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Abstract 

Computer-based pattern recognition is a process that involves several sub-processes, 

including pre-processing, feature extraction, classification, and post-processing. This thesis is 

involved with feature selection and feature weighting processes. Feature extraction is the 

measurement of certain attributes of the target pattern. Classification utilizes the values of 

these attributes to assign a class to the input pattern. In our view, the selection and weighting 

of the right set of features is the hardest part of building a pattern recognition system. The 

ultimate aim of our research work is the automation of the process of feature selection and 

weighting, within the context of character/symbol recognition systems. Our chosen 

optimization method for feature selection and weighting is the genetic algorithm approach. 

Feature weighting is the general case of feature selection, and hence it is expected to 

perform better than or at least the same as feature selection. The initial purpose of this study 

was to test the validity of this hypothesis within the context of character recognition systems 

and using genetic algorithms. However, our study shows that this is not true. We carried two 

sets of experimental studies. The first set compares the performance of Genetic Algorithm 

(GA)-based feature selection to GA-based feature weighting, under various circumstances. 

The second set of studies evaluates the performance of the better method (which turned out 

to be feature selection) in terms of optimal performance and time. The results of these studies 

also show that (a) in the presence of redundant or irrelevant features, feature set selection 

prior to classification is important for k-nearest neighbor classifiers; and (b) that GA is an 

effective method for feature selection and the performance obtained using genetic algorithms 

was comparable to that of exhaustive search. However, the scalability of G A to highly 
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dimensional problems, although far superior to that of exhaustive search, is still an open 

problem. 
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Chapter 1 Introduction 

1.1 Motivation 

The main purpose of pattern recognition systems is to classify objects into one of a given 

number of class labels. Features are scalar properties that represent objects. Mult iple features 

are combined together to form a feature vector. Any pattern recognition system includes two 

basic parts: feature extraction and classification (Wang & Fan, 1996). Feature extraction is 

the process of defining the most relevant features, which wi l l minimize the within-class 

pattern variability and maximize the between-class pattern variability (Devijver & Kittler, 

1982). As the number of features extracted increases, the cost and the running time of the 

recognition system increase as well. On the other hand, using fewer features could lead to 

failure of classification. These contradicting requirements have emphasized the need for 

well-balanced feature selection methods. 

The goal of feature selection is to reduce the number of features extracted, by 

eliminating irrelevant and redundant features, while simultaneously maintaining or enhancing 

classification accuracy. Feature selection is sometimes performed in an ad-hoc way and 

accomplished by hand. A human designer implicit ly selects the features that appear to him or 

her to be of most potential use. This process of manual feature selection usually depends on 

the experience of the designer in the domain knowledge and on trial-and-error. Another 

problem with the human expert method of feature selection is that humans cannot usually 

predict the existence of non-linear interactions between features. 

The process of choosing the best features to represent the data is a difficult and time-

consuming task. As a matter of fact, for handwritten character recognition problem we have 
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many variants of letter shape, size, and generally, style. Also, different writers have different 

writing styles. For the letters of an alphabet, there are nearly an unlimited number of 

variations. So many features must be used in a typical character recognition system to 

accommodate these variations. However, for a problem with a large number of features, it is 

not feasible to perform an exhaustive search to find all relevant features. Therefore, a 

computer algorithm must be developed to determine which features most accurately 

represent the pattern. This process of automatic feature selection will ensure that the 

recognition system is optimized. 

The problem df feature selection, especially automated feature selection, has received a 

great deal of attention. Several search algorithms are used to solve the feature selection 

problem (Dash & Liu, 1997; Jain & Zongker, 1997). Among these, genetic algorithm has 

been revealed as a powerful search tool to select an optimal subset of features. Genetic 

Algorithm (GA) has been used for feature selection and weighing in many pattern 

recognition applications (e.g., texture classification and medical diagnostics). G A has proven 

to be an effective computational method, especially in situations where the search space is 

mathematically uncharacterized, not fully understood, or/and highly dimensional. Moreover, 

G A is domain independent (i.e. do not require derivative information or other auxiliary 

knowledge about the problem), and has been shown to be an excellent approach for solving 

combinatorial optimization problems. However, their use iii feature selection (let alone 

weighting) in character recognition applications has been infrequent. This has inspired the 

work of this thesis, which is to apply G A for feature selection and weighting for character 

recognition applications. This work has resulted so far in (Hussein, Kharma & Ward, 2001; 

Kharma, Hussein & Ward, 2002a; Kharma, Hussein & Ward, 2002b) publications. 
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The main purpose for our work is to apply genetic algorithms for the problem of 

feature weighting for character recognition application. The work is motivated by the fact 

that there is no published work in the literature that has applied genetic feature weighting 

(GFW) in the context of character recognition problems. So it will be applied for the first 

time. After the employment of GFW to character recognition application, we are interested in 

comparing the performance of both genetic feature selection (GFS) and GFW also for 

character recognition applications. We are encouraged to perform such a comparison because 

it is often mentioned in the literature that feature weighting has the potential of working 

better than (or at least as well as) feature selection, when applied to the same situation 

(Komosinski & Krawiec, 2000; Punch, Goodman, Pei, Chia-Shun, Hovland & Enbody, 

1993). However, this proposition was never fully and comprehensively assessed before. Only 

a single comparison exited in the literature (kohavi et. al. 1997), which compares the 

classification accuracy of feature selection (FS) and feature weighting (FW). However, the 

search method used in this comparison is not genetic algorithms, and the comparison was not 

employed for character recognition applications. Therefore, we intend to test the validity of 

this proposition. In addition, we need to carry out an inclusive comparison between GFS and 

GFW for character recognition applications. This comparison between GFS and GFW will 

tackle several issues. These issues include the number of eliminated features by both 

methods, their performance in situation where irrelevant/redundant features exist and the 

classification accuracies of both methods in regular situations. Moreover, we aim to test the 

performance of the better method (which turns out to be GFS) for both optimality and time 

complexity. 
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1.2 Thesis Contributions 

Basically, the main contributions of the thesis are: 

• Developed a GA system to be used to configure the real-valued weights of a k-nearest 

neighbor (k-NN) classifier component of a character recognition system. This genetic 

feature weighting system GFW will be applied, for the first time, to off-line 

recognition of isolated handwritten digits. 

• A comparison of GFW with, the previously applied methods by other researchers for 

character recognition systems, GFS (genetic feature selection) under various 

circumstances. 

• An evaluation for the performance of the better method in terms of optimal 

performance and time. 

In addition to the abovementioned direct contributions, we believe that this research work is 

important for the field of character recognition, because it provides the following: 

• Investigates the pragmatic aspects (in terms of the number of eliminated features and 

the performance under situations where irrelevant/redundant features exist) for the 

automatic feature selection and weighting using genetic algorithm for character 

recognition systems. 

• Provides testable hypothesis (i.e. feature weighting has the potential of working 

better than feature selection) and formal explanations for the behavior of the GA-

based feature selection and weighting in character recognition applications. 

• Represents an empirically proven method (GFS) for the feasibility of a search for an 

optimal set of features (of a moderate size) for enhancing the recognition rates in 
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character recognition systems while suggesting a possible use of distributed 

computational implementations for highly dimensional problems. 

• Offers a way for building a semi automatic optimization method of a general hand­

written symbol recognition system, in which the human intervention is needed to 

provide new libraries for feature extraction and classification functions. 

1.3 Thesis Structure 

The thesis consists of seven chapters. The first chapter is an introduction. Chapter two 

presents an overview of pattern recognition and character recognition methods and 

introduces the k-nearest neighbor classifier. In chapter 3, we present the feature selection and 

weighting problem and describe the various algorithms used in feature selection. Chapter 4 

introduces genetic algorithm and its various parameters. It also compares genetic feature 

selection with other feature selection methods and surveys genetic feature selection in 

character recognition applications. Chapter 5 presents the details of the developed system, the 

platform and the methodologies used. In addition, it provides a comparative study between 

genetic feature selection and weighting, describes the experimental work and explains the 

results obtained from these experiments. Chapter 6 presents an evaluation for genetic feature 

selection in terms of optimality and time and shows an experimental verification for some of 

the results obtained form the comparative study and evaluation. Finally Chapter 7 offers the 

conclusions and suggestions for future work. 
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Chapter 2 Pattern Recognition 

The goal of pattern recognition is to classify objects into a number of classes. These objects, 

depending on the application, can be images or signal waveforms or anything that needs to be 

classified. Pattern recognition applications range from automated speech recognition, optical 

character recognition to fingerprint identification and so on. 

2.1 Character Recognition 

Character Recognition or Optical Character Recognition (OCR) is the process of converting 

scanned images of machine printed or handwritten text (numerals, letters, and symbols), to 

computer-processed format (such as ASCII). The popularity of OCR has been increasing 

each year with the advent of fast microprocessors providing the vehicle for vastly improved 

recognition techniques. There is a wide variety of OCR systems in use today, from automatic 

postal address readers through massive document handling computers used by offices, to the 

desktop systems that employ scanners for reading text into word processing and spreadsheet 

applications. 

In general, there are two main categories for the character recognition problem, on­

line and off-line. The purpose of on-line handwritten recognition is to recognize the symbols 

while they are being written. On the other hand, in the off-line case, the recognition process 

is performed after the symbols have already been written. OCR belongs to the off-line 

recognition category. In our research work we are interested in the case of off-line 

recognition of isolated handwritten digits. 
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2.1.1 Components of Character Recognition System 

An OCR system typically involve the following processing steps (Kharma & Ward, 1999): 

1- Pre-Processing. 

2- Feature Extraction. 

3- Pattern Classification. 

4- Post-Processing. 

The pre-processing step aims to improve the image data by suppressing unwanted 

distortions or enhancing some image features important for further processing. So the output 

of the pre-processing step is a cleaned up version of the original image, which can be used 

into the next step. Examples of pre-processing functions are: Noise removal, skeletonization, 

thinning, normalization and segmentation. 

Feature extraction is an important step in achieving good performance of OCR systems. It 

is the process of defining the most relevant features, which will minimize the within-class 

pattern variability and maximize the between-class pattern variability (Devijver & Kittler, 

1982). Several feature extraction methods exist; for an extensive survey, see (Trier, Jain & 

Taxt, 1996). The goal is to find those features that are of possible relevance for classification. 

Assume now that a list of measured features is provided. The portion of the process that 

must map these input features onto classes is called the classifier. This step can be 

accomplished by means of a number of algorithms, including clustering techniques, rule-

based systems, neural net works and decision trees (Kharma & Ward, 1999). 

Traditional OCR performs post-processing to assist in the resolution of errors produced in 

the character recognition processes. The goal is to increase the level of confidence in the 
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classification results. One of the post-processing methods used is a word dictionary to verify 

word results. Alternatively, recognition results may be verified interactively with the user. 

2.2 Pattern Recognition Approaches 

There are three approaches for pattern recognition: the statistical, the structural and the neural 

network approaches (Pandya & Macy, 1996). In the statistical approach, the input pattern is 

represented by a number of attributes or features (e.g. a set of measurements performed on 

the raw data). If a suitable set of features is chosen to properly represent the patterns, feature 

vectors having the same class will be close to each other while feature vectors belonging to 

different classes will be positioned in different regions of the feature space. In this way, the 

recognition task is reduced to partitioning the feature space into regions of different classes. 

In our work, we have used the statistical approach for the task of recognizing handwritten 

digits. The patterns, which are images of handwritten digits, are represented by d dimensional 

feature vector. 

On the other hand, in the structural approach, a pattern is assumed to be decomposed 

into simpler sub-patterns, which in turn can also be decomposed into simpler sub-patterns 

(called primitives) in a recursive way (Jain, Duin & Mao, 2000). In syntactic pattern 

recognition, which is a sub-set of structural pattern recognition, patterns of a class are viewed 

as sentences in a language defined by means of grammar, and primitives are considered the 

alphabet of the language. Each class has its own defined set of rules or what is called 

grammar. The grammar specifies the way in which sub-patterns can be combined to form a 

valid pattern for a specific class. The pattern recognition problem in this case is to determine 

whether a given pattern belongs to the language generated by that grammar (Devijver & 

Kittler, 1982). 
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Neural networks (NN), in general, are large number of highly interconnected 

processing elements (nodes) that usually operate in parallel. The collective behavior of a NN, 

demonstrates the ability to learn, recall and generalize from training patterns. The analogy 

between neural networks and human brain made neural networks good candidates for pattern 

classification problems. In fact, neural networks are a non-parametric type of classifiers with 

predictive capabilities. They make no assumptions about the underlying distributions. 

Another main advantage of neural networks is their capability to learn complex nonlinear 

relationships between inputs and outputs (Jain et al. 2000). Moreover, they have the ability to 

generalize and even to recognize partially degraded patterns (Pandya & Macy, 1996). 

2.3 Supervised verses Unsupervised Learning 

Pattern recognition can be classified into two broad categories: supervised and unsupervised 

(Pandya & Macy, 1996). A supervised learning process is one in which the user provides 

some external information about the problem. That is, a set of examples, or training set of 

classified elements. In the unsupervised case, no prior information is provided and the system 

is required to discover the fundamental structure of the data on its own. Correct classes are 

not available, and grouping or clustering is used in order to infer correct classification from 

the data elements. 

2.4 Parametric verses Non-parametric 

In statistical pattern recognition, there are two general ways to design a classifier, parametric 

and non-parametric. The key distinguishing feature is the form of the information "learned" 

during training and passed on to the classifier. Parametric classifiers assume that the patterns 

in the training set fit a known statistical distribution. These classifiers are parametric, in that 
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they are specified in terms of parameters (mean and covariance) of class distributions. 

Nonparametric classifiers are useful in cases where the underlying distribution cannot be 

easily parameterized. In such cases, we can either estimate the density function or directly 

construct the decision boundary from the training data (e.g. k-nearest neighbor) (Jain et al. 

2000). 

2.5 The Nearest Neighbor Rule 

Nearest neighbor classification is a nonparametric method that does not assume that the 

patterns to be classified have known density functions. The K Nearest Neighbor Rule (k-

NNR) is a very intuitive method that classifies unlabeled samples based on their similarity to 

classified samples in the training set (Dasarathy, 1991). The algorithms for the nearest 

neighbor rule is described as follows: 

• Given a feature vector x, whose class is to be determined, and n training samples, 

identify the k training samples that form the nearest neighbors to x, regardless of the 

type of the class (where k is chosen to be an odd number). 

• Out of these k samples, determine the number of vectors kt , which belongs to class 

W. (where i=l,2,..., m and ]T kt -k and m is the number of classes). 
i 

• Assign the unknown vector x to the class w. with the maximum number of kt 

samples. 

In other words, the k nearest neighbor method assigns to an unclassified sample x the 

class most heavily represented among its k nearest neighbors. When k=l, in this case it is 

known as nearest neighbor rule, the feature vector x is assigned to the class of its nearest 
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neighbor. The k- NNR is very simple; it only requires an integer k, a set of labeled examples 

(training data) and a metric to measure the "closeness". 

K-NNR is considered an instance based learning, algorithm. Instance based learning 

algorithms are a class of supervised machine learning algorithms. These algorithms do not 

construct abstract concepts, but rather base their classification of new instances on their 

similarity to specific training instances (Aha, 1992). Old training instances are stored in 

memory, and classification is postponed until new instances are received by the classifier. 

When a new instance is received, older instances are retrieved from memory and used to 

classify the new instance. Other names for instance based algorithms are: Memory- based, 

Exemplar- based or Case- based. 

Instance based learning algorithms have the advantages of being able to (a) learn 

complex target concepts (e.g. functions); and (b) estimate target concepts distinctly for each 

new instance. In addition, their training is very fast and simple; it only requires storing all the 

training instances in memory. In contrast, the cost of classifying new instances can be high 

because every new instance is compared to every training instance. Hence, efficient indexing 

of training instances is important. Another disadvantage of these learning algorithms is that 

their classification accuracy degrades significantly in the presence of noise (in training 

instances). 

In the k-nearest neighbor method, the similarity between two cases can be measured in 

various ways. The most common similarity measure is based on Euclidean distance. This is 

described as follows: 

(Eq.l) 
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Where D is distance, x and y are two instances, xt and yt are the i-th. attribute for the x 

and y instances, and n is the total number of features. To compensate for the difference in 

units between features, normalization should be performed. This often scales all features to a 

range between 0 and 1, inclusive. 

2.6 Attribute Weighted K-Nearest Neighbor 

One major drawback of the Euclidean distance function is its sensitivity to the presence of 

noise, and particularly, redundant or irrelevant features. This is because it treats all features 

of an instance (relevant or not) as equally important to its successful classification. A 

possible remedy is to assign weights to features. The weights can then be used to reflect the 

relative relevance of their respective features to correct classification. Highly relevant 

features would be assigned high weights relative to the weights of redundant or irrelevant 

features. Taking that into account, the Euclidean distance measure can be now refined to: 

Where w. is the weight of the /-th feature. 

Assume (see Figure 1) there are several instances belonging to two classes, class 1 

and class 2, each having two features (attributes) represented in 2-dimensional space. It is 

required to classify the unknown instance to either one of these two classes. In the left side of 

Figure 1, the unknown instance is classified according to the majority class of its k nearest 

neighbors (k=3, in this case). Thus the unknown instance is incorrectly classified to be 

belonging to class 1. However, the right side of Figure 1 shows the effect of using the 

attribute weighted k-nearest neighbor. This weighting is achieved by multiplying the Y-axis 

by a small weight, which corresponds to decreasing the effect of attribute Y and increasing 

(Eq.2) 
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the influence of attribute X by multiplying it with a large weight. As a result of the attribute 

weighting, the unknown instance is correctly classified as belonging to class 2. Note that the 

dimension in the feature space, where a high weight is assigned, is extended. On the other 

hand, the dimension in the feature space, where a low weigh is assigned, is compressed. 

• 
CNJ 

0) 

J / • \ 
< r j \ i mjo 

Attribute 1 

• Class 1 

0 Class 2 

Unknown 
instance 

Figure 1: Example of the effect of feature weighting. 

2.7 Data Normalization 

In addition to feature weighting, it is also important to apply data normalization before 

classification. Different features have different measurement units, which means that their 

values lie within different ranges. So, using the Euclidean distance function with features 

having different ranges of values will result in a significant problem; features having large 

values will have larger effect on the classification than those features that have small values. 

However, this does not necessarily reflect their relative importance for classification 

(Theodoridis & Koutroumbas, 1998). Therefore, data normalization must be performed first 

to overcome the differences in units between feature values. A common method used for 

normalization is to restrict all feature values in a certain range e.g. [0,1] or [0,10] or any other 
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range. This way of scaling features guarantees that all features will be normalized to the same 

range of values. 

2.8 Estimating Classification Error Rate 

The assessment of a classifier, such as the k-NN, is based on its ability to successfully 

classify and predict the unseen data. The most commonly method used to measure the 

performance of a classifier is its error rate (Weiss & Kulikowski, 1991). Error rate is the 

number of incorrectly classified data samples divided by the total number of all samples. In 

general, the estimation of the error rate of a recognition system is performed by dividing all 

the samples available into two sets, a training set and a testing set. The classifier is built and 

designed using the training set, and then the error rate of the classifier is calculated using the 

testing set. However, both the training and testing sets should be independent and have a 

large number of samples so as to return a true measure of the classifier error rate (Jairi et al. 

2000). There are many methods for estimating classification error rate. These methods 

mainly differ in the way the available samples are split into training and testing sets. These 

methods are described as follows. 

2.8.1 Hold Out Method 

In this method, all the available samples are separated into two sets, called the training set 

and the testing set. The common splits used for the data samples are 2/3 of the data assigned 

to training and 1/3 to testing (Weiss & Kulikowski, 1991). Alternatively, half of the data can 

be used for training and the second half for testing. The classifier is trained using the the 

training set only. Then the trained classifier is asked to predict the output values of the testing 

set. The accumulated errors using the testing set is used as the classifier error rate. The 
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problem with this mehtod is that its evaluation can have a high variance. Since the holdout 

method is a single train-test method, its evaluation of error rate depends heavily on which 

data points end up in the training set and which end up in the test set. Thus the evaluation 

may be significantly different depending on how the division is made (Jain et al. 2000). 

2.8.2 Cross-Validation Methods 

The limitations of the holdout can be overcome with a family of cross-validation methods at 

the expense of higher computational cost. These methods are: the k-fold, the random sub-

sampling and the leave-one-out methods (Weiss & Kulikowski, 1991; Jain et al. 2000). 

2.8.2.1 K-Fold Cross-Validation Method 

In this method, the data set is divided into k parts (folds), and the holdout method is repeated 

k times. Each time, one of the k subsets is used as the testing set and the other k-1 subsets are 

combined to form a training set. The error rate is the average of the error rates obtained from 

all k trials. Every data point gets to be in a test set exactly once, and gets to be in a training 

set k-1 times. The variance of the resulting estimate is reduced as k is increased. The 

disadvantage of this method is that the training algorithm has to be rerun k times, which 

means it takes k times as much computation to make an error estimation. 

2.8.2.2 Random Sub-Sampling Method 

Random sub-sampling can be viewed as a variant of k-fold cross-validation method, where 

data is randomly divided into a test and training set k different times. In this method, multiple 

random train-test experiments are performed k times. The train-test sets are chosen randomly 

each time. Then the classifier is built using the training set, and tested using the testing set. 

The error rate is the average of the error rates obtained from k runs. Random sub-sampling 
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has better error rates than the single train-test holdout method (Weiss & Kulikowski, 1991). 

The advantage of this method over the k-fold method is that you can independently choose 

how large each test set is and how many trials you average over. On the other hand, in the k-

fold method all the examples in the dataset are eventually used for both training and testing. 

2.8.2.3 Leave-One-Out Cross-Validation Method 

It is a k-fold cross validation taken to its extreme, with k equal to N, the number of data 

samples. For a dataset with N examples, perform N runs. For each run, use N-l examples for 

training and the remaining example for testing. As before the error rate is the average of the 

error rates obtained from N runs. Leave-one-out method has unbiased estimation for the error 

rate but it has large computational requirements. For very sparse datasets, we may have to 

use leave- one- out in order to train on as many examples as possible. Conversely, for large 

data sets, leave-one-out is computationally expensive, so random sub-sampling or k-fold 

methods are preferred. 

2.8.3 Bootstrap Method 

The bootstrap is a re-sampling technique with replacement. Given a dataset with N examples, 

N examples are randomly selected (with replacement) and this set is used for training. The 

remaining examples that were not selected for training are used for testing. This process is 

repeated for a specified number of folds (K). The error rate is the average of the error rates 

obtained from k folds. Obviously, the number of test examples is likely to change from fold 

to fold. Usually bootstrap method is used for small sample datasets (Jain et al. 2000). 
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Chapter 3 Feature Selection and Weighting 

3.1 The Curse of Dimensionality 

Intuitively, one would expect that the more information that is available, the better we can 

make decisions. That is, the more features available to the classifier, the better the 

classification results. However, in practice this is not always true. In fact, adding more 

features is not always helpful. For a given size of training samples, as the feature dimension 

increases, the number of data points becomes more sparse relative to the problem dimension. 

In addition, new features may not add useful information and some features may be noise. 

This phenomenon, which is often observed in pattern recognition, is called the peaking 

phenomena (Jain et al. 2000). Peaking phenomena happens when adding new features to a 

feature set leads to a decrease in the classification accuracy of a classifier trained on a finite 

set of training samples. 

In general, the classifier performance depends on the relationship between the sample 

sizes and the number of features (Jain et al. 2000). For a given problem with d dimensional 

features, there exists some minimum number of training samples that are required by the 

classifier to achieve good classification rate. However, the required number of training 

samples grows exponentially with the dimensionality of the feature space (Pandya & Macy, 

1996). This is known as the "curse of dimensionality". In practice, the curse of 

dimensionality means that, for a given sample size, there is a maximum number of features 

above which the performance of the classifier will degrade rather than improve. It is very 

difficult to draw the exact relation between the probability of misclassification, the sample 
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size and the number of features. However, a general accepted rule is to employ a number of 

training samples, which is at least ten times as the number of features used (Jain et al. 2000). 

3.2 Dimensionality Reduction 

As mentioned in the previous section, a major problem associated with the pattern 

recognition problem is the so-called curse of dimensionality. Usually, there is a very large 

number of features that a domain expert can provide when designing any pattern recognition 

problem in general, or character recognition system in particular. This number can easily 

range from a few dozens to hundreds. Thus, features must be evaluated and the most 

effective ones chosen. This process is referred to as the dimensionality reduction. Several 

reasons have motivated the use of dimensionality reduction techniques. The reduction of the 

number of features will certainly help in reducing/eliminating the curse of dimensionality 

problem. Moreover/reducing the dimensionality of the problem will, in turn, reduce the time 

complexity and the memory requirements of the recognition system. In addition, reducing the 

dimensionality will increase classifier efficiency by eliminating redundant and irrelevant 

features. 

3.3 Feature Selection verses Feature Extraction 

Two approaches are available to perform dimensionality reduction: Feature selection and 

feature extraction. Feature selection can be defined as follows. Given a number of features, 

the feature selection process aims to select the most important features of them so as to 

reduce their number and at the same time retain as much as possible of their discriminatory 

power. Feature selection can be modeled as follows: Given a feature set X={x, I j = 1,2,..DJ 
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of D features, a feature selection method should find a subset Y= \y \l' = 1 ,2 , . .of d 

features, where d<D, such that the combination of d features optimizes a criterion function J, 

usually but not necessarily, the error rate of the classifiers (Devijver & Kittler, 1982). 

On the other hand, feature extraction refers to the process of creating a subset of new 

features based on combinations or transformations of the existing features. The problem of 

feature extraction can be stated as follows: Given a feature set X={xv | j = \,2,..n\ of n 

features, a feature extraction method should find a mapping (either linear or non-linear) 

Y=f(X), where Y=\y 11: = 1,2,..m} and m<n, such that the transformed feature vector Y 

preserves (most of) the information or structure in X. An optimal mapping will be one whose 

set of features results in no increase in the classification error. The selection of the feature 

extraction mapping Y= f(X) is guided by an objective function that we seek to maximize (or 

minimize). Examples of feature extraction methods are: principle component analysis, linear 

discriminant analysis and feature clustering. 

The choice between feature selection and feature extraction depends on the type of 

application and data available (Jain et al. 2000). Feature subset selection is necessary in a 

number of situations. Feature selection decreases the cost of feature measurement by 

removing some features from the original set of features. The original features are important 

to keep so as to extract meaningful rules from classifier. However in feature extraction, 

where features are transformed or projected, the physical meaning of the features after such 

transformation are lost. In addition, features may not be numeric (a typical situation in the 

machine learning domain). In this case feature selection is the only applicable way for 

dimensionality reduction. 
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3.4 Feature Selection verses Feature Weighting 

As we pointed out before, the k- NNR is very sensitive to noisy features. A solution to this 

problem is to modify the Euclidean metric by a set of weights that represent relevance of 

each feature. In feature weighting, the weights can hold any value from a continuous range of 

values (e.g. [0,1]). The purpose of feature weighting is to find a vector of real-valued weights 

that would reduce the damaging effect of irrelevant and redundant features while fine-tuning 

the weights of useful features to achieve higher classification accuracy. 

Several feature weighting methods for case based learning algorithms exist. For example, 

the weighting could be global, meaning that there is a single weight vector for the 

classification task, or it could be local, in which weights vary over local regions of the 

instance space (Howe & Cardie, 1997). Moreover, the weight vector could have continuous 

real values or binary (zero or one only) values. In addition, the method for assigning the 

weights could be guided by the classifier performance or not (will be explained in section 

3.5.1). For an extensive review, Wettschereck, Aha & Mohri (1997) provide a five-

dimensional framework that categorizes different feature weighting methods. 

On the other hand, feature selection aims at reducing the number of features used in 

classification, while maintaining or improving the classification accuracy (Dash & Liu, 

1997). This entails that weights can either equal '0' for 'not selected', or T for 'selected'. 

Though both feature selection and weighting seek to enhance classification accuracy, only 

feature selection has the (real) potential of reducing problem dimensionality (by assigning '0' 

weights to features). This is contrary to feature weighting, where irrelevant/redundant 

features are almost always assigned small (but sometimes non-zero) weights. Feature 
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selection can also enhance classification accuracy as a result of completely eliminating 

highly irrelevant and redundant features. 

Nevertheless, feature selection may be regarded as a special case of feature weighting. 

The trick is to find a way to use feature weighting to both (a) assign weights to relevant 

features, in a way that reflects their relative relevance, and (b) completely eliminate highly 

irrelevant and redundant features from the original set of candidate features. 

3.5 Feature Selection Algorithms 

Ideally, feature selection methods search through the subsets of n features, and try to find the 

best one among the possible 2" candidate subsets according to some evaluation function. For 

example, for a problem using only 40 features, the number of possible subsets of the full 

feature set is 2 4 0 = 1012. In general, feature selection attempts to select the minimally sized 

subset of features where the classification accuracy does not significantly decrease. 

Therefore, feature selection procedure is exhaustive as it tries to find only the best subset. It 

may be too costly and practically prohibitive, even for a medium-sized feature set size n. An 

exact searching algorithm through all subsets has an exponential complexity. Therefore an 

efficient search algorithm is required to explore the space of all possible feature subsets. 

Several search techniques for feature selection have been proposed in the literature. Dash 

& Liu (1997) have categorized different feature selection methods according to the search 

technique used and the evaluation function. For extensive reviews of feature selection see 

Refs. (Blum & Langley, 1997; Jain & Zongker, 1997; Dash & Liu, 1997). In general, a 

feature selection method requires two things: 

1- An objective function to evaluate candidate feature subsets. 

2- A search strategy to select these candidate subsets. 
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3.5.1 Feature Selection Objective Function 

The objective function evaluates candidate subsets and returns a measure of their 

"goodness", a feedback that is used by the search strategy to select new candidates. Objective 

functions are divided into two groups, which in turns divide the feature selection into two 

approaches: Filter and Wrapper. In the filter approach, the objective function evaluates 

feature subsets by their information content, typically by distance measures or dependence 

measure. For the distance measures, filter methods use distance to determine class 

separability, such as Euclidean distance to measure distance between classes. The 

dependence measure is based on the rationale that good feature subsets contain features that 

are highly correlated with the class, yet uncorrelated with each other. So it measures the 

correlation coefficient between features and class label and also between the features 

themselves. For both the distance and the dependence measures of the filter approach, feature 

selection does not depend on the classification algorithm. 

On the other hand, in the wrapper approach, the classification algorithm is used as a 

part of the evaluation function of the feature subset. In other words, the search algorithm 

employs the classifier's predictive accuracy to evaluate the subset of features. 

It is clear that the filter method requires less computational time when compared to the 

wrapper one; however, the filter approach ignores the effect of the selected features on the 

performance of the classification algorithm as opposed to the wrapper method, which could 

lead to better performance. Generally, wrappers achieve better recognition rates than filters 

since they are tuned to the specific interactions between the classifier and the dataset (Kohavi 

& John, 1997). Figure 2 depicts both the filter and wrapper approaches. 
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Figure 2: The two feature selection approaches, filter and wrapper. 

3.5.2 Feature Selection Search Strategy 

Before evaluating the goodness of the candidate feature subsets, a search strategy is required 

to select these candidate subsets. The search strategy is required to direct the feature selection 

process as it explores the space of all possible combination of features. Since in practice the 

exhaustive search over all possible subsets of a feature set is not computationally feasible, 

several search strategies have been introduced in the literature to guide the feature selection. 

Examples of these search methods are: branch and bound, sequential forward selection, 

sequential backward elimination and genetic algorithms. 
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A number of authors have proposed different groupings for feature selection search 

methods (Dash & Liu, 1997; Yang & Honavar, 1998; Jain & Zongker, 1997). Broadly, these 

search strategies can be grouped into three categories: exponential (optimal), deterministic 

and randomized (stochastic) searches (Yang & Honavar, 1998; Jain & Zongker, 1997). 

3.5.2.1 Feature Selection Using Exponential Search Methods 

These algorithms evaluate a number of subsets that grows exponentially with the 

dimensionality of the search space. Although the order of the search space is 2" , a fewer 

subsets are evaluated (Dash & Liu, 1997). The most representative algorithms under this 

class are: exhaustive search, branch and bound. 

In general, for a set of n measured features, the only certain way to find the optimum 

subset of features, by whatever criterion, is to exhaustively test all 2" subsets, a procedure 

which is computationally infeasible for all except when n is small, since the size of the search 

space grows exponentially with the number of features included (Jain & Zongker, 1997). As 

an alternative to exhaustive search, a widely investigated technique is branch-and-bound 

(BAB) search (Narendra & Fukunaga, 1997). The branch and bound algorithm has been 

shown to produce an optimal feature subset under specific circumstances, and its designers 

demonstrate that it is much faster than exhaustive search. The technique involves setting up a 

sorted search tree starting from the full feature set, with each node uniquely identified by the 

feature discarded at that node. Since the tree is sorted in order of the selection criterion, any 

node, which has a value of the selection criterion less than the current "best" value can be 

discarded, along with its attached sub-tree; since this section of the tree is guaranteed not to 

increase in value. In this way whole areas of the search space can safely be ignored, 
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increasing the computational efficiency of the feature selection process, while still 

guaranteeing to find the optimum feature subset. 

BAB algorithm will only find the optimal feature subset under the monotonicity 

assumption. The monotonicity assumption states that the addition of features can only 

increase the value of the objective function. Nevertheless its computational cost is prohibitive 

for large feature spaces: in the worst case, it does an exhaustive search and its time 

complexity is exponential on the dimension of the feature space. Another problem of this 

approach is that, if the criterion distance is not monotonic, the BAB algorithm will face the 

nesting effect (explained in the next section). Furthermore, Yang and Honavar (1998) 

observe that while branch and bound approaches often work well with conventional 

statistical classifiers, their performance may be poor with non-linear classifiers such as neural 

networks. 

3.5.2.2 Feature Selection Using Deterministic Search Methods 

Deterministic methods produce a feature subset, which is always the same every time for a 

given data set (Jain & Zongker, 1997). Examples of these algorithms are: sequential forward 

selection, sequential backward selection and sequential floating selection. 

Sequential forward selection (SFS) and sequential backward selection (SBS) 

algorithms are based on the same idea. Starting from the empty set, SFS first picks a feature 

that results in the highest objective function (i.e. classification accuracy). Then sequentially, 

the next best feature is added provided that the first one has already been chosen. This 

process is repeated until either the required number of features is chosen, or there is no 

benefit from adding further features. Alternatively, SBS starts from the complete set and 

eliminates the worst feature. Then sequentially, the next worst feature is removed. However, 
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SBS approach involves a larger number of feature set evaluations, which may make it 

unsuitable for very large data sets. A major disadvantage for both SFS and SBS is the lack of 

backtracking or what is called the nesting effect. A feature that is added by SFS at the 

beginning can't be removed; also a discarded feature by SBS can't be added again. 

A modification to the SFS and SBS is the floating search methods. There are two 

main categories of floating search methods: forward (SFFS) and backward (SFBS). 

Basically, in the case of forward search (SFFS), the algorithm starts with a null feature set 

and for each step, the best feature that satisfies some criterion function is included with the 

current feature set, i.e., one step of the sequential forward selection (SFS) is performed. The 

algorithm also verifies the possibility of improvement of the criterion if some feature is 

excluded. In this case, the worst feature (concerning the criterion) is eliminated from the set, 

that is, it is performed one step of sequential backward selection (SBS). Therefore, the SFFS 

proceeds dynamically increasing and decreasing the number of features until the desired 

number of features d is reached. 

The backward search (SFBS) works analogously, but starting with the full feature set 

(of size m) and performing the search until the desired dimension d is reached, using SBS 

and SFS steps. All of these approaches are heuristic, and there is no guarantee that they will 

find the globally best subsets. In addition, these algorithms have a tendency to become 

trapped in local minima (Zhang & Sun, 2002). 

3.5.2.3 Feature Selection Using Randomized Search Methods 

Unlike deterministic algorithms, stochastic algorithms include an element of chance. This 

means that two runs of the same algorithm with different random number seeds will produce 

different results. In fact, these algorithms incorporate randomness into their search procedure 
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to escape local minima. Examples are: simulated annealing (SA), tabu search (TS) and 

genetic algorithm (GA). In this section we will cover SA and TS and in the next chapter G A 

will be discussed widely. 

Simulated annealing is an optimization technique based on an analogy with the 

physical annealing of solids (Sadiq & Youssef, 1999). Annealing refers to the process by 

which a solid material is first melted and then allowed to cool by slowly reducing the 

temperature. At high temperatures, all the particles of the solid are randomly organized as a 

liquid. The temperature of the system is then gradually lowered, and the particles arrange 

themselves in the lowest energy state as an orderly lattice. The probability that a particle is at 

any energy level can be calculated. As the temperature of the material decreases, the 

probability tends toward the particle configuration that has the lowest energy. The system is 

perturbed to yield a new configuration of the particles. Using this criterion, the material will 

eventually reach its equilibrium configuration. 

For feature selection, the set of potential solutions assumes the role of the states of a 

solid, and the cost function (or fitness function) replaces energy. The goal of the procedure is 

then to achieve a state of minimum cost (corresponding to maximum fitness) by moving 

between solutions with a probability, which is dependant upon the temperature of the system. 

At a high temperature a higher cost solution is more likely to be accepted, while as the 

temperature decreases the probability of accepting a higher cost move also decreases. The 

temperature is lowered during the running of the algorithm according to a predetermined 

schedule (Van Laarhoven & Aarts, 1987). 

Simulated annealing has found wide application in fields of science and engineering. 

SA's major advantage over other methods is an ability to avoid becoming trapped at local 
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minima. Thus, the ability to find the global optimum is not related to the initial conditions 

(i.e., the starting point). The primary disadvantages to SA are the subjective nature of 

choosing the SA configuration parameters (e.g., T and step size) and that it typically requires 

more response or objective function evaluations than other optimization approaches. Thus it 

tends to be very slow; and a realistic temperature schedule must be established, usually by 

trial-and-error. 

Tabu search is an iterative procedure designed for the solution of optimization 

problems. TS was invented by Glover (Glover, 1986) and has been used to solve a wide 

range of hard optimization problems. Tabu search, like simulated annealing, is a 

neighborhood (local) search. Local search employs the idea that a given solution S may be 

improved by making small changes. Those solutions obtained by modifying solution S are 

called neighbors of S. The local search algorithm starts with some initial solution and moves 

from neighbor to neighbor as long as possible while decreasing the objective function value. 

The main problem with this strategy is to escape from local minima where the search cannot 

find any further neighborhood solution that decreases the objective function value. However, 

tabu search can escape from local minima. 

Tabu search considers the set of all possible neighborhood states and takes the best one. 

Yet, it will take the best move in the neighborhood, even though it might be worse than the 

current move. The main principle behind tabu search is that it has some a short-term memory 

component (called tabu list), which keeps track of the states that has already been visited and 

it does not allow revisiting those states. Preventing previously visited states helps in two 

ways. It avoids the search getting into a loop by continually searching the same area without 

actually making any progress. In turn, this helps the search explore regions that it might not 
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otherwise explore, thus avoiding local minima. The moves that are not allowed to be 

revisited are held in the tabu list and these moves are called "tabu" (thus the name). 

Typically, old moves are removed from the tabu-list after some number of iterations. 

During the search, the tabu status of a solution is overridden if certain criterion called the 

aspiration criteria is met. For example, if the cost of the solution found is better than the best 

known so far, then the aspiration criterion is satisfied and the tabu constraint is removed by 

allowing the move to this solution (Sadiq & Youssef, 1999). Simulated annealing and genetic 

algorithms are both memory-less, however, tabu search has a memory to record and guide the 

search, which prevents cycling through solutions. 
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Chapter 4 Genetic Algorithms for Feature Selection and 

Weighting 

4.1 Genetic Algorithms Review 

Genetic algorithms are search algorithms based on analogy with biology in which a group of 

solutions evolves via natural selection. Since their development by John Holland (Holland, 

1975), genetic algorithms have been widely and successfully employed in many fields such 

as optimization problems, machine learning and pattern recognition. Genetic algorithms 

operate on a population of individuals that represents candidate solutions for a given 

problem. Each individual or chromosome compete with one another to reproduce based on 

Darwinian's principle of 'survival of the fittest' in each generation of evolution. An 

individual is evaluated by a fitness function that expresses how much this chromosome is 

appropriate as a solution. The best parent individuals, which survived the struggle in a G A 

population, crossover to produce better offspring. To prevent G A from being caught at a 

good but not optimal solution, mutation is performed. After a number of generations in 

evolution, the chromosomes that survived in the population are the optimal solutions. In 

general, G A consists of the following steps (which are depicted in Figure 3): 

1. Start with a randomly generated population of n chromosomes (candidate solutions). 

2. Evaluate each chromosome in the population by calculating the fitness function. 

3. Create new chromosomes by mating current chromosomes; apply mutation and 

reproduction as the parent chromosomes mate. 
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4. Delete chromosomes from the current population to make room for the new 

chromosomes. 

5. Evaluate the new chromosomes and inset them into the population. 

6. If the stop condition is satisfied, then stop and return the best chromosome; otherwise, 

go to step 3. 

Generate initial b Evaluate objective 

population function 

i i 

Start 

Generate 
new 
population 

± 
Crossover 

Mutation 

Repeat for n generations 

Stop condition Best 

satisfied? Yes individual 

No 

t 

Result 
i r 

| Selection 

Figure 3: Basic steps of genetic algorithms. 
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4.1.1 The Basics of Genetic Algorithm 

There are some basic operations and parameters found in every genetic algorithm. In this 

section we will discuss them in details. 

4.1.1.1 Initialization 

In general, it is required to initialize the population with diverse individuals. This will 

provide a good start for the G A and offer diversity in the population. There are many ways to 

arrange this initial diversity. Usually, the initial population is randomly generated; where 

candidate solutions (feature subsets) are created randomly from the search space with a 

uniform distribution. Another method for initialization is to use the solutions found by other 

search techniques. While this does not encourage diversity, it can guarantee that the genetic 

algorithm will do at least as well as the initial seed algorithm. However, this initialization 

method can lead to premature convergence to sub-optimal solutions. 

4.1.1.2 Representation 

In general, any representation for the individual genomes in the genetic algorithm can be 

used. The majority of the developmental work of G A theory and the most widely used 

representation is performed using a binary-coded GA. Historically, Holland (1975) worked 

with strings of binary bits. In a binary coding each chromosome is vector containing zeroes 

and ones with each bit representing a gene. The two main common representations are the 

binary and real number coding. They differ mainly in how the recombination and mutation 

operators are performed. However, other representations can be used such as, arrays, trees, 

lists, or any other object. But genetic operators must be defined (initialization, mutation, 
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crossover, comparison) for any representation used. Normally, the proper choice of genetic 

representation is problem-dependent and based upon the type of application. 

4.1.1.3 Selection (Reproduction) 

Reproduction or selection determines, which individuals are chosen to be copied to the 

mating pool from which the next generation is created. The selection is often performed to 

yield a mating pool with the same size as the original population. Then the mating pool 

serves as templates (parents) on which genetic operators are applied (crossover and 

mutation), interchanging and modifying sets of genes, to produce a new generation 

(offspring). The chance that an individual will be copied to the mating pool is based on the 

individual's fitness function. Generally, to emulate natural selection, individuals with a 

higher fitness should be selected with higher probability. 

There are many different types of selection methods (Davis, 1991). Examples are 

proportional (roulette wheel) selection, tournament selection, and rank selection. The 

simplest selection scheme and the most commonly used is roulette-wheel selection 

(Goldberg, 1989). In this method, each chromosome is assigned a slice of a circle "roulette 

wheel", where the size of the slice is proportional to the chromosome's fitness. Each time an 

offspring is needed the wheel is spun, and the individual under the wheel's marker is selected 

to be in the pool of parents for the next generation. The process is repeated until the desired 

number of individuals is obtained (called mating population). This method will guarantee 

that good individulas will probabely be selected several times, while poor individulas may 

not be selected at all. 

In tournament selection, n individuals are selected at random and the fittest is 

selected. The most common type of tournament selection is binary tournament selection, 
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where just two individuals are selected at random. The individual with the higher fitness will 

win. In the rank selection, ndiyiduals are sorted (ranked) on the ground of their fitness, where 

an idvidiual is assigned a rank r such that the least fit member has rank 0 and the fittest 

member rank 1. The selection probability is linearly assigned to the individuals, which 

depends on their rank and not on the actual fitness function value. 

It is worth mentioning that none of the aforementioned selection methods are right or 

wrong. In fact, some will perform better than others depending on the problem domain being 

explored. In general, one will always select the fittest and discards the worst so that good 

solutions survive, and weak solutions die. However, imposing too much selection pressure, 

the solution will converge to less than optimal. On the other hand, applying too little 

selection pressure, a solution will possibly never reached. So, it is a balancing act to find the 

right selection technique for the problem at hand. 

4.1.1.4 Crossover (Recombination) 

Once all individuals have been selected for reproduction, an exact copy of them is made and 

put into the mating pool, a tentative new population, for more genetic operations. Notice that 

selection does not create any new chromosomes it just selects the best existing chromosomes 

and places them into the mating pool, which is used as the basis for creating the next 

generation. 

In the mating pool, G A performs crossover first then mutation. Crossover is a version 

of artificial mating. In crossover, the G A selects two individuals at random from the mating 

pool. The selected individuals may be different or identical it does not matter. The G A then 

calculates whether crossover should take place using a parameter called the crossover 
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probability. This is simply a probability value p and is calculated by flipping a weighted coin. 

The value of p is defined by the user and usually has large value. 

If the G A decides not to perform crossover, the two selected chromosomes are simply 

copied to the new population. On the other hand, if crossover happens, a crossover point is 

selected at random. Then the parents are crossed and separated at this point producing two 

children. These new child strings are then placed in the new population. Crossover is 

performed and continued until the new population is created. There are different techniques 

for crossover. The simplest technique is called one-point crossover (Davis, 1991) that 

randomly picks a crossover point and exchanges the segments to the right of this point 

between the two chromosomes. 

On the other hand, in two-point crossover, two crossover points are selected at 

random. The genes between the two crossover points are exchanged. Another crossover 

method is the uniform crossover. Uniform crossover can be thought of as a generalization of 

one and two-point crossover. In this case, each bit in the offspring has equal chance of being 

chosen from either parent. A crossover mask, the same length as the individual structure is 

created at random and the parity of the bits in the mask indicates which parent will supply the 

offspring with which bits. Generally, for each bit in the first offspring, a 0 in the 

corresponding position of the crossover mask will mean that the bit is taken from first parent, 

while a 1 will mean that the bit is taken from the second parent. The exact opposite will 

apply for the second offspring. Yet, the best type of crossover operator to use will depend on 

the problem being solved. 
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4.1.1.5 Mutation 

After performing the crossover operation to produce the new offspring, individuals in the 

population may undergo mutation. In binary coding, mutation is a very simple operation. A 

position in the string is chosen at random, and the value at that position is inverted from 0 to 

1, or 1 to 0. Generally, a mutation is a small random change to a value that occurs with low 

probability called mutation rate. Mutation rate determines the probability that a mutation will 

occur. Large mutation rates increase the probability that good schemata will be destroyed, 

but increase population diversity. The best mutation rate is application dependent but for 

most applications is between 0.001 and 0.1. 

Mainly, crossover represents a way of moving through the space of possible solutions 

based on the information gained from the existing solutions (exploitation). Mutation, on the 

other hand, represents innovation. Mutation is extremely important; by making small moves 

mutation allows a population to explore the search space (exploration) (Beasley, Bull & 

Martin, 1993). Additionally, it increases the diversity of the population by preventing the 

population from becoming saturated with similar chromosomes. Even if most of the search is 

being performed by crossover, mutation can be vital to provide the diversity which crossover 

needs. 

4.1.1.6 Fitness Function 

The fitness of a chromosome is based on the user defined evaluation function. It is a positive 

number that measures the goodness of an individual and discriminates between better and 

worse solutions. The simplest way is to use the evaluation function directly as the fitness 

function. However, since the fitness function must be non-negative, it is sometimes necessary 

to map the evaluation function into a valid fitness function. To maintain the topology of the 

36 



cost landscape, this is often a simple linear map. Other methods include exponential mapping 

but in all cases the important point is to reflect the value of the chromosome fitness in a 

correct way so that the problem is not distorted. 

For some evaluation functions, the difference between the best and the worst 

chromosomes may be small. This results in a slow search, where the probabilities of 

reproduction for all chromosomes are almost the same. To approach this problem, fitness 

scaling has been introduced (Goldberg, 1989). Moreover, fitness scaling is also applied to 

overcome the problem of premature convergence. This problem arises from the fact that at 

the beginning there may be some extraordinary chromosomes in a population. In the first 

couple of generations these chromosomes might take over a huge part of the population 

before the crossover operator is able to construct a more diverse set of good chromosomes. 

Using fitness scaling, the few extraordinary chromosomes are scaled down while the lowly 

members of the population get scaled up. Fitness scaling imposes a maximum number of 

copies on an individual chromosome, thus preventing the few super chromosomes from 

taking over the population in the beginning. 

4.1.1.7 Generation Replacement 

There are different ways how to handle populations from one generation to the next 

generation. Given the constraint that the number of individuals should remain constant some 

individuals have to be discarded. Transition between generations can be done by total 

replacement, elitist replacement or steady state replacement. For total replacement or 

sometimes called non-overlapping populations only the newly created offspring enters the 

next generation and the parents of the previous generation are completely discarded. So, each 

generation the algorithm creates an entirely new population of individuals (Goldberg, 1989). 
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However, this has the disadvantage that a fit parent can be lost if it only once produces bad 

offspring. 

To overcome the problem of replacing good parents elitist replacement is introduced. 

Elitism (De Jong, 1975) forces the G A to keep some of the best individuals at each 

generation. By allowing elitism, at least a copy of the best individual of the population is 

always passed to the new generation. This will gurantee that the best individuals ever 

discovered are not destroyed. 

In the steady state or called overlapping populations, only a single population of 

individuals is maintained at any given time. Two individuals are selected from the population 

based on their fitness and then modified by mutation and crossover. The newly created 

individuals are then returned to the single population by means of the replacement operator, 

which selects chromosomes to be removed. In this variation, you can specify how much of 

the population should be replaced in each generation (generation gap) and the replacement 

criterion to be used (i.e. replace worse individual or replace random individual in the 

population) (De Jong, 1975). 

4.1.1.8 Schema Theorem 

Even though genetic algorithms depend on their work on randomized operators, they use 

random choice to guide a highly exploitative search (Goldberg, 1989). The concept behind 

why G A works well lies in the schema theorem (Holland, 1975). A schema (H) is defined as 

a template for describing a subset of chromosomes with similar sections. For example, 

consider a schema such as, #0000. This schema matches two chromosomes, 10000 and 

00000. The template is a powerful way of describing similarities among patterns in the 

chromosomes. 
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According to Holland, the order of a schema (o(H)) is equal to the number of fixed 

positions (i.e., non-meta-characters) and the defining length of a schema (L(H)) is the 

distance between the first non * symbol position to the last non * position. Thus, the schema 

#00#0 is an order 3 schema (o(H) = 3) and has a length of (5-2) (L(H) = 3). Holland (1975) 

derived an expression that predicts the number of copies a particular schema, H, would have 

in the next generation after undergoing selection, crossover and mutation. In short, the 

schema theorem states that short, low order above average schemata (i.e. building blocks) 

receives exponentially increasing trials in subsequent generations. 

So, during the G A run, the average fitness of all schemata existing in the population is 

evaluated, and accordingly they receive increasing or decreasing trials in the next 

generations. Thus, high performance schemata, whose average fitness is high, are copied and 

recombined to form instances of equal or higher performance schemata. 

4.2 Genetic Feature Selection and Weighting 

Feature selection is a process that often involves the optimization of partially understood and 

mathematically- uncharacterized systems. Sometimes, but not always, this process also 

involves a large number of parameters. Genetic Algorithms (Michalewicz & Fogel, 1998) are 

optimization techniques that are well suited for these situations. Another advantage of G A 

algorithm is that it has an implicit parallelism in which a set of solutions is evaluated at the 

same time, rather than individually (Goldberg, 1989) and thus, a G A gradually guides the 

search towards regions of optimality. In addition, G A has already proved to be efficient 

solutions for highly dimensional feature selection problems (Moser & Murty, 2000; Kudo & 

Sklansky, 2000). 
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GA-based feature selection (or GFS) has been employed in many applications, such 

as pattern/texture classification (Vafaie & De Jong, 1993), character recognition (Kim & 

Kim, 2000), medical diagnostics (Handels, Ross, Kreusch, Wolff & Poppl, 1999) and data 

mining (Martin & Vila, 1998). In addition, genetic feature weighting (GFW) was also 

employed and presented in (Kelly & Davis, 1991; Punch et al. 1993; Komosinski & Krawiec, 

2000; Demiroz & Guvenir, 1996). Despite this diversity there are some common aspects, 

which must be decided upon when using G A for feature selection/weighting problem. These 

aspects are discussed below. 

4.2.1 Chromosome Representation 

In GA-based feature selection, each 'individual', which represents a feature subset, competes 

with other individuals for survival into the next generation of individuals. An individual is 

often represented as a binary string of finite length n, where n is the number of features. A 

value of '1' in the string indicates that the corresponding feature is included in this subset, 

while a value of '0' means it is not included. In the case of GA-based feature weighting, 

continuous real valued strings instead of binary strings represent the individuals of a 

population. The value of a gene in the chromosome indicates the weight of the corresponding 

feature. This representation allows the relative importance of each feature to be assessed 

according to its weighting. (Punch et al. 1993; Komosinski & Krawiec, 2000) used both 

binary and real valued weighting. 

4.2.2 Type of Classifier 

The majority of surveyed genetic feature selection GFS papers employed either neural 

networks or nearest neighbor classifiers. Nearest neighbor classifiers are very widely used 
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because they are robust, non-parametric, fast and easy to understand, and hence have been 

used in conjunction with OCR applications in several experiments (Moser & Murty, 2000). 

GFS systems that employed nearest neighbor classifiers are presented in (Kelly & Davis, 

1991; Punch et al. 1993; Komosinski & Krawiec, 2000; Kudo & Sklansky, 2000). 

On the other hand, several authors have used neural network classifier for GFS. 

Examples of such works are described in (Jack & Nandi, 2000; Sahiner, Chan, Wei, Petrick, 

Helvie, Adler & Goodsitt, 1996; Yang & Honavar, 1998). The main disadvantage of using 

neural networks in the GFS problem is that training a neural network for each evaluation is 

computationally expensive. On the other hand, nearest neighbor has the disadvantage of high 

storage requirements since all the training instances are stored in memory. 

4.2.3 Fitness Function 

Some of the fitness functions used in GFS are solely based on classification error rate. This 

type of feature evaluation results in an unconstrained optimization problem (Siedlecki & 

Sklansky, 1989). In contrast, Yang & Honavar (1998) use a multi-criterion fitness function, 

which incorporates both accuracy and cost of classification. Siedlecki & Sklanski (1989) use 

a fitness function based on a penalty formula, and the number of features selected. The 

penalty function apportions punishment values to feature sets that produce error rates, which 

are greater than a pre-defined threshold. It is worth noting that fitness functions that use the 

number of features and the classifier's error rate lead to constrained optimization problems 

(Siedlecki & Sklansky, 1989). 
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4.2.4 Computational Speed-Up Techniques 

Numerous attempts have been undertaken to speed-up GA-based feature selection systems. 

Brill, Brown & Martin (1992) apply a nearest neighbor classifier to evaluate feature sets by 

running multiple populations independently on multiple processors. This process results in a 

diminished set of feature sets. These are then conclusively evaluated using a full-fledged 

counter-propagation neural network. Brill et al. (1992) demonstrate that the idea of 

separating the evaluation classifier from the eventual target classifier leads to significant 

reductions in computational time. Punch et al. (1993) employ a Micro Grain distributed GA. 

In this method, groups of feature sets are passed to individual processors for fitness 

evaluation. Given that fitness evaluation Occupies most of the computational time of a 

wrapper-configuration GFS, it is not unusual that this technique leads to linear speed-ups. 

Recently, Moser (1999) proposed Distributed Vertical GA's to very large-scale 

feature selection applications with more than 500 features. Ffis technique allocates subsets of 

the test patterns to different evaluators. An adaptive load-balancing algorithm is used to 

manage the capabilities of a network of heterogeneous computers. 

4.2.5 GA Parameters 

Several G A parameters need to be determined, such as population size, number of 

generations, selection methods, and crossover and mutation probabilities and so on. In fact, it 

is a problem common to all G A applications: how do we decide these parameters in order to 

make G A truly autonomous optimization and design tools (that require minimal human 

intervention)? In fact, there's no clear guide for the choice of the G A parameters for a 

specific type of problems like GFS. Many authors have used several variations for these 
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parameters in literature. However, the choice of these parameters is usually done by trial and 

error or based on experience. 

4.3 Comparisons 

How does GA-based feature selection perform in comparison with other feature selection 

algorithms? Several studies exist that compare G A with other feature selection search 

algorithms. For example, Vafaie & DeJong (1993) compared sequential backward selection 

SBS with G A for feature selection in texture classification problem. They observe that SBS 

is "brittle"; that is, the algorithm becomes trapped in local minima due to higher-order 

interactions between features. On the other hand, they show that G A outperforms SBS in 

robustness because G A may escape from such minima, since they are highly stochastic. 

Moreover, Handels et al. (1999) compare a number of feature selection methods: 

Genetic Algorithms other heuristic search, and 'greedy' methods (forward and backward 

searches). Their domain of application is diagnosis of skin tumors. The best classification 

accuracy was obtained by the GA. Furthermore, Estevez & Fernandez (1999) perform a 

comparison between Genetic Algorithms, statistical methods and the leave-one-feature-out 

approach, all in the context of classifying wood board defects. The G A gives the best 

performance among the three techniques, but at the expense of high computational 

complexity. 

Additionally, Siedlecki & Sklansky (1989) suggested that the G A approach is 

particularly useful when the dimensionality of the entire feature set is greater than 20. 

Recently Kudo & Sklansky (2000) provided an extensive comparison of different feature 

selection algorithms (including GA) for large feature spaces. The authors conclude that 

Genetic Algorithm is more suited than other feature selection algorithms for problems with 
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more than 50 features. However, for small (0-19 features) and medium (20-49) cardinality, 

G A though useful, is too slow. 

As for the performance of G A in comparison with SA for the feature selection 

problem, there appears to be no record of any study. In fact, there have been sparse reports of 

the use of SA for feature selection. For example, Ferri & Riccioni (1992) describe an 

application of simulated annealing to the selection of observatories for predicting overnight 

temperature. Their method outperforms forward selection, using a temperature method 

tailored to the problem. But there exists no comparison between SA and G A for feature 

selection problem, which could be an area for future research. 

Zhang & Sun (2002) have recently compared tabu search with G A and other feature 

selection methods such as sequential methods and branch and bound method. In a set of 

experiments, which were implemented using a dataset of 30 features, they have shown that 

the tabu search algorithm obtained the best solution among all algorithms tested (including 

the GA) and with a lower computational cost than the GA. In a second set of experiments, 

which used 20 features and 2 class sets, they used the Mahalanobis distance to measure the 

goodness of a feature subset (the probability of error is inversely proportional to the 

Mahalanobis distance). Their results demonstrate that 18 times out of the 20 runs they 

performed, G A has achieved the optimal solution. In the worst case, it still obtained a near 

optimal solution. As for the tabu search, it achieved global optimal feature subset in all the 20 

runs. 

Several observations can be made regarding the results reported in (Zhang & Sun 

2002). They have replaced the error rate classifier's function with a model of the classifier's 

error rate, which is a function of the feature selection vector. So, the true performances of the 
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feature selection algorithms were never really tested on a true classifier, thus, reducing the 

reliability of the reported results. In addition, the datasets they used were artificially 

generated, not a real datasets. Finally, the differences in performance mentioned between the 

G A and the tabu search were small that it does not, in itself, provide an absolute confirmation 

that tabu search TS is superior to GA. In fact, to test the validity and credibility of these 

results, both G A and TS need to be compared and tested on real datasets and using the true 

error rates generated from a classifier. 

4.4 Genetic Feature Selection for Character Recognition Systems 

(Literature Review) 

Though (Siedlecki & Sklansky, 1988) is probably the first paper to suggest the use of genetic 

algorithms for feature selection, several other researchers have, in fact, used them for feature 

selection. However, there are somewhat sparse examples in the literature of character 

recognition applications that employ G A to satisfy its feature selection needs. This fact 

becomes particularly pronounced, when one looks at the steadily increasing number of GA-

based feature selection (or GFS) applications in pattern classification domains. Below is a list 

of these studies, classified according to the type of input (printed or handwritten). We also 

include GFS applications to signature verification due to similarity of the problem 

characteristics. 

4.4.1 Recognition of Printed Characters 

Smith, Fogarty & Johnson (1994) applied GFS to printed letter recognition. They used 24 

features (16 features, plus 8 redundant features) to describe the 26 letters of alphabet. A 

nearest neighbor classifier using Euclidian distance was used for classification. To speed the 
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GA run, a sub-sampling method is used where 10% of the training data is randomly sampled 

and selected at the beginning of each run; only this subset is used for the G A evaluation. The 

system reduces the feature set to 10 features. It does so while maintaining a mean error rate 

lower than that generated when using all 24 features. 

4.4.2 Recognition of Handwritten Characters 

A handwritten digit recognizer, which is used to assess a GFS algorithm, is presented in 

(Kim & Kim, 2000). During the training phase, the recognizer performs clustering to obtain a 

KxP dimension codebook (K is the number of clusters and P is the number of features) that 

represents the centroid of the K clusters. During the testing phase, a matching process 

performs a distance calculation between the centroids and the testing data. The objective is to 

use GFS to speed up the matching process as well as to reduce the size of the codebook. 

Testing was carried out using two datasets: one with 74 features and another with 416 

features. For the 74-feature test, experimental results show that the recognition rate trivially 

decreased when the number of features was lowered. However, for the case of the 416-

features test, the GA-selected set of features leads to a higher recognition rate than the 

original 416 feature-set does. This result emphasizes the usefulness of GFS in large search 

spaces. 

In addition, Kim & Kim (2000) propose a variable weight method to assign weights 

to features in the matching process. During the G A feature selection, a weight matrix for the 

features is build, which represents how often the feature was selected throughout the GFS. 

After the GFS is complete, the matrix is used in the recognition module. Features having 

high weights denote more frequently selected features, which implies their importance over 

low weight features. Results using this variable weight method show a slight improvement in 
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the performance over the un-weighted method. One important remark is that this method of 

weighting the features is completely different than the one we are using. Their method 

depends on counting the frequencies of selecting the features during the GFS, while in our 

approach the weights are assigned using the G A itself. A major drawback for weight matrix 

method suggested in (Kim & Kim, 2000) is that it does not achieve any dimensionality 

reduction and the number of features remains the same. Also, the enhancement in accuracy 

achieved is very small, where the non-weighted method has an accuracy of 96.3% while the 

suggested weighting method has 96.4%. 

Furthermore, Gaborski & Anderson (1993) use a G A for feature selection for a hand­

written digit recognition system. They used several variations for population organization, 

parent selection and child creation. The result is that the G A was capable of pruning the 

feature set from 1500 to 300, while maintaining the same level of accuracy achieved by the 

original set. 

Moreover, Shi, Shu & Liu (1998) suggest a GFS for handwritten Chinese character 

recognition. They craft a fitness function that is based on the transformed divergence among 

classes, which is derived from Mahalanobis distance. The goal is to select a subset of m 

features from the original set of n features (where m<n) for which the error is minimum. 

Starting with 64 features, the algorithm is able to reach to 26 features with less error rate than 

the original feature set. 

Finally, Moser & Murty (2000) investigate the use of Distributed Genetic Algorithms 

in very large-scale feature selection (where the number of features is larger than 500). 

Starting with 768 initial features, a 1-nearset-neighbor classifier is used to successfully 

recognize handwritten digits using 30 SUN workstations. The fitness function used is a 
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polynomial punishment function, which utilizes both classification accuracy as well as the 

number of selected features. The punishment factor is used to guide the search towards 

regions of lower complexity. The experiments were aimed to demonstrate the scalability of 

GFS to very large domains. The researchers were able to reduce the number of features by 

approximately 50% while having comparable classification accuracies to those of the full 

feature set. 

4.4.3 Signature Verification 

Fung, Liu & Lau (1996) use GA to reduce the number of features required to achieve a 

minimum acceptable hit-rate, in a signature verification system. The goal was to search for a 

minimum number of features, which would not degrade the classifier's performance beyond a 

certain minimum limit. They use the same fitness function, which was proposed in (Siedlecki 

& Sklansky, 1989), which is based on a penalty formula and the number of features selected. 

The penalty function apportions punishment values to feature sets that produce error rates, 

which are greater than a pre-defined threshold. Using a 91-feature set to describe 320 

handwritten signatures from 32 different persons, the system was able to achieve an accuracy 

of 93% with only 7 selected features as opposed to a 88.4% accuracy using the whole 91 

feature set. 
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Chapter 5 A Comparative Study between Genetic Feature 

Selection and Weighting 

In chapters 5 and 6, we carry out two sets of studies; the results of these studies are recently 

reported in (Kharma, Hussein & Ward, 2002a; Kharma, Hussein & Ward 2002b). The first 

set (described in this chapter) compares the performance of GA-based feature selection 

(GFS) to GA-based feature weighting (GFW), within the context of character recognition 

systems and under various conditions. The second set of studies will be described in chapter 

6. 

5.1 Introduction 

In chapter 4 we have illustrated the application of genetic feature selection/weighting in 

many application and specifically to the domain of character recognition systems. What is 

clear from that review is that: 

1. Many features can be used for the character recognition systems and there is no easy 

way to distinguish useful features or sets of features from less informative features. 

2. Much research has been done into feature selection, and a large number of algorithms 

have been developed and applied to various problem domains. 

3. Genetic Algorithms have proven to be an effective tool for reducing the feature-

dimensionality of character (or signature) recognition problems, while maintaining a 

high level of accuracy (of recognition). 
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4. GFS has only been used off-line due to the time it takes to run a G A in the wrapper 

approach. 

5. There is no published work that focuses on the more complicated problem of 

automatic feature weighting using GA for character recognition applications. 

6. There is no comparison done to compare the performance of genetic feature selection 

(GFS) and genetic feature weighting (GFW) for the character recognition problem. 

5.2 Purpose 

The main purpose for our work is to apply genetic algorithms for the problem of feature 

weighting for character recognition application. This work is motivated by the fact that there 

is no published work in the literature that has applied genetic feature weighting (GFW) in the 

context of character recognition problems. So it will be applied for the first time. After the 

employment of GFW to character recognition application, we are interested in comparing the 

performance of both GFS and GFW also in the context of character recognition applications. 

We are encouraged to perform such a comparison because it is often mentioned in the 

literature that feature weighting always has the potential of working better than (or at least as 

well as) feature selection, when applied to the same situation (Komosinski & Krawiec, 2000; 

Punch et al. 1993). However, this proposition was never fully and comprehensively assessed 

before. Only a single comparison exited in the literature (Kohavi, Langley & Yun, 1997), 

which compares the classification accuracy of feature selection (FS) and feature weighting 

(FW). However, the search method used in this comparison is not genetic algorithms, and the 

comparison was not employed for character recognition applications. Naturally, we expect 

that for regular datasets (not necessarily having redundant or irrelevant features) genetic 

feature weighting would outperform genetic feature selection in classification rates. This is 
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because features, in general, have a varying degree of relevance (strongly relevant, weakly 

relevant or irrelevant as described in section 5.6.3), and FW assigns weights to features that 

reflect their relative relevance to correct classification. Highly relevant features would be 

assigned high weights relative to the weights of redundant or irrelevant features. On the other 

hand, FS treats the features as either relevant or irrelevant, and does not accommodate for a 

varying degrees of relevance. Therefore, we intend to test the validity of this proposition. In 

addition, since only a single comparison exists in the literature (kohavi et al. 1997) that 

compares FS and FW in terms of classification accuracy only, we need to carry out an 

inclusive comparison between GFS and GFW for character recognition applications. The 

comparison will tackle the following issues: 

1. The effect of varying the number of values that weights can take on the number of 

selected features (comparison 1). 

2. Comparing the performance of both GFS and GFW in the presence of irrelevant 

features (comparison 2). 

3. Comparing the performance of both GFS and GFW in the presence of redundant 

features (comparison 3). 

4. Comparing the performance of both GFS and GFW for regular databases (not 

necessarily having redundant or irrelevant features) (comparison 4). 

Before we describe the comparative study and evaluation as well as their results, we will 

first describe the developed system, the experimental platform used to carry out these studies 

and the methodologies employed. 
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5.3 The Developed System 

We built a pattern recognition experimental bench with the following modules: (a) a pre­

processing module; (b) a feature extraction module (FE); (c) a feature selection and 

weighting module (FSW) which embeds the G A optimization component; and (d) an 

evaluation module, which embeds the classifier component. The system is shown below in 

Figure 4. The purpose of the pre-processing module is to prepare an input pattern for 

effective and efficient extraction of relevant features. After applying the pre-processing 

functions on input images to obtain enhanced and clean images, the feature extraction 

module follows. The feature extraction module applies certain functions that measure a set of 

relevant features for classification (we will describe the pre-processing and feature extraction 

functions used in details in chapter 6 in section 6.6.1). 

The next module, which goes after feature extraction, is the feature selection/weighting 

module (FSW). The FSW module assigns binary or real valued weights to the extracted set of 

features, before presenting them to the classification module. The FSW module is configured 

by the G A optimizer (or simply GA). The purpose of the G A is to find a set of features and 

associated weights that will optimize the (overall) performance of the pattern recognition 

system, as measured by a given fitness function. The final module is the evaluation module. 

The evaluation module is essentially the fitness function. Given that we are using the 

wrapper approach, the fitness function used implements the k-NN classifier. Since we are 

comparing both GFS and GFW in terms of performance and number of features selected, we 

decided to use a fitness function that is solely based on the classification error rate. We did 

not want to impose any selective pressure to find weight sets that have smaller number of 

features. After the termination of the GA, we have the final and best feature subset, which 
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has the lowest error rate. During the G A optimization process (training/testing phase) we 

used training and testing samples. After the G A termination, the validation set is used in 

validation phase to evaluate the quality of the produced solution by running the k-NN 

classifier using the final set of weights obtained form the G A (this will be explained more in 

details in section 5.5). 
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Figure 4: The developed system. 
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5.4 Experimental Platform 

The experimental work described in the following sections is implemented using publicly 

accessible character databases and GA. This makes it possible for researchers to replicate our 

work and attempt to improve upon our results. The experiments were run on a Pentium III 

(500MHz) PC with 128MB of R A M and running Windows 98. 

The Machine Learning Data Repository at the University of California at Irvine (Murphy & 

Aha, 1994) is our source of databases. All the experiments done through this research work 

are performed on real-world databases. Artificially generated databases do not have the level 

of noise nor the variation, which exists in real databases. We used three different handwritten 

digits databases: 

1. "Optical Recognition of Handwritten Digits" database (or DB1), which consists of 64 

features. These features were extracted from 32x32 bitmaps of handwritten digits 

written by 43 people. The 32x32 bitmaps are divided into non-overlapping blocks of 

4x4 and the number of on pixels is counted in each block. This generates an input 

matrix of 8x8 where each element is an integer in the range [0,16]. 

2. "Pen-Based Recognition of Handwritten Digits" (or DB2), which consists of 16 

features. These features are obtained from handwritten digits samples written by 44 

writers on a tablet. The 16 features were extracted from the coordinates information 

after re-sampling the written digits to obtain a constant number of regularly spaced 

points. 

3. "Multiple Features Database" (or DB3), which consists of features of handwritten 

numerals. These digits are represented in terms of six feature sets, which are: Fourier 

coefficients of the character shapes, profile correlations, Karhunen-Love coefficients, 
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zoning features, Zernike moments and morphological features. Of those feature sets, 

we have only used the last two feature sets (Zernike moments and morphological 

features), which contain 47 and 6 features, respectively. 

The Genetic Algorithm used for optimization is the Simple Genetic Algorithm (or SGA) 

described by Goldberg (Goldberg, 1989). The actual software implementation used comes 

from the "Galib" G A library provided by the Massachusetts Institute of Technology 

(Matthew, 1999). In this SGA we used non-overlapping populations, roulette-wheel selection 

with a degree of elitism, as well as two-point crossover. As for the choice of G A parameters, 

it was merely based on trial and error and other suggestions presented in the literature. We 

tried several variations of these parameters and for the problem at hand they had somewhat 

comparable results. So, the GA parameters we used are crossover probability Pc of 0.9. As 

for mutation, we used two styles: flip mutation for GFS, and Gaussian mutation for GFW. 

Gaussian mutation uses a bell-curve around the mutated value to determine the random new 

value. Under this bell-shaped area, values that are closer to the current value are more likely 

to be selected than values that are farther away. The mutation probability Pm was 0.02. The 

number of generations Ng was 50, and the population size Pop was also 50. The fitness 

function was the classification accuracy of our own 1-nearest-neighbour (1-NN) classifier. 

5.5 Methodology 

The comparison between GFS and GFW is done using the following methods: 

• Feature selection and weighting in the wrapper approach and using the k-nearest 

neighbor as the classifier and genetic algorithms as the search method. 

• The value of k for the k-nearest neighbor was fixed to one, because our objective is to 

compare genetic feature selection and weighing not to study the effect of k. 
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• Prior to feature selection or weighting, all feature values are normalized to the range 

of [0,1] to overcome the differences in units between feature values (explained before 

in section 2.7). 

G A is appropriate for feature selection and weighting. G A is suitable for large-scale, 

non-linear problems that involve systems, which are vaguely defined. Further, character 

recognition systems (a) often use a large number of features, (b) exhibit a high degree of 

inter-feature dependency, and (c) are hard, if not impossible, to define analytically. 

In our study, we are obliged to use a wrapper approach to find the best weight set, 

despite their relative computational inefficiency, because the classifier is needed to determine 

the relevancy of features. Also, since the feature selection is done off-line, the execution 

time of the algorithm is not as critical as the optimality of the feature set generated. In 

addition, there have been attempts to speed up the GFS run time (see section 4.2.4) by 

introducing methods of global parallel G A and course-grain parallel GA. However, applying 

these methods is outside the scope of our work. 

In any case, a classifier is necessary, and the k nearest neighbor (K-NN) classifier is 

our first choice because of its excellent asymptotic accuracy, simplicity, speed of training, 

and its wide use by researchers in the area. In fact, Weideman, Manry & Yau (1989) have 

compared the performance of both nearest neighbor classifier and neural networks using 

back-propagation for numeric handwritten character recognition. They state that in terms of 

recognition performance, both nearest neighbor and neural networks have almost similar 

results. So, the choice between them was based on a tradeoff between either memory 

requirements or computational time. We decided to use nearest neighbor for several reasons. 

First nearest neighbor is easy to implement, requires no training as opposed to the neural 
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networks and is computationally faster. In addition, GFS in the wrapper approach is 

computationally expensive. So, using neural networks in conjunction with GFS would make 

it more computationally demanding. Finally, memory is cheap and the nearest neighbor 

additional storage requirements can be easily compensated for. 

It is important to mention that throughout our work we have tested the generated 

feature subset by a validation phase. The validation phase is essential to judge the generality 

of the resultant feature subsets. Despite the fact that validation is vital to evaluate the quality 

of the obtained results, the majority of the results reported by the researchers in the field of 

feature selection ignore the use of validation set (Moser, 1999). So, in the course of the 

experiments, we divided the samples into three sets: training, testing and validation. The 

training and testing samples were used during the optimization process (training/testing 

phase). The validation set, on the other hand, is fully kept aside to be used in the validation 

phase (see Figure 4 in section 5.3). 

In addition to the aforementioned methods, we also used more than one database (see 

section 5.4) and different error estimation methods. The reason is that certain databases and 

error estimation methods were more suitable than others for carrying out particular 

experiments. For example, in comparison 1 (will be described in section 5.6.1), the dataset 

used in this experiment is DB1, which contains a relatively large number of features (64). 

When running preliminary tests on this dataset a lot of features were eliminated, while the 

classification accuracy remained almost the same. Using a database, which has a lot of 

features to be removed, will be useful in studying the effect of varying the number of weights 

on the number of selected features. In addition, for both comparisons 2 and 3 (will be 

described in sections 5.6.3, 5.6.5) we used DB3 with the dataset that contains 6 features. We 
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needed a dataset, which contains small number of features for these two comparisons because 

we are continuously adding irrelevant and redundant features to the original feature set until 

we reached 60 features. So, using a dataset, which initially contains large number of features 

wi l l tremendously increase the run time and the dimensionality of the problem. For 

comparison 4 (wi l l be described in section 5.6.7), we chose both DB2 and DB3 because we 

wanted to compare the performance of both GFW and GFS on datasets that contains little 

redundant/irrelevant features, which is the case for these two datasets. This is unlike the 64 

optical digits dataset, which has large number of features and contains many 

redundant/irrelevant features. 

As for the error estimation methods, it is known that the leave-one-out cross 

validation method has larger computational requirements than the random sub-sampling 

method (see sections 2.8.2.2 and 2.8.2.3). Therefore, for large data sets, leave-one-out is 

computationally expensive and random sub-sampling or k-fold methods are preferred. Hence, 

the main reason to chose the random sub-sampling error estimation method for comparisons 

2 and 3 rather than the leave-one-out (which is used in comparisons 1 and 4) is that both 

comparisons 2 and 3 experiments involve running GA on larger number of features (up to 60 

features) and using relatively large number of training samples (1000), which would require 

extensive computational time. Contrary to comparisons 2 and 3, comparison 1 uses a small 

number of training samples (200), though it has large number of features (64), which makes 

it computationally undemanding. Moreover, experiments on comparison 4 involve small 

number of features, which ease the use of the leave-one-out method. 
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5.6 Comparative Study 

Following are four empirical studies that compare the performance of GA-based feature 

selection (GFS) to GA-based feature weighting (GFW) using the described system in section 

5.3, with respect to (a) the number of eliminated features, and (b) classification accuracy. In 

all the experiments, 1-NN stands for the 1-nearest neighbor classifier (i.e. no GA-based 

optimization), FS stands for G F S , and X F W stands for G F W with an X-number of weight 

values. In the case of G F S , the G A use binary weights in the F S W module (shown previously 

in Figure 4 section 5.3), while for the case of G F W the weights are real valued. 

5.6.1 The Effect of Varying the Number Weight Values on the Number of 

Selected Features (Comparison 1). 

It is known that feature selection, generally, reduces the cost of classification by decreasing 

the number of features used (Dash & L i u , 1997). Genetic feature weighting (GFW) methods 

should, theoretically, have the same potential (because genetic feature selection G F S is a 

special case of G F W ) . However, it has been argued that in reality, G F S eliminates many 

more features than G F W . How many more, though, is unknown. Since the essential 

difference between G F S and G F W is the number of values that weights can take, we decided 

to study the relationship between the number of values that a weight can take and the number 

of eliminated features. We also tested a method for increasing the ability of G F W to 

eliminate features. 

The database used in this experiment is D B 1 , which contains a relatively large 

number of features (64). The error estimation method used for the training phase is the leave-

one-out cross validation technique (explained in section 2.8.2.3). It is applied to the training 
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data itself. The number of training samples is 200. A s explained before in section 5.3, the 

resultant weights are assessed using a validation data set of size 200. This validation set is 

new, in that it is not used during training. 

5.6.2 Results of Comparison 1 

The results of the experiments are presented in Table 1 and Table 2. We wi l l first describe 

the columns in both tables then we wi l l describe the purpose of each table. The following 

description of columns applies to the contents of both tables. The first column presents the 

method of feature selection or weighting. It is (a) 1-NN, which means that a 1-NN classifier 

is applied directly to the full set of features, with no prior selection or weighting; (b) FS , 

which means that feature selection is applied first before any classification is carried out; or 

(c) F W (with different weighting schemes), which means that feature weighting is applied 

prior to 1-NN classification. The second column, increment value, shows the difference 

between any two successive weight levels. The third column presents the total number of 

weight values that a weight can take. A weight can take on any one of a discrete number of 

values in the range [min, max] and using the specified increment value. It is calculated as 

follows: Number of weight values = [(max-min)/increment] +1. Note that the difference 

between any two consecutive values is the 'increment value'. The fourth column is simply 

the inverse of the number of weight values, which is termed: 'probability of zero'. It 

represents the probability of a weight taking the value zero (or POZ) , assuming a uniformly 

random distribution of weight values, and calculated as: P O Z = 1/number of weight values. 

The fifth and sixth columns show classification accuracies for both training and validation 

phases, respectively. The final column presents the number of eliminated features, which we 

call the number of zero features (i.e. the number of features that are assigned a weight value 
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equal to zero). This is easily computed by subtracting the number of selected features from 

the total number of features (64). It is worth noting that values shown in columns 5-7 are the 

average values of five runs having identical parameters but different seed for the G A . 

For Table 1 we have compared FS with F W where the weight values are ranging 

between 0-10 inclusive and the number of weight values that a weight can have varies for in 

each row (shown in Table 1). Our main purpose in this table is to study the effect of changing 

the weight values on the number of features eliminated for both FS and F W . For Table 2, we 

also compared FS with F W , but F W in this case have different weight settings (weights are 

discrete, or weights are in range [0,10] and sometimes weights less than a certain threshold 

value is set to zero, see Table 2). In Table 2, we aim to verify the results obtained in Table 1 

while using different weight settings than those used in Table 1. In addition, we also intend to 

test a method for increasing the ability of G F W to eliminate features without changing the 

number of weight values. This is achieved by setting the weight values below a certain 

threshold to zero. 
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Method of 
Selection/ 
Weighting 

Increment 
Value 

Number 
of 
Weight 
Values 

Probability 
of Zero 

Accuracy 
of 
Training 

Accuracy 
of 
Validation 

Number 
of Zero 
Features 

1-NN - - - 97.5 84.5 -
FS 1 2 Vi 99.4 84.8 27 
F W 0.5 (1/2) 20+1 1/21 99 84 3 
F W 0.25 (1/4) 40+1 1/41 98.9 83.8 1 
F W 0.125 (1/8) 80+1 1/81 99 83.5 0 
F W 0.0625 

(1/16) 
160+1 1/161 98.9 83.9 0 

F W 0.03125 
(1/32) 

320+1 1/321 98.6 83.2 0 

F W 0.015625 
(1/64) 

640+1 1/641 99 83.2 0 

F W 0.0078125 
(1/128) 

1280+1 1/1281 98.9 83.7 0 

F W 0.0039 
(1/256) 

2560+1 1/2561 98.2 83 0 

Table 1: Accuracy of recognition and number of zero features for various selection and 
weighting schemes. 
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Method of 
Selection/ 
Weighting 

Increment 
Value 

No. of 
Weight 
Values 

Prob. of 
Zero 

Acc. of 
Train. 

Accuracy 
of 
Validation 

No. of 
Zero 
Features 

FS 1 2 Vi (0.5) 99.4 84.8 27 
F W : three 
discrete values: 
0, 0.5, and 1. 

0.5 3 1/3 
(0.33) 

97.8 83.3 18 

F W : values 
belong to [0, 
10], with 
weights < 1 
forced to 0. 

0.125 81 8/81 
(0.098) 

98.1 84.2 7 

F W : values 
belong to 
[0,10]. 

1 11 1/11 
(0.09) 

98.5 82.8 5 

F W : six 
discrete values: 
0, 0.2, 0.4, 0.6, 
0.8, and 1. 

0.2 6 1/6 
(0.166) 

98.3 83.3 8 

F W : six 
discrete values: 
0, 0.2, 0.4, 0.6, 
0.8, and 1, with 
weights < 0.8 
forced to 0. 

0.2 6 4/6 
(0.66) 

96.6 81.6 38 

F W : six 
discrete values: 
0, 1, 2, 3, 4, and 
5. 

1 6 1/6 97.9 83.4 9 

F W : six 
discrete values: 
0, 1, 2, 3, 4, and 
5, with weights 
< 4 forced to 0. 

1 6 4/6 
(0.66) 

97.4 81.2 34 

Table 2: Accuracy of recognition and number of zero features for various selection and 
weighting schemes, some with low weights forced to zero. 

The following observations can be made, based on the results in Table 1. 

• Although feature selection succeeded in eliminating roughly 42% of the original set 

of features (27 out of 64), classification accuracy did not suffer as a result. On the 
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contrary, training accuracy increased to 99.4% from the 97.5% realized by the 1-NN 

alone. Also , validation accuracy increased to 84.8% from the 84.5% value achieved 

by the 1-NN classifier (alone). 

• FS far outperforms F W in terms of the number of zero features (i.e. eliminated 

features). Also , training accuracies achieved by both FS and F W were better than 

those achieved by the 1-NN classifier (alone). Using the validation set, the accuracy 

levels achieved by F W range between slightly worse to worse than the accuracy 

levels achieved by the 1-NN classifier. In contrast, the accuracy levels achieved by 

FS are slightly better than those of the 1-NN classifier alone (and hence better than 

those of F W as well). 

• Increasing the number of values a weight can take beyond a certain threshold (81, in 

this case) reduces the number of zero features to ni l . This suggests that the greater the 

number of weight values the less likely it is that any of the features w i l l have zero 

weight, and visa versa. Whether this relationship is (roughly) proportional or not, is 

studied below. 

A careful observation must be pointed out here: G F S / G F W does not eliminate features at 

the expense of classification accuracy. This is due to the following reasons: 

1. The fitness function used is dependent on classification accuracy only. There is no 

selective pressure to find weight sets that have smaller number of features. 

2. Because we are running the G F S / G F W in the wrapper configuration, G A has a 

continuous feedback loop from the classifier, which continuously guides it towards 

higher accuracies. 

The following observations can be made, based on the results in Table 2. 
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The number of zero features is greater in cases where the number of possible values a 

weight can take is countably finite, than weights take values from an infinitely dense 

range of real numbers. 

When we use F W with discrete values (0,1, 2, 3, 4, 5), and forced all weights less 

than four to zero, F W actually outperforms FS in the number of zero features, 

however, the classification rates of F W in this case for both training and validation 

decrease. It is worth noting that the Probability of Zero for this F W configuration is 

0.66, compared to 0.5 for FS . The same observation can be made for F W using values 

(0,0.2,0.4,0.6,0.8,1) with weights less than 0.8 forced to zero. In fact, these two F W 

settings were tried to emphasize the fact that number of zero features is influenced by 

the P O Z . Hence changing the P O Z , even without changing the number of values that 

a weight can take wi l l certainly affect the number of zero features. 

Using F W with weights in the range of [0,10] and with weights less than 1 forced to 

zero increases the ability of G F W to eliminate features without changing the number 

of weight values. Note that there is difference between this method, which forces 

weight values less than a certain threshold to zero, and with using less number of 

weight values from the first place. In general, the weights that have values near to 

zero indicate that they are irrelevant and not contributing to the classification. So, 

applying this method wi l l allow weights, which have values that are quite low or near 

zero (but not zero) to be eliminated, while keeping at the same time, the number of 

weight values that a feature can take unchanged (not decreased). This in turn, w i l l 

allow features to have more weight values to accommodate their varying degrees of 

relevance, which is contrary to decreasing the number of weight values from the first 
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place. However, the classification rates for both training and validation in this case 

are still lower than those obtained by FS . 

• Regardless of the method of selection or weighting, the number of zero features 

appears to be influenced by only the number of values that weights can take. For 

example, using six discrete values, but in two different configurations, (0, 0.2, 0.4, 

0.6, 0.8, and 1) and (0,1,2,3,4, and 5), produces almost similar numbers of zero 

features: 8 and 9, respectively. 

A l l the points above suggest that, generally, the greater the total number of weight values, the 

less likely it w i l l be that any of the features wi l l have zero weights. Whether this apparent 

relationship is strictly proportional or not is investigated further below. Using data from 

Table 1 and Table 2 the relationships between the number of zero features and both the 

number of weight values and the probability of zero weight has been drawn. These 

relationships are depicted in Figure 5 (a and b). 
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Probabiltiy of zero (POZ) 

Figure 5: (a) The relationship between number of weight values and actual number of 
zero (eliminated) features, (b) The number of zero (eliminated) features as a function of 
the probability of zero. 

Figure 5a represents the empirical relationship between the number of weight values 

and the actual number of zero (or eliminated) features. The relationship is close to an 

inversely proportional one. It further appears, from Figure 5b that the relationship between 

the 'probability' of zero features and the actual number of zero features (i.e. eliminated 

features) is roughly linear, though not strictly proportional. These two figures represents 

credible evidence that (a) the number of eliminated features is a function of, mainly, the 

number of values a weight can assume; and hence (b) that the main reason behind the 

superiority of feature selection over feature weighting (in eliminating features) is the smaller 

number of weight values FS uses. 

In conclusion, it is possible to state that feature selection is clearly superior to feature 

weighting in terms of feature reduction and without compromising the classification rates. 
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The main reason for this superiority appears to be the smaller number of weight values that 

feature selection uses (2 weight values), compared to feature weighting (potentially infinite 

weight values). However, it is possible to make feature weighting as effective as feature 

selection in eliminating features (but still feature selection has better classification rates than 

feature weighting) via, for example, the forcing of all weights less than a given threshold to 

ni l . 

5.6.3 Performance of both Genetic Feature Selection and Weighting in the 

Presence of Irrelevant Features (Comparison 2) 

For most classification problems, relevant features are not known in advance. Therefore, 

many more features than necessary could be added to the initial set of candidate features. 

Many of these features can turn out to be either irrelevant or redundant. Kohavi & John 

(1996) define two types of relevant features. They state that features are either strongly 

relevant or weakly relevant, otherwise they are irrelevant. A strongly relevant feature is one 

that cannot be removed without degrading the prediction accuracy of the classifier (in every 

case). A weakly relevant feature is a feature that sometimes enhances accuracy, while an 

irrelevant feature is neither strongly nor weekly relevant. Irrelevant features lower the 

classification accuracy while increasing the dimensionality of the problem. As a result, 

removing irrelevant features by either feature selection or weighting is required. 

Wettschereck et al. (1997) claim that domains that contain either a) equally relevant 

features or b) completely irrelevant features, which are most suited to feature selection, 

feature weighting might outperform feature selection. We intend to investigate this claim by 

comparing the performance of G F S to that of G F W in the presence of irrelevant and (later in 

section 5.6.5) redundant features. It is important to indicate that Wilson & Martinez (1996) 
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compare the performance of genetic feature weighting G F W with the non-weighted 1-NN for 

domains with irrelevant and redundant features. They use G A to find the best possible set of 

weights, which gives the highest possible classification rate. In the presence of irrelevant and 

redundant features, they show that G F W provides significantly higher results than the non-

weighted algorithm. However, they do not compare G F W to G F S for classification tasks with 

irrelevant or redundant features. Therefore, we are presented with a good chance to see how 

far genetic feature selection tolerates irrelevant (and redundant features in section 5.6.5), as 

opposed to genetic feature weighting. 

In this experiment we use the dataset that contains 6 features within D B 3 . We 

gradually add irrelevant features, which are formed by assigning them uniformly distributed 

random values. We observe the classification accuracy for GA-based feature selection, G A -

based feature weighting, as well as a 1-NN classifier (unaided by any kind of FS or F W ) . 

During G A evaluation, we use the random sub-sampling method of error estimation (see 

section 2.8.2.2). The samples are split into three sets, a training set, a testing set, and a 

validation set. The training samples are used to build the 1-nearest neighbor classifier, while 

the testing samples are used during G A optimization. After G A optimization finishes, a 

separate validation set is used to assess the weights (produced by the G A optimization). The 

number of training samples is 1000, the number of testing samples is 500, and the number of 

validation samples is 500. To avoid any bias due to random selection of the validation set, the 

train, test and validation samples are completely different. Also , each validation sample is 

different from the test sample and was never used during the G A run. In addition, this 

random partitioning is stratified, meaning that all the classes (character classes) are equally 

represented (i.e. the number of training/testing/validation samples for each class are equal). 
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The random sub-sampling process is repeated 5 times, and the accuracy results reported 

represent average values of 5 runs. 

5.6.4 Results of Comparison 2 

The results of experimentation are shown in Figure 6 and Figure 7 below. Figure 6 represents 

classification accuracy of validation (of the various selection and weighting schemes) as a 

function of the number of irrelevant features included in the initial set of features. Figure 7 

represents the number of eliminated features as a function of irrelevant features. In the 

figures, F W 3 stands for feature weighting using 3 discrete equidistant weight levels (0,0.5, 

1), F W 5 stands for F W with 5 discrete equidistant weight levels, while FW33 stands for F W 

with 33 discrete equidistant weight levels. 
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Figure 6: Classification accuracy as a function of the number of irrelevant features. 
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Figure 7: Number of eliminated features as a function of the number of irrelevant 
features. 

From Figure 6 and Figure 7 we can conclude the following: 

A s the number of irrelevant features increases, the classification accuracy of the 1-

N N classifier rapidly degrades, while the accuracies attained by FS and F W slowly 

degrade. Therefore, nearest neighbor algorithms need feature selection/weighting in 

order to eliminate/de-emphasize irrelevant features, and hence improve accuracy. 

A s the number of irrelevant features increases, FS outperforms every feature 

weighting configuration (3FW, 5 F W and 33FW), with respect to both classification 

accuracy and elimination of features. However, when the number of irrelevant 

features is only 4, 3 F W returns slightly better accuracies than FS . This changes as 

soon as the number of irrelevant features picks up. 
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• When the number of irrelevant features is 34, the difference in accuracy between FS 

and the best performing F W (3FW) is considerable at 6%. 

• A s the number of weight levels increases, the classification accuracy of F W , in the 

presence of irrelevant features, decreases. 

• A s the number of weight levels increase, the number of eliminated features decreases. 

• When the number of irrelevant features reaches 54, the classification accuracy of FS 

drops to a value comparable to that of other F W configurations. However, the 

number of eliminated features by FS continues to outperform any other F W 

configuration. 

• The gap in the number of features eliminated by FS compared to F W and 1-NN 

increases as the number of irrelevant features increases. 

Why does genetic feature weighting perform worse than genetic feature selection in the 

presence of irrelevant features? Giving the same number of generations for both G F S and 

G F W , it is hard to explore a space of real valued weights in Rd when d is large. R is the 

number of real-valued weights, and d is the number of features. However, for the case of 

feature selection, the search space is 2d in size. For example, with 10 irrelevant features, the 

search space for FS is 2 1 0 (=1024) compared to l l 1 0 (=25937424601) for F W using 11 

weight values. Moreover, a single increase in the number of weight levels from 2 to 3 

increases the size of the search space form 2 1 0 (=1024) to 3 1 0 (=59049). A s witnessed earlier, 

as the number of weight levels increases, the number of eliminated features decreases. 

Therefore, G F S w i l l always eliminate more features than G F W , given. the same 

computational resources and the same number of generations. In addition, in applications 
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with large sets of features (which implies a high degree of irrelevancy/redundancy among 

features), it has been shown that feature selection had better results than JJ34, an on-line 

feature weighting algorithms (Aha & Bankert, 1994). 

We conclude that in the presence of irrelevant features, feature selection and not 

feature weighting is the technique most suited to feature reduction. Furthermore, it is 

necessary to use some method of feature selection before a 1-NN or similar nearest-neighbor 

classifier is applied, because the performance of such classifiers degrades rapidly in the 

presence of irrelevant features. Since it has been shown that GA-based feature selection is 

effective in eliminating irrelevant features (here and in the literature), it seems sensible to try 

a G A (at least) as a method of feature selection before classification is carried out using 

nearest-neighbor classifiers. 

5.6.5 Performance of both Genetic Feature Selection and Weighting in the 

Presence of Redundant Features (Comparison 3) 

In classification tasks, redundant features add nothing new to the target concept (Dash & L i u , 

1997). A redundant feature is a feature, which its value can be extracted from other features 

values, for example i f its value is the average or square or even multiple of other feature 

values (Wilson & Martinez, 1996). L ike irrelevant features, redundant features have the same 

drawbacks of accuracy reduction and dimensionality growth. Although redundant feature add 

nothing new, their presence in classification increase the dimensionality of the problem and 

hence assist in reducing the accuracy (see section 3.1). Therefore, removing redundant 

features by either feature selection or weighting is required. A s mentioned before in section 

5.6.3, no comparison exists between G F W and G F S for classification tasks with redundant 
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features. Therefore, we intend to see how far genetic feature selection tolerates redundant 

features, as opposed to genetic feature weighting. 

In this experiment we used the dataset with 6 features in the database D B 3 . We 

randomly selected one feature from the dataset, and repeatedly added this features several 

times. We observed the accuracy of classification for GA-based FS , GA-based F W , as well 

as the unaided 1-NN classifier. The error estimation method is the same as that used in 

section 5.4.3 (above). 

5.6.6 Results of Comparison 3 

The results of experimentation are shown in Figure 8 and Figure 9. Figure 8 shows the 

empirical relationship between the number of redundant features, present in the initial set of 

features, and the validation classification accuracy of the 1-NN classifier, acting alone, and 

with the help of GA-based feature selection/weighting. Figure 9 presents the relationship 

between the number of redundant features, and the number of features eliminated by FS and 

F W . A 1-NN, on its own does not eliminates any features, of course. 
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Figure 8: Classification accuracy as a function of the number of redundant features. 
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Figure 9: Number of eliminated features as a function of the number of redundant 
features. 

From Figure 8 and Figure 9, the following observations can be drawn: 

• Contrary to the case of irrelevant features, the classification accuracy of the 1-NN 

classifier degrades very gradually, as a function of the number of redundant 

features. 

• In experiments with 4, 14 and 24 redundant features, FS classification accuracies 

are almost identical to those achieved by 3 F W . However, for the same number of 

redundant features, the other feature weighting configurations returned 

classification accuracies that are worse, but only slightly. 
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• FS outperforms all other F W configurations in experiments where the number of 

redundant features is 34 or greater. 

• As the number of weight levels increases, the classification accuracy of the 

feature weighting configurations slightly decreases. 

• Although the difference in classification accuracy between F S and F W is not very 

large, the difference in terms of the number of eliminated features (shown in 

Figure 9) is significant. 

• The difference in performance between FS and F W increases as the number of 

redundant features climbs. Finally, when the number of redundant features 

reaches 54, FS succeeds in eliminating 34 redundant features, 11 more than the 

best performing F W configuration (3FW). 

Why does not the performance of the 1-NN classifier quickly degrade as the number 

of redundant features increases? The reason is that adding copies of an existing feature 

repeatedly to a set of features (to act as redundant features) is like giving that feature an 

added weight equal to the number of copies. For example, i f a certain feature is added 20 

times, this has the same effect as using this feature once, but multiplied by a weight of 20. On 

the other hand, completely irrelevant features add randomness and noise to the feature set, 

which cause higher classification error rates. Though the presence of redundant features in 

the training data might not significantly decrease the accuracy of the classification algorithm, 

it wi l l certainly worsen the problem of dimensionality. Moreover, giving a certain feature 

higher weight simply because it was repeated is considered to be a random procedure 

(Wilson & Martinez, 1996). 
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In conclusion, the classification accuracy of a 1-NN classifier does not suffer greatly 

as a result of having a significant number of redundant features in the (original) feature set. 

However, due to the other problems associated with redundant features increased 

dimensionality (and hence computational cost), and arbitrariness of procedure, as well as 

slightly worse classification accuracies, it is recommended that a GA-based feature selection 

method be used to eliminate as many of the redundant features as possible. It is clear that the 

best-suited feature selection/weighting methods for such a task are FS and 3FW. 

5.6.7 Performance of both Genetic Feature Selection and Weighting with 

Regular Databases (Comparison 4) 

Wettschereck et al. (1997) state that feature weighting (GA-based or not) is more suitable 

than feature selection for domains where features have varying degrees of relevance. 

Naturally, we expect that for regular datasets (not necessarily having redundant or irrelevant 

features) genetic feature weighting would outperform genetic feature selection in 

classification rates. This is because F W assigns weights to features that reflect their relative 

relevance to correct classification. Highly relevant features would be assigned high weights 

relative to the weights of redundant or irrelevant features. So, F W takes into account the 

different degrees of feature relevance (strongly relevant, weakly relevant or irrelevant as 

described in section 5.6.3). In contrast, FS treats the features as either relevant or irrelevant, 

and does not accommodate for a varying degrees of relevance. However, contrary to what we 

assumed, we obtained unexpected but justified results (explained in section 5.6.8). 

On the other hand, Kohavi et al. (1997) show that increasing the number of weights 

above two rarely reduces classification error, for many real world datasets. They show that 

using only two weights (which is equivalent to feature selection) gives better results than 
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increasing the set of weights. It is worth noting that the results reported in (Kohavi et al. 

1997) are for small datasets (with less than 300 training samples), and use a best-first search 

algorithm. In contrast, we intend to compare feature selection to feature weighting using 

regular databases (not necessarily having redundant or irrelevant features), with 1000+ 

training samples, and using G A as a search method. 

Presented here is a study of the classification accuracies achieved by the 1-NN 

classifier and the various GA-based feature selection (GFS) and weighting (GFW) 

configurations. The focus in this study is on assessing the generalization accuracy for both 

G F S and G F W on regular databases (not necessarily having redundant or irrelevant features). 

This requires (a) that real-world databases (not containing human-generated samples) are 

used, and (b) that any results achieved using training sets are checked against separate results 

obtained with new (unseen) validation sample sets. 

5.6.8 Results of Comparison 4 

The resultant accuracies for training and validation sample sets are displayed in Figure 10 

and Figure 11. The database used for Figure 10 and Figure 11 was the 6 feature dataset in 

D B 3 . For Figure 12 and Figure 13, we used D B 2 . The error estimation method is the leave-

one-out cross validation (described in section 2.8.2.3). It was applied to 1000 training 

samples. The best weights obtained from the previous training stage are tested using a 

separate set of 500 validation samples. To avoid bias, we randomly selected different 

training/validation sets for each experimental run. Each experiment is repeated 5 times, and 

the results reported are average values for those. The symbols on the X-axes indicate the 

following: 

• 1-NN: 1-nearest neighbor classifier (no G A ) . 
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• FS: FS using 2 weights (0,1). 

• F W 3 : F W using 3 weights (0,0.5,1). 

• F W 5 : F W using 5 weights (0,0.25,0.5,0.75,1). 

• FW17: F W using 17 weights in [0,1], and an increment value of 0.0625 (1/16). 

• FW33: F W using 33 weights in [0,1], and an increment value of 0.03125 (1/32). 

69.5 i 

1-NN FS 3FW 5FW 17FW 33FW 

Figure 10: Training classification accuracies for the various feature selection and 
weighting methods (using DB3). 

Results show that classification accuracy is worst for the (unaided) 1-NN, but better 

for FS and F W . The trend line highlights the fact that the greater the number of weight levels 

the higher the training accuracy rate achieved. Finally, it appears that classification accuracy 

could not be improved much by increasing the number of weights beyond 17; the difference 

in classification accuracy between 17FW and 33FW is 0.02, which is insignificant. 
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Figure 11: Validation classification accuracies for the various feature selection and 
weighting methods (using DB3). 

Results show that classification accuracy is best for the (unaided) 1-NN and FS , but 

worse for F W . The trend line highlights the fact that the greater the number of weight levels 

the lower the validation accuracy rate achieved. Finally, it appears that classification 

accuracy cannot be further degraded by increasing the number of weights beyond 17; there is 

no difference in classification accuracy between 17FW and 33FW. These results are the 

opposite of those found in Figure 10! This means that F W is returning good accuracy results 

for training data, but then returning bad results for validation data. Also , it is the performance 

of a classifier on validation data that truly reflects its (real-world) predictive capacity. 

To verify these interesting results, we ran the same set of experiments on another 

database (DB2). This is to ensure that the above results are independent of the particular 
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sample database used. The results are shown in Figure 12 and Figure 13. It emerges that the 

results of these experiments indeed confirm the results of Figure 10 and Figure 11. 

Figure 12: Training classification accuracies for the various feature selection and 
weighting methods (using DB2). 
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1-NN FS 3FW 5FW 17FW 33FW 

Figure 13: Validation classification accuracies for the various feature selection and 
weighting methods (using DB2). 

Based on the results of Figure 10, Figure 11, Figure 12and Figure 13 we make the 

following observations. 

• For the validation sets, the classification accuracy of FS was slightly better than all 

the F W settings for both databases. However, it was the same as 1-NN for D B 3 and 

slightly worse for D B 2 . 

• For the training sets all F W settings have better classification accuracy than FS . 

• Increasing the number of weight levels led to a slight decrease in the classification 

accuracy of the validation sets. 

• Increasing the number of weights has led to slight increase in the classification 

accuracy of the training sets. 
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We believe the interesting disparity between training and validation results is due to over-

fitting (which is caused because of the bias-variance tradeoff)- Over-fitting means that the 

learning algorithm adapts so well to a training set but it predictions on new samples are poor 

(the performance on the validation set is bad) (Duda, Hart & Stork, 2000). A classifier can 

be seen as a learning machine or learning algorithm aiming to estimate correct classes for the 

given data samples. A classifier with excellent generalization ability is the one that can make 

good predictions for the samples that are not in the training set. However, a classifier, which 

allows perfect classification for the training samples while having poor predictions for the 

new (unseen) samples, is said to over-fit the training samples. 

Over-fitting is related to the bias vs. variance tradeoff (Geman, Bienenstock & Doursat, 

1992). In general, classification error can be decomposed into two components, bias and 

variance. Bias measure how much the error estimation deviates from the true value, whereas 

the variance measures the variability in classification for different training samples. For a 

data set having a finite number of samples, there's a trade-off between these two. Increasing 

the bias decreases the variance and vice versa (Theodoridis & Koutroumbas, 1998). 

Generally, as the number of parameters of a learning algorithm increases, the classifier wi l l 

have more flexibility to adapt to the details of the specific training set, hence the bias w i l l 

reduce but the variance wi l l increase. Conversely, i f the number of parameters is few, the 

classifier w i l l not fit the training data well (high bias) but this fit w i l l not change much for 

different new samples (low variance) (Duda et al. 2000). 

A s a result, G F W allows for a finer-grain representation of the search space, but at the 

expense of an increased classification error rate. So, allowing many weights (for the case of 
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G F W ) wi l l reduce bias but w i l l also increase variance, and hence increase the probability of 

over-fitting. In contrast, using a small number of weights (which is the case for GFS) wi l l 

increase the bias due to the lack of representation of the space. However, this w i l l also reduce 

variance, which in turn reduces the possibility of over-fitting of data (Kohavi et al. 1997). 

The only way to get a zero bias and zero variance at the same time is to increase the number 

of training samples very large (possibly infinity) and to have a prior knowledge about the 

problem (i.e. the shape of the decision boundary). Unfortunately, the number of samples in 

practice is finite and the prior knowledge about the true model of the problem is not known 

(Duda et al. 2000). Hence, the best to do is to find the best compromise for the number of 

parameters, which optimizes the bias-variance trade off. However, obtaining low variance is 

generally more important, to have accurate classifications, than having low bias (Duda et al. 

2000). This is because low variance means better generalization ability and less chances of 

over-fitting. 

In (Kohavi et al. 1997), it is illustrated that increasing the number of weights above 

two hardly ever decreases classification errors. In their study they show that with 10 weights 

levels, F W fails to outperform FS on 11 real-world databases. They conclude that, "On many 

natural data sets, restricting the set of weights to only two alternatives-which is equivalent to 

feature subset selection-gives the best results". Though we used different search methods and 

larger datasets than those used by Kohavi et al. (1997), we get similar results and 

conclusions. 

In addition, we should take into account that the databases we are using to report our 

results are handwritten character recognition databases. This means that there are many 

variants of digit shape, size, and generally, style. Also , different writers have different 
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writing styles. For the 10 digits, there are nearly an unlimited number of variations. Thus, 

feature weighting over-fits the training data by finding suitable weights, but these weights 

obtained do not generally represent the underlying variations in the handwritten training 

samples due to the large variance among these samples. 

On the other hand, other papers have shown that feature weighting using G A yield a 

slightly better classification accuracy than feature selection for real-world databases. For 

example, Punch et al. (1993) perform tests using binary and real-valued weights (with 

weights in [0,10]). Their database consisted of images of soil samples. Their results show 

that the error rates obtained using real-valued weights are better than those with binary 

weights. Also, Komosinski & Krawiec (2000) provide further evidence that feature 

weighting is somewhat better than selection when applied to a brain-tumor diagnoses system. 

Their results confirm that feature weighting (using weights in [0,9]) leads to somewhat better 

classification accuracy rates than just feature selection. 

However, several points must be raised here. First, results reported in (Komosinski & 

Krawiec, 2000) are those of G A evaluation. No validation tests were done to test the resultant 

weights on separate data sets (i.e. their reported results are based on training only). In fact, 

Kohavi & Sommerfield (1995) have noticed this fact and states that separate holdout sets, 

which were never used during the feature selection/weighting, should be used in the final test 

of performance. Second, results reported in (Punch et al. 1993) were performed on 

validation samples, which were randomly drawn from the training samples. This also has the 

same biased effect on the results. Third, the improvement in classification accuracies 

mentioned in both papers for FW over FS is so little that it does not, in itself, provide final 

evidence that FW gives better results than FS on real datasets. Komosinski & Krawiec (2000) 
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report classification accuracies of 83.43 ± 1.93 and 77.83 ± 2 . 0 3 (for two datasets) for F W , 

vs. accuracies of 80 ± 1.22 and 75.7 ± 1.64 for FS . While Punch et al. reports a classification 

error rates for F W of 0.83% and 2% for training and validation respectively, those of FS were 

1.66 and 3.2% for training and validation. 

In conclusion, despite the fact that feature weighting has the best training classification 

accuracies, feature selection is better in generalization, and hence more suited to real-world 

applications (in which most data is new). This is because F W overfits the training data, 

losing generalizability in the process. Therefore, it is advisable to use 2 (FS) or 3 (3FW) 

weight levels at most, as Kohavi et al. (1997) recommend. 
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Chapter 6 Genetic Feature Selection Evaluation 

In chapters 5 we compared the performance of GA-based feature selection to GA-based 

feature weighting, within the context of character recognition systems and under various 

conditions. In this chapter, we intend to evaluate the performance of the better method 

(which turns out to be genetic feature selection GFS) in term s of optimality and time. 

6.1 Introduction 

In chapter 5 we have compared genetic feature selection and weighting and showed that G F S 

outperforms G F W in many aspects such as dimensionality reduction, presence of irrelevant 

and redundant features and classification accuracy. Therefore, it is important to assess the 

performance of G F S for both optimality and time. For example, how does G F S perform in 

comparison with the exhaustive search? To put it in other way, are the solutions obtained 

from the G F S are optimal (or near optimal) solutions? Also , i f G F S is indeed capable of 

reaching optimal (or near optimal) solutions, what is the number of generations required to 

reach such optimal? Does increasing the number of features necessitate an increase in the 

number of generations to obtain optimal solutions? 

In fact, we intend to tackle all these questions in this chapter. In the following sections 

are two empirical studies that study the effectiveness of GA-based feature selection (GFS) 

with respect to (a) aiming at finding an optimal set of features, and (b) doing so within an 

acceptable time frame, for off-line applications (e.g., pre-release optimization of character 

recognition software). 
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6.2 Convergence of Genetic Feature Selection to an Optimal or Near-

Optimal Set of Features (Evaluation 1) 

It is clear from the previously described literature that several studies exist comparing G A 

with other feature selection search algorithms (see section 4.3), so it not our intention to 

repeat such work. However, there is a need to determine whether or not G F S does indeed 

return optimal or near optimal feature sub-sets. This necessitates an exhaustive search of the 

features space in order to find one or more bona fide optimum feature sub-set. These can then 

be used to assess (with certainty) the optimality of the best GFS-generated feature sub-sets. 

For the experiments in sections 5.5.2 and 5.5.4, we used a single training/testing set 

of size 1000 and 500, respectively. There was no need to have a separate validation set in this 

case, because it is our goal to see whether or not the G F S w i l l reach the optimal values 

reached by the exhaustive search, not to test the generalization ability of G F S , which was 

already proven in previous sections. We run both the exhaustive search and G F S using 

different number of features each time. The numbers of features used in the searches are 8, 

10, 12, 14, 16, and 18. We used D B 3 with the dataset that contains 6 features, and to obtain 

the required number of features (8,10,12,14,16,18) we randomly selected 2,4,6,8, and 10 

features from the 47 dataset and added them to the 6 feature dataset. 

In general, running the exhaustive search would mean to explore the space of 2d 

where d is the number of features. However, when d gets large, the exhaustive search 

becomes computationally prohibitive. For example, having 16 features, this means that we 

have to try 216 =65536 different feature combinations, while having 18 features would 

require 218 =262144. When we run the exhaustive search for FS using 16 features it took 

almost 6 hours, while for 18 features took one and half days. We have only run the 
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exhaustive search for a maximum of 18 features. However, based on these actual run times, 

the estimated time to run the exhaustive search for 20 features w i l l be seven and half days, 

whereas for 47 features the time needed wi l l be 2791 years. 

6.3 Results of Evaluation 1 

The results presented in Table 3 compare the best and average accuracy rates achieved via 

GA-based feature selection (GFS) with the optimal accuracy rate found via an exhaustive 

search of the entire feature space. We run both the exhaustive search and G F S using different 

number of features each time (8,10,12,14,16,18), which are represented in Table 3 as 

different rows. For the G A , we repeated the run for 5 times with different seeds and recorded 

the average and best accuracies achieved during these 5 runs (shown in the third and fourth 

columns in Table 3). For the exhaustive search, we run it once and reported the best accuracy 

obtained (shown in the second column in Table 3). 

Comparing the numbers in the best G A column with the numbers in the best 

exhaustive column exhibits the success of the G A as a feature set optimizer. In every case but 

one (when the number of features is 16), the best accuracy achieved by the G A was identical 

to that found by the exhaustive search of the feature space. Furthermore, the fact that the 

worst average G A value is less than 1% percentage point away from the optimal value (i.e. in 

the row that has 16 features the difference between average G A and optimal value is 0.92) 

means that the G A was consistently able to return optimal or near-optimal values of 

accuracy. Hence, GA-based feature selection consistently converges to an optimal or near-

optimal set of features. 
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Number of Best Best G A Average G A 
Features Exhaustive (classification (for 5 runs) 

(classification rate) 
rate) 

8 74 74 74 
10 75.2 75.2 75.2 
12 77.2 77.2 77.04 
14 79 79 78.56 
16 79.2 79 78.28 
18 79.4 79.4 78.92 

Table 3: Best classification accuracy rates achieved by G A and exhaustive search. 

6.4 Convergence of Genetic Feature Selection to an Optimal or Near-

Optimal Set of Features within an Acceptable Number of Generations 

(Evaluation 2) 

In general, the run time for the G A is proportional to the number of features, number of 

generations and size of the population (Kudo & Sklansky, 2000). Moreover, the time 

complexity of the nearest neighbor classifier is proportional to (t2 x d), where t is the number 

of training samples and d is the number of features used. So a G A that is applied in a wrapper 

configuration (see Figure 2 in section 3.5.1) to a nearest neighbor classifier spends most of its 

time running the nearest neighbor classifier (Br i l l et. al. 1992). Below, we list those factors 

that affect the time complexity of our G F S or G F W : 

• Number of generations 

• Population size 

• Number of features 
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• Number of training samples 

In this evaluation, we wi l l investigate the relationship between the number of features (in 

the original set) and the number of generations required to reach an optimal or near-optimal 

sub-set. We w i l l do that while keeping the two other factors (i.e. population size and number 

of training samples) constant. 

6.5 Results of Evaluation 2 

The results of experimentation are shown in Table 4. The second column of Table 4 shows 

the optimal and near optimal (the second best value after the optimal) classification accuracy 

rates attained using an exhaustive search, whereas the third column displays the duration of 

that search. The fourth column contains the best results achieved by a GA-based search, 

while the last column contains the time it took the G A to attain those values. 

Number Best Exhaustive Best Average Number of G A Run 
of Exhaustive Run Time G A G A (for Generations Time 
Features (optimal 5 runs) (single 

and near- run) 
optimal) 

8 74 73.8 2 minutes 74 73.68 5 2 minutes 
10 75.2 75 13 minutes 75.2 74.96 5 3 minutes 
12 77.2 77 47 minutes 77 76.92 10 5 minutes 
14 79 78.8 3 hours 79 78.2 10 5.5 

minutes 
16 79.2 79 6 hours 79.2 78.48 15 8 minutes 
18 79.4 79.2 1.5 days 79.4 78.92 20 11 

minutes 

Table 4: Number of generations to convergence. 

The following observations can be made: 
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• In every case, the GA-based FS was able to find the optimal or near to optimal values 

found by exhaustive search. However, the G A took much less time to find the same 

optimal or near-optimal values returned by the exhaustive search. With only 8 

features, the run times for both exhaustive and G A searches are identical. However, 

for 18 features, the run time for the exhaustive search was 1.5 days compared to 11 

minutes for the G A . 

• A s the number of features increases, the number of generations required to find the 

optimal or near-optimal values increases as well. 

Figure 14 below displays the relationship between the numbers of generations needed to 

reach optimal or near-optimal values with a G A , and the number of features in the original set. 

The tiny triangles represent actual data from Table 4(above). There are also two curves in Figure 

14. The solid line represents a linear best-fit curve that fits, and extrapolates, the data points. This 

solid line is obtained by regression analysis and using the linear best-fit method. This method 

calculates a straight line that best fits your data. The extrapolated segment of this curve (beyond 

18 features) represents the most optimistic projection of G A run time duration. The dotted curve 

represents an exponential curve that fits, and extrapolates, the same data points. Also using 

regression analysis, the best exponential curve that fits the data is calculated. The extrapolated 

segment of this curve (again, beyond 18 features) represents the most pessimistic projection of 

G A run time duration. The reason for use of extrapolation is the obviously impossible amount of 

time required to run exhaustive searches of large feature spaces using a single-processor 

computer. In any case, one can safely conclude that the time needed for a GA-based search is 

bound, on the lower side by the (optimistic) best-fit curve, and on the upper side, by the 

(pessimistic) exponential curve. 
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Figure 14: Number of generations to convergence as a function of number of features. 

Using exponential extrapolation, the number of generations expected for 60 features is 

10585, while it is only 89 for linear extrapolation. The true value should be something in 

between. If we assume that the true value is midway between 89 and 10585 (which is 5337), 

then running the G A wi l l be computationally expensive. In such cases, using methods of 

parallel G A , such as D V e G A (Moser, 1999), becomes necessary. 

Finally, we conclude that GA-based feature selection is a reliable method of locating 

optimal or near-optimal feature sub-sets. These techniques also save time, relative to 

exhaustive searches. However, their effective use in large feature spaces is dependant upon 

the availability of parallel processors to speed up the G A work. 
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6.6 Verification Experiments 

In this section, some of the experimental work (comparative study and evaluation) described 

in this chapter and in chapter 5 is repeated using our own extracted features instead of the 

publicly accessible character databases. This step is necessary to verify and prove the results 

we obtained earlier. 

6.6.1 Pre-Processing and Feature Extraction 

The image files that we used for the verification of the results are from the U S P S Office of 

Advanced Technology Database of Handwritten Digits, produced by the Center of 

Excellence for Document Analysis and Recognition ( C E D A R ) . Using these handwritten 

images, we have extracted our own features and build a feature set of 40 features. The code 

used for extracting those features is written using Matlab. We first performed some pre­

processing as needed. The aim of pre-processing is an improvement of the image data that 

suppresses unwanted distortions or enhances some image features important for further 

processing. The pre-processing steps that we have done are: 

1- Noise removal: Remove isolated pixels (l 's surrounded by 0's). 

2- Image resizing: Get the bounding box of the image (which is the smallest rectangle 

that can contain the region) and shift the bounding box into the middle of the image 

so that the image size is 128x128. 

3- Thinning (when needed): Remove pixels on the boundaries of objects without 

allowing objects to break apart (i.e. thinning the image to 1 pixel width). Extracting 

some features requires the thinned image rather than the whole image. 

The features used are shown in Table 5 and explained below. 
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Seven H u Moments Fi l led Area Solidity 
Area Convex Area Orientation 
Bounding Box Number of Holes Eccentricity 
Major Ax i s Length Number of End Points Centroid 
Minor Ax i s Length Circularity Eight Extrema Points 

Table 5: The extracted feature set from handwritten digits images. 

1. H u Moments: For a function f(x), we can compute the mean value of the function 

2>/W itfixXx-juf 
using: pi = — .We can also describe the variance by: (7 = — ^ . 

! / ( * ) X / ( * ) 
x=\ x=l 

A third statistical property, called skew, describes how symmetric the function is: 

Skew = — — ^ . A l l of these are examples moments of the function. One 
x=l 

can define moments about some arbitrary point, usually either about zero or about the 

N 

mean. The n-th moment about zero, denoted as mn, is mn = ^xn f(x), where 
x=l 

m 0 i s the total value of the function. The mean jU is the first moment about zero 

m. 
divided by the zero-th moment: JU = — - . The n-th moment about the mean, denoted 

N 

as jUnand called the n-th central moment is jUn = ^(x- jX)n f(x). The zero-th 

central moment jU0 is, again, the total value of the function. The first central moment 

Hx is always 0. The second central moment jU2, when normalized by the total value 
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jU0 is the variance: CJ2 = — - . The third central moment jU3, when normalized is the 
Mo 

skew: s k e w = — . The fourth central momentjU^, when normalized is the kirtosis: 
Mo 

k i r t o s i s = ^ - . If we have an infinite number of central moments, we can completely 
Mo 

describe the shape of the function. A set of seven invariant moments can be derived 

from the second and third moments (Gonzalez & Woods, 1992). This set of moments 

is invariant to translation, rotation, and scale change (Hu moments). 

2. Area: The number of pixels in the shape. 

3. Bounding Box: A l-by-4 vector, which represents the smallest rectangle that can 

contain the region. The format of the vector is [x y width height], where x and y are 

the x- and y-coordinates of the upper-left corner of the rectangle, and width and 

height are the width and height of the rectangle. 

4. Major A x i s Length: The length (in pixels) of the major axis of the ellipse that has the 

same second-moments as the region. 

5'. Minor Ax i s Length: The length (in pixels) of the minor axis of the ellipse that has the 

same second-moments as the region. 

6. Fi l led Area: The number of on pixels in filled image. 

7. Convex Area: The number of pixels in the convex image 

8. Number of Holes: The number of holes in the shape. 

9. Number of End Points: The number of end points in the shape. 
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10. Circularity: Circularity measures the ratio of the perimeter divided by the area 

P 2 

(C= where P is the perimeter and A is the area) (Parker, 1994). 

4/7A 

11. Solidity: The proportion of the pixels in the convex hull that are also in the region. It 

is computed as Area/ConvexArea. 

12. Orientation: The angle (in degrees) between the jc-axis and the major axis of the 

ellipse that has the same second-moments as the region. 

13. Eccentricity: The ratio of the length of the longest chord of the shape to the longest 

chord perpendicular to it. This is one way to define it; another way to define it is as 

follows. The eccentricity of the ellipse that has the same second-moments as the 

region. The eccentricity is the ratio of the distance between the foci of the ellipse and 

its major axis length. The value is between 0 and 1. (0 and 1 are degenerate cases; an 

ellipse whose eccentricity is 0 is actually a circle, while an ellipse whose eccentricity 

is 1 is a line segment). 

14. Centroid: the x and y coordinates of the center of mass of the region. 

15. Extrema: 8-by-2 matrix, which contains the extremal points in the region. Each row 

of the matrix contains the JC and y coordinates of one of the points; the format of the 

vector is [top-left top-right right-top right-bottom bottom-right bottom-left left-

bottom left-top]. Figure 15 shows these extremal points. 

100 



top-left top-right top-left top-
& right 

Left-
top 

Left-
bottom 

right-bottom 

right-top 
Left-
top 

Left-
bottom 

right-
top 

right-
bottom 

bottom-
right bottom-left bottom-right bottom-left 

Figure 15: Exteremal points. 

6.6.2 Verification of Comparison 1 

We have repeated two of the previous experiments done previously using our own database, 

which contains 40 features. The first experiment that was repeated using our own extracted 

features is comparison 1 (see section 5.6.1 in chapter 5), which is studying the effect of 

varying the number of values that weights can take on the number of selected features. The 

error estimation method used is the leave-one-out cross validation applied to the training data 

itself. The number of training samples used is 500 and the resultant weights are assessed on a 

validation set of size 250 that is never used before during training. In addition, we have 

performed random partitioning for the data samples. We randomly selected different 

training/validation samples each time provided that the train and validation samples are 

completely different. Also , the random partitioning is stratified, meaning that all the classes 

(digit classes) are equally represented (i.e. the number of training/validation samples for each 

class are equal). This process was repeated five times and the average accuracy is calculated. 

The average results are shown in Table 6. 
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Method of 
Selection/ 
Weighting 

Increment 
Value 

Number 
of 
Levels 

Probability 
of Zero 

Accuracy 
of 
Training 

Accuracy 
of 
Validation 

Number 
of Zero 
Features 

1-NN - - - 70.48 70.96 -
FS 1 2 Yi 77.68 74.72 21 
3 F W (three 
discrete 
values: 0, 
0.5, 1) 

0.5 3 1/3 (0.33) 78.32 73.6 14 

5 F W (five 
discrete 
values: 0, 
0.25, 0.5, 
0.75, 1) 

0.25 5 1/5 (0.2) 78.44 73.6 9 

33FW 0.03125 
(1/32) 

32+1 1/33 78.16 73.36 0 

Table 6: Recognition accuracy and number of zero features for various selection and 
weighting schemes. 

Though we only intended by repeating this experiment to prove the previously obtained 

results from comparison 1 (see section 5.6.2), the results shown in Table 6 illustrate the 

followings: 

• Comparing the results of the 1-NN to the FS and the F W methods we find that a lot of 

features were eliminated, while the classification accuracy increased. This means that 

there are many irrelevant features and eliminating those features helped in increasing 

the classification rate. 

• A s previously shown in section 5.6.2, we can notice from the table that FS far 

outperforms F W in terms of the number of zero features. A s the number of values a 

weight can take increase, the number of eliminated features decrease. These results 

are consistent with those previously obtained in comparison 1 in section 5.6.2. 
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• FS is better than the other feature weighting settings (3FW, 5 F W and 33FW) in terms 

of the number of eliminated features. Moreover, FS has a somewhat better validation 

classification accuracy than F W . This result is consistent with the results of 

comparisons 2 (described in section 5.6.4), which deals with the usefulness of FS in 

the presence of irrelevant features. 

6.6.3 Verification of Evaluation 1 

The second experiment that we repeated using our own extracted features is evaluation 1, 

which is the study of the convergence of G F S to an optimal or near-optimal set of features. 

L ike we did before in evaluation 1 (in sections 6.2 and 6.3), we run the exhaustive search to 

explore the space of 2d where d is the number of features and recorded the optimal solution 

and near optimal reached by the exhaustive search. Also , we run the G F S five times and 

reported the best and average accuracies obtained. We used a single train/test set of size 

500/250 and the number of features used were 16,18 and 20, for both exhaustive and G A 

searches. 

Running the exhaustive search for the whole 40 feature set would be computationally 

impossible. Therefore, we choose smaller subsets of 20,18 and 16 features out of the whole 

40-feature set, to run the exhaustive search. We have only run the exhaustive search for a 

maximum of 20 features. However, based on the actual run times, the estimated time to run 

the exhaustive search for 22 features w i l l be 150 hours (6.25 days). The results shown in 

Table 7 where the maximum classification accuracy obtained using the exhaustive search is 

recorded. In addition, the best and average values reached by G F S are also shown. 
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Number 
of 
features 

Best 
Exhaustive 
(optimal and 
near-
optimal) 

Exhaustive 
run time 

Best 
G A 

Average 
G A (for 5 
runs) 

No of 
generations 

G A 
run 
time 
(single 
run) 

16 75.2 74.8 2:30 hours 75.2 74.08 15 1 1/2 
minutes 

18 75.2 74.8 10:45 hours 75.2 73.84 15 1 min. 
40 sec. 

20 75.2 74.8 2 days 75.2 74.24 20 2 1/2 
minutes 

Table 7: Classification accuracy rates achieved by G A and exhaustive search. 

Looking at the results in Table 7, we can see the following: 

• The optimal values reached by the exhaustive searches for all the 16, 18 and 20 

features are the same. This confirms our previous observation that some of the 

features are redundant/irrelevant, by which eliminating them did not affect the 

optimal classification rate obtained. 

• It is clear that G F S can reach an optimal or near optimal solutions, which were found 

by the exhaustive search. These results are consistent with the previously obtained 

results from evaluation 1 in section 6.3. 

Finally, it is important to note that the classification accuracies obtained using our 

extracted 40 features are around 70% using 1-NN and around 75% after G F S . Though 

these rates are not high for a typical handwritten digits recognition task, they were 

satisfactory for us, since our main purpose was to prove that G F S could reach the optimal 

solutions reached by the exhaustive search. Enhancing the classification accuracy for our 

104 



extracted features may require the addition of more features and applying more pre­

processing steps such as slant and slope corrections. 
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Chapter 7 Conclusions and Future Research 

7.1 Conclusions 

The objective of the research was to apply genetic algorithms for the problem of feature 

weighting for character recognition application. In addition, we expected that because 

feature weighting is the general case of feature selection, it should perform better than 

feature selection, at least in some situations. So, after the employment of G F W to 

character recognition application, we were interested in comparing the performance of 

both G F S and G F W also in the context of character recognition applications to test the 

validity of this hypothesis. To achieve these objectives we built a pattern recognition 

experimental bench that contains a genetic-based feature selection and weighting 

module. Then we carried out two sets of studies, which in turn produced some 

unexpected but justified results. 

The first set compares the performance of Genetic Algorithm (GA)-based feature 

selection to GA-based feature weighting, under various conditions. The second set of 

studies evaluates the performance of the better method (which turned out to be feature 

selection) in terms of optimal performance and time. The results of these studies show 

the superiority of G F S over G F W in terms of a) the number of eliminated features, as 

well as b) recognition accuracy, in situations where irrelevant or/and redundant features 

are present. Nevertheless, G F S succeeds in finding optimal or near-optimal solutions, in 

all experiments. In addition, results show that G A is an effective method for feature 

selection. However, their scalability to highly dimensional problems, in practice, is still 
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an open problem. The following sections summarize the lessons learnt from this research 

effort. 

7.1.1 Genetic Feature Selection verses Genetic Feature Weighting 

Genetic feature selection is clearly superior to genetic feature weighting in terms of feature 

reduction. The main reason for this superiority appears to be the small number of weight 

values that feature selection uses, which is only 2 (zero and one), compared to the number of 

weight values used by feature weighting (potentially infinite). 

In the presence of irrelevant features, feature selection and not feature weighting is 

the technique most suited to feature reduction. Furthermore, it is necessary to use some 

method of feature selection before a 1-NN or similar nearest-neighbor classifier is applied, 

because the performance of such classifiers degrades rapidly in the presence of irrelevant 

features. Since it has been shown that GA-based feature selection is effective in eliminating 

irrelevant features, it is reasonable to try a G A (at least) as a method of feature selection 

before classification is attempted using nearest-neighbor classifiers. 

The classification accuracy of a 1-NN classifier does not suffer so much as a result of 

having a significant number of redundant features in the (original) feature set. However, due 

to the other problems associated with redundant features, such as increased dimensionality 

(and hence computational cost), and the arbitrariness of procedure, as well as slightly worse 

classification accuracies, it is recommended that a GA-based feature selection method be 

used to eliminate as many of the redundant features as possible. It is clear that the most suited 

feature selection/weighting methods for such a task are FS and 3FW. 

Despite the fact that feature weighting has the best training classification accuracies, 

feature selection is better in generalization (i.e. make better predictions for the samples that 
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are not in the training set than feature weighting), and hence more suited to real-world 

applications (in which most data is new). This is because F W over-fits the training data thus, 

resulting in reduced predictions (than feature selection) for the new samples. Therefore, it is 

advisable to use 2 (FS) or 3 (3FW) weight levels at most, as Kohavi et al. (1997) recommend. 

7.1.2 Performance of Genetic Feature Selection 

Genetic feature selection is a reliable method of locating optimal or near-optimal feature sub­

sets. These techniques also save time, relative to exhaustive searches. The question of how 

well our method wi l l scale-up to highly dimensional feature spaces remains an open problem. 

However, their effective use in large features spaces is dependant the availability of parallel 

processors. 

7.2 Future Research 

We present below a list of research problems, carefully justified, that we believe future 

research in G F S should address. It is our belief that solutions to such problems wi l l help with 

the automation of genetic feature selection/weighting in pattern recognition applications. 

• Research Problem 1. Feature selection, and therefore feature weighting, is NP-complete. 

Hence, although feature selection has shown very promising results, practical 

applications are limited by the dimensionality of the solution search space. Moser [Moser 

and Murty 00] examined the scalability of Distributed Vertical Genetic Algorithms 

( D V e G A ) to very large-scale feature selection applications with more than 500 features. 

His application succeeded in reducing the dimensionality while simultaneously 

maintaining high accuracy. Crucially, Moser's "experiments showed that G A scale well 

to domains of large complexity in feature selection" [Moser and Murty 00]. So a possible 
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future research is to try and use the idea of distributed genetic algorithms (or parallel 

processing in general) in the way we implement our own G F S / G F W optimizer to make 

highly dimensional feature spaces feasible. 

• Research Problem 2. A possible future research is to understand how to generalize 

the lessons gained from the successful application of the G F S optimizer (to a 

particular symbol set) to new and different symbols sets. Examples of symbols sets 

that can be tried are hand-written English characters, mathematical notations and any 

(pre-segmented) black & white or gray-scale 2D line drawing. Indeed, the real power 

of the G F S optimization approach we are proposing wi l l not be fully realized until the 

experimental bench starts working successfully with different symbol sets. 

Furthermore, it should do so without recourse to extensive and lengthy trial and error 

tuning. This w i l l help in building and configuring a character recognition software 

product tailored for a specific symbol set, and with minimal help from pattern 

recognition experts. 

Research Problem 3. We have shown that FS, in general, is superior to F W in terms of 

the number of eliminated features, as well as accuracy of recognition, especially in cases 

where irrelevant/redundant features are present in the original feature set. However, other 

combinations of FS and F W could perform better than FS or F W alone. For example, 

Raymer, Punch, Goodman, Kuhn & Jain (2000) have applied simultaneous feature 

weighting and selection using genetic algorithm via a masking technique. They obtained 

better results on validation samples than with F W alone and state that operating FS and 

F W simultaneously allow the G A to find better interactions between features than just 

operating FS and F W independently (Raymer et al., 2000). Hence, researchers may wish 
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to investigate further that approach by comparing the simultaneous feature weighting and 

selection suggested in (Raymer et al., 2000) and our method of FS and FW that are 

operating independently. In addition, researchers could also apply different weighting 

schemes, such as local weighting, and combine both global and local weightings to 

compare FS and FW. 

Research Problem 4. Referring to section 4.3, there appears to be no record of any 

study, which compares the performance of G A with simulated annealing for the feature 

selection problem. In addition, the only existing work (Zhang & Sun, 2002) that 

compares G A with tabu search for feature selection problem need to be verified using 

true classifier error rate and real datasets (See section 4.3 for details). Therefore, a fruitful 

area for future research is to compare the performance of the three stochastic search 

algorithms (GA, simulated annealing and tabu search) in the context of feature selection 

problem. 
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