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Abstract

Numerous efforts have been made in extending network connec_tjvity to mobile computers
. using the Internet as a backbone. The Internet Engineerjng‘ Task Force (IETF) has cpmpiléd a
series of technical discussions into a basic IETF mobile-IP draft proposal. At the time of wriﬁng,
the draft is in the process of beéoming an Internet standard. In 'additioﬁ to this extension, .thére isa
compatible route optimization scheme, Inte;net Mobile Host Protpcol (IMHP), which pén be

employed to improve routing efficiency of the basic proposal.

In a Wireless and Mobile Data Network (WMDN), handoffs are required whenever a
mobile host crosses cell boundaries. fhese handoffs introduce momentary disruptions and could
significantly reduce the throughput at the transbort layer. In this research, a‘new Handoff
Enhanced scheme is introduced to further f;xtend IMHP to improve both the routing efficiency
and the transport layer performance during handoffs. This new scheme uses finite size buffers to
‘store inbound datagrams for mobile hosts during handoffs. As a result, datagram losées are

eliminated. This is found to improve the transport layer performance by a significant extent.

The transport layer performance of the threé different schemés were evaluated using th;
OPNET simulation pack‘age. it is found-that the IMHP yields very poor performanc§: at high
handoff rates. With the new enhanced scheme, the transport layer performance improves signifi-
cantly. Bésides, the new enhanced scheme employs route optimization and gives better perfof—

mance than the basic IETF scheme.
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Chapter 1 Introduction

Computer networks provide a solution to share data and resources betvsf_een different.
terminals within the same network. This is an efficient - way to share information and resources. As
more and more of these networks are present, there is a further need of connecting these indepen-
dent networks together into an even bigger network infrastructure. This internetworking of
netwerks is commonly referred to as the Internet. The Internet started out as a project in the
mititary service in the United States of America and has been in ptaee for over two decddes. New
networi(s are attached to the AInternet at a fast pace. Te gether, the network provides a vast resource

of information.

With the im‘provement in digitzil electronics techndlo gy, computers have been reduced in
size. This makes a huge driving force for the market of mobile computing. There is a growing
need for good cornputing power, mobiiity and network connectivity. The Internet is a prime
candidate in providing network connectivity, since it is available globally. Current Internet
implementation does notsupport host mobility and proposals have been made to address this

issue.

1.1 Overview of Mobility Support over Internet Protocol

As there is no central organization governing the Internet, it is almost self-regulatory with
a few regulatory bodies which strive to improve and implement additional capabilities of Internet.
Internet Engineering Task Force (IETF) is an example of one of the boards. The responsibility of

IETF is to investigate new additional features. The addition and modification of protocols will

undergo discussion and be analyzed before they are actually implemented.
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Data units within the Internet layer is a datagram énd has a standard format. By having a
standard protocol, the Internet Protocol (IP), computer applications on different platforms can
share information and access computers on other parts of the Internet. Each computer connected
to the Internet has a unique Internet address, which is a four byte integer. Internet addresses on the
same network have the same network préﬁ); which is part of the Etérnet address. Routing is based
on this prefix. Under current Internet routing scheme, datagrams are routed to the same network if
the network prefixes of the Internet addresses are id‘entical. Therefore, when a host has physically
changed its attabhment point in the Internet to a different network, it cannot retain its current
Internet address. This presents a hAindranCe to mobile network computing w.here mobile computers
may be attached to different networks at different times. As é result, there arc_:- numerous solutions
suggested which have attempted to extend this functionality. A common scenario for mobile

computing requirement is shown in Figure 1.1. The presence of a virtual connection, between A.1

" HostCA
Conventional Host

e
P e
=

/( HostA1 .

v . Router of Network A

Internet backbone

Ve
7 Virtual Connection
7

HostB.1
Mobile Router of Network B

Host A2
Mobile Host of Network A

{ Conventional host (C.1) does not have to be aware that host(A.2} is actually a mobile host )

Figure 1.1  Mobile-IP allowing hosts to be mobile and reachable simultaneously
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‘and A.2, allows the conventional host (C.i') to communicate with mobile host (A.2) via the home
network router (A.l). This transparency enables any conventional hosts to be able to reach the

mobile host irrespective of its current physical location.

IETF has compiled a geries of technical discussions regarding mobility support over the
existing Internet, and a draft [1] has been proposed. In this draft, a basic extension of additiopal
protocols over IP is listed which provides basic mobility support. No'assumptioné upon the types
of underlying mobile network has been made. This provides a generai extension to be adqpted for

future mobility support.

Under this mobility extension, datagrams are delivered to the mobile host via its home
network to its current location. The conventional host which is communicating with the mobile
host could be phy.sically very close to the mo.bi'le host. Under the basic IETF scheme, the
datagrams are still routed to the home network first and then dispatched for the mobile host. There
is a proposal [2] for optimizing the routing within the mobility extension. This proposal is
compatib.le with existing [ETF scheme. The basic ideé of this scheme is to enable the conven-
tionai host to send datagrams directly to the mobile host’s current residing network. It is not
mandatory for hQsts to support this scheme, therefore an extensive operating system upgrade is.
not required and is also backward compatible with the basic IETF scheme. If supported, this

scheme is expected to deliver better performance over the basic scheme.

Both of the schemes have not placed any limitations on the degree of mobility supported.
For a wireless mobile host which moves quicklylfrom one network to the other, a handoff

procedure has to be performed before the new foreign network provides network services to this

host. It is shown in [3] that the nomadic behaviour has great impact on the transport layer perfor-
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mance. This is a heavy performance penalty as most of the Internet applications are built around
the transport layer protocols. Applications such as electronic mail (e-mail), file transfer protocol
(FTP) and world wide web (WWW) all rely on the Transpoft Control I;rotocol (TCP) [4] for end-
to-end data transportation. If a high performance penalty has to be paid, all these applicétions

would be rcﬁdered useless over a highly mobile environment.

1.2 Motivation of Handoff Optimizaﬁon and Scope of this Thesis

The basic IETF scheme has provided a basic requirement for supporting mobility. Tile
préposal in [2] addresses its shortcomings regarding routing efficiency. However, under both
scﬁemes, there is no provision regarding the impact on transport layer efﬁéiency due to a highly
nomadic host behaviour. During the handoff phase of mobile coﬁnection, dafagrams are bound to
be réuted incofrectly under these current proi)osals. For the mobility extension to be worthwhile
implementing, it is necessary to improve on these proposals. It is of great interest to improve
performance in a héndoff intensive environment. It is the\ main emphasis of this research to design
a new scheme to address both the routing and the hand@ff issues, thus giving better end-to-end

performance at the transport layer.

This thesis gives performance analysis of the listed schemes and specifically monitors the
performance during handoff periods. In the research, a ﬁew scheme is devised in order to enhance
the performance during handoff. The end-to-end pefformance of each of the schem}és is
compared. Chapter two gives an ovcrvi¢w of the basic IETF mobile-IP scheme and the route
optimization‘ extension. Chapter three lists the performance issues related in partiéular to handoff

situation. Chapter four describes the new proposed handoff enhanced scheme. Chapter five

outlines the simulation tool (OPNET), and the models for evaluating the profocols in [1], [2] and
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the new handoff enhanced scheme. Chapter six shows the results of various simulations and
discussions of the results. Chapter seven summarizes the analysis and concludes the findings in

the thesis.



Chapter 2 Mobility Extension for Internet Protocol

The Internet provides a global network that is accessible by any computers within any
network connected to it. Unlike the OSI [5] seven layer model for computer network architecture,
the Internet architecture is based on a relatively simple protocol stack, with a four-layer protocol

suite, commonly referred to as the TCP/IP, as shown in Figure 2.1.

Application FTP, Telnet, Rlogin

Transport TCP, UDP
Inte_met 1P
Network Ethernet, FDDI, etc.

Figure 2.1  Protocol architecture of the Internet

The network layer handles all network oriented and physical layer issues particular to
individual networks. The Internet layer is responsible for the delivery and routing of standard data
units (Internet datagramé) between networks. D"atagrams destined for a different network are
relayed by one or more routers until they have reached their destination. Internet ciatagrams have a
common header structure and are understood by routers throughout the Internet. The protocol for
this layer is known as the Internet Protocol (IP). Conventional IP routers analyze the header
portion‘of incoming datagram.s to make routing decisions, as shown in Figure 2.2. Suppose an
application within hostA has established a connection with another application at host B. ‘The
datagrams are relayeci by two routers, router X and Y. Whenever a ('iatagram arrives at a router and

is pending for delivery, the router will read the destination address within the header portion.

From the destination address, the router can determipe to which network to send the datagram. If,




Chapter 2 Mobility Extension for Internet Protocol 7

however, host B has physically moved to another location within the Internet, existing routers
_ cannot route datagrams to host B at its new location, since its IP address is still the same. Under

the current Internet routing scheme, an IP address specifies a unique location within the Internet.

| Conventional IP routing through routers X and Y I

Host A Host B

Application Application

Transport * Router X Router Y Transport
Internet | Internet Internet - Internet
Network I Network ‘ . | Network ‘ l Network

Figure 2.2  Conventional routing in Internet

i

Proposals have been made to support host mobility. One of the requirements is to

implement this host mobility using existing Internet routing mechanism.

Under current Internet implementation, there are two ways to deliver datagrams to a
mobile hést;_loose source routing (LSR) [6] and [7] in IP and encapsulation [1]; [8]-[11]. The idea
éf LSR is to record thé path of the datagram and tag the path information at the éﬁd of the
datagram itself. With this option, both parties, Which are involved in the communication, know
the exact locafion of éach other. On the other hand, the idea of encapsulation is to carry a
datagram within another datagram. The original datagrém 1s cafri;:d piggyback by an outer

datagram.

It has been found [12] that some IP implementations, such as 4.3 BSD and SUN OS 4.1,

do not process the LSR option correctly. This leads to encapsulation being a more feasible
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solution for implementing host mobility within today’s Internet without large scale operating

system software changes.

The IETF has come up with a proposal [1] for mobility extension to the current Internet
Protocol. Within this new proposal, there are three new entities defined which do not exist within
current Internet Protocol. They are mobile host, home agent, foreign agent and various types of

mobility bindings.

As opposed to a conventional host, a mobile host (MH) can-have different points of attach-
ment within the Internet at different times. Any host, regardless of the degree of mobility, which
has that capability is classified as a mobile host. Therefore, a mobile host may be using an

Ethernet interface at a foreign network or using a radio transceiver in a cellular radio network.

A home agent (HA) is a router at the homé network of a mobile host. It is responsible for

routing datagrams, destined for the particular mobile host, to its current location.

A foreign agent (FA) is an entity which is responsible for decapsulating tunnelled
datagrams and providing routing services for mobile hosts. It also provides a care-of addresses for
MH:s so that the HAs know where to forward the datagrams for these MHs. However a MH can

choose to obtain its care-of address by other means, thus acts as its own FA.~

Mobility bindings is a cache entry for routing lookup. HAs, FAs and MHs are reqilired to

maintain its own list of bindings.

All of the above entities are new to the existing Internet Protocol. However, all the

datagram traffic for these new entities make use of existing Internet routing mechanism. As a
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result, all existing Internet routers can be used without modifications.

2.1 Overview of Mobile-IP Extension over Internet Protocol

MHs have fixed IP addresses and the same network masks as their home networks.
Datagrams for these hosts are routed to a router within their home network [13]. The next stép is
to encapsulate those datagrams at their home networks and forward them to the foreign networks
at which the mobile hosts are currently attached. This re.—routing is accomplished by estnblishing
mobility bindings at both the home and foreign networks. Incoming datagrams for a MH is first
routed to its home network. A ﬁA at the hnme network .checks.it.s cache list mobility bindings to
see if the host in question has moved to another network or not. If so, it encapsulates the
datagrams and sends them to their corresponding care-of addresses. This is illustrated in Figure
2.3. Besides, HA is required to handle all registration requests and keep mobility bindings for

nodes that have moved to another networks.

Before a HA can forward datagrams to a mobile host at its current location, it has to know
the care-of address for’that mobile host. Each mobile host must obtain an appronriate care-of
address reflecting its current locntion. Typically, foreign agents (FA) broadcast agent advertise-
ments indicating the care-of addresses available for use. MH 'can thén send registration request
using one of those advertised addresses. Besides, a mobile hont may obfain a care-of address by
some other means such as Dynamic Host Configuration Protocol (DHCP) 't14].. If the MH has its
own care-of address, it may then function as its own foreign agent. The role of the host at the care-
of address will be to decapsulate the tunneiled datagrams from the home agén_t and deliver them to

their intended destination. Typically, a FA will have a cache list of bindings indicating the visiting

mobile hosts’ IP addresses and link-layer addresses.
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| Original IP datagram encapsulated within a new header I

SRC: HA

DEST: FA Original IP datagram
(Outer IP header). ~ ' ~
e : ~
. -~ ~
SRC: source IP address SRC: CH o ‘
DEST: destination IP address | DEST: MH Original IP payload
(Original IP header)

Figure 2.3  Datagram encapsulation at Home Agent

2.2 Registration Procedure for Mobile Hosts

Whenever a MH moves to a foreign network, or it is hopping from one foreign network to
another, it has to send a registration request to the HA at its home netwofk. This is mandatory as
this is .a request for a change in mobility binding aqd datagram routing. The HA haé to authenti-
cate the request to make sure that it is not a request from a malicious host. For each of those‘
foreign networks, there is at least one FA beaconing the type of service available from that partic-
ular network. A beacon message is sent as an Internet Control Message Protocol (ICMP) [15]
message with appropriate exténsions. Upon reception of these beacon messageé, the MH is able to
decide whether it is possible to acquire network service from this FA. In the basic mobile-IP
protocol proposal [1], the mobile regiétrat’ion requests are sent to well-known port 434 of User.
Datagram Protocol (UDP) [16]. Th;arefore, HAs and FAs have to listeﬁ to the UDP port 434 to
retrieve any mobile registration requests. These registration messages are transported within
standard UDP datagrams in the data portion. A standard mobile;IP registration message is shown

in Figure 2.4. The mobile registration messages specification is listed in Table 2.1. In addition,

there are extensions which can be tagged to registration messages in order to provide additional
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S [Cle(P)RT e UDP UDP UDP
R DEST PORT '
S(434()) LENGTH |CHECKSUM| ' DATA
(UDP Datagram) - / , RN <
_ - . . ~ N
Type Data (type speciﬁc) Extensions . . .

Figure 2.4  Mobile registration message format
information (e.g. mobile - home authentication). In each mobile registration message, there is a
type field which specifies the type of message it represents. This enables the mobile-IP software to

know how to interpret the message received and be able to take appropriate actions.

Table 2.1 Mobile-IP protocol specification

Registration Request Mobile Host Home Agent 1

Registration Reply Home Agent Mobile Host 3

For security reasons, it is very important to verify the authenticity of the request. This will
ptevent some malicious hosts from re-routing the datagram path for a particular host by sending
counterfeit registration request. Therefore, each registration request must be accompanied by a

mobile-home authentication extension. A list of extensions is shown in Table 2:2. An authentica-

Table 2.2 List of mobile registration extensions

Mobile-Home Authentication 32

Mobile-Foreign Authentication 33

Foreign-Home Authentication 34
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tion extension is a secret known only between the two parties involved. From the authentication
extension, the two parties can deduce the encryption algorithm and the key. The default authenti-
cation algorithm makes use of MD5 [17] with key sizes of 128 bits or fnore. To avoid replay
attack, timestamps are mandatory with an option of nonce-based! replay protection. Thisrequires
a good random number generator. Eastlake ef al .[18] provides more information on pseudo-

random number generators which is a core requirement in implementing security keys.

To acquire mobile network service from a foreign network, a MH will need to send a
mobile registration request via a FA. After the FA has received this registration mess;age, it
determines the type of service requested. If the request is permitted, the FA will relay this registra-
tion message to the HA specified in one of the fields within the request.  After the request has
reached the specified HA, the HA eithér grants or denies the request. Ir; either case, the HA will
send a registration reply to the FA which has relayed the request. If the request is approved, t4he’
HA sets up or updates the mobility binding for this MH. Note that each MH can register with
" more than one FA, depending whether the HA‘permits this. Hence, each MH can have more than
one mobiliﬂty binding‘ at its HA Each of the mobility bindings has a specific lifetime. It is the

responsibility of the MH to send another mobile registration before the existing binding expires.

Once the registration reply has reached the FA, it sets up or updates its cache binding list

of visitors accordingly. The reply is finally delivered to the MH which has originated the request.

r

' Nonce is a patent assigned to IBM. Patent #5,148,479
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2.3 Datagrams Delivery for Mobile Hosts.

Path B

Mobile L%

Path C

Figuré 2.5 Datagram tunneling in mobile-IP

. As soon as a registration for a MH is approved by its HA, datagrams from a corresponding
host (CH) for tﬁis MH wili be captured by the HA, éncapsulated and forwarded to thé FA by
means of tu_nnellin};. Datagrams for the MH arrives at the HA from the CH vja Path A'in Figure
2.5. An outer header is tagged to each of the original datagrams. This newly formed datagram v&;ill
have the IP address of HA in the source field, while the destination will take the IP address of the
FA or the care-of address of the MH. This datagram is then delivered to the FA through Path B. As
the datagram arrives at the FA, it is decapsulated gnd the visitor binding list is consulted. If there
is a valid visitor binding, the FA then sends this datagram via the corresponding mobile channel to
the MH. On the other hand, datagrams originated from the MH are forwardéd via the FA directly

to the destination CH using Path C.

Datagrams from CH to MH clearly follows a suboptimal route. The routing paths A, B and
C form a routing triéngle and is commonly referred to as “triangular routing”. The inefﬁciency of
triangular routing is much more apparent whenever a MH is located at a network which is closer

to its CH than to its own home network. There are different proposals which attempt to address .

this 1ssue.
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2.4 Route Optimization Extension in Mobile-IP

A route optimizati'onme:thod, incorporated in a superset of mobile-IP called the Internet
Mobile Host Protocol (IMHP) [2], has been proposed. Route optimization is a backward compati-
ble extension to'tlvle mobile-IP and requires a new type of entity, the cache agent (CA). The role of
a CA is to keep a cache list of mobility bindings of hosts to which it has sent or routed datagrams
to. Subsequently, the CA may tunnel datagrams directly to the care-of addresses of the MHs. As
the name implies, the cache bin‘dings that are stored at the CAs have limited lifetime. This is to
avoid sending datagrams to an incorrect location, e.g. after a MH has moved to another foreign
network. Generally, better performance can be achieved if a CH and its CA are co-located, to

enable the delivery of datagrams to follow an optimal route right at the beginning.

The idea of route optimization is illustrated in Figure 2.6 where a CA is assumed to be co-
located with CH. Originally the ﬁrst datagram from the CH for MH reaches HA as indicated by
the pafh (1). By this 'Fime, the ﬁA realizes that the CH does not have up-to-date‘ location informa- '
tion of MH. The HA tunnels datagramé to the MH as indicated in (2) and (3). In additién, the HA
will also send a binding warning message to.the CH, indicating that the CH does not have up;to—
date location information. This 1s shown in message (4). If the CH supports this route optimizé—
tion protocol, it can choose to be a cache agent (CA) for the MH. If the CH has the resources to
function as a CA, it may send a binding update request to the HA, as in message (5). In response
to that request, the HA sends location information of the MH, message (6), td the CA. The CA can
update its cache location binding fbr the MH and subsequent datagram traffic travels directly to its

care-of address, as in message (7). This will eliminate the routing inefficiency of sending via the

HA.
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(D, )

CH
) @,

. @ (3)
1) CH’s first datagram to MH
2) datagram tunnelled to FA .
3) datagram decapsulated and delivered to MH 6) HA sends binding update message to CH
4) HA sends binding warning message to CH " 7) Subsequent datagrams for MH sent to FA

irect]
5) CH sends binding request message to HA directly

Figure 2.6  Route optimization mechanism
If thefe is no CA along the path between CH and HA, the binding warning message would
simply be discarded when it has reached the CH. If more datagrams are arriving at the HA from
the CH for the MH, the HA would be able to deduce that the CH doés not or chooses not to
-‘support route optimization. The HA should then choose to send binding warning meésages to the
CH at a lower rate or simply not to send them during subsequent datagram arrivals. This would

avoid unnecessary traffic within the network.

After the MH has moved to another FA and has received registration approval from its
own HA, the MH sends deregistration notification to its previous FA together with the current
mobility binding. With this information, the previous FA can update the binding for this MH. The

lifetime of this new binding is set at a value with the lifetime remaining in the original binding.




Chapter 3 Performance Issues Related to Handoffs

The basic IETF mobile-IP proposal places no restriction on the type of physical media that
enables host mobility. Due to the much higher level of mobility supported by wireless and mobile
data networks (WMDNSs), these networks are prime candidates for application of mobile-IP and it

is crucial that mobile-IP offers good performance in these network environments.

To allow a high uéer density in a WMDN, some frequency reuse scheme has to be incorpo-
rated, in a similar manner as the cellular telephone network. Each radio cell has a base station
(BS) which provides connectivity between the WMDN and some wireline backbone. When a MH
crosses over a cell boundary, a handoff operation is needed to transfer the MH’s radid link from

the old BS to the new BS.

While handoffs are .transparent to the IP and mobile-IP layers in centralized WMDNs
which employ dedicated backbone facilities and internetwork with the Internet via a single router,
in this research we are concerned with a distributed WMDN environment where each cell or a
cluster of cells constitutes a mobile subnet interconnecting directly to ;he Internet via a mobile-IP

supporting router providing FA function to MHs roaming in its coverage area.

This scenario is applicable, e.g. in a campus-wide wireless lonal area network with attach-
ment points at different departmental LANs, and may well provide a low cost solution to future
wide area WMDNSs as it eliminates the needé for dedicated backbones. In this scenario, mobile-IP
is called upon to support handoffs, by creating new mobility bindings with the new FAs and
terminating existing mobility bindings with the old FAs. A typical handoff scenario is shown in

Figure 3.1.

16
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Figure 3.1 Typical mobile handoff scenario

3.1 Transport Control in TCP/IP

The design philosophy of TCP/IP has taken thev approaeh that the Internet layer consiets of
an ﬁnreliable network. This allows a variety of differeht types of networks to be connected
together. The responsibility of reliable congection is taken up by the transport layer. Transmission
reliability is dependent on the transport layer protocol. TCP [4], one of the most important
protocol in the transpoft layer of TCP/IP, isa reliable, connection—oﬁented protocol, which means

the end-to-end connection is monitored for error recovery and to preserve data sequencing.

Data stream in TCP is cemposed of a sequence of bytes. Each of these eequence of data is
called a segment. TCP expects an acknowledgment for each segment sent. There is a retransmis-
sion timer fer monitoring the acknowledgment time. If the retransmission timer exbires before an
acknowledgment is received, TCP will assume the segment is lost and will retransmit the lost -
segment. Round Trip Time is the time taken between a seg._mene sent and the correspondin;g
acknowledgment received. Te account for a variation in delay within the Internet, TCP uses an

adaptive retransmission algorithm. In essence, TCP monitors the round trip time required for the

acknowledgment to come through. Based on that information, TCP will set the value of the timer |
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for initiating the retransmission. Whenever it has received a new round trip time, TCP adjusts the
retransmission timer value. TCP keeps an estimate of round trip time, RTT, and average RTT
deviation, 8, as weighted averages and uses new. round trip samples RTT to adjust RTT and 0
accordingly. To compute the new weighted averages, TCP uses a RTT gain factor, o, and a RTT

‘deviation gain factor, A, where 0<o,A<1 , to weigh the old averages against the new ones

based on the following algorithm:
Err = RTT —RTT

(1—o)-RTT +o.- RTT — RTT
d+MA(|Err|-8)— 8
New retransmission timeout = RTT + - 6

Choosing a value of o closp to 0 makes the weighted average adapt very slowly to the recent '
changes. If, however, o is chosen to be close to 1, the weighted average will be very sensitive iQ
recent changes and disregards the long-term average RTT. Likewise, choosing a‘yalue of A close
to O tends to disregard recent RTT deviation. RTT deviation Constzint, [3, is a scalar which -
specifies how long TCP layer will wait for the acknowledgment. If 3 is set to 1, TCP is overly
eager to sénd retransmi.ssions, whip'h wastes network bandwidth. On the other hand, if [3 1s set to
too large a value, TCP will be waiting for too long before it realizes the packet is in fact lost.

Again, the TCP throughput will suffer. It is therefore important to choose a value of B which is

adequate but not excessive. The original specification recommends setting 3 to 2.
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3.1.1 Karn’s Algorithm and Timer Backoff

Consider the case where TCP has just sent a packet, and the acknowledgment has not been
received beforeithe retransmission timer expires. TCP will retransmit the packet, thinking the
briginal packet has been lost. If the acknowledgment comes in soon after TCP has retransmitted
the last packet, the new roundAtrip time sample will be far too short al;d it is also ambiguous. To
avoid this, TCP simply ignores thevnew RTT. This is known as Karn’s algorithm [19]. The idea is
to avoid this ambiguity altogether by only taking those round trip time samples from segments
which have beenv transmitted only once. This 'w_ould avoid the possibility. of shortening the
estimated round btrip time erronedusly.'This is important as the estimate round trip time is ﬁséd for

determining the value for retransmission timer for the next transmission.

Besides not updating the round trip time estimate, Karn’s algorithm requires TCP iayer to
implement a timer backoff strategy. An initial timeout value will be computed as before. If the
transmission has not been successful, the timeout value will be increased by a multiplicative
factor until an upﬁer bound has been reached. Having an uppef bound will keepvtfle timeout vélue
from being infinitely long. This timer backoff will increase the timeout value exponentially if the
. delay has been exceedingly long. This stabilizes the TCP and adapts the retransmission timeout

value to a suitable value.

3.1.2 Response of TCP in congestion

TCP layer does not have a priori knowledge regarding the amount of delay that each data
segment will undergo. Only after receiving the acknowledgment can it determine the exact round

trip delay. During congestion in Internet, the segments will suffer from severe delays causing the

retransmission timer to timeout. To the TCP layer, this timeout will trigger another retransmission
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which will certainly choke the already congested network. This will cause a congestion collapse.
To avoid that, TCP reduces the amount of traffic through the network. Different versions of TCP;
together with several proposals, have methods to accomplish this: slow start and multiplicaﬁve

decrease.

Multiplicative Decrease Congestion Avoidance is the reduction of the congestion window
by half. This process is repeatedly done until the window size reaches one. For those segments in

the reduced window size, the retransmission timer will be increased exponentially.

Slow-Start Recovery specifies that at the start of transmission on a new connection or
increasing traffic volume after congestion, the cqngestion window should be set to one segment. If
" acknowledgment has arrived before timeout, the window will be increased one at a time. It also
limits a linear growth of the congestion window, while Multiplicative Decrease Congestion
Avoidance sets exponential decrease in traffic sent. These will help to alleviate the congestion

problem.

Tﬂere are efforts made [20]-[27] in establishing congestion control over TCP. Each ’o'f
these methods introduce adaptive scheme for adjusting the retransmission timeout at the TCP

layer. These methods stabilize the congested network by throttling the TCP throughput.

3.2 Impact of Handoff in TCP/IP over Mobile-IP

The Internet Protocol layer is known as a best-effort delivery system. No guarantee is
made upon the success of datagram delivery. Datagram losses is handled by the TCP layer §vhich

requests for retransmissions of lost datagrams. If retransmission is needed, there is a backoff

algorithm in TCP to avoid choking the congested network with too many datagrams. Before the
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introduction of wireless networking and host mobility, TCP only deals with datagram losses

‘primarily due to congestion.

When a MH crosses cell boundaries within a WMDN, it has to perform a handoff
prbcedure and send a new registration request to its HA before it can continue to receive network -
s¢‘rviccs from its HA. Momentary disruptions of communications are therefore inevitable during
handoffs, under the basic IETF mobile-IP scheme. This has a detrimental effect to the perfor-
mance of the transport layer employing TCP, since the datagram losses are interpreted as network
congestion. During handoffs, datagrams cannot be tunneled to the new FA until the new binding is
authenticated at the HA. The authentication can take a long time if the MH’s home and visited
networks are separated by a lafge transmissi_én delay. In ‘the case of IMHP, fhe delay may be

worsened, since it is necessary to update the CAs with the new care-of address.

As the retransmission is handled by the TCP layer, substantial datagram losses during
handoffs would trigger the slow start procedure previously described. This could result in signifi-
cant reduction in TCP throughput which takes a long time to recover. For a roaming MH, the rate

of handoff could significantly affect the system performance experienced by the user.

Ciéceres et al [28] has proposed a method for improving TCP performance during handoff.
However, it requires modifications within the TCP implementation, which means that a vast

majority of the Internet hosts today will not be able to make use of this improvement.

3.3 Handoff in Basic Mobile-IP Scheme

Each handoff gives rise to a vulnerable period in which datagrams in transit to the MH are

potentially lost. This is illustrated by the timing diagram in Figure 3.2, representing the typical
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handoff scenario in Figure 3.1.

'blMessage A is a datagram sent by the CH to the MH. The routing of tﬁe Internet will
deliver the datagram to the home network of the MH. At the home network, the datagram w_iH be |
routed to the MH’s home agent, HA. As shown in Figure 3.2,.the datagram will be tunnelled to
foreign agent, FA;, which is curréntly registered with HA FA; will decapsulate the tunnelled
datagram and forward it to the MH. Mcssage B i.s the datagram sent by the MH back to the CH.

Since FA is the MH’s foreign agent, outbound datagrams from the MH will be ﬁrst sent to FA;

and then routed to the CH with existing Internet routing. In this case, no tunnelling or encapsula-
tion is required. It is shown that message A has been routed in a suboptimal path, whereas
message B has followed an optimal path. This is commonly.referred to as “triangular routing” and

is shown in Figure 2.5.

The MH has then moved to FA, and registration request has been sent. Befofe the registra—
tion has been approved, message C arrives at4 FA;. FA; still thinks the MH is Within its mobile
region. FA, attempts to deliver the message to the MH via its mobile channel. Message C cannot
reach the MH. During time periéd, Dypg,, in Figure 3.2, thermevssages that arfive at the HA are
routed incorrectly to FA; and are lost. Besides, during time period, Dy, y, messages arriving at
HA cannot be delivered to the FA, yet, since HA has ﬁot received a registration request yet.

Therefore, during every handoff, there is a period in which datagram delivery'is susceptible to
losses. After handoff registration has been completed, datagram delivery for MH can resume.

Subsequent rrfessages for the MH will be fouted via FA, to the MH.

Tt is shown that there is a period in which datagrams for the MH are prone to losses. The
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length of this vulnerable period is directly related to the packet delays between both the old and

new FAs and the HA of the MH.. The vulnerable period, Ty, consists of the delay for datagrams
sent prior to the handoff to reach FA vié HA, Dyrp 1; and for the new registration request to reach
HA via FAZ, Dp,y, During Ty, datagrams will be .incorrectly routed. Once the new. registration
is authenticated at HA, a new tunnel could .be established to redirect datagréms to MH via FA,.

Delays between MH and FA, or FA, are assumed negligible.

Tyyp, = Dyp1 +Dpoy - G.D
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Figure 3.2 Timing diagram during handoff in basic mobile-IP scheme
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3.4 Handoff in Route Optimization Scheme

In chapter two, the route optimizatio‘ril scheme, IMHP, is expected to deliver better perfor-
mance over the basic IETE scheme, since it has eliminated triangular routing. However, during a
handoff, the CA sends datagrams té the previoi]s FA. Hence, these dafagrams are rbuted
incorrectly. It is shown in previous sections that datagram losses in the IP layer can impose a
serious performance penalfy over the TCP layer. The performance of the IMHP scheme degrades

‘as the rate of handoff increases.

Whenever there is a handoff, a MH will perform registration with its HA as in the case of
the basic IETF scheme. The CH therefore has outdated information regarding the MH’s care-of
address. All subsequent datagrams are sent to the previous FA. As a result, the IMHP scheme-

suffers from performance degradation during or immediately after handoffs.

Timing diagram for the IMHP scheme is shown in Figure 3.3. It is assumed that CH and
CA are collocated. The worst case vulnerable period include the delay between the corresponding
host, CH and FA, before the handoff, D ;, and the delay to update the new binding at either CH

or FA after the héndoff, 1e.,
Dp>y is the delay to register the new binding with HA after handoff. Dy, is the delay for

the HA to reply with a registration confirmation. Dp,; is the delay for FA, to give FA, the new

binding. 3Dy is the delay for the HA to send a binding update invitation to the CH, a binding

' request from the CH to the HA, and the binding reply from the HA to the CH. Depending on the
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current congestion over the Internet, the vulnerable period with route optimization could easily
exceed the vulnerable pe“riod for the case without route optimization. As before, TCP perfor-

mance suffers under a high rate of handoffs or if the delays are long. Methods to minimize loss of

datagrams during mobile handoffs are therefore necessary to optimize the performance of IMHP:
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Chapter 4 Handoff Enhanced Mobile-IP Scheme

In sections 2.3 and 3.2, it is shown that performance is suboptimal due to either triangular
routing or datagram loss during handoff. In this research, one of the objectives is to devise a
method which improves the routing efficiency during handoff. The idea of this proposal is to
eliminate or minimize the vulnerable period, while keeping thé route optimization extension as in
IMHP. By doing so, datagram loss will be minimized and hence the impact on Transport Layer is
kept to a minimum. While improv'\ing routing efficiency, the security robuétness of the new

scheme should not be compromised.

' .

4.1 Enhancement of Mobile-IP during Handoff's

The main emphasis of the'schemé'is to minimize datagram losses during handoffs rlnd, at
the same time, to yield better performance than the basic IETF scheme. This scheme uses a
buffering technique at the previous FA which stores the inbound datagrams for the MH during the
handoff period. Upon the reception of the registration confirmation at the previous FA, the stored
datagrams are released to the MH. Each store buffer has its own lifetime. If an authenticated reply
1s not received within thé time allowed, the contents of the buffer is flushed and the handoff is

considered not successful.

Route optimization is performed as in section 2.4. However, during handoffs, there are
additional procedrlres to be done. For example, the MH has switched from one foreign agent to

another, say FA; to FA,. During the handoff, the MH needs to send a new registration request via
FA, to its own home agent HA. In this scheme, the MH sends two copies of the registration

request. One is sent to the HA via FA,, while the other one is sent via FA . This is illustrated in

28
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(IP datagram sent to FA,) (IP datagram sent to FA,)

source destination source destination
MH FA, Payload MH FA, Payload

= - ’

¢ - Y k4

[}DP header IType 0|Lifetime| MH | HA l FA, ~.

(common UDP datagram)

Registration messages sent to FA ;| and FA; during handoff
Note that the registration message is common in both IP datagrams

Figure 4.1 Registration messages sent during handoff
Figure 4.1 and the format of this type of message conforms to the basic IETF proposal [1]. Note

that the registra;ion request contains bqth the MH’s address and the new FAz’ls address. Upon
receipt of this'registration méssage, FA, can deduce that the MH is currently at the network of
FAé and is pending for new registratior_) approval. A finite size buffer is set up at FA; to store the
incoming datagrams for the MH. At this innt, the FA stiil sends those datagram via its own

mobile channel at which the MH has been registered with, since the new registration is still

pending for approval. Thé size of this buffgr, at FA,, is set to a specific size which is determined
by FAaccording to the resources available on that site. Once the registration has beeﬁ completed,
the MH will cancel the binding with FA‘l by sending a deregistration to FA; (registration request
with lifetime set to 0). As-soon as FA has received this de-registration, it releases tﬁe contents of

the buffer to the MH via FA,. This is illustrated in Figure 4.2.

4.2 Security Considerations

One of the considerations of this new scheme is the security robustness compared with the
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1) MH sends registration request via FA2

'2) Copy of registration request sent to FA1

3) FA1 starts buffering incoming datagrams for MH

el )
Datagrams

for MH

M Finite size buffer
for temporary storage
of MH’s datagrams

MH performing handoff from FA1 to FA2

1) MH sends deregistration request toFA1

()

3) FA1 releasing contents for MH via FA2

2) Deregistration request sent to FA1

. Buffer being emptied from FA1
and sent to MH via FA2

MH perfomﬁng deregistration with FA1 after successful registration with HA

Figure 4.2 Illustration of the Handoff Enhanced Scheme

existing Internet. Special care has been taken in order to avoid security loopholes. In this scheme,

the incorhing datagrams are stored in a buffer dufing handoff. This avoids the possibility of replay
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attack in a WMDN environment. This is the reason that the datagrams are not forwarded to the
new FA as soon as the previous FA knows about the handoff. In this case, even if a malicious host

sends a forged registration to the FA (FA), the inbound datagrams for the MH will not be re-
directed to the malicious host. FA waits for an authenticated registration reply before sending the

stored datagrams.

This scheme does not open up any additional opportunities for sécurity attacks. Although
wiretapping of datagrams (in WMDN) is still possible as in the case of the basic IETF scheme, it
is éonsidered, as in [1], that the scheme does not allow more security attacks than the existing
Internet. As in the case of a wired Ethernet within a network, all local traffic are sent to the

Ethernet interface, therefore wiretapping attack is also possible in the existing Internet.

4.3 Performance Considerations

“Provided that the previous and current FAs are closé together, the mobile registration
request arrives at the previous FA in a short time. Hence, the previous FA can start buffering the
incoming datagrarﬁs’ for the.MH. Therefore, the enhanced scheme does not Suffef frOm. a vulnera-
ble period. However, there are two constrainfs that limits the effectiveness of this scheme. Firstly,
the buffer temporarily storing datagrams‘ for fhe MH has a finite size. For a IP throughput of 1k
byte/s and the registraﬁon delay is 1 sec., the buffer size required for each TCP connection is 1 k
byte. If the IP throughput is more higher than that, buffer overflow can occur if the registration '
takes too long to complete. In this case, storing some datagrams might not be useful to tuhle TCP
layer, since it has to request retransmissions of the lost datagrams eventually. Besidgs memory

constraints, if the delay between the registration and reply is long, the retransmission timer in

TCP may time out before the buffered datagrams could be delivered and acknowledged by MH.
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Nominally, the retransmission timer of TCP is set at some multiples & of the round trip end-to-end

delay between the CH and the MH, i.e. 2D . Therefore the proposed handoff optimizétion

scheme offers transport performance enhancements only if the condition in equation (4.1) is met.

The timing diagram for the enhanced scheme is shown in Figure 4.3.

Tpr <2(k—=1)Dgy @

However, the worst case scenario will only bring the performance down to the same as
IMHP, but not worse. Note that it is possible to further enhance this scheme. Provided that the old
and the current FAs are closely related and entrust each other, it is possible to start forwarding
datagrams to the new care-of address location as soon as the old FA is aware of the fact that the
MH has handed off to the new FA. This will require some fc;rrr; of security association to exist
between the two FAs. The handoff registration message has to include this secret authentication as
an extension. The proposed extension takes the format as described in section 2.2. The extended
authentication is listed in the Table 4.1. However, as listed in [1], FAs are not expected to ihitiate
any messages regarding mobile registration and reply. Having the FAs to negotiate the security
association and redirect the routing is clearly violating the recommendations. Therefore, the
proposed Handoff Enhanced Scheme adopts the method of storing the datagrams first as to

comply with the security requirement laid down by [1]. This new scheme is expected to deliver

better performance during handoff in a WMDN.
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Table 4.1 Registration authentication extension between Foreign Agents

Foreign-Foreign Authentication 35




Chapter 5 Design of Simulation Model

Another objective of this research is to evaluate the transportllayer perfofmance.'with the
mobile-1P proposals and extenéions. The network models of the various listed schemes are
developed and the evaluation is berformed in simulation. The network model should adhere to the
protocol as closely as possible. Once a network model has been established, different statistics can

be obtained and performance evaluation can be based on those statistics.

Mobile-IP, iike conventional IP, is an unreliable, connection-less layer. In order to assess
the perfo‘rmance-of the schefne, it is necessary to inelude the Transpbrt end Application layer
profecols. With these layers built into a mobile host,»the host behaves es a real Internet host. 1£ can
negotiate a connection, assess Connectioh status, request for retransmissions, and termina_te
connections, etc. Although all these modules are not within the Internet layer, it is necessary to

include them in order to quantify the network performance on a connection-oriented standpoint.

The Internet is a dynamic and complicated network. It contains different kinds ef
networks which are linked together ‘usin g the common TCP/IP protocol. There are few restrictions
on netwdfk topology and hence the Internet is very flexible. As a result, it ‘has gained widespread
acceptance. Defining an analytical model for its throughput statistics and variability. becomes very -
difﬁcelt, as there is no standard connection pattern between the networksi. Consequently, there is
no analytical model for the current Internet based on TCP/IP. The evaluation in this study is based

_on simulation. The model is developed using OPNET'. Mobile-IP is based on the IP model in

OPNET, but heavily modified to incorporate the extended capabilities.

I OPNET is a network simulator software developed by MIL 3, Inc.

35
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5.1 Overview of OPNET Simulator

‘OPtimized Network En gineering Tools (OPNET) is a comprehensive enginéering system
capable of simulating large communications networks with detailed protocol modelling and
performance analysis. OPNET feafurés include: graphical Speciﬁcation of models; a dynamic,
event-scheduled Simulation Kernel; integrated data analysis tools; and hierarchical, object-based
- modelling. OPNET’s hierarchical mocielling structure accommodates special prleems such as
distributed algorithm development. OPNET delivers -open systems methodology and an advanced

graphical user interface known as the MIL 3 User Interface.

Due to its object-oriented design, complicated models can be set up and prototyping is
made easier and more manageable. Eaéh OPNET simulation is présentéd in a hierarchical
fashion, aﬁd theréfore, simulations written will have‘strong parallels with actual communication
networks. Debug options are built into every OPNET simulatibn .so that accurate state tracking is

possible. A fully graphical interface makes model prototyping much clearer and less error-prone.

OPNET has a lot of standard modules written and all of those modules can be modified to
cater to different needs. It is also possible to set up an entirely new network model and fine tune

its behavior using the C programming language.

5.1.1 Hierarchy within OPNET Simulator

Each OPNET model consists of elements which are located in three different hierarchical
domains: Network, Node and Process. Figure 5.1 'depicts an application in OPNET. Network

domain is where the topology of the network infrastructure is defined. A network can be made up

of any number of subnetworks and nodes. Different types of links can be used to connect




Chapter 5 Design of Simulation Model : . ' 37

Figure 5.1 Hierarchy in OPNET with Networks, Nodes and Processes

networks and nodes.

* Within a network, the smallest subdivision is a node. A node can perform different
functions within the network; e.g. it can be a router or a Wbrkstation (e.g. gateway in Figure 5.1).
The characteristics of each node model is defined by the modules within. There are different types
of modules: processors, queues, generators, transmitters énd receivers. Figure 5.2 showed an
example of node layout of a conventional IP host over Ethernet. In the example, the host consists
of different layers of protocols; each of these layers is responsible for different functions. The
model is a close representation of réal implementation of the protocol stack. Within the node,
appl and app2 belong to the Application layer of TCP/IP. TCP layer is realized by a single
module. Within this module, it forks a new connection process for each connections. There are a

few parameters which can be set in the generators, transmitters and receivers. However, the main

core of functionality in each node is determined by the processors and queues, which are fully
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bus_cx : mac
[l

b

Figure 5.2  An example of node layout of an Ethernet workstation
programmable. Processors and queues are represented as finite state machines. It is a set of
instructions which the node will perform under certain predefined conditions. Hence, a (parent)
process can call upon other (children) processes. In Figure 5.2, the TCP layer is realized by a
single TCP manager process as shown in Figure 5.3. The functions of the TCP manager isa
relatively simple pfocess invo_lvjng only a few states. However, each TCP connecﬁon is handled
by an independent TCP connection management subéprdcess. Thus, connection management is
made simpler. Each connection managément process is responsible for maintaining the state .of
the gonnection it is cateréd for. The connection management process being used in the simulation
conforms to RFC 793 [4] and is shown in Figure 5.4 which is identical to the realization on pp.
199 of [13]. The main intelligence of connection control falls upon the ESTAB state within the

TCP_CONN module. This type of process hierarchy abstraction can break down a complicated

task into a modular system. This is very well suited for TCP/IP and other connection oriented
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Figure 54 TCP connection management sub-process

protocols alike. The only limitation is the memory constraint of the workstation. This makes it
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very suitable for simulations of “Layered Protocols”. Information transfer can be classified into
two main categories: packet driven and internal édntrol interface (ICI). The normal way to
communicate is to send information in data packets. There are occasions that a layer has to make
certain coht_:rol over other layers. For example, in the operatin;g system implementing TCP/IP, the
IP layer receives a UDP datagram and routes it to the appropriate destination. A UDP datagram
does not contain information regarding the destination IP address due to the layering of protocols.
It is obvious that absolute layer transparency is impossible {13]. Hence, that information is sent
via internal control interface. The packet format and tﬁe ICI format can be selécted using Parame-

ter Editor in OPNET.

5.2 Design of Simulation Models

In previous chapters, a total of three different yariatidns of the mobile-1P protocols'were
‘introduced. In order to assess the transport layer performance of each of these models, it is
required to create three different models in OPNET™. Since UDP is used for delivering mobile |
registrétion messages, unlike a coﬁventiohal TCP/IP model, Fhere is a UDP layer in parallel with
the TCP layer. Any host employing mobile-IP extension needs the UDP module in its node

 architecture in the simulation.

UDP delivery system is not supported in standard OPNET modules. In staﬁdard OPNET
TCP/IP libraries, protocol demultiplexing is not implemented. Therefore, modifications has to be
made to accofﬁmodate this need. If the mobile-IP models developed are to be used with other
standard modules (e.g. IP over ATM), a protocol demultiplexing module has to be added between

the Transpdrt and the Internet layer. The module has to demultiplex datagrams from network and

send them to appropriate transport layer protocols. It also has to mark the protocol field in the
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‘header so that the receiving side will know what type of datagram it 'is. If any of .the mobile-IP .
modules are to be used with other standard modules, this demultiplexing module has to be

included to ensure proper interfacing. This demultiplexing unit is shown as ip_encap in Figure

5.10. /

5.3 Network Configuration

Analysis is based on the network model in Figure 5.5. There are two mobile hosts, MH,
and MH,. MH; belongs to net;, whereas MH, belongs to net,. The networks nety, net,, and net;

are part of the Internet. They are drawn expliéitly for clarity and to show the mobile connections

with MH; and MH,. The two mobile hosts are designed to hop between fbreign networks at

predefined rates. Traffic characteristics were studied at different rates of handoffs.

Figure 5.5 Network configuration of the simulation

As both of the mobile hosts are away from home, each of them has to register with their

respective home networks in order to acquire network service from them. Besides, they also have
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Figure 5.6 Host configuration within subnetworks
to rely on »foreign agents to route their datagrams. Each of the networks (netl, net2 and net3) has a
local router and a conventional h.ost. Figure 5.6 depicts the éonnection topology within each of the
networks in Figure 5.5. Host (A.1) is a local router. It serQes as both FA and HA (i.e. it provides
mobile-IP services for both Visiting MHs and MHs belonging to the same network). Host (A.2) is
a MH. It is connected via a virtuai cbnnection to its HA (host A.1). Host A.3 is a conventional
host connected directly to its home roﬁter (host A.1). Since we are concentrating on Transport
layer analysis, there is no assumption made upon the typé network interface. In the simulation,

each of the mobile-IP supporting router is named as a mobile agent (MA). MA is therefore a

router which delivers datagrams for both conventional hosts and MHs. The former is just conven-
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tional IP routing, whereas the latter is by the use of mobile-IP. Standard OPNET Iniernet model
uses routing table lookup ﬁlethod to implement route selection. Internet traffic within the local
subnet is handled by the local router (MA). For frafﬁc that goes beyond the network boundary,
they are routed to a default core gateway. This core gateway is capable of routing any IP
datagrams to their respective networks, where they will be distributed locally. This scheme is

outlined in chapter 13 of [13]. Figure 5.7 shows the core gateway employed in this simulation.

Default Router

Figure 5.7 Core gateway model of the Internet model -

The use of this core gateway' serves two functions in this simulation. First of all, it makes the
" conventional routing task simpler by having a reylatively small fouting table at each of the local
routers. As the Internet today consisfs of .a‘ large number of hosts, it is therefore resource ineffi-
cient to keep track of ail the hosts” routing information on every host within Internet. In reality,
existing local hosts keep minimal information regarding rohting and rely on major gateways
within Internét bto do the rest of the ro‘uting.’ This is analogous to what is being implemented in

OPNET. However, autonomous routing system concept is not implemented. An autonomous

system advertises reachability information between routers. This is useful for indicating a certain
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network, link or routing path is not functional. The system‘ will then be able to route datagrams via
a different path. In our simulation, since the number of networks involved is few and we have one

core gateway only, implementing autonomous system would not bring any improvement.

All the default traffic has to go through the core gateway, so datagrams follows a single

queue waiting to be routed as in Figure 5.8. This introduces a varying delay which the existing

/

Datagrams o ' .

ag ' * - "Various output
from various —» ‘ : streams
networks

Single queue
Figure 5.8  Queuing at the Internet core gateway

Internet imposes in datagrams delivery. The delay for every non-local datagram is varied, giving a
more realistic representation of the current Internet. This approach of simulating TCP/IP traffic is
commonly used and there are many variations of it. The simulation model in [3] uses a similar

approach by having a single core gateway.

5.4 Host Configuration

There are basically three types of hosts in this simulation. They are conventional hosts,
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‘mobile hosts (MH) and mobile agents (MA). Conventional hosts are those which will connect
only to wireline hosts. It does not support any of the mobile-IP extensions. There is no UDP

section within this type of hosts. It is shown in Figure 5.9. There is no assumption made upon the

rev_1 xmt_1

Figure 59 Components of conventional host

physical connection métﬁod. It is implemented as a direct link between hosts. -Transmitters and |
receivers are point-to-point type. The IP module is the standard OPNET IP modulé. It is capable
: of handling fragmentation and assembly of IP datagrams. In addition, routing table is kept for -
making routing decisions. The ip_encap module will provide interfaciﬁg between TCP and IP
layers, exchanging information regarding source and destination addresses of the datagrams being ,
handled. TCP is responsible for mainfaining the end-to-end connections. Appl and app2 are

sources and sinks of data sent over the network.

MHs and MAs share an identical node Iayout, as shown in Figure 5.10. The difference

between a MH and a MA is the registration handling unit - reg module. For a MH, the reg module

calls a process which sends registration request to its HA. It also performs handoff at specific
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Figure 5.10 Components of mobile host or mobile agent -
_intervals. For a MA, the reg module calls a different p_roéess which handles registration requests

and updates mobility binding for MHs-. \

Either a MH or MA 'has to support conventionél 1P routing as weH as mobile-IP routing.
Mobile—iP roﬁting is based on the contents of the mobility bindings ’s‘torecvi in the mobﬂe-lP layer,
and is able to change its deliveryﬂ path'du"ring tﬁe course of a connection. Se_veral lists of mobility
bindings have to be maintained in order fo accomplish this. For a MH, it has a list of bindings
storing the information of its home agent, foreign agent and lin_k—layer address. For a HA, there is
a ﬁst of HA bindings. Each of those'will store the information for those MHs Whiéh h_ave moved

;o ~ away from this network. For a FA, it has to keep a mobility bin'dirig for each visiting MH.

Each of the MH sends a mobile registration when the simulation starts. Shortly before the -
lifetime of the registration expires or the MH has moved to another location, it sends a new

registration request to the new FA. These mobile-IP messages are sent via UDP. Therefore, the

ip_encap module has to demultiplex datagrams according to its type. When the mobile registra-
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tion réquest reaches the reg module of a FA or a HA, it updates the appropriate list of mobility
bindings. To accomplish this, the module interrupts the simulation flow and passes the necessary

information via an ICI structure in OPNET.

Routing implementation in mobile-IP is significantly different than the standard OPNET
1P rﬁodule. When mobile-IP layer is required to make a routing decision, it first consults its
mobility binding lists. For a MH, it always looks for a: FA to deliver its datagrams. Whereas for a
mobile ageﬁt (either a HA or a FA), it has to consult its bindings list to determine where to route
the datagram to. If there is no mobility binding related to the destination of the datagram and it is

not a MH, conventional Internet Touting is used for datagram delivery.

5.4.1 Basic IETF Mobile-IP Scheme

This model has the basic fvevatuvres. outlined in the basic IETF mobile-IP propqsal [6]. In
this model, mobile-IP routing, conventional Internet routing and fragmentaﬁon handling are
“supported. The mobility functions are separated in two different modules. The mobile routing and
- tunnelling are implemented within the mobile-]P layer, whereas the mobile registrations are kept

in the application layer and transported via UDP.

5.4.1.1 Mobile-IP layer in basic Mobile-IP
The mobile-IP module is develdped to replace the standard IP module in OPNET. It
handles all mobile routing and tunnelling. It.also maintains the cache lists of bindings and

removes expired bindings.

This module is used by any hosts which supports mobile-IP extensions. The fragmentation

handling‘ within this module is based on the standard OPNET IP ‘nﬂodule, while the routing is
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Table 5.1 Mobility binding lists in basic mobile-IP

Home Agent List Storing care-of addresses for each

mobile host
Forcign Agent List Storing home agt?nt address for each
mobile host
Mobile Host List Storing home agent address and foreign

agent address

rewritten to accommodate the additional features. Before a datagram is routed, the source and
“destination addresses in the datagram header are read. In order to find a route for the destir;ation,
the lists of mobility bindi.n_gs are consulted. Figure 5.1 shows the types of mobility bindings that
are kept within the mobile-IP layer. If there is no match in these lists for the current datagram to
be sent, the datagram is sent vi,a 'Colnventional routing. Binding entries are represented as a linked
list in C programming language. Home agent binding entries are listéd in 'l;ablc 5.2. Note that in a
HA binding list, it is possible to have multiple entries for a single MH. This is to enable a MH to
acquire services from multiple FAs. In this case, datagrams for this MH are duplicated and sent to
each valid care-of address. The identifier is for validating mobile registration reqﬁcst. This is a
known secret between the HA and the MH for authentication purposes. Timeout value is the

duration in seconds that this binding should be allowed to exist. Refresh handler is an OPNET

Table 5.2 Home agent binding entries in mobile-IP

Mobile Host IP address 4-byte integer

Care-of address 4-byte integer
(usually Foreign Agent address)

Identification 4-byte integer

Timeout value 4-byte integer

Refresh Event handler Event pointer in OPNET
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Tablé 5.3 Foreign agent binding entries in basic mobile-IP

Mobile Host IP address 4-byte integer

Home agent IP address 4-byte integer

Link-layer address ‘ 4-byte integer
Timeout value 4-byte integer
Refresh Event handler. Event pointer in OPNET '

internal pointer which allows the module to cancel the binding refresh event. For example, if there
is a deregistration before it has expired. It would then be necessary to cancel the refresh event as

well to avoid accessing a stale bihding' after it has been deleted.

FA binding entries are shown in Table 5.3. Similar to a HA binding, timeout value and
refresh handlef are for maintaining the binding within the allowed lifetime. Note that each MH
can only have one HA address in the binding. When a FA first receives a mobile registration from

a MH, it creates a temporary binding storing the link-layer address to which the MH is attached.

When an encapsulated datagram is received, the FA determines whether it is the end of the
tunnel for this datagram. If so, it decapsulates the datagram and checks the inner payload to find a
match within its visitors’ bindings. If a match is found, the datagram will be delivered locally

according to the Iink—layer address in the binding.

For a MH, the binding is shown in Table 5.4. Whenever the MH is required to send a
mobile registration, it determines which HA to register with and sends the registration to that IP
address accordingly. (Note that there fnay be more than one HA available within a network.) The

care-of address is obtained from the local FA which MH is acquiring network service from. The

link-layer address is the physical layer address for routing. Identification serves as a common
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Table 5.4 Mobile host binding in basic mobile-IP

Home agent IP address 4-byte integer

Care-of address 4-byte integer

link-layer address 4-byte integer
identification 4-byte integer
lifetime 4-byte integer
Refresh handler Event pointer in
OPNET

secret between the FA and the MH. The time of existence of this bind.ing’is specified by the
lifetime field. The event handler provides a way to cancel the bindiﬁg refresh event, should it

become unnecessary.

With all these bindings defined in the mobile-IP modﬁle, all MHs and MAs share a

common mobile-IP module. The state diagram is shown in Figure 5.11. The state transition is

(! server_busy & insert_ok) {1 QuEVE_mipTy)

P
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Figure 5.11 State diagram for mobile-IP module for basic mobile-IP scheme

outlined in Table 5.15. Note that there are two states which is called by the reg module. The two
states are stream_update and list_update. Stream_update is for simulating handoff by connecting

to a different physical stream, while the list_update is for maintaining the mébility bindings. The

supplemehtary source code of the IETF model is listed in Appendix A.




Table 5.5 State transition of mobile-ip unit in basic mobile-IP
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list_update

current module)

initialize variables, read simulation arrival
parameters and datagram arrives
init '
initialize variables, read simulation idle
parameters and no arrivals yet
datagram arrives arrival
finished service for datagram svc_completion
idle
stream update requested by reg module stream_update
binding update requested by reg module list_update
schedule datagram for service ‘ svc_start
arrival
arrived datagram placed in queue idle
svc_start start service, schedule for finish idle
finish routing (if more datagrams in svc_start
: queue)
svc_completion
finish routing (if no more datagrams in idle
queue)
stream_update perform stream update (return control to _idle
‘ reg module) N
perform binding update (activate by reg or idle

51
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5.4.1.2 Mobile Registratibn modules in Basic Mobile-IP
There are also modules in the application layer developed for handling mobile registration
prdcedures. There are two different types of registration modules. One is for MHs, while the other

one is for both FAs and HAs. It is expected that a mobile router can function both as a FA and a

HA.

5.4.1.3 Home Agent in basic Mobile-IP

The responsibilities for home agents in basic mobile-IP scheme is listed in Table 5.6. Each

Table 5.6 Responsibilities of home agent in basic mobile-IP

handle mobile registration request

send mobile registration reply

set up cache binding for mobile host that has been successfully registered

tunnel datagrams for registered mobile hosts

perform deregistration when mobile host has returned to home network

HA has two special units ‘which handles the mobile datagram routing and registration procedures.
They are shown in Figure 5.10 as the reg and the mo_bi)e—ip units. The reg unit analyzes all mobile
registration requésts and performs mobility binding updates. The state diagram for this registra-
tion handling unit for a home agent is shown in Figure 5.12 and the corresponding state transition

is shown in Table 5.7.

Figure 5.12 State diagram for mobile registration handling of mobile agent in basic mobile-IP
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Table 5.7 State transition for reg unit of home agent in basic mobile-IP

init initialize variables, read simulation parameters, send initial mobile registration idle
idle pending for mobile registration request Icv
(Y analyze registratidn request, update mobility binding, send registration reply idle

Under this basic scheme, the reg unit takes a passive role in mobile registration manage-
ment. HAs do not initiate any messages to FAs, MHs or other CHs. It only responds to mobile

registration requests.

5.4.1.4 Foreign Agent in basic Mobile-IP:

Foreign agent in this basic mobile-IP scheme plays a silent role as well. It ;ncrely relays
the mobile registration message from fhe mobile host to its home agent. It analyzes the registra-
tion requests and CI’Cé.lteS necessary mobility bindings according to the reply from 'the HAs. The

functions of foreign agent is summarized in Table 5.8. These functions are realized and

Table 5.8 Responsibilities of foreign agent in basic mobile-IP

forward mobile registration request

relay mobile registration reply

maintain cache binding for mobile host that has been successfully reg-
istered

represented in a state diagram as shown in Figure 5.12.

When a FA first receives a mobile registration request from an unregistcr'ed MH, it first
checks its own available resources. If permitted, a temporary binding is created. As soon as the
registration reply from the HA has been received, the FA updates the visitor binding for this

y

-particular MH. The registration reply is then delivered back to the MH. State transition is shown

in Table 5.9.
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Table 5.9 State transition of reg unit for foreign agent in basic mobile-IP

init initialize variables, read simulation parameters idle .
idle pending for mobile registration requests or replies Icv
IcV update visitor binding list according to the message received idle

5.4.1.5 Mobile Hosts in basic Mobile-IP:
Under the basic mobile-IP scheme, MHs initiate all mobile registration requests. In

addition, handoff management is also performed by the reg module. The responsibilities are

outlined in Table 5.10.

Table 5.10 Responsibilities of mobile host in basic mobile-IP

initiate new mobile registration request

process mobile registration request reply

process mobile registration reply

retransmit mobile registration before expiry

All of the above functions are implemented in the reg module and is implemented in a

finite state machine in OPNET which is shown in Figure 5.13.

(paate ]

W/

* Figure 5.13 . State diagram of reg module of mobile host in basic mobile-IP
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Netethét there is an extra handoff state within this module. The handoffs are simulated
using a timer modu'le within the state. Whenever the predeﬁned handoff period expires, it registers
with another FA. After the registration has been approved, the MH does not register with its
previouAs FA. The previous FA deletes the binding when it has expired. The state transition'is

* shown in Table 5.11.

Table 5.11 State transition of reg unit for mobile‘host in basic mobile-IP

initialize variables, read simulation parameters
pending for registration reply ' process
idle waiting for retransmission timer to expire update

waiting for handoff timer to expire . handoff
process | analyze registration reply, update mobility binding idle
update | send retransmissiqn if registration reply not received within timeout period - idle
handoff send new mobile registration to another foreign agent whenever handoff time- | idle

out expires
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5.4.2 IMHP Route Optimized Mobile-IP model

For the IMHP scheme, all the basic mobile-IP features are supported. There is one
additional feature as well. First of all, theré is one more entity necded to be defined - cache agent
(CA). The role of CA can be taken by aﬁy host along the path between the corresponding host and
fche home agent. Since datagrams can take on different path even though the endpoints of travel is
the same, there is no guarantee fhat subsequent datagrams will take the exact same route d‘uring
next travel. The responsibility of being a CA often falls upon the CH. The function of CA is to
keep track of the c;.re-of address of a certain mobile host. It would then be able to route datagrams
for that particular address directly to its care-of address. Therefore, a cache list is kept at CA to

" indicate the MHs’ care-of address.es.

Obviously there are additional duties to be CarriedA out by the CA and the HA for this route
optimization scheme. They are outlined in Table 5.12 and Table 5.13 respectively. In supporting

route optimization, the CH has to include an additional module in its application layer, the state

Table 5.12 Responsibilities of cache agent

acknowledge binding update request

send binding update request

maintain cache binding listing for different mobile hosts

delete outdated mobility cache bindings

Table 5.13 Additional responsibilities for home agent to implemént route optimization

send binding update warning to indicate a lack of up-to-date care-of
address of mobile host

exponentially backoff in sending binding update warning after repeated
no-response from Cache Agents '

process and authenticate binding update request

diagram is shown in Figure 5.14. The function of this module is normally pending for binding
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Figure 5.14 State diagram of cache agent using route optimization scheme

update warning. If that type of message is received, the CH sends a corresponding binding update
request to the HA which originates the warning. After the binding update message has arrived, the
CA updates the cache binding list in mobile-IP layer. Subsequent datagrams for the same MH are
seﬁt directly to its care-of address. Figure 5.15 depicted the mobile-IP layer routing. The state

transition is listed in Table 5.14. The supplementary source code for the IMHP scheme is shown

in appendix B.
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Figure 5.15 State diagram of mobile-IP module in route optimized scheme
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Table 5.14 State transition of mobile-IP module in route optimized scheme

initialize variables, read simulation idle
parameters, and no arrivals yet
init
initialize variables, read simulation arrival
parameters, and datagram arrives
datagram arrives arrival
datagram routing started mob_rte
idle
stream update interrupt received stream_update
binding update request received list_update
‘ datagram arrived and enqueued idle
arrival .
datagram arrived and start service svc_start
svc_start service finish time scheduled idle
mobile datagram sent and schedule svc_start
‘next datagram in queue for service
mob_rte routing conventional IP datagram svc_completion
mobile datagram sent and no data-’ idle
grams in queue
finished sending datagram and no idle
datagram in queue
svc_completion
finished sending datagram and sched- svc_start
ule next datagram for service
stream_update | switch to next physical stream idle
list_update perform binding update request idle

58
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5.4.3 Handoff Enhanced Scheme

For the enhanced mobile-1P schéme, all the route optimizatioh features are supported
together with one additional function for the FA. _Each FA has to set aside a specific amount of
memory buffer for storing datagrams destined for MHs when they are undergoing new mobile
registration procedures at another FAs. The state diagram for this scheme is shown in Figure 5.16.
’fhe buffering of datagrams make this scheme structurally different from an;lr of thé. previous

schemes described. It requires some memory to be set aside. Moreover, the state transition is more

sophisticated. It has to store upAdata packets for any visiting hosts which have just left for other
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Figure 5.16 State diagram of mobile-IP module using Enhanced mobile-IP scheme

destinations. Upon pending for authenticated replies, the host has to queue up the packets. The

state transition is given in Table 5.15. The supplementary source code of the Handoff Enhanced

Scheme is listed in appendix C.




Table 5.15 State transition of mobile-ip unit for mobile host in handoff enhanced mobile-

1P

Chapter 5 DeSign of Simulation Model

initialize variables, read simulation arrival
7 parameters and if datagrams arrive
init ,
initialize variables, read simulation idle
parameters and if no arrivals yet
datagram arrives arrival
finished service for datagram mob_rte
idle
stream update requested by reg module stream_update
binding update requested by reg module list_update
schedule datagram for service svc_start
arrival
arrived datagram placed in queue idle
svc_start start service, schedule for finish idle
finish sending datagram for mobile host svc_start
and if there are more datagrams in queue
' no mobility binding exists, use conven- svc_completion
mob_rte tional IP routing

finish sending datagram and no more idle
pending datagrams in queue
finish routing (if more datagrams in sve_start
queue)

svc_completion
finish routing (if no more datagrams in idle
queue)

idl

stream_update perform stream update (return control to idle
reg module)
perform binding update (return control to idle

list_update reg module) ’ A

release buffer command received mob_rte
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Chapter 6 Discussion of Simulation Results

Simulations were performed using models developed in previous chapters. Performance
analysis-was based on connection-oriented traffic. The effect of those parameters will be

discussed in relevant sections later in this chapter.

6.1 Review of Simulation parameters

The simulation starts with the MHs initiating mobile registrations. The MH sends a mobile
registration request to its HA. Upon receiving the registration request, the HA responds with a

registration reply. The setup is listed in Figure 5.5.

Normal TCP connection was set up between MHI and Internet CH;. An ideﬁticai connec-
tion was set up between MH2 and CH,. The TCP connections remained r)pén for a period of 2000
. seconds (over 3Q minutes). Handoff was irnplr:mérited by using an intr:rnal timer. When the time
had expired, thé MH rvbuld switr:h to another mobille‘ link whiéh waé connected to another FA.
That would enable the MH to receive mobile service from a new FA. During the period of the

connection, MH, was set to hop between net; and net;, while MH, was set to hop between net;

and nets.

It is specified in [1] that consecutive mobile registrations should not be less than 1 sec '
apart. Preliminary results also show that TCP end-to-end delay does not change significant.ly
when time betvr/een handoffs is increased from 40 secs. Hence we chose the handoff period to be

as follows. MH, was set to perform a handoff every 40 seconds, while the time between handoffs

for MH; was varied in a range from 40 seconds down to 2 seconds.
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The TCP end-to-end delay of the connection was monitored as the prime interest of the
study was the investigation of TCP traffic conditions over mobility links. The TCP end-to-end
delay is defined as the time duration between the TCP segment entering the TCP layer of sending

host and leaving for the application layer at the receiving host.

Table 6.1 Parameterset1 ° '

Mobile link data rate: 57.6 kbps

Data rate within local network: 10 Mbps

Data rate from local network to Internet sitesi 256 kbps

Maximum acknowledgment delay: 2 sec
RTT gain (o0): _ 0.125
RTT deviation gain (A): 0.25
RTT deviation constant (§): 4

The data segment size was set at 1024 bytes and the generated traffic was gxponentially
distributed with a 0.1 second interarrival time. The simulation was repeated using ten different
simulation seeds using the parameters shown in Figure 6.1. An ensemble average is .taken to
ensure that the simulation would give a more realistic picture as opposed to a single case study.

The results were averaged and tabulated. Since MH, had a fixed rate of handoff, the performance

over this link was used as a basis for comparison with other handoff rates.

The mobile link data rate specifies the data rate from the MHs to the corresponding FAs.
The data rate within local network is the data rate between a local router and conventional hosts
within the same network. The data rate from local network to Internet sites shows the data rate

from the local router to the Internet core gateway. The maximum acknowledgment delay is the

" maximum time allowed that the TCP layer will wait for an acknowledgment before sending




Chapter 6 Discussion of Simulation Results ' . 63

retransmissions. The RTT gain (o) and RTT deviation gain (A) are the weighing factors that the
TCP layer uses in updating the RTT average and deviation respectively, while the RTT deviation
constant (B) is the multiplicative constant that TCP uses in generating a retransmission timeout

value from the average RTT.
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Figure 6.1 Delay connection characteristics of basic mobile-IP scheme (handoffs every 40 sec)

Figure 6.1 shows end-to-end connections measurements of MH; and MH, with handoff

every 40 seconds. It is shown that at this rate, the delay is kept within a reasonable range. The

performance of both MHs match up pretty closely as the link parameters are identical.

The same setup and identical parameters are used for analyzing the route optimized

mobile-IP scheme (IMHP). In this scheme, triangular routing is eliminated. It is expected that

improved performance can be achieved. It can be seen that the minimum floor end-to-end delay is
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Figure 6.2 Delay characteristics ofiiMHP‘ mobile-1P scheme (handoff every 40 sec)
considerably lower than that of the basic mobile-IP version. This matches up with our analysis in

chapter two. At relatively low handoff rate, the end-to-end connection delay has been improved.

As a variant of route optimization scheme, the héndpff enhénced scheme is e);pected to

| deliver 'simiiar ‘pel"forma‘nce as the roufe 0p£imized scheme. The Samfﬂe results are shown in
Figure 6.3. The result verifies it>he analysis that étv low héndéff rate the héndoff enhanced scheme
delivers similar performance as the route optinﬁzed schemg:. Witﬁ this set of };arameters, each of
the scherrieé are cépable of handling the traffic at an acceptable leve.l.‘ Therefore it is necessary to

tighten the parameters in order to strain each of the schemes.

From the experimental results in the first part, it is apparent that TCP end-to-end delay will

occasionally exceed a 2 second range. In order to strain the handoffs, the time between handoffs
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Figure 6.3  Delay characteristics of handoff enhanced mobile-IP scheme (handoff every 40 sec)
were reduced to 2 seconds. The same set of parameters, in Table 6.1, were used. Only the handoff

rate of MH; was changed. This is to ensure that the change in performance is due to the difference

in handoff rates but not from other factors.

The result for basic rhobile-IP is shown in Figure 6.4. It is apparent that the performance

of MH; has degraded tremendously compared with previous results (Figure !6.1).‘ Although the

floor level of the end-to-end delay is still quite low, there are delays which exceeds 10 seconds.

On the other hand, MH, has .similar performance compared to previous results. The change in

performance is due to the handoff rate difference.

With the same handoff rate change applied to MH, as in the case of the basic IETF

mobile-IP scheme, the simulation was performed using the IMHP scheme. The result is shown in
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Figure 6.4 Delay characteristics of basic mobile-IP schem.e
Figure 6.5. It can be seen that the performance degrades even more than the basic mobile-IP
scheme. This matches with the analysis in chaptér two. The results collected were verified
through the use of a bqilt—in debugger in OPNET to make sure the datagram’s are rquted accordi‘ng

to the protocol specification.

The reason for the poor performanée is that the datagrams are often routed to the incorrect
location since MH; changes its point of attachment rapidly. This is because the CAs are delivering -
datagrams directly to the care-of addresses of MHS. This causes the TCP acknow_ledgfﬁent timer
to expire. As described in section 3.2, TCP has mistakenly interpreted retransmissions as conges-

tion within the network. TCP throttles the traffic by using exponential backoff strategy. Before

TCP commences to send traffic down the link again, it sends SYN paékéts' to establish the connec-
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Figure 6.5 Delay characteristics of route optimized mobile-IP scheme
tion. As these packets are susceptible to losses as indicated, TCP ends up spending a great deal of
time attempting to re-establish the connection. This scheme is deemed to have broken down under

these network conditions.

: The same conditions were applied to the handoff enhanced scheme. The resulté are shown
in Figure 6.6. Although the handoff enhancement scheme is based on the route optimized scheme,
it does not suffcr from the huge delays as its predecessor. Under this scheme, thé datagrams for
mobilé hosts are bufferéd at FA if the MH is registering withv another FA. As soon as the registrét
tion comple}es, those buffc;ed datagrams are sent to thé MH. Nevertheless, these datagrarﬁs have
to undergo a certain amount of delay before reaching their final destination. If however the travel

time together with these delay still falls within the TCP retransmission count value, TCP does not
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Figure 6.6  Delay characteristics of handoff enhancement scheme
try to synchronize and retransmit again. This is a major improvement over the route optimized

scheme.

It still rerﬁains a question whether the handoff enhancement scheme is better tﬁan the
basic moi)ile—IP scheme under these handoff intensive situations. The basic rmoibil‘e—IP scheme
does not utilize any route 6ptimizations. It relies on the HA to tunnel the datagrams. As soon as
the HA receives the mobile registration request from the MH, the HA updates its bindings accord-
ingly. Datagrams can then be routed using the most update care-of address of the MH. Correct
routing is the key to good performance in baéic mobilé—IP scheme, since the performance penalty

in losing datagrams during handoff is severe in the transporf layer. The key of good transport layer

‘performance is to keep from losing datagrams.
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Although the enhanced scheme, as a variant of the route optimized scheme, cannot
guarantee the correctness of the fouting during handoff. However, it has overcome the problem
with another approach. By buffering the datagrams and forwarding it as so()h as the ‘registration is
completed, the enhanced Scheme can ensure that those datagrams received during the handoff will
reach the correct host. In order to pick a best scheme among the three, there is a need to acquire

long term averages of measured performance.

6.2 Simulation Results

Parameter set 1, in Tabie 6.1, is usgd and the fesult is shbwn in Figure 6.7. The time
between handoffs ranges from 2 to 40 seconds, and the end-to-end delay of the basic mobile-TP
“scheme becomes the worst as it provides no route optimizations. For this situation with relatively
few handoffs, the IMHP scheme perform_s the best with the end-to-end TCP delay about 0.2
seconds. As the handoff rate increases slightly, the end-to-end delay of the IMHP scheme
_ increases sh@ly. This is because the datagram loss rate in the IMHP schemé is directly propor-
tional to the number of incorrectly routed datagrams. Since route optimization scheme relies on
CAs (often the corresponding host) to send the datagrams directly to FAS, those CAs do not have

up-to-date information regarding the location of the MHs during handoffs.

The FAs do not play any active role in rectifying the problem. As the IMHP scheme
cannot avoid losing datagrams, TCP interprets the situation as network congestion and performs
exponential backoff and slow start which magnifies the problem. As a result, the IMHP scheme is

‘very sensitive to change in handoff rate.

At low handoff rates, the new enhanced scheme shows a lower end-to-end delay compared

with the basic mobile-IP scheme. However, as the handoff rate increases (i.e. the time between
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2 End-to-End Performance Analysis for Various Mobile-IP schemes
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Figure 6.7 TCP performance for parameter set 1
handoff decreases), the two schemes give very similar results. This is due to the fact that the
_vulnerable period of the basic mobile-IP scheme is much smaller than the IMHP scheme, as

described in chapter three.

A more detailed analysis shows that, for datagrams to be incorrectly routed, the datagrams

must reach the HA during the handoff but before the HA is aware that the MH has moved to

another FA. For this to happen, the datagrams must arrive during the time period marked as Dy,
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in Figure 3.2. A straightforward inference is that the vulnerability of the basic mobile-IP scheme
depends heavily on the amount of time required for registration to reach the HA during the
handoff. If the HA is far away from the MH’s current care-of address, the transport layer end-to-

end performance of the basic mobile-IP scheme is worsen as its vulnerable period has been

increased.

6.3 Effect of the change in vulnerable period

From chapter four, it has been concluded that the handoff enhanced scheme does not
suffer from vulnerable periods. The next parameter to be considered is the effect of the duration of
vulnerable period imposed on the other two schemes. The time taken for each mobile registration

from MH; to the HA at net; is increased, since the data rate to net; has been reduced. This is

analogous in placing the HA at a location which is further away, from the MH.

The parameters were slightly changed from those in set 1. This is to ensure that change in
performance is due primarily to the changed factor alone. Simulation was performed using
parameters in Table 6.2. Simulations were performed for a 2000 second connection period. This

was repeated using 10 different random seeds. The result is shown in Figure 6.8.

' With the increase in vulnerable period by reducihg the data rate between net; and Internet

Table 6.2 Parameter set 2

Mobile link data rate: 57.6 kbps
Data rate within local network: - 10 Mbps
Data rate from netl to Internet gateway: . 196 kbps
Data rate from net2 and net3 to Internet gateway: 256 kbps

Maximum acknowledgment delay: A ' 2 sec
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” Table 6.2 Parameter set 2

RTT gain: - 0.125
RTT deviation gain: 025
RTT deviation constant: 4

End-to-End Performance Analysis for Various Mobile-IP schemes
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Figure 6.8  TCP performance for parameter set 2

core gateway, the IMHP scheme suffers even worse degradation than in parameter set 1. It fails .

sharply as soon as the time between handoff decreases. The IMHP scheme is therefore not a very
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desirable scheme under handoff intensive situations.

The basic mobile-IP schemevdemonstrates a rather flat response regarding to changes in
handoff rate. The immunity to hand‘off rate is due to the lack of optimization. »Datagrams have to
be tunnelled by the HA through to the MH regardless of its current location. As handoffs beéome
more frequent, the basic mobile-IP scheme begins to show weakness as the system is inevitably
losing more datagrams due to incorrect routing. The end-to-end delay pattern stays relatively flat
for handoff period from 10 to 40 seconds. Tﬁroughout this simulation, the handoff enhéﬁced
schéme performs the best among all three schemes. Although the data rate from Vnetl and the
Internet gateway has been decreased, this does not degrade the TCP end-to-end delay in the
handoff enhanced scheme with the same extent as this.scheme does not suffer from this increase
in vulnerable period. Once again, the handoff enhancemgnt scheme has shown irﬁmunity to

vulnerable period which verifies the analysis in chapter four.

A third set of parameter was chosen for running the simulation. The pararheters are shown

~ in Table 6.3.

Table 6.3 Parameter set 3

Mobile link data rate; S 57.6 kbps .
Data rate within loéal network: ‘ 10 Mbps
Data rate from net; to Internet gateway: " 128 kbps
Data rate from net2 and net3 to Internet gateway: 256 kbps
Maximum acknowledgment delay: 2 sec
RTT gain: ' 0.125
RTT deviation gain: 0.25
RTT deviation constant: ' 4
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The simulation were repeated with 10 different random seeds. The result-is shown in
Figure 6'.9. With the increased vulnerability of the basic scheme, the handoff enhanced scheme.

has shown improvement by a wider margin with a handoff period at the 2 second range. This is

16 End-to-End Performance Analysis for Various Mobile-IP schemes
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Figure 6.9 TCP performance for parameter set 3

“due to that fact that the basic scheme is more vulnerable with the increased delay in handling

mobile registrations. In addition, there is a clear margin of improvement throughout the entire

handoff period range.
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It has been shown that the registration delay has significant effect over the TCP end-to-end

delay, the simulation model was modified to investigate the effect of further increasing propaga-

End-to-End Performance Analysis with handoff every 40 sec

Handoff Enhanced Scheme —6—
- Basic Scheme - —&— - A

TCP End-to-End delay (sec)

O 1 1 L I L I 1 ‘ L l 1 I 1 I 1 l e l i
0 0.1 0.2 03 04 0.5 0.6 07 08 0.9

Propagation delay between netl and gateway (sec.)

Figure 6.10 TCP performance with inserted propagation delay (handoff every 40 sec)

tion delay within the link from the HA at net; to the Internet core gateway. This additional

propagation delay was varied between O to 0.9 sec. and the measurements were made over the

TCP end-to-end delay for the connection over MH;. Simulations were performed using the basic

IETF scheme and the new handoff enhanced scheme. The parameters set 3 was chosen. The same
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TCP connection was maintained at the MH; for a period of 2000 seconds. The results are shown

End-to-End Performance Analysis with handoff every 2 sec
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Figure 6.11 TCP performance with inserted propagation delay (handoff every 2 sec)

in Figure 6.10.

As the propagation delay between the HA at net; and the Internet core gateway increases,

the probability of datagrams arriving during the vulnerable period increases. The increase in the

measured TCP end-to-end delay is proportional to the increase in propagation delay. Again, this
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agrees with the analysis in chapter three regarding the vulnerable period of the basic IETF

scheme.

In the case of the new enhanced scheme, the same amount of propagation delay has been
inserted into the model. It is shown that the new scheme has an increasing margin of improvement
of TCP end-to-end delay over the basic scheme as propagation delay increases. This is due to the

fact the new scheme does not suffer from a vulnerable period in which datagrams are lost.

The simulation was repeated with a higher handoff rate. In this case, the handoff period is
changed to 2 seconds. The other parameters were kept the same as in the previous case. Thé result
is shown in Figure 6.11. In this case of the basic IETF scheme, the TCP end-to-end dellay'i_s4shown
. to have increased with the increase in the added prdpagation delay. This confirms that the TCP
end-to-end performange of the basic IETF scheme is determined by the duration of vulnerable
period. Once again, the new enhanced scheme has shown improvement in TCP end-to-end perfor-

\

mance over the basic IETF scheme as the propagation delay increases.

6.4 Summary of Performance Comparison

The performance comparison for parameter set 2 is tabulated in Table 6.4. The TCP end-

to-end delays are normalized to the basic mobile-IP scheme end-to-end delay.

The normalized TCP end-to-end delay for the IMHP scheme in parameter set 2 has only -

Table 6.4 Performance comparison for parameter set 2

2 559 88
4 385 .97
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Table 6.4 Performance comparison for parameter set2

6 352 96
10 283 80
6 312 96
20 208 T s
40 | 82 80

Table 6.5 Performance comparison for parameter set 3

2 570 84
4 319 89
6 301 : - 94
8 265 80
10 280 : 83
16 222 ' 73
20 207 ﬁ o 80
40 81 80

shown impr’ovemen.t over basic scheme when the handoff rate is very low. Whereas for the
enhanced scheme, it shows consistent improvement over the basic scheme. With parameter set 3,
the result is tabulated in Table 6.5. It is now evident that the handoff enhanced scheme is well
suited for situations with high handoff rates. The IMHP scheme can only give better performa.mcé’
when thé handoff rate is low. The improvement fécfcor is about 12% for very low handoff situation.
For the handoff enhanced scheme, it yields improvement of over 10% in most cases. The‘

maximum gain from this scheme is 27%. Even at high handoff rate, the handoff enhanced scheme

delivers performance improvement of over 12% for the system model and parameters considered.




- Chapter 6 Discussion of Simulation Results 79

With additional propagation delay at the link between the HA of net; and the Internet

gateway, the results, for the system with handoffs every 40 seconds, are tabulated in Table 6.6.
The TCP end-to-end delay-is normalized against the basic IETF scheme. For the system setup and
the parameters considered, improvements of up to 54% has been found in the new enhanced

scheme.

Table 6.6 Normalized TCP end-to-end delay with handoff every 40 sec

0.1 66
02 ' 57
0.3 ' 58
0.4 52
0.5 ‘ 52
0.6 46
0.7 50
0.8 : 51
0.9 ' 51

“For the system with handoffs every 2 seconds and additional propagation delay for the link

between net; and the Internet, the results are tabulated and shown in Table 6.7. The TCP end-to-

end ’delay are normalized against the values for the basic IETF scheme.

‘The end-to-end perforfnance of the new. scheme is found to be better than the TETF

Table 6.7 Normalized TCP end-to-end delay with handoff every 2 sec

0.1 | 82
0.2 | 78
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Table 6.7 Normalized TCP .end-to-end delay with handoff every 2 sec

0.3 75
0.4 » 74
0.5 70
0.6 72
0.7 67
0.8 67
09 e

scheme. Improvements of up to 33% was found with the system setup considered.

From the results; it is shown that the IMHP scheme can deliver improved performance
over the basic IETF scheme under light handoff situation. The reduction of triangular routing does
bring along improvement in overall performance. However, as the handoff rate increases, the

scheme suffers greatly and is deemed unstable.

It is evident that the improvements in TCP end-to-end delay performance has been
-achieved in most cases with the proposed handoff enhanced scheme. This scheme is proved to
deliver better performance even when handoff intensity is high. Moreover, the scheme is able to

withstand the change in mobile registration delay without compromising its performance, since it

does not suffer from datagram losses during handoffs.




Chaptei' 7 Conclusion

In this study, a new handot:f enhanced scheme was proposed. Together with two other -
different proposals of mobile-IP, these proposals were simulated in OPNET and the TCP end-to-

end delays were measured by simulation.

The basic IETF mobile-IP scheme proposed was the basis for comparison, since it had
been approved as an Intérnet standard. Tt was found that this basic scheme provided a stable
| system. However the performance could not be improved, since it does not employ ‘any optimiza-
tion. Consequently, the routing in this scheme is suboptimal, and hence, wasting network-

bandwidth which is already scarce in mobile links.

A route optimization (IMHP) scheme was analyzed to seek for improvement over the
basic scheme. The scheme was fdund to be useful at low handoff rate. According_to the simulatioﬁ
results, this new scheme degraded tremendouély with a slight increase in handoff rate. Since
datagrams were sent di}ectly to the FAs, datagram loss became excessive during handoffs. As a
result, the transport layer protocol had to‘ devote a lot of bandwidth in synchronizing the connec-

tion. This scheme is only suitable for those MHs with infreciuent handoffs.

The handoff enhanced scheme, being a variant of route optimization scheme, was shown
by simulation that it coﬁld decrease the TCP end-to-end delay ovér the other two ;Chemes. With
the i)articular system model and parameters, it was found that the reduction in TCP end-to-end
delay of up to 27% ovéf the basic scheme Coula be achieved. When additional mobile registration
delay had been introduced, it was found that the reduction in TCP end-to-end delay could be up to

54%.

81
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Besides, the handoff enhanced scheme did not suffer from instability problems as found in
the IMHP scheme. In most cases, the buffering method prevented datagram loss. This had reduced
the TCP end-to-end delay by a significant amount, since datagrafn losses h;d detrimental effects
over TCP connection. By preventing possible datagram loss, the transport layer protocol wbuld
not mistakenly throttle the traffic. By eliminating that source of datagram losses, the new handoff
" enhanced scheme is found to be well suited for situations with frequent handoffs. In addition, this
new scheme waits for registratidn reply before relaying datagrz{ms immediately. This would
prevent the security loophdle of replay message attack on the fofeign agent by a malicious host.

Thus the security of the system is not compromised.

Moreover, this scheme does not require any TCP layer modification to be made. As a

result, the proposed handoff enhanced scheme for FAs can be easily applied. Hence, ariy TCP

connections with MHs connected to these FAs can be improved.
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Possible Furtherwork:

« As there are a lot of variations within Internet, another approach to' test the. scheme is

~ to implement it over a relative srrnple network. PoSs_ible' choices are Linux and |
FreeBSD, as the source code for these operating systems are publicly available and has
been qu1te stable in performance. (Note that a PC with 8()4861 (66MHz) processor‘
~ could out- -perform a SPARCstatron IPX with the benchmark tests for Unix machines
t29].) Starting from version 2.0 onwards, AVLrnux kernel supports the:-use of IP
tunnelling. Adapting the prop‘osed scheme into these operating systems are made quite
Straightforward. Besides, for mobﬂe computin;c.;.to be feasrble, the operating sjste'm

has to be able to run on PC or laptop computers.

* Another 1nterest1ng alternatrve would be to look at performance 1mprovement w1th
spe01alrzed code w1th the TCP layer to handle the handoff. Th1s approach should grve
even more dramatic improvement. Indirect TCP scheme, for example, could be a good

candidate for investigation.

1

80486 is.a product developed by Intel Corporatlon Inc.

2 SPARCstation is a reglstered trademark of SPARC Internatlonal Inc., hcensed excluswely to Sun Micro-
systems, Inc. -




, Glossary

This section provides a list of acronyms used in this thesis.

BS : .- Base Station
CA . - Cache Agent
 CH | ‘ : Corresponding Host
.FA . . - Foreign Agent
HA - Home Agent |
ICT ’ - Iﬁternal .ContrOI Interface
IETF - Internet Engineering Task Force
IMHP - - Internet Mobile Host Protocol
LAN - Local Area Network
‘LSR - Loose Source Routing
MA | - Mobile Agent (Home Agent and Foreign Agent)
MOBILE-IP - - Internet Protocol with mobility extension
RTT - Round Trip Time
TCP - Transport Control Ppotocol'
UDP o - User Datagram Protocol

WMDN _ - Wireless and Mobile Data Network
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Appendix A. Supplementary Source Code of the IETF
| Model

/* mobile_rte_sup.ex.c */
/* Routing support procedures for the Mobile IP example model */

tinclude <opnet.h>
#include “mobile-ip.h”
#include “mobile_rte_sup.h”
#include “ip_rte_sup.h”
#include “protocol.h”

/* Functions called by Process Module */

List*
mobile_rte_sup_table_setup {(file name)
char *file_name;
{ - .
List* ) mobile_strm_list_ptr;
List* line_list_ptr;

mobile_rte_table*table_ptr;

/* Provides comprehensive routing table loading and parsing */
/* services for Mobile IP module. */
FIN (mobile_rte_sup_table setup (file name, net0, nodel, netl, nodel, net2, node2))

/* Load the list of text lines from the specified file. */
/* Note: this procedure will quit the simnulation if */

/* file cannot be loaded, so it is assumed that there */
/* are no problems upon returning. */ .
line_list_ptr = mobile_rte_sup_table_load (file_name);

/* Parse the contents of the obtained list into */
/* a routing—instruction table. */
mobile_strm list_ptr = mobile_rte_sup_list _parse (line_list_ptr);

/* In debug mode, if tracing is active, print the table */
if (op_prg_odb_trace_active (})
{
mobile_rte_sup_table_print (mobile_strm_list_ptr);
}

FRET( mobile_strm_list_ptr );

1

List*

mobile_rte_sup_table_load (file_name)
char ' *file_name;
( .
List* line_list_ptr;
char err_str [256];

/* Read in a routing table from an ascii */
/* file adhering to format defined above. */
FIN (mobile_rte_sup_table load (file_name))

/* Open and read the file into the list. */
line_list_ptr = op_prg_gdf_read (file_name);
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/* Test for error in reading. */

if {line list_ptr == OPC_NIL)
{ b
sprintf (err_str, “File Name: $s”, file name);
op_sim_end {(“Package : mobile_rte_sup”,
’ “Error : Unable to read routing table file”,

err_str, *");

}

/* Return the list of text lines. */
FRET (line_list_ptr}
}

, List*
mobile _rte_sup_list_parse (line_list_ptr)

List* line list_ptr;
{
List* mobile_stream_list_ptr;
mobile_rte_table*mrt_ptr;
int ) i, num_lines;
char* line;

List *field list_ptr;

/* Extract information from the lines of an ascii routing table */
/* and construct a corresponding routing table structure which */
/* contains routing instructions. */

FIN (mobile_rte_sup_list_parse (line_list_ptr))

/* Allocate a routing table structure. */ s
mrt_ptr = (mobile rte table¥) op_prg_mem_alloc (sizeof (mobile_rte_table));

/* Allocate a temporary table for holding lists. */
mobile_stream;list_ptr = op_prg_list_create ();

/* Sc¢an through each of the lines, one at a time. */
num_lines = op_prg_list_size (line_list_ptr);
for (1 = 0; i < num_lines; i++)
{
/* Obtain the i_th line. */
line = op_prg_list_access (line_list_ptr, i);

/* Decompose it into fields (field boundaries are */
/* 1ndicated by spaces, tabs, glashes, or commas. */
field_list_ptr = op_pryg_str_decomp (line, * ,/\t");

/* Format for a line is as follows: */ ' N

/* <output_stream> <mtux>*/

/* Incomplete lines are skipped. */

if (op_prg_list_size (field_list_ptr) < 4)
continue;

/* Create a routing instruction structure. */
mrt_ptr = {mobile_rte_table*)
op_prg_mem_alloc (sizeof (mobile_rte table));

/* Transfer the parsed fields into the structure */
/* First obtain the destination stream and mtu fields. */
mrt_ptr->stream = atol (

op_prg_list_access (field list_ptr, MOBILE_TBL_OUTSTREAM));
mrt_ptr-»mtu = atol ( ’

op_prg_list_access (field list_ptr, MOBILE_TBL_MTU));
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mrt_ptr->careof.net = atol (
op_prg_list_access (field_list_ptr, MOBILE_TBL_CAREOCF_NET)) ;

mrt_ptr->careof.node = atoi ( s .
op_prg_list_access (field_list_ptr, MOBILE_TBL_CAREOF_NODE)});

if (mrt_ptr->mtu <= 0)
mrt_ptr->mtu = O0X7FFFFFFF;

if {(mrt_ptr-»careof.net == ADDRESS_UNDEFINED &&
mrt_ptr->careof.node == ADDRESS_UNDEFINED )

/* careof address not implemented */
mrt_ptr->condition = CONDITION_ENABLED;

/* disable all condition flags initially */
mrt_ptr->condition = CONDITION_DISABLED;

/* Append the routing instruction to the temporary list. */
op_prg_list_insert (mobile_stream_list_ptr, mrt_ptr, OPC_LISTPOS_TAIL);

FRET( mobile_stream_list_ptr )
}

void ,
mobile rte_sup_table_print (mobile_stream_list_ptr)
List*mobile_stream_list_ptr;

{

mobile_rte table*table_entry; )

int i,size;

char ’ dne_str [128], dno_str [128];

char - nne_str [128], nno_str {128], str0 [512];

/* Print the contents of a routing table. */
FIN (mobile_rte_sup_table_print (mobile_stream list_ptr))

size = op_prg_ list_size( mobile_stream_list_ptr );

if ( size == 0 )
{
op_prg_odb_print_major (“Routing table is empty”, VOS_NIL);
}

else{
op_prg_odb_print_major (“Routing table contents :”, VOS_NIL);
for (i = 0; 1 < size; i++)
{
table entry = (mobile_rte table*)
. op_prg_list_access( mobile_stream_list_ptr, i );
sprintf( str0, “Stream (%d): mtu (%d)”" . .
, table_entry->stream, table_entry->mtu );
op_prg_odb_print_minor (str0, VOS_NIL);
) -
) .
FOUT .
}

Compcode‘
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mobile_rte_sup_route_select ( route_table, mobile_table, pkptr, ici_ptr
: , mobile_agnt_flag, pk_id, ttl
, HA_bind_ptr, FA_bind_ptr, MH_bind_ptr

/* , home_net0, home_netl, home_net2 )*/
‘ , ip0, ipl, ip2 )
. ip_rte_table *route_table;

List ' : *mobile_table;

Packet *pkptr;

Ici *ici_ptr;

int mobile_agnt_flag;

int *pk_id;

int tcl;

List *HA_bind_ptr, *FA_bind ptr, *MH_bind ptr;
ip *ip0, *ipl, *ip2;

/*int home_net0, home_netl, home_net2;*/

{

int i, j, num_bind, num_multi_bind;

IP ' dest; v -

HA_mobility_binding*home_entry;
FA_mobility_binding*visitor_entry; .
multi_binding *multi_bind_entry;
Compcode status;

L

FIN (mobile_rte_sup_route_select{ route_table, mobile_table, pkptr, ...))"

op_pk_nfd _get( pkptr, “dest_net”, &dest.net );
op_pk_nfd get( pkptr, “dest_node”, &dest.node );

/* Select a route from the routing table which matches the */
/* requested destination network and node. */
if ( !'memcmp( &dest, ip0, sizeof (IP) ) ||
© oimemcmp ( &dest, ipl, sizeof (IP) ) ||
‘tmememp ( &éest, ip2, sizeof(IP) ) )-
FRET ( OPC_COMPCODE_FAILURE ) ;

if ( send_via_FA{ pkptr, MH_bind_ptr, mobile_table, ici_ptr, dest, moblle_agnt_flag )
== OPC_COMPCODE_SUCCESS )
FRET ( OPC_COMPCODE_SUCCESS ) . .
else if ( forward_to_visitor( mobile_table, FA_bind_ptr, pkptr, ici_ptr, dest ) ==
OPC_COMPCCDE_SUCCESS ) )
FRET ( OPC_COMPCODE_SUCCESS ) . ..
elge if ( encap_packet( route_table, HA_bind ptr, pkptr, ici_ptr, ip0, dest, pk_id, ttl )
== OPC_COMPCODE_SUCCESS )
FRET ( OPC_COMPCODE_SUCCESS )

else
FRET ( OPC_COMPCODE_FAILURE ) .

}
Compcode
send_via_FA{ pkptr, bind_list_ptr, mobile_table, ici_ptr, dest, agnt_flag )
List , ) *bind_list_ptr, *mobile_table;
Ici *ici_ptr;
Packet *pkptr;
ip dest;
int . agnt_flag;
{
int i, size;
int copy = false;
int next_net, next_node, stream, mtu;
Packet *cp_pkptr; ' :
Compcdde status= OPC_COMPCODE_SUCCESS;

MH_FA_binding *fa_entry;
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mobilé_rte_table*table_entry; )
char ) str0[(80]), strl[80];

FIN{ send_via_FA( pkptr, bind_list_ptr, mobile_table, ici_ptr, dest )} )

/* First of all, check if packet is for any enabled streams */
size = op_prg_list_size( mobile_table );

for ( i=0; i<size; ++1 )

{

table_entry = (mobile_rte_table *) op_prg_list_access( mobile_table, i);

if ( IP_equal( table_entry->careof, dest )} &&
table_entry->condition == CONDITION_ENABLED )

stream = table_entry->stream;
mtu = table_entry->mtu;

next_net ADDRESS_UNDEFINED;
next_node = ADDRESS_UNDEFINED;

1}

deliver_packet( pkptr, ici_ptr
, next_net, next_node, stream, mtu );

FRET( OPC_COMPCODE_SUCCESS )

/* Now, check to see if there is any mobility binding */
size = op_prg_list_size( bind_list_ptr ); '

1f { size == 0 && agnt_flag )/* no bindings and not a moblile node */
FRET( OPC_COMPCODE_FAILURE )}

/* each enabled FA will receive a copy of the packet */

for{ i=0; i<size; ++1i )
{
fa_entry = (MH_FA_binding *) .
op_prg_list_access{ bind_list_ptr, i );

/* obtain the stream associated with the current binding */
stream = fa_entry->stream;

if ( chk_strm_condition( mobile_table, stream, &mtu ) == CONDITION_ENABLED )
{ v :
/* ’ mtu. = get_stfm_mtu( mobile_table, stream );*/
if ( mtu == MOBILE_STRM_NONEXISTENT )
{ .
sprintf (str0, “Discarding packet (%d) “, op_pk_id (pkptr));

sprintf (strl, *Stream non-existent” );
op_prg_odb_print_major {str0, strl, OPC_NIL);
op_pk_destroy( pkptr );

else

next_net = fa_entry->careof.net;
next_node = fa_entry->careof.node;

#if 1
deliver_packet( pkptr, ici_ptr
, next_net, next_node, stream, mtu );
FRET{ OPC_COMPCODE_SUCCESS )
#else

copy = true;
cp_pkptr = op_pk_copy( pkptr );
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deliver_packet ( cp_pkptr, 1lci_ptr
, next_net, next_node, stream, mtu );
#endif

}

/* have to deallocate original packet gince it is no longer needed */
if ( copy )
{ .

op_pk_destroy( pkptr );

FRET{ status )}

FRET( OPC_COMPCODE_FAILURE )
) .

Compcode

encap_packet ( route_table, bind list_ptr, pkptr, ici_ptr, current, dest, pk_id, ttl )
ip_rte_table *route_table;

List . *bind_list_ptr;

Packet *pkptr;

TIci *ici_ptr;

1P current, dest;

int *pk_id;

int ' tel;

{ ,

char str0{512], strl[512];

Packet *encap_pkptr;

Packet *warn_pkptr;

Packet . . *warn_ipptr;

int i i, 3, num_bind, num_multi_bind;
int next_net, next_node, outstrm, mtu;
P orig;

int data_len;

int copy = false;
HA_mobility_binding*home_entry;

multi_binding *multi_bind_entry;

Compcode status = OPC_COMPCODE_FAILURE;

FIN( encap_packet( route_table, ...) )
num_bind = op_prg_list_size( bind_list_ptr );

if { num_bind == )
FRET( OPC_COMPCODE_FAILURE };

for {i=0; i<num_bind; ++1i}
(
home_entry = (HA_mobility_binding *)
op_prg_list_access( bind list_ptr, 1 };

/* check for matches in HA mobility binding */
if (!memcmp( &dest, &home_entry->home_addr, sizeof(IP)))

{
: status = OPC_COMPCODE_SUCCESS;

num_multi_bind = op_prg_list_size( home_entry—>multi_bind_list )

for( j=0; j<num_multi_bind; ++3j )

{. : ,

multi_bind_entry = (multi_kbinding *) .
) op_prg_list_access( home_entry-»multi_bind list, j };
/% : encap_pkptr = op_pk_copy( pkptr );*/

data_len = op_pk_total_size_get (pkptr)/8;
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encap_pkptr = op_pk_create_fmt{ “ip_dgram” );
op_pk_bulk_size set( encap_pkptr, data_len*8 Vs

copy = true;
op_pk_nfd_set( encap_pkptr, “data”

, op_pk_copy (pkptr) ); .
op_pk_nfd_set{ encap_pkptr, “protocol”, PROTOCOL_ENCAP );
op_pk_nfd_set({ encap_pkptr, -“src_net”,

current.net );
op_pk_nfd_set( encap_pkptr, “src_node”,

current.node );
op_pk_nfd_set{ encap_pkptr, “dest_net”,
multi_bind_entry->careof.net };
op_pk_nfd_set( encap_pkptr, “dest_node”,
“multi_bind_entry->careof.node );

op_pk_nfd_set( encap_pkptr,”“orig_len”,data_len);
op_pk_nfd_set( encap_pkptr, "frag_len”,data_len);

op_pk_nfd_set( encap_pkptr, “ident”, (*pk_id)++);
op_pk_nfd_set( encap_pkptr, "frag”, 0 };
op_pk_nfd_set({ encap_pkptr, “ttl”, ttl);

/* Determine the output stream on which to route it. */
if (ip_rte_sup_route_select (route_table
., multi_bind_entry->careof.net
, multi_bind entry->»careof.node
, &next_net, &next_node, &outstrm, &mtu)
== OPC_COMPCODE_FAILURE)

/* If no route is provided, destroy the packet. */
if (op_prg_odb_ltrace_actiﬁe ("ip_errs")) ‘
{ o
) sprintf (str0, *Discarding unroutable packet (%d)”
, op_pk_id (encap_pkptr));
sprintf (strl, “Destination: net (%d), node (%d)”
, multi_bind_entry->careof.net )
, multi_bind_entry->carecf.node);
op_prg_odb_print_major (str0, strl, OPC_NIL);
}
op_pk_destroy (encap_pkptr};

-else

deliver_packet (encap_pkptr, ici_ptr
, next_net, next_node
, outstrm, mtu );

#if 0
/* At this stage, it is assumed that binding exists
* for mobile node. Therefore send binding warning
* message to original sender */ ‘
if { route_optim == true )
{
warn_pkptr = op_pk_create_fmt{ “bind_warn” );
op_pk_nfd_set({ warn_pkptr, “home_addr_net”
, home_entry->home_addr.net );
op_pk_nfd_set{ warn_pkptr, “home_addr_node”
' , home_entry->home_addr.node ) ;

data_len = op_pk_ total_size_get{warn_pkptr)/8;
warn_ipptr = op_pk_create_fmt( "ip_dgram” );
op_pk_nfd_set( warn_ipptr, “data”, warn_pkptr);
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op_pk_bulk_size_set(warn_ipptr,data_len*8);

op_pk_nfd _set({ warn_ipptr, “src_net”, current.net );
op_pk_nfd_set{ warn_ipptr, “src_node”, current.node );
opﬁpk_nfdvget( pkptr, ”srcﬁnet”, gorig.net );
op_pk_nfd get( pkptr, “src_node”, &orig.node );
op_pk_nfd_set( warn_ipptr, “dest_net”, orig.net );
op_pk_nfd_set({ warn_ipptr, “dest_node”,orig.node );
op_pk_nfd_set( warn_ipptr, "orig_len”,data_len);
op_pk_nfd_set (" warn_ipptr, “frag_len”,data_len);
op_pk_nfd_set (warn_ipptr, “frag”, 0 );
‘op_pk_nfd_set( warn_ipptr, “ident”;, (*pk_id)%+);
opﬁpk;nfdfset( warn_ipptr, “protocol”, PROTOCOL_UDP ) ;
deliver_packet( warn_ipptr,

#endif

if { copy )
op_pk_destroy( pkptr );

FRET{ status }
}

void

deliver_ packet{ pkptr, ici_ptr,.next_net, next_node, outstrm, mtu )
Packet *pkptr;

Ici . *ici_ptr; .

int . : i next_net, next_node, outstrm, mtu;

{

char str0{512], strl[512];

int i, len; .

int header_size, frag_size, data_size;-

int dest_net, dest_node;

int ttl; )

int frag_accum, frag, num_frags; ,
Packet *ip_pkptr, *data_pkptr, *frag_ptr; . o

FIN( deliver_packet( pkptr, ... ) .)

/* obtain packet’s destination */ )
op_pk_nfd_get{ pkptr, “dest_net”, &dest_net );
op_pk_nfd get( pkptr, “dest_node”, &dest_node };

/* Decrement the packet’s time-to-live field. If zero is yéached, */
/* discard the packet rather than send it on. */ )
op_pk_nfd_get (pkptr, “ttl”, &ttl);

tel--;
if (ccl == 0)
{ Y -
/* In debug mode, indicate that a packet is destroyed */
/* dpé to an expired ttl. */ . o
if (op_prg_odb_ltrace_active ("ip_errs”))
{ . . .
sprintf (str0, “Discarding packet (%d) with expired TTL”, op_pk_id (pkp-
tr)); ' . ' "
‘sprintf (strl, “Destination: net (%d), node (%d)”, dest_net, dest_node);
op_prg_odb_print_major (strl, strl, OPC_NTIL); . I
) o
op_pk_destroy (pkptr);
}
elsef

/* Assign the new decremented value of ttl. */

95-
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op_pk_nfd_set (pkptr, 7tcl”, tcl);

/* In debug mode, trace the routing action. */
if (op_prg_odb_ltrace_active (“mobile-ip_rte”))
{ .
sprintf (sgtr0, “Routing towards {%d, %d)7”, dest_net, dest_node);
sprintf (strl, “Next hop (%d, %d), output stream (%d)”,
next_net, hext_node, outstrm);

op_prg_odb_print_major (str0, strl, OPC_NIL);
}

/* Install an Ici indicating to the lower layer what the */
/* address of the next (intermediate) node is. */
.op_ici_attr-set (ici_ptr, ”next_node”, next_node);
op_ici_install (ici_ptr);

/* Obtain the size in bytes of the fragment. */
frag_size = op_pk_total_size_get {(pkptr) / 8;

/* Obtain the number of bytes of data carried in this fragment */
op_pk_nfd_get (pkptr, “frag_len”, &data_size);

/* Also obtain the difference between the packet size */
/* and the length field: this is the gize of the header. */
header_sgize = frag _size - data_size; ’

/* If it is smaller than the maximum transfér unit, send it as is. */
if (frag_size <= mtu)
{

op_pk_send (pkptr, outstrm);

else(
/* Otherwise, break it into fragments */
/* Each fragment can contain up to (mtu - header_size) bytes of data */
num_£frags = (data_size + mtu - header_size - 1) / (mtui— header_size);

/* In debug mode, indicate the fragmentation. */
if (op_prg_odb_ltrace_active (“ip_frag”))
[ ,

sprintf (str0, “Breaking datagram into (%d) fragments”, num_frags);
op_prg_odb_print_major (str0, OPC_NIL);

/* 1If the fragment is carrying the original datagram given to IP, */
/* extract it before copies are made. Only one fragment can carry */
/* the original packet for the reassembly model to work properly. */
if (op_pk_nfd_is_set (pkptr, “ip_dgram”))

op_pk_nfd_get (pkptr, “ip_dgram”, &ip_pkptr);
else ip_pkptr = OPC_NIL;

/* If the packet is carrying any encapsulated data {(normally this */
/* would happen only for a packet fragmented for the first time), */
/* extract this data packet so that it will not appear in each */
*/* fragment generated by copying. */
if (op_pk_nfd_is_set (pkptr, “data”))

op_pk_nfd get (pkptr, “data”, &data_pkptr);
else data_pkptr = OPC_NIL;

/* Loop through and create the fragments . */
for (frag_accum = 0, 1 = 0; i < num_frags; i++)}
{ :
/* Make a copy of the original packet. */
frag_ptr = op_pk_copy (pkptr);
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/* Indicate that the copy is a fragment */
op_pk_nfd_set (frag_ptr, “frag”, 1);

/* for all but the last fragment, the size is the mtu. */

/* and the encapsulated ip packet is not included. */.

if (i < num_frags - 1)

{ ' . : : .

. op‘pk_nfd_éet (frag_ptr, “frag_len”, mtu - header_size);
op_pk_total_size_set (frag_ptr, 8 * mtu);
frag_accum‘+£ (mtu - header_size);

else( :
. len = dataasize - frag_accum;

op_pk_nfd_set (frag_ptr, “frag_leri”, len);
op_bk_total_size_set (frag'ptr,8 * (header_size. .+ len));

/* If the original packet was not'a fragment, encapsulate it

/* into the last fragmeﬁt creatéd here. */
op_pk_nfd_get (pkptr, “frag”, &frag);
if (!frag)
{ . . .
/* If the packet contained encapsulated data (i.e:,
from the */ ’ .
/* transport), that data will have been removed to
avoid */

/* its duplication in the fragments. The .data should
now be */ .
/* reinserted into the original packet. */
if (data_pkptr != OPC_NIL)
' ' opﬁpkvnfd_set (pkptr, *data”, data_pkptr);

" /* In either case tﬁe'original packet is */
- ) /* encapsulated in thhe fragment. */ )
' op_pk_nfd_set (frag ptr, *ip_dgram”, pkptr);
} ) .

/* Otherwise the packet can be discarded. */. . v

elsef
' " op_pk_destroy (pkptr);
/* Also, 1f the packet included the original datagram
*/ . - )
/* from which it was generated, transfer that data-
gram */ L ‘ .
/* into the last fragment created here. */
) /* Note that it is possible, in the case where a
fragment */ o -
, /¥ is itself being fragmented, that none of the cre-
ated */ .
0 o ' ' - /* fragments will contailn the original datagram. */
) if (ip_pkptr != OPC_NIL)
{ .
op_pk_nfd_set (frag_ptr, “ip_dgram”,
ip_pkptr); . ' .
x. }
}

}

/* Forward the datagram fragment. */
op_pk_send (frag_ptr, outstrm);

FOUT;
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Compcode

forward_tb_visitor( mobile_table, bind_list_ptr, pkptr, ici_ptr, dest )
List *bind_list_ptr, *mobile_table;

Packet *pkptr;

Ici *ici_ptr; ,
IPp dest;

{ B

char str0[80], strl([80];

Compcode status = OPC_COMPCODE_FAILURE;

int i, size;

int next_net, next_node, stream, mtu;

int copy = false;

FA_mobility_binding*visitor_entry;

Packet *op_pkptr;

FIN( forward_to_visitor{ mobile_table, bind_list_ptr, pkptr, ici_ptr, dest } )
gize = op_prg_list_size( bind_list_ptr );

if ( size == 0 )/* list does not exist */
FRET ( OPC_COMPCODE_FAILURE )

for({ i=0; i<size; ++i )
{
visitor_entry = (FA_mobility_binding *)
op.prg_list_access( bind list_ptr, 1 );

if ( !memcmp( &dest, &visitor_entry->home_addr, sizeof(IP) ) )
( ;
/* There is a match */ o
if ( visitor_entry->home_agnt.net != ADDRESS_UNDEFINED &&
visitor_entry->home_agnt.node != ADDRESS_UNDEFINED )

status = OPC_COMPCODE_SUCCESS;

next_net = visitor_entry->home_addr.net;
next_node = visitor_entry->home_addr.node;
stream = visitor_entry->stream;

mtu = get_strm_mtu({ mobile_table, stream );
if ( mtu == MOBILE_STRM_NONEXISTENT )

{ ‘
sprintf (str0, “Discarding packet (%d) “, op_pk_id (pkptr)});
sprintf (strl, “Stream non-existent” };
op_prg_odb_print_major (str0, strl, OPC_NIL);
op_pk_destroy( pkptr );

}

else

copy = true;
cp_pkptr = op_pk_copy( pkptr );
deliver_packet{ cp_pkptr, ici_ptr .
, next_net, next_nodé, stream, mtu );

if ( copy )
op_pk_destroy{ pkptr };
FRET{ status );
}
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int

get_strm_mtu( strm_ptr, strm )
Ligt*strm ptr;

int strm;

{

int i, size;

mobile_rte_ table*strm_entry;
FIN( get_strm_mtu{ strm ptr, strm ) )
size = op_prg_list_size( strm_ptr );

for( 1=0; i<size; ++1i )
{ : ,
strm_entry = (mobile_rte_table *) op_prg_list access( strm_ptr, i );
if ( strm_entry->stream == strm )

FRET( strm_entry->mtu );

FRET( MOBILE_STRM_NONEXISTENT ) ;
}

int

chk_strm_condition( mobile_table, stream, mtu )
List *mobile_table;

int stream;

int *mtu;

{

int i, size;

mobile_rte_table*table_entry; .
FIN{ chk_strm_condition{ mobile_ table, stream, mtu ) )}

size = op_prg list_size( mobile_table );’

for( i=0; i<size; ++1 )
{
table_entry = ( mobile_rte_table * )
op_prg_list_access{ mobile table, 1 );

if( table_entry->stream == stream )
{

*mtu = table_entry->mtu;
FRET( table_entry-»condition )

/* stream does not exist */
*mtu = MOBILE_STRM_NONEXISTENT;

FRET( CONDITION_DISABLED )
}

void

get_careof_addr( mobile_table, iciptr )
List *mobile_table;

Ici ] *iciptr;

{

int i, size;

int stream;

IP careof;
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mobile_rte_table*table_entry;
FIN( get_careof_addr( mobile_table, iciptr:) )

op_ici_attr_get( iciptr, *“stream”, &stream );

size = op_prg list_size( mobile_table };

for( i=0; i<size; ++i )

{ .

: table_entry = ( mobile_rte_table * ) )
op_prg_list_access( mobile table, i );

if( table_entry->»stream ==z stream )

{ .
op_ici_attr_set{ iciptr, *“careof_net”, table entry-»careof.net });
op_iéi_attr_set( iciptr, “careof_node”, table_entry->careof.node );
op_ici_attr_set( iciptr, “status”, OPC_COMPCODE_SUCCESS );
FOUT

/* stream does not exist */

op_ici_attr_set( iciptr, “careof_net”, ADDRESS_UNDEFINED );
op_ici_attr_set( iciptr, “careof_node”, ADDRESS_UNDEFINED ) ;
‘op_ici_attr_set( iciptr, “status”, OPC_COMPCODE_FAILURE );

FOUT
}

void .
set_strm_condition{ mobile_table, iciptr )
List*mobile_table;

Ici *iciptr;

({

Ip careof;

int stream;

int mode;

int i, size; '

Compcodestatus = OPC_COMPCODE_FAILURE;
mobile_rte_table*list_ptr; '
FPIN({ set_strm condition( iciptr ) )

op_ici_attr_get( iciptr, “mode”, &mode };
op_ici_attr_get( iciptr, “stream”, &stream );

size = op_prg_list_size({ mobile_table };
for{ i=0; i<size; ++i )
¢
list_ptr = (mobile_rte_table *)
: op_prg_list_access( mobile_table, 1 );

switch( mode )

{

case DISABLE_ALL:"
list_ptr->condition = CONDITION_DISABLED;
status = OPC_COMPCODE_SUCCESS;
break;

-case DISABLE_ALL_EXCEPT_THIS:
if( list_ptr->stream != stream )

{

list_ptr-»condition = CONDITION_DISABLED;
status = OPC_COMPCODE_SUCCESS;
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R . break;

case DISABLE_THIS_ONLY:
if( list_ptr->stream == stream )

{

op_ici_attr_set( iciptr, “careof_net”, list_ptr->»careof.net );
op_ici_attr_set{ iciptr, *“careof_node”, list_ptr-»careof.node );
list_ptr-»condition = CONDITION_DISABLED;
status = OPC_COMPCODE_SUCCESS;

}

break;

case ENABLE_ALL:
list_ptr->condition = CONDITION_ENABLED;
status = OPC_COMPCODE_SUCCESS;
break;

case ENABLE_ALL_EXCEPT_THIS:

if{ list_ptr-»stream != stream )

{ ‘
list_ptr—Scondition = CONDITION_ENABLED;
status = OPC_COMPCODE_SUCCESS;

}

break;

case ENABLE_THIS_ONLY: )
if( list_ptr->stream -= stream )
{

op_ici_attr_set( iciptr, “careof_net”, list_ptr-»careof.net );
op_ici_attr_set( iciptr, “careof_ncde”, list_ptr-»carecf.node );
list_ptr->condition = CONDITION_ENABLED;

status = OPC_COMPCODE_SUCCESS;

}
break;
) default:
status = OPC_COMPCODE_FAILURE;
break;
}
) ;
) op_ici_attr_set( iciptr, “status”, status );
FOUT :
} r R
void
hop_to_next_strm{ mobile_table, iciptr )
List *mobile_table;
Ici *iciptr;
{
int - j, 1, size;
int stream;

mobile_rte_table*table_entry; )
FIN( hop_to_next_strm( mobile_table, iciptr ) )

op_ici_attr_get( iciptr, “stream”, &stream );
gize = op_prg_list_size({ mobile_table };

for ( i=0; i<size; ++1i )
{ .
table_entry = { mobile_rte_table * )
’ op_prg_list_access( mobile_table, i );

7

if ( table_entry->stream == stream )
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table entry = ( mobile rte table * ) -
: op_prg_list_access( mobile_table, J );

6b7icivattrfset(;iciptr,'”streaﬁ”
, table_entry->stream );

op_ici_attr_set( iciptr, “careof_net”
) ,table_entry->careof.net);

op;ici_attr_set( iciptf, “careof_node”
,table_entry->careof.node);

/* Now, enabling this stream .*/
table_entryé>condition = CONDITION_ENABLED;

op_ici_attr_set( iciptr, “status”
. OPCicpMPCODEkSUCCESS Y

) FOUT
}

}
op_ici_attr_set( iciptr, “status”, 0OPC_COMPCODE_FATLURE ) ;
FOouT ) : ' - .
}
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/* mobile_rtéﬂshp.ex.c ¥/ - :
/* Routing support procedures for-the Mobile IP example model */

tinclude <opnet.h>

#include “mobile-ip.h”
#include “mobile_rte_sup.h”
#include “ip_rte_sup.h”
#include “protocol.h”

/* Functions called by Process Module */

List* )
mobile_rte_sup_table_setup (file name)
char *file_name{ .
{ ) P
List* mobile_strm_list_ptr;
List* line_list_ptr;

mobile_rte table*table_ptr;

/* Provides compréhensive routing table loading and parsing */
/* services for Mobile IP module. */
FIN (mobile_rte_sup_table_setup (file_name, net0, nodel, netl, nodel, net2, node2})

/* Load the list of text lines from the specified file. */
/* Note: this procedure will quit the simnulation if */

/* file cannot be loaded, so it is assumed that there */
/* are no problems upon returning. */

line_list_ptr = mobile_rte_sup_table_load (file_name);

/* Parse the contents of the obtained list into */
/* a routing-instruction table. */
mobile strm_list_ptr = mobile_rte sup_list_parse (line_list_ptr);

/* In debhg mode, if tracing is active, print the table */
if (op_prg_odb_trace_active ())
{
mobile_rte_sup_table_print (mobile_strm_list_ptr);
}

FRET( mobile_strm list_ptr );
}

List®* )

mobile_rte;sup_table_load (file_name)
char *file_name;
. .
List* - line_list_ptr;
char err_str [256];

/* Read in a routing table from an ascii */
_ /* file adhering to format defined above. */
FIN (mobile_rte_sup_table_ load (file_name))

/* Open and read the‘file into the list. */
line list_ptr = op_prg_gdf_read (file_name);

/* Test for error in reading. */

103
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if (line_list _ptr == OPC_NIL)
{ .

sprintf (err_str, “File Name: %s”, file name);

op_sim_end (”Package : mobile_rte_sup”,
“Error : Unable to read routing table file”, .
err_str, **};

/* Return the list of text lines. */
FRET (line_list_ptr)
}

List*
mobile_rte_sup_list_parse (line_list_ptr)
List* line_list_ptr;
{
List* .mobile_stream_ list_ptr;
mobile_rte_table*mrt_ptr;
int ’ i, num_lines;
char* line;

List *field_list_ptr;

/* Extract information from the lines of an ascii routing table */
/* and construct a corresponding routing table structure which */
/* contains routing instructions. */ ) -
FIN (mobile_rte_sup_ list_parse (line_list_ptr))

/* Allocate a routing table structure. */
nrt_ptr = (mobile rte table*) op_prg mem_alloc (sizeof (mobile_rte_table));

/* Allocate a temporary table for holding lists. */
mobile_stream_list_ptr = op_prg_list_create ();

/* Scan through each of the lines, one at a time. */
num_lines = op_prg_list_size (line_list ptr);
for (1 = 0; 1 < num_linés; i++)
(
/* Obtain the i_th line. */
line = op_prg list_access {(line_list_ptr, 1i);

/* Décompose it into fields (field boundaries are */
/* indicated by spaces, tabs, slashes, or commas. */
field_list_ptr = op_prg_str_decomp (line, * ,/\t”);

/* Format for a line is as follows: */
/* <output_stream> <mtu>*/
/* Incomplete lines are skipped. */
if {op_prg_list_size (field list_ptr) < 4)
continue; ,
/* Create a routing instruction structure. */
mrt_ptr = {(mobile_rte_table*)
op_prg_mem_alloc (sizeof (mobile_rte_table));

/* Transfer the parsed fields into the structure */
/* First obtain the destination stream and mtu fields. */
mrt_ptr->stream = atoi (

op_prg_list_access (field list_ptr, MOBILE_TBL_OUTSTREAM)};
mrt_ptr->mtu = atoi {

op_prg_list_access (field list_ptr, MOBILE_TBL_MTU));

Amrt_ptr—>careof.net = atoi |
op_prg_list_access (field_list_ptr, MOBILE_TBL_CAREOF_NET));
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mrt.ptr->careof.node = atol {
op_prg_list_access (field_ list_ptr, MOBILE_TBL_CAREOF_NODE});

if (mrt_ptr->mtu <= 0)
mro_ptr->mtu = 0X7FFFFFFF;

if {(mrt_ptr->careof.net == ADDRESS_UNDEFINED &&
mrt_ptr->careof.node == ADDRESS_UNDEFINED )

/* carecf address not implemented */
mrt_ptr->condition = CONDITION_ENABLED;

/* disable all condition flags initially */
mrt_ptr-»condition = QONDITION_DISABLED;

/* Append the routing instruction to the temporary list. */
op_prg_list_insert (moblle_stream list_ptr, mrt_ptr, OPC_LISTPOS_TAIL);

FRET( mobile_stream_list_ptr )b
) .

void
mobile rte_sup_table print (mobile_stream_list_ptr)
List*mobile_stream_list_ptr;

{

mobile_rte_table*table_entry;

int i,slze;
char dne_str [128], dno_str [1281]; .
char nne_str [128], nno_str [128], str0 [512];

/* Print the contents of a routing table. */
FIN {(mobile_rte_sup_table_print (mobile_stream_list_ptr))

size = op_prg_list_size( mobile_stream list_ptr );
if ( size == 0 )
(
op_prg_odb_print_major (“Routing table is empty”, VOS_NIL);

}
elsef
op_prg_odb_print_major (“Routing table contents :”, VOS_NIL);
for (1 = 0; 1 < size; i++)
{
table_entry = (mobile_rte_table*)
op_prg_list_access( mobile_stream_list_ptr,- 1 ); -
sprintf({ str0, “Stream (%d): mtu (d)”
, table_entry->»stream, table_entry->mtu );
op_prg_odb_print_minor (str0, VOS_NIL);
}
}
FOUT
}
Compcode

mobile_rte_sup_route_select ( mobile_table, pkptr, ici_ptr, objid
., agnt_flag, pk_id, tcl
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, HA_bind_ptr, FA_bind_ptr
, CA_bind_ptr, MH_bind_ptr .
, ip0, ipl, ip2, route_optim, trash_unsent_.pk )

List *mobile_table;
Packet *pkptr;
Ici i *ici_ptr;
Oobjid obhjid;
int agnt_flag;‘
int *pk_id;
int tel;
List *HA_bind _ptr, *FA_bind_ptr;
List ’ *CA_bind ptr, *MH-bind ptr;
Ip ip0, ipl, ip2;
int route_optim;
int trash_unsent_pk;
{ .
char . str0[1007;
Packet *inner_pkptr;
‘ int ' optim;
int protocol;
int ‘ i, j, num_bind, num_multi_bhind;
IP srcd, dest;
Ip home_agnt;

HA_mobility_binding*home_entry;
FA_mobility_binding*visitor_entry;
multi_kbinding *multi_bind _entry;

FIN (mobile_rte_sup_ route_select{ mobile_table, pkptr, ...))

op_pk_nfd_get( pkptr, “src_net”, &src.net ) ;
op_pk_nfd_get( pkptr, “src_node”, &src.node )j

op_pk_nfd _get( pkptr, “dest_net”, &dest.net });
op_pk_nfd_get ( pkptr, “dest_node”, &dest.node };

/* Select a route from the routing table which matches the */
/* requested destination network and node. */
if ( IP_equal( dest, ip0 ) || IP_equal{ dest, ipl )} || IP_ecqual{ dest, ip2 )
( .
op_pk_nfd_get( pkptr, “protocol”, &protocel );

/* Not encapsulated ( not for a visitor )} */
if { protocol != PROTOCOL_ENCAP )
FRET ( MOBILE_RTE_TO_IP )

op_pk_nfd_get( pkptr, “data”, &inner_pkptr );
op_pk_destroy( pkptr );

pkptr = inner_pkptr;
op_pk_nfd_get( pkptr, “dest_net”, &dest.net );
op_pk_nfd_get( pkptr, “dest_node”, &dest.node );

o if ( forward_to_visitor{ mobile_table, FA_bind_ptr, pkptr, ici_ptr, dest } ==
OPC_COMPCODE_FAILURE )
{

if ( route_optim )

{
check_ca_list( CA_bind _ptr, dest, &home_agnt );
if ( home_agnt.net == ADDRESS_UNDEFINED

S&& hbme_agnt.node == ADDRESS_UNDEFINED }

{

home_agnt = src;

}

generate_kbind_warning( home_agnt, objid, dest, src };
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if ( trash_unsent_pk )
{
if (op_prg_odb_ltrace_active (*handoff”))
{ ' ' -
sprintf (str0, “Trashing pk(%d) at (%d,%d)”
) : , op_pk_id (pkptr), ipl.net, ip0.node);
' op_prg_odb_print_major (str0, OPC_NIL);

encap_pk_destroy{ pkptr };
FRET( MOBILE_RTE_FAILURE )}
else

if (op_prg odb_ltrace_active (“handoff”))

{
sprintf (str0, “Resending pk(%d) at ($d,%d)”
, op_pk_id (pkptr), iplO.net, ipO.pode);
op_prg_odb_print_major (str0, OPC_NIL);

} : .

encap_pk_send( pkptr );
FRET( MOBILE_RTE_ENCAP )

else
{
/* packet sent to visitor */
FRET{ MOBILE_RTE_SUCCESS )
}
}

if ( IP_ecual( src, ip0 ) || IP;equal( src, ipl ) |l IP_equal( src, ip2 ) )
optim = false; .
else .
optim = route_optim;
if ( send_via_FA( pkptr, MH_bind ptr, mobile_table, ici_ptr, dest, agnt_flag ) ==
OPC_COMPCODE_SUCCESS ) , )
FRET ( MOBILE_RTE_SUCCESS )} .
else if ( forward_to_visitor{ mobile_table, FA_bind ptr, pkptr, ici_ptr, dest ) ==
OPC_COMPCODE_SUCCESS ) ’
FRET ( MOBILE_RTE_SUCCESS ) . ~
else if ( encap_packet{ HA_bind_ptr, CA_bind_ptr, pkptr, ici_ptr, ip0, dest, pk_id, tcl,
optim, objid ) == OPC_COMPCODE_SUCCESS ) o
FRET ( MOBILE_RTE_ENCAP )}
else
FRET {( MOBILE_RTE_TO_IP )

Compcode
send_via_FA{ pkptr, bind_list_ptr, mobile_table, ici_ptr, dest, ma_flag }

List *bind_list_ptr, *mobile_table;
Ici ) *ici_ptr;

Packet ' *pKpELr;

1P dest;

int ma_flag;

{

int : i, size;

int copy = false;

int next_net, next_node, stream, mtu;

Packet *cp_pkptr;
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v

Compcode status= OPC_COMPCODE_SUCCESS;

MH_FA_binding *fa_entry;
mobile_rte_table*table_entry;
* char str0(80), strl[80];

FIN{ send_via_FA( pkptr, bind list_ptr, mobile_table, ici‘ptr, dest, ma_flag ) )

/* First of all, check if packet is for any enabled streams */
size = op_prg_list_size( mobile table );
for ( i=0; i<size; ++1i )
{
table_entry = (mobile_rte_table *) op_prg_list_access( mobile_table, 1i);

if ( IP_equal( table_entry->careof, dest )} &&
table_entry->»condition == CONDITION_ENABLED )

stream = table_entry->stream;
mtu table_entry->mtu;

next_net = ADDRESS_UNDEFINED;
next_node = ADDRESS_UNDEFINED;

deliver_packet( pkptr, ici_ptr
, hext_net, next_node, stream, mtu };

FRET( OPC_COMPCODE_SUCCESS )

/* Now, check to see if there is any mobility binding */
size = op_prg_list_size{ bind_list_ptr );

/* 1f { size == 0 && ma_flag )/* no bindings and not a mobile node */
if { size == 0 )/* no bindings and not a mobile node */
FRET( OPC_COMPCODE_FATLURE )}

/* each enabled FA will receive a copy of the packet */

for{ 1=0; i<size; ++1 )
(
fa_entry = (MH_FA_binding *)
op_prg_list_access{ bind_list_ptr, i };

/* obtain the stream associated with the current binding */
stream = fa_entry->stream;

if ( chk_strm_condition( mobile_table, stream, &mtu } == CONDITION_ENABLED )

{
status = OPC_COMPCODE_SUCCESS;

if ( mtu == MOBILE_STRM_NONEXISTENT )

{
sprintf (str0, “Discarding packet (%d) “, op_pk_id (pkptr));
sprintf (strl, “Stream non-existent” );
op_prg_odb_print_major {(str0, strl, OPC_NIL);
encap_pk_destroy{ pkptr );

else
next_net = fa_entry->careof.net;

next_node = fa_entry->careof.node;
#1f 0O

deliver_packet ( pkptr, ici_ptr
, next_net, next_node, stream, mtu );
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FRET( OPC_COMPCODE_SUCCESS .)

#else
copy = true;
' cp_pkptr = op_pk_copy( pkptr );
deliver_packet( cp_pkptr, ici_ptr
, next_net, next_node, stream, mtu );
#endif

/* have to deallocate original packet since it is no longer needed */
if ( copy }
( .

encap_pk_destroy( pkptr };

FRET( status )

FRET( OPC_COMPCODE_FAILURE )
)

Compcode i
encap_packet{ HA_bind ptr, CA_bind ptr, pkptr, ici_ptr, current, dest, pk_id, ttl,
route_optim, reg_objid )

List *HA_bind_ptr;

List *CA_bind_ptr;

Packet . ' *pkptr;

Ici . *ici_ptr;

IPp current, dest; .

int *pk_id;

int ttl;

int route_optim;

Objid reg_objid;

{

char str0{512], strl([512];

Packet ) *encap_pkptr;

int i, j, num_bind, num_multi_bind;
int next_net, next_node, outstrm, mtu;
1P . orig;

int data_len;

int copy = false;

HA_mobility_binding*home_entry;
CA_mobility_binding*ca_entry;

multi_binding *multi_bind_entry;

Compcode status = OPC_COMPCODE_FAILURE;

FIN( encap_packet( HA_bind_ptr, ...) )
num_bind = op_prg list_size( HA_bind_ptr );’

for (i=0; i<num_bind; ++1i)
{
home_entry = (HA_mobility_binding *)
op_prg_list_acceés( HA_bind_ptr, i );

/* check for matches in HA mobility binding */

1f (Imemcmp( &dest, &home_entry-s>home_addr, sizeof (IP)))
{ . .
status = OPC_COMPCODE_SUCCESS;

num_multi_dbind = op_prg list_size( home_entry->multi_bind_list };
for( j=0; j<num_multi_bind; ++j )

{

multi_bind _entry = (multi_binding *)
op_prg_list_access( home_entry-»multi_bind_listc, j };
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data_len = op_pk_total_size_ get (pkptr)/8;
encap_pkptr = op_pk_create_fmt( “ip_dgram” );
op_pk_bulk_size_set( encap_pkptr, data_len*8 );

copy = true;
op_pk_nfd_set({ encap_pkptr, “data”

, Op_pk_copy (pkptr) ); )
op_pk_nfd_set{ encap_pkptr, “protocol”, PROTOCOL_ENCAP );
op_pk_nfd_set({ encap_pkptr, “src_net”,

current.net );
op_pk_nfd_set{ encap_pkptr, “src_node”,

current.node };
op_pk_nfd_set{ encap_pkptr, ”dést_net",
multi_bind_entry->careof.net );
op_pk_nfd_set({ encap_pkptr, “dest_node”,
multci_bind_entry->careof.node );

op_pk_nfd_set{ encap_pkptr,”orig len”,data_len);
op_pk_nfd_set( encap_pkptr, "frag_len”,data_len};

op_pk_nfd_set ( encap_pkptr, "ident”, (*pk_id}++); -
op_pk_nfd_set( encap_pkptr, "frag”, 0 );
op_pk_nfd_set( encap_pkptr, “tcl”, ttl);

if (op_prg_odb_ltrace_active (”encap_pk”))
( .
sprintf (str0, “Encapsulating pk(%d) sent”
. op_pk_id (encap_pkptr));
sprintf (strl, “Destination: net (%d), node (%d)”
, multi_bind_entry->careof.net
, multi_bkbind _entry-»careof.node );

op_prg_odb_print_major. (str0, strl, OPC_NIL);
encap_pk_send( encap_pXkptr };

/* At this stage, it is assumed tlat HA binding exists-
* for mobile node. Therefore send binding warning
* message to original sender */ :
"if { route_optim == true )
, o .
' op_pk_nfd_get { pkptr, “src_net”, *&orig.net );
op_pk_nfd_get( pkptr, “src_node”, &orig.node );

generate_bind_warning( orig, reg_objid
, home_entry->home_addr, current );

. }
}
if { status == OPC_COMPCODE_SUCCESS }
{
if ( copy )

encap_pk_destroy( pkptr );
FRET( status )

}
#1if 0
if ( route_optim == false }
FRET( OPC_COMPCODE_FATILURE )
#tendif

num_bind = op_prg_list_size( CA_bind_ptr });
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" for( i=0; i<num_bind; ++1i )

{
ca_entry = (CA_mobility_binding *) .
op_prg_list_access|( CA_bind_ptr, i);

if ( IP _equal( dest, ca_entry->home_addr ) V
status = OPC_COMPCODE_SUCCESS;
data_len = op_pk_total_size_get( pkppr 1 /8;
encap_pkptr = op_pk_create_fmt( ”ip;dgram” )
op_pk_bulk size_set( encap_pkptr, data_len*8 );
op_pk_nfd_set{ encap_pkptr, “data”, pkptr };
op_pk.nfd_set{ encap_pkptr, “protocol”

, PROTOCOL_ENCAP );
op_pk_nfd_set{ encap_pkptr, “src_net”, current.net );
op_pk_nfd_set( encap_pkptr, *src_node”, current.node );
op_pk nfd_set( encap_pkptr, “dest_net”

, ca_entry->careof.net );
op_pk_nfd_set{ encap_pkptr, “dest_node”

, . ca_entry->careof.node );
op_pk_nfd_set('encap_pkptr, “orig_len”, data_len };
op_pk_nfd -set( encap_pkptr, “frag_len”, data_len };
op_pk_nfd_set( encap_pkptr, “ident”, (*pk_id)++ );
op_pk_nfd_set( encap_pkptr, “frag”, 0 };
op_pk_nfd_set( encap_pkptr, “ttl”, ttl };

/* Now schedule packet for. transmission: */
encap_pk_send( encap_pkptr );
FRET( OPC_COMPCODE_SUCCESS )
. }
}
if ( Copy )

encap_pk_destroy( pkptr );

FRET( status )
)

void
“deliver_packet( pkptr, ici_ptr, next_net, next_node, outstrm, mtu )
Packet . *pkptr;
Ici ) *ici_ptr;
int . ) . 'next_net, nextvnodé, outstrm, mtu;
{
char str0[512], stri[512];
int . ‘i, len;
int header_size, frag_size, data_size;
int o dest_net, dest_node; .
int tel;
int frag_accum, frag, num_frags;

Packet *ip_pkptr, *data_pkptr, *frag_ptr;
FIN( deliver packet( pkptr, ... ) )
/* obtain packet’s destination */

op_pk_nfd_get( pkptr, “dest_net”, &dest_net );
op_pk_nfd_get( pkptr, “dest_node”, &dest_node );

/* Decrement the packet’s time-to-live field. If zetro is reached, */
/* discard the packet rather than send it on. */ ‘
op_pk_nfd_get (pkptr, “ttl”, &ttl); :
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ttl--;
if (ttl == ).
{
/* In debug mode, indicate that a packet is destroyed */
/* due to an expired ttl. */
if (op_prg_odb_ltrace_active (“ip_errs”))
{
' sprintf (str0, “Discarding packet (%d) with expired TTL”, op_pk_id (pkp-
tr)); )
sprintf (strl, “Destination: net (%d), node (%d)”, dest_net, dest_node);
op_prg_odb_print_major (str0, strl, OPC_NIL);
} .
op_pk_destroy {(pkptr);
}
else(

/* Assign the new decremented value of ttl. */
op_pk_nfd_set (pkptr, “ttl”, ttcl);

/* In debug mode, trace the routing action. */
if (op_prg_odb_ltrace_active (“mobile-ip_rte”})
( ;
sprintf (str0, *Routing towards (%d, %d)”, dest_net, dest_node};
sprintf (strl, “Next hop (%d, %d), output stream {%d)”,
next_net, next_node, outstrm};

op_prg_odb_print_major (str0, strl, OPC_NIL);

/* Install an Ici indicating to the lower layer what the */
/* address of the next (intermediate) node is. */
op_ici_attr_set (ici_ptr, “next_node”, next_node);
op_ici_install (ici_ptr};

/* Obtain the size in bytes of the fragment. */
frag_size = op_pk_total_size_get {(pkptr) / 8;

/* Obtain the number of bytes of data carried in this fragment */
op_pk_nfd _get (pkptr, “frag_len”, &data_size); ’

/* Also obtain the difference between the packet size */
/* and the length field: this is the gize of the header. */
header_size = frag_size - data_size;

/* If it is smaller’ than the maximum transfer unit,; send.it as is. */
if (frag_51ze <= mtu) )
{

op_pk_send (pkptr, outstrm);

elsef
/* Otherwise, break it into fragments */
/* Bach fragment can contain up to {mtu - header_size) bytes of data */
num_frags = (data_size + mtu - header_size - 1) / (mtu - header size);

/* In debug mode, indicate the fragmentation. */
if (op_prg_odb_ltrace_active (“ip_frag”))
{
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sprintf (str0, “Breaking datagram into (%d) fragments”, num_frags);

op_prg_odb_print_major (str0, OPC_NIL);

/* If the fragment is carrying the original datagram given to IP, */
/* extract it before copies are made. Only .one frégment can carry */
/* the original packet for the reassembly model to work properly */
if (op_pk_nfd is_set (pkptr, “ip_dgram”})

op_pk_nfd_get (pkptr, 7ip_dgram”, &ip_pkptr);
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elsgse ip_pkptr = OPC_NIL;

/* If the packet is carrying any encapsulated data (normally this */
/* would happen only for a packet fragmented for the first time), */
/* extract this data packet so that it will not appear in each */
/* fragment generated by copying. */
if (op_pk_nfd_is set {(pkptr, “data”})
op_prk_nfd_get {(pkptr, “data”, &data_pkptr): '
" else data_pkptr = OPC_NIL; . '

/* Loop through and create the fragments . */
' for (frag_accum = 0, 1 = 0; 1 < num_frags; i++)
{ :
/* Make a copy of the original packet. */
frag_ptr = op_pk_copy {(pkptr};

/* Indicate that the copy is a fragment */
op_pk_nfd_set (frag ptr, “frag”, 1);

/* for all but the last fragment, the size is the mtu. */
/* and the encapsulated ip packet is not included. */
if (i < num_frags - 1)

{
op_pk_nfd_set '(frag_ptr, “frag_len”, mtu - header_slze);
op_pk_total_size_set (frag_ptr, 8 * mtu};
frag_accum += (mtu - header_size);

} .

elsef

len = data_size - frag_accum;
op_pk_nfd_set (frag ptr, “frag_len”, len);
op_pk_total_size_set (frag_ptr,8 * (header_size + len));

/* 1f the original packet was not a fragment, encapsulate it
* / . .
/* into the last fragment created here. */
op_pk_nfd_get (pkptr, “frag”, &frag);
if (!frag) /
t
/* I1If the packet contained encapsulated data (i.e.,
from the */ .
/* transport), that data will have been removed to
avoid */ . .
/* its duplication in the fragments. The data should
now be */ .
/* reinserted into the original packet. */
if (data_pkptr !=  OPC_NIL)
cop_pk_nfd_set (pkptr, “data”, data_pkptr);

/* In either case the original packet is */
/* encapsulated in thhe fragment. */
op_pk_nfd_set (frag ptr, “ip_dgram”, pkptr);

/* Otherwise the packet can-be discarded. */
elsef

op_pk_destroy (pkptr);

/* Also, if the packet included the original datagram
y . .

/* from which it was generated, transfer that data-
gram */ . .
/* into the last fragment created here. */

/* Note that it is possible, in the case where a

fragment */
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/* 1s. itself being fragmented, that none of the cre-

ated */
/* fragments will contain the original datagram. */
if (ip_pkptr {= OPC_NIL) '
[
op_pk_nfd_set (frag_ptr, “ip_dgram”,
ip_pkptr);
3
}
}
/* Forward the datagram fragment. */
. op_pk;sehd (frag_ptr, outstrm);
) :
. }
}
FOUT;
}
Compcode - :
forward_to_visitor{ mobile_table, bind list_ptr, pkptr, ici_ptr, dest )
List *pind_list_ptr, *mobile_table;
Packet *pkptr;
Ici *1ci_ptr;
Ip : dest;
.
char . str0({80], strl1[80];
Compcode status = OPC_COMPCODE_FAILURE;
int i, size;
int. next_net, next_node, stream, mtu;

FA_mobility_binding*visitor_entry;
FIN( forward_to_visitor( mobile_table, bind_list_ptr, pkptr, ici_ptr, dest ) )
size = op_prg_list_size( bind_list_ptr };

if ( size == 0 }/* list does not exist */
FRET ( OPC_COMPCODE_FAILURE )

for( i=0; i<size; ++1 )
{
visitor_entry = (FA_mobility_binding *)
’ op_prg_list_access{ bind_list_ptr, i );

if { 'memcmp( &dest, &yisitor_entry—>home_addr, sizeof (IP) ) )
(

/* There is a match */

if ( visitor_entry->home_agnt.net != ADDRESS_UNDEFINED &&
visitor_entry->home_agnt.node != ADDRESS_UNDEFINED )

status = OPC_COMPCODE_SUCCESS;

next_net = visitor_entry->home_addr.net;
next_node = visitor_ entry->home_addr.node;
stream = visitor_entry->stream;

mtu = get_strm_mtu{ mobile_table, stream );
if ( mtu == MOBILE_STRM_NONEXISTENT )

{ .

sprintf (str0, “Discarding packet (%d) “, op_pk_id (pkptr));
sprintf (strl, “Stream non-existent” );
op_prg_odb_print_major (str0, strl, OPC_NIL);

op_pk_destroy( pkptr );
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else

deliver_packet ( pkptr, ici_ptr
, next_net, next_node, stream, mtu };

FRET{ status ); _
} .

int

get_strm_mtu( strm_ptr, strm-)
List*strm_ptr;

int strm}

{

int i, size;
mobile_rte_table*strm_entry;

FIN{ get_strm_mtu{ strm_ptr, strm } )}
'size = op_prg_list_size( 'strm_ptr );

for( i=0; i<size; ++1i )
{ .
strm_entry = (mobile_rte_table *) op_prg_list_access( strm_ptr, 1 );
if { strm_entry->stream == strm )
FRET( strm_entry->mtu )

FRET( MOBILE_STRM_NONEXISTENT ) ;
}

int .
chk_strm_condition( mobile_table, stream, mtu )
List *mobile_table;

int stream;

int . *meu;

{

int i, size;

mobile  rte_table*table_entry;
FIN{( chk_strm_condition{ mobile_table, stream, mtu ) )

size = op_prg_list_size( mobile_table );

for{ i=0; i<gize; ++1i )
{
table_entry = { mobile_rte_table * )
op_prg_list_access( mobile_table, 1 );

if( table_entry->stream == gtream )
{
*mtu = table_entry->mtu;
FRET( table_entry->condition )

/* stream does not exist */
*mtu = MOBILE_STRM_NONEXISTENT;
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FRET{ CONDITION_DISABLED )

}

void

get_careof_addr{ mobile_table, iciptr )
List *moblle_table;

Ici *iciptr;

{

int i, size;

int stream;

Ip careof;
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mobile_rte_table*table_entry;
FIN( get_careof_addr( mobile_table, iciptr )} )

op_ici_attr_get( iciptr, “stream”, &stream );

size = op_prg_list_size( mobile_table );
for{ i=0; i<size; ++1i )
{
table_entry = { mobile_rte_table * )
op_prg_list_access{ mobile_table, i );

if( table_entry->stream == stream )

{ ,
op_icil_attr_set( iciptr, “careof_net”, table_entry-»careof.net );
op_lci_attr_set( iciptr, “careof_node”, table_entry->careof.node );
op_ici_attr_set( iciptr, “status”, OPC_COMPCODE_SUCCESS 1) ;
FOUT

/* stream does not exist */

op_ici_attr_set( iciptr, “careof_net”, ADDRESS_UNDEFINED );
op_ici_attr_set( iciptr, “careof_node”, ADDRESS_UNDEFINED ) ;
op_ici_attr_set( iciptr, “status”, OPC_COMPCODE_FAILURE );

- FOUT
}

void

set_strm_condition( mobile_table, iciptr }
List*mobile;cable;

Ici *iciptr;

{

ip : careof;
int stream;
int mode;

int i, size;

Compcodestatus = OPC_COMPCODE_FAILURE;
mobile_rte_table*list_ptr;
FIN{ set_strm condition{ iciptr } )

op_lici_attr_get{ iciptr, “mode”, &mode );
op_ici_attr_get{ iciptr, “stream”, &stream );

size = op_prg_list_size( mobile_table );
for( i=0; i<size; ++i )
{
list_ptr = (mobile_rte_table *)
op_prg_list_access( mobile_table, i };

switch( mode )
(
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case DISABLE_ALL: a ) . :
list_ptr-»condition = CONDITION_DISABLED;
status = OPC_COMPCODE_SUCCESS; :
break; : '

case DISABLE_ALL_EXCEPT_THIS:
_Aif( list_ptr->stream != stream )

{ ’ . ' ) .
list_ptr-»condition = CONDITION_DISABLED;
status = OPC_COMPCODE_SUCCESS;

}

break;

case DISABLE_THIS_ONLY:
if{ list;ptr—>stream == stream )
{ . )
oprici_attr_sgset( iciptr, “carecf_net”, list_ptr-»careof.net };
op_lci_attr_set( iciptr, . “careof_node”, list;ptr—>careof.node )
list_ptr->condition = CONDITION_DISABLED;
status = OPC_COMPCODE_SUCCESS;
}

break;

case ENABLE_ALL:
‘list_ptr-»condition = CONDITION_ENABLED;
status = OPC_COMPCODE;SUCCESS;
break;

case ENABLE ALL_EXCEPT_THIS: . .
L if( list_ptr-»stream != stream )
T .
N list_ptr->condition = CONDITION_ENABLED;
status = OPC_COMPCODE_SUCCESS;
I ’

break;

case ENABLE_THIS_ONLY:

if( list_ptr-»stream == stream )

{ : . )
op_ici_attr._set( iciptr, *careof.net”, list_ptr->careof.net );
op_ici_attr;set( iciptr, “careof_node”, list_ptr->»careof.node:);
list_ptr-»condition = CONDITION_ENABLED; . '
status = OPC_COMPCODE_SUCCESS;

}

break; ] : i . . ' :
default:
status =- OPC_COMPCODE_FAILURE;
break;
}
}
op_ici_attr_set( iciptr, “status”, status );
FOUT . ] :
B : : ,
void

hop_to_next_strm( mobile_taﬁle, iciptr )

List *mobile_table;

Ici *iciptr;

(U

int 3, 1, size;
int stream;

mobile_rte_table*table_entry; )
FIN(‘hop_to_next_strm( mobile_table, iciptr. ) )
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op_ici_attr_get( iciptr, ”atream”,‘&stream )V :
size = op_prg list_size( mobile_table );

for ( i=0; i<size; ++1i )

{ N

table_entry = ( mobile_rte table * )
op_prg_list_access( mobile_table, i );

if { tablé_entry->stream == stream )
{
if((ﬁj:i+l)::SiZe)
j o= 0;
table_entry = ( mobile_rte_table *.)

op_prg_list_access( mobile_table, j };

op_ici_attr_set( iciptr, “stream”
, Lable_entry->stream ); .

cop_ici_attr_set( iciptr, “careof_net”
,table entry->»careof.net});

op_ici_attr_set( iciptr, “careof_node”
,table_entry->careof.node) ;

/* Now, enabling this stream */
table_entry->condition = CONDITION_ENABLED;

op_ici_attr_set( iciptr, “status”
, OPC_COMPCODE_SUCCESS ) ;

FOUT
}

) R ) .

op_ici_attr_set{ iciptr, “status”, OPC_COMPCODE_FAILURE );
FouT
}
void
process_binding_warning( pkptr, iciptr, rcv_iciptr, ip_objid )
Packet . *pkptr;
Ici *iciptr;
Ici *rev_iciptr;
Objid ) ip_objid;
{
1P home_addr, rem, target, home_agnt;
int rem_port;
Packet *bind_pkptr;
Compcode status;
Ici *bind_iciptr;

FIN( process_binding warning{ pkptr, iciptr, rcv_iciptr, .ip_objid ) )

op_pk_nfd _get( pkptr, “home_addr_net”, &home_addr.net );
op_pk_nfd_get( pkptr, “home_addr_node”, &home_addr.node }; .

op_pk_nfd _get{ pkptr, “target_net”, &target.net );
op_pk_nfd get{ pkptr, “target_node”, &target.node };

op_ici_attr_get( rcv_iciptr, “rem_net”, &rem.net };
op_ici_attr_get( rcv_iciptr, “rem_node”, &rem.node );
op_ici_attr_get( rcv_iciptr, *rem_port”, &rem_port )

7

/* creatiné binding for Mobile-ip query */
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bind iciptr = op_icl create( “binding_command” );

op_iéi_attr_set( bind_iciptr, “command”, READ_HA_BINDING };
op_ici_attr_set( bind_iciptr, “home_net”, home_addr.net );
op_ici_attr_set( bind_iciptr, "home_node”, home_addr.node );

cop_ici_install( bind _iciptr 3;
op_intrpt_fdrce_remote( BINDING_MAINTENANCE, ip_objid );
op_ici_install({ OPC_NIL };

op_ici_attr_geﬁ( bind_iciptr, “status”, &status );

if { status == OPC_COMPCODE_SUCCESS )

{

else

#if 1

felse

/* send binding warning if home addr is a registered MH */
bind_pkptr = op_pk_create_fmt( ”bind _warn” };

op_pk_nfd_set{ bind_pkptr, “home_addr_net”, home_addr.net );
op_pk_nfd_set( bind_pkptr, *“home_addr_node”, home_addr.ncde );
op_rk_nfd_set( bind pkptr, “target_net”, target.net );
op_pk_nfd_set( bind_pkptr, “target_node”, target.node };

udp_app_send( iciptr, bind_pkptr, REG_REQUEST PORT
, REG_REQUEST_PORT, target.net, target.node );

/* first of all, check whetﬁer home addr is on cache list */
op_ici_attr_set{ bind_iciptr, *command”, READ_CA_BINDING );

op_ici_install( bind_iciptr );
op_intrpt_force_remote( BINDING_MAINTENANCE, ip_objid };
op_ici_install( OPC_NIL );

op_ici_attr_get( bind_iciptr, ”status”, &status );

if { status == OPC_COMPCODE_SUCCESS }
(
/* Home addr on cache list, send binding reguest to home addr */
op_ici_attr_get{ bind_iciptr, “home_agnt_net”, &rem.net );
op_ici_attr_get( bind_iciptr, “home_agnt_node”, &rem.node );

bind_pkptr = op_pk_create_fmt{ “bind_reqg” );
op_pk_nfd_set( bind_pkptr, “home_addr_net”, home-addr.net );
op_pk_nfd_set( bind _pkptr, “home_addr_node”, home_addr.node );

/* send the reglistraticdn packet */
udp_app_send( iciptr, bind_pkptr, REG_REQUEST_PORT
, REG_REQUEST_PORT, rem.net, rem.node );

" else

/* no binding found, send it to target */

bind_pkptr = op_pk_create_fmt( “bind_reg” );

op_pk_nfd_set( bind pkptr, “home_addr_net”, home_addr.net };
op_pk_nfd_set ( bind_pkptr, *home_addr_node”, home_addr.node );

/* send the registration packet */
udp_app_send( iciptr, bind pkptr, REG_REQUEST_PORT
, REG_REQUEST_PORT, target.net, target.node );

bind_pkptr = op_pk_create_fmt({ “bind_req” );
op_pk_nfd_set( bind_pkptr, “home_addr_net”, home_addr.net );
op_pk_nfd_set( bind_pkptr, “home_addr_node”, home_addr.node );

B

f
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/* send the registration packet */
udp_app_send{ iciptf, bind_pkptr, REG_REQUEST_PORT
, rem_port, rem.net, rem.node );
#endif
)
/* deallocate resources after usage */ .
op_ici_destroy( bind_iciptr );

rouT -

} \

void

process_binding_ request( pkptr, iciptr, rcv_iciptr, objid )
Packet* *pkptr;

Ici . *iciptr;

Ici *rcv_iciptr;

objid objid;

{ .

Packet *bind_pkptr;

IP home_addr;

Ip careof;

IP rem;

int rem_port;

Ici . *ip_dciptr;

int status; -
int lifetime;

FIN( process_binding_request( pkptr, iciptr, rcv_iciptr, objid ) )

op_pk_nfd -get{ pkptr, “home_addr_net”, &home_addr.net };
op_pk_nfd_get( pkptr, *“home_addr_node”, &home_addr.node );

op_ici_attr_get( rcv_iciptr, “rem_net”, &rem.net )

7
op_ici_attr_get( rcv_iciptr, “rem_node”, &rem.node );
op_ici_attr_get( rcv_iciptr, “rem_port”, &rem_port );

ip_iciptr = op_ici_create( ”binding_commandh );
op_ici_attr_set( ip_iciptr, “command”, READ_HA_BINDING );
op_ici_attr_set( ip_iciptr, “home_net”, home_addr.net );
op_ici_attr_set( ip_iciptr, “home_node”, home_addr.node );

op_ici_install( ip_iciptr )} )
op_intrpt_force_remote( BINDING_MAINTENANCE, objid );
op_ici_install( OPC_NIL );

op_ici_attr_get( ip_iciptr, #“status”, &status );
if ( status == OPC_COMPCODE_FAILURE )}
{
careof = home_addr;/* no binding exists */
lifetime = 0;

else
op_ici_attr_get{ ip_iciptr, “careof_net”, &careof.net };

op_ici_attr_get( ip_iciptr, “careof_node”, &careof.node );
op_ici_attr_get( ip_iciptr, “lifetime”, &liﬁetime ) ;

/* deallocate icl pointer after use */
op_ici_destroy( ip_iciptr );

bind_pkptr = op_pk_create_fmt{ “bind update” );
op_pk_nfd_set( bind_pkptr, “home_addr_net”, home_addr.net };
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op_pk;nfd_set( bind_pkptr, *“home_addr_node”, home_addr.node ); !
op_pk_nfd_set( bind_pkptr, “carecf_net”, careof.net );

op_pk_nfd_set( bind_pkptr, “careof_node”, careof.node );
op_pk_nfd_set( bind_pkptr, “lifetime”, lifetime );

/* send binding request via UDP port */
udp_app_send( iciptr, bind_pkptr, REG_REQUEST_PORT, rem_port, rem.net, rem.node );

FOUT

}

void

process_binding_update{ pkptr, iciptr, rcv_iciptr, objid )
Packet : *PKPLr;

Ici “*iciptr;

Ici *rev_iciptr;
objid objid;

{

Packet *bind_pkptr;

ip home_addr;

1P careof;

IP rem;

int rem_port;

Ici *ip_iciptr;

int lifetime, ack, status;

FIN( process_binding_update( pkptr, iciptr, rcv_iciptr, objid.) )

op_pk_nfd_get( pkptr, “home_addr_net”, &home_addr.net );
op_pk_ntd_get (. pkptr, “home_addr_node”, &home_addr.node };
op_pk_nfd_get( pkptr, “careof_net”, &careof.net );
op_pk_nfd _get( pkptr, “careof_node”, &careof.ncde );
op_pk_nfd_get({ pkptr, “lifetime”, &lifetime );
op_pk_nfd_get( pkptr, *“ack”, &ack );

op_ici_attr_get( rev_iciptr, “rem_net”, &rem.net );
op_ici_attr_get( rev_iciptr, “rem_node”, &rem.node );
op_icl_attr_get( rcv_iciptr, “rem_port”, &rem_port )

" ip_iciptr = op_ici_create( “binding_command” );
if { (careof.net == 0 && careof.node == 0) || lifetime == 0

op_ici_attr_set( ip_iciptr, “command”, KILL_CA_BINDING };
op_ici_attr_set( ip_iciptr, “home_net”, home_addr.net );
op_ici_attr_set( ip_iciptr, “home_node”, home_addr.node );

op_ici_instail( ip_iciptr ); .
op_intrpt_force_remote( BINDING_MAINTENANCE, pbjid Vs
op_lci_install{ OPC_NIL );

else

op_ici_attr_set
op_ici_attr_set
op_icil_attr_set
op_lilci_attr_set
op_ici_attr_set
op_ici_attr_set
op_ici_attr_set
op_ici_attr_set

( ip_iciptr, “command”, EDiT_CA_BINDING )5 ‘ '
( ip_iciptr, "home_net”, home_addr.net );

( ip_iciptr, “home_node”, home_addr.node );

( ip_iciptr, “home_agnt_net”, rem.net };

( ip_iciptr, “home_agnt_node”, rem.node );

( ip_iciptr, *"careof_net”, careof.net };

( ip_iciptr, *careof_node”, careof.node };

( ip_iciptr, “lifetime”, lifetime );

op_ici_install( ip_iciptr );
op_intrpt_force_remote( BINDING_MAINTENANCE, objid };
op_ici_install( OPC_NIL );
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if ( ack == true )

{ .
bind_pkptr = op_pk_create_fmt( “bind_ack” };
op_pk_nfd_set( bind_pkptr, “home_addr_net”, home_addr.net );
op_pk_nfd_set{ bind_pkptr, “home_addr_node”, home_addr.node );

/* send binding request via UDP port */
udp_app_send( iciptr, bind pkptr, REG_REQUEST PORT
, rem_port, rem.net, rem.node );

/* deallocate ici pointer after use */
op_ici_destroy( ip_iciptr );

FOUT

}

void

encap_pk_destroy( pkptr )

Packet _ *pkptr;

{ ' K
Packet *outer pkptr, *inner_pkptf;
int i, num_£ds, data_present;
char fd_name[40];

FIN( encap_pk_destroy( pkptr ) )

outer_pkptr = pkptr;

while ( 1)
num_fds = op_pk_fd_max_index( outer_pkptr );

for ( data_present=false, i=0; i< num_£fds; ++i )
{ .
op_pk_fd_index_to_name( outer_pkptr, i, fd_name );
if ( strcmp( fd_name, “data” ) == )
{
op_pk_nfd_get( outer_pkptr, “data”, &inner_pkptr );
op_pk_destroy( outer_pkptr );

data_present = true;
break;

/* no, fields with name “data” */
if ( data_present == false )
break;

outer_pkptr = inner_pkptr;

}

op_pk_destroy( outer_pkptr );
FOuT
}
void .
generate_bind warning( dest, reg_objid, home_addr, target )
1P dest, home_addr, target;

Okjid reg_objid;
{
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Ici *warn_iciptr;
FIN( generate_bind_warning( home_addr, )} )

warn_iciptr = op_ici_create(*bind_warn_ici®); .
op_ici_attr_set( warn_iciptr, *home_addr_net”, home_addr.net ); -
op_ici_attr_set{ warn_iciptr, “home_addr_node”, home_addr.node ); N

op_ici_attr_set{ warn_iciptr, “dest_net”, dest.net };
op_ici_attr_set( warn_iciptr, “dest_node”,dest.node );

' op;ici_attr_set( warn_1iciptr, “target_net”, target.net_);
op_ici_attr_set( warn_iciptr, “target_node”,target.node );

op_ici_install( warn_iciptr );
op_intrpt_force_remote({ BINDING_WARN_TYPE, reg_objid );
op_ici_install{ OPC_NIL };

op_ici_destroy( warn_iciptr );

FOUT

}

void

encap_pk_send( pkptr )
Packet *pkptr;

{
FIN( encap_pk_send( pkptr ) )

/* insert encapsulated packet at the beginning of the cueue */
op_subg_pk_insert( 0, pkptr, OPC_QPOS_HEAD );

rouT

}

void .

check_ca_list( list_ptr, dest, home_agnt )
List *list_ptr;

Ip dest;

1p *home_agnt;

{

CA_mobility_binding*ca_entry;

‘int i, num_bind;

FIN{ chéck_ca_list( list_ptr, dest, home_agnt ) )

num_bind = op_prg_list_size( list._ptr );
for( i=0; i<num_bind; ++i )
{
ca_entry = (CA_mobility_binding *)
op_prg_list_access{ list_ptr, 1 };

if ( IP_equal( dest, ca_entry->home_addr } )

( .
home_agnt->net = ca_entry->home_agnt.net;
home_agnt->node = ca_entry->home_agnt.node;
FOUT :

}
home_agnt->net = ADDRESS_UNDEFINED; )
home_agnt->node = ADDRESS_UNDEFINED; ’ B
. FOuT

}
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/* mobile_rte_sup.ex.c */
/* Routing support procedures for the Mobile IP example model */

#include <opnet.h>
#include “mobiie-ip.h”
#include "mobile_rte sup.h”
#include *ip_rte sup.h”
#include “protocol.h”

~/* Functions called by Process Module */

List*
mobile_rte_sup_table_setup (file_name)
char *file_name;
{ ) o
List* mobile_strm_list_ptr;
List* line_list_ptr;

mobile_rte_table*table_ptr;

/* Provides comprehensive routing table loading and parsing */
/* services for Mobile IP module. */ .
FIN (mobile_rte_sup_ table_setup {(file_name, net0, nodel, netl, nodel, net2, nodel))

/* Load the list of text lines from the specified file. */
/* Note: this procedure will guit the simnulation if */

/* file cannot be loaded, so it is assumed that there */
/* are no problems upon returning. */

line list_ptr = mobile_rte_sup_table load (file_name);

/* Parse the contents of the obtained,list into */
/* a routing-instruction table. ¥/ .
mobile_strm_list_ptr = mobile rte_sup_list_parse (line_list_ptr);

/* In debug mode, if tracing is aétive, print the‘table */
if (op_prg_odb_trace_active ())
{
mobile_rte sup_table_print {moblle_strm_list_ptr);
}

FRET( mobile_strm_list_ptr );
}

List*

mobile_rte_sup_table_load (file_name)
char *file_name;
{
List* line_list_ptr;
char err_str [256];

/* Read in a routing table from an ascii */
/* file adhering to format defined above. */
FIN (mobile_rte_sup_table_load (file_name))

/* Open and read the file into the list. */
line_list_ptr = op_prg _gdf read (file_name);

124
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/* Test for error in reading. */
if (line_list_ptr == OPC_NIL)
(

sprintf (err_str, ”File Name: %s”, file_name);

- ’ opﬁsim_end (“Package : mobile_rte_sup”,
’ "EYTOY : Unable to read routing table file”,
err_str, **);

}

/* Return the list of text lines. */
FRET (line_list_ptr)
}

List*
moblle rte_sup_list_parse (line list ptr)
List* ’ line_ list_ptr;
{
List* mobile_stream_list_ptr;
mobile_rte_table*mrt_ptr;
int . i, num_lines;
char* line;
List ' *field_list_ptr;

~/* Bxtract information from the lines of an ascii routing table */
/* and construct a corresponding routing table structure.which */
/* coritains routing instructions. */ . . '
FIN (mobile_rte_sup_list_parse (line_list_ptr))

/* Allocate a routing table structure. */

mrt_ptr = (mobile_rte table*) op_prg_mem_alloc (sizeof (mobile_rte_table));
/* Allocate a temporary table for holding lists. */

mobile_stream_list_ptr = op_prg_list_create (};

'/* Scan through each of the lines, one at a time. */
num_lines = op_prg_list_size {(line_lidt_ptr);

for (1 = 0; i < num_lines; i++)

{ . .
/* Obtain the i_th line. */

line = op_prg_list_access (line_list_ptr, 1i);

/* Décompose it into fields (field boundaries are */
/* indicated by spaces, tabs, slashes, or commas. */
field_ list_vtr = op_prg_str_decomp {(line, “ ,/\t");

/* Format for a line is as follows: */

/* <output_stream> <mtu>*/

/* Incomplete lines are skipped. */

if (op_prg_list_size (field_list_ptr) < 4)
continue;

/* Create a routing instruction structure. */
mrt_ptr = (mobile_rte_table*)
op prg_mem_alloc (sizeof (mobile_rte_table));

/* Transfer the parsed fields into the structure */
/* First obtain the destination stream and mtu fields. */
mrt_ptr->stream = atoi |

op_prg_list_access (field_list_ptr, MOBILE_TBL_OUTSTREAM)) ;
mrt_ptr->mcl = atoi ( .
« op_prg_list_access (field_list_ptr, MOBILE_TBL_MTU)};
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mrt_ptr->carecf.net = atoi { o
op_prg_list_access (field list_ptr, MOBILE_TBL_CAREOF_NET));

mrt_ptr->careof.node = atoi (
op_prg_list_access (field_list_ptr, MOBILE_TBL_CAREOF_NODE)) ;

if ~{mrt_ptr->mtu <= 0)
mrt_ptr->mtu = 0X7FFFFFFF;

if (mrt_ptr-»careof.net == ADDRESS_UNDEFINED &&
mrt_ptr->careof.node == ADDRESS_UNDEFINED )

/* careof address not implemented */
mrt_ptr->condition = CONDITION_ENABLED;

/* disable all condition flags initially */
mrt_ptr->condition = CONDITION_DISABLED;

/* Append the routing instruction to the temporary list. */
op_prg_list_insert {(mobile_stream_list_ptr, mrt_ptr, OPC_LISTPOS_TAIL};

FRET{ mobile_stream_list_ptr ) .
}

void
mobile_rte_sup_table_print (mobile stream list_ptr)
List*mobile stream_list_ptr;

{

moblle_rte_table*table_entry;

int i,size;
char dne_str [128], dno_str [128];
char nne_str [128}], nno_str [128], str0O [512];

/* Print the contents of a routing table. */
FIN (mobile_rte sup_table_ print (mobile_stream_ list_ptr))

size = op_prg_lisﬁ_size( mobile_stream list_ptr };

if ( size == 0 ) . ) '
( » . .
op_prg_odb_print_major (“Routing table is empty”, VOS_NIL};
. }
else{
op_prg_odb_print_major (“Routing table contents :”, VOS_NIL);
for (1 = 0; i < size; i++)
{ -
N table_entry = (mobile_rte_table?*)
op_prg_list_access( mobile_stream_ list_ptr, 1 ); ,
sprintf( str0, “Stream (%d)}: mtu (%d)”
, table_entry->»stream, table_entry->mtu );
op_prg_odb_print_minor (str0, VOS_NIL);
} : ’
}
FOUT
}

Compcode
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mobile rte_sup_route_select ( mobile_table, pkptr, ici_ptr, objid
, agnt_flag, pk_id, ttl
- , HA_bind_ptr, FA_bind_ptr
, CA_bind ptr, MH_bind ptr
, ip0, ipl, ip2, route_optim, trash_unsent_pk
, buffer_ptr, buffer_life )

List *mobile_table;

Packet *pkptr;

Ici *ici_ptr;

Objid objid;

int agnt_flag;

int : *pk_id;

int ttl;

List *HA_bind ptr, *FA bind_ptr;
List *CA_bind_ptr, *MH_bind ptr;
IpP ip0, ipl, ip2;

int route_optim;

int . trash_unsent_pk;

List *buffer ptr;

double buffer_life;

( .

char str0[(100];

Packet *inner_pkptr;

Packet *buffer_ pkptr;

int opﬁim;

int . protocol;

int i, 3, num_bind, num_multi_bind;
IP o src, dest;

IP ' home_agnt ;

HA_mobility_binding*home_entry;
FA_mobility_binding*visitor_entry;
multi_binding *multi_bkind_entry;

FIN (mobile_rte_sup_route_select{ mobile_ table, pkptr, ...})

op_pk_nfd_get( pkptr, “src_net”, &src.net };
op_pk_nfd_get( pkptr, “src_node”, &src.node );

op_pk_nfd _get( pkptr, “dest_net”, &dest.net );
cop_pk_nfd_get( pkptr, “dest_node”, &dest.node );

/* Select a route from the routing table which matches the */
/* requested destination network and node. */ .
if (IP_equal{ dest, ip0 } || IP_equal( dest, ipl )} || IP_equal( dest, ip2 ) )
{
op_pk_nfd_get{ pkptr, “protocol”, &protocol );

/* Not encapsulated ( not for a visitor ) */
if { protocol t= PROTOCOL_ENCAP )
 FRET ( MOBILE_RTE_TO_IP )

op_pk_nfd_get( pkptr, "data", &inner_pkptr };
op_pk_destroy( pkptr );

pkptr = inner_pkptr;
op_pk_nfd get({ pkptr, “dest_net”, &dest.net ); -
op_pk_nfd_get({ pkptr, “dest_node”, &dest.node );

if { !trash_unsent_pk )
{ .
/* buffer_pkptr = op_pk_copy{ pkptr ); */ .
if} insert_pk_buffer{ buffer_ptr, buffer_life, dest, pkptr )
== OPC_COMPCODE_SUCCESS )
( ;

if (op_prg_odb_ltrace_active ("pk_buffer”))
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sprintf (str0, “Buffering pk(%d) at {(%d,%d)”
’ , op_pk_id (pkptr), ipl.net, ip0.node);
op_prg_odb_print_major (str0, OPC_NIL);
}
FRET( MOBILE_RTE_SUCCESS )

VA op_pk_destroy( buffer_ pkptr ); */

. 1f ( forward_to_visitor( mobile_table, FA_bind ptr, pkptr, ici_ptr, dest )
OPC_COMPCODE_FAILURE )
{

if ( route_optim )
{

check_ca_list{ CA_bind ptr, dest, &home_agnt );

if ( home_agnt.net == ADDRESS_UNDEFINED

&& home_agnt.node == ADDRESS_UNDEFINED )
( .
home_agnt = src;
) ;
generate_bind warning( home_agnt, objid, dest, src );

}
if { encap_packet| HA_bind_ptr,»CAwbind*ptr, pkptr, ici_ptr, ip0
, dest, pk_id, tcl, optim, objid )
== OPC_COMPCODE_SUCCESS )» .

FRET( MOBILE_RTE_ENCAP )

else
{
if ( trash_unsent_pk )
{ ‘
if (op_prg_odb ltrace_active (“pk_buffer”})
{
4 sprintf (str0, “Trashing pk(%d) at (%d,%d)”

, op_pk_id (pkptr), ipO.net, ip0.node);
op_prg_odb_print_major (str0, OPC_NIL);
}
op_pk_destroy( pkptr );
}
FRET{ MOBILE_RTE_FAILURE )

else
{
/* packet sent to visitor */
FRET( MOBILE_RTE_SUCCESS )
}
}
if { IP_ecual( src, ip0 ) || IP_equal( src, ipl ) Il IP_equal{ src, ip2 ) )
optim = false; :
else

optim = route_optim;

if ( send_via_FA( pkptr, MH_bind_ptr, mobile_table, ici_ptr, dest, agnt_flag ).==
OPC_COMPCODE_SUCCESS ) :
FRET ( MOBILE_RTE_SUCCESS )
else if { forward_to_visitor( mobile_table, FA_bind_ptr, pkptr,. ici_ptr, dest ) ==
OPC_COMPCODE_SUCCESS ) .
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FRET ( MOBILE_RTE_SUCCESS ) , :
; else if ( encap_packet({ HA_bind.ptr, CA_bind ptr, pkptr, ici_ptr, ip0, dest, pk_id, ttl,
optim, objid ) == OPC_COMPCODE_SUCCESS ) . S :
’ FRET ( MOBILE_RTE_ENCAP )

else - )
FRET ( MOBILE_RTE_TO_IP )
}
Compcode. i . - :
send_via FA( pkptr, bind_list_ptr, mobile_table, ici_ptr, dest, ma_flag )
List . . *bind_list_ptr, *mobile_table;
Ici *icl_ptr;
packet : *pkptr;
Ip o dest;
int ' ma_flag;
(.
int ' i, size;
int copy = false;
int next_net, nexﬁ_ﬁode, stréam, mtu;
Packet : R *Ccp_pkptr; .
Compcode . status= OPC_COMPCODE_SUCCESS;
MH_F2&_binding *fa_entry; :
mobile_rte_tablé*table_entry; i
char . str0[80], strl[80];

FIN{ send_via_FA('pkptr,,bind_list_ptr, mobile_table, ici_btr, dest, ma_flag ) )
/* First of all, check 1f packet is for any enabled streams . */
size = op_prg_list size( mobile_table };
for { 1i=0; i<sgize; ++1 ) ’
{

table_entry = (mobile_rte table *) op prg_list_access( mobile_table, 1);

if ( IP_equal( table_entry->careof, dest ) &&
table_entry->condition == CONDITIONfENABLED )

stream = table_entry->stream;
mtu = table_entry->mtu;

next_net = ADDRESS_UNDEFINED;
next_node = ADDRESS_UNDEFINED;

deliver_packet( pkptr, ici_ptr
, next_net, next_nocde, stream, mtu ) ;

FRET( OPC;COMPCODE_SUCCESS )

/* Now, check to see if there is any mobility binding */
size = op_prg_list_size( bind_list_ptr );

/* if ( size == 0 && ma_flag )/* no bindings and not a mobile node */
if ( size == 0 )/* no bindings and not'a mobile node */ ‘
FRET( OPC_COMPCODE;FAILURE )

/* each enabled FA will receive a copy of the packet */

for( i=0; i<size; ++1i )

{

fa_entry = (MH_FA_binding *)
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op_prg_list_access( bind_list_ptr, i };

/* obtain the stream associated with the current binding */
stream = fa_entry->stream;

if ( chk_strm_condition( mobkile_table, stream, &mtu ) == CONDITION_ENABLED )
{ . .
status = 0OPC_COMPCODE_SUCCESS;
. if ( mtu == MOBILE_STRM_NONEXISTENT )
t .
sprintf (str0, “Discarding packet (%d) 7, op_pk_id {(pkptr));

csprintf (strl, “Stream non-existent” );
op_prg_odb_print_major {str0, strl, OPC_NIL);
op_pk_destroy( pkptr );

else

next_net = fa_entry->careof.net;
next_node = fa_entry->carecof.node;
#if O
deliver_packet({ pkptr, ici_ptr
, next_net, next_node, stream, mtu );
FRET( OPC_COMPCODE_SUCCESS )
#else
copy = true; .
cp_pkptr = op_pk_copy( pkptr );
deliver_packet( cp_pkptr, ici_ptr
, nhext_net, next_node, stream, mtu );
fendif

/¥ have to deallocate original packet since it is no longer needed */
if ( copy ) '
{

op_pk_destroy( pkptr );

FRET( status )

FRET( OPC_COMPCODE_FAILURE )
}

Compcode
encap_packet{ HA_bind_ptr, CA_bind_ptr, pkptr,. ici_ptr, current, dest, pk_id, ttl,
route_optim, reg_objid )

List *HA_bind_ptr;
List . *CA_bind_ptr;
Packet *pkptr;
Ici *ici_ptr;
1P current, dest;
int *pk_id;
int tel;
int route_optim;
Objid reg_objid;
{ .
char str0[512], strl(5127;
! Packet - *encap_pkptr;
int i, 3, num_bind, num_multi_bind;
int next_net, next_node, outstrm, mtu;
Ip . orig;
int . data_len;

int : copy = false;
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HA_mobility_binding*home_entry;
CA_mobility binding*ca_entry;

multi_binding
Compcode

*multi_bind_entry;
status = OPC_COMPCODE_FAILURE;

FIN( éncapﬁpacket( HA;bind_ptr, LLoa) )

num_bind = op_prg_list_size( HA_bind ptr );

for (i=0; i<num_bind; ++1i)

{

home_entry

(HA_mobility_binding .*)

op_prg_list_access( HA_bind_ptr, i });

/* check for matches in HA mobility binding */

{

if (tmemcmp( &dest, &home_entry->home_addr, sizeof(IP)))

status = OPC_COMPCODE_SUCCESS;
num_multi_kind = op_prg list_size( home_entry->multi_bind_list };

for( j=0; j<num_multi_bind; ++3j )

{

multi_bind entry = (multi_binding *}

op_prg list_access( home_entry->»multi_bind_list, J );

data_len = op_pk_total_size_get{pkptr)/8;
encap_pkptr = op_pk_create_fmt( “ip_dgram”. );
op_pk_bulk_size_set( encap_pkptr, data_len*8§ });

copy = true;
op_pk_nfd_set( encap_pkptr, *“data”
, op_pk_copy(pkptr) );

op_pk_nfd_set( encap_pkptr, “protoccl”, PROTOCQL;ENCAP Yy

op_pk_nfd_set( encap_pkptr, “src_net”,
current.net );

op.pk_nfd_set({ encap_pkptr, “src_node”,
current.node );

op_pk_nfd_set{ encap_pkptr, “dest_net”,
multi_bind_entry-»carecf.net );

op_pk_nfd_set{ encap _pkptr, “dest_node”,
multi_bind_entry->careof.node );

op_pk_nfd_set{ encap_pkptr,"orig_len”,data_len};
op_bk_nfd_set( encap_pkptr,"frag_len”,data_len);

op_pk_nfd_set( encap_pkptr, “ident”, (*pk_id)++);
op_pk_nfd_set( encap_pkptr,“frag”, 0 );
op_pk_nfd_set( encap_pkptr, “ttl”, ttl);

if (op_prg_odb_ltrace_active (“encap_pk”))
{
sprintf (str0, “Encapsulating pk(%d) sent”
, op_pk_id (encap_pkptr));
sprintf {strl, “Destination: net (%d), node (8d)”
' , multi_bind_entry->careof.net
, multi_bind_entry-»carecf.node );
op_prggodbwprint_major (str0, strl, OPC_NIL);

encap_pk_send( encap_pkptr );

/* At this stage, i1t 1s assumed that HA binding exists

* for mobile node. Therefore send binding warning

* message to original sender */

if

{

route_optim == true )

131
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op_pk_nfd_get{ pkptr, “src_net”, &orig.net );
op_pk_nfd_get{ pkptr, “src_node”, &orig.node );

generate_bind_warning( orig, reg_objid
, home_entry->home_addr, current );

}

if ( status == OPC_COMPCODE_SUCCESS )
{ .
if ( copy )
op_pk_destroy({ pkptr };
FRET( status )

}
#1f O
if ( route_optim == false )
FRET( OPC_COMPCODE_FAILURE )
#tendif

num_bind = op_prg_list_size( CA_bind ptr };

for( i=0; i<num_bind; ++i )
{
ca_entyy = (CA_mobility_ binding *)
op_prg_list_access( CA_bind_ptr, 1 .);

if { IP_equal( dest, ca_entry->home_addr ) )
0 .
status = OPC_COMPCODE_SUCCESS;

data_len = op_pk_total_size get( pkptr )/8;
encap. pkptr = op_pk_create_fmt({ *ip_dgram” };
op_pk_bulk_size_set( encap_pkptr, data_len*8 );

op_pk_nfd_set( encap_pkptr, “data”, pkptr ):
op_pk_nfd_set( encap_pkptr, “protocol”
, PROTOCOL_ENCAP };

op_prk_nfd_set({ encap_pkptr, “src_net”, current.net );
op_pk_nfd_set( encap_pkptr, “src_node”, current.node );
op_pk_nfd_set( encap_pkptr, “dest_net” - ’

’ . éa_entry—>careof.net )
op_pk_nfd_set(.encap_pkptr, “dest_node”

’ , ca_entry-»careof.node };
op_pk_nfd_set{ encap_pkptr, “orig_len”, data_len };
op_pk_nfd_set!{ encap_pkptr, "frag_len”, data_len );
op_pk_nfd_set ( encap_pkptr, “ident”, (*pk_id)++ };
op_pk_nfd_set( encap_pkptr, “frag”, 0 )f )
op_pk_nfd_set( encap_pkptr, “tcl”, tcl );

/* Now schedule packet for transmission */
encap_pk_send( encap_pkptr );
FRET{ OPC_COMPCODE_SUCCESS )

if ( copy )
op_pk_destroy( pkptr );

FRET( status )
}
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void

deliver_packet( pkptr, ici_ptr, next_net, next_node, outstrm, mtu )
Packet *pkptr; -
Ici *ici_ptr; N

int ' next_net, next_node, outstrm, mtu;

{

char str0[512], strl([512];

int i, len;

int header_size, frag_size, data.size;

int dest_net, dest_node; A

int tel; . .

int frag_accum, frag, num_frags;

Packet *ip_pkptr, *data_pkptr, *frag_ptr;

FIN( deliver_packet( pkptr, ... ) ) ’ :

/* obtain packet’'s destination */
op_pk_nfd_get( pkptr, “dest_net”, &dest_net );
op_pk_nfd_get( pkptr, “dest_node”, &dest_node );

/* Decrement the packet’s time-to-live field. If zero is reached, */
/* discard the packet rather than send it on. */
op_pk_nfd_get (pkptr, “ttl”, &ttl);

cel--;
if (ttl == 0)
{
/* In debug mode, indicate that a packet is destroyed */
. /* due to an expired ttl. */
if (op_prg_odb_ltrace_active (”ipferrs"))
( .
sprintf (str0, “Discarding packet (%d) with expired TTL”, op_pk_1id (pkp-
tr));
sprintf (strl, “Destination: net (%d), node (%d)~”, dest_net, dest_node);
op_prg_odb_print_major {(str0, strl, OPC_NIL}; ‘
}
op_pk_destroy (pkptr);
}
else{

/* Assign the new decremented value of ttl. */
op_pk_nfd_set (pkptr, “ttl”, ttl);

/* In debug mode, trace the routing action. */
if (op_prg_odb_ltrace_active (”mobile—ip_rte"))
{
sprintf (str0, “Routing towards (%d, %d)”, dest_net, dest_node);
sprintf (strl, “Next hop (%d, %d), output stream (%d)”,
next_net, next_node, outstrm);

op_prg_odb_print_major (str0, strl, OPC_NIL);

/* Install an Ici indicating to the lower layer what the */
/* address of the next (intermediate) node is. */
op_ici_attr_set (ici_ptr, “next_node”, next_node};
op_ici_install {ici_ptr);

/* Obtain the size in bytes of the fragment. */
frag_size = op_pk_total_size_get (pkptr) / 8;

/* Obtain the number of bytes of data carried in this fragment */
op_pk_nfd_get (pkptr, “frag_len”, &data_size);

/* Also obtain the difference between the packet size */
/* and the length field: this is the size of the header. */
header_size = frag_size - data_size;
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/* If it is smaller than the maximum transfer unit, send it as is. */
if (frag_size <= mtu)
{

op_pk_send (pkptr, outstrim);

else{
/* Otherwise, break it into fragments */
/* Bach fragment can contain up to (mtu - header_size) bytes of data */
‘num_frags = (data_size + mtu - header_size - 1) / (mtu - header_size);

/* In debug mode, indicate the fragmentation. */
if (op_prg_odb_ ltrace_active ("ip_frag”))

. { .
sprintf (str0, “Breaking datagram ‘into (%d) fragments”, num_frags);
op_prg_odb_print_major (str0d, OPC_NIL);

/* If the fragment is carrying the original datagram given to IP, */
/* extract it before copies are made. Only one fragment can carry */
/* the original packet for the feassembly model to work properly. */
if (op_pk_nfd_is_set {(pkptr, “ip_dgram”)) :

op_pk_nfd_get {pkptr, “ip_dgram”, &ip_pkptr);
else ip_pkptr = OPC_NIL;

/* If the packet is carrying any encapsulated data {normally this */
/* would happen only for a packet fragmented for the first time), */
/* extract thig data packet so that it will not appear in each */
- /* fragment generated by copying. */
if (op_pk_nfd_is_set (pkptr, “data”))
op_vk_nfd_get (pkptr, ~“data”, &data_pkptr);
else data_pkptr = OPC_NIL;

/* Loop through and create the fragments . */
for (frag.accum = 0, 1 = 0; i < num_frags; i++)
{ .
/* Make a copy of the original packet. */
frag_ptr = op_pk_copy (pkptr);

/* Indicate that the copy is a fragment */
op_pk_nfd_set (frag ptr, “frag”, 1);

/* for all but the lagt fragment, the size is the mtu. */
/* and the encapsulated ip packet is not included. */
if (i < num_frags - 1)

{
op_pk_nfd_set (frag ptr, “frag_len”, mtu - header_size);
op_pk_total_size_set (frag_ptr, 8 * mtu);
frag_accum += (mtu - header_size);

} .

else(

len = data_size - frag_accum;
op_pk_nfd_set (frag_ptr, “frag_len”, len);
op_pk_total_size_set (frag_ptr,8 * (header_size + len));

/* If the original packet was not a fragment, encapsulate it
*/ R

/* into the last fragment created here. */

op_pk_nfd_get {(pkptr, “frag”, &frag);

if (!frag) '

{

/* If the packet contained encapsulated data (i.e.,

from the */
/* transport), that data will have been removed to

avoid */
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. /* its duplication in the fragments. The data should
now be */ ) .
/* reinserted into the original packet:. */
- if (data_pkptr {= OPC_NIL)
op_pk_ﬁfd_éet~(pkptr, “data”, data_pkptr);

/*-In either case the original packet is */

/* encapsulated -in thhe fragment. */
op_pk_nfd_set (frag ptr, “ip_dgram”, pkptr);

/* Otherwise the packet can be discarded. */

else(
op_pk_destroy (pkptr);
/* Also, if the packet included the original datagram
*/
/* from which it was generated, transfer that data-
gram */ ' ’
/* into the last fragment created here. */
\V/* Note that it is possible, in the case where a
fragment */
/* 1s itself being fragmented, that none of the cre-
ated */ . .
/* fragments will contain the original datagram. */
if {ip_pkptr != OPC_NIL)
{ . I
’ op_pk_nfd_set (frag_ptr, “ip_dgram”,
ip_pkptr); L
}
}
}
/* Forward the datagram fragment. */
op_pk_send (frag_ptr, outstrm);
}
}
}
FOUT;
}
Compcode )
forward_to_visitor( mobile_table, bind list_ptr, pkptr, ici_ptr, dest )
List *hind_list_ptr, *mobile_table; ;
Packet *pkptr;
Ici *ici_ptr;
P . - dest; ) .
{
char str0[80], strl([(801];
Compcode status = OPC_COMPCODE_FAILURE;
int " i, size; '
int next_net, next_node, stream, mtu;

FA_mobility_binding*visitor_entry;
FIN( forward_to_visitor( mobile_table, bind_list_ptr, pkptr, ici_ptr, dest ) )
size = op_prg_list_size( bind_list_ptr );

if ( size == 0 )/* list does not exist */
FRET { OPC_COMPCODE_FAILURE ) -

, for{ i=0; i<size; ++1i )
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visitor_entry = (FA_mobility_binding *)
op_prg_list_access( bind-_list_ptr, 1 );

; if ( !'memcmp{ &dest, &visitor_entry->home_addr, sizeof(IP) )
{ _ '
/* There is a match */
if ( visitor_entry->home_agnt.net != ADDRESS_UNDEFINED &&
vigsitor_entry->home_agnt.node != ADDRESS_UNDEFINED )}
{

status = OPC_COMPCODE_SUCCESS;

next_net = visitor_entry->home_addr.net;

. next_node = vigitor_entry->home_addr.node;

stream = visitor_entry->stream;

mtu = get_strm_mtu( mobile_table, stream );

if { mtu == MOBILE_STRM_NONEXISTENT )

{
sprintf (str0, “Discarding packet (%d) *, op_pk_id (pkptr));
sprintf (strl, “Stream non-existent” ); .
op_prg_odb_print_major (str0, strl, OPC_NIL); .
op_pk_destroy{ pkptr );

else
{
deliver_packet( pkptr, ici_ptr
, next_net, next_node, stream, mtu );
}
}
}
}
FRET( status };
}
int
get_strm_mtu( strm_ptr, strm }
List*strm_ptr;
int strm;
{
int i, size;

mobile_rte_table*strm_entry; .
FIN( get_strm_mtu( strm_ptr, strm } )}
size = op_prg. list_size( strm_ptr );
for( 1=0; i<size; ++1 )
{
strm_entry = (mobile_rte_table *) op_prg_list_access( strm_ptr, i );

if ( strm_entry->stream == strm )
FRET{ strm_entry->mtu );

FRET( MOBILE_STRM_NONEXISTENT ) ;

}

int .
chk_strm_condition( -mobile_table, stream, mtu )
List *moblle_table;

int stream;

int *mtu;

{
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int i, size;
mobile_rte_table*table_entry;
FIN( chk_strm_condition( mobile_table, stream, mtu ) )

size = op_prg_liét_size( mobile_table };

for( i=0; i<size; ++i )
{
table_entry = {(rmobile_rte_table * )
op_prg_list_access{ mobile_table, i );

1f( table_entry—}stream == stream )

{ .
*mtu = table_entry->mtu;
FRET( table_entry->»condition )

/* stream does not exist */
*mtu = MOBILE_STRM_NONEXISTENT; : !

FRET{ CONDITION_DISABLED )

}

void

get_careof_addr{ mobile table, iciptr ) :

List *mobile_table; . N
Ici - *iciptr;

( .

int i, size;

int stream;

Ip careof; -

mobile_rte_table*table_entry;
FIN( get_careof_addr( mobile_table, iciptr ) )}

op_ici_attr_get( iciptr, ”streamﬁ, &stream );

size = op_prg_list_size( mobile_table );
for( i=0; i<size; ++1 )
{ .
table_entry = ( moblle_rte_table * )
op_prg_list_access( mobile_table, i );

1f( tabie_entry—>stream == stream )

{
op_lci_attr_set( iciptr, “careof_net”, table_entry-»careof.net );
op_lci_attr_set( iciptr; “careof_node”, table_entry->careof.node );
op_ici_attr_get( iciptr, “status”, OPC_COMPCODE_SUCCESS });
FourT

. /* stream does not exist */

op_ici_attr_set( iciptr, “careof_net”, ADDRESS_UNDEFINED };
op_ici_attr_set( iciptr, ”careof_node”,.ADDRESS_UNDEFINED Vi
op_ici_attr_set( iciptr, “status”, OPC_COMPCODE_FAILURE );

FOUT
}

[

void ) .
set_strm_condition{ mobile table, iciptr )
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List*mobile_table; . ‘

Ici *iciptr; !
{

ip careof;

int stream;

int mode;

int i, gize;

Compcodestatus = OPC_COMPCODE_FAILURE;
mobile_rte table*list_ptr;
FIN( set_strm_condition( iciptr } )

op_ici_attr_get{ iciptr, *mode”, &mode );

op_ici.attr_get( iciptr, “stream”, &stream );
size = op_prg_list_size( mobile_table );
for{ i=0; i<size; ++i)
{
list_ptr = (mobile_rte table *)
op_prg_list_access({ mobile_table, i );

switch( mode )

{

case DISABLE_ALL:
list_ptr->»condition = CONDITION_DISABLED;
status = OPC_COMPCODE_SUCCESS;
break;

case DISABLE_ALL_EXCEPT_THIS:
if( list_ptr->stream != stream )
{
list_ ptr->condition = CONDITION_DISABLED;
status = OPC_COMPCODE_SUCCESS;
}

break;

case DISABLE_THIS_ONLY:
if( list_ptr->stream == stream )
{
op_ici_attr_set{ iciptr, “careof net”, list_ptr->»careof.net );
op_ici_attr_set( iciptr, “careocf_node”, list_ptr-»careof.node };
list_ptr-»condition = CONDITION_DISABLED;

status = OPC_COMPCODE, SUCCESS;
}

break;

case ENABLE_ALL:

" list_ptr->»condition = CONDITION_ENABLED;
status = OPC_COMPCODE_SUCCESS;
break;

case ENABLE_ALL_EXCEPT THIS:

if{ list_ptr-»stream != stream )

({ .
list_ptr->condition = CONDITION_ENABLED;
status = OPC_COMPCODE_SUCCESS;

}

break;

case ENABLE_THIS_ ONLY:
if( list_ptr->stream == stream )
{ .
op_ici_attr_set( iciptr, “careof_net”, list_ptr-»careof.net };
op_ici_attr_set( iciptr, “careof_node”, list_ptr->careof.node );
list_ptr->condition = CONDITION_ENABLED;
status = OPC_COMPCODE_SUCCESS;
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}

break;
default:
status = OPC_COMPCODE_FATILURE;
break;
}
}
op_ici_attr_set{ iciptr, “status”, status );
FOUT
}
void
hop_to_next_strm( moblle_table, iciptr )
List *mobile_table;
Ici *iciptr;
{
int J, 1, size;
int ) stream;

mobile_rte_table*table_entry;
FIN( hop_to_next_strm{ mobile_table, iciptr } )}

op_ici_attr_get( iciptr, “stream”, &stream );
size = op_prg_list_size{ mobile_table };

for ( i=0; i<size; ++1 )

{

table_entry = ( mobile_rte_table * )
op_prg_list_access{ mobile_table, 1 );

if { table_entry->stream’ == stream )
{
if ( ((J =1+ 1) == gize )
j = 0;
table_entry = ( mobile_rte_table * )

op_prg_list_access{ mobile_table, j };

op_ici_attr_set( iciptr, “stream”
, table_entry->stream );

op_ici_attr_set{ iciptr, “carecf_net”
,table_entry->careof.net);

op_ici_attr_set{ iciptr, “careocf_node”
,table_entry->careof .node} ;
[ |
/*'Now, enabling this stream */°'
table_entry->condition = CONDITION_ENABLED;

op_ici_attr_set( iciptr, “status”
, OPC_COMPCODE_SUCCESS ) ;

FOUT

}
}
op_lci_attr set( iciptr, “status”, OPC_COMPCODE_FAILURE ) ;
FOUT
}
void |

process_binding warning{ pkptr, iciptr, rcv_iciptr, ip_objid }
Packet *pkptr;
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Ici *iciptr;

Ici *rev_iciptr;

objid ip_objid;

{

ipP home_addr, rem, target, home-agnt;
int rem_port; '
Packet *bind_pkptr;

‘Compcode status; .

Ici *bind_iciptr;

FIN{ process_binding_warning( pkptr, iciptr, rcv_iciptr, ip_objid ) )}

op: pk_nfd_get( pkptr, “home_addr_net”, &home_addr.net };
op_pk_nfd_get{ pkptr, “home_addr_node”, &home_addr.node );

op_pk_nfd_geti pkptr, “target_net”, &target.net );
op_pk_nfd get( pkptr, “target node”, &target.node )

op_ici_attr_get( rcv_iciptr, “rem_net”, &rem.net );
op_ici_attr_get( rcv_iciptr, “rem_node”, &rem.node );
op_ici_attr get( rcv_iciptr, “rem_port”, &rem_port )

;

/* creating binding for Mobile-ip query */
bind_iciptr = op_ici_create( “binding_command” );

op_ici_attr_set( bind_iciptr, "command”, READ_HA_BINDING ) ;
op_icil_attr_set( bind_iciptr, “home_net”, home_addr.net );
op_ici_attr_set{ bind_iciptr, “home_node”, home_addr.node )i

op_ici_install{ bind_iciptr };
op_intrpt_force_remote( BINDING_MAINTENANCE, ip_objid };
op_ici_install{ OPC_NIL }; :

op_ici_attr_get{ bind_iciptr, *“status”, &status };

if ( status == OPC_COMPCODE_SUCCESS )
{ .
/* send binding warning 1f home addr is a- registered MH */ :
bind_pkptr = op_pk_create_fmt( “bind_warn” );

op_pk_nfd_set{ bind_pkptr, “home_addr_net”, home_addr.net );
op_pk_nfd_set({ bind_pkptr, “home_addr_node”, home_addr.node };
op_pk_nfd_set( bind_pkptr, “target_net”, target.net );
op_pk_nfd_set({ bind_pkptr, “target_node”, target.node );.

udp_app_send({ iciptr, bind_pkptr, REG_REQUEST_PCRT
, REC_REQUEST_PORT, target.net, target.node );

else

$1f 1 .
/* first of all, check whether home addr is on cache list */
op_ici_attr_set( bind_iciptr, “command”, READ_CA_BINDING )} ;

op_ici_install({ bind_iciptr };
op_intrpt_force_remote( BINDING_MAINTENANCE, ip_objid ) ;
op_ici_install{ OPC_NIL ); :

op_ici_attr_get( bind_iciptr, “status”, &status ):

if ( status == OPC_COMPCODE_SUCCESS )

{
/* Home addr on cache list, send binding request to home addr */
op_ici_attr_get( bind_iciptr, *“home_agnt_net”, &rem.net );
op_lci_attr_get( bind_iciptr, “home_agnt_node”, &rem.node };

bind_pkptr = op_pk_create_fmt{ “bind_req” );

140
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op_pk_nfd_set{ bind_pkptr, “home_addr_net”, home_addr.net );
op_pk_nfd_set{ bind _pkptr, “home_addr_node”, home_addr.node );

/* send the registration packet */
udp_app_send{ iciptr, bind_pkptr, REG_REQUEST_PORT
, REG_REQUEST_PORT, rem.net, rem.node );

else
{ 4
/* no binding found, send it to target */
bind pkptr = op_pk_create_fmt( “bind_reg” };
op_pk_nfd_set({ bind_pkptr, *home_addr_net”, home_addr.net }; -
op_pk_nfd_set( bind pkptr, “home_addr_node”, home_addr.node };
/* send the registration packet */ R
udp_app_send( iciptr, bind_pkptr, REG_REQUEST_ PORT
, REG_REQUEST _PORT, target.net, target.node );
}
fielse
bind_pkptr = op_pk_create_fmt( “bind_req” );
op_pk_nfd_set( bind_pkptr, “home_addr_net”, home_addr.net );
op_pk_nfd_set{ bind_pkptr, “home_addr_node”, home_addr.node );
/* send the registration packet */
udp_app_send({ iciptr, bind_pkptr, RECGC_REQUEST PORT
, rem_port, rem.net,. rem.node );
ftendif

}

/* deallocate resources after usage */
cop_ici_destroy( bind_iciptr };

FOuT
N }
void
process_bkbinding_request{ pkptr, iciptr, rcv_iciptr, objid }
Packet *pkptr;
Ici *iciptr;
Ici . *rev_iciptr;
objid objid;
{ , .
Packet *hind_pkptr;
Ip home_addr;
IP ) careof;
IP rem;
int rem_port;
Ici *ip_iciptr;
int status;
int lifetime;

FIN{ process_binding_request( pkptr, iciptr, rcv_iciptr, objid ) )

op_pk_nfd_get( pkptr, *home_addr_net”, &home_addr.net );
op‘pk_nfd_get( pkptr, “home_addr_node”, &home_addr.node );

op_ici_attr_get{ rcv_iciptr, “rem_net”, &rem.net };
op_ici_attr_get( rcv_iciptr, "“rem_node”, &rem.node };
op_ici_attr_get( rcv_iciptr, “rem_port”, &rem_port )

7

ip_iciptr = op_ici_create( “binding_command” };
op_ici_attr_set( ip_iciptr, “command”, READ_HA_BINDING J;
op_ici_attr_set( ip_iciptr, *“home_net”, home_addr.net );
op_ici_attr_set!( ip_iciptr, “home_node”, home_addr.nocde );
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op_ici_install( ip_iciptr );
op_intrpt_force_remote( BINDING_MAINTENANCE, objid };
op_ici_install( OPC_NIL );

op_ici_attr_get( ip_iciptr, “status”, &status );
if ( status == OPC_COMPCODE_FAILURE )

{ .

careof = home_addr;/* no binding exists */
lifetime = 0;

else

op_ici_attr_get{ ip_iciptr, “careof_net”, &careof.net );
. . op_lici_attr_get{ ip_iciptr, *careof_node”, &careof.node };
op_ici_attr_get( ip_iciptr, “lifetime”, &lifetime );

/* deallocate ici pointer after use */
op_ici_destroy( ip_iciptr );

bind_pkptr = op_pk_create_fmt{ “bind_update” };

op_pk_nfd_set( bind _pkptr, “home_addr_net”, home_addr.net });

op_pk_nfd_set( bind_pkptr, “home_addr_node”, home_addr.node );

op_pk_nfd_set( bind_pkptr, “careof_net”, careof.net );

op_pk_nfd_set{ bind_pkptr, “careof_node”, careof.node };

op_pk_nfd_set{ bind_pkptr, “lifetime”, lifetime );

/* send binding request via UDP port */

udp_app_send{ iciptr, bind_pkptr, REG_REQUEST_PORT, rem_port, rem.net, rem.node );

FOUT

}

void

process_binding_update( pkptr, iciptr, rcv_iciptr, objid )
Packet *pkptr; ’
Ici *iciptr;

Ici *rcv_iciptr;

Objid objid;

{ .

Packet *hind_pkptr;

1P home_addr;

IP careof;

Ip rem;

int rem_porg;

Ici *ip_liciper;

int lifetime, ack, status;

FIN( process_binding_update( pkptr, iciptr, rcv_icipfr, objid } )

op_pk_nfd _get( pkptr, “home_addr_net”, &home_addr.net );
op_pk_nfd_get( pkptr, “home_addr_node”, &home_addr.node };
op_pk_nfd get( pkptr, “careof_net”, &careof.net );
op_pk_nfd_get( pkptr, “careof_node”, &careof.node );
op_pk_nfd_get ( pkptr, “lifetime”, &lifetime );
op_pk_nfd_get!{ pkptr, "ack”, &ack };

op_ici_attr_get{ rcv_iciptr, *rem_net”, &rem.net };
op_ici_attr_get( rcv_iciptr, “rem_node”, &rem.node );
op_ici_attr_get( rcv_iciptr, “rem_port”, &rem_port );

ip_iciptr = op_ici_create( “binding_command” );

if ( (careof.net == 0 && careof.node == 0) || lifetime == 0 )

{

op_ici_attr_set( ip_iciptr, “command”, KILL_CA_BINDING );
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op_ici_attr_set( ip_iciptr, “home_net”, home_addr.net );
op_ici_attr_set( ip_iciptr, “home_node”, home_addr.node );

op_ici_install( ip_iciptr );
) ’ op_intrpt_force_remote( BINDING_MAINTENANCE, objid );
op_ici_install( CPC_NIL );

. else
\ { ‘
op_ici_attr_set( ip_iciptr, “command”, EDIT_CA_BINDING );
op_ici_attr_set( ip_iciptr, “home_net”, home_addr.net ); '
; op_ici_attr._set{ ip_iciptr, “home_node”, home_addr.ncde );
op_ici_attr_set{ ip_iciptr, “home_agnt_net”, rem.net );

' op_ici_attr_set( ip_iciptr, “home_agnt_node”, rem.node );
op_ici_attr_set({ ip_iciptr, “careof_net”, careof.net });
op_ici_attr_set( ip_iciptr, “careof_node”, careof.node );
op_ici_attr_set{ ip_iciptr, “lifetime”, lifetime };
op_ici_install( ip_iciptr };
op_intrpt_force_remote( BINDING_MAINTENANCE, objid );

. op_ici_install( OPC_NIL );

if { ack == true )

( .
bind_pkptr = op_pk_create_fmt{ “bind_ack” );
op_pk_nfd_set ( bind_pkptr, “home_addr_net”,” home_addr.net };
op_pk_nfd_set{ bind_pkptr, “home_addr_node”, home_addr.node );
/* send binding request via UDP port */
udp_app_send( iciptr, bind_pkptr, REG_REQUEST_PORT

, rem port, rem.net, rem.node );
) .
}

/* deallocate ici pointer after use */
op_ici_destroy{ ip_iciptr };

FOUT
} . . X'
' Bif ©
void
encap_pk_destroy{ pkptr )}
Packet *pkptr; .
( .
Packet *outer_pkptr, *inner_pkptr;
int i, num_fds, data_present;
char - fd_name[40];

‘FIN( encap_pk_destroy( pkptr ) )

outer_pkptr = pkptr;

while ( 1 )
num_fds = op_pk_fd_max_index( outer_pkptr };

for { data_present=false,i=0; i< num_£fds; ++1i )
{ .
op_pk_fd_index_to_name{ outer_pkptr, i, fd_name ); -
if ( strcmp( fd_name, “data” )} == 0.)
{ ' - .
op_pk_nfd_get( outer_pkptr, “data”, &inner_pkptr );
op_pk_destroy( outer_pkptr );

.
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data_present = true;

break;
}
}
/* no fields with name “data” */
if ( data_present == false )}
break;

outer_pKkptr = inner_pkptr;

op_prk_destroy( outer_pkptr );

FOUuT

}

#tendif

void

generate_bind_warning( dest, reg_objid, home_addr, target )
IP dest, home_addr, target;

objid reg_objid;

{

Ici *warn_iciptr;

. FIN( generate_bind_warning( home_addr, ) )

warn_iciptr = op_ici_create("bind_warn_ici”);
op_ici attr_set( warn_iciptr, “home_addr_net”, home_addr.net );
op_icl_atctr_set( warn_iciptr, “home_addr_node”, home_addr.node );

op_ici_attr_set( warn_iciptr, “dest_net”, dest.net );
op_ici_attr_set( warn_iciptr, “dest_node”,dest.node )i

op_ici_attr_set( warn_iciptr, “target_net”, target.net );
op_lici_attr_set{ warn_iciptr, “target_node”,target.node };

op_ici_install( warn_iciptr );
op_intrpt_force_remote( BINDING_WARN_TYPE, reg_objid );.
op_ici_install( OPC_NIL );

op_ici_destroy( warn_iciptr );

FOUT

}

void

encap_pk_send( pkptr )
Packet *pkptr;

{
FIN{ encap_pk_send( pkptr } }

/* insert encapsulated packet at the beginning of the queue */
/* op_subg pk_insert({ 0, pkptr, OPC_QPOS_HEAD };*/
op_subq_pk_insert{ 0, pkptr, OPC_QPOS_HEAD };

FOUT

}

void

check_ca_list( list_ptr, dest, home_agnt }
List *list_ptr; ’

IP dest;

IP *home_agnt;
(
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CA_mobility_binding*ca_entry;
int i, num_bind;
FIN( cheéeck_ca_list( list_ptr, dest, home_agnt ) )

num_bind = op_prg_list_size{ list_ptr };

for{ 1=0; i<num_kind; ++1i )
ca_entry = (CA_mobility_binding *) o
op_prg_list_access( list_ptr, i };

if ( IP_ecqual{ dest, ca_entry->home_addr ) )
{

home_agnt->net = ca_entry->home_agnt.net;
home_agnt->»node = ca_entry—>homé_agnc.node;
FOuT
}
}
home_agnt->net = ADDRESS_UNDEFINED;
home_agnt->node = ADDRESS_UNDEFfNED;

FoUuT

}

Compcode

insert_pk_buffer( buffer_ptr, buffer_ life, dest, pkptr )

List *buffer_ptr;

double buffer_life; .

IP dest;

Packet *pkptr;

{

int i, size;

~packet_buffer*entry_ptr; )
List *packet_list;
Ici . *iciptr;

FIN{ insert_pk_buffer( buffer_ptr, buffer_life, dest, pkptr ) )

if ( buffer life <= 0.0 ) )
FRET({ OPC_COMPCODE_FAILURE )

size = op_prg_list_size( buffer_ptr );
for ( 1=0; i<size; ++1i )

{
entry_ptr = (packet_buffer *) op_prg_list_access{ buffer ptr, i );
if ( IP_equal( dest, entry ptr->dest ) )
{ .

packet_list = entry_ptr->cache_list; )
op_prg_list_insert( packet_list, pkptr, OPC_LISTPOS_TAIL );

FRET( OPC_COMPCODE_SUCCESS )

/* no buffer for this destintation yet */
FRET( OPC_COMPCODE_FAILURE )




