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ABSTRACT

Employing flexible robot arms is of great importance to the intended enhancement

of the performance of current generation robots to achieve higher efficiency. It is

also indispensable to space related applications due to various restraining factors in

that field. The reason that there is still very scarce usage of flexible arm lies in the

difficulties involved in designing and implementing a good controller to achieve the

desired performance. Though a wealth of literature has already appeared on this

subject, the number of controller design schemes presented has been small. Still

fewer are the experimental verifications which are essential to evaluating the real

applicability of these designs. The objective of this thesis is to explore and develop

practical controller designs based on the variable structure system (VSS) and sliding

mode theory, and experimentally test them on a flexible robot arm.

A new control design method (VSSMC) is firstly proposed based on the continuous

time variable structure sliding mode theory. It can significantly simplify the VSS

system designing process. Moreover, the variables concerned can be assigned separate

gains. Direct application of the VSSMC to the flexible arm, however, has limitations

due to the inherent properties of the system. Though these limitations are overcome

by using a bigger sampling period and lower gain, these measures also constrain

the maximum achievable response speed and the robustness margin on parameter

uncertainties.

To deal with the above mentioned problem and facilitate digital implementation and

solve the undesirable "chattering" in conventional VSS control, another novel con-

troller design method is developed, i.e., the Discrete-time Quasi-Sliding Mode Control

(DQSMC). This design is proposed based on a re-visit to the necessary and sufficient
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conditions for the existence of the discrete-time sliding hypersurfaces. Two control

algorithms are derived satisfying these two conditions. The analysis on these two

algorithms results in the development of DQSMC. It is proven that this design is

equivalent to a full state feedback with its steady-state motion constrained to the

sliding hypersurfaces. It is also shown that the DQSMC method provides a general

structure that unifies the three different kinds of discrete-time sliding mode control,

i.e., the VSS, the non-VSS and the VSS with a smoothing boundary layer.

Experimental testings for the DQSMC controller showed quite good results, thus

verifying the effectiveness of the design method. The robustness under load varia-

tions is also tested. The experimental results compared favorably against the Linear

Quadratic Gaussian (LQG) controller under the same load variations.

To realize the proposed new controller designs, a novel approach is devised for these

kinds of plants to obtain all the states. Separate first order observers are used to

estimate the states that are not directly accessible. The advantages of the method are

the simplified observer design processes and easier pole assignments for the observer

according to different mode requirements. The designed observers are quite successful

in obtaining the desired state estimates.

The new control design methodologies developed in this thesis are easy to understand,

design and implement. The smoothness in the control signal of DQSMC is especially

desirable for applications where one wants to avoid exciting the high frequency un-

modeled dynamics. It can be used in many control applications.
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Chapter 1

INTRODUCTION

1.1 Motivation

1.1.1 Significance and problems of employing flexible manipulators

Elastically flexible robot arm control has attracted quite strong research interest

among scientists and engineers in recent years. This is caused mainly by the necessity

in space related projects where the low-gravity environment, the far-reaching structure

and the high-cost energy require that light-weight materials be used which leads to

the flexibility of the structures. In addition, the study of light weight flexible robot

arms also represents major research efforts to improve the current generation robots.

Current generation of industrial robots need to be rigid to achieve precise control with

today's established control methodologies. Rigidity, however, necessitates massive

construction, which results in slow operation, low load to weight ratio and high energy

consumption. To improve upon these properties and enhance the performance of the

robots, they must be made ever lighter which will eventually lead to link flexibility in

robot manipulators. The expected advantages of using such flexible manipulators in

industry include higher speed, higher load to weight ratio, lower material and energy

consumption, higher mobility and efficiency.

1
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Control systems for light weight flexible arms, however, have to overcome more prob-

lems. Being flexible, the arms are prone to deflection and vibration, hence precise

position control is much more difficult. Unlike a rigid arm, a flexible arm is basically

a distributed parameter system described by partial differential equations (PDEs)

and boundary conditions. Therefore, strictly speaking, it is a system of infinite order.

But due to the limitations of computer facility, the sensor accuracy and the presence

of system noise, it is justified to approximate a flexible arm by a finite order system

and control it by a controller of finite order. The so-called "control spill over" and

"observation spill over" may thus occur, which, under certain conditions, may lead

to instability. In a single link manipulator arm, such as the one that will be experi-

mented on in this study, the tip sensor and the actuator are located at the two ends of

the arm. They are thus noncolocated. The transfer function from the actuator torque

to the tip position sensor is a nonminimum phase (NMP) system. It is well known

that such kinds of systems are difficult to control and the attainable performance of

the system is also limited.

1.1.2 Objective of the research

To solve the problems related to flexible arm control, we need good controller designs.

A good controller design has to be simple, practical, easy to understand and imple-

ment and able to achieve good control performance. Though a wealth of literature

has already appeared on the issue of flexible arm modeling and control, the controller

designing schemes presented are few. Still fewer are the experimental results which

are important in evaluating the applicability of the presented schemes. The objective

of this research is to explore and develop new controller design methodologies and
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experimentally test the proposed designs on a flexible arm setup.

The experimental setup includes a flexible manipulator arm, a motor and sensors.

The arm constructed from a continuous aluminum beam is to move in a horizontal

plane. The motor at the single rotating joint is the control actuator. Various sensors

are employed to measure the position and vibration (see Fig. 2.1).

The control objectives of the research are:

• Active vibration suppression.

• Fast slew motion.

• Accurate end point positioning.

• smooth control signal.

• Relative robustness.

Other primary objectives are:

• Calibrating sensors, modeling systems, identifying and validating parameters.

• Testing different existing control schemes.

• Developing, simulating and experimentally testing new control designs.

• Studying the related problems.



S = X2 + CX1 = 0
X2 = -A71

Figure 1.1: Simple example of sliding mode
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1.1.3 Variable structure systems and flexible arm control

A variable structure system (VSS) is a system with its control having discontinuities

on one or more hypersurfaces in the state space. The control switches to another

member of a set of possible continuous functions of the states as the states cross each

discontinuity surface. Thus a change of system's structure occurs. If the motion of

the states in the neighborhood of a hypersurface is directed toward the surface then

the states will cross and re-cross that surface repeatedly. Sliding motion will thus

occur on an individual switching hypersurface or on all the switching hypersurfaces

together. The system is then said to be in sliding mode. The term "sliding mode" is

also used in the case where the dynamic motion of the system is effectively constrained

to lie within a certain subspace of the full state space. A simple example of a variable

structure sliding mode system is shown in Fig. 1.1.

A switching line (when the systems order is 2, the hypersurface reduces to a line)
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S = 0 is formed in a phase plane with the system error and its derivative as its

coordinates. If the switching line is so designed that when the states are kept on this

line they will converge asymptotically to zero, and if all the trajectories on the phase

plane are directed toward this switching line by the control, then once the states

reach the switching line, they will keep sliding on the line until they reach zero. The

sliding surface generally has lower order than the original system and possesses the

desired convergence characteristics designed by the user. Consequently we can see

that when a system is in sliding mode, its response is determined only by the slope

of the switching line in this example. The system is thus insensitive to parameter

uncertainties and robust to external disturbances. It also has the advantage of being

computationally simple and straightforward for implementation.

Variable structure sliding mode control has offered control engineers new possibilities

for improving the performance of control in comparison to fixed-structure systems.

One possibility is to improve the performance by combining properties of the struc-

tures at the two sides of the switching line, or even to possess new properties not

present in any of the structures under consideration. For example, an asymptotically

stable system is obtainable by switching between two structures, neither of which

is asymptotically stable [82j. Another advantage of the sliding mode control is that

the closed-loop dynamics of the system under sliding motion can be prespecified by

properly designing the sliding hypersurfaces.

Designing a controller based on the variable structure sliding mode theory, we can

also solve the conflict between static accuracy and speed of response, for it enables

us to split the system's transient state into two independent phases: a brief motion

brings the system's states to the beginning of the sliding mode, which achieves high
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rate of decrease in the absolute value of the error, and another period of motion which

is characterized by rapidly damped oscillation. This property is desirable to achieve

fast and accurate flexible arm control.

The good qualities of the variable structure sliding mode control mentioned above for-

mulate the reasons why we attempt to develop new controller design methodologies

for flexible arm control based on this theory. In our plant, a number of uncertain-

ties exist: the nonlinearities caused by friction, dead band etc. in the actuator, the

system parameter uncertainties due to the environment, such as the modal frequency

and parameter variations effected by payload changes, and the uncertainty due to un-

modeled dynamics such as the truncated higher modes, etc.. Therefore the controller

has to be carefully designed to achieve good performance.

From these points, it seems desirable to apply the VSS theory to the particular control

problem at hand.

1.2 Literature review

The earliest studies on flexible robot modeling and control began about twenty years

ago. A group of MIT graduate students conducted research under the guidance of

Prof. D.E. Whitney. These include Mirro [48], Book [8], and Maizza Neto [44]. The

extensive research interests in this field appeared in the last decade, particularly in

the last seven or eight years. A wealth of literature exists. The literature review

here will center on four aspects: dynamic modeling, control design, variable structure

control of manipulators, and discrete-time sliding mode control.
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1.2.1 Dynamic modeling

Many approaches have been employed to derive the dynamic model of flexible arms.

A few researchers applied lumping approximation to derive the model, where elastic

links were approximated by masses and springs. Nelson et al. [53] modeled a flexible

arm moving in a vertical plane, carrying a load at one end and clamped to the driving

motor shaft at the other. Based on the measurements they assumed that the first

bending mode was the only significant vibrational mode that was excited during

motion. Then the deflection of the arm at the load end was approximated to a mass-

spring-dashpot subsystem and a lumped parameter model of 4th order was obtained.

Oosting and Dickerson [56] also considered the lowest vibrational mode and modeled

the arm as a massless spring with a lumped mass at one end and a lumped rotary

inertia at the other.

The main stream modeling methods for the flexible arm are the use of the Lagrange

equation, or Hamilton principle or Newton-Euler principle to derive the PDE and

the corresponding boundary conditions. Cannon and Schmitz [10] derived the PDE

using Hamilton's principle and obtained a 4th order PDE and 4 boundary conditions

for a pinned-free arm. Several other researchers used the same method, see [91] [45]

[71] [88]. Some researchers directly used the PDE and boundary conditions of the

Euler-Bernoulli beam, see [58] [52] [67].

Since it is very hard to control a system model containing an infinite number of

vibration modes, approximation is conventionally applied. There are mainly two

approaches used to formulate the approximated model. One is the assumed-mode

method (sometimes called modal expansion or Ritz-Kantrovitch method). The other
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is the finite element method. The former employs a modal analysis approach. The

solution to the PDE is assumed to be in the form:

00

y(x,t).E O=(x)q=(t)

where Oz (x) is the eigen-function of the ith mode, which only depends on the spatial

coordinate x, qt (t) is a time dependent function. Higher frequency modes in this

infinite series sum are generally assumed insignificant, thus only the first few lower

frequency modes are retained to approximate the distributed parameter system. Book

and Hastings [29] used the rigid mode and the first two flexible modes of the clamped-

free boundary conditions to derive the model. Also see [88] [69] [25] [7].

Another often used approximating approach is the finite element method (FEM),

which has the advantage that it can easily cope with plant models having complicated

structures or boundary conditions. But in order to obtain an appropriate and accurate

model, a large number of elements are needed. Usoro et al. [81] used finite element and

Lagrangian methods coupled with the concept of generalized inertia matrix to derive

their model. Each link was treated as an assemblage of n i elements. The kinetic and

potential energy were found in terms of a selected system of generalized variables q

and their rate 4. The total energy is obtained by combining all the elements' energy

and Lagrange's equation was used to derive the model. Several other researchers also

used the FEM method, see [51] [33] [50] [46] [5].

A few researchers addressed the modeling problem through other approaches. Khor-

rami et al. [34] applied asymptotic perturbation method to the PDE model obtained

through an extension of Hamilton's principle. By introducing a perturbation param-

eter which is the inverse of the square of the lowest flexible mode, the dynamics were
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resolved into outer (or slow) and inner (or fast) subsystems. Thereafter, by consid-

ering the higher order terms in the expansion, the effects of the flexure on the rigid

body motion was established. Nemir et al. [54] used a time series model consisting of

n auto-regressive terms, m exogenous terms and a time delay d. Then they applied

it for self-tuning controller design. Rovner and Cannon [66] used a filtered version of

the recursive Least-Square algorithm and successfully identified two system transfer

functions.

Barbieri et al. [3] discussed the influence of the choices of including different modes

(constrained and unconstrained) on the accuracy of the model. Balas [2] and Truck-

enbrodt [79] discussed the "spill over" problem. Balas suggested a comb filter to

eliminate the instability. Truckenbrodt indicated that the control spill over is not

necessarily bad for a hybrid system where both position and vibration of the arm are

controlled simultaneously. Both Balas and Truckenbrodt considered the observation

spill over as harmful and should be removed. Krishnan and Vidyasagar [38] proposed

the selection of modes based on minimizing the Hankel-norm.

1.2.2 Controller design

Most of the researchers have used LQG or LQ optimal control theory. Cannon and

Schmitz [10] used LQG to control the tip position. They were the first to introduce

a noncolocated tip position optical sensor into the control system design. The LQG

algorithm was also used in [46], [38]. Book and Hastings [29] [30] used the LQ

regulator with a prescribed degree of stability. Several others used the same method

[67] [81] [73]. In [56] [58] [36], LQ regulators were employed to control the plant.
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Some researchers used pole-placement or feedback control schemes. Nebot [52] pre-

sented a decoupled pole-assignment algorithm. Cheng et al. [12] used pole-placement

adaptive control and on-line estimation of an ARMA model. Wang and Wei [87]

used modified PD feedback control which took into account the effects of the arm

vibration. Feedback was also used in [88] [32] [89]. In [33] state feedback control was

used.

Fraser and Daniel [24] proposed the perturbation techniques for generating the neces-

sary frequency correction term to compensate for the characteristic frequency change

caused by the spatial boundary condition or payload changes.

Nemir et al. [54] applied self-tuning type of control. Clarke et al. [14] [15] realized

flexible arm control using generalized predictive control (GPC).

A few researchers have tried model reference adaptive control (MRAC) to control

the flexible robot arm. Meldrum [45] verified that for a system with noncolocated

sensor/actuator, the positive realness condition is not satisfied for MRAC. He then

moved the actuator closer to the sensor to obtain colocated system and realized a

modified MRAC. Lee [41] investigated the direct application of a modified MRAC to

the plant. Yuh [98] designed MRAC based on rigid body motion with the effect of

flexibility treated as an internal disturbance torque acting on the system. Siciliano

et al. [73] presented an MRAC scheme for a system with colocated angular position

and velocity signal and provided simulation results.

Since control of flexible arms is a difficult problem because of the complicated dy-

namics coupled with the non-minimum phase nature due to the noncolocated sensor

and actuator, some researchers have tried other techniques to improve the control.
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One technique is to use a tendon or torque transmission mechanism [60] [94] so that

the torque actuating point on the arm is relocated to get a minimum phase system.

Asada et al. [1] shaped the arm to have more desirable control property. They used

the inverse relationship from the pole-zero plot back to the arm structure to determine

the desirable mass and stiffness distributions as well as the actuator and sensor lo-

cations. Thus an optimal structure that satisfies the desired pole-zero specifications

is achieved. Some people also tried shaping the input signal or employing passive

damping to avoid exciting vibrations. Bayo et al. [6] suggested the use of a fully

smooth Gaussian velocity profile as an alternative to the double square pulse accel-

eration profile to avoid the excitation of vibration. Singer and Seering [74] suggested

using the impulse sequence that would move an idealized system without vibration to

convolve with any desired system input or trajectory. The resulting system response

is similar to the requested trajectory with little or no residual vibration. Lane et al.

[40] introduced a constrained viscoelastic damping layer to the surface of the flexible

arm. The damping ratio of the system was greatly enhanced while only very little

weight was added to the whole system. The controller then needed to control only

the rigid and first vibration modes. Higher modes of vibrations were absorbed by

the damping layer. Other techniques include using a piezoelectric film for vibration

suppression [80] [70], using an optical fiber sensor [17] or holographic sensor [4] to

measure the bending of the beam, using acceleration sensor [36] for feedback, using

composite materials [13] for better dynamic properties of the beam, using a "bracing"

strategy suggested by Book [9], etc.. These techniques are all aimed at reducing the

requirements on the controller.

Although there are quite a lot of papers dealing with controller design, the number

of approaches used are relatively few. Furthermore, most of the previous work is
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either purely analytical in nature or only provides simulation results. Experimental

results are relatively scarce. The more well known are the experiments carried out at

Stanford Univ. (Cannon and Schmitz), Georgia Inst. of Tech. (Book, and Hastings),

Ohio State Univ. ( Ozgiiner et al.), The Science Univ. of Tokyo (Fukuda et al.),

Osaka Univ. (Sakawa et al.), Toronto Univ. (Kwong and Chang [39]), Waterloo Univ.

( Vidyasagar et al.).

1.2.3 Variable structure control for manipulators

Variable structure sliding mode control (VSSMC) originated in the former USSR in

the 1950's. In the thirty years afterwards, the theory was investigated largely in the

Soviet literature. Utkin's survey papers [82] [83], his other two papers [84] [85] and

book [86] and the references therein provide an overview of the development of this

theory in the USSR. This theory was introduced to the west in late 1970's via Young's

papers [95] [96] and Itkis' book [31].

Since this kind of controller is insensitive to a system's parameter changes and robust

to external disturbances so long as they satisfy the invariance condition [22], it has

attracted quite a lot of research interest in recent years. The paper by DeCarlo et

al [19] is a good reference both as a tutorial and as a survey in this field. The book

edited by Zinober [99] reflects the research of many authors in this field. The review

here will center on two aspects of this development. One is on this theory as related

to flexible manipulator control, the other is on the discrete-time design of a sliding

mode controller.
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Although there are quite a number of papers on variable structure manipulator con-

trol, they mostly deal only with rigid robots, see [96] [35] [49] [77] [27] [28] [92] [97] [59]

etc.. Since there is a fundmental difference between rigid robot control and flexible

arm control, they will not be reviewed here.

For the regulation of a single-link flexible arm based on VSS and sliding mode theory,

Yeung and Chen [93] proposed an algorithm. Several problems remain. Firstly, the

derivation and the proving of the algorithm is very tedious. The controller parameters

need to be calculated from the inverse of a matrix D which may not always be

well conditioned. Secondly, the states are assumed to be known. How to obtain

these states is not solved. Thirdly, quite a number of parameters K t need to be

determined which is quite difficult due to the lack of direct physical meaning related

to choosing these parameters. And fourthly, the paper only provided simulation

results which seemed to be based on the plant model with only one flexible mode.

Therefore it is doubtful whether it is applicable to a real plant. Shusterman et al.

[72] developed a VSS controller for a single-link flexible arm. By using a model

following technique and the Lyapunov function approach, they derived the control

signal. Simulation results were provided but seemed unsatisfactory for the controlled

performance. Looke et al. [43] analytically proved the stability of controlling only the

first few lower frequency modes by substituting the steady state equivalent control

into the system's equation. To avoid chattering, they suggested using continuous

torque and discontinuous piezoelectrical actuation. It was also proven that a kind of

parameter uncertainty can be tolerated by properly choosing switching gains. The

states were assumed to be available. How to acquire these states was not solved.

No simulation or experimental results were provided. Singh et al [75] proposed a

continuous VSS control scheme which needs one orthogonal transformation to design
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the controller. Numerical simulation results were provided. However, the problems

of how to obtain the states and avoid the undesirable chattering were not solved. No

experimental verification was performed.

From the literature that has appeared, it seems that a simple and practical controller

design based on the VSS and sliding mode theory for the flexible robotic manipulator

is still to be developed.

1.2.4 Discrete-time sliding mode control

Almost all the researchers working on VSS have been working in the continuous time

setting (analysis and design). The implementations were also mostly done based on

continuous-time design and small sampling periods ([90], [42]). The controller design

in the discrete-time setting is less well developed. However, due to the rapid progress

in VLSI and electronic technology, and the advantage of the increased flexibility of

using a digital system, computer control is becoming more and more common. These

conditions combined with the robustness property of continuous-time sliding mode

control, make it worthwhile to extend this theory to the discrete-time case. A few pa-

pers have already addressed this issue (Drakunov and Utkin, 1989 [21]; Furuta, 1990

[26]; Milosavljevie, 1985 [47]; Opitz, 1986 [55]; Sarpturk et al, 1987 [68]; Kotta, 1989

[37]; Sira-Ramirez, 1991 [76]; Spurgeon,1991 [78]). Drakunov and Utkin (1989) intro-

duced an inverse function to the ordinary Euler discretization procedure and applied

this modified Euler procedure to the simulation of discretized sliding mode control.

Furuta (1990) presented a stable discrete sliding mode control based on a discrete

Lyapunov function. Milosavljevie (1985) formed the necessary condition for the exis-

tence of a quasi-sliding mode in discrete-time variable structure systems based on an
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analogy to the well-known continuous-time counterpart. He considered autonomous

systems of nth order and plants with transfer functions without zeros. Two numerical

examples were given for 2nd order and 3rd order systems. Opitz (1986) proposed a

nonlinear discrete-time sliding controller design based on hyperstability theory for a

linear time-invariant discretized plant. But the controller is rather complicated. The

large number of degrees of freedom increases the difficulty in choosing the parameters.

Sarpturk et al (1987) suggested a sufficient condition for the existence of the sliding

surface. It was shown that the control must have upper and lower bounds. A numer-

ical example was discussed. Kotta (1989) made comments on Sarpturk's paper and

pointed out that these bounds depend on the distance of the system's states from the

sliding surface. Sira-Ramirez (1991) analyzed the existence of quasi-sliding regimes

for nonlinear SISO systems based on the relative-degree concept of Byrnes and Isidori.

The disturbance rejection property of the sliding mode control was also examined and

an invariance condition was formed. Spurgeon (1991) proposed a method to design a

discrete-time sliding mode controller which used the state space partition of Dorling

and Zinober [20] for designing VSS for continuous systems together with the results

from the area of uncertain systems theory by Corless and co-workers [16]. He also

cast doubts on the applicability of the sliding mode control based on the sufficient

condition since the bounds of the control signal are always moving and will converge

to one value when on the discontinuous hypersurface. His algorithm is of a linear

feedback structure. Since it needs two state space transformations, the whole design

procedure is quite complicated and tedious.
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1.3 Contributions

The survey above shows that though there are lots of papers on modeling and con-

trol of flexible manipulator arms, successful controller design with quite satisfactory

results are rather few. Still fewer are the experimental results that verify the ap-

plicability of the controller design to the real plant. The objective of this research

is to develop new alternative controller design methodologies, and experimentally

test them on the flexible manipulator setup. The contributions of this research are

summarized as follows:

1. Development of a new discontinuous control design method (VSSMC) based on

variable structure systems (VSS) theory for the tip position control of a flexible

manipulator. The method can simplify the VSS system design process and can

assign separate gains to the variables concerned. The design is evaluated and

analyzed.

2. Derivation of two control algorithms based on a re-visit to the necessary- and

sufficient- conditions for the existence of discrete-time sliding surfaces. Three in-

terpolation schemes are suggested for implementing the control algorithm based

on the sufficient condition. The pros and cons of these two algorithms are ana-

lyzed.

3. Development of another new, simple and practical controller design methodol-

ogy: Discrete-time Quasi-Sliding-Mode Control (DQSMC). Analytical results

showed that it is equivalent to a full state feedback law with its steady state

motion constrained to the sliding surfaces.
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4. Unification of the discrete-time VSS, non-VSS and VSS with a smoothing

boundary layer under the DQSMC approach. This resulted from the general

structure that DQSMC provides and the fact that DQSMC itself can be viewed

as a discrete-time VSS controller with a specific smoothing boundary layer.

5. Verification of the effectiveness of the DQSMC methodology by testing it exper-

imentally on the flexible-link manipulator and comparing the results with those

achieved by an LQG controller under unloaded and various loaded conditions.

6. Devising of a novel approach to obtain all the states for use in the methodologies

1) and 3). Separate first-order observers are designed to estimate the states that

are not directly accessible. The advantages of the approach are the simplified

observer design process and easier pole assignment for the observers according to

different mode requirements. The experimental results proved the effectiveness

of the approach for this kind of plant.



Chapter 2

EXPERIMENTAL SETUP

2.1 Introduction

• In this chapter we will present the experimental setup, the computer and the various

hardware and software aspects of this research. The calibration and error analysis for

the sensors and actuator are also introduced.

The schematic of the experimental setup of the one-link flexible manipulator is shown

in Fig. 2.1. The major components include a uniform aluminum beam, a motor

with its power supply module and drive module, and the sensors. The controller

consists of an IBM-PC-AT, which is also used as a designing tool, two PC-bus boards

RTI-800/815 (made by Analog Devices for A/D and D/A) and M5312 (made by

Technology 80 for reading encoder signals) interfacing the computer to the sensor

signals, the power and sensor circuit box and the cables connecting the computer, the

sensors and the motor actuating units.

18
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Position sensitive device
LED

•

          

Strain gauges

Motor with built-in optical encoder

Figure 2.1: Schematic of the experimental setup

2.2 Flexible arm

The flexible arm used for the experiments is shown in Fig. 2.1. The physical param-

eters of the flexible arm system are given in Table 2.1.

The arm is to move in a horizontal plane driven by the motor at one end of the arm,

with or without a payload at the other end (tip). Since the cross-sectional height is

much bigger than the thickness, the arm is quite flexible in the horizontal plane but

rigid in other directions. The product El is a measure of the flexure stiffness of the

arm, where E is the Young's modulus which depends on the material of the arm, I is

the cross-sectional moment of inertia. The flexibility of the arm within the horizontal

plane is about 250 times more than its flexibility in the vertical plane. Therefore only

the transversal bending and vibration within the horizontal plane will be considered
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Table 2.1: Physical parameters of the arm system

Arm Material Type Aluminum 6061-T6
Arm Physical Length (M) 0.989
Arm Height (M) 0.0507
Arm Thickness (M) 0.0032
Arm Mass (Kg) 0.4528
Mass Linear Density
P (Kg/M) 0.4578362
Young's Modulus
E (N/M2 ) 6.895x101°
Moment of Inertia about
the Hub IB(Kg — M2 ) 0.1477
Arm Cross-Sectional
Moment of Inertia I (M4 ) 0.1384448e-9
Motor Hub Moment of
Inertia IH (Kg — M2 ) 0.00044

due to the physical dimensions of the arm adopted.

2.3 Motor and the drive system

The actuator consists of a permanent magnet synchronous motor with built-in optical

encoder, a power supply module and a drive module (Robbins & Myers, Inc.). The

control signal from the computer D/A port can be directly connected to the drive

module which accepts bipolar signals within the range of ±10VDC and has an input

impedance of 13.3 Kohm. The motor has a stall torque of 31 in — lb (equivalent to

3.503 N — M) and a maximum continuous operating speed of 4, 000 rpm. The motor

rotor (does not include the hub and PSD mounted on it) has a moment of inertia of

0.0011 in — lb — s' (equivalent to 0.00012428 Kg — M 2 ). The flexible arm is clamped

on the motor shaft by a hub. The case holding the lens and the tip position sensitive
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detector and sensor pre-amplifier circuit is mounted on the hub.

2.4 Optical encoder

The sensor for measuring the joint (or shaft) angle is a built-in 2000-line optical

encoder. By detecting all state changes of the two-channel quadrature outputs of

the encoder, 8000 encoder counts per revolution of the motor shaft can be obtained.

Since the encoder provides a digital signal, it is accessed through the digital input

port of the computer and via the M5312 Quadrature Encoder Input Card inserted in

the PC's extension slot.

2.5 Strain gauges and tip position sensor

Five pairs of strain gauges are cemented on the arm for measuring the vibration. Two

pairs are actually used. The gauges are of type: CEA-13-125uw-350 (Measurements

Group Inc.). Each pair of strain gauges is cemented at one site on the opposite sides

of the beam. The signal thus obtained is larger compared to using only a single strain

gauge at one site. Two high precision resistors of 350 ohm (0.01 %) are used for each

pair of strain gauges to form a bridge circuit. The circuit for amplifying the strain

gauge signal has a low-pass filter with the cutting off frequency at about 125 Hz.

A Position Sensitive Detector (model 51771 by Hamamatsu Photonics) with lens and

holding case is mounted on the hub aimed to receive pulsed light from an array of

infrared Light Emitting Diodes (LED) fixed at the arm tip. The PSD itself has a rise

time of 5 pS to make the transition from 10% to 90 % of the stationary output level,
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Position Sensitive Device

Figure 2.2: Measuring tip deflection via PSD and LED

so its response speed is quite high. Part of the PSD circuit is built inside the case

to amplify the very weak sensor signal to a certain level before it is transmitted to

the sensor circuit box for further amplification. The sensor circuit for the PSD has a

low-pass filter with a corner frequency of approximately 200 Hz.

The tip deflection measurement principle is shown in Fig. 2.2. The active surface of

the PSD for receiving the incident light is perpendicular to axis X, which is the neutral

axis of the undeformed arm. A deflection in the arm tip from the X axis will cause a

proportional increase or decrease in the output of the PSD circuit depending on the

direction of the deflection. Thus the PSD output is a measure of the tip deflection

w(L,t) shown in the figure. The absolute tip position is then determined by adding

the rigid motion caused tip displacement (multiplying the angular displacement of

the motor hub with the arm length) with the tip deflection measured via the PSD.

Compared with several other setups where the tip position is sensed by standby

photo sensors [69] [57], this design has the advantage of having unlimited sensing

range, easier calibration and higher portability.
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2.6 Computer and interface boards

The computer used for the analysis, synthesis and control is an IBM PC-AT compat-

ible with 80286 CPU and 12 MHz clock frequency (LEO 80286 personal computer by

First International Computer, Inc.). It is equipped with an 80287 numerical copro-

cessor to meet the high speed and accuracy requirements. Analog Device's RTI-815F

is employed for data acquisition. It has 16-channel 12-bit A/D input and 2-channel

12-bit D/A output with programmable gains. The motor optical encoder readings

are obtained via a Quadrature Encoder Input Card (M5312 by Technology 80 Inc.)

inserted in a PC's extension slot.

2.7 Software and tools

Most of the experimental software is written in 80286/80287 assembly language with

some in C, FORTRAN or BASIC. All the real-time control and data recording pro-

grams are written in assembly language to achieve the highest speed (see Appendix

F). Most of the analysis, synthesis and simulation software is written based on MAT-

LAB macro instructions with various tool boxes. Some use the software package of

ACSL and IMSL. The software package UnkelScope developed by MIT and Unkel

Software Inc. for Analog Devices' RTI family of data acquisition boards is also used

in testing the A/D and sensor circuits.
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2.8 Sensor calibrations

Sensor calibrations refer to deriving the relations between the sensor circuit outputs

and their physical representations. The optical encoder has a fixed resolution so it

does not need to be calibrated. The sensors that need to be calibrated are the strain

gauges and the tip position sensitive detector.

2.8.1 Strain gauge calibration

. Strain on the surface of a piece of material is defined as:

change in length AL
strain =^ —

original length^L •

Gauge factor of a strain gauge is defined as:

ARIR
GF =

AL I L'

where GF is the gauge factor, R is the nominal resistance of the gauge, AR is the

change in resistance due to strain on the material surface on which the gauge is

installed. From the above equation we have:

AL ARIR
strain =^=

L GF
(2.3)

Since R and GF are quite accurately known, if we know OR we can immediately

calculate the strain via (2.3). The actual procedure is as follows: A flexible rule

is fitted to the curve of normal tip motion trajectory. The joint is locked against

rotation. Bend the arm to acquire fixed tip deflection readings from the rule and

record the AID readings for strain gauge sensors and the corresponding resistance

values of the strain gauge. A Fluke 45 Dual Display Multimeter (Fluke Electronics

(2.1)

(2.2)
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Canada Inc.) is used to measure the resistance of the strain gauge. Working in slow

mode the multimeter can give readings with five effective digits.

For equal tip deflection increments, the differences in A/D reading increments are

small (< 5 %), therefore we may assume it to be linear. Then there is only a gain

between the A/D reading and the real strain. The gain is calculated as:

A(strain) (ARM)/GF
Gain =^ (2.4)

A(A/D)^A(A/D)

where OR is the average of the increments of resistance. R is the average of the two

strain gauges at one site on both sides of the beam, A(A/D) is the average of the

increments of A/D readings.

2.8.2 Tip deflection sensor calibration

The tip deflection sensor is calibrated following the procedure below: A flexible rule is

fixed to the curve of normal tip motion trajectory. The joint is locked against rotation.

Bend the arm to acquire fixed tip deflection readings from the rule and record the

corresponding A/D readings. Like in the process of strain gauge calibration, this

process is repeated several times and the average is taken to reduce observation error.

From the data recorded we find that for equal tip deflection increments, the differences

in A/D reading increments are small (see next section for error analysis), thus we may

assume it to be linear and use a straight line curve fitting to approximate it. The

least square curve fitting result for the tip PSD is shown in Fig. 2.3. The gain thus

calculated is

GTP = 7.1217e — 5 (M./(per A/D reading)).^(2.5)
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Figure 2.3: Tip PSD calibration curve fitting

2.9 Sensor resolution- and calibration-caused error

The joint angle reading resolution through the optical encoder is determined as fol-

lows:

360°7(8000 readings) = 9° /(200 readings) = 540'/(200 readings)

^= 2.7'/(per reading).^(2.6)

The joint angle resolution converted to tip is calculated as:

2.7'/60
L * (joint angle resolution) = L *^ *

180
2.7^2.7L *

10800 
* 7r = 1.001 * 10800 * 3.1416 = 0.78619*10 -3 M = 0.78619 mm. (2.7)

The resolution for tip PSD is:

Deflection
^=AID readings 0.071 mm/(per AID reading). (2.8)
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The added resolution for tip position is:

0.78619 + 0.071 = 0.85719 mm.^ (2.9)

The tip sensor calibration data show that the maximum deviation from a linear

characteristic is 8.1 A/D readings (for the forty points taken in a range of 20 cm),

therefore the maximum error due to the linear approximation is:

8.1 * (resolution of linear representation) = 0.5751 mm.^(2.10)

The maximum total error in tip position measurement is:

Resolution of joint angle converted to tip + Resolution of tip PSD

+Calibration error = 0.85719 + 0.5751 = 1.43229 mm.^(2.11)

In the strain gauge case the gain is just the resolution since:

GST = strain/(per AID reading).^(2.12)

The maximum linear approximation caused error is 19 A/D readings. Therefore the

calibration error is:

Ec = GST * 19.^ (2.13)

The total strain gauge error is the sum of the error due to resolution and calibration.

Therefore the total error for strain gauge measurement is:

Et = GST * 20.^ (2.14)

2.10 Actuator torque calibration and error analysis

The motor torque calibration was also conducted. The data collecting method is

shown in Fig. 2.4.
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Figure 2.4: Schematic of torque calibration method
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A piece of non-extendible wire is fastened to the tip of the arm. The other end of

the wire is connected to a weight. The wire is perpendicular to the arm in horizontal

plane. A pulley is used to change the direction of the wire from horizontal to vertical.

The weight is placed on a digital scale. The wire is in a bit of tension before the

measurement begins (i.e. preloaded). When a torque is applied to the motor shaft,

the digital scale reading will decrease. This reading shows the force of f'; which is

equivalent in magnitude to the balance force f applied at the tip of the arm. L e

denotes the distance between the point at the tip at which the force is applied to the

motor shaft axis. From f and L e we can calculate the torque. The actual torque is

applied by sending different values to the D/A port. Thus the relation between the

D/A value and the torque is obtained. The flexibility of the arm has little effect on

the accuracy of torque calibration. Since the flexibility of the arm only cause very

small angle change, its effects were neglected.

From recorded data we found that except for a small region near zero the recorded

digital scale reading increments or decrements remain almost constant while the D/A

value is increased or decreased evenly. Therefore the positive side and the negative

side of the data are curve-fitted to straight lines separately. The slope of the two

lines has a very slight difference. The maximum error in the calibrated region for the

motor torque is 2.6866e-2 N-M.
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MODELING, IDENTIFICATION AND MODEL REFINEMENT

3.1 Introduction

In this chapter we first present the model for identifying and designing the controller.

Then model identification using Inverse Repetitive Pseudo-Random Binary Series

(IRPRBS) and sinusoidal exciting signals for various modal parameters is described.

The refinement of the identified model is given afterwards. The selection of strain

gauge locations for control purposes and the controllability of the obtained model are

also provided.

3.2 Coordinates

A detailed analytical model derivation is given in Appendix A. The coordinates

adopted for the flexible arm are shown in Fig. 3.1, where hi denotes the hub moment

of inertia. It includes the motor rotor, the clamping mass and the PSD with the lens

and the holding case mounted on the clamping mass. p is the linear mass density

of the aluminum arm. E is the Young's modulus of the arm's material. / is the

cross-sectional moment of inertia of the arm. Tq is the torque applied by the motor.

L is the length of the arm. Or is a fixed reference line. OX is the neutral axis of the
30
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Tip

Figure 3.1: Flexible arm coordinate

undeformed arm. The displacement of any point P along the flexible arm's neutral

axis at a distance x from the hub is given by the hub angle 0(t) and the small elastic

deflection w(x,t) measured from line OX as shown in Fig. 3.1. This displacement y

is related to w as follows:

y(x,t) = w(x,t)+ xO(t).^ (3.1)

3.3 Assumptions

In deriving the analytic model, the following assumptions were made:

• Only horizontal bending is considered. (beam cross sectional height

beam cross sectional width)
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• Axial deformation is neglected. (beam length L >> elastical deflection w(L, t))

• Torsional effects are also neglected. (Small elastic deflection assumption)

3.4 PDE and boundary conditions

The analytical model is derived (see Appendix A) following the procedure below:

First, we write out the energy equations of the system. By applying Hamilton's

principle we obtain a partial differential equation (PDE) and its four pinned-free

boundary conditions:

84y^82y
,o (3.2)

(3.3)

(3.4)

d^at2
82y

El^Tq^1HO^0,^—^=
ax

y(0, t) = 0,

EISEI^0,= (3.5)

(3.6)7.(ry
0.

ax^
=

Secondly, taking the Laplace transform of the equations (3.2) ,-- (3.6) and solving for

the roots of the determinant of the coefficient matrix, we obtain a series of natural

vibration modes of the system.
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3.5 Orthogonality condition and ODE

Solving the eigenvalue problem and letting the external torque Tq equal to zero re-

sults in the free vibration modal shape. After some manipulation we can obtain the

orthogonality conditions as follows:

jL

Jo CbitbiPdx IHC0)0i(0) = ITSij,

if i = j

if

EI^01103'!dx

where cbi(x) is the eigenfunction of the ith mode. IT is the sum of moment of inertia

of arm and hub around the motor axis. co i is the ith pinned-free mode.

Using the assumed-mode method the system variables can be expressed as:

00

y(x,t) = E oi (x) q,(t),^(3.10)

where the space dependent function cb i (x) is the eigenfunction of the ith mode, the

time dependent function qi (t) is the generalized coordinate of the system. Substitut-

ing into the energy expressions in the Lagrange equation we can obtain a series of

decoupled ordinary differential equations in the form:

1
4qi) =^i = 0, • • , oo,^(3.11)

sij =^
01

(3.7)

(3.8)

(3.9)

where w i is the ith vibration mode, i is the ith damping factor.
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3.6 State space description

By truncating the series of ODE's we can rewrite the model as a low order state space

description as follows (retaining 3 vibration modes):

X = AX bU, y = CX, (3.12)

U = Tq , X = qo 40 q1 q71^q2^q2 q3 (3.13)

0 1

0 —a

0^1
2 -26W1

0^1

-2644/2

(3.14)

0^1
2
3 -26w3

A =

0

4(0)

0

0/1 (0 )

0

4 (0)

0

4(0)

(3.15)
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1 0^c5(0)^0 0'2 (0) 0^03(0)^0

L 0 01 (L) 0 02(L) 0 03(L) 0
C =

^

^ (3.16)
0 0 Ig(Z) 0 01(Z) 0 '§g(Z) 0

0 0 g(R) 0 24(R) 0^(R) 0

where U is the torque input. y is the sensor output vector. X is composed of position

and velocity variables of the rigid and first three flexible modes. co, is the ith modal

frequency. a = 0.2 is the viscous damping in the actuator. .0(0) is the modal slope

of the arm at the hub end. L is the length of the arm. 0z(L) is the modal shape at

the tip of the arm. (5 is the thickness of the arm. 0/1,(x) is the ith modal curvature

at position x on the arm from the hub. Z, R are the distances from the strain gauge

locations to the motor shaft axis.

3.'7 Strain gauge selection based on analytical model

Five pairs of strain gauges are cemented along the aluminum beam to measure vibra-

tion. If they are all used, the signal obtained would be redundant since the rank of

the output matrix that contains all the sensor outputs is only 4. Therefore, only four

sensors are actually used. They are the joint angle optical encoder, the tip deflection

PSD, and the two pairs of strain gauges at locations near the motor hub (denoted as

location R) and near the middle of the arm (denoted as location Z). The selection

of the sensors is determined by an elimination method. We calculate the eigenvalues

of the matrix C * CT (CT * C would give the same results). When one more sensor

is used, the C matrix will have one more row. If the rank of the C matrix does not

increase by 1 (which means the new eigenvalue obtained in C * CT is zero) then the

newly added row is linearly dependent on the other rows of the C matrix. Therefore,
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this new sensor signal is redundant and can be eliminated. If the corresponding eigen-

value to the newly added sensor is very small (though not zero), we may conclude

that the newly added sensor is almost redundant. In such a case, this sensor only

supply little additional information to the original measurements. Therefore, again,

this sensor may be neglected. In this way we select the sensors for control purposes.

3.8 Why use the frequency identification method?

The identification of various parameters of the derived continuous-time state- space

model is performed using the frequency identification method. By applying a sinu-

soidal signal sweeping through a range of frequencies, one can accurately determine

the resonance and the counter-resonance modal frequencies. Thus we obtained the

pinned-free modal frequencies wi and the cantilevered modal frequencies Sli. By apply-

ing constant frequency sinusoids at resonance frequencies, then shutting them off and

recording the decaying oscillations, one can also identify the modal damping factors.

Then the modal slope parameters 0:(0) are calculated based on these information.

Now by applying steady constant frequency sinusoids at resonance frequencies and

recording the sensor signals, one can further use the recorded data together with the

modal slope parameters to calculate the modal shape parameters 0,(L) and modal

curvature parameters 01(x).

The reasons for using such frequency identification method instead of the other more

popular system identification methods are listed below:

Firstly, the frequency method is widely acknowledged among the researchers working

on flexible structures as the most accurate method for identifying the model of weakly
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damped flexible structures.

Secondly, the standard discrete-time identification methods such as the least squares,

the instrumental variable, or the lattice filter etc, suffer a series of drawbacks when one

desires to design controllers based on the derived continuous-time physically mean-

ingful model. These drawbacks are:

• The model most often used in applying these methods is the discrete-time

ARMA model. Therefore, these methods are only well-suited for controller

designs based on such a model.

• In the ARMA model, the physical meanings of the estimated parameters are

lost which is undesirable.

• It is very difficult, if at all possible, to accurately transform the ARMA model

back to the original continuous-time state-space model.

Thirdly, these discrete-time identification methods are known to have problems in

accurately estimating the parameters for lightly-damped systems. Modifications on

these methods may solve some of the problems, but most of them are quite ad hoc. It

is often quite difficult to determine precisely what changes are necessary to improve

their performance.

Based on the above analysis, we adopted the frequency identification method in this

research.
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3.9 IRPRBS identification of modal frequencies

The identification of the modal frequencies is firstly done using an Inverse Repetitive

Pseudo-Random Binary Series (IRPRBS, see Appendix B) as the exciting signal which

is generated in software by adding a square wave sequence on mod 2 basis with an

ordinary Pseudo-Random Binary Series (PRBS). Compared with the ordinary PRBS

this exciting signal has the following advantages:

a) The cycle length is doubled

b) Its autocorrelation has no constant DC bias.

The reason for choosing this exciting signal is that it can be simply designed to have

a certain exciting frequency range and intensity. Besides it can be easily generated

in real time using only a few assembly language instructions. The experimental

exciting signal and the response of the sensors are recorded and by using the spectrum

analysis function in MATLAB (spectrum) we obtain the magnitude of the plant

transfer functions.

The IRPRBS is designed to give full excitation within the frequency range of 1Hz ,--,

90Hz. The specifications of the IRPRBS can be determined following the empirical

formula [18]:

A < 0.3 * Tm-, Np f 1m, , (3.17)

where A is the time interval of each random number within it the exciting signal

keeps a constant value. Np is the length of a cycle of IRPRBS signal. fm and fM are

the lower and upper frequency bounds of the exciting signal. Given fm and fM as

chosen above, the values of A and Np can be calculated as:

A < 0.3 * 1— = 0.3̂ 0.003333 sec. = 3.333 mS,
fM 90.0

(3.18)
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11
Np = 512 > f A

^1 * 0.003333
 = ^ 300.^(3.19)

m 

The actual parameters adopted are: The time interval for each random number is:

A = 3.333 mS (i.e. 300 Hz).

The cycle length is:

Np = 1024.

The shifting register used to generate the PRBS is of 9 stages. The feedback signal is

taken from the 5th and the 9th stage. The cycle length of the produced PRBS is 512.

Adding a square wave on mod 2 basis we obtain an IRPRBS signal of cycle length

1024. The voltage level is set to 0.31 v (for binary "1") or -0.31 v (for binary "0").

Before collecting data, one cycle of the IRPRBS signal is sent to the system as the

pre-exciting signal.

The modal frequencies thus determined are quite close to the actual values. However,

further raising the accuracy is hindered by the hardware limitations. For example, if

the IRPRBS cycle length is 512, the collected data length is 1024 (2 cycles) which is

sampled at 300 Hz, the calculation is based on 512-point FFT then the magnitude

of the transfer function is given out in 256 data points evenly spaced over 0 r•- , 150

Hz frequency band. In other words, the resolution for the smallest frequency division

is: —
150
256 Hz. Increasing the data points can raise the resolution but is limited by the

memory size of the computer. If the same length of the exciting signal and response

are collected as above but at a sampling frequency of 1000Hz, and 512-point FFT

is used, then the magnitude of the transfer function is given out in 256 data points

evenly spaced over 0 ti 500 Hz frequency band, i.e. the resolution of the smallest
500

frequency division differentiable is: —
256 

Hz.
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3.10 Sinusoidal identification of modal frequencies and damping factors

Based on the results of IRPRBS identification, the sinusoidal identification is then

conducted to determine accurately the modal parameters. In this experiment a sine

wave exciting signal is applied to the plant with its frequency sweeping through the

small regions containing the modal frequencies we already determined in the IRPRBS

identification. By monitoring the input signal frequency and the joint angle readings,

the resonance and counter resonance frequencies observed as peaks and valleys can

be accurately determined.

One problem that was encountered initially is the discrepancy between the analytical

and the identified modal frequencies. It is found that this is caused by how we define

the arm length. In the analysis, for the cantilevered modal frequencies we have the

simple relationships to derive the analytical values as follows:

- p
E * 1̂  * A? /(271-)* (L4 ) (3.20)

where fci is the ith cantilevered modal frequency. A i is the eigenvalue determined

from the cantilevered frequency equation:

F 1 + cos cosh = 0.^ (3.21)

In the above two equations E is Young's modulus which is looked up in engineering

manuals for materials of this type of aluminum. I is the cross sectional moment of

inertia which can be calculated from the cross sectional size of the arm. p is the linear

mass density and is obtained from the quotient of total weight of the aluminum arm

divided by the physical length of that part. These values are all quite accurately

known or obtainable. The only variable that seems to have influenced the analytical
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Figure 3.2: Flexible arm length definition

Table 3.1: Cantilevered modal frequencies, analytical and experimental

mode # identified analytical
L=0.97 L=0.989 L=1.001

1 2.53 2.7156 2.6123 2.55
2 15.85 17.019 16.371 15.981
3 44.35 47.653 45.840 44.747

result is how to define the length L of the arm (not in the case for determining p, in

that case the length is the physical length of the aluminum part). The flexible arm

length may be defined in three ways as is shown in Fig. 3.2.

One is the length of 0.97 M, which represents that length of the aluminum arm that

juts out of the clamping mass. Another length is 0.989 M, which is the physical length

of the aluminum beam. Still another length is 1.001 M, which is measured from the

arm tip to the motor shaft axis. The identified cantilevered modal frequencies and

the analytical values based on these three definitions of length are listed in Table 3.1.

From the table we can see the length L = 1.001M gives the closest analytical result
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to the identified values. The maximum discrepancy between the identified and ana-

lytically determined modal frequencies under this condition is within 2%. Therefore

this value is adopted in all the subsequent analysis.

The damping factor e n 's are also identified via sinusoidal excitation. At resonance

frequency, shut down the exciting sine wave and record the decaying oscillation af-

terwards. The recorded data then pass through a properly chosen Butterworth filter

to eliminate the DC bias or low frequency drifting. Taking absolute value so that the

negative half is folded to the positive side and abstracting the envelope that covers the

peaks of this decaying oscillation we can obtain the damping factors via least-square

curve-fitting.

3.11 Identification of 0:(0), 0,(L) and 0:'(x)

The modal slope 0:(0) is determined using the relationship:

2
3 (—^+ 1)1 ^TT ^11i 

/Ts(s + a) 11
)+ 1

1^1 3 ^kkii(o)}2 Ehs(s+ a) + IT 1=1 S2 + gtwis + co?
(3.22)

where the LHS is the transfer function derived analytically from the PDE and its

boundary conditions. S2, is the ith cantilevered mode frequency. 6 is the ith can-

tilevered mode damping factor. The RHS is calculated from the state-space equation.

Since the frequencies are accurately known and we know 4 .i ((i is generally close to

therefore we simply assumed it to be 0.01), CO) can be calculated immediately.
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(s)For identifying Oi (L) we use the transfer function of 
0(s)
u(s) 

and Ytp ^calculated fromu(s)
the state-space model. It can be easily shown that

YtpUcoi) 4(4 =^.^0.(0),004 2

(3.23)

where y tp is the tip position, 0 is the joint sensor output. Using the already known

qt(0) and the recorded data at resonance frequency we can calculate cbi(L). Since

0:(0)'s always take positive values according to convention, the sign of Oi(L) is deter-

mined by checking the phase of ytp with respect to 0 at the resonance frequency.

It is interesting to note that for this plant all of the first 3 flexible modal shapes

c6i(L)'s take negative values. This means that all the three flexible modes tend to

destabilize the system. In Schmitz's [69] plant it was found that Oi (L)'s have alternate

signs with increasing i and the odd numbered cbi(L)'s which take negative values tend

to destabilize the plant while the even numbered Oi (L)'s which take positive values

tend to stabilize the plant.

The modal curvature q5':(x) can be similarly found using the transfer function YsG(s) 
u(s)

and 
(s
-0(s) 

calculated from the state space equation:
u)

0/:(x) = 
YsG(x)Owi) 2

0:(0),
0 (iwi)^6

(3.24)

where ysG is the strain gauge sensor output. The sign of 4):/(x) is determined by

checking the phase of the recorded data at resonant frequency
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3.12 Identification of IH

The moment of inertia of the motor hub IH consists of the moment of inertia of the

motor rotor, the clamping mass and the PSD with the lens and the holding case

mounted on the clamping mass. It is also identified using the pinned-free modal

frequency relations expressed in the following equations:

wi
^EI 

A2=
pL4 2 '

wi = 271- fpi ,

F(A) = 2(sin A cosh A — cos A sinh A + EA 3 (1.0 + cos ) cosh A)) = 0,

IH
6^3IB'

where A i is the eigenvalue of the pinned-free frequency equation (3.27). IB is the

moment of inertia of the beam which can be calculated quite accurately. p is the

aluminum beam linear density. L is the flexible arm length. E is Young's modulus. I

is the cross-sectional moment of inertia of the beam. fpi is the ith pinned-free mode

frequency.

Given different IH, from the above equations we can obtain different eigenvalues A i .

Since all the other physical parameters used in the calculation are quite accurately

known or obtainable, we can let the IH take the value when the analytically calculated

pinned-free modal frequencies get best match with the identified values. The IH thus

obtained has the value:

IH = 0.00044 (Kg * M2 )^ (3.29)

The analytical values thus determined are listed in Table 3.2 together with the exper-

imentally identified pinned-free modal frequencies. The two sets of frequencies agree

to within 5% of each other.

(3.25)

(3.26)

(3.27)

(3.28)
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Table 3.2: Pinned-free modal frequencies, analytical and experimental

mode # Analytical
(Hz)

Experimental
(Hz)

1 11.020 10.42
2 34.308 33.02
3 66.247 65.86

3.13 Model refinement

The accuracy of the state-space model parameters identified in the previous subsec-

tions is further improved through fine tuning. This is done by comparing the Bode

plot of the system obtained in section 3.9 using the IRPRBS excitation with that of

the identified model, and modifying the identified parameters accordingly. In figures

3.3 ti 3.14, the solid line curves are obtained with the spectrum function, using the

recorded IRPRBS input and the measured output signals. The smooth dashed-line

curves are the Bode plots of the state space model identified using the frequency

identification method. Since the solid-line curves were obtained consistently by ap-

plying spectrum analysis directly on different recorded data sets, it is assumed to be

accurate and was used as the reference for model refinement. We then compare the

Bode plots of the dashed-line curve with the solid-line curve within the frequency

range of the first three flexible modes. The modal parameters identified and used in

the dashed-line curve are further modified so that the new dashed-line curve based

on the modified parameters gets closer to the solid-line curve. Since the modal slope

parameters (0) are calculated directly from the system's modal frequencies which

are quite accurately known, these parameters are kept unchanged. Only the modal

shape parameters ¢ii (L) and modal curvature parameters q'(x) are modified. In view
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Figure 3.3: Transfer function before model refinement (tip PSD, unloaded)

of the fact that each curve corresponds to only three parameters of either modal slope

or modal curvature and each of these parameters only affects that portion of the Bode

plot that is around the frequency range of that mode, it is fairly easy to further mod-

ify these parameters one by one to observe the dashed-line curve getting closer and

closer to the solid-line curve in the the corresponding frequency ranges. Fig. 3.3 to

Fig. 3.8 show the results for tip sensor and strain gauges before and after the model

parameter refinement in the unloaded case. Fig. 3.9 to Fig. 3.14 show the results for

tip sensor and strain gauges before and after the model parameter refinement in the

loaded case with a cylindrical load of 382.5 gram fixed at the tip.

The analytical, identified and refined plant model parameters for the unloaded case

are listed in Table 3.3.
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Figure 3.4: Transfer function after model refinement (tip PSD, unloaded)
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Figure 3.5: Transfer function before model refinement (strain gauge Z, unloaded)
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Figure 3.6: Transfer function after model refinement (strain gauge Z, unloaded)
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Figure 3.7: Transfer function before model refinement (strain gauge R, unloaded)



A

0

t

6-
,

Chapter 3. MODELING, IDENTIFICATION AND MODEL REFINEMENT 49
10-2

A 10 -3

2
0

10 -4

10-5
0 20^40

^
60
^

80^100
^

120
^140

Frequency ( Hz.)

Figure 3.8: Transfer function after model refinement (strain gauge R, unloaded)
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Figure 3.9: Transfer function before model refinement (tip PSD, loaded)
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Figure 3.12: Transfer function after model refinement (strain gauge Z, loaded)
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Figure 3.13: Transfer function before model refinement (strain gauge R, loaded)
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Table 3.3: Model parameter values (unloaded case)

Parameters Analytical Identified Refined
wl (Hz) 11.020 10.42 10.42
w2 (Hz) 34.308 33.02 33.02
W3 (Hz) 66.247 65.86 65.86
D i (Hz) 2.55 2.53 2.53
11 2 (Hz) 15.981 15.85 15.85
123 (Hz) 44.747 44.35 44.35
6 N/A 0.011 0.011
6 N/A 0.010 0.010
6 N/A 0.0077 0.0077
Ci. N/A 0.01* 0.01
C2 ditto ditto ditto
6 ditto ditto ditto
4(0 ) 3.0974 3.1475 3.1475
012(0 ) 6.2006 6.2090 6.2090
03(0 ) 9.6058 10.3355 10.3355
01(L) -1.1250 -4.4005 -3.0
02(L) 1.0879 -5.2657 -3.5
03(L) -1.0151 -10.8004 -7.0
0'(z) 12.8847 13.6146 10.0
02(Z) -2.0621 -8.42935 -3.0
qS'AZ) -64.187 -89.8760 -40.0
0/1' ( R ) 1.9734 2.46175 5.0
0/(R) 19.0494 21.32915 18.0
03(R) 82.4066 83.3109 140.0

* Assumed value.
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Figure 3.14: Transfer function after model refinement (strain gauge R, loaded)

It is found that the values obtained after the refinement deviate quite a bit from the

analytical values. This is especially true for 02 (L); it even changed sign.

The analytical, identified and refined plant model parameters with a payload of 382.5g

at the tip and the pinned-mass boundary conditions are listed in Table 3.4. From the

table we can see that when the arm is loaded the modal frequencies become lower.

Other modal parameters are also changed.

3.14 Practical controllability study

Using the pinned-free boundary conditions and the small deflection assumption we

obtained a linear state space description as was presented in section 3.6. To evaluate

the practical controllability of the system, the model is truncated to contain:
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Table 3.4: Model parameter values (loaded case)

Parameters Analytical Identified Refined
wi (Hz) 7.7838 7.38 7.38
w2 (Hz) 28.1836 26.68 26.68
w3 (Hz) 58.4335 57.20 57.20
fi i (Hz) 1.2077 1.18 1.18
12 2 (Hz) 11.8811 11.65 11.65
Q3 (Hz) 37.0271 36.50 36.50
6 N/A 0.0151 0.0151
6 N/A 0.0088 0.0088
6 N/A 0.0071 0.0071
Ci N/A 0.01* 0.01
(2 ditto ditto ditto
(3 ditto ditto ditto
4(0 ) 4.398 4.398 4.398
4(0 ) 9.910 9.910 9.910
0;(0 ) 16.564 16.564 16.564
01(L) -0.4045 -4.8961 -4.8961
02(L) 0.2439 -10.0271 -8.0
q3 (L) -0.1676 -17.2504 -17.2504
g(Z) 14.5811 15.2093 15.2093
g(Z) 15.7103 13.3294 13.3294
.tki (Z) -103.67 -129.7719 -90.0
0'1(R) 1.7572 2.1947 2.1947
g(R) 22.672 24.1431 24.1431
g(R) 116.46 109.23 170.0

* Assumed value.
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Case 1. Only the rigid mode, n = 2.

Case 2. The rigid mode plus the first flexible mode, n = 4.

Case 3. The rigid mode plus the first two flexible modes, n = 6.

Case 4. The rigid mode plus the first three flexible modes, n = 8.

where n is the system's order of the truncated model. For each case the control-

lability matrix is calculated. The determinant, rank and condition number 1 of the

matrix are listed in Table 3.5. The condition number of the controllability matrix is

taken to be a measure of the difficulty involved in controlling the system. The bigger

the condition number is, the more difficult it will be to control the system in practice.

Then, it is purposefully assumed that the first three flexible modes are at lower

frequencies (i.e. the arm assumed to be more flexible). The frequencies are assumed

to be at:

fl = 2.0 Hz

12 = 7.0 Hz

= 11.0 Hz

All the other modal parameters are assumed to be the same as the identified ones.

'Condition number of a matrix is the ratio of its largest singular value to its smallest singular
value
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Table 3.5: Controllability study

Case Determinant Rank Condition #
1) -6.93e+02 2 1.221e+00
2) +5.75e+12 4 1.221e+04
3) -2.81e+34 6 4.081e+10
4) +1.84e+69 6 oo
5) +3.10e+51 8 1.431e+12

The same controllability study procedure is repeated and the result is shown in Table

3.5, case 5.

From the data listed in Table 3.5, we can acquire the following information:

• When the arm is more rigid, its flexible modes will have higher modal frequen-

cies. It is more difficult to actively control the flexible modes, or even not

possible as is shown in case 4.

• If only the rigid mode is considered (case 1), it is perfectly controllable and the

control is easy to realize since the condition number is small. However, we need

to limit the control signal band width to avoid exciting vibration. Thus the

system response would be slow.

• The case of rigid mode plus first flexible mode (case 2) is already a bit difficult

to control since the condition number is already quite big.

• The case of rigid mode plus first two flexible modes (case 3), though is still

controllable, is quite difficult to do so.
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Table 3.6: Controllability study of Schmitz's model

Case Determinant Rank Condition #
Original Schmitz's model 3.42e-1-39 8 1.01e+11
Schmitz's model with
freq. quadrupled 9.64e+53 6 1.61e+15

• The case of rigid mode plus first three flexible modes (case 4), is not controllable.

Obviously the newly added higher mode position and velocity states are not

controllable.

• The case of a model containing more modes (> 4) is not controllable.

• Lowering the frequencies (case 5), the originally uncontrollable system become

controllable again. This means that the more flexible the arm is, the easier to

actively control the flexible modes.

Then Schmitz's model [69] is used to check the controllability. Schmitz's arm is

much more flexible than ours. The modal frequencies of the flexible modes in our

case are more than four times those in his case. The original Schmitz's model and

his model with the flexible mode frequencies quadrupled are used to calculate the

controllability matrices. All the other parameters are assumed to be unchanged.

Again, the determinant, the rank and the condition number are calculated. The

results are listed in Table 3.6.

As expected, the same result is observed as we can see the rank of the controllability

matrix drops by 2 when the modal frequencies are quadrupled. Therefore it is con-

firmed again that if the arm is more rigid (such as in our case) it is more difficult to
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get the higher frequency flexible modes under active control.

It should be noted that there is no absolute division between the controllable and the

uncontrollable cases. The criterion used here is the singularity of the controllability

matrix. It is determined by comparing to a 'zero-threshold' value. If one or more of

the singular values of a matrix are smaller than this value, the matrix is considered

to be singular, otherwise to be nonsingular. The controllability study here is based

on this MATLAB defined threshold.

It is worth emphasizing that the study presented so far in this subsection is meant

to evaluate the difficulty in controlling the system in practice, where finite precision

arithmetic and numerical problems are inevitable. Therefore the results obtained

may not correspond to theory where infinite precision arithmetic is assumed to be

available and used.

If one desires to pursue a more theoretical analysis of the system controllability, then

reducing the (A, B) pair into the Hessenberg form may be a numerically more stable

and precise method for the study. This is particularly true for a system with widely

spaced modes.
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EXISTING CONTROL LAW IMPLEMENTATION

4.1 Introduction

Several existing control laws (PD, LQG, etc.) are implemented. The purpose is to:

• verify the obtained dynamic model by comparing the experimental results with

the simulation ones.

• find discrepancies due to various assumptions and neglected or unmodeled dy-

namics like frictions etc. and make appropriate amendments.

• check and correct all the implementation-related issues like sensor circuit DC

bias, etc..

• provide a baseline for performance comparison with the new control laws that

will be developed during this research.

59
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4.2 PD control based on rigid joint model

When the flexible modes are not considered, the plant model becomes very simple.

The transfer function from torque to joint angular position is:

^0(s)^1 
^u(s)^/Ts(s -I- a) .

A proportional plus derivative feedback law for this rigid joint model is given by:

u(s) = —Ifp0(s) — KdsO(s),^ (4.2)

where 0(6) is the joint angle which is measurable via the motor optical encoder. sO(s)

is the joint angular velocity which is approximated by the difference of the joint

position readings in adjacent sampling periods divided by the sampling period. Since

the optical encoder is a digital device free of analog circuit noise, no extra noise is

introduced by using this approximation method. The block diagram of the closed

loop system is shown in Fig. 4.1, where Kr is in the unit of N • M/rad. Kd is in the

unit of N • M sec/rad.

Fig. 4.1 can be converted through a series of block diagram manipulation into the

form shown in Fig. 4.2.

Therefore the closed-loop transfer function from the commanded joint position to the

actual joint position is expressed as:
Kr

0(s) =^IT^ co 2

Od(s)^s(s + a Kd Kp -

^

IT^IT

where

(4.1)

s2 gwn s con2 (4.3)

Kp

IT '

(4.4)
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6 01
—..--n--11b.

ITS + ITa + Kd

Figure 4.1: Block diagram of the rigid joint model closed-loop PD control

e a

Figure 4.2: Rigid joint model PD control, after block diagram manipulation
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K= (a + —d )/(2wn ). (4.5)

To avoid exciting the flexible mode, the closed loop bandwidth w n should be chosen

to be lower than half of the first cantilevered mode frequency fa . In our case fa =

2.53 Hz (unloaded case). The closed loop bandwidth may be chosen to be 1 Hz. The

controller parameters thus determined are:

wn = 27r * 1 = 27r,^ (4.6)

Kp = Wn2 * = 47r2 * IT = 5.8483.^ (4.7)

As we can see Kp can only take rather small values to avoid exciting the flexible

modes.

Kd can be determined by specifying the damping factor to be:

^

C = 0.707,^ (4.8)

^Kd = ( 2CCOn — a) * IT = 1.2865.^ (4.9)

The experiments results showed that the above controller gains lead to oscillation

so this set of parameters is abandoned. Then the closed-loop bandwidth is further

reduced to 0.8 Hz. The damping factor remains unchanged. The calculated controller

parameters are:

^

Kp = 3.7429, Kd = 1.0233.^ (4.10)

The system response and control signal are shown in Fig. 4.3 and Fig. 4.4, where

the desired trajectory 0d is a step signal with amplitude 0.1m/L, L = 1.001m is the

length of the arm.

As we can see, there exists steady state error. Besides, the response is slow.
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Figure 4.3: PD control based on rigid joint model, system's response
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Figure 4.4: PD control based on rigid joint model, control signal



Chapter 4. EXISTING CONTROL LAW IMPLEMENTATION^64
0^

-0.02

-0.04

eo -0.06

-0.08

-0.1

2^4^6^8^10^12^14^16^18^20

Time (sec.)

Figure 4.5: PID control based on rigid joint model, system's response

To overcome the steady state error, integral action is added to the algorithm. PID

velocity algorithm is used. The parameters used are:

Kp = 3.7429, Kd = 1.0233, Ki = 0.4.^(4.11)

The response and control are shown in Fig. 4.5 and Fig. 4.6.

4.3 Tip position PD control

Tip position PD control based on the flexible link model is then tested. The closed-

loop block diagram is shown in Fig. 4.7. The open-loop pole/zero plot is shown in

Fig. 4.8.

4).12
0

The tip position is measured via joint optical encoder and the tip PSD. The tip
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Figure 4.6: PID control based on rigid joint model, control signal
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Figure 4.7: Block diagram for tip position PD control
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Figure 4.8: Open-loop pole/zero locations

0

A

0

velocity signal is approximated by the difference of the two adjacent sampled position

values divided by the sampling period. In this case, the tip PSD signal may contain

some noise. Therefore this kind of approximation may undesirably amplify the noise

signal. The control algorithm derived based on this approximation is given below.

The control signal is:

u(s) = —Kpytp (s) — Kdsytp (s).^(4.12)

Divide each term by u(s) we have:

Ytp1 + Ifd (s 
Kp

Kd
 
) 17;- = 0 .j. (4.13)

t sThis is the characteristic equation of the closed-loop PD control system where Y
u(
-P

() is
)

the open-loop motor torque to tip position transfer function. From (4.13) we can plot

the root locus following the procedure: Fixing
Kd

 to a given value, then increasing
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Figure 4.9: Tip position PD control, tip response

Kd we can obtain one root locus and determine the desired closed-loop poles and the

corresponding feedback gains.

The experimental results are shown in Fig. 4.9 and Fig. 4.10, where the desired

trajectory yd is a 0.1m step signal. The controller parameters are:

Kp = 4.0, Kd = 0.8.^ (4.14)

When PD control is applied to tip position control, the gain cannot get large. This

is because the NMP zero at the right half s plane "attracts" the closed loop poles

toward the right half s plane. Fig. 4.11 shows the root locus for tip position PD

control.

-0.1 ^
0

Then the PD control experimental results are compared with the simulation results

based on the truncated model. Some differences exist. It is speculated that this is
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Figure 4.10: Tip position PD control, control signal
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caused by the friction at the joint. Friction is generally nonlinear and dependent on

such factors as velocity and pressure between the two moving surfaces and also on

the surface composition. Analytically friction can be broken down into three distinct

components:

• viscous friction, which has linear relationship between frictional force and ve-

locity.

• static friction, which prevents initial motion. Once the motion begins this force

vanishes.

• Coulomb friction, also called running friction, which has a constant magnitude.

Its sign is dependent on the direction of the velocity.

It is quite difficult to determine the various frictional effects. We tried to add it in the

simulation process to see the effects. The result gets quite close to the experimental

result as is shown in Fig. 4.12, where the viscous friction added is: 0.08 * 0, the

Coulomb friction added is: 0.003 * sign(è).

Then we try to include these effects into the plant model. Since viscous friction is

linear, it's quite easy to incorporate it into the plant model. The viscous friction

torque is included in the model as:

AX bU — bf,,

^

—f, = —0.08 *. (40 + 4(0)41 + (4(0)42 + 4(0)6).^(4.15)

Coulomb friction is nonlinear, so it is difficult to include it in a linear model. It is

therefore neglected. The pole/zero plot for friction-included model is shown in Fig.
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Figure 4.12: Experimental vs. friction-added-simulation results for tip PD control

4.13.

The inclusion of friction into the system's model has almost no influence on modal

frequencies. However, the enhancement of the modal damping factor is obvious.

Therefore in a certain sense its existence is not a bad thing because it increases the

damping of the system.

It is observed that friction is position-dependent. This may be caused by nonconfor-

mal bearing parts, nonalignment of the motor shaft or unbalanced load etc.. This

further complicates the control problem.

-0.1 ^
0
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Figure 4.13: Pole/zero locations of friction-included model

4.4 Tip position LQG control

Tip position LQG control is also conducted. The discretized LQG algorithm is given

in Appendix C. The plant model used to design the controller is an 8th-order viscous

friction-included model. The performance index is chosen to be:

J^ 1 (00

^

= —2 Jo {[Ytp^
1 0^yip^

u * R * u} dt,^(4.16)
0 T 2̂ ytp

where y ip is the tip position error, ytp is the derivative of y ip . The physical meaning

of this index is obvious: the tip position error y ip and its velocity yip are weighted.

Increasing T will decrease the velocity and increase the damping. This performance

40
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index can be written in state variable form as:

L^0

0^* L

ch(L)^0

= —1.r) {XT^0 T * 01(4
2 o^02(L)^0

0^r * q¢2 (L)

03 (4^0

0^r * 03 (L)

L^0^01M^0^q2(L)^0^c63(L)^0
X +

0 T * L^0^T * 01(L)^0^*q2(L)^0^T * 03(L)

U * R * dt =
2^

{XTQX uRu} dt, (4.17)
o

where

X = go 40 qi 41 q2 q2 q3 q3 I • (4.18)

In a real implementation, the weighting parameter r is broken down to 71 for each of

the flexible modes.

The first run of experiments is performed. Various weighting parameters are tested

based on a trial and error method. The best result achieved is the slewing time of

about 320 ms for a tip excursion of 10 cm.

The simulation is also performed. There are two points in the simulation results that

are quite different from the experimental ones. One is in the initial "dip" (i.e. the

motion opposite to the set point direction). The simulation "dip" is much larger than

the experimental one, see Fig. 4.14.
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Figure 4.14: Initial "dip", experiments vs. simulation

The other point is that the simulation results have a slower tip response than the

experimental results. Increasing the gain inside the loop does not solve the problem.

To find the problem, the weighting parameters are changed and a different group of

controller parameters are obtained. Applying this group of controller parameters to

the same model, we get simulation results closer to the experimental results. Checking

the controller feedback gains thus obtained, it is found that the feedback gain for the

rigid mode almost doubled while the other gains for the flexible modes changed only

slightly. Then the model parameter (AO) is modified and increased from 1.0 to 3.9.

Using the same controller feedback gains as in the experimental case and the new

plant model, we run a new series of simulation. The results are quite good. The

simulation becomes quite close to the experimental results, see Fig. 4.15.

After that the controller is redesigned based on the modified model with new 00(0)
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Figure 4.15: After modifying q0(0), experiments vs. simulation

value and a new run of experiments is performed. The responses show some improve-

ments in the performance of the system. The response time is shortened to about

230 ms for the same tip excursion. Fig. 4.16 ti Fig. 4.18 show the control results

based on LQG control using only tip and joint sensor measurements. The controller

weighting parameters are chosen as:

TO = 0.08, r1 = 0.09, r2 = 0.09, r3 = 0.09,

R = 0.00001, Qnc = 160.0, R„, = 1.0,

where Qn , is the continuous time systems noise spectral density, R„ is the continuous

time sensor noise spectral density.

-°.12
0

Fig. 4.19 ,-, Fig. 4.23 give the control results of LQG based on sensor measurements of

tip deflection, joint position, strain gauge Z and strain gauge R. The control weighting
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Figure 4.16: Tip position, LQG control, only tip and joint sensors are used
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Figure 4.17: Joint position, LQG control, only tip and joint sensors are used
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Figure 4.18: Control signal, LQG control, only tip and joint sensors are used

parameters are chosen as:

= 0.1, 71 = 0.11, 72 = 0.11, 73 = 0.11,

R = 0.00001, Qnc = 80.0, Rjt = 10.0, Rtp = 1.0, Rz = 0.1, RR = 0.1,

where Ra t , Rep, RZ, RR are sensor noise spectral densities.

4.5 Performance evaluation

The LQG performance achieved is compared with Schmitz's results. Schmitz claimed

in his thesis [69] that the shortest time duration for his flexible arm tip to complete

a 10 cm excursion is about half the period of the first cantilevered frequency. His

experimental setup is very flexible and thus has a very low first cantilevered mode

^

frequency. Under this low frequency, 1 ^a relatively long period. Schmitz took
2.fa
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Figure 4.19: Tip position, LQG control, four sensors used

      

-0.02

- -0.04

:17; -0.06
Q
.E
O
• -0.08

-0.1

                         

43.12
0

    

20^40^60^80^100^120^140^160^180 200

Time (0.01 sec.)
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Figure 4.21: Strain gauge Z, LQG control, four sensors used
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Figure 4.22: Strain gauge R, LQG control, four sensors used
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Figure 4.23: Control signal, LQG control, four sensors used

about 1 second to control the tip to the set point 10 cm apart.

In our case we tried the same control scheme (the algorithm is modified a little). The

best achieved results for the same tip excursion is about 230 ms. Though it is four

times faster than Schmitz's case, it is still not up to the expected 
1

—. In our case,
2ici

1
Li = 2.5 Hz , —^0.2 sec. = 200 ins. We believe the controller has been well

2Li
tuned and the control signal is not clipped. It seems the best achievable results is 230

ms. It is also doubtful whether the expectation of achieving response time of –1– is

universally valid for the whole range of flexible arms ranging from very flexible ones

to the quite rigid ones. Anyway, this is the best results achieved on our setup. We

will use it as the baseline for future comparisons with the newly developed controller

designs.

-300 ^
0



Chapter 5

VARIABLE STRUCTURE SLIDING MODE CONTROL (VSSMC)

5.1 Introduction

In this chapter we present a new controller design method for the noncolocated tip

position control of a flexible one-link manipulator arm based on variable structure

sliding mode systems theory [62]. The method based on the model given in Chapter

3 and Appendix A is presented in section 5.2. The separate first order observer design

is given in section 5.3. The simulation results are provided in section 5.4, and finally

the proposed design is analyzed in section 5.5.

5.2 Model and controller design

By modal truncation we obtain a lower order state space description as follows (re-

taining 2 flexible modes):

T
= AX bU,^X = qo 40 q1 41. q2 42 

^(5.1)

80
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0^1

— 24.2c02

0

0 10 (0 )

0

c (0 )

0

0 '2 (0 )

0 1

0 —a

A=
0^1

,,,2_ —2^1 w1

1
b = ,^(5.2)

U= Tq .^ (5.3)

(5.4)

where wi is the ith flexible mode frequency, 4 .i is the ith mode damping factor, IT is

the combined moment of inertia of the motor hub and the arm, S is the thickness of

the arm, ye is the joint angle measurement, yTp is the tip position measurement, ysGz

and ysGR are the strain gauge measurements. Z and R denote the distances from

the strain gauge locations to the motor shaft axis. This model is easily expanded to

contain more modes or truncated to contain fewer modes.

In variable structure sliding mode control (VSSMC) design, it is essential to use the

error signal and its derivatives to form the coordinates and the switching hypersurface

so that when the state variables slide on the switching hypersurface to the origin, the

system error goes to zero and the desired target state is reached. Among the various

error signals in the system, the variable of most concern is the tip position error.

The output equation is:

go

ye 1 0 01(0)^0^012 (0) 0

YTP L 0 01 (L)^0^02 (L) 0

YSGZ 0 0 'IO i'(Z)^0^14(Z) 0

YSGR 0 0 6 0'3'(R)^0^10(R) 0 q2

q2
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It is well known that in rigid robot control, the tip position can be controlled via joint

angle measurement and control. However, when the link is flexible, the tip position

no longer has the simple fixed relationship with the joint angle. Therefore in a flexible

arm control, it is of crucial importance to use the tip position measurement to achieve

accurate tip position control.

We choose the tip position error and its derivative as the state variables to be con-

trolled. Then the error signal is (assuming the set point to be zero):

Xi = yTp,^ (5.5)

where yTp is the current tip position. x 1 is the tip position error. The derivative of

tip position error is denoted by

x2^TP•
^ (5.6)

The switching hypersurface (a line in this case) can be formed as:

S = x 2 (t) C x 1 (0 = 0,^ (5.7)

where C > 0 is the controller parameter we can manipulate, which determines the

convergence rate when the state is in sliding motion on the switching line.

From (5.7) we have:

x 2 (t) = —Cx i (t),^ (5.8)

i.e.

x 1 (t) = —Cx 1 (t),^ (5.9)

x i (t) = x i (0)e -ct .^ (5.10)

Therefore so long as the system variables stay on the switching line, they will converge

to zero exponentially.
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The next step is to ensure that all of the states will be directed toward the switching

line. This may be satisfied by letting:

SS < 0.^ (5.11)

Using the information contained in the analytical model we have:

= ±2 +

Cx2

= L40 + 01(441 + 02(442 + CS — c 2 yTp

= -C240 — c3qi —c441 — C5 (12 - C642 C9U + CS - C 2 YTPI

(5.12)

where the constant coefficients are:

C2 = La,

C3 = (.401(L),

c4 = 261w031(L),

c5 wy2 (L),

C6 = 262W2 02(4,

C9 = (L010(0 ) + (L)0 11 ( 0 ) + 02(4012 ( 0 ))/IT•

From (5.10 ,-(5.13) we can assume that the VSSMC control U is in the following

form:

U = 6.40 + 7,b4q1 + 15 + 71102 + 0742 + 2 S + YTP •
^(5.14)

By substituting (5.14) into (5.12) we have the RHS of (5.12) in the form of a sum

of the terms containing variables qo , ql , • • •, yTp respectively. Then multiplying both

sides of the equation with S, the resultant RHS of the equation will have to be less

than zero in order to satisfy the inequality (5.11):

(5.13)

SS = (c96 — c2) ,S4o + (c-904 — c3 )Sq l. + • • •^
(5.15)

+ (c-902 + C )S2 + ( c903 — c 2 )syTp < 0.



Chapter 5. VARIABLE STRUCTURE SLIDING MODE CONTROL (VSSMC) 84

The obtained inequality is then further decomposed into a series of inequalities, each

variable has its own inequality.

(c-901 — c2)840 < 0,

(5.16)

(c94'3 — C 2 )syTp < 0.

Actually to make (5.11) hold only one inequality in (5.16) needs to be a strict in-

equality, the others may have the < operators. If we let some of the inequalities in

(5.16) to be equalities, the corresponding variable 0 2 's will not need to be calculated.

In implementation the control signal U is composed of two parts to represent the

equality part and the inequality part separately:

U = U eq + Up .^ (5.17)

For our preliminary study we set the equality part as:

?leg = (69qi + c441 + c5q2 + c642)/c9,^ (5.18)

because these variables seem to have less obvious relationship with the output re-

sponse. For the inequality part:

p 4b1 40 + 4 2S 03YTP, (5.19)

where 01 1 021 03 are obtained by solving the corresponding inequalities separately.

The control signal is determined via (5.17) (5.18) and (5.19). Thus the algorithm

is as simple as a PID controller, yet still possesses the property of a sliding mode

controller. The designated errors, in our case the rigid mode velocity, the distance

to the switching surface and the tip position error as are shown in (5.19) can be

assigned with separate gains in the control signal. In this way we achieve separate
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weighting for a specific error to obtain the desired performance. Furthermore, the

physical meaning for the controller parameters is clear and easily understood.

The maximum value that the parameter C may have in the VSSMC control is worthy

of some discussion. As implied by (5.10), when the representative point is sliding on

the predesigned sliding surface, the response of the system error is similar to that

of an autonomous low pass filter with its initial value being the value of the error

when the RP first hits the sliding surface. Since C is the corner frequency of the

filter described by equation (5.10), it must be chosen to be "low" compared to the

frequencies of the high frequency unmodeled dynamics to avoid exciting vibration. In

view of the fact that fastest response time ever achieved empirically for single flexible

link manipulators is half the first cantilevered mode time period, the value C may

be further limited to be less than 27rfci , where L 1 is the first cantilevered modal

frequency.

5.3 Separate 1st -order observer design

The state variables q07 q1 , q2 are readily obtainable through the measurement equa-

tion, since the submatrix relating these state variables and the output measurements

is nonsingular and thus invertible. The rows in the output submatrix corresponding

to strain gauge measurements are magnified 100 times to get a well-conditioned ma-

trix inverse. The position state variables thus obtained can now be viewed as a new



1 0 0 0 0 0

= 0 0 1 0 0 0

0 0 0 0 1 0

  

go

go

qi

q2

q2

(5.20)

  

40^0 1^qo^0

40 0 —a^40 + 
4(0) u,^(5.21)

IT -

YO = [1 0 ][ q.°
q0
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system's outputs as follows:

Combined with the state space equation (5.1) (5.2), the system's state space descrip-

tion is now composed of the three decoupled subsystems as follows:

qi 

=qi wi —giwi 1 [ 4i2

0^1^

(5.22)

qi^0
CO) u,^i = 1,2^(5.23)

IT

[1 0^ qi i^1,2.^(5.24)

The subsystems (5.21, 5.22) and (5.23, 5.24) are observable. Therefore we can build

an observer for each of them. These observers are of first order and can place the

poles separately according to the time requirements of each mode. The design of the

observers is nothing new so it is omitted here. Readers may refer to [11] for details.

The resulting observer for the mode velocity state variables takes the form:

= ki i* Zi+ki2 qi ki3 (5.25)
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qi = zi + Gi * qi ,^ (5.26)

where Gi is the continuous observer gain.

The continuously designed observers are then discretized to facilitate digital imple-

mentation. The discretized observers have the following form:

zi (k +1) = Da* zi(k) Dj2 * qi(k) Di3 * u(k),^(5.27)

qi (k) = zi (k)^Gi * qi (k),^ (5.28)

where the parameters Di1
, 

Di2, Di3 are calculated as follows:

= exp(kii * T),^ (5.29)

rT^Di1 —1.0
Dj2 =^exP(kii * t)dt * ki2 = ^kxl^* ki2,^(5.30)

0

fT^D21 -1.0
Dt3^exP(kii * t)dt * k ^/c

= ^,^* k i3 .^(5.31)
o.

5.4 Simulation results

A series of simulations was conducted. The controller was designed based on the

system model retaining two flexible modes. However, the plant was simulated with

five flexible modes in addition to the rigid mode. The states were estimated every 25

mS, the control was calculated and applied every 100 mS. 1 The controller parameters

used for C=2.0 are as follows:

1 The time for updating the state estimation and the control were set and verified via simulation.
The time for updating the control was set so that stable control was realized. The time for updating
the state estimation was decided by comparing the controlled result using true states with that using
estimated states. The updating time was decided when there was almost no difference between the
two.
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Figure 5.1: Tip position VSSMC control, C=2.0

C2 + 8.0
" —C — 0.5^ if yyps < 0
W2 = 

C9^
KGs = —CC29— 1.0
^ if yTps > o.

C9
(5.32)

Other z//is do not need to be calculated. The corresponding Ueq is determined via

(5.18). The control signal thus obtained is then multiplied by a factor of value within

(0,1) before applying to the plant. The simulation results are shown in Fig. 5.1 Ps ,

Fig. 5.6.
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Figure 5.3: Tip position VSSMC control, C=3.0
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Figure 5.4: Phase plane trajectory, C=3.0
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Figure 5.5: Tip position VSSMC control, C=4.0
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Figure 5.6: Phase plane trajectory, C=4.0

5.5 Discussion

Variable structure sliding mode control has many attractive features. When in slid-

ing mode, it is robust against external disturbances and plant parameter variations.

Moreover, the system errors converge to zero along prescribed trajectories.

However, designing VSSMC to control a plant which has low damping factors and

highly vibratory poles as well as nonminimum phase zeros caused by noncolocated

sensor/actuator involves special difficulties.

To see the difficulties, let's first analyze the nature of a VSSMC controller. VSSMC

in its essence is an error nullifying algorithm. The controller drives the system's

error and its derivative to a prescribed switching hypersurface. These states (to be

—0.4
—0 3
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referred to as the representative point (RP) ) then keep sliding on the hypersurface

until they reach zero. The switching hypersurface is so designed that it has lower-

order asymptotically convergent characteristics. The controller switches the control

to a different level at each side of the switching hypersurface such that an RP in

the vicinity will be attracted to the switching hypersurface. Under ideal conditions,

when in sliding mode, the switching would occur at infinite frequency. However, in

reality, due to the limitation of the switching mechanism and the nonidealities in the

system, e.g. time delays and small unmodeled time constants, etc. the switching will

occur at a finite frequency. Then the RP will "chatter" around the switching surface

as it converges to zero. Thus in implementing a sliding mode controller, a common

practice is to shorten the sampling period as much as possible so as to alleviate the

"chattering" problem caused by the nonidealities. Then the following special difficulty

arises.

It is well known that some of the NMP plants have a "dip" or "undershoot" phe-

nomenon in their response to a step excitation. The flexible arm tip just has such a

behavior. There is an equivalent time delay of about 50 mS between the instant the

torque is applied and the instant when the tip response is in the direction of excita-

tion. Therefore, each time the error is sampled, if we use a small sampling period

comparable to 50 mS, the effect of the control signal derived from the error will not

be easily determinable. It may actually magnify the error and excite vibration.

Another special difficulty associated with the VSSMC control of flexible manipulator

linkage lies in that the plant here is highly prone to vibration. The non-smooth

control signal of VSSMC may excite the residual modes of the plant not retained in

the truncated model based on which we designed the controller. If these modes are
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within the bandwidth of sensor/actuator, they may cause possible instability of the

system. In that case, using either continuous control signal approximation instead

of the discontinuous control signal within a small band in the neighborhood of the

switching surface as suggested in [77], or a low-pass filter appended to the plant

before designing the controller may help to solve this problem. We shall introduce

our further research in this direction in subsequent chapters.

At present, the above problems are solved by using a large sampling period and lower

controller gains. These methods, though successful, have their inherent limitations.

One of the limitations is the speed. Enlarging the sampling period in a certain sense

is a strategy of making the control and the sampled response more correlated. The

plant is stable. Therefore this strategy may not cause bursts in intersampling period.

However, it limits the highest achievable speed. Another limitation is that reducing

the gain has the effect of reducing the margin against parameter variations. Thus it

lowers the system's robustness. Therefore these preliminary solution methods need

to be further improved.

The crucial point that hindered using a small sampling period and a large gain lies

in the error signal selection. If we choose the error signal to be that of the states and

obtain the desired sliding control by assigning the reduced order closed-loop poles ,

then we may be able to overcome the difficulties existing in directly using tip position

error alone. In that case we can employ a small sampling period and larger gains to

achieve tighter control. Therefore the next step is to work in this direction.



Chapter 6

DISCRETE-TIME QUASI-SLIDING MODE CONTROL (DQSMC)

6.1 Introduction

In this chapter a simple and practical design methodology is proposed which we refer

to as the Discrete-time Quasi-Sliding Mode Control (DQSMC). The discrete-time

sliding surface is determined via a geometric approach which can assign arbitrarily

the closed-loop poles of the reduced-order system in sliding motion. The procedure

is simple and the plant model does not need to be in any of the canonical forms, and

no state-space transformation is required. By re-visiting the necessary and sufficient

conditions for the existence of the discrete-time sliding hypersurface, we derive two

control algorithms. For the sufficient condition, we suggest the use of interpolation of

the two bounds of the control signal. Thus the algorithm is easily realizable. Based on

these two algorithms, the discrete-time quasi-sliding mode control design methodology

is proposed. In this design, instead of using separate discontinuous gains at the two

sides of the sliding surface, only one gain is used. Besides the switching variable is also

reduced to only one instead of a number of switching variables. Thus once the sliding

surface is chosen, only one or two parameters need to be assigned and adjusted. It is

proven that this controller is equivalent to a full state feedback law with its steady

state motion constrained to the sliding surfaces. It is also shown that this design

94
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method provides a general structure that unifies the three different kinds of discrete-

time sliding mode control, i.e. the VSS sliding mode, the non-VSS sliding mode

and the VSS sliding mode with a smoothing boundary layer. The advantages of the

proposed scheme, in addition to its high performance, ease of understanding, design

and implementation, lies in its smoothness of the control signal which is well suited

for applications where one wants to avoid exciting the higher frequency dynamics

neglected in modeling the plant. The experimental verification and the robustness

testing of this design method on the flexible-link manipulator are given in subsequent

chapters.

6.2 Background information

Sliding mode control generally refers to a kind of control law that would force the

plant state variables to slide on a set of prespecified hypersurfaces which have the

desired dynamic property. Quite commonly the control law switches to different gains

at different sides of the sliding surfaces. Thus the change of the system's structure

upon the states crossing the surfaces occurs and the term "variable structure control"

arises. Therefore, these two terms "sliding mode control" and "variable structure

control" are often used interchangeably. However, there also exist the cases where

the sliding mode is achieved without the structure of the system being changed. In

this chapter, by quasi-sliding, we have a twofold meaning. One is that the control law

is designed in a discrete-time setting, i.e., the control is computed at discrete instants

and applied to the system during sampling intervals. Thus a nonideal sliding regime

occurs. The other is that since in our case the system's structure is not changed

(non-variable structure) and the gain is also finite, the representative point (RP)
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converges to the sliding surface asymptotically. Then what we achieve is a kind of

quasi- sliding regime. The reward of the design is that it provides another approach

to the controller design methodology which is simple, practical and has shown to have

particular advantages when dealing with the case of a plant with higher frequency

dynamics neglected in the modeling process.

6.3 Sliding surface determination

The discrete-time plant model may be assumed without loss of generality to be in the

following form:

X(k d-1) = F * X(k)+ G * u(k),^(6.1)

Y(k) * X(k), (6.2)

where X(k) E Rn is the state variable at the current sampling instant kT (T is the

sampling period dropped for brevity). F E Rn" is the system matrix. G E Rnx"1 is

the input matrix. Here we limit our case to m = 1. C o E RP X n is the output matrix.

Y(k) is a vector containing the sensor output measurements. [F iG] is assumed to be

controllable. This model can be of any form, not necessarily a canonical form. The

discrete-time sliding surface is defined as:

S(X(k)) = CT * X(k) = 0, (6.3)

where CT E R i" is a vector of constants. By appropriately choosing the elements

of CT, we can obtain the desired pole placement when the system is in sliding mode.

Define

= S(k +1)— S(k) = CT * X(k +1) — CT * X(k).^(6.4)
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Then when the system's states are on the sliding surface we have:

S(k) = CT * X(k) = 0,^ (6.5)

and

^

= S(k +1) — S(k) = S(k + 1) = O.^(6.6)

Since

^S(k + 1) = CT * X(k +1) = CT * F * X(k)-F CT *^G * u(k) = 0,^(6.7)

then we obtain the equivalent control as:

^Ueq (k) = —(C1 * G) -1 0; F * X(k).^(6.8)

Substituting Ueq into the system's equation we have the closed-loop system dynamics

described by:

X(k + 1) = F * X(k) G * u(k) = (F — G * (CT * G) -1 CT F)X(k).^(6.9)

Note that equation (6.9) is a reduced-order system. The order has already been

reduced by 1, in the sense that one state variable can be represented by the linear

combination of the remaining state variables via (6.5).

The design of CI to achieve the desired pole placement is based on a geometric

method proposed by El-Ghezawi et al. [23). The discrete design below is analogous

to the continuous design. The principles of choosing Cd is simply explained as follows:

When sliding we have:

^X(k 1) = (F — G * (CIG) -1 CT F)X(k) = (F — G *^K)X(k),^(6.10)

where K = (CT G)'Cd F. Since this is a reduced-order system, only (n-m) eigenval-

ues can be assigned. We specify these desired poles in a diagonal (for distinct real
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poles) or block diagonal (for complex conjugate poles) or Jordan block diagonal (for

multiple real poles) matrix J E R (n-m )x(n-m ) . The corresponding eigenvectors are

contained in a matrix W E R" (n-m) . Then from the definition of eigenvalue and

eigenvector we immediately have

(6.11)(F GK)W = W * J.

Re-arranging the equation we have:

FW — WJ = GKW.

This means that the columns of (FW-WJ) belong to the range of G, i.e.,

col(FW — WJ) E R(G).

(6.12)

(6.13)

Therefore we may solve matrix W through the following equation:

FW — WJ = G * M,^ (6.14)

where M is an arbitrary m x (n-m) full rank nonzero matrix chosen to provide linear

combination of the columns of G. Since (6.14) is a Lyapunov equation, from known

F,G, the desired J and an arbitrary M, we immediately obtain W (using one function

in MATLAB). Having calculated W, we can form a matrix

H = [Gin^ (6.15)

Then

Cd = first row of H -1 .^ (6.16)

The whole procedure for calculating Cd is very simple. By calculating the eigenvalues

of (F — G(CTI G)'CIF) it is easy to verify that the closed-loop dynamics when in
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sliding mode have the desired poles as prespecified in the matrix J. Having decided

ccf , the next step is to design u(k) such that the system states will be directed toward

this sliding surface. In the following, the subscript in CI is dropped for simplifying

the notation.

6.4 Discrete -time necessary existence condition and the control law

The discrete-time necessary condition for the existence of the sliding surface is analo-

gous to the sufficient condition in the continuous-time case (Milosavljevie, 1985 [47]).

In continuous time we have

SS < 0.^ (6.17)

This condition can include the equal sign whenever appropriate. For simplicity it is

not included here and in the following discussions. This condition ensures that the

RP will always be driven to S = 0, the sliding surface.

Similarly, in the discrete-time case, the necessary condition is:

S(k) •^< 0.^ (6.18)

Note that this condition is only necessary. It does not guarantee the existence of a

sliding surface. Actually, an oscillatory S with increasing magnitude can also satisfy

this condition. However, whenever the gain is appropriate, this condition can lead

to stable sliding mode control. Therefore let us derive the control law based on this

condition.
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A control signal which satisfies the necessary condition is as follows:

n-1
u(k) = — E o_ ix i (k) - 6_,

where
ce_ i

0-i = {
)3-i1 a, > 

CT
1
^ C^

Cn
TF_i — • i CTF_ n )

G 
(

1

f3-2 < CT G (CTF-i — C7, CT17-71)'

6_ > ^
1 CTF

CTG cn

6_ < ^
- 1 CTF

' S(k) if S(k) > 0

' S(k) if S(k) < 0.CT G cn

This can be verified by noting that

A_ = S(k + 1) — S(k) = CTFX(k) + CTGu(k) — C T X(k)

CT (F — I)X(k)-F CTGu(k)

= CTF_X(k) CT Gu(k),

if x i (k)S(k) > 0

if xi(k)S(k) < 0.

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

where F_ = F — I. F_ i is the ith column of F_, x i (k) is the ith element of X(k).

Substituting the u(k) given in (6.19)-(6.22) into this equation we have

n-1
A_ = CTF_X(k) — CT G E o_ixi(k) - cTcs_

i=1
n-1

= E(CTF-i — CTGO-i)Xi(k) CTF_ n Xn (k) — CTG6_.^(6.24)
i=1

Since (from (6.3))

xn (k)^(8(k)^— c2 x 2 (k) — • • • — en _ 1 xn _ 1 (k))/cn ,^(6.25)

A_ =^ (CTF_ i — CT Gzk_i — --i-CT F_n )xj(k) CTF-n^ S(k) — CTGL , (6.26)
en1=1^ Cn
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then

n-1
.

S(k) • A_ = E(cTF_ i - cTG0_, - C T F_OS(k)xj(k)
1=1

T
cn

F ,
+( C^S(k)—CTG6_)S(k),

which satisfies (6.18) if^and L are selected as in (6.19)-(6.22).

(6.27)

As mentioned above this control law does not guarantee the stability of the system

and the existence of the sliding surface. Besides, it is not necessary for every term

in (6.27) to be negative in order to satisfy (6.18). The above solution (6.19)-(6.22) is

only designed to facilitate computation. It is necessary to assign and adjust several

gains which sometimes may not be easy in real applications.

6.5 Discrete-time sufficient existence condition and the control law

In the necessary condition, we actually have a constraint only on one direction of

the control. To prevent S(k) from diverging in an oscillatory manner while satisfying

(6.18), we need to set magnitude constraints on both directions of the control signal.

The sufficient condition for the existence of sliding surface is then that the RP satisfies

(Sarpturk et al, 1987 [68]):

1S(k + 1)1 5_ 1S(k)1.^ (6.28)

This condition can be expressed as

—S(k) < S(k + 1) < S(k) if S(k) > 0

—S(k) > S(k + 1) > S(k) if S(k) < 0
^

(6.29)

S(k +1) = 0^if S(k) = O.
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(6.29) can be further expressed as

{

S(k + 1) — S(k) < 0 AND S(k + 1) + S(k) > 0 if S(k) > 0

S(k + 1) — S(k) > 0 AND S(k + 1) + S(k) < 0 if S(k) < 0

S(k+1)=0 if S(k) = O.

Define

(6.30)

A + = S(k + 1) + S(k),^ (6.31)

and use the definition of A_, (6.30) can be expressed as

S(k)A_ < 0 AND S(k)i+ > 0 if S(k) 0^
(6.32)

S(k + 1) = 0^ if S(k) = O.

For S(k)A_ < 0 we already derived its control signal as is shown in section 6.4. The

control signal for S(k)A+ > 0 has very similar form:

u(k) — E 0+ix 1 (k) — 6+ ,^ (6.33)
n-1

where
1 a+1 if S(k)x i (k) < 0

+i =^ (6.34)
0+i if S(k)xi(k) > 0,

1
1 

a+i > CTG (CTF+i — c--CTF+n)
n^ (6.35)1

/3+i < GTG (CTF+i — -CT'F+n ) 'cn

1 8+ > CT
1
G

CT
C
F
n +n 

S(k) if S(k) < 0

6+
 <  1 CT F+n

CT G en
^S(k) if S(k) > 0,^

(6.36)

where F+i is the ith column of F + I, CT G > 0.

Proof:

Similar to the case for S(k)A_ < 0, so it is omitted here.
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It is obvious that u(k) has to satisfy both groups of inequalities to satisfy the sufficient

condition. For each switching variable there are two limits, the upper and lower limits.

The selected value for that part of the control signal must fall within these boundaries.

However, it is not easy to determine so many parameters, especially if their physical

meanings are not quite clear. Besides, these boundaries depend on the distance of

the system states from the sliding surface and they converge as the states approach

the surface. Therefore fixed gains may be inappropriate. In the following, simple

ways are proposed which are based on the insight that the two limits within which

the value can be chosen for the current control signal u(k) correspond to the two

limit cases one wants to achieve: u(k) taking the value of one limit will try to keep

S(k + 1) at the same place as S(k), while u(k) taking the value of the other limit will

try to move S(k + 1) to —S(k), i.e. the image point of S(k) symmetric to the sliding

surface. The former case requires the least control effort while the latter requires the

most control effort. Then the ideal control must lie between these two limiting values.

Now suppose the least control is Uci (k) which tries to keep S(k 1) at S(k). The

most control is U,2 (k), which tries to move S(k + 1) to the symmetric point —8(k).

Three control schemes for computing an 'ideal' control are suggested below:

1.
ttS(k)
S(1)

where S(1) is the first step of S(k) which generally has the maximum value in

magnitude. tt is a constant which can be adjusted to get appropriate interpo-

lation between Uci (k) and U,2 (k) Precautions have to be taken to ensure that
itS(k)^ S(k)^S(k) 

insteadso) _< 1. We may also use^ instead of^to achieveN 8(1) or 
( S(k)

^8(1)
more desirable results.

u(k) = Uei (k)-F (U,2 (k) — (1,1 (0)* (6.37)



< 1.S(k)
A

Ci TC F„),
cm

xC f+n),
en
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2. To achieve faster reaching we may apply tjc2 at the beginning few steps until

IS(k)I _< A, where A is a given small value selected by the user. The control

signal is:

u(k) = 11, 1 (k) + (11.c2(k) — Uci(k))
S(k)
A

(6.38)

   

Also measures should be taken to ensure that

3. Still another choice is to let

u(k) =11, 1 (k) + (11,2 (k) — 11,1 (k)) * S(k)
DL

(6.39)

   

where DL > max{IS(k)I} is used as the 'tuning knob' to adjust the tightness

of the control. Therefore initially we may give DL a certain big value, then

gradually reduce it to tighten control.

The calculation of Uci (k) and U,2(k) is quite simple. If we define

(6.40)

(6.41)

(6.42)

(6.43)

CTG

0
CTG

+
i

 =  1 (CTF+ i —

1 CT F 
S(k),CTG cn

1 CT F+m
 S(k),

CTG cn

and note that

F_ i = ith column of (F — I),

F+1 = ith column of (F + I),

it is easy to verify that

(6.44)
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and
1 CT

= ^ Fn
S(k)^

1 
 S(k),CT G cn^CTG

=
1 CT F^1 

S(k) +^S(k).
CT G cn^CTG

Thus define

Wi =^= P+i

=^(CTFi — ••
c CT Fn ),CTG^ i,

then

n-1

Uci (k) = — E Oix i (k) — 8_
i=1

n-1^1 CTF = — E OiX i(k)^T n̂ S(k) —S(k),
i=1^C G cn^CT G

n-1

Ua(k) = — E oixi(k) - 8+
i=1

n-1

^CTG
 C

TF^1
G

= — E Oixi(k) CT
^CT

S(k) ^S(k).
i=1

Therefore

U,2 (k) — Uci (k) = 2S(k) .

(6.45)

(6.46)

(6.47)

(6.48)

(6.49)

(6.50)

Since for our selection of CT , CTG = 1.0 (it can be chosen to have other values), then

U,2 (k) — Uci (k) = —2S(k).^ (6.51)

Hence the increment of the control signal is proportional to the increment of RP.

This also indicates that the upper and lower bounds become closer and closer as RP

approaches the sliding surface. When S(k) = 0, they become the same.



Chapter 6. DISCRETE-TIME QUASI-SLIDING MODE CONTROL (DQSMC)106

6.6 Discrete-time quasi-sliding mode control

The algorithm given in section 6.5 is simple, and can be applied to many real situa-

tions. But there are also limitations which might not be desirable for some applica-

tions.

One limitation lies in the sufficient condition itself. By satisfying the sufficient con-

dition, we actually limit the average approaching velocity of RP toward the sliding

surface to the value of

0 < v <

 

2S(k)
(6.52)

      

where v represents the magnitude of the velocity, T is the sampling period. Thus

letting 1S(k + 1)1 < 1S(k)1 hold throughout the whole process seems a bit unreason-

able. Another feature that is not so satisfactory is that the control signal is not quite

smooth. An improvement on these problems leads to the design of DQSMC.

From section 6.5 we know that the greatest control for the algorithm satisfying the

sufficient condition is:

u(k) = Uci(k)— 2S(k).^ (6.53)

If we let

u(k) = Uci (k) — Kp S(k),^ (6.54)

where K, is a constant decided by the user, then the average velocity is not limited.

Another term which represents the derivative on S(k) may be added to achieve better

damping. Therefore the control signal becomes:

u(k) = Uci (k) — KpS(k)—^ (6.55)

where ,.(k) is the derivative of S(k) at the current sampling period. Since ,.(k) is
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unavailable, we use a prediction to construct it. It is proven (see Appendix E) based

on our derivation in this chapter that there exists a relation

u(k) — Uci (k) = S(k + 1) — S(k).^(6.56)

Therefore we have

u(k) — U i (k) = S(k + 1) — S(k) = —Kp S(k) — KdS(k).^(6.57)

Let
S(k + 1) — S(k) 

T^
(6.58)

then we have

^S(k + 1) — S(k) = —KpS(k) — Kd S(k + 1) — S(k) ,
^(6.59)T

If dS(k + 1) =^1 K  (1 — Kp + ---i— )S(k),^(6.60)
1 -I- i,d

1 — Kp + K a77-
S(k + 1) — S(k) = ( î^1)S(k) = 

—T Kp
T + Ifd S(k),

^(6.61)
1 + Ifd Ti

S(k + 1) — S(k) Kp 

^T Kd
S(k).^(6.62)

Therefore the control signal now becomes:

u(k) = Uci (k) — KpS(k) — KdS(k)

= Uci (k) — KpS(k) 
—Kpifd S(k)
T + Kd

= Uci(k) 
T * K

P S(k).
T + If d

(6.63)

By this equation we realize DQSMC. From the equation we can see that the control

signal is still proportional to the distance of RP from the sliding surface, but now

we have two parameters to manipulate: one in the numerator and the other in the

denominator.
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6.7 DQSMC analysis

In the following we prove that DQSMC is equivalent to a full state feedback law with

its steady state motion constrained to the sliding hypersurfaces. Substituting for Uci

from (6.48) into (6.63) yields:

^

n -1^1 
G

 CT^1
G^T If

u(k) = — E Ot x,(k) ^S(k) 
CT

 S(k) 
T * K P

d
 S(k).^(6.64)CT^

F„
i=1

Noting that CT G = 1 and S(k) = CTX(k) we have

u(k) = —E ciFix j(k) + CT X (k) TT 1.* I.K.Cd CTX(k)

= —CT (F — I + T *Kn,Pd, /)X(k).^(6.65)

Since (F — I^T * Kp I) is in general nonsingular, it is immediate that the ob-
^T^d

tained control is equivalent to a full state feedback law with its steady state motion

constrained to the sliding hypersurfaces.

6.8 Unification of VSS and non -VSS

The DQSMC proposed above provides a general structure that unifies the discrete-

time sliding mode control of the VSS, the non-VSS and the VSS with a smoothing

boundary layer. The control signal under the general structure is composed of two

parts. One is the part that tries to keep S(k 1) at S(k). The other is the part

that drives S(k 1) toward zero. Different ways to determine the second part lead

to different sliding mode controllers. If a discontinuous law is used, then we have the

VSS sliding mode. If a continuous law is used, then the DQSMC (or its variations)

is obtained. In between these two conditions is the case where a smoothing layer is
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used for a VSS sliding mode. If the smoothing layer is specifically chosen, as is shown

below, then the VSS sliding mode control becomes non-VSS DQSMC. The same

program can be used to realize these different control schemes by setting different

parameters in the smoothing boundary layer. Thus the three control approaches are

unified in the same control design methodology. It should be pointed out that if the

sampling period is not small enough, a small boundary smoothing layer generally

does not help. In the following we will prove that the non-VSS DQSMC itself can be

viewed as a VSS with a specific smoothing boundary layer.

In the control law based on the necessary condition we have:

n-1
u(k) = — E oix,(k) - 8_,

i=1

where
i(k) > 0

=
Sxj(k) < 0,

11 
a, >^ 7'Fn)CT G(CT Fi —

c Cri
1^ci^„,

A < ^ (CTFi — —C .' Fn ),
CTG^Cn

1 
G Cc

T^1 
G

16_ >
CT^

S i f S > 0

1 C/
m

Fn s CT

F
n s^1

6._ <   ^S if S < O.
CTG en^CTG

(6.66)

(6.67)

(6.68)

(6.69)

Let

= CT1 G (CT^CT F71),
^ (6.70)

C-^1 CT Fn̂ 1
6_ = n̂ S ^ S.

CT G Cri^CT G

Then with the smoothing layer we have:

(6.71)

n-1

u(k) = — E Kix i (k) — Kn ,
i=i

(6.72)
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^ Ki - Wi

SXj-ei
ei

Figure 6.1: Definition of the smoothing layer parameters

where

Ki =
oi +---i- (sx i )^if Isxii<ei i = 1^n — 1

63i + -2:4  sign{Sx j } i f IS x i l > e i i = 1^n — 1,
ei

(6.73)

s^Dn s^
if Isl<

Kn^(6.74)
en sign{S} if ISi^en .

Di , e i are smoothing layer parameters, see Fig. 6.1. Dn , en are similarly defined.

Now if we let

D, = 0, i =1- • • n —1 (6.75)

and
en > max{ISI},

(6.76)Dn
= Kpd,en
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where

we have

T * /fp
KPd T _KZ

n-1

U(k) - E^- — IfpdS
i=1

= Uci (k) — IfpdS.

(6.77)

(6.78)

This is the same as the DQSMC algorithm.

The above discussion provides insights into the general structure of the discrete-time

sliding mode control.
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EXPERIMENTAL VERIFICATION

7.1 Introduction

In this chapter we give the detailed design procedure for the flexible link manipulator

using the method proposed in Chapter 6. Experimental results are also provided.

7.2 Design model for DQSMC control

The design model of the flexible link manipulator is described in state-space form

with small modifications. The model retaining two flexible modes is shown below

(see Chapter 3, Appendix A or [62]):

(t)^AX (t)^bu(t),^ (7.1)

Y (t)^CoX (t).^ (7.2)

The state vector is given by:

X ( i )^[ q0(t) 40(t) ql(t) 41(t) q2(t) q2(t)i
T^

(7.3)

where the q,' (i=0,1,2) represent the position variables of the rigid mode and the
112
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1st and 2nd flexible modes respectively. 4 i 's are the corresponding mode velocity

variables.

The matrices A, Co and the vector b are defined by:

0^1

_(-)t"1

0^1

0

0'0 (0 )

0

cb il (0 )

0

0 1

0 —a

A= ,^(7.4)

—2e2w2 02 (0 )

1 0^0'(0)^0^02(0)^0

L 0 0 1(4 0 02 (L) 0

0 0 —CZ) 0 —c61(Z) 0

0 0 —
i

cb'i'(R) 0 —
2
(4(R) 0

2
where w i is the ith vibration mode,^is the ith damping factor, a is the viscous

damping in the actuator, IT is the combined moment of inertia of the motor hub and

the arm, 0:(0) is the modal slope at the hub, L is the length of the arm, 0 1 (L) is

the modal shape at the tip, S is the thickness of the arm, cb'l(Z) and O'l(R) are the

modal curvatures at locations Z and R on the arm from the hub. The output matrix

Co represents the sensor outputs of the joint angle, the tip position and the strains

at positions Z and R from the hub axis.

In DQSMC design, the above model is modified to contain the tip position error as

the first state variable in place of the rigid mode position variable qo (t):

(t) = yTP(t) - yTp,^ (7.6)

Co = (7.5)
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where yrp is the measured tip position, 97-7, is the set point. Since

i(t) = 7-p(t) — 0 = 7- ,p(t) = [ o L 0 01 (L) 0 02 (L)

(t)

4'0(0

41 ( 0 )

(t)

q2 (t)

6(0

,^(7.7)

   

the first row of the A matrix is modified correspondingly to become:

A(1,•) = 0 L 0 451 (L) 0 462 (L)].^(7.8)

Now all the states of this modified model should go to zero when the desired set point

is reached, i.e. this design model is an error model. The controller's task is to drive

all these errors to zero in a desired fashion.

The model is then discretized using a sampling period T. The discretized model has

the form of (6.1).

7.3 Choosing controller parameters

The sliding hypersurface design is straightforward: firstly we specify the desired (n —

1) closed-loop poles in the continuous S plane, because one can easily relate them

to the time domain responses. These poles will be arranged in a matrix in block

diagonal form. For single distinct real poles we can simply place them on the diagonal.

Multiple real poles are arranged in Jordan block form. The format for specifying

complex conjugate poles is shown below. Suppose we want to assign a pair of complex
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conjugate poles of:

al = a + jb, a 2 = a jb,^ (7.9)

where a and b are real numbers. They may be specified in block form as:

a b

—b al .

Then these blocks are placed on the diagonal of a matrix. Off diagonal elements are

all set to zero. Discretizing the poles, we obtain the desired J matrix. Combining J

with the F, G matrices in (6.1) and an arbitrarily chosen matrix M:

(7.10)

and following the procedure described in section 6.3, we immediately obtain the

switching hypersurface parameters contained in a row vector CT. The calculation

of the controller parameters according to the equations in section 6.6 is straight-

forward. The whole procedure to calculate the controller parameters is performed

off-line and by only a few MATLAB macro instructions, so it is quite simple.

In implementation we need to know all the states to calculate the control signal. The

first state is readily available from sensor measurements. The three modal position

variables q2 (t) (i=0,1,2) are directly computed from the sensor output signals multi-

plied by the inverse of the output submatrix. To fully utilize all the sensor signals, the

output submatrix is taken from the model retaining three flexible modes. The three

modal velocities are estimated through three separate first-order observers using the

modal positions as the pseudo-outputs of the subsystems. More detailed information
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concerning model derivation and observer designing is contained in chapter 3, chapter

5, Appendix A or see [62].

The separate 1st-order observer gains were determined through simulation. Since in

that case the actual states as well as the estimated ones are available at the same

time, it is easy to compare them and adjust the observer gains accordingly. Quite

good conformity was achieved between the real and the estimated states. The three

observer poles thus determined are at the following locations:

observer poles = [-0.5 — 16.44 — 44.149]^(7.11)

The observers were used in real time control and quite good results were achieved.

The DQSMC control was implemented with a 10mS sampling period. An IBM-PC-AT

compatible with 80286 CPU, 12 MHz clock frequency and 80287 Math Coprocessor

was used as both the designing tool and the real-time controller. The data acquisition

board has 12-bit 16-channel A/D input and 12-bit 2-channel D/A output. More

detailed description on the experimental set-up can be found in Chapter 2 or in [63].

The real-time software development is described in Appendix F.

The controller parameters (eigenvalues of the J matrix) are chosen by trial-and-error.

Different assignments of the poles were tested. They include:

1. All real distinct poles.

2. One real pole with two pairs of multiple real poles.

3. One real pole with two pairs of complex conjugate poles.
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4. Three distinct real poles with one pair of complex conjugate poles.

The best result was found to be in the case of one real pole with two pairs of complex-

conjugate poles. The gains of Kr and Kd are not difficult to determine.

7.4 Experimental results

The experimental results with three real poles and a pair of complex conjugate poles

(referred to as group A ) are shown in Fig. 7.1 - Fig. 7.6, which correspond to the tip

position (a step of 10 cm is specified), the joint angle, the strain gauge signals, the

RP trajectory and the control signal. The poles were placed at the eigenvalues of:

J = diag[- 18.0 —25.0 —35.0 — 18.0 ± j180.0].^(7.12)

The controller gains were found to be:

Kp = 4.2, Kd = 0.145.^ (7.13)

The experimental results corresponding to the performance with one real pole and

two pairs of complex-conjugate poles (referred to as group B) are given in Fig. 7.7

- Fig. 7.12, which correspond to the tip position, the joint angle, the strain gauge

signals, the RP trajectory and the control signal. The closed-loop poles were located

at the eigenvalues of:

J = diag[- 14.0 — 4.0 ± j37.0 — 20.0 ± j205.0].^(7.14)

The gains were:

Kp = 3.6, Kd = 0.3.^ (7.15)
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Figure 7.1: Group A., Tip position under DQSMC control

All the state variables converge to zero. Their plots are shown in Fig. 7.13 - Fig.

7.18.

7.5 Conclusions

The experimental results show that DQSMC achieved quite satisfactory performance.

For the given set point control problem it achieved about 320 mS for the desired tip

excursion. Though it is still a bit slower than the LQG (which achieved about 230

mS), the result is comparable to the LQG case. Moreover, the control signal in

DQSMC is smooth. It thus eliminated the undesirable "chattering" problem that

commonly exists in VSS control, and this in turn, enabled it to avoid exciting the

unmodeled higher frequency dynamics.
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Figure 7.2: Group A., Joint angle under DQSMC control
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Figure 7.3: Group A., Strain gauge Z under DQSMC control

-3
0



Chapter 7. EXPERIMENTAL VERIFICATION
x10 -5

3^

20^40^60^80^100^120^140^160^180 200

Time k (x 0.01 sec.)

Figure 7.4: Group A., Strain gauge R under DQSMC control
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Figure 7.5: Group A., RP trajectory under DQSMC control
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Figure 7.6: Group A., Control signal in DQSMC control
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Figure 7.7: Group B., Tip position under DQSMC control
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Figure 7.8: Group B., Joint angle under DQSMC control
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Figure 7.9: Group B., Strain gauge Z under DQSMC control
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Figure 7.10: Group B., Strain gauge R under DQSMC control
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Figure 7.11: Group B., RP trajectory under DQSMC control
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Figure 7.12: Group B., Control signal in DQSMC control
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Figure 7.13: Group B., State variable X1 under DQSMC control
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Figure 7.14: Group B., State variable X2 under DQSMC control
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Figure 7.15: Group B., State variable X3 under DQSMC control
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Figure 7.16: Group B., State variable X4 under DQSMC control
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Figure 7.17: Group B., State variable X5 under DQSMC control
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Figure 7.18: Group B., State variable X6 under DQSMC control



Chapter 8

ROBUSTNESS TESTS

8.1 Introduction

In the preceding chapters we assumed that the manipulator model and its parameters

are known or determined. However, some robot parameters may change during the

work, and they may not always be known in advance, like coefficients of viscous or

static friction. Quite often, their determination is rather difficult. These parameters

do not affect significantly the functioning of the control system.

Another group of parameters may undergo fast and drastic change during the robot's

work that cannot always be known in advance. In modern industry, when the tasks

for a robot are frequently changed, the task elements, like payload change, may not

always be determined in advance. Then the robustness that a controller possesses

will be valuable.

In this chapter we present some robustness test results for the controller proposed in

Chapter 6, and compare these results with that of an LQG controller under the same

test conditions.
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8.2 Robustness tests

It has been shown in Chapter 3 that adding a payload may substantially influence

both the flexible arm's natural vibration frequencies and the modal shape parameters.

From analytical and experimental results, we know that the modal frequencies of the

arm when loaded are lowered. Hence according to the analysis in section 3.12, it

is easier to get the elastic modes under active control. Most of the experiments in

this study are conducted under unloaded conditions to cope with the more difficult

situation.

The robustness tests shown below are performed under the condition of adding dif-

ferent loads to the tip of the arm. Two control methods are used. They are the LQG

controller and the DQSMC controller. Both controllers are designed based on an un-

loaded model. Their performances when the arm is loaded are compared. Two loads

are employed. They are of cylindrical shape and each has a slot so that when they

are fixed at the tip of the arm the center line of the cylinders aligns with the tip side

of the arm. The weight of the loads are 154.1 grams and 177.0 grams respectively.

Three cases were tested where the weight of the loads and the load/(arm weight)

ratios were:

1. 154.1 grams, (smaller piece), load/(arm weight)=34.0 %.

2. 177.0 grams, (bigger piece), load/(arm weight)=39.1 %.

3. 331.1 grams, (two pieces added together), load/(arm weight)=73.1 %.

Firstly, the controller performances before loading are shown in Fig. 8.1 and Fig. 8.2.
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Figure 8.1: LQG control when the system is unloaded

The LQG controller used tip and joint sensor measurements. The weighting param-

eters used in the LQG performance index are:

To = 0.08, 71 = 0.09, 7-2 = 0.09, 7-3 = 0.09,

R 0.00001, Qnc = 160.0, Rnc = 1.0.

The DQSMC controller used the tip, joint and strain sensor measurements. The

parameters used are shown below:

J = diag[-14.0 — 4.0 ± j37.0 — 10.0 ± j205.0],

Kp = 4.5, Kd = 0.3.

The controller performance under case 1 (with a load of 154.1 grams) is shown in

Fig. 8.3. Both controlled systems remain stable and have a small amount of steady



Chapter 8. ROBUSTNESS TESTS^ 131
0.02^

a

a

-0.02

-0.04

-0.06

-0.08

-0.1

4).12
0 50^100^150^200^250^300^350^400

Time k (x 0.01 sec.)
Figure 8.2: DQSMC control when the system is unloaded

state error and the responses are slower. The settling times for both controllers are

almost the same. The LQG controller showed some high frequency oscillation and a

big overshoot which is undesirable while the DQSMC has no such effects.

The controlled responses under a cylindrical load of 177.0 grams are shown in Fig.

8.4. Compared with the results in Fig. 8.3, we can see the systems' responses and the

settling times for both controllers are almost the same. The. LQG controller showed

less high frequency oscillation but the overshoot remained almost the same.

Finally, the case of loading with 331.1 grams was tested. The results are shown in

Fig. 8.5. As we can see stable control is achieved for both controllers. The settling

time for both controllers are almost the same and longer than the previous cases. The

LQG controller has an overshoot of almost 40% of the desired set point value in this

case, while the DQSMC controller has almost no overshoot at all.
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Figure 8.3: Controller performances under the load of 154.1 grams
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Figure 8.5: Controller performances under the load of 331.1 grams

8.3 Robustness comparison with detuned LQG

In section 8.2, the robustness of the DQSMC controller was compared to an LQG

controller optimized to yield the fastest response. In this section, the LQG controller

is detuned so that it has the same response time as the DQSMC when the arm is

unloaded. Then different loads are added on. The experimental results obtained are

shown in Figures 8.6 through 8.9.

Fig. 8.6 shows that the detuned LQG has almost the same time response as the

DQSMC when unloaded. The detuned LQG controller has the parameters:

T = 0.22, R = 0.00001, Q,,, = 40.0, Rn, = 1.0.

The bigger T gives more damping to the controlled system, hence resulting in the

slower response.
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Fig. 8.7 shows the results when the smaller piece of load is added on. Compared with

the undetuned LQG controlled system, the detuned LQG controlled system is less

oscillatory. But it still has bigger overshoot and steady state error than the DQSMC

controlled system.

Fig. 8.8 and Fig. 8.9 show the results when the 177.0 grams load and the 331.1

grams load are applied. When the load is heavier, the detuned LQG controlled system

exhibits even bigger overshoots and steady state errors than the DQSMC controlled

system.

These additional robustness tests demonstrate further that the DQSMC control method-

ology indeed performs better than the LQG methodology under the given conditions.
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Figure 8.6: Detuned LQG vs. DQSMC when the system is unloaded
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Figure 8.7: Detuned LQG vs. DQSMC under the load of 154.1 grams
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Figure 8.8: Detuned LQG vs. DQSMC under the load of 177.0 grams
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Figure 8.9: Detuned LQG vs. DQSMC under the load of 331.1 grams



Chapter 9

SUMMARY AND RECOMMENDATIONS

9.1 Summary

The research results in this thesis are summarized as follows:

• The linear model containing the first few flexible modes is appropriate for de-

signing the controller. It is neither possible nor necessary to actively control all

the modes of the plant because the system model soon becomes uncontrollable

when more modes with higher and higher modal frequencies are included in

the model. Therefore, a practical strategy seems and has also proved to be the

following: actively control the first few lower frequency modes and avoid excit-

ing the remaining higher frequency modes that are neglected in the modeling

process. To avoid exciting the unmodeled higher frequency dynamics, we could

properly filter the sensor signal and smooth the control action.

• The proposed VSSMC provides one method to simplify the VSS system design

process. By dividing the control into two parts, one composed of control derived

from equalities and the other from inequalities, the algorithm can be simplified

significantly. Moreover, the variables that most concern us can be assigned
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separate gains. Thus these variables are, in a sense, separately weighted to

achieve the desired performance.

• Direct application of the VSSMC to the error model that consists of tip position

error and its derivative as coordinates has limitation due to the vibratory nature

of the system. Though these limitations are overcome by using a bigger sampling

period and lower gain, these measures also constrain the maximum achievable

response speed and the robustness margin for parameter uncertainties.

• The DQSMC developed in this thesis provides a simple and practical discrete-

time sliding mode controller design methodology. It can overcome the chattering

problem that commonly exists in VSS systems by generating a smooth control

signal. The method, therefore, is particularly suitable for applications where

one wants to avoid exciting the unmodeled higher frequency dynamics such as

those in the flexible manipulator studied here.

• The proposed DQSMC has been proven to be equivalent to a full state feedback

law with its steady state motion constrained to the sliding hypersurfaces. It

is also shown that this method provides a general structure that unifies the

discrete- time sliding mode controls of the VSS, the non-VSS, and the VSS

with a smoothing boundary layer.

• The novel approach of separate first order observers devised for this kind of

plants uses the mode positions as the pseudo-system-outputs. The advantage

of the method is that it simplifies the observer design process and can assign
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observer poles more easily according to different mode requirements. In the ex-

periments, the designed observers were quite successful in obtaining the desired

state estimates.

• The experiments conducted on the flexible-link manipulator setup verified the

effectiveness of the DQSMC design. Its performance for set point control

(though a bit slower than the LQG case), is comparable to the LQG perfor-

mance.

• The robustness tests show that under the same unloaded designs, the DQSMC

compares favorably with the LQG controller when different loads are added to

the tip of the manipulator.

9.2 Recommendations

• It is observed in the experimental process that the tip position PSD, although

giving good tip deflection measurements, is quite sensitive to the background

(color and reflectability) of the LED. We use a layer of dark colored foam lined

inside a curved cardboard sheet to form the background. For real applications,

a more realistic background should be used. Therefore the study of accurate

tip deflection measurements under practical conditions would be useful.

• In the DQSMC experiments it is quite important to select the sliding surface

parameters to achieve the desired performance. By manipulating the distance

between the closed-loop and the open-loop plant poles, we can change the feed-

back gains just as we manipulate the weighting parameters in the performance
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index in linear quadratic optimal control. However, as in choosing the per-

formance index weighting parameters, this method is basically a matter of ex-

perience. How to find the optimal closed-loop pole locations (in the sense of

achieving the fastest, non-vibratory response) in a more sensible way is another

topic that needs further study.

• As mentioned in the literature review, there are basically two major research

trends toward achieving higher performance flexible manipulator control. This

study has concentrated on one trend, i.e., developing new controller designing

methodologies to achieve better performance. However, due to the inherent

properties of the plant, the achievable performance is limited. Therefore the

other trend that is represented by the research efforts of Asada [1] and others

involving integrated mechanical and electrical design seems very promising in

enhancing the performance of the system and reducing the requirements im-

posed on the control system.



Appendix A

MODEL DERIVATION

The analytical model of the flexible arm is derived following the assumptions made in

chapter 3. The uniform aluminum arm of length L is to move in a horizontal plane.

. The coordinate is shown in Fig. 3.1. The various parameters follow the definitions in

chapter 3. The arm's physical specifications are given in Table 2.1.

A.1 PDE and boundary conditions

The velocity of a point P on the flexible arm at a distance x from the motor shaft

axis is expressed as:

vp = xo+ °u'a( xt t )

^
(A.1)

Calculating the kinetic energy of an arm element and integrating over the whole arm

and combining the kinetic energy of the hub we have the total kinetic energy:

1 •.10^1 IL Ow^•Tk =^2 + —
2 o 

( —at + xe) 2 pdx. (A.2)

The potential energy is the strain energy due to bending deformation of the arm. It

has the form:

Pe 1 IL E I( O2w(xt) )2 dx.
= —2 io^ax2

(A.3)
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The work done by the nonconservative actuator torque is:

W = Tq B.^ (A.4)

Applying the extended Hamiltonian principle and variational methods, we obtain the

PDE and boundary conditions as follows:

a4 w^a2
El— p—

ate = -pxa,
ax4^

w

a2 wEI—lxaxe -
_L = 0,

Ef92—w
ax3

1TL = 0

w(x,t)I,0 = 0,
a2w

EITTIlx=o+Tq - IH-ä = O.

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

If we introduce a new variable y(x, t) such that:

y(x,t) = w(x,t)+ xO(t),^(A.10)

then (A.5) ti (A.9) become:
aziy^82y

^p
 at2^

0,

82y
EI—lx-L = 0,

ax 2
EI—(93y^= 0.ax -

y(0, t) = 0,
02 y

El —ax2ix=o +Tq - 'H O = 0,

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)
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A.2 Vibrational modes

Taking the Laplace transform for equations (A.11) ti (A.15) and defining:

0.4 _Ps 2

El'

where s is the Laplace operator, we may write (A.11) as:

dX4 
—

4 = 0,

where p is the Laplace transform of y(x,t).

(A.16)

(A.17)

The solution to (A.17) can be written as:

p(x, s) = A sin /3x B sinh /3x C cos Ox — C cosh )3x.^(A.18)

Define:

A = )3L,^ (A.19)

IH
e=^ (A.20)

where m is the arm mass, L is the arm length.

Substituting the Laplace transform of the boundary conditions into (A.18) and using

(A.19), (A.20), we obtain a set of linear equations of the parameters A, B, C.

Solving for roots of the determinant of the coefficient matrix, we obtain a series of

{A, }. The pinned-free natural vibration modes can be obtained as follows:

cvt = EI 
A?.

pL4
(A.21)

The cantilevered modes can be obtained using the same method, but the different

boundary conditions.
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A.3 Orthogonality conditions and modal shapes

From (A.11) we have:
04y^p (92 y

OX4^EI at 2 •
(A.22)

When the flexible arm is in transversal vibration in one of its natural modes, the

deflection of any location x on the arm varies harmonically with time as follows:

y(x, t) q(x)(ci cos wt c2 sin wt), (A.23)

where the subscript i for the ith mode has been omitted for notational convenience.

Substituting the above expression into (A.22) and using (A.16) we obtain:

d°(x)^34 0(x) = 0,^ (A.24)
dx4

for the ith mode.

Solving the eigenvalue problem of (A.24) and letting the external torque Tq equal

to zero results in the free vibration modal shape. After some manipulation we can

obtain the orthogonality conditions as follows:

I
L

0,03P dx 'HO0)03 1 0 ) =

1 i = j
Sii =

0 i j

Elf (X'0'! dx =o

(A.25)

(A.26)

(A.27)

where 0,(x) is the eigenfunction of the ith mode. IT is the sum of moment of inertia

of arm and hub around the motor axis. w, is the ith pinned-free mode.
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Solving (A.24) using the boundary conditions and the orthogonality conditions we

can determine the coefficients of solution to (A.24) for various modes and the modal

shapes.

A.4 State space model

Using assumed mode method, we can express the system variable as:

00

y(x,t) = E Oi (x)qi (t),^(A.28)

where the space dependent function cb,(x) is the eigenfunction of the ith mode, the

time dependent function qi (t) is the generalized coordinate of the system.

From kinetic energy, potential energy and Lagrange's equation, it is easy to obtain a

series of decoupled ODE's as follows:

(4i + 2iwiQi + qi ) = -1 cb:(0)7' 9 ,^i = 0,— , oo,^(A.29)

where w i is the ith vibration mode, i is the damping factor.

Noticing that for the rigid mode

wo = 0,^00(x) x,^4(x) = 1,^(A.30)

and retaining 3 vibration modes we obtain a state space model as follows:

AX + bU,^X = [ qo Qo qi 4 q2 42 q3 61 ,
^(A.31)



Output equation is:

Ye 1

YTP L

YSGZ 0

YSGR 0

0 0/1 (0)^0

0 0 1 (4 0

0 2g1(Z) 0

0 i.01(R) 0
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A=

0 1

0 —a

0^1

—44)2 —2 1 w1

0^1

  

b = IT

0

(yo (o)
0

0'1(0)

0'2(0)

0

03(0)
(A.-32)

(A.33)

   

-W22 -24-20)2

0^1

—24.3w3

                  

U = Tq .

   

go

4o
02(0) 0 03(0) 0

q2 (L) 0 03 (L) 0
2c4(Z) 0 2g(Z) 0 q2

1.4(R) 0 ig(R) 0 42

,^ (A.34)

q3

q3

where 6 is thickness of the arm. This model is easy to expand to contain more modes

or truncate to contain fewer modes.
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A.5 Analytical model for loaded case

When the arm is loaded, the total kinetic energy should include that of the tip mass:

1 ,Ow1^•2 1 1 +̂ x,;,2Tk 
2 /HO += ^-

2 o^
+^pdx+ -

2
rnt(—Ot xullx=L,

where m t is the tip mass.

The partial differential equation and its boundary conditions become:

04tV^02U)
^Pi/ ^p— -pxe,ax4^ate

EI
 (92w

axe Ix_L
= 0,

7_, T a3tv ,^(92w
—I x_L = rn t(— xe),
ax 3^at2

w(x,t)I,0 = 0,
a2w

axe
EIlx-0 -PT - IHO = O.

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)

(A.40)

If we introduce a new variable y(x, t) such that:

y(x,t) = w(x,t)-1- xt9(t),^ (A.41)

then (A.36) ti (A.40) become:

(94y^492y
EI— p— = 0,

ax4^at2

2 y
= 0,

ax 2

52y
El^lx-L, = rnaX3^t at2

y(0,t) = 0,

(A.42)

(A.43)

(A.44)

(A.45)



Sid
1 i = j

t o i j

EIdx3
0

(A.48)

(A.49)
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a2 y

EI^ lx=0 Tq — hie = 0,^(A.46)

The orthogonality relations now become:

rL

Jo
0i0j10 dx + mt0i(L )cbj (L ) + IH- 00 ) (Yi (0) = (A.47)

where

where 0, (x) is the eigenfunction of the ith mode. IT is the sum of moment of inertia

of the arm, the hub and the tip mass around the motor axis. co i is the ith pinned-mass

mode.

The state space equation of the loaded case is of exactly the same form as the unloaded

case. However, the parameters are different. They are now the modal frequencies and

the modal parameters determined via the pinned-mass boundary conditions.

The analytical and the identified model parameters for loaded case with a load of

382.5 grams are shown in Table 3.4.
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IRPRBS EXCITING SIGNAL

The maximum length pseudo-random binary series (or simply referred to as m series)

can be generated by a linear feedback of shift registers in series. An n—stage shift-

register-generated PRBS, if its length is: Np = 2Th — 1, then this series is called an m

series.

Let logic "1" correspond to a voltage level of —a, logic "0" correspond to a voltage

level of +a, T be the time interval of a shift register clock pulse, then an example of

an m series and its autocorrelation function (Np = 15) are shown in Fig. B.1, where

(a) is the 771 series, (b) is the autocorrelation function for this function, (c) and (d)

are the decompositions of (b).

The discrete time autocorrelation function of an m series of length Np is expressed

as:
1 N-1

Ruit(p).^E u(k)u(k 11).^ (B.1)

From Fig. B.1 we can see that the autocorrelation function of an m series within its

length is quite similar to that of a white noise. The white noise's autocorrelation is:

1:?„„Gi =^0, Ru ,4 (/^0) = 0,^ (B.2)

i.e., the autocorrelation for a white noise is a S function. The autocorrelation for an m
149
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Table B.1: Example of IRPRBS, Np = 7.

Np Np4-- ----4 4- ---

{21 } 1 1 0 1 0 0 1 1 1 0 1 0 0 1
ED {s} 1 0 1 0 1 0 1 0 1 0 1 0 1 0

{l} 0 1 1 1 1 0 0 1 0 0 0 0 1 1

series is a series of triangular pulses. Therefore, if we properly choose T, a triangular

pulse can be very close to an ideal S pulse, especially when Np^oo.

The Inverse Repetitive Pseudo-Random Binary Series (IRPRBS) is a more ideal

PRBS. To generate an IRPRBS series we only need to add an 771 series of 2Np length

on mod 2 basis with a square wave signal of 2Np length, i.e.,

{l} = { u} ®{ s }^(B.3)

Example: when Np = 7, IRPRBS' formation is shown in Table B.1.

It's easy to recognize that IRPRBS has the following properties:

1. The {l} series has double cycle length than the {u} series.

2. If logic "1" corresponds to voltage level of —a, logic "0" corresponds to voltage

level of +a, then in {l} series the frequencies that these two voltages appear in

one cycle are equal. Thus the average level is zero.

3. The former half cycle of the {l} series is inversely repetitive to the latter half,

i.e.,

/(t) = —/(t + Tp )^ (B.4)
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T
I Î

0 A 2A 3A
-a

(a)
R uu ( ) a 2

—0.1 A 141--

R uuf t) • Np+ 1  a 2
^ (b)

Np

T
l■ 

–A 0 A^ Tp
(c)

RuuST)^a 2
Np

• T

t (d)

Figure B.1: in series and its autocorrelation function
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4. Series {l} is uncorrelated with the original {u} series.

5. The autocorrelation of the IRPRBS is shown in Fig. B.2, where (b) and (c) are

the decompositions of (a).



—A 0 A

(b)
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( c)

Figure B.2: Autocorrelation function of IRPRBS.
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DISCRETIZED LQG CONTROL ALGORITHM

C.1^Discretized optimal control

The continuous-time model is given by:

X(t) = A * X(t)^b* u(t), Y(t) = C^X(t).^(C.1)

The discretized model is described by:

X2+1 = F * X2 + G *u i , Y =^* Xi ,^(C.2)

where

F = eAT G=^eAt di * b,^(C.3)

T is the sampling period.

The continuous-time performance index is:

1^/
=^llyt2^o^PP

027-

1^0l[ytpl
+u*R*uldt,^(C.4)

tp

where ytp is the tip position error, y tp is the derivative of y tp . This performance index

154
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can be written in state variable form as:

L^0

0^r * L

461(4^0

0^r * cbi (L)

02(L)^0

0^T * 02(L)
03(4^0

0^T * 03(L)

0 T * L^0^T * (L)^0^T * 02(L)^0^T* 03(L)

* R* ul dt =
2 o
1 °.° {XTQX uRu} dt, (C.5)

where
T

X = q0 40 Q1 41 Q2 q2 q3 Q3 1 •^(C.6)

The continuous performance index is then discretized (assuming ZOH is used. The

derivation is simple. Therefore, it is omitted):

where

1^ A11 Al2^Xi
Jd = E^uTi[i=0^A21 A22^Ui

A 11 = f T FT (t)Q F (t) dt ,

A22 = I [GT (t)Q G (t)^dt ,
T

Al2 =^FT (t)QG(t) dt, A 21 = AL.

(C.7)

(C.8)

(C.9)

(C.10)

00

J =^XT

1L^0^01 (4^0^q2(L)^0^03(4^0
X +
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Jd may be written as:

1 ct -,0^A11 Al2^Xi
Jd = —

2 
2_, [ X,T uT
i=0 A21 A22

"^A
= 1— E[A

2 vin —Al2A221A2oxi+(uT+xiTAl2A -2')A22(ui+ ili21 A21-X,)]2 1=0 

1 x--,"
= 2-d[Xi Q dXi^Rditi], (C.11)

where

^Qd = All Al2A221 A211^ (C.12)

^Rd = A22,
^ (C.13)

^ui = ui A221 A21Xi•
^ (C.14)

Using the above expressions we may formulate the discretized optimal control problem

as follows:

Xi+i = (F — GA. 21 A21)Xid- Gu i = FdXi^(C.15)

where

Fd = F — GAg A21 , Gd = G,^(C.16)

with the performance index:

1 "
Jd = E(xTchxi+2 i=0

(C.17)

From (C.15) and (C.17) we obtain the optimal feedback control as:

Ui =^ (C.18)

where K, is the optimal feedback gain calculated from (C.15) and (C.17). The control

signal for original system is:

ui = —(K0 + "4 221 An )Xi = (C.19)
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where

Cray = Ko A221,421.^ (C.20)

C.2 Kalman filter design

The continuous-time plant model is:

X(t) = A * X(t)-F b* u(t) +Fw(t),^(C.21)

Y = C * X (t) v(t),^(C.22)

where

w(t)=Gaussian white noise with spectral density Qmo ,

v(t)=Gaussian white noise with spectral density Rno .

Assuming the main uncertainty in the system is the actuator uncertainty, then: F = b.

Discretizing the continuous plant model (C.21) (C.22) we have :

^

X2+1 = F * Xi G * u i + I * w i ,^(C.23)

^

= C * Xi vi,^(C.24)

where I is an identity matrix.

Discretize the noise spectral density Q.c and R7,0:

Q.^
eAtbQnc bT eA Tt di ,^ (C.25)

0

Rnd= Rnc•^ (C.26)
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From F, I, C,Q„,d, _kid , we may solve for optimal filter gain Lg (using one of MATLAB

functions). The current estimator is then obtained as:

Xi+1 = F *^G * ui,^(C.27)

=^+ -4( 17i+1 — C-Xj+1).^(C.28)

Combining the controller in section C.1 and the Kalman filter above we have the

LQG algorithm as:

Xi+1 = F *^G * u i ,^(C.29)

^= X i+1 -4( 17i+1 C *
^

(C.30)

Ui = -Clqg *^(C.31)

C.3 Optimal control about nonzero set point

Discretized linear plant model is:

Xi+1 = F *^G * u i ,^ (C.32)

= C * Xi .^ (C.33)

Assuming equilibrium condition X, it exist which satisfy the steady state version of

(C.32) and (C.33):

^k=F*.k-FG*1-2,^ (C.34)

=c*.k.^(C.35)

Define variables with prime to denote perturbations from the equilibrium conditions:

= Xi — X ,^ (C.36)
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tly

159

(C.37)

(C.38)

Substituting (C.36) ti (C.38) into (C.32) and (C.33) we have:

^

X:+1 +X = F * (X: + X. )+ G * (u: + ft),^(C.39)

^

1/14-k=C*(X:+.k).^(C.40)

Subtracting (C.34) (C.35) from (C.39) (C.40) we have:

^

X:+1 = F * X: G*u:,^ (C.41)

= C * Xi.^ (C.42)

For system (C.41) (C.42), and the performance index:

J = -2 E(xY2dx: + uRdu:),^(C.43)

we have the optimal control as:

u: =^ (C.44)

then

Ui = 2l - Cigg (Xi -^=^Cigg.k) - CiuXi qc -

Substituting (C.45) into (C.34), we have:

= F *^G * (q, - Ciqg * .k)

= (I - F + GChig )-i Gqc .

Thus

= c * 5.c = c * ( - F GChig ) -i Gqc ,

(lc = [C * (I - F + GCN9 ) -1Gr 1 k.

(C.45)

(C.46)

(C.47)

(C.48)
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Taking set point into account in both the controller and the estimator simultaneously,

we have:

ui —CNA +

Xi+1= F * + G * q c — G *

Xi+1+ L9 (Y+1 C;V" i+l)•

Combining (C.49) ti (C.51) we have:

(F — GC1q9 )5(i + Gqc+ L g Yi+i — L9 C[(F — GCi gg ) i + Gqc ]

= [(I — L0 C)(F — GClu )]Xi +^+ (I — Lg C)Gq,

+ Lg Yi+i + Nqc ,

where

M = (I — L2 C)(F —

N (I — L9 C)G.

(C.49)

(C.50)

(C.51)

(C.52)

(C.53)

(C.54)

The block diagram of the closed loop LQG control system with nonzero set point is

shown in Fig. C.1.

C.4 Implementation considerations

From (C.52) we have:

^j(i+i = Mks 'i+ Lg Yi+ i + Nqc ,^ (C.55)

?Li =^qc•^ (C.56)
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Figure C.1: Block diagram of closed loop LQG control with nonzero set point
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This is not a good form for implementation. We modify the equations as follows: Let

Xi+1 -ki+1 LgYi+l•

Then (C.55) and (C.56) become:

Xj+i = MXi ML9 Y + Nqc ,

Ui = — ClqgXi — CluLgYi qc•

Define

MLg = L, —Ci ggLg = H, —ClqgXi qc U0i•

• Then (C.58) (C.59) become:

Xj+1 = MXi LYi Nqc ,

ui = Uoi HYi•

(C.57)

(C.58)

(C.59)

(C.60)

(C.61)

(C.62)

(C.61) (C.62) are the equations for real-time implementation.

The initial values are given as follows:

= 0, U0i 1i.0 = qc•
^ (C.63)

Assuming four sensor outputs are used then at each sampling period the above algo-

rithm performs a total of 116 multiplications, 108 additions and 260 memory accesses

(not including the sampling, data conversion and control output clipping etc.).
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PROJECTOR IN SLIDING SURFACE DESIGN

D.1 Projector definitions and properties

Definition of the decomposition of a space S into subspaces S 1 and S2:

S is decomposed into S i and S2 if any vector x in S can be written uniquely as x 1 + x 2 ,

where x 1 is in S1 and x 2 in S2. There is no vector that is common to S i and S2, i.e.,

Si and S2 are disjoint. If S is decomposed into Si and S2, we say that S is the direct

sum of S1 and S2 , symbolized:

S Si ED S2 •

Definition of a projector:

Given a decomposition of space S into subspaces S i and S2 so that for any x E S

x = x l + x 2 , x l E Si , x 2 E S2.

The linear operator P that maps x into x 1 is called a projector on Si 'along 52 i i.e.,

163
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Px = x 1 , Px 2 = 0.

Properties of a projector:

1. A linear operator P is a projector if and only if it is idempotent, i.e., if

and only if

p2 = p .

2. If P is the projector on S1 along S2, then (I — P) is the projector on 82 along

3. If P is the projector on R(P) (range of P) along N(P) (null space of P) then

(I — P) is the projector on N(P) along R(P).

4. For any x E R(P)

Px = x,

(I — P)x = 0,

rank(P) = trace(P),

rank(I — P) = n — rank(P),

R(P) = N(I — P),

N(P) = R(I — 13 ).

The proof is omitted here, readers may refer to [61], [23].
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D.2 Projector in sliding surface design

1. B(CTB) -1 CT is a projector.

proof:
[B(CTB)-1cT]2 = B(cTB) -1 CTB(CTB) -1 CT = B(CTB) -1 CT

B(CTB) -1 CT is idempotent and consequently a projector.

B(CTB) -1 CT projects R' on R(B) along N(CT) since

R[B(CTB)'CT] = R(B),

because R(BK) = R(B) if B and K are full rank. In this case K = (CT B) -iCT

which is full rank (B and CTB are full rank). Similarly,

N[B(CTB) -1 CT] = N(CT ),

since

nullity(HCT) = nullity(CT),

if H and CT are full rank, where H = B(CTB) -1 .

2. [I — B(CTB) -1 CT] is a projector.

proof:

From above we know B(CTB) -1 CT is a projector on R(B) along N(CT ). Ac-

cording to property 2 in section D.1, we know that
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[I — B(CTB) -1 CT ]

is a project on N(CT) along R(B). [I — B(CTB) - icT] projects Rn on N(CT )

along R(B). Since the rank of a matrix is the dimension of its rank space, by

letting

P = B(CTB) -1 CT ,

we obtain from section D.1 property 4:

rank(P) = rank(B) =

rank(I — P) = n — rank(P) = n — m.

Therefore any n x 72 matrix pre-multiplied by [I — B(CTB)'CT] will have at

most rank n — m. ^ order reduction in sliding mode (see 3. below).

3. Invariance condition.

In the sliding mode, the equation describing the system is given by:

X = [I — B(CTB) -1 CT[AX = AeqX

— B(cTB)-1,T, is a projector which maps all the columns of A on N(CT).

The order of the system has therefore been reduced because the state vector is

now constrained to lie on N(CT ) which is an (n — m)th dimensional subspace,

which also means the system's response is invariant to parameter variations and

external disturbances.
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PROOF OF FACT 1

proof of:

u(k) — Uci (k) S(k +1) — S(k),^(E.1)

where u(k) is the current control which will result in S(k+1) in the next sampling

instant. Uci (k) is the control component which tries to keep the RP at the current

position, i.e., to make S(k + 1) = S(k).

As we have already derived that

n-1
Uc1 (k) = —^ixi(k) — 6_,^ (E.2)

= ^(CTF. — f1 CT Fn ).^ (E.3)
CT G^cn

6_ = 1 
G

 CT
e

 Fn 
 S(k) c 1^ S(k).S(k).^(E.4)

CT n 

CT E R1 xn is the sliding surface parameter vector. G E Rnx i is the discretized model

input matrix. Fi E RnX1 is the ith column of the discretized model systems matrix.

Assuming u(k) is derived such that S(k +1)= —kS(k), where k > 0 is an arbitrary

positive real number, then from:

S(k 1) = CT F X(k) CT Gu(k),^(E.5)

where

167



or:

Define:

then (E.7) becomes:

— kS(k) = CT FX(k)+ CTGu(k),

0 = CT (F + kI)X(k) + CTGu(k).

F + kI = F+ ,

0 = CTF+ X(k) + CTGu(k)
n-1
E cTF+ixi(k) + cTF+nxn (k) + CTGu(k).
i=i

Since:

xn (k) = (S(k) — c i x i (k) — c2x2(k) — • • — cn_ i xn_ i (k))/cn ,

the above equation becomes:

- ^ CT F
= E(cTF+i - —C

T
 F+n )x j (k) + ^+n S(k) + CTGu(k).

i=1^cn

Let
n-1

u(k) = — E K ix i (k)
i=i

then

0 = E(cTF+ i - cTF+n - cTGico (̂ Cx i (k) +^+n S(k) — CT G77).
n-1^

a
n^

T F
e^ Cn

To make (E.13) hold for arbitrary x i (k) we have

T -^Ci T -
^ (C^— —C F+n )
CTG^cn

n-1

cn
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it is immediate that:

C
1 

=^(C
T 

+ kci
TG

1
= CTG(CT —

fICTFn — ci k)
cn

fe-CTFn ) =
cn

(E.6)

(E.7)

(E.8)

(E.9)

(E.10)

(E.11)

(E.12)

(E.13)

(E.14)
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and

1 CT P^1 CT F,^1 kc
CTG c +n S(k) CTG Cn S(k) CTG cn S(k)

1^ T
^CTG 

C
c,,^CTG

Fn 
S(k) + 

kS(k)
•^(E.15)

Therefore
n-1 1u(k) = — E 2kiXi(k) —

CTG 
C

c^ (E.16)
TF

n S(k) 
CTG
kS(k) 

•1=1
n-1 CT Fn 

 S(k) + .o1
^

.
7.
7S(k)Uci (k) = — E oixi(k)^ (E.17)CTG1=1

Subtracting (E.17) from (E.16) we have:

u(k) — Uci (k) = CTG ( k 1)8(k).^(E.18)

Since CTG = 1,

u(k) — Uci (k) = — (k + 1)S(k) = — kS(k) — S(k) = S(k + 1) — S(k).^(E.19)

Q.E.D.



Appendix F

REAL-TIME SOFTWARE DEVELOPMENT

F.1 Introduction

A complete set of software is developed during the course of this research for system's

modeling and identification, controller parameter calculation, real-time.control and

data recording, data conversion, control algorithm simulation, etc.. These programs

are written in different languages. The mostly used languages are 80x86/80x87 as-

sembly language, MATLAB macro instructions, Turbo C, FORTRAN, BASIC and

software tools like ACSL, IMSL, TELLAGRAF, I4TEX etc.. Most of the computa-

tions are performed on an IBM PC-AT compatible. Some of them are developed on

main frame or SUN or SPARC work stations. In this appendix we introduce briefly

on the major features of the real-time software.

F.2 Real time clock

To realize real-time computer control it is essential to have an accurate timing for

the various events in the system and maintain a stable sampling period. All this

depends on a real-time clock built for the system. The real-time clock we used is

based on a software method [64]. It does not need to make any hardware alterations
170
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on the computer hardware. It can achieve time interrupt of arbitrary time intervals

in the range of a few micro seconds to about fifty milliseconds. If combined with

a software counter the timing range can further spanned to seconds, minutes, hours

or even longer. Another feature of this clock is that it can be initialized and locked

for reading the time lapse before and after a specific operation. Thus it is useful

in measuring the time needed for executing a specific segment of program. The

basic principle of the real-time clock is to use the on-board timer/counter chip of the

IBM PC-AT compatible by modifying the interrupt vector table to let the vector of

the chip's channel 0 interrupt to point to the address of the user interrupt service

routine. By writing commands to the chip we can set the timer/counter and achieve

time interrupts of arbitrary time intervals. For example the actual clock pulse sent to

the chip is 1.19318 MHz. Therefore if we want to achieve a 5 mS time interval clock,

we need to write a constant of

174EH = 5966 10

into the chip, since

5966/(1.19318 * 106) = 5.0 *10 -3 sec. = 5.0 mS.^(F.1)

After finishing the real-time task, the program recovers the original time interrupt

vector table, records the data to the disk and exits to the DOS or DEBUG envi-

ronment normally. To avoid the accidental occurrence of machine interrupts when

the program is modifying the time interrupt vector table, all the machine interrupts

are masked during this period. After the constant has been written to the chip, the

machine interrupts are enabled again.
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F.3 Real-time control, data acquisition and recording

Since we need to do quite sophisticated control algorithm computation and data

recording in short sampling period, 80286/80287 assembly language is used to achieve

the high speed and efficiency for real-time control and data recording. All the control

tasks and data recording can be performed within a 10 mS sampling period, include

the most complicated algorithm of LQG with an 8th-order model and four sensor

outputs. To save time and space, only the binary form floating point data is recorded

to the RAM area when the real-time control is going on. These data are then trans-

formed into ASCII code upon completion of the real-time task and saved to the disk

data files before exiting the program. In the programs developed, as many as 12

variables can be recorded, each has a length of 400 data points. The time interrupt

service routine's task is to pop out the return address and check its correctness to

see if overtime occurs. In the case of overtime, it will cause the program to return

to the DOS or DEBUG environment immediately. Otherwise it will push down into

the stack the beginning address of the control program as the return address and exit

the interrupt service routine normally. The control program begins after the initial-

ization of the system. After all the control tasks are performed in a sampling period

the program will simply wait there for the next time interrupt to occur. All these

functions are integrated into each real time control program using the 80286/80287

assembly language.
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F.4 Floating point arithmetic

80x87 family of numerical processors can be used with 80x86 family of microproces-

sors. The numerical processors have their own instruction sets. They share with the

80x86 CPU the same instruction stream and the same system clock. However, these

numerical processors have their own arithmetic processing unit and control unit and

thus can execute the instructions concurrently if there is no confliction in sharing

the system's bus or the memory with the machine CPU. Attention should be paid,

though, to avoid such kinds of confliction from occurring [65]. Because of the above

mentioned features, these numerical processors are often called co-processors.

The co-processors have very strong numerical processing capabilities. They can per-

form read/write, comparison, testing, addition, subtraction, multiplication, division,

taking absolute values, exponent, logarithm, and trigonometric calculations with data

types of integer, long floating numbers and short floating numbers. The specific con-

struction of these chips: 80-bit multiple stacks and the internal 80-bit wide data bus,

enables these chips to complete complicated numerical computations within remark-

ably short period. Thus they are very desirable when high speed and precision results

are required. In our real-time application, the short-floating data type is used which

uses a four-byte word to represent one floating point number. The range and accuracy

of short floating point number is enough for ordinary engineering calculation and ap-

plications. The programming for the co-processor is quite simple and explicit. Every

numerical operation only needs one instruction. The 80x87 instructions are inter-

woven with the 80x86 instructions to fulfill the real time control and data recording

tasks.
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