
HANDOFF ENHANCEMENT IN MOBILE-IP
ENVIRONMENT

In

W I L L I A M W O O

Eng in Electronic and Communication Engineering, University of Birmingham, UK,

1991

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

T H E REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

DEPARTMENT OF ELECTRICAL ENGINEERING

We accept this thesis as conforming

to t̂he required standard

T H E UNIVERSITY OF BRITISH C O L U M B I A

November 1996

© William Woo, 1996

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of Elttdxtcal &\g^Vig&Wi

The University of British Columbia
Vancouver, Canada

Date T X c 2 , m f a

DE-6 (2/88)

Abstract

Numerous efforts have been made in extending network connectivity to mobile computers

using the Internet as a backbone. The Internet Engineering Task Force (IETF) has compiled a

series of technical discussions into a basic IETF mobile-IP draft proposal. At the time of writing,

the draft is in the process of becoming an Internet standard. In addition to this extension, there is a

compatible route optimization scheme, Internet Mobile Host Protocol (IMHP), which can be

employed to improve routing efficiency of the basic proposal.

In a Wireless and Mobile Data Network (WMDN), handoffs are required whenever a

mobile host crosses cell boundaries. These handoffs introduce momentary disruptions and could

significantly reduce the throughput at the transport layer. In this research, a new Handoff

Enhanced scheme is introduced to further extend IMHP to improve both the routing efficiency

and the transport layer performance during handoffs. This new scheme uses finite size buffers to

store inbound datagrams for mobile hosts during handoffs. As a result, datagram losses are

eliminated. This is found to improve the transport layer performance by a significant extent.

The transport layer performance of the three different schemes were evaluated using the

OPNET simulation package. It is found that the IMHP yields very poor performance at high

handoff rates. With the new enhanced scheme, the transport layer performance improves signifi­

cantly. Besides, the new enhanced scheme employs route optimization and gives better perfor­

mance than the basic IETF scheme.

Table of Contents

Abstract ii

List of Tables v

List of Figures vii

Acknowledgment ix

Chapter 1 Introduction 1

1.1 Overview of Mobility Support over Internet Protocol 1

1.2 Motivation of Handoff Optimization and Scope of this Thesis 4

Chapter 2 Mobility Extension for Internet Protocol 6

2.1 Overview of Mobile-IP Extension over Internet Protocol 9

2.2 Registration Procedure for Mobile Hosts 10

2.3 Datagrams Delivery for Mobile Hosts. 13

2.4 Route Optimization Extension in Mobile-IP 14

Chapter 3 Performance Issues Related to Handoffs 16

3.1 Transport Control in TCP/TP 17

3.1.1 Karn' s Algorithm and Timer B ackoff 19

3.1.2 Response of TCP in congestion 19

3.2 Impact of Handoff in TCP/IP over Mobile-IP 20

3.3 Handoff in Basic Mobile-IP Scheme 21

3.4 Handoff in Route Optimization Scheme 25

Chapter 4 Handoff Enhanced Mobile-IP Scheme 28

4.1 Enhancement of Mobile-IP during Handoffs 28

4.2 Security Considerations 29

iii

4.3 Performance Considerations 31

Chapter 5 Design of Simulation Model 35

5.1 Overview of OPNET Simulator 36

5.1.1 Hierarchy within OPNET Simulator 36

5.2 Design of Simulation Models 40

5.3 . Network Configuration 41

5.4 Host Configuration44

5.4.1 Basic IETF Mobile-IP Scheme 47

5.4.2 IMHP Route Optimized Mobile-IP model 56

5.4.3 Handoff Enhanced Scheme 59

Chapter 6 Discussion of Simulation Results 61

6.1 Review of Simulation parameters 61

6.2 Simulation Results 69

6.3 Effect of the change in vulnerable period ; 71

6.4 Summary of Performance Comparison 77

Chapter 7 Conclusion 81

Glossary 84

R E F E R E N C E S 85

Appendix A. Supplementary Source Code of the IETF Model 88

Appendix B. Supplementary Source Code of the IMHP Model 103

Appendix C. Supplementary Source Code of the Handoff Enhanced Model 124

i v

List of Tables

Table 2.1 Mobile-IP protocol specification 11

Table 2.2 List of mobile registration extensions 11

Table 4.1 Registration authentication extension between Foreign Agents 34

Table 5.1 Mobility binding lists in basic mobile-IP 48

Table 5.2 Home agent binding entries in mobile-IP 48

Table 5.3 Foreign agent binding entries in basic mobile-IP 49

Table 5.4 Mobile host binding in basic mobile-IP 50

Table 5.5 State transition of mobile-ip unit in basic mobile-IP 51

Table 5.6 Responsibilities of home agent in basic mobile-IP 52

Table 5.7 State transition for reg unit of home agent in basic mobile-IP 53

Table 5.8 Responsibilities of foreign agent in basic mobile-IP 53

Table 5.9 State transition of reg unit for foreign agent in basic mobile-IP 54

Table 5.10 Responsibilities of mobile host in basic mobile-IP 54

Table 5.11 State transition of reg unit for mobile host in basic mobile-IP 55

Table 5.12 Responsibilities of cache agent 56

Table 5.13 Additional responsibilities for home agent to implement route optimization 56

Table 5.14 State transition of mobile-IP module in route optimized scheme 58

Table 5.15 State transition of mobile-ip unit for mobile host in handoff enhanced mobile-IP
60

Table 6.1 Parameter set 1 62

Table 6.2 Parameter set 2 71

Table 6.3 Parameter set 3 73

v

Table 6.4 Performance comparison for parameter set 2 77

Table 6.5 Performance comparison for parameter set 3 '. 78

Table 6.6 Normalized TCP end-to-end delay with handoff every 40 sec 79

Table 6.7 Normalized TCP end-to-end delay with handoff every 2 sec 79

vi

List of Figures

Figure 1.1 Mobile-IP allowing hosts to be mobile and reachable simultaneously 2

Figure 2.1 Protocol architecture of the Internet 6

Figure 2.2 Conventional routing in Internet 7

Figure 2.3 Datagram encapsulation at Home Agent 10

Figure 2.4 Mobile registration message format 11

Figure 2.5 Datagram tunneling in mobile-IP ...13

Figure 2.6 Route optimization mechanism 15

Figure 3.1 Typical mobile handoff scenario17

Figure 3.2 Timing diagram during handoff in basic mobile-IP scheme 24

Figure 3.3 Timing diagram during handoff in JJVIHP scheme '. 27

Figure 4.1 Registration messages sent during handoff 29

Figure 4.2 Illustration of the Handoff Enhanced Scheme 30

Figure 4.3 Timing diagram during handoff in the Handoff Enhanced mobile-IP scheme 33

Figure 5.1 Hierarchy in OPNET with Networks, Nodes and Processes 37

Figure 5.2 An example of node layout of an Ethernet workstation 38

Figure 5.3 TCP manager employed within TCP/TP standard model 39

Figure 5.4 TCP connection management sub-process 39

Figure 5.5 Network configuration of the simulation 41

Figure 5.6 Host configuration within subnetworks 42

Figure 5.7 Core gateway model of the Internet model 43

Figure 5.8 Queuing at the Internet core gateway 44

Figure 5.9 Components of conventional host : 45

v i i

Figure 5.10 Components of mobile host or mobile agent 46

Figure 5.11 State diagram for mobile-IP module for basic mobile-IP scheme 50

Figure 5.12 State diagram for mobile registration handling of mobile agent in basic mobile-IP.
<52

Figure 5.13 State diagram of reg module of mobile host in basic mobile-IP 54

Figure 5.14 State diagram of cache agent using route optimization scheme 57

Figure 5.15 State diagram of mobile-IP module in route optimized scheme 57

Figure 5.16 State diagram of mobile-IP module using Enhanced mobile-IP scheme 59

Figure 6.1 Delay connection characteristics of basic mobile-IP scheme (handoffs every 40

sec) .' : 63

Figure 6.2 Delay characteristics of IMHP mobile-IP scheme (handoff every 40 sec) 64

Figure 6.3 Delay characteristics of handoff enhanced mobile-IP scheme (handoff every 40

sec) 65

Figure 6.4 Delay characteristics of basic mobile-IP scheme66

Figure 6.5 Delay characteristics of route optimized mobile-IP scheme , 67

Figure 6.6 Delay characteristics of handoff enhancement scheme 68

Figure 6.7 TCP performance for parameter set 1 '. 70

Figure 6.8 TCP performance for parameter set 2 72

Figure 6.9 TCP performance for parameter set 3 74

Figure 6.10 TCP performance with inserted propagation delay (handoff every 40 sec) 75

Figure 6.11 TCP performance with inserted propagation delay (handoff every 2 sec) 76

viii

Acknowledgment

I would like to take this opportunity to thank Dr. Victor Leung for his continuous support

and suggestions throughout this research. This work was supported by Motorola Wireless Data

Group, Richmond, B.C., Canada and by the Natural Sciences and Engineering Research Council

under Grant OGP0044286. Besides, I would express my appreciation towards my family and

friends for their emotional support.

Chapter 1 Introduction

Computer networks provide a solution to share data and resources between different

terminals within the same network. This is an efficient way to share information and resources. As

more and more of these networks are present, there is a further need of connecting these indepen­

dent networks together into an even bigger network infrastructure. This internetworking of

networks is commonly referred to as the Internet. The Internet started out as a project in the

military service in the United States of America and has been in place for over two decades. New

networks are attached to the Internet at a fast pace. Together, the network provides a vast resource

of information.

With the improvement in digital electronics technology, computers have been reduced in

size. This makes a huge driving force for the market of mobile computing. There is a growing

need for good computing power, mobility and network connectivity. The Internet is a prime

candidate in providing network connectivity, since it is available globally. Current Internet

implementation does not support host mobility and proposals have been made to address this

issue.

1.1 Overview of Mobility Support over Internet Protocol

As there is no central organization governing the Internet, it is almost self-regulatory with

a few regulatory bodies which strive to improve and implement additional capabilities of Internet.

Internet Engineering Task Force (IETF) is an example of one of the boards. The responsibility of

IETF is to investigate new additional features. The addition and modification of protocols will

undergo discussion and be analyzed before they are actually implemented.

1

Chapter 1 Introduction 2

Data units within the Internet layer is a datagram and has a standard format. By having a

standard protocol, the Internet Protocol (IP), computer applications on different platforms can

share information and access computers on other parts of the Internet. Each computer connected

to the Internet has a unique Internet address, which is a four byte integer. Internet addresses on the

same network have the same network prefix which is part of the Internet address. Routing is based

on this prefix. Under current Internet routing scheme, datagrams are routed to the same network if

the network prefixes of the Internet addresses are identical. Therefore, when a host has physically

changed its attachment point in the Internet to a different network, it cannot retain its current

Internet address. This presents a hindrance to mobile network computing where mobile computers

may be attached to different networks at different times. As a result, there are numerous solutions

suggested which have attempted to extend this functionality. A common scenario for mobile

computing requirement is shown in Figure 1.1. The presence of a virtual connection, between A . l

Host A.2

Mobile Host of Network A

(Conventional host (C.1) does not have to be aware that host(A.2) is actually a mobile host)

F i g u r e 1.1 M o b i l e - I P a l l o w i n g hosts to b e m o b i l e a n d r e a c h a b l e s i m u l t a n e o u s l y

Chapter 1 Introduction 3

and A.2, allows the conventional host (C.l) to communicate with mobile host (A.2) via the home

network router (A.l). This transparency enables any conventional hosts to be able to reach the

mobile host irrespective of its current physical location.

IETF has compiled a series of technical discussions regarding mobility support over the

existing Internet, and a draft [1] has been proposed. In this draft, a basic extension of additional

protocols over IP is listed which provides basic mobility support. No assumptions upon the types

of underlying mobile network has been made. This provides a general extension to be adopted for

future mobility support.

Under this mobility extension, datagrams are delivered to the mobile host via its home

network to its current location. The conventional host which is communicating with the mobile

host could be physically very close to the mobile host. Under the basic IETF scheme, the

datagrams are still routed to the home network first and then dispatched for the mobile host. There

is a proposal [2] for optimizing the routing within the mobility extension. This proposal is

compatible with existing IETF scheme. The basic idea of this scheme is to enable the conven­

tional host to send datagrams directly to the mobile host's current residing network. It is not

mandatory for hosts to support this scheme, therefore an extensive operating system upgrade is

not required and is also backward compatible with the basic IETF scheme. If supported, this

scheme is expected to deliver better performance over the basic scheme.

Both of the schemes have not placed any limitations on the degree of mobility supported.

For a wireless mobile host which moves quickly from one network to the other, a handoff

procedure has to be performed before the new foreign network provides network services to this

host. It is shown in [3] that the nomadic behaviour has great impact on the transport layer perfor-

Chapter 1 Introduction 4

mance. This is a heavy performance penalty as most of the Internet applications are built around

the transport layer protocols. Applications such as electronic mail (e-mail), file transfer protocol

(FTP) and world wide web (WWW) all rely on the Transport Control Protocol (TCP) [4] for end-

to-end data transportation. If a high performance penalty has to be paid, all these applications

would be rendered useless over a highly mobile environment.

1.2 Motivation of Handoff Optimization and Scope of this Thesis

The basic IETF scheme has provided a basic requirement for supporting mobility. The

proposal in [2] addresses its shortcomings regarding routing efficiency. However, under both

schemes, there is no provision regarding the impact on transport layer efficiency due to a highly

nomadic host behaviour. During the handoff phase of mobile connection, datagrams are bound to

be routed incorrectly under these current proposals. For the mobility extension to be worthwhile

implementing, it is necessary to improve on these proposals. It is of great interest to improve

performance in a handoff intensive environment. It is the main emphasis of this research to design

a new scheme to address both the routing and the handoff issues, thus giving better end-to-end

performance at the transport layer.

This thesis gives performance analysis of the listed schemes and specifically monitors the

performance during handoff periods. In the research, a new scheme is devised in order to enhance

the performance during handoff. The end-to-end performance of each of the schemes is

compared. Chapter two gives an overview of the basic IETF mobile-IP scheme and the route

optimization extension. Chapter three lists the performance issues related in particular to handoff

situation. Chapter four describes the new proposed handoff enhanced scheme. Chapter five

outlines the simulation tool (OPNET), and the models for evaluating the protocols in [1], [2] and

Chapter 1 Introduction 5

the new handoff enhanced scheme. Chapter six shows the results of various simulations and

discussions of the results. Chapter seven summarizes the analysis and concludes the findings in

the thesis.

Chapter 2 Mobility Extension for Internet Protocol

The Internet provides a global network that is accessible by any computers within any

network connected to it. Unlike the OSI [5] seven layer model for computer network architecture,

the Internet architecture is based on a relatively simple protocol stack, with a four-layer protocol

suite, commonly referred to as the TCP/IP, as shown in Figure 2.1.

Application FTP, Telnet, Rlogin

Transport TCP, UDP

Internet IP

Network Ethernet, FDDI, etc.

F i g u r e 2.1 P r o t o c o l a rch i tec ture o f the Internet ,

The network layer handles all network oriented and physical layer issues particular to

individual networks. The Internet layer is responsible for the delivery and routing of standard data

units (Internet datagrams) between networks. Datagrams destined for a different network are

relayed by one or more routers until they have reached their destination. Internet datagrams have a

common header structure and are understood by routers throughout the Internet. The protocol for

this layer is known as the Internet Protocol (IP). Conventional IP routers analyze the header

portion of incoming datagrams to make routing decisions, as shown in Figure 2.2. Suppose an

application within host A has established a connection with another application at host B. The

datagrams are relayed by two routers, router X and Y. Whenever a datagram arrives at a router and

is pending for delivery, the router will read the destination address within the header portion.

From the destination address, the router can determine to which network to send the datagram. If,

6

Chapter 2 Mobility Extension for Internet Protocol 7

however, host B has physically moved to another location within the Internet, existing routers

cannot route datagrams to host B at its new location, since its IP address is still the same. Under

the current Internet routing scheme, an IP address specifies a unique location within the Internet.

Conventional IP routing through routers X and Y

H o s t A H o s t B

A p p l i c a t i o n

T r a n s p o r t

Internet

N e t w o r k

R o u t e r X R o u t e r Y

A Internet i i nucnici i

I N e t w o r k T I N e t w o r k T

Internet

A p p l i c a t i o n

T r a n s p o r t

t

Internet

N e t w o r k

F i g u r e 2.2 C o n v e n t i o n a l r o u t i n g in Internet

Proposals have been made to support host mobility. One of the requirements is to

implement this host mobility using existing Internet routing mechanism.

Under current Internet implementation, there are two ways to deliver datagrams to a

mobile host; loose source routing (LSR) [6] and [7] in IP and encapsulation [1], [8]-[ll]. The idea

of LSR is to record the path of the datagram and tag the path information at the end of the

datagram itself. With this option, both parties, which are involved in the communication, know

the exact location of each other. On the other hand, the idea of encapsulation is to carry a

datagram within another datagram. The original datagram is carried piggyback by an outer

datagram.

It has been found [12] that some IP implementations, such as 4.3 BSD and SUN OS 4.1,

do not process the LSR option correctly. This leads to encapsulation being a more feasible

Chapter 2 Mobility Extension for Internet Protocol " 8

solution for implementing host mobility within today's Internet without large scale operating

system software changes.

The IETF has come up with a proposal [1] for mobility extension to the current Internet

Protocol. Within this new proposal, there are three new entities defined which do not exist within

current Internet Protocol. They are mobile host, home agent, foreign agent and various types of

mobility bindings.

As opposed to a conventional host, a mobile host (MH) can have different points of attach­

ment within the Internet at different times. Any host, regardless of the degree of mobility, which

has that capability is classified as a mobile host. Therefore, a mobile host may be using an

Ethernet interface at a foreign network or using a radio transceiver in a cellular radio network.

A home agent (HA) is a router at the home network of a mobile host. It is responsible for

routing datagrams, destined for the particular mobile host, to its current location.

A foreign agent (FA) is an entity which is responsible for decapsulating tunnelled

datagrams and providing routing services for mobile hosts. It also provides a care-of addresses for

MHs so that the HAs know where to forward the datagrams for these MHs. However a M H can

choose to obtain its care-of address by other means, thus acts as its own FA.

Mobility bindings is a cache entry for routing lookup. HAs, FAs and MHs are required to

maintain its own list of bindings.

A l l of the above entities are new to the existing Internet Protocol. However, all the

datagram traffic for these new entities make use of existing Internet routing mechanism. As a

Chapter 2 Mobility Extension for Internet Protocol 9

result, all existing Internet routers can be used without modifications.

2.1 Overview of Mobile-IP Extension over Internet Protocol

MHs have fixed IP addresses and the same network masks as their home networks.

Datagrams for these hosts are routed to a router within their home network [13]. The next step is

to encapsulate those datagrams at their home networks and forward them to the foreign networks

at which the mobile hosts are currently attached. This re-routing is accomplished by establishing

mobility bindings at both the home and foreign networks. Incoming datagrams for a M H is first

routed to its home network. A HA at the home network checks its cache list mobility bindings to

see if the host in question has moved to another network or not. If so, it encapsulates the

datagrams and sends them to their corresponding care-of addresses. This is illustrated in Figure

2.3. Besides, H A is required to handle all registration requests and keep mobility bindings for

nodes that have moved to another networks.

Before a HA can forward datagrams to a mobile host at its current location, it has to know

the care-of address for that mobile host. Each mobile host must obtain an appropriate care-of

address reflecting its current location. Typically, foreign agents (FA) broadcast agent advertise­

ments indicating the care-of addresses available for use. M H can then send registration request

using one of those advertised addresses. Besides, a mobile host may obtain a care-of address by

some other means such as Dynamic Host Configuration Protocol (DHCP) [14]. If the M H has its

own care-of address, it may then function as its own foreign agent. The role of the host at the care-

of address will be to decapsulate the tunnelled datagrams from the home agent and deliver them to

their intended destination. Typically, a FA will have a cache list of bindings indicating the visiting

mobile hosts' IP addresses and link-layer addresses.

Chapter 2 Mobility Extension for Internet Protocol 10

Original IP datagram encapsulated within a new header

SRC: HA
DEST: FA Original IP datagram

(Outer IP header}̂

SRC: source IP address

DEST: destination IP address
SRC: C H
DEST: M H Original IP payload

(Original IP header)

F i g u r e 2.3 D a t a g r a m e n c a p s u l a t i o n at H o m e A g e n t

2.2 Registration Procedure for Mobile Hosts

Whenever a M H moves to a foreign network, or it is hopping from one foreign network to

another, it has to send a registration request to the HA at its home network. This is mandatory as

this is a request for a change in mobility binding and datagram routing. The H A has to authenti­

cate the request to make sure that it is not a request from a malicious host. For each of those

foreign networks, there is at least one FA beaconing the type of service available from that partic­

ular network. A beacon message is sent as an Internet Control Message Protocol (ICMP) [15]

message with appropriate extensions. Upon reception of these beacon messages, the M H is able to

decide whether it is possible to acquire network service from this FA. In the basic mobile-IP

protocol proposal [1], the mobile registration requests are sent to well-known port 434 of User.

Datagram Protocol (UDP) [16]. Therefore, HAs and FAs have to listen to the UDP port 434 to

retrieve any mobile registration requests. These registration messages are transported within

standard UDP datagrams in the data portion. A standard mobile-IP registration message is shown

in Figure 2.4. The mobile registration messages specification is listed in Table 2.1. In addition,

there are extensions which can be tagged to registration messages in order to provide additional

Chapter 2 Mobility Extension for Internet Protocol Jl

UDP UDP
UDP UDP SRC PORT DEST PORT UDP UDP UDP

(434) L E N G T H C H E C K S U M DATA

(UDP Datagram)

Type Data (type specific) Extensions .

Figure 2.4 Mobile registration message format

information (e.g. mobi le - home authentication). In each m o b i l e registration message, there is a

type field which specifies the type of message it represents. T h i s enables the mobile-IP software to

know how to interpret the message received and be able to take appropriate actions.

Table 2.1 Mobile-IP protocol specification

M o b i l e R e g i s t r a t i o n M e s s a g e s S o u r c e D e s t i n a t i o n T y p e

Registration Request Mobile Host Home Agent 1
Registration Reply Home Agent Mobile Host 3

For security reasons, it is very important to verify the authenticity of the request. This will

prevent some malicious hosts from re-routing the datagram path for a particular host by sending

counterfeit registration request. Therefore, each registration request must be accompanied by a

mobile-home authentication extension. A list of extensions is shown in Table 2:2. An authentica-

Table 2.2 List of mobile registration extensions

M o b i l e R e g i s t r a t i o n E x t e n s i o n s T y p e

Mobile-Home Authentication 32

Mobile-Foreign Authentication 33

Foreign-Home Authentication 34

Chapter 2 Mobility Extension for Internet Protocol 12

tion extension is a secret known only between the two parties involved. From the authentication

extension, the two parties can deduce the encryption algorithm and the key. The default authenti­

cation algorithm makes use of MD5 [17] with key sizes of 128 bits or more. To avoid replay

attack, timestamps are mandatory with an option of nonce-based replay protection. This requires

a good random number generator. Eastlake et al [18] provides more information on pseudo­

random number generators which is a core requirement in implementing security keys.

To acquire mobile network service from a foreign network, a M H will need to send a

mobile registration request via a FA. After the FA has received this registration message, it

determines the type of service requested. If the request is permitted, the FA will relay this registra­

tion message to the H A specified in one of the fields within the request. After the request has

reached the specified HA, the HA either grants or denies the request. In either case, the H A will

send a registration reply to the FA which has relayed the request. If the request is approved, the

HA sets up or updates the mobility binding for this M H . Note that each M H can register with

more than one FA, depending whether the H A permits this. Hence, each M H can have more than

one mobility binding at its H A . Each of the mobility bindings has a specific lifetime. It is the

responsibility of the M H to send another mobile registration before the existing binding expires.

Once the registration reply has reached the FA, it sets up or updates its cache binding list

of visitors accordingly. The reply is finally delivered to the M H which has originated the request.

N o n c e is a pa tent a s s i g n e d to I B M . Pa ten t #5 ,148 ,479

Chapter 2 Mobility Extension for Internet Protocol

2.3 Datagrams Delivery for Mobile Hosts.

13

Figure 2.5 Datagram tunneling in mobile-IP

. As soon as a registration for a M H is approved by its HA, datagrams from a corresponding

host (CH) for this M H will be captured by the H A , encapsulated and forwarded to the FA by

means of tunnelling. Datagrams for the M H arrives at the H A from the C H via Path A in Figure

2.5. An outer header is tagged to each of the original datagrams. This newly formed datagram will

have the IP address of HA in the source field, while the destination will take the IP address of the

FA or the care-of address of the M H . This datagram is then delivered to the FA through Path B. As

the datagram arrives at the FA, it is decapsulated and the visitor binding list is consulted. If there

is a valid visitor binding, the FA then sends this datagram viathe corresponding mobile channel to

the M H . On the other hand, datagrams originated from the M H are forwarded via the FA directly

to the destination C H using Path C.

Datagrams from C H to M H clearly follows a suboptimal route. The routing paths A, B and

C form a routing triangle and is commonly referred to as "triangular routing". The inefficiency of

triangular routing is much more apparent whenever a M H is located at a network which is closer

to its C H than to its own home network. There are different proposals which attempt to address

this issue.

Chapter 2 Mobility Extension for Internet Protocol 14

2.4 Route Optimization Extension in Mobile-IP

A route optimization method, incorporated in a superset of mobile-IP called the Internet

Mobile Host Protocol (IMHP) [2], has been proposed. Route optimization is a backward compati­

ble extension to the mobile-IP and requires a new type of entity, the cache agent (CA). The role of

a CA is to keep a cache list of mobility bindings of hosts to which it has sent or routed datagrams

to. Subsequently, the C A may tunnel datagrams directly to the care-of addresses of the MHs. As

the name implies, the cache bindings that are stored at the CAs have limited lifetime. This is to

avoid sending datagrams to an incorrect location, e.g. after a M H has moved to another foreign

network. Generally, better performance can be achieved if a C H and its CA are co-located, to

enable the delivery of datagrams to follow an optimal route right at the beginning.

The idea of route optimization is illustrated in Figure 2.6 where a CA is assumed to be co-

located with C H . Originally the first datagram from the C H for M H reaches H A as indicated by

the path (1). By this time, the HA realizes that the C H does not have up-to-date location informa­

tion of M H . The HA tunnels datagrams to the M H as indicated in (2) and (3). In addition, the HA

will also send a binding warning message to,the CH, indicating that the C H does not have up-to-

date location information. This is shown in message (4). If the C H supports this route optimiza­

tion protocol, it can choose to be a cache agent (CA) for the M H . If the C H has the resources to

function as a CA, it may send a binding update request to the HA, as in message (5). In response

to that request, the HA sends location information of the M H , message (6), to the CA. The CA can

update its cache location binding for the M H and subsequent datagram traffic travels directly to its

care-of address, as in message (7). This will eliminate the routing inefficiency of sending via the

HA.

Chapter 2 Mobility Extension for Internet Protocol 15

2) d a t a g r a m t u n n e l l e d to F A

3) d a t a g r a m d e c a p s u l a t e d a n d d e l i v e r e d to M H 6) H A s e n d s b i n d i n g u p d a t e m e s s a g e to C H

4) H A s e n d s b i n d i n g w a r n i n g m e s s a g e to C H 7) S u b s e q u e n t d a t a g r a m s f o r M H sent to F A

d i r e c t l y
5) C H s e n d s b i n d i n g reques t m e s s a g e to H A

F i g u r e 2 .6 R o u t e o p t i m i z a t i o n m e c h a n i s m

If there is no C A along the path between C H and HA, the binding warning message would

simply be discarded when it has reached the C H . If more datagrams are arriving at the HA from

the C H for the M H , the HA would be able to deduce that the C H does not or chooses not to

support route optimization. The HA should then choose to send binding warning messages to the

C H at a lower rate or simply not to send them during subsequent datagram arrivals. This would

avoid unnecessary traffic within the network.

After the M H has moved to another FA and has received registration approval from its

own H A , the M H sends deregistration notification to its previous FA together with the current

mobility binding. With this information, the previous FA can update the binding for this M H . The

lifetime of this new binding is set at a value with the lifetime remaining in the original binding.

Chapter 3 Performance Issues Related to Handoffs

The basic IETF mobile-IP proposal places no restriction on the type of physical media that

enables host mobility. Due to the much higher level of mobility supported by wireless and mobile

data networks (WMDNs), these networks are prime candidates for application of mobile-IP and it

is crucial that mobile-IP offers good performance in these network environments.

To allow a high user density in a W M D N , some frequency reuse scheme has to be incorpo­

rated, in a similar manner as the cellular telephone network. Each radio cell has a base station

(BS) which provides connectivity between the W M D N and some wireline backbone. When a M H

crosses over a cell boundary, a handoff operation is needed to transfer the MH's radio link from

the old BS to the new BS.

While handoffs are transparent to the IP and mobile-IP layers in centralized WMDNs

which employ dedicated backbone facilities and internetwork with the Internet via a single router,

in this research we are concerned with a distributed W M D N environment where each cell or a

cluster of cells constitutes a mobile subnet interconnecting directly to the Internet via a mobile-IP

supporting router providing FA function to MHs roaming in its coverage area.

This scenario is applicable, e.g. in a campus-wide wireless local area network with attach­

ment points at different departmental LANs, and may well provide a low cost solution to future

wide area WMDNs as it eliminates the needs for dedicated backbones. In this scenario, mobile-IP

is called upon to support handoffs, by creating new mobility bindings with the new FAs and

terminating existing mobility bindings with the old FAs. A typical handoff scenario is shown in

Figure 3.1.

16

Chapter 3 Performance Issues Related to Handoffs 17

F i g u r e 3.1 T y p i c a l m o b i l e h a n d o f f s c e n a r i o

3.1 Transport Control in TCP/IP

The design philosophy of TCP/IP has taken the approach that the Internet layer consists of

an unreliable network. This allows a variety of different types of networks to be connected

together. The responsibility of reliable connection is taken up by the transport layer. Transmission

reliability is dependent on the transport layer protocol. TCP [4], one of the most important

protocol in the transport layer of TCP/IP, is a reliable, connection-oriented protocol, which means

the end-to-end connection is monitored for error recovery and to preserve data sequencing.

Data stream in TCP is composed of a sequence of bytes. Each of these sequence of data is

called a segment. TCP expects an acknowledgment for each segment sent. There is a retransmis­

sion timer for monitoring the acknowledgment time. If the retransmission timer expires before an

acknowledgment is received, TCP will assume the segment is lost and will retransmit the lost

segment. Round Trip Time is the time taken between a segment sent and the corresponding

acknowledgment received. To account for a variation in delay within the Internet, TCP uses an

adaptive retransmission algorithm. In essence, TCP monitors the round trip time required for the

acknowledgment to come through. Based on that information, TCP will set the value of the timer

Chapter 3 Performance Issues Related to Handoffs 18

for initiating the retransmission. Whenever it has received a new round trip time, TCP adjusts the

retransmission timer value. TCP keeps an estimate of round trip time, RTT, and average RTT

deviation, 8, as weighted averages and uses new round trip samples RTT to adjust RTT and 8

accordingly. To compute the new weighted averages, TCP uses a RTT gain factor, a , and a RTT

deviation gain factor, X, where 0 < a, X < 1, to weigh the old averages against the new ones

based on the following algorithm:

Err = RTT -RTT

(1 - a) • RTT + a • RTT'-> RTT

S + \(\Err\-S)->b

New retransmission timeout = RTT + (3 • 8

Choosing a value of a close to 0 makes the weighted average adapt very slowly to the recent

changes. If, however, a is chosen to be close to 1, the weighted average will be very sensitive to

recent changes and disregards the long-term average RTT. Likewise, choosing a value of X close

to 0 tends to disregard recent RTT deviation. RTT deviation constant, [3, is a scalar which

specifies how long TCP layer will wait for the acknowledgment. If (3 is set to 1, TCP is overly

eager to send retransmissions, which wastes network bandwidth. On the other hand, if (3 is set to

too large a value, TCP will be waiting for too long before it realizes the packet is in fact lost.

Again, the TCP throughput will suffer. It is therefore important to choose a value of (3 which is

adequate but not excessive. The original specification recommends setting (3 to 2.

Chapter 3 Performance Issues Related to Handoffs 19

3.1.1 Karn's Algorithm and Timer Backoff

Consider the case where TCP has just sent a packet, and the acknowledgment has not been

received before the retransmission timer expires. TCP will retransmit the packet, thinking the

original packet has been lost. If the acknowledgment comes in soon after TCP has retransmitted

the last packet, the new round trip time sample will be far too short and it is also ambiguous. To

avoid this, TCP simply ignores the new RTT. This is known as Karn's algorithm [19]. The idea is

to avoid this ambiguity altogether by only taking those round trip time samples from segments

which have been transmitted only once. This would avoid the possibility of shortening the

estimated round trip time erroneously. This is important as the estimate round trip time is used for

determining the value for retransmission timer for the next transmission.

Besides not updating the round trip time estimate, Karn's algorithm requires TCP layer to

implement a timer backoff strategy. An initial timeout value will be computed as before. If the

transmission has not been successful, the timeout value will be increased by a multiplicative

factor until an upper bound has been reached. Having an upper bound will keep the timeout value

from being infinitely long. This timer backoff will increase the timeout value exponentially if the

delay has been exceedingly long. This stabilizes the TCP and adapts the retransmission timeout

value to a suitable value.

3.1.2 Response of TCP in congestion

TCP layer does not have a priori knowledge regarding the amount of delay that each data

segment will undergo. Only after receiving the acknowledgment can it determine the exact round

trip delay. During congestion in Internet, the segments will suffer from severe delays causing the

retransmission timer to timeout. To the TCP layer, this timeout will trigger another retransmission

Chapter 3 Performance Issues Related to Handoffs 20

which will certainly choke the already congested network. This will cause a congestion collapse.

To avoid that, TCP reduces the amount of traffic through the network. Different versions of TCP,

together with several proposals, have methods to accomplish this: slow start and multiplicative

decrease.

Multiplicative Decrease Congestion Avoidance is the reduction of the congestion window

by half. This process is repeatedly done until the window size reaches one. For those segments in

the reduced window size, the retransmission timer will be increased exponentially.

Slow-Start Recovery specifies that at the start of transmission on a new connection or

increasing traffic volume after congestion, the congestion window should be set to one segment. If

acknowledgment has arrived before timeout, the window will be increased one at a time. It also

limits a linear growth of the congestion window, while Multiplicative Decrease Congestion

Avoidance sets exponential decrease in traffic sent. These will help to alleviate the congestion

problem.

There are efforts made [20]-[27] in establishing congestion control over TCP. Each of

these methods introduce adaptive scheme for adjusting the retransmission timeout at the TCP

layer. These methods stabilize the congested network by throttling the TCP throughput.

3.2 Impact of Handoff in TCP/IP over Mobile-IP

The Internet Protocol layer is known as a best-effort delivery system. No guarantee is

made upon the success of datagram delivery. Datagram losses is handled by the TCP layer which

requests for retransmissions of lost datagrams. If retransmission is needed, there is a backoff

algorithm in TCP to avoid choking the congested network with too many datagrams. Before the

Chapter 3 Performance Issues Related to Handoffs 21

introduction of wireless networking and host mobility, TCP only deals with datagram losses

primarily due to congestion.

When a M H crosses cell boundaries within a W M D N , it has to perform a handoff

procedure and send a new registration request to its H A before it can continue to receive network

services from its HA. Momentary disruptions of communications are therefore inevitable during

handoffs, under the basic IETF mobile-IP scheme. This has a detrimental effect to the perfor­

mance of the transport layer employing TCP, since the datagram losses are interpreted as network

congestion. During handoffs, datagrams cannot be tunneled to the new FA until the new binding is

authenticated at the H A . The authentication can take a long time if the MH's home and visited

networks are separated by a large transmission delay. In the case of IMHP, the delay may be

worsened, since it is necessary to update the CAs with the new care-of address.

As the retransmission is handled by the TCP layer, substantial datagram losses during

handoffs would trigger the slow start procedure previously described. This could result in signifi­

cant reduction in TCP throughput which takes a long time to recover. For a roaming M H , the rate

of handoff could significantly affect the system performance experienced by the user.

Caceres et al [28] has proposed a method for improving TCP performance during handoff.

However, it requires modifications within the TCP implementation, which means that a vast

majority of the Internet hosts today will not be able to make use of this improvement.

3.3 Handoff in Basic Mobile-IP Scheme

Each handoff gives rise to a vulnerable period in which datagrams in transit to the M H are

potentially lost. This is illustrated by the timing diagram in Figure 3.2, representing the typical

Chapter 3 Performance Issues Related to Handoffs 22

handoff scenario in Figure 3.1.

Message A is a datagram sent by the C H to the M H . The routing of the Internet will

deliver the datagram to the home network of the M H . At the home network, the datagram will be

routed to the MH's home agent, HA. As shown in Figure 3.2, the datagram will be tunnelled to

foreign agent, FAj , which is currently registered with H A . FAj will decapsulate the tunnelled

datagram and forward it to the M H . Message B is the datagram sent by the M H back to the CH.

Since F A i is the MH's foreign agent, outbound datagrams from the M H will be first sent to F A i

and then routed to the C H with existing Internet routing. In this case, no tunnelling or encapsula­

tion is required. It is shown that message A has been routed in a suboptimal path, whereas

message B has followed an optimal path. This, is commonly referred to as "triangular routing" and

is shown in Figure 2.5.

The M H has then moved to F A 2 and registration request has been sent. Before the registra­

tion has been approved, message C arrives at F A i . F A i still thinks the M H is within its mobile

region. FAj attempts to deliver the message to the M H via its mobile channel. Message C cannot

reach the M H . During time period, DHF1, in Figure 3.2, the messages that arrive at the H A are

routed incorrectly to FAj and are lost. Besides, during time period, DF2H-> messages arriving at

H A cannot be delivered to the F A 2 yet, since H A has not received a registration request yet.

Therefore, during every handoff, there is a period in which datagram delivery is susceptible to

losses. After handoff registration has been completed, datagram delivery for M H can resume.

Subsequent messages for the M H will be routed via F A 2 to the M H .

It is shown that there is a period in which datagrams for the M H are prone to losses. The

Chapter 3 Performance Issues Related to Handoffs 23

length of this vulnerable period is directly related to the packet delays between both the old and

new FAs and the HA of the M H . The vulnerable period, Ty^, consists of the delay for datagrams

sent prior to the handoff to reach F A 1 via HA, Dfjpj, and for the new registration request to reach

HA via FA2,DF2H, During TVUL, datagrams will be incorrectly routed. Once the new registration

is authenticated at HA, a new tunnel could be established to redirect datagrams to M H via F A 2 .

Delays between M H and FAj or F A 2 are assumed negligible.

Chapter 3 Performance Issues Related to Handoffs 24

M e s s a g e

r e c e i v e d

M e s s a g e B

M H m o v e s

to F A 2

Regist rat ion

request

M e s s a g e lost

M e s s a g e lost

Regist rat ion

a p p r o v e d

M e s s a g e lost

M e s s a g e

r e c e i v e d

M e s s a g e F

M e s s a g e

r e c e i v e d

• datagram arr iv ing node • datagram lost

»- datagram sent ^ datagram encapsula ted and

sent through tunnel

F i g u r e 3.2 T i m i n g d i a g r a m d u r i n g h a n d o f f in b a s i c m o b i l e - I P s c h e m e

Chapter 3 Performance Issues Related to Handoffs 25

3.4 Handoff in Route Optimization Scheme

In chapter two, the route optimization scheme, IMHP, is expected to deliver better perfor­

mance over the basic IETF scheme, since it has eliminated triangular routing. However, during a

handoff, the C A sends datagrams to the previous FA. Hence, these datagrams are routed

incorrectly. It is shown in previous sections that datagram losses in the IP layer can impose a

serious performance penalty over the TCP layer. The performance of the IMHP scheme degrades

as the rate of handoff increases.

Whenever there is a handoff, a M H will perform registration with its HA as in the case of

the basic IETF scheme. The C H therefore has outdated information regarding the MH's care-of

address. Al l subsequent datagrams are sent to the previous FA. As a result, the IMHP scheme

suffers from performance degradation during or immediately after handoffs.

Timing diagram for the IMHP scheme is shown in Figure 3.3. It is assumed that C H and

CA are collocated. The worst case vulnerable period include the delay between the corresponding

host, C H and F A 1 ; before the handoff, DCF1, and the delay to update the new binding at either C H

or F A i after the handoff, i.e.,

TVUL = DCFl+DF2H + m i n (D H F 2 + D F 2 V 3 D H c) (3-2)

Dp2H is the delay to register the new binding with H A after handoff. D^p2 is the delay for

the H A to reply with a registration confirmation. DF2i is the delay for F A 2 to give F A i the new

binding. 3DHC is the delay for the H A to send a binding update invitation to the CH, a binding

request from the C H to the HA, and the binding reply from the H A to the CH. Depending on the

Chapter 3 Performance Issues Related to Handoffs 26

current congestion over the Internet, the vulnerable period with route optimization could easily

exceed the vulnerable period for the case without route optimization. As before, TCP perfor­

mance suffers under a high rate of handoffs or if the delays are long. Methods to minimize loss of

datagrams during mobile handoffs are therefore necessary to optimize the performance of JJVIHP.

Chapter 3 Performance Issues Related to Handoffs 27

Message
received

Message B

MH moves
toFA2

Registration
request

Message
lost
Registration
approved

Deregistration
command

Message
received

Message
received

Message F

Message
received

• datagram arriving node • datagram lost

• datagram sent ^ datagram encapsulated and
sent through tunnel

F i g u r e 3.3 T i m i n g d i a g r a m d u r i n g h a n d o f f in I M H P s c h e m e

Chapter 4 Handoff Enhanced Mobile-IP Scheme

In sections 2.3 and 3.2, it is shown that performance is suboptimal due to either triangular

routing or datagram loss during handoff. In this research, one of the objectives is to devise a

method which improves the routing efficiency during handoff. The idea of this proposal is to

eliminate or minimize the vulnerable period, while keeping the route optimization extension as in

IMHP. By doing so, datagram loss will be minimized and hence the impact on Transport Layer is

kept to a minimum. While improving routing efficiency, the security robustness of the new

scheme should not be compromised.

4.1 Enhancement of Mobile-IP during Handoffs

The main emphasis of the scheme is to minimize datagram losses during handoffs and, at

the same time, to yield better performance than the basic IETF scheme. This scheme uses a

buffering technique at the previous FA which stores the inbound datagrams for the M H during the

handoff period. Upon the reception of the registration confirmation at the previous FA, the stored

datagrams are released to the M H . Each store buffer has its own lifetime. If an authenticated reply

is not received within the time allowed, the contents of the buffer is flushed and the handoff is

considered not successful.

Route optimization is performed as in section 2.4. However, during handoffs, there are

additional procedures to be done. For example, the M H has switched from one foreign agent to

another, say FAj to F A 2 . During the handoff, the M H needs to send a new registration request via

F A 2 to its own home agent H A . In this scheme, the M H sends two copies of the registration

request. One is sent to the H A via F A 2 , while the other one is sent via F A ^ This is illustrated in

28

Chapter 4 Handoff Enhanced Mobile-IP Scheme 29

(IP d a t a g r a m sent to F A j)

s o u r c e des t ina t ion

M H F A , P a y l o a d

(IP d a t a g r a m sent to F A 2)

s o u r c e d e s t i n a t i o n

M H F A , P a y l o a d

U D P h e a d e r T y p e 0 L i f e t i m e M H H A F A 2 .

(c o m m o n U D P d a t a g r a m)

R e g i s t r a t i o n m e s s a g e s sent to F A j a n d F A 2 d u r i n g h a n d o f f

N o t e that the reg is t ra t ion m e s s a g e is c o m m o n i n b o t h IP d a t a g r a m s

F i g u r e 4.1 R e g i s t r a t i o n m e s s a g e s sent d u r i n g h a n d o f f

Figure 4.1 and the format of this type of message conforms to the.basic IETF proposal [1]. Note

that the registration request contains both the MH's address and the new FA 2 ' s address. Upon

receipt of this registration message, FAj can deduce that the M H is currently at the network of

F A 2 and is pending for new registration approval. A finite size buffer is set up at FA± to store the

incoming datagrams for the M H . At this point, the F A i still sends those datagram via its own

mobile channel at which the M H has been registered with, since the new registration is still

pending for approval. The size of this buffer, at F A i , is set to a specific size which is determined

by FA^ccording to the resources available on that site. Once the registration has been completed,

the M H will cancel the binding with FAj by sending a deregistration to FAj (registration request

with lifetime set to 0). As soon as F A i has received this de-registration, it releases the contents of

the buffer to the M H via F A 2 . This is illustrated in Figure 4.2.

4.2 Security Considerations

One of the considerations of this new scheme is the security robustness compared with the

Chapter 4 Handoff Enhanced Mobile-IP Scheme 30

M H sends registration request via FA2

2) Copy of registration request sent to FA1

Datagrams
f o r M H

- • (FA1

3) FA1 starts buffering incoming datagrams for M H

Finite size buffer
for temporary storage
of MH's datagrams

M H performing handoff from FA1 to FA2

2) Deregistration request sent to FA1

M H sends deregistration request toFAl

M H

3) FA1 releasing contents for M H via FA2

Buffer being emptied from FA1
and sent to M H via FA2

M H performing deregistration with FA1 after successful registration with H A

Figure 4.2 Illustration of the Handoff Enhanced Scheme

existing Internet. Special care has been taken in order to avoid security loopholes. In this scheme,

the incoming datagrams are stored in a buffer during handoff. Tbis avoids the possibility of replay

Chapter 4 Handoff Enhanced Mobile-IP Scheme 31

attack in a W M D N environment. This is the reason that the datagrams are not forwarded to the

new FA as soon as the previous FA knows about the handoff. In this case, even if a malicious host

sends a forged registration to the FA (FA1), the inbound datagrams for the M H will not be re­

directed to the malicious host. F A i waits for an authenticated registration reply before sending the

stored datagrams.

This scheme does not open up any additional opportunities for security attacks. Although

wiretapping of datagrams (in WMDN) is still possible as in the case of the basic IETF scheme, it

is considered, as in [1], that the scheme does not allow more security attacks than the existing

Internet. As in the case of a wired Ethernet within a network, all local traffic are sent to the

Ethernet interface, therefore wiretapping attack is also possible in the existing Internet.

4.3 Performance Considerations

Provided that the previous and current FAs are close together, the mobile registration

request arrives at the previous FA in a short time. Hence, the previous FA can start buffering the

incoming datagrams for the M H . Therefore, the enhanced scheme does not suffer from a vulnera­

ble period. However, there are two constraints that limits the effectiveness of this scheme. Firstly,

the buffer temporarily storing datagrams for the M H has a finite size. For a IP throughput of 1 k

byte/s and the registration delay is 1 sec, the buffer size required for each TCP connection is 1 k

byte. If the IP throughput is more higher than that, buffer overflow can occur if the registration

takes too long to complete. In this case, storing some datagrams might not be useful to the TCP

layer, since it has to request retransmissions of the lost datagrams eventually. Besides memory

constraints, if the delay between the registration and reply is long, the retransmission timer in

TCP may time out before the buffered datagrams could be delivered and acknowledged by M H .

Chapter 4 Handoff Enhanced Mobile-IP Scheme 32

Nominally, the retransmission timer of TCP is set at some multiples k of the round trip end-to-end

delay between the C H and the M H , i.e. 2DCM. Therefore the proposed handoff optimization

scheme offers transport performance enhancements only if the condition in equation (4.1) is met.

The timing diagram for the enhanced scheme is shown in Figure 4.3.

TDEL<2^-\)DCM (4.1)

However, the worst case scenario will only bring the performance down to the same as

IMHP, but not worse. Note that it is possible to further enhance this scheme. Provided that the old

and the current FAs are closely related and entrust each other, it is possible to start forwarding

datagrams to the new care-of address location as soon as the old FA is aware of the fact that the

M H has handed off to the new FA. This will require some form of security association to exist

between the two FAs. The handoff registration message has to include this secret authentication as

an extension. The proposed extension takes the format as described in section 2.2. The extended

authentication is listed in the Table 4.1. However, as listed in [1], FAs are not expected to initiate

any messages regarding mobile registration and reply. Having the FAs to negotiate the security

association and redirect the routing is clearly violating the recommendations. Therefore, the

proposed Handoff Enhanced Scheme adopts the method of storing the datagrams first as to

comply with the security requirement laid down by [1]. This new scheme is expected to deliver

better performance during handoff in a W M D N .

Chapter 4 Handoff Enhanced Mobile-IP Scheme 33

F A 2 F A 2

M e s s a g e A

M e s s a g e

r e c e i v e d

M e s s a g e C

M e s s a g e D

M e s s a g e E

M e s s a g e

r e c e i v e d

M e s s a g e

r e c e i v e d

M e s s a g e B

M H m o v e s
to F A 2

Regis t ra t ion

request

Regis t ra t ion

request c o p i e d to F A 1

I n c o m i n g message

bu f fe red

Regis t ra t ion

a p p r o v e d

Deregis t ra t ion

c o m m a n d

M e s s a g e

r e c e i v e d C , D

M e s s a g e

r e c e i v e d

M e s s a g e F

• datagram arr iv ing node datagram lost

datagram sent datagram encapsula ted and

sent through tunnel

F i g u r e 4.3 T i m i n g d i a g r a m d u r i n g h a n d o f f i n the H a n d o f f E n h a n c e d m o b i l e - I P s c h e m e

Chapter 4 Handoff Enhanced Mobile-IP Scheme 34

T a b l e 4.1 R e g i s t r a t i o n au then t ica t ion e x t e n s i o n b e t w e e n F o r e i g n A g e n t s

M o b i l e R e g i s t r a t i o n E x t e n s i o n s iiiiiiilllliiiiiii
F o r e i g n - F o r e i g n A u t h e n t i c a t i o n 35

Chapter 5 Design of Simulation Model

Another objective of this research is to evaluate the transport layer performance with the

mobile-IP proposals and extensions. The network models of the various listed schemes are

developed and the evaluation is performed in simulation. The network model should adhere to the

protocol as closely as possible. Once a network model has been established, different statistics can

be obtained and performance evaluation can be based on those statistics.

Mobile-IP, like conventional IP, is an unreliable, connection-less layer. In order to assess

the performance of the scheme, it is necessary to include the Transport and Application layer

protocols. With these layers built into a mobile host, the host behaves as a real Internet host. It can

negotiate a connection, assess connection status, request for retransmissions, and terminate

connections, etc. Although all these modules are not within the Internet layer, it is necessary to

include them in order to quantify the network performance on a connection-oriented standpoint.

The Internet is a dynamic and complicated network. It contains different kinds of

networks which are linked together using the common TCP/TP protocol. There are few restrictions

on network topology and hence the Internet is very flexible. As a result, it has gained widespread

acceptance. Defining an analytical model for its throughput statistics and variability becomes very

difficult, as there is no standard connection pattern between the networks, Consequently, there is

no analytical model for the current Internet based on TCP/IP. The evaluation in this study is based

on simulation. The model is developed using OPNET 1 . Mobile-IP is based on the IP model in

OPNET, but heavily modified to incorporate the extended capabilities.

O P N E T is a n e t w o r k s i m u l a t o r s o f t w a r e d e v e l o p e d b y M I L 3, Inc .

35

Chapter 5 Design of Simulation Model 36

5.1 Overview of OPNET Simulator

OPtimized Network Engineering Tools (OPNET) is a comprehensive engineering system

capable of simulating large communications networks with detailed protocol modelling and

performance analysis. OPNET features include: graphical specification of models; a dynamic,

event-scheduled Simulation Kernel; integrated data analysis tools; and hierarchical, object-based

modelling. OPNET's hierarchical modelling structure accommodates special problems such as

distributed algorithm development. OPNET delivers open systems methodology and an advanced

graphical user interface known as the MIL 3 User Interface.

Due to its object-oriented design, complicated models can be set up and prototyping is

made easier and more manageable. Each OPNET simulation is presented in a hierarchical

fashion, and therefore, simulations written will have strong parallels with actual communication

networks. Debug options are built into every OPNET simulation so that accurate state tracking is

possible. A fully graphical interface makes model prototyping much clearer and less error-prone.

OPNET has a lot of standard modules written and all of those modules can be modified to

cater to different needs. It is also possible to set up an entirely new network model and fine tune

its behavior using the C programming language.

5.1.1 Hierarchy within OPNET Simulator

Each OPNET model consists of elements which are located in three different hierarchical

domains: Network, Node and Process. Figure 5.1 depicts an application in OPNET. Network

domain is where the topology of the network infrastructure is defined. A network can be made up

of any number of subnetworks and nodes. Different types of links can be used to connect

Chapter 5 Design of Simulation Model 37

F i g u r e 5.1 H i e r a r c h y i n O P N E T w i t h N e t w o r k s , N o d e s a n d P r o c e s s e s

networks and nodes.

Within a network, the smallest subdivision is a node. A node can perform different

functions within the network; e.g. it can be a router or a workstation (e.g. gateway in Figure 5.1).

The characteristics of each node model is defined by the modules within. There are different types

of modules: processors, queues, generators, transmitters and receivers. Figure 5.2 showed an

example of node layout of a conventional IP host over Ethernet. In the example, the host consists

of different layers of protocols; each of these layers is responsible for different functions. The

model is a close representation of real implementation of the protocol stack. Within the node,

appl and app2 belong to the Application layer of TCP/IP. TCP layer is realized by a single

module. Within this module, it forks a new connection process for each connections. There are a

few parameters which can be set in the generators, transmitters and receivers. However, the main

core of functionality in each node is determined by the processors and queues, which are fully

Chapter 5 Designof Simulation Model 38

o

rCh
tcp

•

L___ i !'

defer

F i g u r e 5.2 A n e x a m p l e o f n o d e l a y o u t o f a n E t h e r n e t w o r k s t a t i o n

programmable. Processors and queues are represented as finite state machines. It is a set of

instructions which the node will perform under certain predefined conditions. Hence, a (parent)

process can call upon other (children) processes. In Figure 5.2, the TCP layer is realized by a

single TCP manager process as shown in Figure 5.3. The functions of the TCP manager is a

relatively simple process involving only a few states. However, each TCP connection is handled

by an independent TCP connection management sub-process. Thus, connection management is

made simpler. Each connection management process is responsible for maintaining the state of

the connection it is catered for. The connection management process being used in the simulation

conforms to RFC 793 [4] and is shown in Figure 5.4 which is identical to the realization on pp.

199 of [13]. The main intelligence of connection control falls upon the ESTAB state within the

TCP_CONN module. This type of process hierarchy abstraction can break down a complicated

task into a modular system. This is very well suited for TCP/IP and other connection oriented

Chapter 5 Design of Simulation Model 39

F i g u r e 5.4 T C P c o n n e c t i o n m a n a g e m e n t s u b - p r o c e s s

protocols alike. The only limitation is the memory constraint of the workstation. This makes it

Chapter 5 Design of Simulation Model 40

very suitable for simulations of "Layered Protocols". Information transfer can be classified into

two main categories: packet driven and internal control interface (ICI). The normal way to

communicate is to send information in data packets. There are occasions that a layer has to make

certain control over other layers. For example, in the operating system implementing TCP/IP, the

IP layer receives a UDP datagram and routes it to the appropriate destination. A UDP datagram

does not contain information regarding the destination IP address due to the layering of protocols.

It is obvious that absolute layer transparency is impossible [13]. Hence, that information is sent

via internal control interface. The packet format and the ICI format can be selected using Parame­

ter Editor in OPNET. *

5.2 Design of Simulation Models

In previous chapters, a total of three different variations of the mobile-IP protocols were

introduced. In order to assess the transport layer performance of each of these models, it is

required to create three different models in OPNET™. Since UDP is used for delivering mobile

registration messages, unlike a conventional TCP/IP model, there is a UDP layer in parallel with

the TCP layer. Any host employing mobile-IP extension needs the UDP module in its node

architecture in the simulation.

UDP delivery system is not supported in standard OPNET modules. In standard OPNET

TCP/IP libraries, protocol demultiplexing is not implemented. Therefore, modifications has to be

made to accommodate this need. If the mobile-IP models developed are to be used with other

standard modules (e.g. IP over ATM), a protocol demultiplexing module has to be added between

the Transport and the Internet layer. The module has to demultiplex datagrams from network and

send them to appropriate transport layer protocols. It also has to mark the protocol field in the

Chapter 5 Design of Simulation Model 41

header so that the receiving side will know what type of datagram it is. If any of,the mobile-IP

modules are to be used with other standard modules, this demultiplexing module has to be

included to ensure proper interfacing. This demultiplexing unit is shown as ip_encap in Figure

5.10. '

5.3 Network Configuration

Analysis is based on the network model in Figure 5.5. There are two mobile hosts, MHj

and M H 2 . M H ^ belongs to netj, whereas M H 2 belongs to net2. The networks net1; net2, and net3

are part of the Internet. They are drawn explicitly for clarity and to show the mobile connections

with M H j and M H 2 . The two mobile hosts are designed to hop between foreign networks at

predefined rates. Traffic characteristics were studied at different rates of handoffs.

F i g u r e 5.5 N e t w o r k c o n f i g u r a t i o n o f the s i m u l a t i o n

As both of the mobile hosts are away from home, each of them has to register with their

respective home networks in order to acquire network service from them. Besides, they also have

Chapter 5 Design of Simulation Model 42

To Internet core gateway

Host A.3
Workstation at Network A

j

Host A. 1
Router at Network A

|̂ Virtual Connection

Host A.2
Mobile Host of Network A

F i g u r e 5.6 H o s t c o n f i g u r a t i o n w i t h i n s u b n e t w o r k s

to rely on foreign agents to route their datagrams. Each of the networks (netl, net2 and net3) has a

local router and a conventional host. Figure 5.6 depicts the connection topology within each of the

networks in Figure 5;5. Host (A.l) is a local router. It serves as both FA and HA (i.e. it provides

mobile-IP services for both visiting MHs and MHs belonging to the same network). Host (A.2) is

a M H . It is connected via a virtual connection to its H A (host A. l) . Host A.3 is a conventional

host connected directly to its home router (host A. l) . Since we are concentrating on Transport

layer analysis, there is no assumption made upon the type network interface. In the simulation,

each of the mobile-IP supporting router is named as a mobile agent (MA). MA, is therefore a

router which delivers datagrams for both conventional hosts and MHs. The former is just conven-

Chapter 5 Design of Simulation Model 43

tional IP routing, whereas the latter is by the use of mobile-IP. Standard OPNET Internet model

uses routing table lookup method to implement route selection. Internet traffic within the local

subnet is handled by the local router (MA). For traffic that goes beyond the network boundary,

they are routed to a default core gateway. This core gateway is capable of routing any IP

datagrams to their respective networks, where they will be distributed locally. This scheme is

outlined in chapter 13 of [13]. Figure 5.7 shows the core gateway employed in this simulation.

Figure 5.7 Core gateway model of the Internet model

The use of this core gateway serves two functions in this simulation. First of all, it makes the

conventional routing task simpler by having a relatively small routing table at each of the local

routers. As the Internet today consists of a large number of hosts, it is therefore resource ineffi­

cient to keep track of all the hosts' routing information on every host within Internet. In reality,

existing local hosts keep minimal information regarding routing and rely on major gateways

within Internet to do the rest of the routing. This is analogous to what is being implemented in

OPNET. However, autonomous routing system concept is not implemented. An autonomous

system advertises reachability information between routers. This is useful for indicating a certain

Chapter 5 Design of Simulation Model 44

network, link or routing path is not functional. The system will then be able to route datagrams via

a different path. In our simulation, since the number of networks involved is few and we have one

core gateway only, implementing autonomous system would not bring any improvement.

All the default traffic has to go through the core gateway, so datagrams follows a single

queue waiting to be routed as in Figure 5.8. This introduces a varying delay which the existing

Datagrams

from various
networks

Single queue

F i g u r e 5.8 Q u e u i n g at the Internet c o r e g a t e w a y

Internet imposes in datagrams delivery. The delay for every non-local datagram is varied, giving a

more realistic representation of the current Internet. This approach of simulating TCP/TP traffic is

commonly used and there are many variations of it. The simulation model in [3] uses a similar

approach by having a single core gateway.

5.4 Host Configuration

There are basically three types of hosts in this simulation. They are conventional hosts,

Chapter 5 Design of Simulation Model 45

mobile hosts (MH) and mobile agents (MA). Conventional hosts are those which will connect

only to wireline hosts. It does not support any of the mobile-IP extensions. There is no UDP

section within this type of hosts. It is shown in Figure 5.9. There is no assumption made upon the

rcv_l xmt_l

F i g u r e 5.9 C o m p o n e n t s o f c o n v e n t i o n a l hos t

physical connection method. It is implemented as a direct link between hosts. Transmitters and

receivers are point-to-point type. The IP module is the standard OPNET IP module. It is capable

of handling fragmentation and assembly of IP datagrams. In addition, routing table is kept for

making routing decisions. The ipencap module will provide interfacing between TCP and IP

layers, exchanging information regarding source and destination addresses of the datagrams being

handled. TCP is responsible for maintaining the end-to-end connections. Appl and app2 are

sources and sinks of data sent over the network.

MHs and MAs share an identical node layout, as shown in Figure 5.10. The difference

between a M H and a M A is the registration handling unit - reg module. For a M H , the reg module

calls a process which sends registration request to its HA. It also performs handoff at specific

Chapter 5 Design of Simulation Model 46

Figure 5.10 Components of mobile host or mobile agent

intervals. For a M A , the reg module calls a different process which handles registration requests

and updates mobility binding for MHs.

Either a M H or M A has to support conventional IP routing as well as mobile-IP routing.

Mobile-IP routing is based on the contents of the mobility bindings stored in the mobile-IP layer,

and is able to change its delivery path during the course of a connection. Several lists of mobility

bindings have to be maintained in order to accomplish this. For a M H , it has a list of bindings

storing the information of its home agent, foreign agent and link-layer address. For a HA, there is

a list of H A bindings. Each of those will store the information for those MHs which have moved

away from this network. For a FA, it has to keep a mobility binding for each visiting M H .

Each of the M H sends a mobile registration when the simulation starts. Shortly before the

lifetime of the registration expires or the M H has moved to another location, it sends a new

registration request to the new FA. These mobile-IP messages are sent via UDP. Therefore, the

ip_encap module has to demultiplex datagrams according to its type. When the mobile registra-

Chapter 5 Design of Simulation Model 47

tion request reaches the reg module of a FA or a HA, it updates the appropriate list of mobility

bindings. To accomplish this, the module interrupts the simulation flow and passes the necessary

information via an ICI structure in OPNET.

Routing implementation in mobile-IP is significantly different than the standard OPNET

IP module. When mobile-IP layer is required to make a routing decision, it first consults its

mobility binding lists. For a M H , it always looks for a FA to deliver its datagrams. Whereas for a

mobile agent (either a H A or a FA), it has to consult its bindings list to determine where to route

the datagram to. If there is no mobility binding related to the destination of the datagram and it is

not a M H , conventional Internet routing is used for datagram delivery.

5.4.1 Basic IETF Mobile-IP Scheme

This model has the basic features outlined in the basic IETF mobile-IP proposal [6]. In

this model, mobile-IP routing, conventional Internet routing and fragmentation handling are

supported. The mobility functions are separated in two different modules. The mobile routing and

tunnelling are implemented within the mobile-IP layer, whereas the mobile registrations are kept

in the application layer and transported via UDP.

5.4.1.1 Mobile-IP layer in basic Mobile-IP

The mobile-IP module is developed to replace the standard IP module in OPNET. It

handles all mobile routing and tunnelling. It also maintains the cache lists of bindings and

removes expired bindings.

This module is used by any hosts which supports mobile-IP extensions. The fragmentation

handling within this module is based on the standard OPNET IP module, while the routing is

Chapter 5 Design of Simulation Model 48

T a b l e 5.1 M o b i l i t y b i n d i n g l ists i n b a s i c m o b i l e - I P

List Usage

H o m e A g e n t L i s t
S t o r i n g c a r e - o f a d d r e s s e s f o r e a c h

m o b i l e h o s t

F o r e i g n A g e n t L i s t
S t o r i n g h o m e agent a d d r e s s f o r e a c h

m o b i l e h o s t

M o b i l e H o s t L i s t
S t o r i n g h o m e agent a d d r e s s a n d f o r e i g n

agent a d d r e s s

rewritten to accommodate the additional features. Before a datagram is routed, the source and

destination addresses in the datagram header are read. In order to find a route for the destination,

the lists of mobility bindings are consulted. Figure 5.1 shows the types of mobility bindings that

are kept within the mobile-IP layer. If there is no match in these lists for the current datagram to

be sent, the datagram is sent via conventional routing. Binding entries are represented as a linked

list in C programming language. Home agent binding entries are listed in Table 5.2. Note that in a

HA binding list, it is possible to have multiple entries for a single M H . This is to enable a M H to

acquire services from multiple FAs. In this case, datagrams for this M H are duplicated and sent to

each valid care-of address. The identifier is for validating mobile registration request. This is a

known secret between the HA and the M H for authentication purposes. Timeout value is the

duration in seconds that this binding should be allowed to exist. Refresh handler is an OPNET

T a b l e 5.2 H o m e a g e n t b i n d i n g entr ies i n m o b i l e - I P

S e a r c h i d e n t i f i e r I l l l l l l l l l l l l l l l l iEl i^ U n i t

M o b i l e H o s t IP a d d r e s s 4 - b y t e in teger

C a r e - o f a d d r e s s

(u s u a l l y F o r e i g n A g e n t address)

4 - b y t e in teger

Ident i f ica t ion 4 - b y t e in teger

T i m e o u t v a l u e 4 - b y t e in teger

R e f r e s h E v e n t h a n d l e r E v e n t p o i n t e r i n O P N E T

Chapter 5 Design of Simulation Model 49

T a b l e 5.3 F o r e i g n agent b i n d i n g entr ies i n b a s i c m o b i l e - I P

S e a r c h i d e n t i f i e r Illlllililllll^

M o b i l e H o s t IP a d d r e s s 4 -by te in teger

H o m e a g e n t IP a d d r e s s 4 -by te in teger

L i n k - l a y e r a d d r e s s 4 - b y t e in teger

T i m e o u t v a l u e 4 -by te in teger

R e f r e s h E v e n t h a n d l e r E v e n t p o i n t e r i n O P N E T

internal pointer which allows the module to cancel the binding refresh event. For example, if there

is a deregistration before it has expired. It would then be necessary to cancel the refresh event as

well to avoid accessing a stale binding after it has been deleted.

FA binding entries are shown in Table 5.3. Similar to a H A binding, timeout value and

refresh handler are for maintaining the binding within the allowed lifetime. Note that each M H

can only have one HA address in the binding. When a FA first receives a mobile registration from

a M H , it creates a temporary binding storing the link-layer address to which the M H is attached.

When an encapsulated datagram is received, the FA determines whether it is the end of the

tunnel for this datagram. If so, it decapsulates the datagram and checks the inner payload to find a

match within its visitors' bindings. If a match is found, the datagram will be delivered locally

according to the link-layer address in the binding. .

For a M H , the binding is shown in Table 5.4. Whenever the M H is required to send a

mobile registration, it determines which HA to register with and sends the registration to that IP

address accordingly. (Note that there may be more than one HA available within a network.) The

care-of address is obtained from the local FA which M H is acquiring network service from. The

link-layer address is the physical layer address for routing. Identification serves as a common

Chapter 5 Design of Simulation Model 50

T a b l e 5.4 M o b i l e host b i n d i n g i n b a s i c m o b i l e - I P

Home agent information Foreign agent information Unit

H o m e agent IP a d d r e s s 4 -by te in teger

C a r e - o f a d d r e s s 4 -by te in teger

l i n k - l a y e r a d d r e s s 4 -by te in teger

i d e n t i f i c a t i o n 4 -by te in teger

l i f e t i m e 4 -by te in teger

R e f r e s h h a n d l e r E v e n t p o i n t e r i n

O P N E T

secret between the FA and the M H . The time of existence of this binding is specified by the

lifetime field. The event handler provides a way to cancel the binding refresh event, should it

become unnecessary.

With all these bindings defined in the mobile-IP module, all MHs and M A s share a

common mobile-IP module. The state diagram is shown in Figure 5.11. The state transition is

F i g u r e 5.11 State d i a g r a m f o r m o b i l e - I P m o d u l e f o r b a s i c m o b i l e - I P s c h e m e

outlined in Table 5.15. Note that there are two states which is called by the reg module. The two

states are stream_update and list_update. Stream_update is for simulating handoff by connecting

to a different physical stream, while the list_update is for maintaining the mobility bindings. The

supplementary source code of the IETF model is listed in Appendix A.

Chapter 5 Design of Simulation Model

T a b l e 5.5 State t rans i t ion o f mobile-ip uni t i n b a s i c m o b i l e - I P

51

1111111111!!!!!!! Next state

in i t

i n i t i a l i z e v a r i a b l e s , r e a d s i m u l a t i o n

p a r a m e t e r s a n d d a t a g r a m arr ives

a r r i v a l

in i t
i n i t i a l i z e v a r i a b l e s , r e a d s i m u l a t i o n

p a r a m e t e r s a n d n o ar r iva ls ye t

i d l e

i d l e

d a t a g r a m arr ives a r r iva l

i d l e
f i n i s h e d s e r v i c e f o r d a t a g r a m s v c _ c o m p l e t i o n

i d l e
s t ream update r e q u e s t e d b y reg m o d u l e s t r e a m _ u p d a t e

i d l e

b i n d i n g u p d a t e r e q u e s t e d b y reg m o d u l e l i s t_upda te

a r r iva l
s c h e d u l e d a t a g r a m f o r s e r v i c e svc_s ta r t

a r r iva l
a r r i v e d d a t a g r a m p l a c e d i n q u e u e i d l e

s v c _ s t a r t start s e r v i c e , s c h e d u l e f o r f i n i s h i d l e

s v c _ c o m p l e t i o n

f i n i s h r o u t i n g (i f m o r e d a t a g r a m s in

q u e u e)

svc_s ta r t

s v c _ c o m p l e t i o n
f i n i s h r o u t i n g (i f n o m o r e d a t a g r a m s in

q u e u e)

i d l e

s t r e a m _ u p d a t e
p e r f o r m s t ream u p d a t e (return c o n t r o l to

reg m o d u l e)

i d l e

l i s t_upda te
p e r f o r m b i n d i n g update (act ivate b y reg o r

cur ren t m o d u l e)

i d l e

Chapters Design of Simulation Model 52

5.4.1.2 Mobile Registration modules in Basic Mobile-IP

There are also modules in the application layer developed for handling mobile registration

procedures. There are two different types of registration modules. One is for MHs, while the other

one is for both FAs and HAs. It is expected that a mobile router can function both as a FA and a

H A ,

5.4.1.3 Home Agent in basic Mobile-IP

The responsibilities for home agents in basic mobile-IP scheme is listed in Table 5.6. Each

T a b l e 5.6 R e s p o n s i b i l i t i e s o f h o m e a g e n t i n b a s i c m o b i l e - I P

1 h a n d l e m o b i l e reg is t ra t ion reques t

2 s e n d m o b i l e reg is t ra t ion r e p l y

set u p c a c h e b i n d i n g f o r m o b i l e hos t that has b e e n s u c c e s s f u l l y r e g i s t e r e d

4 t u n n e l d a t a g r a m s f o r r e g i s t e r e d m o b i l e hosts

5 p e r f o r m dereg is t ra t ion w h e n m o b i l e hos t has r e t u r n e d to h o m e n e t w o r k

H A has two special units which handles the mobile datagram routing and registration procedures.

They are shown in Figure 5.10 as the reg and the mobile-ip units. The reg unit analyzes all mobile

registration requests and performs mobility binding updates. The state diagram for this registra­

tion handling unit for a home agent is shown in Figure 5.12 and the corresponding state transition

is shown in Table 5.7.

F i g u r e 5 .12 State d i a g r a m f o r m o b i l e reg is t ra t ion h a n d l i n g o f m o b i l e agent i n b a s i c m o b i l e - I P

Chapter 5 Design of Simulation Model 53

T a b l e 5.7 S ta te t rans i t ion f o r reg un i t o f h o m e agent i n b a s i c m o b i l e - I P

S l a t e F u n c t i o n s N e x t S t a t e

in i t i n i t i a l i z e v a r i a b l e s , r e a d s i m u l a t i o n p a r a m e t e r s , s e n d i n i t i a l m o b i l e reg is t ra t ion i d l e

i d l e p e n d i n g f o r m o b i l e reg is t ra t ion r e q u e s t r e v

r e v a n a l y z e reg is t ra t ion reques t , u p d a t e m o b i l i t y b i n d i n g , s e n d reg is t ra t ion r e p l y i d l e

Under this basic scheme, the reg unit takes a passive role in mobile registration manage­

ment. HAs do not initiate any messages to FAs, MHs or other CHs. It only responds to mobile

registration requests.

5.4.1.4 Foreign Agent in basic Mobile-IP:

Foreign agent in this basic mobile-IP scheme plays a silent role as well. It merely relays

the mobile registration message from the mobile host to its home agent. It analyzes the registra­

tion requests and creates necessary mobility bindings according to the reply from the HAs. The

functions of foreign agent is summarized in Table 5.8. These functions are realized and

T a b l e 5.8 R e s p o n s i b i l i t i e s o f f o r e i g n agent i n b a s i c m o b i l e - I P

1 f o r w a r d m o b i l e reg is t ra t ion r e q u e s t

r e l a y m o b i l e reg is t ra t ion r e p l y

3
m a i n t a i n c a c h e b i n d i n g f o r m o b i l e hos t that h a s b e e n s u c c e s s f u l l y r e g ­

is te red

represented in a state diagram as shown in Figure 5.12.

When a FA first receives a mobile registration request from an unregistered M H , it first

checks its own available resources. If permitted, a temporary binding is created. As soon as the

registration reply from the H A has been received, the FA updates the visitor binding for this

particular M H . The registration reply is then delivered back to the M H . State transition is shown

in Table 5.9.

Chapter 5 Design of Simulation Model ' - 1 54

T a b l e 5.9 State t rans i t ion o f reg uni t f o r f o r e i g n agent i n b a s i c m o b i l e - I P

S t a t e F u n c t i o n s N e x t s l a t e

in i t i n i t i a l i z e v a r i a b l e s , r e a d s i m u l a t i o n p a r a m e t e r s i d l e

i d l e p e n d i n g f o r m o b i l e reg is t ra t ion requests o r r e p l i e s r e v

r e v u p d a t e v i s i t o r b i n d i n g l ist a c c o r d i n g to the m e s s a g e r e c e i v e d i d l e

5.4.1.5 Mobile Hosts i n basic Mobile-IP:

Under the basic mobile-IP scheme, MHs initiate all mobile registration requests. In

addition, handoff management is also performed by the reg module. The responsibilities are

outlined in Table 5.10.

T a b l e 5 .10 R e s p o n s i b i l i t i e s o f m o b i l e h o s t i n b a s i c m o b i l e - I P

1 in i t iate n e w m o b i l e reg is t ra t ion request

: p r o c e s s m o b i l e reg is t ra t ion reques t r e p l y

s p r o c e s s m o b i l e reg is t ra t ion r e p l y

4 re t ransmi t m o b i l e reg is t ra t ion b e f o r e e x p i r y

All of the above functions are implemented in the reg module and is implemented in a

finite state machine in OPNET which is shown in Figure 5.13.

F i g u r e 5.13 State d i a g r a m o f reg m o d u l e o f m o b i l e hos t in b a s i c m o b i l e - I P

Chapter 5 Design of Simulation Model 55

Note that there is an extra handoff state within this module. The handoffs are simulated

using a timer module within the state. Whenever the predefined handoff period expires, it registers

with another FA. After the registration has been approved, the M H does not register with its

previous FA. The previous FA deletes the binding when it has expired. The state transition is

shown in Table 5.11.

T a b l e 5.11 S ta te t rans i t ion o f reg un i t f o r m o b i l e hos t i n b a s i c m o b i l e - I P

S l a t e F u n c t i o n s N e x t s ta te

in i t i n i t i a l i z e v a r i a b l e s , r e a d s i m u l a t i o n paramete rs i d l e

i d l e

p e n d i n g f o r reg is t ra t ion r e p l y p r o c e s s

i d l e w a i t i n g f o r r e t r a n s m i s s i o n t i m e r to e x p i r e upda te i d l e

w a i t i n g f o r h a n d o f f t i m e r to e x p i r e h a n d o f f

p r o c e s s a n a l y z e reg is t ra t ion r e p l y , u p d a t e m o b i l i t y b i n d i n g i d l e

u p d a t e s e n d r e t r a n s m i s s i o n i f reg is t ra t ion r e p l y not r e c e i v e d w i t h i n t i m e o u t p e r i o d i d l e

h a n d o f f
s e n d n e w m o b i l e reg is t ra t ion to another f o r e i g n agent w h e n e v e r h a n d o f f t i m e ­

o u t e x p i r e s

i d l e

Chapter 5 Design of Simulation Model . 5 6

5.4.2 IMHP Route Optimized Mobile-IP model

For the IMHP scheme, all the basic mobile-IP features are supported. There is one

additional feature as well. First of all, there is one more entity needed to be defined - cache agent

(CA). The role of C A can be taken by any host along the path between the corresponding host and

the home agent. Since datagrams can take on different path even though the endpoints of travel is

the same, there is no guarantee that subsequent datagrams will take the exact same route during

next travel. The responsibility of being a C A often falls upon the C H . The function of CA is to

keep track of the care-of address of a certain mobile host. It would then be able to route datagrams

for that particular address directly to its care-of address. Therefore, a cache list is kept at CA to

indicate the MHs'care-of addresses.

Obviously there are additional duties to be carried out by the CA and the HA for this route

optimization scheme. They are outlined in Table 5.12 and Table 5.13 respectively. In supporting

route optimization, the C H has to include an additional module in its application layer, the state

T a b l e 5 .12 R e s p o n s i b i l i t i e s o f c a c h e a g e n t

1 a c k n o w l e d g e b i n d i n g u p d a t e reques t

2 s e n d b i n d i n g update reques t

llllllllll m a i n t a i n c a c h e b i n d i n g l i s t ing f o r d i f fe rent m o b i l e hosts

4 de le te o u t d a t e d m o b i l i t y c a c h e b i n d i n g s

T a b l e 5.13 A d d i t i o n a l r e s p o n s i b i l i t i e s f o r h o m e agent to i m p l e m e n t route o p t i m i z a t i o n

1 • s e n d b i n d i n g update w a r n i n g to i n d i c a t e a l a c k o f u p - t o - d a t e c a r e - o f

a d d r e s s o f m o b i l e hos t

: e x p o n e n t i a l l y b a c k o f f i n s e n d i n g b i n d i n g u p d a t e w a r n i n g after r e p e a t e d

n o - r e s p o n s e f r o m C a c h e A g e n t s

\ p r o c e s s a n d authent icate b i n d i n g update r e q u e s t

diagram is shown in Figure 5.14. The function of this module is normally pending for binding

Chapter 5 Design of Simulation Model 57

F i g u r e 5.14 State d i a g r a m o f c a c h e agent u s i n g r o u t e o p t i m i z a t i o n s c h e m e

update warning. If that type of message is received, the C H sends a corresponding binding update

request to the HA which originates the warning. After the binding update message has arrived, the

CA updates the cache binding list in mobile-IP layer. Subsequent datagrams for the same M H are

sent directly to its care-of address. Figure 5.15 depicted the mobile-IP layer routing. The state

transition is listed in Table 5.14. The supplementary source code for the IMHP scheme is shown

in appendix B.

(! Q U E U E _ E M P T Y)

F i g u r e 5.15 State d i a g r a m o f m o b i l e - I P m o d u l e i n route o p t i m i z e d s c h e m e

Chapter 5 Design of Simulation Model

T a b l e 5.14 State t rans i t ion o f m o b i l e - I P m o d u l e i n r o u t e o p t i m i z e d s c h e m e

58

S t a t e D e s c r i p t i o n N e \ l M a t e

in i t

i n i t i a l i z e v a r i a b l e s , r e a d s i m u l a t i o n

p a r a m e t e r s , a n d n o ar r iva ls yet

i d l e

in i t
i n i t i a l i z e v a r i a b l e s , r e a d s i m u l a t i o n

p a r a m e t e r s , a n d d a t a g r a m ar r ives

a r r i v a l

i d l e

d a t a g r a m arr ives a r r iva l

i d l e
d a t a g r a m r o u t i n g started m o b _ r t e

i d l e
s t ream update in terrupt r e c e i v e d s t rearn_update

i d l e

b i n d i n g u p d a t e reques t r e c e i v e d l i s t_upda te

a r r iva l
d a t a g r a m a r r i v e d a n d e n q u e u e d i d l e

a r r iva l
d a t a g r a m a r r i v e d a n d start s e r v i c e s v c _ s t a r t

s v c _ s t a r t s e r v i c e f i n i s h t i m e s c h e d u l e d i d l e

m o b _ r t e

m o b i l e d a t a g r a m sent a n d s c h e d u l e

nex t d a t a g r a m i n q u e u e f o r s e r v i c e

s v c _ s t a r t

m o b _ r t e r o u t i n g c o n v e n t i o n a l I P d a t a g r a m s v c _ c o m p l e t i o n m o b _ r t e

m o b i l e d a t a g r a m sent a n d n o da ta ­

g r a m s i n q u e u e

i d l e

s v c _ c o m p l e t i o n

f i n i s h e d s e n d i n g d a t a g r a m a n d no

d a t a g r a m in q u e u e

i d l e

s v c _ c o m p l e t i o n
f i n i s h e d s e n d i n g d a t a g r a m a n d s c h e d ­

u l e next d a t a g r a m f o r s e r v i c e

s v c _ s t a r t

s t r e a m _ u p d a t e s w i t c h to nex t p h y s i c a l s t ream i d l e

l i s t_upda te p e r f o r m b i n d i n g update r e q u e s t i d l e

Chapter 5 Design of Simulation Model 59

5.4.3 Handoff Enhanced Scheme

For the enhanced mobile-IP scheme, all the route optimization features are supported

together with one additional function for the FA. Each FA has to set aside a specific amount of

memory buffer for storing datagrams destined for MHs when they are undergoing new mobile

registration procedures at another FAs. The state diagram for this scheme is shown in Figure 5.16.

The buffering of datagrams make this scheme structurally different from any of the previous

schemes described. It requires some memory to be set aside. Moreover, the state transition is more

sophisticated. It has to store up data packets for any visiting hosts which have just left for other

* (default)

F i g u r e 5 .16 State d i a g r a m o f m o b i l e - I P m o d u l e u s i n g E n h a n c e d m o b i l e - I P s c h e m e

destinations. Upon pending for authenticated replies, the host has to queue up the packets. The

state transition is given in Table 5.15. The supplementary source code of the Handoff Enhanced

Scheme is listed in appendix C.

Chapter 5 Design of Simulation Model 60

T a b l e 5.15 State t rans i t ion o f mobile-ip uni t f o r m o b i l e host in h a n d o f f e n h a n c e d m o b i l e -
I P

S t a t e D e s c r i p t i o n N e x t s ta te

in i t

i n i t i a l i z e v a r i a b l e s , r e a d s i m u l a t i o n

p a r a m e t e r s a n d i f d a t a g r a m s ar r ive

a r r i v a l

in i t
i n i t i a l i z e v a r i a b l e s , r e a d s i m u l a t i o n

p a r a m e t e r s a n d i f n o ar r iva ls ye t

i d l e

i d l e

d a t a g r a m ar r ives a r r iva l

i d l e
f i n i s h e d s e r v i c e f o r d a t a g r a m m o b _ r t e

i d l e
s t ream update r e q u e s t e d b y reg m o d u l e s t r e a m _ u p d a t e

i d l e

b i n d i n g u p d a t e r e q u e s t e d b y reg m o d u l e l i s t _ u p d a t e

a r r iva l
s c h e d u l e d a t a g r a m f o r s e r v i c e svc_s ta r t

a r r iva l
a r r i v e d d a t a g r a m p l a c e d i n q u e u e i d l e

s v c _ s t a r t start s e r v i c e , s c h e d u l e f o r finish i d l e

m o b _ r t e

finish s e n d i n g d a t a g r a m f o r m o b i l e hos t

a n d i f there are m o r e d a t a g r a m s i n q u e u e

s v c _ s t a r t

m o b _ r t e
n o m o b i l i t y b i n d i n g ex is ts , u s e c o n v e n ­

t i o n a l IP r o u t i n g

s v c _ c o m p l e t i o n
m o b _ r t e

f i n i s h s e n d i n g d a t a g r a m a n d n o m o r e

p e n d i n g d a t a g r a m s i n q u e u e

i d l e

s v c _ c o m p l e t i o n

finish r o u t i n g (i f m o r e d a t a g r a m s i n

q u e u e)

s v c _ s t a r t

s v c _ c o m p l e t i o n
finish r o u t i n g (i f n o m o r e d a t a g r a m s in

q u e u e)

i d l e

s t r e a m _ u p d a t e
p e r f o r m s t ream u p d a t e (return c o n t r o l to

reg m o d u l e)

i d l e

l i s t _ u p d a t e

p e r f o r m b i n d i n g u p d a t e (return c o n t r o l to

reg m o d u l e)

i d l e

l i s t _ u p d a t e

re lease b u f f e r c o m m a n d r e c e i v e d m o b _ r t e

Chapter 6 Discussion of Simulation Results

Simulations were performed using models developed in previous chapters. Performance

analysis was based on connection-oriented traffic. The effect of those parameters will be

discussed in relevant sections later in this chapter.

6.1 Review of Simulation parameters

The simulation starts with the MHs initiating mobile registrations. The M H sends a mobile

registration request to its HA. Upon receiving the registration request, the H A responds with a

registration reply. The setup is listed in Figure 5.5.

Normal TCP connection was set up between M H i and Internet C H ^ An identical connec­

tion was set up between M H 2 and C H 2 . The TCP connections remained open for a period of 2000

seconds (over 30 minutes). Handoff was implemented by using an internal timer. When the time

had expired, the M H would switch to another mobile link which was connected to another FA.

That would enable the M H to receive mobile service from a new FA. During the period of the

connection, MHj was set to hop between net2 and net3, while M H 2 was set to hop between neti

and net3.

It is specified in [1] that consecutive mobile registrations should not be less than 1 sec

apart. Preliminary results also show that TCP end-to-end delay does not change significantly

when time between handoffs is increased from 40 sees. Hence we chose the handoff period to be

as follows. M H 2 was set to perform a handoff every 40 seconds, while the time between handoffs

for M H , was varied in a range from 40 seconds down to 2 seconds.

61

Chapter 6 Discussion of Simulation Results 62

The TCP end-to-end delay of the connection was monitored as the prime interest of the

study was the investigation of TCP traffic conditions over mobility links. The TCP end-to-end

delay is defined as the time duration between the TCP segment entering the TCP layer of sending

host and leaving for the application layer at the receiving host.

T a b l e 6.1 P a r a m e t e r set 1

P a r a m e t e r type :

M o b i l e l i n k da ta rate: 5 7 . 6 k b p s

D a t a rate w i t h i n l o c a l n e t w o r k : 10 M b p s

D a t a rate f r o m l o c a l n e t w o r k to Internet si tes: 2 5 6 k b p s

M a x i m u m a c k n o w l e d g m e n t d e l a y : 2 s e c

R T T g a i n (a) : 0 .125

R T T d e v i a t i o n g a i n (K): 0.25

R T T d e v i a t i o n c o n s t a n t (p) : 4

The data segment size was set at 1024 bytes and the generated traffic was exponentially

distributed with a 0.1 second interarrival time. The simulation was repeated using ten different

simulation seeds using the parameters shown in Figure 6.1. An ensemble average is taken to

ensure that the simulation would give a more realistic picture as opposed to a single case study.

The results were averaged and tabulated. Since M H 2 had a fixed rate of handoff, the performance

over this link was used as a basis for comparison with other handoff rates.

The mobile link data rate specifies the data rate from the MHs to the corresponding FAs.

The data rate within local network is the data rate between a local router and conventional hosts

within the same network. The data rate from local network to Internet sites shows the data rate

from the local router to the Internet core gateway. The maximum acknowledgment delay is the

maximum tirne allowed that the TCP layer will wait for an acknowledgment before sending

Chapter 6 Discussion of Simulation Results 63

retransmissions. The RTT gain (a) and RTT deviation gain (k) are the weighing factors that the

TCP layer uses in updating the RTT average and deviation respectively, while the RTT deviation

constant ((3) is the multiplicative constant that TCP uses in generating a retransmission timeout

value from the average RTT.

0 50 100 150 0 50 100 150

Sample time trace (sec.) Sample time trace (sec.)

Figure 6.1 Delay connection characteristics of basic mobile-IP scheme (handoffs every 40 sec)

Figure 6.1 shows end-to-end connections measurements of MHj and MFf 2 with handoff

every 40 seconds. It is shown that at this rate, the delay is kept within a reasonable range. The

performance of both MHs match up pretty closely as the link parameters are identical.

The same setup and identical parameters are used for analyzing the route optimized

mobile-IP scheme (IMHP). In this scheme, triangular routing is eliminated. It is expected that

improved performance can be achieved. It can be seen that the minimum .floor end-to-end delay is

Chapter 6 Discussion of Simulation Results 64

M H I (h a n d o f f e v e r y 4 0 sees) M H 2 (h a n d o f f e v e r y 4 0 sees)

S a m p l e t i m e t race (sec.) S a m p l e t i m e t race (sec.)

F i g u r e 6.2 D e l a y charac te r is t i cs o f I M H P m o b i l e - I P s c h e m e (h a n d o f f e v e r y 4 0 sec)

considerably lower than that of the basic mobile-IP version. This matches up with our analysis in

chapter two. At relatively low handoff rate, the end-to-end connection delay has been improved.

As a variant of route optimization scheme, the handoff enhanced scheme is expected to

deliver similar performance as the route optimized scheme. The sample results are shown in

Figure 6.3. The result verifies the analysis that at low handoff rate the handoff enhanced scheme

delivers similar performance as the route optimized scheme. With this set of parameters, each of

the schemes are capable of handling the traffic at an acceptable level. Therefore it is necessary to

tighten the parameters in order to strain each of the schemes.

From the experimental results in the first part, it is apparent that TCP end-to-end delay will

occasionally exceed a 2 second range. In order to strain the handoffs, the time between handoffs

Chapter 6 Discussion of Simulation Results 65

M H 1 (h a n d o f f e v e r y 4 0 sees) M H 2 (h a n d o f f e v e r y 4 0 sees)

S a m p l e time t race (sec.) S a m p l e t i m e t race (sec.)

F i g u r e 6.3 D e l a y charac te r is t i cs o f h a n d o f f e n h a n c e d m o b i l e - I P s c h e m e (h a n d o f f e v e r y 4 0 sec)

were reduced to 2 seconds. The same set of parameters, in Table 6.1, were used. Only the handoff

rate of MHj was changed. This is to ensure that the change in performance is due to the difference

in handoff rates but not from other factors.

The result for basic mobile-IP is shown in Figure 6.4. It is apparent that the performance

of M F ^ has degraded tremendously compared with previous results (Figure 6.1). Although the

floor level of the end-to-end delay is still quite low, there are delays which exceeds 10 seconds.

On the other hand, M H 2 has similar performance compared to previous results. The change in

performance is due to the handoff rate difference.

With the same handoff rate change applied to M H j as in the case of the basic IETF

mobile-IP scheme, the simulation was performed using the IMHP scheme. The result is shown in

Chapter 6 Discussion of Simulation Results 66

M H 1 (h a n d o f f e v e r y 2 sees) M H 2 (h a n d o f f e v e r y 4 0 sees)

5 0 100 150

S a m p l e t i m e t race (sec.)

F i g u r e 6.4 D e l a y charac te r is t i cs o f b a s i c m o b i l e - I P s c h e m e

5 0 100 150

S a m p l e t i m e t race (sec.)

Figure 6.5. It can be seen that the performance degrades even more than the basic mobile-IP

scheme. This matches with the analysis in chapter two. The results collected were verified

through the use of a built-in debugger in OPNET to make sure the datagrams are routed according

to the protocol specification.

The reason for the poor performance is that the datagrams are often routed to the incorrect

location since M H i changes its point of attachment rapidly. This is because the CAs are delivering

datagrams directly to the care-of addresses of MHs. This causes the TCP acknowledgment timer

to expire. As described in section 3.2, TCP has mistakenly interpreted retransmissions as conges­

tion within the network. TCP throttles the traffic by using exponential backoff strategy. Before

TCP commences to send traffic down the link again, it sends SYN packets to establish the connec-

Chapter 6 Discussion of Simulation Results 67

M H 1 (h a n d o f f e v e r y 2 sees) M H 2 (h a n d o f f e v e r y 4 0 sees)

0 5 0 100 150 0 5 0 100 150

S a m p l e time t race (sec.) S a m p l e t i m e t race (sec.)

F i g u r e 6.5 D e l a y charac te r is t i cs o f r o u t e o p t i m i z e d m o b i l e - I P s c h e m e

tion. As these packets are susceptible to losses as indicated, TCP ends up spending a great deal of

time attempting to re-establish the connection. This scheme is deemed to have broken down under

these network conditions.

The same conditions were applied to the handoff enhanced scheme. The results are shown

in Figure 6.6. Although the handoff enhancement scheme is based on the route optimized scheme,

it does not suffer from the huge delays as its predecessor. Under this scheme, the datagrams for

mobile hosts are buffered at FA if the M H is registering with another FA. As soon as the registra­

tion completes, those buffered datagrams are sent to the M H . Nevertheless, these datagrams have

to undergo a certain amount of delay before reaching their final destination. If however the travel

time together with these delay still falls within the TCP retransmission count value, TCP does not

Chapter 6 Discussion of Simulation Results 68

M H 1 (h a n d o f f e v e r y 2 sees)

5 0 100 150

S a m p l e t i m e trace (sec.)

3 h

"3

W 2

0
1

c
w
Oh
U

M H 2 (h a n d o f f e v e r y 4 0 sees)

0 5 0 100 150

S a m p l e t i m e t race (sec.)

F i g u r e 6.6 D e l a y charac te r is t i cs o f h a n d o f f e n h a n c e m e n t s c h e m e

try to synchronize and retransmit again. This is a major improvement over the route optimized

scheme.

It still remains a question whether the handoff enhancement scheme is better than the

basic mobile-IP scheme under these handoff intensive situations. The basic mobile-IP scheme

does not utilize any route optimizations. It relies on the H A to tunnel the datagrams. As soon as

the HA receives the mobile registration request from the M H , the HA updates its bindings accord­

ingly. Datagrams can then be routed using the most update care-of address of the M H . Correct

routing is the key to good performance in basic mobile-IP scheme, since the performance penalty

in losing datagrams during handoff is severe in the transport layer. The key of good transport layer

performance is to keep from losing datagrams.

Chapter 6 Discussion of Simulation Results 69

Although the enhanced scheme, as a variant of the route optimized scheme, cannot

guarantee the correctness of the routing during handoff. However, it has overcome the problem

with another approach. By buffering the datagrams and forwarding it as soon as the registration is

completed, the enhanced scheme can ensure that those datagrams received during the handoff will

reach the correct host. In order to pick a best scheme among the three, there is a need to acquire

long term averages of measured performance.

6.2 Simulation Results

Parameter set 1, in Table 6.1, is used and the result is shown in Figure 6.7. The time

between handoffs ranges from 2 to 40 seconds, and the end-to-end delay of the basic mobile-IP

scheme becomes the worst as it provides no route optimizations. For this situation with relatively

few handoffs, the IMHP scheme performs the best with the end-to-end TCP delay about 0.2

seconds. As the handoff rate increases slightly, the end-to-end delay of the IMHP scheme

increases sharply. This is because the datagram loss rate in the IMHP scheme is directly propor­

tional to the number of incorrectly routed datagrams. Since route optimization scheme relies on

CAs (often the corresponding host) to send the datagrams directly to FAs, those CAs do not have

up-to-date information regarding the location of the MHs during handoffs.

The FAs do not play any active role in rectifying the problem. As the IMHP scheme

cannot avoid losing datagrams, TCP interprets the situation as network congestion and performs

exponential backoff and slow start which magnifies the problem. As a result, the IMHP scheme is

very sensitive to change in handoff rate.

At low handoff rates, the new enhanced scheme shows a lower end-to-end delay compared

with the basic mobile-IP scheme. However, as the handoff rate increases (i.e. the time between

Chapter 6 Discussion of Simulation Results 70

T 3 c w
CJ
H

12

11

10

Y <5>

E n d - t o - E n d P e r f o r m a n c e A n a l y s i s f o r V a r i o u s M o b i l e - I P s c h e m e s

B a s i c S c h e m e —

R o u t e O p t i m i z e d S c h e m e o-

H a n d o f f E n h a n c e d S c h e m e s -

10 15 2 0 2 5 3 0

T i m e b e t w e e n H a n d o f f s (sec.)

35 4 0

F i g u r e 6.7 T C P p e r f o r m a n c e f o r p a r a m e t e r set 1

handoff decreases), the two schemes give very similar results. This is due to the fact that the

vulnerable period of the basic mobile-IP scheme is much smaller than the IMHP scheme, as

described in chapter three.

A more detailed analysis shows that, for datagrams to be incorrectly routed, the datagrams

must reach the H A during the handoff but before the H A is aware that the M H has moved to

another FA. For this to happen, the datagrams must arrive during the time period marked as DHFX

Chapter 6 Discussion of Simulation Results 71

in Figure 3.2. A straightforward inference is that the vulnerability of the basic mobile-IP scheme

depends heavily on the amount of time required for registration to reach the H A during the

handoff. If the H A is far away from the M H ' s current care-of address, the transport layer end-to-

end performance of the basic mobile-IP scheme is worsen as its vulnerable period has been

increased.

6.3 Effect of the change in vulnerable period

From chapter four, it has been concluded that the handoff enhanced scheme does not

suffer from vulnerable periods. The next parameter to be considered is the effect of the duration of

vulnerable period imposed on the other two schemes. The time taken for each mobile registration

from M H i to the H A at neti is increased, since the data rate to net! has been reduced. This is

analogous in placing the H A at a location which is further away from the M H .

The parameters were slightly changed from those in set 1. This is to ensure that change in

performance is due primarily to the changed factor alone. Simulation was performed using

parameters in Table 6.2. Simulations were performed for a 2000 second connection period. This

was repeated using 10 different random seeds. The result is shown in Figure 6.8.

With the increase in vulnerable period by reducing the data rate between neti and Internet

T a b l e 6.2 P a r a m e t e r set 2

P a r a m e t e r t y p e :

M o b i l e l i n k da ta rate: 5 7 . 6 k b p s

D a t a rate w i t h i n l o c a l n e t w o r k : 10 M b p s

D a t a rate f r o m n e t i to Internet g a t e w a y : 196 k b p s

D a t a rate f r o m net2 a n d net3 to Internet g a t e w a y : 2 5 6 k b p s

M a x i m u m a c k n o w l e d g m e n t d e l a y : 2 s e c

• Chapter 6 Discussion of Simulation Results 72

T a b l e 6.2 P a r a m e t e r set 2

P a r a m e t e r t y p e :

R T T g a i n : 0 .125

R T T d e v i a t i o n g a i n : 0 .25

R T T d e v i a t i o n constan t : 4

o

c
w

I

o
C

W

u
H

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

E n d - t o - E n d P e r f o r m a n c e A n a l y s i s f o r V a r i o u s M o b i l e - I P s c h e m e s

1 1 1 1 1

5 10

B a s i c S c h e m e — ^ -

R o u t e O p t i m i z e d S c h e m e o-

H a n d o f f E n h a n c e d S c h e m e — © -

1 1 i . . i i . i i ,

15 2 0 25 3 0 35 4 0
J_

T i m e b e t w e e n H a n d o f f s (sec.)

F i g u r e 6.8 T C P p e r f o r m a n c e f o r p a r a m e t e r set 2

core gateway, the IMHP scheme suffers even worse degradation than in parameter set 1. It fails

sharply as soon as the time between handoff decreases. The IMHP scheme is therefore not a very

Chapter 6 Discussion of Simulation Results

desirable scheme under handoff intensive situations.

73

The basic mobile-IP scheme demonstrates a rather flat response regarding to changes in

handoff rate. The immunity to handoff rate is due to the lack of optimization. Datagrams have to

be tunnelled by the HA through to the M H regardless of its current location. As handoffs become

more frequent, the basic mobile-IP scheme begins to show weakness as the system is inevitably

losing more datagrams due to incorrect routing. The end-to-end delay pattern stays relatively flat

for handoff period from 10 to 40 seconds. Throughout this simulation, the handoff enhanced

scheme performs the best among all three schemes. Although the data rate from ne^ and the

Internet gateway has been decreased, this does not degrade the TCP end-to-end delay in the

handoff enhanced scheme with the same extent as this scheme does not suffer from this increase

in vulnerable period. Once again, the handoff enhancement scheme has shown immunity to

vulnerable period which verifies the analysis in chapter four.

A third set of parameter was chosen for running the simulation. The parameters are shown

in Table 6.3.

T a b l e 6.3 P a r a m e t e r set 3

P a r a m e t e r t y p e :

M o b i l e l i n k d a t a rate: 57 .6 k b p s

D a t a rate w i t h i n l o c a l n e t w o r k : 10 M b p s

D a t a rate f r o m net ! to Internet ga teway : 128 k b p s

D a t a rate f r o m net2 a n d net3 to Internet ga teway : 2 5 6 k b p s

M a x i m u m a c k n o w l e d g m e n t d e l a y : 2 sec

R T T g a i n : 0 .125

R T T d e v i a t i o n g a i n : 0 .25

R T T d e v i a t i o n constant : 4

Chapter 6 Discussion of Simulation Results 74

The simulation were repeated with 10 different random seeds. The result-is shown in

Figure 6.9. With the increased vulnerability of the basic scheme, the handoff enhanced scheme

has shown improvement by a wider margin with a handoff period at the 2 second range. This is

o

W

T 3
C
pq
CL,
C J
H

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

E n d - t o - E n d P e r f o r m a n c e A n a l y s i s f o r V a r i o u s M o b i l e - I P s c h e m e s

H a n d o f f E n h a n c e d S c h e m e

R o u t e O p t i m i z e d S c h e m e

B a s i c S c h e m e

10 15 2 0 2 5

T i m e b e t w e e n H a n d o f f s (sec.)

3 0

_L_L _ L

35 4 0

F i g u r e 6.9 T C P p e r f o r m a n c e f o r p a r a m e t e r set 3

due to that fact that the basic scheme is more vulnerable with the increased delay in handling

mobile registrations. In addition, there is a clear margin of improvement throughout the entire

handoff period range.

Chapter 6 Discussion of Simulation Results 75

It has been shown that the registration delay has significant effect over the TCP end-to-end

delay, the simulation model was modified to investigate the effect of further increasing propaga­

t e

C
W
T3 •
C
m
CL, u

End-to-End Performance Analysis with handoff every 40 sec

Handoff Enhanced Scheme —e—
Basic Scheme —a—

•&

J_ J_
0 .0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Propagation delay between netl and gateway (sec.)

Figure 6.10 TCP performance with inserted propagation delay (handoff every 40 sec)

tion delay within the link from the H A at netj to the Internet core gateway. This additional

propagation delay was varied between 0 to 0.9 sec. and the measurements were made over the

TCP end-to-end delay for the connection over M H j . Simulations were performed using the basic

IETF scheme and the new handoff enhanced scheme. The parameters set 3 was chosen. The same

Chapter 6 Discussion of Simulation Results 76

TCP connection was maintained at the M H i for a period of 2000 seconds. The results are shown

End-to-End Performance Analysis with handoff every 2 sec

A
pq

T3
C

pq
CL,
U
H

4 h

Handoff Enhanced Scheme — e —
Basic Scheme — A —

— A '

in Figure 6.10.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Propagation delay between neti and gateway (sec.)

Figure 6.11 T C P performance with inserted propagation delay (handoff every 2 sec)

As the propagation delay between the HA at neti and the Internet core gateway increases,

the probability of datagrams arriving during the vulnerable period increases. The increase in the

measured TCP end-to-end delay is proportional to the increase in propagation delay. Again, this

Chapter 6 Discussion of Simulation Results 77

agrees with the analysis in chapter three regarding the vulnerable period of the basic IETF

scheme.

In the case of the new enhanced scheme, the same amount of propagation delay has been

inserted into the model. It is shown that the new scheme has an increasing margin of improvement

of TCP end-to-end delay over the basic scheme as propagation delay increases. This is due to the

fact the new scheme does not suffer from a vulnerable period in which datagrams are lost.

The simulation was repeated with a higher handoff rate. In this case, the handoff period is

changed to 2 seconds. The other parameters were kept the same as in the previous case. The result

is shown in Figure 6.11. In this case of the basic IETF scheme, the TCP end-to-end delay is shown

to have increased with the increase in the added propagation delay. This confirms that the TCP

end-to-end performance of the basic IETF scheme is determined by the duration of vulnerable

period. Once again, the new enhanced scheme has shown improvement in TCP end-to-end perfor­

mance over the basic IETF scheme as the propagation delay increases.

6.4 Summary of Performance Comparison

The performance comparison for parameter set 2 is tabulated in Table 6.4. The TCP end-

to-end delays are normalized to the basic mobile-IP scheme end-to-end delay.

The normalized TCP end-to-end delay for the IMHP scheme in parameter set 2 has only

Table 6.4 Performance comparison for parameter set 2

T i m e b e t w e e n

h a n d o f f s (sec)

N o r m a l i z e d T C P e n d - t o - e n d d e l a y (%)

T i m e b e t w e e n

h a n d o f f s (sec) R o u t e o p t i m i z e d s c h e m e E n h a n c e d s c h e m e

2 559 88

4 385 97

Chapter 6 Discussion of Simulation Results 78

T a b l e 6.4 P e r f o r m a n c e c o m p a r i s o n f o r p a r a m e t e r set 2

T i m i 1 b e t w e e n

h a n d o f f s (sec)

N o r m a l i z e d T C P e n d - t o - e n d d e l a y (%)

T i m i 1 b e t w e e n

h a n d o f f s (sec) R o u t e o p t i m i z e d s c h e m e E n h a n c e d s c h e m e

6 3 5 2 9 6

10 2 8 3 8 0

16 3 1 2 9 6

2 0 2 0 8 84

4 0 8 2 8 0

T a b l e 6.5 P e r f o r m a n c e c o m p a r i s o n f o r p a r a m e t e r set 3

T i m e b e t w e e n

h a n d o f f s (sec)

N o r m a l i z e d T C P e n d - t o - e n d d e l a y (%)
T i m e b e t w e e n

h a n d o f f s (sec) R o u t e o p t i m i z e d s c h e m e E n h a n c e d s c h e m e

2 5 7 0 84

4 3 1 9 89

6 301 94

8 2 6 5 8 0

10 2 8 0 83

16 2 2 2 73

2 0 2 0 7 8 0

4 0 81 8 0

shown improvement over basic scheme when the handoff rate is very low. Whereas for the

enhanced scheme, it shows consistent improvement over the basic scheme. With parameter set 3,

the result is tabulated in Table 6.5. It is now evident that the handoff enhanced scheme is well

suited for situations with high handoff rates. The IMHP scheme can only give better performance

when the handoff rate is low. The improvement factor is about 12% for very low handoff situation.

For the handoff enhanced scheme, it yields improvement of over 10% in most cases. The

maximum gain from this scheme is 27%. Even at high handoff rate, the handoff enhanced scheme

delivers performance improvement of over 12% for the system model and parameters considered.

Chapter 6 Discussion of Simulation Results 79

With additional propagation delay at the link between the H A of neti and the Internet

gateway, the results, for the system with handoffs every 40 seconds, are tabulated in Table 6.6.

The TCP end-to-end delay is normalized against the basic IETF scheme. For the system setup and

the parameters considered, improvements of up to 54% has been found in the new enhanced

scheme. ;

T a b l e 6 .6 N o r m a l i z e d T C P e n d - t o - e n d d e l a y w i t h h a n d o f f e v e r y 4 0 s e c

P r o p a g a t i o n d e l a y (sec) N o r m a l i z e d T C P e n d - t o - e n d d e l a y (%)

0.0 8 0

0.1 66

0.2 57

0.3 58

0.4 52

0.5 52

0.6 4 6

0.7 50

0.8 51

0.9 51

For the system with handoffs every 2 seconds and additional propagation delay for the link

between neti and the Internet, the results are tabulated and shown in Table 6.7. The TCP end-to-

end delay are normalized against the values for the basic IETF scheme.

The end-to-end performance of the new scheme is found to be better than the IETF

T a b l e 6.7 N o r m a l i z e d T C P e n d - t o - e n d d e l a y w i t h h a n d o f f e v e r y 2 sec

P r o p a g a t i o n d e l a y (sec) N o r m a l i z e d T C P e n d - t o - e n d d e l a y {%)

. 0 . 0 85

0.1 8 2

0.2 78

Chapter 6 Discussion of Simulation Results _ 80

T a b l e 6.7 N o r m a l i z e d T C P e n d - t o - e n d d e l a y w i t h h a n d o f f e v e r y 2 s e c

P r o p a g a t i o n d e l a y (sec) N o r m a l i z e d T C P e n d - t o - e n d d e l a y (%)

0.3 7 5 .

0.4 74

0.5 7 0

0.6 7 2

0.7 6 7

0.8 6 7

0.9 67

scheme. Improvements of up to 33% was found with the system setup considered.

From the results, it is shown that the IMHP scheme can deliver improved performance

over the basic IETF scheme under light handoff situation. The reduction of triangular routing does

bring along improvement in overall performance. However, as the handoff rate increases, the

scheme suffers greatly and is deemed unstable.

It is evident that the improvements in TCP end-to-end delay performance has been

achieved in most cases with the proposed handoff enhanced scheme. This scheme is proved to

deliver better performance even when handoff intensity is high. Moreover, the scheme is able to

withstand the change in mobile registration delay without compromising its performance, since it

does not suffer from datagram losses during handoffs.

Chapter 7 Conclusion

In this study, a new handoff enhanced scheme was proposed. Together with two other

different proposals of mobile-IP, these proposals were simulated in OPNET and the TCP end-to-

end delays were measured by simulation.

The basic IETF mobile-IP scheme proposed was the basis for comparison, since it had

been approved as an Internet standard. It was found that this basic scheme provided a stable

system. However the performance could not be improved, since it does not employ any optimiza­

tion. Consequently, the routing in this scheme is suboptimal, and hence, wasting network

bandwidth which is already scarce in mobile links.

A route optimization (IMHP) scheme was analyzed to seek for improvement over the

basic scheme. The scheme was found to be useful at low handoff rate. According to the simulation

results, this new scheme degraded tremendously with a slight increase in handoff rate. Since

datagrams were sent directly to the FAs, datagram loss became excessive during handoffs. As a

result, the transport layer protocol had to devote a lot of bandwidth in synchronizing the connec­

tion. This scheme is only suitable for those MHs with infrequent handoffs.

The handoff enhanced scheme, being a variant of route optimization scheme, was shown

by simulation that it could decrease the TCP end-to-end delay over the other two schemes. With

the particular system model and parameters, it was found that the reduction in TCP end-to-end

delay of up to 27% over the basic scheme could be achieved. When additional mobile registration

delay had been introduced, it was found that the reduction in TCP end-to-end delay could be up to

54%.

81

Chapter 7 Conclusion 82

Besides, the handoff enhanced scheme did not suffer from instability problems as found in

the IMHP scheme. In most cases, the buffering method prevented datagram loss. This had reduced

the TCP end-to-end delay by a significant amount, since datagram losses had detrimental effects

over TCP connection. By preventing possible datagram loss, the transport layer protocol would

not mistakenly throttle the traffic. By eliminating that source of datagram losses, the new handoff

enhanced scheme is found to be well suited for situations with frequent handoffs. In addition, this

new scheme waits for registration reply before relaying datagrams immediately. This would

prevent the security loophole of replay message attack on the foreign agent by a malicious host.

Thus the security of the system is not compromised.

Moreover, this scheme does not require any TCP layer modification to be made. As a

result, the proposed handoff enhanced scheme for FAs can be easily applied. Hence, any TCP

connections with MHs connected to these FAs can be improved.

Chapter 7 Conclusion

Possible Furtherwork:

83

• As there are a lot of variations within Internet, another approach to test the scheme is

to implement it over a relative simple network. Possible choices are Linux and

FreeBSD, as the source code for these operating systems are publicly available and has

been quite stable in performance. (Note that a PC with 804861 (66MHz) processor

could out-perform a SPARCstation2 IPX with the benchmark tests for Unix machines

[29].) Starting from version 2.0 onwards, Linux kernel supports the-use of IP

tunnelling. Adapting the proposed scheme into these operating systems are made quite

straightforward. Besides, for mobile computing to be feasible, the operating system

has to be able to run on PC or laptop computers.

• Another interesting alternative would be to look at performance improvement with

specialized code with the TCP layer to handle the handoff. This approach should give

even more dramatic improvement. Indirect TCP scheme, for example, could be a good

candidate for investigation..

•l

2
8 0 4 8 6 is a p r o d u c t d e v e l o p e d b y Intel C o r p o r a t i o n , Inc .

S P A R C s t a t i o n is a reg is te red t r a d e m a r k o f S P A R C In ternat iona l , Inc . , l i c e n s e d e x c l u s i v e l y to S u n M i c r o ­

s y s t e m s , Inc .

Glossary

This section provides a list of acronyms used in this thesis.

BS - Base Station

C A - Cache Agent

C H - Corresponding Host

FA - Foreign Agent.

HA - Home Agent

ICI - Internal Control Interface

IETF - Internet Engineering Task Force

IMHP - Internet Mobile Host Protocol

L A N - Local Area Network

LSR - Loose Source Routing

M A - Mobile Agent (Home Agent and Foreign Ag

MOBILE-IP - Internet Protocol with mobility extension

RTT - Round Trip Time

TCP - Transport Control Protocol

UDP - User Datagram Protocol

W M D N - Wireless and Mobile Data Network

84

REFERENCES

[I] C. Perkins, IP Mobility Support, RFC 2002, Oct. 1996. •

[2] A. Myles, D. B. Johnson, and C. E. Perkins, "A Mobile Host Protocol Supporting Route
Optimization and Authentication," IEEE Journal on Selected Areas in Communications,
vol. 13, pp. 839-849, June 1995.

[3] P. Manzoni, D. Ghosal, and G. Serazzi, "Impact of Mobility on TCP/IP: An Integrated
Performance Study," IEEE Journal on Selected Areas in Communications, vol. 13, pp.
858-867, Jun. 1995.

[4] J. Postel, Transmission Control Protocol, RFC793, Sep. 1981.

[5] International Organization for Standardization, Basic Reference Model for Open Systems
Interconnection, ISO 7498, 1984.

[6] C. Perkins, "Providing continuous network access to mobile hosts using TCP/IP," Comput.
Networks, ISDN Syst., vol. 26, pp. 357-369, 1993.

[7] D. B. Johnson, "Mobile host internetworking using IP loose source routing," School of
Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, tech. rep. CMU-CS-93-128, Feb.
1993.

[8] F. Teraoka, Y. Yokote, and M . Tokoro, "A network architecture providing hosts migration
transparency," in Proc. ACM SIGCOMM '91, Zurich, Switzerland, pp. 209-220, Sep.
1991.

[9] J. Ioannidis, D. Duchamp, and G. Q. Maquire, "IP based protocols for mobile
internetworking," in Proc. ACM SIGCOMM '91, Zurich, Switzerland, pp. 235-245, Sep.
1991.

[10] H. Wada, T. Yozawa, T. Ohhishi, and Y. Tanaka, "Mobile computing environment based
on Internet packet forwarding," in Proc. Winter 1993 Usenix Conf, San Diego, CA, Jan.
1993.

[II] A. Myles and D. Skellern; "Comparison of mobile host protocols for IP," Internetworking:
Res., Experience, vol. 4, no. 4, Dec. 1993.

85

References 86

[12] C. E. Perkins and P. Bhagwat, "A Mobile Networking System based on Internet Protocol,"
IEEE Personal Communications, pp. 32-41, First Quarter 1994.

[13] D. E. Comer, Internetworking with TCP/IP, vol. 1, Prentice-Hall, 1991.

[14] R. Droms, Dynamic Host Configuration Protocol, RFC 1541, Oct. 1993.

[15] J.'Postal, Internet Control Message Protocol, RFC 792, Sep. 1981.

[16] J. Postel, User Datagram Protocol, RFC 768, Aug. 1980.

[17] Ronald L. Rivest, The MD5 Message-Digest Algorithm, RFC 1321, Apr. 1992.

[18] D. E. Eastlake, S. D. Crocker, and J. I. Schiller, Randomness Requirements for Security,
RFC 1750, Dec. 1994.

[19] P. Karn, and C. Partridge, "Improving Round-Trip Time Estimates in Reliable Transport
Protocols," Proceedings of ACM SIGCOMM '87, pp. 2-7, 1987.

[20] V. Jacobson, "Congestion avoidance and control," in Proc. ACM SIGCOMM '88,
Stanford, CA, pp. 314-329, Aug. 1988.

[21] M . Ulema, K. Khalil, "Access Traffic Characteristics of a Wide Area Network,"
Proceedings of Global Data Networking,-pp. 146-153, Dec. 1993.

[22] J. Nagle, "Congestion Control in TCP/IP Internetworks," ACM Communication Review,
pp. 11-17, Oct. 1984.

[23] S. Shenker, S. Zhang, and D. Clarck, "A Theoretical Analysis of Feedback Flow Control,"
ACM Computer Communication Review, pp. 156-165, Sep. 1990. .

[24] D. Chiu and R. Jain, "Analysis of the Increase and Decrease Algorithms for Congestion
Avoidance in Computer Networks," Computer Networks and ISDN System, vol. 17, pp. 1-
14,1989.

[25] H. Zygmunt, "Adaptive Admission Congestion Control," A C M Computer
Communications Review, vol. 21, no. 5, pp. 58-76, Oct. 1991.

References 87

[26] L. Huynh, R. Chang, and W. Chou, "Performance Comparison between TCP Slow-Start
and a new Adaptive Rate-Based Congestion Avoidance Scheme," MASCOTS '94:
Modeling, Analysis, and Simulation I nt' I Workshop, pp. 300-307, 1994.

[27] K. Khalil, and Y. S. Sun, "Performance Considerations for TCP/IP in Wide Area
Networks," Local Computer Networks, 19th Conference, pp. 166-175, 1994.

[28] R. Caceres, and L. Iftode, "Improving the Performance of Reliable Transport Protocols in
Mobile Computing Environments," IEEE Journal on Selected Areas in Communications,
vol. 13, pp. 850-857, Jun. 1995.

[29] R. Grehan, "Our new algorithm-based Native Mode suite tests processor performance and
FPU capabilities for a variety of CPUs," BYTE Magazine, pp. 73-82, Mar. 1995.

Appendix A. Supplementary Source Code of the IETF
Model

/* mobile_rte_sup.ex.c */
/* Routing support procedures f o r the Mobile IP example model */

ttinclude <opnet.h>
(•include "mobile-ip .h"
#include "mobile_rte_sup.h"
#include " i p _ r t e _ s u p . h "
#include "protocol.h"

/* Functions c a l l e d by Process Module */

L i s t *
mobile_rte__sup„table_setup (f ile_name)

char *file_name;
{
L i s t * m o b i l e _ s t r m _ l i s t _ p t r ;
L i s t * l i n e _ l i s t _ p t r ;
m o b i le_rte_table*table_ptr,-

/* Provides comprehensive r o u t i n g t a b l e loading and p a r s i n g */
/* s e r v i c e s f o r Mobile IP module. */
FIN (mobile_rte_sup_table_setup (file_name, netO, nodeO, n e t i , nodel, net2, node2))

/* Load the l i s t of t e x t l i n e s from the s p e c i f i e d f i l e " . */
/* Note: this"procedure w i l l q u i t the simnulation i f */
/* f i l e cannot be loaded, so i t i s assumed that there */
/* are no problems upon r e t u r n i n g . */
l i n e _ l i s t _ _ p t r = mo b i l e _ r t e _ s u p _ t a b l e _ l o a d (file_name);

/* Parse the contents of the obtained l i s t i n t o */
/* a r o u t i n g - i n s t r u c t i o n t a b l e . */
m o b i l e _ s t r m _ l i s t _ p t r = m o b i l e _ r t e _ s u p _ l i s t _ p a r s e (l i n e _ l i s t _ p t r) ;

/* In debug mode, i f t r a c i n g i s a c t i v e , p r i n t the t a b l e */
i f (op_prg_odb_trace_active ())

{
mo b i l e _ r t e _ s u p _ t a b l e _ p r i n t (m o b i l e _ s t r m _ l i s t _ p t r) ,-
}

FRET(m o b i l e _ s t r m _ l i s t _ p t r) ,-

} • . '

L i s t *
m o b i l e _ r t e _ s u p _ t a b l e _ l o a d (file_name) char *file_name;

{
L i s t * l i n e _ l i s t _ p t r ;
char e r r _ s t r [256],-

/* Read i r i a r o u t i n g t a b l e from an a s c i i */
/* f i l e adhering to format defined above. */
FIN (mobile_rte_sup_table_load (file_name))

/* Open and read the f i l e i n t o the l i s t . */
l i n e _ l i s t _ p t r = op_prg_gdf_read (f ile_name) ,-

88

Appendix A. Supplementary Source Code of the IETF Model

/* Test f o r e r r o r i n reading. */
i f (l i n e _ l i s t _ p t r == OPC_NIL)

• {
s p r i n t f (e r r _ s t r , " F i l e Name: %s", file_name);
op_sim_end ("Package : mobile_rte_sup",

"Error : Unable to read r o u t i n g t a b l e f i l
e r r _ s t r , " ") ;

\ } ' '

/* Return the l i s t of. t e x t l i n e s . */
FRET (l i n e _ l i s t _ p t r)
}

L i s t *
m o b i l e _ r t e _ s u p _ l i s t _ p a r s e (l i n e _ l i s t _ p t r)

L i s t * l i n e _ l i s t _ p t r ;
{
L i s t * m o b i l e _ s t r e a m _ l i s t _ p t r ,-
mo b i l e _ r t e _ t a b l e * m r t _ p t r ;
i n t i , num_lines,-
char* l i n e ;
L i s t * f i e l d _ l i s t _ p t r ;

/* E x t r a c t i n f o r m a t i o n from the l i n e s of an a s c i i r o u t i n g t a b l e */
/* and construct a corresponding r o u t i n g t a b l e s t r u c t u r e which */
/* contains r o u t i n g i n s t r u c t i o n s . */
FIN, (m o b i l e _ r t e _ s u p _ l i s t _ p a r s e (l i n e _ l i s t _ p t r))

/* A l l o c a t e a rou t i n g t a b l e s t r u c t u r e . */ ' •
mrt_ptr = (mobile_rte_table*) op_prg_mem_alloc (s i z e o f (m o b i l e _ r t e _ t a b l e))

/* A l l o c a t e a temporary t a b l e f o r ho l d i n g l i s t s . */
mobile_stream_^list_ptr = o p _ p r g _ l i s t _ c r e a t e () ;

/* Scan through each of the l i n e s , one at a time. */
num_lines = o p _ p r g _ l i s t _ s i z e (l i n e _ l i s t _ p t r) ;
f o r (i = 0; i < num_lines; i++)
{ •

/* Obtain the i _ t h l i n e . */
l i n e = o p _ p r g _ l i s t _ a c c e s s (l i n e _ l i s t _ p t r , i) ;

/* Decompose i t i n t o f i e l d s (f i e l d boundaries are */
/* i n d i c a t e d by spaces, tabs, slashes, or commas. */
f i e l d _ l i s t _ p t r = op_prg_str_decomp (l i n e , " , / \ t ") , -

/* Format f or a l i n e i s as f o l l o w s : */
/* <output_stream> <mtu>*/
/* Incomplete l i n e s are skipped. */
i f (o p _ p r g _ l i s t _ s i z e (f i e l d _ l i s t _ p t r) < 4)

continue ,-

/* Create a r o u t i n g i n s t r u c t i o n s t r u c t u r e . */ •
mrt_ptr = (mobile_rte_table*)

op_prg__mem_alloc (s i z e o f (mobile_rte_table)) ;

/* Transfer the parsed f i e l d s i n t o the s t r u c t u r e */
/* F i r s t o b t a i n the d e s t i n a t i o n stream and mtu f i e l d s . */
mrt_ptr->strearn = a t o i (

op _ p r g _ l i s t _ a c c e s s (f i e l d _ l i s t _ p t r , MOBILE_TBL_OUTSTREAM));
mrt_ptr->mtu = a t o i (

op _ p r g _ l i s t _ a c c e s s (f i e l d _ l i s t _ p t r , MOBILE_TBL_MTU));

Appendix A. Supplementary Source Code of the IETF Model

mrt_ptr->careof.net = a t o i ('
o p _ p r g _ l i s t _ a c c e s s (f i e l d _ l i s t _ p t r , M0BILE_TBL_CAREOF_NET));

mrt_ptr->careof.node = a t o i (
o p _ p r g _ l i s t _ a c c e s s (f i e l d _ l i s t _ p t r , MOBILE_TBL_CAREOF_NODE)) ,-

i f (mrt_ptr->mtu <= 0)
mrt_ptr->mtu = 0x7FFFFFFF;

i f (rnrt_ptr->careof-net == ADDRESS_UNDEFINED &&
mrt_ptr->careof.node == ADDRESS_UNDEFINED)

{
/* careof address not implemented */
mrt_ptr->condition = CONDITION_ENABLED;

} •
e l s e
{ .

/* d i s a b l e a l l c o n d i t i o n f l a g s i n i t i a l l y */
mrt_ptr->condition = CONDITION_DISABLED;

}

/* Append the r o u t i n g i n s t r u c t i o n to the temporary l i s t . */
o p _ p r g _ l i s t _ i n s e r t (m o b i l e _ s t r e a m _ l i s t _ p t r , mrt_ptr, OPC_LISTPOS_TAIL)

}

FRET{ m o b i l e _ s t r e a m _ l i s t j > t r)
}

v o i d /
m o b i l e _ r t e _ s u p _ t a b l e _ p r i n t (m o b i l e _ s t r e a m _ l i s t _ p t r)
L i s t * m o b i l e _ s t r e a m _ l i s t _ p t r ;

{
mobile_rte_table*table„entry;
i n t i , s i z e ;
char dne_str [128], dno_str [128],-
char ' nne_str [128], nno_str [128], strO [512],-

/* P r i n t the contents of 'a r o u t i n g t a b l e . */
FIN (m o b i l e _ r t e _ s u p _ t a b l e _ p r i n t (m o b i l e _ s t r e a m _ l i s t _ p t r))

s i z e = o p _ p r g _ l i s t _ s i z e (m o b i l e _ s t r e a m _ l i s t _ p t r),-
i f (s i z e == 0)

{
op_prg_odb_print_major ("Routing t a b l e i s empty", VOS_NIL) ,-
}

else{
op_prg_odb_print_major ("Routing t a b l e contents :", VOS_NIL);
for (i = 0,- i < s i z e ; i++)

{
table_entry'= (mobile_rte_table*)

o p _ p r g _ l i s t _ a c c e s s (m o b i l e _ s t r e a m _ l i s t _ p t r , i)
s p r i n t f f strO, "Stream (%d): mtu (%d)"

, table_entry->stream, table_entry->mtu);
op_prg_odb_print_minor (strO, VOS_NIL);
}

}

F O U T

}

Compcode

Appendix A. Supplementary Source Code of the IETF Model 91

mobile_rte_sup_route_select (ro u t e _ t a b l e , mobile_table, pkptr, i c i _ p t r
, mobile_agnt_flag, p k _ i d , t t l
, HA_bind_ptr, FA_bind_ptr,' MH_bind_ptr

/* , home_netO, home_netl, home_net2)*/
, ipO, i p l , ip2)

i p _ r t e _ t a b l e * r o u t e _ t a b l e ;
L i s t ' *mobile_table;
Packet *pkptr;
I c i * i c i _ p t r ;
i n t m o bile_agnt_flag;
i n t * p k _ i d ;
i n t t t l ;
L i s t *HA_bind_ptr, *FA_bind_ptr, *MH_bind_ptr;
IP *ipO, * i p l , * i p 2 ;
/ * i n t home_netO, home_netl, home_net2;*/
{

i n t i , j , num_bind, num_multi_bind;
IP ' dest; ' •
HA_mobility_binding*home_entry;
F A _ m o b i l i t y _ b i n d i n g * v i s i t o r _ e n t r y ; .
m u l t i _ b i n d i n g *multi_bind_entry;
Compcode status,-

0

FIN (mobile_rte_sup_route_select(r o u t e _ t a b l e , mobile_table, pkptr, ...))

op_pk_nfd_get(pkptr, "dest_net", Sdest.net);
op_pk_nfd_get (pkptr, "dest_node", kdest.node) ,-

/* Se l e c t a route from the r o u t i n g t a b l e which matches the */
/* requested d e s t i n a t i o n network and node. */
i f (!memcmp(&dest, ipO, s i z e o f (I P)) I I

!memcmp(&dest, i p l , s i z e o f (I P)) I I
!memcmp(i d e s t , ip2, s i z e o f (I P))) •

FRET (OPC_COMPCODE_FAILURE);

i f (send_via_FA(pkptr, MH_bind_ptr, mobile_table, i c i _ p t r , dest, mobile_agnt_flag)
== OPC_COMPCODE_SUCCESS)

FRET (OPC_COMPCODE_SUCCESS)
el s e i f (f o r w a r d _ t o _ v i s i t o r (mobile_table, FA_bind_ptr, pkptr, i c i _ p t r - , dest) = =

OPC_COMPCODE_SUCCESS)
FRET (OPC_COMPCODE_SUCCESS) ,

el s e i f (encap_packet(r o u t e _ t a b l e , HA_bind_ptr, pkptr, i c i _ p t r , ipO, dest, p k _ i d , t t l)
== OPC_COMPCODE_SUCCESS) ' .

FRET (OPC_COMPCODE_SUCCESS)
el s e

FRET (OPC_COMPCODE_FAILURE)

•Compcode
send_via_FA(pkptr, b i n d _ l i s t _ p t r , mobile_table, i c i _ p t r , dest, a g n t _ f l a g)
L i s t * b i n d _ l i s t _ p t r , *mobile_table;
I c i * i c i _ p t r ;
Packet *pkptr;
IP dest;
i n t • a g n t _ f l a g ;
{
i n t i , s i z e ;
i n t copy = f a l s e ;
i n t next_net, next_node, stream, mtu;
Packet *cp_pkptr,-
Compcode Status= OPC_COMPCODE_SUCCESS;
MH_FA_binding *f a _ e n t r y ;

http://Sdest.net

Appendix A. Supplementary Source Code of the IETF Model

r n o b i l e _ r t e _ t a b l e * t a b l e _ e n t r y ;
char s t r 0 [8 0] , s t r l [8 0] ;

FIN(send_via_FA(pkptr, b i n d _ l i s t _ p t r , mobile_table, i c i _ p t r , dest))

/* F i r s t of a l l , check i f packet i s for any enabled streams */
s i z e = o p _ p r g _ l i s t _ s i z e (mobile_table) ,-
for (i=0; i < s i z e ; ++i)
{

ta b l e _ e n t r y = (m o b i l e _ r t e _ t a b l e *) o p _ p r g _ l i s t _ a c c e s s (mobile„table, i)

i f (IP_equal(table_entry->careof, dest) &&
tabl e _ e n t r y - > c o n d i t i o n == C0NDITION_ENABLED)

{
stream = table_entry->stream,-
mtu = table_entry->mtu;

next_net = ADDRESS_UNDEFINED;
next_node = ADDRESS_UNDEFINED;

de l i v e r _ p a c k e t (pkptr, i c i _ p t r
, next_net, next_node, stream, mtu);

FRET(OPC_COMPCODE_SUCCESS)

/* Now, check to see i f there i s any m o b i l i t y b i n d i n g */
s i z e = o p _ p r g _ l i s t _ s i z e (b i n d _ l i s t _ p t r) ,- •

i f (s i z e == 0 && a g n t _ f l a g)/* no bindings and not a mobile node */
FRET(OPC_COMPCODE_FAILURE)

/* each enabled FA w i l l r e c e i v e a copy of the packet */

fort i=0; i < s i z e ; ++i)
{

fa_entry = (MH_FA_binding *)
o p _ p r g _ l i s t _ a c c e s s (b i n d _ l i s t _ p t r , i);

/* ob t a i n the stream a s s o c i a t e d w i t h the current b i n d i n g */
stream = fa_entry->stream;

i f (chk_strm_condition(•mobile_table, stream, &mtu) == CONDITION_ENABLED
{ '•• •

mtu = get_strm_mtu(mobile_table, stream);*/
i f (mtu == MOBILE_STRM_NONEXISTENT)
{

s p r i n t f (strO, "Discarding packet (%d) ", op_pk_id (pkptr))
s p r i n t f (s t r l , "Stream non-existent");
op_prg_odb_print_major (strO, s t r l , OPC__NIL) ;
op_pk_destroy (pkptr) ,-

}

e l s e
{

next_net = fa_entry->careof'.net ;
next_node = fa_entry->careof.node;

#if 1

#else

d e l i v e r _ p a c k e t (pkptr, i c i _ p t r
, next_net, next_node, stream,, mtu

FRET(0PC_C0MPCODE_SUCCESS)

copy = true,-
cp_pkptr = op_pk_copy(pkptr) ,-

Appendix A. Supplementary Source Code of the IETF Model

d e l i v e r _ p a c k e t (cp_pkptr, i c i _ p t r
, nexC_net, next_node, stream, mtu);

itendif

}

/* have ,to d e a l l o c a t e o r i g i n a l packet s i n c e i t i s no longer needed */
i f (copy)
{ .

op_pk_destroy (pkptr) ,-
FRET(status)

FRET(OPC_COMPCODE_FAILURE)

Compcode
encap_packet(r o u t e _ t a b l e , b i n d _ l i s t _ p t r , pkptr, i c i _ p t r , current, dest, p k _ i d , t t l
i p _ r t e _ t a b l e *route_table,-
L i s t
Packet
I c i
IP
i n t
i n t

* b i n d _ l i s t _ p t r , -
*pkptr;
* i c i _ p t r ;
c urrent, dest;
* p k _ i d ;
t t l ;

char str0[512], strl [512] , -
Packet *encap_pkptr,-
Packet *warn_pkptr;
Packet . *warn_ipptr;
i n t ' i , j , num_bind, num_multi_bind;
i n t next_net, next_node, outstrm, mtu;
IP o r i g ;
i n t d a t a _ l e n ;
i n t copy = f a l s e ;
HA_mobility_binding*home_entry;
rnul t i _ b i n d i n g * mu 11 i_bind_en t ry ;
Compcode Status = OPC_COMPCODE_FAILURE; .

FIN(encap_packet(r o u t e _ t a b l e , ...))

num_bind = o p _ p r g _ l i s t _ s i z e (b i n d _ l i s t _ p t r);

i f (num_bind == 0)
FRET(OPC_COMPCODE_FAILURE);

for (i=0; i<num_bind;

home_entry = (HA_mobility_binding *)
o p _ p r g _ l i s t _ a c c e s s (b i n d _ l i s t _ p t r , i);

/* check f o r matches i n HA m o b i l i t y b i n d i n g */
i f (!memcmp(&dest,&home_entry->home_addr, s i z e o f (I P)))
{

Status = OPC_COMPCODE_SUCCESS;
num_multi_bind = o p _ p r g _ l i s t _ s i z e (home_entry->multi_bind_list)
f o r i j=0; j<num_multi_bind; ++j)
(•

m u l t i _ b i n d _ e n t r y = (m u l t i _ b i n d i n g *)
o p _ p r g _ l i s t _ a c c e s s (home_entry->multi_bind_list,

/* encap_j3kptr = op_pk_copy (pkptr);*/

data_len = o p _ p k _ t o t a l _ s i z e _ g e t (p k p t r) / 8 ;

Appendix A. Supplementary Source Code of the IETF Model 94

encap_pkptr = op_pk_create_fmt("ip_dgram");
op_pk_bulk_size„set(encap_pkptr, data_len*8) ,-

copy = true;
op_pk_nfd_set(

op_pk_nfd_set (
op_pk_nfd_set(

op_pk_nf d_set (

op_pk_nfd_set(

op_pk_nfd_set(

encap_pkptr, "data"
, op_pk_copy(pkptr)) ;
encap_pkptr, "protocol"., P R 0 T O C 0 L _ E N C A P
encap_pkptr, "src_net",
current .net) ,-
encap_pkptr, "src_node",
current.node);
encap_pkptr, "dest_net",
multi_bind_entry->careof.net);
encap_pkptr, "dest_node",
multi_blnd_entry->careof.node);

op_pk_nfd_set(encap_pkptr,"orig_len",data_len),
op_pk_nfd_set(encap_pkptr,"frag_len",data_len),

op_pk_nfd_set(encap_pkptr,"ident", (*pk_id)++);
op_pk_nfd_set(encap_pkptr,"frag", 0) ;
op_pk_nfd_set(encap_pkptr, " t t l " , t t l) ;

/ * Determine the output stream on which to route i t . * /
i f (ip_rte_sup_route_select (route_table

, multi_bind_entry->careof.net
, multi_bind_entry->careof.node
, &next_net, &next_node, koutstrm, &mtu)

= = OPC_COMP.CODE_FAILURE)
{

/ * If no route is provided, destroy the packet. */
i f (op_prg_odb_ltrace_active ("ip_errs"))
{ ' -

sprintf (strO, "Discarding unroutable packet (%d)"
, op_pk_id (encap_pkptr));

sprintf (s t r l , "Destination: net (%d), node (%d)"
, multi_bind_entry->careof.net
, multi_bind_entry->careof.node);

op_prg_odb_print_major (strO, s t r l , OPC_NIL);

)
op_pk_destroy (encap_pkptr);

}
-else
{ •

deliver_packet(encap_pkptr, i c i _pt r
, next_net, next_node
, outstrm, mtu) ,-

} . • -
}

#if 0
/ * At this stage, i t is assumed that binding exists

* for mobile node. Therefore send binding warning
* message to original sender * /

if- (route_optim == true)
{

warn_pkptr = op_pk_create_fmt ("bind_warn") ,-
op_pk_nfd_set(warn_pkptr, "home_addr_net"

, home_entry->home_addr. net).,-
op_pk_nfd_set(warn_pkptr, "home_addr_node"

, home_entry->home_addr.node);

data_len = op_pk_total_size_get(warn_pkptr)/8;
warn_ipptr = op_pk_create_f mt ("ip_dgram") ,-
op_pk_nfd_set(warn_ipptr, "data", warn_pkptr);

Appendix A. Supplementary Source Code of the IETF Model 95

op_pk_bulk_size_set(warn_ipptr,data_len*8);

op_pk_nfd_set(warn_ipptr, "src_net", current.net);
op_pk_nfd_set(warn_ipptr, "src_node", current.node);
op__pk_nfd_get (pkptr, "src_net", Sorig.net);
op_pk_nfd_get(pkptr, "src_node", Sorig.node);
op_pk_nfd_set(warn_ipptr, "dest_net", orig.net);
op_pk_nfd_set(warn_ipptr, "dest_node",orig.node);
op_pk_nfd_set(warn_ipptr,"orig_len",data_len);

„ ' op_pk_nfd_set (' warn_ipptr, " f r a g _ l e n " , data_len) ;
op_pk__nf d_set (' warn_ipptr, " f rag" , 0);

1 op_p'k_nf d_set (warn_ipptr, " ident" ; (*pk_id)-+ +) ;
op_pk_nf d_set (warn_ipptr,"protocol", PROTOCOL_UDP) ,-
deliver_packet(warn_ipptr,

} • '
#endif

}

}

• i f (copy)
op_pk_destroy(pkptr);

FRET(status)
)

v o i d
d e l i v e r ̂ packet (pkptr, i c i _ p t r , . n e x t j e t , next_n'ode, outstrm, mtu)
Packet
I c i
i n t

*pkptr,-
* i c i _ p t r ;
next net, next node, outstrm, mtu;

char str0[512], strl [5 1 2] ;
i n t i , len;
i n t header_size, f r a g _ s i z e , data_size;
i n t dest_nef, dest_node;
i n t t t l ; . '
i n t frag_accum, frag, num_frags;
Packet *ip_pkptr, *data_pkptr, *f r a g _ p t r ;

FIN(deliver_packet(pkptr,) .)

/* obtain packet's d e s t i n a t i o n */
op_pk_nfd_get (pkptr, "dest_net", &dest_net .) ,-
op_pk_nfd_get (pkptr, "dest_node", sd e s t j i o d e) ;

tr)

/* Decrement the packet's t l m e - t o - l i v e f i e l d . If zero i s reached, */
/* d i s c a r d the packet rather than send i t on. */
op_pk_nfd_get (pkptr, " t t l " , & t t l) ;
t t l - - ;
i f (t t l ==0) , ' '

/* In debug mode, i n d i c a t e that a packet i s destroyed */
/* due to an expired t t l . */ •
i f (op_prg_odb_ltrace_active ("ip__errs")) . • •

}
else{

{

} •

s p r i n t f (strO, "Discarding packet (%d) with expired TTL", op_pk_id • (pkp-

s p r i n t f (strl", "Destination: net (%d), node (%d)", dest_net, dest_node);
op_prg_odb_print_major (strO, s t r l , OPC_NIL);.

op_pk_destroy (pkptr);

/* Assign the new decremented value of t t l . */

http://current.net
http://Sorig.net
http://orig.net

Appendix A. Supplementary Source Code of the IETF Model 96

op_pk_nfd_set (pkptr, " t t l " , t t l) ;

/ * In debug mode, trace the routing action. * /
i f (op_prg_odb_ltrace_active ("mobile-ip_rte"))
{

sprintf (strO, "Routing towards (%d, %d)",' dest_net, dest_node) ,-
sprintf (s t r l , "Next hop (%d, %d), output stream (%d)",

next_net, hext_node, outstrm) ,-

op_prg_odb_print_major (strO, s t r l , OPC_NIL);
} •

/ * Install an Ici indicating to the lower layer what the */
/ * address of the next (intermediate) node i s . * /
op_ici_attr_set (ici_ptr , "next_node", next_node);
o p _ i c i _ i n s t a l l (i c i_ptr) ;

/ * Obtain the size in bytes of the fragment. * /
frag_size = op_pk_total_size_get (pkptr) / 8;

/ * Obtain the number of bytes of data carried in this fragment * /
op_pk_nfd_get (pkptr, "frag_len", &data_size) ,-

/ * Also obtain the difference between the packet size * /
/ * and the length f i e l d : this is the size of the header. */
header_size = frag_size - data_size;

/ * If i t is smaller than the maximum transfer unit, send i t as i s . */
i f (frag_size <= mtu)
{

op_pk_send (pkptr, outstrm) •;
}
else{

/ * Otherwise, break i t into fragments * /
/ * Each fragment can contain up to (mtu - header_size) bytes of data */
num_frags = (data_size + mtu - header_size - 1) / (mtu - header_size);

/ * In debug mode, indicate the fragmentation. */
i f (op_prg_odb_ltrace_active ("ip_frag"))
{

sprintf (strO, "Breaking datagram into (%d) fragments", num_frags);
op_prg_odb_print_major (strO, OPC_NIL) ,-

}

/ * If the fragment is carrying the original datagram given to IP,
/ * extract i t before copies are made. Only one fragment can carry
/ * the original packet for the reassembly model to work properly,
i f (op_pk_nfd_is_set (pkptr, "ip_dgram"))

op_pk_nfd_get (pkptr, "ip_dgram", &ip_pkptr);
else ip_pkptr = OPC_NIL;

/ * If the packet is carrying any encapsulated data (normally this * /
/ * would happen only for a packet fragmented for the f i r s t time), * /
/ * extract this data packet so that i t w i l l not appear in each */
/ * fragment generated by copying. * /
i f (op_pk_nfd_is_set (pkptr, "data"))

op_pk_nfd_get (pkptr, "data", &data_pkptr);
• else data_pkptr = OPC_NIL;

/ * Loop through and create the fragments . */
for (frag_accum =0, i = 0; i < num_frags; i++)
{ ,

/ * Make a copy of the original packet. * / .
frag_ptr = op_pk_copy (pkptr);

Appendix A. Supplementary Source Code of the IETF Model 97

/* In d i c a t e that the copy i s a fragment */
op_pk_nfd_set . (f r a g _ p t r , " f r a g " , 1);

/* for a l l but the l a s t fragment, the s i z e i s the mtu. */
/* and the encapsulated i p packet i s not includ e d . */ .
i f (i < num_frags - i) .
{ " • \ •

. op_pk__nfd_set (f r a g _ p t r , " f r a g _ l e n " , mtu - header_size) ;
o p _ p k _ t o t a l _ s i z e _ s e t (f r a g _ p t r , 8 * mtu);
frag_accum += (mtu - h e a d e r _ s i z e) ; •

else{

*/

from the */

avoid */

now be */

len = d a t a _ s i z e - frag_accum;
op_pk_nfd_set (f r a g _ p t r , ' " f r a g _ l e r i " , len) ;
op_pk_total__size_set (f r a g ^ p t r , 8 * (header_size + l e n)) ;

/* I f the o r i g i n a l packet was'not'a fragment, encapsulate i t

/* i n t o the l a s t fragment created here. */
op_pk_nfd_get (pkptr, " f r a g " , k f r a g) ;
i f (! frag) • ' ' •
{ ' ' ' -

• /* I f the packet contained encapsulated data (i . e " ,

/ • . t r a n s p o r t) , that data w i l l have been removed to

/* i t s d u p l i c a t i o n i n the fragments. The .data should
/* r e i n s e r t e d i n t o the o r i g i n a l packet. */
i f (data_pkptr != OPC_NIL)

op_pk_nfd„set (pkptr, "data", d a t a _ p k p t r) ; .

/* In e i t h e r case t h e ' o r i g i n a l packet, i s */
/* encapsulated i n thhe fragment. */
op_pk_nfd_set (f r a g _ p t r , "ip„dgrarn",' p k p t r) ;

} •

gram */

fragment */

ated */

ip_pkptr) ;

/* Otherwise the"packet can be discarded. */
else{

op_pk_destroy (p k p t r) ;

/* Also, i f the packet included the o r i g i n a l datagram

/* from which i t was generated, t r a n s f e r that data-

/* i n t o the l a s t fragment created'here.' */
/* Note that i t i s p o s s i b l e , i n the case where a

/* i s i t s e l f being fragmented, that none'of the cre-

•/* fragments w i l l c o n t a i n the o r i g i n a l datagram. */
i f (i p _ p k p t r != OPC_NIL) • .
{ ' '

op_pk_nfd_set (frag _ p t r , ' "ip_dgram",

/* Forward the datagram' fragment. */.
op_pk_send (f r a g _ p t r , outstrm);

}
FOUT;

Appendix A. Supplementary Source Code of the IETF Model 98

}

Compcode
for w a r d _ t o _ v i s i t o r (mobile_table, b i n d _ l i s t _ p t r , pkptr, i c i _ p t r , dest)
L i s t * b i n d _ l i s t _ p t r , *mobile_table;
Packet *pkptr,-
I c i * i c i _ p t r ;
IP dest;
{ ' '

char str0[80], s t r l [8 0] ;
Compcode status = OPC_COMPCODE_FAILURE;
i n t i , s i z e ;
i n t next_net, next_node, stream, mtu;
i n t copy = f a l s e ;
F A _ m o b i l i t y _ b i n d i n g * v i s i t o r _ e n t r y ;
Packet *cp_pkptr; • •

FIN(fo r w a r d _ t o _ v i s i t o r (mobile_table, b i n d _ l i s t _ p t r , pkptr, i c i _ p t r , dest))

s i z e = op_prg_list_siz'e (b i n d _ l i s t _ p t r),-

i f (s i z e ==0)/* l i s t does not e x i s t */
FRET (OPC_COMPCODE_FAILURE)

for(i=0; i<siz e ; ++i)
{

v i s i t o r _ e n t r y = (FA_mobility_binding *) "
opj>rg_list_access(b i n d _ l i s t _ p t r , i);

i f (!memcmp(. &dest, &visitor_entry->home_addr, s i z e o f (I P)))
{

/* There i s a match */
i f (visitor_entry->home_agnt.net != ADDRESS_UNDEFINED &&

visitor_entry->home_agnt.node != ADDRESS_UNDEFINED)
{

status = OPC_COMPCODE_SUCCESS;
next_net = visitor_entry->home_addr.net;
next_node = visitor_entry->home_addr.node;
stream = visitor_entry->stream;
mtu = get_strm_mtu(mobile_table, stream);
i f (mtu == MOBILE_STRM_NONEXISTENT)
{

s p r i n t f (strO, "Discarding packet (%d) ", op_pk_id (pkptr));
s p r i n t f (s t r l , "Stream non-existent");
op_prg_odb_print_major (strO, s t r l , OPC_NIL);
op_pk_destroy(pkptr);

}

e l s e
{

copy = true; ' • •
cp_pkptr = op_pk_copy(pkptr);
deliver_packet (cp_pkptr, ici _ j D t r

, next_net, next_node, stream, mtu);

i f (copy)
op_pk_destroy(pkptr);

FRET(status);
}

Appendix A. Supplementary Source Code of the IETF Model 99

int
get_strm_rntu (strm__ptr, strm)
List*strrn_ptr ;
int strm;
{
int i , s ize;
mobile_rte_table*strm_entry;

FIN(get_strm_mtu(strm_ptr, strm))

size = op_prg_list_size(strm_ptr);

for(i=0; i<size; ++i)
{

' strm_entry = (mobile_rte_table *)' op_prg_list_access (strrn_ptr, i);
i f (strm_entry->stream == strm)

FRET (strm_entry->mtu) ,-
}

FRET(MOBILE_STRM_NONEXISTENT);
}

int
chk_strm_condition(mobile_table, stream, mtu)
Lis t *mobile_table;
int stream;
int *mtu;
{ • ' . .

int i , s ize;
mobile_rte_table*table_entry;
FIN(chk_strm_condition(mobile_table, stream, mtu))

size = op_prg_list_size(mobile_table) ; '

for(i=0; i<size; ++i)
{

table_entry = (mobile_rte_table *)
op_prg_list_access (mobile_table, i),-

i f (table_entry->stream == stream)
{

*mtu = table_entry->mtu;
FRET(table_entry->condition)

}

/ * stream does not exist */
*mtu = MOBILE_STRM_NONEXISTENT;

FRET(CONDITION_DISABLED)
}

void
get_careof_addr(mobile_table, i c i p t r)
List *mobile_table;
Ici * i c i p t r ;
{
int i , size';
int stream;
IP careof;

Appendix A. Supplementary Source Code of the IETF Model 100

mobile_rte_table*table_entry; .

FIN(get_careof_addr(mobile_table, i c i p t r '))

op_ici_attr_get(i c i p t r , "stream", &stream);

size = op_prg_list_size (mobile_table) ,-
fort i=0; i<size; ++i)
{

table_entry = (mobile_rte_table *)
op_prg_list_access (mobile_table, i) ,-

i f f table_entry->stream == stream)
{

o p _ i c i _ a t t r „ s e t (i c i p t r , "careof_net", table_entry->careof .net);
op_ici_attr_set(i c i p t r , "careof_node", table_entry->careof.node);
op_ici_attr_set(i c ip t r , "status", OPC_COMPCODE_SUCCESS);
FOUT

/ * stream does not exist */
op_ici_attr_set(i c i p t r , "careof_net", ADDRESS_UNDEFINED);
op_ici_attr_set(i c i p t r , "careof_node", ADDRESS_UNDEFINED]

' op_ici_attr_set (i c i p t r , "status", OPC_COMPC0DE_FAILURE) ;

FOUT
}

void
set_strm_condition(mobile_table, i c i p t r)
List *mobile_table;
Ic i * i c i p t r ;
{
IP careof;
int stream;
int mode;
int i , s ize;
Compcodestatus = OPC_COMPCODE_FAILURE;
mobile_rte_table*list_ptr;
FIN(set_strm_condition(i c i p t r))

op_ici_attr_get (i c i p t r , "mode", imode) ,-
op_ici_attr_get(i c i p t r , "stream", &stream) ;

size = op_prg_list_size(mobile_table);
for(i=0; i<size; ++i)
{'

l i s t _ p t r = (mobile_rte_table *)
op_prg_list_access(mobile_table, i);

switch! mode)
{
case DISABLE_ALL:'

list_ptr->condition = CONDITION_DISABLED;
Status = OPC_C0MPC0DE_SUCCESS;
break;

case DISABLE_ALL_EXCEPT__THIS :
i f (list_ptr->stream != stream) , '
{

list_ptr->condition = CONDITION_DISABLED;
status = OPC_COMPCODE_SUCCESS;

}

Appendix A. Supplementary Source Code of the IETF Model 101

break;

case DISABLE_THIS_ONLY:
i f f list_ptr->stream == stream)
{ '

op_ici_attr_set(i c i p t r , "careof_net", list_ptr->careof.net);
op_ici_attr_set(i c i p t r , "careof_node" , list_ptr->careof .node) ,-
list_ptr->condition = CONDITION_DISABLED;
status = OPC_COMPCODE_SUCCESS;

}
break;

case ENABLE_ALL:
list_ptr->condition = C 0 N D I T I 0 N _ E N A B L E D ;

status = OPC_COMPCODE_SUCCESS;
break;

case ENABLE_ALL_EXCEPT_THIS:
i f f . list_ptr->stream != stream)
{

list_ptr->condition = CONDITION_ENABLED;
Status = OPC_COMPCODE_SUCCESS; .

} . -

break;

case ENABLE_THIS_ONLY:
i f f list_ptr->stream == stream)
{

op_ici_attr_set (i c i p t r , "careof_net", list_ptr->careof .net) ,-
op_ici_attr_set(i c i p t r , "careof_node", list_ptr->careof.node);
list_ptr->condition = CONDITTON_ENABLED;
status = OPC_COMPCODE_SUCCESS;

}
break;

default:
status = OPC_COMPCODE_FAILURE;
break;

}

op_ici_attr_set(i c i p t r , "status", status);
FOUT

} '

void
hop_to_next_strm(mobile_table, i c i p t r)
Lis t *mobile_table;
Ic i * i c i p t r ;
{

int - j , i , s ize;
int stream;
mobile_rte_table*table_entry;
FINf hop_to_next_strm(mobile_table, i c i p t r))

op_ici_attr_get(i c i p t r , "stream", &stream);

size = op_prg_list_size (rnobile_table);

for (i=0; i<size; ++i)
{

table_entry = (mobile_rte_table *)
op_prg_list_access(mobile_table, i ');

i f (table_entry->stream == stream)

Appendix A. Supplementary Source Code of the IETF Model 102

}

i f (.(j = i + 1) == size)
j = o',-

table_entry = (mobile_rte_table *) • '
o p _ p r g „ l i s t _ a c c e s s (mobile_table, j)•;

op_ici_attr_set(i c i p t r , '"stream"
, table_entry->stream);

op_ici_attr_set(i c i p t r , "careof_net"
, table_entry->careof..net) ;

op_ici_attr_set(i c i p t r , "careof_node"
,table_entry->careof.node);

/ * Now, enabling this stream*/
table_entry->condition = C O N D I T I O N _ _ E N A B L E D ;

op_ici_attr_set(i c i p t r , "status"
, O P C _ C O M P C O D E _ S U C C E S S) ; '

F O U T

} .
op_ici_attr_set(i c i p t r , "status", O P C _ C O M P C O D E _ F A I L U R E

F O U T '

Appendix B. Supplementary Source Code of the IMHP
Model

/* mobile_rte_sup.ex. c */ -
/* Routing support procedures f o r - t h e Mobile IP example model */

((include <opnet.h>
((include "mobile-ip .h"
#include "mobile_rte_sup .h"
tt i n c l u d e " i p _ r t e _ s u p . h"
ttinclude "protocol.h"

/* Functions c a l l e d by Process Module */

L i s t *
mobile_rte_sup_table_setup (file_name)

char- *file_name;

m o b i l e _ r t e _ t a b l e * t a b l e _ p t r ;

/* Provides comprehensive r o u t i n g t a b l e l o a d i n g and p a r s i n g */
/* s e r v i c e s f o r Mobile IP module. */
FIN (mobile_rte_sup_table_setup (file_name, netO, nodeO, n e t l , nodel, net2, node2))

/* Load the l i s t of t e x t l i n e s from the s p e c i f i e d f i l e . */
/* Note: t h i s procedure w i l l q u i t the simnulation i f */
/* f i l e cannot be loaded, so i t i s assumed that there */
/* are no problems upon r e t u r n i n g . */
l i n e _ l i s t _ p t r = mobile_rte_sup_^table_load (f ile_narne) ,-

/* Parse the contents of the obtained l i s t i n t o */
/* a r o u t i n g - i n s t r u c t i o n t a b l e . */
m o b i l e _ s t r m _ l i s t _ p t r = m o b i l e _ r t e _ s u p _ l i s t _ p a r s e (l i n e _ l i s t _ p t r) ,-

/* In debug mode, i f t r a c i n g i s a c t i v e , p r i n t the t a b l e */
i f (op_prg_odb_trace_active ())

L i s t *
L i s t *

m o b i l e _ s t r m _ l i s t _ p t r ,-
l i n e _ l i s t _ p t r ,-

m o b i l e _ r t e _ s u p _ t a b l e _ p r i n t (r n o b i l e _ s t r m _ l i s t _ p t r) ;
}

FRET(r n o b i l e _ s t r m _ l i s t _ p t r) ,-

L i s t * '
m o b i l e _ r t e _ s u p _ t a b l e _ l o a d (file_name)

char * f ile__narne;
{
L i s t * l i n e _ l i s t _ p t r ,-
char e r r _ s t r [256];

/* Read i n a r o u t i n g t a b l e from an a s c i i */
/* f i l e adhering to format de f i n e d above. */
FIN (mobile_rte_sup_table^load (f i'le_name))

/* Open and read the f i l e i n t o the l i s t . */
l i n e _ l i s t _ p t r = op_prg_gdf_read (file_name);

/* Test for e r r o r i n reading. */

103

Appendix B. Supplementary Source Code of the IMHP Model

i f (l ine_l is t_ptr == OPC_NIL)
{
sprintf (err_str, " F i l e Name: %s", file_name) ,-
op_sim_end ("Package : mobile_rte_sup",

"Error : Unable- to read routing table f i l
err_str, ".") ;

} • •

/ * Return the l i s t of text l ines . * /
FRET (line_list_ptr)
}

List*
mobile_rte_sup_list_parse (l ine_list_ptr)

List* line_list_ptr,-
{
L is t* .mobile_stream_list_ptr;
mobile_rte_table*mrt_ptr ,-
int i , num_lines;
char* l i n e ;
Lis t * f i e l d _ l i s t _ p t r ;

/ * Extract information from the lines of an a s c i i routing table * /
/ * and construct a corresponding routing table structure'which */
/ * contains routing instructions. */
FIN (mobile_rte_sup_list_parse (l ine_list_ptr))

/ * Allocate a routing table structure. * /
mrt_ptr = (mobile_rte_table*) op_prg_mem_alloc (sizeof (mobile_rte_table))

/ * Allocate a temporary table for holding l i s t s . */
mobile_stream_list_ptr = o p _ p r g _ l i s t „ c r e a t e ();

/ * Scan through each of the lines, one at a time. * /
num_lines = op_prg_list_size (l ine_list_ptr) ,-
for (i = 0; i < num_lines; i++)
{

/ * Obtain the i_th l i n e . */
l ine = op_prg_list_access (l ine_l is t_ptr , i) ;

/ * Decompose i t into f ields (f ield boundaries are */
/ * indicated by spaces, tabs, slashes, or commas. * /
f i e l d _ l i s t _ p t r = op_prg_str_decomp (line, " , A t ") ;

/ * Format for a l ine is as follows-: * /
/ * <output_stream> <mtu>*/
/ * Incomplete lines are skipped. * /
i f (op_prg_list_size (f ield_list_ptr) < 4)

continue;

/ * Create a routing instruction structure. */
mrt_ptr = (mobile_rte_table*)

op_prg_mem_alloc (sizeof (mobile_rte_table));

/ * Transfer the parsed fields into the structure * /
/ * F i rs t obtain the destination stream and mtu f i e l d s . * /
mrt_ptr->stream = atoi (

op_prg_list_access (f ie ld_l is t_ptr , MOBILE_TBL_OUTSTREAM));
mrt_ptr->mtu' = atoi (

op_prg_list_access (f i e ld_ l i s t_pt r , M0BILE_TBL_J4TU)) ,-

mrt_ptr->careof.net = atoi (
op_prg_list_access (f ie ld_l is t_ptr , MOBILE_TBL_CAREOF_NET))

Appendix B. Supplementary Source Code of the IMHP Model

mrt_ptr->careof.node = atoi (
op_prg_list_access (f ie ld_l is t_ptr , MOBILE_TBL_CAREOF_NODE));

i f (mrt_ptr->mtu <= 0)
mrt_ptr->mtu = 0x7FFFFFFF;

i f (mrt_ptr->careof.net == ADDRESS_UNDEFINED &&
mrt_ptr->careof.node == ADDRESS_UNDEFINED)

{
/ * careof address not implemented */
mrt_ptr->condition = CONDITION_ENABLED;

}

else
{

/ * disable a l l condition flags i n i t i a l l y * /
' mrt_ptr->condition = CONDITION_DISABLED;

} '

/ * Append the routing instruction to the temporary l i s t . * /
op_prg_list_insert (mobile_stream_list_ptr, mrt_ptr, OPC_LISTPOS_TAIL)

}

FRET(mobile_stream_list_ptr)
}

void
mobile_rte_sup_table_print (mobile_stream_list_ptr)
Lis t *mobile_stream_list_ptr,-

{
mobile_rte_table*table_entry;
int i , s i z e ;
char dne_str [128], dno_str [128]; • . •
char nne_str [128], nno_str [128], strO [512],-

/ * Print the contents of a routing table. '*/
FIN (mobile_rte_sup_table_print (mobile_stream_list_ptr))

size = op_prg_list_size(mobile_stream_list_ptr),-
i f (size == 0)

{'
op_prg_odb_print_major ("Routing table is empty", VOS_NIL) ,-
}

else{
op_prg_odb_print_major ("Routing table contents : " , VOS_NIL) ,-
for (i = 0; i < size; i++)

{
table_entry = (mobile_rte_table*)

op_prg_list_access(mobile_stream_list_ptr, i)
sprintf(strO, "Stream (%d): mtu (%d)"

, table_entry->stream, table_entry->mtu) ,-
op_prg_odb_print_minor (strO, VOS_NIL) ,-
}

)

FOUT
}

Compcode
mobile_rte_sup_route_select (mobile_table, pkptr, i c i_ptr , objid

•, agnt_flag, pk_id, t t l

Appendix B. Supplementary Source Code of the IMHP Model 106

List
Packet
Ic i
Objid
int
int
int
List
List
IP
int
int

, HA_bind_ptr, FA_bind_ptr
, CA_bind_ptr, MH_bind_ptr
, ipO, i p l , ip2, route_optim,
*mobile_table;
*pkptr ,-
* i c i _ p t r ;
obj i d ;
agnt_flag;
*pk_id;
t t l ;
*HA_bind_ptr, *FA_bind_ptr;
*CA_bind_ptr, *MH_bind_ptr;
ipO, i p l , ip2;
route_optim;
trash_unsent__pk;

trash_unsent_pk

char
Packet
int
int
int
IP
IP

strO[100];
* inner_pkptr;
optim;
protocol;
i , j , num_bind,
src', dest;
home_agnt ,-

num multi bind;

HA_'mobility_binding*home_entry ;
FA_mobility_binding*visitor_entry,-
multi_binding *multi_bind_entry;

FIN (mobile_rte_sup_route_select(mobile_table, pkptr, .))

op_pk_nfd_get(pkptr, "src_net", &src.net);
op_pk_nfd_get(pkptr, "src_node", &src.node);

op_pk_nfd_get(pkptr, "dest_net", &dest.net);
op_pk_nfd_get(pkptr, "dest_node", &dest.node)

/ *
/ *
i f
{

Select a route from the routing table which matches the */
requested destination network and node. * /

(IP_equal(dest, ipO) II IP_equal(dest, i p l) I I IP_equal(dest,

op_pk_nfd_get(pkptr, "protocol", sprotocol);

ip2))

/ * Not encapsulated (not for a v i s i t o r) * /
i f (protocol != PROTOCOL_ENCAP)

FRET (' MOBILE_RTE_TO_IP)

op_pk_nf d_get (pkptr, "data", &inner_pkptr),-
op_pk_destroy(pkptr);

pkptr = inner_pkptr;
op_pk_nfd„get(pkptr, "dest_net", &dest.net);
op_pk_nf d__get (pkptr, "dest_node", &dest.node);

i f (forward_to_visitor(mobile_table, FA_bind_ptr, pkptr, i c i_pt r , dest) ==
OPC_COMPCODE_FAILURE)

{
i f (route_optim)
{

check_ca_list(CA_bind_ptr, dest, &home_agnt);
i f (home_agnt.net == ADDRESS_UNDEFINED

&& home_agnt.node == ADDRESSJJNDEFINED)
{

home_agnt = src;
}
generate_bind_warning(home_agnt, objid, dest, src);

}

http://home_agnt.net

Appendix B. Supplementary Source Code of the IMHP Model 107

i f (trash_unsent_pk }
{

i f (op_prg_odb_ltrace_active ("handoff").)
{ '

sprintf (strO, "Trashing pk(%d) at (%d,%d)"
, op_pk_id (pkptr), ipO.net, ' ipO.node) ,-
op_prg_odb_print_major (strO, OPC_NIL);

} •

encap_pk_destroy(pkptr);
FRET(MOBILE_RTE_FAILURE)

}

else
{

i f (op_prg_odb„ltrace_act ive ("handoff"))
{

sprintf (strO, "Resending pk(%d) at (%dj%d)"
, op_pk_id (pkptr), ipO.net, ipO.node);
op_prg__odb_print_major (strO, OPC_NIL);

}

encap_pk_send(pkptr);
FRET(MOBILE„RTE_ENCAP)

}

}
else
{

/ * packet sent to v i s i t o r * /
FRET (MOBILE_RTE_SUCCESS)

}

}

i f (IP_equal(src, ipO) I I IP_equal(src, i p l) I I IP_equal(src, ip2))
optim = false;

else
optim = route_optim;

i f (send_via_FA(pkptr, MH_bind_ptr, mobile_table, i c i_ptr , dest, agnt_flag) ==
OPC_COMPCODE_SUCCESS)

FRET (MOBILE_RTE_SUCCESS)
else i f (forward_to_visitor(mobile_table, FA_bind_ptr, pkptr, i c i_pt r , dest) ==

OPC_COMPCODE_SUCCESS)
FRET (MOBILE_RTE_SUCCESS)

else i f (encap_packet(HA_bind_ptr, CA_bind_ptr, pkptr, i c i_pt r , ipO, dest, pk_id, t t l ,
optim, objid) == OPC_COMPCODE_SUCCESS) • •

FRET (MOBILE_RTE_ENCAP)
else

FRET (MOBILE_RTE_TO_IP)

} •

Compcode
send_via_FA(pkptr, bind_list_ptr , mobile_table, i c i _ i 3 t r , dest, ma_flag)
Lis t • *bind_list_ptr , *mobile_table;
Ic i * i c i_ptr ;
Packet *pkptr;
IP dest;
int ma_flag;
{
int i , size;
int copy = false;
int next_net, next'_node, stream, mtu;
Packet *cp_pkptr;

http://ipO.net

Appendix B. Supplementary Source Code of the IMHP Model

Compcode status= OPC_COMPC0DE_SUCCESS;
MH_FA_j3inding *fa_entry;
raobile_rte_table*table_entry;
char str0[80], strl [80] ;

FIN(send_via_FA(. pkptr, bind_list_ptr , mobile_table, i c i_ptr , dest, ma_flag))

/ * F i rs t of a l l , check i f packet is for any enabled streams */
size = op_prg_list_size(mobile_table) ,-
for (i=0; i<size; ++i)
{

table_entry = (mobile_rte_table *) op_prg_list_access(mobile_table, i) ,-

i f (IP_equal(table_entry->careof, dest) &&
table_entry->condition == CONDITION_ENABLED)

{

stream = table_entry->stream;
mtu = table_entry->mtu,-

next_net = ADDRESS_UNDEFINED;
next_node = ADDRESS_UNDEFINED;

deliver_packet(pkptr, i c i_ptr
, next_net, next_node, stream, mtu);

FRET(OPC_COMPCODE_SUCCESS)

/ * Now, check to see i f there is any mobility binding */
size = op_prg__list_size (bind__list_ptr),-

/ * i f (size == 0 && ma_flag)/* no bindings and not a mobile node */
i f (size == 0)/* no bindings and not a mobile node */

FRET(OPC_COMPCODE_FAILURE)

/ * each enabled FA w i l l receive a copy of the packet * /

for.(i = 0; i<size; + + i)
{

fa_entry = (MH_FA_binding *)
op_prg_list_access (bind_list_ptr , i) ,-

/ * obtain the stream associated with the current binding */
stream = fa_entry->stream; . ' •

i f (chk_strm_condition(mobile_table, stream, &mtu) == CONDITION_ENABLED
{

status = OPC_COMPCODE_SUCCESS;

i f (mtu ' = = MOBILE_STRM_NONEXISTENT)
{

sprintf (strO, "Discarding packet (%d) ", op_pk_id (pkptr))
sprintf (s tr l , "Stream non-existent");
op_prg_odb_print_major (strO, s t r l , OPC_NIL);
encap_pk_destroy (pkptr) ,-

}
else

* i f 0

next_net = fa_entry->careof.net;
next_node = fa_entry->careof .node,-

deliver_packet(pkptr, i c i_ptr
, next_net, next_node, stream, mtu);

Appendix B. Supplementary Source Code of the IMHP Model 109

FRET(OPC_COMPCODE_SUCCESS .)
#else . •

copy = true;
cp_pkptr = op_pk_copy (pkptr),-
deliver_packet(cp_pkptr, i c i_ptr

, next_net, next_node, stream, mtu
ttendif

/ * have to deallocate original packet since i t is no longer needed */
i f (copy)
{ '

encap_pk_destroy (pkptr); ' • ••
FRET(status)

}

FRET(OPC_COMPCODE_FAILURE)
}

Compcode
encap__packet (HA_bind_ptr, CA_bind_ptr, pkptr, i c i_ptr , current, dest, pk_id, t t l ,

route_optim, feg_objid)
Lis t *HA_bind_ptr;
Lis t *CA_bind_ptr ,-
Packet . *pkptr;
Ic i * i c i_ptr ;
IP current, dest;
int *pk_id;
int t t l ;
int route_optim;
Obj id reg_objid;
{ ' •

char str0[512], strl[512],•
Packet ' *encap_pkptr ,-
int i , j , num_bind, num_multi_bind;
int next_net, next_node, outstrm, mtu;
IP • or ig ;
int data_len;
int copy = false;
HA_mobility_binding*home_entry;
CA_mobility_binding*ca_entry ,-
multi_binding *multi_bind_entry;
Compcode status = OPC_COMPCODE_FAILURE;

FIN(encap_packet (HA_bind_j3tr, . . .))

num_bind = op_prg_list_size (HA_bind_|3tr) ;

for (i=0; i<num_bind; ++i)
{

home_entry = (HA_mobility_binding *)
op_prg_list_access(HA_bind_ptr, i);

check for matches in HA mobility binding' */
(!memcmp(&dest,&home_entry->home_addr, sizeof(IP)))

status = OPC_COMPCODE_SUCCESS;
num_multi_bind = op_prg_list_size(home_entry->multi_bind_list);
fort j=0; j<num_multi_bind; ++j)
{

multi_bind_entry = (multi_binding *)
op_prg_list_access (home_entry->multi_bind_list,' j),-

i f
{

Appendix B. Supplementary Source Code of the IMHP Model

data_len = op_pk_total_size_get(pkptr)/8;
encap_pkptr = op_pk_create_fmt("ip_dgram");
op_pk_bulk_size_set(encap_pkptr, data„len*8);

copy = true;
op_pk_nfd_set(

op_pk_nfd_set(
op_pk_nfd_set(

op_pk_n fd_set(

op_pk_nfd_set(

op_pk_nfd_set(

encap_pkptr, "data"
, op_pk_copy(pkptr)) ,-
encap_pkptr, "protocol
encap_pkptr, "src_net",
current.net);
encap_pkptr, "src_node",
current.node);
encap_pkptr, "dest_net",
multi_bind_entry->careof.net
encap_pkptr, "dest_node",
multi_bind_entry->careof.node

PROTOCOL_ENCAP

op_pk_nfd_set(encap_pkptr,"orig_len",data_len)
op_pk_nfd_set(encap_pkptr,"Erag_len",data_len)

op_pk_nfd_set(encap_pkptr,"ident", (*pk_id)++)
op_pk_nfd_set(encap_pkptr,"frag", 0);
op_pk_nfd_set(encap_pkptr, " t t l " , t t l) ;

i f (op_prg_odb_ltrace_active ("encap_pk"))
{

sprintf (strO, "Encapsulating pk(%d) sent"
, op_pk_id (encap_pkptr)) ,-

sprintf (s t r l , "Destination: net (%d), node (%d)
, multi_bind_entry->careof.net
, multi_bind_entry->careof.node)

op_prg_odb_print_major . (strO, s t r l , OPC_NIL) ,-
}.

encap_pk_send(encap_pkptr) ;

/ * At this stage, i t is assumed that HA binding exists -
* for mobile node. Therefore send binding warning

* message to original sender */ .
i f (route_optirn == true)
{

°P_pk_nfd_get (' pkptr, "src_net", '&orig.net) ,-
op_pk_nfd_get (pkptr, "src_node", &orig.node),-

generate_bind_warning(orig, reg_objid
, home_entry->home_addr, current);

i f (status == OPC_COMPCODE_SUCCESS)
{

i f (copy)
encap_pk_destroy(pkptr);

FRET(status)
}

ttif 0
i f (route_optim == false)

FRET(OPC_C0MPC0DE_FAILURE
#endif

num_bind = op_prg_list_size(CA_bind_ptr);

Appendix B. Supplementary Source Code of the IMHP Model 111

for(i=0; i<num_bind; ++i)
{ • ••

ca_entry = (CA_mobility_binding *)
op_prg_li'st_access (CA_bind_ptr, i),-

i f . (IP_equal(dest, ca_entry->home_addr))'
{

status = OPC_C'OMPCODE_SUCCESS;

data„len = op_pk_total_size_get(pkptr)/8;
encap_pkptr = op_pk_create_fmt("ip_dgram");
op_pk_bulk_size_set (encap_pkptrdata_len*8) ,-

op_pk_nfd_set(encap_pkptr, "data", pkptr);
op_pk_nfd_set(encap_pkptr, "protocol"

, PROTOCOL_ENCAP) ;
op_pk_nfd_set(encap_pkptr, "src_net", current.net);
op_pk_nfd_set(encap_pkptr, "src_node", current.node
op_pk_nfd_set (encap_pkptr, "dest_net"

, ca_entry->careof .net),-
op_pk„nfd_set(encap_pkptr, "dest_node"

, , ca_entry->careof .node) .,-
op_pk_nfd_set (encap_pkptr, "orig_len", data_len),-
op_pk_nfd_set(encap_pkptr, "frag_len", ' data_len);
op_pk_nfd_set(encap_pkptr, "ident", (*pk_id)++);
op_pkjifd_set(encap_pkptr, "frag", 0) ; -
op_pk__nf d_set (encap_pkptr, " t t l " / t t l) ,-

/ * Now schedule packet for. transmission- * /
encap_pk_send(encap_pkptr);
FRET(OPC_COMPCODE_SUCCESS)

i f (copy)
encapj>k_destroy(pkptr) ;

FRETt status)

void . '
deliver_packet(pkptr, i c i_pt r , next_net, next_node, outstrm, mtu)
Packet ' *pkptr;
Ici * i c i _ p t r ;
int . .'next_net, nextjiode, outstrm, mtu;
{ . •
char str0[512], strl[512],-
int ' i , len; ' '•
int header_size, frag_size, data_size;
int dest_net, dest_node; .
int t t l ;
int frag_accum, frag, num_frags;
Packet *ip__pkptr, *data_pkptr, *frag_ptr;

FIN(deliver_packet(pkptr, . . .)) . •

/ * obtain packet's destination */
op_pk_nf d_get (pkptr, "dest__net", &dest_net) ; ' -
op_pk_nfd_get(pkptr, "dest_node", &dest_node);

/ * Decrement the packet's t ime-to-live f i e l d . If zero is reached, * /
/ * discard the packet rather than send i t on. * /
op_pk„nfd_get (pkptr, " t t l " , &t t l) ;

http://current.net

Appendix B. Supplementary Source Code of the IMHP Model 112

t t l - - ;
i f (t t l == 0). . •
{

/ * In debug mode, indicate that a packet is destroyed */
/ * due to an expired t t l . */
i f (op_prg_odb_ltrace_active ("ip_errs"))

. {
sprintf (strO, "Discarding packet (%d) with expired TTL", opj>k_id (pkp­

tr)) ;
sprintf (s t r l , "Destination: net (%d), node (%d)", dest_net, dest_node);
op_prg_odb_print_major (strO, s t r l , ,OPC_NIL) ;

} -
op_pk_destroy (pkptr) ,-

}

else{
/ * Assign the new decremented value of t t l . */
op_pk_nfd_set (pkptr, " t t l " , t t l) ;

/ * In debug mode, trace the routing action. * /
i f (op_prg_odb_ltrace_active ("mobile-ip_rte"))
(

sprintf (strO, "Routing towards (%d, %d)", dest_net, dest_node);
sprintf (s t r l , "Next hop (%d, %d), output stream (%d)",

next_net, next_node, outstrm);

op_prg_odb_print_major (strO, s t r l , OPC_NIL);
} .

/ * Install an Ici indicating to the lower layer what the */
/ * address of the next (intermediate) node i s . * /
op_ici_attr_set (ici_ptr , "next_node", next_node) ,-
o p _ i c i _ i n s t a l l (ic i_ptr) ;

/ * Obtain the'size in bytes of the fragment. * /
frag_size = op_pk_total_size_get (pkptr) / 8 ,-

/ * Obtain the number of bytes of data carried in this fragment * /
op_pk_nfd_get (pkptr, "frag_len", &data_size) ,-

/ * Also obtain the difference between the packet size */
/ * and the length f i e l d : this is the size of the header. */
header_size = frag_size - data_size,-

/ * If i t is smaller than the maximum transfer unit; send i t as i s . */.
i f (frag_size <= mtu)
{

op_pk_send (pkptr, outstrm); .
} ' '
else{ • •

/ * Otherwise, break i t into fragments * /
/ * Each fragment can contain up to (mtu - header_size) bytes of data */
num_frags = (data_size + mtu - header_size - 1) / (mtu - header_size);

/ * In debug mode, indicate the fragmentation. */
i f (op_prg_odb_ltrace_active ("ip_frag"))
{

sprintf (strO, "Breaking datagram into (%d) fragments", num_frags);
op_prg_odb_print_major (strO, OPC_NIL) ;

}

/ * If the fragment is carrying the original datagram given to IP, .*/
/ * extract i t before copies are made. Only .one fragment can carry */
/ * the original packet for the reassembly model to work properly. * /
i f (op_pk_nfd_is_set (pkptr, "ip_dgram"))

op_pk_nfd_get (pkptr, "ip_dgram", &ip_pkptr);

Appendix B. Supplementary Source Code of the IMHP Model 113

else ip_pkptr = 0PC_NIL;

/ * If the packet is carrying any encapsulated data (normally this */
/ * would happen only for a packet fragmented for the f i r s t time), */
/ * extract this data packet so that i t w i l l not appear in each */"
/ * fragment generated by copying. * /
i f (op_pk_nfd_is_set (pkptr, "data"))

op_pk_nfd_get (pkptr, "data", &data_pkptr);
else data_pkptr = OPC_NIL;

/ * Loop through and create the fragments . * /
for (f rag_accum =0, i = 0,- i < num_frags; i + +)
{ :

/.* Make a copy of the original packet. */
frag_ptr = op_pk_copy (pkptr);

/ * Indicate that the copy is a fragment */
op __pk_nfd_set (frag_ptr, "frag", 1);

from the */

avoid */

now be */

/ * for a l l but the last fragment, the size is the mtu. */
/ * and the encapsulated ip packet is not included. * /
i f (i < num_frags - 1)
{

op_pk_nfd_set '(frag_ptr, "frag_len", mtu - header_size);
op_pk_total_size_set (frag_ptr, 8 * mtu);
frag_accum += (mtu - header_size);

} . • '
else{

len = data_size - frag_accum;
op_pk_nfd_set (frag_ptr, "frag_len", len) ,-
op_pk_total_size_set (frag_ptr,8 * (header_size + len)) ;

/ * If the original packet was not a fragment, encapsulate i t

/ * into the last fragment created here. */
op_pk_nfd_get (pkptr, "frag", &frag);
i f (Ifrag)
{

/ * If the packet contained encapsulated data (i . e . ,

/ * transport), that data w i l l have been removed to

/ * i ts duplication in the fragments. The data should
/ * reinserted into the original packet. * /
i f (da'ta_pkptr !=OPC_NIL)

•op_pk_nfd_set (pkptr, "data", data_pkptr);

/ * In either case the original packet is */
/ * encapsulated in thhe fragment. * /

.op_pk_nfd_set (frag_ptr, "ip_dgram", pkptr);

gram */

fragment */

/ * Otherwise the packet can-be discarded. * /
else{

op_pk_destroy (pkptr);

/ * Also, i f the packet included the original datagram

/ * from which i t was generated, transfer that data-

/ * into the last fragment created here. */
/ * Note that i t is possible, in the case where a

Appendix B. Supplementary Source Code of the IMHP Model 114

ated */

ip_pkptr)

/ * is i t s e l f being fragmented, that none of the cre-

/ * fragments w i l l contain the original datagram. */
i f (ip_pkptr != OPC_NIL)
{

op_pk_nfd_set (frag_ptr, "ip_dgram",

/ * Forward the datagram fragment. * /
op_pk_send (frag_ptr, outstrm);

FOUT;
}

Compcode
forward_to_visitor (rnobile_table, bind_list_ptr , pkptr, i c i_pt r , dest)
List *bind_list_ptr , *mobile_table,-
Packet *pkptr;
Ic i * i c i_ptr ;
IP dest;
{
char • str0[80], strl[80] ;
Compcode status = OPC_COMPCODE_FAILURE;
int i , s ize;
int. next_net, next_node, stream, mtu;
FA_mobility_binding*visitor_entry,-

FIN(forward_to_visitor(mobile_table, bind_list_ptr , pkptr, i c i_pt r , dest))

size = op_prg_list_size(bind_list_ptr);

i f (size == 0)/* l i s t does not exist * /
FRET (OPC_COMPCODE_FAILURE) ' '

for(i=0; i<size; ++i)
{

visitor_entry = (FA_mobility_binding *)
op_prg_list_access(bind_list_ptr , i);

i f (!memcmp(&dest, &visitor_entry->home_addr, sizeof(IP)))
{

/ * There is a match */
i f (visitor_entry->home_agnt.net != ADDRESS_UNDEFINED &&

visitor_entry->home_agnt.node != ADDRESS_UNDEFINED) •
{ ..

status = OPC_COMPCODE_SUCCESS;
next__net = visitor__entry->home_addr .net ;
next„node = visitor_entry->home_addr.node;
stream = visitor_entry->stream;
mtu = get_strm_mtu(mobile_table, stream);
i f (mtu == MOBILE_STRM_NONEXISTENT)

• { • .
; sprintf (strO, "Discarding packet (%d) ", op_pk_id (pkptr));

sprintf (s t r l , "Stream non-existent") ,-'
op_prg_odb_print_major (strO, s t r l , OPC_NIL);
°P_pk_destroy(pkptr);

}

Appendix B. Supplementary Source Code of the IMHP Model 115

else • •
{

deliver_packet(pkptr, l c i_ptr
, next_net, next_node, stream,' mtu) ;

}

}
}

}

FRET(status);
}

int
get_strm_mtu(strm_ptr, strm)
List*-strm_ptr ;
int strm-;
{
int i , s ize;
mobile_rte_table*strm_entry•

FIN(get_strm_mtu(strm_ptr, strm))

size = op_prg_list_size('strm_ptr);

fort i=0; i<size; ++i)
{ .

strm_entry = (mobile_rte_table *) op_prg_list_access(strm_ptr, i);
i f (strm_entry->stream == strm)

FRETt strm_entry->mtu);
} ' •

FRETt MOBILE_STRM_NONEXISTENT);
}

int
chk_strm_condi.tion(mobile_table, stream, mtu)
Lis t *mobile_table;
int stream,-
int *mtu;
{
int i , s ize;
mobilelrte_table*table_entry ,-
FIN(chk_strm_condition(mobile_table, stream, mtu))

size = op_prg_list_size(mobile_table);

fort i=0; i<size; ++i)
{

table_entry = (mobile_rte_table *)
op_prg_list_access(mobile_table, i);

i f t table_entry->stream == stream)
{

*mtu = table_entry->mtu;
FRET(table_entry->condition)

}

}

/ * stream does not exist */
*mtu = MOBILE_STRM_NONEXISTENT;

Appendix B. Supplementary Source Code of the IMHP Model 116

FRET(CONDITIONJDISABLED)
}

void
get_careof_addr(mobile_table, i c i p t r)
L is t *mobile_table,-
Ic i *iciptr,-
{
int i , s ize;
int stream;
IP careof;
mobile_rte_table*table_entry;
FIN(get_careof_addr(mobile_table, i c i p t r))

op_ici_attr_get (i c i p t r , "stream", &stream) ,-

size = op_prg_list_size{ mobile_table),-
for(i=0; i<size; ++i)
{

table_entry ='(mobile_rte_table *)
op_prg_list_access(mobile_table, i);

i f (table_entry->strearn == stream)
{

op_ici_attr_set(i c i p t r , "careof_net", table_entry->careof.net);
op_ici_attr_set(i c i p t r , "careof_node", table_entry->careof.node);
op_ici_attr_set(i c i p t r , "status", OPC_COMPCODE„SUCCESS);
FOUT

}

/ * stream does not exist * /
op_ici_attr_set (i c i p t r , "careof_net", ADDRESS_UNDEFINED),-
op_ici_attr_set(i c i p t r , "careof_node", ADDRESS_UNDEFINED);
op_ici_attr_set(i c i p t r , "status", OPC_COMPCODE_FAILURE);

• FOUT
}

void
set_strm_condltion(mobile_table, i c i p t r)
List*mobile_table;
Ic i * i c i p t r ;
{
IP careof;
int stream;
int mode;
int i , s ize;
Compcodestatus = OPC_COMPC0DE_FAILURE;
mobile_rte_table*list_ptr;
FIN(set_strm_condition(i c i p t r))

op_ici_attr_get{ i c i p t r , "mode", &mode);
op_ici_attr_get(i c i p t r , "stream", &stream);

size = op_prg_list_size(mobile_table);
fori i=0; i<size; ++i)
{

l i s t_ptr = (mobile_rte_table *)
op_[3rg_list_access (mobile_table, i),-

switch! mode)
{

Appendix B. Supplementary Source Code of the IMHP Model 117

case DISABLE„ALL: ' .
list_ptr->condition = CONDITIOISLDISABLED;"
status = OPC_COMPCODE_SUCCESS;
break; '

case DISABLE__ALL_EXCEPT_THIS :
i f (list_ptr->stream != stream) ' . •

. " { . - ' . " ' • .

list_ptr->condition = CONDITION_DISABLED;
status = OPC_COMPCODE_SUCCESS;

} ' . . .
break;

case DISABLE_THIS_ONLY: ' •
i f (list_ptr->stream == stream)
{

op^ici_attr_set(i c i p t r , "careof_net", list_ptr->careof.net);
op_ici_attr_set (i c i p t r , • "careof j o d e " , list_ptr->careof .node) ,-

. list_ptr->condition = CONDITION_DISABLED;
status = OPC_COMPCODE_SUCCESS;

} ' ' • .

break;

case ENABLE_ALL: '
list_ptr->condition = CONDITION_ENABLED; -
status = OPC_COMPCODE_SUCCESS;
break; • •

case ENABLE_ALL_EXCEPT_THIS:, ' ,
. i f f list_ptr->stream != stream) ' .

' {

l i s t _ptr->condition = CONDITTON_ENABLED;
status = OPC_COMPCODE_SUCCESS;

break;

case ENABLE_THIS_ONLY: .
' i f (list_ptr->stream _== stream)

{ _

op_ici_attr_set(i c i p t r , "careofjiet" , llst_ptr->careof.net);
op_ici_attr_set (i c i p t r , "careof_node", list_ptr->careof .node-•) ;
list_ptr->coridition = CONDITION_ENABLED;
status = OPC_COMPCODE_SUCCESS;

}

break; ' [•

default:
status = OPC„COMPCODE„FAILURE;
break; ' ' • • '

}
} . ,.

op_ici_attr_set(i c i p t r , "status", status);
FOUT
>' ' ' ' ' ' •

void •'
hop_to_next_strm(mobile„table, i c i p t r)
Lis t ' *mobile_table;'
Ic i * i c i p t r ;
t • ' ' '
int j , i , s ize; '
int • stream;
mobile_r.te_table*table_entry; : •
FIN(hop_to_n'ext_strm(mobile_table, iciptr .)) . . . •'

Appendix B. Supplementary Source Code of the IMHP Model

op_ici_attr_get(i c i p t r , "stream", &stream) ;

size = op_prg_list_size(mobile_table),-

for (i=0; i<size; ++i)
{

table^entry = (mobile_rte_table *)
op_prg_list_access (mobile_table, i),-

i f (table_entry->stream == stream)
{

i f ((j = i + 1) == size)
j = 0;

table_entry = (mobile_rte_table *•)
op_prg_list_access (mobile_table, j) ,-

op_ici_attr_set(i c i p t r , "stream"
, table_entry->stream) ; .

•op_ici_attr_set(i c i p t r , "careof_net"
,table_entry->careof.net);

o p „ i c i _ a t t r _ s e t (i c i p t r , "careof_node"
,table_entry->careof.node);

/ * Now, enabling this stream */
table_entry->condition = CONDITION_ENABLED;

op_ici_attr_set(i c i p t r , "status"
, OPG_COMPCODE_SUCCESS);

FOUT
}

} .
op_ici_attr_set(i c i p t r , "status", OPC_COMPCODE_FAILURE);

FOUT
}

void
process_binding_warning(pkptr, i c i p t r , rcy_iciptr , ip_objid)
Packet • *pkptr;
Ici *icip.tr;
Ici *rcv_iciptr ;
Objid ip_objid;
{
IP home_addr, rem, target, home_agnt;
int rem_port;
Packet *bind_pkptr;
Compcode status;
Ic i *bind_iciptr ;
FIN(process_binding_warning(pkptr, i c i p t r , rcy_iciptr , ip_objid

op_pk_nfd_get(pkptr, •"home_addr_net", &home_addr.net);
op_pk_nfd_get(pkptr, "home_addr_node", &home_addr.node);.

op_pk_nf d_get (pkptr, " target_net" , &target.net),-
op_pk_nf d_get (pkptr, " target_node" , itarget.node) ,-

op_ici_attr_get (rcv_iciptr , "rern_net", 6rem.net);
op_ici_attr_get(rcv_iciptr , "rem_node", &rem.node);
op_ici_attr_get (rcv_iciptr , "rern_port", &rem_port);

/ * creating binding for Mobile-ip query */

http://6rem.net

Appendix B. Supplementary Source Code of the IMHP Model 119

bind_iciptr = op_ici_create("binding_command");

op_ici_attr_set (bind_iciptr , "command", READ_HA_BINDING) ,-
op_ici_attr_set(bind_iciptr , "home_net", home_addr.net);
op_ici_attr_set(bind_iciptr , "home_node", home_addr.node);

•op_ici_install(bind_iciptr);
op_intrpt_Eorce_remote(BINDING_MAINTENANCE, ip_objid);
op_ic i_instal l (OPC_NIL);

op_ici_attr_get(bind_iciptr , "status", &status) ,-

i f . (status == OPC_COMPCODE_SUCCESS)
{ .

/ * send binding warning i f home addr is a registered MH */
bind_pkptr = op_pk_create_fmt("bind_warn");
op_pk_nfd_set (bind_pkptr, "home_addr_net", home_addr.net) ,-
op_pk_nfd_set(bind_pkptr, "home_addr_node", home_addr.node);
op_pk_nf d_set (bind_pkptr, " target_net" , .target.net) ;
op_pk_nfd_set(bind_pkptr, " target„node" , target.node);

udp_app_send(i c i p t r , bind_pkptr, REG_REQUEST_PORT
, REG_REQUEST_PORT, target.net, target.node) ,-

}

else
{ '

i i f 1 • _
/ * f i r s t of a l l , check whether home addr is on cache l i s t * /
op_ici_attr_set (bind_iciptr , "command", READ„CA_BINDING) ,-

op_ici_instal l (bind_iciptr);
op_intrpt_force_remote (BINDING_MAINTENANCE, ip_obj id) ,-
op_ici_instal l (OPC_NIL);

op_ici_attr_get (bind_iciptr , "status", &status) ,-

i f (status == OPC_COMPCODE_SUCCESS)
{

/ * Home addr on cache l i s t , send binding request to home addr */
op_ici_attr_get (bind_iciptr , "home_agnt_net", &rem.net) ,-
op_ici_attr_get(bind_iciptr , "home_agnt_node", &rem.node);

bind_pkptr = op_pk_create_fmt ("bind_req") ,-
op_pk_nfd_set(bind_pkptr, "home_addr_net", home_addr.net);
op_pk_nfd_set(bind_pkptr, "home_addr_node", home_addr.node);

/ * send the registration packet * /
udp_app_send(i c i p t r , bind_pkptr, REG_REQUEST_PORT

, REG_REQUEST_PORT, rem.net, rem.node);
}

else
{

/ * no binding found, send i t to target * /
bind_pkptr = op_pk_create_fmt ("bind_req") ,-
op_pk_nf d_set (bind__[3kptr, "home_addr_net" , home_addr.net) ,-
°P_pk_nfd_set(bind_pkptr, "home_addr_node", home_addr.node);

/ * send the registration packet */
udp_app_send(i c i p t r , bind_pkptr, REG_REQUEST_PORT

, REG_REQUEST_PORT, target.net, target.node);
}

ttelse
bind_pkptr = op_pk_create_fmt("bind_req");
op_pk_nfd_set (bind_pkptr, "home_addr_net" , home_addr.net) ,-
op_pk_nfd_set (bind_pkptr, "home_addr_node", home_addr .node) ,-

http://home_addr.net
http://home_addr.net
http://target.net
http://target.net
http://home_addr.net
http://rem.net
http://home_addr.net
http://target.net
http://home_addr.net

Appendix B. Supplementary Source Code of the IMHP Model

#endif

/ * send the registration packet */
udp_app_send(i c i p t r , bind_pkptr, REG_REQUEST_PORT

, rem_port, rem.net, rem.node);

/ * deallocate resources after usage */
op_ici_destroy (bind_iciptr .) ,-

FOUT -

void
process_binding_request(pkptr, i c i p t r , rcv_iciptr , objid)
Packet1- *pkptr;
Ic i • * i c i p t r ;
Ic i *rcv_iciptr ;
Objid objid;
{
Packet *bind_pkptr;
IP home_addr,-
IP careof;
IP rem;
int rem_port;
Ic i * i p _ i c i p t r ;
int status,-
int l i fet ime;
FIN(process_binding_request(pkptr, i c i p t r , rcv_iciptr , objid))

op_pk_nfd_get(pkptr, "home_addr_net", &home_addr.net);
op_pk_nfd_get (pkptr, "home_addr_node" , &home_addr.node) ,-

op_ici_attr_get (• rcv_iciptr , "rem_net", trem.net) ,-
op_ici_attr_get (rcv_ic iptr , "rem_node", Srem.node) ,-
op_ici_attr_get (rcv_iciptr , "rem_port", &rem_port) ,-

i p _ i c i p t r = op_ici_create ("binding_command"),-
op_ici_attr_set(i p _ i c i p t r , "command", READ_HA_BINDING);
op_ici_attr_set (i p _ i c i p t r , "home_net", home_addr.net) ,-
op_ici_attr_set (i p _ i c i p t r , "home_node", home_addr. node),-

op_ici_instal l (i p _ i c i p t r);
op_intrpt_force_remote(BINDING_MAINTENANCE, objid);
op_ic i_instal l (OPC_NIL);

op_ici_attr_get (i p _ i c i p t r , "status", istatus) ,-
i f (status == OPC_COMPCODE_FAILURE)
{

careof = home_addr;/* no binding exists */
lifetime = 0 ,-

}

else
{

op_ici_attr_get(ip_ ic ip t r , "careof_net", &careof.net)
op_ici_attr_get (ip_icii3tr, "careof_node", &careof.node
op_ici_attr_get (ip_ ic ip t r , " l i fet ime" , &lifetime) ,-

} • '

/ * deallocate i c i pointer after use */
op_ici_destroy(ip_ic ipt r);

bind_pkptr = op_pk_create_f mt ("bind_update"),-
op_pk_nfd_set(bind_pkptr, "home_addr_net", home_addr.net);

http://rem.net
http://trem.net
http://home_addr.net
http://home_addr.net

Appendix B. Supplementary Source Code of the IMHP Model 121

op_pk_nfd_set(bind_pkptr, "home_addr_node", home_addr.node); '
op_pk_nfd_set(bind_pkptr, "careof_net", careof.net);
op_pk_nfd_set(bind_pkptr, "careof_node", careof.node);
op_pk_nfd_set(bind_pkptr, " l i fet ime" , lifetime);

/ * send binding request via UDP port * /
udp_app_send(i c i p t r , bind_pkptr, REG_REQUEST_PORT, rem_port, rem.net, rem.node),

FOUT
}

void
process_binding_update-(pkptr, i c i p t r , rcv_iciptr , objid)
Packet • *pkptr;
Ic i * i c i p t r ;
Ici *rcv_iciptr,- . .
Objid objid;
{
Packet *bind_pkptr;
IP home_addr;
IP careof;
IP rem;
int rem_port;
Ic i * i p _ i c i p t r ;
int lifetime, ack, status;
FIN(process_binding_update(pkptr, i c i p t r , rcv_iciptr , objid.))

op_pk_nfd_get(pkptr, "home_addr_net", &home_addr.net),-
op_pk_nfd_get(. pkptr, "home_addr_node", &home_addr.node);
op_pk_nfd_get(pkptr, "careof_net", Scareof.net);
op_pk_nfd_get(pkptr, "careof_node", &careof.node);
op_pk_nfd_get(pkptr, " l i fet ime" , ^lifetime) ,-
op_pk_nf d_get (pkptr, "ack", Sack ') ;

op_ici_attr_get(rcv_iciptr , "rem_net", trem.net);
op_ici_attr_get(rcv_iciptr , "rem_node", Srem.node);
op_ici_attr_get (rcv_iciptr , "rem_port", &rem_port) ,-

i p _ i c i p t r = op_ici_create("binding_command");

i f ((careof.net == 0 && careof.node ==0) I I lifetime == 0)
{

op_ici_attr_set (ip_ ic ip t r , "command", KILL_CA_BINDING),-
op_ici_attr_set (i p _ i c i p t r , "home_net", home_addr.net),-
op_ici_attr_set (ip_ ic ip t r , "home_node", home_addr .node),-

op_ici_instal l (i p _ i c i p t r);
op_intrpt_force_remote(BINDING_MAINTENANCE, objid);

else
{

"command", EDIT_CA_BINDING);
"home_net", home_addr.net) ,-
"home_node", home_addr.node) ;

"home_agnt_net", rem.net);
"home_agnt_node", rem.node);
"careof_net", careof.net),-
"careof_node" , careof.node),-
" l ifet ime" , lifetime);

op_ici_instal l (i p _ i c i p t r);
op_intrpt_force_remote(BINDING_MAINTENANCE, objid
op_ici_instal l (OPC_NIL);

op_ . i c i . . i n s t a l l (OPC_ _NIL) ;

op_ .ici_ _attr_ .set (ip. . i c i p t r
op_ .ici_ _attr_ .set (ip. . i c i p t r
op_ .ici_ _attr_ .set (ip_ . i c i p t r
op_ _ici_ _attr_ .set (ip_ . i c i p t r
op_ .ici_ _attr_ .set (ip_ . i c i p t r
op_ . i c i . _attr_ .set (ip_ . i c i p t r
°P_ . i c i . _attr_ .set (ip_ . i c i p t r
op_ . i c i . _attr_ .set (ip. . i c i p t r

http://careof.net
http://rem.net
http://trem.net
http://careof.net
http://home_addr.net
http://home_addr.net
http://rem.net
http://careof.net

Appendix B. Supplementary Source Code of the IMHP Model 122

i f (ack == true)
{

bind_pkptr = op_pk_create_fmt("bind_ack") ;
op_pk_nfd_set(bind_pkptr, "home_addr_net", home_addr.net);
op_pk_nfd_set (bind_pkptr, "home_addr_node" , home_addr .node) ,-

/ * send binding request via UDP port * /
udp_app_send(i c i p t r , bind_pkptr, REG_REQUEST_PORT

, rem_port, rem.net, rem.node) ,-
.} ' '

} ' .

/ * deallocate i c i pointer after use * /
op_ici_destroy(i p _ i c i p t r);

FOUT

} .

void
encap_pk_destroy(pkptr)
Packet *pkptr;
{ :
Packet *outer_pkptr, *inner_pkptr;
int i , num_fds, data_present;
char fd_name[40];

FIN(encap_pk_destroy(pkptr)) . •

outer_pkptr = pkptr;
while (1)
{

num_fds = op_pk_f d_max_index (• outer_pkptr);

for (data_present=false,i=0; i< num_fds; ++i)
{

op_pk_fd_index_to_name(outer_pkptr, i , fd_name);
i f (strcmpl fd_name, "data") == 0)
{

op_pk_nfd_get(outer_pkptr, "data", &inner_pkptr);
op_pk_destroy(outer_pkptr);

data_present = true;
break;

}

} • .

/ * no. f ields with name "data" * /
i f (data_present == false)

break;

outer_pkptr = inner_pkptr;
}

op_pk_destroy (outer_[Dkptr) ;
FOUT
} '

void
generate_bind_warning(dest, reg_objid, home_addr, target)
IP dest, home_addr, target,-
Objid reg_objid;
{

http://home_addr.net
http://rem.net

Appendix B. Supplementary Source Code of the IMHP Model

Ici *warn_iciptr;
FIN(generate_bind_warning(home_addr,))

warn_iciptr = op_ici_create("bind_warn_ici") ;
op_ici_attr_set(warn_iciptr, "home_addr_net", home_addr.net)
op_ici_attr_set(warn_iciptr, "home_addr_node", home_addr.node

op_ici_attr_set(warn_iciptr, "dest_net", dest.net);
op_ici_attr_set (warn_iciptr, "dest_node" , dest .node) ,-

op_ici_attr_set(warn_iciptr, "target_net", target.net) ,-
op_ici_attr_set(warn_iciptr, "target_node",target.node);

op_ici_instal l (warn_iciptr);
op_intrpt_force_remote(BINDING_WARN_TYPE, reg_objid);
op_ici_instal l (OPC_NIL);

op_ici_destroy(warn_iciptr);
FOUT
}

void
encap_pk_send(pkptr)
Packet .*pkptr;
{
FIN(encap_pk_send(pkptr))

/ * insert encapsulated packet at the beginning of the queue */
op_subq_pk_insert(0, pkptr, OPC_QPOS_HEAD);

FOUT
}

void
check_ca_list(l i s t_pt r , dest, home_agnt)
List * l i s t _ p t r ;
IP dest;
IP * home_agn t;
{
CA_mobility_binding*ca_entry ,-
•int i , num_bind;
FIN(check_ca_list(l i s t _ p t r , dest, home_agnt))

num_bind = op_prg_list_size(l i s t _ p t r);
for(i=0; i<num_bind; ++i)
{

ca_entry = (CA_mobility_binding *)
op_prg_list_access (l i s t _ j D t r , i);

i f (IP_equal(dest, ca_entry->home_addr))
{

home_agnt->net = ca_entry->home_agnt.net;
home_agnt->node = ca_entry->home_agnt .node ,-
FOUT

}

}

home_agnt->net = ADDRESS_UNDEFINED;
home_agnt->node = ADDRESS_UNDEFINED;

FOUT
}

http://home_addr.net
http://dest.net
http://target.net

Appendix C. Supplementary Source Code of the Handoff
Enhanced Model

/ * mobile_rte_sup.ex,c */
/ * Routing support procedures for the Mobile IP example model */

•include <opnet.h>
•include "mobile-ip.h"
•include "mobile_rte^sup.h"
•include "ip_rte_sup.h"
•include "protocol.h"

/ * Functions called by Process Module */

Lis t*
mobile_rte_sup_table_setup (file_name)

char *file_name;
{ • •
Lis t* mobile_strrn_list_ptr ;
Lis t* l i n e _ l i s t _ p t r ;
mobile_rte_table*table_ptr ,-

/ * Provides comprehensive routing table loading and parsing */
/ * services for Mobile IP module. */
FIN (rnobile_rte_sup_table_setup (file_name, netO, nodeO, netl , nodel, net2, node2))

/ * Load the l i s t of text lines from the specified f i l e . */
/ * Note: this procedure w i l l quit the simnulation i f * /
/ * f i l e cannot be loaded, so i t is assumed that there */
/ * are no problems upon returning. * /
l ine_ l i s t_pt r = mobile_rte_sup_table_load (f ile_narne) ,-

/ * Parse the contents of the obtained,list into */
/ * a routing-instruction table. * /
mobile_strm_list_ptr = mobile_rte_sup_list_parse (l ine_l i s t_pt r) ;

/ * In debug mode, i f tracing is active, print the table */
i f (op_prg_odb_trace_active ())

{
mobile_rte_sup_table_print (mobile_strm_list_ptr) ,-
}

FRET(mobile_strm_list_ptr); .
}

L is t*
mobile_rte_sup_table_load (file_name)

char *file_name;
{
Lis t* l i n e _ l i s t _ p t r ;
char err_str [256];

/ * Read in a routing table from an a s c i i */
/ * f i l e adhering to format defined above.. */
FIN (mobile_rte_sup_table_load (file_name))

/ * Open and read the f i l e into the l i s t . * /
l ine_ l i s t_pt r = op_prg_gdf_read.(file_name);

124

Appendix C. Supplementary Source Code of the Handoff Enhanced Model 125

/ * Test for error in reading. */ "
i f (l ine_l is t_ptr == OPC_NIL)

{ -
sprintf (err_str, "F i le Name: %s", file_name);
op_sim_end ("Package : mobile_rte_sup",

"Error : Unable to read routing table f i l e " ,
err_str, "") ;

}.

/ * Return the l i s t of text 'lines^ */
FRET (line_list_ptr)
>

List*
mobile_rte_sup_list_parse (l ine_list_ptr)

Lis t* ' l i n e _ l i s t _ p t r ;
{
L is t* mobile_stream_list_ptr;
mobile_rte_table*mrt_ptr,-
int i , num_lines;
char* l i n e ;
List * f i e l d _ l i s t _ p t r ;

/ * Extract information from the lines of an asc i i routing table * /
/ * and construct a corresponding routing table structure.which */
/ * contains routing instructions. * / . .
FIN (mobile_rte_sup_list_parse (line_list_ptr))

/ * Allocate a routing table structure. */
mrt_ptr = (mobile_rte_table*) op_prg_mem_alloc (sizeof (mobile_rte_table));

/ * Allocate a temporary table for holding l i s t s . * /
mobile_stream_list_ptr = op_prg_list_create ();

'/* Scan through each of the lines, one at a time. * /
num_lines =. op_prg_list_size (l ine_list_ptr) ,-
for (i = 0; i < num_lines; i++)
{ ' • •

/ * Obtain the i_th l i n e . * /
l ine = op_prg_list_access (l ine_lis t_ptr , i) ;

/ * Decompose i t into f ields (f ie ld boundaries are * /
/ * indicated by spaces, tabs, slashes, or commas. '*/
f i e l d _ l i s t _ p t r = op_prg_str_decornp (line, " , A t ") ;

/ * Format for a l ine is as follows: * /
/ * <output_stream> <mtu>*/
/ * Incomplete lines are skipped. * /
i f (op_prg_list_size (f i e l d „ l i s t _ p t r) < 4)

continue;

/ * Create a routing instruction structure. */
mrt_ptr = (mobile_rte_table*)

cp_prg_mem_alloc (sizeof (mobile_rte_table)). ,-

/ * Transfer the parsed fields into the structure * /
/ * F i rs t obtain the destination stream and mtu f i e l d s . */
mrt_ptr->stream = atoi (

op_prg_list_access (f i e ld_ l i s t_pt r , MOBILE_TBL_OUTSTREAM)) ,-
mrt_ptr->mtu = atoi (

op_prg_list_access (f ie ld_l is t_ptr , MOBILE_TBL_MTU));

Appendix C. Supplementary Source Code of the Handoff Enhanced Model

mrt_ptr->careof.net = atoi (
op_prg_list_access (f ie ld_l is t_ptr , MOBILE_TBL_CAREOF_NET)); '

mrt_ptr->careof .node'= atoi (
op_prg_list_access (f i e ld_ l i s t_pt r , MOBILE_TBL_CAREOF_NODE)) ,-

if^(mrt_ptr->mtu <= 0)
mrt_ptr->mtu = 0x7FFFFFFF;

i f (mrt_ptr->careof.net == ADDRESS_UNDEFINED &&
mrt_ptr->careof.node == ADDRESS_UNDEFINED)

{
/ * oareof address not implemented */
mrt_ptr->condition = CONDITION_ENABLED;

}

else
{

/•* disable a l l condition flags i n i t i a l l y */
mrt_ptr->condition = CONDITION_DISABLED;

}

/ * Append the routing instruction to the temporary l i s t . */
op_prg_list_insert (rnobile_stream_list_ptr, mrt_ptr, OPC_LISTPOS_TAIL)

. }

FRET(mobile_strearn_list_ptr)
}

void
mobile_rte_sup_table_print (mobile_stream_list_ptr)
Lis t *mobile_stream_list_ptr-;

{
mobile_rte_table*table_entry;
int i , s i z e ;
char dne_str [128], dno_str [128];
char nne_str [128], nno_str [128], strO [512];

/ * Print the contents of a routing table. * /
FIN (mobile_rte_sup_table_print (mobile_stream_list_ptr))

size = op_prg_list_size (rnobile_stream_li-st_ptr) ;
i f (size == 0)

{ - .
op_prg_odb_print_major ("Routing table is empty", VOS_NIL) ,-
}

else{
op_prg_odb_print_major ("Routing table contents : " , VOS_NIL);
for (i = 0; i < size; i++)

{
table_entry = (mobile_rte_table*)

op_prg_list_access(mobile_stream_list_ptr, i)
sprintf ! strO, "Stream (%d): mtu (%d)"

, table_entry->stream, table_entry->mtu);
op_prg_odb_print_minor (strO, VOS_NIL);
}

}

FOUT
}

Compcode

Appendix C. Supplementary Source Code of the Handoff Enhanced Model 127

mobile_rte_sup_route_select (mobile_table, pkptr, i c i_pt r , objid
agnt_flag, pk_id, t t l
HA_bind_ptr, FA_bind_ptr
CA_bind_ptr, MH_bind_ptr
ipO, i p l , ip2, •route_optim, trash_unsent_pk
buffer_ptr, buffer_ l i fe)

*mobilettable,•
*pkptr;
* ici_ptr,-
obj i d ;
agnt_flag;
*pk_id;
t t l ;
*HA_bind_ptr, *FA_bind_ptr;
*CA_bind_ptr, *MH_bind_ptr;
ipO, i p l , ip2 ,-
route_optim,-
trash_unsent_pk;
*buf f er_ptr,-
buffer life,-

Lis t
Packet
Ici
Objid
int
int
int
Lis t
Lis t
IP
int
int
Lis t
double
{
char
Packet
Packet
int
int
int
IP
IP

strO [100] ,-
* inner_pkptr;
*buffer_pkptr;
optim;
protocol;
i , . j , num_bind,
src, dest;
home_agnt ;

num multi bind;

HA_mobility_binding*home_entry;
FA_mobility_binding*visitor_entry;
multi_binding *multi_bind_entry;

FIN (rnobile_rte_sup_route_select (mobile_table, pkptr, . . .))

op_pk_nfd_get(pkptr, "src_net", &src.net);
op_pk_nfd_get(pkptr, "src_node", tsrc.node);

op_pk_nfd_get(pkptr, "dest_net", &dest.net);
'op_pk_nfd_get(pkptr, "dest_node", &dest.node);

/ * Select a route from the routing table which matches the */
/ * requested destination network and node. */
i f ('IP_equal(dest, ipO) II IP_equal(dest, i p l) I I IP_equal(dest, ip2))
(•

op_pk_nfd_get(pkptr, "protocol", &protocol);

/ * Not encapsulated (not for a v i s i t o r) */
i f (protocol != PROTOCOL_ENCAP)

FRET (MOBILE_RTE_TO_IP)

op_pk_nfd_get(pkptr, "data", &inner_pkptr);
op_pk_destroy (pkptr) ,-

pkptr = inner_pkptr; .
op_pk_nfd_get(pkptr, "dest_net", &dest.net) ; '
op_pk_nfd_get (pkptr, "dest_node", &dest.node),-

/ *

i f
{

! trash_unsent_pk)

buffer_pkptr = op_pk_copy(pkptr); * /
i f (insert_pk_buffer(buffer_ptr, buffer_life' , dest, pkptr)

== OPC_COMPCODE_SUCCESS)
{

i f (op_prg_odb_ltrace_active ("pk_buffer"))

Appendix C. Supplementary Source Code of the Handoff Enhanced Model 128

{

sprintf (strO, "Buffering pk(%d) at (%d,%d)"
, op_pk_id (pkptr), ipO.net, ipO.node);

op_prg_odb_print_major (strO, OPC_NIL);
}
FRET(,MOBILE_RTE_SUCCESS)

else
{

/ * op_pk_destroy (buffer_pkptr) ,- * /

i f (forward_to_visitor(mobile_table, FA_bind_ptr, pkptr, i c i_pt r , dest) ==
OPC_COMPCODE_FAILURE)•

{
i f (route_optim)
C

check_ca_list(CA_bind_ptr, dest, &home_agnt);
i f (home_agnt.net == ADDRESS_UNDEFINED

&& horne_agnt. node == ADDRESS_UNDEFINED)
{ ' .

home_agnt = src; . . .
}

generate_bind_warning (home_agnt, objid, dest, src),-
}

i f (encap_packet(HA_bind„ptr, CA_bind_ptr, pkptr, i c i_pt r , ipO
, dest, pk_id, t t l , optim, objid)

== OPC_COMPCODE_SUCCESS) .
{

FRET(MOBILE_RTE_ENCAP)
• ' }

else
{

i f (trash_unsent_pk)
{

i f (op_prg_odb_ltrace_active ("pk_buffer"))
{

sprintf (strO, "Trashing pk(%d) at (%d,%d)"
, op_pk_id (pkptr), ipO.net, ipO.node);

op_prg_odb_print_major (strO, OPC_NIL);
}

op_pk_destroy (pkptr) ,-
}

FRET(MOBILE_RTE_FAILURE)
}

}

else
{

/ * packet sent to v i s i t o r */
FRET(MOBILE_RTE_SUCCESS)

>

}

i f (IP_equal(src, ipO) I I IP_equal(src, i p l) I I IP_equal(src, ip2))
optim = false;

else . . .
optim = route_optim;

i f (send_via_FA(pkptr, MH_bind_ptr, mobile_table, i c i_pt r , dest, agnt_flag)•==
OPC_COMPCODE_SUCCESS)

FRET (MOBILE_RTE_SUCCESS)
else i f (forward_to_visitor(mobile_table, FA_bind_ptr, pkptr, i c i j t r , dest) ==

OPC_COMPCODE_SUCCESS) • • •

http://ipO.net
http://home_agnt.net
http://ipO.net

Appendix,C. Supplementary Source Code of the Handoff Enhanced Model 129

FRET (MOBILE_RTE„SUCCESS)
e l s e I f (encap_packet (HA_bind_ptr, CA_bind_ptr, pkptr, i c i _ p t r , ipO', dest, p k _ i d , t t l ,

optim, o b j i d) == OPC_COMPCODE_SUCCESS) ' . •
' FRET (MOBILE_RTE_ENCAP) .. .

e l s e ' ' '
FRET (MOBILE_RTE_TO_IP) • • .

Compcode, ' • •
•send_via_FA(pkptr, b i n d _ l i s t _ p t r , mobile„table, i c i _ p t r , dest, ma_flag)
L i s t . • * b i n d _ l i s t _ p t r , *mobile_table;
I c i * i c i _ p t r ;
Packet *pkptr;
IP dest;
i n t ' ma_flag;
{ • '
i n t ' i , s i z e ;
i n t copy = f a l s e ;
i n t next_net, next_node, stream, mtu;
Packet • . *cp_pkptr;
Compcode status= OPC_COMPCODE_SUCCESS;
MH_FA_binding * f a _ e n t r y ;
m o b i 1 e _ r t e _ t a b l e * t a b l e _ e n t r y ;
char . strO[80], s t r l [8 0] ; ' ' .

FIN(send_via_FA(p k p t r , . b i n d _ l i s t _ p t r , mobile_table, i c i _ _ p t r , dest, ma_flag)) .

/* F i r s t of a l l , check i f packet i s f o r any enabled streams.*/
s i z e = o p _ p r g _ l i s t _ s i z e (m o b i l e t t a b l e);
for (i=0; i < s i z e ; ++i)

' { - '
t a b l e _ e n t r y = (mobile__rte__table *) o p _ p r g _ l i s t _ a c c e s s (mobile_table, i) \

i f (IP_equal(table_entry->careof, dest) &&
tabl e _ e n t r y - > c o n d i t i o n == CONDITION_ENABLED)

stream = table_entry->stream;
mtu = table_entry->mtu;

next_net = ADDRESS_UNDEFINED;
next_node = ADDRESS_UNDEFINED; '

d e l i v e f _ p a c k e t (pkptr, i c i _ p t r
, next_net, next_node, stream, mtu);

FRET(OPC_COMPCODE_SUCCESS)

/* Now, check to see i f there i s any m o b i l i t y b i n d i n g */ .
s i z e = o p _ p r g _ l i s t _ s i z e (b i n d _ l i s t _ p t r),-

/* i f (s i z e == 0 && ma_flag)/* no bindings and not a mobile node */
i f (s i z e ==0)/* no bindings and not'a mobile node *•/

FRET(OPC_COMPCODE„FAILURE)

/* each enabled FA w i l l r e c e i v e a copy of' the packet *'/

f o r i i=0; i < s i z e ; ++i)
{

fa_e n t r y = (MH_FA_binding *)

Appendix C. Supplementary Source Code of the Handoff Enhanced Model 130

#if 0

#else

ttendif

op_prg_list_access(bind_list_ptr , i);

/ * obtain the stream associated with the current binding */
stream = fa_entry->stream;

i f (chk_strm_condition(mobile_table, stream, &mtu) == CONDITION_ENABLED
{ •

status = OPC_COMPCODE_SUCCESS;

i f (mtu == MOBILE_STRM_NONEXISTENT)
{

sprintf (strO, "Discarding packet (%d) ", op_pk_id (pkptr));
sprintf (s tr l , "Stream non-existent");
op_prg_odb_print_major (strO, s t r l , OPC„NIL);

''op_pk_destroy(pkptr);
}

else
{

next_net = fa_entry->careof.net;
next_node = f a_entry->careof .node ,-

deliver_packet(pkptr, i c i_ptr
, next_net, next_node, stream, mtu);

FRET(OPC_COMPCODE_SUCCESS)

copy = true;
cp_pkptr = op_pk_copy(pkptr);
deliver_packet(cp_pkptr, i c i_p t r

, next_net, next_node, stream, mtu);

/ * have to deallocate original packet since i t is no longer needed */
i f (copy)
{

op_pk_destroy (pkptr) ,-
FRET(status)

}

FRET(OPC_COMPCODE_FAILURE)
}

Compcode
encap_packet(HA_bind_ptr, CA_bind_ptr, pkptr,. i c i_ptr , current, dest, pk_id, t t l ,

route_optim, reg_objid)
Lis t *HA_bind_ptr ,-
Lis t • *CA_bind_ptr;
Packet *pkptr;
Ici * i c i _ p t r ;
IP current, dest;
int *pk_id;
int t t l ;
int route_optim;
Objid reg_objid;'
{

char str0[512], strl[512];
Packet ' *encap_pkptr;
int i , j , num_bind, num_multi_bind;
int next_net, next_node, outstrm, mtu;
IP orig ;
int data_len;
int • copy = false;

Appendix C. Supplementary Source Code of the Handoff Enhanced Model

HA_mobility_binding*home_entry,-
CA_mobi1i ty_binding * ca_ent ry;
multi_binding *multi_bind_entry,-
Compcode status = OPC_COMPCODE_FAILURE;

FIN(encap^packet(HA_bind_ptr, ...))

num_bind = op_prg_list_size(HA_bind_ptr);

for (i=0; i<num_bind; ++i)
{

home_entry = (HA_mobility_binding •*)
op_prg_list_access (HA_bind_ptr, i) ,-

/ * check for matches in HA mobility binding * /
i f (Imemcmpl idest,&home_entry->home_addr, sizeof(IP)))
{ '

Status = OPC_COMPCODE_SUCCESS;
nuj__multi_bind = op_prg_list_size(home_entry->multi_bind_list
for(j=0; j<num_multi_bind; ++j)
{ ' '

multi_bind_entry = (multi_binding *)
op_prg_list_access(home_entry->multi_bind_list,

data_len = op j>k_total_size_get(pkptr)/8,-
encap_pkptr = op_pk_create_fmt ("ip_dgram".) ;
op_pk_bulk_size_set(encap_pkptr, data_len*8);

copy = true;
op_pk_nfd_set(encap_pkptr, "data"

, op_pk_copy(pkptr));
op_pk_nfd_set(encap_pkptr, "protocol", PR0TOCOL_ENCAP)
op_pk_nfd_set(encap_pkptr, "src_net",

current.net);
op_pk_nfd_set(encap_pkptr, "src_node",

current.node);
op_pk_nfd_set(encap_pkptr, "dest_net",

multi_bind_entry->careof.net);
op_pk_nfd_set(encap_pkptr, "dest_node",

multi_bind_entry->careof.node);

op_pk_nfd_set (encap_pkptr, "orig_len" , data_len) ,-
op_j3k_nf d_set (encap_pkptr, " f rag_len", data_len) ;

op_pk_nfd_set(encap_pkptr,"ident", (*pk_id)++);
op_pk_nfd_set (encap_pkptr, " frag" , 0),-
op_pk_nfd_set(encap_pkptr, " t t l " , t t l) ;

i f (op_prg_odb_ltrace_active ("encap_pk"))
(

sprintf (strO, "Encapsulating pk(%d) sent"
, op_pk_id (encap_pkptr)) ,-

sprintf (s t r l , "Destination: net (%d), node (%d)
, mul t i„bind_entry->careof .net
, multi_bind_entry->careof.node)

op_prg_odb_print_major (strO, s t r l , OPC_NIL);
}

encap_pk_send(encap_pkptr);

/ * At this stage, i t is assumed that HA binding exists
* for mobile node. Therefore send binding warning

* message to original sender * /
i f (route_optim == true)

Appendix C. Supplementary Source Code of the Handoff Enhanced Model 132

op_pk_nfd_get(pkptr, "src_net", &orig.net);
op„pk_nfd_get(pkptr, "src_node", &orig.node)

generate_bind_warning(orig, reg_objid
, home_entry->home_addr, current) ;

i f (status == 0PC_C0MPCODE_SUCCESS)
{

i f (copy)
op_pk_destroy(pkptr);

FRET(status)
}

ttif 0
i f (route_optim == false')

FRET(OPC_COMPCODE_FAILURE)

#endif

num_bind = pp_prg_list_size(CA_bind_ptr);

fort i=0; i<num_bind; ++i)
{ .

ca_entry = (CA_mobility_binding *)
op_prg_list_access(CA_bind_ptr, i •);

i f (IP_equal(dest, ca_entry->home_addr))
{

status =. OPC_COMPC0DE_SUCCESS;

data_len = op_pk_total_size_get(pkptr)/8;
encap_pkptr = op_pk_create_fmt("ip_dgram") ;
op_pk_bulk_size_set(encap_pkptr, data_len*8);

°p_pk_nf d„set (encap_pkptr, "data", pkptr) ;
op_pk_nfd_set(encap_pkptr, "protocol"

, PROTOCOL_ENCAP);
op_pk_nfd„set(encap_pkptr, "src_net", current.net);
op_pk_nfd_set(encap_pkptr, "src_node", current.node)
op_pk_nfd_set(encap_pkptr, "dest_net" •

, ca_entry->careof.net);
op_pk_nfd_set(.encap_pkptr, "dest_node"

, ca_entry->careof . node) ,-
op_pk_nfd_set(encap_pkptr, "orig_len", data_len);
op_pk_nfd_set(encap_pkptr, "frag_len", data_len);
op_pk_nfd_set (encap_pkptr, "ident", (*pk_id)++) ,-
op_pk_nfd_set (encap_pkptr, "frag", 0) ,-'
op_pk_nfd_set(encap_pkptr, " t t l " , t t l);

/ * Now schedule packet for transmission */
encap_pk_send(encap_pkptr);
FRET(OPC_COMPCODE_SUCCESS)

i f (copy)
op_pk_destroy (pkptr) ,-

FRET(status)
}

http://current.net

Appendix C. Supplementary Source Code of the Handoff Enhanced Model 133

void
deliver_packet(pkptr, i c i_pt r , next_net, next_node, outstrm, mtu)
Packet *pkptr;
Ic i * i c i_ptr ;
int next_net, next_node, outstrm, mtu;
{

char str0[512], strl[512];
int i , len;
int header_size, frag_size, data_size;
int dest_net, dest_node;
int t t l ;
int frag_accum, frag, num_frags;
Packet *ip_pkptr, *data_pkptr, *frag_ptr,-

FIN(deliver_packet(pkptr, . . .)) '

/ * obtain packet's destination */
op_pk_nfd_get(pkptr, "dest_net", &dest_net);
op_pk_nfd_get (pkptr, "dest_node", &dest_n'ode) ,-

/ * Decrement the packet's t ime-to-live f i e l d . If zero is reached, * /
/ * discard the packet rather than send i t on. */
op_pk_nfd_get (pkptr, " t t l " , &t t l) ;
t t l - - ;
i f (t t l ==0) . •
{

/ * In debug mode, indicate that a packet is destroyed */
/ * due to an expired t t l . */
i f (op_prg_odb_ltrace_active ("ip_errs").)
{

sprintf (strO, "Discarding packet (%d) with expired TTL", op_pk_id (pkp-

sprintf (s tr l , "Destination: net (%d), node (%d)", dest_net, dest_node) ,-
op_prg_odb__print_rnajor (strO, s t r l , OPC_NIL) ; .

}
op_pk_destroy (pkptr);

}

else{
/ * Assign the new decremented value of t t l . */
op_pk_nfd_set .(pkptr, " t t l " , t t l) ;

/ * In debug mode, trace the routing action. * /
i f (op_prg_oclb_ltrace_active ("mobile-ip_rte"))
{

sprintf (strO, "Routing towards (%d, %d)", dest_net, dest_node) ,-
sprintf (s tr l , "Next hop (%d, %d), output stream (%d)",

next_net, next_node, outstrm);

op_prg_odb_print_major (strO, s t r l , OPC_NIL);
}

/ * Install an Ici indicating to the lower layer what the */
/ * address of the next (intermediate) node i s . * /
op_ici_attr_set (ici_ptr , "next_node", next_node);
o p _ i c i _ i n s t a l l (i c i_ptr) ;

/'* Obtain the size in bytes of the fragment. * /
frag_size = op_pk_total_size_get (pkptr) / 8; •

/ * Obtain the number of bytes of data carried in this fragment */
op_pk_nfd_get (pkptr, "frag_len", &data_size);

/ * Also obtain the difference between the packet size * /
/ * and the length f i e l d : this is the size of the header. * /
header_size = frag_size - data_size,-

Appendix C. Supplementary Source Code of the Handoff Enhanced Model 134

/ * If i t is smaller than the maximum transfer unit, send i t as i s . */
i f (frag_size <= mtu)
{

opj>k_send (pkptr, outstrm) ,-
}

else{
/ * Otherwise, break i t into fragments */
/ * Each fragment can contain up to (mtu - header_size) bytes of data */
num_frags = (data_size + mtu - header_size - 1) / (mtu - header_size);

/*' In debug mode, indicate the fragmentation. */
i f (op_prg_odb_ltrace_active (" i p „ f r a g "))

• { "
sprintf (strO, "Breaking datagram 'into (%d) fragments", num_frags);
op_prg_odb_print_major (strO, OPC_NIL) ,-

}

/ * If the fragment is carrying the original datagram given to IP, */
/ * extract i t before copies are made. Only one fragment can carry */
/ * the original packet for the reassembly model to work properly. */
i f (op_pk_nfd_is_set (pkptr, "ip^dgram"))

op_pk_nfd_get (pkptr, "ip_dgram", &ip_pkptr);
else ip_pkptr = OPC_NIL;

/ * If the packet is carrying any encapsulated data (normally this * /
/ * would happen only for a packet fragmented for the f i r s t time), * /
/ * extract this' data packet so that i t w i l l not appear in each */

- / * fragment generated by copying. */
i f (op_pk_nfd_is_set (pkptr, "data"))

op_pk_nfd_get (pkptr, "data", &data_pkptr);
else data_pkptr = OPC_NIL;

/ * Loop through and' create the fragments . * /
for (frag_accum =0, i = 0; i < num_frags; i++)
{

/ * Make a copy of the original packet. */
frag_ptr = op_pk_copy (pkptr);

/ * Indicate that the copy is a fragment * /
op_pk_nfd_set (frag_ptr, "frag", 1) ,-

/ * for a l l but the last fragment, the size is the mtu. */
/ * and the encapsulated ip packet is not included. * /
i f (i < nurn_frags - 1) .
{

op_pk_nfd_set (frag_ptr, "frag_len", mtu - header_size);
op_pk_total_size_set (frag_ptr, 8 * mtu);
frag_accum += (mtu - header_size);

} • • '
else{

len = data_size - frag_accum;
op_pk_nfd_set (frag_ptr, "frag_len", len) ,-
op_pk_total_size_set (frag_ptr,8 * (header_size + len))•;

/ * If the original packet was not a fragment, encapsulate i t
* / •

/ * into the last fragment created here. * /
op_pk_nfd_get (pkptr, "frag", &frag);
i f (!frag)
{

/ * If the packet contained encapsulated data (i . e . ,
from the */

/ * transport), that data w i l l have been removed to
avoid */

Appendix C. Supplementary Source Code of the Handoff Enhanced Model 135

now be */
/ * i t s duplication in the fragments. The data should

/ * reinserted into the original packet! * /
i f (data_pkptr != OPC_NIL)

op_pk_nfd_set- (pkptr, "data", data_pkptr) ,-

/ * In either case the original packet is */
/ * encapsulated in thhe fragment. * /
op_pk_nfd_set (frag_ptr, "ip_dgram", pkptr); •

*/

gram */

fragment */

ated */

ip_pkptr);

/ * Otherwise the packet can be discarded. * /
else{

op_pk_destroy (pkptr);

/ * Also, i f the packet included the original datagram

/ * from which i t was generated, transfer that data-

/ * into the last fragment created here. * /
- / * Note that i t is possible, in the case where a

/ * is i t s e l f being fragmented, that none of the cre-

/ * fragments w i l l contain the original datagram. */
i f (ip_pkptr != OPC_NIL)
{

op_pk_nfd_set (frag_ptr, "ip_dgram",

}

/ * Forward the datagram fragment.
opj>k_send (frag_ptr, outstrm);

FOUT;
}

Compcode
forward_to_visitor (mobile_table', bind_list_ptr , pkptr, i c i_pt r , dest)
Lis t *bind_list_ptr , *mobile_table;
Packet *pkptr;
Ici *ici_ptr,-
IP . • dest;
{
char str0[80], strl[80] ;
Compcode status = OPC_COMPCODE_FAILURE;
int i , s ize;
int next_net, next_node, stream, mtu;
FA_mobility_binding*visitor_entry;

FIN(forward_to_visitor(mobile_table, bind_list_ptr , pkptr, i c i_pt r , dest

size = op_prg_list_size(bind_list_ptr);

i f (size ==0)/* l i s t does not exist */
FRET (OPC COMPCODE FAILURE)

fori i=0; i<size; ++i

Appendix C. Supplementary Source Code of the Handoff Enhanced Model 136

visitor_entry = (FA„mobility_binding *)
op_prg_list_access (bind_list_ptr , i) ,-

i f (!memcmp(&dest, &visitor_entry->home_addr, sizeof(IP)))
{

/ * There is a match */
i f (visitor_entry->home_agnt.net'!= ADDRESS_UNDEFINED &&

visitor_entry->home_agnt.node != ADDRESS_UNDEFINED)
{

Status = OPC_COMPCODE_SUCCESS;
next_net = visitor_entry->home_addr.net;
next_node = visitor_entry->home_addr.node;
stream = visitor_entry->stream;
mtu = get_strm_mtu(mobile_table, stream),-
i f (mtu == MOBILE_STRM_NONEXISTENT)
{

sprintf (strO, "Discarding packet (%d) ", op_pk_id (pkptr))
sprintf (s t r l , "Stream non-existent");
op_prg_odb_print_ma j or (strO, s t r l , OPC_NIL) ,-
op_pk_destroy (pkptr),-

}
else
{

deliver_packet(pkptr, i c i_ptr
, next_net, next_node, stream, mtu);

FRET(status);
}

int
get_strm_mtu(strm_ptr, strm)
List*strm_ptr;
int strm; '
{
int i , s ize;
mobi1e_rte_tab1e*strm_entry;

FIN(get_strm_mtu(strm_ptr, strm))

size = op_prg_list_size (strm_ptr),-

for(i=0; i<size; ++i)
{

strm_entry = (mobile_rte_table *) op_prg_list_access(strm_ptr, i);
i f (strm_entry->stream == strm)

FRET{ strm_entry->mtu);
. •} ' ' :

FRET(MOBILE_STRM_NONEXISTENT);
}

int
chk_strm_condition(-mobile_table, stream, mtu)
Lis t *mobile_table;
int stream;
int *mtu;
{

Appendix C. Supplementary Source Code of the Handoff Enhanced Model 137

int i , s ize;
mobi1e_rte_tab1e*tab1e_entry;
FIN(chk_strm_condition(mobile_table, stream, "mtu))

size = op_prg_list_size(mobile_table);

for(i=0; i<size; ++i)
{

table_entry = (•••mobile„rte_table *)
op_prg_list_access(mobile_table, i);

i f (table_entry->stream == stream)
{

*mtu = table_entry->mtu;
FRET(table_entry->condition)

}
}

/ * stream does not exist */ -
*mtu = MOBILE_STRM_NONEXISTENT; '

FRET(CONDITION_DISABLED)
}

void
get_careof_addr(mobile_table, i c i p t r)
List *mobile_table;
Ici " * i c i p t r ; . .•
{ _ •

int i , s ize;
int stream;
IP careof;•
mobile_rte_table*table_entry;
FIN(get_careof_addr(mobile_table, i c i p t r))

op_ici_attr_get (i c i p t r , "stream", &stream),-

size = op_prg_list_size(mobile_table); .
fort i=0; i<size; ++i)
{ ' •

table„entry = (mobile_rte_table *)
op_prg_list_access(mobile_table, i);

i f (table_entry->stream == stream)
{

op_ici_attr_set(i c i p t r , "careof_net", table_entry->careof.net);
op_ici_attr_set (i c i p t r ; "careof jiode" , table_entry->careof .node),-
op_ici_attr_set (i c i p t r , "status", OPC_COMPC0DE_SUCCESS) ,-
FOUT

}

} . .

/ * stream does not exist */
op_ici_attr_set(i c i p t r , "careof_net", ADDRESSJJNDEFINED)
op_icl_attr_set(i c i p t r , "careof_node",•ADDRESS_UNDEFINED
op_ici_attr_set(i c i p t r , "status", OPC_COMPCODE_FAILURE);

FOUT

void
set_strm_condition(mobile_table, i c i p t r)

Appendix C. Supplementary Source Code of the Handoff Enhanced Model 138

List*mobile_table;
Ici * i c i p t r ;
{
IP careof;
int stream;
int mode;
int i , s ize; . ' .
Compcodestatus = OPC_COMPCODE_FAILURE;
mobile_rte_table*list_ptr;
FIN(set_strm_condition(i c i p t r))

op_ici_attr_get(i c i p t r , "mode", &mode);
op_ici_attr_get(i c i p t r , "stream", &stream);

size = op_prg_list_size(mobile_table);
for(i=0; i<size; ++i•)
{

l i s t _ p t r = (mobile_rte_table *)
op_prg_list_access(mobile_table, i);

switch! mode)
{
case DISABLE_ALL:

list_ptr->condition = CONDITION_DISABLED;
status = OPC_COMPCODE_SUCCESS;
break;

case DISABLE_ALL_EXCEPT_THIS:
if{ list_ptr->stream != stream)
{

list_ptr->condition = C0NDITION_DISABLED;
status = OPC_C0MPC0DE_SUCCESS;

} ' .

break;

case DISABLE_THIS_ONLY:
i f (list_ptr->stream == stream)
{

op_ici_attr_set (i c i p t r , " c a r e o f „ n e t " , list_ptr->careof .net) ;"
op_ici_attr_set (i c i p t r , "careof_node", list__ptr->careof .node) ,-
list_ptr->condition = CONDITION_DISABLED;
status = OPC_COMPCODE_SUCCESS;

}

break,-

case ENABLE_ALL: - '.
' l ist_i3tr->condition = CONDITION_ENABLED;

' Status = OPC_COMPCODE_SUCCESS;
break ,-

case ENABLE_ALL_EXCEPT_THIS:
i f (list_ptr->stream != stream)
{

list_ptr->condition = CONDITION_ENABLED;'
status = OPC_COMPCODE_SUCCESS;

}
break;

case ENABLE_THIS_ONLY:
i f (list_ptr->stream == stream)
{

op_ici_attr_set (i c i p t r , "careof_net" , list_ptr->careof . net) ,-
op_ici_attr_set(i c i p t r , "careof_node", list_ptr->careof.node);
list_ptr->condition = CONDITION_ENABLED;
status = OPC_COMPCODE_SUCCESS;.

Appendix C. Supplementary Source Code of the Handoff Enhanced Model

break;

default:
status = OPC_COMPCODE_FAILURE;
break ,-

}

}

op_ici_attr_set(i c i p t r , "status", status);
FOUT
)

void
hop_to_next_strm(mobile_table, i c i p t r)
Lis t *mobile_table ,-
Ici * i c i p t r ;
{
int j , i , s ize;
int stream;
mobile_rte_table*table_entry,-
FIN(hop_to_next_strm(mobile_table, i c i p t r))

op_ici_attr_get(i c i p t r , "stream", &stream);

size = op_prg_list_size(mobile_table);

for (i=0; i<size; ++i)
{

table_entry = (mobile_rte_table *)
op_prg_list_access(mobile_table, i

i f (table_entry->stream'== stream)
{

i f ((j = i + 1) == size)
j = 0;

table_entry = (mobile_rte_table *)
op_prg_list_access(mobile_table, j

op_ici_attr_set(i c i p t r , "stream"
, . , table_entry->stream);

op_ici_attr_set(i c i p t r , "careof_net"
,table_entry->careof.net);

op_ici_attr_set(i c i p t r , "careof_node"
,table_entry->careof.node);

/ .

/*'Ndw, enabling this stream * / '
table_entry->condition = CONDITION_ENABLED;

op_ici_attr_set(i c i p t r , "status"
, OPC_COMPCODE_SUCCESS);

FOUT
}

}
' op_ici_attr_set(i c i p t r , "status", OPC_COMPCODE_FAILURE);

FOUT

void
process_binding_warning(pkptr, i c i p t r , rcv_iciptr , ip_objid)
Packet *pkptr;

Appendix C. Supplementary Source Code of the Handoff Enhanced Model 140

I c i * i c i p t r ;
I c i * r c v _ i c i p t r ;
Objid i p _ o b j i d ;
{
IP horae_addr, rem, target, home_agnt;
i n t rem_port;
Packet *bind_pkptr;
Compcode status;
I c i * b i n d _ i c i p t r ,-
FIN(process_binding_warning(pkptr, i c i p t r , r c v _ i c i p t r , i p _ o b j i d))

op_pk_nfd_get(pkptr, "home_addr_net" , &home_addr .net) ,-
op_pk_nfd_get(pkptr, "home_addr_node", &home_addr.node);

op_pk_nfd_get(pkptr, "target_net" , &target.net);
op_pk_nfd_get(pkptr, "target_node", &target.node); .

op_ici_a'ttr_get (r c v _ i c i p t r , "rem_net", trem.net) ;
o p _ i c i _ a t t r _ g e t (r c v _ i c i p t r , "rem_node", krem.node),-
o p _ i c i _ a t t r _ g e t (r c v _ i c i p t r , "rem_port", &rem_port) ,-

/* c r e a t i n g binding for Mobile-ip query */
b i n d _ i c i p t r = o p _ i c i _ c r e a t e ("binding_command");

o p _ i c i _ a t t r _ s e t (b i n d _ i c i p t r " c o m m a n d " , READ_HA_BINDING) ,-
o p _ i c i _ a t t r _ s e t (b i n d _ i c i p t r , "home_net", home_addr.net);
o p _ i c i _ a t t r _ s e t (b i n d _ i c i p t r , "home_node" , home_addr .node) ;,

o p _ i c i _ i n s t a l l (b i n d _ i c i p t r);
op_intrpt_force_remote(BINDING_MAINTENANCE, i p _ o b j i d);
o p _ i c i _ i n s t a l l (OPC_NIL);

o p _ i c i _ a t t r _ g e t (b i n d _ i c i p t r , "status", &status),-

i f (status == OPC_COMPCODE_SUCCESS)
{

/* send binding warning i f home addr i s a- r e g i s t e r e d MH */
bind_pkptr = op_pk_create_fmt("bind_warn");
op_pk_nfd_set (bind_pkptr, "home_addr_net", home_addr.net),-
op_pk_nfd_se't (bind_pkptr, "home_addr_node" , home_addr.node);
op_pk_nfd_set(bind_pkptr, "target_net", target.net);
op_pk_nf d_set (bind_pkptr, "target_node" , target.node) ,-.

udp_app_send(i c i p t r , bind_pkptr, REG_REQUEST_PORT
, REG_REQUEST_PORT, target.net, target.node);

}

e l s e
{

#if 1
/* f i r s t of a l l , check whether home addr i s on cache l i s t */
o p _ i c i _ a t t r _ s e t (b i n d _ i c i p t r , "command", READ_CA_BINDING),-

o p _ i c i _ i n s t a l l (b i n d _ i c i p t r),-
op_intrpt_force_remote(BINDING_MAINTENANCE, i p _ o b j i d);
o p _ i c i _ i n s t a l l (OPC_NIL); '

o p _ i c i _ a t t r _ g e t (b i n d _ i c i p t r , "status", &status);

i f (status == OPC_COMPCODE_SUCCESS)
{

/* Home addr on cache l i s t , send binding request to home addr */
o p _ i c i _ a t t r _ g e t (b i n d _ i c i p t r , "home_agnt_net", Screm.net) ;
o p _ i c i _ a t t r _ g e t (b i n d _ i c i p t r , "home_agnt_node", krem.node);

bind_pkptr = op_pk_create_fmt("bind_req");

http://trem.net
http://home_addr.net
http://home_addr.net
http://target.net
http://target.net
http://Screm.net

Appendix C. Supplementary Source Code of the Handoff Enhanced Model 141

Seise

ttendif

else

op_pk_nfd_set(bind_pkptr, "home_addr_net", home_addr.net);
op_pk_nfd_set(bind_pkptr, "home_addr_node", home_addr.node)

/ * send the registration packet */
udp_app_send(i c i p t r , bind_pkptr, REG_REQUEST_PORT

, REG_REQUEST_PORT, rem.net, rem.node);

/ * no binding found, send i t to target */
bind_pkptr = op_pk_create_f mt ("bind_req"),-
op_pk_nfd_set(bind_pkptr, "home_addr_net", home_addr.net); •
op_pk_nfd_set (bind_pkptr, ."home_addr_node" , home_addr.node);

/ * send the registration packet */ ,
udp_app_send(i c i p t r , bind_pkptr, REG_REQUEST_PORT

, REG_REQOEST_PORT, target.net, target.node),-
}

bind_pkptr = op_pk_create_fmt("bind_req");
op_pk_nf d_set (bind_pkptr, "home_addr_net", home_addr.net) ,-
op_pk_nfd_set(bind_pkptr, "home_addr_node", hbme_addr.node)

/ * send the registration packet * /
udp_app_send(i c i p t r , bind_pkptr, REG_REQUEST_PORT

, rem_port, rem.net, . rem.node);

/ * deallocate resources after usage */
• op_ici_destroy (bind_iciptr),-

FOUT
}

void
process_binding_request(pkptr, i c i p t r , rcv_iciptr , objid)
Packet *pkptr;'
Ici * i c i p t r ;
Ici . *rcv_iciptr ,-
Objid objid;
{
Packet *bind_pkptr;
IP home_addr;
IP careof;
IP rem;
int rem_port;
Ic i * i p _ i c i p t r ;
int status,-
int lifetime,-
FIN(process_binding_request (pkptr,- i c i p t r , rcv_iciptr , objid))

op_pk_nfd_get(pkptr, "home_addr_net", &home_addr.net);
op_pk_nfd_get (pkptr, "home_addr_node" , &home_addr .node) ;'

op_ici_attr_get(r c v „ i c i p t r , "rem_net", trem.net);
op_ici_attr_get (rcv_iciptr , "rem_node", &rem.node) ,-
op_ici_attr_get (rcv_iciptr , "rem_port", &rem_port) ,-

i p _ i c i p t r = o p _ i c i „ c r e a t e ("binding_cornmand");
' op_ici_attr_set(ip_ ic ip t r , "command", READ_HA_BINDING);

op_ici_attr_set(ip_ ic ip t r , "home_net", home_addr.net);
op_ici_attr_set(ip_ ic ip t r , "home_node", home_addr.node);

http://home_addr.net
http://rem.net
http://home_addr.net
http://target.net
http://home_addr.net
http://rem.net
http://trem.net
http://home_addr.net

Appendix C. Supplementary Source Code of the Handoff Enhanced Model 142

o p _ i c i _ i n s t a l l (i p _ i c i p t r) ,-
op_intrpt_force_remote(BINDING_MAINTENANCE, o b j i d);
o p _ i c i _ i n s t a l l (' OPC_NIL) •

o p _ i c i _ a t t r _ g e t (i p _ i c i p t r , " s t a t u s " , t s c a t u s) ;
i f (status == 0PC_COMPCODE_FAILURE)
{

careof = home_addr;/* no bin d i n g e x i s t s */
l i f e t i m e = 0 ,-

} . - . • • ' • '
e l s e
{

o p _ i c i _ a t t r _ g e t (i p _ i c i p t r , "careof_net", &careof.net);
o p _ i c i _ a t t r _ g e t (i p _ i c i p t r , "careof_node", Scareof .node) ,-
o p _ i c i _ a t t r _ g e t (i p _ i c i p t r , " l i f e t i m e " , & l i f e t i m e) ;

} . .

/* d e a l l o c a t e i c i p o i n t e r a f t e r use */
o p _ i c i _ d e s t r o y (i p _ i c i p t r);

bind_pkptr = op_pk_create_fmt("bind_update"),-
op_pk_nfd_set(bind_pkptr, "home_addr_net", home_addr.net) ;
op_pk_nf d_set (bind_pkptr, "home_addr_node" , home_addr .node) ,-
op_pk_nf d_set (bind_pkptr, " careof_net", careof.net) ;
op_pk_nf d_set (bind_pkptr, "careof_node" , careof.node) ;
op_pk_nfd_set(bind_pkptr, " l i f e t i m e " , l i f e t i m e);

/* send b i n d i n g request v i a UDP port */
udp_app_send(i c i p t r , bind_pkptr, REG_REQUEST_PORT, rem_port, rem.net, rem.node);

FOUT
}

vo i d
process_binding_update(pkptr, i c i p t r , r c v _ i c i p t r , o b j i d)
Packet *pkptr;
I c i * i c i p t r , -
I c i * r c v _ i c i p t r ;
O b j i d o b j i d ;
{
Packet *bind_pkptr;
IP home_addr;
IP careof;
IP rem;
i n t rem_port;
I c i * i p _ i c i p t r , -
i n t l i f e t i m e , ack, s t a t u s ;
FIN(process_binding_update(.pkptr, i c i p t r , r c v _ i c i p t r , o b j i d))

op_pk_nfd_get (pkptr, "home_addr_net" , Sthome_addr.net);
op_pk_nfd_get (pkptr, "home_addr_node" , Schome_addr.node),-
op_pk_nf d_get (pkptr, "careof_net" ,• sicareof.net);
op_pk_nfd_get (pkptr, "careof_node" , Stcareof .node);
op_pk_nf d_get (pkptr, " l i f e t i m e " , Stlifetime) ;
op_pk_nf d_get (pkptr, "ack", Stack) ;

o p _ i c i _ a t t r _ g e t (r c v _ i c i p t r , "rem_net", &rem.net) ,-
o p _ i c i _ a t t r _ g e t (r c v _ i c i p t r , "rem_node", Strem.node •) ,-
o p _ i c i _ a t t r _ g e t (r c v _ i c i p t r , "rem_iDort",' &rem_port) ,-

i p _ i c i p t r = o p _ i c i _ c r e a t e ("binding_command"),-

i f ((careof.net == 0 && careof.node ==0) I I l i f e t i m e == 0)
{

o p _ i c i _ a t t r _ s e t (i p _ i c i p t r , "command", KILL_CA_BINDING),

http://home_addr.net
http://careof.net
http://rem.net
http://Sthome_addr.net
http://sicareof.net
http://careof.net

Appendix C. Supplementary Source Code of the Handoff Enhanced Model 143

op_ici_attr_set(ip_ ic ip t r , "home_net", home_addr.net);
op_ici_attr_set(ip_ ic ip t r , "home_node", home_addr.node);

o p _ i c i _ i n s t a l l (i p _ i c i p t r) ,-
op_intrpt_force_remote(BINDING_MAINTENANCE, objid);

}
else
{

op_ .ici_ _install(OPC _NIL) ;

op_ ,ici_ _attr_set (ip. _ ic iptr , "command", EDIT_CA_BINDING
op_ .ici_ _attr_set(ip. _ ic iptr , "home_net", home_addr.net)
op_ .ici_ _attr__set (ip. _ ic iptr , "home_node' , home_addr.node
op_ .ici_ „ a t t r _ s e t (ip. _ ic iptr , "home_agnt_ .net" , rem.net) ;
op_ _ici_ _attr_set(ip. _ ic iptr , "home_agnt_ .node", rem. node
op_ .ioi_ „ a t t r _ s e t (ip. _ ic iptr , "careof_net", carepf.net);
op_ .ici_ _attr_set (ip. _ ic iptr , "careof_node", careof.node
op_ .ici_ _attr_set(ip. _ ic iptr , " l i fet ime" , lifetime);

op_ .ici_ _ instal l (ip_ i c iptr) •

op_intrpt_force_remote(BINDING_MAINTENANCE, objid);
o p _ i c i _ i n s t a l l (OPC_NIL) ;

i f (ack == true)
{

bind_pkptr = op_pk_create_fmt ("bind_ack") ,-
op_pk_nfd_set (bind_pkptr, "home_addr_net" ," home_addr .net) ,-
op_pk_nf d_set (bind_pkptr, "home_addr_node" , home_addr . node) ,-

/ * send binding request via UDP port ' * /
udp_app_send(i c i p t r , bind_pkptr, REG_REQUEST_PORT

, rem_port, rem.net, rem.node);
} ' '

}

/ * deallocate i c i pointer after use */
op_ici_destroy(ip_ic ipt r).,-

FOUT
} • •

#if 0
void
encap_pk_destroy(pkptr)
Packet *pkptr;
{
Packet *outer_pkptr, *inner_pkptr;
int i , num_fds, data_present ,-
char " fd_name[40] ;

'FIN(encap_pk_destroy(pkptr))

outer_pkptr = pkptr;

while (1)
{

num_fds = op_pk_fd_max_index (outer_pkptr),-

for (data_present=false,i=0; i< num_fds; ++i)
{ ' ' .

op_pk_fd_index_to_name(outer_pkptr, i , fd_name .);
i f (strcmp(fd_name, "data") ==0.)
{ "

op_pk_nfd_get(outer_pkptr, "data", &inner_pkptr);
op_pk_destroy(outer_pkptr); • .

http://home_addr.net
http://carepf.net
http://rem.net

Appendix C. Supplementary Source Code of the Handoff Enhanced Model 144

data_present = true;
break,-

}

/ * no fields with name "data" * /
i f (data_present == false)

break ,-

outer_pkptr = inner_pkptr;

op_pk_destroy(outer_pkptr),
FOUT
}
ttendif

void
generate_bind_warning(dest, reg_objid, home_addr, target)
IP dest, home_addr, target;
Objid reg_objid;
{
Ici *warn_iciptr;
FIN(generate_bind_warning(home_addr,))

warn_iciptr = op_ici_create("bind_warn_ici");
op_ici_attr_set(warn_iciptr, "home_addr_net", home_addr.net);
op_ici_attr_set(warn_iciptr, "home_addr_node", home_addr.node)

op_ici_attr_set(warn_iciptr, "dest_net", dest.net);
op_ici_attr_set (warn_iciptr, "dest'_node" , dest .node) ;

op_ici_attr_set (warn_iciptr, "target_net", target.net),-
op_ici_attr_set (warn_iciptr, "target_node" , target .node) ,-

op_ici_instal l (warn_iciptr);
op_intrpt_force_remote (BINDING_WARN_TYPE, reg_objid) ,-.
o p _ i c i _ i n s t a l l (OPC_NIL .) ,-

op_ici_destroy(warn_iciptr);
FOUT
}

void
encap_pk_send(pkptr)
Packet *pkptr;
{
FIN(encap_pk_send(pkptr))

/ * insert encapsulated packet at the beginning of the queue * /
/ * op_subq_pk_insert(0, pkptr, 0PC_QP0S_HEAD);*/

op_subq_pk_insert(0 , ' p k p t r , OPC_QP0S_HEAD);
FOUT
}

void
check_ca_list(l i s t_pt r , dest, home_agnt)
List * l i s t _ p t r ;
IP dest;
IP *home_agnt;

http://home_addr.net
http://dest.net
http://target.net

Appendix C. Supplementary Source Code of the Handoff Enhanced Model 145

CA_mobility_binding*ca_entry;
int i , num_bind;
FIN(check_ca_list(l i s t_pt r , dest, home_agnt))

nurn__bind = op_prg_list_size (l i s t_ptr);

fori i=0; i<num_bind; ++i)
•{

ca_entry = (CA_mobility_binding *)
op_prg_list_access(l i s t _ p t r , i)

i f (IP_equal(dest, ca__entry->home_addr))
{ .

home_agnt->net = ca__entry->horne_agnt.net;
home_agnt->node = ca_entry->home_agnt.node;
FOUT

}
}

home_agnt->net = ADDRESS_UNDEFINED;
home„agnt->node = ADDRESS_UNDEFlNED;

FOUT
}

Compcode
i n s e r t j > k „ b u f f e r (buffer_ptr, buffer_ l i fe , dest, pkptr)
Lis t *buffer_ptr;
double b u f f e r _ l i f e ;
IP dest;
Packet *pkptr;
{
int i , size;
packet_buffer*entry_ptr;
Lis t *packet_list ,-
Ic i , * i c i p t r ;
FIN(insert_pk_buffer(buffer_ptr, buffer_ l i fe , dest, pkptr))

i f (buffer_ l i fe <= 0.0)
FRET(OPC_COMPCODE_FAILURE)

size = op_prg_list_size (buffer_ptr),-
for (i=0; i<size"; + + i)
{

entry_ptr = (packet_buffer *) op_prg_list_access(buffer_ptr, i)
i f (IP_equal(dest, entry_ptr->dest))
{

packet_list = entry_ptr->cache_list;

op_prg_list_insert(packet_list, pkptr, OPC_LISTPOS_TAIL

FRET(0PC_COMPCODE_SUCCESS)

/ * no buffer for this destintation yet */
FRET(OPC_COMPCODE_FAILURE)

