
GENETIC ALGORITHM FOR FEATURE SELECTION AND WEIGHTING
FOR OFF-LINE CHARACTER RECOGNITON

by

F A T E N T. HUSSEIN

B.Sc. Cairo University, Egypt, 1995

A THESIS SUBMITTED IN P A R T I A L F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

M A S T E R O F APPLIED S C I E N C E

in

T H E F A C U L T Y O F G R A D U A T E STUDIES

D E P A R T M E N T O F E L E C T R I C A L AND C O M P U T E R ENGINNERING

We accept this thesis as conforming to the required standard

T H E UNIVERSITY O F BRITISH C O L U M B I A , 2002

April 2002

© Faten Hussein, 2002

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial ,gain shall not be allowed without my written

permission.

Department

The University of British Columbia
Vancouver, Canada

DE-6 (2/88)

Abstract

Computer-based pattern recognition is a process that involves several sub-processes,

including pre-processing, feature extraction, classification, and post-processing. This thesis is

involved with feature selection and feature weighting processes. Feature extraction is the

measurement of certain attributes of the target pattern. Classification utilizes the values of

these attributes to assign a class to the input pattern. In our view, the selection and weighting

of the right set of features is the hardest part of building a pattern recognition system. The

ultimate aim of our research work is the automation of the process of feature selection and

weighting, within the context of character/symbol recognition systems. Our chosen

optimization method for feature selection and weighting is the genetic algorithm approach.

Feature weighting is the general case of feature selection, and hence it is expected to

perform better than or at least the same as feature selection. The initial purpose of this study

was to test the validity of this hypothesis within the context of character recognition systems

and using genetic algorithms. However, our study shows that this is not true. We carried two

sets of experimental studies. The first set compares the performance of Genetic Algorithm

(GA)-based feature selection to GA-based feature weighting, under various circumstances.

The second set of studies evaluates the performance of the better method (which turned out

to be feature selection) in terms of optimal performance and time. The results of these studies

also show that (a) in the presence of redundant or irrelevant features, feature set selection

prior to classification is important for k-nearest neighbor classifiers; and (b) that GA is an

effective method for feature selection and the performance obtained using genetic algorithms

was comparable to that of exhaustive search. However, the scalability of G A to highly

ii

dimensional problems, although far superior to that of exhaustive search, is still an open

problem.

iii

Table of Contents

Abstract ii
Table of Contents iv
List of Tables vii
List of Figures viii
List of Figures viii
Acronyms and Abbreviations ix
Acknowledgments x
Chapter 1 Introduction 1

1.1 Motivation 1
1.2 Thesis Contributions 4
1.3 Thesis Structure : 5

Chapter 2 Pattern Recognition 6
2.1 Character Recognition 6

2.1.1 Components of Character Recognition System 7
2.2 Pattern Recognition Approaches '. 8
2.3 Supervised verses Unsupervised Learning 9
2.4 Parametric verses Non-parametric ...9
2.5 The Nearest Neighbor Rule..... • 10
2.6 Attribute Weighted K-Nearest Neighbor 12
2.7 Data Normalization 13
2.8 Estimating Classification Error Rate 14

2.8.1 Hold Out Method • 14
2.8.2 Cross-Validation Methods.....15

2.8.2.1 K-Fold Cross-Validation Method 15
2.8.2.2 Random Sub-Sampling Method 15
2.8.2.3 Leave-One-Out Cross-Validation Method 16

2.8.3 Bootstrap Method • 16
Chapter 3 Feature Selection and Weighting 17

3.1 The Curse of Dimensionality 17
3.2 Dimensionality Reduction •••• 18
3.3 Feature Selection verses Feature Extraction 18
3.4 Feature Selection verses Feature Weighting 20
3.5 Feature Selection Algorithms : 21

3.5.1 Feature Selection Objective Function 22
3.5.2 Feature Selection Search Strategy 23

3.5.2.1 Feature Selection Using Exponential Search Methods 24
3.5.2.2 Feature Selection Using Deterministic Search Methods 25
3.5.2.3 Feature Selection Using Randomized Search Methods 26

Chapter 4 Genetic Algorithms for Feature Selection and Weighting 30
4.1 Genetic Algorithms Review 30

4.1.1 The Basics of Genetic Algorithm 32
4.1.1.1 Initialization • 32
4.1.1.2 Representation 32

iv

4.1.1.3 Selection (Reproduction) 33
4.1.1.4 Crossover (Recombination) 34
4.1.1.5 Mutation 36
4.1.1.6 Fitness Function 36
4.1.1.7 Generation Replacement 37
4.1.1.8 Schema Theorem 38

4.2 Genetic Feature Selection and Weighting 39
4.2.1 Chromosome Representation 40
4.2.2 Type of Classifier.... 40
4.2.3 Fitness Function 41
4.2.4 Computational Speed-Up Techniques 42
4.2.5 G A Parameters .42

4.3 Comparisons 43
4.4 Genetic Feature Selection for Character Recognition Systems (Literature Review)

45
4.4.1 Recognition of Printed Characters 45
4.4.2 Recognition of Handwritten Characters46
4.4.3 Signature Verification .'. . 48

Chapter 5 A Comparative Study between Genetic Feature Selection and Weighting 49
5.1 Introduction 49
5.2 Purpose... • 50
5.3 The Developed System 52
5.4 Experimental Platform 55
5.5 Methodology 56
5.6 Comparative Study 60

5.6.1 The Effect of Varying the Number Weight Values on the Number of Selected
Features (Comparison 1) 60
5.6.2 Results of Comparison 1 61
5.6.3 Performance of both Genetic Feature Selection and Weighting in the Presence
of Irrelevant Features (Comparison 2) 69
5.6.4 Results of Comparison 2 71
5.6.5 Performance of both Genetic Feature Selection and Weighting in the Presence
of Redundant Features (Comparison 3) 75
5.6.6 Results of Comparison 3 76
5.6.7 Performance of both Genetic Feature Selection and Weighting with Regular
Databases (Comparison 4) 80
5.6.8 Results of Comparison 4 81

Chapter 6 Genetic Feature Selection Evaluation 90
6.1 Introduction 90
6.2 Convergence of Genetic Feature Selection to an Optimal or Near-Optimal Set of
Features (Evaluation 1) . 91
6.3 Results of Evaluation 1 92
6.4 Convergence of Genetic Feature Selection to an Optimal or Near-Optimal Set of .
Features within an Acceptable Number of Generations (Evaluation 2) 93
6.5 Results of Evaluation 2 ."..«...•.• ?4
6.6 Verification Experiments 97

v

6.6.1 Pre-Processing and Feature Extraction 97
6.6.2 Verification of Comparison 1 101
6.6.3 Verification of Evaluation 1 103

Chapter 7 Conclusions and Future Research 106
7.1 Conclusions 106

7.1.1 Genetic Feature Selection verses Genetic Feature Weighting 107
7.1.2 Performance of Genetic Feature Selection 108

7.2 Future Research 108
References • I l l

vi

List of Tables

Table 1: Accuracy of recognition and number of zero features for various selection and
weighting schemes 63

Table 2: Accuracy of recognition and number of zero features for various selection and
weighting schemes, some with low weights forced to zero 64

Table 3: Best classification accuracy rates achieved by G A and exhaustive search 93
Table 4: Number of generations to convergence 94
Table 5: The extracted feature set from handwritten digits images 98
Table 6: Recognition accuracy and number of zero features for various selection and

weighting schemes 102
Table 7: Classification accuracy rates achieved by G A and exhaustive search 104

vii

List of Figures

Figure 1: Example of the effect of feature weighting 13
Figure 2: The two feature selection approaches, filter and wrapper 23
Figure 3: Basic steps of genetic algorithms 31
Figure 4: The developed system 54
Figure 5: (a) The relationship between number of weight values and actual number of zero

(eliminated) features, (b) The number of zero (eliminated) features as a function of the
probability of zero 68

Figure 6: Classification accuracy as a function of the number of irrelevant features 72
Figure 7: Number of eliminated features as a function of the number of irrelevant features. 73
Figure 8: Classification accuracy as a function of the number of redundant features 77
Figure 9: Number of eliminated features as a function of the number of redundant features. 78
Figure 10: Training classification accuracies for the various feature selection and weighting

methods (using DB3) 82
Figure 11: Validation classification accuracies for the various feature selection and weighting

methods (using DB3) 83
Figure 12: Training classification accuracies for the various feature selection and weighting

methods (using DB2) 84
Figure 13: Validation classification accuracies for the various feature selection and weighting

methods (using DB2) 85
Figure 14: Number of generations to convergence as a function of number of features 96
Figure 15: Exteremal points 101

viii

Acronyms and Abbreviations

G A Genetic Algorithm

FS Feature selection

F W Feature Weighting

GFS Genetic Feature Selection

G F W Genetic Feature Weighting

O C R Optical Character Recognition

K - N N K-Nearest Neighbor

1-NN 1-Nearest Neighbor

BAB Branch and Bound

SFS Sequential Forward Selection

SBS Sequential Backward Selection

SFFS Sequential Forward Floating Selection

SBFS Sequential Backward Floating Selection

SA Simulated Annealing

TS Tabu Search

ix

Acknowledgments

First, I would like to thank God, for his endless blessings and mercy, and without whom I can

do nothing.

I would like to express my appreciation to my supervisor Dr. Nawwaf Kharma for his

continuous guidance, advice and availability throughout this research work. He has provided

me with valuable suggestions and technical assistance, which made this thesis possible.

I would like to express my gratitude to my supervisor Dr. Rabab Ward for her support and

encouragement. I can't thank her enough for her invaluable feedback.

To my husband, Ayman, I thank you for your continuous love, encouragement, help and

understanding. Without your support I wouldn't have been able to complete this work. I

would like to thank my son Omar, for all the joy and happiness he has brought to my life.

My heart-felt gratitude goes to my parents for their love, support and never-ending

compassion throughout my life, which I will never be able to repay.

x

Chapter 1 Introduction

1.1 Motivation

The main purpose of pattern recognition systems is to classify objects into one of a given

number of class labels. Features are scalar properties that represent objects. Mult iple features

are combined together to form a feature vector. Any pattern recognition system includes two

basic parts: feature extraction and classification (Wang & Fan, 1996). Feature extraction is

the process of defining the most relevant features, which wi l l minimize the within-class

pattern variability and maximize the between-class pattern variability (Devijver & Kittler,

1982). As the number of features extracted increases, the cost and the running time of the

recognition system increase as well. On the other hand, using fewer features could lead to

failure of classification. These contradicting requirements have emphasized the need for

well-balanced feature selection methods.

The goal of feature selection is to reduce the number of features extracted, by

eliminating irrelevant and redundant features, while simultaneously maintaining or enhancing

classification accuracy. Feature selection is sometimes performed in an ad-hoc way and

accomplished by hand. A human designer implicit ly selects the features that appear to him or

her to be of most potential use. This process of manual feature selection usually depends on

the experience of the designer in the domain knowledge and on trial-and-error. Another

problem with the human expert method of feature selection is that humans cannot usually

predict the existence of non-linear interactions between features.

The process of choosing the best features to represent the data is a difficult and time-

consuming task. As a matter of fact, for handwritten character recognition problem we have

1

many variants of letter shape, size, and generally, style. Also, different writers have different

writing styles. For the letters of an alphabet, there are nearly an unlimited number of

variations. So many features must be used in a typical character recognition system to

accommodate these variations. However, for a problem with a large number of features, it is

not feasible to perform an exhaustive search to find all relevant features. Therefore, a

computer algorithm must be developed to determine which features most accurately

represent the pattern. This process of automatic feature selection will ensure that the

recognition system is optimized.

The problem df feature selection, especially automated feature selection, has received a

great deal of attention. Several search algorithms are used to solve the feature selection

problem (Dash & Liu, 1997; Jain & Zongker, 1997). Among these, genetic algorithm has

been revealed as a powerful search tool to select an optimal subset of features. Genetic

Algorithm (GA) has been used for feature selection and weighing in many pattern

recognition applications (e.g., texture classification and medical diagnostics). G A has proven

to be an effective computational method, especially in situations where the search space is

mathematically uncharacterized, not fully understood, or/and highly dimensional. Moreover,

G A is domain independent (i.e. do not require derivative information or other auxiliary

knowledge about the problem), and has been shown to be an excellent approach for solving

combinatorial optimization problems. However, their use iii feature selection (let alone

weighting) in character recognition applications has been infrequent. This has inspired the

work of this thesis, which is to apply G A for feature selection and weighting for character

recognition applications. This work has resulted so far in (Hussein, Kharma & Ward, 2001;

Kharma, Hussein & Ward, 2002a; Kharma, Hussein & Ward, 2002b) publications.

2

The main purpose for our work is to apply genetic algorithms for the problem of

feature weighting for character recognition application. The work is motivated by the fact

that there is no published work in the literature that has applied genetic feature weighting

(GFW) in the context of character recognition problems. So it will be applied for the first

time. After the employment of GFW to character recognition application, we are interested in

comparing the performance of both genetic feature selection (GFS) and GFW also for

character recognition applications. We are encouraged to perform such a comparison because

it is often mentioned in the literature that feature weighting has the potential of working

better than (or at least as well as) feature selection, when applied to the same situation

(Komosinski & Krawiec, 2000; Punch, Goodman, Pei, Chia-Shun, Hovland & Enbody,

1993). However, this proposition was never fully and comprehensively assessed before. Only

a single comparison exited in the literature (kohavi et. al. 1997), which compares the

classification accuracy of feature selection (FS) and feature weighting (FW). However, the

search method used in this comparison is not genetic algorithms, and the comparison was not

employed for character recognition applications. Therefore, we intend to test the validity of

this proposition. In addition, we need to carry out an inclusive comparison between GFS and

GFW for character recognition applications. This comparison between GFS and GFW will

tackle several issues. These issues include the number of eliminated features by both

methods, their performance in situation where irrelevant/redundant features exist and the

classification accuracies of both methods in regular situations. Moreover, we aim to test the

performance of the better method (which turns out to be GFS) for both optimality and time

complexity.

3

1.2 Thesis Contributions

Basically, the main contributions of the thesis are:

• Developed a GA system to be used to configure the real-valued weights of a k-nearest

neighbor (k-NN) classifier component of a character recognition system. This genetic

feature weighting system GFW will be applied, for the first time, to off-line

recognition of isolated handwritten digits.

• A comparison of GFW with, the previously applied methods by other researchers for

character recognition systems, GFS (genetic feature selection) under various

circumstances.

• An evaluation for the performance of the better method in terms of optimal

performance and time.

In addition to the abovementioned direct contributions, we believe that this research work is

important for the field of character recognition, because it provides the following:

• Investigates the pragmatic aspects (in terms of the number of eliminated features and

the performance under situations where irrelevant/redundant features exist) for the

automatic feature selection and weighting using genetic algorithm for character

recognition systems.

• Provides testable hypothesis (i.e. feature weighting has the potential of working

better than feature selection) and formal explanations for the behavior of the GA-

based feature selection and weighting in character recognition applications.

• Represents an empirically proven method (GFS) for the feasibility of a search for an

optimal set of features (of a moderate size) for enhancing the recognition rates in

4

character recognition systems while suggesting a possible use of distributed

computational implementations for highly dimensional problems.

• Offers a way for building a semi automatic optimization method of a general hand­

written symbol recognition system, in which the human intervention is needed to

provide new libraries for feature extraction and classification functions.

1.3 Thesis Structure

The thesis consists of seven chapters. The first chapter is an introduction. Chapter two

presents an overview of pattern recognition and character recognition methods and

introduces the k-nearest neighbor classifier. In chapter 3, we present the feature selection and

weighting problem and describe the various algorithms used in feature selection. Chapter 4

introduces genetic algorithm and its various parameters. It also compares genetic feature

selection with other feature selection methods and surveys genetic feature selection in

character recognition applications. Chapter 5 presents the details of the developed system, the

platform and the methodologies used. In addition, it provides a comparative study between

genetic feature selection and weighting, describes the experimental work and explains the

results obtained from these experiments. Chapter 6 presents an evaluation for genetic feature

selection in terms of optimality and time and shows an experimental verification for some of

the results obtained form the comparative study and evaluation. Finally Chapter 7 offers the

conclusions and suggestions for future work.

5

Chapter 2 Pattern Recognition

The goal of pattern recognition is to classify objects into a number of classes. These objects,

depending on the application, can be images or signal waveforms or anything that needs to be

classified. Pattern recognition applications range from automated speech recognition, optical

character recognition to fingerprint identification and so on.

2.1 Character Recognition

Character Recognition or Optical Character Recognition (OCR) is the process of converting

scanned images of machine printed or handwritten text (numerals, letters, and symbols), to

computer-processed format (such as ASCII). The popularity of OCR has been increasing

each year with the advent of fast microprocessors providing the vehicle for vastly improved

recognition techniques. There is a wide variety of OCR systems in use today, from automatic

postal address readers through massive document handling computers used by offices, to the

desktop systems that employ scanners for reading text into word processing and spreadsheet

applications.

In general, there are two main categories for the character recognition problem, on­

line and off-line. The purpose of on-line handwritten recognition is to recognize the symbols

while they are being written. On the other hand, in the off-line case, the recognition process

is performed after the symbols have already been written. OCR belongs to the off-line

recognition category. In our research work we are interested in the case of off-line

recognition of isolated handwritten digits.

6

2.1.1 Components of Character Recognition System

An OCR system typically involve the following processing steps (Kharma & Ward, 1999):

1- Pre-Processing.

2- Feature Extraction.

3- Pattern Classification.

4- Post-Processing.

The pre-processing step aims to improve the image data by suppressing unwanted

distortions or enhancing some image features important for further processing. So the output

of the pre-processing step is a cleaned up version of the original image, which can be used

into the next step. Examples of pre-processing functions are: Noise removal, skeletonization,

thinning, normalization and segmentation.

Feature extraction is an important step in achieving good performance of OCR systems. It

is the process of defining the most relevant features, which will minimize the within-class

pattern variability and maximize the between-class pattern variability (Devijver & Kittler,

1982). Several feature extraction methods exist; for an extensive survey, see (Trier, Jain &

Taxt, 1996). The goal is to find those features that are of possible relevance for classification.

Assume now that a list of measured features is provided. The portion of the process that

must map these input features onto classes is called the classifier. This step can be

accomplished by means of a number of algorithms, including clustering techniques, rule-

based systems, neural net works and decision trees (Kharma & Ward, 1999).

Traditional OCR performs post-processing to assist in the resolution of errors produced in

the character recognition processes. The goal is to increase the level of confidence in the

7

classification results. One of the post-processing methods used is a word dictionary to verify

word results. Alternatively, recognition results may be verified interactively with the user.

2.2 Pattern Recognition Approaches

There are three approaches for pattern recognition: the statistical, the structural and the neural

network approaches (Pandya & Macy, 1996). In the statistical approach, the input pattern is

represented by a number of attributes or features (e.g. a set of measurements performed on

the raw data). If a suitable set of features is chosen to properly represent the patterns, feature

vectors having the same class will be close to each other while feature vectors belonging to

different classes will be positioned in different regions of the feature space. In this way, the

recognition task is reduced to partitioning the feature space into regions of different classes.

In our work, we have used the statistical approach for the task of recognizing handwritten

digits. The patterns, which are images of handwritten digits, are represented by d dimensional

feature vector.

On the other hand, in the structural approach, a pattern is assumed to be decomposed

into simpler sub-patterns, which in turn can also be decomposed into simpler sub-patterns

(called primitives) in a recursive way (Jain, Duin & Mao, 2000). In syntactic pattern

recognition, which is a sub-set of structural pattern recognition, patterns of a class are viewed

as sentences in a language defined by means of grammar, and primitives are considered the

alphabet of the language. Each class has its own defined set of rules or what is called

grammar. The grammar specifies the way in which sub-patterns can be combined to form a

valid pattern for a specific class. The pattern recognition problem in this case is to determine

whether a given pattern belongs to the language generated by that grammar (Devijver &

Kittler, 1982).

8

Neural networks (NN), in general, are large number of highly interconnected

processing elements (nodes) that usually operate in parallel. The collective behavior of a NN,

demonstrates the ability to learn, recall and generalize from training patterns. The analogy

between neural networks and human brain made neural networks good candidates for pattern

classification problems. In fact, neural networks are a non-parametric type of classifiers with

predictive capabilities. They make no assumptions about the underlying distributions.

Another main advantage of neural networks is their capability to learn complex nonlinear

relationships between inputs and outputs (Jain et al. 2000). Moreover, they have the ability to

generalize and even to recognize partially degraded patterns (Pandya & Macy, 1996).

2.3 Supervised verses Unsupervised Learning

Pattern recognition can be classified into two broad categories: supervised and unsupervised

(Pandya & Macy, 1996). A supervised learning process is one in which the user provides

some external information about the problem. That is, a set of examples, or training set of

classified elements. In the unsupervised case, no prior information is provided and the system

is required to discover the fundamental structure of the data on its own. Correct classes are

not available, and grouping or clustering is used in order to infer correct classification from

the data elements.

2.4 Parametric verses Non-parametric

In statistical pattern recognition, there are two general ways to design a classifier, parametric

and non-parametric. The key distinguishing feature is the form of the information "learned"

during training and passed on to the classifier. Parametric classifiers assume that the patterns

in the training set fit a known statistical distribution. These classifiers are parametric, in that

9

they are specified in terms of parameters (mean and covariance) of class distributions.

Nonparametric classifiers are useful in cases where the underlying distribution cannot be

easily parameterized. In such cases, we can either estimate the density function or directly

construct the decision boundary from the training data (e.g. k-nearest neighbor) (Jain et al.

2000).

2.5 The Nearest Neighbor Rule

Nearest neighbor classification is a nonparametric method that does not assume that the

patterns to be classified have known density functions. The K Nearest Neighbor Rule (k-

NNR) is a very intuitive method that classifies unlabeled samples based on their similarity to

classified samples in the training set (Dasarathy, 1991). The algorithms for the nearest

neighbor rule is described as follows:

• Given a feature vector x, whose class is to be determined, and n training samples,

identify the k training samples that form the nearest neighbors to x, regardless of the

type of the class (where k is chosen to be an odd number).

• Out of these k samples, determine the number of vectors kt , which belongs to class

W. (where i=l,2,..., m and]T kt -k and m is the number of classes).
i

• Assign the unknown vector x to the class w. with the maximum number of kt

samples.

In other words, the k nearest neighbor method assigns to an unclassified sample x the

class most heavily represented among its k nearest neighbors. When k=l, in this case it is

known as nearest neighbor rule, the feature vector x is assigned to the class of its nearest

10

neighbor. The k- NNR is very simple; it only requires an integer k, a set of labeled examples

(training data) and a metric to measure the "closeness".

K-NNR is considered an instance based learning, algorithm. Instance based learning

algorithms are a class of supervised machine learning algorithms. These algorithms do not

construct abstract concepts, but rather base their classification of new instances on their

similarity to specific training instances (Aha, 1992). Old training instances are stored in

memory, and classification is postponed until new instances are received by the classifier.

When a new instance is received, older instances are retrieved from memory and used to

classify the new instance. Other names for instance based algorithms are: Memory- based,

Exemplar- based or Case- based.

Instance based learning algorithms have the advantages of being able to (a) learn

complex target concepts (e.g. functions); and (b) estimate target concepts distinctly for each

new instance. In addition, their training is very fast and simple; it only requires storing all the

training instances in memory. In contrast, the cost of classifying new instances can be high

because every new instance is compared to every training instance. Hence, efficient indexing

of training instances is important. Another disadvantage of these learning algorithms is that

their classification accuracy degrades significantly in the presence of noise (in training

instances).

In the k-nearest neighbor method, the similarity between two cases can be measured in

various ways. The most common similarity measure is based on Euclidean distance. This is

described as follows:

(Eq.l)

11

Where D is distance, x and y are two instances, xt and yt are the i-th. attribute for the x

and y instances, and n is the total number of features. To compensate for the difference in

units between features, normalization should be performed. This often scales all features to a

range between 0 and 1, inclusive.

2.6 Attribute Weighted K-Nearest Neighbor

One major drawback of the Euclidean distance function is its sensitivity to the presence of

noise, and particularly, redundant or irrelevant features. This is because it treats all features

of an instance (relevant or not) as equally important to its successful classification. A

possible remedy is to assign weights to features. The weights can then be used to reflect the

relative relevance of their respective features to correct classification. Highly relevant

features would be assigned high weights relative to the weights of redundant or irrelevant

features. Taking that into account, the Euclidean distance measure can be now refined to:

Where w. is the weight of the /-th feature.

Assume (see Figure 1) there are several instances belonging to two classes, class 1

and class 2, each having two features (attributes) represented in 2-dimensional space. It is

required to classify the unknown instance to either one of these two classes. In the left side of

Figure 1, the unknown instance is classified according to the majority class of its k nearest

neighbors (k=3, in this case). Thus the unknown instance is incorrectly classified to be

belonging to class 1. However, the right side of Figure 1 shows the effect of using the

attribute weighted k-nearest neighbor. This weighting is achieved by multiplying the Y-axis

by a small weight, which corresponds to decreasing the effect of attribute Y and increasing

(Eq.2)

12

the influence of attribute X by multiplying it with a large weight. As a result of the attribute

weighting, the unknown instance is correctly classified as belonging to class 2. Note that the

dimension in the feature space, where a high weight is assigned, is extended. On the other

hand, the dimension in the feature space, where a low weigh is assigned, is compressed.

•
CNJ

0)

J / • \
< r j \ i mjo

Attribute 1

• Class 1

0 Class 2

Unknown
instance

Figure 1: Example of the effect of feature weighting.

2.7 Data Normalization

In addition to feature weighting, it is also important to apply data normalization before

classification. Different features have different measurement units, which means that their

values lie within different ranges. So, using the Euclidean distance function with features

having different ranges of values will result in a significant problem; features having large

values will have larger effect on the classification than those features that have small values.

However, this does not necessarily reflect their relative importance for classification

(Theodoridis & Koutroumbas, 1998). Therefore, data normalization must be performed first

to overcome the differences in units between feature values. A common method used for

normalization is to restrict all feature values in a certain range e.g. [0,1] or [0,10] or any other

13

range. This way of scaling features guarantees that all features will be normalized to the same

range of values.

2.8 Estimating Classification Error Rate

The assessment of a classifier, such as the k-NN, is based on its ability to successfully

classify and predict the unseen data. The most commonly method used to measure the

performance of a classifier is its error rate (Weiss & Kulikowski, 1991). Error rate is the

number of incorrectly classified data samples divided by the total number of all samples. In

general, the estimation of the error rate of a recognition system is performed by dividing all

the samples available into two sets, a training set and a testing set. The classifier is built and

designed using the training set, and then the error rate of the classifier is calculated using the

testing set. However, both the training and testing sets should be independent and have a

large number of samples so as to return a true measure of the classifier error rate (Jairi et al.

2000). There are many methods for estimating classification error rate. These methods

mainly differ in the way the available samples are split into training and testing sets. These

methods are described as follows.

2.8.1 Hold Out Method

In this method, all the available samples are separated into two sets, called the training set

and the testing set. The common splits used for the data samples are 2/3 of the data assigned

to training and 1/3 to testing (Weiss & Kulikowski, 1991). Alternatively, half of the data can

be used for training and the second half for testing. The classifier is trained using the the

training set only. Then the trained classifier is asked to predict the output values of the testing

set. The accumulated errors using the testing set is used as the classifier error rate. The

14

problem with this mehtod is that its evaluation can have a high variance. Since the holdout

method is a single train-test method, its evaluation of error rate depends heavily on which

data points end up in the training set and which end up in the test set. Thus the evaluation

may be significantly different depending on how the division is made (Jain et al. 2000).

2.8.2 Cross-Validation Methods

The limitations of the holdout can be overcome with a family of cross-validation methods at

the expense of higher computational cost. These methods are: the k-fold, the random sub-

sampling and the leave-one-out methods (Weiss & Kulikowski, 1991; Jain et al. 2000).

2.8.2.1 K-Fold Cross-Validation Method

In this method, the data set is divided into k parts (folds), and the holdout method is repeated

k times. Each time, one of the k subsets is used as the testing set and the other k-1 subsets are

combined to form a training set. The error rate is the average of the error rates obtained from

all k trials. Every data point gets to be in a test set exactly once, and gets to be in a training

set k-1 times. The variance of the resulting estimate is reduced as k is increased. The

disadvantage of this method is that the training algorithm has to be rerun k times, which

means it takes k times as much computation to make an error estimation.

2.8.2.2 Random Sub-Sampling Method

Random sub-sampling can be viewed as a variant of k-fold cross-validation method, where

data is randomly divided into a test and training set k different times. In this method, multiple

random train-test experiments are performed k times. The train-test sets are chosen randomly

each time. Then the classifier is built using the training set, and tested using the testing set.

The error rate is the average of the error rates obtained from k runs. Random sub-sampling

15

has better error rates than the single train-test holdout method (Weiss & Kulikowski, 1991).

The advantage of this method over the k-fold method is that you can independently choose

how large each test set is and how many trials you average over. On the other hand, in the k-

fold method all the examples in the dataset are eventually used for both training and testing.

2.8.2.3 Leave-One-Out Cross-Validation Method

It is a k-fold cross validation taken to its extreme, with k equal to N, the number of data

samples. For a dataset with N examples, perform N runs. For each run, use N-l examples for

training and the remaining example for testing. As before the error rate is the average of the

error rates obtained from N runs. Leave-one-out method has unbiased estimation for the error

rate but it has large computational requirements. For very sparse datasets, we may have to

use leave- one- out in order to train on as many examples as possible. Conversely, for large

data sets, leave-one-out is computationally expensive, so random sub-sampling or k-fold

methods are preferred.

2.8.3 Bootstrap Method

The bootstrap is a re-sampling technique with replacement. Given a dataset with N examples,

N examples are randomly selected (with replacement) and this set is used for training. The

remaining examples that were not selected for training are used for testing. This process is

repeated for a specified number of folds (K). The error rate is the average of the error rates

obtained from k folds. Obviously, the number of test examples is likely to change from fold

to fold. Usually bootstrap method is used for small sample datasets (Jain et al. 2000).

16

Chapter 3 Feature Selection and Weighting

3.1 The Curse of Dimensionality

Intuitively, one would expect that the more information that is available, the better we can

make decisions. That is, the more features available to the classifier, the better the

classification results. However, in practice this is not always true. In fact, adding more

features is not always helpful. For a given size of training samples, as the feature dimension

increases, the number of data points becomes more sparse relative to the problem dimension.

In addition, new features may not add useful information and some features may be noise.

This phenomenon, which is often observed in pattern recognition, is called the peaking

phenomena (Jain et al. 2000). Peaking phenomena happens when adding new features to a

feature set leads to a decrease in the classification accuracy of a classifier trained on a finite

set of training samples.

In general, the classifier performance depends on the relationship between the sample

sizes and the number of features (Jain et al. 2000). For a given problem with d dimensional

features, there exists some minimum number of training samples that are required by the

classifier to achieve good classification rate. However, the required number of training

samples grows exponentially with the dimensionality of the feature space (Pandya & Macy,

1996). This is known as the "curse of dimensionality". In practice, the curse of

dimensionality means that, for a given sample size, there is a maximum number of features

above which the performance of the classifier will degrade rather than improve. It is very

difficult to draw the exact relation between the probability of misclassification, the sample

17

size and the number of features. However, a general accepted rule is to employ a number of

training samples, which is at least ten times as the number of features used (Jain et al. 2000).

3.2 Dimensionality Reduction

As mentioned in the previous section, a major problem associated with the pattern

recognition problem is the so-called curse of dimensionality. Usually, there is a very large

number of features that a domain expert can provide when designing any pattern recognition

problem in general, or character recognition system in particular. This number can easily

range from a few dozens to hundreds. Thus, features must be evaluated and the most

effective ones chosen. This process is referred to as the dimensionality reduction. Several

reasons have motivated the use of dimensionality reduction techniques. The reduction of the

number of features will certainly help in reducing/eliminating the curse of dimensionality

problem. Moreover/reducing the dimensionality of the problem will, in turn, reduce the time

complexity and the memory requirements of the recognition system. In addition, reducing the

dimensionality will increase classifier efficiency by eliminating redundant and irrelevant

features.

3.3 Feature Selection verses Feature Extraction

Two approaches are available to perform dimensionality reduction: Feature selection and

feature extraction. Feature selection can be defined as follows. Given a number of features,

the feature selection process aims to select the most important features of them so as to

reduce their number and at the same time retain as much as possible of their discriminatory

power. Feature selection can be modeled as follows: Given a feature set X={x, I j = 1,2,..DJ

18

of D features, a feature selection method should find a subset Y= \y \l' = 1 ,2 , . .of d

features, where d<D, such that the combination of d features optimizes a criterion function J,

usually but not necessarily, the error rate of the classifiers (Devijver & Kittler, 1982).

On the other hand, feature extraction refers to the process of creating a subset of new

features based on combinations or transformations of the existing features. The problem of

feature extraction can be stated as follows: Given a feature set X={xv | j = \,2,..n\ of n

features, a feature extraction method should find a mapping (either linear or non-linear)

Y=f(X), where Y=\y 11: = 1,2,..m} and m<n, such that the transformed feature vector Y

preserves (most of) the information or structure in X. An optimal mapping will be one whose

set of features results in no increase in the classification error. The selection of the feature

extraction mapping Y= f(X) is guided by an objective function that we seek to maximize (or

minimize). Examples of feature extraction methods are: principle component analysis, linear

discriminant analysis and feature clustering.

The choice between feature selection and feature extraction depends on the type of

application and data available (Jain et al. 2000). Feature subset selection is necessary in a

number of situations. Feature selection decreases the cost of feature measurement by

removing some features from the original set of features. The original features are important

to keep so as to extract meaningful rules from classifier. However in feature extraction,

where features are transformed or projected, the physical meaning of the features after such

transformation are lost. In addition, features may not be numeric (a typical situation in the

machine learning domain). In this case feature selection is the only applicable way for

dimensionality reduction.

19

3.4 Feature Selection verses Feature Weighting

As we pointed out before, the k- NNR is very sensitive to noisy features. A solution to this

problem is to modify the Euclidean metric by a set of weights that represent relevance of

each feature. In feature weighting, the weights can hold any value from a continuous range of

values (e.g. [0,1]). The purpose of feature weighting is to find a vector of real-valued weights

that would reduce the damaging effect of irrelevant and redundant features while fine-tuning

the weights of useful features to achieve higher classification accuracy.

Several feature weighting methods for case based learning algorithms exist. For example,

the weighting could be global, meaning that there is a single weight vector for the

classification task, or it could be local, in which weights vary over local regions of the

instance space (Howe & Cardie, 1997). Moreover, the weight vector could have continuous

real values or binary (zero or one only) values. In addition, the method for assigning the

weights could be guided by the classifier performance or not (will be explained in section

3.5.1). For an extensive review, Wettschereck, Aha & Mohri (1997) provide a five-

dimensional framework that categorizes different feature weighting methods.

On the other hand, feature selection aims at reducing the number of features used in

classification, while maintaining or improving the classification accuracy (Dash & Liu,

1997). This entails that weights can either equal '0' for 'not selected', or T for 'selected'.

Though both feature selection and weighting seek to enhance classification accuracy, only

feature selection has the (real) potential of reducing problem dimensionality (by assigning '0'

weights to features). This is contrary to feature weighting, where irrelevant/redundant

features are almost always assigned small (but sometimes non-zero) weights. Feature

20

selection can also enhance classification accuracy as a result of completely eliminating

highly irrelevant and redundant features.

Nevertheless, feature selection may be regarded as a special case of feature weighting.

The trick is to find a way to use feature weighting to both (a) assign weights to relevant

features, in a way that reflects their relative relevance, and (b) completely eliminate highly

irrelevant and redundant features from the original set of candidate features.

3.5 Feature Selection Algorithms

Ideally, feature selection methods search through the subsets of n features, and try to find the

best one among the possible 2" candidate subsets according to some evaluation function. For

example, for a problem using only 40 features, the number of possible subsets of the full

feature set is 2 4 0 = 1012. In general, feature selection attempts to select the minimally sized

subset of features where the classification accuracy does not significantly decrease.

Therefore, feature selection procedure is exhaustive as it tries to find only the best subset. It

may be too costly and practically prohibitive, even for a medium-sized feature set size n. An

exact searching algorithm through all subsets has an exponential complexity. Therefore an

efficient search algorithm is required to explore the space of all possible feature subsets.

Several search techniques for feature selection have been proposed in the literature. Dash

& Liu (1997) have categorized different feature selection methods according to the search

technique used and the evaluation function. For extensive reviews of feature selection see

Refs. (Blum & Langley, 1997; Jain & Zongker, 1997; Dash & Liu, 1997). In general, a

feature selection method requires two things:

1- An objective function to evaluate candidate feature subsets.

2- A search strategy to select these candidate subsets.

21

3.5.1 Feature Selection Objective Function

The objective function evaluates candidate subsets and returns a measure of their

"goodness", a feedback that is used by the search strategy to select new candidates. Objective

functions are divided into two groups, which in turns divide the feature selection into two

approaches: Filter and Wrapper. In the filter approach, the objective function evaluates

feature subsets by their information content, typically by distance measures or dependence

measure. For the distance measures, filter methods use distance to determine class

separability, such as Euclidean distance to measure distance between classes. The

dependence measure is based on the rationale that good feature subsets contain features that

are highly correlated with the class, yet uncorrelated with each other. So it measures the

correlation coefficient between features and class label and also between the features

themselves. For both the distance and the dependence measures of the filter approach, feature

selection does not depend on the classification algorithm.

On the other hand, in the wrapper approach, the classification algorithm is used as a

part of the evaluation function of the feature subset. In other words, the search algorithm

employs the classifier's predictive accuracy to evaluate the subset of features.

It is clear that the filter method requires less computational time when compared to the

wrapper one; however, the filter approach ignores the effect of the selected features on the

performance of the classification algorithm as opposed to the wrapper method, which could

lead to better performance. Generally, wrappers achieve better recognition rates than filters

since they are tuned to the specific interactions between the classifier and the dataset (Kohavi

& John, 1997). Figure 2 depicts both the filter and wrapper approaches.

22

All
features

Search algorithm for
feature subset

Optimal
feature subset

Classification
Algorithm

Filter Approach

All features

Search algorithm for
feature subset

Optimal
feature subset

•

Feature
subset

Evaluation
of feature
subset

Classification
Algorithm

Wrapper Approach

Figure 2: The two feature selection approaches, filter and wrapper.

3.5.2 Feature Selection Search Strategy

Before evaluating the goodness of the candidate feature subsets, a search strategy is required

to select these candidate subsets. The search strategy is required to direct the feature selection

process as it explores the space of all possible combination of features. Since in practice the

exhaustive search over all possible subsets of a feature set is not computationally feasible,

several search strategies have been introduced in the literature to guide the feature selection.

Examples of these search methods are: branch and bound, sequential forward selection,

sequential backward elimination and genetic algorithms.

23

A number of authors have proposed different groupings for feature selection search

methods (Dash & Liu, 1997; Yang & Honavar, 1998; Jain & Zongker, 1997). Broadly, these

search strategies can be grouped into three categories: exponential (optimal), deterministic

and randomized (stochastic) searches (Yang & Honavar, 1998; Jain & Zongker, 1997).

3.5.2.1 Feature Selection Using Exponential Search Methods

These algorithms evaluate a number of subsets that grows exponentially with the

dimensionality of the search space. Although the order of the search space is 2" , a fewer

subsets are evaluated (Dash & Liu, 1997). The most representative algorithms under this

class are: exhaustive search, branch and bound.

In general, for a set of n measured features, the only certain way to find the optimum

subset of features, by whatever criterion, is to exhaustively test all 2" subsets, a procedure

which is computationally infeasible for all except when n is small, since the size of the search

space grows exponentially with the number of features included (Jain & Zongker, 1997). As

an alternative to exhaustive search, a widely investigated technique is branch-and-bound

(BAB) search (Narendra & Fukunaga, 1997). The branch and bound algorithm has been

shown to produce an optimal feature subset under specific circumstances, and its designers

demonstrate that it is much faster than exhaustive search. The technique involves setting up a

sorted search tree starting from the full feature set, with each node uniquely identified by the

feature discarded at that node. Since the tree is sorted in order of the selection criterion, any

node, which has a value of the selection criterion less than the current "best" value can be

discarded, along with its attached sub-tree; since this section of the tree is guaranteed not to

increase in value. In this way whole areas of the search space can safely be ignored,

24

increasing the computational efficiency of the feature selection process, while still

guaranteeing to find the optimum feature subset.

BAB algorithm will only find the optimal feature subset under the monotonicity

assumption. The monotonicity assumption states that the addition of features can only

increase the value of the objective function. Nevertheless its computational cost is prohibitive

for large feature spaces: in the worst case, it does an exhaustive search and its time

complexity is exponential on the dimension of the feature space. Another problem of this

approach is that, if the criterion distance is not monotonic, the BAB algorithm will face the

nesting effect (explained in the next section). Furthermore, Yang and Honavar (1998)

observe that while branch and bound approaches often work well with conventional

statistical classifiers, their performance may be poor with non-linear classifiers such as neural

networks.

3.5.2.2 Feature Selection Using Deterministic Search Methods

Deterministic methods produce a feature subset, which is always the same every time for a

given data set (Jain & Zongker, 1997). Examples of these algorithms are: sequential forward

selection, sequential backward selection and sequential floating selection.

Sequential forward selection (SFS) and sequential backward selection (SBS)

algorithms are based on the same idea. Starting from the empty set, SFS first picks a feature

that results in the highest objective function (i.e. classification accuracy). Then sequentially,

the next best feature is added provided that the first one has already been chosen. This

process is repeated until either the required number of features is chosen, or there is no

benefit from adding further features. Alternatively, SBS starts from the complete set and

eliminates the worst feature. Then sequentially, the next worst feature is removed. However,

25

SBS approach involves a larger number of feature set evaluations, which may make it

unsuitable for very large data sets. A major disadvantage for both SFS and SBS is the lack of

backtracking or what is called the nesting effect. A feature that is added by SFS at the

beginning can't be removed; also a discarded feature by SBS can't be added again.

A modification to the SFS and SBS is the floating search methods. There are two

main categories of floating search methods: forward (SFFS) and backward (SFBS).

Basically, in the case of forward search (SFFS), the algorithm starts with a null feature set

and for each step, the best feature that satisfies some criterion function is included with the

current feature set, i.e., one step of the sequential forward selection (SFS) is performed. The

algorithm also verifies the possibility of improvement of the criterion if some feature is

excluded. In this case, the worst feature (concerning the criterion) is eliminated from the set,

that is, it is performed one step of sequential backward selection (SBS). Therefore, the SFFS

proceeds dynamically increasing and decreasing the number of features until the desired

number of features d is reached.

The backward search (SFBS) works analogously, but starting with the full feature set

(of size m) and performing the search until the desired dimension d is reached, using SBS

and SFS steps. All of these approaches are heuristic, and there is no guarantee that they will

find the globally best subsets. In addition, these algorithms have a tendency to become

trapped in local minima (Zhang & Sun, 2002).

3.5.2.3 Feature Selection Using Randomized Search Methods

Unlike deterministic algorithms, stochastic algorithms include an element of chance. This

means that two runs of the same algorithm with different random number seeds will produce

different results. In fact, these algorithms incorporate randomness into their search procedure

26

to escape local minima. Examples are: simulated annealing (SA), tabu search (TS) and

genetic algorithm (GA). In this section we will cover SA and TS and in the next chapter G A

will be discussed widely.

Simulated annealing is an optimization technique based on an analogy with the

physical annealing of solids (Sadiq & Youssef, 1999). Annealing refers to the process by

which a solid material is first melted and then allowed to cool by slowly reducing the

temperature. At high temperatures, all the particles of the solid are randomly organized as a

liquid. The temperature of the system is then gradually lowered, and the particles arrange

themselves in the lowest energy state as an orderly lattice. The probability that a particle is at

any energy level can be calculated. As the temperature of the material decreases, the

probability tends toward the particle configuration that has the lowest energy. The system is

perturbed to yield a new configuration of the particles. Using this criterion, the material will

eventually reach its equilibrium configuration.

For feature selection, the set of potential solutions assumes the role of the states of a

solid, and the cost function (or fitness function) replaces energy. The goal of the procedure is

then to achieve a state of minimum cost (corresponding to maximum fitness) by moving

between solutions with a probability, which is dependant upon the temperature of the system.

At a high temperature a higher cost solution is more likely to be accepted, while as the

temperature decreases the probability of accepting a higher cost move also decreases. The

temperature is lowered during the running of the algorithm according to a predetermined

schedule (Van Laarhoven & Aarts, 1987).

Simulated annealing has found wide application in fields of science and engineering.

SA's major advantage over other methods is an ability to avoid becoming trapped at local

27

minima. Thus, the ability to find the global optimum is not related to the initial conditions

(i.e., the starting point). The primary disadvantages to SA are the subjective nature of

choosing the SA configuration parameters (e.g., T and step size) and that it typically requires

more response or objective function evaluations than other optimization approaches. Thus it

tends to be very slow; and a realistic temperature schedule must be established, usually by

trial-and-error.

Tabu search is an iterative procedure designed for the solution of optimization

problems. TS was invented by Glover (Glover, 1986) and has been used to solve a wide

range of hard optimization problems. Tabu search, like simulated annealing, is a

neighborhood (local) search. Local search employs the idea that a given solution S may be

improved by making small changes. Those solutions obtained by modifying solution S are

called neighbors of S. The local search algorithm starts with some initial solution and moves

from neighbor to neighbor as long as possible while decreasing the objective function value.

The main problem with this strategy is to escape from local minima where the search cannot

find any further neighborhood solution that decreases the objective function value. However,

tabu search can escape from local minima.

Tabu search considers the set of all possible neighborhood states and takes the best one.

Yet, it will take the best move in the neighborhood, even though it might be worse than the

current move. The main principle behind tabu search is that it has some a short-term memory

component (called tabu list), which keeps track of the states that has already been visited and

it does not allow revisiting those states. Preventing previously visited states helps in two

ways. It avoids the search getting into a loop by continually searching the same area without

actually making any progress. In turn, this helps the search explore regions that it might not

28

otherwise explore, thus avoiding local minima. The moves that are not allowed to be

revisited are held in the tabu list and these moves are called "tabu" (thus the name).

Typically, old moves are removed from the tabu-list after some number of iterations.

During the search, the tabu status of a solution is overridden if certain criterion called the

aspiration criteria is met. For example, if the cost of the solution found is better than the best

known so far, then the aspiration criterion is satisfied and the tabu constraint is removed by

allowing the move to this solution (Sadiq & Youssef, 1999). Simulated annealing and genetic

algorithms are both memory-less, however, tabu search has a memory to record and guide the

search, which prevents cycling through solutions.

29

Chapter 4 Genetic Algorithms for Feature Selection and

Weighting

4.1 Genetic Algorithms Review

Genetic algorithms are search algorithms based on analogy with biology in which a group of

solutions evolves via natural selection. Since their development by John Holland (Holland,

1975), genetic algorithms have been widely and successfully employed in many fields such

as optimization problems, machine learning and pattern recognition. Genetic algorithms

operate on a population of individuals that represents candidate solutions for a given

problem. Each individual or chromosome compete with one another to reproduce based on

Darwinian's principle of 'survival of the fittest' in each generation of evolution. An

individual is evaluated by a fitness function that expresses how much this chromosome is

appropriate as a solution. The best parent individuals, which survived the struggle in a G A

population, crossover to produce better offspring. To prevent G A from being caught at a

good but not optimal solution, mutation is performed. After a number of generations in

evolution, the chromosomes that survived in the population are the optimal solutions. In

general, G A consists of the following steps (which are depicted in Figure 3):

1. Start with a randomly generated population of n chromosomes (candidate solutions).

2. Evaluate each chromosome in the population by calculating the fitness function.

3. Create new chromosomes by mating current chromosomes; apply mutation and

reproduction as the parent chromosomes mate.

30

4. Delete chromosomes from the current population to make room for the new

chromosomes.

5. Evaluate the new chromosomes and inset them into the population.

6. If the stop condition is satisfied, then stop and return the best chromosome; otherwise,

go to step 3.

Generate initial b Evaluate objective

population function

i i

Start

Generate
new
population

±
Crossover

Mutation

Repeat for n generations

Stop condition Best

satisfied? Yes individual

No

t

Result
i r

| Selection

Figure 3: Basic steps of genetic algorithms.

31

4.1.1 The Basics of Genetic Algorithm

There are some basic operations and parameters found in every genetic algorithm. In this

section we will discuss them in details.

4.1.1.1 Initialization

In general, it is required to initialize the population with diverse individuals. This will

provide a good start for the G A and offer diversity in the population. There are many ways to

arrange this initial diversity. Usually, the initial population is randomly generated; where

candidate solutions (feature subsets) are created randomly from the search space with a

uniform distribution. Another method for initialization is to use the solutions found by other

search techniques. While this does not encourage diversity, it can guarantee that the genetic

algorithm will do at least as well as the initial seed algorithm. However, this initialization

method can lead to premature convergence to sub-optimal solutions.

4.1.1.2 Representation

In general, any representation for the individual genomes in the genetic algorithm can be

used. The majority of the developmental work of G A theory and the most widely used

representation is performed using a binary-coded GA. Historically, Holland (1975) worked

with strings of binary bits. In a binary coding each chromosome is vector containing zeroes

and ones with each bit representing a gene. The two main common representations are the

binary and real number coding. They differ mainly in how the recombination and mutation

operators are performed. However, other representations can be used such as, arrays, trees,

lists, or any other object. But genetic operators must be defined (initialization, mutation,

32

crossover, comparison) for any representation used. Normally, the proper choice of genetic

representation is problem-dependent and based upon the type of application.

4.1.1.3 Selection (Reproduction)

Reproduction or selection determines, which individuals are chosen to be copied to the

mating pool from which the next generation is created. The selection is often performed to

yield a mating pool with the same size as the original population. Then the mating pool

serves as templates (parents) on which genetic operators are applied (crossover and

mutation), interchanging and modifying sets of genes, to produce a new generation

(offspring). The chance that an individual will be copied to the mating pool is based on the

individual's fitness function. Generally, to emulate natural selection, individuals with a

higher fitness should be selected with higher probability.

There are many different types of selection methods (Davis, 1991). Examples are

proportional (roulette wheel) selection, tournament selection, and rank selection. The

simplest selection scheme and the most commonly used is roulette-wheel selection

(Goldberg, 1989). In this method, each chromosome is assigned a slice of a circle "roulette

wheel", where the size of the slice is proportional to the chromosome's fitness. Each time an

offspring is needed the wheel is spun, and the individual under the wheel's marker is selected

to be in the pool of parents for the next generation. The process is repeated until the desired

number of individuals is obtained (called mating population). This method will guarantee

that good individulas will probabely be selected several times, while poor individulas may

not be selected at all.

In tournament selection, n individuals are selected at random and the fittest is

selected. The most common type of tournament selection is binary tournament selection,

33

where just two individuals are selected at random. The individual with the higher fitness will

win. In the rank selection, ndiyiduals are sorted (ranked) on the ground of their fitness, where

an idvidiual is assigned a rank r such that the least fit member has rank 0 and the fittest

member rank 1. The selection probability is linearly assigned to the individuals, which

depends on their rank and not on the actual fitness function value.

It is worth mentioning that none of the aforementioned selection methods are right or

wrong. In fact, some will perform better than others depending on the problem domain being

explored. In general, one will always select the fittest and discards the worst so that good

solutions survive, and weak solutions die. However, imposing too much selection pressure,

the solution will converge to less than optimal. On the other hand, applying too little

selection pressure, a solution will possibly never reached. So, it is a balancing act to find the

right selection technique for the problem at hand.

4.1.1.4 Crossover (Recombination)

Once all individuals have been selected for reproduction, an exact copy of them is made and

put into the mating pool, a tentative new population, for more genetic operations. Notice that

selection does not create any new chromosomes it just selects the best existing chromosomes

and places them into the mating pool, which is used as the basis for creating the next

generation.

In the mating pool, G A performs crossover first then mutation. Crossover is a version

of artificial mating. In crossover, the G A selects two individuals at random from the mating

pool. The selected individuals may be different or identical it does not matter. The G A then

calculates whether crossover should take place using a parameter called the crossover

34

probability. This is simply a probability value p and is calculated by flipping a weighted coin.

The value of p is defined by the user and usually has large value.

If the G A decides not to perform crossover, the two selected chromosomes are simply

copied to the new population. On the other hand, if crossover happens, a crossover point is

selected at random. Then the parents are crossed and separated at this point producing two

children. These new child strings are then placed in the new population. Crossover is

performed and continued until the new population is created. There are different techniques

for crossover. The simplest technique is called one-point crossover (Davis, 1991) that

randomly picks a crossover point and exchanges the segments to the right of this point

between the two chromosomes.

On the other hand, in two-point crossover, two crossover points are selected at

random. The genes between the two crossover points are exchanged. Another crossover

method is the uniform crossover. Uniform crossover can be thought of as a generalization of

one and two-point crossover. In this case, each bit in the offspring has equal chance of being

chosen from either parent. A crossover mask, the same length as the individual structure is

created at random and the parity of the bits in the mask indicates which parent will supply the

offspring with which bits. Generally, for each bit in the first offspring, a 0 in the

corresponding position of the crossover mask will mean that the bit is taken from first parent,

while a 1 will mean that the bit is taken from the second parent. The exact opposite will

apply for the second offspring. Yet, the best type of crossover operator to use will depend on

the problem being solved.

35

4.1.1.5 Mutation

After performing the crossover operation to produce the new offspring, individuals in the

population may undergo mutation. In binary coding, mutation is a very simple operation. A

position in the string is chosen at random, and the value at that position is inverted from 0 to

1, or 1 to 0. Generally, a mutation is a small random change to a value that occurs with low

probability called mutation rate. Mutation rate determines the probability that a mutation will

occur. Large mutation rates increase the probability that good schemata will be destroyed,

but increase population diversity. The best mutation rate is application dependent but for

most applications is between 0.001 and 0.1.

Mainly, crossover represents a way of moving through the space of possible solutions

based on the information gained from the existing solutions (exploitation). Mutation, on the

other hand, represents innovation. Mutation is extremely important; by making small moves

mutation allows a population to explore the search space (exploration) (Beasley, Bull &

Martin, 1993). Additionally, it increases the diversity of the population by preventing the

population from becoming saturated with similar chromosomes. Even if most of the search is

being performed by crossover, mutation can be vital to provide the diversity which crossover

needs.

4.1.1.6 Fitness Function

The fitness of a chromosome is based on the user defined evaluation function. It is a positive

number that measures the goodness of an individual and discriminates between better and

worse solutions. The simplest way is to use the evaluation function directly as the fitness

function. However, since the fitness function must be non-negative, it is sometimes necessary

to map the evaluation function into a valid fitness function. To maintain the topology of the

36

cost landscape, this is often a simple linear map. Other methods include exponential mapping

but in all cases the important point is to reflect the value of the chromosome fitness in a

correct way so that the problem is not distorted.

For some evaluation functions, the difference between the best and the worst

chromosomes may be small. This results in a slow search, where the probabilities of

reproduction for all chromosomes are almost the same. To approach this problem, fitness

scaling has been introduced (Goldberg, 1989). Moreover, fitness scaling is also applied to

overcome the problem of premature convergence. This problem arises from the fact that at

the beginning there may be some extraordinary chromosomes in a population. In the first

couple of generations these chromosomes might take over a huge part of the population

before the crossover operator is able to construct a more diverse set of good chromosomes.

Using fitness scaling, the few extraordinary chromosomes are scaled down while the lowly

members of the population get scaled up. Fitness scaling imposes a maximum number of

copies on an individual chromosome, thus preventing the few super chromosomes from

taking over the population in the beginning.

4.1.1.7 Generation Replacement

There are different ways how to handle populations from one generation to the next

generation. Given the constraint that the number of individuals should remain constant some

individuals have to be discarded. Transition between generations can be done by total

replacement, elitist replacement or steady state replacement. For total replacement or

sometimes called non-overlapping populations only the newly created offspring enters the

next generation and the parents of the previous generation are completely discarded. So, each

generation the algorithm creates an entirely new population of individuals (Goldberg, 1989).

37

However, this has the disadvantage that a fit parent can be lost if it only once produces bad

offspring.

To overcome the problem of replacing good parents elitist replacement is introduced.

Elitism (De Jong, 1975) forces the G A to keep some of the best individuals at each

generation. By allowing elitism, at least a copy of the best individual of the population is

always passed to the new generation. This will gurantee that the best individuals ever

discovered are not destroyed.

In the steady state or called overlapping populations, only a single population of

individuals is maintained at any given time. Two individuals are selected from the population

based on their fitness and then modified by mutation and crossover. The newly created

individuals are then returned to the single population by means of the replacement operator,

which selects chromosomes to be removed. In this variation, you can specify how much of

the population should be replaced in each generation (generation gap) and the replacement

criterion to be used (i.e. replace worse individual or replace random individual in the

population) (De Jong, 1975).

4.1.1.8 Schema Theorem

Even though genetic algorithms depend on their work on randomized operators, they use

random choice to guide a highly exploitative search (Goldberg, 1989). The concept behind

why G A works well lies in the schema theorem (Holland, 1975). A schema (H) is defined as

a template for describing a subset of chromosomes with similar sections. For example,

consider a schema such as, #0000. This schema matches two chromosomes, 10000 and

00000. The template is a powerful way of describing similarities among patterns in the

chromosomes.

38

According to Holland, the order of a schema (o(H)) is equal to the number of fixed

positions (i.e., non-meta-characters) and the defining length of a schema (L(H)) is the

distance between the first non * symbol position to the last non * position. Thus, the schema

#00#0 is an order 3 schema (o(H) = 3) and has a length of (5-2) (L(H) = 3). Holland (1975)

derived an expression that predicts the number of copies a particular schema, H, would have

in the next generation after undergoing selection, crossover and mutation. In short, the

schema theorem states that short, low order above average schemata (i.e. building blocks)

receives exponentially increasing trials in subsequent generations.

So, during the G A run, the average fitness of all schemata existing in the population is

evaluated, and accordingly they receive increasing or decreasing trials in the next

generations. Thus, high performance schemata, whose average fitness is high, are copied and

recombined to form instances of equal or higher performance schemata.

4.2 Genetic Feature Selection and Weighting

Feature selection is a process that often involves the optimization of partially understood and

mathematically- uncharacterized systems. Sometimes, but not always, this process also

involves a large number of parameters. Genetic Algorithms (Michalewicz & Fogel, 1998) are

optimization techniques that are well suited for these situations. Another advantage of G A

algorithm is that it has an implicit parallelism in which a set of solutions is evaluated at the

same time, rather than individually (Goldberg, 1989) and thus, a G A gradually guides the

search towards regions of optimality. In addition, G A has already proved to be efficient

solutions for highly dimensional feature selection problems (Moser & Murty, 2000; Kudo &

Sklansky, 2000).

39

GA-based feature selection (or GFS) has been employed in many applications, such

as pattern/texture classification (Vafaie & De Jong, 1993), character recognition (Kim &

Kim, 2000), medical diagnostics (Handels, Ross, Kreusch, Wolff & Poppl, 1999) and data

mining (Martin & Vila, 1998). In addition, genetic feature weighting (GFW) was also

employed and presented in (Kelly & Davis, 1991; Punch et al. 1993; Komosinski & Krawiec,

2000; Demiroz & Guvenir, 1996). Despite this diversity there are some common aspects,

which must be decided upon when using G A for feature selection/weighting problem. These

aspects are discussed below.

4.2.1 Chromosome Representation

In GA-based feature selection, each 'individual', which represents a feature subset, competes

with other individuals for survival into the next generation of individuals. An individual is

often represented as a binary string of finite length n, where n is the number of features. A

value of '1' in the string indicates that the corresponding feature is included in this subset,

while a value of '0' means it is not included. In the case of GA-based feature weighting,

continuous real valued strings instead of binary strings represent the individuals of a

population. The value of a gene in the chromosome indicates the weight of the corresponding

feature. This representation allows the relative importance of each feature to be assessed

according to its weighting. (Punch et al. 1993; Komosinski & Krawiec, 2000) used both

binary and real valued weighting.

4.2.2 Type of Classifier

The majority of surveyed genetic feature selection GFS papers employed either neural

networks or nearest neighbor classifiers. Nearest neighbor classifiers are very widely used

40

because they are robust, non-parametric, fast and easy to understand, and hence have been

used in conjunction with OCR applications in several experiments (Moser & Murty, 2000).

GFS systems that employed nearest neighbor classifiers are presented in (Kelly & Davis,

1991; Punch et al. 1993; Komosinski & Krawiec, 2000; Kudo & Sklansky, 2000).

On the other hand, several authors have used neural network classifier for GFS.

Examples of such works are described in (Jack & Nandi, 2000; Sahiner, Chan, Wei, Petrick,

Helvie, Adler & Goodsitt, 1996; Yang & Honavar, 1998). The main disadvantage of using

neural networks in the GFS problem is that training a neural network for each evaluation is

computationally expensive. On the other hand, nearest neighbor has the disadvantage of high

storage requirements since all the training instances are stored in memory.

4.2.3 Fitness Function

Some of the fitness functions used in GFS are solely based on classification error rate. This

type of feature evaluation results in an unconstrained optimization problem (Siedlecki &

Sklansky, 1989). In contrast, Yang & Honavar (1998) use a multi-criterion fitness function,

which incorporates both accuracy and cost of classification. Siedlecki & Sklanski (1989) use

a fitness function based on a penalty formula, and the number of features selected. The

penalty function apportions punishment values to feature sets that produce error rates, which

are greater than a pre-defined threshold. It is worth noting that fitness functions that use the

number of features and the classifier's error rate lead to constrained optimization problems

(Siedlecki & Sklansky, 1989).

41

4.2.4 Computational Speed-Up Techniques

Numerous attempts have been undertaken to speed-up GA-based feature selection systems.

Brill, Brown & Martin (1992) apply a nearest neighbor classifier to evaluate feature sets by

running multiple populations independently on multiple processors. This process results in a

diminished set of feature sets. These are then conclusively evaluated using a full-fledged

counter-propagation neural network. Brill et al. (1992) demonstrate that the idea of

separating the evaluation classifier from the eventual target classifier leads to significant

reductions in computational time. Punch et al. (1993) employ a Micro Grain distributed GA.

In this method, groups of feature sets are passed to individual processors for fitness

evaluation. Given that fitness evaluation Occupies most of the computational time of a

wrapper-configuration GFS, it is not unusual that this technique leads to linear speed-ups.

Recently, Moser (1999) proposed Distributed Vertical GA's to very large-scale

feature selection applications with more than 500 features. Ffis technique allocates subsets of

the test patterns to different evaluators. An adaptive load-balancing algorithm is used to

manage the capabilities of a network of heterogeneous computers.

4.2.5 GA Parameters

Several G A parameters need to be determined, such as population size, number of

generations, selection methods, and crossover and mutation probabilities and so on. In fact, it

is a problem common to all G A applications: how do we decide these parameters in order to

make G A truly autonomous optimization and design tools (that require minimal human

intervention)? In fact, there's no clear guide for the choice of the G A parameters for a

specific type of problems like GFS. Many authors have used several variations for these

42

parameters in literature. However, the choice of these parameters is usually done by trial and

error or based on experience.

4.3 Comparisons

How does GA-based feature selection perform in comparison with other feature selection

algorithms? Several studies exist that compare G A with other feature selection search

algorithms. For example, Vafaie & DeJong (1993) compared sequential backward selection

SBS with G A for feature selection in texture classification problem. They observe that SBS

is "brittle"; that is, the algorithm becomes trapped in local minima due to higher-order

interactions between features. On the other hand, they show that G A outperforms SBS in

robustness because G A may escape from such minima, since they are highly stochastic.

Moreover, Handels et al. (1999) compare a number of feature selection methods:

Genetic Algorithms other heuristic search, and 'greedy' methods (forward and backward

searches). Their domain of application is diagnosis of skin tumors. The best classification

accuracy was obtained by the GA. Furthermore, Estevez & Fernandez (1999) perform a

comparison between Genetic Algorithms, statistical methods and the leave-one-feature-out

approach, all in the context of classifying wood board defects. The G A gives the best

performance among the three techniques, but at the expense of high computational

complexity.

Additionally, Siedlecki & Sklansky (1989) suggested that the G A approach is

particularly useful when the dimensionality of the entire feature set is greater than 20.

Recently Kudo & Sklansky (2000) provided an extensive comparison of different feature

selection algorithms (including GA) for large feature spaces. The authors conclude that

Genetic Algorithm is more suited than other feature selection algorithms for problems with

43

more than 50 features. However, for small (0-19 features) and medium (20-49) cardinality,

G A though useful, is too slow.

As for the performance of G A in comparison with SA for the feature selection

problem, there appears to be no record of any study. In fact, there have been sparse reports of

the use of SA for feature selection. For example, Ferri & Riccioni (1992) describe an

application of simulated annealing to the selection of observatories for predicting overnight

temperature. Their method outperforms forward selection, using a temperature method

tailored to the problem. But there exists no comparison between SA and G A for feature

selection problem, which could be an area for future research.

Zhang & Sun (2002) have recently compared tabu search with G A and other feature

selection methods such as sequential methods and branch and bound method. In a set of

experiments, which were implemented using a dataset of 30 features, they have shown that

the tabu search algorithm obtained the best solution among all algorithms tested (including

the GA) and with a lower computational cost than the GA. In a second set of experiments,

which used 20 features and 2 class sets, they used the Mahalanobis distance to measure the

goodness of a feature subset (the probability of error is inversely proportional to the

Mahalanobis distance). Their results demonstrate that 18 times out of the 20 runs they

performed, G A has achieved the optimal solution. In the worst case, it still obtained a near

optimal solution. As for the tabu search, it achieved global optimal feature subset in all the 20

runs.

Several observations can be made regarding the results reported in (Zhang & Sun

2002). They have replaced the error rate classifier's function with a model of the classifier's

error rate, which is a function of the feature selection vector. So, the true performances of the

44

feature selection algorithms were never really tested on a true classifier, thus, reducing the

reliability of the reported results. In addition, the datasets they used were artificially

generated, not a real datasets. Finally, the differences in performance mentioned between the

G A and the tabu search were small that it does not, in itself, provide an absolute confirmation

that tabu search TS is superior to GA. In fact, to test the validity and credibility of these

results, both G A and TS need to be compared and tested on real datasets and using the true

error rates generated from a classifier.

4.4 Genetic Feature Selection for Character Recognition Systems

(Literature Review)

Though (Siedlecki & Sklansky, 1988) is probably the first paper to suggest the use of genetic

algorithms for feature selection, several other researchers have, in fact, used them for feature

selection. However, there are somewhat sparse examples in the literature of character

recognition applications that employ G A to satisfy its feature selection needs. This fact

becomes particularly pronounced, when one looks at the steadily increasing number of GA-

based feature selection (or GFS) applications in pattern classification domains. Below is a list

of these studies, classified according to the type of input (printed or handwritten). We also

include GFS applications to signature verification due to similarity of the problem

characteristics.

4.4.1 Recognition of Printed Characters

Smith, Fogarty & Johnson (1994) applied GFS to printed letter recognition. They used 24

features (16 features, plus 8 redundant features) to describe the 26 letters of alphabet. A

nearest neighbor classifier using Euclidian distance was used for classification. To speed the

45

GA run, a sub-sampling method is used where 10% of the training data is randomly sampled

and selected at the beginning of each run; only this subset is used for the G A evaluation. The

system reduces the feature set to 10 features. It does so while maintaining a mean error rate

lower than that generated when using all 24 features.

4.4.2 Recognition of Handwritten Characters

A handwritten digit recognizer, which is used to assess a GFS algorithm, is presented in

(Kim & Kim, 2000). During the training phase, the recognizer performs clustering to obtain a

KxP dimension codebook (K is the number of clusters and P is the number of features) that

represents the centroid of the K clusters. During the testing phase, a matching process

performs a distance calculation between the centroids and the testing data. The objective is to

use GFS to speed up the matching process as well as to reduce the size of the codebook.

Testing was carried out using two datasets: one with 74 features and another with 416

features. For the 74-feature test, experimental results show that the recognition rate trivially

decreased when the number of features was lowered. However, for the case of the 416-

features test, the GA-selected set of features leads to a higher recognition rate than the

original 416 feature-set does. This result emphasizes the usefulness of GFS in large search

spaces.

In addition, Kim & Kim (2000) propose a variable weight method to assign weights

to features in the matching process. During the G A feature selection, a weight matrix for the

features is build, which represents how often the feature was selected throughout the GFS.

After the GFS is complete, the matrix is used in the recognition module. Features having

high weights denote more frequently selected features, which implies their importance over

low weight features. Results using this variable weight method show a slight improvement in

46

the performance over the un-weighted method. One important remark is that this method of

weighting the features is completely different than the one we are using. Their method

depends on counting the frequencies of selecting the features during the GFS, while in our

approach the weights are assigned using the G A itself. A major drawback for weight matrix

method suggested in (Kim & Kim, 2000) is that it does not achieve any dimensionality

reduction and the number of features remains the same. Also, the enhancement in accuracy

achieved is very small, where the non-weighted method has an accuracy of 96.3% while the

suggested weighting method has 96.4%.

Furthermore, Gaborski & Anderson (1993) use a G A for feature selection for a hand­

written digit recognition system. They used several variations for population organization,

parent selection and child creation. The result is that the G A was capable of pruning the

feature set from 1500 to 300, while maintaining the same level of accuracy achieved by the

original set.

Moreover, Shi, Shu & Liu (1998) suggest a GFS for handwritten Chinese character

recognition. They craft a fitness function that is based on the transformed divergence among

classes, which is derived from Mahalanobis distance. The goal is to select a subset of m

features from the original set of n features (where m<n) for which the error is minimum.

Starting with 64 features, the algorithm is able to reach to 26 features with less error rate than

the original feature set.

Finally, Moser & Murty (2000) investigate the use of Distributed Genetic Algorithms

in very large-scale feature selection (where the number of features is larger than 500).

Starting with 768 initial features, a 1-nearset-neighbor classifier is used to successfully

recognize handwritten digits using 30 SUN workstations. The fitness function used is a

47

polynomial punishment function, which utilizes both classification accuracy as well as the

number of selected features. The punishment factor is used to guide the search towards

regions of lower complexity. The experiments were aimed to demonstrate the scalability of

GFS to very large domains. The researchers were able to reduce the number of features by

approximately 50% while having comparable classification accuracies to those of the full

feature set.

4.4.3 Signature Verification

Fung, Liu & Lau (1996) use GA to reduce the number of features required to achieve a

minimum acceptable hit-rate, in a signature verification system. The goal was to search for a

minimum number of features, which would not degrade the classifier's performance beyond a

certain minimum limit. They use the same fitness function, which was proposed in (Siedlecki

& Sklansky, 1989), which is based on a penalty formula and the number of features selected.

The penalty function apportions punishment values to feature sets that produce error rates,

which are greater than a pre-defined threshold. Using a 91-feature set to describe 320

handwritten signatures from 32 different persons, the system was able to achieve an accuracy

of 93% with only 7 selected features as opposed to a 88.4% accuracy using the whole 91

feature set.

48

Chapter 5 A Comparative Study between Genetic Feature

Selection and Weighting

In chapters 5 and 6, we carry out two sets of studies; the results of these studies are recently

reported in (Kharma, Hussein & Ward, 2002a; Kharma, Hussein & Ward 2002b). The first

set (described in this chapter) compares the performance of GA-based feature selection

(GFS) to GA-based feature weighting (GFW), within the context of character recognition

systems and under various conditions. The second set of studies will be described in chapter

6.

5.1 Introduction

In chapter 4 we have illustrated the application of genetic feature selection/weighting in

many application and specifically to the domain of character recognition systems. What is

clear from that review is that:

1. Many features can be used for the character recognition systems and there is no easy

way to distinguish useful features or sets of features from less informative features.

2. Much research has been done into feature selection, and a large number of algorithms

have been developed and applied to various problem domains.

3. Genetic Algorithms have proven to be an effective tool for reducing the feature-

dimensionality of character (or signature) recognition problems, while maintaining a

high level of accuracy (of recognition).

49

4. GFS has only been used off-line due to the time it takes to run a G A in the wrapper

approach.

5. There is no published work that focuses on the more complicated problem of

automatic feature weighting using GA for character recognition applications.

6. There is no comparison done to compare the performance of genetic feature selection

(GFS) and genetic feature weighting (GFW) for the character recognition problem.

5.2 Purpose

The main purpose for our work is to apply genetic algorithms for the problem of feature

weighting for character recognition application. This work is motivated by the fact that there

is no published work in the literature that has applied genetic feature weighting (GFW) in the

context of character recognition problems. So it will be applied for the first time. After the

employment of GFW to character recognition application, we are interested in comparing the

performance of both GFS and GFW also in the context of character recognition applications.

We are encouraged to perform such a comparison because it is often mentioned in the

literature that feature weighting always has the potential of working better than (or at least as

well as) feature selection, when applied to the same situation (Komosinski & Krawiec, 2000;

Punch et al. 1993). However, this proposition was never fully and comprehensively assessed

before. Only a single comparison exited in the literature (Kohavi, Langley & Yun, 1997),

which compares the classification accuracy of feature selection (FS) and feature weighting

(FW). However, the search method used in this comparison is not genetic algorithms, and the

comparison was not employed for character recognition applications. Naturally, we expect

that for regular datasets (not necessarily having redundant or irrelevant features) genetic

feature weighting would outperform genetic feature selection in classification rates. This is

50

because features, in general, have a varying degree of relevance (strongly relevant, weakly

relevant or irrelevant as described in section 5.6.3), and FW assigns weights to features that

reflect their relative relevance to correct classification. Highly relevant features would be

assigned high weights relative to the weights of redundant or irrelevant features. On the other

hand, FS treats the features as either relevant or irrelevant, and does not accommodate for a

varying degrees of relevance. Therefore, we intend to test the validity of this proposition. In

addition, since only a single comparison exists in the literature (kohavi et al. 1997) that

compares FS and FW in terms of classification accuracy only, we need to carry out an

inclusive comparison between GFS and GFW for character recognition applications. The

comparison will tackle the following issues:

1. The effect of varying the number of values that weights can take on the number of

selected features (comparison 1).

2. Comparing the performance of both GFS and GFW in the presence of irrelevant

features (comparison 2).

3. Comparing the performance of both GFS and GFW in the presence of redundant

features (comparison 3).

4. Comparing the performance of both GFS and GFW for regular databases (not

necessarily having redundant or irrelevant features) (comparison 4).

Before we describe the comparative study and evaluation as well as their results, we will

first describe the developed system, the experimental platform used to carry out these studies

and the methodologies employed.

51

5.3 The Developed System

We built a pattern recognition experimental bench with the following modules: (a) a pre­

processing module; (b) a feature extraction module (FE); (c) a feature selection and

weighting module (FSW) which embeds the G A optimization component; and (d) an

evaluation module, which embeds the classifier component. The system is shown below in

Figure 4. The purpose of the pre-processing module is to prepare an input pattern for

effective and efficient extraction of relevant features. After applying the pre-processing

functions on input images to obtain enhanced and clean images, the feature extraction

module follows. The feature extraction module applies certain functions that measure a set of

relevant features for classification (we will describe the pre-processing and feature extraction

functions used in details in chapter 6 in section 6.6.1).

The next module, which goes after feature extraction, is the feature selection/weighting

module (FSW). The FSW module assigns binary or real valued weights to the extracted set of

features, before presenting them to the classification module. The FSW module is configured

by the G A optimizer (or simply GA). The purpose of the G A is to find a set of features and

associated weights that will optimize the (overall) performance of the pattern recognition

system, as measured by a given fitness function. The final module is the evaluation module.

The evaluation module is essentially the fitness function. Given that we are using the

wrapper approach, the fitness function used implements the k-NN classifier. Since we are

comparing both GFS and GFW in terms of performance and number of features selected, we

decided to use a fitness function that is solely based on the classification error rate. We did

not want to impose any selective pressure to find weight sets that have smaller number of

features. After the termination of the GA, we have the final and best feature subset, which

52

has the lowest error rate. During the G A optimization process (training/testing phase) we

used training and testing samples. After the G A termination, the validation set is used in

validation phase to evaluate the quality of the produced solution by running the k-NN

classifier using the final set of weights obtained form the G A (this will be explained more in

details in section 5.5).

53

I Input
(hand-
written ̂
images)

Pre­
processing
Module

J a ean
images

•

Feature
Extraction
Module

Extracted
features

Fe ature
selection/weighting
Module (GA)

Best
feature
subset

Assessment
of feature
subset

Feature
subset

Evaluation Module
(KKN classifier)

Training/Testing

Evaluation

Validation

Figure 4: The developed system.

54

5.4 Experimental Platform

The experimental work described in the following sections is implemented using publicly

accessible character databases and GA. This makes it possible for researchers to replicate our

work and attempt to improve upon our results. The experiments were run on a Pentium III

(500MHz) PC with 128MB of R A M and running Windows 98.

The Machine Learning Data Repository at the University of California at Irvine (Murphy &

Aha, 1994) is our source of databases. All the experiments done through this research work

are performed on real-world databases. Artificially generated databases do not have the level

of noise nor the variation, which exists in real databases. We used three different handwritten

digits databases:

1. "Optical Recognition of Handwritten Digits" database (or DB1), which consists of 64

features. These features were extracted from 32x32 bitmaps of handwritten digits

written by 43 people. The 32x32 bitmaps are divided into non-overlapping blocks of

4x4 and the number of on pixels is counted in each block. This generates an input

matrix of 8x8 where each element is an integer in the range [0,16].

2. "Pen-Based Recognition of Handwritten Digits" (or DB2), which consists of 16

features. These features are obtained from handwritten digits samples written by 44

writers on a tablet. The 16 features were extracted from the coordinates information

after re-sampling the written digits to obtain a constant number of regularly spaced

points.

3. "Multiple Features Database" (or DB3), which consists of features of handwritten

numerals. These digits are represented in terms of six feature sets, which are: Fourier

coefficients of the character shapes, profile correlations, Karhunen-Love coefficients,

55

zoning features, Zernike moments and morphological features. Of those feature sets,

we have only used the last two feature sets (Zernike moments and morphological

features), which contain 47 and 6 features, respectively.

The Genetic Algorithm used for optimization is the Simple Genetic Algorithm (or SGA)

described by Goldberg (Goldberg, 1989). The actual software implementation used comes

from the "Galib" G A library provided by the Massachusetts Institute of Technology

(Matthew, 1999). In this SGA we used non-overlapping populations, roulette-wheel selection

with a degree of elitism, as well as two-point crossover. As for the choice of G A parameters,

it was merely based on trial and error and other suggestions presented in the literature. We

tried several variations of these parameters and for the problem at hand they had somewhat

comparable results. So, the GA parameters we used are crossover probability Pc of 0.9. As

for mutation, we used two styles: flip mutation for GFS, and Gaussian mutation for GFW.

Gaussian mutation uses a bell-curve around the mutated value to determine the random new

value. Under this bell-shaped area, values that are closer to the current value are more likely

to be selected than values that are farther away. The mutation probability Pm was 0.02. The

number of generations Ng was 50, and the population size Pop was also 50. The fitness

function was the classification accuracy of our own 1-nearest-neighbour (1-NN) classifier.

5.5 Methodology

The comparison between GFS and GFW is done using the following methods:

• Feature selection and weighting in the wrapper approach and using the k-nearest

neighbor as the classifier and genetic algorithms as the search method.

• The value of k for the k-nearest neighbor was fixed to one, because our objective is to

compare genetic feature selection and weighing not to study the effect of k.

56

• Prior to feature selection or weighting, all feature values are normalized to the range

of [0,1] to overcome the differences in units between feature values (explained before

in section 2.7).

G A is appropriate for feature selection and weighting. G A is suitable for large-scale,

non-linear problems that involve systems, which are vaguely defined. Further, character

recognition systems (a) often use a large number of features, (b) exhibit a high degree of

inter-feature dependency, and (c) are hard, if not impossible, to define analytically.

In our study, we are obliged to use a wrapper approach to find the best weight set,

despite their relative computational inefficiency, because the classifier is needed to determine

the relevancy of features. Also, since the feature selection is done off-line, the execution

time of the algorithm is not as critical as the optimality of the feature set generated. In

addition, there have been attempts to speed up the GFS run time (see section 4.2.4) by

introducing methods of global parallel G A and course-grain parallel GA. However, applying

these methods is outside the scope of our work.

In any case, a classifier is necessary, and the k nearest neighbor (K-NN) classifier is

our first choice because of its excellent asymptotic accuracy, simplicity, speed of training,

and its wide use by researchers in the area. In fact, Weideman, Manry & Yau (1989) have

compared the performance of both nearest neighbor classifier and neural networks using

back-propagation for numeric handwritten character recognition. They state that in terms of

recognition performance, both nearest neighbor and neural networks have almost similar

results. So, the choice between them was based on a tradeoff between either memory

requirements or computational time. We decided to use nearest neighbor for several reasons.

First nearest neighbor is easy to implement, requires no training as opposed to the neural

57

networks and is computationally faster. In addition, GFS in the wrapper approach is

computationally expensive. So, using neural networks in conjunction with GFS would make

it more computationally demanding. Finally, memory is cheap and the nearest neighbor

additional storage requirements can be easily compensated for.

It is important to mention that throughout our work we have tested the generated

feature subset by a validation phase. The validation phase is essential to judge the generality

of the resultant feature subsets. Despite the fact that validation is vital to evaluate the quality

of the obtained results, the majority of the results reported by the researchers in the field of

feature selection ignore the use of validation set (Moser, 1999). So, in the course of the

experiments, we divided the samples into three sets: training, testing and validation. The

training and testing samples were used during the optimization process (training/testing

phase). The validation set, on the other hand, is fully kept aside to be used in the validation

phase (see Figure 4 in section 5.3).

In addition to the aforementioned methods, we also used more than one database (see

section 5.4) and different error estimation methods. The reason is that certain databases and

error estimation methods were more suitable than others for carrying out particular

experiments. For example, in comparison 1 (will be described in section 5.6.1), the dataset

used in this experiment is DB1, which contains a relatively large number of features (64).

When running preliminary tests on this dataset a lot of features were eliminated, while the

classification accuracy remained almost the same. Using a database, which has a lot of

features to be removed, will be useful in studying the effect of varying the number of weights

on the number of selected features. In addition, for both comparisons 2 and 3 (will be

described in sections 5.6.3, 5.6.5) we used DB3 with the dataset that contains 6 features. We

58

needed a dataset, which contains small number of features for these two comparisons because

we are continuously adding irrelevant and redundant features to the original feature set until

we reached 60 features. So, using a dataset, which initially contains large number of features

wi l l tremendously increase the run time and the dimensionality of the problem. For

comparison 4 (wi l l be described in section 5.6.7), we chose both DB2 and DB3 because we

wanted to compare the performance of both GFW and GFS on datasets that contains little

redundant/irrelevant features, which is the case for these two datasets. This is unlike the 64

optical digits dataset, which has large number of features and contains many

redundant/irrelevant features.

As for the error estimation methods, it is known that the leave-one-out cross

validation method has larger computational requirements than the random sub-sampling

method (see sections 2.8.2.2 and 2.8.2.3). Therefore, for large data sets, leave-one-out is

computationally expensive and random sub-sampling or k-fold methods are preferred. Hence,

the main reason to chose the random sub-sampling error estimation method for comparisons

2 and 3 rather than the leave-one-out (which is used in comparisons 1 and 4) is that both

comparisons 2 and 3 experiments involve running GA on larger number of features (up to 60

features) and using relatively large number of training samples (1000), which would require

extensive computational time. Contrary to comparisons 2 and 3, comparison 1 uses a small

number of training samples (200), though it has large number of features (64), which makes

it computationally undemanding. Moreover, experiments on comparison 4 involve small

number of features, which ease the use of the leave-one-out method.

59

5.6 Comparative Study

Following are four empirical studies that compare the performance of GA-based feature

selection (GFS) to GA-based feature weighting (GFW) using the described system in section

5.3, with respect to (a) the number of eliminated features, and (b) classification accuracy. In

all the experiments, 1-NN stands for the 1-nearest neighbor classifier (i.e. no GA-based

optimization), FS stands for G F S , and X F W stands for G F W with an X-number of weight

values. In the case of G F S , the G A use binary weights in the F S W module (shown previously

in Figure 4 section 5.3), while for the case of G F W the weights are real valued.

5.6.1 The Effect of Varying the Number Weight Values on the Number of

Selected Features (Comparison 1).

It is known that feature selection, generally, reduces the cost of classification by decreasing

the number of features used (Dash & L i u , 1997). Genetic feature weighting (GFW) methods

should, theoretically, have the same potential (because genetic feature selection G F S is a

special case of G F W) . However, it has been argued that in reality, G F S eliminates many

more features than G F W . How many more, though, is unknown. Since the essential

difference between G F S and G F W is the number of values that weights can take, we decided

to study the relationship between the number of values that a weight can take and the number

of eliminated features. We also tested a method for increasing the ability of G F W to

eliminate features.

The database used in this experiment is D B 1 , which contains a relatively large

number of features (64). The error estimation method used for the training phase is the leave-

one-out cross validation technique (explained in section 2.8.2.3). It is applied to the training

60

data itself. The number of training samples is 200. A s explained before in section 5.3, the

resultant weights are assessed using a validation data set of size 200. This validation set is

new, in that it is not used during training.

5.6.2 Results of Comparison 1

The results of the experiments are presented in Table 1 and Table 2. We wi l l first describe

the columns in both tables then we wi l l describe the purpose of each table. The following

description of columns applies to the contents of both tables. The first column presents the

method of feature selection or weighting. It is (a) 1-NN, which means that a 1-NN classifier

is applied directly to the full set of features, with no prior selection or weighting; (b) FS ,

which means that feature selection is applied first before any classification is carried out; or

(c) F W (with different weighting schemes), which means that feature weighting is applied

prior to 1-NN classification. The second column, increment value, shows the difference

between any two successive weight levels. The third column presents the total number of

weight values that a weight can take. A weight can take on any one of a discrete number of

values in the range [min, max] and using the specified increment value. It is calculated as

follows: Number of weight values = [(max-min)/increment] +1. Note that the difference

between any two consecutive values is the 'increment value'. The fourth column is simply

the inverse of the number of weight values, which is termed: 'probability of zero'. It

represents the probability of a weight taking the value zero (or POZ) , assuming a uniformly

random distribution of weight values, and calculated as: P O Z = 1/number of weight values.

The fifth and sixth columns show classification accuracies for both training and validation

phases, respectively. The final column presents the number of eliminated features, which we

call the number of zero features (i.e. the number of features that are assigned a weight value

61

equal to zero). This is easily computed by subtracting the number of selected features from

the total number of features (64). It is worth noting that values shown in columns 5-7 are the

average values of five runs having identical parameters but different seed for the G A .

For Table 1 we have compared FS with F W where the weight values are ranging

between 0-10 inclusive and the number of weight values that a weight can have varies for in

each row (shown in Table 1). Our main purpose in this table is to study the effect of changing

the weight values on the number of features eliminated for both FS and F W . For Table 2, we

also compared FS with F W , but F W in this case have different weight settings (weights are

discrete, or weights are in range [0,10] and sometimes weights less than a certain threshold

value is set to zero, see Table 2). In Table 2, we aim to verify the results obtained in Table 1

while using different weight settings than those used in Table 1. In addition, we also intend to

test a method for increasing the ability of G F W to eliminate features without changing the

number of weight values. This is achieved by setting the weight values below a certain

threshold to zero.

62

Method of
Selection/
Weighting

Increment
Value

Number
of
Weight
Values

Probability
of Zero

Accuracy
of
Training

Accuracy
of
Validation

Number
of Zero
Features

1-NN - - - 97.5 84.5 -
FS 1 2 Vi 99.4 84.8 27
F W 0.5 (1/2) 20+1 1/21 99 84 3
F W 0.25 (1/4) 40+1 1/41 98.9 83.8 1
F W 0.125 (1/8) 80+1 1/81 99 83.5 0
F W 0.0625

(1/16)
160+1 1/161 98.9 83.9 0

F W 0.03125
(1/32)

320+1 1/321 98.6 83.2 0

F W 0.015625
(1/64)

640+1 1/641 99 83.2 0

F W 0.0078125
(1/128)

1280+1 1/1281 98.9 83.7 0

F W 0.0039
(1/256)

2560+1 1/2561 98.2 83 0

Table 1: Accuracy of recognition and number of zero features for various selection and
weighting schemes.

63

Method of
Selection/
Weighting

Increment
Value

No. of
Weight
Values

Prob. of
Zero

Acc. of
Train.

Accuracy
of
Validation

No. of
Zero
Features

FS 1 2 Vi (0.5) 99.4 84.8 27
F W : three
discrete values:
0, 0.5, and 1.

0.5 3 1/3
(0.33)

97.8 83.3 18

F W : values
belong to [0,
10], with
weights < 1
forced to 0.

0.125 81 8/81
(0.098)

98.1 84.2 7

F W : values
belong to
[0,10].

1 11 1/11
(0.09)

98.5 82.8 5

F W : six
discrete values:
0, 0.2, 0.4, 0.6,
0.8, and 1.

0.2 6 1/6
(0.166)

98.3 83.3 8

F W : six
discrete values:
0, 0.2, 0.4, 0.6,
0.8, and 1, with
weights < 0.8
forced to 0.

0.2 6 4/6
(0.66)

96.6 81.6 38

F W : six
discrete values:
0, 1, 2, 3, 4, and
5.

1 6 1/6 97.9 83.4 9

F W : six
discrete values:
0, 1, 2, 3, 4, and
5, with weights
< 4 forced to 0.

1 6 4/6
(0.66)

97.4 81.2 34

Table 2: Accuracy of recognition and number of zero features for various selection and
weighting schemes, some with low weights forced to zero.

The following observations can be made, based on the results in Table 1.

• Although feature selection succeeded in eliminating roughly 42% of the original set

of features (27 out of 64), classification accuracy did not suffer as a result. On the

64

contrary, training accuracy increased to 99.4% from the 97.5% realized by the 1-NN

alone. Also , validation accuracy increased to 84.8% from the 84.5% value achieved

by the 1-NN classifier (alone).

• FS far outperforms F W in terms of the number of zero features (i.e. eliminated

features). Also , training accuracies achieved by both FS and F W were better than

those achieved by the 1-NN classifier (alone). Using the validation set, the accuracy

levels achieved by F W range between slightly worse to worse than the accuracy

levels achieved by the 1-NN classifier. In contrast, the accuracy levels achieved by

FS are slightly better than those of the 1-NN classifier alone (and hence better than

those of F W as well).

• Increasing the number of values a weight can take beyond a certain threshold (81, in

this case) reduces the number of zero features to ni l . This suggests that the greater the

number of weight values the less likely it is that any of the features w i l l have zero

weight, and visa versa. Whether this relationship is (roughly) proportional or not, is

studied below.

A careful observation must be pointed out here: G F S / G F W does not eliminate features at

the expense of classification accuracy. This is due to the following reasons:

1. The fitness function used is dependent on classification accuracy only. There is no

selective pressure to find weight sets that have smaller number of features.

2. Because we are running the G F S / G F W in the wrapper configuration, G A has a

continuous feedback loop from the classifier, which continuously guides it towards

higher accuracies.

The following observations can be made, based on the results in Table 2.

65

The number of zero features is greater in cases where the number of possible values a

weight can take is countably finite, than weights take values from an infinitely dense

range of real numbers.

When we use F W with discrete values (0,1, 2, 3, 4, 5), and forced all weights less

than four to zero, F W actually outperforms FS in the number of zero features,

however, the classification rates of F W in this case for both training and validation

decrease. It is worth noting that the Probability of Zero for this F W configuration is

0.66, compared to 0.5 for FS . The same observation can be made for F W using values

(0,0.2,0.4,0.6,0.8,1) with weights less than 0.8 forced to zero. In fact, these two F W

settings were tried to emphasize the fact that number of zero features is influenced by

the P O Z . Hence changing the P O Z , even without changing the number of values that

a weight can take wi l l certainly affect the number of zero features.

Using F W with weights in the range of [0,10] and with weights less than 1 forced to

zero increases the ability of G F W to eliminate features without changing the number

of weight values. Note that there is difference between this method, which forces

weight values less than a certain threshold to zero, and with using less number of

weight values from the first place. In general, the weights that have values near to

zero indicate that they are irrelevant and not contributing to the classification. So,

applying this method wi l l allow weights, which have values that are quite low or near

zero (but not zero) to be eliminated, while keeping at the same time, the number of

weight values that a feature can take unchanged (not decreased). This in turn, w i l l

allow features to have more weight values to accommodate their varying degrees of

relevance, which is contrary to decreasing the number of weight values from the first

66

place. However, the classification rates for both training and validation in this case

are still lower than those obtained by FS .

• Regardless of the method of selection or weighting, the number of zero features

appears to be influenced by only the number of values that weights can take. For

example, using six discrete values, but in two different configurations, (0, 0.2, 0.4,

0.6, 0.8, and 1) and (0,1,2,3,4, and 5), produces almost similar numbers of zero

features: 8 and 9, respectively.

A l l the points above suggest that, generally, the greater the total number of weight values, the

less likely it w i l l be that any of the features wi l l have zero weights. Whether this apparent

relationship is strictly proportional or not is investigated further below. Using data from

Table 1 and Table 2 the relationships between the number of zero features and both the

number of weight values and the probability of zero weight has been drawn. These

relationships are depicted in Figure 5 (a and b).

67

30

2 3 6 11 21 41 81

Mimber of weight values

40

0.09 0.098 0.166 0.33 0.5 0.66

Probabiltiy of zero (POZ)

Figure 5: (a) The relationship between number of weight values and actual number of
zero (eliminated) features, (b) The number of zero (eliminated) features as a function of
the probability of zero.

Figure 5a represents the empirical relationship between the number of weight values

and the actual number of zero (or eliminated) features. The relationship is close to an

inversely proportional one. It further appears, from Figure 5b that the relationship between

the 'probability' of zero features and the actual number of zero features (i.e. eliminated

features) is roughly linear, though not strictly proportional. These two figures represents

credible evidence that (a) the number of eliminated features is a function of, mainly, the

number of values a weight can assume; and hence (b) that the main reason behind the

superiority of feature selection over feature weighting (in eliminating features) is the smaller

number of weight values FS uses.

In conclusion, it is possible to state that feature selection is clearly superior to feature

weighting in terms of feature reduction and without compromising the classification rates.

68

The main reason for this superiority appears to be the smaller number of weight values that

feature selection uses (2 weight values), compared to feature weighting (potentially infinite

weight values). However, it is possible to make feature weighting as effective as feature

selection in eliminating features (but still feature selection has better classification rates than

feature weighting) via, for example, the forcing of all weights less than a given threshold to

ni l .

5.6.3 Performance of both Genetic Feature Selection and Weighting in the

Presence of Irrelevant Features (Comparison 2)

For most classification problems, relevant features are not known in advance. Therefore,

many more features than necessary could be added to the initial set of candidate features.

Many of these features can turn out to be either irrelevant or redundant. Kohavi & John

(1996) define two types of relevant features. They state that features are either strongly

relevant or weakly relevant, otherwise they are irrelevant. A strongly relevant feature is one

that cannot be removed without degrading the prediction accuracy of the classifier (in every

case). A weakly relevant feature is a feature that sometimes enhances accuracy, while an

irrelevant feature is neither strongly nor weekly relevant. Irrelevant features lower the

classification accuracy while increasing the dimensionality of the problem. As a result,

removing irrelevant features by either feature selection or weighting is required.

Wettschereck et al. (1997) claim that domains that contain either a) equally relevant

features or b) completely irrelevant features, which are most suited to feature selection,

feature weighting might outperform feature selection. We intend to investigate this claim by

comparing the performance of G F S to that of G F W in the presence of irrelevant and (later in

section 5.6.5) redundant features. It is important to indicate that Wilson & Martinez (1996)

69

compare the performance of genetic feature weighting G F W with the non-weighted 1-NN for

domains with irrelevant and redundant features. They use G A to find the best possible set of

weights, which gives the highest possible classification rate. In the presence of irrelevant and

redundant features, they show that G F W provides significantly higher results than the non-

weighted algorithm. However, they do not compare G F W to G F S for classification tasks with

irrelevant or redundant features. Therefore, we are presented with a good chance to see how

far genetic feature selection tolerates irrelevant (and redundant features in section 5.6.5), as

opposed to genetic feature weighting.

In this experiment we use the dataset that contains 6 features within D B 3 . We

gradually add irrelevant features, which are formed by assigning them uniformly distributed

random values. We observe the classification accuracy for GA-based feature selection, G A -

based feature weighting, as well as a 1-NN classifier (unaided by any kind of FS or F W) .

During G A evaluation, we use the random sub-sampling method of error estimation (see

section 2.8.2.2). The samples are split into three sets, a training set, a testing set, and a

validation set. The training samples are used to build the 1-nearest neighbor classifier, while

the testing samples are used during G A optimization. After G A optimization finishes, a

separate validation set is used to assess the weights (produced by the G A optimization). The

number of training samples is 1000, the number of testing samples is 500, and the number of

validation samples is 500. To avoid any bias due to random selection of the validation set, the

train, test and validation samples are completely different. Also , each validation sample is

different from the test sample and was never used during the G A run. In addition, this

random partitioning is stratified, meaning that all the classes (character classes) are equally

represented (i.e. the number of training/testing/validation samples for each class are equal).

70

The random sub-sampling process is repeated 5 times, and the accuracy results reported

represent average values of 5 runs.

5.6.4 Results of Comparison 2

The results of experimentation are shown in Figure 6 and Figure 7 below. Figure 6 represents

classification accuracy of validation (of the various selection and weighting schemes) as a

function of the number of irrelevant features included in the initial set of features. Figure 7

represents the number of eliminated features as a function of irrelevant features. In the

figures, F W 3 stands for feature weighting using 3 discrete equidistant weight levels (0,0.5,

1), F W 5 stands for F W with 5 discrete equidistant weight levels, while FW33 stands for F W

with 33 discrete equidistant weight levels.

71

o (0 1-
3 o o
<
c o
o
CO
CO
re
o

75
70
65
60
55
50
45
40
35
30
25
20

4 12 16 24 34 44 54

-B -1 -NN 59.32 41.84 34.48 30.88 28.36 25.04 22.84

- • - F S 66.76 66.56 65.08 60.72 56.56 48.72 42.2

-n~3FW 67 64.84 64.32 58.12 50.6 45 40.96

- A - 5 F W 66.24 63.16 61.76 57.28 48.56 44.92 39.64

-©-33FW 66.04 61.6 60.44 52.56 47.88 44.68 38.76

-H-1-NN

- • - F S

-•H-3FW

- * - 5 F W

Number of Irrelevant Features

Figure 6: Classification accuracy as a function of the number of irrelevant features.

72

Figure 7: Number of eliminated features as a function of the number of irrelevant
features.

From Figure 6 and Figure 7 we can conclude the following:

A s the number of irrelevant features increases, the classification accuracy of the 1-

N N classifier rapidly degrades, while the accuracies attained by FS and F W slowly

degrade. Therefore, nearest neighbor algorithms need feature selection/weighting in

order to eliminate/de-emphasize irrelevant features, and hence improve accuracy.

A s the number of irrelevant features increases, FS outperforms every feature

weighting configuration (3FW, 5 F W and 33FW), with respect to both classification

accuracy and elimination of features. However, when the number of irrelevant

features is only 4, 3 F W returns slightly better accuracies than FS . This changes as

soon as the number of irrelevant features picks up.

73

• When the number of irrelevant features is 34, the difference in accuracy between FS

and the best performing F W (3FW) is considerable at 6%.

• A s the number of weight levels increases, the classification accuracy of F W , in the

presence of irrelevant features, decreases.

• A s the number of weight levels increase, the number of eliminated features decreases.

• When the number of irrelevant features reaches 54, the classification accuracy of FS

drops to a value comparable to that of other F W configurations. However, the

number of eliminated features by FS continues to outperform any other F W

configuration.

• The gap in the number of features eliminated by FS compared to F W and 1-NN

increases as the number of irrelevant features increases.

Why does genetic feature weighting perform worse than genetic feature selection in the

presence of irrelevant features? Giving the same number of generations for both G F S and

G F W , it is hard to explore a space of real valued weights in Rd when d is large. R is the

number of real-valued weights, and d is the number of features. However, for the case of

feature selection, the search space is 2d in size. For example, with 10 irrelevant features, the

search space for FS is 2 1 0 (=1024) compared to l l 1 0 (=25937424601) for F W using 11

weight values. Moreover, a single increase in the number of weight levels from 2 to 3

increases the size of the search space form 2 1 0 (=1024) to 3 1 0 (=59049). A s witnessed earlier,

as the number of weight levels increases, the number of eliminated features decreases.

Therefore, G F S w i l l always eliminate more features than G F W , given. the same

computational resources and the same number of generations. In addition, in applications

74

with large sets of features (which implies a high degree of irrelevancy/redundancy among

features), it has been shown that feature selection had better results than JJ34, an on-line

feature weighting algorithms (Aha & Bankert, 1994).

We conclude that in the presence of irrelevant features, feature selection and not

feature weighting is the technique most suited to feature reduction. Furthermore, it is

necessary to use some method of feature selection before a 1-NN or similar nearest-neighbor

classifier is applied, because the performance of such classifiers degrades rapidly in the

presence of irrelevant features. Since it has been shown that GA-based feature selection is

effective in eliminating irrelevant features (here and in the literature), it seems sensible to try

a G A (at least) as a method of feature selection before classification is carried out using

nearest-neighbor classifiers.

5.6.5 Performance of both Genetic Feature Selection and Weighting in the

Presence of Redundant Features (Comparison 3)

In classification tasks, redundant features add nothing new to the target concept (Dash & L i u ,

1997). A redundant feature is a feature, which its value can be extracted from other features

values, for example i f its value is the average or square or even multiple of other feature

values (Wilson & Martinez, 1996). L ike irrelevant features, redundant features have the same

drawbacks of accuracy reduction and dimensionality growth. Although redundant feature add

nothing new, their presence in classification increase the dimensionality of the problem and

hence assist in reducing the accuracy (see section 3.1). Therefore, removing redundant

features by either feature selection or weighting is required. A s mentioned before in section

5.6.3, no comparison exists between G F W and G F S for classification tasks with redundant

75

features. Therefore, we intend to see how far genetic feature selection tolerates redundant

features, as opposed to genetic feature weighting.

In this experiment we used the dataset with 6 features in the database D B 3 . We

randomly selected one feature from the dataset, and repeatedly added this features several

times. We observed the accuracy of classification for GA-based FS , GA-based F W , as well

as the unaided 1-NN classifier. The error estimation method is the same as that used in

section 5.4.3 (above).

5.6.6 Results of Comparison 3

The results of experimentation are shown in Figure 8 and Figure 9. Figure 8 shows the

empirical relationship between the number of redundant features, present in the initial set of

features, and the validation classification accuracy of the 1-NN classifier, acting alone, and

with the help of GA-based feature selection/weighting. Figure 9 presents the relationship

between the number of redundant features, and the number of features eliminated by FS and

F W . A 1-NN, on its own does not eliminates any features, of course.

76

o
3 o o
<
n o
W
(A
ro
O

68.4
66.4
64.4
62.4
60.4
58.4
56.4
54.4
52.4
50.4

--0--1-NN 66.76
FS 67.16

•3FW 67.12
-©—5FW 66.96

•33FW

14

65.44
66.68
66.68
66.48

66.8 66.36

24

64.72
66.12

66
64.84

34

64.12
66.2
64.76
64.48

64.04 63.56

44

64
66

64.48
64.48

54

63.84
65.36
63.92
63.88

64.04 63.56

Number of Redundant Features

- - o - -1-NN
— A — -FS

-3FW
•— -5FW
•— -33FW

Figure 8: Classification accuracy as a function of the number of redundant features.

77

Figure 9: Number of eliminated features as a function of the number of redundant
features.

From Figure 8 and Figure 9, the following observations can be drawn:

• Contrary to the case of irrelevant features, the classification accuracy of the 1-NN

classifier degrades very gradually, as a function of the number of redundant

features.

• In experiments with 4, 14 and 24 redundant features, FS classification accuracies

are almost identical to those achieved by 3 F W . However, for the same number of

redundant features, the other feature weighting configurations returned

classification accuracies that are worse, but only slightly.

78

• FS outperforms all other F W configurations in experiments where the number of

redundant features is 34 or greater.

• As the number of weight levels increases, the classification accuracy of the

feature weighting configurations slightly decreases.

• Although the difference in classification accuracy between F S and F W is not very

large, the difference in terms of the number of eliminated features (shown in

Figure 9) is significant.

• The difference in performance between FS and F W increases as the number of

redundant features climbs. Finally, when the number of redundant features

reaches 54, FS succeeds in eliminating 34 redundant features, 11 more than the

best performing F W configuration (3FW).

Why does not the performance of the 1-NN classifier quickly degrade as the number

of redundant features increases? The reason is that adding copies of an existing feature

repeatedly to a set of features (to act as redundant features) is like giving that feature an

added weight equal to the number of copies. For example, i f a certain feature is added 20

times, this has the same effect as using this feature once, but multiplied by a weight of 20. On

the other hand, completely irrelevant features add randomness and noise to the feature set,

which cause higher classification error rates. Though the presence of redundant features in

the training data might not significantly decrease the accuracy of the classification algorithm,

it wi l l certainly worsen the problem of dimensionality. Moreover, giving a certain feature

higher weight simply because it was repeated is considered to be a random procedure

(Wilson & Martinez, 1996).

79

In conclusion, the classification accuracy of a 1-NN classifier does not suffer greatly

as a result of having a significant number of redundant features in the (original) feature set.

However, due to the other problems associated with redundant features increased

dimensionality (and hence computational cost), and arbitrariness of procedure, as well as

slightly worse classification accuracies, it is recommended that a GA-based feature selection

method be used to eliminate as many of the redundant features as possible. It is clear that the

best-suited feature selection/weighting methods for such a task are FS and 3FW.

5.6.7 Performance of both Genetic Feature Selection and Weighting with

Regular Databases (Comparison 4)

Wettschereck et al. (1997) state that feature weighting (GA-based or not) is more suitable

than feature selection for domains where features have varying degrees of relevance.

Naturally, we expect that for regular datasets (not necessarily having redundant or irrelevant

features) genetic feature weighting would outperform genetic feature selection in

classification rates. This is because F W assigns weights to features that reflect their relative

relevance to correct classification. Highly relevant features would be assigned high weights

relative to the weights of redundant or irrelevant features. So, F W takes into account the

different degrees of feature relevance (strongly relevant, weakly relevant or irrelevant as

described in section 5.6.3). In contrast, FS treats the features as either relevant or irrelevant,

and does not accommodate for a varying degrees of relevance. However, contrary to what we

assumed, we obtained unexpected but justified results (explained in section 5.6.8).

On the other hand, Kohavi et al. (1997) show that increasing the number of weights

above two rarely reduces classification error, for many real world datasets. They show that

using only two weights (which is equivalent to feature selection) gives better results than

80

increasing the set of weights. It is worth noting that the results reported in (Kohavi et al.

1997) are for small datasets (with less than 300 training samples), and use a best-first search

algorithm. In contrast, we intend to compare feature selection to feature weighting using

regular databases (not necessarily having redundant or irrelevant features), with 1000+

training samples, and using G A as a search method.

Presented here is a study of the classification accuracies achieved by the 1-NN

classifier and the various GA-based feature selection (GFS) and weighting (GFW)

configurations. The focus in this study is on assessing the generalization accuracy for both

G F S and G F W on regular databases (not necessarily having redundant or irrelevant features).

This requires (a) that real-world databases (not containing human-generated samples) are

used, and (b) that any results achieved using training sets are checked against separate results

obtained with new (unseen) validation sample sets.

5.6.8 Results of Comparison 4

The resultant accuracies for training and validation sample sets are displayed in Figure 10

and Figure 11. The database used for Figure 10 and Figure 11 was the 6 feature dataset in

D B 3 . For Figure 12 and Figure 13, we used D B 2 . The error estimation method is the leave-

one-out cross validation (described in section 2.8.2.3). It was applied to 1000 training

samples. The best weights obtained from the previous training stage are tested using a

separate set of 500 validation samples. To avoid bias, we randomly selected different

training/validation sets for each experimental run. Each experiment is repeated 5 times, and

the results reported are average values for those. The symbols on the X-axes indicate the

following:

• 1-NN: 1-nearest neighbor classifier (no G A) .

81

• FS: FS using 2 weights (0,1).

• F W 3 : F W using 3 weights (0,0.5,1).

• F W 5 : F W using 5 weights (0,0.25,0.5,0.75,1).

• FW17: F W using 17 weights in [0,1], and an increment value of 0.0625 (1/16).

• FW33: F W using 33 weights in [0,1], and an increment value of 0.03125 (1/32).

69.5 i

1-NN FS 3FW 5FW 17FW 33FW

Figure 10: Training classification accuracies for the various feature selection and
weighting methods (using DB3).

Results show that classification accuracy is worst for the (unaided) 1-NN, but better

for FS and F W . The trend line highlights the fact that the greater the number of weight levels

the higher the training accuracy rate achieved. Finally, it appears that classification accuracy

could not be improved much by increasing the number of weights beyond 17; the difference

in classification accuracy between 17FW and 33FW is 0.02, which is insignificant.

82

68.5 i

65 1 ' 1 , • I i '—*— -̂>—' , ' 1 I
1-NN FS 3FW 5FW 17FW 33FW

Figure 11: Validation classification accuracies for the various feature selection and
weighting methods (using DB3).

Results show that classification accuracy is best for the (unaided) 1-NN and FS , but

worse for F W . The trend line highlights the fact that the greater the number of weight levels

the lower the validation accuracy rate achieved. Finally, it appears that classification

accuracy cannot be further degraded by increasing the number of weights beyond 17; there is

no difference in classification accuracy between 17FW and 33FW. These results are the

opposite of those found in Figure 10! This means that F W is returning good accuracy results

for training data, but then returning bad results for validation data. Also , it is the performance

of a classifier on validation data that truly reflects its (real-world) predictive capacity.

To verify these interesting results, we ran the same set of experiments on another

database (DB2). This is to ensure that the above results are independent of the particular

83

sample database used. The results are shown in Figure 12 and Figure 13. It emerges that the

results of these experiments indeed confirm the results of Figure 10 and Figure 11.

Figure 12: Training classification accuracies for the various feature selection and
weighting methods (using DB2).

84

1-NN FS 3FW 5FW 17FW 33FW

Figure 13: Validation classification accuracies for the various feature selection and
weighting methods (using DB2).

Based on the results of Figure 10, Figure 11, Figure 12and Figure 13 we make the

following observations.

• For the validation sets, the classification accuracy of FS was slightly better than all

the F W settings for both databases. However, it was the same as 1-NN for D B 3 and

slightly worse for D B 2 .

• For the training sets all F W settings have better classification accuracy than FS .

• Increasing the number of weight levels led to a slight decrease in the classification

accuracy of the validation sets.

• Increasing the number of weights has led to slight increase in the classification

accuracy of the training sets.

85

We believe the interesting disparity between training and validation results is due to over-

fitting (which is caused because of the bias-variance tradeoff)- Over-fitting means that the

learning algorithm adapts so well to a training set but it predictions on new samples are poor

(the performance on the validation set is bad) (Duda, Hart & Stork, 2000). A classifier can

be seen as a learning machine or learning algorithm aiming to estimate correct classes for the

given data samples. A classifier with excellent generalization ability is the one that can make

good predictions for the samples that are not in the training set. However, a classifier, which

allows perfect classification for the training samples while having poor predictions for the

new (unseen) samples, is said to over-fit the training samples.

Over-fitting is related to the bias vs. variance tradeoff (Geman, Bienenstock & Doursat,

1992). In general, classification error can be decomposed into two components, bias and

variance. Bias measure how much the error estimation deviates from the true value, whereas

the variance measures the variability in classification for different training samples. For a

data set having a finite number of samples, there's a trade-off between these two. Increasing

the bias decreases the variance and vice versa (Theodoridis & Koutroumbas, 1998).

Generally, as the number of parameters of a learning algorithm increases, the classifier wi l l

have more flexibility to adapt to the details of the specific training set, hence the bias w i l l

reduce but the variance wi l l increase. Conversely, i f the number of parameters is few, the

classifier w i l l not fit the training data well (high bias) but this fit w i l l not change much for

different new samples (low variance) (Duda et al. 2000).

A s a result, G F W allows for a finer-grain representation of the search space, but at the

expense of an increased classification error rate. So, allowing many weights (for the case of

86

G F W) wi l l reduce bias but w i l l also increase variance, and hence increase the probability of

over-fitting. In contrast, using a small number of weights (which is the case for GFS) wi l l

increase the bias due to the lack of representation of the space. However, this w i l l also reduce

variance, which in turn reduces the possibility of over-fitting of data (Kohavi et al. 1997).

The only way to get a zero bias and zero variance at the same time is to increase the number

of training samples very large (possibly infinity) and to have a prior knowledge about the

problem (i.e. the shape of the decision boundary). Unfortunately, the number of samples in

practice is finite and the prior knowledge about the true model of the problem is not known

(Duda et al. 2000). Hence, the best to do is to find the best compromise for the number of

parameters, which optimizes the bias-variance trade off. However, obtaining low variance is

generally more important, to have accurate classifications, than having low bias (Duda et al.

2000). This is because low variance means better generalization ability and less chances of

over-fitting.

In (Kohavi et al. 1997), it is illustrated that increasing the number of weights above

two hardly ever decreases classification errors. In their study they show that with 10 weights

levels, F W fails to outperform FS on 11 real-world databases. They conclude that, "On many

natural data sets, restricting the set of weights to only two alternatives-which is equivalent to

feature subset selection-gives the best results". Though we used different search methods and

larger datasets than those used by Kohavi et al. (1997), we get similar results and

conclusions.

In addition, we should take into account that the databases we are using to report our

results are handwritten character recognition databases. This means that there are many

variants of digit shape, size, and generally, style. Also , different writers have different

87

writing styles. For the 10 digits, there are nearly an unlimited number of variations. Thus,

feature weighting over-fits the training data by finding suitable weights, but these weights

obtained do not generally represent the underlying variations in the handwritten training

samples due to the large variance among these samples.

On the other hand, other papers have shown that feature weighting using G A yield a

slightly better classification accuracy than feature selection for real-world databases. For

example, Punch et al. (1993) perform tests using binary and real-valued weights (with

weights in [0,10]). Their database consisted of images of soil samples. Their results show

that the error rates obtained using real-valued weights are better than those with binary

weights. Also, Komosinski & Krawiec (2000) provide further evidence that feature

weighting is somewhat better than selection when applied to a brain-tumor diagnoses system.

Their results confirm that feature weighting (using weights in [0,9]) leads to somewhat better

classification accuracy rates than just feature selection.

However, several points must be raised here. First, results reported in (Komosinski &

Krawiec, 2000) are those of G A evaluation. No validation tests were done to test the resultant

weights on separate data sets (i.e. their reported results are based on training only). In fact,

Kohavi & Sommerfield (1995) have noticed this fact and states that separate holdout sets,

which were never used during the feature selection/weighting, should be used in the final test

of performance. Second, results reported in (Punch et al. 1993) were performed on

validation samples, which were randomly drawn from the training samples. This also has the

same biased effect on the results. Third, the improvement in classification accuracies

mentioned in both papers for FW over FS is so little that it does not, in itself, provide final

evidence that FW gives better results than FS on real datasets. Komosinski & Krawiec (2000)

88

report classification accuracies of 83.43 ± 1.93 and 77.83 ± 2 . 0 3 (for two datasets) for F W ,

vs. accuracies of 80 ± 1.22 and 75.7 ± 1.64 for FS . While Punch et al. reports a classification

error rates for F W of 0.83% and 2% for training and validation respectively, those of FS were

1.66 and 3.2% for training and validation.

In conclusion, despite the fact that feature weighting has the best training classification

accuracies, feature selection is better in generalization, and hence more suited to real-world

applications (in which most data is new). This is because F W overfits the training data,

losing generalizability in the process. Therefore, it is advisable to use 2 (FS) or 3 (3FW)

weight levels at most, as Kohavi et al. (1997) recommend.

89

Chapter 6 Genetic Feature Selection Evaluation

In chapters 5 we compared the performance of GA-based feature selection to GA-based

feature weighting, within the context of character recognition systems and under various

conditions. In this chapter, we intend to evaluate the performance of the better method

(which turns out to be genetic feature selection GFS) in term s of optimality and time.

6.1 Introduction

In chapter 5 we have compared genetic feature selection and weighting and showed that G F S

outperforms G F W in many aspects such as dimensionality reduction, presence of irrelevant

and redundant features and classification accuracy. Therefore, it is important to assess the

performance of G F S for both optimality and time. For example, how does G F S perform in

comparison with the exhaustive search? To put it in other way, are the solutions obtained

from the G F S are optimal (or near optimal) solutions? Also , i f G F S is indeed capable of

reaching optimal (or near optimal) solutions, what is the number of generations required to

reach such optimal? Does increasing the number of features necessitate an increase in the

number of generations to obtain optimal solutions?

In fact, we intend to tackle all these questions in this chapter. In the following sections

are two empirical studies that study the effectiveness of GA-based feature selection (GFS)

with respect to (a) aiming at finding an optimal set of features, and (b) doing so within an

acceptable time frame, for off-line applications (e.g., pre-release optimization of character

recognition software).

90

6.2 Convergence of Genetic Feature Selection to an Optimal or Near-

Optimal Set of Features (Evaluation 1)

It is clear from the previously described literature that several studies exist comparing G A

with other feature selection search algorithms (see section 4.3), so it not our intention to

repeat such work. However, there is a need to determine whether or not G F S does indeed

return optimal or near optimal feature sub-sets. This necessitates an exhaustive search of the

features space in order to find one or more bona fide optimum feature sub-set. These can then

be used to assess (with certainty) the optimality of the best GFS-generated feature sub-sets.

For the experiments in sections 5.5.2 and 5.5.4, we used a single training/testing set

of size 1000 and 500, respectively. There was no need to have a separate validation set in this

case, because it is our goal to see whether or not the G F S w i l l reach the optimal values

reached by the exhaustive search, not to test the generalization ability of G F S , which was

already proven in previous sections. We run both the exhaustive search and G F S using

different number of features each time. The numbers of features used in the searches are 8,

10, 12, 14, 16, and 18. We used D B 3 with the dataset that contains 6 features, and to obtain

the required number of features (8,10,12,14,16,18) we randomly selected 2,4,6,8, and 10

features from the 47 dataset and added them to the 6 feature dataset.

In general, running the exhaustive search would mean to explore the space of 2d

where d is the number of features. However, when d gets large, the exhaustive search

becomes computationally prohibitive. For example, having 16 features, this means that we

have to try 216 =65536 different feature combinations, while having 18 features would

require 218 =262144. When we run the exhaustive search for FS using 16 features it took

almost 6 hours, while for 18 features took one and half days. We have only run the

91

exhaustive search for a maximum of 18 features. However, based on these actual run times,

the estimated time to run the exhaustive search for 20 features w i l l be seven and half days,

whereas for 47 features the time needed wi l l be 2791 years.

6.3 Results of Evaluation 1

The results presented in Table 3 compare the best and average accuracy rates achieved via

GA-based feature selection (GFS) with the optimal accuracy rate found via an exhaustive

search of the entire feature space. We run both the exhaustive search and G F S using different

number of features each time (8,10,12,14,16,18), which are represented in Table 3 as

different rows. For the G A , we repeated the run for 5 times with different seeds and recorded

the average and best accuracies achieved during these 5 runs (shown in the third and fourth

columns in Table 3). For the exhaustive search, we run it once and reported the best accuracy

obtained (shown in the second column in Table 3).

Comparing the numbers in the best G A column with the numbers in the best

exhaustive column exhibits the success of the G A as a feature set optimizer. In every case but

one (when the number of features is 16), the best accuracy achieved by the G A was identical

to that found by the exhaustive search of the feature space. Furthermore, the fact that the

worst average G A value is less than 1% percentage point away from the optimal value (i.e. in

the row that has 16 features the difference between average G A and optimal value is 0.92)

means that the G A was consistently able to return optimal or near-optimal values of

accuracy. Hence, GA-based feature selection consistently converges to an optimal or near-

optimal set of features.

92

Number of Best Best G A Average G A
Features Exhaustive (classification (for 5 runs)

(classification rate)
rate)

8 74 74 74
10 75.2 75.2 75.2
12 77.2 77.2 77.04
14 79 79 78.56
16 79.2 79 78.28
18 79.4 79.4 78.92

Table 3: Best classification accuracy rates achieved by G A and exhaustive search.

6.4 Convergence of Genetic Feature Selection to an Optimal or Near-

Optimal Set of Features within an Acceptable Number of Generations

(Evaluation 2)

In general, the run time for the G A is proportional to the number of features, number of

generations and size of the population (Kudo & Sklansky, 2000). Moreover, the time

complexity of the nearest neighbor classifier is proportional to (t2 x d), where t is the number

of training samples and d is the number of features used. So a G A that is applied in a wrapper

configuration (see Figure 2 in section 3.5.1) to a nearest neighbor classifier spends most of its

time running the nearest neighbor classifier (Br i l l et. al. 1992). Below, we list those factors

that affect the time complexity of our G F S or G F W :

• Number of generations

• Population size

• Number of features

93

• Number of training samples

In this evaluation, we wi l l investigate the relationship between the number of features (in

the original set) and the number of generations required to reach an optimal or near-optimal

sub-set. We w i l l do that while keeping the two other factors (i.e. population size and number

of training samples) constant.

6.5 Results of Evaluation 2

The results of experimentation are shown in Table 4. The second column of Table 4 shows

the optimal and near optimal (the second best value after the optimal) classification accuracy

rates attained using an exhaustive search, whereas the third column displays the duration of

that search. The fourth column contains the best results achieved by a GA-based search,

while the last column contains the time it took the G A to attain those values.

Number Best Exhaustive Best Average Number of G A Run
of Exhaustive Run Time G A G A (for Generations Time
Features (optimal 5 runs) (single

and near- run)
optimal)

8 74 73.8 2 minutes 74 73.68 5 2 minutes
10 75.2 75 13 minutes 75.2 74.96 5 3 minutes
12 77.2 77 47 minutes 77 76.92 10 5 minutes
14 79 78.8 3 hours 79 78.2 10 5.5

minutes
16 79.2 79 6 hours 79.2 78.48 15 8 minutes
18 79.4 79.2 1.5 days 79.4 78.92 20 11

minutes

Table 4: Number of generations to convergence.

The following observations can be made:

94

• In every case, the GA-based FS was able to find the optimal or near to optimal values

found by exhaustive search. However, the G A took much less time to find the same

optimal or near-optimal values returned by the exhaustive search. With only 8

features, the run times for both exhaustive and G A searches are identical. However,

for 18 features, the run time for the exhaustive search was 1.5 days compared to 11

minutes for the G A .

• A s the number of features increases, the number of generations required to find the

optimal or near-optimal values increases as well.

Figure 14 below displays the relationship between the numbers of generations needed to

reach optimal or near-optimal values with a G A , and the number of features in the original set.

The tiny triangles represent actual data from Table 4(above). There are also two curves in Figure

14. The solid line represents a linear best-fit curve that fits, and extrapolates, the data points. This

solid line is obtained by regression analysis and using the linear best-fit method. This method

calculates a straight line that best fits your data. The extrapolated segment of this curve (beyond

18 features) represents the most optimistic projection of G A run time duration. The dotted curve

represents an exponential curve that fits, and extrapolates, the same data points. Also using

regression analysis, the best exponential curve that fits the data is calculated. The extrapolated

segment of this curve (again, beyond 18 features) represents the most pessimistic projection of

G A run time duration. The reason for use of extrapolation is the obviously impossible amount of

time required to run exhaustive searches of large feature spaces using a single-processor

computer. In any case, one can safely conclude that the time needed for a GA-based search is

bound, on the lower side by the (optimistic) best-fit curve, and on the upper side, by the

(pessimistic) exponential curve.

95

CO

| 255 -
(Q
<3 205 -c
CD

(3 155 -

° 105-
a>
| 55 -

Z n O
8 10 12 14 16 18 20 25 30 35 40 45 50 55 60

Actual 5 5 10 10 15 20

Expected Expon. 5 5 10 10 15 20 27 59 115 256 531 1122 2367 4953 1058

Expected Linear 5 5 10 10 15 20 21 30 38 47 55 64 72 81 89

Number of Features

* — A c t u a l Expected Expon. Expected Linear

Figure 14: Number of generations to convergence as a function of number of features.

Using exponential extrapolation, the number of generations expected for 60 features is

10585, while it is only 89 for linear extrapolation. The true value should be something in

between. If we assume that the true value is midway between 89 and 10585 (which is 5337),

then running the G A wi l l be computationally expensive. In such cases, using methods of

parallel G A , such as D V e G A (Moser, 1999), becomes necessary.

Finally, we conclude that GA-based feature selection is a reliable method of locating

optimal or near-optimal feature sub-sets. These techniques also save time, relative to

exhaustive searches. However, their effective use in large feature spaces is dependant upon

the availability of parallel processors to speed up the G A work.

96

6.6 Verification Experiments

In this section, some of the experimental work (comparative study and evaluation) described

in this chapter and in chapter 5 is repeated using our own extracted features instead of the

publicly accessible character databases. This step is necessary to verify and prove the results

we obtained earlier.

6.6.1 Pre-Processing and Feature Extraction

The image files that we used for the verification of the results are from the U S P S Office of

Advanced Technology Database of Handwritten Digits, produced by the Center of

Excellence for Document Analysis and Recognition (C E D A R) . Using these handwritten

images, we have extracted our own features and build a feature set of 40 features. The code

used for extracting those features is written using Matlab. We first performed some pre­

processing as needed. The aim of pre-processing is an improvement of the image data that

suppresses unwanted distortions or enhances some image features important for further

processing. The pre-processing steps that we have done are:

1- Noise removal: Remove isolated pixels (l 's surrounded by 0's).

2- Image resizing: Get the bounding box of the image (which is the smallest rectangle

that can contain the region) and shift the bounding box into the middle of the image

so that the image size is 128x128.

3- Thinning (when needed): Remove pixels on the boundaries of objects without

allowing objects to break apart (i.e. thinning the image to 1 pixel width). Extracting

some features requires the thinned image rather than the whole image.

The features used are shown in Table 5 and explained below.

97

Seven H u Moments Fi l led Area Solidity
Area Convex Area Orientation
Bounding Box Number of Holes Eccentricity
Major Ax i s Length Number of End Points Centroid
Minor Ax i s Length Circularity Eight Extrema Points

Table 5: The extracted feature set from handwritten digits images.

1. H u Moments: For a function f(x), we can compute the mean value of the function

2>/W itfixXx-juf
using: pi = — .We can also describe the variance by: (7 = — ^ .

! / (*) X / (*)
x=\ x=l

A third statistical property, called skew, describes how symmetric the function is:

Skew = — — ^ . A l l of these are examples moments of the function. One
x=l

can define moments about some arbitrary point, usually either about zero or about the

N

mean. The n-th moment about zero, denoted as mn, is mn = ^xn f(x), where
x=l

m 0 i s the total value of the function. The mean jU is the first moment about zero

m.
divided by the zero-th moment: JU = — - . The n-th moment about the mean, denoted

N

as jUnand called the n-th central moment is jUn = ^(x- jX)n f(x). The zero-th

central moment jU0 is, again, the total value of the function. The first central moment

Hx is always 0. The second central moment jU2, when normalized by the total value

98

jU0 is the variance: CJ2 = — - . The third central moment jU3, when normalized is the
Mo

skew: s k e w = — . The fourth central momentjU^, when normalized is the kirtosis:
Mo

k i r t o s i s = ^ - . If we have an infinite number of central moments, we can completely
Mo

describe the shape of the function. A set of seven invariant moments can be derived

from the second and third moments (Gonzalez & Woods, 1992). This set of moments

is invariant to translation, rotation, and scale change (Hu moments).

2. Area: The number of pixels in the shape.

3. Bounding Box: A l-by-4 vector, which represents the smallest rectangle that can

contain the region. The format of the vector is [x y width height], where x and y are

the x- and y-coordinates of the upper-left corner of the rectangle, and width and

height are the width and height of the rectangle.

4. Major A x i s Length: The length (in pixels) of the major axis of the ellipse that has the

same second-moments as the region.

5'. Minor Ax i s Length: The length (in pixels) of the minor axis of the ellipse that has the

same second-moments as the region.

6. Fi l led Area: The number of on pixels in filled image.

7. Convex Area: The number of pixels in the convex image

8. Number of Holes: The number of holes in the shape.

9. Number of End Points: The number of end points in the shape.

99

10. Circularity: Circularity measures the ratio of the perimeter divided by the area

P 2

(C= where P is the perimeter and A is the area) (Parker, 1994).

4/7A

11. Solidity: The proportion of the pixels in the convex hull that are also in the region. It

is computed as Area/ConvexArea.

12. Orientation: The angle (in degrees) between the jc-axis and the major axis of the

ellipse that has the same second-moments as the region.

13. Eccentricity: The ratio of the length of the longest chord of the shape to the longest

chord perpendicular to it. This is one way to define it; another way to define it is as

follows. The eccentricity of the ellipse that has the same second-moments as the

region. The eccentricity is the ratio of the distance between the foci of the ellipse and

its major axis length. The value is between 0 and 1. (0 and 1 are degenerate cases; an

ellipse whose eccentricity is 0 is actually a circle, while an ellipse whose eccentricity

is 1 is a line segment).

14. Centroid: the x and y coordinates of the center of mass of the region.

15. Extrema: 8-by-2 matrix, which contains the extremal points in the region. Each row

of the matrix contains the JC and y coordinates of one of the points; the format of the

vector is [top-left top-right right-top right-bottom bottom-right bottom-left left-

bottom left-top]. Figure 15 shows these extremal points.

100

top-left top-right top-left top-
& right

Left-
top

Left-
bottom

right-bottom

right-top
Left-
top

Left-
bottom

right-
top

right-
bottom

bottom-
right bottom-left bottom-right bottom-left

Figure 15: Exteremal points.

6.6.2 Verification of Comparison 1

We have repeated two of the previous experiments done previously using our own database,

which contains 40 features. The first experiment that was repeated using our own extracted

features is comparison 1 (see section 5.6.1 in chapter 5), which is studying the effect of

varying the number of values that weights can take on the number of selected features. The

error estimation method used is the leave-one-out cross validation applied to the training data

itself. The number of training samples used is 500 and the resultant weights are assessed on a

validation set of size 250 that is never used before during training. In addition, we have

performed random partitioning for the data samples. We randomly selected different

training/validation samples each time provided that the train and validation samples are

completely different. Also , the random partitioning is stratified, meaning that all the classes

(digit classes) are equally represented (i.e. the number of training/validation samples for each

class are equal). This process was repeated five times and the average accuracy is calculated.

The average results are shown in Table 6.

101

Method of
Selection/
Weighting

Increment
Value

Number
of
Levels

Probability
of Zero

Accuracy
of
Training

Accuracy
of
Validation

Number
of Zero
Features

1-NN - - - 70.48 70.96 -
FS 1 2 Yi 77.68 74.72 21
3 F W (three
discrete
values: 0,
0.5, 1)

0.5 3 1/3 (0.33) 78.32 73.6 14

5 F W (five
discrete
values: 0,
0.25, 0.5,
0.75, 1)

0.25 5 1/5 (0.2) 78.44 73.6 9

33FW 0.03125
(1/32)

32+1 1/33 78.16 73.36 0

Table 6: Recognition accuracy and number of zero features for various selection and
weighting schemes.

Though we only intended by repeating this experiment to prove the previously obtained

results from comparison 1 (see section 5.6.2), the results shown in Table 6 illustrate the

followings:

• Comparing the results of the 1-NN to the FS and the F W methods we find that a lot of

features were eliminated, while the classification accuracy increased. This means that

there are many irrelevant features and eliminating those features helped in increasing

the classification rate.

• A s previously shown in section 5.6.2, we can notice from the table that FS far

outperforms F W in terms of the number of zero features. A s the number of values a

weight can take increase, the number of eliminated features decrease. These results

are consistent with those previously obtained in comparison 1 in section 5.6.2.

102

• FS is better than the other feature weighting settings (3FW, 5 F W and 33FW) in terms

of the number of eliminated features. Moreover, FS has a somewhat better validation

classification accuracy than F W . This result is consistent with the results of

comparisons 2 (described in section 5.6.4), which deals with the usefulness of FS in

the presence of irrelevant features.

6.6.3 Verification of Evaluation 1

The second experiment that we repeated using our own extracted features is evaluation 1,

which is the study of the convergence of G F S to an optimal or near-optimal set of features.

L ike we did before in evaluation 1 (in sections 6.2 and 6.3), we run the exhaustive search to

explore the space of 2d where d is the number of features and recorded the optimal solution

and near optimal reached by the exhaustive search. Also , we run the G F S five times and

reported the best and average accuracies obtained. We used a single train/test set of size

500/250 and the number of features used were 16,18 and 20, for both exhaustive and G A

searches.

Running the exhaustive search for the whole 40 feature set would be computationally

impossible. Therefore, we choose smaller subsets of 20,18 and 16 features out of the whole

40-feature set, to run the exhaustive search. We have only run the exhaustive search for a

maximum of 20 features. However, based on the actual run times, the estimated time to run

the exhaustive search for 22 features w i l l be 150 hours (6.25 days). The results shown in

Table 7 where the maximum classification accuracy obtained using the exhaustive search is

recorded. In addition, the best and average values reached by G F S are also shown.

103

Number
of
features

Best
Exhaustive
(optimal and
near-
optimal)

Exhaustive
run time

Best
G A

Average
G A (for 5
runs)

No of
generations

G A
run
time
(single
run)

16 75.2 74.8 2:30 hours 75.2 74.08 15 1 1/2
minutes

18 75.2 74.8 10:45 hours 75.2 73.84 15 1 min.
40 sec.

20 75.2 74.8 2 days 75.2 74.24 20 2 1/2
minutes

Table 7: Classification accuracy rates achieved by G A and exhaustive search.

Looking at the results in Table 7, we can see the following:

• The optimal values reached by the exhaustive searches for all the 16, 18 and 20

features are the same. This confirms our previous observation that some of the

features are redundant/irrelevant, by which eliminating them did not affect the

optimal classification rate obtained.

• It is clear that G F S can reach an optimal or near optimal solutions, which were found

by the exhaustive search. These results are consistent with the previously obtained

results from evaluation 1 in section 6.3.

Finally, it is important to note that the classification accuracies obtained using our

extracted 40 features are around 70% using 1-NN and around 75% after G F S . Though

these rates are not high for a typical handwritten digits recognition task, they were

satisfactory for us, since our main purpose was to prove that G F S could reach the optimal

solutions reached by the exhaustive search. Enhancing the classification accuracy for our

104

extracted features may require the addition of more features and applying more pre­

processing steps such as slant and slope corrections.

105

Chapter 7 Conclusions and Future Research

7.1 Conclusions

The objective of the research was to apply genetic algorithms for the problem of feature

weighting for character recognition application. In addition, we expected that because

feature weighting is the general case of feature selection, it should perform better than

feature selection, at least in some situations. So, after the employment of G F W to

character recognition application, we were interested in comparing the performance of

both G F S and G F W also in the context of character recognition applications to test the

validity of this hypothesis. To achieve these objectives we built a pattern recognition

experimental bench that contains a genetic-based feature selection and weighting

module. Then we carried out two sets of studies, which in turn produced some

unexpected but justified results.

The first set compares the performance of Genetic Algorithm (GA)-based feature

selection to GA-based feature weighting, under various conditions. The second set of

studies evaluates the performance of the better method (which turned out to be feature

selection) in terms of optimal performance and time. The results of these studies show

the superiority of G F S over G F W in terms of a) the number of eliminated features, as

well as b) recognition accuracy, in situations where irrelevant or/and redundant features

are present. Nevertheless, G F S succeeds in finding optimal or near-optimal solutions, in

all experiments. In addition, results show that G A is an effective method for feature

selection. However, their scalability to highly dimensional problems, in practice, is still

106

an open problem. The following sections summarize the lessons learnt from this research

effort.

7.1.1 Genetic Feature Selection verses Genetic Feature Weighting

Genetic feature selection is clearly superior to genetic feature weighting in terms of feature

reduction. The main reason for this superiority appears to be the small number of weight

values that feature selection uses, which is only 2 (zero and one), compared to the number of

weight values used by feature weighting (potentially infinite).

In the presence of irrelevant features, feature selection and not feature weighting is

the technique most suited to feature reduction. Furthermore, it is necessary to use some

method of feature selection before a 1-NN or similar nearest-neighbor classifier is applied,

because the performance of such classifiers degrades rapidly in the presence of irrelevant

features. Since it has been shown that GA-based feature selection is effective in eliminating

irrelevant features, it is reasonable to try a G A (at least) as a method of feature selection

before classification is attempted using nearest-neighbor classifiers.

The classification accuracy of a 1-NN classifier does not suffer so much as a result of

having a significant number of redundant features in the (original) feature set. However, due

to the other problems associated with redundant features, such as increased dimensionality

(and hence computational cost), and the arbitrariness of procedure, as well as slightly worse

classification accuracies, it is recommended that a GA-based feature selection method be

used to eliminate as many of the redundant features as possible. It is clear that the most suited

feature selection/weighting methods for such a task are FS and 3FW.

Despite the fact that feature weighting has the best training classification accuracies,

feature selection is better in generalization (i.e. make better predictions for the samples that

107

are not in the training set than feature weighting), and hence more suited to real-world

applications (in which most data is new). This is because F W over-fits the training data thus,

resulting in reduced predictions (than feature selection) for the new samples. Therefore, it is

advisable to use 2 (FS) or 3 (3FW) weight levels at most, as Kohavi et al. (1997) recommend.

7.1.2 Performance of Genetic Feature Selection

Genetic feature selection is a reliable method of locating optimal or near-optimal feature sub­

sets. These techniques also save time, relative to exhaustive searches. The question of how

well our method wi l l scale-up to highly dimensional feature spaces remains an open problem.

However, their effective use in large features spaces is dependant the availability of parallel

processors.

7.2 Future Research

We present below a list of research problems, carefully justified, that we believe future

research in G F S should address. It is our belief that solutions to such problems wi l l help with

the automation of genetic feature selection/weighting in pattern recognition applications.

• Research Problem 1. Feature selection, and therefore feature weighting, is NP-complete.

Hence, although feature selection has shown very promising results, practical

applications are limited by the dimensionality of the solution search space. Moser [Moser

and Murty 00] examined the scalability of Distributed Vertical Genetic Algorithms

(D V e G A) to very large-scale feature selection applications with more than 500 features.

His application succeeded in reducing the dimensionality while simultaneously

maintaining high accuracy. Crucially, Moser's "experiments showed that G A scale well

to domains of large complexity in feature selection" [Moser and Murty 00]. So a possible

108

future research is to try and use the idea of distributed genetic algorithms (or parallel

processing in general) in the way we implement our own G F S / G F W optimizer to make

highly dimensional feature spaces feasible.

• Research Problem 2. A possible future research is to understand how to generalize

the lessons gained from the successful application of the G F S optimizer (to a

particular symbol set) to new and different symbols sets. Examples of symbols sets

that can be tried are hand-written English characters, mathematical notations and any

(pre-segmented) black & white or gray-scale 2D line drawing. Indeed, the real power

of the G F S optimization approach we are proposing wi l l not be fully realized until the

experimental bench starts working successfully with different symbol sets.

Furthermore, it should do so without recourse to extensive and lengthy trial and error

tuning. This w i l l help in building and configuring a character recognition software

product tailored for a specific symbol set, and with minimal help from pattern

recognition experts.

Research Problem 3. We have shown that FS, in general, is superior to F W in terms of

the number of eliminated features, as well as accuracy of recognition, especially in cases

where irrelevant/redundant features are present in the original feature set. However, other

combinations of FS and F W could perform better than FS or F W alone. For example,

Raymer, Punch, Goodman, Kuhn & Jain (2000) have applied simultaneous feature

weighting and selection using genetic algorithm via a masking technique. They obtained

better results on validation samples than with F W alone and state that operating FS and

F W simultaneously allow the G A to find better interactions between features than just

operating FS and F W independently (Raymer et al., 2000). Hence, researchers may wish

109

to investigate further that approach by comparing the simultaneous feature weighting and

selection suggested in (Raymer et al., 2000) and our method of FS and FW that are

operating independently. In addition, researchers could also apply different weighting

schemes, such as local weighting, and combine both global and local weightings to

compare FS and FW.

Research Problem 4. Referring to section 4.3, there appears to be no record of any

study, which compares the performance of G A with simulated annealing for the feature

selection problem. In addition, the only existing work (Zhang & Sun, 2002) that

compares G A with tabu search for feature selection problem need to be verified using

true classifier error rate and real datasets (See section 4.3 for details). Therefore, a fruitful

area for future research is to compare the performance of the three stochastic search

algorithms (GA, simulated annealing and tabu search) in the context of feature selection

problem.

110

References

Aha, D . W . (1992). Tolerating noisy, irrelevant, and novel attributes in instance-based
Learning algorithms. International Journal of Man-Machine Studies, 36, 267-287'.

Aha, D . W. , & Bankert, R. L . (1994). Feature selection for case-based classification of cloud
types: A n empirical comparison. In D . W . A h a (Ed.) Case-Based Reasoning: Papers from
the 1994 Workshop (Technical Report WS-94-01). Menlo Park, C A : A A A I Press. (N C A R A I
T R : AIC-94-011)

David Beasley, David R. B u l l , & Ralph R. Martin. (1993). A n Overview of Genetic
Algorithms: Part 1, Fundamentals. University Computing, Inter-University Committee on
Computing, 15(2), 58-69.

Blum, A . L . , & Langley, P. (1997). Selection of relevant features and examples in machine
learning. Artificial Intelligence, pp. 245-271.

B r i l l , F . , Brown, D . , & Martin, W . (1992). Fast genetic selection of features for neural
network classifiers. IEEE Transactions on Neural Networks, 3(2), 324-328.

Dasarathy, Belur V . (1991). Nearest Neighbor (NN) Norms: NN Pattern Classification
Techniques, Los Alamitos, C A : I E E E Computer Society Press.

Dash, M . , & L i u , H . (1997). Feature selection for classification. Intelligent Data Analysis, 1,
131-156.

Davis, L . (1991). Handbook ofGA. Van Nostrand Reinhold.

De Jong, K . (1975). A n analysis of the behavior of a class of genetic adaptive systems.
Doctoral dissertation, University of Michigan, Dissertation Abstracts International, 36(10),
5140B, University Microfilms No. 76-9381.

Demiroz, G . , & Guvenir, H . A . (1996). Genetic algorithms to learn feature weights for the
nearest neighbor algorithm. In Proceedings of the 6 th Belgian-Dutch Conference on
Machine Learning (B E N E L E A R N - 9 6) , pp. 117-126.

Devijver, P., & Kittler, J. (1982). Pattern Recognition: A Statistical Approach. Prentice Hal l .

Duda, R. O., Hart, P. E . , & Stork, D . G . (2000). Pattern Classification. John Wiley
Interscience.

Estevez, P .A . , & Fernandez, M . (1999). Selection of features for the classification of wood
board defects. In Proceedings of the Ninth International Conference on Artificial Neural
Networks, 1, 347-352.

I l l

Ferri, M . , & Piccioni, M . (1992). Optimal selection of statistical units: A n approach via
simulated annealing. Computational Statistics and Data Analysis, 13, 47 - 61.

Fung, G . , L i u , J., & Lau, R. (1996). Feature selection in automatic signature verification
based on genetic algorithms. In Proceedings of International Conference on Neural
Information, pp. 811-815.

Gaborski, R. S., & Anderson, P. G . (1993). Genetic algorithm selection of features for
handwritten character identification. In the International Conference on Artificial Neural
Networks & Genetic Algorithms ANNGA 93, Innsbruck, Austria.

Geman, S., Bienenstock, E . , & Doursat, R. (1995). Neural networks and the bias/variance
dilemma. Neural Computation, 4, 1-58.

Glover F . (1986). Future paths for Integer Programming and Links to Artificial Intelligence.
Computers and Operations Research, 5, 533-549.

Goldberg D E . (1989). Genetic algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Reading, M A .

Gonzalez, R. C . , & Woods, R. E . R. (1992). Digital image processing. Addison-Wesley.

Handels, H . , Ross, T., Kreusch, J. , Wolff, H . H . , & Poppl, S J . (1999). Feature selection for
optimized skin tumor recognition using genetic algorithms. Artificial Intelligence in
Medicine, 16(3), 283-297.

Howe, N . , & Cardie, C . (1997). Examining locally varying weights for nearest neighbor
algorithms. Case-Based Reasoning Research and Development: Second International
Conference on Case-Based Reasoning, D . Leake and E . Plaza, eds., Lecture Notes in
Aritificial Intelligence, Springer, pp. 455-466.

Holland, J .H . (1975). Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, M I .

Hussein, F. , Kharma, N . , & Ward, R. (2001). Genetic Algorithms for Feature Selection and
Weighting, in proceedings of the Sixth International Conference on Document Analysis and
Recognition ICDAR'01, pp. 1240-1244.

Jack, L . B . , & Nandi, A . K . (2000). Genetic algorithms for feature selection in machine
condition monitoring with vibration signals. IEE Proceedings, Vision, Image and Signal
Processing, 147(3), 205-212.

Jain, A . , & Zongker, D . (1997). Feature selection: Evaluation, application, and small sample
performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(2), 153-
158.

112

Jain, A n i l K . , Duin, Robert P .W., & Mao, Jianchang (2000). Statistical pattern recognition: A
review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), 4-37.

Kel ly , J. , & Davis, L . (1991). A hybrid genetic algorithm for classification. In Proceedings of
the Twelfth International Joint Conference on Artificial Intelligence, pp. 645-650.

Kharma, N . , & Ward, R. (1999). Character Recognition Systems for the Non-expert, in IEEE
Canadian Review, 33, pp. 5-8.

Kharma, N . , Hussein, F. , & Ward, R . K . (2002a). Using Genetic Algorithms for Feature
Selection and Weighting in Character Recognition Systems. Evolutionary Computation
Journal.

Kharma, N . , Hussein, F. , & Ward, R . K . (2002b). Genetic Algorithms for Feature Selection
and Weighting in Character Recognition Systems, a Summary Review and Comparative
Study. The Sixteenth International Conference on Pattern Recognition, Quebec City,
(submitted).

K i m , G . , & K i m , S. (2000). Feature selection using genetic algorithms for handwritten
character recognition. In Proceedings of the Seventh International Workshop on Froniers in
Handwriting Recognition, pp. 103-112.

Kohavi , R., & Sommerfield, D . (1995). Feature subset selection using the wrapper method:
overfitting and dynamic search space topology. Proceedings of the First International
Conference on Knowledge Discovery and Data Mining, KDD'95, Montreal, Canada, pp. 192-
197.

Kohavi , R., & John, G . (1997) Wrappers for feature subset selection. In Artificial Intelligence
journal, special issue on relevance, 97(1-2), 273-324.

Kohavi , R., Langley, P., & Yun , Y . (1997). The utility of feature weighting in nearest-
neighbor algorithms, European Conference on Machine Learning, E C M L ' 9 7 .

Komosinski, M . , & Krawiec, K . (2000). Evolutionary weighting of image features for
diagnoses of C N S tumors. Artificial Intelligence in Medicine. 19, 25-38.

Kudo, M . , & Sklansky, J. (2000). Comparison of algorithms that select features for pattern
classifiers. Pattern Recognition, 33(1), 25-41.

Martin-Bautista, M . J . , & V i l a , M . A . (1998). Applying genetic algorithms to the feature
selection problem in information retrieval. In Lecture Notes On Artificial Intelligence
(LNAI), 1495. Springer-Verlag.

Matthew, W . (1999). Galib (2.4.4) Massachusetts Institute of Technology M I T .
http://lancet.mit.edu/ga/

113

http://lancet.mit.edu/ga/

Michalewicz, Z . , & Fogel, D . B . (1998). How to solve it. Springer-Verlag.

Moser, A . (1999). A distributed vertical genetic algorithm for feature selection. In
Proceedings of the Fifth International Conference on Document Analysis and Recognition,
Open Research Forum.

Moser, A . , & Murty, M . (2000). On the scalability of genetic algorithms to very large-scale
feature selection. Real World Applications of Evolutionary Computing: Proceedings, 1803:
77-86.

Murphy, P., & Aha, D . (1994). Repository of machine learning databases. Department of
Information and Computer Science, University of California, Irvine, C A .
http://www.ics.uci.edu/~mlearn/MLRepository

Pandya, Abhijit S., & Macy, Robert B . (1996). Pattern recognition with neural networks in
C++. Boca Raton, F L : C R C Press.

Parker, J. R. (1994). Practical Computer Vision Using C. John Wiley & Sons, Inc.

Punch, W. , Goodman, E . , Pei, M . , Chia-Shun, L . , Hovland, P., & Enbody, R. (1993). Further
research on feature selection and classification using genetic algorithms. In Proceedings of
the Fifth International Conference on Genetic Algorithms, pp. 379-383.

Raymer, M . , Punch, W. , Goodman, E . , Kuhn, L . , & Jain, A . (2000). Dimensionality
reduction using genetic algorithms. IEEE Transcations on Evolutionary Computation, 4(2),
164-171.

Sadiq, S. M . , & Youssef, H . (1999). Iterative Computer Algorithms with Applications in
Engineering. I E E E Computer Society.

Sahiner, B . , Chan, H.P. , We i , D.T. , Petrick, N . , Helvie, M . A . , Adler, D . D . , & Goodsitt, M . M .
(1996). Image feature selection by a genetic algorithm: Application to classification of mass
and normal breast tissue. Medical Physics, 23(10), 1671-1684.

Shi, D . , Shu, W. , & L i u , H . (1998). Feature selection for handwritten Chinese character
recognition based on genetic algorithms. In Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, 5, 4201-4206.

Siedlecki, W . , & Sklansky, J. (1988). On automatic feature selection. International Journal
of Pattern Recognition, 2, 197-220.

Siedlecki, W. , & Sklansky, J. (1989). A note on genetic algorithms for large-scale feature
selection. IEEE Transactions on Computers, 10, 335-347.

114

http://www.ics.uci.edu/~mlearn/MLRepository

Smith, J.E., Fogarty, T . C , & Johnson, I.R. (1994). Genetic selection of features for
clustering and classification, ln IEE Colloquium on Genetic Algorithms in Image Processing
and Vision.

Theodoridis, S., & Koutroumbas, K . (1998). Pattern Recognition. Academic Press.

Trier, O.D. , A . K . Jain, & T. Taxt (1996). Feature extraction methods for character
recognition - A survey, Pattern Recognition, 29, 641-662.

Vafaie, H . , & De Jong, K . (1993). Robust feature selection algorithms. In Proceedings of the
IEEE International Conference on Tools with Artificial Intelligence, pp. 356-366.

Van Laarhoven, P . J . M . , & Aarts, E . H . L . (1987). Simulated Annealing: Theory and
Applications. D . Reidel: Dordrecht.

Wang, Y . K . , & Fan, K . C . (1996). Applying genetic algorithms on pattern recognition: A n
analysis and survey. In Proceedings of the Thirteen International Conference on Pattern
Recognition, 2, 740-744.

Weideman, W . E . , Manry, E . M . , & Yau, H . C . (1989). A comparison of a nearest neighbor
classifier and a neural network for numeric handprint character recognition. Proceedings of
the International Joined Conference on Neural Networks, Washington, D C , / , 117-120.

Weiss, S., & Kul ikowski , C . (1991). Computer Systems that Learn. San Mateo, C A : Morgan
Kaufmann.

Wettschereck, D . , Aha, D . W. , & Mohr i , T. (1997). A review and empirical evaluation of
feature weighting methods for a class of lazy learning algorithms. Artificial Intelligence
Review, 11, 273-314.

Wilson, D . Randall, & Martinez, R. Tony (1996). Instance-based learning with genetically
derived attribute weights, Proceedings of the International Conference on Artificial
Intelligence, Expert Systems and Neural Networks (AIE'96), pp. 11-14.

Zhang, H . , & Sun, G . (2002). Feature selection using tabu search method, Pattern
Recognition, 35(3), 701-711.

115

