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Abstract

In principle, the coding gain of a digital communications system can be improved through

the use of longer error control codes and soft-decision maximum-likelihood (ML) decoding.

Unfortunately, the implementation of such techniques is limited by the computational requirements

of the decoder. In this thesis, we consider several aspects of trellis-based ML, and 'near-ML',

soft-decision decoding of general linear block codes.

ML decoding is feasible for reasonably compact trellises using the Viterbi algorithm. For

general linear block codes we present simple methods for trellis construction that are based on

the methods of Wolf and Massey. It is confirmed that the trellises so constructed are minimal,

and an improvement of Muder's lower bound on the maximum trellis dimension is found. It is

shown that when equivalent codes are constructed by permutations of the symbol positions that the

resulting trellis dimensions are fixed near either end, while in the central portion of the trellis the

dimensions vary between Wolf's upper bound on the maximum dimension and a new lower bound

on the minimum dimension. This lower bound and the improved bound on the maximum trellis

dimension are exact for maximum distance separable codes. These bounds indicate that only codes

(and their duals) that have a smallest minimum distance min (dmi„, dm-L.) significantly less than

the corresponding Singleton bound can possibly have a compact trellis.

For trellises that are impractically large for decoding by the Viterbi algorithm, we consider near-

ML decoding using partial searches of a code trellis or tree. Despite the fact that this approach is

suboptimal in terms of the probability of error, it has the potential for an improved trade-off between

coding gain and computational effort. The decoding problem faced by a partial trellis search is

described in an alternative manner to Massey's variable-length code model. As part of this approach,

we specialize Massey's use of 'random-tails' in order to exploit a priori knowledge of the code

and information-symbol distribution used. As a result there are some minor changes to the usual



metric, but only in atypical situations — such as the use of unequal a priori information-symbol

probabilities, non-linear codes, and non-symmetric, non-binary discrete memoryless channels.

We introduce a simple and efficient (linear time) method for the selection of the best metrics

from among a number of contenders in a breadth-first search. This method can provide a sorted

set of survivor metrics during M algorithm decoding of binary linear block codes using only M

comparisons in the worst case. The application of the method to the decoding of convolutional

codes is also discussed.

We present a method for soft-decision decoding of general linear block codes that we refer to

as Reconfigurable Trellis (RT) Decoding. RT decoding carries out a partial search on a different

and more easily searched trellis (or tree) for the code. The trellis used for decoding is dependent

upon the reliability of the received data, so that it is determined 'on-the-fly'. Only a portion of the

reconfigured trellis needs to be constructed, as guided by the partial search. While RT decoding

requires some computational overhead prior to beginning each search, the search effort itself can be

very significantly reduced, so that overall an improvement can be achieved in the trade-off between

coding gain and computational effort.

With respect to the performance analysis of suboptimal soft-decision decoding schemes, we

extend the uniform error property of ML decoding of linear codes on a binary-input symmetric-

output memoryless channel to include the more general case of partial trellis searches. For RT-M

decoding of general linear block codes the uniform error property is used together with a novel

channel model and a very simple search technique to estimate the increase in the probability of error

over that of ML decoding. This approach can yield accurate results while avoiding the complexity

of considering numerous soft-decision output values, and without requiring detailed knowledge of

the code structure.
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Chapter 1

Introduction

Never discard information prematurely...
A.J. Viterbi [1]

THE reliability and efficiency of digital communications systems can be significantly improved

through the use of error control coding techniques. Although error control coding is one of

several potential techniques — including various modulation, diversity (time, space, frequency, etc.),

and retransmission schemes — these techniques are complementary. Communications systems can

employ some combination of these techniques to trade off reliability against various costs such as

bandwidth, delay, transmitted power, and hardware requirements.

In implementations of error control coding schemes, the complexity of the decoder is typically

the limiting constraint. However, improvements in decoding algorithms, in concert with the

increasing performance and decreasing costs of VLSI circuit technology, facilitate the utilization

of more powerful error control codes. The work presented in this thesis focuses on the decoding



Chapter 1. Introduction^ 1.1 The Decoding Problem

'bottleneck', and we consider efficient approaches to attain optimal and near-optimal decoding of

general linear block codes. By 'optimal', we mean that a decoder's probability of error is that of

a maximum-likelihood (ML) decoder. The motivation in considering 'near-optimal' decoders is to

obtain a significant decrease in decoding effort while incurring a negligible or a tolerable increase

in probability of error. As well, the motivation for considering general linear block codes is to

have a single method accommodate several applications, so that improved economies-of-scale may

be realized.

1.1 The Decoding Problem

Since we are interested in general codes, it is useful to consider the results of information theory

in guiding us towards useful codes. We recall the fact that improved performance is generally

obtained for longer codes. This is a direct result of the channel coding theorem, which in part

states that the expected probability of message error is upper bounded by [2]

< e-nEr(R),

where n is the block length, R is the code rate, and Er(R) is the random coding exponent. This

result applies to the ensemble of all randomly selected codes, thus guaranteeing that codes exist

that satisfy the bound of (1.1). For rates R below the capacity of the channel, Er(R) > 0, and thus

a longer block length will improve ensemble code performance.

Unfortunately, the desirable error control power of the longer codes comes mainly at a cost

of greater code complexity. This has constrained implementations to moderate blocklengths. The

objective is then not only to develop efficient decoding algorithms but to explore the trade-off

between the decoding effort and the probability of error. Different decoding algorithms can have

2
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Figure 1.1. Simplified Diagram of a Block Coded Communication System

substantial differences in error probability and in decoding effort when decoding the same code.

If a desired error probability is specified one should seek the combination of code and decoder

that minimize the decoding effort. In the absence of a performance specification, one should seek

decoders that are good in the sense of attaining low error probability with low decoding effort,

when operating on a specific code.

A simplified diagram of a communication system that employs error control coding is shown

in Figure 1.1. The (n, k) block encoder accepts k q-ary information symbols at a time, and forms

a codeword c = ( c1 c2 • c„ ) which is fed to the modulator. The modulator maps each

codeword into a continuous-time waveform, which is transmitted through the channel where it is

subject to degradation. The task of the receiver is to estimate from the channel output which

codeword was transmitted. We take as the criterion of optimality the probability of codeword

error. Ideally a maximum a posteriori (MAP) estimate of the transmitted codeword is formed, as

this minimizes the codeword error probability [3]. A brute force method of achieving this is to

compute an a posteriori probability for each codeword, and then select the largest. Since there are

qk codewords this brute force method is usually impractical. To decode more efficiently, a closer

examination of the problem is required.

3



Chapter 1. Introduction^ 1.1 The Decoding Problem

1.2 Hard-Decisions, Soft-Decisions, and the Discarding
of Likelihood Information

Figure 1.2 shows a system similar to Figure 1.1, except that four types of decoding schemes are

shown. For practical decoding the receiver processing is split into several sub-blocks, as shown,

with most of the blocks operating on discrete-time data.1 The purpose of Figure 1.2 is to display

the salient differences between the various decoders in terms of where information is discarded,

either by quantization or by intentional omission. In Figure 1.2, blocks that quantize or otherwise

discard information are shown shaded.

The demodulator delivers vectors of data to be processed by the decoder. The n vectors of

demodulator output r, are denoted as r = (r, r, • • r„ ). The demodulator output may include

channel state information during each symbol interval, which can improve performance.2

Consider the vector of demodulator output r, for the ith symbol. Let the demodulator output

be processed to yield symbol likelihoods, which can always be done without losing any relevant in-

formation [5]. This maps a r, into q symbol likelihoods ( f (r, I 0), f(r I 1), , f (r, q — 1) ).

Each of the four decoder strategies shown in Figure 1.2 is shown to have a likelihood computation

block which computes, for each symbol period, q symbol likelihoods. These q likelihoods per

symbol period are ideally all passed to the next stage of the decoder. Decoder strategies differ

significantly in the manner in which they handle these likelihoods, as discussed below.

A common simplification that is made to MAP decoding is to assume equally likely codewords,

in which case the MAP decoding rule simplifies to a Maximum Likelihood (ML) decoding rule

1^In practice, some of the blocks may not be explicitly separate as shown here (e.g. the likelihood computation block) since their function may
be handled implicitly by the demodulator or decoder.
2^A common example of channel state information is the estimation of the received signal level on a Rayleigh fading channel. For channel state
information we assume that the channel and modulation are of the SOCFES (State Observable Channel with Freely Evolving State) type, described
in [4]. The requirements for a SOCFES are that the observable channel states be independent of the modulated symbols and that the probability
distribution of the demodulator output for a symbol period depends only on the hypothesized transmitted symbol and the observed channel state.

4
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Figure 1.2. Some Block Decoder Strategies
Blocks with inherent performance losses due to quantization or ignoring some data are shown shaded. Dark

shaded lines indicate vector(s) of data transferred per symbol period. The block error probabilities
for the unquantized, errors/erasures, and hard-decision decoders satisfy PtiQ_< P- - EE < PHD• As

well, for typical quantized soft-decision decoders we have PtiQ < PQ < PEE < PHD •
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Chapter 1. Introduction^ 1.2 Hard-Decisions, Soft-Decisions, and
the Discarding of Likelihood Information

[3]. Under the assumption that the channel is memoryless3, the ML decoding rule chooses the

codeword c that maximizes

f (r1c) = H f(rd ci)
^

(1.2)
i--1

where each term in the product is the likelihood of the channel output r, given the hypothesized

symbol c,.

The unquantized soft-decision decoder shown in Figure 1.2 processes all of the exact (unquan-

tized) symbol likelihoods so that it can potentially deliver a ML decision. Let Pu(2 denote the

probability that the decoder output word is in error.

The quantized soft-decision decoder processes symbol likelihoods after quantization, a process

that has an inherently degrading effect on performance. While the effects of quantization can

be made negligible, in a practical implementation where the goal is to minimize the number of

quantization levels there will be some budgeted loss in performance, so that PQ > Pucj. If we

view the likelihood quantizer block in Figure 1.2 as being rather versatile — in the sense that

in addition to quantization it can perform scaling (i.e. multiplication by a constant), selection of

a maximum, and make comparisons against a threshold — then we can view errors/erasures and

hard-decision decoding as special cases of the quantized soft-decision decoder. The errors/erasures

strategy is formed by having the quantizer select, per each symbol period, the symbol element

that has the largest likelihood if the latter is above a certain threshold; otherwise all q symbol

likelihoods are set to zero. This action can be separated into first selecting the maximum symbol

likelihood, which is then followed by thresholding to 'flag' erasures, as shown in Figure 1.2. In

this way we can see that information is discarded at both steps. The probability of error for the

errors/erasures decoder is denoted as PEE. Typically the errors/erasures strategy discards more
3^Or, that the channel can be made memoryless by incorporating channel state infomiation (see previous footnote).

6
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the Discarding of Likelihood Information

likelihood information than the quantized soft-decision decoder, so that PEE is typically greater

than PQ. (Note however that in cases where one uses a very poor quantizer, the errors/erasures

decoder can outperform the quantized soft-decision decoder.) Finally, the hard-decision strategy

is formed by having the quantizer select, per each symbol period, the symbol that has the largest

likelihood and normalizing this likelihood to some standard value, then setting all other symbol

element likelihoods to zero. This can be viewed as tossing out the erasure information of the

errors/erasures decoder, as shown in Figure 1.2, so that PHD > PEE.

Comparing the block error probability of the four decoding strategies shown in Figure 1.2 we

have PuQ < PEE < PHD, and typically PUG2 < PQ < PEE < PHD • The decrease in performance

is concomitant with less likelihood information being passed to the final decoding block. It is hoped

that the decrease in performance arising from discarding likelihood information prior to the final

decoding block will be offset if there are significant savings in computational effort. The approach

taken in this thesis, however, is to attempt to achieve substantial computational savings without

discarding significant likelihood information prior to the final decoding block. We take the approach

that the soft-decision decoder itself should be the judge of when to discard likelihood information.

The motivation for this is twofold. First, retaining all of the likelihood information for use by the

soft-decision decoder can avoid an irrecoverable loss of coding gain. Second, the soft-decision

decoder may be able to exploit the soft-decisions to simplify its decoding task.

The loss of coding gain incurred by hard-decision decoding on the additive white Gaussian

noise (AWGN) channel with binary antipodal signaling is approximately 2 dB, for the ensemble

of randomly constructed block codes4 [3]. If we consider specific codes instead of randomly

constructed codes there are some other results available. For a code with guaranteed hard-decision

4^As the SNR is decreased, the loss can be shown to approach 101og10 (2/7r) = 1.96 dB.

7
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error correcting capability of

dram 1
t = ^

2^_I
(1.3)

Chase [6] has shown that as the SNR is increased, the use of ML soft-decision decoding will

effectively increase the error correcting capability to dm,„ — 1. This corresponds to an approximate

doubling of the error correcting power of the code given by (1.3). In terms of dB gain, the asymptotic

improvement is 3 dB. At practical signal to noise ratios the gain obtained is closer to 2 dB.

More significant gains can be realized using soft-decision decoding on some other channels. Of

considerable importance is an AWGN channel with Rayleigh faded signal amplitude and uniformly

distributed phase. Such a channel arises in mobile radio propagation at VHF/UHF frequencies in

urban areas [7]. Rayleigh amplitude fading was also considered by Chase, with binary antipodal

signaling. It was shown that the gain can be significantly larger than 3 dB, and that the gain will

increase further with SNR, since ML decoding results in a change in asymptotic behaviour from a

(t 1) th order to a dmth. order diversity system. Simulation results [6] for a (24,12) Golay code

show a gain of approximately 6 dB relative to hard-decision decoding, at a bit error rate (BER)

of 10-4.

While we have reviewed that the fundamental motivation for using soft-decision decoding

is that it can potentially exploit all of the available likelihood information, and in doing so

attain the theoretical minimum probability of error, we have not yet suggested how this might

be accomplished. The approach taken in this thesis is to employ tree and trellis representations of

general linear block codes, which enable the decoder to easily utilize soft-decision metrics. Soft-

decision decoding of convolutional codes has long exploited trees and trellises. ML decoding of

linear block codes has also exploited trellises (e.g. [8]) using the Viterbi algorithm (VA), provided

the trellis is reasonably compact. It is therefore of interest to know how to compute (and/or bound)

8



Chapter 1. Introduction^ 1.3 Organization of the Thesis

the trellis dimensions. As well, if the trellis is so large that a full search using the VA is impractical,

a partial tree or trellis search could be considered. In this thesis we consider several aspects of

general linear block code trellises, relating to their construction, dimensionality, and decoding via

both complete and partial searches.

1.3 Organization of the Thesis

In Chapter 2 we discuss trellis representations of general linear block codes. Improved methods

for constructing complete or partial trellises are presented, and new bounds on the trellis dimensions

are found.

In Chapter 3 we consider the case where a full trellis search is impractical and investigate some

aspects of partial trellis searches. We find an appropriate metric for discarding paths. We also

present a new method to efficiently sort path metrics.

In Chapter 4 we present a class of decoding techniques that exploit soft-decisions — not only

for the inherent coding gain — but to reduce the decoding effort. In doing so the techniques

completely restructure the tree or trellis search.

In Chapter 5 we conclude with a summary of contributions made and suggest some topics for

further research.

9



Chapter 2

Trellises for Linear Block Codes

"The trellis is the foundation for channel coding in the sense that the trellis associated
with the code is the primary determiner of the necessary effort for ML decoding."

J.L. Massey [9] .

T RELLIS representations of convolutional codes appear extensively in the literature. Origi-

nally, Forney pointed out that a convolutional code state diagram can be represented by a

"trellis" [10][111. With such a representation, ML decoding could then be viewed as a shortest-path

problem, and it became clear that the Viterbi algorithm (VA) is optimal — not only asymptotically

optimal as discussed in [12].5 The powerful and versatile combination of the VA with convolu-

tional code type trellises has since been successfully applied in many communications applications,

including maximum-likelihood sequence estimation in intersymbol interference and the decoding

of combined coding and modulation schemes [10[14].

5
^

The optimality of the VA was also shown by Omura in [13].
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Chapter 2. Trellises for Linear Block Codes

In contrast, trellis representations of block codes have been discussed much less frequently,

with only a few papers appearing within twenty years of the introduction of the convolutional code

trellis. Of these, the introduction of linear block code trellises appears in [15][8][9]. Recently,

in [16] and [17], trellis construction and the trellis state-space dimensions were re-examined. In

this chapter, we continue this examination of trellis construction and dimensionality for general

linear block codes.

In Section 2.1 we review some basic definitions related to trellises and their dimensions.

In Section 2.2 we review three methods for trellis construction and dimensional computations

introduced by Wolf [8], Massey [9], and Forney [16]. It is shown that Massey's and Wolf's trellises

are isomorphic6 and the isomorphism is derived.

In Section 2.3 we discuss minimal trellises (trellises with a minimal number of states) and we

utilize some of Muder's analysis in [17] to show that trellises generated using Wolf's or Massey's

method yield minimal trellises. This complements Muder's result that Forney's method yields a

minimal trellis [17].

In Section 2.4 three simplified trellis construction methods are presented for constructing

minimal trellises of general linear block codes. Also, a method for computing the trellis dimensions

is derived that is an alternative to the methods of [9] and [16].

In Section 2.5, we improve on a bound on the trellis dimensions due to Muder [17] and discuss

some other properties of the trellis dimensions. In particular, it is shown that when equivalent

codes are constructed by permutations of the symbol positions the resulting trellis dimensions are

A trellis is isomorphic to some other trellis if it differs only in the labeling of states at each depth PM

11



Chapter 2. Trellises for Linear Block Codes^ 2.3 Organization of the Thesis

fixed near either end, while in the central portion of the trellis the dimensions vary between an

attainable upper bound and a lower bound.

2.1 Code Trees and Trellises

In the communications literature, a tree or a trellis is commonly described as a graph that

represents each codeword of a code by a distinct path, with all paths originating at a single root

node. Each path is composed of branches, and a trellis differs from a tree in that its branches

merge as the trellis is traversed. Each branch may be assigned a number of codeword symbols.

For convolutional codes each branch usually represents the n channel symbols output during each

shift of k information bits into a rate R k In convolutional encoder. For block codes we usually

associate one channel symbol per branch although this need not be the case [9][16 ][17]. Punctured

convolutional [18][19] or block [20] codes are other examples where the resultant tree or trellis

may have a non-constant number of channel symbols per branch.

We now describe trellises more formally. Most of this discussion is a summary of some

definitions from Muder [17], with some alteration of notation.

Consider an edge labeled directed graph T = (V, A, E) consisting of a set of vertices V and

edges E, with each edge labeled by elements from an alphabet A. If V can be partitioned into

a union of disjoint subsets

V=VoUVIU•••UVn, (2.1)

such that every edge that begins at a vertex in V/ ends at a vertex in V, then T is called a trellis

of length 71. The vertices V/ of a trellis are commonly called the states (or nodes ) at depth (or

level) 1, and the edges are commonly called branches.
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Chapter 2. Trellises for Linear Block Codes^ 2.1 Code Trees and Trellises

A codeword c EC is usually represented in T by a path consisting of Ti branches labeled by

el , c2, , c„ from 170 to V. As mentioned earlier, one may group branches to form multi-symbol

branches.

An example of a trellis, under Muder's definition, is the usual code tree for C. We will denote

the code tree for C as T. The tree T is an example of a proper trellis, where a trellis is proper if

1/0 has a single state 0 (the root), every state belongs to some length n path, and no two branches

have the same initial state and label. For linear codes it is sufficient to limit our discussion to

proper trellises [17].

The set of states at depth 1 in T correspond to the set of heads of length 1. We introduce the term

head to refer to a length 1 initial portion of a codeword, i.e. if c (el, c2, , , c„) E C

then a head is ch (c1, c2, ,c). We use Muder's terminology of referring to the tail as the

length 7/ — 1 final portion of a codeword, denoted c1, so that when given a head ch if

(ch , c t) EC (2.2)

then ct is called a tail of ch .

The number of states at each depth of the trellis is of interest, since this largely determines the

ML decoding effort of both convolutional and block codes [9]. As in [17], let S1 denote the number

of states at depth 1 of a trellis of C, and let S = maxi Si, si = logq Si, and 8 = 'Ogg S. We refer

to si as the dimension of the trellis at depth 1, and s simply as the maximum trellis dimension.7

7^We note that in [17] that these terms refer to minimal trellises, which will be discussed in §2.3. Our present use of these terms to refer to
general trellises will not cause confusion, since at present we need not distinguish between minimal and non-minimal trellises. Moreover, it will
become apparent in §2.3 and §2.4 that all trellises considered in this thesis are in fact minimal.
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2.2 Review of Trellis Construction Methods

Trellis representations of convolutional codes arise naturally from the fact that the convolutional

encoder is a finite state machine. To construct a convolutional code trellis one can assign trellis

states to be a vector corresponding to the contents of the encoder shift register [10][11], and the

branches are labeled with the corresponding encoded symbols.

Constructing trellises for general linear block codes is less obvious than for the case of

convolutional codes. In this section we review trellis constructions for general linear block codes

due to Wolf [8], Massey [9], and Forney [16], with emphasis on the first two methods since they

form the basis for the simplified trellis construction methods discussed in §2.4.

2.2.1 Wolf's Trellis Construction Method

Trellis representations of linear block codes appear to have been first introduced by Bahl et al

[15], who showed that linear block codes may be represented by a trellis and examined a decoding

algorithm that minimizes the symbol error rate. Wolf [8] later discussed trellis construction in more

detail and emphasized that ML block decoding can be achieved using the Viterbi algorithm.

Wolf's trellis construction method for a general linear block code is based on the parity check

matrix.8 We show how the trellis for a code can be generated by first describing how any particular

codeword is represented. Let H denote the code's parity check matrix and let h, denote the it"

column vector of H. The generator matrix G corresponding to H contains rows that span a k

dimensional subspace of GF(q)71, and this subspace corresponds to the code. Recall that the row

space of H is an orthogonal complement to the row space of G, so that

HGT = 0.^ (2.3)
8^Wolf also discussed that a trellis for a cyclic block code can be generated in a manner similar to that for a convolutional code, in that one can
take as the state the contents of the encoder shift register.
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Equivalently, any codeword c E C satisfies

HcT = 0.^ (2.4)

The above expression can also be written as
71

^hici = 0
^

(2.5)

where cz is the^symbol in c. Equations (2.4) and (2.5) state that the syndrome of a codeword

is zero.

Consider the sequence defined by

0-0 = 01 Gri^hiCil Cr2^h2e2,^=^+ ^(2.6)

and observe that a„ is a recursive expression describing the formation of the syndrome. A path

through a trellis for a particular codeword can be traced as follows. Let the root node of the trellis

correspond to 0-0 = 0, the all zero n — k tuple. Let states at successive depths in the trellis be

given by o-i, 0-2, , u„. Thus the beginning and final states will be ao = 0 = a„. In principle, one

can think of the trellis as being generated by considering the paths traced by all codewords. Each

sequence of states in a path has a one to one correspondence with a valid codeword, since at least

one of the symbols in a codeword differentiates it from all other codewords, resulting in at least

one of the states in the sequence (2.6) for each codeword being different.

The formation of a state can be more concisely described using a head ch of length 1 and the

matrix Hh, which consists of the 1 initial columns of H. A state at depth 1 can then be written as

^HhchT.^ (2.7)

The trellis may be formed by tracing the sequence of all states, generated by all heads ch in (2.7),

for each subsequent depth. Wolf's trellis construction consists of two steps. In the first step all
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heads are used for all depths in (2.7), including those heads that do not belong to the code. This

adding together of all possible symbol weighted combinations of the columns of H yields a state-

space diagram, called the unexpurgated trellis, which represents all q" uncoded sequences. In the

second step Wolf then expurgates all paths that do not lead to the zero state at depth it, which then

leaves a trellis representing the code.

As a simple example consider the binary (5,3) code with parity check matrix given by

H=[ 1 1 0 0
0 1 0 1 1 (2.8)

The unexpurgated trellis is shown in Figure 2.1, and the final code trellis is shown in Figure 2.2.

With respect to the trellis dimensions, in [151[8] it was noted that since the state vector has

length it - k, the number of states is at any depth is at most q1—k• In other words, the maximum

trellis dimension s is upper bounded by it — k. In the example, the maximum trellis dimension

meets the upper bound of it - k = 2.
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0
^2^3^4

^5

Figure 2.1. Step 1 of Wolf's Trellis Construction Method for a Binary (5,3) Code
In this step this unexpurgated trellis is generated. A horizontal branch corresponds to a '0' channel bit.

0
^2^3^4^5

Figure 2.2. Step 2 of Wolf's Trellis Construction Method for a Binary (5,3) Code
The code trellis is obtained from the unexpurgated trellis by removing

all branches that do not lead to the all zero state at depth IL
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2.2.2 Massey's Trellis Construction Method

In [9] Massey discusses a trellis construction that utilizes the code's generator matrix. We will

demonstrate the trellis construction method using the code of the previous example, which is also

used in [9]. A generator matrix corresponding to (2.8) is

P1^P2
1 0 1 0 0
0 1^1^0 1
^

(2.9)
0 0 0 1 1

i2^i3

where we have labeled the information and parity bit positions as i1 , i2, i3 and p1, p2 respectively.

We may concisely summarize Massey's state assignment method using our earlier definitions of

the head and tail of a codeword. A state is assigned to be the vector of parity bits in the tail, as

determined by the information bits in the head. Hence, a state assignment at each depth of the trellis

can be written as a matrix equation using the appropriate submatrices of G. Let us assume that G

has been reduced to row echelon form, so that all non-pivot elements in the information-positions9

have been eliminated. Let P denote a matrix formed from G by extracting all the columns of G

that correspond to the parity symbols. For our example,

G=

P= (2.10)

  

Let Pt.) denote the submatrix obtained from P by retaining only the first j rows, and then of these,

retaining only those columns that correspond to parity bits that are in the tail. Massey's state

assignment method for a head of length I can then be expressed as

(2.11)

9^Throughout this thesis, 'the' information positions are those independently specified positions found by reducing the generator matrix from
left to right.
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where ih is the vector of information bits in the head, with j indicating the number of information

bits in ih . For our example, at depth 0 we have ih = 0, J = 0, and so ao = 0. At depth 1,

ih (i1), j = 1, and Pti = (1 0), so that states are assigned using

(i1)( 1^0).^ (2.12)

Similarly, at depth 2 we have ih = î2), J= 2, and

a2 =(i1 z2 )
.^(1^01). (2.13)

At depth 3, ih = (i1 i2), j = 2, and a single parity bit remains in the tail, so that

= ( 22 ) ) • (2.14)

Notice that a3 is a state vector of length 1, while 0-1 and a2 were of length 2. For convenience in

drawing the trellis, we can append leading zeros to any state to form a constant length state vector

of length n — k. At depth 4 we have,

0

azi = ( il i2 i3 )( 1^•
1

(2.15)

Finally, at depth 5, o-0 = 0. Figure 2.3 shows the trellis formed using the above equations, with

leading zeros appended to state vectors of length less than n — k. Note that while the state assignment

equations give row vectors, we will transpose them and use column vectors in indicating the states

on trellis diagrams.

Massey gives a more compact trellis than that of Figure 2.3, which is shown in Figure 2.4. The

more compact trellis can be found from Figure 2.3 by grouping the symbols at depths 2 and 3. (In

the example in [9], Massey finds the trellis of Figure 2.4 by first grouping the symbols and then

forming state equations similar to (2.12)—(2.15) .) We will concentrate on single symbol per branch

trellises (as in [17]) since this allows us to easily compare different trellises for the same code.
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7
^

2
^

3
^4^5

Figure 2.3. Trellis obtained using Massey's Trellis Construction Method for a (5,3) Code

2
^

3
^

4

Figure 2.4. An Alternate Trellis for the (5,3) Code
This version is identical to Figure 2.3 except for a grouping of
two symbols per branch for the transition from depth 1 to 2.

Comparison of the example of Massey's trellis in Figure 2.3 with the example of Wolf's trellis

in Figure 2.2 reveals that they are identical. To explain why this is so, first note that in Massey's

construction we began by reducing G to row echelon form to completely eliminate all non-pivot

elements in the information positions. The remaining columns specify the generation of the parity

symbols. Form a H matrix corresponding to G.1° In our example the generator matrix of (2.9) will

10^This can be done as follows. First, since G has been reduced to row echelon form, and has rank k, we can extract k columns that will form
an identity matrix Ik• This leaves n — k columns that form the matrix P. From the usual discussion of systematic linear block codes, a matrix of
the form [1k I P} is orthogonal to [—PT I I,_k]. We can form a parity check matrix for any non-systematic code by first extracting the parity
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give the corresponding parity check matrix of (2.8). Now, recall that in Wolf's trellis construction

method the state assignment equation (2.7) is

cr(W)^HhchT^ (2.16)

where here we have used the superscript (W) to indicate that this is Wolf's state assignment. Since

we require o-„ = 0 we must have

(W) 
1-

, Hi ct T^0^ (2.17)

where Hi is the tail portion of H (i.e. the last n — 1 columns of H) . Note that there will exist a

codeword tail, descending from this state, that has zeros in its information symbol positions. Let

cii denote such a tail. Then, the state o-vv) in (2.16) will also satisfy

a(vv) H i caT^0.^ (2.18)

The second term in (2.18) is precisely the vector of parity symbols in the tail corresponding to

information symbols in the head.11 Consequently, we can write

fitc/tT= 0 1(M)T^ (2.19)

where the (M)T superscript of or/ indicates that the right hand side of (2.19) is equivalent to

Massey's state assignment, transposed (and extended with zeros so that it has length 7? — k). Hence,

using (2.19) in (2.18) we have that

 

(W)^(M)Tal + a l^=0 (2.20)

   

columns from G to fonn P, then forming —PT and In-k, and finally forming H by placing the n — k columns of I,_k into the parity positions
(in order), and similarly placing the k columns of —PT into the information positions.
11^To see that this is so, first consider that c't has nonzero symbols only in the parity positions of the tail, and these symbols are determined by
the information symbols in the head. Next, consider that 11' has (by construction) columns in the parity positions that fomi an identity matrix, so
that the product Wel' will simply extract out the parity symbols of c'.
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or
(M)T^(W)= — a-

l^•
(2.21)

For the binary case this simplifies to

(M)T^(W)= (2.22)

and the state assignments of Massey's and Wolf's methods are equal (except for the transpose and

the extension of Massey's state vector with zeros). For the general nonbinary case the isomorphism

between Massey's and Wolf's state assignments is given by (2.21).

With regard to the trellis dimensions, it is discussed in [9] that the maximum number of states

at any depth of the trellis will be

max [rank(Pt3 )1 •^ (2.23)

For example, from (2.12)-(2.15), the largest rank matrix occurs for depth 2, with

p t2 = [^0 1
1

which has rank 2, indicating that the maximum number of states is 22. Also, since the dimension of

the trellis at each depth is the dimension of each of the P, we have for our example the following

dimensions;

(2.24)

depth 0 1 2 3 4 5
si 0 1 2 1 1 0

(2.25)

In closing, we emphasize that the main difference between the methods of Massey and Wolf

is that Massey directly calculates the allowed states; instead of generating a trellis representing all

uncoded sequences and then expurgating tails that do not reach the toor.12
12^In [9] the state o-„ =_ 0 is called the toor, as it is the root node of the trellis viewed from the reverse direction.
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2.2.3 Forney's Trellis Construction Method

In 1161 Forney's construction of linear block code trellises utilizes a trellis oriented generator

matrix. We briefly review his approach below, drawing upon Forney's terminology but with some

alterations.

Consider the generator matrix G for an (n, k) linear block code C, and an associated trellis T.

The states at depths 0,1, ... , n will be indexed by 1.13 Choose some depth 1 at which we divide the

code's symbols into the past and the future. By the past we mean symbols before a node at depth

1 while the future corresponds to symbols after depth 1.14 Consider the subcode Cp consisting of

all the codewords that are all zero in the future. Now, in 1161 the span of a vector refers to the

range of coordinates between the first and last nonzero coordinates, inclusive. Hence, the span of

Cp is in the past. This past subcode Cp may be specified by a number Kp of generator matrix rows

(generators). Similarly, we define the subcode C1 consisting of all the codewords that are all zero in

the past, i.e. their span is in the future, and may be specified by K1 generators. Now, the codewords

of C can be specified by k generators, of which we can account for Kp K1 using the past and

future subcode generators. This leaves a need for K, = k — Kp — K f generators which necessarily

span parts of both the past and futurels. We will refer to this code as the spanning code, C.

One may calculate the trellis dimensions by first reducing G to exhibit generators for C1 and

Cp, then counting Kf and lip at each depth and using K, = k — K1— K. Alternatively, after

reducing G one can find K, by inspecting the matrix to count the number of generators belonging

to Cs at the depth. In other words, K, will be the number of generators that cover the depth.

13^We have used the term depth, instead of position as used in [16], to refer to the indexing of nodes through the trellis in order to avoid confusion
with our use of position to index the n codeword coordinates.
14^Fomey's terms past and future correspond to the terms head and tail, respectively.
15^The dimension K, is Fomey's notation for the state-space dimension at sonic depth, where elsewhere we have used s1 to denote the state-space
dimension at depth 1.
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We now demonstrate Forney's method of dimension calculation and trellis construction using

the example (5,3) code. A trellis oriented generator matrix for the code is

1
0
0

0
1
0

1
1
0

0
1
1

0
0
1

(2.26)

from which we can determine the following dimensions;

depth 0 1 2 3 4 5
Kp 0 0 0 1 2 3
K f 3 2 1 1 0 0
Ks 0 1 2 1 1 0

The trellis construction proceeds as follows. First, note that the trellis oriented generator matrix

for some depth can be partitioned as

G p 0
0^G f^ (2.28)

Gs!' Gt.,

so as to display the past and future subcode generators as well as the generators for the spanning

code. The spanning code generators are shown as being split into their head and tail portions.

Forney's method labels states at a depth with all the codewords generated by the heads of the

spanning code, Gsh.

For our example, we obtain the following state assignment equations, by reading off GI: for

each depth from (2.26)

ao^0
^

(2.29)

= (ii)(1)^ (2.30)

0-9 (2.31)
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cY3 = (i2)( 1 1) (2.32)

0-4 = (i3)( 0 1) (2.33)

o-5 = 0 (2.34)

These equations generate the trellis shown in Figure 2.5.

0
^2^3^4^5

Figure 2.5. Trellis obtained using Forney's Trellis Construction Method for a (5,3) Code
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2.3 Minimal Trellises

We are interested in trellises that have the fewest number of states. In [17], Muder defines

a trellis T for a code C to be minimal if for every trellis T' for C the number of states at each

depth is minimal, i.e.

(2.35)

Muder showed that minimal trellises exist for every linear block code as well as determining the

conditions for minimality. The approach was to begin with a tree / and then view trellis states as

representing heads in T that satisfy a certain equivalence relation. For a trellis to be minimal, it

is necessary and sufficient that a state at depth I be assigned to those heads Ch of the tree / that

satisfy the equivalence relation

C r•-'t
C lh (2.36)

where —1 indicates that ch and Cih share the same set of tails. The equivalence classes resulting

from the partitioning of heads by at depth 1 form the set of states V1 for a minimal trellis. All

minimal trellises for a given code are isomorphic [17, Theorem 1].

In [17], Muder used this minimality condition (i.e. that minimal trellises have states assigned

according to the equivalence classes) to show that Forney's construction method yields a minimal

trellis. Here, we use Muder's minimality condition to prove the following proposition.

Proposition 2.1: Wolf's method [8] for constructing trellises for general linear block codes, and

Massey's method [9], yield minimal trellises.

Proof: Since we have shown earlier that Massey's trellis construction method results in a trellis

that is isomorphic to the trellis generated by Wolf's method, it is sufficient to show that Wolf's

method results in a minimal trellis.
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If an (Ti — 0—tuple ci is to be a tail of ch then we must have from HcT = 0 that

HhchT^HictT.^ (2.37)

Equation (2.37) implies that for two heads Ch and cth to share a tail we require that

HhchT = Hyla.^ (2.38)

Also, heads that satisfy (2.38) and (2.37) will share all of their tails. In other words, heads that

satisfy (2.38) and (2.37) will belong to an equivalence class defined by —t . From Muder's condition

that a minimal trellis can be constructed by assigning a state to those heads in a —t equivalence

class, we can construct a minimal trellis by assigning a state to those heads that satisfy (2.38)

and (2.37). However, this is precisely the state assignment definition (2.7) used in Wolf's trellis

construction method.

2.4 Simplified Trellis Construction Methods

We now describe three simplified methods of constructing a minimal trellis for general linear

block codes. The methods avoid the generation/expurgation of heads using Wolf's unexpurgated

trellis, and also avoid matrix multiplication at each state computation as in Massey's and Forney's

methods. Some other features also contribute to their simplicity, which will be summarized at the

end of this section.

2.4.1 Method 1

Method 1 assigns each state to be a vector of parity check symbols, just as in [15] [8]. The

resulting trellis will be isomorphic to these trellises, and so will be a minimal trellis. Our presentation
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of the trellis construction method begins with finding an alternative method for assessing the trellis

dimensions. This method of assessing the trellis dimensions will give identical results to Massey's

and Forney's methods since all of these trellises are minimal.

The parity check matrix type trellises of [15] [8] assigns as a state to a head the vector (partial

syndrome) formed by summing columns of H weighted by the corresponding head symbols. To

find the trellis dimensions we will consider the dimension of the column space of partitions of H,

where a partition of H consists of head and tail submatrices. The head submatrix Hh contains the

first 1 columns of H and the tail submatrix contains the remaining n — 1 columns.

Elementary row operations on H will not change the solution to HcT = 0, so that we are free

to construct trellises from such transformed parity check matrices. Although any set of elementary

row operations on H will preserve the code, here we prefer to put H into a standard form, denoted

ilstd, for reasons that will be discussed later. The actions to be performed on H to reduce it to

standard form are summarized in Figure 2.6. First, Step 1 uses elementary row operations to reduce

H to lower trapezoidal form, with the elimination proceeding from right to left and bottom to top.

Since the rank of H is n — k this reduction will yield n — k tail pivots, whose column positions are

indicated in Figure 2.6 by downward pointing arrows along the top of the matrix. For any head/tail

partition of H, this step will identify tail pivots with corresponding columns that can be taken as

basis vectors for the column space of Ht. (This follows from the fact that pivots found by row

reduction also correspond to the pivot locations found if column reduction was used 1121[.) The H

matrix after Step 1 will be denoted H1. The second step is to use elementary row operations, except

row exchanges, to find n — k head pivots, by proceeding from left to right and from top to bottom.

The resulting matrix is the desired 'Ltd, and the column positions of the head pivots are indicated

in Figure 2.6 by upward pointing arrows along the bottom of the matrix. For any partition of H the
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0+4 f+Head Pivots

Step 2: Row reduction,
top left to bottom right,
without row exchanges,
yields Hstd

Tail Pivots
+++ ++++

Chapter 2. Trellises for Linear Block Codes^ 2.4 Simplified Trellis Construction Methods

Step 1: Row reduction,
bottom right to top left,
yields lower trapezoidal form,
H1

Figure 2.6 Reduction of Parity Check Matrix to Standard Form.
The *'s represent the row and column position of the pivots.

head pivots identify those columns that may be taken as basis vectors for the column space of Hh.

Now consider the formation of the trellis using Hstd. Any codeword satisfies (2.5), or

equivalently
^fechT HyT^ (2.39)

where, in order to simplify the notation, we have used H for Hstd. We may rewrite (2.39) as

cli 
+ HtciT 0 (2.40)

where cy/ is the state for ch at depth /. Consider an extension from depth / to depth / 1, with

the new state given by

^= 0-1 + hi+ I^.
^ (2.41)
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Proposition 2.2: Let /h and h denote the set of symbol positions at which head and tail pivots,

respectively, are found in H. Then the increase in trellis state-space dimension after an extension

from depth / to / 1 is

{^

o^14-ict Ih, 1+1V h
1^1+1 E Ih, 1 + 1 CZ It—1 1 d - - 1 ,Z Ih, 1+1EIt
0^1+1E1h, 1+ 1 E it

(2.42)

Proof: Let Hh(ext) denote Hh after extension of the heads to depth / 1. Similarly, let Ht(et)

vext,denote Ht after extension. During extension, the column ht+i is transferred from Ht to Hitt

For any state at depth / 1, we must have from (2.40) that

+ Ht (e xt) ct(ezt)T^0^ (2.43)

where ct(t) the codeword tail for c after extension of the head to depth /^1. Since (2.43)

expresses an linear dependence condition it must hold that the state-space of the heads at depth

/ 1 is spanned by the columns of Hi (t). We consider the four cases in (2.42) in turn.

Case (i) /^1^Ih, 1 + 1 CI It. With /^1^Ih, then the state-space dimension cannot be

increased, since 1-4+.1 is not linearly independent of Hh. Also, with / 1 V It the columns of

Ht(t) span the same space as those of Ht, so that any state in existence at depth / will also satisfy

(2.43). Hence st+i — = 0.

Case (ii) / 1 E Ii,, / 1 V It. With / 1 V It we have from Case (i) that all states in existence

at depth / will also satisfy (2.43). With / 1 E It, the state-space dimension will increase by

one, provided all such states satisfy (2.43). This will be true since the transferral of ht+i from
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Ht to Hh(ext) does not change the span of lit(ext), thus the inclusion of 1-1/+1 in Hhtext) adds a

dimension without violating (2.43).

Case (iii) / 1 CZ hi, 1+1 E I. As in Case (i), with / 1 1), the state-space dimension cannot

be increased. Assume that the state space dimension remains constant. This would require that

Ht() span the same space as Ht. However, this is not the case since 11/±1 is not in the span of

Ht(ext), so that the state space dimension must be reduced by one.

Case (iv) / 1 E 1 +1 E I. Here the effect of the transferral of hi+i may be viewed as

increasing the dimension of the extended state—space due to the fact that 1-1/+1 is a basis vector

for Hh(ext), followed by a decrease in dimension due to the fact that hi+i, while being in the

span of Hh("t), is not in the span of lit(ext). Hence the result is no net change in the state-space

dimensionality.

Evaluating the trellis dimensions from a parity check matrix in standard form using Proposition

2.2 is particularly simple. One needs to simply increment the dimension by one for each head

pivot and similarly decrement it for each tail pivot. As an example, we return to our (5,3) code

example, with its parity check matrix;

1
1^1 o 01

0 1 o 1
1

11

(2.44)

which happens to already be in standard form. We have indicated the positions of the head and tail

pivots with up and down arrows, respectively. Beginning at depth 0 with so = 0 and working to

depth 5, we increment si for each 'up' arrow and decrement it for each 'down' arrow, to obtain

depth 0 1 2 3 4 5
Si^0 1 2 1^1 0 (2.45)
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For the purpose of finding the trellis dimensions, it is sufficient to have H in standard form,

but it is not necessary. All that is required to use the increment/decrement rule of Proposition 2.2

is to have reduced the parity check matrix to expose the head and tail pivots.

By viewing H as the generator matrix for C1 (the dual code to C) the reduction of H to expose

the head and tail pivots will yield a trellis oriented generator matrix for C1. Moreover, since Forney

showed that the state-space dimensions for C or its dual CI are identical [16] we can compute the

trellis dimensions beginning with either G or H, then reducing (which finds a matrix which can be

considered to be a trellis oriented generator matrix or a parity check matrix with head/tail pivots

exposed), and then finally computing the trellis dimensions by counting the number of spanning

generators or by incrementing/decrementing a dimension 'counter' according to the positions of the

head/tail pivots. We comment that the increment/decrement method of Proposition 2.2 is somewhat

simpler, since at each depth one needs only to 'bump' a counter after inspection of 2 items (the up

and down arrows that indicate the pivot positions); as opposed to inspecting k items (the rows of

G) and counting up all those that meet a test of whether they belong to the spanning code.

Trellis Construction: Method 1.

A minimal trellis can be constructed in a breadth-first manner and without the codeword

expurgation used by Wolf [8], as described below. The parity check matrix to be used can be

H1 or Hstd, or any H matrix that has been row reduced from 'right to left' to find tail pivots. We

will refer to a position at which there is a tail pivot in the reduced matrix as a constraint position.

Trellis Construction (Method 1)

1. Initialization: Set 1 = 0, o0 = 0, Vo = {0-0} so that at depth 0 the set of states

170 consists only of a root.
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2. Constraint Position Test: If the position / 1 V It the extension is unconstrained;

perform step 3. If the position 1+1 E It the extension is constrained; perform step 4.

3. Unconstrained Extension: For all states crt in Vb p%%[ Error: timeout; OffendingCommand

=^+^hi+1^,j = 0,1,...,q— 1^(2.46)

and label each branch from at to 07+1 with its associated symbol al. (This extends

each state at depth / with q branches to states at depth / 1.) Perform step 5.

4. Constrained Extension: For each state at in Vt; Let ck, denote the value of the

state vector element which corresponds to the row of the tail pivot at position /. Let

= —ac denote the additive inverse of cyc. Set

^crl+1 =^atchi+i^ (2.47)

and label the branch from ai to al+1 with cV,.. (This extends each state at depth /

with only a single branch.)

5. Termination Test: If / = n — 1 the trellis is complete. Otherwise increment / and

perform step 2.

Using parity check matrices that have been reduced to lower trapezoidal form, such as H1

or Hstd, offers a minor advantage in that the state extensions at each constraint position become

slightly easier to construct. A pointer initialized to 0 and incremented at each constraint position

can be used to pick off a, from the state crt• The resulting trellis will have the characteristic that at

each successive constraint position the remaining leading element of the state vector is disallowed

(i.e. must be zero). Using parity check matrices that have been reduced to standard form allows

the trellis dimensions to be computed prior to trellis construction.

As an example, consider a Hamming (7,4) code specified by the parity check matrix
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1 1 1 1 0 0 0
0 0 1 1 1 1 0
0 1 0 1 1 0 1

444
0 1 2 3 2 2 1 0

which can be seen to have been obtained by interchanging positions 1 and 5 of a systematic parity

check matrix. In this case, the matrix is already in standard form, and we have indicated the head

and tail pivots along with the resulting trellis dimensions. The corresponding trellis appears in

Figure 2.7 which shows the leading ('most significant') bits of the state vector being successively

disallowed at each successive constraint depth.
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Figure 2.7 Trellis for a (7,4) Hamming Code Generated using Method 1
The trellis was generated from a parity check matrix in lower trapezoidal form, which results in the most

significant bits of the state vector being successively disallowed at each constraint depth.
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2.4.2 Method 2

Method 2 is a refinement of Method 1, in that the state extensions are even simpler to compute.

This simplification of the state computations occurs at constraint positions.

For Method 2, the parity check matrix is reduced to row echelon form, so that each pivot is

the only nonzero element in its column. We again require that the reduction of H be carried out

from right to left and from bottom to top. The resulting form will be similar to that of H1 as

shown in Figure 2.6, except that complete reduction is used to eliminate all nonpivot elements.

Let the resulting matrix be denoted as H2. For the example parity check matrix on page 33, we

obtain H2 as

I I

1^1^o o 1^1^o

^

1 1 1 o o o^ (2.48)

o 1 o 1 o 1
In the following algorithm, steps 1 and 2 are slightly modified versions of the respective steps in

Method 1, and steps 3 and 5 are identical to the respective steps in Method 1. The main change

of Method 2 with respect to Method 1 is in step 4.

Trellis Construction (Method 2)

1, Initialization: Set / = 0, o-0 = 0, V0 = {0-0} so that at depth 0 the set of states Vo

consists only of a root. Initialize a counter ip to 0. (The counter ip will be used to

point to successive elements of the state vector.)

2. Constraint Position Test: If the position / 1 ,% It the extension is unconstrained;

perform step 3. If the position /^1 E It the extension is constrained; increment

ip and perform step 4.

3. Unconstrained Extension: For all states a/ in^perform

cri±i =a1 + 1h1+1^, j = 0, 1,^, — 1^(2.49)
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and label each branch from ai to ai+i with its associated symbol al. (This extends

each state at depth / with q branches to states at depth / 1.) Perform step 5.

4. Constrained Extension: For each state cri in 1; Form 07+1 by setting the iti; element

of a/ to zero. Let a, denote the value of the it); element in the state vector 07, and

let ctic, = —a, denote the additive inverse of ac. Label the branch fromtoa/ .._ 07+1

with cVc. (This extends each state at depth / with only a single branch.)

5. Termination Test: If / = n — 1 the trellis is complete. Otherwise increment / and

perform step 2.

Method 2 makes explicit use of a counter (i p) to point to successive elements of the state vector

at each constraint depth. More importantly, the row echelon form of H2 is exploited to simplify

the next-state formation at a constraint depth. The state vector element pointed to by ip is simply

set to zero. Figure 2.8 shows the resulting trellis.
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1^2^3^4^5^6^7

Figure 2.8 Trellis for a (7,4) Hamming Code Generated using Method 2
The trellis was generated from a parity check matrix in a modified row echelon form, which facilitates the next-state

computation at constraint positions. At each constraint-position it can be seen that the next-state is formed
from the present state by simply setting the remaining most significant bit of the state vector to zero.
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2.4.3 Method 3

Method 3 is a simple modification of Massey's trellis construction method for non-systematic

linear block codes [9]. Method 3 is a simplification of the method of [9] in that it avoids matrix

multiplication to extend each state to the next depth. As in [9], we begin by reducing G to row

echelon form, to completely eliminate all non-pivot elements. As discussed earlier, let P denote

the matrix formed by extracting the n — k columns of G that correspond to the parity positions.

Also, let pm denote the nith row of P, and let ptn, denote the tail of the mth row of P (i.e. pt„,

consists of the elements in the mth row of P that correspond to positions in the codeword tail.). In

the following algorithm, steps 1 and 2 are similar to the respective steps in Method 2, while step

5 is identical. The main differences from Method 2 are in steps 3 and 4.

Trellis Construction (Method 3)

1, Initialization: Set 1 = 0, cro = 0, Vo { so that at depth 0 the set of states

Vo consists only of the root. Initialize an information-symbol counter i/ to zero.

Initialize a parity-symbol counter i p to zero.

2. Constraint Position Test: If the position 1+1 cE It the extension is unconstrained;

increment i1 and perform step 3. If the position 1+1 E It the extension is constrained;

increment i p and perform step 4.

3. Unconstrained Extension: For all states o-/ in 1, perform

= i + ajp 1 ,j =0,1,...,q —1 (2.50)

and label each branch from cri to cri+i with its associated symbol a3. Here pt,1 is the

tail portion (i.e. the last n — k —ip elements) of the row of P. (This step extends

each state at depth 1 with q branches to states at depth 1 + 1.) Perform step 5.
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4. Constrained Extension: For each state a/ in Vi; Form 0-/+1 by setting the itp element

of cri to zero. Label the branch from a/ to cri±i with the i1/11, element of ai. (This

extends each state at depth 1 with only a single branch.)

5. Termination: If 1 = n — 1 the trellis is complete. Otherwise increment 1 and

perform step 2.

2.4.4 Discussion

Method 1 utilizes any form of the parity check matrix that has been row reduced from 'right to

left' to find tail pivots. In particular, Method I can be used with a parity check matrix in 'standard'

form,16 which facilitates the computation of the trellis dimensions as well as the trellis construction.

Method 2 is a specialized version of Method 1, and uses the parity check matrix reduced to

modified row echelon form. While Method 2 does not directly provide the trellis dimensions, it

greatly simplifies the next-state formation at constraint-positions. Indeed, there need not be any

modification made to state vectors when extending them to constraint positions, if we agree to mask

off (ignore) each successive leading bit of the state vector as indicated by the counter ip. This

can be done since each state at a constraint depth is known to have a zero element in the position

indicated by the counter ip.

Method 3 utilizes the generator matrix reduced to row echelon form, and its state assignment

requires similar effort to that of Method 2. Branch labeling at constraint positions is perhaps

simplest in Method 3 since the branch label is simply taken to be the value of a particular element

of the state vector, while in Method 2 the label is the additive inverse of the same. However, this

minor advantage does not exist for binary codes.

16^The `standard form' parity check matrix }Tsui is equivalent to Fomey's 'trellis oriented generator matrix', except for a specified ordering of
the rows to have the matrix in lower trapezoidal form.
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We emphasize that each of Methods 1, 2, and 3, share the following principal advantages over

previous methods. They avoid the generation of an unexpurgated trellis (followed by expurgation

of invalid tails) as used in [8] for general linear block codes. They also avoid matrix multiplication

at each extension to form the trellis, as used in [9] for non-systematic linear block codes, or as

used in [16] for general linear block codes.

The simplified trellis construction methods can also be used to construct and search partial

trellises. As will be discussed in subsequent chapters, partial trellis or tree searches are useful

where the full trellis is so large that the storage, generation, or searching of the entire trellis is

unfeasible. The simplified trellis construction methods presented here should be useful in the

construction of partial trellises 'on the fly', as guided by the search algorithm, so that only the

portion of the trellis that needs to be explored is generated.

2.5 Bounds on Trellis Dimensions

Since the number of states in the trellis affects the ML decoding effort it is not only of interest to

construct a minimal trellis but also to have simple bounds on the number of trellis states attainable

for different code parameters (n, k, d,„) [17]. A complication arises in that the trellis state space

dimensions can be altered by a permutation of symbol positions, as pointed out by Massey [9] and

others, including; Bahl et al[15], Matis and Modestino [22], Muder[17], and Kasami et al [23].

Bahl et at [15] and Wolf [8] established a simple upper bound on the maximum trellis dimension.

Muder [17] introduced some lower bounds on the maximum trellis dimension of a minimal trellis.

Herein we improve on Muder's bound for general linear block codes. As well we show that the

variability of trellis dimensions due to symbol position permutation is limited to a central region of
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the trellis. The dimensions in the fixed region are determined and we give a simple lower bound

on the minimum trellis dimensions in the variable dimension region.

In [15] [8] it was noted that a parity check matrix based trellis will have s < n—k, which follows

from the fact that there are n — k symbols in the state vector. Also, since there are qk codewords,

or using the fact that the state-space dimensions of the dual code Ci (with k parity check symbols)

are identical to C [16], we have also that s < k. These upper bounds are summarized as

s < min (k, n — k).^ (2.51)

The first new result of this section is the following proposition.

Proposition 2.3: For any linear block code C the state-space dimensions at the d consecutive

depths at either end of the trellis are

/^/ E {0, 1, 2,^, d —
n — 1^1 E {n — (d —1),...,n — 1,n}

for any symbol position permutation, where

d rnin (drmit, dIznzn)

(2.52)

(2.53)

is the smaller of the minimum distances of the code C or its dual CI.

Proof: We first show that si^/, / E {0,1, 2,^, d — 11. For this, from Proposition 2.2 it is

sufficient to show that / E h, and / It for 1 C {1, 2, , d — O. The fact that any dmin — 1

columns of H are linearly independent implies that there will be dmi„ — 1 head pivots in positions

1, 2, , dmin — 1, so we have / E Ih for 1 E {1, 2,..., drnin —1}. The minimum weight of

any row in H is d„, since H = GI. The earliest that a tail pivot can possibly occur is for the

case where a minimum weight row has all of its nonzero symbols bunched together in the earliest

positions. This corresponds to a weight di
71 

row having its di nonzero symbols in the first di
77221/7722^ mzn
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positions. Consequently, the earliest that a tail pivot can occur is at depth dn, so that 1 V It for

1 E {1, 2,^, dimm — 1}. This fact plus the fact that 1 E /h for 1 E {1, 2,^, dmi„ —1} implies

that 1 E ,1 h for 1 E {1,2, ,d — 1}, where d min (dm,„, d7-Lnin). Finally, to establish

that sl n — 1 for 1 E {n — (d —1),..., n — 1, n} we observe that the above arguments hold when

viewing the parity check matrix in the reverse direction from depth n  

Proposition 2.3 provides us with a lower bound on the minimum trellis dimension as follows.

Corollary 2.3.1: For any linear block code the maximum trellis dimension satisfies

s > min^— 1, d„ — 1)^ (2.54)

or equivalently,

s > d — 1.^ (2.55)

Proof: For a code and its dual with smallest minimum distance d, Proposition 2.3 indicates that

the trellis dimension at depth d —I will always be d —1, so that the maximum trellis dimension is

at least this value.

Corollary 2.3.2: If C is a maximal distance separable (MDS) code, then

S = min (k, n — k).^ (2.56)

Proof: For an MDS code d„„„ — 1 = 71 - k so that any 71 - k codeword positions are parity

positions and any k positions form an information set. (In other words, any k codeword positions

are independently specified, and the remainder are forced by the constraints of the code.) Now,
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viewing H as the generator matrix for C1, we have that any n — k positions are independently

specified and hence any k positions form a parity set, i.e. any k columns of H-L will be linearly

independent. Hence dimin —1 = k and C1 is MDS. So, using dmi„ — 1 = n— k and (171ii71 — 1 = k in

Corollary 2.4.1 we have s > min (k, 71 — k). This, combined with the fact that s < min (k, i — k)

establishes (2.56).

That MDS codes have a maximum trellis dimension given by (2.56) was shown by Muder

[17] by bounding the dimensions of the past and future subcodes. Using the same method Muder

obtained the following lower bounds on .5,

 

s > min (k, n — k 2A)

8 > min — k, k — 2A-L) (2.57)

where

and

A^71 k (dmin^1) (2.58)

Al k — (di„ — 1).^ (2.59)

To see that Corollary 2.3.1 improves on (2.57), we simplify (2.57) as follows

s > min (k, n — k — 2A, n — k , k — 2A-L)

= min (72 — k — 2A, k — 2A-L)

— min (dnizn — 1 — A, d 71 — 1 — A1)^ (2.60)

where we have used the fact that A > 0 and that A1 > 0. Comparing the equivalent form (2.60)

of Muder's bounds (2.57) to Corollary 2.3.1 (2.54) reveals our improvement in that the terms A

and Al have been eliminated.
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For example, the Golay (24,12,8) code has A =^= 5 and Muder's bound of (2.57) yields

s > 2 , while Proposition 2.3 gives s > 7. This is significantly closer to the known results for the

smallest s possible for this code, which is 9 [17].

Proposition 2.3 indicates that the trellis dimensions for the first d — 1 consecutive depths at

either end of the trellis do not vary regardless of symbol position permutation. We will refer to

these depths, 1 < d,1 > n — d, as fixed dimension regions. Between these fixed dimension regions

the trellis dimensions may vary with symbol position permutation, and we refer to these depths

d < is < 71 - d as the variable dimension region. We now lower bound the minimum dimension

of the variable dimension region,

/ LS^•
8 = 111111^11-1111^($h)

(VP)G [d< h <n—d
(2.61)

 

where P denotes a permutation matrix. Hence (VP)G generates all permutations of symbol

positions of G and the corresponding equivalent codes.

Proposition 2.4: A lower bound on the minimum dimension of the variable dimension region is

s' > max [0, min (dmi„ — 1 — A, drn- i„ — 1 — Ai)].^(2.62)

Proof: Consider a (n,k,din,„) code C. Either we will have d = dm,„ or d = din... First, assume

that d = dmi„. From Proposition 2.4 we have that the trellis dimensions are dm,„ — 1 at depth

dm,„ — 1, independent of any permutation of symbol positions. From Proposition 2.2 recall that a

decrease in dimension is possible at a tail pivot, of which there are n — k. Now d„„„ —1 of these are

confined to consecutive positions at the toor, so there are A = n — k — (d„„„ —1) tail pivots which

may change positions for equivalent codes obtained by symbol position permutation. Hence, a lower

bound on the smallest state-space dimension would be if all A tail pivots followed position din „ — 1,
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before any remaining head pivots, resulting in s' > dm,„ — 1 — A. Now assume that d dn, so

that we consider the code CI with minimum distance dimjii and k pivots. Repeating the argument

used above for the code C, we have that s = diffiz„ — 1 at depth dim,. — 1, and s' > d' ^—

These two cases and the fact that 8 > 0 give Proposition 2.4.

Note that Proposition 2.4 may also be used to show that MDS codes have s = min (k, n — k),

since A = A-L = 0 and the lower bound on the minimum state-space dimension (2.62) will agree

with the upper bound of (2.51).

In light of Proposition 2.4 we revisit Muder's lower bound on s given by (2.57) and simplified

in (2.60). Note that this lower bound on the maximum dimension is equal to Proposition 2.4's

lower bound on the minimum dimension. For example, the (24,12,8) extended Golay code has

A = A-L = 5, with (2.60) indicating that the maximum dimension is .s > 2, while (2.62) indicates

that the minimum dimension in the variable dimension region is Si > 2.

We now return to the upper bound s < min (k,n — k) and note that a systematic ordering of

symbol positions will result in dimensions meeting this bound. Using the definitions of A and

A-L this is equivalent to

s = min (dini„ — 1 + A,dimin — 1 + Al)
^

(systematic form ).^(2.63)

Combining this upper bound on s with Proposition 2.4 we have the following upper and lower

bounds on the trellis dimensions in the variable dimension region,

max [0, min (dmi„-1— A, d71„i„-1— AI)] < si < min (d„ii„ — 1+ A, di-Lniii-1+ A1)

, d < 1 < it — d.^(2.64)

For example, consider a code and its dual with smallest minimum distance d and corresponding A,

denoted Ad, and assume that Ad < d —1. Then from (2.64) the range in trellis dimensions in the
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variable dimension region will be +Ad, with respect to fixed trellis dimension of d — 1 at depths

d — 1 from either end of the trellis. This variability is represented in Figure 2.9, which shows the

bounding envelope of the trellis dimensions for all symbol position permutations.

State-space
Dimension

State-space
Dimension

d -1 tAdf

Depth
d -1
^

n-(d-1)
^

d -1
^

n-(d -1)

Figure 2.9 Bounding Envelopes of the Trellis Dimensions
The heavy lines indicate upper and lower bounds on the trellis dimensions. Near either

end of the trellis, the dark shading indicates the fixed dimension regions. The light
shading indicates the variable dimension region. Examples shown are for Ad < d — 1.

The bounds indicate that a substantial decrease in trellis dimension is achievable only for codes

that have a large Ad, or equivalently a low minimum distance d relative to the corresponding

Singleton bound, dmi„ < 72 — k 1 or din-L. < k + 1. For example, codes with low d, such as

binary BCH codes for increasing n, may have a maximum trellis dimension that is considerably

smaller than Ti — k. Indeed, in [23], Kasami et at have recently found such trellises for some binary

BCH codes. However, for codes with d relatively close to the Singelton bound, (2.64) shows that

a large decrease in state-space dimension is not possible. These results, in addition to those of
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Muder, strengthen support for the conjecture [17] that when dm,„ is maximized for a given n and

k, then s is close to its maximum possible value.

2.5.1 Discussion

Beginning with Bahl et at [15] and Wolf [8] the advantage of trellis decoding over brute force

correlation decoding was demonstrated for high rate codes, using the q"—k upper bound on the

number of states. In [15] [9] [22] and elsewhere, the fact that the trellis dimensions are affected

by symbol position permutations was observed. In [9] it was emphasized that this property should

be exploited to simplify decoding. However, as discussed in [9] and [22], the variability of the

trellis dimensions for general codes was not explicitly known. From Muder's lower bounds on the

maximum trellis dimension and from the improved and new bounds developed here, the dependence

of the trellis dimensions on the specific code has been made more explicit. Lower bounds on the

maximum trellis dimension and on the minimum trellis dimension (in the variable dimension region)

are given in terms of the code parameters n, k , d771 , In particular, the lower bound on the

minimum trellis dimension appears to be the first such bound developed. This bound can be used

to demonstrate that some codes will not have a small number of states relative to the worst case of

min (qk, q"—k). For example, the trellis dimensions of MDS codes are completely unaffected by

symbol position permutation, and remain at their worst case values. The bounds indicate that only

codes (and their duals) that have a smallest minimum distance d = min (dm,„, d) significantly

less than the corresponding Singleton bound can possibly have a small number of states relative

to the worst case of min (qk, qn—k ).
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Chapter 3

Trellis Decoding with Pruning

What defeats us ... is the "curse of dimensionality".
R. Bellman [241

M AXIMUM—LIKELIHOOD decoding using the Viterbi algorithm rapidly becomes imprac-

tical as the trellis dimensions increase. This exponential growth of the number of trellis

states is an example of Bellman's "curse of dimensionality" [24] [25] in dynamic programming.

With larger trellises, we are thus motivated to find strategies to save decoding effort.

As discussed in Chapter 1, the trellis search can be reduced by judiciously discarding paths

based on soft-decision metrics; this avoids an increase in error probability due to coarse quantization

or hard-decision decoding which effectively discard likelihood information at the outset for all paths.

However, some increase in error probability will be incurred if paths are discarded from the search

without assurance that they are not the ML path. We will refer to such action as pruning. While
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decoding with pruning will result in an increased probability of error relative to ML decoding, this

increase will be tolerable (or perhaps negligible) when the pruning decoder is well designed.

Two aspects of decoding with pruning are discussed in this chapter. The first is the choice

and use of an appropriate metric for pruning on a tree or trellis. The second is the task of

contender sifting. Contender sifting refers to the selection of some number of the best metrics from

among a larger number of competing metrics. A method for contender sifting is introduced that is

considerably more efficient than schemes based on sorting or selection.

In Section 3.1 we briefly review the main types of tree and trellis decoding algorithms. In

Section 3.2 we describe partial trellis searches, and define some terminology for use in later sections.

In Section 3.3 we find an appropriate metric for pruning on a tree or trellis. The approach

taken is somewhat different from [26] in its description of the problem and in its modeling of

the decoder's knowledge of branch-likelihoods in the unexplored part of the tree or trellis. It is

shown that the decoder should discard heads in the obvious manner (by first exploiting merges

in the trellis and then pruning the 'worst' heads first as indicated by the metric) and that in some

circumstances the metric should be altered from that usually used. Such situations include unequal a

priori information-symbol probabilities, non-linear codes, and non-symmetric, non—binary discrete-

memoryless-channels (DMCs).

In Section 3.4 we discuss some previous approaches to contender sifting and present a new

contender sifting method. The new method can sift out a sorted set of the best M of 2M metrics

using a worst case number of comparisons that is linear in M. This might seem surprising, since

it is well known that comparison-based sorting of 71 items requires 0(n log2 n) comparisons [27].

The efficiency of the contender sifting method is attained by exploiting an ordering that is inherent
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in the metrics. Specific applications to the decoding of binary linear block codes and binary linear

convolutional codes are presented.

3.1 Tree/Trellis Decoding Algorithms

Full searches of a code tree consider all paths through the tree and then select the ML path. The

VA was introduced for decoding convolutional codes [12] and it exploits the trellis structure [11].

Its decoding efficiency arises from the observation that of any heads that share the same tail(s),

only the single best of these heads needs be considered further into the trellis. The VA extends

heads to the next depth of the trellis, and then retains only the single best head for each state. In

this way, the VA discards any path as soon as it has proven to be inferior to some other path. This

yields the same decoder output as if all paths through the trellis were considered. The VA has also

been used in several other applications [11][28] besides decoding of convolutional codes, including

the decoding of linear block codes since they may be represented by a trellis [15][81191116].

Several other search algorithms have been used that may partially explore the tree or trellis.

They are usually classified as breadth-first, depth-first, and metric-first type searches [29].

The VA and the M algorithm [301[31] are examples of breadth-first searches. M algorithm

decoding on a trellis proceeds just as the VA at each depth, except that only the best M states are

retained instead of the full trellis width.17 This pruning used by the M algorithm will result in an

increased probability of error relative to the VA. Some other breadth-first algorithms are similar to

the M algorithm except that the number of heads retained is dynamic; a head is retained until its

metric differs from the current 'best' head by a certain amount [32]. This approach can lower the

average computational effort at the expense of a variable decoding delay.
17^For use with very long sequences of convolutionally encoded data, the path storage length is truncated to L symbols, and the algorithm is
then referred to as the (M,L) algorithm.
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An example of a depth-first search is the Fano algorithm [33] which pursues a single head

into the tree until its metric falls below an adaptive threshold. When a candidate head fails in this

manner, the algorithm backtracks into the tree to follow another head. The Fano algorithm thus

makes a variable number of attempts at following an acceptable head.

The third class of decoding algorithms are the metric-first approaches, or stack decoding

algorithms. Stack decoding algorithms maintain lists of candidate heads of various lengths ranked

according to their metrics. In the Zigangirov-Jelinek stack algorithm [34][35] the search is carried

out by extending the highest ranked head to form new heads, then merging these metrics with those

already ranked. There are several variants of the stack algorithms [29], which in general attempt

to reduce the variability of the decoding effort and the probability of erasing the correct path.

3.2 A Description of Partial Trellis Searches

Pruning decoders begin operation at the root node of the trellis, with no heads as yet explored.

The search begins by extending heads from the root node and computing their metrics. Using these

heads and metrics the decoder then decides which heads to retain for possible further consideration,

and which heads to discard. The heads that are compared are referred to as contenders. Those

contenders that are retained are referred to as survivors. The action of selecting the contenders to be

retained is referred to as contender sifting. The discarded heads will be referred to either as defeated

or pruned, and the distinction between these is as follows. A defeated head is one that is discarded

from further consideration due to the fact that a test of its metric and state is sufficient to prove that

it will have a poorer path metric relative to at least one other path. A pruned head is one that is also

discarded from further consideration, but the test of its metric and state used to decide to discard it

is insufficient to prove that it will have a poorer path metric relative to at least one other path.
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The decoding search is performed in a sequence of stages, as shown in Figures 3.1 and 3.2.

Each stage consists of the following steps:

1. Extension of some or all of the previous stage's survivors, to form contenders.

2. Updating of the metrics for the contenders.

3. Determination of the heads to be defeated.

4. Determination of the heads to be pruned.

It will be useful to view the decoder as acting on sets of heads or on corresponding sets of

codewords, as described below.

Since each head corresponds to one or more codewords, we may view the decoder as acting on

the set of all qk codewords, as shown in Figure 3.1. At the input to the first stage, all qk codewords

are contenders, and by the end of the stage some may have been defeated and some others may

have been pruned. The survivors of stage 1 become the contenders for stage 2, and the process is

repeated. Thus, the decoder progressively reduces the number of survivors stage-by-stage, with a

single survivor at the end of the final stage being the decoder's output.

Figure 3.2 represents the decoder as acting on sets of heads, instead of acting on sets of

codewords as in Figure 3.1. Some or all of the survivors of a previous stage are extended to form

contenders. These contenders are then considered by the decoder for possible elimination.

In Figure 3.1, the set of contender codewords for stage m is denoted Sm. S Dm and S pm denote

the sets of defeated and pruned codewords, respectively, at stage 7n. These sets of codewords are

represented by corresponding sets of heads in Figure 3.2, and are denoted Snh5, and Sk,

respectively.
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The breadth-first, depth-first, and metric-first decoding algorithms discussed in §3.1 can be

described by this model of partial trellis searches as follows. In a breadth-first decoder, each stage

begins with extending all survivors, typically one branch further into the trellis, to form contenders

of equal length. Contenders may be defeated and pruned at each stage, and there are rnfinal = n

stages in total. In contrast, the depth-first and metric-first algorithms do not extend all survivors at

each stage. For example, the stack algorithm or the Fano algorithm extend only a single survivor per

stage, and the total number of stages mfinai is a random variable. We can view such backtracking

searches as not pruning at any stage except the final stage.
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Chapter 3. Trellis Decoding with Pruning^ 3.2 A Description of Partial Trellis Searches

Figure 3.1. Representation of Pruning Decoder Operation as Acting on Sets of Codewords
The decoder begins with the set of all qk codewords and progressively reduces the

number of surviving codewords. ,S'm is the set of contender codewords for stage tn.
Spm and ,S'pn, are sets of defeated and pruned codewords, respectively, at stage ?an.

Figure 3.2. Representation of Pruning Decoder Operation as Acting on Sets of Heads
The shaded region within each stage m represents the formation of the contenders Smil from the previous
stage's survivors. The defeated heads Am and the pruned heads Sip'm are chosen from the contenders

The set Sibm consists of all heads whose descendants are the set of codewords SD„.
in Figure 3.1. Similarly, S, corresponds to the set of pruned codewords S pm in Figure 3.1.
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3.3 Decoders Constrained by Pruning

3.3.1 A General Decoding Metric and its use in Trellis Decoding

In this section we assume that we are given some survivor extension method; i.e. we are given

the decoder's method for extending the set of survivors from the previous stage. We find a decoding

metric and show how it should be used in trellis decoding in order to minimize the probability of

error, given the fact that the decoder is constrained to use pruning. We do not completely specify

how to carry out the pruning in terms of, for example, the number of heads to prune; that and the

choice of the survivor extension method can be separated from the choice of an appropriate metric.

The discussion in this section is divided into five steps labeled (i)-(v), with the following

organization. Step (i) expresses the probability of error in terms of discarding codewords from a

list of all codewords, as illustrated in Figure 3.1. Step (ii) incorporates into the expression for the

probability of error the fact that multiple codewords are discarded per head, as illustrated in Figure

3.2. Step (iii) discusses the constraint on the minimization of the probability of error imposed by the

fact that the codeword likelihood information is incomplete (since only part of the trellis has been

explored). We use a model of the decoder's knowledge of the branch—likelihoods on the unexplored

tails that specializes Massey's 'random-tail' approach [26]. Step (iv) discusses the constraint that

the pruning of heads is carried out stage-by-stage. Finally, Step (v) finds an equivalent form of the

decoding metric that involves only quantities computed over the explored portion of the trellis.

(i) Probability of Error

Since the action of the decoder is to discard codewords in multiple stages, as shown in Figure

3.1, it is natural to express the probability of error as the sum of contributions from each stage.
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First, the probability of correct decoding is

Pr(correct ) = f Pr(correct r)f (r) dr^ (3.1)

where Pr( correct r)^Pr(cout = Ctransmitted I r), with cout being the codeword released by

the decoder. We also use the notation Pr(c r) to denote the probability that the codeword c

was transmitted given that r was received. Now, using (3.1) and the fact that E pr(c r) = 1
ceC

we may write

Pr(error) = 1 — Pr( correct)

= I f (r) dr — f Pr(cout r)f (r) dr

^f^Pr(C r) f (r) dr — f Pr(cout
R cEC

^

= f^Pr(C r) Pr) dr .
e V eo u t

11'^cEC

Of (r) dr

(3.2)

Equation (3.2) expresses the probability of error as the expectation over all possible demodulator

outputs r e R of the probability that any unchosen codeword given r is correct.

All of the codewords appearing in the sum in (3.2) are by definition either defeated or pruned.

Hence we may split the sum in (3.2) to give

Pr(error) =Pr(c r)^Pr(c r)j f(r) dr^(3.3)
R [cESD^cESP

The integral of the terms in the first sum in (3.3) is the contribution to the error probability from

decoding trials in which a defeated codeword was in fact correct. Similarly, the integral of the

terms in the second sum in (3.3) is the contribution to the error probability from decoding trials

in which a pruned codeword was correct.
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To minimize (3.3), it is sufficient to minimize its integrand for each r, which can be written as

E [i(c c SD) + /(c E Sp)] Pr(c r) f(r)^(3.4)
cec

where /(.) is unity if its argument is true and is zero otherwise. As well, since the decoder discards

disjoint sets of codewords at each stage we can rewrite (3.4) as

n1-final

12, E [i(c E SD) + I(c E Sp_)] Pr(c r) f (r) .
nr=1 cEC

(3.5)

(ii) Multiple Codewords Discarded per Head

When the decoder discards a head it consequently discards all of the codewords that descend

from the head, so that the decoder is not free to choose individual codewords to discard in

minimizing (3.5)18. Hence, the set of discarded codewords Sp_ + S Dm in (3.5) consists of all

descendant codewords of the pruned heads Sk and of the defeated heads ShDrn. To incorporate

this fact into (3.5) we first note that for any codeword,

Pr(c I r)f(^=^r c)Pr(c)

= f (rh rt ch ct) Pr (ch, ct)

= f (rh ch ct) f (rt rh ch ct) pr (ch) pi, (ct ch)

= f (rh ch) f (ri ct) Pr (ch) PT (Ct Ch)

^

(3.6)

where in the final step we have used the fact that the channel is assumed to be memoryless.19

Using (3.6) in (3.5), and since the discarded codewords at stage m are chosen from the descendants

18^See also Figure 3.2.
19^Also, in (3.6), Pr (c') = Pr(ci)Pr(c2 I c1)Pr(c2 I c2,c1)- • • Pr(ci^c2, c1) and
Pr(ct I ch) = Pr(c1+1 I CI, • • • ,c2•ci)Pr(ci+2 I is • • • e2 el) •^Pr(en I c,_1 • • • • C2^)•
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of S , we can replace E in (3.5) by E^E , where the last sum generates all tails ct
cec^ch es;, vet ,—,Ch

of a head ch, to obtain
IT/final^

[/(ch E St) + i(Ch E Sibm)1f rh I ch) Pr (ch) E f (rt c/)Pr(ct I ch) .
m=1 Ch ES.^ vct_ch

(3.7)

Equation (3.7) makes explicit the fact that the discard decisions are made at the heads and that all

descendant codewords of each head are consequently discarded.

(iii) Optimization Constraint: Incomplete Codeword Likelihood Information

Minimization of (3.7) depends on what codeword likelihood information is available; some

of the likelihood information will not be available due to the fact that the search is incomplete.

The codeword likelihood information available at any stage can be considered to be split into two

portions, with the first portion consisting of branch-likelihoods on the explored head, and the second

portion consisting of less specific branch-likelihood information available on the unexplored tail.

To clarify this let us first consider (3.6), and rewrite it as a product of terms that correspond to

the head and tail, viz

[f (rh ch) Pr (ch)] [f (rt ct) Pr (ct ch)] .^(3.8)

gi(rh,ch)^g2(rt,ct,,h)

We have labeled the first term in square brackets in (3.8) as a function gi^Ch), and have labeled

the second term as a function g2^et, e").

\.For an explored head c1' the decoder has computed f (rh ch)p7,(cli ) In other words, for an

explored head Ch the decoder has available the function gi (rh, ch) precisely.

For an unexplored tail ct the decoder has not computed f (rt ct) P (C1 Ch). In other words,

the decoder does not have available 92(rt ,c t , c" ). We need to consider how the decoder should
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act given that it doesn't have the function g2 (r/, ct, ch) available precisely. We consider two cases.

The first case is where the head Ch can be classified as defeated. In this case the competing heads

at a node share all their tails, so the decoder can defeat Ch without needing to know 92 (rt, ct, ch).

This is precisely the basis used for discarding codewords in the Viterbi algorithm. The second case

is where the head ch cannot be classified as defeated. In this case the decoder is constrained to

estimate the function g2 ci, ch).

The estimation of the function g2 (ri, ct, ch ) depends on what information is available to the

decoder with regard to the unexplored tail. For this we have to assume (and justify) a decoder

model. In other words, we need to state what a priori and a posteriori information regarding an

unexplored tail should be assumed available to the decoder. We also need to state how the decoder

may be constrained in utilizing this information.

We will use a model of sequential decoding that is essentially that used in [26]. The decoder

is considered to have no specific knowledge of the code symbol on an unexplored branch, but as a

head is extended to explore the branch the decoder gains knowledge of the code symbol. (This code

symbol is then used to look up the appropriate symbol metric for use in updating the head metric).

th,\To consider how the decoder will estimate 92^c, ch)^f(rt ct) p7.(ct c) we first recall

that
fl

f (rt I ct) = H^ci).^ (3.9)
z=i+i

^

We assume that the decoder has computed (f(r 0), f(rj 1),^, f (r, q — 1)) for every symbol

position i. In other words, we assume that the decoder has computed the symbol metrics for every

symbol position. However, on an unexplored branch the decoder has (as yet) effectively no specific

information as to which likelihood to use. This corresponds to an uncertainty as to which likelihood

will be assigned to an unexplored branch. This uncertainty can be quantified and used to estimate
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f (rt ci) as follows. Let us assume that the decoder has, in advance, utilized knowledge of the code

and the a priori information-symbol probabilities, to compute the probabilities {(22(j)} 3=0,1, ,q-1 of

the occurrence of the channel-symbol j for position i. (For example, it is common to use linear

codes with equiprobable information-symbols, in which case Q(j) = 1/q for j = 0, 1, , q —1 and

i = 1, 2, . , n.) On an unexplored branch at position i, the decoder is then taken to be constrained

to model symbol j as occurring according to the probability assignment Q (j)2°. Consequently,

the decoder will not be able to distinguish between different unexplored tails of the same length,

since the information available (namely, {(2,(j)}3=0,1, q-1 and { f (r, I j) }3=0,1, - ) is the same
x=1+1, ,n^ x=1+1,^n

for any of them. Hence the decoder's estimate of f (rt I ct) is actually only a function of I./ (and

the probability assignment Qi(j)). Accordingly, we let fo (ri) denote the decoder's estimate of

f (ri ct).

We now show that as a consequence of this model, fo (rt) can be interpreted and computed in

a simple way. Consider the pdf of ri, which is given by

f(rt)^Y,i(rl I ct)P7-(ct)
^

(3.10)
et

where the sum includes every tail ct of length n — 1. Using fo (ri) as the decoder's estimate of

f (rt et) in (3.10) we obtain an approximation to f (r1) as

>2, fo (rt)^(Ci) = f0 (rt) .
et

This shows that fo (rt) can be interpreted as the approximate pdf of r1. Accordingly, we compute

fo (rt) as

 

fo (11 = H^f I iWz(1)-
i=l+1 j=1

(3.12)

   

20^This is essentially a specialization of the 'random-tail' approach used in 1261. We will later discuss the significance of using Q i(j) versus
other distributions.

(3.11)
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The contribution to (3.7) if a head is discarded is

f rh ch p7, (ch)^f(rt ct) Pr (ct ch)

)Vet ch "

As discussed above, the decoder has computed f( rh I ch )Pr(ch ), and can estimate f (rt

fo (rt). Using this in (3.13) we obtain

(3.13)

ct) as

f rh ch) Pr (ch) ^ J.° (rt) Pr (ct ch) _= f rh ch) Pr (ch)

Vct,ch

as the expected contribution to the error probability if a head is pruned.

fo (ri)^(3.14)

For later convenience, we choose to write

fo (1'1)^fo(ri)^ (3.15)
i=i+1

with each term in the product defined as

fofri) = ^ gri I j) Q.(j).
^ (3.16)

j= 1

(iv) Optimization Constraint: Stage by Stage Decoding

Here we consider that the decoder must discard heads stage by stage, as illustrated in Figure 3.2.

The decoder is constrained to decide at each stage on which heads to discard, i.e. the decoder is

constrained to consider each stage independently of future stages. This corresponds to the decoder

not being able to predict which heads will be discarded in future stages. In considering which

heads to discard from Smh , the decoder should first discard those heads that can be classified as

defeated, since (as discussed earlier) a defeated head's descendants will contribute less to (3.7) than
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its competitor's descendants. Next, in considering which heads to discard from those remaining

(i.e. Sinh — Sib) the decoder can minimize its expected contribution to (3.7) by using (3.14) as the

expected contribution for pruning a head. In summary, the decoder minimizes

^ f rh ch) pr (ch) fo (rt)

chtE h

at each successive stage m, where Shpin c S — Slbm.

(v) An Equivalent Decoding Metric

(3.17)

The above results indicate that the heads to be pruned at each stage are those whose pdf

f (rh ch)pi,(ch) weighted by fo (rt) are lowest. The effect of the weighting by fo (ri) is that

if this 'expected tail' is quite likely, then further consideration of the head is favoured, since the

unexplored branches occur frequently and hence may contribute significantly to the error probability.

On the other hand if this 'expected tail' is unlikely, then if the head is also unlikely then discarding

the head will not significantly contribute to the error probability.

Instead of minimizing (3.17), we may equivalently minimize (3.17) divided by any positive

quantity that is independent of each ch. Suppose we choose to divide (3.17) by Jo (rh) Jo (r1),

where fo (rh) is defined similarly as done for fo (rt) in (3.15), viz

Jo (rh) = Hfofro
q

=ITY,/iJQ.(i)• (3.18)
i = 1 j = 1

The decoder can now aim to minimize

^ f( rh ch)pr(ch)

Jo (rh )h
Ch P m

(3.19)
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at each successive stage 7n, where 4_ c Smh — S. From (3.19) the metric is now
f( rh ch) pr (ch)

(3.20)

 

(rh)

 

The advantage of (3.19) over (3.17) is that it only involves quantities computed over the

explored portion of the trellis. Each head likelihood weighting has been normalized by fo (rh)fo (rt),

which results in a weighting term involving only information available on the explored branches.

Consequently, the decoder fits the usual definition of sequential decoding, i.e. decoding that

sequentially examines branches of the trellis so that at any stage the decoder's choice of which

heads to discard and to extend do not depend upon received branches deeper in the trellis. This

definition of sequential decoding is equivalent to that of Jacobs and Berlekamp [36], except for our

explicit allowance of trellis decoding in addition to tree decoding. The decoder is sequential in that

the computation of its metric does not depend on received branches deeper in the trellis, although

we have utilized some knowledge of the unexplored branch likelihoods in the metric derivation.

3.3.2 Discussion

Eqn. (3.19) simply states that the decoder should, during each stage, first update the contender

metrics using (3.20), then discard those contenders that can be defeated, and then prune only the

poorest of the remaining contenders. In other words, the decoder should discard contenders in

a rather obvious manner, by first exploiting merges in the trellis and then by pruning contenders

'worst-first'. However, the metric (3.20) differs slightly from that used previously, as we next

describe.

In [26] and the related discussion in [37], sequential decoding is modeled as being equivalent

to the decoding of variable length codes that have been appended with randomly coded tails. The
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sequential decoder's knowledge of the unexplored codeword tails is thus modeled as if randomly

chosen code symbols were used. In modeling the decoder's knowledge of the unexplored codeword

tails, our approach specializes the use of random code tails as in [26][37], by assuming that

the decoder has precomputed the channel-symbol probabilities that are determined by the code

and information-symbol distribution used. This results in some minor differences between our

"normalizing" term f0(7.,) given by (3.16) and the corresponding term denoted Po(y) in [261137].

Specifically, from [261[37, pg 45],

P0(y ) = Pr( Yi j)Qrandom (i) (3.21)

where yi is a DMC output and where Qrandom(j) is a random-coding probability assignment for a

channel-symbol to take on the value j. From (3.16)

fofrz) = Pri I j) (2.(j) (3.22)

where Q(j) is the channel-symbol probability distribution for channel symbols at depth i taking

on the value j, for the specific code and the specific information-symbol distribution used. The

two distributions, Qrand„,,(j) and Qz(j), differ in two minor respects. First, 0 random (i) is not

a function of the symbol position, while Q(j) accommodates differing probability assignments

for different positions. An example of where the two distributions will differ in this regard is

the case of unequal information-symbol probabilities. Second, 0 random (i) is a 'random-coding'

probability distribution in the sense that it is usually taken [37, pg 451121 to be the maximizing

input-distribution in the computation of Ro [3]. ()random (j) will then be determined only by the

channel. This differs from Q(j) which is determined, not by the channel, but by the specific code

and information-symbol distribution used. However, for the typical case of a symmetric DMC [2]

(or a binary-input DMC [371), we will have Qrandom(j) 1 lq, = 0,1, ... ,q — 1, which will equal

Q,(j) for the (also typical) case of linear codes with equiprobable codewords. Atypical decoding
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situations that involve non-linear codes, or non-symmetric, non-binary-input DMCs, or unequal a

priori information-symbol probabilities, can result in differences between these two distributions.

For most coding applications the metric (3.20) is identical to that used in [26]{37].

3.3.3 Breadth-First Decoding

Here we consider breadth-first decoding with equiprobable codewords, for which the metric

(3.20) can be simplified and put into a more convenient form. This breadth-first metric will be

used extensively in the next chapter.

In breadth-first decoding, heads are compared for pruning when they are of equal length. In

minimizing (3.19) the decoder can then equivalently minimize

E f (rh ch)
^

(3.23)
ehESh

at each stage, since for equiprobable codewords and equal length heads we can ignore the common

terms Pr(ch) and fo(rh).

To choose heads that will minimize (3.23), we can also compare heads in the following manner.

First, a head metric f (rh I ch) can be compared to other head metrics by favouring to prune first

those heads that have the largest 1/f (r" ch). As well, we can multiply this by any positive

factor that is independent of ch. If we choose to multiply by f (rh I y11) where y is the vector of

hard-decisions, we obtain an alternative metric
f( rh yh)

f (rh ch) •

Using the usual factoring of the pdf's and taking logarithms, we obtain
1 

Ydlog if(ri Yi)1.
i=1^Lf(ri I ci)i

(3.25)

(3.24)
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It will be useful to define the symbol likelihood-distance as

D(yi, ci) = [f(ri I yi)1log
 Pri I cin

(3.26)

  

(In (3.26) we have included the absolute value signs only so that D(yi, (-22) = D(c„ yz).) Note

that D(yz, cz) > 0, and that equality is attained for cz = yz. Using (3.26) we see that (3.25) can

be written as

D (yh ch) D(yz, ci) (3.27)

where D (yh , ch) will be referred to as the head likelihood-distance. For heads of length n we

obtain a codeword likelihood-distance D(y, , c).

Where quantization is used the symbol likelihood-distance is as defined in (3.26), but with

the pdf f(7-, •) replaced by the probability Pr( Q(r) • ), where Q(7.,) is the discrete random

variable resulting from the quantization of rz. For the case of hard-decision quantization on a

binary—input symmetric—output memoryless channel to form a BSC it is easily shown that the

codeword likelihood-distance D(y, c) reduces to a form that is equivalent to the Hamming distance

di/(y,

From the above discussion, we have that the decoder should prune those heads with the largest

likelihood-distance D (yh after defeating any heads that merge at a node in the trellis. From

the above discussion on quantization, it is easy to see that this rule of first pruning the heads with

the largest likelihood-distance is a generalization of the path deletion axiom [38] which states that

whenever heads of the same length are being considered for pruning on a BSC, the one with the

greatest Hamming distance to the received path is pruned first.

67



Chapter 3. Trellis Decoding with Pruning^ 3.4 Contender Sifting

3.4 Contender Sifting

For partial trellis searches to be efficient it is implicit that there be an efficient method for

contender sifting. Contender sifting refers to the selection of some the best contender metrics from

among a larger number of contender metrics. The most common approach is to sort the contenders

according to their metrics, and then retain those with the best metric. Alternatively, selection of

the best (without regard to order within the best set) can be used. As pointed out in [291139], the

computational effort associated with contender sifting is significant, so that it severely limits the

number of survivors that can be retained. In the stack algorithm [35] and its variants (e.g. [40]),

it is common to reduce the computational effort of contender sifting by using approximate sorting;

the contender metrics are sorted into quantized bins (buckets). The sorting is approximate since

the bin contents are not sorted (i.e. the sorting is not a complete bucket-sort [41]). In breadth-

first decoding such as the M algorithm, most approaches have used either sorting [42][39][43] or

selection [39][44]. We will concentrate on breadth-first decoders, and in particular, the M algorithm,

since it offers a decoding effort that is virtually constant, in contrast to metric-first searches [29].

We now illustrate the computational effort of various contender-sifting methods for the M

algorithm. Much of our discussion follows that in [39]. Let A r c(i , n) denote the number of

comparisons used in sifting out the best i from among n contenders. For typical decoding

applications such as rate 1/2 binary convolutional codes, or for binary linear block codes, it is

appropriate to consider Ne(M, 2M). Figure 3.3 plots Aic(M, 2M) normalized by M, versus M, for

various contender sifting methods. The specific methods shown in Figure 3.3 use insertion-sorting,

merge-sorting, and Hadian and Sobel's selection algorithm [27].

The insertion-sort is particularly easy to implement but is suitable only for a very small number

of inputs. Insertion sorting can be suitably modified to output only the best M of the 2M contenders.
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This simple modification and the calculation of the worst-case number of comparisons are discussed

in Appendix A. The worst-case number of comparisons normalized by M is, from Appendix A,

Nc(M,2M) 1< (3M —1)^ (3.28)
M^2

which is plotted in Figure 3.3.

Merge-sorting is considerably more efficient than insertion-sorting. The worst-case number of

comparisons for merge-sorting is 0(n lg n) , where lg denotes log2 (versus 0(712) for insertion-

sorting), and merge-sorting is an asymptotically optimum comparison-based sort [2711411145].

Merge-sorting can be suitably modified to output only the best M of the 2M contenders. This

simple modification and the calculation of the worst-case number of comparisons, for M being a

power of 2, are discussed in Appendix A, from which we obtain

Nc(M,2M)
< 21g M —1+21M.^ (3.29)

M

Hadian and Sobel's selection algorithm uses

rnin{M + (M — 1)[1g (M + 2)1, M — 1 + Mr lg (M^(3.30)

comparisons in the worst-case to find the Mth best of the 2M [27, pg 214]. Moreover, (3.30) gives

the worst-case number of comparisons to partition the 2M contenders into the best and worst M,

since any comparison-based selection (order-statistic) algorithm has carried out a sufficient number

of comparisons to partition the input set into best and worst subsets [2711145]. For M a power of 2,

the first term in (3.30) is the smaller21, and this term normalized by M is

Arc(M,2M)^1^ = 1 + (1 —^lg (M 2)1 ,M a power of 2^(3.31)

   

21^That the first tem in (3.30) is smaller is verified as follows. For M = 2', i> 0, [1g (2' + 2)1 = rig (2' + 1)1. Let this quantity be
denoted by A, we can write the first term in (3.30) as M (M — 1)A and the second term as M — 1 + MA. The second term minus the first is
A — I which is greater than or equal to zero for i > 0.
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which is shown in Figure 3.3. Hence, Hadian and Sobel's selection algorithm takes 0(M lg M) =

0(.1 lg 12) comparisons in the worst-case, or about one-half the number of comparisons of merge-

sort.

Also shown in Figure 3.3 are the number of comparisons for the best known selection algorithms

for small M [27, Table 1, pg 2151. For asymptotically large M, selection schemes exist which

require a worst-case number of comparisons asymptotic to 10.86M [46] and 6M [47].

In the following sections we introduce a contender sifting method for breadth-first decoding that

can retain a sorted set of M survivors with a worst-case number of comparisons that is linear in M,

for any size of M. As will be described, the proposed method exploits an inherent ordering of the

contender metrics. For decoding binary linear block codes, the proposed contender sifting method

has a worst-case number of comparisons as shown as the lowest dotted line in Figure 3.3. For ease

of description, the method will be presented for the M algorithm operating on a tree for a binary

linear block code. Extensions of the contender sifting method for use in decoding convolutional

codes, and other cases are then discussed.

3.4.1 Breadth-First Contender Sifting for Binary Linear Block Codes

Consider a code tree for a binary linear block code, with one channel-bit per branch22. For

ease of illustration we assume that likelihood-distance is used as the decoding metric.

A typical stage in the operation of the M algorithm is illustrated in Figure 3.4. The decoder

begins with a set S of M survivors and extends each survivor to the next depth to form a set C

of 2M contenders, as shown in Figure 3.4(a) for the case of an information-bit. (The case of a

22^Throughout this thesis, we make the natural assumption that there are no all zero columns in the code's generator matrix, so that there are no
'wasted' symbol positions that carry no information.
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Figure 3.3 Normalized Number of Comparisons for Sifting M from 2M Contenders
The number of comparisons Ne(M, 2M) (normalized by M) sufficient to sift out the best M of 2M contenders is

plotted against M for various contender sifting methods. Simple modifications to insertion-sorting
and merge-sorting were used to provide only the best M from 2M contenders. Comparison-based
selection (order-statistic) methods, such as Hadian and Sobel's shown here, inherently partition the
2M contenders into the best M and the worst M. Also shown are the best known results for small
M (M = 2, 3, 4, 5). The dotted lines correspond to the proposed contender merge-sifting method.
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constraint-bit will be discussed later.) Standard contender sifting schemes operate on the list of

2M contender metrics shown in Figure 3.4(b), with the result being a list of M survivors (which

may be either sorted or unsorted).

The efficiency of the proposed contender sifting method arises from a particular organization of

the contenders within each decoding stage. Figure 3.5 illustrates a reorganization of the contender

metrics into two contender-subsets. The first subset, labeled Co in Figure 3.5, consists of the M

contender metrics that were formed by extending each survivor with the '0' bit. The second subset,

labeled C1, consists of the other M contenders that were formed by extending each survivor with

the '1' bit. Of paramount importance is that each contender-subset is an sorted set, as shown in

Figure 3.5. The ordering within the contender-subsets requires no sorting effort — the ordering is a

consequence of our method for forming the contender subsets from an ordered set of survivors. For

example in Figure 3.5, since bit '0' happens to be the hard-decision, each contender's metric in Co

is identical to those in S (due to the fact that the likelihood-distance for the hard-decision bit is zero),

and thus the ordering inherent in S is preserved in Co. In C1, each contender metric is formed by

addition of an identical likelihood-distance to each survivor metric, so that the ranking inherent in S

is also preserved in C1. This organization of contenders enables the decoder to maintain a sorted list

by merging the two sorted contender-subsets. Merging of two ordered sets of size M is very simple

compared to complete sorting of a single set of size 2M [27], as the merging can be accomplished

with 2M — 1 comparisons. In fact, since we seek only the best M of the 2M, the decoder can

accomplish this in M comparisons by partially merging the two contender-subsets until the required

number M have been found. This partial merging can be done in /1/ comparisons, so we have

Ne(M,2M)
M

which is the lowest dashed line in Figure 3.3.

(3.32)
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(a) Formation of the Contender Metrics.^(b) Contender Sifting using Sorting.

Figure 3.4 Contender Formation and Sifting
The formation of the contender metrics is shown in (a) for extension of the survivors at depth i - 1 with an

information-bit at position i. Only the branch likelihood-distances for position i are shown. The M = 8 survivor
metrics at depth i - 1 are updated to form 2M = 16 contender metrics at depth i. In (b), the 2M contender

metrics are shown in a list, which is then processed by the decoder to retain the best M. For simplicity
we show complete sorting of the contenders, which is then followed by retention of the best half.
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(a) Formation of the Contender Metrics.^(b) Contender Merge-Sifting, using Contender-Subsets
and partial merging.

Figure 3.5 Contender-Subset Formation and Contender Merge-Sifting
In (a), during the extension of the survivors, the set of contender metrics is partitioned into two contender-subsets.

according to whether the extended bit is a '0' or a '1'. In (a), the '1' extensions are indicated with darker lines than
the '0' extensions (we have assumed, without loss of generality, that the '0' bit is the hard-decision.). In (b), these

contender-subsets are shown as lists labeled Co and C1. This choice of contender-subsets results in each subset being
an ordered set, so that partial merging can be used instead of sorting. The result is an ordered list of M survivors.
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The above discussion outlines the main principle of the proposed contender sifting method,

which we shall refer to as contender merge-sifting (CMS). As will be discussed shortly, the basic

contender merge-sifting method can be applied for constraint-symbols, as well as for other decoding

applications.

Decoding Systematic Binary Linear Block Codes

The basic contender merge-sifting method discussed above arms us with a technique that is

sufficient to implement M algorithm decoding of systematic binary linear block codes.

For codes in systematic form the M algorithm need only sift contenders where the number of

contenders exceeds M. Let /m denote the first depth where the number of contenders exceeds

M. Contender sifting will then occur at depths 1114 through k. The M algorithm has no need to

sift contenders for the final n — k depths, since the final 71 - k depths are all constraint depths

(where each extension of M survivors results in Al contenders). To implement the M algorithm

we can utilize contender merge-sifting as follows. For the depths 1 through 1m — 1, we use

contender merge-sifting with complete merging of the contender-subsets, to maintain an sorted set

of 21, 22, , 21A1-1 survivors at the depths 1, 2.... , /Ai — 1, respectively. This ensures that the

set of survivors at depth 1A4 — 1 will be sorted, so that merge-sifting can be used at subsequent

depths. At depths 1M through k, the decoder uses contender merge-sifting with partial merging of

the contender-subsets, as shown in Figure 3.5, to maintain a sorted set of M survivors. At depths

k + 1 through 71, no contender sifting is needed. The output codeword is chosen as the best among

the Al final survivors.

The total number of metric comparisons used for the CMS implementation of the M algorithm,

for this systematic code case, can be upper bounded as follows. For the initial depths 1, 2, /A/ —1

where the number of contenders is less than Al, the number of comparisons to maintain the ordered
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set of 21,^survivors using complete merging is at most23

where the depth 1m is given by

Im_l
E (2' - i) 2/m - im -1
z=i

(3.33)

/m = [10g2 (M)^L^ (3.34)

For the depths /m through k, the maintenance of the ordered set of Al survivors can be done using

partial merging of the contender subsets, with M comparisons for each of these depths, so that

114(15' — 1N1 +1)^ (3.35)

comparisons can accomplish the contender-sifting for these depths. The total number of comparisons

is (3.33) plus (3.35), plus M —1 comparisons to choose the best metric at depth ii, giving

N, < M (k + 2 — /m) + 21m — /m — 2.^ (3.36)

A simpler upper bound on N, can be obtained by replacing the number of comparisons in the

preceding analysis for the depths 2,3, ....L1 — 1, with M. Now, as in the preceding analysis, at

the first depth we count one comparison, and to this we add the upper bound of M comparisons for

each of the depths 2, 3, ... ,k, and lastly add in the M — 1 final comparisons at depth it, to give

< 1 + M(k —1) + (M —1)

= Mk.^ (3.37)

23^The reason that (3.33) is an upper bound is that we have assumed that each of the first 1Af — 1 positions is an information position. This is a

natural assumption since typically M is small, and for M < 2dm,n —I each of the first /Ai — 1 positions are certainly information-positions.
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Decoding Non-Systematic Binary Linear Block Codes

For decoding non-systematic codes the M algorithm again carries out contender sifting only

at the information positions. To implement the M algorithm the decoder can utilize contender

merge-sifting in a similar manner as above, except that it maintains the sorted survivor set until

the last information-position. Let the last information-position be denoted as K. To maintain the

sorted survivor sets at constraint-positions before K, contender merge-sifting works in a fashion

similar to that shown in Figure 3.5, in that the contender-subsets are defined in the same way,

but the difference being that there are no longer M contenders in each subset. The number of

contenders in each subset may vary from 0 to M, with a total of M contenders shared between

them. Since in this case we want to retain all M contenders, the decoder should completely merge

the contender-subsets.

The number of comparisons used in contender merge-sifting at a constraint-position can be

upper-bounded as follows. We use the same merging method as was used for the information-

positions (where there were equal numbers of contenders in each contender-subset). The largest

number of comparisons will occur for the case where there is only a single contender in one subset,

say in C1, and its metric is higher than any of the Al — 1 metrics in Co. Thus, the largest number

of comparisons will be Al — 1. This will account for an additional (K — k)(M — 1) comparisons

over that of the systematic case, given by (3.36), so that we have

Are < M(K 2 — /m ) 21m — (K — k)— lm — 2.^(3.38)

For any linear block code with minimum distance 4,„„ the maximum value that Ar can have is

77 — (din,„ —1)24, so that an upper bound on (3.38) is

Are < M(71 + 3 —^z — 1M ) 2 1M —^— k^n ) 1A,/ 3
24^This follows from the fact that any d,,, — ] symbols of a linear block code can be chosen as panty symbols.
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^= M(k + A + 2 — /m) + 21m — 1m — 2 — A^ (3.39)

where A A 72 - k +1 — dmi„ is the amount by which clnii„ is less than the Singleton bound.

Alternatively, a simpler (but looser) upper bound can be formed by adding in the extra

(K — k)(M — 1) comparisons (arising from the non-systematicity) to the upper bound for the

systematic case (3.37), to obtain

^< Mk + (K — k)(M — 1).^ (3.40)

Finally, using the fact that K < n — (dmi„ — 1) in (3.40) gives

N, < Mk + (M — 1)[n, — k — (dmin —1)]

= Mk + (M — 1)A^ (3.41)

as a simple upper bound on the number of comparisons to decode any binary linear block code

using contender merge-sifting to implement the M algorithm.

Let us now return to Figure 3.3, and consider the worst case number of comparisons used in

contender merge-sifting in decoding any binary linear block code. From our earlier discussion on

decoding systematic codes, we had that there were at most M comparisons at any depth. From the

discussion on decoding non-systematic codes, we had that there were at most M — 1 comparisons

at any constraint position. Hence, the maximum number of comparisons at any depth is upper

bounded by M, so that the lowest dotted line in Figure 3.3 is an upper-bound on the normalized

number of comparisons at any depth, for M algorithm decoding of any binary linear block code.
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3.4.2 Rate 1/n Binary Convolutional Codes

Here we show how contender merge-sifting can be applied to breadth-first tree decoding of rate

1/n binary convolutional codes. We will first consider rate 1/2 binary convolutional codes generated

by an encoder of the form shown in Figure 3.6.

In Figure 3.6, each information-bit is shifted into the encoder shift register to produce two

channel-bits. The shift register connections to the two sets of adders are specified by the generator

polynomials 91(x) = 910 + gii x gimxm and 92(x) = 920 + 921 + • • + g27ix"' . The

convolutional code trellis will have .s = 2' states, where

m = max { deg [gi (x), g2 (x)] 1 (3.42)

is referred to as the constraint length of the code [48]. For example, constraint length 6 (64 state)

codes are widely used in practice, with VLSI Viterbi algorithm decoders available.

Figure 3.6 A Rate 1/2 Convolutional Encoder
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A rate 1/2 binary convolutional code tree for the encoder in Figure 3.6 is almost invariably

drawn with 2 channel-bits per branch. An alternate way to view the tree is to redraw each 2—bit

branch as a pair of consecutive single-bit branches. In order to implement the M algorithm using

contender merge-sifting, we first consider how the M algorithm's operation on the original tree can

be viewed on the new tree. On the original tree the M algorithm prunes after each 2—bit branch25.

This is equivalent, on the single-bit per branch tree, to not pruning after the first bit of the pair,

and then pruning after the second bit. This can be accomplished using contender merge-sifting, as

follows. Using the first bit of the pair, the decoder forms contender-subsets and merges them to

retain all of the 2M contenders as survivors. At the second bit of the pair, contender-subsets are

formed and partially merged to retain the best M contenders as survivors.

The number of comparisons used in this sifting procedure is the sum of the 2M— 1 comparisons

for the complete merging, plus the M comparisons in the worst case for partial merging, giving

IV, <2M —1 + M

= 3M —1 . (3.43)

The number of comparisons normalized by M is then NciM < 3 — 1/M which is shown in

Figure 3.3. It can be seen that CMS is very efficient compared to the other schemes, for all but

the smallest M.

The above procedure generalizes for rate 1/n codes as follows. First, the n-bit per branch

trellis is viewed as a concatenation of n single-bit branches. At the first bit, complete merging of

the two contender-subsets of size M is used to retain 2M sorted contenders. At each of the next

n — 2 bits, complete merging of contender-subsets is again used, to retain 2M sorted contenders.

25^For simplification, we assume that the decoder depth is not near either end of the tree or trellis, where no pruning is required. For the initial
depths of the tree or trellis (where the number of contenders is less than M)the decoder can use complete merging as discussed for the binary block
code case. For the final depths of the tree or trellis (where there are only constraint positions) no sifting is required.
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At the final bit (of the n) partial merging of the contender-subsets is used to retain only the best

M as survivors. The number of comparisons used in this n-step sifting procedure is then

< (2M — 1) + (n — 2)(2M — 1) + M

= (n — 1)(2M — 1) M

= M (2n — 1) — (a — 1)^ (3.44)

to maintain a sorted survivor list at each depth of the original n—bit per branch trellis.

3.4.3 Discussion

It should be clear that CMS is not restricted to linear tree codes. The essential requirement to

use CMS is that the contender metrics be partitioned into sorted subsets, so that merging can be

used. This in turn requires branches at the same depth of the tree to share a pool of branch metrics.

Non-linear codes can have an unequal number of contenders in each contender-subset, which is

similar to the case already considered for constraint-positions of linear codes.

We emphasize that although we have used the head likelihood-distance as the decoding metric,

the use of CMS is not restricted to this metric. Any metric can be used provided that the contender

metrics can be partitioned into sorted subsets. As stated above, this requires branches at the same

depth of the tree to share a pool of branch metrics. For example, it is common to use the metrics

log [f (r 0)] and log [f (r I 1)] when decoding binary block codes, and each branch at depth i of

the tree utilizes one of these two metrics.

With regard to trellis decoding, we comment that if so desired, the merging of contenders at

trellis nodes can be used with contender merge-sifting. Competition among heads that merge at the

trellis nodes will reduce the number of entries in the contender-subsets, and this does not destroy

the ordered property of the each contender-subset.
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Contender merge-sifting is readily applicable to breadth-first bidirectional decoding of block or

convolutional codes. In bidirectional searches, a block (or convolutional code frame ) of symbols

is searched from both ends of a trellis, or from two code trees [4911501151].

Finally, we comment that CMS is applicable to the important class of punctured convolutional

codes. Perhaps the most common example of such a code is that of puncturing (i.e. not transmitting)

certain bits in a rate 1/2 code, which generates a code of rate greater than 1/2 [18]. Punctured

convolutional codes enable the use of one encoder and decoder (with very minor alterations) for a

range of code rates. This is especially useful in automatic repeat-request (ARQ) systems employing

incremental redundancy [20], where rate-compatible punctured convolutional codes are attractive

[19]. In such applications CMS can be easily utilized, since at a punctured bit the relative metrics

of the contenders will be unchanged. Consequently, the formation and merging of the contender

subsets is simplified and will require no metric comparisons.
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Chapter 4

Reconfigurable Trellis Decoding

To find an efficient technique which, given a received word, can generate a set of
codewords that will with high probability contain that word which is most likely: This
is the central problem.

GD. Forney [5]

THE efficiency of partial trellis searches arises from the judicious selection of a small set of

survivors. If a sufficient number of survivors are wisely chosen, the increase in probability

of error over that of a ML decoder will be small. In this chapter we introduce a class of techniques

referred to as Reconfigurable Trellis Decoding (RTD), or RT decoding, that can retain relatively

few survivors at the cost of a negligible increase in error probability.

RT decoding is not simply a partial trellis search algorithm. In fact it can utilize well known

partial tree or trellis search algorithms. The essence of RT decoding is to carry out the search using

a different trellis for the code. The trellis used for decoding is dependent upon the reliability of
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the received data, so that it is determined 'on-the-fly'. The trellis used is a 'reconfiguration' of

the transmitted code trellis, in that it corresponds to a code with its symbol positions reordered

according to their reliabilities.

In Section 4.1 we review non-trellis based and trellis based soft-decision decoders for linear

block codes. In Section 4.2 we explain the concept of RT decoding in detail. The number of

survivors required to attain 'near-ML' performance will depend on the channel and the code. On

soft-decision channels such as the AWGN channel with binary PSK, there can be a significant

reduction in the number of survivors required. An even larger reduction is attained for an erasure

channel, where c/n„„ — 1 or fewer erasures can always be corrected for any linear block code with

only a single survivor.

In Section 4.3 we extend the Uniform Error Property [52] of ML decoding of linear codes on a

binary-input symmetric-output memoryless channel to the more general case of pruning decoding.

This result is used in later sections.

In Section 4.4 we introduce the pruning impact, which is the increase of the probability of

error of a pruning decoder with respect to a ML decoder. An upper bound on the pruning impact

is found for use in later sections.

In Section 4.5 the pruning impact of RT decoding using the M algorithm is estimated. An order

statistic channel (OS C) model is introduced and used to facilitate the assessment of the pruning

impact. The pruning impact of the RT-M algorithm is found using a simple search procedure that

is independent of the detailed structure of the code. Examples are given to compare the estimated

word error rate of the RT-M algorithm to simulation results.

In Section 4.6 the computational effort of RT-M decoding is discussed. Tables of formulas are
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presented that give the number of metric operations (comparisons, additions) and the number of

binary-vector operations used in carrying out the search. Plots of the number of operations against

coding gain are presented for some example codes on an AWGN channel with binary PSK and on

a Rayleigh faded AWGN channel with binary NCFSK.

In Section 4.7 we review some of the main results of the previous sections and discuss RT

decoding in terms of its resiliency to bursts of errors. Some other aspects of RT decoding are

briefly reviewed, including its decoding delay and its computational overhead.

4.1 Soft-Decision Decoders for General Linear Block Codes

The majority of soft-decision decoding schemes for block codes do not utilize trees or trellises.

Here we discuss some of the main schemes that have been proposed for ML decoding, or 'near-ML'

decoding, of linear block codes. One of the earliest ML soft-decision decoding algorithms is Wagner

decoding [53], which is applicable only to the simple (n, n — 1) single parity check codes. The

Wagner decoding algorithm consists simply of inverting the least reliable bit if the initial check on

parity was not met. Note that hard-decision decoding of this code cannot correct any errors, while

soft-decision Wagner decoding on the AWGN channel with binary PSK will approach d„„„ —1 1

bit error correction with increasing SNR [6].

In 1966, Forney introduced Generalized Minimum Distance (GMD) decoding [5][10], which

provided a way to utilize an errors and erasures decoder for soft-decision decoding. In GMD the

received word is modified by erasing a number of the least reliable symbols, and it is then fed to

an errors and erasures decoder to generate a candidate codeword. Several candidate codewords are

generated (at most about [dm,„/2]) by erasing a successively larger number of the least reliable

symbols. This procedure is also referred to as successive erasures decoding (SED) [54]. The
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'generalized distance' is used in a stopping rule to halt the generation of candidate codewords,

and can thus lower the average decoding effort. Various modifications have been suggested to the

Generalized Distance metric and stopping rule, including [54][551156].

In 1972, Chase [6] introduced a method that utilizes a hard-decision decoder to generate

candidate codewords. A candidate codeword is generated by first perturbing some bits of the

received word and then feeding it to a hard-decision decoder. By using a number of such

perturbations and subsequent decodings, the resultant set of candidate codewords are then compared

using a soft-decision metric. The main perturbation schemes discussed in [6] alter the least reliable

bits. Since the perturbation of the received word amounts to 'guessing' the errors, the technique

is sometimes referred to as 'Chasing' [57].

There are many other examples of soft-decision decoding schemes that similarly require either

a hard-decision decoding algorithm [58][59][60], or that detailed structure of the code be exploited

e.g. [61][62][63][64][65].

A class of decoding schemes that can in principle be applied to any linear block code, and

without the need for an errors/erasures decoder or a hard-decision decoder, is information set

decoding. The central concept of information set decoding is as follows. If we can find a set of

k independently specified symbols (an information set) that is error free, then the remaining n — k

symbols (a parity set) will be correctly determined by the constraints of the code. Since any error

pattern that occurs in these n — k parity positions will not alter the decoded output, these errors

are said to be 'trapped'. A number of information sets are utilized to attempt to trap a specified

number of errors. These information sets can be precomputed, or selected during decoding by some

deterministic or random method. Specialized versions of information set decoding (e.g. [66][67])

generate a restricted number of information sets by carrying out automorphic (code-preserving)
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permutations of the symbols. To consider the decoding effort for general linear^k) block codes,

let N (n, k, 1) denote the minimum number of information sets required to trap t errors. It is known

[681169] that

N(n,k,t) > [^
n — k[ n — k — 1^In—k+t+1 I^I I.

n — 1^I- 71 - + 1^1^
(4.1)

A more readily computed, albeit looser, lower bound is [69]
n)

N(n, k,t) > (k)
.^ (4.2)n—t

In (4.2), the numerator corresponds to the number of t—tuples to be trapped, and the denominator

corresponds to the number of t—tuples which can be trapped by each information set. Now suppose

that for soft-decision decoding that we wish only to trap up to dmi„ — 1 errors, so that the decoder

can attain the asymptotic ML error probability [6] [70]. Setting t = dni,„ — 1 in (4.2) yields

(4.3)

From this we see that for codes with 41,1 — 1 approaching the Singleton bound of 71. - k that the

denominator of (4.3) approaches unity, so that the ability of any information set to trap multiple

t—tuples is entirely lost. This bodes poorly for soft-decision decoding of large minimum distance

codes using pure information set decoding.

An alternative to pure information set decoding is to use one or more information sets and search

through some error patterns, e.g. [71]. To further reduce the number of information sets considered,

one can guide the choice of information sets by utilizing the soft-decision bit reliabilities [69][72].

As will be discussed later, RT decoding utilizes this approach and combines it with trellis decoding.

Trellis based soft-decision decoding of general linear block codes has received relatively little

attention in the literature. The trellis constructions of Wolf [8], Massey [9], or Forney [16], can

(dm,n-1)
N(n, k, dmi„ — 1) >^n k 

)•
drn,„-1

87



Chapter 4. Reconfigurable Trellis Decoding^4.1 Soft-Decision Decoders for General Linear Block Codes

be used with the Viterbi algorithm to attain ML decoding. For some codes with specialized

structure, particularly efficient trellis based decoders can be developed [16]. For general linear

block codes, a possible benefit of using trellis or tree representations is that decoding algorithms

originally conceived for decoding convolutional codes may be applicable to decoding block codes.

The various breath-first, depth-first, and metric-first search strategies for convolutional codes, e.g.

[29][30][331[3511401[73][741, may be useful in decoding block codes. However, few results have

been published on the application of such methods to decoding block codes. Matis and Modestino

[22] proposed the use of a modified M algorithm to decode a linear block code trellis. In this

scheme the number of trellis branches searched is reduced by using a limit of M survivors, and,

for a specified number of the most reliable information positions, by only extending branches that

agree with the hard-decisions. This idea was later applied to a Rayleigh faded AWGN channel

in [75]. In using convolutional codes the length of the code is sometimes truncated in order to

strictly limit the number of errors incurred when the correct path is lost [52]. This is naturally

achieved in using block codes. The finite length of block codes and truncated convolutional codes

(which are effectively block codes) can also be exploited in bidirectional searches of the trellis

[49] or tree [50][511

4.2 The RT Decoding Concept

As discussed in Chapter 3, in a partial search of a trellis the decoder utilizes the currently

gathered likelihood information to guide its subsequent exploration. The concept of Reconfigurable

Trellis Decoding is to combine partial trellis searching with the fact that we may exploit alternative

trellis representations of the code based on symbol position permutations. The decoder operates on

an equivalent-code trellis that has its symbol positions in an order advantageous to decoding. After

88



Chapter 4. Reconfigurable Trellis Decoding^ 4.2 The RT Decoding Concept

decoding of the equivalent-code the symbols are simply restored to their original order. The RT

decoder aims to exploit reliable symbols by repositioning them to improve the search efficiency.

Efficiency in partial trellis searches is attained by exploring heads that are most likely to be

part of the correct (transmitted) path, or equivalently, by discarding those heads that are unlikely to

belong to the correct path. At each decoding stage the decoder compares head metrics to discard

those heads that are presently ranked as unlikely. Increased search efficiency would be attained

if the rank order of head metrics rapidly converged with depth to their final values. In other

words, efficient pruning would be facilitated if the influence of the metrics of the unexplored tails

was insignificant. Since reliable symbol-positions have one symbol-hypothesis that is much more

likely than its alternatives, and since unreliable symbol-positions have little distinction between

alternative symbol-hypotheses, reconfiguring the symbol positions in a most reliable symbol first

(MRSF) manner should increase the rate of convergence with depth of the rank order of head

metrics. In other words, using MRSF ordering should enable the head exploration to rapidly gather

and utilize the most significant branch-likelihood information.

The above heuristic argument is perhaps reasonable for tree decoding, but it is less plausible

in the case of a trellis. With a trellis, symbol position reordering may vary the trellis dimensions,

as discussed in Chapter 2. If the code had a compact trellis then symbol position reordering may

significantly increase the trellis dimensions and the search effort saved by using such a compact

representation may be lost. We remark that as discussed in Chapter 2, for a linear block code to

have a compact trellis requires a smallest minimum distance d -= mm(dim, , dim.) significantly

less than the corresponding Singleton bound. For codes with a large d relative to the corresponding

Singleton bound the impact on the trellis dimensionality due to symbol position reordering will be

small. For example, MDS codes will have no alteration of trellis dimensions due to symbol position
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reordering, so that any reordering can be used without a dimensional penalty.

With partial searches the question arises as to whether the search should use a trellis or a tree.

With partial searches of large dimensional trellises we are constrained in practice to retain only

some manageable number of survivors, which will be small in relation to the total number of states.

It has been found (for example, see [32]) that it is unlikely that such survivors merge, so that trellis

decoding offers little reduction in the number of survivors. As well, with partial trellis searches

of large trellises it is not feasible to store the entire trellis, so that it is necessary to compute the

contender states. This results in the need to find matching states amongst a sizeable number of

survivors, which can involve significant effort [32]. For these reasons, we are inclined to use tree

decoding for large dimensional codes.

Despite the above practical reasons favouring tree decoding over trellis decoding, we prefer to

use the designation Reconfigurable Trellis Decoding since it is clear that the technique can also

be utilized on the less structured tree-representation of the code. We often use the abbreviation

RT decoding, which can conveniently have either interpretation, with the particular meaning being

clear from the context. In cases where possible confusion may arise, the appropriate full form

will be used.

As mentioned above it may not be feasible to store the entire trellis or tree so that the contender

states should be computed — only the explored portion of the trellis or tree is generated. To do

this, one can use the simplified trellis construction methods discussed in Chapter 2, except that

states are found only for those heads that are extended. For use with RT decoding we note that the

reordering of the symbol positions implies a corresponding reordering of the columns of the parity

check matrix H and the generator matrix G. In this chapter, we will use the 'Method 2' simplified

trellis construction (pg. 32) and reduce H to row echelon form prior to beginning the search.
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An Example. We now present examples of decoding using RTD and decoding using the

original trellis for a Hamming (7,4) code. With this small code our intent is only to illustrate the

basic mechanics of RTD.

Assume that the transmitter sends the codeword

Ctransmitted =-(1^1^1^1^1^1^1)^ (4.4)

and that the original trellis is as shown in Figure 4.1. At the receiver, assume that the resulting

symbol likelihood-distances are

(0.1^0.3 0.4^1.6 0.8^1.2 0.2)^ (4.5)

(where, since the code is binary, we need only show the single nonzero likelihood-distance for each

symbol position). As well, we assume that the vector of hard-decisions is

y = ( 0 1 1 1 1 1 0).^ (4.6)

A hard decision decoder would decode to the codeword nearest in Hamming distance to y, which

is cout,H D =--( 0 0 1^1^1^1 0).

For simplicity we assume that decoding is performed using the M algorithm with M=1, so that

at each depth only a single survivor is retained. Figure 4.1 shows the original code trellis with

the explored heads indicated by dark branches, and with the explored head's likelihood-distances

indicated at each depth. In this example the decoded codeword is coo =( 0 1 1 0 1 0 0)

which, like the hard-decision decoder, is in error. For RT decoding we first reorder the bit positions

according to their reliability. The most-reliable-symbol-first order of likelihood-distances is

( 1.6^1.2^0.8^0.4^0.3^0.2^0.1).^ (4.7)
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The original parity check matrix is shown below along with the new parity check matrix formed

by correspondingly reordering the columns. Also shown is the reduced reordered matrix, where the

arrows at the top of the reduced matrix indicate the constraint positions.

1 1 1 0 0 0 0 1 1 0 1 1 1 0 0
0

[ 1
0 1 1 1 1

01
0 1^1

[1
1 1 0 0

11
0 1^0

[1
1 0 1 1

01
0

0 1 0 1 1 0 1 1^0 1 0 1 1 0 0^1 1 0 1 0 1

Figure 4.2 shows the resulting code trellis with the explored heads indicated by dark branches.

The RTD output codeword is

cout,RTD =(1 1 1 1 1 1^ (4.8)

which agrees with ctr a It S Mitt e d•
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Figure 4.1 An Example of the M Algorithm Decoding a (7,4) Code
The dark branches indicate the explored trellis using the M algorithm with M-=1. The output codeword as
determined by the lowest likelihood-distance of the explored heads is cow =( 0 1 1 0 1 0 0).
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Figure 4.2 An Example of the RT-M Algorithm Decoding a (7,4) Code
The output codeword using the RT-M algorithm with M.1 is Co„t,RTD =(1 1 1 1 1 1 1).
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This simple example also illustrates a key property of RT decoding. Consider the reordered

vector of likelihood-distances (4.7) and note that since a smaller likelihood-distance implies a larger

probability of error, we see that RT decoding will tend to collect channel errors into bursts in the

tail of the trellis, regardless of the original error distribution. This can result in 'trapping' many

errors in the tail (i.e. many errors will fall in the constraint positions in the tail), so that few

survivors are required.

The number of errors that will be trapped by RT decoding depends on the nature of the channel.

For example, if we are fortunate enough to have a channel that is extremely well approximated by

an erasure channel, then RTD will collect all erasures in the tail. In the case of an MDS code on

an erasure channel, if there are n — k or fewer erasures they will all be in the final n — k positions

of the reconfigured trellis, and these final n — k = dm,„ — 1 positions will be constraint positions

— thus we can ensure that ML decoding can be attained by retaining only one survivor, regardless

of the size of the code. Similarly, for non-MDS codes, we can be assured to correct any pattern

of clni,„ — 1 errors with only one survivor.

In fairness, the erasure channel represents the best possible case for RT decoding. It is easy to

see that in the case of the BSC, there is no advantage to trellis reconfiguration. However, we are

interested in more typical soft-decision channels, where we can gain some improvement in error

probability compared to hard-decision decoding while at the same time being able to save trellis

searching effort via RT decoding.
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An Example of Decoding on an AWGN Channel

Here we present some simulation results for the binary (24,12) extended Golay code decoded

using the M-algorithm, with and without reconfiguration, and the Viterbi algorithm. Figure 4.3

shows the codeword error rate (WER) versus signal-to-noise ratio (SNR26) in dB for binary phase-

shift-keying (BPSK) on an additive white Gaussian noise (AWGN) channel. It is easy to show that

the likelihood-distance for each bit is proportional to HI, where r, is the output of the demodulator

for the ith bit.

The simulation results shown in Figure 4.3 demonstrate a considerable reduction in the number

of survivors when using RT decoding. For example, compared to hard-decision decoding, the M

algorithm with 16 survivors performs slightly better, while the RT-M algorithm with only one

survivor outperforms both. The RT-M algorithm with 8 survivors attains virtually the same WER

as the M algorithm with 128 survivors. To be within 0.25 dB of the Viterbi algorithm at a WER of

10-2, the RT-M algorithm needs about 8 survivors, while the M algorithm needs about 128. This

compares with the smallest s (the maximum trellis dimension) attainable for the (24,12) code [17]

of 9, which corresponds to 512 states.27

26^Here the SNR is Eb/No, i.e. the ratio of the energy per information-bit to the one-sided power-spectral-density (PSI)) of the AWGN.
27^As discussed in 1171, trellises with smaller dimensions can be drawn if one is willing to group multiple bits per trellis branch. In (16] a trellis
for the Golay (24,12) code is constructed which facilitates an efficient decoding algorithm for this particular code. Later we will present a more
detailed comparison of these approaches.
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SNR (dB)

Figure 4.3 Word Error Rate using the M Algorithm, RT-M Algorithm and the Viterbi Algorithm
The word error rate (WER) is plotted vs. the SNR for the (24,12) Golay code on

an AWGN channel with BPSK. The solid and dotted curves show the M algorithm and the RT-M
algorithm word error rates, respectively. The error bars show 95% confidence intervals.
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4.3 The Uniform Error Property for Pruning Decoders

In this section we discuss how the uniform error property of ML decoding of linear codes on

an binary-input symmetric-output memoryless channel [52] can be extended to the more general

case of pruning decoding.

A binary-input symmetric-output memoryless channel [52] has inputs labeled 0 and 1 and has

an output that is symmetric in the sense that

f(ri 0) = f(—ri 1) (4.9)

for all values of rz. For example, the AWGN channel, the BSC, and any other symmetrically

quantized AWGN channel can be shown to satisfy (4•9)28 [52]. This symmetry can be used to

show that the uniform error property [52] holds for linear codes with ML decoding, i.e. that

Pe,M L = Pe,M Lje, , any CI- E C (4.10)

where Pe,A L is the error probability using ML decoding, and Pe,mLie, denotes the error probability

given that a specific codeword c) is transmitted. The uniform error property allows one to evaluate

the probability of error for an ML decoder by assuming that any single codeword is sent, which for

convenience can be taken to be the all zero codeword co. One would expect that the uniform error

property should hold for pruning decoders. This generalization of (4.10) is stated in the following

theorem, which is proved in Appendix B.

Theorem 4.1 The error probability Pe of a pruning decoder, when decoding linear codes on a tree

or a minimal trellis and assuming a binary-input symmetric-output memoryless channel, satisfies

 

Pe — Pek, , any ci E C^ (4.11)

   

28^A simple transfomiation of the output may be required so that (4.9) is satisfied. For example, suppose an AWGN channel is used with the
signal constellation points for 0 and 1 at r = 0 and r = A, respectively. To satisfy (4.9), one needs only to shift r so that the signal points occur
at ±A/2.
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where Pe le, denotes the error probability given that codeword c is transmitted. The pruning decoder

is assumed to adhere to the decoding rule of minimizing (3.19) at each decoding stage, and in doing

so it is assumed to treat each codeword as equiprobable.

4.4 The Pruning Impact

When decoding using pruning it is desirable to attain "near-ML performance". To quantify this

we define the pruning impact, PI, to be the increase in probability of error of a pruning decoder

with respect to a ML decoder. Introducing the pruning impact will also facilitate the analysis,

compared to using the error probability directly.

In any decoder, an error occurs when the correct path (CP) is not released as output; which

in the case of a pruning decoder is due to the CP being pruned, or due to the most likely path of

those remaining being chosen instead of the CP. The error probability can be written as

Pe = I Pr( CP not chosen I r)f(r) dr

= f Pr( CP pruned U ML path CP I r) f(r) dr.^(4.12)

Forming a union bound on the error causing events in (4.12), we obtain

P, < I [Pr( CP pruned I r) + Pr( ML path CP I 0] f(r) dr.^(4.13)

Let Pe,A I L denote the error probability of an ML decoder. We see that (4.13) is

P, <Pr( CP pruned I r) f(r) dr +I^ Pe,M L^ (4.14)

so that

Pe — Pe,M L < f Pr( CP pruned r) f(r) dr.^(4.15)

98



Chapter 4. Reconfigurable Trellis Decoding^ 4.4 The Pruning Impact

The left hand side of (4.15) is precisely our definition of the pruning impact. Thus we have upper

bounded the pruning impact Pi as

^< I Pr( CP pruned r) f (r) dr.^ (4.16)

It is easy to verify that the upper bound (4.16) is reasonable. From (4.12) and (4.13) we note

that the amount by which (4.16) will exceed Pi is precisely

^Pr( CP pruned n CP ML path).^ (4.17)

However, this can be simply bounded via

Pr( CP pruned n CP ML path) <^L^ (4.18)

and we see that the looseness of (4.16) is upper bounded by 1),,A L.

It will be convenient to recast the upper bound (4.16) into a different form. Let P/ denote the

right hand side of (4.16), where the 'hat' indicates that this quantity is an upper bound.

We now assume that the channel is a binary-input symmetric-output memoryless channel [52].

Consequently, Theorem 4.1 applies, and it also implies that the pruning impact satisfies the uniform

error property,

= 1311c,^, any CI E C^ (4.19)

where P1

^

^the pruning impact given that only a codeword c I is transmitted. As well, the

bound on the pruning impact (4.16) will satisfy a similar condition. Using this result in (4.16), gives

Pi =,Pr(co pruned 1 r co transmitted) f (r 1 co transmitted) dr.f^ (4.20)

99



Chapter 4. Reconfigurable Trellis Decoding^ 4.4 The Pruning Impact

Now
{ 0 ,Pr(co pruned I r, co transmitted) =^co not pruned

1 7 co pruned (4.21)

so that we can rewrite (4.20) as

Pfi- -=^f(r I co transmitted) dr^ (4.22)
Ro

where Ro is the region of R where co is pruned. Equation (4.22) will be utilized in subsequent

sections.

4.5 Approximate Analysis of Pruning Impact for the RT-M Algorithm

4.5.1 The Order Statistic Channel Model

As discussed earlier, a binary-input symmetric-output memoryless channel has outputs 7'z and

—r, such that f(r, I 0) = f( -7'z 1). Consequently, we also have f(—r, 0) = f(7., I 1). These

symmetric likelihoods can be conveniently represented by a transition diagram as shown in Figure

4.4, where without loss of generality we have let r p > 0 correspond to the larger likelihood

of f(r, 0) and f(—r, 10).

It will be convenient to work with conditional transition probabilities. Conditioning on the

output being either p, or —pz, and given that 0 was sent, the crossover probability is

Pr(—p 1 0,^=^0) 
f(lpil 10)

f (- Pi 10)

  

f (pi 1 0) + f(-p I 0)
_ ^f(Pi 1) 

i(Pi 0)+PPi I 1)
(4.23)
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Figure 4.4 A Symmetric Pairing of Outputs from a Binary-Input Symmetric-Output Channel

where we have used the fact that f (— p 10) = f (pi 1). Similarly, the crossover probability given

that 1 was sent and that pi or — p, occurred, is

f(pd IPd I 1) 
Pr(ei I 1' led)^1) +

f(Pi11) (4.24)

 

f(pill)+ f(pi 10)

 

and (4.23) and (4.24) are equal. We will denote this symmetric crossover probability simply as pi.

Now consider a sequence of 71 outputs from a binary-input symmetric-output memoryless

channel. Any sequence of n outputs belonging to

(4.25)

can be represented by the transition diagram shown in Figure 4.5, where the crossover probabilities

are labeled by

( P1^P2^• ' • Pn )•
^ (4.26)

Larger conditional probabilities are shown as darker arrows, to emphasize that the channel reliability

varies over the sequence of p bits.
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A RT decoder views the outputs of Figure 4.5 as a reordered sequence. An example is shown

in Figure 4.6, where the reordering puts the most reliable bits first. This corresponds to reordering

the bits according to their crossover probabilities. In Figure 4.6 the ranked crossover probabilities

are denoted as pz,„, with the subscript i : n indicating the ith smallest order statistic from a sample

of size n. A channel formed by reordering blocks of n bits into most-reliable-bit-first order will

be referred to as an Order Statistic Channel (OSC).

On an OSC the crossover probability for any particular position will vary as different sequences

of 71 outputs are observed. However, we propose to model each conditional transition probability by

a single 'fixed' transition probability. A representative set of transition probabilities are taken to be

the expected transition probabilities for each reordered position. The resulting model is referred to

as the Order Statistic Channel Model (OSC Model), and is shown in Figure 4.7, where the 'fixed'

transition probabilities are denoted as 152,7.

The justification for the OSC model stems from an asymptotic property of order statistics;

specifically, that as n is increased, an OS is an asymptotic estimator of a quantile of the parent

distribution [761177]. Our direct interest is not in estimating a quantile, but rather we are interested

in the property that the variance of an OS is reduced as n increases [76][77]. For RT decoding we

are interested in modelling the effect of OS reordering on the transition probabilities fp,}7 1. As

will be discussed, the effect of the OS reordering will be to decrease the variability of these transition

probabilities. As n is increased, the varying transition probabilities for a reordered position will be

increasingly well represented by the expected transition probabilities used to form the OSC model.

Let Fx (x) denote the distribution of the r.v. X that is used to rank the symbol positions, with

corresponding pdf fx(x). The it r.v.s X1, X2,^,X are assumed independent and identically
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Figure 4.5 A Sequence of Symmetric Transition Probabilities
The reception of n outputs belonging to ( ±pi 1p2 • • • ±p,..,) from a binary-input
symmetric-output channel are represented here by symmetric transition probabilities. To

emphasize that the bit reliabilities vary, larger transition probabilities are shown as darker arrows.

Figure 4.6 Reordered Transition Probabilities
The symbol position permutation used by RTD forms a channel consisting of reordered transition probabilities. Here
the ith crossover probability is labeled as pi.„ to indicate that it is the ith order statistic from a sample of size n. As in
Figure 4.5 larger transition probabilities are shown with darker arrows, which displays the most reliable bit reordering.

•■111111110.-:

          

Figure 4.7 The Order Statistic Channel Model
The OSC Model represents the channel viewed by the RT decoder as having fixed

transition probabilities, which are the expected transition probabilities for each
reordered bit. The expected crossover probabilities are denoted as P1 n, P.) n,^pn n •
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distributed (i.i.d.), which is consistent with our assumption of a memoryless channel. A standard

result [76] is that the pdf for the Oh smallest OS drawn from n samples of a parent i.i.d. r.v. with

distribution Fx (x) is

fxh.„(x) h ( hi) Fx
h-1 

(x)[1 FX(x)]7" fX(x)^,1 < h < n.^(4.27)

Following the approach used in [77] the pdf of the OS given by (4.27) can be written as the product

of the pdf fx(x) of the parent distribution with another function Wh,„(x) given by

Wh:n(x) = h(hl) F_t-1 (x)11 — Fx(x)rh , 1 <h < (4.28)

To illustrate the 'behaviour' of the expected value of an OS we will first make a change of variables,

U = FX(X), so that (4.28) becomes

,wh:n(u) =^)_1 {1 — 1 < h < n, 0 <u < 1.^(4.29)h (n ^urh

This function is referred to in [77] as the sort function. The expected value of an OS is then [77][76]

00

E[Xh:n] = I x fx^dx

—00
00

= f x Wh:„(x) fx(x) dx

= 1 wh,„(u) Fx(-1) (u) du . (4.30)

where F1(u) denotes the inverse function of F(u). Equation (4.30) reveals why wh,„(u) is

called the 'sort function', since an expected OS is the integral of a function (F1 (u)) dependent

solely on the parent distribution, weighted by the sort function, which is independent of the parent

distribution. Figure 4.8 shows representative sort functions for increasing n. The area under the
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graph of each sort function is unity, since the sort function is precisely the Beta pdf. As n is

increased, we see that the expected value of an OS will be influenced by an increasingly narrower

region of u, which implies that the region of influence of the parent distribution will also decrease.

As n is increased, the sort functions approach impulse functions [77].

Each transition probability in the OSC model is the expected transition probability for a

reordered position, where the expectation is over the order-statistic pdf of the ranking r.v. X. Let

p(x) denote the crossover probability as a function of x. Then the expected crossover probability

for the hth reordered position is

h:n = E x h [P(x)]00
= I p(x) W h:„(x) f x (x) dx^ (4.31)

—Do

In terms of the variable u = Fx(x), it is easy to show that (4.31) becomes

1

Ph:n f wh:n(u) P (F x-1 (u)) du,
0

(4.32)

so that the accuracy with which the OSC model transition probabilities represent the actual transition

probabilities will increase with Ti, due to the asymptotic behaviour of the sort function wh,„(u).
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Figure 4.8 Examples of the Sort-Function for Different Sample Sizes
Some representative sort-functions are shown for n = 5, 17,65 plotted against the value u = F(x) of the parent
distribution. Each sort-function has unit area. In Case (i) (n=5) the OS sort-functions wh.„(u) for h=1,2,...,5 are

shown, with modal points at u =^= 0, 0.25, 0.5, 0.75, and 1. In the graphs for Cases (ii) (n=17) and (iii) (n=65),
we have shown only those sort functions that correspond to these same modal points, for ease of comparison.
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4.5.2 Approximate Pruning Impact of the RT-M Algorithm

Here we develop a method to estimate the pruning impact of the RT-M algorithm. The approach

utilizes:

i. The uniform error property for pruning decoders. (Theorem 4.1 )

ii. The OSC Model. (Section 4.5.1 )

iii. The upper bound on the pruning impact. (Eqn. (4.22) )

First we consider an upper bound on the pruning impact of the RT-M algorithm. In RT decoding

the searches are carried out on trees or trellises corresponding to all of the codes C' equivalent to

C. The decoder knows with certainty which C' to decode for each trial since the decoder itself has

specified the symbol position permutation. Let Pi (C') denote the pruning impact of the decoder

for the code C'. The pruning impact, considering all equivalent codes, is then

Pj = E (C') (C)^ (4.33)

An upper bound on (4.33) is clearly

Pj < max /3/ (C')
^

(4.34)

We now argue that the systematic code C is the maximizing code in (4.34) for the M algorithm. We

first compare the pruning impact of tree decoding a systematic code C versus that of a particular

non-systematic code C'. The particular code C' differs from C only in that it has a constraint-

symbol at position k and an information-symbol at position k + 1. Since the M algorithm will prune

only at information-symbol positions, the number of heads pruned when decoding C at depths k

and k 1 will be M' and 0, respectively29; while for C', there will be 0 and M' heads pruned
29^The number of heads pruned is M', where M' < M. M' will equal M when there were M survivors that were extended to form 2M
contenders (in tree decoding) of which M are pruned to leave M survivors. M' can be less than M due to merges when using trellis decoding, or
at the early depths of the tree or trellis where the number of contenders can be significantly less than 2M.
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respectively. Decoding C will have the same or larger pruning impact than decoding C', since in

the former case the M algorithm is constrained to prune the same number of codewords but based

on less head-likelihood information. In other words, when decoding C the M algorithm is more

severely constrained in the head-likelihood information that can be utilized in deciding on which

heads to prune. Now, any non-systematic code can be considered to be a systematic code that has

been altered to have some constraint-positions occur earlier. Any such early constraint-positions

postpone the pruning in the M algorithm (as described above for C') and the consequence of this

postponement is the accumulation of more head-likelihood information on which to base the pruning

decisions. Finally, similar arguments hold for trellis decoding, where the early constraint-positions

of a non-systematic code similarly postpone the pruning.

We now exploit the OSC model to estimate the pruning impact of the RT-M algorithm when

decoding a systematic code. First, it is convenient to relabel the OSC model outputs p, and —p as 0

and 1 respectively. With this relabeling an output label j can be written as the modulo 2 sum of an

input label k plus an error label e, i.e. j = e. For transmitting a codeword using the OSC model,

we can then conveniently write the vector of output labels y asy = c e where c is the codeword

and e = ( 61 62 • • C„ ) is an error vector. From Theorem 4.1 we can then assess the pruning

impact assuming that only the all zero codeword co has been transmitted, so that y = co e = e.

We now utilize the upper bound (4.22) on the pruning impact. For the OSC model it is

appropriate to use a discrete version of (4.22), where we replace the continuous output vector r

with the discrete output vector y, to obtain

—

^Pr(e co transmitted)^ (4.35)
Eo

where E0 denotes the set of error vectors for which co is pruned. We have used the symbol to

remind us that this is an approximation to Pi due to the use of the OSC model. We are interested
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in evaluating (4.35) for the case of decoding a systematic code. To do this we will exploit the

systematic form of the code together with the fact that the M algorithm will only prune in the

information positions.

Using the OSC model we can draw a tree showing the head likelihood-distances when decoding

a systematic code, as shown in Figure 4.9 for the RT-M algorithm with M 4. Recall that since

we are using the OSC model and transmitting co, we have that the output is y = e. Consequently,

we can write a head likelihood-distance D(yh,ch) (see (3.27), page 67) as D(eh,ch). Observe

that for a systematic code the set of likelihood-distances for all heads of length 1 < k,

{D (eh, ch); any ch of length I< k}
^

(4.36)

will be invariant to eh, since any head ch of length 1 < k is allowed in a systematic code. Now

recall that the M algorithm operating on a systematic code will only prune heads of length 1 < k,

so that with the set of likelihood-distances for those heads being invariant to eh we have that the

set of head likelihood-distances that are pruned will also be invariant to eh. We will denote this

set of likelihood-distances as D. In the example of Figure 4.9, Dp corresponds to the likelihood-

distances marked with 'x's.

Consider that as e is varied, any specific member D(eh,ch) of Dp may correspond to different

codeword heads. We are interested in how often co gets pruned, and to compute this we will sum

the contributions to (4.35) from pruning each D(eh,c) in Dp. Now, since we have transmitted co,

any particular D(eh,c10') occurs with probability Pr (eh I CO, since this is precisely the probability

that cio' is transmitted and received as eh. As well, when an eh is pruned, any tail et will also be

pruned, so that the probability of co being pruned when eh is pruned is

Pr (eh I Ciol)
^

Pr(et c) = Pr (eh c).^ (4.37)
et
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Eqn. (4.37) is the contribution to (4.35) for always pruning a eh corresponding to a member of

Dp. Considering all of the members of Dp, we obtain for (4.35)

PJ h^h
7' (e I co) . (4.38)

e Dp

Using (4.38) we can estimate the upper bound on the pruning impact (4.22) by a single M algorithm

search of a depth k tree, based on the OSC model, as explained below.

The estimation procedure is perhaps easiest to explain by referring to Figure 4.9. Label each

branch in Figure 4.9 with its corresponding OSC model transition probability as follows. Each

upward branch corresponds to an error, so that each upward branch at depth i corresponds to the

OSC model crossover probability pz•„. Similarly, each horizontal branch corresponds to a correct

bit, and is labeled with 1 —75,„. To estimate the pruning impact, one extends and prunes heads in

the systematic (unconstrained) tree using the M algorithm, and accumulates the probability of each

head that is pruned (this probability is simply the product of the head's branch probabilities). The

sum of the probabilities of the pruned heads is the sum of all of the probabilities of reaching the

nodes marked X in Figure 4.9. This sum is precisely the estimate of the pruning impact (4.38).

The above estimation procedure is simple and efficient since:

i. It is independent of the detailed structure of the code.

It requires only a relatively small number of nodes to be explored (since the

exploration is limited by M, which is small in relation to the number of states

of the code).

iii. It avoids considering an infinite set of outputs of a soft-decision channel (by using

the OSC model, which has only 2 outputs per position).
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Figure 4.9 Head Likelihood-Distance versus Depth for the RT-M Algorithm with a Systematic Code.
The explored head likelihood-distances are shown for a binary systematic code using an

()SC Model with M = 4, for depths 0,1, ..., k. Pruned heads are indicated by X's.
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4.5.3 Estimated WER of the RT-M Algorithm

Figure 4.10 compares the WER obtained via simulation with the WER estimated using the

estimation procedure discussed above. The binary (24,12) Golay code is used on an AWGN

channel with binary PSK. The curve labeled "RT-M" shows the simulation results for the WER

of the RT-M algorithm for various M, and the error bars indicate 95% confidence intervals. The

curve labeled "Estimated RT-M" uses (4.38) as discussed to estimate the pruning impact, and then

forms an estimate for the WER by adding an upper bound on Pe,m L. The upper bound on .1),,A L

was taken to be the WER for M=64. It can be seen that the WER versus M curve is virtually flat

for M > 32, so that the M=64 WER value should be reasonably close to Pe d u L. 30 The error bars

from the simulation of M=64 are incorporated into the "Estimated RT-M" plot.

The estimated WER exceeds the simulation results by less than about 30% for a SNR of 2 dB.

This excess corresponds to a small dB loss (< 0.25 dB), which can be estimated from Figure 4.3

(pg. 96). It can also be seen that this excess decreases for higher SNR. To account for this effect,

let us review the sources of excess31 in the estimate of the pruning impact, namely, the use of:

the use of the systematic code to upper bound the pruning impact,

ii the upper bound on the pruning impact (Eqn. (4.22)).

For increasing SNR, the errors that occur in a block are increasingly confined to the poorest

ranked bits. For example, the number of errors occurring outside of the dm,„ — 1 poorest ranked

bits will decrease with increasing SNR. Consider the situation where the SNR has increased such

that effectively all of the errors that occur are confined to the dm,„ — 1 poorest ranked bits. In this

30^This can also be verified by comparison with the lower bound on the VA shown in Figure 4.3.
31^The accuracy of the estimate is also affected by the use of the OSC model, which may contribute positively or negatively to the excess. We
have previously discussed that this error diminishes as n is increased.
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situation, decoding the systematic code will give effectively the same error probability as decoding

any equivalent code, since both codes have the same distance properties for the positions where

the errors do occur. This is due to the fact that all equivalent codes will have the last dm,„ — 1

bits as constraint bits. This accounts for a decreasing excess in the estimate of the pruning impact

due to item (i) as the SNR is increased.

The increasing confinement of errors to the poorest ranked positions as the SNR is increased

will also imply that the excess due to item (ii) will decrease. This can be seen as follows. Recall

that the upper bound on the pruning impact is (4.16)

/31 = Pr(CP pruned)^ (4.39)

and the excess of this upper bound is (4.17)

Pr( CP pruned n CP ML path).^ (4.40)

However, with M fixed and the SNR increasing, the increasing confinement of the errors to the

d„„„ — 1 poorest positions implies that the pruning decoder WER will approach that of ML decod-

ing.32 This implies that P7-(CP pruned) becomes small in relation to Ped = Pr(CP ML path),

which in turn implies that (4.40) decreases in relation to Pe,m L.

32^Recall that if all errors were confined to constraint positions the decoder can attain ML decoding with only M=l. (See pg 94.)
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Figure 4.10 Word Error Rate of the RT-M Algorithm, Simulation and Estimation Results
The word error rate is plotted vs. the maximum number of survivors

for the (24,12) Golay code on an AWGN channel with BPSK.
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4.6 Computational Effort of RT-M Decoding

In discussing the computational effort of RT decoding we will assume that the contender merge-

sifting (CMS) method of §3.4 is used to implement the M algorithm. We will make comparisons

of this RT—M algorithm with both ML decoding and near-ML decoding. Specifically, RT-M is

compared to:

The most efficient soft-decision ML decoders for a specific code, namely the

decoders of Vardy and Be'ery [78], Snyders and Be'ery [64], Forney [16], and

Conway and Sloane [62] , for the binary extended Golay (24,12) code.

ii The M algorithm operating on various binary linear block codes.

As will be discussed, case (i) provides a comparison against highly specialized decoders, while

case (ii) provides a comparison against decoding of general linear block codes.

4.6.1 The Number of Operations for RT-M Decoding

Here we consider the number of metric operations (such as additions and comparisons) and

the non-metric operations (such as the binary-vector operations involved in carrying out partial

searches) carried out by RT-M decoding. We assume that binary linear block codes are used.

Number of Metric Comparisons, Ne

In §3.4 upper bounds were found on the worst-case number of metric comparisons to implement

the M algorithm using contender merge-sifting, for binary linear block codes. For RT-M decoding

the decoder will be decoding all codes equivalent to the original transmitted code, so that an

appropriate upper bound from §3.4 is (3.39). Equation (3.39) upper bounds the worst-case number

of metric comparisons for the worst-case equivalent-code, which has its last information-symbol at
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depth n — dmi„. Equation (3.39) is

N< M(k + + 2 — /m ) 21m — 111/ — 2 — A^(4.41)

where 1m = [10g2 (M)] + 1 is the first depth where the number of contenders exceeds M, and

= ii - k +1 — cl„„„ is the amount by which dini„ is less than the Singleton bound.

As well, a looser but simpler upper bound is given by (3.41)

Are < Mk + (M — 1)A.^ (4.42)

Number of Metric Additions, Na

The worst case number of metric additions in the M algorithm implemented using CMS can be

upper bounded as follows. For k — lm information-positions where M survivors are extended to

form 2M contenders, there will be exactly M contenders in each of the contender-subsets. Assume,

without loss of generality, that the contender-subset Co corresponds to the hard-decision, for every

depth. Since the contender-subset Co has metrics that are identical to those of the previous survivors,

no additions are required here. The M contender metrics in C1 can be computed with M additions,

for each of these k —1m depths. For each of the n — k constraint-positions, the worst-case number

of additions occurs when all of the Al contenders fall in C1, again using Al additions. For the

initial depths 1,2,...,1m —1 of the tree before there are M contenders, we can upperbound the

number of additions as M, at each of these depths. Consequently, a simple upper bound on the

worst-case number of metric additions is Al additions for each of the 71 depths, giving

No < Mn.^ (4.43)
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An upper bound on the expected number of additions can be obtained by more carefully accounting

for the number of additions in the initial depths of the tree, and by upper bounding the expected

number of additions at constraint positions. In the depths less than or equal to lm, the number of

additions is the sum of the number of entries in C1, which is at most

E 22_1 _ 1. (4.44)
z=i

For each constraint position, we have found that the worst case number of additions is M, and the

expected number of additions is M12, as follows. First, recall that in a binary linear block code

the number of '0' bits and '1' bits is identical for each symbol position, so that with equiprobable

information-bits the parity bits will also be equally likely to be a '0' or a F. In other words, at

a constraint-position the bit is just as likely to be a '0' as it is to be a 'I'. As discussed earlier,

extensions using all '0' bits or all 'I' bits require zero and M additions, respectively — so that

with the constraint bits being '0' or '1' with equal frequency we have that the expected number of

additions to form M contenders at each constraint depth is then simply M12. Using (4.44) for the

number of additions in the initial 1M depths, plus M additions for the each of the remaining k—lm

information positions (at most), plus M/2 expected additions for the 7i - k constraint positions,

we obtain

Symbol Position Ranking

The ranking of the received symbols could be accomplished using a comparison-based sorting

algorithm. For small values of ii the associated computational effort may be acceptable. However,
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much more efficient sorting schemes can be employed to exploit the nature of the distribution of

the input sequence, as described below.

Recall that the n values to be sorted are assumed to be i.i.d. with common distribution Fx(x).

We can divide the domain of the distribution to form n quantization regions such that the probability

of X falling in any region is 1/n. This quantization transforms the continuous r.v. X into a

uniformly distributed discrete r.v. Sorting of uniformly distributed inputs can be accomplished

using a bucket-sort in 0(n) expected time [45]. The efficiency of the bucket-sort stems from

splitting the sorting procedure into the quantization stage (which categorizes inputs into buckets),

and a sorting stage that sorts each bucket's contents. The efficiency arises with uniformly distributed

inputs since the expected number of entries per bucket is unity; hence few buckets will require

sorting, with little sorting effort expected per bucket.

The sorting effort can be further reduced by using approximate sorting, in which we dispense

with sorting the bucket contents. Such approximate sorting should be sufficient for RT decoding

as n increases, for the following reason. Consider that the approximate sorting can be viewed as

quantizing the decoding metric to 71 levels. Since it is well known that soft-decision decoding can

be accomplished on AWGN channels with a very small dB loss using only a small number b of bits

for quantization (3 bits are typically used) [69], one would expect that providing roughly 2b buckets

should be sufficient. For n > 2b, the number of buckets will exceed the number of quantization

levels known to achieve good soft-decision decoding performance, so that approximate bucket

sorting using n buckets should be sufficient. For 71 >> 26 it should then also be sufficient to have

fewer than n buckets. With only a few bits being devoted to the metric, the metrics can be assigned

to their appropriate buckets in worst case time of precisely 71 steps (and using zero comparisons)

using the binary metric values as a direct address to index the array of buckets.
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Number of Binary Vector Operations for Code Matrix Reduction, -NT'

Here we consider the number of binary vector operations to reduce the parity check matrix H

or the generator matrix G, for use with the 'Method 2' or 'Method 3' trellis generation schemes,

respectively, discussed in Chapter 2.

Using elementary row operations the reduction of the (71 - k) X 71 matrix H can be done using

of the order of (n — k) 2
71 bit operations. Since these bit operations are simple bit-by-bit XOR or

zero-testing operations, they are ideally suited to implementation in digital hardware. As well, it

is natural to process the matrix using operations on n—bit vectors, rather than bit by bit. The key

operations in the matrix reduction are (I) the identification of the rightmost 1 to find a pivot from

the remaining non-pivot rows, and (2) the addition of this row to other rows that share a 1 in this

pivot position. We assume that we have a length-n binary-vector processing-block that can find

the rightmost 1 in a row. We also assume that we have a length-n binary-vector processing-block

that performs the vector-XOR on another row if it has a one in the pivot position. The worst case

number of such binary-vector operations is obtained as follows. At the first step in the reduction

there will be at most n — k tests to find the rightmost 1 as the first pivot. This is followed by

n — k — 1 operations of the XOR block to eliminate l's in the non-pivot rows. At subsequent steps,

there are at most 71 - k — 1, 71 - k — 2, . , 2, 1 tests to find pivots, with n — k — 1 XOR-block

operations for each pivot row. In total then there are

71—k^1 
71 - k)(71 - k + 1)^ (4.46)

tests for pivots and

(71 — k)(71 — k — 1)^ (4.47)
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XOR-block operations. Hence the total number of length-n binary vector operations is upper-

bounded by

Nr^
1< —
2

(n — k)(n — k +1) (n — 0(n — k —1)

= —3 
(n — 0(n. — k — 1/3)2

< (n —^. (4.48)

The number of length-n binary vector operations for reducing the generator matrix G instead of

H can be similarly obtained as

(4.49)

For codes with rate R > 1/2, which is typically the case, it is simpler to reduce H for use in

Method 2, rather than reduce G and use Method 3.

Number of Binary -Vector Operations for Tree Searching, Ns

Here we account for the number of binary-vector operations used in carrying out the partial

tree search. The search can utilize states, as in the trellis generation schemes of Methods 2 and 3,

or the search can dispense with maintaining states, as will be discussed shortly.

First we consider the number of binary-vector operations for the Method 2 and Method 3

trellis generation schemes. Both of these methods will have an identical number of binary-vector

operations, except for the reduction of the code matrix. As discussed in the previous section, typical

codes have a rate R> 1/2 and will require fewer operations for matrix reduction using Method 2.

Below we consider the worst case and expected number of binary vector operations.

In Method 2, for extensions using the zero bit the new state is unchanged, so that no vector-

XOR operation is required. We thus need only count the extensions using a '1'. However, not
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all extensions using a one need be counted, for two reasons. First, recall from the 'Method 2'

trellis construction method that extensions at constraint-positions need not update the state, since

the extended state will automatically have a zero in a specific bit. (This bit is indicated by a counter

that starts at 0 and is incremented for each constraint position, so that at each constraint position

the leading remaining bit of each state is set to zero.) Hence the decoder can simply ignore this

bit for all states at the constraint-depth (and all subsequent depths). Second, of the head extensions

using a '1' at each information-position, the decoder need only compute the new state for those

contenders that are retained by contender merge-sifting. However, we will ignore this saving and

will form a worst case upper bound by counting the number of extensions using a '1' at information

positions. For the initial //w depths the decoder will perform

IME _ 1 (4.50)

vector-XOR operations to update the contender states. For each of the remaining k —1 Af information-

positions, there are M extensions using a '1' (although not all of these extensions will be kept).

Hence, the number of binary-vector operations is upper bounded by

Ars < M(A7 — /AI ) 21m — 1. (4.51)

A simpler upper bound is given by counting M state extensions at each of the information positions,

giving

N, < MIc. (4.52)

An upper bound on the expected number of state computations can be found by reconsidering

the above worst-case calculations at information positions greater or equal to 1M•. Consider that with

equally likely information-bits, and a symmetric channel, we should not favour the hard-decision
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being a '1' over it being a '0'. Thus, for depth 1.m and later, it is equally likely that a case of all of

C1 being retained is just as likely as a case of all of Co being retained. In other words, it is equally

likely that M or 0 states are computed. Similarly, other numbers of contenders being retained from

the contender-subsets (e.g. (M/2, M/2) or (1, M — 1) etc.) occur without bias towards either a

'0' or a '1'. Hence the average number of state computations at an information-bit is MI2. We

then have

E[N]< —
m

(k — 64)+21' — 1 .
2

(4.53)

Finally, we consider an alternate method of carrying out the partial search, that dispenses with

calculating states. In the method discussed above, we have generated a partial tree by simply

ignoring merges in a partial trellis. We used the states only as a means of keeping track of the

encoding of heads. One can avoid retaining state information for each survivor (and instead retain

just the head symbols) by using 're-encoding,' as follows. At an information-position a head is

extended with all symbols of the code alphabet. At a constraint-position, in order that the head be

part of a codeword the extended symbol must satisfy one of the parity-check equations (due to the

fact that the parity check matrix has been reduced to row echelon form). The appropriate parity

check equation is simply the itit' row of the reduced H matrix, where ip is the constraint-position

counter introduced earlier. Thus, each head is extended and 're-encoded' by ensuring that each

constraint symbol satisfies its appropriate parity check equation.

An upper bound on the worst case number of binary-vector operations used in re-encoding can

be formed by assuming that at each constraint-position we have M contenders, so that there are

at most M(n — k) binary-vector operations, since as each head is extended there will be n — k

constraints to be met.
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This approach can also be used with the reduced G matrix, where we simply re-encode each

parity symbol as required, using the appropriate column of G. This will also result in a worst case

upper bound of M(n — k) binary vector operations.

This 'no-state' (or re-encoding) approach can be roughly compared to the state approach of

Methods 2 and 3, as follows. Methods 2 and 3 were shown to have a number of binary-vector

operations upper bounded by Mk, whereas the re-encoding approach has a worst case upper bound

of M(7? — k). Hence, re-encoding without maintaining states will be advantageous for high-rate

codes.

Summary of Upper Bounds on the Number of Operations

Tables 4.1 and 4.2 summarize the most useful of the upper bounds found above on the worst

case and expected number of operations. From the detailed bounds in the table we see that each

of N N a and N, are loosely upper-bounded by Mn. Tables 4.1 and 4.2 will be used in the

following sections.
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Upper Bound on Worst Case Upper Bound on Expected Case

IV, M(k + A + 2 – /m) ± 21m – 1m – 2 – A (4.41)
Comparisons

(< Mk + (M – 1)A) (4.42)

Na Mn (4.43)
+21^4 –Additions M ( 2 /m)^1

(4.45)

Table 4.1 Upper Bounds on the Number of Metric Operations
The upper bounds in the table are for decoding any binary linear block code using the M

algorithm. Contender merge-sifting (§3.4) is assumed to be used to implement the M algorithm.

Upper Bound on Worst Case Upper Bound on Expected Case

3
H – (n – k)2^(4.48)

Nr 2
Matrix

Reduction G  –3 
k 2^ (4.49)

2

M(k – Im)+21" – 1^(4.51) —^– 1)0+ 21" – 1^(4.53)
States 2

(<Mk )^(4.52)
N,

Searching

No-states Ai ( n – k)^(4.51)

Table 4.2 Upper Bounds on the Number of Binary-Vector Operations
The upper bounds in the table are for decoding any binary linear block code using the M algorithm.
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4.6.2 Comparison to ML Decoding

One of the strengths of RT decoding is that it is applicable to general codes; it does not depend

on the detailed structure of the particular code to be efficient. It may be argued that this is a

weakness rather than an advantage, in that additional savings could be obtained by exploiting the

detailed structure of the specific code. However, we will demonstrate that even with ignoring

the detailed code structure, the RT-M algorithm can compare favourably against decoders that are

highly specialized.

Here we have chosen to compare RT-M decoding to several ML decoding methods for the

extended binary Golay (24,12) code. This particular code was chosen since decoders for the Golay

(24,12) code have been one of the most extensively investigated, so that the decoding efficiency

has been refined via many approaches. Specifically, we consider here the decoders of Vardy and

Be'ery [78], Snyders and Be'ery [64], Forney [16], and Conway and Sloane [62].

Table 4.3 summarizes the number of metric-pair operations for various decoders, where a metric-

pair operation is an addition, subtraction, or comparison of two metrics. Comparing decoders on

the basis of such metric operations is the convention used for all of these decoders [78][64][16][62].

Non metric—pair operations, such as absolute value operations, data movement, memory lookup, and

control operations are not included for any decoder in Table 4.3. The number of metric operations

for the RT-M decoder was found using the expressions in Table 4.1, and taking the value of M to

be 10. This value for M was chosen since the it attains a WER within 0.1 dB of ML decoding, as

can be seen from Figure 4.3 (pg 96). The complete set of parameters used in the calculations of

the upper bounds are M = 10, which implies that 1m = 4, and (7),, k., d„„„) = (24,12,8), which

implies that A = 5. The RT-M decoder then uses at most Nc = 155 comparisons and at most

Na = 240 additions (with 155 additions as an upper bound on the expected number of additions),
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for a total worst case upper bound of 395 metric operations. From Table 4.3 we see that this

number of metric operations is the lowest of the decoders. This reduction in the number of metric

operations is significant, especially given that we are comparing the worst case number of metric

operations of a general-purpose decoding method to that of very refined special-purpose decoders

for a highly structured code.

RT-M Decoding
(4.41) + (4.43)

Vardy &
Be'ery

[78]

Snyders &
Be'ery

[64]

Forney

[16]

Conway &
Sloane

[62]

Metric-Pair
Operations 395 695 827 1353 1584

Table 4.3 Metric-Pair Operation Counts for Decoding the Extended Binary Golay (24,12) Code
For RT-M decoding the value of M used was taken to be 10, which corresponds to an estimated 0.1
dB loss with respect to the ML decoders at a BER of 10-3. Non-metric-pair operation counts are
not included here for any decoder. For the RT-M decoder there are 311 binary-vector operations.

For completeness we also present the number of binary-vector operations used by RT-M

decoding in reducing the parity check matrix and performing state calculations used in the partial

tree search. For M=10, the expressions in Table 4.2 give a total of 311 binary-vector operations as

a worst case upper bound. These consist of NH = 216 operations to reduce the parity check matrix,

and N, = 95 state calculations. The upper bound on the expected number of state calculations

is 55. These binary-vector operation counts are not easily compared to the ML decoders of this
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section. In the next section we consider some pruning decoders that enable us to more easily

compare the operation counts.

4.6.3 Comparison to M Algorithm Decoding

In this section we compare RT-M decoding to M algorithm decoding. This enables us to make

a more direct comparison between the decoders, since they are both partial tree searches that share

the same types of operations. Additionally, the comparison between these two decoders is perhaps

more meaningful than the comparison of the previous section, since here both decoders are for

general linear block codes.

Since we are interested in the trade-off of computational effort versus coding gain we have

chosen to present the simulation results as plots of complexity versus coding gain. This provides a

more direct comparison than the traditional 'waterfall' plots of BER (or WER) versus SNR, with M

as a parameter. For each code we give a pair of plots, as in Figure 4.11 for the BCH (32,16,8) code.

The first pair of the plots in each Figure, for example Figure 4.11(a), shows M versus the coding

gain at a BER of 10-3. As discussed earlier, the number of metric comparisons and additions are

both upper bounded by Mn, so that plotting M versus the coding gain gives a good indication of

the relative number of metric comparisons or additions. The coding gain, which is the decrease

in SNR relative to the uncoded case to attain a target BER, was estimated as follows. The SNR

required to reach the target BER was calculated using the following expression for the BER of

binary PSK on an AWGN channel,

Puncoded Q(V2Eb/N0)• (4.54)

The simulation results for the BER versus SNR were interpolated to find the SNR at which a M

algorithm decoder would meet the target BER. The difference between these two SNRs gives an
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estimate of the coding gain. Also shown is the coding gain estimated using a single term union

bound on the ML decoder BER

drn i 7Z^Eb
Pcoded^Q^—

No
Rdmi„ ,

72,
(4.55)

where Admu, is the number of codewords of weight d„„„. Equation (4.55) is based on a single

term union bound on the WER [79]

Pe 5,, A i n Pe 2 ( d171211 (4.56)

where Pe2 (d1) is the probability of error for two codewords of Hamming distance dm,„ apart.

Equation (4.56) assumes that the only significant error causing events are those at distance dmi„.

This single-term union bound is more convenient than a multi-term union bound, since we only

need to know Adm,n. Moreover, since it provides a higher estimate of the ML coding gain, this

will indicate a more conservative value of M that would be required to approximately attain the

ML coding gain. The BER p,ded is estimated from the WER Pe by assuming that the fraction

of information bits affected is dm,„In on average. This approach to estimating the coding gain is

much more accurate for typical SNRs than using the asymptotic coding gain, which from (4.54) and

(4.55) is 10 logio (R dmi„). For example, for the (32,16,8) code, the asymptotic coding gain is 6 dB,

while the coding gain (at 10-3 BER) estimated using (4.54) and (4.55) is slightly more than 3 dB.

The second pair of the plots in each Figure, for example Figure 4.11(b), shows the total

number of binary-vector operations (normalized by n) versus the coding gain. In all cases we have

assumed that 'no—state' re-encoding is used to perform the tree search, so that N, < M(n — k) and

NT. < 1.5(77 — k)2. For the M algorithm, the total number of binary-vector operations is just N,.

For the RT-M algorithm the total number of binary-vector operation is N,

In Figure 4.11 for the (32,16,8) code it can be seen that both the number of metric operations

and the number of binary-vector operations for the RT-M decoder are significantly less than the
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M algorithm. The RT-M algorithm rapidly approaches the estimate of the VA coding gain given

by the single term union bound. For example, to be within 0.25 dB of the estimated ML coding

gain, M=10 is sufficient. The rate of convergence to the estimated ML coding gain is considerably

slower for the M algorithm.

In 4.11(b), where the number of binary-vector operations is shown, it can be seen that while

the effort to reduce the parity check matrix forms a significant fraction of the total number of

binary-vector operations for the RT-M algorithm, the total number of binary-vector operations is

still significantly below that of the M algorithm for coding gains of interest.

Similar results are shown for other codes in Figures 4.12 and 4.13. In Figures 4.12 and 4.13 the

metric operations and binary-vector operations are shown for the binary (32,21,6) extended BCH

code and the binary (64,51,6) extended BCH codes, respectively.

Decoding Examples on a Rayleigh Fading Channel

Soft-decision decoding is particularly attractive in mobile and portable radio applications, where

multipath propagation can severely degrade the uncoded BER performance. The propagation

is frequently modeled as having no direct line-of-sight component, with the resulting amplitude

distribution of the signal being well modeled by a Rayleigh distribution [71[80]. In such cases

the coding gain can be much larger than for the AWGN channel [6]. Figures 4.14-4.16 show

curves similar to Figures 4.11-4.13 for the same codes but assuming that a Rayleigh faded AWGN

channel is used with binary non-coherent frequency-shift-keying (NCFSK). Independent bit errors

are assumed33, so that the channel appears memoryless. The uncoded BER is

 

1
Puncodfd = ^2 + Eb /ATo •

(4.57)

33^For example, independence among bit errors can be obtained via interleaving (time diversity) or frequency diversity.
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The receiver is assumed to have available the SNR during each bit (and that it is constant over

each bit duration). This constitutes 'side-information' [Chase72] in addition to the hard-decision

outputs of the binary NCFSK demodulator. A single term union bound on the coded BER is

n^Eb
Pcoded^m Ad Pe (R— d • )

n^mt'^NO ""
(4.58)

where Pe (70 , drni„) is the probability of bit error for dnii„ order diversity, with the average SNR

on the channel being -yo. An approximate expression for the error probability of such a diversity

system is given by [81, Eqn. 21].

An example of the large coding gain attainable on such channels is shown in Figure 4.14 for

the binary extended (32,16) BCH code. The estimated ML coding gain for a target BER of 10-3

found using (4.57) and (4.58) is approximately 16 dB. This coding gain increases for lower target

BERS [6]. It can be seen from Figure 4.14 that the RT-M algorithm rapidly approaches this coding

gain, with M=8 being near the ML coding gain. Similar results can be seen in Figures 4.15 and

4.16 for the (32,21) and (64,51) codes, respectively.
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Figure 4.11 Number of Operations vs. Coding Gain : (32,16,8) Code on an AWGN Channel
In (a) the value of M is plotted versus the coding gain for a target BER of 10-3. In (b) the number of
binary comparisons normalized by the code length n is plotted against the coding gain. In both plots
the vertical line shows the coding gain of ML decoding estimated from a single term union bound.
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Figure 4.13 Number of Operations vs. Coding Gain : (64,51,6) Code on an AWGN Channel
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Figure 4.14 Number of Operations vs. Coding Gain : (32,16,8) Code on a Rayleigh Faded Channel
The channel has a Rayleigh faded signal amplitude, with AWGN. The signalling is binary NCFSK with the decoder

using hard-decisions with 'side-information' consisting of the faded signal amplitude. In both plots
the vertical line shows the coding gain of ML decoding estimated from a single term union bound.
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Figure 4.15 Number of Operations vs. Coding Gain : (32,21,6) Code on a Rayleigh Faded Channel

135



120

100

80

60

40

20

0

Est. ML
!Coding
!Gain

:M Algorithm j

01
iF1T-M Algorithm

,

-=

Chapter 4. Reconfigurable Trellis Decoding^ 4.6 Computational Effort of RT-M Decoding

120

100

40

20

0
10^12^14^16

^
18
^

20
Coding Gain (dB)

(a)

IF^I^I^I

Est. ML
! Coding
! Gain

M Algorithm^i
.t)

••*^iFIT-M Algorithm
J^I^1^I 

10^12^14^16^18
^

20
Coding Gain (dB)

(b)

80

2
60

Figure 4.16 Number of Operations vs. Coding Gain : (64,51,6) Code on a Rayleigh Faded Channel
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4.7 Discussion

The assessment of the computational effort of the RT-M algorithm in the previous section

is intended to provide only a rough comparison against some other approaches. While we have

endeavored to give a reasonably complete assessment of the computational effort, there are many

other factors that influence the suitability of an algorithm and its implementation for a particular

application. Despite this caveat, RT-M decoding appears attractive for decoding general linear

block codes. Such versatility contributes greatly to the practical merits of RT decoding, since it

may be feasible for a single implementation to be utilized in several coding applications — thus

enabling improved economies-of-scale compared to specialized decoders.

It is useful to discuss the efficiency of RT decoding in terms of its resilience to error bursts.

As discussed in [36] and elsewhere, such bursts are the bane of 'standard' sequential decoding.

In either RT or standard decoding the decoder attempts to retain a sufficient number of survivors

in order to keep the correct path (CP). In standard decoding, when the channel conditions are so

poor as to offer little distinction between contenders, the decoder must retain a number of survivors

that grows exponentially with depth. This exponential growth of the number of survivors becomes

clear when we consider breadth-first tree decoding of a binary linear block code on an erasure

channel. (This example is similar to one in [36] for sequential decoding of convolutional codes.)

Assume that the first L bits of the codeword are received as erasures. Since the erasures reveal no

information about which contenders are more likely to be the correct path, then even if as many as

one half of the 2L contenders that descend from the root node are kept in the breadth-first search,

the decoder will only have retained the correct path with probability 1/2.

In contrast, the RT decoder need retain only one survivor over the first L bits to retain the CP

with probability one. However, it may appear that the decoder has only postponed the inevitable,
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since it must eventually process the erased bits. Note that all of the erased bits will have been

reordered to be in the final L positions. If the number of erasures is within the minimum distance

of the code, i.e. L < dni,„ — 1, then the RT decoder can deftly avoid retaining any more survivors,

since the final (-1771 — 1 positions of the tree will be constraint positions, and as such they have

only one branch descending from each node. The price paid for this more favourable search order

is that the tree or trellis must be reconfigured to correspond to the reordered code. RT decoding

will be efficient if the search savings are greater than the fixed computational 'overhead' of the

code matrix reduction. Since the overhead to reduce the code matrix is of order min (k2, (n — k)2)

binary-vector operations, the total number of operations in RT decoding can compare favourably

against the exponential number of survivors for standard decoding.

While the preceding example is illuminating, the erasure channel does not fairly represent

typical soft-decision channels. However, for such channels the action of RT decoding is similar

to the erasure channel case. The RT decoder aims to avoid the need to retain a large number of

survivors by reordering the bits so as to postpone the processing of unreliable bits. This allows

the decoder to search through the initial depths of a code tree without processing unreliable bits

— thus diminishing the number of survivors while retaining the CP with high probability. By the

time the decoder gets to the less reliable depths of the tree there may be a sufficient number of

constraints imposed by the code so that many errors are 'trapped'. In the examples presented in

Section 4.6, the decrease in search effort offered by RT decoding was shown to greatly outweigh

the increased computational overhead.

Some other factors contribute to the efficiency of RT decoding. First, the partial trellis

exploration is facilitated by the use of the simplified trellis construction methods discussed in

Chapter 2. Or, for tree decoding, we can simply re-encode the codewords as the search progresses.
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Second, the efficiency of the RT-M algorithm is enhanced by the use of the Contender Merge Sifting

(CMS) method introduced in Chapter 3. With CMS, the computation associated with sifting out

the best survivors at each decoding stage is greatly reduced compared to other comparison-based

sifting methods.

The efficiency of RT-decoding could be improved somewhat further by the following steps.

The decoder could first check if the hard-decision vector has a zero syndrome, and only carry

out decoding if the syndrome is nonzero. On high SNR channels this would lower the average

decoding effort. Another way to lower the decoding effort of the RT-M algorithm is to extend only

the hard-decision branches for some number of the first and most reliable bits, and/or to gradually

increase the number of survivors allowed at each depth. This 'variable-M' approach is natural in

the sense that it better matches the number of survivors to the order statistic channel. We have

not reported on such an approach, since it will not reduce the peak number of survivors required

in a breadth-first search.

Increased decoding delay will usually be necessitated in using RT decoding, due to the need

to receive all of the bits in a block before beginning decoding. For breadth-first searches, RT

decoding necessitates at least an additional time delay of one block. For sequential searches such

as the stack algorithm, the delay for reliable blocks may be expected to be increased compared to

standard decoding (since the overhead of RTD may be significant compared to the fast sequential

decoding of a reliable block), while the delay for less reliable blocks should be reduced (since the

overhead plus the quick RT search should be faster than the large search required in sequential

decoding of an unreliable block).

RT decoding can be considered to be a form of information-set decoding in that the symbol

position reordering is used to establish a single information set. Unlike 'pure' information set
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decoding, which does not allow any errors in the information set, RT decoding searches through

information set errors. While other algorithms (e.g. [69][72]) are similar in that they search

through error patterns using an information set determined according to bit reliabilities, RT decoding

structures the search using a reconfigured tree or trellis. There are several advantages to this

tree/trellis based search over the information set schemes. First, recall that information set schemes

perform the search by altering some bits in the information set, re-encoding the codeword, computing

its metric, and then repeating these steps for several patterns to be searched. The use of a tree

or trellis saves effort in this search by merging the codewords to form a tree or trellis. This

'structuring' using the tree or trellis enables

branch metric calculations to be easily shared, since several codewords may descend

from each contender, and

ii. error patterns to be searched based on a head metric, rather than using precomputed

error patterns or using large pre-sorted lists of possible information set metrics.

A recently introduced scheme [82] is similar to RT decoding in that it reconfigures a tree in an

attempt to facilitate decoding. While its tree reconfiguration avoids the computational overhead of

RT decoding, the scheme has three principal disadvantages. First, it uses an unusual code tree that

has a large number of branches emanating form the earliest nodes in the tree. In fact, the number of

contenders for the earliest nodes in the tree will be approximately 2 k/ 2 for randomly chosen linear

block codes. This constrains the method to Gallager's 'low-density' parity check codes, which will

have inferior distance properties due to the restrictions placed on the parity check matrices [82]

[83]. Second, the scheme reorders the n — k parity check equations; it does not reorder individual

symbols as in RT decoding. It is thus constrained to consider sets of bits at a time, rather than freely

selecting the order of bit processing. Third, the tree used has excess heads that do not correspond

to valid codewords, so that search effort will be wasted in searching invalid sequences.
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Conclusion

Everything we do [in developing efficient algorithms for signal processing and coding]
can be thought of in terms of the clever insertion of parentheses in a computational
problem.

R.E. Blahut [84]

IN this chapter we briefly summarize and discuss the contributions reported in the previous

chapters and suggest some topics for further research.

5.1 Summary of Contributions

5.1.1 Trellis Construction

Methods of trellis construction for general linear block codes were presented that are simpler

than the methods of Wolf [8], Massey [9], and Forney [16]. The improved methods are based on

Wolf's and Massey's methods, but are simpler in that they avoid the generation of an 'unexpurgated'

trellis (which represents all uncoded sequences) followed by expurgation of non-codewords (as in

[8] for general linear block codes), and they avoid matrix multiplications in forming branches of

the trellis (as in [9] for non-systematic linear block codes, or as in [16] for linear block codes).
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In addition to constructing a complete trellis, the methods can be used with partial trellis search

algorithms to construct partial trellises 'on-the-fly', so that only the portion of the trellis that needs

to be explored is generated.

5.1.2 Trellis Dimensionality

It was shown that Wolf's and Massey's trellis construction methods yield isomorphic trellises,

and that these trellises are minimal. This complements Muder's result [17] that Forney's trellis

construction method yields a minimal trellis. An improvement to Muder's lower bound on the

maximum trellis dimension for linear block codes was found. It was also shown that the trellis

dimensions remain fixed near either end of the trellis despite symbol position permutations, while in

the central portion of the trellis the dimensions vary between an attainable upper bound and a lower

bound. While the upper bound on the maximum trellis dimension is the familiar min (k, n — k)

bound [8], the lower bound on the minimum trellis dimension in the central portion of the trellis

is new. In fact this bound on the minimum trellis dimension is equal to Muder's bound on the

maximum trellis dimension. The bounds indicate that only codes (and their duals) that have a

smallest minimum distance min (d,„„, di.) significantly less than the corresponding Singleton

bound can possibly have a trellis with few states relative to the worst case of min (k, n — k) .

5.1.3 A General Decoding Metric and its use in Trellis Decoding

The decoding problem faced by a partial trellis search was described in an alternate manner to

Massey's variable-length code model [26][37]. As part of this approach, we specialized Massey's

use of randomly-coded tails in order to exploit a priori knowledge of the information-symbol

distribution and of the specific code used. It was shown that the decoder should discard heads in

the obvious manner (by first exploiting merges in the trellis and then pruning the 'worst' heads first
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as indicated by the metric) and that in some atypical circumstances the metric should be altered

from that usually used. Such situations include unequal a priori information-symbol probabilities,

non-linear codes, and non-symmetric, non-binary DMCs.

5.1.4 Contender Sifting

Contender sifting is the action of finding the best metrics from among a number of contenders,

during a partial search of a trellis or a tree. A new breadth-first contender sifting method, Contender

Merge-Sifting (CMS), was presented that can sift out a sorted set of the best M of 2M contender

metrics using a worst case number of comparisons that is linear in M. In fact, for M algorithm

decoding of binary linear block codes the worst case number of comparisons is precisely M. CMS

offers a significant improvement over other comparison-based contender sifting methods, regardless

of whether they use sorting, or selection (without regard to order within the best subset). The

improvement with respect to sorting might seem surprising, since it is well known that comparison-

based sorting of n items requires 0(77 log2 77) comparisons. For asymptotically large M, selection

schemes exist that are also linear in M, with the best of these [47] requiring a worst-case number of

comparisons asymptotic to 6M, so that CMS will be more efficient, especially for practical values

of M. The advantage of CMS with respect to approximate sorting [35] is that it always delivers

precisely the best set of contenders.

To attain its efficiency, CMS takes into consideration the way in which the contender metrics are

formed, which hides an inherent ordering. During their formation the contender metrics can be easily

segregated into sorted subsets, and this is exploited to achieve efficient sorting via merging. This

technique is not restricted to the decoding of linear block codes. For example the contender sifting

of rate 1/2 binary convolutional codes can as accomplished in at most 3M — 1 comparisons. The

important case of decoding punctured convolutional codes using CMS is also easily accommodated.
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5.1.5 Reconfigurable Trellis Decoding

A soft-decision decoding method for linear block codes, referred to as Reconfigurable Trellis

Decoding, was presented. The concept of RT decoding is to carry out a partial trellis search on

a different and more easily searched trellis. The trellis used for decoding is dependent upon the

reliability of the received data, so that it is determined 'on-the-fly'. The trellis used corresponds

to the original code with its symbol positions reordered to be in most-reliable-symbol-first order.

Since a partial trellis (or tree) search is used, the entire trellis or tree need not be stored or generated

— only a portion of the trellis or tree is constructed as guided by the search. For trellis decoding

the construction of the partial trellis is facilitated by the simplified trellis construction methods

discussed in Chapter 2. For tree decoding the construction of the partial tree can use 're-encoding'

of codeword heads. This is similar to 're-encoding' of codewords as used in information set

decoding, except that here we do not re-encode entire codewords — rather only the codeword

heads are re-encoded and extended as guided by the search.

RT decoding reduces the number of survivors retained during the search by exploiting the high

reliability symbols at the beginning of the search, where a burst of poor data would otherwise

require many survivors in order to retain the correct path. The symbol reordering tends to collect

all of the errors into a 'burst' of unreliable symbols at the tail of the reconfigured trellis. The RT

decoder can then deftly avoid retaining more survivors when processing this 'burst' since many

symbols in the tail are constrained by the code. In other words, the RT decoder attempts to 'trap'

the errors. In this way RT decoding avoids extensive searching through unreliable bursts of data,

which are the bane of standard sequential decoding, until the constraints imposed by the reordered

code can handle them.

The price paid for the more favourable search order is an additional fixed delay due to the
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reordering before decoding can begin and some computational overhead to reduce the code matrix

in preparation for reconfiguring the trellis or tree. This overhead and the computational effort

of the search are summarized in tables of formulas that give the numbers of metric operations

(comparisons, additions) and the number of binary-vector operations for RT decoding using the M

algorithm. This RT-M algorithm also utilizes the Contender Merge-Sifting scheme introduced in

Chapter 3. The RT-M algorithm was compared to highly-specialized ML decoders and to general

linear block code decoding offered by the standard M algorithm. Compared to the most efficient

ML decoders known for the binary extended Golay (24,12) code, the RT-M algorithm can attain

near-ML decoding performance (estimated 0.1 dB loss) with approximately 60% of the number

of metric-pair operations. Compared to standard M algorithm decoding of example codes on an

AWGN channel with binary PSK and on a Rayleigh faded channel with binary NCFSK, RT decoding

attained a significant reduction in computational effort.

5.1.6 Analysis of Error Probability of Pruning Decoders

The uniform error property of ML decoding of linear codes on a binary-input symmetric-output

memoryless channel [52] was extended to the more general case of pruning decoding on a tree or

a minimal trellis. This indicates that the error probability for pruning decoders with binary linear

codes on such channels can be analyzed or simulated using only the all zero codeword.

The pruning impact was defined to be the increase in error probability of a pruning decoder

with respect to a ML decoder. A simple upper bound on the pruning impact was found and used to

estimate the pruning impact of the RT-M algorithm. This was facilitated by the introduction of an

Order Statistic Channel (OSC) model, which enables one to represent a reordered sequence of n

uses of a binary-input symmetric-output memoryless channel as a sequence of 71 BSCs of specific

crossover probabilities. The significance of the OSC model is that it enables one to treat a reordered
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block of outputs from a soft-decision channel as a sequence of binary outputs — thus avoiding

the complexity of considering numerous soft-decision output values. Using the OSC model the

pruning impact of the RT-M algorithm was then estimated using a very simple search procedure

that is independent of the detailed structure of the code. Comparison of the estimated word error

rate of the RT-M algorithm to simulation results for the binary extended Golay (24,12) code at a

SNR of 2 dB (which corresponds to a word error rate of approximately 5 x 10- 2) shows agreement

to within 0.25 dB, with this error diminishing for higher SNRs. The accuracy of the OSC model

was argued to improve with the code length, and the accuracy of the pruning impact bound and the

estimation procedure were argued to improve with increasing SNR.

146



Chapter 5. Conclusion^ 5.2 Suggestions for Further Research

5.2 Suggestions for Further Research

It would be of interest to improve the bounds on the maximum and the minimum trellis

dimensions of linear block codes. In particular, it would be useful to have a good upper bound on

the smallest maximum trellis dimension. This would complement the lower bound obtained here.

Some other problems are perhaps best summarized by the following questions. Can one utilize more

details of the weight structure of a code and its dual (i.e. besides dm,„ and dii.) to bound the trellis

dimensions? Can one obtain tighter bounds on the trellis dimensions for specific families of codes?

Contender Merge-Sifting method could be implemented in parallel using a merging network,

with a significant reduction in the network depth and number of comparators compared to a sorting

network as used in [43].

What is the loss in using tree decoding instead of trellis decoding given that the same number

of survivors are used? As discussed earlier, we expect this loss to be small for typical decoding

situations where the number of survivors is small in relation to the number of trellis states —

however a formal analysis would still be of interest. In RT decoding, the most-reliable-symbol-first

reordering policy is expected to be optimal with respect to minimizing the number of branches

searched for a given probability of error, if the reordering policy is constrained to be based solely

on the symbol reliabilities (without regard to the effect of symbol position reordering on the trellis

dimensions). Formal derivation of the optimal reordering policies in such cases are open problems.
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Appendix A: Sorting Methods for Contender Sifting

A.1 Modified Insertion-Sort

The modification for insertion sorting to sift out M contenders from 2M is simply to retain

a list of size M, instead of 2M. The worst case number of comparisons for steps 1, 2, ... , M of

the insertion-sort is

1
0+1+2+ ••• + (M —1) = —

2
M(M —1).

For the steps M + 1 through 2M, the worst case number of comparisons is M per step, giving

M(2M — M) = M2 comparisons for these steps. The total number of worst case comparisons,

normalized by M, is then

Ne(M,2M) < M(M —1)4- M2
M —^M

1= -(3M — 1). (A.3)

(A.2)
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A.2 Modified Merge-Sort

The modification for merge-sorting to sift out M contenders from 2M is that we need only

partially merge the two sorted subsequences of length M, until the best M have been found.

This final partial merging step can be done in M comparisons. To this we add the number of

comparisons for two standard merge-sorts of size M.

The number of comparisons n(n) to merge-sort an input sequence of size n (a power of 2)

can be expressed as the recursion

{0^ n
ric(n)^1^ n = 2

2n,(n/2) n — 1^n > 2
(A.4)

which can be easily verified to have the solution

n,c(n) = nig n — (n — 1)^ (A.5)

where lg denotes log2.

The total number of comparisons for contender sifting is then

N(M,2M) = 2[M lg M — (M — 1)] M

= 2M lg M — (M — 2).^ (A.6)

Normalizing by M, we obtain

N(M, 2M)
= 21g M — 1 + 2/M. (A.7)
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Appendix B: Proof of Theorem 4.1

To prove the uniform error property for pruning decoders given by Theorem 4.1 we first write

Peic, = f Pr(error r, cj sent) f (r cj sent) dr^(B.1)

and

Peick =^Pr (error I r', ck sent) f (ri I ck sent) dr'.^(B.2)

To show that (B.1) and (B.2) are equal, it is sufficient to show that for each r there is a corresponding

r' such that

f (r' ck sent) = f(r cj sent)^ (B.3)

and

Pr (error I^ck sent) = Pr(error r, c sent).^(B.4)

Now f(r cj sent) =fJ f (ri cji) and f(r I ck sent) =fJ f(ri I cki) . By choosing
i=1^ i1

{ , cki = cii
=

i^ (B.5)^-72^Cki^Cji

it is easy to see that (B.3) will be satisfied, since for each position where cj and ck agree we have

f (7)z I ckz) = f(rI ckz) = f(7-, I cp)^ (B.6)

and for each position where cj and ck disagree we have, using the symmetry of the binary-input

symmetric-output channel (i.e. f(ri I 0) = f(—r 1)), that

f^cki) = f^ (B.7)
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To show that (B.4) holds, we first let "CI denote the output codeword when c was transmitted

and r was received, and similarly we let "Ck denote the output codeword when ck was transmitted

and r' was received. Also, we let e = cj denote the error vector between the transmitted

codeword cl and the output codeword "CI, and similarly we let e' = ck -F-6, denote the error vector

between the transmitted codeword ck and the output codeword C'k. To show that (BA) holds, it

is sufficient to show that e = e'.

If e is to equal ei, we need cj C'j = ck -dk, or equivalently we need cj ck =i +

Define z = cl ck. We then need only to show that the output codewords also differ by z. For

this it is sufficient to show that at any decoding stage that each head ch retained by the decoder

using r has a corresponding head cfh retained by the decoder using rt, where ch cfh = zh. We

will show this by showing that each head that enters any node a in the trellis when r is processed

has a counterpart that enters a node al when ri is processed, where the corresponding heads differ

by zh, and where the corresponding heads have identical metrics. In other words, we aim to show

that the decoder encounters the same set of metrics at a node a when processing r as it does at a'

when processing ri, with the heads for these 'equal-metric counterparts' differing by zh.

Recall that the decoding rule is to minimize (3.19)

, f( rh I ch)Pr(ch) 

fo (rh )^
(B.8)

Ch Enm

Since the heads entering any given node have equal lengths, and the decoder is taken to assume

equiprobable codewords, for the purpose of comparing metrics at a depth we can simply use

f( rh ch).

Consider a head metric f (rh ch). For a head metric using ri to equal this we need

f (rfh c/h) = f (rh ch).^ (B.9)
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Recall (from (B.5) and the definition of z) that we have chosen r' to be the negative of r in those

positions where z is nonzero. Using this fact and the symmetry of the binary-input symmetric-

output channel, for (B.9) to hold we will need c'h to differ from ch in those positions where Zh is

nonzero. In other words we must have that Ch + = z", which is part of what we needed to show.

All that remains is to show that all the heads that merge at a node a (when processing r) have their

equal-metric counterparts (when processing r') at a node a'. From Chapter 2 (see Proposition 2.1

on pg. 26 and (2.7) ), each head that merges at a node a in a minimal trellis satisfies

=^chT^ (B.10)

Now, since any head Cfh that is an equal-metric counterpart to Ch satisfies^= Ch z", we have

that its state is

at Hh cihT

= Hh (chT zhT)

= a + HyT.^ (B.11)

Now either Hh zhT--is nonzero or it is zero. In the former case, we have that all the heads that

merge at a when r is processed have their equal-metric counterparts merge at some other node 0-',

as required. In the latter case, we have a similar situation except that a' =

Using any minimal-trellis state-assignment method besides that used above [8] will yield an

isomorphic trellis [17]. However, this relabeling of trellis states will not alter our result, since the

state labels are immaterial to the head metrics and the partitioning of the heads into states. Finally,

we comment that above proof holds for symmetrically quantized outputs, under the assumption

that metric ties are randomly resolved, as is assumed in the proof of the uniform error property

for ML decoding in [52].
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