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ABSTRACT

Most solutions for electromagnetic wave diffraction by obstacles and apertures
assume plane wave incidence or omnidirectional local sources. Solutions to diffraction
problems for local directive sources are needed. The complex source point
representation of directive beams together with uniform solutions to high frequency
diffraction problems is a powerful combination for this. Here the method is applied
to beam diffraction by planar structures with edges, such as thé half-plane, slit, strip,

wedge and circular aperture.

Previously used restrictions to very narrow beams and paraxial regions, are
removed here and the range of validity increased. Also it is shown that the complex
source point method can give a better approximation to broad antenna beams than the

Gaussian function.

The solution derived for the half-plane problem is uniform, accurate and valid
for all beam orientations. This solution can be used as a reference solution for other
uniform or asymptotic solutions and is used to solve for the wide slit and

complementary strip problems.

Uniform solutions for omidirectional sources are developed and extended
analytically to become solutions for directive beams. The uniform theory of diffraction
is used to obtain uniform solutions where there are no simple exact solutions, such as
for the wedge and circular aperture. Otherwise rigorously correct solutions at high
frequencies for singly diffracted far fields are used, such as for the half-plane, slit
and strip. The geometrical theory of diffraction and equivalent line currents are used

to include interaction between edges.
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Extensive numerical results including the limiting cases; e.g. plane wave incidence,
line and point sources are given. These solutions are compared with previous

solutions, wherever possible and good agreement is evident.

Beam diffraction by a wedge with its edge on the beam axis is analysed. This
solution completes a previous asymptotic solution which is infinite on the shadow
boundaries and inaccurate in the transition regions. Finally, the diffraction by a
circular aperture illuminated by normally incident acoustic beam, is derived and the
singularity along the axial caustic is removed using Bessel functions and a closed form

expression for multiple diffraction is derived.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Electromagnetic wave diffraction by conducting reflectors and by
apertures in conducting screens has been studied extensively for many
years. Solutions for plane wave incidence, or a distant source, and
isotropic local sources in real space, have been obtained for the
half-plane, for the wedge, for the slit and complementary disc (see
Bowman et al;, 1969). Of the two categories of solutions, low frequency
and high frequency or asymptotic solutions, this thesis 1s concerned
with the latter. Uniform asymptotic solutions for the half screen and
wedge have been obtained for omnidirectional local sources (e.g. Boersma
and Lee, 1977; Kouyoumjian and Pathak, 1974). Uniform asymptotic
solutions are useful in the diffraction solutions for directive beams
considered in this thesis.

Diffraction by simple shapes when illuminated by directive local
sources such as Gaussian beams and antenna beams, using different
techniques, recently, has been extensively studied. One of these
techniques 1s the beam field representation by a current distribution.
Anderson (1978) applied this technique to solve for antenna beam
diffraction by a conducting half-plane. The difficulty of obtaining the
current distribution, which represents the effect of the antenna beam
exactly or approximately, is one of the disadvantages of this approach.

Another is the difficulty of solving the resulting boundary wvalue



problem. Certainly the accuracy depends on the field representation and
on the approximations made to solve the 1integral involved. However,
this approach gives continuous fields at the shadow boundaries.

The Kirchhoff method 1is another technique used to solve for
Gaussian beam diffraction by half-screen (Pearson et al., 1969).
Because of double integration introduced in this method, asymptotic
solutions are complicated and numerical solutions very costly when large
scatterers are assumed. Another shortcoming is poor accuracy in the
region off the beam axis. However, it predicts no singularity on the
caustic axis.

The Boundary Diffraction Wave Theory (BDWT) proposed by Miyamoto
and Wolf (1962), overcomes the problem of a double integration 1in
the Kirchhoff méthod, but makes the integrand (the vector potential)
more complicated. Consequently the integration becomes very difficult
in addition to the difficulty in obtaining the vector potential itself.
This approach has the same accuracy as the Kirchhoff method or less when
the vector potential 1s approximate. Using the BDWT, Otis and Lit
(1975) gave the solution to 2-dimensional Gaussian beam diffraction by a
half-screen and the 3-dimensional case was given by Takenaka and
Fukumitsu (1982). The single diffraction by a circular aperture when
illuminated by a normally incident Gaussian beam was obtained by Otis et
al. (1977) and corrected by Takenaka et al. (1980). Also the same
problem was solved by Belanger and Couture (1983), using the BDWT with

the Gaussian beam represented by a complex source point.



The _Inhomqgeneous (evanescenﬁ) Wave Tracking (IWT) proposed by
Choudhary énd Felsen (1973) and refined by Einziger and Raz (1980), is
another approach used fo solve the problem of directive fields. The
maln advantage of this method is that it givés a physical explanation of
the propagation and scattering mechanism. ﬁecause of the difficulty of
obtaining :the phase paths, it has been rarely used. Choudhary and
Felsen (1974) applied the IWT method to the problem of Gaussian beam
relfection by a conducting circular éylinder. Reflectioﬁ by a parabolic
refélctor was given by Hasselmanniand Felsen (1982). Also Felsen (1976)
‘ étudied the propagation of Gaussian beaﬁs in free space usingvthe éame
'method. |

_ The‘Complex.Ray Trécing (CRT) method was invented thOVercome the
difficulty of determining the phase paths‘in the IWT method‘by tracing
the diréctive fiéids in the complex space. This technique was applied
by tracing the. Gaussian beam in fpee space by Keller and Streifer
(1971), Deschamps (1971, 1972) and Williams. (1973). Ghione et al.
(1984) used the CRT method to study thé radiation from %grge apertures
with tapered illuminations. . Scattering.of evaﬁescent pléne‘waves by a
conducting circhlar cylinder w#s given by Wang and Deschamps (1974).
Also Chione et al. (1984) applied the same technique to a reflector
antenna illuminated by a beam field. |

The CRT method is an optical (asymptotic) solﬁtion valid only for
high frequenciég; .The representation of.directive Beams with complex
source points along with using existing (exact or approximate) solutions

for real sources, which is called the Complex Source Point (CSP) method,



can give (exact or asymptotic) solutions to many canonical and less
simple problems involving directive sources, with no extra effort,
provided analytical continuation into complex space is possible.

The only difficulty with the CRT and CSP methods, especially for
non-planar surfaces, 1is to find an a-priori selection rule to
distinguish the relevant from spurious ray contributions. Now this can
be done by studyingvthe saddle points and steepest descent paths (Ghione
et al., 1984). Otherwise these techniques are easy to apply, accurate,
and need no integral evaluation in asymptotic solutions. Furthermore
these techniques are uniform on the shadow boundaries, except for
asymptotic solutions when the beam axis passes through the diffracting
edge. The CSP method uses existing solutions, so it needs less effort
and it can be used for exact solutions. Because of the above, the CSP
method is adopted everywhere in this thesis.

The asymptotic solutions for the Gaussian beam diffraction by a
conducting wedge (Felsen, 1976) and by a half-screen (Green et al.,
1979), are invalid when the beam axis passes through the diffracting
edge or when broad beams are assumed. They are inaccurate in the
transition regions and singular on the shadow boundaries.

One of the goals here is to obtain a uniform solution for the wedge
using the Uniform Theory of Diffraction and the CSP representation, and
for the half-screen, based on a simple solutlion exact in the far field
limit, using the CSP method. A more simple convenient formula for the
shadow boundary locations also will be derived. solution to

2-dimensional antenna beam diffraction by a slit, 1including double



diffraction, and complementary conducting strip will be given. This
problem has not been studied before. .Finally beam diffraction by
circular aperture for normal incidence, including interaction between
the edges, is analyzed using the UTD and CSP representation. For all
the above examples, numerical results include the 1limiting cases of

plane wave incidence or isotropic sources.

1.2 General Assumptions
Through all the subsequent analysis, the following are assumed:
a) The time dependence 1s harmonic (exp[jwt]) and is suppressed.
b) The medium is homogeneous, isotropic, nondispersive and
non-dissipative.
c) The frequencies are very high and observation points are in
the far field of the scatterer (kr>>1l).

d) Perfect conductors (screen, half-screen, etc.)
e) Scalar fields (U) .are assumed.

f) Soft boundary conditions are assumed.

1.3 Literature Review

Scattering by simple reflectors and apertures as a half-plane,
wedge, circular aperture, parabolic and paraboloidal antennas, and
circular cylinders when dlluminated by directive sources, which are
approximately Gaussian beams in the paraxial region, have been studied

by many researchers using the different techniques summarized below. As



only the complex source point method of secton 1.3.8 is used in this

thesis, the reader may choose to omit sections 1.3.1-1.3.7.

1.3.1 Beam Representation by Current Distributions

By this method, the incident beam is represented by a non-uniform
current sheet distribution. Then the boundary value problem of current
element in presence of the scatterer is solved by integrating the
obtained solution err the whole current sheet. Then the integral is
evaluated numerically or asymptotically. The solution with this
approach 1is continuous at the shadow boundaries. This approach is
different from physical optiecs and spectral theory of diffraction.
Anderson (1978) used this technique to solve antenna beam diffraction by

a conducting half-screen.

1.3.2 Spectral Theory of Diffraction

The basic concepts of the spectral theory of diffraction (STD)
proposed by Mittra et al. (1976), were illustrated by the familiar
conducting' half-plane illuminated by plane wave. The principal
contribution of STD i§ the introduction of the spectral diffraction
coefficient which is defined as the Fourier transform of the current
induced on the scatterer. This coefficient is associated with the
integral representation of the scattered and total fields. Although the
spectral diffraction coefficient tends to infinity at the shadow
boundaries, the fields obtained by the STD are finite. The scattered

field can be constructed by convolving, in the space domain, the induced



current and the radiated field of an elementary point or line source
current (Green's function). The totai field is the sum of the scattered
field and, whenever applicable, the incident field. When the integrals
involved in the scattered and total fields are asymptotically evaluated
using the saddle point technique, the leading term yields Keller's GID
field. )

Arbitrary incident fields, also can be assumed using the STID
technique by applying the superposition principal. The spectrum of the
incident arbitrary field is multiplied by the spectral diffraction
coefficient of the plane wave then integrating over the entire spectrum
to give a double integral representation of the scattered and total
fields. This integral may be evaluated asymptotically or numerically.

Rahmat-Sammii and Mittra (1977) give detailed calculations and

applications.

1.3.3 Kirchhoff-Fresnel Method

In this method the total field behind an aperture in a conducting
plane is given in terms of the double integral of the incident field and
its derivative in the plane of the aperture. This integration is taken
over the aperture (Born and Wolf, 1974, p. 375-386). Then the integral
is evaluated numerically or asymptotically to yield the total field.

Pearson et al. (1969) applied this technique to the diffraction of
a fundamental-mode Gaussian beam (Kogelnik, 1965) by a semi-infinite
conducting screen. An asymptotic soluction in the Fresnel limit was

derived.



1.3.4 Boundary Diffraction Wave Theory

Through the use of Stoke's theorem and an associate potential
vector, Miyamoto and Wolf (1962) showed that, in general, the Kirchhoff
surface integral, mentioned in the previous seciton, can be split into
two separate line integrals. One represents a wave originating from the
~ boundary of the diffracting aperture called the boundary diffraction
wave (BDW) and the other represents the geometrical wave originating
from the source. The latter is zero if the observation points lie in
the shadow region. The total field is given by the sum of the BDW and
geometrical wave fields. The BDW method has the same limitations and
approximations as the Kirchhoff-Fresnel method.

Application of the technique to a Gaussian beam with cylindrical
symmetry (Siegman, 1971, Ch. 8) normally incident on a circular aperture
in a conducting plane is given by Otis (1974) under the paraxial far

field approximations.

1.3.5 Uniform Asymptotié Theory of Diffraction

A uniform asymptotic theory of diffraction (UAT) which provides the
correct asymptotic solution for an arbitrary incident field on a
half-plane has been developed by Alhuwalia et al. (1968) and Lewils and
Boersma (1969), corrects defects of the geometricl theory of diffraction
(GID); such as singularities at the shadow boundaries and at the
diffracting edge. It also provides higher order terms in the diffracted

field expansion.



Boersma and Lee (1977) applied UAT to the problem of cylindrical
wave from a line source parallel to the edge of a conducting half-plane.
In their approach all fields are expanded asymptotically in inverse
powers of the wave number which is assumed large. The coefficients of
expansion are derived by substituting in the reduced wave equation. The
postulated total field is a uniform asymptotic expansion based on the
exact solution of a plane wave incident on a half-plane, so the UAT
reduces to the exact solution of plane wave diffraction by a
half-plane.

Excluding the caustic points at the source and its image, the UAT
solution for the total field is finite and continuous at all
observation points. Away from the shadow boundaries, the leading term
of the UAT solution reduces to the GID solution. Since the UAT solution
remains finite at the diffracting edge, it can also be wused for
near-field calculations. Unlike the GTD where the diffraction
coefficient is taken from the Sommerfield's half-plane solution, the
diffraction coefficient of UAT is derived by enforcing the edge
condition.

The UAT has been extended to electromagnetic diffraction by a
curved wedge by Lee and Deschamps (1976) but there it is approximate.
The main disadvantage of the UAT is its complexity in determining higher
order terms, when very directive incident fields are assumed and when
interaction between edges are significant. In such cases the uniform
geometrical theory of diffraction by Kouyouimjian and Pathak (1974),

which gives less accurate results, may be used instead.
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1.3.6 Inhomogeneous (Evanescent) Wave Tracking

Here inhomogeneous waves, such as Gaussian beams, can be tracked
from the source or the initial surface to the observation point via the
scatterer, totally in real space. By solving the differential equations
for the real and imaginary parts of the phase and amplitude functionms,
which result from satisfying the reduced wave equation, the total field
can be completely determined. Neglecting the wave length squared term
in the above differential equations enables one to calculate the phase
independently from the amplitude. The solution obtained in this way is
approximate, but the accuracy increases with decreasing the wave length.
For details see Choudhary and Felsen (1973), Felsen (1976) and Einziger
and Raz (1980).

The inhomogeneous wave tracking method is applied to Gaussian beam
reflection by conducting circular cylinder as given by Choudhary and

Felsen (1974) without including diffraction from edges.

1.3.7 Complex Ray Tracing

Since it has been noted that a Gaussian beam can be represented in
terms of a bundle of complex rays, by Deschamps (1971) and Keller and
Streifer (1971), complex ray tracing (CRT) was introduced and complex
geometrical optics has been developed. In the CRT method, the phase,
amplitude and space coordinates are allowed to take complex values, as
in the IWT method. The mathematical basis of this method is the process
of analytic continuation. The tracing of the field from the complex

source to the real observation point via the scatterer (complex in

general) is in complex space. The study of a Gaussian beam, simulated
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by a complex line of point source, and propagation inbfree space from an
assigned initial field distribution have beeﬁ extensively dealt with_
(Ghione, Montrosset and Orta, 1984).

The eikonal and transport cquations used in the IWT method are
applicable here. Without separating the phase and amplitude functions
into real and imaginary parts, the differential equations can be solved
by the methbd of characteristics to obtain the phase and amplitude of

the total field.

1.3.8  Complex Source Point

In the complex ray tracing method, asymptotic solutions are
obtained for Higﬂ'frequency (large.ﬁave-ﬁumbers)iand}far_fields.A ﬁut¢
the Complex Source Point (CSP) method can Be used to obtain exact as
weil as asymptotic solutions for low or high freduencies‘and near or far
"fields, as lcng as solctions to corréépondiﬁg reai sources exist and can
be analyticallf.continqed into cohplex space. -

On assigning complex values to the source coordinate locations of
an oscillating isotropic point or 1ine'socrce, one may generate a highly
collimated field that behaves in the vicinity of its maximum (beam axis)
like a 3—dimensional (point source)‘ or 2-dimenciona1 (line source)
Gaussian beam (DeschampsA1971, Jones 1979; Couture and Belanger 1981,
Albertsen~et ai., 1983, and Felsen 1976, 1984). This implies that the
CSP substitution converts point or 1inc source Green'c functions for
propagation and ciff:action in various environments into field solutions

for incident Gaussian beams. Thus without furthe: effort, the whole

rigorous and asymptotic solutions yield the field response for beam
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excitation, provided that there can be an analytic continuation of the
solutions from real to complex space. |

Let us take, as an example, the evolution of a 2-dimensional
Gaussian beam using the CSP. The field of an isotropic point source in
free space, is given by Green's function G(R) which is a solution to the

wave equation
gij
G(R) = Z—. (1.1)
R

where R is the distance between the source and observation point, which
can be real or complex. For a wave propagating in the z-direcion, let
the source be located at (0,0,-jb) where b is a real positive number.
Then
R = [p2(z+3b) 2112 5 02 = x%+y? |, Real(R)>0 (1.2)

From (1.2), R is a multivalued function and vanishes at the branch line
z=0, p=b. To make R single valued and G(R) analytic, a branch cut
(surface) at z=0 and p<b should be introduced (see Fig. 1.1a).

In the paraxial region (p2<<z2 + b2) and for z>0, R can be simplified

to
2 2
R=3[b=—P° _J+2z[1+_2° (1.3)
2(z%tp?) 2(z%tp?)
Inserting (1.3) in (1.1) gives
kb
- 2 —jB(p,2z)
G(p,2) = & __ A R (1.4)
Yz 2Hp?
where w is the e~! half beam width and B(p,z) is the phase
w = [2(z2 + b2)/kb]1/2 (1.5)
B(p,z) = 2 [kb + (p/w)2] + tan~l(b/z) (1.6)

b
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The propagating wave, defined by (1.4), is subject to an exponential
decay perpendicular to the z=-axis proportional to p2. Thus a Gaussian
béam is formed in the paraxial region. For b>>z, the wave propagates
parallel to the z-axis with distortion of the wave front; and for b<<z

the phase paths (locus of el

points) are hyperboloids given by

(pfw )? = (z/b)% = 1, (1.7)
where wo is the e~! half-beam width at the beam waist (z=0).
w0=(2b/k)l/2 is often called the spot size at the beam waist (see
Fig. 1.1b).

This derivation 1is also valid for two diménsional fields. The
implications of this are that field solutions for two or
three—dimensional Green's functions can be continued analytically into
complex space to provide the solutions for directive beams. This can be
applied to both numerical and analytical solutions, or to either low or
high frequency diffraction solutions. At low frequencies beam
diffraction can also be solved numerically. At high frequencies,
numerical methods generally are inefficient or fail and the geometrical
theory of diffraction together with the complex source point method
provides the most convenient solution for beam diffractions.

For higher modes of Gaussian beams, see Shin and Felsen (1976),
Hashimoto (1985) and Luk and Yu (1985). Representation of more
complicated beams has been studied by Mantica et al. (1986), and wave

solutions under complex space—~time shifts has been, lately, proposed by

Einziger and Raz (1987).
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1.4 Overview of the Thesis

| An introduction is given in Section (1.1) and some of existing work
in the 1literature on the representation and diffraction of directive
source fields by simple shapes is summarized in Section (1.3).

In Chapter II, beam evolution from a Complex Source Point (CSP) is
given in polar coordinates. This is more convenient than representation
in cartesian coordinates and directly relates the beam parameters
(orientation and directivity) to the complex coordinates of the source.
The beam field generated by the CSP, a Gaussian beam and a typical
antenna aperture are compared and illustrated. Derivation of more
complicated beams; e.g. a beam with sidelobes, is also achieved.

Chapter III is devoted to obtaining a simple solution, uniform
everywhere and for all beam orientations, for antenna beam diffraction
by a half-screen, based on the exact far field solution of line source
diffraction by a half-screen. A comparison of this solution with the
asymptotic solution given by Green et al. (1979) is illustrated. Also a
simpler formula for shadow boundary 1location 1s derived. Results
obtained here are used in Chapter IV of the problem of beam diffraction
by a slit in a conducting plane and by a complementary strip.

In Chapter V, beam diffraction by a conducting wedge, when the beam
axis passes through the edge, 1is derived using the UTD. Shadow
boundaries are obtained and numerical results for different angles of
incidence and wedge angles are given.

In the above examples, only 2-dimensional beams and straight edges

are assumed. In Chapter VI, a 3-dimensional beam diffracted by a
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circular aperture in a perfectly conducting plane, including multiple
diffraction. Normal incidence, i.e. the beam axis coincident with the
aperture axis, is assumed.  Numerical results for different beam
waists, including the plane wave as a limiting case, are given. The
latter is compared with Keller's solution (1957).

A summary, conclusions and recommendations for future work are
given in Chapter VII.

Appendix A contains an evaluation of Fresnel integrals with complex
arguments in terms of error functions and some important properties of
Fresnel integrals are given.

In Appendix B,.the real and imaginary parts of ros the complex
distance from the source to the edge, in terms of the real distance of
the source and the incident beam parameters are derived.

For comparison reasons the asymptotic solution of Gaussian beam
diffraction by conducting half-screen, and the shadow boundary positions
given by Green et al. (1979) are summarized in Appendix C.

Appendix D, shows the singularity cancellation in the wedge
diffraction coefficient at the shadow boundaries, when illuminated by a
real line source or a beam source its axls passing through the edge.

Appendix E contains the analysis of beam diffraction by a
conducting parabolic reflector.

In Appendix F, the derivation of arctangent of a complex number, in
the proper quadrant 1is given in terms of a complex angle in the first
quadrant, that can be determined by the UBC computer functioms.

Appendix G 1is a 1list of computer programs for the problems

discussed in Chapters II-VI and in Appendix E.
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CHAPTER II

COMPLEX SOURCE POINT METHOD

By assigning complex values to the source coordinate locations of a
time harmonic isotropic point or line source in a homogeneous unbounded
medium, one may generate a collimated field that behaves 1like a
3-dimensional (point source) or 2-dimensional (line source) directive
beam. This implies that the complex source point substitution converts
point or 1line source Green's functions (wave equation solutions) for
propagation and diffraction in various environments into field solutions
for incident directive beams. Thus, without further effort, the whole
rigorous and asymptotic diffraction solutions yield the fileld response
for beam excitation, provided there can be an analytic continuation of

the solutions from real space to complex space.

2.1 Beam Evolution from a Complex Line Source

Fig. 2.la shows a 2-dimensional line source at L OO from the
origin of coordinates. The fields are uniform in the z direction and
represent an omnidirectional cylindrical wave. The field intensity at
any observation point r, © which is a solution of wave equation may be

written as

i ~jn/4 (2) Eij
U =/m/Z e H (kR) = 7& : kR >>1 , (2.1)

where R is the distance of the observation point from the source.
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- 2 2 _ _ 1/2
R [t + r 2rro cos(© @o)] (2.2)

In the far field (r>>r0), R=r- r, cos(0® - Oo) applies in the phase

term and R~r in the amplitude term of (2.1) giving

, ~jk[r-r_ cos(0-0 )]
vt = e ° ° ; 0<0 <m (2.3)

—

vkt

By making the source coordinates (ro, @o) complex (rs, @S) the
omnidirectional wave becomes a directive beam uniform in the 2z
direction.

r, =T - jb (2.4)

where ?;, ?; and b are the complex source position, real source position

and beam parameter vectors given in polar coordinates as ?; = (ro, 90),

?S = (rs, OS) and D = (b, B), where b defines the sharpness of the beam

and B defines its orientation. All angles are measured from the x-axis.

rsand r are measured from the origin while b is measured from the real

point source as shown in Fig. 2.1.
2]1/2

r

2 _ - _
s = [r2 + 2r_(-3b) cos(B-0 ) + (-3b)

; Re(r) > 0 (2.5)

-1 T, cos@o = jb cosB
0 = cos | ] (2.6)
r
s
where b > 0 and 0 < B < 2n. Replacing T Oo by £, OS in (2.3) gives

EJk[r—rs cos(O-OS)]

e ;o> |r | (2.7)
/kr '
r cos(®@F Q@ )=r cosO cos® +r sin® sind (2.8a)
s s s s — s s

and from (2.4),
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r cos® r cos® =~ jb cosPB ,
s s o o

(2.8b)
T sin@s =r, sin@o - jb sinB
Using these in (2.8a) yields
r, cos(@ + OS) = ro cos(G + Oo) - jb cos(© + B) (2.8¢c)
Substitute (2.8c) in (2.7) to get
-jk[r-ro cos(@-@o)] kb cos(0-B)
1 e e
U" = (2.9)

By comparing equation (2.9) with (2.3) we find that (2.9) represents an
omnidirectional cylindrical wave (first term) modulated by a bean
pattern exp[kbcos(©0-8)] with its maximum in the direction ©=8 and

minimum i{in the direction O=f+r.

2.2 Half Power Beam Width
To calculate the half powerbbeam width (HPBW), we normalize the

field of (2.9) to its peak value.

i =kb[1l = cos(0=B)]
U9l o, (2.10)
i
U™ (r,B)
HPBW
At 0-8 = the normalized field amplitude of (2.10) equals 1/7Y2.
2
W
-kb[1 - cos(Hpg )] 1
= 2.11
e Tzr ( )
Thus the half power beam width is related to the beam parameter kb by
/2 n/2

HPBW = 2 cos'l(l - ) 3 kb >

kb 2 (2.12)




- 20 -

(2.12) shows that as kb increases the beam width decreases. If
kb < é.an the beam does not decay to the half power point.

Special Case:

T and @S are complex unless b=0, corresponding to a real source or
B=Ooor Oo + m. To show the last case substitute for B=@oor Oo+n in
(2.5) and (2.6) to get
r =r +ib ; B= @o, @o+n (2.13a)
and

0 =0 (2.13b)

Therefore Os becomes real whenever the beam axls lies along r.-

2,3 Comparison with Gaussian and Typical Aperture Beam Patterns

Since near the beam axis, O-f is small, we can write

- 2
cos(0-8)=1 - ﬁ.z_s)_ (2.14)

Using (2.14) in (2.10) gives

i -kb(0-B)2
U9 . 2 (2.15)
Ui(r,B)

Showing, as is well known (Green et al. (1979) and Hasselman (1980)),
that a complex source point provides a beam which 1s Gaussian in the
paraxial region. It is important to appreciate that this complex source
point representation of a beam is not limited to the paraxial region.
Fig. 2.2a shows the far field radiation pattern of a source at
kro%B'for several values of the kb corresponding to half power beam

widths ranging from 68.5°(kb=2) to 10.4°(kb=85).
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In Fig. 2.2b the broken curve is a typical aperture antenna beam
pattern, that of an inphase cosinusoidal distribution in an aperture of
width 2a. 1Its normalized pattern is

ul(r,0)| _ cos[ka sin(6-B)]

[EEE sin(@-ﬁ)]2
m

(2.16)

vie,p)  1-

For ka=4, its half-power beam width is 55.7°. The solid curve in Fig.

2.2b 1is a complex source point pattern of the same beam width

(HPBW=55.7° or kb=3) with

Kb = V2 (2.17)

(1 - cos(HEBY),
2

The dashed curve in Fig. 2.2b is a Gaussian beam with the same beam

width.
viee,0)] - a/2[2(&P)2 ,
_ = HPBW (2.18)
vi(e,B)

All three curves overlap in the paraxial region (O-P small). At angles
well off the beam axis, there 1s some difference, specially for broad
beams (kb smail), between (2.10) and (2.18) but here the complex source
point pattern given by (2.10) is a slightly better approximation to
(2.16). The complex source point representétion appears to be a valid
approximation to an antenna main beam pattern over the forward angular

range (|0-B| < m/2). Of course it cannot represent pattern sidelobes.
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2.4 Multiple Complex Line Sou?ces

More complicated beams such as beams with sidelobes also can be
derived by usingzthe complex source point method. By putting more than
one source at different complex 1locations and changing the  real
locations ro, Oo and the beam parameters b,P we get a variety of beam
shapes.

Let us have M sources located at M complex positions. The mth
source is located at om? Oom and its corresponding beam parameters are
bm’ Bm as shown in Fig. 2.1b. Then the far field due to the mth complex

source Ui is given by (2.9) and rewritten here as
-Jk[r—rom cos(@—@om)] kbm cos(@—Bm)

Ui = & € 3 T2 rom’bm (2.19)
o Ykr

Then the resultant far field, due to the M weighted sources, vl is

1 ¥ 1
Ut =) Q U
m m

m=1 -

-jkr .

M jkr  cos(®=0 ) kb_ cos(O~B )
=~ .Y qQ .e O™ om’ ™ m (2.20)
Ykr m=1 "

where Qm are the weighting factors.
In Fig. 2.3 the field due to 3 1line sources is derived for
different beam parameters b,8 while the real locations are kept

constant, © =0, ©

ol =n/2, @03=n, kr01=kro3=1, kr02=0. The weighting

o2
factor Q,=1 while Q; and Q; are variables (positive or negative, greater
or less than 1). Because sources 1 and 3 are symmetric with respect to

source 2, the fields shown in Fig. 2.3 are symmetric. Asymmetric fields
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also can be derived from asymmetric sources. A beam which resembles a
line source diffracted by a slit and a beam with first sidelobes which
looks like a plane wave diffracted by a slit are shown in Fig. 2.3.
More sidelobes can be derived if more complex sources are included.

In this chapter we studied the line source. The point source is

very much the same with term _i_ is replaced by —%_ and two dimensions
kr r

is replaced by three dimensions.
A general description of multiple complex source point

representation of beams has been given by Hashimoto (1985).
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Fig. 2.la Geometry of a complex line source and real far field
point

Field Point

Fig. 2.1b Geometry of multiple complex line sources and real far
field point
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CHAPTER IIIX

BEAM DIFFRACTION BY A CONDUCTING HALF-PLANE

The total far field diffraction by a conducting half-screen of a
beam 1s derived from the exact far field solution given by Born & Wolf
(1978) and Clemmow (1950) for a real line solution and compared with the

asymptotic solution given by Green et al (1979) (see Appendix C).

3.1 Uniform Solution Far Field Radiation Pattern

Suppose the omnidirectional source given by (2.1) is parallel to
the edge of an infinitely thin perfectly conducting half-plane in y=0,
x>0 as shown in Fig. 3.1. 1If k(r+ro)>>1, the total field at any point

r,O far from the edge (r>>ro) is given exactly as

-j(kr-n/4)  jkr _cos(6-0 ) 0-0
e e ° " F[-VZkr  cos(—2))

U(r,0) = o 9

mkr jkr cos(G+0 ) o0+0
-e ° ° F[—VZkro cos( o)]} (3.1)

2
where
@ —sz
Flw] = [ e dv (3.2)
W

is the Fresnel integral (see Appendix A).
By making the coordinates (ro,Go) of the source, complex (rs,Gs) as
in (2.5) and (2.6), the omnidirectional source becomes a directive beam

and the solution in (3.1) 1is still valid with L Os replacing s @o.
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The total far field of a beam diffracted by conducting half-screen

for normal and non-normal incidence is given as

. . 0-0
;J(kr_ﬂ/a) ikrs COS(G‘GS) F[—¢2krs cos(—=2)]
U(rye) = : @)
YTkt jkr_ cos(8+0)) o0
-e ® F[- Zkr  cos( 21}
2

where F{w] 1is the complex Fresnel integral. The Fresnel integrals
provide values finite and continuous across the shadow and reflection
boundaries of the source and half-plane. 1In the asymptotic solution
given by Green et al (1979) the field is singular along the boundaries
when the beam axis hits the diffracting edge and is inaccurate in the
neighbourhood of the shadow boundaries.

Efficient computer subroutines are available for calculating the
Freénel integrals in terms of error functions with the complex arguments

(see Appendix A).

3.2 Shadow and Reflection Boundaries

Far from the half-screen edge simple expressions for the shadow and
reflection boundaries are to be derived here analogous to those of Green
et al (1979). These expressions are simpler and more accurate because
only the real part of r need be calculated, whereas before real part,
imaginary part and absolute value of r, and real and imaginary parts of
@S were used. L and OS are the source complex coordinates. These
boundaries in general are- not straight lines. They depend on the

relative position of the half-screen edge with respect to the beam axis
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and the source. The shadow and reflection boundaries are straight lines
and coincide with those of the source when its coordinates are real,
only when the beam axis passes through the edge of the half-screen.
Using the Green et al. (1979) definition of shadow and reflection
boundaries, we have
Real(wd™*) = 0 (3.4)

where w 1s the Fresnel integral argument of (3.3) given as

a0,
w,o=- 2krs cos( ) , (3.5)
r 2

where the subscripts i, r refer to incidence and reflection. (3.4) is

satisfied 1if

jn/4 _
Imag[(we )2] =0 (3.6)
and A
in/4
Real[(we )2%2] <0 (3.7)

Letting r, = R - jI as in Appendix B and using the identities given by

(2.8c), it is easy to show that

jn/4
(we )2 = J[R+T | cos(O+0 )] + k[I+b cos(G+B)] (3.8)
Hence
jn/4
Imag| (we )2] = k[R+ro cos(GiQo)] (3.9)
and |
jn/4
Real[(we )2] = k[I+b cos(0+B)] (3.10)

Substituting (3.9) in (3.6) and solving for © at the shadow and

reflection boundaries, i.e. 9=0 _  and esr , gives

si
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_1 R
esi =+ Oo + cos(r_) (3.11)
8T o
since R=Rea1(rs) and ro are real and positive we can write
_1 R
0, =1+ Oo + [n + cos ('r—)] ) (3.12)

si
sY o

or the shadow boundary position is

-1
— R - <
esi = Oo + [n + cos (?;J] ; B 5.60 +n (3.13)
and the reflection boundary position is
-lR
Osr = —Oo + [ F cos (?;)] 3 3] §'®° + T (3.14)

From (3.13) and (3.14) we can see the symmetry of shadow and reflection
boundaries with respect to the half-screen. This property is valid for
omnidirectional and directive sources as well. Adding (3.13) and (3.14)
gives

esi + Osr = 27 , for all B (3.15)

To satisfy (3.7), substitute for R from (3.9) and (3.6) in (B.6) of
/

Appendix B yielding
cos(B—@o) -
I =-b (3.16)
cos (G490 )
-0
Expanding cos(f~Oo) in terms of cosines and sines of (&+f) and (&+6o)
and substituting in (3.10) we get

jn/4
Real[(we )21 = =kb sin(Qiﬁ). tan(QiQo ) (3.17a)

From equation (3.13) and Appendix B we can show
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In
n < esi - Go < _E. if 0 < Osi -8« (3.17b)

Hence tan(@Si‘9°)>0 and sin(@si-6)>0

Also we can show

m n
.E < Osi - Oo <= if - E.( @si-ﬁ <0 (3.17¢)

Hence, tan(@si - Oo) < 0 and sin(@si—ﬁ) < 0.
Therefore (3.7) 1is satisfied for the shadow boundary. Similarly from

(3.14) and Appendix B we can satisfy (3.7).

)

As a check on the above formulas for @S and esr’ let us discuss

i

the following speclal cases.

i) Real line source i.e. b=0

from (3.10) =ro, and
esi =7+ @o‘ (3.18)
st

ii) Beam axis passes through the screen edge
B=0 + 7
o
from (3.13), r, =1, + jb and

esi =7+ 90,
st
which 1is the same as the real 1line source shadow and reflection

boundaries.

3.3 Numerical Results for the Half-Plane
The solid curves in Fig. 3.2 and Fig. 3.3 represent the uniform

total field calculated from (3.3) with kro=16 and 9°=n/2 while the
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dashed curves represent the asymptotic total field calculated from
Appendix (C.5). The two dimensional beam is normally incident upon the
half plane and at a distance kro=16. The development of a beam from an
omnidirectional line source (kb=0) to a directive beam (kb=12) is shown
in Fig. 3.2. For the case of kb=0 the pattern oscillations in the
illuminated region (-m/2<¢<0) are familiar, showing interference between
the direct wave from the source and a diffracted wave emanating from the
edge. In the shadow region (0<9<m/2) there is only a diffracted field,
which decreases with ¢ to.become zero on the conductor. As kb increases
the above oscillations are suppressed in the illuminated region. This
occurs because the incident field is suppressed in the illuminated
region as directivity increases.

In Fig. 3.2, where the beam axis passes through the edge, we can
see how 1inaccurate the asymptotic solution becomes near the shadow
boundary. When kb increases there is little improvement. On the shadow
boundary the asymptotic field is singular for all values of kb in Fig.
3.2.

In Fig. 3.3 where the beam axis is off the edge by an angle &, the
asympototic solution is finite but inaccurate near and on the shadow
boundary especially for small kb or 6. In Fig. 3.3 the asymptotic
solution improved greatly when the off edge angle increased from 15° to
45° for a fixed kb=12. 1In the lowér graphs of Fig. 3.3 where the off
edge angle is fixed to ©&=30°, the asymptotic solution improved
considerably when kb increased from kb=4 to kb=16. From the above we
can conclude that the asymptotic solution is a good approximation to the

uniform solution whenever the beam axis is well off the diffracting edge
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and the beam is sufficiently directive, i.e. when & and kb are
sufficiently large, for then there is little diffraction by the edge.
Fig. 3.4 shows the far fields for half plane diffraction by a
distant line source represented by a solid curve and by a narrow beam
source represented by a dashed curve. For b>>ro the wave uniformly
illuminates the diffracting edge and its neighbourhood and in a similar
way the distant line source also does. So in Fig. 3.4b we can see the
diffracted field components are similar. 1In Fig. 3.4a the total fields
are different in the illuminated region (-m/2<¢<0), because far from the

source the direct incident wave of the narrow beam is almost zero a few

degrees off the beam axis, so the diffracted field is essentially the -

total field. The direct wave of the distant line source is almost
uniform, consequently interference between the direct wave and the
diffracted wave occurs and appears as oscillations in the illuminated
region.

To obtain numerical values from (3.3) it 1is necessary to have a
Fresnel integral subroutine that can handle complex arguments. A
relation between the Fresnel integral and the error function is given in
Appendix A. Subroutines for the error function with complex argument
are available in the UBC computing center General Library. Also tables
of the error function with complex arguments by Gautschi (1964) and
tables of the modified Fresnel integral with complex afguments by
Clemmow and Munford (1952) agree With our subroutine whenever comparison

is possible.
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Fig. 3.1 a) Geometry of a complex line source diffraction by a half-plane
b) Beam orientation with respect to the edge.
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CHAPTER IV

BEAM DIFFRACTION BY A WIDE SLIT AND COMPLEMENTARY STRIP

4.1 Beam Diffraction by a Wide Slit

With the results for beam diffraction by a half-plane we can solve
the problem of beam diffraction by a slit in a conducting plane and its
complement, a conducting strip. The slit ©between two coplanar
half-planes with parallel edges, or 1its complement, the strip, are a

traditional test of theories involving multiple diffraction by edges.

4.1.1 Far Field Calculation

Fig. 4.1 shows a line source parallel to a slit in y=0, IXLS a.
With an inciden; field given by (2.1) the total far field of the
half-plane on the right side in isolation U;(r,,9;) is given by (3.3)
with r;, ©; replacing r, © and T Osl replacing e, Os.

Similarly the total far field of the left half_plane in isolation
Uy(ry,9,) 1s given by (3.3) with r,, ©, replacing r, © and T o @Sz
replacing Tos Gs. All the coordinates are shown in Fig. 4.1.

These expressions for the fields of the two half_planes contain
both incident and diffracted fields behind the slit. Consequently the
total non-interaction far fields for the slit are their sum less an
incident field Ul.

Ul = Uy(r;,0)) + Up(ry,0y) - Ut (4.1)
In the far field of the slit (r >> a)

ry =r = a cosd , 0, =0

[l

r, =r = a cosd, , 0, -0 ; 0<COC = (4 .2a)

R

3n -0 1< 0O 2n
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These far field substitutions for r;, r, are used in the exponential

terms of U; and U, while r; = ry = r is used in the amplitude terms.

From Fig. 4.1 we can write the following geometrical relations for r.
?
T

2° esl’ OSZ, measured from the two edges in terms of r, Os

- 12 2 172 .,
r [rS + a '-F'ZarS cosOS] ; Real(rsl) >0, (4.2b)
2

0 r sin®

Sﬁ =7 _ sin~! (_f%?-—-—i)

&)

s and @s are measured from the centre of the slit and given by

’ (4.2C)

where r

(2.5) and (2.6) respectively. We may use the Fresnel integral

identity.
~jn/4
F[-w] = /T e - F[w] (4.3)
to include the extra incident field
. ;jk[rl -Ty cos(@l_esl)] ;jk[r_rs cos(@_Qs)]
i = = (4.4)
vkr kr

in a Fresnel integral term. Then the non.interaction far fields of the

slit are
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=3 (kr=m/4) jka cos®; jkr_, cos(9;-0_,)
Ut - e e - sl sl F[-w ]
s GE; il
. @ a
) ikrslcos( 1+Osl) F[wrl]}
jka cos®,  jkr_, cos(©,.0_,)
+ e e S2 82" plw, . ]
i2
jkr cos(9,+0 ,)
s2 52
e Flu_,11] (4.5
where
e, F ©
W, = ~/2kr_. cos(m—SL) (4.6)
il sl CO% T .
rl

and similarly for w with subscript 2 replacing 1 in (4.6).

i2
r2

This 1is an accurate solution for slits sufficiently wide that
interaction between edges is negligible. In order to 1indicate the
accuracy it is wuseful to include also 1interaction between the slit
edges. Earlier results for plane wave incidence using the geometrical
theory of diffraction show that single and double diffraction provide

accurate results for slit widths ka > 2 (Keller (1957), Fig. 9).

4.1.2 Multiple Diffraction Calculation

To include higher order interactions between the edges the field
singly diffracted from each edge in the direction of the opposite edge
is replaced by the field of a line source of equal amplitude located at

the edge from which the singly diffracted field originates. For example
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the doubly diffracted field from the 1left edge is produced by the
singly diffracted field from the right edge in the 0,=7m direction and
vice-versa for the right edge. This can be repeated infinitely many
times. Adding all contributions from the two edges gives the multiply
diffracted fields of the slit.

The singly diffracted component of the field given by (3.3) can be
written as

d i

v =u, e, r, 0, 1) (4.7)

where Ui is the incident field calculated at the diffracting edge given

by
-jkrS
e
U o= , |krS| > 1 (4.8)

kr
s

and D(OS, ros 0, r) is the diffraction coefficient of the edge

=jkr

. _ [kr_ jm/4 jw2 jw2 e
D(Os’ Ts? 9, 1) -\’——i e { -e i F[-w,] — e r Fl+w_]} — (4.9)
i 1 © kr

where Wy and w_ are given by (4.6).

Following the same procé&ure given by Jull (1981, p.91) in
calculating multiple diffraction for plane wave inclidence on a slit, the
multiply diffracted field excluding single diffraction, can be written
as

i i £ f i i, £ f
Uy, D1 (D,D1¥D3) + Uy D3(D Dy+D})

U = (4.10)
m Qa - D§)
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If the line source coordinates are on the slit axis (y-axis), i.e., the

source 1s symmetric with respect to both edges of the slit. Then

i

- - 1_ 1_ .1
=r = 932 consequently U =1, and Dy = D3. Then (4.10)

Ts1 7 Ts2 1
can be simplified to

and ©
s

i 1, f f
d U, D1 (D] + Dp)
U.m = (4.11)
1-D)
i .
where Uel is given by (4.8) with rsl replaces rs and
Do = D(n, 2a, %, 2a)
j(2kat+m/4)
=-4/n . e . F[Y4ka] (4.12)
Di = D(O r n, 2a)
1 sl’” "sl1*
j(=~2ka + 1/4) -jkr ,cos® jkr
=—/2kr ./nka e . e sl Sl. e sl
sl
F[/3kr_. sin(5L)] (4.13)
sl 2
£ .
Dl = D(ﬂ, 2a, elyrl)
j(2ka + m/4) -jkacos®; @1 ;jkr
=-/8ka/m . e . e . F[Y4ka sin(—)]. — (4.14)
2 vkr

While DI is given by (4.14) with

For a wide range of slit

r,, 9, replacing r;, 9.

widths (2a), higher order 1interaction

fields of the slit give 1little or no improvement in accuracy over the

first order interaction.

first order interaction only.

In practice it 1is sufficient to include the

That 1s partly because the above higher
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order interaction calculations are approximate, for the edge diffracted
fields are not omnidirectional as assumed. It is also because higher
order interaction is weak except for narrow slits, for which the whole
process diverges and a different method is required.

Now the total field including multiple diffraction U; is given by

t _ .t d
Um = US + Um Y (4-15)

where U; is given by (4.5) and Ui is given by (4.10). The total far
field given by (4.15) 1is continuous and free from shadow boundary

singularities because the Fresnel integrals are retained.

4.1.3 Numerical Results for the Slit

The diffraction patterns of Fig. 4.2 are calculated for a 1line
source parallel to and at a height kro = 8 above a slit of width 2ka=16.
The solid curves are the non-interaction diffraction fields calculated
from (4.5) and the dashed curves calculated from (4.15) include higher
order interaction between the edges of the slit. Clearly interaction
fields are of minor importance for this width of slit.

For an omnidirectional source (kb=0) the incident field has a
substantial symmetric phase varilation across the aperture resulting in a
broad main beam with high shoulders. As the source becomes directive,
beam definition improves. For moderate source directivity (e.g., kb=8)
the aperture illumination 1s essentially Gaussian and so is the pattern.
For a very directive source (kb=85) the aperture illumination 1is
essentially plane wave and the diffraction pattern is very like that for

plane wave 1illumination of a slit. Fig. 4.3 compares results from
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Keller's geometrical theory of diffraction (1957, Fig. 7) and beam
diffraction for kb=85. Fhe singly diffracted field patterns are almost
identical, but the interaction fields differ. Keller's multiple
diffraction field is a summation of all fields resulting from the first
term in an asymptotic expansion of the Fresnel integral; higher order
Fresnel integral asymptotic expansion terms are omitted. It is also
singular at shadow boundaries of the diffracted field, as is evident
here at ¢=i90°. These are limitations of theAgeometrical theory of

diffraction.
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(s0lid) single diffraction and (dashed) multiple diffraction
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4.2 Beam Diffraction by a Wide Conducting Strip

As another application of line source diffraction by a half-plane
is the line source diffraction by a conducting strip. Fig. 4.4 shows a
line source above and parallel to a conducting strip in thé y=o0 plane

and |x|$§.

4,2.1 Far Field Calculation
In the far field of the strip (r>>ro,a) we use the approximation
given by (4.2).
The singly diffracted total field of a line source above a strip
can be calculated from the total field of a 1line source over a
half-plane for each of the edges. This total field Ug may be written
t

U
s

U (r1,01) + Up(r,0,) = [UT(r,0) + UT(r,0)]; 0<&r

1

U (r1,91) + Uy(r,,09;) ; K21 (4.16)

where U; is total field of the line source over a half_plane at y=0 and
x>-a and U, is the total field of the same line source over a half-plane
at y=0 and x<a. Uy(r,,0;) and Uy(ry,9,) are given by (3.3) with r;,9;
and r,,9, replacing r,0, respectively. While Ui and,I‘Jr are the incident

and reflected fields, respectively. Ui is given by (4.4) and

;jk[rl_rsl cos(61+®sl)] ;jk[r-rs cos(@+®s)]
Ut = - — - (4.17)
Ykr Ykr

Using (4.3), the singly diffracted toéal field given by (4.16) can be

simplified to
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For 0<6<m
-j(kr-n/4) jka cos9,
. e e
s Yrkr
jkr
+es

jka cos®, jkr
s
+ e e

jkr82 cos (0,40

- e

and for m<®<L2~w

cos(@1+Osl)

OSZ)

52)

-j(kr-n/4) jka cos®; Jkrs1 cos(Ol_Osl)

jkrslcos(el_@sl)

F[-wil]

Fl-w_,]1)

F[wiZ]

Flw,1)} , (4.18a)

t e e e F[wil]
g = .
s Imkr _ gkr51 cos(91+@sl)F . ])
[ rl
.\ jka cosH, jkrsz cos(Oz_Osz)
e e Flw,,]
i2
jkr_, cos(9,+0_,)
- 82 52 Flw_,1)}  (4.18)

Where w, and w are the Fresnel integral arguments given by (4.6).

i

If interaction fields of the strip edges are calculated in a

similar way as for the interaction fields of the slit it is found that

they vanish on the conducting strip.

Consequently a new diffraction

coefficient is required (e.g. Karp and Keller, 1961) based on the normal

derivative of the diffracted fields

opposite.

and so are omitted here.

in the direction of the edge

These interaction fields are much weaker than for the slit
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4.,2.2 Numerical Results for the Strip

The fileld pattern shown in Figs. 4.5 and 4.6 are calculated from
(4.18) after normalization to the field on the peak of the pattern.

Fig. 4.5 illustrates the development of a beam solution from an
omnidirectional line source (kb=0) at kro=8, @o=n/2 above a strip of
width 2ka=16, to a beam source (kb=12) perpendicular to the strip. The
total far field is maximum in the illuminated region at ©=m/2 where the
reflected field is combined with the diffracted fields from both edges.
The diffracted fields from the two edges at the field point ©=m/2 or
37/2 add in phase. 1In the shadow region at ©=37/2 the total field is a
relative maximum. As kb increases from O to 12 the incident beam
becomes narrower and the edges are less illuminated. So the total field
behind the strip; which is mainly the diffracted fields from the edges,
decreases. The total field in the illuminated region becomes more
directive with fewer sidelobes because there 1is 1little interaction
between the reflected field and the diffracted fields.

Now 1if the incident beam of kb=8 is off the perpendicular to the
strip by an angle &, as shown in Fig. 4.6, the total field pattern is
tilted. As & increases the total field pattern is tilted more to the
same side of the incidegt beam and it becomes larger behind the strip as
shown.

The diffracted field contribution from the right edge is small and
the main contribution is from the left edge and the incident field. The
diffracted field from the left edge 1s a maximum when the incident beam
axis 1s directed at the 1left edge'as shown in Fig. 4.6 for the case of

8=45°.
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In the lower right graph of Fig. 4.6, the strip width is increased
to 2ka=160 as a 1limit of a plane screen. The resulting total field
pattern is a tilted sharp beam making an angle 135° with the strip, and

is simply the reflected field.
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CHAPTER V

BEAM DIFFRACTION BY A CONDUCTING WEDGE

A perfectly conducting wedge of exterior angle n7 is illuminated by
a line source at L @o parallel to the edge, as shown in Fig. 5.1. For

this configuration, let us have the following limitations:

0<o AT (5.1a)
[o]
2
0<O<am (5.1b)
1.5¢a<2 or -~ > a >0, (5.1¢)

where « 1is the interior wedge angle. Since © = nm/2 is the line of
symmetry of the above configuration, the solution for 0<®°<nﬂ/2 with ©
measured from the upper surface, is the same as that for nﬂ/2<@o<nn when
© is measured from the lower wedge surface. Therefore esym = nn/2 is

called angle of symmetry.

5.1 Real Line Source Solution

Exterior to the wedge, the total far field Ut is given as
t _ i r r d
U =vu". s(esi-e) + U1 S(OSr1 Q) + Uy S(O_Osrz) + U (5.2)
Here S(x) is the unit step function, Osi’ esrl and eer are the shadow
boundary, reflection boundary for the upper surface and reflection
boundary for the lower surface, respectively. All the boundary angles

are measured from the upper surface of the wedge and are given by

Osi =7 + @o ; . (5.3a)
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01 =" 4’00 ; (5.3b)

0 (2n-1)m - Oo H (5.3¢c)

sr2

U}, Ud, Ui, and U

r
2

from the upper and lower surfaces, respectively.

are the 1ncident,‘diffracted aﬁd reflected fields

1 (2),. .1 Sike’ 1
U = vVn/2 Ho (kR7) = —T kR™ >> 1 (5.4a)
, YkR
jkr cos(6-0 ) =jkr
=e © ° . j__ S AN (5.4b)
kr
jkr cos(©+0 ) =jkr
r _ _ (2) 10Ty = _2 © 0
U1 = = /nf2 Ho (le) e e (5.5)
7kr
jkr cos[2nm - (640 )] =jkr
vl = _ /a2 B2URY) = e © °° & (5.6)
vkr
The diffracted field is
=jkr
pd = u: . D(8,r_,0) —= , (5.7)
Ykr
where UZ is the incident field at the edge of the wedge given by
U: = /n/2 ng) (kro) (5.8a)
;jkro
= = H kr°>>1 (5.8b)
kro

and D(@o, LI ©) is the uniform diffraction coefficient given by

Kouyoumjian and Pathak (1974), with some modifications, as
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-jn/4
DO , r, 0) =£ {[cot(T;) G(w,) = cot(T,) G(w,)]
° ° 2nY27 ) ! 1 2 2
+[cot(T3) G(wz) - cot(T,) G(wy)]}, (5.9)
Here (
o qw? jn/a
G(w) = 2j e wF[w] ; Real(we ) > 0 (5.10a)
jw2 jn/4 ,
= =2j e w F[-w] 3 Real(we KO0 (5.10b)

F[w] is the Fresnel integral given by (3.2), and

+ -
21 = (0 ¥ © )

W, o, = -V2kr° cos[ ] (5.11a)

2

e -
2n n M, - (6 + 0)
2 ° ] (5.11b)

w3’A = -VZkro cos[ >
T - (0F0)
T - 2 (5.12a)
1,2 on
T+ (0F Q)
T = 0 : (5.12b)
3,4 7n
F ¥
In (5.11) M; and M2 are integers which most nearly satisfy the
equations.
- .
2n n M; - (© ?’@o) = =7 (5.13a)
2T n ﬁf - (© ?’Oo) =7 (5.13b)

Here we have two cases, depending on whether the reflected field from
the lower wedge surface exists or does not, i.e. Oo % ecr’ where the
critical angle for illumination of the 1lower wedge surface 1is

0, =(n=1).
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Now the total field ub can be written as,

for 0<®°<®cr 3 (5.14)
t _  d i r
u =u +u + uy s 0<O<Osr1
d i .
=u tu » Ser1coco_ (5.15)
- ud , 981<9<nﬂ
=0 , nm <0<2™n
and for O <© <0 ~ (5.16)
cr— o0 sym
ut = ud + ui + ug , 0<0e<0
srl
_.d i
=u? +u , 0,.,<0<0 , (5.17)
r
=u +u + u, . Osr2<@ <am
=0 , nukO2n

5.2 Uniform Solution for a Beam Source

To get the two-dimensional beam solution from the omnidrectional
line source solution, we replace L 60 by LI Os in all above equations
except (5.1), (5.3), (5.13), (5.14) and (5.16). In (5.1), Go is left as
it is and in (5.13), Oo is replaced by Real(@s). (5.14) and (5.16) are
replaced, respectively, by

@sr2 2 nn (5.18)
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Finally (5.3) is given by (3.13) and (3.14) and rewritten here as

0, =0, + [nFecos" R/ )) , B 20+ (5.19)
esrl = -Oo + [+ cos"l(R/ro)] , B % (@°+1t) , (5.20)
Opp = ~(a% = 0) + [T F cos™! (R/r )], BZ(O4m ,  (5.21)

where r, and Os are given by (2.5) and (2.6) respectively.

If the edge of the wedge lies on the beam axis, r, and @S are
simplified to

r, =r, + jb and OS = Oo, (5.22)
and one of the cotangent functions in (5.9) is singular on the shadow or
reflection boundaries, but when multiplied by the corresponding G(w)
function, it becomes finite (see Appendix D). Hence the diffraction
coefficient given by (5.9) 1is always finite, unlike the asymptotic

solutions. When the beam axis does not pass through the wedge edge, all

the cotangent functions are finite everywhere.

5.3 Numerical Results for the Wedge

In all the following figures the source 1is parallel to the edge and
at a distance kro = 16. Also the edge lies on the beam axis; i.e.
B = O°+n.

In Figs. 5.2, 5.3 and 5.4 the wedge angle @, = (2-n)7m is kept
constant at @, = 90° for which n=1.5. Therefore the critical angle
ecr=90 and the angle of symmetry esym = 135°.

Fig. 5.2 illustrates how the normalized total field varies when the

incident field on a right angled conducting wedge changes from
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omnidirectional (kb=0) to a directive beam (kb=12). As kb increases two
beams appear, one along the reflection boundary at esrl = 120°, and

another along the shadow boundary at esi = 240°. 1In the region
il1luminated by the 1ncident and reflected fields considerable
constructive and destructive interference between incident and reflected
fields 1s observed when kb=0. As kb 1increases this interference
decreases because incident and reflected fields become directive. The
diffracted field does not change significantly because the edges lie on
the beam axis. Since the incident angle @o = 60° is less than ecr=90°,
there is no reflected field from the lower wedge surface. In the shadow
region (240°<6<270°) there is only a diffracted field, which vanishes on
the lower wedge surface.

Fig. 5.3 is similar to Fig. 5.2 except the angle of incidence
®o=120° is greater than ecr so both faces of the wedge are illuminated.
In this case the reflected fields from both wedge surfaces contribute to
the total field. Interference between incident, reflected and

diffracted fields occurs in 0<@<®Srl = 60° and 270°<O<OSr = 240°, also

2
between incident and diffracted fields in the region 60°<8<240°. Here
all the region exterlor to the wedge 1s illuminated by incident,
diffracted and for ©0<60° and @)2405 reflected fields, so there is no
shadow regions when kb 1s small. When kb is sufficiently large, shadow
regions may exist.

In Fig. 5.4 the angle of incidence is chosen to equal the angle of
symmetry; i.e. Oo = Gsym = 135°, The arrangement was used as a partial

verification of the validity of our equations and computer programs in

this analysis. The symmetry of the field about ©=135° is clear. When
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kb is sufficiently large, say kb=12, two directive beams appear at
®=esr1 = 45° and eer = 225°. These are the reflected fields from the
upper and lower wedge surfaces respectively. But when kb=0 or is small,
say kb=2, the interference between reflected, incident and diffracted
fields are more significant in the regions 0<0<45° and 225°<&270°.
Most of the total far field in the region 45°<0<225° when kb is small,
but not zero, is due to the diffracted field. All of it is diffracted
field when kb is sufficiently large, because the reflected fields from
both wedge surfaces do not contribute to the total field in this
region.

Fig. 5.5 shows how the total fields for an omnidirectional source
(kb=0) and a beam source (kb=4) change with the interior wedge angle aw.
For Oo=120°, the wedge angle is changed from aw=90°(n=1.5) to a
half-plane aw=0°(n=2), comparing the case of half-plane solution to the
beam diffraction by half plane solution given in chapter 3, gives
another check on the validity and accuracy of our analysis and computer
programs. From Fig. 5.5 we can notice that the total field in the
region closer to the upper wedge surface; 1i.e. ™nmn/2, 1is not
significantly affected with the change of wedge angle because in this
region the incident and reflected fields do not change with the wedge

angle. In the region closer to the lower surface; 1i.e. (EE < © < nm),
2

the total field 1is noticeably changed with the change of the wedge
angle, because the reflected field changes significantly with the change

of the wedge angle.
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Fig. 5.1 Geometry of a complex line source diffraction by a wedge
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CHAPTER VI
BEAM DIFFRACTION BY A CIRCULAR APERTURE

(NORMAL INCIDENCE)

Fig. 6.1 shows a circular aperture of radius a in a conducting
plane (xy-plane) and centred at the origin. For normal incidence, the
point source lies on the aperture axis (z-axis). Because of symmetry,

without loss of generality the problem can be treated as 2-dimensional.

6.1 Uniform Point-Source Solution
For a point source located at a distance z, from the origin and r,
from the aperture edges making an. angle Oo with the aperture plane, as

shown in Fig. 6.1, we have the following relations:

_ /T2 2 .

r, z; + a (6.1)
= =1

Oo T . cos (a/ro) , (6.2)

For an observation point in the far field at r,© from the origin, or at
ry, ©, from one edge and r,, ©, from the opposite edge, we have the
following approximations:

r =y ¥Facos © ; 1r>a, (6.3)
1,2
o o
Where R is the distance from the source to the observation point.

o) = © (6.5a)

@, =m_0 ; 0K&Kn ; (6.5b)
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9, =3n -0 ; mnO<2T 3

(O]
R

1.5 + ¢ 3 -1.5n595ﬁ/2. (6.5¢)

6.1.1 Single Diffraction
The incident and reflected fields at a distant field point (r,©)
due to an isotroptic point source at (0, zo) and a circular aperture in

a conducting plane at z=0 are ui and ur, respectively, are given by

“IR iz stno TIKT
w8 ¢ © e (6.6)
kR kr
and
r -jkzosinG -jkr
u = -e e 6.7)

kr

The resultant diffracted component of the field by a curved edge 1is

given by Keller (1957) as

w=ul e, r, 0 . Ve ST, (6.8)
where ui is the incident field at the diffracting edge
ul = e (6.9)
° kr

)
and D(Oo, L 0©) is the diffraction coefficient given by Kouyoumjian and
Pathak (1974) as

kro +jn/4
D(@o, L e) = — e [G(wi) - G(wr)] (6.10)

G(w) is given by
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.2
jw
i-e F [iﬁ] (6.11)

G(w) =
The (+) sign applies in the shadow region, and (-) sign 1in the
illuminated region. F[w] is the Fresnel integral given by (3.2) with

complex arguments wi,r given by

6+0
2°) (6.12)

wi,r = 2kro cos(

Yp/r'(r'+p) is the curvature factor with r' as the distance from the

diffracting edge to the observation point; i.e. r;, r, in our case.
For normal incidence, Keller(1957) showed
p = a/cos® ' (6.13)
and this holds also for a point source on the circular aperture axis.
Substituting for p and r' in the curvature factor and with the far field

approximations in (6.3) one can show that

vp/rl(r1+p) =}- Va/cosOl (6.14)
2 2 r 2

Where r is measured from the origin and ©,,, given by (6.5).

The singly diffracted component of the far field Ug is the sum of
the diffracted field component by one edge and its opposite which are

given by (6.8).

jn/4 j(ka cos®-m/4) -j(kacos®-n/4)  =jkr
vd> ka e ol [Rae ___+Dye ]e (6.15)
s ° Yka cos® kr
where
Dysp 2D(O_, T, 015)) (6.16)

are given by (6.10).
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On the axial caustic; i.e. © =.; or 3;, (6.15) is singular, so near

this axis the field is inaccurate. The singly diffracted far field in

(6.15) can be rewritten as

jn/4

U: = ka e Ui [ (D, + Dy) cos(ka cos® =-m/4)

“ka cos®
_ =jkr
. sin(ka cos® -m/4) _ (6.17)
+J(D1‘D2) ] -
Yka cos® kr

As ka cos® > 0, i.e., © * /2 or 37m/2, we use the asymptotic expansion
of the Bessel functions
cos(ka cos® =m/4)

stka cos = /2/2 J_(ka cos®) (6.18a)
sin(ka cos®-m/4) /7]Z Jy(ka cos®) (6.18b)
Yka cos®

Here Jo and J, are Bessel functions of the first kind, of order zero and

one, respectively. Substituting (6.18) in (6.17) gives
jn/4
Ud = L—E e ka Ui [(D1+D2) J (kacos®)
s 2 o o
~jkr

+3(D}=Dy).J1((kacos®) ] s
kr

(6.19)

6.1.2 Multiple Diffraction Solution
The diffracted field component at (r,©) due to a point source at
(ro,Oo) from a curved edge is given by (6.8). To simplify the analysis
we rewrite (6.8) as follows:
d=uvtpe, r, 0, ) (6.20)
o o’ o’ :

where r', ©' are observation point polar coordinates measured from the

edge and
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-jkr'
D(eoy r09 e, r') = D(Oo’ roa o) [T e ; © >31 - (6.21)

Mjpos@ vkr.kr' < 2

Here D(Oo, T 0') is given by (6.10) and r, O are measured from the
centre of the curved edge. Folloying the same procedure given by Jull
(1981), the multiply diffra;ted field, excluding single diffracted
field, can be written as » \

d_ 1.4 2
Uy = U D" [(D + D Dyg + D) Dig+ eevern )

2
+(D0 + DoDlo +D° D20 ee s 0000000 )] ’ (6022)
where D , Di, D)y and Dy are given as following:
j(2ka - m/4)
D, = D(m, 2a, 7, 2a) = Y&/ e F[/&ka] (6.23)
p! =

D(@o, ro, n, 2a)

-j(2ka+m/4) jkr (l-=cos® )
/2r _Ia e e ° ° F[/Zkro sin(0_/2) ], (6.24)

and

D}8 = D(m, 2a, 65, rﬁ)

j2ka Fj(kacosO~mn/4) =jkr
D§8 = ?’ﬂ(Zka/n)3/2 e e ' F[VQka sin(Oﬁ/Z)] E;
Yka cos® (6.25)

Now (6.22) can be summed, provided Doil, giving

vd = gl ot Lig * Dag) (6.26)
n o (1-D )
[o]

Again near the axial caustic; i.e. © = m/2 or 37m/2, the field must be
modified as for single diffraction. Following the procedures given

before to get the multiply diffracted component, rewrite D3, Doy in

) ]
terms of D)4, Dy, as
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Fj(ka cosO=n/4) -jkr
e e

Dyg = +D'_ . , (6.27)
§8 58 vka cos0® kr
where
j2ka
D' = n(2ka/m)3/2 e  F[/ika sin(@b/Z)]. (6.28)
Then Dy + Dy can be simplified to
¢ =j(ka cos®=-m/4) ¢ Jj(ka cosO=-m/4)
DlO e - D20 e Ejkr
Dyg+ Dgo = -I S ] (6.29)
Yka cos©® kr
' ' ' ' =jkr
_ _[(Dlo_Dzo)cos(ka cosO-n/4) —j(D10+D20)Sin(ka cose-ﬂ/4)] ir
vka cos® "ka cos© (6.30)

Substituting from (6.18) in (6.30) gives
\ 1
Dyjg + Dyg = =/n/2 [(Dlo‘Dzo) Jo(ka cos®)

] \J s
=j(DygtDyg) J;(ka cos0) ] glkr
kr (6.31)

Substitute for (6.31) in (6.26) to get the multiply diffracted field

component near the axial caustic as

i 1 .
d UO D ' 1 ' 1 ;Jkr
Us = /n]2 [(D1¢Dyg) J_(ka cos®) =3(D,g+Dyg) J,(ka cosOd)]
m o 1 kr
(d_-1)
o}
(6.32)
The total field, including single diffraction only, is
t d i T
U = US + U S(G)Si Q) + U S(Osr 0) (6.33a)

and including wultiple diffraction is

t d d i r '
vt = 0l + Ul + U S0 -0) + UT 5(0__-0), (6.33b)
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where S(x) is the positive unit step function. U™, U, US and Um are

the incident, reflected, singly diffracted and multiply diffracted far

fields.

6.2 Uniform Beam Solution
For normal incidence the beam axis is perpendicular to the aperture

plane and coincides with the aperture axis.

6.2.1 Far Field Calculation

To change from an isotropic point source solution to a directive
beam solution, complex values appropriate to the beam width and beam
direction are given to the source coordinates. Then 20, ro and Go

become complex and are called zos Ty and @S, respectively.

z =z - jb sinf ; b>0, 0<B<L2m (6.34)
r = 2 + a2 ; Real(r ) > O (6.35)
s Zs g s’ = '
-1
@s = 1 - cos (a/rs) (6.36)

Where z b and B are real values, defining the source location, beam
width and beam direction, respectively. By replacing z s ro and @o by
z_s T and OS, respectively in (6.1 to 6.33) we get the beam solution

for all above cases, single and multiple diffraction, near or far from

the axial caustic.
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6.2.2 Shadow and Reflection Boundary Calculations

Since the diffraction phenomena 1is local, we assume the shadow and
reflection boundaries for a curved edge are the same as for a straight
edge at the point of diffraction. So the results given in (3.13) and
(3.14) are valid here.

The shadow and illuminated regions mentioned in (6.11) and Appendix
D are given as, for shadow region:

Real(;i,r) - Imag(wi,r) >0 (6.37)

and for illuminated region:

Real(wi,r) - Imag(wi’r) <0 (6.38)
where wi r are the Fresnel integral arguments given as
9
C] ?’OS
wi,r = —¢2krs cosb—jg——-) (6.39)

Also the shadow and illuminated regions for incident or reflected fields

can be defined, respectively, by

>
c} < esi or Osr (6.40)
where Osi and esr are given by (3.13) and (3.14), respectively.

6.3 Numerical Results

A point source on the circular aperture axis 1is at a distance
kzo = 31 from the centre of the aperture which is of a radius ka=37m. 1In
the following figures, the horizontal axis, ¢ in degrees, is the angle

measured from the aperture axis as shown in Fig. 6.1, and the vertical
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axis 1s the normalized far total field pattern, including single
diffraction only or including single and multiple diffraction.

In Fig. 6.2 the dashed curves represent the non-modified solution
calculated from (6.25), (6.26) and (6.33b) which is valid far from the
axial caustic. The solid curves represent the modified solution near
the axial caustic, calculated from (6.32) and (6.33b). This figure
shows how the total far field including multiple diffraction, is
modified near the axial caustic (z=-axis) for two different cases. One
is the 1limiting case of a point source (kb=0) and the other is a
directive beam (kb=8).

Fig. 6.3 illustrates the development of the beam solution from the
point source (kb=0) to a directive beam (kb=16), and an essentially
plane wave (kb=85). When kb is small compared to kzo interaction
between the incident and diffracted fields in the illuminated region is
evident because the aperture edge is strongly illuminated, consequently
the diffracted field is significant. As kb increases, e.g. kb=16, the
incident beam becomes narrower and the edge is weakly illuminated so the
diffracted field is insignificant and the IiInteraction decreases. 1In the
shadow region the interaction occurs between the diffracted fields from
the two opposite diffracted points on the aperture edge. This
interaction is significant when kb small or when b>>zo, eg. kb=85 where
the field incident on the aperture becomes uniform, like a plane wavé,
the edge is strongly illuminated again. In this figure the dashed

curves represent the single diffraction solution given by (6.33a), and
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the solid curves include for multiple diffraction solution given by
(6.33b).

For this choice of aperture radius (ka=37), the singly and multiply
diffracted fields are very much the same except at the conductor, i.e.
$=90°, the multiply diffracted field vanishes on the conductor,

satisfying the boundary condition of a perfect conductor while the

singly diffracted field does not.
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Point Source
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Fig. 6.1 Geometry of a complex point source diffraction by a
circular aperture
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Fig. 6.2 Normalized total field pattern of a point source (kb=0) and moderate beam (kb=8) (solid)
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Fig. 6.3 Single (solid) and multiple (dashed) total patterns
of a beam diffraction by a circular aperture
(Normal incidence)
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CHAPTER VII

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary

The complex source point method was used to represent a directive
beam which is Gaussian in the paraxial region. Uniform solutions for
omnldirectional sources were developed and extended analytically to
become solutions for directive beams. The geometrical theory of
diffraction and equivalent 1line currents were used to include
interaction between the edges of the slit and circular aperture.
Numerical results 1including the 1limiting cases; e.g. plane wave
incidence (kb * =) and line or point sources (kb = 0), were given for
every case studied. Also comparisons with existing solutions were made
wherever possible.

In Chapter I1, a directive beam was derived in polar coordinates
and compared with a Gaussian beam and a typical antenna beam. An
expression for the half-power beam width was derived, and a simple
discussion of the use of multiple complex source points to derive more
complicated beams was given.

The solution of beam diffraction by a half-screen, derived in
Chapter III from a simple solution exact in the far field 1limit, was
used to solve the problem of beam diffraction by wide slit and
complementary strip. Also a convenient, simple formula was derived for

the location of the shadow boundaries of a straight edge.
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Beam diffraction by a wedge with its edge on the beam axis was
analysed using the uniform theory of diffraction. This uniform solution
completes the asymptotic solution, for the same problem, mentioned by
Felsen (1976), whose solution is infinite on the shadow boundaries and
inaccurate in the transition regions. Also the shadow boundaries are
given here for any beam orientation.

Finally, the diffraction by circular aperture when illuminated by
normally incident beam, was derived wusing the wuniform theory of
diffraction aﬁd along the axial caustic, Bessel functions were used to
remove the singularity. Multiple diffractions were considered and a

closed form expression was derived.

7.2 Conclusions

The beam derived in Chapter II wusing the complex source point
method, can represent a typical antenna beam better than the Gaussian
function especially for wide antenna beams (small kb). When the
imaginary part (b) of the complex source position vector (?;=?5—j5) is
very large compared to the rgal part (ro), i.e. b>>ro, the beam tends to
a plane wave.

Other authors assume very narrow beams and solve diffraction
problems in the paraxial region. This kind of assumption makes the
contribution of the diffracted field negligible, unless the beam axis
passes through the diffracting edge. 1In our analysis this assumption
was removed and the range of validity was increased to cover the whole

region of interest.
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The synthesis of more complicated beams such as one with sidelobes
or a nearly square beam, was given in section (2.3) by using multiple
complex source points. But the width and sidelobe 1level of the
resultant beam are yet to be calculated and related to the complex
coordinates. The study of simulating any beam in terms of Gaussian
beams and Complex Source Points, given by Mantica et al (1986), was not
rigorous and some assumptions were made to simplify the analysis.

Our solution of beam diffraction by half-screen 1is accurate,
uniform everywhere and valid for all beam orientations and widths. This
solution can be used as a reference solution for other uniform or
asymptotic solutions which are inaccurate in the transition regions and
infinite on the shadow boundaries.

The 1limiting case kb = 0 of our solution to the strip when
illuminated by omnidirectional source, is in very good agreement with
solutions of line source diffraction by a strip, giveﬁ by Vankoughnett
and Wong (1981) and by Shafai and Elmoazzen (1972). Tsai et al. (1972)
have shown, by comparison with numerical results, that the geometrical
theory of diffraction yields satisfactory results for reflector widths
as small as 0.2A (wave length) when double diffraction is included. For
our choice of strip width 2.5\, single diffraction is sufficient. Since
the contribution to the diffracted field for directive sources is always
less than or equal (for the edge on the beam axis) to that of an
omnidirectional source, the accuracy for directive beams is at least as

high as that for omnidirectional sources.
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In all cases studied ﬁere the incident field was normal to the
diffracting edge. Solutions can be extended to include oblique
incidence on a straight edge or wedge.

The ordinary UTD was used in solving the problems of the wedge and
circular aperture. For better accuracy one may use the UTD augmented by
slope diffraction (Kouyoumjian et al., 198l) or the improved version
(Buyukdhura and Kouyoumjian, 1985), instead.

The diffraction of a beam by parabolic cylinder reflector with an
edge was also considered (see appendix E) before we were aware that
Ghione et al., (1984) had published their solution to this problem.
However, the diffracted field and reflected field, with some
approximations, without using the computer search technique is given in
Appendix E. The problem was not pursued further, although as they
suggest further‘ investigation 1is needed to clarify and simplify the
method.

The wuniform theory of diffraction was used to obtain uniform
solutions where there were no simple exact solutions, such as for the
wedge and circular aperture. Otherwise rigorously correct solutions at
high frequencies for far singly diffracted fields were used, such as for
the half-screen, slit and strip. All the solutions obtained for the
above cases are uniform, for Fresnel integrals provide a smooth
transition through shadow and reflection boundary regions.

For simplicity scalar (acoustic) fields were assumed through out
this thesis. The results apply directly to two-dimensional
electromagnetic fields in the case of the half-plane, slit or strip and
wedge. For the circular aperture extension to vector electromagnetic

fields can be made by considering the scalar field as one component of
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the vector fleld or as a scalar potential from which vector fields are
derived.
7.3 Recommendations for Future Work

So far we have dealt with problems that assume perfect conductors,
simple beams and normal incidence, to generalize the incident beam and
the reflectors boundary conditions the following may be considered:

i) To make the analysis by the complex ray tracing method more
complete, especially for non-planar surfaces, a general a-priori
criterion; i.e., one which does not require the study of steepest
descents paths wused by Ghione et al. (1984), 1is needed for
two-dimensional diffraction.

i1) Diffraction by simple shapes when illuminated by more
complicated beams with sidelobes. When these beams are represented by
multiple complex source points, solutions may easily be obtained using
the superposition principle.

iii) The problem of beam ﬁiffraction by straight wedge where the
edge does not 1lie on the beam axis,. using the UTD to assess the
asymptotic solution by Felsen (1976), 1is yet to be done. Also
diffraction by a conducting curved wedge has not been studied yet.
The solution for real source diffraction by a curved wedge by Lee and
Deschamps (1976) or Deschamps (1985) may be used.

iv) All existing solutions for beam diffraction by a circular
aperture, assume symmetrical incidence; 1i.e. the beam axis coincides
with the aperture axis. The more general non-symmetrical incidence case
with the beam axis shifted from the aperture axis by some distance or at

some angle, apparently has not been reported yet.
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v) To cover a wide range of problems, using the CSP method, a
rigorous simulation of an arbitrary beam in terms of complex source
points needs to be derived. What exists in the literature now is based
on assumptions and experience; i.e. trial and error.

vi) Solutions to beam diffraction by simple shapes such as
half-plane, strip and wedge, under impedance boundary conditions may be
obtained using the correspondiﬂg solutions for omnidirectional sources
by Bucci and Franceschetti (1976), and Tiberio et al. (1982 and 1985),
respectively.

vii) Extensions of this method to three-dimensional diffraction by

curved surfaces with edges need to be addressed.
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APPENDIX A

THE FRESNEL INTEGRAL WITH A COMPLEX ARGUMENT

A.1 Evaluation of Fresnel Integrals from Error Functions

For a real or complex argument w, Fresnel Integral F[w] is

defined as
@ -j1;2
Flw] = [ e d7 (A.1)
W
By changing variables )
-jn/4 -jn/4
T=y e o, dt = e dy (A.2)
-jn/4 F —y2
Flw] = e f e’ dy (A.3)
jn/4
we

The complementary error function is defined as

erfc(v) = [ & dy =1 - erf(v) (A.4)
v

Al

where v can be real or complex and erf(v) is the error function.

2 7 =y?
erf(v) =—= [ & ay (A.5)
'/TH:- (o)
in/4
From (A.3) and (A.4) with v =w e we can write
-jn/4 jn/b
Flw] =//2 e erfc(we ) : (A.6)

Subroutines for complementary error functions with complex

arguments are available in UBC Computing Centre Library.

A.2 Some Properties of Fresnel Integrals:

i) Symmetry relation
Flw] + F[-w] = /n &in/4 (A.7)
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ii) Special values

-jn/4 1
F[-=] = /1 e , F[0] = = F[~=] and F[*] = 0 (A.8)
2
iii) Asymptotic expansion.
F[w] ~ S(-w) + F[w] ; |w| »= (A.9)

where S(x) is the unit step function, and

.2
_Jw ©

Flw] =38V T+ 1/2)(-jw) " (A.10)
2w/nT  n=0

where T(x) is the gamma function.

T(n + 1/2) = v7 (1/2)(3/2) eeee (n = 1/2) (A.11)
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APPENDIX B

CALCULATION OF REAL AND IMAGINARY PARTS OF r,

B.1 Analysis
Using (2.5) which is rewritten here as

2]1/2

- [,2 - - -3 .
r, = [ro + 2r_ (-ib) cos(B-0,) + (-jb)’ ; Re(r )>0 (B.1)
Let us write rS as
r,=R=-jI ; R20 (B.2)

Where R and I are real. By squaring (B.l) and (B.2) and equating\the

real parts and the imaginary parts, respectively, we get

R2 - 12 = rz - b2 (B.3)

and
R.I = rob cos(B-@o) (B.4)
Solving (B.3) and (B.4) for R and I gives

r2 - b2

R = [Lil_____) + l.//(rg - b2)2 + [2rob cos(B-Oo)]2 ]1/2; (B.5)
2 2

and

rb
2 cos(B -0) (B.6)
R (o]

+—
[}

From (B.6) we notice that:

I1>0 1if |B - eo| § n/2. (B.7)

2
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B.2 Special Cases:

i) b=0 gives R=ro and I=0 H (B.8)

= - f —
ii) be=r = gives R=r_ |cos(B @o)|,

- (B.9)
and I = R ; IB-OOI 3 2
iii) B = Oo or O°+ n gives R = r,
and I = b (8.10)
iv) |B - O°| = 1/2 gives
R = ng_:—gz and I =0 if T, >b
R= 0 and I1=20 if r, = b (B.11)
R= 0 and 1=‘/b2-r§ 1f r, <b .
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APPENDIX C
GAUSSIAN BEAM DIFFRACTION BY HALF-SCREEN

(ASYMPTOTIC SOLUTION)

The asymptotic solution given by Green et al. (1979) for a Gaussian
beam diffraction by a half-screen is summarized here with some changes
in coordinates and notation for comparison with the solution given in

Chapter 3. By replacing O', O, p', p and E by (2 - @s) R (EE - 0), ros
2 2

. . r
r and U, respectively, we can write the incident Ul, reflected U,

diffracted Udand total Ut far fields as

Jkrs cos(@—@s) —-jkr

i
U =e e (c.1)
/kr
jkr cos(HO ) -jkr
tf =-e °® 5 e (C.2)
vkr
- ;j(krs'3“/ “) 0-0_ . or0_ _ -jkr
[sec(_z._-) (1-87) - sec(——) (1-4 Y] e
2V2mkr _7;’
s r
where (C.3)
+ 5 , OF 0
A = 2 sec (——2) s o> r (C.4)
bkr Z | SI
s
t _ .. d i _ r _
ut = v +ut.s(e - 0) + U". 5(0__~ 0) (C.5)

where S(x) is the unit step function, and Osi and esr are the shadow and
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reflection boundaries measured from the illuminated side of the

half-screen.
_ sinh[{Im(© )] . Re(r )
O, =T + Re(0) + tam Ir 8 s (C-6)
| |rS} + Im(r.) . cosh[Im(O.))

where Re(x) and Im(x) are the real and imaginary parts. The accuracy of

+
the above solution depends on how small is |4 | compared to 1.
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APPENDIX D
THE SINGULARITY CANCELLATION IN THE WEDGE

DIFFRACTION COEFFICIENT

One of the cotangent functions of the diffraction coefficient given
by (5.9) is singular on the shadow or reflection boundaries, at the same
time the corresponding G(w) function is zero. So the term cot(t).G(w)
is finite everywhere. Therefore the singularity 1s cancelled and the
diffraction coefficient is finite everywhere.

Near the shadow boundary or reflection boundary from the upper
wedge surface, we can write from (5.3a,b),

0 ¥'®0 =7n + € (D.1)
where € > iO. €>0 and €<0 define the shadow and illuminated regions,

respectively. Substituting (D.1) in (5.13a) gives

ﬁ¥ =0 (D.2)
1
and (D.1), (D.2) in (5.1la) and (5.12a) gives
cot(T, ,) = cot() = 2n (D.3)
’ 2n €
w = = v2kr cos(n + E) = ¥Y2kr . £ (D.4)
1,2 o o]
2 2
Substitute (D.4) in (D.10) to get
' kr €2
I ——) |
Glw, ) =2je 2 A S e &), <o (0.5)
1,2 °5 °5 >

From (D.3) and (D.5) we get as € = i-O

,. -jn/4
COt(Tl,Z)'G(wl,Z) =Fn ¢2nkro e _ (D.6)
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Where (=) for shadow region and (+) for illuminated region. Similarly,
near the reflection boundary due to the lower wedge surface, we can
write from (5.3¢)

0 + Oo = (2n-1) nm~-¢ (D.7)
Again € » ib . e)d and €<0 define the shadow and illuminated regions of
the reflected field, respectively. 1Inserting (D.7) in (5.13b) gives

+

M2 =1 (D.8)

and substituting (D.7) and (D.8) in (5.11b), (5.12b) and (5.10) gives

cot(T,) = cot(m - 5= = g (D.9)
and
jn/4 v
cot(T,) G(w,) = F n¢2nkro e (D.10)

where (=) and (+) refer to the shadow and illuminated regions of the
reflected field, respectively. Notice that the third term of the
diffraction coefficient is finite everywhere, because of the restriction
on @o, (0<OO<E;). Therefore, all singularities of the diffraction
coefficient are cancelled and the diffraction coefficient is finite

everywhere.
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APPENDIX E

BEAM DIFFRACTION BY A PARABOLIC REFLECTOR

The calculation of the reflected field from a conducting parabolic
cylinder when illuminated by a Gaussian beam is given by Hasselmann &
Felsen (1982). 1In thelr analysis, they assumed a very sharp Gaussian
beam and an infinite parabolic reflector. so they did not include the
diffracted field from the edge of a finite reflector. They used the
method of computer search for the complex reflection points.

To include the diffracted field from the edges, half-plane tangent
to the reflector at its edges are used instead. Also in the far field,
with some approximation, the reflected field can be calculated without
computer research for the reflection points.

Fig. E.l, shows a line source parallel to the reflector axis at a
complex point S(rs, GS). A(r,0) is a far field point, P(rp,Op) is a
typical point on the reflector, E(re,Ge) is the edge of the reflector
and 0(0,0) is its focus. The equation of the parabola of a focal length

F is given by

r = 2F/(1 + cos® E.1l
p ( p) (E.1)
and the slope of the tangential half-plane 1s given as
dy
£ = 2F tand (E.2a)
dxp Yo Ve
and @t = (n - Oe)/Z . (E.2b)

From the geometry of Fig. E.l and the far field approximations, we have

ri = r - rs cos(0 = OS) s (E.3a)
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= + .
r. r + rp cos(©® Op) , (E.3b)
r, =r + r, cos(9 +,®e) , (E.3¢)
r, = r + re cos(©® - Oe) . (E.3d)

Using the complex source point method, an incident field of a beam which

makes an angle B with the x-axis is given as

. XL -ik[r - r_cos(® - 0)] kb cos(O - B)
U = = e « € s (E.4)
7kr,

Here s Oo are the real coordinates of the line source. The reflected

field at A from point P is
--Jk(rsp + rr)

pt = £ , (E.5)
where r. and rsp are shown in Fig. E.l and
r R cos©
r, =-—P¢ t . (E.6)

- o
(2rp Rccos i)
Here Rc is the local radius of curvature and @i is the angle between the

incident ray (rsp) and the normal (Rc) at the reflection point P.

=
1]

. 2F/cos3(@p/2) (E.7)

°

i(ep/z -0, i Real(9) > 0. (E.8)

To calculate the complex reflection point (rp, QP), we apply the
stationary phase condition

d -
;;:. (rsp tr)=0 , (E.9)
P
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where

= [(xp-xs)2 + (yp -y )2]1/2 ’ (E.10a)

T
sp s

2,1/2 .
p) ]

Substituting (E.10) in (E.9), gives

r. = [(x - xp)2 + (y -y (E.10Db)

cosOr + s:.nOr . cot(@p/Z) = -[cos@sp - sinG)Sp . Cot(@p/Z)], (E.11)

where
X - x .y -y
cos@r = ___E ’ sin@r =___ P , (E.12a)
r r
r r
X - y. .-y
cos0 =_P_ 8 , 8in®0 = LS s - (E.12b)
sp sp r
sp sp
dy
cot(®_/2) = —L = 2r/y . (E.12¢)
P dx P
P

After some manipulations on (E.1ll), one gets

sin(@ + 0 /2) = - sin(® /2 -0 E.13
(6, + 0 /2) @,/ o) (E.13)
or
@r = —(Op - esp) (E.14)
From Fig. E.1, (E.1) and the sine law,
2F
in(© + © 1G] =__sin(®_+ © E.1
sin( sp g) cos( p) - sin( p Sp) (E.15)

S

Inserting (E.14) in (E.15) and after some manipulations, one gets
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1 -1, 4F .
0 =- _.{@S +0_ +sin [ — sin(0_ ) + 31n(OS + Or)]} (E.16)

P 2 : s
In the far field Or = @ and Op is derived.

The diffracted field Ud at A is the sum of the diffracted field

d

Uy

and Ug) of each edge

Ud

d
U1 [St(@—ﬂ+@t) + St(n-@e-e)]

+ Ug [St(@+ﬂ-@t) + st(n+®e+0)] (E.17)
where St( ) is a unit step function,

-3(kr -n/4)

d _e Jkrslcos(gl-esl) O1 - esl
U] & —— {e F[-V/2kr 1cos(__..___..__)]
»’nkr1 8 2
jkr__cos(0.40 ) 0.+0
-e St 1 osl® pi/Tkr. . cos(—=—51y1}  (E.18)
sl 2
and Ug is given by (E.18) with subscript 2 replacing 1.
61 > (n—@t) + 0 H 0« Ol < 2n , (E.19a)
62 = (n-@t) -0 : 0 < @2 < 2n , (E.19b)
and
- p2 + 22 + 1/2
rsl [re rs Zrerscos(Ge + es)] , (E.20a)
-1 rs sin(@e + @s)
Gsl = @t + sin [ ] s (E.20b)
r
sl

. where Ty and @S are given by (2.5) and (2.6), respectively.

Fig E.2 shows the normalized diffracted field component for a beam
represented by the Complex Source Point method with its axis directed to
the apex of the reflector. The incident and reflected fields are not
included. In the region ©>120°, the diffracted field is the total

field.
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Field Point

Fig. E.1 Geometry of a beam!'diffraction by a parabolic cylinder
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[u(e) | kb = 16
1.0+ B = 180°
kr =20
/ 6° = 0
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-Fig. E.2 Normalized diffracged field component of a beam diffraction by a parabolic cylinder
(kF = 10w, ee = 60)
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APPENDIX F

EVALUATION OF ARCTANGENT OF A COMPLEX NUMBER

To calculate the éomplex angle © in the proper quadrant; i.e.
-1<Real(®) <m, which a complex position vector makes with the x-axis

tand = X (F.1)
or

tan(®R+J®I) = Rt+JIt (F.2)
where OR and OI are the real and imaginary parts of O, and Rt and It are

the real and imaginary parts of (y/x). Also we can write

A s _ X - _ s
cos(OR+J®I) —.7:?i;§ Rc JIc (F.3)

X
where R and -1 are the real and imaginary parts of ( ).
c c x2+y

Expanding (F.3) and equating the real parts of both sides and the

imaginary parts of both sides, gives

R, (F.4)

cosOR. cosh@I

and

I (F.5)

i . 6]
31n®R sinh I c

Also by expanding the left side of (F.2), one gets
tanOR + j tanhOI

= R+ 3T, (F.6)
1 -3 tan@R.tanhGI :
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After some manipulations on (F.6) we can write

sec2®R
tanh@I . > > = It (F.7)
(1 + tan GR.tanh @I)
and
sechZOI
tan@R . - = Rt (F-S)
(1 + tan20_.tanh?0_)
R I
From (F.7) we can say
0, ¢ 0 1if I O (F.9)

1> t >

Now let Os be given as

(F.10)

-1
es cos (Rc lecl)
the arccosine of a complex number of form (F.l10) is available in the UBC
Computer Library. Using (F.4), (F.5) and (F.9) we get

6 =Fo_ I O R I >0
5 c

t > (F.11)

and
=to" <0 <0 2
o=%0 ; I_¢ I | (F.12)

*
where QS is the complex conjugate of OS.
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APPENDIX G

LIST OF COMPUTER PROGRAMS FOR CSP ANALYSIS

All the programs used in the Complex Source Point analysis and listed below

are written in the language of FORTRAN.

G.1  Comparison of CSP, Gaussian and Typical Antenna Beams

This program makes use of expressions (2.10), (2.16) and (2.18) with ka=4,
kb=3 and HPBW=55.7° to compare the normalized far fields of CSP, Gaussian, and
typical antenna beams. Also it uses (2.20) with different weighting factors (Ql’ Q2,
Q3) and beam parameters (bl’ b2, b3 and Bol’ 602, ﬂo3) to calculate far ﬁeldg of
different beams.
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C**t******************************************************************

C PROGRAM CALCULATES AND COMPARES THE FIELDS OF THE CSP, GAUSSIAN AND
C TYPICAL ANTENNA BEAMS, THIS PROGRAM IS CALLED "CSP.FTNC".
C I I 3 X1 3 3233 113 i i 11 13 1ttt 2113ttt i i i it it R i 2 a0 20 2 0 2 0 & R 2
o The Time Harmonic Factor " exp(-iwt) " is suppressed .
C The Common Factor " exp(ikr)/Sgrt(kr) " is supperessed.
C ====================================================================
KK = 181
KM = (KK+1)/2
H = 1,0
C ==c=zs==s====s===
PI = 3.1415926
DTR = PI/180.0
o = CMPLX(0.0,1.0)
C ____________________
A = 4.0
B = 3'0
IF ( B ,LT, 0.25*%ALOG(2.0) ) STOP
C ===================‘=======================.':=========================
o HPBW 1S THE HALH-POWER BEAM WIDTH
C FE T T T 2 3 X 2t 33t 231ttt 23ttt ittt i ittt 2t 2 2 2 2 2 & 2 0 )
HPBW= 2.0*ACOS( 1.0 - 0.5*ALOG(2.0)/B )
C ———————————————————————————————————————
DO 111 K=1,KK
Y = H*(K-KM)
FI = Y*DTR
C —————————————————————————————————
CSP = ABS( EXP(B*(COS(F1)-1.0)) )
GB = EXP( ~ALOG(4.0)*(FI/HPBW)**2 )
C ____________________________________
U = A*SIN(FI)
1F ( ABS(U) .EQ. PI/2.0 ) GO TO 11
CD = COS(U)/( 1.0 = (2.*U/P1)**2 )
GO TO 22
1 CD = PI1/4.0
C_ ___________________________
22 WRITE(6,1) Y , CD ,CSP ,GB
C 23 % 2+ 3 2 S+ 3 - -2 X & E-F S %0 ¥ ¥ 2 &1
111 CONTINUE
C oS ECECESECESCSEEEESREESREZRE=ET
1 FORMAT( F6.1 ,3(1X, E14.7) )
' STOP
END

C******************t**************************************************
C*************t*******************************************************
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C***t*********************t***'k********************f******************

C PROGRAM FOR DEVELOPING A BEAM FROM SINGLE OR MULTIPLE LINE SOURCE(S)
C LOCATED AT COMPLEX POINT(S). THIS PROGRAM CALLED "CSP.FTNM",
C ————————————————————————————————————————————————————————————————————

(o THE TIME HARMONIC FACTOR "exp(-iwt)" 1S SUPPRESSED,
c THE COMMON FACTOR "exp(ikr)/Sqrt(kr)"™ IS SUPPRESSED.
C======================================= X3 F ¥ %+ £ % F X % % & & & & % & % 5 F ¥ % 4
COMPLEZX*8B c ,U1 ,U2 ,U3 ,CASIN ,CACOS ,CATAN ,ARKTAN
REAL *4  Y(361) ,AUT(361) LAUT(361) ,AU2(361) ,AU3(361)
C ————————————————————————————————————————————————————————————————
RK = 361
H = 1.0
C = CMPLX(0.0,1.0)
PI = 3.1415926
DTR = P1/180.0
C sESEESSE=SE=EsE=Cs
g2 = 1.0
B2 = 4.0
BET2= PI
R02 = 0.0
THO02= P1/2.0
C E==m=s====o=
Q1 =-1.0
B1i = B2
RO1 = 1,0
DLTA= PI1/4.0
GAMA= PI1/2.0
C ————————————
Q3 = Q1
B3 = BI
R03 = RO?
C ——————— —— - —— -
THO1= THO02 - GAMA
THO03= TH02 + GAMA
C _________________
BTA1= BTAZ2 - DLTA
BTA3= BTAZ2 + DLTA
C _________________
BIG = 0.0
o
DO 111 K=1,KK
Y(K)= H*(K-1)
TH = Y(K)*DTR
c _________________________________________________
Ut = CEXP( BI*COS(TH-BTA1) - C*RO1*COS(TH-THO1) )
U2 = CEXP( B2*COS{TH-BTA2) - C*R02*COS{TH-TH02) )
U3 = CEXP( B3*COS(TH-BTA3) - C*RO3*COS(TH-THO03) )
C —————————————————————————————————————————————————
AUT(K)= CABS( Q1*U1 + Q2*U2 + Q3*U3 )
IF( AUT(K) .GT. BIG ) BIG = AUT(K)
C _________________________________________________

cc AU1(K)= CABS( Q1*U1 )
cc AU2(K)= CABS( Q2*U2 )
cc AU3(K)= CABS( Q3*U3 )

C —————————————————————
1t CONTINUE
C Esz=S=s=s==z=ess

DO 222 K=1,KK
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AUTN= AUT(K)/BIG
WRITE(6,1) Y(K) , AUTN
cC AUN1= AU1(K)/BIG
cc’ AUN2= AU2(K)/BIG
cC AUN3= AU3(K)/BIG _
ccC WRITE(6,2) Y(K) ,AUN1 ,AUN2 ,AUN3 ,AUN
222 CONTINUE

C __________________________
1 FORMAT( F6.1 , 1X, E14.7 )
c2 FORMAT( F6.1 ,4(1X, E14,7) )
STOP
END

c************************'k****************************'k***********t***
C*********************************************************************
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G.2 Beam Diffraction by a Half~Plane

This program uses expressions (3.3) and (C.5) to compare the total (asymptotic
and uniform) far fields of beam diffracion by a half~plane with kro=16, 90=9O0

and different values of the beam parameters kb and f=n +90—6 .
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ChRA R AR A I A A A A I KRR R KRR AR R R R KRR R R AR A AR AR A A A AR AR A AR AR R AR R AR KA A Tk Ak hk ok

C Program for calculating Antenna Beam Diffraction by a Half Screen.
C The Complex Source Point Solution compared with Asymptotic solution
C by Green et al.(1979), Program called "HP.FTN1".
C=====================================================================
C The Time Harmonic Factor " exp(-iwt) " is suppressed .
C The Common Factor " exp(i.kr)/Sqrt(kr) "™ is suppressed .
C=====================================================================
COMMON c , Pl
C ————————————————————————————————————————————————————————
COMPLEX*8 WI ,WR ,Ul ,UR ,UTG ,UDF ,CACOS ,CFR
COMPLEX*8 ¢ ,RS ,THS ,DL1 ,DL2 ,SC1 ,SC2 ,QST
REAL*4 Y(181) ,AUF(181) ,AUG(181)
C __________________________________________________________
KK = 1B1
KM = (KK+1)/2
H = 1.0
C ____________________
C = CMPLX(0. ,1. )
Pl = 3,1415926
DTR = PI/180.
C ______________
R0 = 16.
THO = P1/2,
Cc
DO 999 g=1,3
B = 2*%*(J+1)
cC IF( J ,LE. 1) B = 0,0
cc IF( J .GE. 6 ) B =12.0
o
cc DO 999 J=1,3
cc BETA= THO + PI - J*PI/12.
BETA= THO + PI -Pl/6.
C _____________________________________________________
IF( BETA .EQ. (THO+PI) ) GO TO 11
Cc
RS = CSQRT( RO**2 + 2,0*RO*C*B*COS(BETA-THO) - B**2 )
IF( REAL(RS) .LE. 0.0 ) RS = -RS
THS = CACOS( (RO*COS(THO) + C*B*COS(BETA)) /RS ')
C ________________________________________________
cc U = REAL(THS)
cC v = AIMAG(THS)
cc RSA = CABS(RS)
ccC RSR = REAL(RS)
cc RSI = AIMAG(RS)
cc THSI= PI + ( U + ATAN( SINH(V)*RSR/(RSA + RSI*COSH(V)) ) )
c I3 3 3 3 ¥ 2 3 F 2 3 1 st 2 2 S E 2 2 2 F E X 2 s 23 E 3 S R R R 2 E S 2 2 R 2 R R R B 2 % R B R BB R R J 9 4
C "THS1" and "THSR" are the shadow boundary angles for incident and
C reflected fields respectively (measured from the half-screen) .
C - ¥ ¥ T 3 1 2 1t 2ttt it 2 2 X 1 X T 2 2 £ + £ F 2 2 F 2 2 2 R 2 2 2 3 2 2 3 2 B RS R R g
THSI= P1 + THO + ACOS( REAL(RS)/RO )
IF( BETA .GT. (THO+PI) ) THSI = 2,.*(PI+TH0) - THSI
GO TO 22
Cc

RS = RO - C*B
THS = THO



THSI= PI + THO
22 THSR= 2.0%PI - THSI

C :

C "TH" the observation angle measured from the half-screen ( X-axis ).
C "FI" is the observation angle measured from beam axis in anticlock .
C

C _________________________________________________
AMX = 0.0
DO 111 K=1,KK
C
Y(K)= H*(K-XKM)
FI = Y(K)*DTR
TH = 1.5*P1 + FI
c X ¥ ¥ 3 £ 3 33 F 3 3 1 332 3113311331333 3323322332132t i1
C The far field distance "R" is not used in calculating the pattern.
C "UI" and "UR" are the incident and reflecteds field, respectively .
C EEE E L E E N T T S T S ST S S S ST o N S ST R S ST S S ST TS TS TS E=S====
Ul = CEXP( -C*RO*COS(TH-THO) + B*COS(TH-BETA) )
UR =-CEXP{ ~C*RO*COS(TH+THD) + B*COS(TH+BETA) )
C ________________________________________________
WI = -CSQRT(2.0*RS) * CCOS((TH-THS)/2.0)
WR = -CSQRT(2.0*RS) * CCOS((TH+THS)/2.0)
o
UTG = ( UI*CFR(WI) + UR*CFR(WR) ) * CEXP(-C*P1/4.)/SQORT(PI)
AUG(K)= CABS(UTG)
C ________________________________________________________________
IF( (AIMAG(THS).EQ. 0.).AND.(REAL(TH-THS) .EQ. PI) ) GO TO 33
IF( (AIMAG(THS).EQ. 0.).AND.(REAL(TH+THS) .EQ. PI1) ) GO TO 33
c
SC1 = 1.0/CCOS(.5*(TH-THS))
SC2 = 1.0/CCOS(.5*%(TH+THS))
DL1 = C*SC1**2/(4.*RS)
DL2 = C*SC2**2/(4.%*RS)
UDF = QST * ( SCi*(1,- DL1) - sC2*(i1.- DL2) )
C ________________________________________________________
IF( TH .LE. THSI ) UDF = UDF + UI
IF( TH .LE. THSR ) UDF = UDF + UR
AUF (K)= CABS(UDF)
c
cc IF ((AUG(K).GT.AMX).OR. (AUF(K).GT.AMX)) AMX=AMAX1(AUG(K),AUF(K))
IF( AUG(R) .GT. AMX ) AMX= AUG(K)
GO TO 111
C _________________
33 AUF(K)= 100.0*AMX
C 2 232 323 1 2 % 33
111 CONTINUE
C 12 2 2 1 ¥ 3 X 32 2 & 5 3

DO 222 K=1,KK

UGN = AUG(K)/AMX

UFN = AUF (K)/AMX

IF( UFN .GT. 1.1 ) UFN = 1,1

WRITE(6,1) Y(K) , UGN , UFN
222 CONTINUE

c =
999  CONTINUE
C -+ ¥ 3 ¥ 1 2 2 2 2 i 1 i 22 1t it 131118
1 FORMAT( F6.1 ,2(1X ,E14.7) )
STOP
END



C I 2 ¥ 3 2 s -t ittt 22 1t 1 Tttt it ittt 22 2 - 2 2 R 2 5 7 R F 3
C PROGRAM FOR CALCULATING FRESNEL INTEGRAL "CFR" OF COMPLEX ARGUMENT,

COMPLEX FUNCTION CFR(X)

COMMON €, PI

COMPLEX*8 C , X

COMPLEX*16 2 , ERF2Z

yA = X*CEXP(-C*P1/4.0)

CALL CERF(Z,ERFZ)

CFR = 0.5*SQRT(PI)*CEXP(C*PI/4.0)*(1,0-ERFZ)
RETURN

END

c****'k****************************************************************
C**********************'k**********************************************
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G.3 Beam Diffraction by a Wide Slit

Using expressions (4.5), (4.10) and (4.15), the total diffracted far field inciuding
interaction between the edges is calculated for kr0=ka=8, e 0:900, ﬁ=2700 and

different values of the beam parameter, kb.
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C*********************************************************************

C PROGRAM FOR CALCULATING ANTENNA BEAM (SINGLE & MULTIPLE) DIFFRACTION
C BY A SLIT USING HALF-PLANE SOLUTION,THE PROGRAM 1S CALLED "SLIT,FTN"

C
c
C
C

" NON-SYMETRICAL INCIDENCE "

s T I i it i s L L Lt i

COMMON c ,pPl
COMPLEX*8 WI' ,WI2 ,WR) ,WR2 ,CFR ,FR ,CACOS ,CASIN
COMPLEX*8 po ,p1t ,nli2 ,DF1 ,DF2 ,U1 ,UDD ,UDM ,US

COMPLEX*8 UEY ,UE2 ,U' ,Uu2 ,U10 ,UIl ,UI2 ,UR1 ,UR2
COMPLEX*8 c ,FO ,RS ,RS!' ,RS2 ,THS ,THS1 ,THS2 ,CMPLX

REAL Y(181) , AUS(181) , AUT(181)
KK = 181
KM = (KK+1)/2
H =1,
c = CMPLX(0.0,1.0)
PI = 3.1415926
DTR = PI/180.
FO = SQRT(PI)*CEXP(C*P1/4.0)
A =8,
RO = B.
THO = PI1/2.
B = ??

BETA1= THO1 + PI
BETA2= 3*PI1 - BETA1

RS = CSQRT( RO**2 + 2 ,*RO*C*B*COS(BETA1-THO) - B**2 )
IF( REAL(RS) .LE. 0.0 ) RS = -RS

THS = CACOS( (RO*COS(THO) + C*B*COS(BETA!)) /RS )
RO1 = SQRT( RO**2 + A**2 - 2 *RO*A* COS(THO) )
RO2 = SQRT( RO**2 + A**2 + 2 *RO*A* COS(THO) )

THO1= PI - ASIN(RO*SIN(THO)/R0O1)
TH02= PI - ASIN(RO*SIN(THO)/R02)

RS1 = CSQRT( RS**2 + A**2 - 2 *RS*A*CCOS(THS) -)

IF( REAL(RS!1) .LE. 0.0 ) RSt = -RS1
RS2 = CSQRT( RS**2 + A**2 + 2 *RS*A*CCOS(THS) )
IF( REAL(RS2) .LE. 0.0 ) RS2 = -RS2

THS1= PI - CASIN(RS*CSIN(THS)/RS1)
THS2= PI - CASIN(RS*CSIN(THS)/RS2)

THSI1= PI + THO1 + ACOS(REAL(RS1)/R0O1)

THSI2= PI + THO02 + ACOS(REAL{(RS2)/R02)

IF( BETA1 .GT. THO1+PI ) THSI1 = 2.*(PI+THO1) - THSI?
IF( BETA2 .GT. TH02+PI ) THSI2 = 2.*{PI+TH02) - THSI2
THSR? = 2,%PI - THSI1

THSR2 = 2,*P] - THSI2

CEXP(C*RS1) /CSQRT(RS1)
CEXP(C*RS2) /CSQRT(RS2)

UE1
UE2
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IF( REAL( CSQRT(2.*RS1) *CSIN(THS1/2.) ) .LT. 0. ) STOP
IF( REAL( CSQRT(2.*RS1) *CSIN(THS1/2.) ) .LT. 0. ) STOP
(o
D0 = -SQRT(4./PI) * CEXP(-C*(2.*A+PI/4.) ) * FR( SORT(4.*A) )
c ‘
DI1 = ~CSQRT(2.*RS1/(PI*A))* CFR( CSQRT(2.*RS1)*CSIN(THS1/2.) )
DIt = DIt{ * CEXP( C*(2.*A + RS1*CCOS{(THS1) - RS1 - PI/4,) )
ol
DI2 = ~CSQRT(2.*RS2/(PI*A))* CFR( CSQRT(2.*RS2)*CSIN(THS2/2.) )
DI2 = D12 * CEXP( C*(2.*A + RS2*CCOS(THS2) - RS2 - P1/4.) )
C --------------------------------------------------------------------
C ALL ANGLES ARE IN RADIANS EXCEPT Y(K) IN DEGREES.
C ————————————————————————————————————————————————————————————————————
BIG = 0.0
DO 111 K=1,KK
Y(K)= H* (K-KM)
FI = Y(K)*DTR
TH1 = 1.5%P1 + FI
c
TH2 = 3*PI - THI1 '
: IF( THY .LT. P1 ) TH2 = PI - TH1
C ____________________________________________________________________
C THE DISTANCES R!,R2 ARE NOT USED IN CALCULATING THE PATTERN.
o R1 = R-A*COS(TH1)
c R2 = R+A*COS(TH1)
c RS*COS(TH1-THS) = RO*COS(TH1-THO) + C*B*COS(TH1-BETA)
C THE Ul,s AND UR,s ARE EXPONENTIAL FUNCTIONS.
C FOR SYMMETRICAL NORMAL INCIDENCE " UIO = UIt = UI2 & UR1 = UR2 "
C ____________________________________________________________________
UIO = CEXP( -C*R0O *COS(TH1-THO ) + B*COS(THt1-BETA1) )
DIt = CEXP( -C*RO1*COS{TH1-THO01) + B*COS(TH1-BETA1) )
UR1 = CEXP( -C*RO1*COS{TH1+THO1) + B*COS(TH1+BETA1) )
UI2 = CEXP( -C*R02*COS(TH2-TH02) + B*COS(TH2-BETA2) )
UR2 = CEXP( -C*RO2*COS(TH2+THO02) + B*COS(TH2+BETA2) )
c
WI1 = -CSQRT(2.0*RS1) * CCOS((TH1-THS1)/2.0)
WR1 = -CSQRT(2.0*RS1) * CCOS((TH1+THS1)/2.0)
WI2 = ~-CSQRT(2.0*RS2) * CCOS((TH2-THS2)/2.0)
WR2 = -CSQRT(2.0%*RS2) * CCOS((TH2+THS2)/2.0)
c
C THE CFR(W) IS A SUBROUTINE CALCULATES FRESNEL INTEGRALS WITH COMPLEX
C ARGUMENTS. .
Ul = UIO*FO
Ul = ( UIT*CFR(WI1) - URI*CFR(WR1) ) * CEXP(~C*A*COS(TH1))
U2 = ( UI2*CFR(WI2) - UR2*CFR(WR2) ) * CEXP(~C*A*COS{TH2))
C _____________________________________________________________________

C Ul ,UD AND US ARE THE INCIDENT, DIFFRACTED AND TOTAL SINGLE DIFFRAC-
C TION FAR FIELD PATTERNS, RESPECTIVELY.

C _____________________________________________________________________
US = Ut + U2 - Ul
AUS(K)= CABS(US)

c
DF1 = -SQRT(B.*A/Pl1) *CEXP( C*(A*COS(TH1)-2.*A-PI1/4.))
DF1 = DF1 * FR( SQRT(4.*A)*SIN(TH1/2.) )

C
DF2 = -SQRT(8.*a/PI) *CEXP( C*(A*COS(TH2)-2.%*A-PI/4.))
DF2 = DF2 * FR( SQRT{(4,.*A)*SIN(TH2/2.) )

C

ccC UDD = UE1*DI1*DF2 + UE2*DI2*DF1

UDM =( UE1*DI1*(D0O*DF1+DF2) + UE2*DI2*(DO*DF2+DF1) )/(1.-D0**2)



C ———————————————————————————————————————————————————————————————
1F((AUT(K).GE.BIG).OR. (AUS(K).GE.BIG)) BIG=AMAX1(AUT(K),AUS(K))

C ———————————————————————————————————————————————————————————————

111 CONTINUE

C _____________

DO 222 K=1,KK

USN= AUS(K)/BIG

UTN= AUT(K)/BIG

WRITE(6,1) Y(K) , USN , UTN
222 CONTINUE

C ____________________________
] FORMAT( F6.1 ,2(1X ,E14,7) )
STOP
END
C T T T X X X 2 XX S X ¥ 33 S ¥ 3 ¥ 3 ¥ 3 3+ 3 222 33 24 3 2 3 4 S 4 4 R 22 2 2 R R R R R R0 R £ 2 3 24

C PROGRAM FOR CALCULATING FRESNEL INTEGRAL "CFR" OF COMPLEX ARGUMENTS.

COMPLEX FUNCTION CFR(X)
C ST TR

COMMON c, PI

COMPLEX*8 c, X

COMPLEX*16 2 , ERFZ
THE CERF(W,ERF) IS A SUBROUTINE CALCULATES ERROR FUNCTIONS WITH
COMPLEX ARGUMENTS.

z = X*CEXP(-C*P1/4.0)

CALL CERF(Z,ERFZ)

CFR = 0.5 * SQRT(PI) * CEXP(C*PI1/4.0) * (1.0-ERFZ)

RETURN

a0

C FX X T T X3 2 7 £ 3 2 ¥ T T 21 T 2 131 11 3 3 1 1 3 2 3 2t 2 2 313 1 3+t 2 2 2 2 1 2 2 & 2 R 2 2 2 0 B A R R 2
C PROGRAM FOR CALCULATING FRESNEL INTEGRAL "FR" OF REAL ARGUMENTS.

COMPLEX FUNCTION FR(X)
C 121 2 2 3 32 5 1 2 2 2 £ R 3 3 2 2 R & 2 % % 3

COMMON c, Pl

COMPLEX*8 C

COMPLEX*16 2 , ERFZ

z = X*CEXP(-C*P1/4.0)

CALL CERF(Z,ERF2Z)

FR = 0.5 * SQRT(PI) * CEXP(C*P1/4.0) * (1.0-ERFZ)
RETURN

END

(o P T I R R Y X R R X RS SIS 2SS 222 R 2SR s s st
C****************************'k****'k***'k*******************************
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G.4 Beam Diffraction by a Strip

This program calculates the total far field of a normally incident beam
diffraction by a conducting strip, neglecting the interaction between the edges, using
expression (4.18) with krozka=8, 90=90O and different values of beam parameters kb

and [3=7r+90-6.
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C*t************t******************************************************

C PROGRAM FOR CALCULATING ANTENNA BEAM SINGLY DIFFRACTED BY A STRIP
C USING HALF-PLANE SOLUTION. THE PROGRAM 1S CALLED " STRP.FTN ",

e XoXeXaXe]

ccC

ccC

CE =TSRSS SRS SECSTETSC S ES SRS SRS CEC S CZEESSSSSEEESSRsTsz=sssss

TIME DEPENDCE " exp(-iwt) " .
COMMON FACTOR " exp(ikr)/sqgrt(kr) " .

THE ANGLES (THS,THS1,THS2,TH1,TH2,F1,BETA) ALL ARE IN RADIANS,

e L T T T T T T T T T T T s T T T TS
3 3 3 331 I i i i A a2 s 3 2 A A S 5

COMMON Cc, PI~

COMPLEX*8 c ,FO ,WI1' ,WR1 ,WI2 ,WR2 ,CASIN ,CACOS ,CFR
COMPLEX*8 v+ ,v2 ,Uur ,UR ,UD ,UT
COMPLEX*8 RS ,RS1 ,RS2 ,THS ,THS1 ,THS2

- —— - e = et - = — = Y . = T n e = e - e S S me R en G e G G S G - — - ——

REAL*4 Y(361) ,AUT(361) ,AUD(361) ,AUI(361) ,AUR(361)
YO = 00.0

H =1.0

KK = 361

(o = CMPLX(0.0,1.0)

PI = 3.1415926

DTR = P1/180.0

FO = CEXP(-C*P1/4.0)/SQRT(PI1)
RO = 8.0

A = 8.0

THO = PI1/2.0

B = 8.0

DO 999 1=1,6

B = 2.0**(1-2)

IF( (I .LE. 1).0R.(1 .GE. 6) ) B = 2.4%(I-1)
DO 999 J=1,5
BETA= THO + Pl - PI*{J~1)/12.

IF( J .GE, 5 ) GO TO 11

GO TO 22
A = 10.*A
BETA= THO+PI-PI/4.

BET1= 3,0*PI - BETA
IF( BETA .LT. PI ) BET! = PI - BETA
BET2= BETA
RO1 = SQRT{ RO**2 + A**2 - 2 _0*RO*A*COS(THO) )
RO2 = SQRT( RO**2 + A**2 + 2 _0*RO*A*COS(THO) )
THO1= ASIN( RO*SIN(THO) /RO1 )
THO2= ASIN( RO*SIN(THO) /R02 )
RS = CSQRT( RO**2 - B**2 + 2 0*C*B*RO*COS(BETA-THO) )
1F( REAL(RS) .LE. 0.0 ) RS = -RS
THS = CACOS( (RO*COS(THO) + C*B*COS(BETA)) /RS )
RS1 = CSQRT( RS**2 + A**2 - 2 _OX*RS*A*CCOS(THS) )
RS2 = CSQRT( RS**2 + A**2 + 2 0*RS*A*CCOS(THS) )
IF( REAL{(RS1) .LE. 0.0 ) RS1 = -RS!1
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IF( REAL(RS2) .LE. 0.0 ) RS2 = -RS2
THS1= CASIN( RS*CSIN(THS) /RS1 )
THS2= CASIN( RS*CSIN(THS) /RS2 )

C ——————————————————————————————————————
cC THI1= PI + THO1 + ARCOS(REAL(RS1)/R01)
cC IF( BET! .GT., (THO1+PI) ) THIt= 2.0*%(PI+THO1) - THI1
cc THR1= 2.0*P1 - THI1
C ——————————————————————————————————————
cc THI2= P1 + THO02 + ARCOS(REAL(RS2)/R02)
cc IF( BET2 .GT. (THO2+PI) ) THI2= 2.0%(PI+TH02) - THI2
ccC THR2= 2,.0*PI - THI2
C Es-s=sc=s=s=S=s=S====
BIGT = 0.0
DO 111 K=1 , KK
Y(K) = H*(K-1)
TH = Y(K)*DTR
C _______________
TH2 = TH
TH1 = PI ~ TH
IF( TH1 .LT. 0. ) THi1 = TH! + 2*PI
C T T T S T T S ST T T N E T R S TS T SN S T S o E o oo T e oSS ECSEESESDEDEE====
C THE DISTANCE "R" IS NOT USED IN CALCULATING THE PATTERN.
(o R1 = R+A*COS(TH) :
o R2 = R-A*COS(TH)
o Ri = R-RS*CCOS(TH-THS) @
c Rr = R-RS*CCOS(TH+THS)
C T T T S S S T N NS T o S T TS E ST SR EECS NSNS DS E=Z=E=zZD==x
W1t = -CSQRT(2.0*RS1)*CCOS( (TH1-THS1)/2.0 )
WR1 = —CSORT(2.0*RS1)*CCOS( (TH1+THS1)/2.0 )
WI2 = -CSQRT(2.0*RS2)*CCOS( (TH2-THS2)/2.0 )
WR2 = -CSQRT(2.0*RS2)*CCOS( (TH2+THS2)/2.0 )
C _________________________________________________
cc ARI1= ABS( ATAN( AIMAG(WI1)/REAL(WI1) ) )
(o] IF( ARI! .GT. P1/4.0 ) STOP
cc ARR1= ABS( ATAN( AIMAG{(WR1)/REAL(WR1) ) )
cc IF( ARR! ,GT. P1/4.0 ) STOP
cc ARI2= ABS( ATAN( AIMAG(WI2)/REAL(WI2) ) )
cc IF( ARI2 .GT., P1/4.,0 ) -~ STOP
(o] ARR2= ABS( ATAN( AIMAG(WR2)/REAL(WR2) ) )
cC 1F( ARR2 ,GT. P1/4.0 ) STOP
C 3 I 32 T 3 1 3 22 3231ttt ittt it i1 1t 132+ i+t 2t &

C "UT" IS THE TOTAL SINGLE DIFFRACTION PATTERN BY STRIP.
C "U1,E2" ARE THE TOTAL DIFF. PATTERN BY HALF PLANES FORMING THE STRIP
C "UI & ER" ARE INCIDENT AND REFLECTED FIELD PATTERN RESPECTIVELY.
C FE I T I 3 133 2t 332 1132133231313t 2113133332231 121111233ttt 0
Ul =+CEXP( -C*RS*CCOS(TH-THS) )
UR =-CEXP( -C*RS*CCOS(TH+THS) )
Ut = UI*CFR(WI1) + UR*CFR{(WR1)
U2 = UI*CFR(WI2) + UR*CFR(WR2)

C _______________________________
UT = FO*(U1+U2)
IF( TH .LT. PI ) UT = UT - (UI+UR)
C ____________________________________
ccC UD = UT - Ul
cc IF( (TH1 ,LT. THR1),AND.(TH2 .LT. THR2) ) UD = UT - (UI+UR)
cc 1F( (THY .GT. THI1),AND.(TH2 .GT. THI2) ) UD = UT
c ———————————————————————————————————————————————————

AUT(K)= CABS(UT)
cc AUD(K)= CABS(UD)
cc AUI(K)= CABS(UI)
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AUR(K)= CABS(UR)
IF( AUT(K) .GT. BIGT ) BIGT = AUT(K)

CONTINUE

DO 222 K=1,KK
UTN = AUT(K)/BIGT
WRITE(6,1) Y(K) , UTN

CONTINUE

CONTINUE

TS ECECESERESESEESSEEESESSSsES
FORMAT( F6.1 ,1X, E14.7 )
STOP

END

C PROGRAM FOR CALCULATING FRESNEL INTEGRAL "CFR" OF COMPLEX ARGUMENTS.

COMPLEX FUNCTION  CFR(X)

COMMON cC, PI

COMPLEX*8B cC, X

COMPLEX*16 2Z , ERFZ

z = X*CEXP(-C*P1/4.0)

CALL CERF(Z,ERFZ)

CFR = 0.5*SQRT(PI)*CEXP(C*P1/4.0)*(1.0~ERFZ)
RETURN

END

C L3 S X e R S E S R RS RSS2SR 1222222283222 22222 2 R Rt R 82 X2
C***********'k*************'k*******************************************
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G.5 Beam Diffraction by a Wedge

The total diffracted field given by (5.15) or (5.17) is calculated using this
program with k10=16, B=90+1r for different angles of incidence, 60 and wedge

1 .
angles, a



C*

C
C
Cc
C
c
c
C

cC
C

[eXeNeRe]

[oNe]
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KRR AR KRR AR A AR R R KRR A AR AR AR A AR R RA KRR AR RR IR A A A A ARk kA ARk ke k kX
PROGRAM FOR CALCULATING BEAM DIFFRACTION BY A CONDUCTING WEDGE USING
THE UNIFORM THEORY OF DIFFRACTION (KOUYOUMJIAN & PATHAK 1974). THE
EDGE LIES ON THE BEAM AXIS. THIS PROGRAM CALLED " WEDG.FTN ",

The time harmonic factor " Exp(+jwt) " is suppressed .

Common factor is " Exp{(-j.kr)/Sgrt(kr) " .

- 3 33 2 2 2 5 2 2 X 22 2 S+ 2 2 2 3 2 - F 23 2 & 2+ 2 - F 3+ 2 2 2 1 ¢ 21 2 R 2R 2 R ¢ R T3
COMPLEX*8 C ,RS ,WIt ,W12 ,WRt ,WR2 ,GR ,CFR ,CASIN ,CACOS
COMPLEX*8 vo ,UE ,U1 ,UR?' ,URZ2 ,UD' ,UD2 ,UD ,UT
REAL Y(361) ,AUT(361) ,N
KK = 361
H = 1,0
N = 1,50
ERR = 0.01
C = CMPLX(0.0,1.0)

PI = 3.1415926
DTR = PI1/180.0
THSY= N*PI1/2.0
THCR= (N-1.0)*PI
RO = 16.0

THO = ?
BETA= THO + PI

i+ -2 4+ 2 ¢ 1§ 2 -+ 2t % 2 X 2 % 2 2 1 & 2+ 2 % 2 3 1 3 2 2 2 2 2 2 2 2 2 2 3 2 EF 2 SR R BB

ALW is-the wedge interior angle.

ALW = (2.0 - N)*PI

1F( (THO .LT. 0.).OR.(THO .GT. THSY ) ) STOP
1F( (BETA .LE. PI).OR.(BETA .GT. 2.0*PI ) )  STOP
DO 989 J = 1,4 ?

B = 2,0%(3-1) 7

RS = RO + C*B

THS = THO

"THSI" and "THSR" are the shadow boundary angles for incident and

reflected fields respectively (measured from wedge upper surface).

I X3 X 3 ¥ 3 i 1 22t ittt it iii ittt ittt it i it 11 ¢ 2 02 2 2 24

THSI = PI + THO

THSR1= PI - THO

THSR2= (2.0*N - 1.0)*PI - THO

UE = CEXP(-C*RS)/CSQRT(RS)

U0 = -CEXP(-C*PI1/4.0) / ( N * SQRT(8.0*PI) )

—— - ——— — - - ——— = - ——— - e A S e T S e - S G e S SR S —e W M G ee G G S S S -

DO 111 K=1,KK

Y(K)= H*(R-1)

TH = Y(K)*DTR
I3 2 131 I 33 3 1 i1 i1 ittt 1ttt it ittt i i1t 2 32 R 1 2 2 £ £ 2 R 3 2 2 0 2 R A B R B R R 2
The distance "R" is not used in calculating the pattern,
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" UI, UR1, UR2 " are the incident and reflected fields from upper
and lower Wedge surfaces, respectively.

[eNeKe!

1 232 33331 1t 2 2 st 1t 1 1 1 1 2 2 1 1 2 ¢t 2 1 2 2 R R R R R R R AR R £ % £ F & F ¥ ¥ ¥

THI = TH - THS

THR = TH + THS

Ul = CEXP( C*RS*COS(THI) ')

UR1 =-CEXP( C*RS*COS(THR) )

UR2 =-CEXP( C*RS*COS(2.0*N*PI-THR) )

IF( TH .GT. N*PI ) GO TO 88

MR1 = 0.0

MIt = 0.0

MR2 = 0.0

MI2 = 0.0

IF( (THI .GT. -THSY).AND.(THI .LT. -THCR) ) MIl= -1.0
IF( (THI .GT. THCR).AND.(THI ,LT. N*PI) ) MI2= +1.0

IF( (THR .GT. THCR).AND.(THR .LT. 1.5*N*PI) ) MR2= +1.,0

- ————————— —— — = - - ——— - = —— = = e = e - —————

WI1 = -CSQRT{(2,0*RS) * COS{ O0.5*(2*N*PI*MI1 - THI) )
WR1 = ~CSQRT(2.0*RS) * COS( 0.5*(2*N*PI*MR1 - THR) )
W12 = -CSQRT(2.0*RS) * COS( O.5*(2*N*PI*MI2 - THI) )
WR2 = -CSQRT(2.0*RS) * COS( 0.5%(2*N*PI*MR2 - THR) )
Ti1 = 0.5*(PI-THI) / N
TR1 = 0.5*(PI-THR) / N
TI2 = 0.5*(PI+THI) / N
TR2 = 0,5*(PI+THR) / N

———— v ——— - = A e e g — -

IF( ABS(TH-THSI )} .LE. ERR ) GO TO 1
IF( ABS(TH-THSR1) .LE. ERR ) GO TO 22

UD1 = GR(ﬁIl)/TAN(TII) - GR(WR1)/TAN(TR1)
GO TO 33

UD1 = N * CSQRT(Z.O*PI*RS) * CEXP(C*P1/4.0) - GR(WR1)/TAN(TR)
GO TO 33

UD1 = GR(WI1)/TAN(TI1) - N * CSQRT(2,0*PI*RS) * CEXP(C*PI/4.0)

IF( ABS(TH-THSR2) .LE. ERR ) GO TO 44

UD2 = GR(WI2)/TAN(TI2) - GR(WR2)/TAN(TR2)
GO TO 55 :

UD2 = GR(WI2)/TAN(TI2) + N * CSQRT(2,0*PI*RS) * CEXP(C*P1/4.0)

UD = UQ * UE * (UD1+UD2)

- - - —— = - = e = e A W S e SR S e G e e M SR SR S - G e

- - — = = ——— . — = - = - = e s e S - R = - = e Y W W e - G G e e e

UT = UD

IF( TH .LE. THSR1 ) UT = UD + UI + UR!
IF( (TH .GT. THSR1).AND.{(TH .LE, THSI) ) UT = UD + Ul

GO TO 99

UT = UD + Ul

IF( TH .LE. THSR1 ) UT = UT + UR1
IF( TH .GT. THSR2 ) UT = UT + UR2
GO TO 99
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88 UT = 0.0

99 AUT(K)= CABS(UT)
IF( AUT(K) .GT .BIG ) BIG = AUT(K)

C I 2 2 2 X 3 3 3 4 A i it 1 2 2 2 2 2 £ 2 1 5 3 3 3 3
111 CONTINUE
C m==s====s==ss====

DO 222 K=1,KK

UTN = AUT(K)/BIG

WRITE(6,1) Y(K) , UTN
222 CONTINUE

C z=z===s====
999 CONTINUE
C i 2 ¥ 2 2 - 2 2 2 2 X 5 1 E 3t
1 FORMAT( F6. ,1X, E14.7 )
STOP
END
C ===ccrmsr==ScocCRCCS TS =SS TS CCSRSSCECSS S CE SRS SCSESCSRCSSRSSSCTSESXTSTSTEZS

COMPLEX FUNCTION GR(X)

C t 3 2 3 2 3 2 2 33 2% 3 X 2 1 %% X353 % %
COMPLEX*8 C , X , CFR
c = CMPLX(0.0,1.0)
Pl = 3,1415926

C ..............................................
IF{ REAL(X*CEXP(C*PI1/4.0)) .LT. 0.0 ) X = -X
GR = 2.0 * C * X * CEXP(C*X*X) *CFR(X)
RETURN
END
C ========== T S T S S C T R S T E S T S T S T R SR CoEEo T ESoESESETSISEZSESEE=xm=Sm=mE==S=
C PROGRAM FOR CALCULATING FRESNEL INTEGRAL "CFR" OF COMPLEX ARGUMENT.
C FE X X 3 X 2 X 322 2322ttt it ittt it
COMPLEX FUNCTION  CFR(X)
C T T TSRS EERERREER
COMPLEX*8 c, X
COMPLEX*16 2 , ERFZ
C ---------------------
o = CMPLX(0.0,1.0)
PI = 3,1415926
CA --------------------------

z = X * CEXP(C*P1/4.0)

CALL CERF(Z,ERF2Z)

CFR = 0.5 * SQRT(PI) * CEXP(-C*PI/4.0) * (1.0 - ERF2)
RETURN

END

C*tt********t****t****************************************************
C***t******t****************************t*****************************
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G.6 Beam Diffraction by a Circular Aperture

This program makes use of expressions (6.33a,b) to calculate the single and
multiple diffraction total fields modified on the caustic axis with kzozka=31r, 8 0=9O°,

ﬁ=270o and different values of the beam parameter, kb.
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c***tt****t************************************'k**********************

C PROGRAM CALCULATES SINGLE AND MULTIPLE BEAM DIFFRACTION BY CIRCULAR
C APERTURE (NORMAL INCIDENCE), MODIFIED ON THE CAUSTIC AXIS, USING THE
C UNIFROM THEORY OF DIFFRACTION & COMPLEX SOQURCE~POINT REPRESENTATION.
C THIS PROGRAM IS CALLED " CRCL.FTN2 ",

C - 2 2 2 2 S T 3+ 2 T+ F + F R R X R R 2 2 R X 2 R 2 R R B R R 2 2 2 2 2 2 2 2 2 3 3 2 34 4 5 232
C THE TIME DEPENDENCE "exp(-iwt)" AND A COMMON FACTOR "exp(ikr)/kr"

C ARE SUPPRESSED.

C===================================================="—'================
COMMON c ,PI ,THSI

C ——————————————————————————————————————————————————————————————
COMPLEX*8 C ,CASIN ,CACOS ,CATAN ,bc ,FR ,CFR
COMPLEX*8 ZSs ,RS1 ,THS' ,WI ,B0S ,B1S ,BOM ,BIM

COMPLEX*8 VE ,Ul ,UR ,U! ,U2 ,USD ,UMD US
COMPLEX*8 po ,pt ,bD2 ,DI ,DF1 ,DF2
REAL *4 v(181) , AUS(181) . AUT(181)

c -------------------------------------------------------------
JJ = 16
KK = 91
H = 1.0
C it 2 2 % -2 2 X X 21t st %
C = CMPLX(0.0,1.0)
PI = 3,1415926
DTR = PI/180.
C ________________
A = 3*PI
20 = A
BETA = 1,5%*P1
C -+ 2 2 2 2 2 Xt 22 i ¢t % % &% &% 2% %
RO1 = SQRT( ZO0**2 + A**2 )
THO! = PI - ATAN{ 20/A )
c
DO 989 I1=1,6
B = 2,%*(1-1)
1IF ( I .LE. 1) B = 0.0
IF ( I .GE. 6 ) B = B5.0
C  memmmmmmmmmmcmemcemeee e
zS = 20 - C*B
C ............................
RS1 = CSQRT( 25**2 + A*x%x2 )
1F ( REAL(RS?') .LE. 0.0 ) RS? = -RS!
THS! = PI =~ CATAN( ZS/A )
C FE X T 2 3 1 XX 2313t ittt it ii it it ittt it i i1 22ttt
c THSI, THSR ARE THE SHADOW AND REFLECTION BOUNDARY ANGLES.
C T R T T s S T EE S EERSTEESSTEREZE=EE=SSE=E s ST =S EES=S=E==S==E==s=
THSI = PI + THO! + ACOS{( REAL(RS3I)/RO1 )
IF{ BETA .GT. THO1+PI ) THSI = 2.*(PI+THO1) -THSI
THSR = 2.0*PI - THSI -
C ________________________
UE = CEXP(C*RS1) / RS1
C .............................................................
DO = SQORT(4./PI) * CEXP( C*(P1/4 - 2.*A) ) * FR( SQRT(4.*a) )
c

wI = CSQRT(2.0*RS1) *CSIN(THS1/2.0)

IF( REAL( WI*CEXP(~C*PI/4.) ) .LT. 0.0 ) TOP
DI = CSQRT(2.*RS1/(P1*A)) *CEXP(C*(PI/4.+2.%A))
DI = DI * CEXP(-C*WI**2) *CFR(WI)



111

222
999
C
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1223 2 3 2 2 3 3 3 3 2 3 2223 3 J 2 3 2 F 2 3 F 5 5 2 ¥ ¥

BG = 0.0
DO 11t K=1,KK
Y(K) = H*(K-1)
F1 = Y(K)*DTR
TH1 = 1.5*%*P] + FI
TH2 = 1,5*PI - FI
= SQRT(4.0*A) * SIN(TH!/2.0)
WF2 = SQRT(4.0*A) * SIN(TH2/2.0)
= CEXP(-C*WF1%**2) * FR(WF1)
= CEXP(-C*WF2**2) * FR(WF2)
D1 = DC(THS1,RS1,TH1)
D2 = DC(THS!,RS1,TH2)
Ul = CEXP( C * 2S5 * COS(F1) )
UR = =-CEXP(-C * ZS * COS(FI) )

BOS = (D2 + D1) * BESJO(A*SIN(FI),I)

B1S = (D2 - D1) * BESJV1(A*SIN(F1),I)

USD = A * SQRT(P1/2.0) * CEXP(-C*P1/4.0) * UE * (BOS + C*B1S)
BOM = (DF1 + DF2) *BESJO(A*SIN(FI),I1)

BiM = (DF! - DF2) *BESJ1(A*SIN(FI),I1)

UMD = 2, * (A**1,5) * UE * DI * (BiM + C*BOM) / (1.0-D0)

- e = - e S G e - G -

U1 = CEXP( -C*(A*SIN(FI) - PI1/4.) )

U2 = 1.0/U1

USD = SQRT(A/SIN(F1)) *CEXP(-C*PI/4.) *UE *(U1*D1 + U2*D2)
UMD = C *A *SQRT( 8.0 /(PI*SIN(FI)) )

UMD = UMD *UE *DI *( UI*DF1 + U2*DF2 ) / (1.0-D0)

us = USD

1F( (THY .LT. THSI).AND,(TH2 .LT. THSI) ) US = USD + Ul

AUS(K)= CABS(US)

AUT(K)= CABS(US+UMD)

1F( (AUS(K).GT.BG).OR, (AUT(K).GT.BG) ) BG=AMAX1{AUT(K),AUS(K))
CONTINUE

DO 222 K =1, KK

USN = AUS(K)/BG

UTN = AUT(K)/BG

WRITE(6,1) Y(K) , USN , UTN

CONTINUE

CONTINUE

FORMAT( F6.1 , 2(1X , E14.7) )
STOP
END
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C 1+ 2 3 -2 2 3 2 2 2 £ 2 3 2 2 2+ 2 2 2 8 2 R E X T X F X T XX PR 2 S X 2 2 2 2 222 8 2 2 2 £ 3 X R ¥ XU R
c PROGRAM FOR CALCULATING DIFFRACTION COFFICIENT .
c R S E S E S S e S S S S S S N S S e A T e e S R N e S S S S s s s s
COMPLEX  FUNCTION DC(THS,RS,TH)
C i 22 2 2 21 3 3 3 3 3 3 3332 323332332323 13233333313
COMMON ¢ ,PI ,THSI
COMPLEX*8 C ,RS ,THS ,W! ,WR ,D! ,DR ,CFR
c e e e tttatubet
Wil = -CSQRT(2,0%*RS) * CCOS( (TH-THS)/2.0 )
WR = —CSQRT(2,0*RS) * CCOS( (TH+THS)/2.0 )
DI = CFR(WI)
DR = CFR(WR)
c ------------------------------------------------------
cC 1F( REAL(WI*CEXP(-C*PI/4,)) .LT. 0. ) DI = -CFR(-WI)
IF( TH .LT. THSI ) DIl = -CFR(-WI)
DC = CSQRT(RS/Pl) *CEXP(-C*PI1/4.0)
DC = DC *( DI*CEXP(-C*WI**2) - DR*CEXP(-C*WR**2) )
RETURN
END
c  EEE E e e S e S e e S T S S S T S S S S E T S S S S S T S S e S T R S S e S EE S T E E S S EEE S
C PROGRAM FOR CALCULATING FRESNEL INTEGRAL "CFR" OF COMPLEX ARGUMENTS,
c=====================================:===B===========================
COMPLEX  FUNCTION CFR(X)
(o EEEEEEESCSSCESESESSES=S=S=EE
COMMON c ,PI
COMPLEX*B C , X
COMPLEX*16 2 , ERFZ
c _______________________
4 = X*CEXP(-C*PI1/4.0)
CALL CERF(Z,ERFZ)
CFR = 0.5*SQRT(PI)*CEXP(C*PI/4.0)*(1.0-ERF2Z)
RETURN '
END
c ========l====================.".=======================================
C PROGRAM FOR CALCULATING FRESNEL INTEGRAL "FR" OF REAL ARGUMENTS.
c====================B================================================
COMPLEX FUNCTION FR(X)
C [ 2 3 3 % 2 3 X 3 X 2 2 2 3 2 323 2% % %
COMMON C ,Pl ,THSI
COMPLEX*8B C
COMPLEX* 16 Z , ERFZ
C ________________________

z = X*CEXP(-C*P1/4.0)

CALL CERF(Z,ERFZ)

FR = 0.5*SQRT(PI)*CEXP(C*PI/4.0)*(1.0-ERF2)
RETURN

END

C T e S R XS S22 X222 2222222222232 22 d 2t ins sl
C******t*t**t**********'k****************************t*****************
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G.7 Beam Diffraction by a Parabolic Reflector

The following program uses (E.17) to calculate the diffracted field component for
a beam of parameters (kb=16, §=180°), located at (kr =0, 6,=0°) incident on a
conducting parabolic reflector (kF=10n, 6 e=600)' Also, the program can be used to
calculate the reflected and total far fields using (E.5), (E4) and (E.17), without using

the computer search technique.
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C**t*t************t**t**********t****t******'k*************‘k**t********

C PROGRAM CALCULATES ANTENNA BEAM DIFFRACTION BY A PARABOLIC REFLECTOR
C NO COMPUTER SEARCH FOR REFLECTION POINTS.
C THE PROGRAM 1S CALLED "PRBL.FTN.NS",

C I 3 3 3 2 s £ T 3 X2 2 2 3 2 3 XY X 2 X X £ F F £ 3 s ¥ 2 7 3 ¥ 2 S 2 T 2 S S 22 2 2 22 2 R 22 2 2 2 £ 24 5 £ ¥ %)
C TIME DEPENDCE " Exp{(-iwt) ".

c COMMON FACTOR " Exp(ikr)/Sgrt(kr) ".

C i 3 ¥ 3 3 3 2 3 3 32 32 2 S 2 2 2 3 3 s 2 2 2+ 2 2 32 3 2 ¥ 3 2 2 2 R 2 2 22 3 2 3 2 R X 2 2 2 2 2 2 3 2 2 2 LR 1 R R XN 3

COMPLEX*8 c ,u1 ,UrR ,UDV ,UD2 ,UD ,UT ,CD ,CFR ,CASIN ,CACOS
COMPLEX*8 THP ,THS ,THSP ,THS1 ,THS2 ,THI ,TH1P ,THS1P ,WP
COMPLEX*8 F0 ,RI ,RR ,RS ,RP ,RSP ,RS?! ,RS2 ,RC ,RX ,XP ,YP
COMPLEX*8 Xs ,¥Ys

REAL*4 2(361) ,AUI(361) ,AUR(361) ,AUD(361) ,AUT(361)
C ———————————————————————————————————————————————————————————————
KK = 181
H = 1.0
C es=zzznz
C = CMPLX(0.0,1.0)
Pl = 3,1415926
DTR = PI/180.
FO = CEXP(-C*PI/4.)/SQRT(PI)
C —————————————————————————————
RO = 0.0
THO = 0.0
F = 10*PI
THE = PI1/3.0
BET = PI+THO
B = 16.0 |
c 2 ¥ F ¥ 3 1 3t t 2 it it ¢t 2 2 2 1 3 2 2 2 2 i 1 2 2 2 2 2 i 2 2 S 2 A2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 % 2 5 5 3
C BW 1S THE HALF-POWER BEAM WIDTH
C TR TR R E S e S S S E S T E S R T R R T S S e E S N ST E S E S E S S E S S ESEE S

cC BW = 66.*DTR
cC B = 0.5%*AL0OG(2.0)/(1.0 ~ COS(BW/2.0))

C e m e mrr e, r e —r e m e ————————
THT = (PI-THE)/2.
RE = 2*F/(1.0+COS(THE))
ROV = SQRT( RE**2 + RO**2 + 2*RE*RO*COS(THE+THO) )
THO1= THT + ASIN{ RO*SIN(THE+THO) /RO1 )

C -------------------------------------------------
IF( BET .EQ. THO+PI ) : GO TO 1
RS = CSQRT( RO**2 - 2*C*RO*B*COS(BET-THO) - B**2 )
IF( REAL(RS) .LE. 0.0 ) RS = -RS
THS = CCOS( ( RO*COS(THO) + C*B*COS(BET) ) /RS )
GO TO 22

c

1" RS = RO - C*B
THS = THO

C ---------------------------------------------------

22 RS1 = CSQRT( RE**2 + RS**2 + 2*RE*RS*CCOS(THE+THS) )
1F( REAL(RSt) .LE. 0.0 ) RS1 = =-RS!
THS1= THT + CASIN( RS*CSIN(THE+THS) /RS1 )
RS2 = RS1
THS2= THS!

C FY 32331 3333333113333 31 33 31 3 3 23 1t 1 2 i 32 3 2 13 2 3 2 2 2 2 22 2 3 4 3 3 3 % 3 3 2 2 R 33 4 2 %

c THBI, THBR ARE THE SHADOW AND REFLECTION BOUNDARY ANGLES
C B====R==============E============8==================8====B==========
THBI= THO1 + PI + ACOS(REAL(RS1)/R01)
IF( BET .GT. (THO1+THT) ) THBI = 2*(PI+THO01) - THBI
THBR= 2*PI - THBI
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C i3 * 2 F ¥4 £ £ 2 2 £ % £ ¥
BIG = 0.0
DO 111 K = 1,KK
Z(K)= H*(K-1)
TH = Z(K)*DTR

C ___________________
TH1 = (PI-THT) + TH
IF( THY .GT. 2.0*PI ) TH1 = TH1 - 2.0*PI
TH2 = (PI-THT) - TH
IF( TH2 .LT. 0.0°) TH2 = TH2 + 2.0*Pl

C ——————————————————————————————————————————————————————
UD! = FO * CEXP( C*RE*COS(TH+THE) ) * CD(RS!,THS1,TH1)
1IF( (TH .GT. PI1/2.).AND.(TH ,LT. (PI-THT)) ) GO TO 33
UD2 = FO * CEXP( C*RE*COS(TH-THE) ) * CD(RS2,THS2,TH2)

GO TO 44
33 upz = 0.0
c ---------------

44 UD = UD! + UD2
AUD(K)= CABS(UD)
IF( AUD(K) .GT. BIG ) BIG = AUD(K)
{ secccEE S CCREC R CEEEREEESE S S S E RS FEEEE RS EE S S RESEERSS SRS EES

C TO CALCULATE THE DIFFRACTED FIELD COMPONENT ONLY GO TO 111

C  EE R e P E e e e e S E S e S e e R e E e S e S S S R S E R S T E N T R E RS SRS SRS ST
GO TO 1M '
C ---------------------------------------------------------------
110 IF( TH .GT. (PI-THE) ) GO TO 55
THR = TH
THP =-.5 *{ THS+THR + CASIN{4.*F*SIN(THR)/RS + CSIN(THS+THR)) )
C ...............................................................
RP = 2,*F/(1,+CCOS{THP))
1F( REAL(RP) .LE. 0.0 ) RP = -RP
c ‘
RSP = CSQRT( RP**2 + RS**2 + 2, *RP*RS*CCOS(THP+THS) )
1IF( REAL(RSP) .LE. 0.0 ) RSP = -RSP
THSP= THR+THP
o
TH1P = (PI+THP)/2. + TH
THS1P= (PI+THP)/2. - THSP
WP = -CSQRT(2.*RSP) * CCOS((TH1P+THS1P)/2.)
RWP = REAL( WP * CEXP(~C*PI/4.) )
IF( RWP .GT. 0.0 ) GO TO 55
C ............................
THI = THP/2.0 ~ THSP
1F( REAL(THI) .LT. 0. ) THI =-THI
RC = 2,0*F/CCOS(THP/2.0)%**3 .
RX = ~RC*CCOS(THI)*RSP/( 2.0*RSP-RC*CCOS(THI) )
c ________________________________ [P iy S ——

UR = CEZP( C*(RSP + RP*CCOS(TH+THP)) )
GO TO 66
55 UR = 0.0
66 AUR(K)= CABS(UR)
cC IF( AUR(K) .GT. BIG ) BIG = AUR(K)

C ___________________________________
1F( THY .GT. THBI ) GO TO 77
Ul = CEXP( B*COS(TH~BET) - C*RO*COS(TH~THO) )
GO TO 88

77 Uur = 0.0
88 AUI(K)= CABS(UI)

UT = Ul + UR + UD
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AUT(K)= CABS(UT)
cC IF( AUT(K) .GT. BIG ) BIG = AUT(K)

€ mmmmmmm—mmemmemeeoeeeo ——memmeemes
111 CONTINUE
C ‘ Exczsx=EEs

DO 222 K= 1, KK

cC UIN = AUI(K)/BIG

cc URN = AUR(K)/BIG
UDN = AUD(K)/BIG

cc UTN = AUT(K)/BIG

222 WRITE(6,1) 2Z(K) ,UDN

C -------------------------
1 FORMAT( F6.1 ,1X, E14.7 )
STOP
END
C========================:===========================:================
C PROGRAM CALCULATES THE DIFFRACTED FIELD COMPONENT BY A HALF SCREEN,
c B EE e e R e T S R T T S S T T e N S S T T R S T e S e R T T T SR TS S S
COMPLEX FUNCTION CD(RO,THO,TH)
C R EC e E R T S S S SR E S SR E RS
COMPLEX*8 € ,THO ,RO ,W! ,WR ,EI ,ER ,DI ,DR ,CFR
C - - - —— - = G e = - G o S s an .
Pl = 3.1415926
C = CMPLX(0.0,1.0)
C ---------------------------------
El = CEXP( ~C*RO *CCOS(TH-THO) )
ER = CEXP( ~C*RO *CCOS(TH+THO) )
Wl =-CSQRT(2.0*R0) * CCOS((TH-THO0)/2.0)
WR =-CSQRT(2.0*R0) * CCOS((TH+THO)/2.0)
RWI = REAL( W1 *CEXP(~C*Pl/4.) )
RWR = REAL( WR *CEXP(~C*PI/4.) )
C ________________________________

DI = CFR(WI)

DR = CFR(WR)

IF ( RWI .LT. 0.0 ) DI = -CFR(-WI)
IF ( RWR .LT. 0.0 ) DR = ~CFR(-WR)
CD = EI*DI - ER*DR

RETURN

END

C============================================================E====g===

C PROGRAM CALCULATES THE FRESNEL INTEGRAL "CFR" OF COMPLEX ARGUMENTS.

c I X X3 I X 3 2 2 2 i i3 2 122 1 33 2 2 3 1 3 2t 2 2 s 2 2 2 22 3 2 2 2 2 3 2 2 2 2 2 22 2 2 % % 2 22 B 2 3 2§ 3
COMPLEX FUNCTION CFR(X)
c | 2 3 2 2 S 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 22 3 %

COMPLEX*8 c . X
COMPLEX*16 Z , ERF2

PI = 3.1415926
C = CMPLX(0.0,1.0)

z = X * CEEP( -C*PI/4.0 )

CALL CERF(Z,ERFZ)

CFR = 0.5 * SQRT(PI) * CEXP(C*P1/4.0) * (1.0 - ERF2)
RETURN

END :
Ctt*******tﬁ*t**tt*******t************t****t**t******t*ttt***t********

c******t*t*****tt****t**************Q**************ttt*t**t******t****



