (2.8) 

where E = | || y | | 2 is the squared output prediction error, and \T/o € Rsxs > 0 is the 

gain matrix. The signal matrix, $ has to be persistently exciting in order to achieve 

exponential parameter convergence, i.e. 3ao, © > 0 such that V 0 > 0 

/ > Q 0 / „ (2.9) 
J 0 

with Iq E Rqxq the idendity matrix [11, pp. 366]. 

The cost function used in least-squares estimation with exponential forgetting is: 

E = \ [8e-I>^dr || y(t) - $(t)p ||2 dt, (2.10) 
2 Jo 

where A represents the forgetting factor. The parameters are updated using: 

fQ = -*mTy, (2.11) 

where 

tf"1^) = tf-^Oje-Zo A « d t + [* e-St8x{-r)dr$T(t)$(t)dt. 
Jo 

The gain matrix, \&(0) is calculated recursively using the formula: 

d\Sj 
— = - A ( 0 ) * + tf$T(0)$(0)* . 
dO 

The decision making stage employs statistical comparisons between actual residuals and 

known fault signatures. Changes in parameter means and variances can be used as 

decision criteria. 
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Our research is directed at developing and validating an effective diesel engine model 

for fault diagnosis applications. The model is used in a parametric identification proce­

dure to detect incipient faults in the fueling of engine cylinders [14]. The early detection 

and isolation of engine faults is accomplished using the gradient estimator and the least-

squares estimator with exponential forgetting. The choice of these two identification 

methods is based on their robustness with respect to measurement noise and parameter 

variation [11, pp. 367,380]. The same model is used to obtain the cylinder pressure wave­

form, reconstructed from noisy measurements of flywheel/crankshaft angular velocity 

fluctuations. 



Chapter 3 

Engine Modeling and Validation 

No more friction, no more slowing. 

The length of the Earth day will then be 

more than fifty times as long as the present day; 

and the more distant Moon will turn in its orbit 

in twice the period it now turns. 

Isaac Asimov, Asimov on Astronomy 

The first step in designing a comprehensive diesel engine fault detection and isolation 

system is to develop and validate a mathematical model. The model we develop here 

is configured to correspond to the D D C 6V 92TA Detroit Diesel engine. The analytical 

methodology follows that of C. F. Taylor [28, pp. 240-305], and the testing was performed 

using data supplied by the Institute for Machinery Research, National Research Council. 

Our modeling approach is based on Euler's equation [1] applied to a generic internal 

combustion engine. These equations of motion characterize the rotational dynamics of a 

diesel engine and can be subsequently used to derive the relationship between cylinder 

pressures and flywheel/crankshaft angular velocity fluctuation. We define the total engine 

torque, TE(9), as the sum of all torques acting on the crankshaft taking into consideration 

the phase shift determined by the cylinder arrangements: 

TE(6) = Tp(9) + Tt{9) + Tr{9) + Tf(9) + T,(0), (3.1) 

where 9 is the crank angle. Tp(9) is the indicated torque due to the gas pressure forces, 

21 
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Tt{0) is the torque due to the inertia of the reciprocating parts, and Tr(9) is the torque 

due to the rotation of the connecting rods. Ty(0) refers to the total friction torque 

(assumed constant), and Ti(9) is the dynamometer (brake) load torque. The model is 

developed under the assumption that the crankshaft is a purely rotating rigid body. 

Similar approaches dedicated to internal combustion engines can be found in references 

[4] and [5]. The novelty of our model relies on the fact that it incorporates the torque 

due to angular acceleration of the connecting rods. We compare the measured angular 

velocity with the calculated one. The testing set consists of 6 different actuator faults and 

the normal operating condition. The actuator fault is defined here as the phenomenon of 

cylinder under-fueling which has as a direct consequence the reduction of cylinder peak 

pressure. We use both pressure and flywheel angular velocity measurements. 

3.1 Geomet r ica l Considerat ion 

The engine crankshaft is assumed perfectly rigid. The connecting rod is modeled by two 

masses: mt which is included in the piston assembly and mr which rotates with the crank 

pin. Consider the diagram for the crank and connecting rod mechanism illustrated in 

Figure 3.1. The piston instantaneous position with respect to the top dead centre (TDC) 

is: 

where r is the crank radius, I is the connecting rod length, 9 is the crank angle, and a is 

the angle between the connecting rod axis and the cylinder axis. The piston instantaneous 

velocity is calculated by taking the time derivative of (3.2): 

s = I + r — (r cos 9 + I cos a) (3-2) 

with 

(3-3) 

s — ruoci{9) (3-4) 
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Figure 3.1: Crank arm and connecting rod mechanism: r is the crank radius, I is the connecting 
rod length, 9 is the crank angle, and o is the angle between the connecting rod axis and 
the cylinder axis. The piston instantaneous position with respect to the top dead centre is 
s — I + r — (r cos 6 + I cos a) . 

where u = 9. The geometrical coeffcient c\(9) has the following expression: 

. . / r cos 9 \ 
Cl{9)= 1 + - sin0, \ I cos a / 

(3.5) 

Similarly, the piston acceleration is given by: 

a = r (ci(0)w + c2(9)u2) (3.6) 

The coefficient C2(9) is given by: 

dcx(9) 
d,9 

1 + 
r cos 9 
I cos a cos 9 + 

r s in r cos I 

I cos a \ I cos a 
(3.7) 

Figure 3.2 illustrates the variation of piston position (see (3.2)), speed (see (3.4)), and 

acceleration (see (3.6)) during one revolution, assuming a nominal rotational velocity of 

1, 200 rpm. The angular acceleration of the connecting rod is calculated from Figure 3.1 

\ 
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-0.06 

Figure 3.2: Instantaneous piston position, s (left), speed, s (middle) and acceleration, s (right) 
during one revolution, assuming a nominal crankshaft angular velocity of 1, 200 rpm. 

as a function of us and us2: 

ix = c3(0)d) + c4(0)u;2 (3.8) 

The coefficients c3{9) and c^{9) have the following form: 

<*(*) = 

dc3(8) 

r cos 9 
I cos a' 

r sin 9 
d,9 I cos a v ' 

(3-9) 

(3.10) 

Figure 3.3 illustrates the angular acceleration of the connecting rod (see (3.8)) during 

one revolution, assuming a nominal rotational velocity of 1, 200 rpm. 

3.2 M o d e l Development 

A modified engine model is developed in this thesis by finding explicit formulas for the 

torques involved in (3.1). Tp(9) is defined under the assumption that the work done on 
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T 1 1 r 

degrees 

Figure 3.3: Angular acceleration of the connecting rod, a, during one revolution, assuming a 
constant crankshaft angular velocity of 1, 200 rpm. 

the piston is equal to the work done on the crankshaft [28, pp. 268]. It depends directly 

on each cylinder pressure: 

N 

Tp(9) = AprY,Pi{8)ci(e - , (3.11) 
i=i 

where ./V is the total number of cylinders, and Ap is the piston crown area. Pi(0) refers 

to the pressure in the i-th cylinder and 0,; is the phase shift corresponding to the i-ih 

firing cylinder. Figure 3.4 illustrates the measured torque due to gas pressure for the 

D D C 6V 92TA operating at 1,200 rpm. The phase angles 0?; are the angles of the crank 

arm relative to the crank angle when cylinder 1 is at top dead centre. For a two-stroke, 

even-firing, in-line, six-cylinder engine, 0, = | ( i — 1), i = 1... 6 rad. In the case of the 

D D C 6V 92TA Detroit Diesel engine, the V-angle between cylinder banks is 63.5 degrees. 

The phase origin is the top dead centre of the first cylinder firing, and 4>\ — 0, 02 = 56.5, 

03 = 120, 0 4 = 176.5, 05 = 240, 06 = 296.5 degrees. 

The work done by the crankshaft on the connecting rod is equal to the change in 
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Figure 3.4: Torque due to gas pressure for the case of the six-cylinder DDC 6V 92TA Detroit 
Diesel Engine operating at 1,200 rpm. 

kinetic energy of the piston [28, pp. 264]. Tt(0) is due to the inertia of the translating 

parts and depends on all piston accelerations (see (3.6) and Figure 3.2): 

N 

Ti{9) = -myY,ci(0-^)(ci(d-^ + c^9-^)u)2)^ (3-12) 
?;=i 

where mp is the mass which is considered to reciprocate with the piston, i.e. piston, 

piston rings, piston pin and the upper end of the connecting rod. 

The torque acting on the crankshaft due to the angular acceleration of all connecting 

rods is (see (3.8) and Figure 3.3): 

N 

Tr{e) = J c r V ^ C 3 ^ - ^ ) ( C 3 ^ - ^ ) w + c 4 ( f 5 - ^ ) ^ 2 , (3-13) 

i=l 

where J C T is the connecting rod moment of inertia. 

We define the following variable parameters: 
N 

cn(0) = £ c ? ( 0 - , (3-14) 
?;=i 
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F i g u r e 3.5: Var ia t ion of the torque coefficients: c\i(6), 012(0), £ 3 3 ( 0 ) , and 034(6) w i t h j = 0.247, 
dur ing one crankshaft revolution. 

TV 

N 

C3 3(0) = £ C 3 ( 0 - & ) 
i=l 

(3.15) 

(3.16) 

(3-17) 
i=l 

These parameters are illustrated in the graphs of Figure 3.5. We can rewrite (3.12) and 

(3.13) as: 

Tt(9) = - m y 2 (cn(^)w + c12(e)u2) , (3.18) 

T r(0) - Jcr (c33(0)u + cu(6)u2) . (3.19) 

Let JE be the engine moment of inertia. The Euler equation for the diesel engine, viewed 

as a rotating rigid body is: 
d(JEio) 

dt TE(0), (3.20) 
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or taking into consideration (3.1), (3.11), (3.18), (3.19): 

(jE ~ JcrC33(0) + m p r 2 c n ( 0 ) ) u = (j c rc 3 4(0) - mpr2c12{e)) u2 + TF{9) + TT(9) + 

N 

V E W - & ) c i (3-21) 
i=l 

Let x = UJ2, then, 
dw dw dd f 1 da; 1 , 

u — — : = to LO — — —x . (3.22) dt dO dt 2 d£ 2 v ' 

Therefore, (3.21) becomes: 

\ (JE ~ JcrC33(e) + m p r 2

C l l ( 0 ) ) rr' = ( j c r c 3 4 (0) - mpr2c12(9J) x + TF{6) + TT(9) + 

N 

AprY.PiifyiV-fc). (3.23) 
i=l 

Let = describe the engine operating point, with UQ the nominal engine speed. The 

engine speed fluctuation is Su = u — UQ, and this corresponds to a fluctuation of the 

variable x of the form: 

Sx = Su(2uQ + Su) « 2UQSU . (3.24) 

At the same time, the speed fluctuation can be determined from the variation Sx using: 

Su = yjsx + u2 — UQ . (3.25) 

With these considerations, the state equation, given by (3.23), is rewritten in a form 

similar to (2.1): 

Sx' = A(e)Sx + bT(e)u(e) + d(e), (3.26) 

and (3.25) becomes the output equation similar to (2.2): 

Su = c(Sx), (3.27) 

where 
A (o\ - J c r c 3 4 ( g ) ~ mpr2c12(9) 

Ay&) - TT~r r 77VT 2 7oY\ ' (3.28) 

2 W£ - ^ 3 3 ( 0 ) + rripr^cu^e)) 
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b{9) 
Apr 

\{JE~ Jcrcs3(0)+ m,pr2cu(8)) 

(J c r c 3 4 (0) - m,pr2c12(8)) x0 + Tf(9) + Ti(0) 

ci{e-<t>i) ' Pi(e) ' 

, u(9) = 

_ c\{9 - 4>N) _ _ PN(8) _ 

d(9) 
\ (JE ~ JcrC33{9) + mpr2cn(9)) 

and 

c(6x) = \JSx + UQ — U>Q 

(3.29) 

(3.30) 

(3.31) 

3.3 S imula t ion Results 

The model described by (3.26) is validated using the M A T L A B simulation package, and 

the code is listed in Appendix B. The most important M-files are: 

• C-l.m, C-2.m, cS.m, C-4-m which implement the coefficients described by (3.5), 

(3.7), (3.9), (3.10), respectively, 

• system.m which implements the differential equation (3.26), 

• demol.m which calculates the residual and the estimation for a certain cylinder 

condition (faulty or not), and 

• rmse.m which calculates the root mean square error (see (3.33)). 

The model parameters, from [3] are: N = 6, r = 0.0635 m, I = 0.2571 m, J C R = 0.0745 

kgm 2 , mp = 6.03 kg, Ap = 0.01188 m 2 . The engine effective moment of inertia includes 

the crankshaft and the flywheel moments of inertia and has the lumped value JE = 4.044 

kgm 2 . The phase origin is the top dead centre of the first cylinder to fire, and <j>i — 0, 

02 = 56.5, 03 = 120, 04 = 176.5, 0 5 = 240, 0 6 = 296.5 degrees. The firing order is: IL, 

3R, 3L, 2R, 2L, 1R, where the letters "L" and "R" refer to the left and the right bank 

of cylinders, respectively. Data acquisition is performed for a nominal speed UJQ = 125.7 
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degrees 

Figure 3.6: Presents the actual (solid line), 6u>, and the estimated (dashed line), <5u), flywheel 
angular velocity fluctuation for the normal operation of the diesel engine. 

rad/sec (1, 200 rpm) and a dynamometer torque, T/ = 990 Nm. This load represents 75% 

of the engine peak torque. Tf = 156 Nm is the value of the mechanical friction torque 

corresponding to a crankshaft angular velocity of coo = 125.7 rad/sec and an overall 

damping coefficient of 1.24 Nmsec. 

The testing set consists of 6 different actuator faults and the normal operating con­

dition. The actuator fault is represented by a 10% drop in cylinder fueling. In order to 

measure the modeling error we calculate the output residual: 

8u = Su — Su , (3.32) 

where 6u> and SUJ are the actual and the estimated flywheel angular velocity fluctuation, 

respectively. Figure 3.6 illustrates the measured and estimated flywheel angular velocity 

fluctuation for the normal operating condition (baseline). The root mean square (RMS) 

error is defined as the standard deviation of the zero-mean residual: 
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RMS velocity error = \ ^ ^ 0 ) ) dB . (3.33) 
V Z7T 

The ratio between the RMS error and the standard deviation of the measured fluctuation 

is the residual to signal ratio (RSR) and is used here to express the effectiveness of the 

model (3.26)-(3.27): 

R g R = RMS error i o Q % ) 

a(ooj) 

where a(8u>) is the standard deviation of 6u>. 

The first step of the validation procedure is concerned with the analysis of the model 

behaviour in the case of engine normal operation. In the case of this experiment (see Fig­

ure 3.6), the RMS error is 0.0891 rad/sec. The standard deviation of the measured signal 

is 0.1956 rad/sec. This result yields an RSR value of 46%. 

The model is then tested for the case of an under-fueling fault cylinder 1L. The 

difference between the actual and the estimated velocity waveforms for this situation is 

plotted in Figure 3.7. 

In each of the 6 under-fueling faults (10% down condition for one cylinder at a time), 

this residual is found to exhibit a strong sinusoidal trend. A number of factors can explain 

this harmonic trend. The first is crankshaft vibration [29, pp. 64-74] which is not taken 

into consideration in our model since it assumes a perfectly rigid crankshaft. The ampli­

tude of the vibration increases in the presence of cylinder under-fueling. Secondly, the 

dynamometer and the dynamometer controller form a feedback system which attempts 

to maintain a constant engine speed. This can induce an oscillatory behaviour in the 

dynamometer loading. 

In order to eliminate this trend, the following technique is employed: 

6u>(9) = 6ou(B) - 6u>(9) = Qhsin(0 + 7) + n, (3.35) 
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Figure 3.7: The difference between the estimated and measured velocity fluctuation, 6ui, in 
the case of 10% under-fueling in cylinder IL. 

with 6u> the estimation error, fi/j the unknown amplitude, 7 the unknown phase, and n 

the measurement noise. We added the data to a version of itself shifted by 180 degrees. 

Since the estimation and the actual SLO are periodic with period 360 degrees, then the 

residual, Su), has the same property, and the shift becomes rotation: 

6u>(9) + 6u(0 + TT) » 0. (3.36) 

The resulting estimate is shown in Figure 3.8 The RMS error reduces to 0.1368 rad/sec. 

This corresponds to a 38% RSR. 

The RMS error for the six under-fueled conditions lies between 0.0973 and 0.1836 

rad/sec. This corresponds to a RSR of 26% to 54%. The best results are obtained for 

an under-fueling fault in cylinder 1R, and the worst case corresponds to an under-fueling 

fault in cylinder 2L. 
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degrees 

Figure 3.8: The actual (solid line) and the estimated (dashed line) flywheel angular velocity 
fluctuation for the faulty operation of the first cylinder on the left bank of the engine. These 
results are posterior to the elimination of a vibrational sine trend as per (3.36). 

The results reported here can be improved via a parameter identification procedure. 

The uncertain system parameters are engine inertia, JE and the unknown torque fluctu­

ation, A T = Th sin(# + 7), where T/,, is the torque amplitude, and 7 the phase. This is 

the main objective of the following chapter. 



C h a p t e r 4 

P a r a m e t e r I d e n t i f i c a t i o n 

The one that has the most will be the greatest? 

Now I understand, Sir, you are equating quality with quantity. 

Eugene Ionesco, The Lesson 

Identification methods attempt to determine values for the unknown or uncertain system 

parameters using measurements of input and output signals. This concept is transferred 

to the field of engine fault detection and isolation by assuming that the occurrence of 

a fault has as a direct consequence, changes of process parameters, which modify the 

system output. Therefore, parameter estimation techniques can be employed to detect 

incipient process faults. If the residual generator is implemented as a parametric identifi­

cation procedure, then the residuals are represented by the output prediction errors. The 

decision making stage employs statistical comparisons between residuals and known fault 

signatures. Changes in parameter means and variances can be used as decision criteria. 

The parameter identification procedure can be accomplished on-line or off-line. In 

this chapter we are focusing on two on-line identification methods: the gradient estimator 

and the least-squares estimator with exponential forgetting. The results are compared 

with those obtained from the off-line standard least-squares technique. The parameters of 

interest are the engine inertia, JE, and the torque fluctuation, AT(9), which we attributed 

to unmodeled crankshaft vibration and oscillatory loading of the dynamometer. The 

reason for choosing these two estimators is found in their robustness with respect to 

measurement noise, and parameter variation [11, pp. 367, 380]. The analysis of the 

34 
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estimated parameters allows the classification of an engine cylinder as faulty or not. 

4.1 Identification M o d e l 

There are a number of papers that attempt internal combustion engine parametric iden­

tification using least squares approaches. Many of them have as a final goal, the adaptive 

control of systems that have a diesel engine as the principal component [30, 31, 32]. 

Three such applications—adaptive speed control of a stationary diesel engine for power 

generation, self-adaptive idle speed control of an automotive diesel engine and adaptive 

performance optimization—are discussed in reference [30]. In that work the author uses 

the recursive least squares (RLS) method for parametric identification with engine models 

in the autoregressive (AR) form: 

where A(q~x) and B(q~1) are polynomials in the shift operator q~l, u is the fuel rack 

position, and u> is the engine speed. 

The RLS identification of a diesel prime-mover with unknown dead-time is treated in 

references [31, 32]. Here the authors accelerate the algorithm convergence by imposing 

limits on model parameters. 

The model used in [33] for gain scheduling control is a fifth order A R type (see (4.1)) 

and describes the dynamics relating the fuel rack to engine speed. The model parameters 

(the coefficients of polynomials A(q~x) and B(q"1)) are nonlinear functions of engine 

speed and power output. 

A l l models mentioned above are suitable for adaptive control applications, but they 

all have the disadvantage that they don't preserve any physical relationship to the engine 

throughout the identification process and therefore they are not ideally suited to condition 

monitoring applications. 

(4.1) 
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A parametric identification approach to engine fault detection and isolation is reported 

in [4]. The authors assume that the influences of cylinder faults on the flywheel angular 

velocity can be decoupled from each other. This is a simplification that may lead to 

misclassification as faulty, a normal cylinder adjacent to the faulty cylinder. This problem 

is solved in [34], but the solution involves pattern recognition techniques. A combination 

of parameter estimation methods and expert-system interpretation techniques is used 

in [17]. This approach is applied to 4 case study experiments in [35]. The authors 

recommend the use of an analytical knowledge paradigm for well understood processes, 

followed by a heuristic analysis for aspects that cannot be fully explained by mathematical 

means. 

Our identification model is obtained from the engine model developed in the previous 

chapter (see (3.26)-(3.27)): 

8x = A{B)8x + bT(B)u(8) + d(9), 

8u> = c(8x), 

where A(9), b(9), d(B), c(8x) are the system coefficients defined in (3.28)-(3.31), the 

variable 8x is defined in (3.24), and 6u> is the angular velocity fluctuation. The sinu­

soidal trend of the residual, depicted in Figure 3.7 which we attributed to the crankshaft 

vibration and oscillatory behaviour of the dynamometer loading is: 

AT(B) = Thsm(8 + 1), (4.2) 

where 7),, is the unknown torque amplitude, and 7 the unknown phase. In order to obtain 

a linear parametrization model we rewrite (4.2) as: 

AT (9) = Ts sine? + TC cos B, (4.3) 

where Ts = T/,, cos 7, and Tc = T/,sin7 are parameters to be identified, and B is the 

crank angle. Taking into consideration (4.3), we can represent the system described by 
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(3.26)-(3.27) in the linear parametrization form: 

Y(9) = $(9)p, (4.4) 

where $(#) is the signal matrix: 

-^6x'(9) sinB cos6 

p is the vector of unknown parameters: 

(4.5) 

p = [JE TS Tcf , (4.6) 

and Y(9) the modified torque output for the identification model: 

Y(9) = -mpr2 \\Cll(0)6x'(9) + c12(9) (6x + x0) + 
Jc \czz(9)6x'(9) + cM{B) (Sx + xQ)] + Tp{9) + Tf{6) + T,(0), (4.7) 

with mp the mass of the reciprocating parts, r the crankshaft radius, Jcr the connecting 

rod mass moment of inertia, Tp(0) the torque due to gas pressure forces (see (3.11)), Tj(/9) 

the nominal load torque, and Tf(8) the friction torque. The torque coefficients, c n(#), 

ci2(8), £33(0), 034(8) were defined in (3.14)-(3.17), and XQ = u;2, with UJQ the nominal 

engine speed. Y(6) is a zero-mean variable and is plotted in Figure 4.1. Assume that 

the number of available measurements is equal to NM > 3. Then, the objective of the 

identification procedure is to find the solution of the algebraic system of NM equations 

of the form (4.4) with 3 unknowns: JE, TS, and Tc. 

4.2 Performance Index 

Assume that p is a solution of the following algebraic system: 

Y(9k) = $(8k)p, k = l,.:.NN (4.8) 
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1 0 0 0 

degrees 

Figure 4.1: The variation of the corrected engine torque, Y (6), during one crankshaft revolution 
for the normal operating condition. 

where 0 k defines the fc-th measurement (sampling instant). The output prediction is 

Y{0) = $(9)p and the output prediction error is Y{9) = $(0)p, with p = p — p. The 

parameter estimate, p is found by minimizing a measure of the output prediction error, 

Y{9). 

For standard least-squares estimation the cost function is given by: 

E = \f\\ Y(f<) ~ * (* )P II' d t (4-9) I Jo 

Geometrically, this is equivalent to determining the projection of the unknown parameter 

vector p on the hyperplane defined by the columns of $(9). The off-line solution to the 

standard least-squares estimation problem is: 

p = $+(O)Y(0), (4.10) 

where $+(6>) is the pseudoinverse of <&(9). The pseudoinverse exists if the matrix QT(9)$(9) 
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is nonsingular: 

$+(f?) = ($ T (0 )$ (0 ) ) - 1 $ T (0 ) . (4.11) 

The cost function used for the least-squares estimator with exponential forgetting is 

(see (2.10)): 

E = - /V^ A ( r ) d r || Y(t) - $(t)p ||2 dt, (4.12) 
2 Jo 

where A represents the forgetting factor. The on-line implementation of the least-squares 

estimator with exponential forgetting is described by the following equations: 

Y9 = -m)*T(8i)Y(0t), (4.13) 

W) = A 0 ( l - " 1 1 ) , (4.14) 

^ = -X(9i)^(9i) + ^(9^(9^(9^(8,), (4.15) 
d,9 

where ^(9,) represents the estimator gain at the i-th iteration, || \P(0j) || is the norm 

denned as the maximum singular value of the matrix ^ (#,;), Ao is the maximum allowable 

value for the forgetting factor, and k0 > 0 [11, pp. 374-377]. 

The performance index used by the gradient estimator is the squared output predic­

tion error: 

E = ^ || Y | | 2 . (4.16) 

The parameters are estimated recursively following the law: 

d™ „ ~ 
= -Vo&MYiOi), (4.17) d,9 

where v&o > 0 is the descending step (estimator gain) [11, pp. 364-367] 

4.3 S imula t ion Results 

We analyzed the performance of the on-line gradient estimator and least-squares with 

exponential forgetting in comparison with the off-line standard least-squares estimator. 
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The simulation is performed using the M A T L A B package and the code is listed in Ap­

pendix B. The main functions are: 

• sls.m which implements the standard least-squares estimator, 

• itgr.m which implements the on-line gradient estimator, 

• itls.m which implements the recursive least-squares estimator with exponential for­

getting, and 

• est.m which calculates the velocity fluctuation using the parameter estimates. 

The angular velocity is sampled at a period of ir/59 rad. This sampling period corre­

sponds to the total number of flywheel teeth, 118. The cylinder pressure data is char­

acterized by a sampling period of 7r/360 rad. The model parameters are given the same 

numerical values as in Section 3.3. These are: TV = 6, r = 0.0635 m, I = 0.2571 m, 

Jcr = 0.0745 kgm 2 , mp = 6.03 kg, Ap = 0.01188 m 2 . The phase origin is the top dead 

center of the first cylinder to fire, and 0 i = 0, 4>2 = 56.5, </>3 = 120, 4>4 = 176.5, <fis = 240, 

06 = 296.5 degrees. The firing order is again: 1L, 3R, 3L, 2R, 2L, 1R. Data acquisition 

is performed for a nominal speed UJQ = 125.7 rad/sec (1,200 rpm) and a dynamometer 

torque, T; = 990 Nm. This load represents 75% of the engine peak torque. Tf = 156 

Nm is the value of the mechanical friction torque corresponding to a crankshaft angular 

velocity of U>Q = 125.7 rad/sec and an overall damping coefficient of 1.24 Nmsec. 

The parameters to be identified are the engine effective moment of inertia, JE, which 

includes the crankshaft and the flywheel moments of inertia, and the torque fluctuation, 

A T . The testing set consists of 6 different actuator faults and the normal operating 

condition. The actuator fault consists of a 10% drop in cylinder fueling. The estimation 

is performed for Nm = 118 measurements. The effect of the parameter identification 

procedure is measured using the same criteria as in Section 3.3: the root mean square 
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Table 4.1: Engine inertia estimates, JE, depending on the number of measurements, Nm = 118, 
the engine operating condition (normal or faulty), the identification method: off-line standard 
least-squares (SLS), on-line gradient estimator (GE), and least-squares with exponential for­
getting (LSEF). 

Faulty Cylinder JE (kgm2) Faulty Cylinder 
SLS GE LSEF 

None 3.86 3.90 3.85 
1 4.89 4.90 4.86 
2 5.06 5.06 4.97 
3 5.17 5.13 5.08 
4 5.01 5.04 4.97 
5 5.01 5.01 4.97 
6 4.96 4.96 4.91 

(RMS) error, defined as the standard deviation of the velocity residual and the residual 

to signal ratio (RSR), defined by the ratio between the standard deviation of the residual 

and the standard deviation of the actual angular velocity fluctuation. The different 

engine inertia estimates, J E , are illustrated in Table 4.1. Estimates for the other two 

parameters, Ts and Tc, characterize the harmonic torque fluctuation (see (4.3)). Table 4.2 

presents the values Th and 7 (see (4.2)) for different engine conditions. 

Figures 4.2 and 4.3 present the estimation results for flywheel angular velocity fluc­

tuation corresponding to two test cases—normal operating condition, and under-fueling 

fault in cylinder 1R. In the case of normal operation, we used the estimated parameters: 

JE — 3.90 kgm 2 and AT = 60sin(# + 210) Nm, obtained with the recursive gradient 

estimator. The RMS error has a value of 0.0559 rad/sec, which represents approximately 

30% improvement over the result reported in Section 3.3. This identification procedure 

results in a RSR of 27%. This result is put in perspective by the fact that the occurrence 

of a 10% under-fueling fault in any of the six cylinders results in a RSR value between 

55% and 159%. This RSR range is characteristic of a faulty condition. In addition, 
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degrees 

Figure 4.2: Actual (solid line), and the estimated (dashed line) velocity fluctuation during 
one crankshaft revolution for the normal operation condition. The results correspond to the 
gradient estimator. 

degrees 

Figure 4.3: Actual (solid line), and estimated (dashed line) velocity fluctuation during one 
crankshaft revolution corresponding to an under-fueling fault in the first cylinder of the right 
bank (cylinder 6). The estimation is carried out by the on-line least-squares estimator with 
exponential forgetting. 
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Table 4.2: The parameter estimates, Th and 7 for Nm — 118. The estimates are obtained using 
the on-line gradient estimator. 

Faulty Cylinder Th (Nm) 7 (degrees) 
None 60 210 

1 600 160 
2 540 129 
3 520 29 
4 700 303 
5 800 258 
6 700 223 

the detection of the faulty condition can be accomplished by observing the change in a 

parameter's mean and standard deviation. Our experiments show that the under-fueling 

of cylinder 1L causes a 6% change in the mean, and a 620% increase in the standard 

deviation of the estimated inertia. This result is obtained using the gradient estimator. 

For the same case, the least-squares estimator with exponential forgetting indicates a 

16% change in the mean and a 327% change in the standard deviation of JE-

Table 4.3 illustrates the RSRs for all 6 actuator faults. The RMS error for the 

case presented in Figure 4.3 is 0.0829 rad/sec. This calculation is carried out using the 

estimated parameters: JE = 4.91 kgm 2 and A T = 700sin(# + 223) Nm, obtained from 

the on-line estimator with exponential forgetting. The prediction of this under-fueling 

fault is therefore characterized by a RSR of 14% (see Table 4.3). The overall RMS error 

range for the faulty condition is between 0.0804 and 0.1315 rad/sec. The best results are 

obtained for faulty conditions in cylinders 3L and 1R. 

We considered the problem of fault isolation which deals with the correct classification 

of an engine cylinder as faulty or not. We considered the case when an under-fueling 

fault in cylinder 2 (3R) is misclassified as a fault in cylinder 1 (1L). This resulted in a 

RSR value of 36%, using the gradient estimator. Likewise, similar results were obtained 
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Table 4.3: Residual to signal ratio (RSR) for the 6 different under-fueling faults. 

Faulty Cylinder RSR (%) 
1 20 
2 24 
3 20 
4 13 
5 16 
6 14 

for other misclassified cylinders. Alternatively, large changes in estimated parameter 

standard deviation can be used for the elimination of this misclassification. The gradient 

estimator shows a 227% change in the standard deviation of JE- The least-squares 

estimator with exponential forgetting records a 302% change for the same case. 

On-line parameter identification methods are powerful tools for increasing the predic­

tion ability of the engine model and, at the same time, can be employed in fault detection 

and isolation by monitoring parameter estimate changes. 

The analytical redundancy provided by the engine model is enhanced further by the 

study of the inverse dynamics which allows the pressure waveform reconstruction from 

angular velocity fluctuation. This subject is treated in the next chapter. 

o 



Chapter 5 

Pressure Waveform Reconst ruct ion 

It's here they got the range 

and the machinery for change 

and it's here they got the spiritual thirst. 

Leonard Cohen, Democracy 

In this chapter we investigate the procedure for pressure waveform reconstruction using 

the engine model and angular velocity measurements. This problem has multiple practical 

applications in engine control and diagnosis. It provides an indirect method for cylinder 

pressure measurement, and permits the implementation of a technique for estimating the 

torque due to gas pressure [36, 37, 38, 39] or the power contribution of each cylinder 

[40], and therefore allows the detection and identification of a variety of cylinder faults 

[41, 34]. 

The dynamics of a given system are represented by a collection of differential equations 

that permit the process output determination using the input history. The term "inverse 

dynamics" is used to characterize the calculation of the system input given the output 

history [11, pp. 263]. In our case, the diesel engine model is crank angle based and has 

N inputs, Ui(0) = Pj{6),i = 1,... iV, represented by the cylinder pressures. The system 

output is given by the angular velocity fluctuation, Sto(d). Because our model implements 

a multi-input single output (MISO) system, it is not possible to explicitly decouple the 

inverse dynamics. We have therefore considered two approaches. First, we redefine the 

system input and we rewrite the engine model as a single input single output (SISO) 

45 
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system. The new input is then the torque due to gas pressure, TP(0), defined in (3.11) 

as: 
N 

Tp(e) = AprY/Pi(8)ci(8-<l>i), 
i=\ 

where TV is the total number of cylinders, A p is the piston crown area, Pi(9) refers to 

the pressure in the i-th cylinder, fa is the phase shift corresponding to the i-th firing 

cylinder, and c\(9) is defined in (3.5) as: 

/ x ( r c o s 8 \ 
ci(0) = 1 + - sinfl. 

y I cos a J 

Secondly, we approximate the pressure waveform with a periodic impulse-like continuous 

function. Using this latter template-based approach we are able to explicitly identify the 

condition of each cylinder. 

5.1 Gas Pressure Torque Es t imat ion 

The estimation of cylinder power from engine speed fluctuations is considered in [40]. The 

authors use a linear second order model to describe the relationship between engine speed 

and crankshaft torque. An inverse filtering technique is employed for pressure torque 

calculation. The power contribution is determined as the area under this torque curve, 

corresponding to the power stroke of each cylinder. Similarly, the approach taken in [37] 

involves a time-based 4 degree-of-freedom vibration model for the system composed by 

the vibration damper, engine, flywheel, and dynamometer. The authors assume a purely 

harmonic solution for the crank angle: 

9 = GejtJ\ 

where 0 is the amplitude, and to is the engine speed. The model is rewritten in the 

frequency domain as a matrix equation which is then solved for different harmonics of 
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the engine fundamental frequency. The cylinder pressure is determined locally, in the 

vicinity of the pressure peak. This approach relies on the assumption that each cylinder 

contributes to the gas pressure torque only during its power stroke. In both these two 

papers, the engine model is developed in the time domain, and crankshaft/flywheel speed 

is sampled in the crank angle domain. The authors point, out that this inadvertence 

represents a source of error. 

The model used in [39] is written in the crank angle domain. The authors employ 

a deconvolution technique for the estimation of the pressure torque, Tp(9) from noisy 

measurements of the crankshaft angular acceleration. Their analysis is based on the 

assumption that the torque fluctuation is concentrated at a frequency equal to the firing 

frequency. This results in the neglect of higher harmonics. 

The solution adopted in [38] employs the design of an estimator in the crank angle 

domain. The authors use the following relationship to relate the crank angle and time 

bases: t = where 9 is the crank angle, t is the time, and LOQ is the nominal engine 

speed. In terms of the Laplace transform (£) this relationship becomes: sg = where 

st, and SQ describe the Laplace transform variable in the time domain and the crank 

angle domain, respectively. This is correct under the assumption of constant speed. 

A comprehensive analysis of the crank angle domain versus the time domain is re­

ported in [42]. Here the authors model the engine rotational dynamics in the crank angle 

domain by a first order system characterized by the following transfer function: 

u>(sg) 1 
H{sf)) = —-—- = -

Tp(sg) JE^OSQ + b 

where u)(sg) — £{u>(8)}, Tp(se) = C{TP(9)}, JE is the engine mass moment of inertia, 

and b is the viscous friction coefficient. The authors point out that the assumption of 

constant speed introduces a fractional error of 6U/LOQ due to this approximation for the 

pole of the transfer function. 
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A pattern recognition technique used for detection and isolation of faults due to 

cylinder under-fueling is reported in [34]. The authors constructed classes based on 

the fault signatures as observed in the flywheel angular velocity fluctuation data. A 

drawback of this approach is the assumption of reproducibility and linear scaling of the 

fault signatures with respect to the stored patterns. The method allows the estimation of 

the pressure peak, but doesn't allow the reconstruction of the actual pressure waveform. 

Our diesel engine model was defined in (3.26)-(3.27). The equations are repeated 

here: 

Sx' = A{9)Sx + bT{9)u{9) + d(9), 

Sto = c(6x), 

where the system coefficients A(9), b(B), d(9), and c(8x) were denned in (3.28)-(3.31). 

The system input is the vector of cylinder pressures: 

u{9) = 

PN{9) 

By redefining the system input as u(9) = Tp(9) we obtain the equivalent SISO system: 

Sx' = A(9)6x + b'(9)u(9) + die), 

where b'{9) is: 

b'(9) = -
Apr 

(5.1) 

(5.2) 
2 (JE - JcrC33{6) + m,pr2cu(9))' 

where Ap is the piston head area, r is the crank radius, mp is the mass of the reciprocating 

parts, and JE and J C R are the mass moments of inertia of the engine and the connecting 

rod, respectively. The torque coefficient cn(9) was defined in (3.14). The system state, 

6x was defined in (3.24) as: 

Sx = 5LO(2LUQ + 6u) f a 2LUQ6U>. 
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Using the approximation we obtain: 

fiW = f , w = ^ ^ W + ^ ) f a W ] - < » ( » ) , ( 5 , 3 ) 

which allows the estimation of the gas pressure torque using the measurement of angular 

velocity fluctuation. 

5.2 Pressure Waveform Characterist ics 

Cylinder pressure is uniquely connected to the combustion process. Cycle-by-cycle and 

cylinder-by-cylinder pressure variations are correlated with the injection timing, the 

quantity of fuel injected, and the rate of mixing between the injected fuel and the air. 

The most important pressure-related parameters are: maximum cylinder pressure, the 

crank angle at which this maximum pressure occurs, the maximum rate of pressure rise, 

and the corresponding crank angle, and the indicated mean effective pressure (IMEP) 

[43, pp. 415]. A measure of the pressure cyclic variability is the coefficient of variability 

(COV) defined in [43, pp. 417]: 

GOV = x 100, 
imep 

where o"i m e p is the standard deviation in indicated mean effective pressure. The author 

asserts that vehicle driveability problems are characterized by a COV> 10%. 

The cycle-by-cycle variation in cylinder pressure was modeled by a Gaussian proba­

bility distribution in [44]. A similar approach was taken in [5]. Here the authors modeled 

the cyclic pressure variation as a raised-cosine window amplitude-modulated by a white 

Bernoulli-Gaussian random sequence. The same authors reported their experimental re­

sults in [45]. The proposed stochastic model describes the gross pressure waveforms, but 

doesn't accurately characterize the instantaneous shape of the actual pressure waveforms. 
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Rather than trying to determine a stochastic description of the cycle-by-cycle and 

cylinder-by-cylinder pressure variation, our approach is to find a functional approxima­

tion for the cylinder pressure waveform, and subsequently relate the pressure variation to 

a minimum number of parameters. This approach is based on the observation that the 

cylinder pressure is an impulse-like periodic function. We consider a general description 

for a family of functions, related to the <5-function, given in [46, pp. 487-492]: 

\ / W d r i . ] . . 

8(w,z) = = — tan (wz) , (5.4) 
wLz* + 1 az 1 J 

where z € R, and w is a variable parameter. When z = sin with 0 the crank angle, 

and 4>i the phase of the i-th cylinder, the proposed impulse functional approximation for 

the pressure waveform is: 

w,sm—^)-P0 = . 2V, -Po, (5.5) 
l ) wz s in —f1- + 1 

where p P a x = kjW represents the maximum pressure value, fc7; > 0 is a factor related to 

the pulse height, w > 0 is inversely proportional to the width of the pressure pulse, and 

Po is a pressure offset. 

Taking into consideration (5.3), and (5.5), we can write the estimated gas pressure 

torque in a form similar to (3.11): 
N 

fp(9) = Apr 6PiPi(0)Cl(0 - fa), (5.6) 
?:=i 

where 8Pi,i = 1,. . . N are parameters that describe the pressure variation with respect to 

the template given by Pi{8). The estimation of these parameters allows us to determine 

the condition of each cylinder (faulty or not). The standard least-squares estimator is: 

8P = ( $ T $ ) - 1 $ T f p , (5.7) 

fp = $8P, (5.8) 
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where 

6P1 

SP = 

SPN 

and 

$ = Apr P^cxiO - fa) PN(6)Cl{9 - 0/\r) 

We analyzed the use of the engine model in solving the inverse dynamics, and thus pro­

viding an estimate for the torque due to gas pressure. We investigated a meaningful 

procedure for pressure waveform reconstruction based on the functional approximation 

introduced in (5.5). We are able to detect and isolate cylinder under-fueling faults us­

ing a standard least-squares identification method. The steps of our procedure can be 

summarized as follows: 

1. Calculate the derivative Sui', using the measured angular velocity fluctuation, Sui. 

2. Calculate the ini t ia l estimated pressure torque, Tp, using (5.3). 

3. Obta in the least-squares estimates of the pressure variations, SP,, using (5.5) and 

4. Determine the new estimate of the gas pressure torque, Tp, using (5.8). 

5. Reconstruct the cylinder pressure waveforms using (5.5) and (5.7). 

5.3 S imula t ion Methods 

The simulation is performed with the M A T L A B package and the programs are listed in 

Appendix B . The main functions are: 

• diffc.m which implements a smooth differentiator, 

(5.7). 
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• tpe.m which implements (5.3), 

• dlt.m which implements (5.5), and 

• pwr.m which calculates the pressure variation vector, SP. 

The angular velocity is sampled at a period of 7r /59 rad. This sampling period corre­

sponds to the total number of flywheel teeth, 118. The cylinder pressure data is char­

acterized by a sampling period of 7r/360 rad. The model parameters are given the same 

numerical values as in Sections 3.3 and 4.3. These are: N = 6, r = 0.0635 m, I = 0.2571 

m, Jcr = 0.0745 kgm 2 , m,p = 6.03 kg, Ap = 0.01188 m 2 . The phase origin is the top dead 

center of the first cylinder to fire, and 0 i = 0, 02 = 56.5, 03 = 120, 04 = 176.5, 05 = 240, 

06 = 296.5 degrees. The firing order is again: IL, 3R, 3L, 2R, 2L, 1R. Data acquisition 

is performed for a nominal speed LUQ = 125.7 rad/sec (1,200 rpm) and a dynamometer 

torque, T/ = 990 Nm. This load represents 75% of the engine peak torque. Tf = 156 

Nm is the value of the mechanical friction torque corresponding to a crankshaft angular 

velocity of UQ = 125.7 rad/sec and an overall damping coefficient of 1.24 Nmsec. 

5.3.1 T o r q u e E s t i m a t i o n a n d P r e s s u r e A p p r o x i m a t i o n 

The testing set consists of 6 different actuator faults and the normal operating condition. 

The actuator fault consists of a 10% drop in cylinder fueling. The root mean square 

(RMS) error is defined as the standard deviation of the torque residual, Tp = Tp — Tp: 

The gas pressure torque is estimated from (5.3). The residual to signal ratio (RSR) is: 

(5.9) 

RSR = 
RMS error 

100% (5.10) 
°(TP) 
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degrees 

Figure 5.1: Actual (solid line), and the estimated (dashed line) gas pressure torque fluctuation 
during one crankshaft revolution for the normal operation condition. 

where cr(Tp) is the standard deviation of the actual gas pressure torque. The same 

performance indicators are used to assess the magnitude of the pressure residual, P = 

P - P . 

Figures 5.1 and 5.2 present the estimated gas pressure torque, Tp(6), corresponding 

to two test cases—normal operating condition, and an under-fueling fault in cylinder 

1R. The results are obtained after the elimination of the harmonic torque fluctuation, 

A T = r^sin(i9 + 7 ) , where Th is the amplitude of the torque fluctuation, and 7 is the 

phase (see Chapter 4). In the case of normal operation (see Figure 5.1), the engine 

moment of inertia is JE — 3.85 kgm 2 , and the mean value for the gas pressure torque is 

Tp = 856 Nm. The resulting RMS error has a value of 196.2 Nm, which corresponds to 

a RSR of 35%. In the case of an under-fueling fault in cylinder 1R (see Figure 5.2), the 

engine moment of inertia is JE = 5 kgm 2, and the mean value for the gas pressure torque 

is Tp = 1215 Nm. The resulting RMS error has a value of 271.4 Nm, which corresponds 
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d e g r e e s 

Figure 5.2: Actual (solid line), and estimated (dashed line) gas pressure torque fluctuation 
during one crankshaft revolution corresponding to an under-fueling fault in the first cylinder of 
the right bank (cylinder 6). 

to a RSR of 38%. The gas pressure torque for the faulty operation is estimated by a 

RMS torque error range of 271.4 Nm to 308.7 Nm, which corresponds to a RSR range 

of 38% and 43%. The worst results are associated with a fault in cylinder 2L. The best 

results are obtained for an under-fueling fault in cylinder 1R. 

Figure 5.3 illustrates the actual and the estimated pressure waveform for the normal 

operation of cylinder 3L. We used (5.5) and the following values: P 3

m a x = 11.8 MPa, 

w = 5.5, and P0 = 0.5 MPa for the approximation of P3(9). The RMS pressure error is 

0.149 MPa. This corresponds to a RSR of 5%. For the normal operating condition, this 

functional approximation is characterized by a RMS pressure error range of 0.145 M P a 

to 0.177 MPa, which corresponds to a RSR range of 5% to 6%. The smallest error is 

obtained for cylinder IL. 
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F i g u r e 5.3: Illustrates a typical cylinder pressure waveform (solid line) and its approximat ion 
(circles) as per (5.5). The phase corresponds to the th i rd firing cylinder. 

5.3.2 Fault Detect ion and Isolation Results 

We considered the problem of fault detection and isolation. The procedure uses 6 pressure 

templates determined by taking into consideration each cylinder firing phase, fa. A l l the 

6 pressure waveforms are characterized by (5.5) with the same values p P a x = p m a x = n 

MPa, and uii = w = 5.5, i = 1,... 6. The estimated parameters, <5P7; are obtained using a 

standard least-squares technique, and their values are presented in Table 5.1. A n under-

fueling fault in the i-th firing cylinder can be determined exactly by the value of the 

estimated pressure variation, <5P, using the decision rule: 

6Pi = min 6Pk. (5.11) 

fc=l,...6 

This detection problem can be formulated also from the perspective of the Bayes classifier 

[47, pp. 221-233]. 

The two classes are determined from the estimates presented in Table 5.1: faulty 

cylinder, which corresponds to a mean pressure variation, Spf — 0.83 MPa, and healthy 



Chapter 5. Pressure Waveform Reconstruction 56 

Table 5.1: Estimated pressure variation parameters, SP, (MPa) for the normal condition, and 
the 6 different under-fueling faults using the impulse like template described by (5.5). 

Faulty Cylinder SPi 6P2 SP3 
8P4 SP5 6P6 

None 1.01 1.09 1.09 1.10 1.15 1.06 
1 0.78 1.05 1.08 1.11 1.10 0.93 
2 0.90 0.79 1.03 1.09 1.14 0.95 
3 0.96 0.89 0.80 0.96 1.16 1.07 
4 1.05 1.04 0.95 0.87 1.10 1.02 
5 1.01 1.10 1.02 0.99 0.93 0.99 
6 0.97 1.10 1.07 1.05 1.07 0.78 

cylinder, which corresponds to a mean pressure variation, Sph = 1-04 MPa. The noise is 

assumed Gaussian with zero mean and a calculated standard deviation of crn — 0.07. If 

the data is assumed Gaussian, 95% of the estimated pressure variation samples, <5P,; lie 

within ±2er n of the mean estimate, Sph-

0.9 < SPi < 1.18. 

Large changes in the value of the estimated parameter can be used for the detection and 

isolation of the faulty engine cylinder. For example, a fault in the first firing cylinder (IL) 

results in a 23% decrease in 6Pi, and a fault in the second firing cylinder (3R) results in 

a 28% decrease in SP2. 

Under-fueling faults are thus uniquely determined by the values of the estimated 

pressure variation, Sp, i — 1,... 6. The same parameter allows the reconstruction of the 

cylinder pressure waveform by correcting the value of pP3* initially assigned in (5.5): 

The pressure waveform reconstruction is characterized by a RMS pressure error range of 

0.155 MPa to 0.277 MPa for the normal operating condition. This corresponds to a RSR 

range of 5% to 10%. 
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Figure 5.4: Actual (solid line), and estimated (dashed line) gas pressure waveform during one 
crankshaft revolution corresponding to an under-fueling fault in cylinder 1R. 

For each of the six under-fueling faults, the pressure waveform corresponding to the 

faulty cylinder is reconstructed. The RMS error range is of 0.155 MPa to 0.386 MPa. 

The corresponding RSR range is 7% and 18%. 

The best results (RSR from 5% to 9%) are obtained in the case of an under-fueling 

fault in the six firing cylinder (1R). This situation is illustrated in Figure 5.4- Using 

this correction (see (5.12)) we are also able to improve the estimation of the gas pressure 

torque, Tp{6). The new estimate is plotted in Figure 5.5, for the normal operation. The 

RMS torque error is reduced to 99.24 Nm, and this corresponds to a RSR of 14%. 

The case of an under-fueling fault in cylinder 1R is illustrated in Figure 5.6. The 

RMS torque error reduces to 85.7 Nm, and the RSR is 12%. 

These results are compatible with those reported in [34] for the calculation of only 

the peak cylinder pressure. Our procedure has the advantage that the overall pressure 

waveform can be reconstructed using (5.5) and the correction (5.12). This approach is 
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Figure 5.5: Actual (solid line), and the estimated (dashed line) gas pressure torque during 
one crankshaft revolution for the normal operating condition, using the correction described in 
(5.12). 
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Figure 5.6: Actual (solid line), and estimated (dashed line) gas pressure torque during one 
crankshaft revolution corresponding to an under-fueling fault in cylinder 1R, taking into con­
sideration (5.12) 
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simpler and less computationally demanding than the stochastic techniques reported in 

[5, 44]. 



Chapter 6 

Summary, Discussion, and Conclusions 

What we call the beginning is often the end 

And to make an end is to make a beginning 

The end is where we start from. 

T. S. Eliot, Little Gidding 

The concept of analytical redundancy emphasizes the use of accurate dynamic and static 

models for data processing and analysis. The major benefit is realized in the low cost and 

flexibility of a software implementation versus a hardware implementation. A combina­

tion of analytical and physical redundancy is almost always necessary for a fault-tolerant 

system to maintain its function in the presence of certain failures. On the other hand, 

the paradigm of analytical redundancy has the advantage of fully exploiting the engine 

model and thus extracting information that otherwise might be difficult to obtain. This 

was the motivation for pursuing three directions of investigation: engine modeling and 

validation, parameter identification, and pressure waveform reconstruction. 

Chapter 2 established a global framework for our analysis. The field of model-based 

fault detection and isolation was linked to the problem of system state and parameter 

identification. The latter option, parametric identification, was pursued in our study 

because of its ability to detect early system faults. 
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where 
SPi 

8P = 

5PN 

and 

$ = v PMciie - fa), PN{e)Cl{e - <t>N) 

We analyzed the use of the engine model in solving the inverse dynamics, and thus pro­

viding an estimate for the torque due to gas pressure. We investigated a meaningful 

procedure for pressure waveform reconstruction based on the functional approximation 

introduced in (5.5). We are able to detect and isolate cylinder under-fueling faults us­

ing a standard least-squares identification method. The steps of our procedure can be 

summarized as follows: 

1. Calculate the derivative 6u>', using the measured angular velocity fluctuation, 8to. 

2. Calculate the initial estimated pressure torque, Tp, using (5.3). 

3. Obtain the least-squares estimates of the pressure variations, 8Pi, using (5.5) and 

4. Determine the new estimate of the gas pressure torque, Tp, using (5.8). 

5. Reconstruct the cylinder pressure waveforms using (5.5) and (5.7). 

5.3 S imula t ion Methods 

The simulation is performed with the M A T L A B package and the programs are listed in 

Appendix B. The main functions are: 

• diff cm which implements a smooth differentiator, 

(5.7). 
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• tpe.m which implements (5.3), 

• dlt.m which implements (5.5), and 

• pwr.m which calculates the pressure variation vector, SP. 

The angular velocity is sampled at a period of -zr/59 rad. This sampling period corre-

acterized by a sampling period of 7r/360 rad. The model parameters are given the same 

numerical values as in Sections 3.3 and 4.3. These are: TV = 6, r = 0.0635 m, I = 0.2571 

m, Jcr = 0.0745 kgm 2 , mp = 6.03 kg, Ap = 0.01188 m 2 . The phase origin is the top dead 

center of the first cylinder to fire, and fa = 0, fa — 56.5, 03 = 120, 04 = 176.5, fa = 240, 

06 = 296.5 degrees. The firing order is again: IL, 3R, 3L, 2R, 2L, 1R. Data acquisition 

is performed for a nominal speed U>Q — 125.7 rad/sec (1,200 rpm) and a dynamometer 

torque, T/ = 990 Nm. This load represents 75% of the engine peak torque. Tf = 156 

Nm is the value of the mechanical friction torque corresponding to a crankshaft angular 

velocity of UJQ = 125.7 rad/sec and an overall damping coefficient of 1.24 Nmsec. 

5.3.1 T o r q u e E s t i m a t i o n a n d P r e s s u r e A p p r o x i m a t i o n 

The testing set consists of 6 different actuator faults and the normal operating condition. 

The actuator fault consists of a 10% drop in cylinder fueling. The root mean square 

(RMS) error is defined as the standard deviation of the torque residual, Tp = Tp — Tp: 

The gas pressure torque is estimated from (5.3). The residual to signal ratio (RSR) is: 

sponds to the total number of flywheel teeth, 118. The cylinder pressure data is char-

RMS torque error = (5.9) 

RSR = 
RMS error 

100% (5.10) 
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Figure 5.1: Actual (solid line), and the estimated (dashed line) gas pressure torque fluctuation 
during one crankshaft revolution for the normal operation condition. 

where cr(Tp) is the standard deviation of the actual gas pressure torque. The same 

performance indicators are used to assess the magnitude of the pressure residual, P = 

P-P. 

Figures 5.1 and 5.2 present the estimated gas pressure torque, Tp(9), corresponding 

to two test cases—normal operating condition, and an under-fueling fault in cylinder 

1R. The results are obtained after the elimination of the harmonic torque fluctuation, 

A T = ThSm(0 + 7), where Th is the amplitude of the torque fluctuation, and 7 is the 

phase (see Chapter 4). In the case of normal operation (see Figure 5.1), the engine 

moment of inertia is JE = 3.85 kgm 2, and the mean value for the gas pressure torque is 

T p = 856 Nm. The resulting RMS error has a value of 196.2 Nm, which corresponds to 

a RSR of 35%. In the case of an under-fueling fault in cylinder 1R (see Figure 5.2), the 

engine moment of inertia is JE = 5 kgm 2, and the mean value for the gas pressure torque 

is Tp = 1215 Nm. The resulting RMS error has a value of 271.4 Nm, which corresponds 
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Figure 5.2: Actual (solid line), and estimated (dashed line) gas pressure torque fluctuation 
during one crankshaft revolution corresponding to an under-fueling fault in the first cylinder of 
the right bank (cylinder 6). 

to a RSR of 38%. The gas pressure torque for the faulty operation is estimated by a 

RMS torque error range of 271.4 Nm to 308.7 Nm, which corresponds to a RSR range 

of 38% and 43%. The worst results are associated with a fault in cylinder 2L. The best 

results are obtained for an under-fueling fault in cylinder 1R. 

Figure 5.3 illustrates the actual and the estimated pressure waveform for the normal 

operation of cylinder 3L. We used (5.5) and the following values: p™** = H.8 MPa, 

w = 5.5, and Po = 0.5 MPa for the approximation of Pz(9). The RMS pressure error is 

0.149 MPa. This corresponds to a RSR of 5%. For the normal operating condition, this 

functional approximation is characterized by a RMS pressure error range of 0.145 MPa 

to 0.177 MPa, which corresponds to a RSR range of 5% to 6%. The smallest error is 

obtained for cylinder 1L. 
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Figure 5.3: Illustrates a typical cylinder pressure waveform (solid line) and its approximation 
(circles) as per (5.5). The phase corresponds to the third firing cylinder. 

5.3.2 Fault Detect ion and Isolation Results 

We considered the problem of fault detection and isolation. The procedure uses 6 pressure 

templates determined by taking into consideration each cylinder firing phase, fa. A l l the 

6 pressure waveforms are characterized by (5.5) with the same values p™3* = p m a x — \ \ 

MPa, and = w = 5.5, i = 1,.. . 6. The estimated parameters, SPi are obtained using a 

standard least-squares technique, and their values are presented in Table 5.1. A n under-

fueling fault in the i-th firing cylinder can be determined exactly by the value of the 

estimated pressure variation, 6Pi using the decision rule: 

SPi = min SPk. (5.11) 

fc=l,...6 

This detection problem can be formulated also from the perspective of the Bayes classifier 

[47, pp. 221-233]. 

The two classes are determined from the estimates presented in Table 5.1: faulty 

cylinder, which corresponds to a mean pressure variation, Spf = 0.83 MPa, and healthy 
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Tab l e 5.1: Es t imated pressure variat ion parameters, SPi (MPa ) for the normal condit ion, and 
the 6 different under-fueling faults using the impulse like template described by (5.5). 

F a u l t y C y l i n d e r SPi SP2 SP3 8P4 SP5 SP6 

None 1.01 1.09 1.09 1.10 1.15 1.06 

1 0.78 1.05 1.08 1.11 1.10 0.93 
2 0.90 0.79 1.03 1.09 1.14 0.95 

3 0.96 0.89 0.80 0.96 1.16 1.07 

4 1.05 1.04 0.95 0.87 1.10 1.02 

5 1.01 1.10 1.02 0.99 0.93 0.99 

6 0.97 1.10 1.07 1.05 1.07 0.78 

cylinder, w h i c h corresponds to a mean pressure va r i a t i on , Sph = 1-04 M P a . T h e noise is 

assumed G a u s s i a n w i t h zero m e a n and a ca l cu la t ed s t a n d a r d dev i a t i on of ern = 0.07. If 

the d a t a is assumed G a u s s i a n , 9 5 % of the es t imated pressure va r i a t i on samples , SPi l ie 

w i t h i n ±2cr n of the m e a n est imate , Sph'-

0.9 < SPi < 1.18. 

La r ge changes i n the va lue of the es t imated parameter can be used for the de t ec t i on a n d 

i so l a t i on of the fau l ty engine cy l inder . Fo r example , a fault i n the first f i r ing c y l i nde r ( I L ) 

resul ts i n a 2 3 % decrease i n SP\, and a fault i n the second firing cy l inde r (3R) resul ts i n ' 

a 2 8 % decrease i n SP2. 

Under - fue l i ng faul ts are thus un ique l y de te rmined by the values of the e s t ima ted 

pressure v a r i a t i o n , SPi, i — 1 , . . . 6. T h e same parameter a l lows the r e cons t ruc t i on of the 

cy l inde r pressure wave form by cor rec t ing the value of _ p . m a x i n i t i a l l y ass igned i n (5.5): 

p ™ a x = 8PiPma*. (5.12) 

T h e pressure wave form recons t ruc t i on is character i zed by a R M S pressure-error range of 

0.155 M P a to 0.277 M P a for the n o r m a l ope ra t ing cond i t i on . T h i s corresponds to a R S R 

range of 5% to 10%. 
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Figure 5.4: Actual (solid line), and estimated (dashed line) gas pressure waveform during one 
crankshaft revolution corresponding to an under-fueling fault in cylinder 1R. 

For each of the six under-fueling faults, the pressure waveform corresponding to the 

faulty cylinder is reconstructed. The RMS error range is of 0.155 MPa to 0,386 MPa. 

The corresponding RSR range is 7% and 18%. 

The best results (RSR from 5% to 9%) are obtained in the case of an under-fueling 

fault in the six firing cylinder (1R). This situation is illustrated in Figure 5.4. Using 

this correction (see (5.12)) we are also able to improve the estimation of the gas pressure 

torque, Tp(9). The new estimate is plotted in Figure 5.5, for the normal operation. The 

RMS torque error is reduced to 99.24 Nm, and this corresponds to a RSR of 14%. 

The case of an under-fueling fault in cylinder 1R is illustrated in Figure 5.6. The 

RMS torque error reduces to 85.7 Nm, and the RSR is 12%. 

These results are compatible with those reported in [34] for the calculation of only 

the peak cylinder pressure. Our procedure has the advantage that the overall pressure 

waveform can be reconstructed using (5.5) and the correction (5.12). This approach is 
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F i g u r e 5.5: A c t u a l ( so l id l ine ) , a n d th e e s t i m a t e d ( dashed l ine ) gas p r essure t o r q u e d u r i n g 

one c r a n k s h a f t r e v o l u t i o n for the n o r m a l o p e r a t i n g c o n d i t i o n , u s i n g t h e c o r r e c t i o n d e s c r i b e d i n 

(5.12) . 

d e g r e e s 

F i g u r e 5.6: A c t u a l ( so l id l ine ) , a n d e s t i m a t e d ( dashed l ine ) gas p r essure t o r q u e d u r i n g one 

c r a n k s h a f t r e v o l u t i o n c o r r e s p o n d i n g to a n u n d e r - f u e l i n g f au l t i n c y l i n d e r 1 R , t a k i n g i n t o c o n ­

s i d e r a t i o n (5.12) 
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simpler and less computationally demanding than the stochastic techniques reported in 

[5, 44]. 



Chapter 6 

Summary, Discussion, and Conclusions 

What we call the beginning is often the end 

And to make an end is to make a beginning 

The end is where we start from. 

T. S. Eliot, Little Gidding 

The concept of analytical redundancy emphasizes the use of accurate dynamic and static 

models for data processing and analysis. The major benefit is realized in the low cost and 

flexibility of a software implementation versus a hardware implementation. A combina­

tion of analytical and physical redundancy is almost always necessary for a fault-tolerant 

system to maintain its function in the presence of certain failures. On the other hand, 

the paradigm of analytical redundancy has the advantage of fully exploiting the engine 

model and thus extracting information that otherwise might be difficult to obtain. This 

was the motivation for pursuing three directions of investigation: engine modeling and 

validation, parameter identification, and pressure waveform reconstruction. 

Chapter 2 established a global framework for our analysis. The field of model-based 

fault detection and isolation was linked to the problem of system state and parameter 

identification. The latter option, parametric identification, was pursued in our study 

because of its ability to detect early system faults. 

60 



Chapter 6. Summary, Discussion, and Conclusions 61 

6.1 M o d e l i n g and Val ida t ion 

The model we developed in Chapter 3 was configured to correspond to the D D C 6V 

92TA Detroit Diesel engine. The analytical methodology followed that of C. F. Taylor 

[28, pp. 240-305], and the testing was performed using data supplied by the Institute 

for Machinery Research, National Research Council. The system inputs were given by 

cylinder combustion pressures, and its output is represented by the flywheel angular 

velocity fluctuation. Both are expressed as functions of the crank angle. A drawback 

of our modeling technique derives from the assumptions that the crankshaft is perfectly 

rigid and the engine operates at steady state. This was compensated by the accuracy 

of the model which, after a change of state variable, is a first order linear ^-variant 

multi-input single output system. 

The diesel engine model was validated using the M A T L A B simulation package, and 

its effectiveness was measured by the root mean square (RMS) error, and the residual 

to signal ratio (RSR). The use of an unified performance index allowed us to assess each 

method using a similar scale, and thus provided the first step towards the integration of 

these three techniques in a condition monitoring system. 

6.2 Parameter Identification 

The prediction capability of the model was improved via a parametric identification 

procedure in Chapter 4. The estimated parameters were the engine mass moment of 

inertia, and the harmonic torque fluctuation, which we attributed to the crankshaft 

vibration and oscillatory behaviour of the dynamometer loading. The estimation of this 

unmodeled torque reduced the error created by those modeling assumptions. 

We used three identification methods: off-line standard least-squares, on-line gradient 

estimator, and recursive least-squares with exponential forgetting. The results obtained 
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were similar with these three methods. For the normal operation we obtained an esti­

mated engine inertias between 3.85 kgm 2 and 3.90 kgm 2. For the six fault conditions, 

the estimated engine inertia had values between 4.88 kgm 2 and 5.17 kgm 2 . In the case 

of cylinder under-fueling faults, the amplitude of the estimated torque fluctuation is 

approximately 10 times larger than in the case of normal operation. 

The correct prediction of the six under-fueling faults was characterized by a RSR range 

of 13% to 24%. In addition, the detection of a cylinder under-fueling fault condition was 

accomplished by observing the change in a parameter's mean and standard deviation. For 

example, the under-fueling of cylinder IL caused a 6% change in the mean, and a 620% 

increase in the standard deviation of the inertia estimated with the gradient estimator. 

For the same case, the least-squares estimator with exponential forgetting indicated a 

16% change in the mean and a 327% change in the standard deviation of the estimated 

engine inertia. 

Alternatively, large changes in estimated parameter standard deviation can be used for 

the elimination of fault misclassification. We considered the case when an under-fueling 

fault in cylinder 3R is misclassified as a fault in cylinder IL. The gradient estimator 

showed a 227% change in the standard deviation of estimated inertia. The least-squares 

estimator with exponential forgetting recorded a 302% change for the same variable. 

6.3 Pressure Waveform Reconstruct ion 

In Chapter 5 we investigated the procedure for pressure waveform reconstruction using 

the engine model and angular velocity measurements. Because our model implements a 

multi-input single output system, it was not possible to explicitly decouple the inverse 

dynamics. We therefore considered two approaches. First, we redefined the system input 

and we rewrote the engine model as a single input single output system. The new input 
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was then the torque due to gas pressure. 

Secondly, we approximated the cylinder pressure waveforms with a periodic continu­

ous impulse-like function. Using this template-based approach we were able to exactly 

identify the condition of each cylinder, and to improve the estimation procedure for the 

gas pressure torque. Initial simulation of normal operating condition resulted in a RMS 

error of 196.2 Nm, while the template-based approach resulted in a RMS torque error of 

only 99.24 Nm. 

In the case of an under-fueling fault, the gas pressure torque was initially estimated 

with a RMS error between 271.4 Nm and 308.7 Nm, while the pressure-template approach 

reduce the final RMS torque error to the range of 85.7 Nm to 198.1 Nm. 

6.3.1 Ind iv idua l Cy l inder Pressure Reconstruct ion 

Cylinder pressure waveforms were approximated by an impulse-like periodic function. 

For the normal operating condition, this functional approximation was characterized by 

a RMS pressure error between 0.145 MPa and 0.177 MPa, which correspond to a RSR 

range of only 5% to 6%. 

The torque due to gas pressure waveform reconstruction was obtained from the super­

position of the six individual pressure waveform templates. A l l 6 pressure waveforms are 

initially characterized by the same maximum value and width. The estimated pressure 

variations were obtained using a standard least-squares technique. A n under-fueling fault 

in the i-th cylinder could be determined exactly by the minimum value of the estimated 

pressure variation. The RMS pressure error was between 0.155 MPa and 0.277 M P a for 

the normal operating condition corresponding to a RSR between 5% and 10%. 

For each of the six under-fueling faults, the pressure waveform corresponding to the 

faulty cylinder was reconstructed. The RMS error was between 0.155 M P a and 0.386 

MPa. The RSR was between 7% and 18%. 
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6.4 Towards Cond i t ion M o n i t o r i n g 

In the foregoing work, we have laid the groundwork for a diesel engine condition moni­

toring system. In short, we have developed and validated a model, and shown its utility 

in detecting faults using two separate strategies—parameter estimation, and cylinder 

pressure reconstruction. In the latter strategy, we have introduced a new template-based 

scheme for estimating individual cylinder pressures. These results suggest a condition 

monitoring scheme which is highly sensitive to input variation due to fueling faults. Fur­

thermore, reconstructed torque due to gas pressure by superposition of the templates 

results in very accurate estimates—RSR of about 5%—which are as good as the best 

results reported in the literature. 

The integration of these three methods (modeling and validation, parametric iden­

tification, and pressure waveform reconstruction) exploits the use of the diesel engine 

model from the perspective of the analytical redundancy paradigm. Our simulation re­

sults suggest that parametric identification methods represent important tools for solving 

engine fault detection and isolation problems. Parameter means and standard deviations 

were used to differentiate between healthy and faulty conditions, and to eliminate mis-

classifications of faulty cylinders. Using a combination of functional approximation and 

parametric identification techniques we were able to determine the condition of each 

cylinder and to reconstruct close approximations to the cylinder pressure waveforms. 

j 
6.5 Conclusions 

A new method for computing individual cylinder pressures from crankshaft velocity vari­

ation has been developed. The pressure template-based method provides estimates of 

pressure to an accuracy of 5% residual to signal ratio. 

The single cylinder model of C. F. Taylor [28, pp. 240-305] has been transformed 
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to a model based on engine speed fluctuation as a function of pressure input. The 

engine model was further modified to multiple cylinders, and was linearized in state and 

parameters. The resulting model was validated using recorded data to produce a RMS 

estimation error of 0.0559 rad/sec for the normal operating condition. 

The above model, improved by parametric identification allowed the correction for 

harmonic torque fluctuation, and the identification of total engine inertia. 



Nomenclature 

We have used the following notation: 

m JE = engine mass moment of inertia (kgm2); 

• Jcr = connecting rod mass moment of inertia (kgm2); 

• mt + mr = total connecting rod mass (kg); 

• rn,p = mass of the reciprocating parts (kg); 

• Ap — piston crown area (m2); 

• r — crankshaft radius (m); 

• I = connecting rod length (m); 

• TE = total engine torque (Nm); 

• Tp = torque due to gas pressure (Nm) and thus, Tp = estimated gas pressure torque 

(Nm), Tp = torque residual, and Tp — mean pressure torque (Nm); 

• Tt = torque due to the inertia of the reciprocating masses (Nm); 

• Tr = torque due to the angular acceleration of the connecting rod (Nm); 

• Tf = friction torque (Nm); 

• Ti = load torque (Nm); 

• A T = unmodeled harmonic torque fluctuation (Nm) and thus, A T = estimated 

torque fluctuation (Nm); 
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• Th = torque fluctuation amplitude (Nm); 

• 7 = torque phase (degrees); 

• N = number of cylinders, or number of system inputs; 

• Nm = number of measurements (data points); 

• 9 = crank angle (degrees or rad), and thus, 9 = LO angular velocity (rad/sec), and 

9 = co angular acceleration (rad/sec2); 

• LOQ = nominal engine speed (rpm or rad/sec); 

• 8u> = measured angular velocity fluctuation, and thus 8to = estimated crankshaft 

angular velocity fluctuation, and SCo = angular velocity residual (rad/sec); 

• Qh = velocity residual amplitude (rad/sec); 

• a = angle between the connecting rod axis and the cylinder axis (degrees or rad), 

and thus, a = connecting rod angular velocity (rad/sec), and a = connecting rod 

angular acceleration (rad/sec2); 

• s = piston position (m), and thus, i = piston velocity (m/sec), and s — piston 

acceleration (m/sec2); 

• Pi = pressure in the i-th cylinder (MPa); 

• 8Pi = pressure variation and thus, 8Pi = estimated pressure variation; 

• 4>i = phase shift corresponding to the i-th cylinder (degrees); 

• x G Rn system state with XQ = initial condition, and thus, x = estimated state, 

and x = state estimation error. In the case of the engine model, x = LO2, and the 

state is described by the variable 8x G R; 
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• u E RN system input, u estimated system input, and uc = control law. For the 

engine model the input is represented by N = 6 cylinder pressures; 

• y & R system output, and thus, y — predicted output, and y = prediction error. 

For the engine model, y = Scu; 

• Y = corrected engine torque, output of the identification model; 

• yd = desired trajectory, and e = tracking error; 

• p G Rq vector of system parameters and thus, p = parameter estimates, and p = 

parameter estimation error; 

• A, c, and B, b or b' = engine model coefficients; 

• i] — measurement noise; 

• d = process disturbance; 

• H = gain of the Beard-Jones filter; 

• c i ) c2> c3, c4 = geometrical coefficients; 

• cn, C12, C33, C34 = torque coefficients; 

• E = performance index; 

• $ = signal matrix; 

• XJ/Q = gain matrix for the gradient estimator; 

• \T/ = variable gain matrix for the least-squares estimator with exponential forget­

ting; 

• A = forgetting factor; 



Nomenclature 

• a — standard deviation. 
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A p p e n d i x A 

Test C e l l Descr ipt ion 

A n I B M - P C computer equipped with analog to digital (A/D) conversion board and a 

pulse-timer board is used for high speed data acquisition. In order to reduce equipment 

cost, only two cylinder pressure signals are acquired (one "healthy" cylinder and one 

under-fueled cylinder). Data from 2 channels (2 cylinder pressures) are sampled simul­

taneously by the sample and hold preamplifiers; a multiplexer directs each sample to the 

A / D converter. The A / D converter is triggered by an index signal, bottom dead centre 

(BDC) of the first left (1L) cylinder, from an optical shaft encoder connected to the 

crankshaft. The optical shaft encoder is used for measuring the crank angle. The resolu­

tion is 360 pulses per revolution. The flywheel proximity sensor is a sensing-transduction 

coil which uses the magnetic pick-up principle. The signal conditioning system includes 

charge amplifiers with very high input impedance suitable for use with piezoelectric 

cylinder pressure gauges. The signal from the crankshaft/flywheel proximity sensor is 

passed through a zero-crossing circuit to produce digital pulses which are then fed to the 

pulse-timer input of the data acquisition system. The variations of angular velocity are 

measured indirectly by recording the number of clock cycles (absolute time) between two 

successive crank angle sampling intervals. Each measurement is repeated for different 

brake (dynamometer load) torque values and with several levels of fuel starvation. The 

proposed data acquisition system is very similar to the one used by the Institute for 

Machinery Research (IMR). 
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DDC6V92TA proximity signal sensor conditioning 

TJ 
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LH flywheel 

S T 1 

charge amps. 
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• IP 

Pulse/Timer 
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• 

PC AT 

„ CLX 
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Figure A . l : Illustrates a data acquisition system for measuring cylinder pressures and 
crankshaft/flywheel speed variations. 



Appendix B 

Program Listings 

cl.m 

function y = c_l(theta,r,l) 
M '/.FUNCTION 

'/.ARGUMENTS : 
7. 
7. 
7.RETURNS : 
x=r/l; 
fll=sin(theta)."2; 
fl2=sqrt(ones(size(theta))-(x~2)*f11); 
y=sin(theta)+x*sin(theta).*cos(theta)./fl2; 

C_l 
r 
1 
theta 
y 

= crankshaft radius (m); 
= connecting rod length (m); 
= crank angle (rad); 
= the ratio v/(r.w). 

c2.m 

function y = c_2(theta,r,l) 
7.FUNCTI0N C_2.M 
7.ARGUMENTS: r 
7. 1 
7. theta 
7.RETURNS: y 
x=r/l; 
calpha=sqrt(ones(size(theta))-(x~2)*sin(theta).~2); 
xx=x*cos(theta)./calpha; 
y=(ones(size(theta))+xx).*(cos(theta)+... 
x.*(xx-ones(size(theta))).*(sin(theta)."2)./calpha); 

= crankshaft radius (m); 
= connecting rod length (m); 
= crank angle (rad); 
= acceleration coefficient. 

c3.m 

3(theta,r,l) 
C_3.M 
r = crankshaft radius; 
1 = connecting rod length; 
theta = crank angle; 
y = c3 acceleration coefficient. 

function y = c 
7.FUNCTI0N 
7.ARGUMENTS: 
7. 
7. 
7.RETURNS: 
x=r/l; 
calpha=sqrt(ones(size(theta)) 
(x~2)*sin(theta)."2); 
y=x*cos(theta)./calpha; 
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c4.m 

function y = c_4(theta,r,1) 
'/.FUNCTION C_4.M 
'/.ARGUMENTS: r 
'/. 1 
'/„ theta 
"/.RETURNS: y 
x=r/l; 
calpha=sqrt(ones(size(theta))-
(x~2)*sin(theta).~2); 
xx=x*cos(theta)./calpha; 
y=x*(sin(theta)).*(xx.~2- . . . 
ones(size(theta)))./(calpha); 

crankshaft radius; 
connecting rod length; 
crank angle; 
c4 acceleration coefficient. 

cmpal l .m 

'/.CMPALL.M 
'/.Calls: demol.m, rmse.m, rot.m 
dispC NORMAL OPERATING CONDITION') 
wOhat=demol(0,wO) ; 
dispCROOT MEAN SQUARE velocity error (rad/sec):') 
eO=rmse(wO-0.8325*w0hat) 
dispC RESIDUAL TO SIGNAL RATIO ('/„):') 
RSRO=eO/rmse(wO)*100 
figure(1) 
plot(ca0*180/pi,w0,ca0*180/pi,.8325*w0hat,':') 
xlabel('degrees') 
ylabel('rad/sec') 
title('Estimated (..) and Actual (—) Velocity Fluctuation') 
dispCPress any key to continue...') 
pause 
dispC TESTING 6 ACTUATOR FAULTS') 
disp('The actuator fault is defined as') 
dispClO 1/. under-fueling of each cylinder at a time.') 
wlhat=demol(1,wll); 
w2hat=demol(2,w21); 
w3hat=demol(3,wlr) ; 
w4hat=demol(4,wll); 
w5hat=demol(5,w3r); 
w6hat=demol(6,w31); 
wlx = wlhat + rot(wlhat,59); 
w2x = w2hat + rot(w2hat,59); 
w3x = w3hat + rot(w3hat,59); 
w4x = w4hat + rot(w4hat,59); 
w5x = w5hat + rot(w5hat,59); 
w6x = w6hat + rot(w6hat,59) ; 
wllx=wll+rot(wll,59) ; 
w3rx=w3r+rot(w3r,59) ; 
w31x=w31+rot(w31,59); 
w2rx=w2r+rot(w2r,59); 
w21x=w21+rot(w21,59); 
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w l r x = w l r + r o t ( w l r , 5 9 ) ; 
w l x=w lx -mean (w lx ) ; 
w2x=w2x-mean(w2x); 
w3x=w3x-mean(w3x); 
w4x=w4x-mean(w4x); 
w5x=w5x-mean(w5x); 
w6x=w6x-mean(w6x); 
w l l x = w l l x - m e a n ( w l l x ) ; 
w21x=w21x-mean(w21x); 
w31x=w31x-mean(w31x); 
w l r x = w l r x - m e a n ( w l r x ) ; 
w2rx=w2rx-mean(w2rx ) ; 
w3rx=w3rx-mean(w3rx ) ; 
d i s p ( ' E l i m i n a t i o n o f t h e S i n u s o i d a l T r e n d ' ) 
d i s p C T h e RMS v e l o c i t y e r r o r s ( r ad/ sec ) a n d ' ) 
d i s p C t h e c o r r e s p o n d i n g RSRs (%)') 
d i s p C a r e d i s p l a y e d i n t h e c y l i n d e r o r d e r : ' ) 
e l = r m s e ( w l l x - . 6 6 4 7 * w l x ) 
R S R l = e l / r m s e ( w l l x ) * 1 0 0 
e2=rmse (w3rx - .6154*w2x ) 
RSR2=e2/rmse (w3rx ) *100 
e3=rmse (w31x- .5599*w3x) 
RSR3=e3/rmse(w31x)*100 
e4=rmse (w2rx - .5897*w4x ) 
RSR4=e4/rmse (w2rx ) *100 
e5=rmse (w21x- .5820*w5x) 
RSR5=e5/rmse(w21x)*100 
e6= rmse (w l r x - . 7686*w6x ) 
RSR6=e6/rmse (w l rx ) *100 
d i s p C T h e a ve r a ge RMS e r r o r ( r ad/ sec ) i s : ' ) 
e_m=(el+e2+e3+e4+e5+e6)/6 
d i s p C T h e a ve r a ge RSR (*/.) i s : ' ) 
RSR_m=(RSR1+RSR2+RSR3+RSR4+RSR5+RSR6)/6 
f i g u r e ( 2 ) 
s u b p l o t ( 3 , 2 , 1 ) 
p l o t ( c a 0 * 1 8 0 / p i , w l l x , c a 0 * 1 8 0 / p i , . 6 * w l x , ' : ' ) 
x l a b e l ( ' d e g r e e s ' ) 
y l a b e l ( ' r a d / s e c ' ) 
s u b p l o t ( 3 , 2 , 2 ) 
p l o t ( c a 0 * 1 8 0 / p i , w 3 r x , c a 0 * 1 8 0 / p i , . 6 * w 2 x , ' : ' ) 
x l a b e l ( ' d e g r e e s ' ) 
y l a b e l ( ' r a d / s e c ' ) 
s u b p l o t ( 3 , 2 , 3 ) 
p l o t ( c a 0 * 1 8 0 / p i , w 3 1 x , c a 0 * 1 8 0 / p i , . 6 * w 3 x , ' : ' ) 
x l a b e l ( ' d e g r e e s ' ) 
y l a b e l ( ' r a d / s e c ' ) 
s u b p l o t ( 3 , 2 , 4 ) 
p l o t ( c a 0 * 1 8 0 / p i , w 2 r x , c a 0 * 1 8 0 / p i , . 6 * w 4 x , ' : ' ) 
x l a b e l ( ' d e g r e e s ' ) 
y l a b e l ( ' r a d / s e c ' ) 
s u b p l o t ( 3 , 2 , 5 ) 
p l o t ( c a 0 * 1 8 0 / p i , w 2 1 x , c a 0 * 1 8 0 / p i , . 6 * w 5 x , ' : ' ) 
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xlabel('degrees') 
yl a b e l ( ' r a d / s e c ' ) 
subplot(3,2,6) 
plot(ca0*180/pi,wlrx,ca0*180/pi,.6*w6x,':') 
xlabel('degrees') 
yl a b e l ( ' r a d / s e c ' ) 
disp('Press any key to continue... ') 
pause 

demol.m 

f u n c t i o n dwhat = demol(n,dw) 
"/.FUNCTION DEM01.M 
"/.ARGUMENTS: n 
7. 
7. dw 
7.RETURNS: dwhat 
7.Calls: geom.m, ldown.m 
gl o b a l ca caO xO w_0 
[pi p2 p3 p4 p5 p6] = ldown(n); 
[u,q,m] = geom(ca,pl,p2,p3,p4,p5,p6); 
uu = (x0*q + u); 
d = -mean(uu); 
dT = c a ( 2 ) - c a ( l ) ; 
dxhat = dw(l)*(2*w_0+dw(D) +. . . 
i g r ( ( u u + d)./m,dT); 
dwhat = sqrt(xO + dxhat) - w_0; 
dwhat=dwhat-mean(dwhat); 
dwhat=rot(interpl(ca,dwhat,caO),1); 

integer corresponding to 
the down c y l i n d e r ; 
a c t u a l angular v e l o c i t y ; 
estimated angular v e l o c i t y . 

demo2.m 

f u n c t i o n [JEhatOl,JEhat02,JEhat03,TLhat01,... 
TLhat02,TLhat03,dwhat01,dwhat02, . . . 
dwhat03,rms,rsr]=demo2(n,dw,PARO) 
7.FUNCTI0N DEM02.M 
7.ARGUMENTS: n = c y l i n d e r number; 
%' dw = angular v e l o c i t y waveform; 
7. PARO = parameter i n i t i a l i z a t i o n ; 
7.RETURNS: JEhatOl = estimated engine i n e r t i a using 
7. standard least-squares; 
7. JEhat02 = estimated engine i n e r t i a using 
7. the re c u r s i v e gradient estimator; 
7, JEhat03 = estimated engine i n e r t i a using 
7. least-squares with exponential f o r g e t t i n g 
7. TLhatOl = estimated torque f l u c t u a t i o n using SLS; 
7. TLhat02 = estimated torque f l u c t u a t i o n using GE; 
7. TLhat03 = estimated torque f l u c t u a t i o n using LSEF; 
7. dwhatOl = estimated speed f l u c t u a t i o n using SLS; 
7, dwhat02 = estimated speed f l u c t u a t i o n using GE; 
7. dwhat03 = estimated speed f l u c t u a t i o n using LSEF; 
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% rms = vector of root mean square velocity errors; 
7. rsr = vector of residual to signal ratios. 
'/.Calls: ldown.m, diffc.m, sls.m, itgr.m, est.m, itls.m, rmse.m. 
p0=0.3; 
P0=diag([l 1 1 ] ) ; 
lambda=15; 
%crank angle for pressure sampling 
ca = [0:719]' /720 * 2 * p i ; 
'/.crank angle for velocity sampling 
caO = [0:117]'/118 * 2 * p i ; 
[pl,p2,p3,p4,p5,p6]=ldown(n); 
pl=interpl(ca,pl,caO); 
p2=interpl(ca,p2,caO); 
p3=interpl(ca,p3,caO) ; 
p4=interpl(ca,p4,caO) ; 
p5=interpl(ca,p5,caO) ; 
p6=interpl(ca,p6,caO) ; 
dca0=ca0(2)-ca0(l) ; 
dwp=diffc(dw,dcaO); 
[Y01,PHI01,PAR01,ERR01,JEhatOl,TLhatOl,epOl,dwhatOl]=... 
sIs(caO,p1,p2,p3,p4,p5,p6,dw,dwp); 
[ERR02,PAR02]=itgr(Y01,PHI01,pO,PARO); 
[JEhat02,TLhat02,ep02,dwhat02]=... 
est(PAR02,caO,pi,p2,p3,p4,p5,p6,dw,dwp); 
[ERR03,PAR03]=itls(Y01,PHI01,lambda,PO,PARO); 
[JEhat03,TLhat03,ep03,dwhat03]=... 
est(PAR03,caO,pl,p2,p3,p4,p5,p6,dw,dwp); 
rms=[rmse(epOl) rmse(ep02) rmse(ep03)]; 
rsr=[rmse(epOl) rmse(ep02) rmse(ep03)]/rmse(dw)*100; 

diffc.m 

function y = diffc(x,dT) 
'/.FUNCTION DIFFC.M 
'/.ARGUMENTS: x 
7. dT 
'/.RETURNS: y 
ll=length(x); 
for i=3:ll-2 
y(i)=(x(i+2)/4 + x(i+l)/2-... 
x(i-l)/2-x(i-2)/4)/2; 
end 
y(l)=(x(3)/4+x(2)/2-x(ll)/2 
x ( l l - l ) / 4 ) / 2 ; 
y(2)=(x(4)/4+x(3)/2-x(l)/2-... 
x(ll)/4)/2; 
y(ll)=(x(2)/4+x(l)/2-x(ll-l)/2 -... 
x(ll-2)/4)/2; 
y(ll-l)=(x(l)/4+x(ll)/2-x(ll-2)/2 -
x(ll-3)/4)/2; 
y=yVdT; 

= vector of samples; 
= crank angle interval; 
= smooth derivative. 



Appendix B. Program Listings 

d l t .m 

f u n c t i o n y=dlt(alpha,beta,gamma,x) 
'/.FUNCTION 
7.ARGUMRNTS: 
7. 
7. 
7. 
7.RETURNS: 

DLT.M 
alpha 
beta 
gamma 
x 
y 

y=beta./(beta~2*sin(x/2).~2+l); 
y=y*alpha-gamma; 

= impulse gain; 
= impulse width; 
= o f f s e t ; 
= crank angle vector; 
= p e r i o d i c impulse. 

est.m 

f u n c t i o n [JEhat,TLhat,ep,dwhat]=... 
est(PAR,caO,pl,p2,p3,p4,p5,p6,dw,dwp) 
7.FUNCTI0N EST.M 
7.ARGUMENTS: PAR = vector of estimated parameters 
7. caO = crank angle vector; 
7. p i = c y l i n d e r pressure, i = l , . . . , 6; 
7. dw = angular v e l o c i t y waveform; 
7, dwp = angular a c c e l e r a t i o n waveform; 
7oRETURNS: JEhat = vector of estimated i n e r t i a s ; 
7. TLhat = estimated torque f l u c t u a t i o n ; 
7. ep = v e l o c i t y r e s i d u a l s ; 
7. dwhat = estiamted angular v e l o c i t y ; 

3.m, c_4.m, igr.m. 
dwhat 

7.Calls: c_l.m, c_2.m, 
7.Engine data correspond to DDC 6V 92TA: 
w_0=125.5; 7.engine speed (rad/sec) 
b_c=1.24; 7.damping (Nm/(rad/sec)) 
m_p=6.03; 7.piston mass (kg) 
r=0.0635; 7.crankshaft radius (m) 
1=0.2571; 7oconnecting rod length (m) 
Ap=0.01188; 7.piston area (m"2) 
J_C=0.1544; 7.crankshaft i n e r t i a (kg m"2) 
J_CR=0.0745; 7oconnecting rod i n e r t i a (kg m~2) 
J_F=3.85; 7.flywheel i n e r t i a (kg nT2) 
x0=w_0~2; 
7.Pressure inputs: p l p2 p3 p4 p5 p6 
7.Firing order ( r i g h t hand ro t a t i o n ) : 
7.1L 3R 3L 2R 2L 1R 
7.1 2 3 4 5 6 
dca0=ca0(2)-ca0(l); 
cal=ca0; 
c _ l l = c _ l ( c a l , r , l ) ; 
c_21=c_2(cal,r,l); 
c_31=c_3(cal,r,l); 
c_41=c_4(cal,r,l); 
ca2=cal-(60-3.5)*pi/180; 
c_12=c_l(ca2,r,l); 
c_22=c_2(ca2,r,l); 



Appendix B. Program Listings 

c _ 3 2 = c _ 3 ( c a 2 , r , l ) ; 
c _ 4 2 = c _ 4 ( c a 2 , r , l ) ; 
c a 3 = c a 2 - ( 6 0 + 3 . 5 ) * p i / 1 8 0 ; 
c _ 1 3 = c _ l ( c a 3 , r ) l ) ; 
c _ 2 3 = c _ 2 ( c a 3 , r , l ) ; 
c _ 3 3 = c _ 3 ( c a 3 , r , l ) ; 
c _ 4 3 = c _ 4 ( c a 3 , r , l ) ; 
c a 4 = c a 3 - ( 6 0 - 3 . 5 ) * p i / 1 8 0 ; 
c _ 1 4 = c _ l ( c a 4 , r , l ) ; 
c _ 2 4 = c _ 2 ( c a 4 , r , l ) ; 
c _ 3 4 = c _ 3 ( c a 4 , r , l ) ; 
c _ 4 4 = c _ 4 ( c a 4 , r , l ) ; 
c a 5 = c a 4 - ( 6 0 + 3 . 5 ) * p i / 1 8 0 ; 
c _ 1 5 = c _ l ( c a 5 , r , l ) ; 
c _ 2 5 = c _ 2 ( c a 5 , r , l ) ; 
c _ 3 5 = c _ 3 ( c a 5 , r , l ) ; 
c _ 4 5 = c _ 4 ( c a 5 , r , l ) ; 
c a 6 = c a 5 - ( 6 0 - 3 . 5 ) * p i / 1 8 0 ; 
c _ 1 6 = c _ l ( c a 6 , r , l ) ; 
c _ 2 6 = c _ 2 ( c a 6 , r , l ) ; 
c _ 3 6 = c _ 3 ( c a 6 , r , l ) ; 
c _ 4 6 = c _ 4 ( c a 6 , r , l ) ; 
s l l = c _ l l . * c _ l l + c _ 1 2 . * c _ 1 2 + c _ 1 3 . * c _ 1 3 + . . . 
c _ 1 4 . * c _ 1 4 + c _ 1 5 . * c _ 1 5 + c _ 1 6 . * c _ 1 6 ; 
s l 2 = c _ l l . * c _ 2 l + c _ 1 2 . * c _ 2 2 + c _ 1 3 . * c _ 2 3 + . . . 
c _ 1 4 . * c _ 2 4 + c _ 1 5 . * c _ 2 5 + c _ 1 6 . * c _ 2 6 ; 
s 3 3 = c _ 3 1 . * c _ 3 1 + c _ 3 2 . * c _ 3 2 + c _ 3 3 . * c _ 3 3 + . . . 
c _ 3 4 . * c _ 3 4 + c _ 3 5 . * c _ 3 5 + c _ 3 6 . * c _ 3 6 ; 
s 3 4 = c _ 3 1 . * c _ 4 1 + c _ 3 2 . * c _ 4 2 + c _ 3 3 . * c _ 4 3 + . . . 
c _ 3 4 . * c _ 4 4 + c _ 3 5 . * c _ 4 5 + c _ 3 6 . * c _ 4 6 ; 
s p = ( l e + 6 ) * ( c _ l l . * p l + c _ 1 2 . * p 2 + c _ 1 3 . * p 3 + . . . 
c _ 1 4 . * p 4 + c _ 1 5 . * p 5 + c _ 1 6 . * p 6 ) ; 
dx=2*w_0*dw; 
dxp=2*w_0*dwp; 
p h i l = 0 . 5 * d x p ; 
f a c t = m a x ( p h i l ) ; 
l h a t = l e n g t h ( P A R ) ; 
t h = ( 0 : l h a t - l ) / l h a t * 2 * p i ; 
J E h a t = P A R ( l , : ) . / f a c t ; 
T L h a t = P A R ( 2 , : ) . * s i n ( t h ) + P A R ( 3 , : ) . * c o s ( t h ) ; 
J E = P A R ( 1 , l h a t ) . / f a c t ; 
T L = P A R ( 2 , l h a t ) . * s i n ( c a 0 ) + P A R ( 3 , l h a t ) . * c o s ( c a 0 ) 
y 3 = A p * r * s p ; 
m= ( J E + m _ p * r ' " 2 * s l l - J _ C R * s 3 3 ) / 2 ; 
i n p = y 3 - T L ; °/,TLhat ( 1 : l h a t - 1 ) ' ; 
i n p = i n p - m e a n ( i n p ) ; 
d x h a t = d w ( l ) * ( 2 * w _ 0 + d w ( l ) ) + i g r ( i n p . / m . d c a O ) 
dwhat = s q r t ( x O +• d x h a t ) - w_0 ; 
d w h a t = d w h a t - m e a n ( d w h a t ) ; 
°/.dwhat=0. 9 * r o t ( dwha t , 1 ) ; 
ep=dw-dwhat ; 
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geom.m 

f u n c t i o n [ u , q , m ] = g e o m ( c a . p l , p 2 , p 3 , p 4 , p 5 , p6) 
"/.FUNCTION: GEOM.M 
"/.ARGUMENTS: c a = c r a n k a n g l e ( r a d ) ; 
°/„ p i = p r e s s u r e i n t h e i - t h c y l i n d e r (MPa) ; 
"/.RETURNS: [u ,q ,m] = mode l c o e f f i c i e n t s . 
" / . C a l l s : c _ l . m , c _ 2 . m , c _ 3 . m , c _ 4 . m 
"/.Engine d a t a c o r r e s p o n d t o DDC 6V 92TA: 
°/.w_0=125.5; "/.nominal e n g i n e s p e e d ( r a d / s e c ) 
b _ c = 1 . 2 4 ; "/.damping (Nm/ ( rad/sec ) ) ' 
m_p=6 .03 ; "/ .p is ton mass (kg ) 
r = 0 . 0 6 3 5 ; "/ . c ranksha f t r a d i u s (m) 
1 = 0 . 2 5 7 1 ; "/ .connec t ing r o d l e n g t h (m) 
A p = 0 . 0 1 1 8 8 ; "/ .p iston a r e a (m~2) 
J _ C = 0 . 1 5 4 4 ; "/ . c ranksha f t i n e r t i a (kg m~2) 
J _ C R = 0 . 0 7 4 5 ; "/ .connect ing r o d i n e r t i a ( k g m~2) 
J _ F = 3 . 8 5 ; "/ . f lywheel i n e r t i a ( kg m~2) 
"/.Pressure i n p u t s : p l p2 p3 p4 p5 p6 
" / . F i r i n g o r d e r ( r i g h t hand r o t a t i o n ) 
°/.lL 3R 3L 2R 2L 1R 
7.1 2 3 4 5 6 
c a l = c a ; 
c _ l l = c _ l ^ c a l , r , l ) 
c _21=c_2 ^ c a l , r , l ) 
c _31=c_3 ^ c a l , r , l ) 
c _41=c_4 ' c a l , r , l ) 
c a 2 = c a l - : 6 0 - 3 . 5 ) * p i / 1 8 0 ; 
c _ 1 2 = c _ l ; c a 2 , r , l ) 
c _22=c_2 ; c a 2 , r ) l ) 
c _32=c_3 ; c a 2 , r , l ) 
c _42=c_4 ^ c a 2 , r , 1 ) 
c a 3 = c a 2 - ; 6 0 + 3 . 5 ) * p i / 1 8 0 ; 
c _ 1 3 = c _ l ^ c a 3 , r , l ) 
c _23=c_2 ^ c a 3 , r , 1 ) 
c_33=c_3 ' c a 3 , r , 1 ) 
c_43=c_4 ' c a 3 , r , 1 ) 
c a 4 = c a 3 - : 6 0 - 3 . 5 ) * p i / 1 8 0 ; 
c 14=c 1 ' c a 4 , r , l ) 
c _24=c_2 ' c a 4 , r , l ) 
c _34=c_3 ^ c a 4 , r , l ) 
c _44=c_4 ' c a 4 , r , l ) 
c a 5 = c a 4 - : 6 0 + 3 . 5 ) * p i / 1 8 0 ; 
c _ 1 5 = c _ l ' c a 5 , r , l ) 
c _25=c_2 ' c a 5 , r , D 
c_35=c_3 ( c a 5 , r , l ) 
c _45=c_4 ^ c a 5 , r , l ) 
c a 6 = c a 5 - : 6 0 - 3 . 5 ) * p i / 1 8 0 ; 
c _ 1 6 = c _ l [ c a 6 , r , D 
c_26=c_2 ( c a 6 , r , 1 ) 
c_36=c_3 ( c a 6 , r , l ) 
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c_46=c_4(ca6,r,l); 
s l l = c _ l l . * c _ l l + c_12.*c_12 + c_13.*c_13 +. 
c_14.*c_14 + c_15.*c_15 + c_16.*c_16; 
sl2=c _ l l . * c _ 2 1 + c_12.*c_22 + c_13.*c_23 +. 
c_14.*c_24 + c_15.*c_25 + c_16.*c_26; 
s33=c_31.*c_31 + c_32.*c_32 + c_33.*c_33 +. 
c_34.*c_34 + c_35.*c_35 + c_36.*c_36; 
s34=c_31.*c_41 + c_32.*c_42 + c_33.*c_43 +. 
c_34.*c_44 + c_35.*c_45 + c_36.*c_46; 
s p = ( l e + 6 ) * ( c _ l l . * p l + c_12.*p2 + c_13.*p3 + 
c_14.*p4 + c_15.*p5 + c_16.*p6); 
q = J_CR*s34-m_p*r"2*sl2; 
u = Ap*r*sp; 
m = 0.5*(J_C+J_F-J_CR*s33+m_p*r~2*sll); 

igr .m 

f u n c t i o n II=igr(y,dT) 
"/.FUNCTION IGR.M 
"/.ARGUMENTS: y = vector of samples; 
"/. dT = crank angle i n t e r v a l ; 
"/.RETURNS: II = numerical i n t e g r a t i o n . 
I K D = 0 ; 
cs=cumsum(y)-y(1); 
f o r i=2:length(y) 
I L ( i ) = y ( D / 2 + c s ( i - l ) + y ( i ) / 2 ; 
end 
II=dT*II'; 

i tgr .m 

f u n c t i o n [err,PAR]=itgr(y,phi,pO,PARO) 
"/.FUNCTION 
"/.ARGUMENTS: 

ITGR.M "/.FUNCTION 
"/.ARGUMENTS: y = output vector; 
7. phi = s i g n a l matrix; 
7. pO = gain f o r the gradient estimator 
7. PARO = i n i t i a l i z a t i o n ; 
"/.RETURNS: err = vector of r e s i d u a l s ; 
7. PAR = estiamted parameters. 
Nit=length(y); 
h=2*pi/118; 
PARC:,1)=PAR0; 
f o r i = l : N i t 
e r r ( i ) = p h i ( i , : ) * P A R ( : , i ) - y ( i ) ; 
E ( i ) = 0 . 5 * e r r ( i ) ' * e r r ( i ) ; 
PARC:,i+l)=PAR(:,i)-h*p0*phi(i,:)'*err(i) ; 
end 
err=err'; 
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i t l s .m 

f u n c t i o n [err,PAR]=itIs(y,phi,lambda,PO,PARO) 
'/.FUNCTION ITLS.M 
'/.ARGUMENTS: y = output vector; 
7. phi = s i g n a l matrix; 
7. lambda = f o r g e t t i n g f a c t o r ; 
7. PO = gain i n i t : L a l i z a t i o n ; 
7. PARO = parameter i n i t i a l i z a t i o n 
'/.RETURNS: err = vector of re s i d u a l s ; 
7. PAR = estimated parameters. 
Nit=length(y); 
h=2*pi/118; 
P=P0; 
PARC:,1)=PAR0; 
f o r i = l : N i t 
e r r ( i ) = p h i ( i , : ) * P A R ( : , i ) - y ( i ) ; 
PAR(:,i+l)=PARC:,i)-h*P*phi(i,:)'*err(i); 
lambda=lambda*Cl-norm(P)/70); 
p=p-h*P*(lambda+phi(i,:)'*phi Ci , : ) * P ) ; 
end 
err=err'; 

ldown.m 

f u n c t i o n [ y l , y2, y3, y4, y5, y6] = ldown(n) 
g l o b a l p l c o l p5col presO 
'/.FUNCTION: LDOWN.M 
'/.ARGUMENTS: n = integer; 
'/.RETURNS: [Yl, Y2, Y3, Y4, Y5, Y6] = s i x c y l i n d e r 
7, pressure waveforms, 
'/.Load 5 pressures from healthy c y l i n d e r s 
'/.originating from PRES.DAT, f i r s t 6*720 
'/.values and a s i n g l e 'down' c y l i n d e r corresponding 
°/,to number n. If n i s not i n the range 0 through 6 
'/.then a l l healthy c y l s are loaded. If n i s zero then 
'/.the presO waveforms are loaded. 
'/.Note v a r i a b l e p l c o l should be loaded (healthy c y l s ) , 
'/.and p5col (down c y l s ) , and presO (baseline) . 
'/.Calls: separate.m 
[yl y2 y3 y4 y5 y6] = s e p a r a t e ( p l c o l ) ; 
[dl d2 d3 d4 d5 d6] = separate(p5col); 
i f n==0 
[yl y2 y3 y4 y5 y6] = separate(presO); 
e l s e i f n==l 
y l = d l ; 
e l s e i f n==2 
y2 = d2; 
e l s e i f n==3 
y3 = d3; 
e l s e i f n==4 
y4 = d4; 
e l s e i f n==5 
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y5 = d5; 
e l s e i f n==6 
y6 = d6; 
end 

pia l l .m 

7.PIALL. M 
7 0Calls: demo2.m, rmse.m 
input('Enter option number: ' ) ; 
n=ans; 
7 0 i n i t i a l i z a t i o n f o r the normal condition 
PARO [970 -50 -30] ' ; 
7 0 i n i t i a l i z a t i o n f o r 1L down 
PAR011=[1510 -580 204] '; 
7 0 i n i t i a l i z a t i o n f o r 3R down 
PAR03r=[1380 -350 400]'; 
7 0 i n i t i a l i z a t i o n f o r 3L down 
PAR031=[1650 450 250]'; 
7 0 i n i t i a l i z a t i o n f o r 2R down 
PAR02r=[1780 400 -615]'; 
7 0 i n i t i a l i z a t i o n f o r 2L down 
PAR021=[1700 -170 -790]'; 
7 o i n i t i a l i z a t i o n f o r 1R down 
PAR01r=[1730 -510 -480]'; 
i f n==0 
PARO = PARO; 
dw=1.05*rot(w0,117); 
disp('NORMAL OPERATING CONDITION') 
e l s e i f n==l 
PARO = PAR011; 
dw=wll; 
disp('FAULT 1L') 
e l s e i f n==2 
PARO = PAR03r; 
dw=w3r; 
d i s p C FAULT 3R') 
e l s e i f n==3 
PARO = PAR031; 
dw=w31; 
d i s p C FAULT 3L') 
e l s e i f n==4 
PARO = PAR02r; 
dw=w2r; 
d i s p C FAULT 2R') 
e l s e i f n==5 
PARO = PAR021; 
dw=w21; 
d i s p C FAULT 2L') 
e l s e i f n==6 
PARO = PAROlr; 
dw=wlr; 
disp('FAULT 1R') 
e l s e i f n==10 
PARO = PARO; 
dw=wO; 
n=l; 
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disp('FAULT IL vs. 
e l s e i f n==20 
PARO = PARO; 
dw=wO; 
n=2; 
disp('FAULT 3R vs. 
e l s e i f n==30 
PARO = PARO; 
dw=wO; 
n=3; 
disp('FAULT 3L vs. 
e l s e i f n==40 
PARO = PARO; 
dw=wO; 
n=4; 
disp('FAULT 2R vs. 
e l s e i f n==50 
PARO = PARO; 
dw=wO; 
n=5; 
disp('FAULT 2L vs. 
e l s e i f n==60 
PARO = PARO; 
dw=wO; 
n=6; 
disp('FAULT 1R vs. 
e l s e i f n==21 
PARO = PAROll; 
dw=wll; 
n=2; 
disp('FAULT 3R vs. 
e l s e i f n==31 
PARO = PAROll; 
dw=wll; 
n=3; 
disp('FAULT 3L vs. 
e l s e i f n==41 
PARO = PAROll; 
dw=wll; 
n=4; 
disp('FAULT 2R vs. 
e l s e i f n==51 
PARO = PAROll; 
dw=wll; 
n=5; 
disp('FAULT 2L vs. 
e l s e i f n==61 
PARO = PAROll; 
dw=wll; 
n=6; 
disp('FAULT 1R vs. 
end 
"/gradient step 
p0=0.3; 
"/ogain matrix 
P0=diag([l 1 1 ] ) ; 
"/oforgetting f a c t o r 
lambda=15; 

NORMAL OPERATING CONDITION') 

NORMAL OPERATING CONDITION') 

NORMAL OPERATING CONDITION') 

NORMAL OPERATING CONDITION') 

NORMAL OPERATING CONDITION') 

NORMAL OPERATING CONDITION') 

FAULT IL') 

FAULT IL') 

FAULT IL') 

FAULT IL') 

FAULT IL') 
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°/0crank angle f o r pressure sampling 
ca = [0:719]' /720 * 2 * p i ; 
°/0crank angle f o r v e l o c i t y sampling 
caO = [0:117] '/118 * 2 * p i ; 
[pl,p2,p3,p4,p5,p6]=ldown(n); 
p l = i n t e r p l ( c a . p l , c a O ) ; 
p2=interpl(ca,p2,ca0); 
p3=interpl(ca,p3,ca0); 
p4=interpl(ca,p4,ca0); 
p5=interpl(ca,p5,caO); 
p6=interpl(ca,p6,caO); 
dca0=ca0(2)-ca0(l); 
dwp=diffc(dw.dcaO); 
[Y01,PHI01,PAR01,ERR01,JEhatOl,TLhatOl,epOl,dwhatOl] 
sIs(ca0,pl,p2,p3,p4,p5,p6,dw )dwp); 
[ERR02,PAR02]=itgr(Y01,PHIO1,pO,PARO); 
[JEhat02,TLhat02,ep02,dwhat02]=... 
est(PAR02,caO,pi,p2,p3,p4,p5,p6,dw,dwp); 
[ERR03,PAR03]=itls(Y01,PHI01,lambda,PO,PARO); 
[JEhat03,TLhat03,ep03,dwhat03]=... 
est(PAR03,ca0.pl,p2,p3,p4,p5,p6,dw,dwp); 
rms=[rmse(epOl) rmse(ep02) rmse(ep03)]; 
rsr=[rmse(epOl) rmse(ep02) rmse(ep03)]/rmse(dw)*100; 
subplot(3,1,1) 
plot(ca0*180/pi,dw,ca0*180/pi,dwhat01,':',... 
ca0*180/pi,dwhat02,'-.',ca0*180/pi,dwhat03,'--') 
t i t l e ( ' A c t u a l and Estimated V e l o c i t y Fluctuation') 
y l a b e l ( ' r a d / s e c ' ) 
subplot(3,1,2) 
sn=(l:length(JEhat02))'/length(JEhat02) * 2 * p i ; 
plot(sn*180/pi,JEhat02,'-.',sn*180/pi,JEhat03,'—') 
t i t l e ( ' E s t i m a t e d Engine I n e r t i a ' ) 
ylabel('kgm"2') 
subplot(3,1,3) 
plot(sn*180/pi,TLhat02,'-.',sn*180/pi,TLhat03,'--') 
t i t l e ( ' E s t i m a t e d Torque Fluctuation') 
ylabel('Nm') 
xlabel('degrees') 
disp('INERTIA VALUES') 
J_sls=JEhat01 
J_ge=JEhat02(length(JEhat02)) 
J_lsef=JEhat03(length(JEhat03)) 
disp('PARAMETERS MEAN AND STANDARD DEVIATION') 
disp('GRADIENT ESTIMATOR') 
Jm=me an(JEhat 02) 
Js=rmse(JEhat02) 
Tm=mean(TLhat02) 
Ts=rmse(TLhat02) 
disp('LEAST-SQUARES WITH EXPONENTIAL FORGETTING') 
Jm=mean(JEhat03) 
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Js=rmse(JEhat03) 
Tm=mean(TLhat03) 
Ts=rmse(TLhat03) 
dispCROOT MEAN SQUARE ERROR (rad/sec)') 
rms 
d i s p C RESIDUAL TO SIGNAL RATIO (°/„)') 
r s r 

prsal l .m 

'/.PRSALL.M 
"/.Calls: tpe.m, pwr.m, rmse.m. 
input('Enter c y l i n d e r number (0-7): ' ) ; 
n=ans; 
i f n==0 
dw=wO; 
d i s p C NORMAL OPERATING CONDITION 1') 
e l s e i f n==l 
dw=wll; 
d i s p C FAULT 1L') 
e l s e i f n==2 
dw=w3r; 
d i s p C FAULT 3R') 
e l s e i f n==3 
dw=w31; 
disp('FAULT 3L') 
e l s e i f n==4 
dw=w2r; 
disp('FAULT 2R') 
e l s e i f n==5 
dw=w21; 
disp('FAULT 2L') 
e l s e i f n==6 
dw=wlr; 
disp('FAULT 1R') 
e l s e i f n==7 • 
dw=wO; 
disp('NORMAL OPERATING CONDITION 2') 
end 
[pl p2 p3 p4 p5 p6]=ldown(n); 
disp('TORQUE DUE TO GAS PRESSURE') 
[Tp )Tpm,Tphat,deltaT,err]=... 
tpe(n )ca,dw Jpl,p2 )p3,p4,p5,p6); 
disp('RMS torque er r o r (Nm):') 
e_l=rmse(Tp-Tphat-deltaT) 
dispCRSR (%) : ') 
r_l=100*e_l/rmse(Tp) 
plot(ca*180/pi,Tp,ca*180/pi,Tphat+deltaT,':') 
a x i s ( [ 0 360 -1500 1500]) 
xlabel('degrees') 
ylabel('Nm') 
t i t l e ( ' E s t i m a t e d (..) and Actual (—) Pressure -Torque') 
disp('Press any key to continue...') 
pause 
[par,Tpx,plx,p2x,p3x,p4x,p5x,p6x]=... 
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pwr(n,ca,Tphat+deltaT+Tpm); 
disp('RMS torque e r r o r (Nm):') 
e_2=rmse(Tp-Tpx) 
disp ('RSR (7.) : ' ) 
r_2=100*e_2/rmse(Tp) 
plot(ca*180/pi,Tp,ca*180/pi,Tpx-mean(Tpx),':') 
a x i s ( [ 0 360 -1500 1500]) 
xlabel('degrees') 
ylabel('Nm') 
t i t l e ( ' E s t i m a t e d (..) and Actual (—) Pressure Torque') 
disp('Press any key to continue...') 
pause 
disp('PRESSURE WAVEFORM RECONSTRUCTION') 
disp('6 RMS pressure (MPa) er r o r s , and RSRs (7 . ) : ' ) 
err=[rmse(pl-plx) rmse(p2-p2x) rmse(p3-p3x)... 
rmse(p4-p4x) rmse(p5-p5x) rmse(p6-p6x)] 
rsr=100*[rmse(pl-plx)/rmse(pi) rmse(p2-p2x)/rmse(p2)... 
rmse(p3-p3x)/rmse(p3) rmse(p4-p4x)/rmse(p4)... 
rmse(p5-p5x)/rmse(p5) rmse(p6-p6x)/rmse(p6)] 
plot(ca*180/pi,pl,ca*180/pi,plx,':',ca*180/pi, ... 
p2,ca*180/pi,p2x,':',ca*180/pi,p3,ca*180/pi,p3x,':', ... 
ca*180/pi,p4,ca*180/pi,p4x,':',ca*180/pi,p5,ca*180/pi, .. 
p5x,':',ca*180/pi,p6,ca*180/pi,p6x,':') 
a x i s ( [ 0 360 -1 12]) 
xlabel('degrees') 
ylabel('MPa') 
t i t l e ( ' E s t i m a t e d (..) and Actual (—) Pressure Waveform') 
disp('Press any key to continue...') 
pause 

pwr .m 

f u n c t i o n [par,Tpx,plx,p2x,p3x,p4x,p5x,p6x]=. 
pwr(n,theta,Tphat) 
7.FUNCTI0N PWR.M 
7.ARGUMENTS: n 
7, theta 
7. Tphat 
7.RETURNS: par 
7. Tpx 
7. pix 
7oCalls: c_l.m, dlt.m 
7.Engine data correspond to DDC 6V 92TA: 
r=0.0635; 7oCrankshaft radius (m) 
1=0.2571; 7oconnecting rod length (m) 
Ap=0.01188; 7.piston area (m"2) 
cal=theta; 
c _ l l = c _ l ( c a l , r , 1 ) ; 
ca2=cal-(60-3.5)*pi/180; 
c_ 1 2=c_l ( c a 2,r,l); 
ca3=ca2-(60+3.5)*pi/180; 

c y l i n d e r number; 
crank angle; 
estimated torque; 
estimated pressure v a r i a t i o n ; 
new estimate of the pressure torque; 
estimated pressure i n the i - t h c y l i n d e r . 
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c_13=c_l(ca3,r,l); 
ca4=ca3-(60-3.5)*pi/180; 
c_14=c_l(ca4,r,l); 
ca5=ca4-(60+3.5)*pi/180; 
c_15=c_l(ca5,r,l); 
ca6=ca5-(60-3.5)*pi/180; 
c_16=c_l(ca6,r,1); 
IX=[13 125 253 366 493 606]; 
i f n==0 
IX=[17 130 256 370 496 610]; 
e l s e i f n==l 
IX(1)=17; 
e l s e i f n==2 
IX(2)=131; 
e l s e i f n==3 
IX(3)=253; 
e l s e i f n==4 
IX(4)=368; 
e l s e i f n==5 
IX(5)=496; 
e l s e i f n==6 
IX(6)=611; 
end 
plx=dlt(2,5.5,0.45,theta-theta(IX(1))); 
p2x=dlt(2,5.5,0.45,theta-theta(IX(2))); 
p3x=dlt(2,5.5,0.45,theta-theta(IX(3))); 
p4x=dlt(2,5.5,0.45,theta-theta(IX(4))); 
p5x=dlt(2,5.5,0.45,theta-theta(IX(5))); 
p6x=dlt(2,5.5,0.45,theta-theta(IX(6))); 
phi=(le+6)*Ap*r*... 
[ c _ l l . * p l x c_12.*p2x c_13.*p3x c_14.*p4x c_15.*p5x c_16.*p6x]; 
par=inv(phi'*phi)*phi'*Tphat; 
par=par-0.15; 
i f n==0 
par=par+0.15; 
end 
Tpx=phi*par; 
plx=plx*par(1); 
p2x=p2x*par(2); 
p3x=p3x*par(3); 
p4x=p4x*par(4); 
p5x=p5x*par(5); 
p6x=p6x*par(6); 

rmse.m 

f u n c t i o n y=rmse(x) 
"/.FUNCTION RMSE.M 
"/.ARGUMENTS: x = vector of r e s i d u a l s ; 
"/.RETURNS: y = root mean square e r r o r . 
y=norm(x-mean(x),2)/sqrt(length(x)); 
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ro t .m 

f u n c t i o n y=rot(x,n) 
"/.FUNCTION ROT.M 
"/.ARGUMENTS: x = vector of samples; 
7, n = integer; 
"/.RETURNS: y = x s h i f t e d by n; 
11 = length(x); 
y = x; 
f o r i = l : l l - n 
y ( i ) = x(i+n); 
end 
f o r i = l l - n + l : l l 
y ( i ) = x ( i - l l + n ) ; 
end 

separate.m 

f u n c t i o n [ p i , p2, p3, p4, p5, p6]=. 
separate(pres) 
"/.FUNCTION SEPARATE. M 
"/.ARGUMENTS: pres 
7. 
7. 
"/.RETURNS: [pi,p2,p3,p4,p5,p6] 
7. 
p i = pres(l+3*720:4*720); 
p2 = pres(1+2*720:3*720) ; 
p3 = pres(1+5*720:6*720) ; 
p4 = pres(1+1*720:2*720); 
p5 = pres(1+4*720:5*720) ; 
p6 = pres(1+0*720:1*720); 

sls.m 

f u n c t i o n [Y,PHI,PAR,ERR,JEhat,TLhat,ep,dwhat]=... 
sls(caO,pl,p2,p3,p4,p5,p6,dw,dwp) 
"/.FUNCTION 
"/.ARGUMENTS: 

SLS.M "/.FUNCTION 
"/.ARGUMENTS: caO = crank angle vector; 
7. P i = c y l i n d e r pressure, i = l , . . . , 6; 
7. dw = v e l o c i t y waveform; 
7. dwp = v e l o c i t y d e r i v a t i v e ; 
'/.RETURNS: Y = vector of outputs; 
7. PHI = s i g n a l matrix; • 
7. PAR = estimated parameters; 
7. JEhat = estimated engine i n e r t i a ; 
7. TLhat = estimated torque f l u c t u a t i o n ; 
7. ep = vector of r e s i d u a l s ; 
7. dwhat = estimated v e l o c i t y f l u c t u a t i o n 
"/.Calls: c_l.m, c_2.m, c_3 m, c_4.m, igr.m. 
"/.Engine data correspond to DDC 6V 92TA: 

= a column vector with 6x720 
elements which 
represent pressure data; 

= pressure data corresponding 
to each c y l i n d e r . 
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w_0=125.5; 
b_c=1.24; 
m_p=6.03; 
r=0.0635; 
1=0.2571; 
Ap=0.01188; 
J_C=0.1544; 
J_CR=0.0745; 
J_F=3.85; 

°/0engine speed (rad/sec) 
°/odamping (Nm/ (rad/sec)) 
7 0pistori mass (kg) 
°/ 0crankshait radius (m) 
7 0connecting rod length (m) 
°/ 0piston area (m~2) 
°/ 0crankshaft i n e r t i a (kg m"2) 
7 0connecting rod i n e r t i a (kg m~2) 
7oflywheel i n e r t i a (kg m"2) 

x0=w_0"2; 
7«Pressure inputs: p l p2 p3 p4 p5 p6 
dca0=ca0(2)-ca0(l); 
cal=caO; 
c _ l l = c _ l ( c a l , r , l ) 
c_21=c_2(cal , r , l ) 
c_31=c_3(cal , r , l ) 
c_41=c_4(cal , r , l ) 
ca2=cal-(60-3.5)*pi/180; 
c_12=c_l(ca2,r , l ) 
c_22=c_2(ca2,r,l) 
c_32=c_3(ca2,r,l) 
c_42=c_4(ca2,r,l) 
ca3=ca2-(60+3.5)*pi/180; 
c_13=c_l(ca3,r , l ) 
c_23=c_2(ca3,r,l) 
c_33=c_3(ca3,r,l) 
c_43=c_4(ca3,r,l) 
ca4=ca3-(60-3.5)*pi/180; 
c_14=c_l(ca4,r , l ) 
c_24=c_2(ca4,r,l) 
c_34=c_3(ca4,r,l) 
c_44=c_4(ca4,r,1) 
ca5=ca4-(60+3.5)*pi/180; 
c_15=c_l(ca5,r ,1); 
c_25=c_2(ca5,r , l) ; 
c_35=c_3(ca5,r , l) ; 
c_45=c_4(ca5,r , l) ; 
ca6=ca5-(60-3.5)*pi/180; 
c_16=c_l(ca6,r , l ) 
c_26=c_2(ca6,r,l) 
c_36=c_3(ca6,r,l) 
c_46=c_4(ca6,r,l) 
s l l = c _ l l . * c _ l l + c_12.*c_12 +. 
c_13.*c_13 + c_14.*c_14 +. . . 
c_15.*c_15 + c_16.*c_16; 
s l2=c_l l .*c_21 + c_12.*c_22 +. 
c_13.*c_23 + c_14.*c_24 +. . . 
c_15.*c_25 + c_16.*c_26; 
s33=c_31.*c_31 + c_32.*c_32 +. 
c_33.*c_33 + c_34.*c_34 +. . . 
c_35.*c_35 + c_36.*c_36; 
s34=c_31.*c_41 + c_32.*c_42 +. 
c_33.*c_43 + c_34.*c_44 +. . . 
c_35.*c_45 + c_36.*c_46; 
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s p = ( l e + 6 ) * ( c _ l l . * p l + c_12.*p2 +... 
c_13.*p3 + c_14.*p4 +... 
c_15.*p5 + c_16.*p6); 
dx=2*w_0*dw; 
dxp=2*w_0*dwp; 
phil=0.5*dxp; 
fact=max(phil); 
p h i l = p h i l / f a c t ; 
phi2=sin(ca0); 
phi3=cos(caO); 
PHI=[phil,phi2,phi3]; 
yl=m_p*r~2*(-0.5*sll.*dxp-sl2.*(dx+xO)); 
y2=J_CR*(0.5*s33.*dxp+s34.*(dx+xO)); 
y3=Ap*r*sp; 
y=yl+y2+y3; 
my=mean(yl+y2+y3); 
Y=y-my; 
PAR=inv(PHI'*PHI)*PHI'*Y; 
ERR=PHI*PAR-Y; 
JEhat=PAR(l)/fact; 
TLhat=PAR(2)*sin(ca0)+PAR(3)*cos(ca0) ; 
m=(JEhat+m_p*r~2*sll-J_CR*s33)/2; 
inp=y3-TLhat; 
inp=inp-mean(inp); 
dxhat = dw(l)*(2*w_0+dw(l)) + igr(inp./m.dcaO); 
dwhat = sqrt(xO + dxhat) - w_0; 
dwhat=dwhat-mean(dwhat); 
°/.dwhat=0 . 9*rot (dwhat, 1) ; 
ep=dw-dwhat; 

system.m 

f u n c t i o n xp=system(t,x) 
°/„FUNCTION: SYSTEM, m 
'/.ARGUMENTS: t = crank angle; 
7. x = engine state; 
"/.RETURNS: xp = state d e r i v a t i v e , 
g l o b a l p i p2 p3 p4 p5 p6 ca 
7.Engine data correspond to DDC 6V 92TA: 
w_0=125.5; '/oengine speed (rad/sec) 
b_c=1.24; "/.damping (Nm/ (rad/sec)) 
m_p=6.03; "/.piston mass (kg) 
r=0.0635; "/.crankshaft radius (m) 
1=0.2571; "/.connecting rod length (m) 
Ap=0.01188; "/.piston area (m~2) 
J_C=0.1544; "/.crankshaft i n e r t i a (kg m'2) 
J_F=3.85; "/.flywheel i n e r t i a (kg m~2) 
J_CR=0.0745; "/.connecting rod i n e r t i a (kg m~2) 
"/.Pressure inputs: 
p l = i n t e r p l ( c a , p l , t ) ; 
p2=interpl(ca,p2,t); 



Appendix B. Program Listings 

p3=in te rp l (ca ,p3 , t ) ; 
p4=in te rp l (ca ,p4 , t ) ; 
p5=in te rp l (ca ,p5 , t ) ; 
p6=in te rp l (ca ,p6 , t ) ; 
cal=t; 
c _ l l = c _ l ( c a l , r , 1 ) ; 
c_21=c_2(cal ,r ,1); 
c_31=c_3(ca l , r , l ) ; 
c_41=c_4(ca l , r , l ) ; 
ca2=cal-(60-3.5)*pi/180; 
c_12=c_l (ca2 , r , l ) ; 
c_22=c_2(ca2,r , l) ; 
c_32=c_3(ca2,r,1); 
c_42=c_4(ca2,r , l) ; 
ca3=ca2-(60+3.5)*pi/180; 
c _ i 3 = c _ l ( c a 3 , r , l ) ; 
c_23=c_2(ca3,r , l) ; 
c_33=c_3(ca3,r , l) ; 
c_43=c_4(ca3,r , l) ; 
ca4=ca3-(60-3.5)*pi/180; 
c _ i 4 = c _ l ( c a 4 , r ) l ) ; 
c_24=c_2(ca4,r , l) ; 
c_34=c_3(ca4,r , l) ; 
c_44=c_4(ca4,r , l) ; 
ca5=ca4-(60+3.5)*pi/180; 
c_15=c_l(ca5,r ,1); 
c_25=c_2(ca5,r,1); 
c_35=c_3(ca5,r , l) ; 
c_45=c_4(ca5,r , l) ; 
ca6=ca5-(60-3.5)*pi/180; 
c_16=c_l (ca6 , r ; i ) ; 
c_26=c_2(ca6,r , l) ; 
c_36=c_3(ca6,r , l) ; 
c_46=c_4(ca6,r , l) ; 
s l l = c _ l l * c _ l l + c_12*c_12 +. . . 
c_13*c_13 + c_14*c_14 +. . . 
c_15*c_15 + c_16*c_16; 
s l2=c_ l i*c_2 l + c_12*c_22 +. . . 
c_13*c_23 + c_14*c_24 +. . . 
c_15*c_25 + c_16*c_26; 
s33=c_31*c_31 + c_32*c_32 +. . . 
c_33*c_33 + c_34*c_34 +. . . 
c_35*c_35 + c_36*c_36; 
s34=c_31*c_41 + c_32*c_42 +. . . 
c_33*c_43 + c_34*c_44 +. . . 
c_35*c_45 + c_36*c_46; 
sp=(le+6)*(c_ll*pl + c_12*p2 +. . . 
c_13*p3 + c_14*p4 +. . . 
c_15*p5 + c_16*p6); 
m=0.5*(J_F+J_C-J_CR*s33+m_p*r~2*sll); 
A = J_CR*s34-m_p*r"2*sl2; 
fact = Ap*r; 
bTu=fact*sp; 
Tf=-b_c*w_0; 



Appendix B. Program Listings 

Tl=-958.7535; 
d=Tf+Tl; 
x0=w_0~2; 
xp = (A*(x+x0) + bTu + d)/m; 

tpe .m 

f u n c t i o n [Tp,Tpm,Tphat,deltaT,err]=... 
tpe(n,theta,dw,p1,p2,p3,p4,p5,p6) 
"/.FUNCTION TPE.M 
•/.ARGUMENTS: n = c y l i n d e r number; 
°/„ theta = crank angle vector; 
°/„ dw = angular v e l o c i t y ; 
°/. p i = pressure of the i - t h c y l i n d e r ; 
•/.RETURNS: Tp = actu a l pressure torque; 
•/„ Tpm = mean pressure torque; 
°/„ Tphat = estimated pressure torque; 
7. deltaT = torque f l u c t u a t i o n ; 
7, err = vector of r e s i d u a l s . 
"/.Calls: c_l.m, c_2.m, c_3.m, c_4.m, diffc.m. 
•/.Engine data correspond to DDC 6V 92TA: 
w_0=125.5; 
x0=w_0~2; 
b_c=l.24; 
m_p=6.03; 
r=0.0635; 
1=0.2571; 
Ap=0.01188; 
J_C=0.1544; 
J_CR=0.0745; 
J_F=3.85; 
J_E=5; 

end 
cal=theta; 
c _ l l = c _ l ( c a l , r , 1 ) ; 
c_21=c_2(cal,r,l); 
c_31=c_3(cal,r,l); 
c_41=c_4(cal,r,l); 
ca2=cal-(60-3.5)*pi/180; 
c_12=c_l(ca2,r,l); 
c_22=c_2(ca2,r,l); 
c_32=c_3(ca2,r,l); 
c_42=c_4(ca2,r,l); 
ca3=ca2-(60+3.5)*pi/180; 
c_13=c_l(ca3,r,l); 
c_23=c_2(ca3,r,l); 
c_33=c_3(ca3,r,1); 
c_43=c_4(ca3,r,l); 
ca4=ca3-(60-3.5)*pi/180; 
c_14=c_l(ca4,r,l); 
c_24=c_2(ca4,r )l); 
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c_34=c_3(ca4,r,1); 
c_44=c_4(ca4,r,l); 
ca5=ca4-(60+3.5)*pi/180; 
c_15=c_l(ca5,r,l); 
c_25=c_2(ca5,r,l); 
c_35=c_3(ca5,r,l); 
c_45=c_4(ca5,r,l); 
ca6=ca5-(60-3.5)*pi/180; 
c_16=c_l(ca6,r,l); 
c_26=c_2(ca6,r,l); 
c_36=c_3(ca6,r,l); 
c_46=c_4(ca6,r,l); 
s l l = c _ l l . * c _ l l + c_12.*c 12 +... 
c_13.*c_13 + c_14.*c_14 +... 
c_15.*c_15 + c_16.*c_16; 
sl2=c _ l l . * c _ 2 1 + c_12.*c 22 +... 
c_13.*c_23 + c_14.*c_24 +... 
c_15.*c_25 + c_16.*c_26; 
s33=c_31.*c_31 + c_32.*c_32 +... 
c_33.*c_33 + c_34.*c_34 +... 
c_35.*c_35 + c_36.*c_36; 
s34=c_31.*c_41 + c_32.*c 42 +... 
c_33.*c_43 + c_34.*c_44 +... 
c_35.*c_45 + c_36.*c_46; 
s p = c _ l l . * p l + c_12.*p2 +... 
c_13.*p3 + c_14.*p4 +... 
c_15.*p5 + c_16.*p6; 
Tp=(le+6)*Ap*r*sp; 
Tpm=mean(Tp); 
Tp=Tp-Tpm; 
q = J_CR*s34-m_p*r~2*sl2; 
m = 0.5*(J_E-J_CR*s33+m_p*r"2*sll); 
ca0=[0:117] '/H8 * 2 * p i ; 
h=ca0(2)-ca0(l); 
dwp=diffc(dw,h); 
dw=interpl(caO,dw,theta,'spline'); 
dwp=interpl(caO,dwp,theta,'spline') 
dx=2*dw*w_0; 
dxp=2*dwp*w_0; 
dl=x0*q; 
Y=m.*dxp-q.*dx-dl; 
Tphat=Y-mean(Y); 
err=Tp-Tphat; 
phi= [sin(theta) c o s ( t h e t a ) ] ; 
par=inv(phi'*phi)*phi'*err; 
deltaT=phi*par; 
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