
BIDIRECTIONAL SEQUENTIAL DECODING
by

Kaiping Li

M. A, Sc., Northern Jiao-Tong University, Beijing, P. R. of China, 1986

B. A. Sc., Northern Jiao-Tong University, Beijing, P. R. of China, 1983

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES

DEPARTMENT OF ELECTRICAL ENGINEERING

We accept this thesis as conforming

redsta

The UNIVERSITY OF BRITISH COLUMBIA

June 1994

© KAIPING LI, 1994

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it
freely available for reference and study. I further agree that permission for extensive
copying of this thesis for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written
permission.

(Signature)

Department of Ci
The University of British Columbia
Vancouver, Canada

Date

DE-6 (2188)

Abstract

The main drawback of sequential decoding is the variability of its decoding effort

which could cause decoding erasures. We propose and analyze in this dissertation efficient

bidirectional sequential decoding (B SD) techniques to alleviate this drawback, In the

proposed BSD, two decoders are used; one is called forward decoder (PD), and is used

to search the tree from forward direction; while the other is called backward decoder

(BD), and is used for the backward search of the tree. Forward decoding and backward

decoding are performed simultaneously, and stop somewhere in the tree. In one class of

BSD, to which we refer as BSD-merge, decoding stops whenever FD and BD merge at

a common encoder state some where in the tree. In the other class of BSD, that is BSD

no-merge, no common encoder state is required, and decoding stops when FD meets

BD. Different BSD algorithms based on the stack algorithm are constructed; namely

Algorithm TAmeet which belongs to the class of B SD-no-merge, Algorithm TAmerge

and Algorithm Timerge which belong to BSD-merge, and finally Algorithm HTTmerge

which is a hybrid version of BSD-merge and BSD-no-merge.

The relationships between backward coding and forward coding are examined in

detail. Good convolutional codes, with memory m ranging from 2 to 25, suitable for

bidirectional decoding, found through extensive computer search, are provided. These

codes possess the same distance properties from both forward and backward directions.

It is found by analysis and computer simulations that the distribution of the total

number of computations per decoded block of the proposed BSD is still Pareto, as that

of unidirectional sequential decoding (USD). However, the advantage of the proposed

11

BSD appears as an increase in the Pareto exponent, and hence as a decrease in the

computational variability and erasure probability. More specifically, we prove by using

the random coding approach that the Pareto exponent of BSD using Algorithm TAmeet

is asymptotically twice that of USD, and conjecture that this also applies to Algorithm

TAmerge. On the other hand, it is found that the computational cutoff rate remains

unchanged, but the use of our BSD reduces the average number of computations per

decoded bit.

Using the random coding approach, we show that the error performance of BSD

merge is asymptotically the same as that of USD. Moreover, we show that the bit error

probability of Algorithm TAmeet satisfies the random coding bound for block codes.

Computer simulations are provided to confirm the analytical findings.

The use of BSD-merge substantially reduces the computational variability of con

ventional sequential decoding without compromising the error performance, However,

BSD does not completely eliminate the erasure problem. We therefore combine our BSD

idea in conjunction with the multiple stack algorithm (MSA), which is an erasure-free

decoding algorithm. It is shown through analysis and computer simulations that the

new bidirectional multiple stack algorithm (BMSA) offers substantial advantages over

the MSA in terms of computational effort, memory requirements and error performance.

The BMSA appears as an attractive alternative to the Viterbi algorithm (VA) where low

error probabilities and high decoding speeds are required.

111

Contents

Abstract

List of Tables

List of Figures

List of Symbols

Acknowledgment

Chapter 1

1.1

1.2

Chapter 2

2.1

2.2

2.3

2.4

Chapter 3

3.1

3.2

3.3

vii

ix

xii

xvii

1

8

9

11

11

16

20

27

33

34

41

50

Introduction

Outline of the Dissertation

Claim of Contributions of this Dissertation .

Convolutional Coding and Sequential Decoding

Convolutional Coding

Sequential Decoding

Backward Coding/Decoding

Search for Good Symmetric Codes

Bidirectional Sequential Decoding Algorithms

Algorithm TAmeet, a BSD-no-merge

Algorithm TAmerge, a BSD-merge

Coarsening on Algorithm TAmerge

iv

Chapter 4

4.1

4.2

4.3

4.4

4.5

4.6

Chapter 5

5.1

5.2

5.3

5,4

Chapter 6

6.1

6.2

6.3

6.4

6.4.1

6.4.2

6.5

64

66

68

71

91

91

93

109

110

115

116

122

125

135

136

138

138

Computational Performance of BSD 55

A Simple Approach to Computational Distribution 55

Upper Bounds to Computational Distribution of Algorithm

TAmeet 58

Extension to Other BSD Algorithms

Lower Bound to Computational Distribution

Average Number of Computations

Numerical and Simulation Results

Error Performance of BSD

Error Performance of USD

Error Performance of BSD-merge

Error Performance of Algorithm TAmeet .

Numerical and Simulation Results

Bidirectional Multiple Stack Algorithm

The Multiple Stack Algorithm (MSA)

Bidirectional Multiple Stack Algorithm (BMSA)

Computational Properties of the BMSA . . .

Error Performance of the BMSA

Effect of Parameter Z1

Effects of Parameters T and Z

Comparison with Viterbi Decoding

V

Chapter 7 Conclusions and Suggestions for Further Research . . . 141

References 145

Appendix B Proof of Theorem 4.4 . 150

Appendix C List of Acronyms 154

vi

List of Tables

Table 2.1 Symmetric bidirectional optimum distance profile (SBODP)

codes ,.,,.,.,.,..,.,,...,,.,...,,,., 28

Table 2.2 Distance spectra of SBODP codes 29

Table 2.3 Symmetric almost bidirectional optimum distance profile

(SABODP) codes 31

Table 2,4 Distance spectra of SABODP codes 32

Table 4.1 Comparison of average computations for L = 400, Clim = 8000

and p = 0.0409 75

Table 4.2 Comparison of average computations for L = 200, Clim = 4000

and p = 0.0594 81

Table 4.3 Comparison of average computations for L = 400, Clim 4000

and p = 0.0289. 83

Table 4.4 Comparison of computational and error performances of

different m with the new definition of one computation 88

Table 5.1 Error performance comparison of different algorithms for the

case Pr = 1.1, i.e., R < Rcomp 112

Table 5.2 Error performance comparison of different algorithms for the

case Pr = 0.68, i.e., R > Rcomp 113

Table 5.3 Error performance comparison of Algorithm TAmeet (z = 1)

for different block length L 114

vii

Table 5.4 Error performance comparison of Algorithm TAmerge (= 1)

for different block length L 114

Table 6.1 Average number of computations as a function of Z1 134

Table 6.2 Average number of computations as a function of T 135

Table 6.3 Average number of computations as a function of Cijm . . . 135

Table 6,4 Error performance as a function of parameter T 138

Table 6.5 Error performance as a function of parameter Z 138

vu

List of Figures

Figure 1.1 General digital communication system 1

Figure 1.2 Binary symmetric channel 3

Figure 2.1 Convolutional encoder for the (3, 1, 2) code 12

Figure 2.2 Forward code trellis diagram for the encoder of Figure 2.1. . 13

Figure 2.3 Forward code tree diagram of the encoder of Figure 2.1. . . 14

Figure 2.4 Backward code trellis diagram for the encoder of Figure 2.1 . 21

Figure 2.5 Backward code tree diagram of the encoder of Figure 2.1,. . 22

Figure 3.1 Illustration of the stopping rules of Algorithm TAmeet. . . . 35

Figure 3.2 Illustration of the overlapping in BSD-merge........... 42

Figure 3.3 Example of opposing paths passing each other 43

Figure 3,4 Typical impossible event in Algorithm TAmerge......... 44

Figure 3.5 Illustration of a typical impossible event in Figure 3.4...... 45

Figure 3.6 Illustration of the possible event,..... 45

Figure 3.7 Illustration of another impossible event 46

Figure 3.8 Distinct forward and backward paths in the FS and BS 47

Figure 3.9 Merging test in Algorithm TTmerge 52

Figure 4.1 (a) Correct path metric with forward decoding. (b) Correct path

metric with backward decoding. (c) Correct path metric with

bidirectionaldecoding 57

Figure 4.2 Distribution of the total number of computations per decoded

block for the case L = 400 and p = 0.0409, i.e., Pr = 1.1. . . 73

ix

Figure 4,3 Distribution of the total number of computations per decoded

block for different codes using the same parameters as in

Figure 4.2 77

Figure 4.4 Distribution of the total number of computations per decoded

block for a systematic ODP code (Pr = 1.1) 78

Figure 4.5 Disthbution of the total number of computations per decoded

block for the case L = 200 and p = 0.0594, i.e., Pr = 0.68. . 80

Figure 4.6 Distribution of the total number of computations per decoded

block for the case L = 400 and p = 0.0289, i.e., Pr = 1.5. . . 82

Figure 4.7 Probability mass of merging and meeting when code rate <

Rcomp 84

Figure 4.8 Probability mass of merging and meeting when code rate >

Rcomp 86

Figure 4.9 Distribution of the overlapping length 87

Figure 4.10 Distribution of the total number of computations for different

m with the new definition of one computation 89

Figure 5.1 Example of error events with a correct merging encoder state. 94

Figure 5.2 Example of error events with an incorrect merging encoder

state 94

Figure 5.3 Illustration of the merging error event 97

Figure 6.1 Illustration of the multiple stack algorithm 117

Figure 6.2 Empirical computational distribution for the final decision of

the MSA 120

x

Figure 6.3 The first stack saving as a function of P1 128

Figure 6,4 Empirical computational distribution for the final decision

using Z1 as a parameter 130

Figure 6.5 Empirical computational distribution for the final decision

using T as a parameter 131

Figure 6.6 Empirical computational distributions for the final decision

using Z as a parameter 132

Figure 6.7 Bit error probability of the BMSA and MSA as a function of

Z1 137

Figure 6.8 Comparison on error performance for different algorithms. . 140

xi

List of Symbols

Definition

Lrl Smallest integer not less than r

[TJ Largest integer not greater than r

Defined by R = E0(o)/o

Substack spacing

7 Fano metric

One branch metric drop

Pr Defined by R =

Indicator function

ad Total number of paths of weight dfree +
free +

C 2 max [mm (c[, c_)]

CM8A Total number of computations needed to decode one branch using the

BMSA

CSD Total number of computations needed to decode one branch using BSD

CISA Total number of computations needed to decode one branch using the

MSA

C’5-’ Total number of computations needed to decode one branch using USD

Ccrir Critical number of computations

Channel capacity

xii

Cdjree+j Total number of nonzero information bits on all weight dfree + i paths

Cf5D
Total number of computations required to decode a block of L branches

by any BSD algorithm

Cf, Cf Total number of computations required by forward and backward

decoders to decode a whole block of L branches, respectively

C, Cf_i Total number of computations needed by forward and backward de

coders to decode x or (L — x) branches without searching beyond the

boundary at level x, respectively

AF ‘iB
‘L—z Total number of computations required by forward and backward

decoders to correctly decode x or (L — x) branches, respectively

Ci The i-th branch computations

CL Total number of computations needed to decode a block of L branches

by using Algorithm TAmeet

CL Total number of computations required to decode a block of L branches

by using Algorithm TAmerge with the assumption of correct decoding

TAmerge
CL Total number of computations required to decode a block of L branches

by using Algorithm TAmerge

CfM Total number of computations required to decode a block of L branches

by using the BMSA

Total number of computations required to decode a block of L branches

by using the MSA

XIII

Ciim Computational limit

Total number of computations required to correctly decode the first

A branches using USD

D Unit delay

d Distance profile

dfree Free distance

d[], d[.] Column distance function of forward and backward codes, respec

tively

Incorrect path subset generated from level i

E[1 Expectation function

E0() Gallager function

Smallest concave function E()

G(D), Gr(D) Transfer function matrix of forward and backward codes, respectively

H() Entropy function

I Identity matrix

K Code constraint length

k Number of bits per unit time at the input of an encoder

L Block length (including a known tail)

I Meeting point

‘F lB The farthest level reached by forward and backward decoders, re

spectively

xiv

1FTOP’ 1BTOP The length of top path in FS and BS, respectively

1 Merging point

M[] Path metric function

WI Total encode memory

m Encode memory order

mh Number of matching information symbols in the merging test

Nb Total number of bit errors given Smg incorrect

n Number of bits per unit time at the output of an encoder

nb(r) Expected number of bit errors caused by an incorrect path diverging

at level r

1 + l — L at the end of decoding.

Pj The first (primary) stack overflow probability

Pb Bit error probability

Block error probability

Per Erasure probability

p Crossover probability of BSC

R Code rate (flats per channel symbol)

r Code rate (bits per channel symbol)

Rcomp Computational cutoff rate

SF, S5 Current number of forward and backward stacks, respectively

S1 Encoder state i

xv

Smg Common encoder state at 10

The first (primary) stack size saving ratio

x(i) Correct path from root node to level i

x(t) Incorrect path which diverges from the correct path at level i and

remerges at level (i + t)

Incorrect path which diverges from the correct path at level i and

stretches out t branches from the correct node i

The set of all possible incorrect paths which diverge from the correct

path at level i

X(i;j) The set of all incorrect paths which diverge and remerge with the

correct path at level i and (L
- j)

Total number of elements in .(i;j)

Z = 2zpMsA

Z1 ZM = 2ZM,i = 2,3,••

ZpM The i-th forward or backward stack size in the BMSA

Zj The i-th stack size in the MSA

xvi

Acknowledgment

I would like to thank my wife, Libing, for her constant encouragement, support, and

understanding during these years. I am also greatly indebted to my research supervisor,

Dr. Samir Kallel, for his continual encouragement and highly constructive comments. I

wish to express my sincere thanks for his guidance throughout this research.

I would like to thank Mr. Dimitrios P. Bouras, Mr. Siavash Massoumi, Mr.

Longxiang Dai, and Mr. Weimin Sun for their helpful discussions.

I would also like to thank Dr. Samir Kallel, Mr. Siavash Massoumi, and Mr.

Dimitrios P. Bouras for their help with transcript changes after I joined OKI Telecom.

Finally, I would like to thank Mrs. Vicki Waidro-Snider and Mr. Peter Howard for their

invaluable help in perfecting the use of the English language throughout this text.

xvii

Chapter 1
Introduction

Digital communication deals primarily with the process of transmitting digital infor

mation from one point to another through a channel which is subject to noise disturbances.

This implies that the information received at the destination (prior to processing) is not al

ways exactly the same as transmitted. Shannon [11 showed in his famous coding theorem

that digital information can be transmitted with arbitrarily low error probability provided

that the data rate is smaller than the channel capacity. Since then, numerous coding and

decoding techniques have been proposed in the attempt to approach Shannon’s promise

of reliable communication near the channel capacity. The increasing demand for efficient

and reliable digital communications over noisy channels has led to the use of sophisticated

coding and decoding techniques for the purpose of error correction. These techniques,

called forward error correction (FEC) are useful, especially with power-limited systems.

r Source

Channel

Source Encoder Encoder Mo

Destination H-H_::r Demodulator

Figure 1.1 General digital communication system.

1

Chapter 1 Introduction

A general block diagram of a digital communication system is given in Figure 1.1.

An arbitrary source generates a signal which is then transformed by a source encoder into

a redundancy-free digital information sequence. If the source is analog, analog-to-digital

(A/D) conversion is performed at the source encoder. Generally, source and source

encoder are treated as a digital source which emits an equal likely binary sequence. The

information sequence then enters the channel encoder which adds redundancy to combat

the channel noise. The outputs from the channel encoder, referred to as codewords, are

then mapped into a waveform signal by the modulator for transmission over the waveform

channel, The waveform channel may represent a telephone line, a wireless radio link, a

space communication link, etc. The demodulator processes the received waveform signal

and produces an output that may be discrete (quantized) or continuous (unquantized). The

output of the demodulator is called the received sequence. The channel decoder, based

on the received sequence and the known structure of the channel encoder has to select

the best possible transmitted sequence. The purpose of the channel encoder and decoder

is to allow the digital information sequence to be efficiently and reliably reproduced at

the output of the channel decoder. The decoded sequence then enters the source decoder,

which reproduces a signal that is delivered to the user. If the source signal is continuous,

this also involves digital-to-analog (D/A) conversion.

To focus attention on the channel encoder and channel decoder, the modula

tor/demodulator (modem) and the waveform channel are combined into a coding channel.

In this dissertation, a discrete memoryless channel (DMC) is assumed, which constitutes

the simplest class of coding channel models and is defined as follows. The input is a

sequence of elements from a finite alphabet, and the output is a sequence of elements

2

Chapter 1 Introduction

from the same or different alphabet. Moreover, each element in the output sequence is

statistically dependent only on the element in the corresponding position of the input

sequence and is determined by a fixed conditional probability assignment. For example,

the binary symmetric channel (BSC), which is shown in Figure 1.2, is a DMC with binary

input and output alphabets, where each digit at the channel input is reproduced correctly

at the channel output with some fixed probability (1
-

p) and is altered by noise into the

opposite digit with probability p.

Input alphabet Output alphabet
0 0

1 1

Figure 1.2 Binary symmetric channel.

A multitude of methods on coding and decoding techniques which permit low error

probability in digital communications have been proposed and investigated. Since excel

lent introductory literature into coding/decoding theory is available [2—8], the following

survey will therefore be limited to matters relevant to this thesis, that is convolutional

encoding with probabilistic decoding. Supporting literature is found in the references.

A convolutional code is described by three integers, n, k, and m. At each unit time,

the encoder accepts k-bit of the information sequence and produces a codeword (encoded

sequence) of n-bits. The integer m is a parameter known as the code memory length. An

important characteristic of an (n, k, m) convolutional code is that the encoder has memory

‘-p

3

Chapter 1 Introduction

— the n-bits emitted by the convolutional encoding procedure is not only a function of

the k-bit input, but is also a function of its previous m inputs.

Viterbi decoding [9] and sequential decoding’ [11] are the two main probabilistic

decoding methods for convolutional codes. The Viterbi algorithm (VA) is an optimum

maximum likelihood decoding scheme, but its optimality is obtained at a large decoding

effort. The number of computations performed per information digit is constant, but

increases exponentially with the code memory length. In practice, the VA can thus be

employed only with short memory codes.

Historically, sequential decoding was proposed in 1957 by Wozencraft and Reiffen

[11] as the first practical decoding procedure for convolutional codes. In sequential

decoding, the tree-like structure of the convolutional code is used in a step-by-step search

of the most likely transmitted sequence. As long as the data rate does not exceed a

quantity called computational cutoff rate R01, which is less than the channel capacity,

the average number of computations required to decode one information digit is small

and independent of the code memory length.

The error probability of sequential decoding decreases exponentially with the code

memory length [12], and it is lower bounded by that of the VA. As m —* co, however,

both decoding techniques yield the same error performance. In addition, the decoding

complexity of sequential decoding is practically insensitive to the code memory. Con

sequently, convolutional encoding with sequential decoding is at present one of the best

known methods to achieve an arbitrarily low error probability over a DMC [7, 8, 13, 14].

In this dissertation, sequential decoding is used in a narrow sense. That is, it only includes the metric-first and the depth-first
algorithms although the breadth-first algorithm can be categorized as sequential decoding in a wide sense [10].

4

Chapter 1 Introduction

Convolutional coding with sequential decoding has been used in various systems such as

satellite communications, deep space communications, etc.

There are two principle sequential decoding algorithms: the Fano algorithm [13] and

the stack algorithm proposed independently by Zigangirov [15] and Jelinek [16]. Re

gardless of the algorithm, a major problem with sequential decoding is the computational

variability. As a consequence of this variability, the decoding effort for a given received

sequence may occasionally exceed the physical limitations of the decoder, leading in

evitably to buffer overflows and infonnation erasures. Thus, while the undetected error

probability of sequential decoding can be made arbitrarily small, the erasure probability

or buffer overflow remains substantial [7, 8, 17]. Although the disadvantage of over

flows or erasures of sequential decoding may be useful in systems with retransmission

capabilities, it is desirable to make the erasure probability as small as possible without

compromising the error performance in order to achieve higher throughput and reliabil

ity. In addition, there are many other cases where erasures are undesirable. For example,

in real-time systems with long path delays, erasures can cause complete data loss, In

this case, the main contribution of errors comes from the buffer overflow. Thus, it is

very important to reduce the erasure probability. The prime objective of this research

is tailored at alleviating the computational variability, and thus minimizing erasures in

sequential decoding.

In the past, several modifications of sequential decoding to reduce the erasure

probability have been reported and implemented. Excessively long tree searches can

be terminated early by placing a backsearch limit on the Fano and the stack algorithms,

5

Chapter 1 Introduction

thereby lowering the erasure probability [14]. A similar effort is achieved with the stack

algorithm by deleting the path with the lowest metric from the stack whenever the stack

fills up [15, 16]. Although these methods accelerate decoding and reduce the erasure

probability, the resulting increase in the error probability is found to be substantial [18].

Haccoun and Ferguson [19] proposed a class of generalized (or multiple path) stack

algorithms which extends several paths simultaneously from the top of the stack. It was

shown that the variability of the computational effort is reduced, but at a cost of a large

average number of computations compared to the ordinary stack algorithm.

In order to eliminate erasures entirely, Chevillat and Costello [20, 21] introduced an

interesting multiple stack algorithm (MSA). It is a modification of the stack algorithm

and uses several stacks to accommodate the problem of stack overflow. However, it is

found that the resulting increase in stack and buffer storage is substantial.

Fomey [22] in 1967 suggested that sequential decoding can be started from the end

of a block which is terminated by a known tail. He proposed a bidirectional decoding

scheme which uses a forward decoder and a backward decoder to search a terminated

tree from initial and final encoder states, respectively. Decoding with Forney’s scheme

stops whenever either the forward or the backward decoder reaches the end of its tree.

Computer simulations revealed that this scheme does not offer much improvement in

terms of computational performance.

The idea of bidirectional search has also been used for computing the free distance

of convolutional codes [23, 24] and distance spectrum of trellis codes [25]. Recently,

a bidirectional decoding search has been applied to the decoding of block codes [26].

6

Chapter 1 Introduction

Most recently, Haccoun and Beizile [27, 28] investigated bidirectional breadth-first M

algorithm for the decoding of convolutional codes. Although erasures are avoided by the

nature of the breadth-first M algorithm used, the loss of the correct path problem, which

is inherent to the M algorithm, limits the performance of this scheme.

We propose and analyze in this dissertation efficient bidirectional sequential decoding

(BSD) techniques [29]. It is shown that the proposed BSD techniques substantially

alleviate the drawbacks of conventional or unidirectional sequential decoding (USD).

In the proposed BSD, two decoders are used, like in Forney’s scheme; one is called

forward decoder (FD), and is used to search the tree from forward direction; the other

is called backward decoder (BD), and is used for the backward search of the tree.

Forward decoding and backward decoding are performed simultaneously. However,

unlike Forney’s scheme, decoding in the proposed BSD techniques stops somewhere

in the tree, In one class of BSD, which we refer to as BSD-merge, decoding stops

whenever FD and BD merge at a common encoder state somewhere in the tree. In

the other class of BSD, that is BSD-no-merge, decoding stops when FD meets BD.

Different BSD algorithms based on the stack algorithm are constructed; namely Algorithm

TAmeet which belongs to the class of B SD-no-merge, Algorithm TAmerge and Algorithm

TTmerge which belong to B SD-merge, and Algorithm HTTmerge which is a hybrid

version of BSD-merge and BSD-no-merge. Finally, to eliminate erasures entirely, we

combine Algorithm TTmerge in conjunction with the MSA of Chevillat and Costello

[20, 18, 21], to obtain a more efficient and reliable erasure-free algorithm, which we call

bidirectional multiple stack algorithm (BMSA).

7

Chapter 1 Introduction

1.1 Outline of the Dissertation

Chapter 2 is a brief summary of the basic elements of convolutional coding and

sequential decoding. The idea and basic properties of backward coding/decoding are also

presented in this chapter. Moreover, good convolutional codes suitable for bidirectional

decoding, which are found through computer search, are listed in this chapter.

In Chapter 3, the proposed BSD algorithms are described and their fundamental

properties are investigated. Furthermore, our proposed BSD algorithms are compared

with the existing BSD algorithms which can be classified under the category of BSD

no-merge in a wide sense.

A theoretical analysis of the computational performance of the proposed BSD algo

rithms is given in Chapter 4, together with extensive computer simulation results. It is

found, both by theoretical analysis as well as computer simulations, that the distribution

of the total number of computations per decoded block by any of the proposed BSD

algorithm is still Pareto, as that of USD. However, the advantage of the proposed BSD

appears as an increase in the Pareto exponent, and hence as a decrease in the compu

tational variability. More specifically, we prove by using the random coding approach

that the Pareto exponent of BSD using Algorithm TAmeet is asymptotically twice that of

USD, and conjecture that this also applies to Algorithm TAmerge. On the other hand, it is

found that the computational cutoff rate remains unchanged, but the use of the proposed

BSD reduces the average number of computations per decoded bit. This reduction in

computational variability and average number of computations translates into a substan

tial decrease in the erasure probability (or buffer overflow problem), which is the main

8

Chapter 1 Introduction

drawback of sequential decoding.

The error performance of the proposed BSD techniques is explored in Chapter 5

by both theoretical analysis and computer simulations. It is found that BSD-merge has

asymptotically the same error performance as USD, while the bit error probability of

Algorithm TAmeet follows the random coding bound for block codes.

In Chapter 6, an erasure-free BSD technique based on the MSA [18, 211, which

we call bidirectional multiple stack algorithm (BMSA), is proposed and analyzed. It is

found that the BMSA performs better than the conventional MSA, in terms of memory

requirements, computational effort and error performance.

Chapter 7 contains final conclusions and suggestions for future research,

Appendix A contains a rigorous proof of Theorem 4.4 which suggests that under

the assumption of correct decoding the computational cutoff rate of BSD is the same

as that of USD.

Appendix B lists acronyms used in this dissertation.

1.2 Claim of Contributions of this Dissertation

The major contributions of this research are summarized below.

The properties of backward coding/decoding are examined in great detail. More

specifically, the relationships between a backward code and the corresponding forward

code are given through Theorems 2.1 and 2.2, Corollaries 2.1 and 2.2 and Properties

2.1 and 2.2. Good convolutional codes suitable for bidirectional decoding found through

computer search are provided.

9

Chapter 1 Introduction

Efficient BSD techniques that alleviate the drawbacks of conventional sequential

decoding are proposed and examined by analysis and extensive computer simulations.

The main theoretical contributions in the analysis of the proposed BSD techniques are

as follow:

1, A computational upper bound for Algorithm TAmeet is found for a specific time-

invariant convolutional code (Theorem 4.1).

2. A computational upper bound for Algorithm TAmeet is discovered for an ensemble

of trellis codes (Theorem 4.2). It is conjectured that this bound also applies to

Algorithm TAmerge.

3. A computational lower bound is obtained for any code and any type of BSD (Theorem

4.3).

4. The computational cutoff rate of BSD is found to be the same as that of USD

(Theorem 4.4).

5. The error performance of BSD-merge is proved to be asymptotically the same as that

of USD (Theorems 5.1 to 5.3, Corollaries 5.1 and 5.2).

6. The bit error probability of Algorithm TAmeet is found to satisfy the random coding

bound for block codes.

An erasure-free algorithm, the BMSA, is proposed and analyzed. Through computer

simulations and analysis, we demonstrate that the new BMSA performs better that the

conventional MSA.

10

Chapter 2
Convolutional Coding and
Sequential Decoding

2.1 Convolutional Coding

An (n, k, m) convolutional encoder can be implemented with k shift registers, n

modulo-2 adders and a commutator that scans the output of the adders. The length of

each of the k shift registers is less than or equal to the encoder memory order m [81,2

The connections of the n adders to the k shift registers define the code. This is generally

specified with a so-called k x n transfer function matrix G(D) [8], given by

g(D) g2(D) ... g(D)

g1(D) g2(D) ... g(D)
G(D) = 2 2 2 (2.1)

g3’(D)

g’(D) g2(D) ... g(D)

where g (D) is a polynomial of degree m that indicates the connection of the j-th

adder to the i-th shift register. For example, Figure 2.1 represents a (3, 1, 2) encoder

withG(D) = [1+D,l+D2,l+D+D2].

Encoding is performed k-bit at a time. Each k-bit to be encoded is fed to the encoder

from the left side, and the content of the k shift registers is shifted one position to the

right. The modulo-2 adders are then sampled in sequence by the commutator, producing

n output coded bits. For convenience, we refer to this as forward encoding.

Defining fl max [deg g3)(D)] as the total encoder memory [8] and the state
i=1 1<j<n

of the encoder as its k shift registers’ contents, there are a total of 2 different possible

2 The memory order m is related with the constraint length K [7], which is defined as the maximum number of present and past
encoder input symbols that influence any output symbol, i.e., K = m + 1.

11

Chapter 2 Convolutional Coding and Sequential Decoding

Figure 2.1 Convolutional encoder for the (3, 1, 2) code.

states. Then, the operations of the encoder can be described using a state diagram, where

the n output bits are a function of the state and the k input bits [8]. Operations of a

convolutional encoder can also be described by a trellis or a tree diagram [8]. Figures

2.2 and 2.3 represent six-level trellis and tree diagrams, respectively, for the (3, 1, 2)

encoder of Figure 2.1, corresponding to information sequence of length 4 bits with a

zero tail of length 2. The upper branch leaving each state in both the trellis and tree

diagrams in Figures 2.2 and 2.3 represents input one, while the lower branch represents

input zero. Starting from the initial state So, each path in the trellis or tree diagram

corresponds to a possible encoded sequence as generated by the encoder. For example,

the highlighted path on the forward code tree of Figure 2.3 corresponds to information

sequence (110100) and code sequence (111, 010, 110, 100, 101, 011).

U

vi

V

12

Chapter 2 Convolutional Coding and Sequential Decoding

Time units

Figure 2.2 Forward code trellis diagram for the encoder of Figure 2.1.

0 1 2 3 4 5 6

13

Chapter 2 Convolutional Coding and Sequential Decoding

001 110 011
001

010
[110 011 000

100 101 011
110

111
011 000 000

— 010 110 011
100

r1ioi 011 000
101
—1 111 101 011

001 110 011
010

V 110 011 000
0 111

100 101 011
101

011 000 000

000
010 110 011

111

r— 101 011 000
000

1_000
101 011

000 000 000

Figure 2.3 Forward code tree diagram of the encoder of Figure 2.1.

14

Chapter 2 Convolutional Coding and Sequential Decoding

The code rate of an (n, k, m) convolutional code is r = k/n information bits per coded

bit or channel symbol. The code rate can also be expressed as

R in (u)/n, nats per channel symbol (2.2)

where u = 2k, We have thus R = r in 2.

The error correcting capabilities of a convolutional code are intimately related with

the memory m and code rate r, The larger is m and/or the smaller is r, the more powerful

is the code. Lowering the rate of the code involves a higher bandwidth expansion for

transmission, which might be problematic in certain applications. It is therefore desirable

to increase m as much as possible.

The two main probabilistic decoding techniques for convolutional codes are Viterbi

decoding [9] and sequential decoding [11]. Given a received sequence of channel symbols

and a code structure, a Viterbi decoder explores the whole code trellis in order to decide

which is the most probable path or code sequence to have been transmitted. Viterbi

algorithm (VA) is thus an optimum decoding technique in the maximum likelihood

sense. However, due to the amount of computations needed for decoding, which grows

exponentially with the code memory m, the VA is practically limited to short memory

codes (typically m 7) [7, 8]. A sequential decoder on the other hand attempts to make

the best decision by only exploring a small portion of the code tree (or trellis). Sequential

decoding is thus suboptimum, but can be used with long memory convolutional codes.

Unfortunately, sequential decoding has serious drawbacks, and our efforts in this thesis

are oriented towards the goal of alleviating some of these drawbacks.

15

Chapter 2 Convolutional Coding and Sequential Decoding

2.2 Sequential Decoding

In a system using convolutional coding and sequential decoding, information is

usually transmitted in blocks (L — m branches), and each block is terminated by a

known tail (usually m zero branches). Sequential decoding is a sub-optimum tree search

procedure that only explores a fraction of the encoded tree in order to determine the

most likely transmitted path for a given received sequence. The basic idea of sequential

decoding is as follow, Assuming a DMC, starting from the root node, a sequential

decoder explores the code tree, one branch at a time and uses the log-likelihood function

or Fano metric [13] given by

1P(Yilxi)R (23)
P(y)

where x is the i-th channel input symbol (1 i nL), y, is the corresponding received

symbol, and P(y) = P(yjIx)q(x) is the a priori probability for the received symbol
)

y with q(xj) being the distribution of channel input symbol x1. The total metric for a

path of length I branches is then

ft

(2.4)
i=l

and a sequential decoder, based on the stack algorithm, will always attempt to search

and extend the path having the largest cumulative metric. At the end of the tree, the

path with the highest metric is accepted as the decoded path. Thus, while this decoder

is moving forward into the tree, it occasionally realizes that it is not following the best

current path, and backs up to follow a more promising one. This backtracking ability

[30], while essential for achieving good error performance, is also the main cause of the

16

Chapter 2 Convolutional Coding and Sequential Decoding

serious problems in sequential decoding. Since here, decoding is performed along only

the forward direction, it shall be referred to as unidirectional sequential decoding (USD).

Since the stack algorithm is much simpler to describe and analyze than the Fano

algorithm, we will focus on the stack algorithm in this dissertation. In this algorithm, a

stack is used to store the already searched paths in decreasing order of their metric values.

The top of the stack is the path with the largest accumulated metric among the paths in

the stack, and will be extended one level further into the tree. The stack is reordered

after each extension, so that the top always contains the current best or most likely path.

Decoding stops whenever the top path reaches the end of the tree. For ease of reference,

we refer to this algorithm as unidirectional stack algorithm and list it in the following.

Unidirectional Stack Algorithm:

Step 0: Place the initial root node of the code tree in the stack.

Step J. Compute the metrics of all successors of the top node in the stack, and enter

the new nodes in the stack, ordered with respect to their cumulative metrics.

Step 2: Remove from the stack the node whose successors were just inserted.

Step 3: If the top node in the stack is the final node of the tree, stop. Otherwise,

return to step 1.

The major problem of the above algorithm is the reordering of the stack after each

extension (Step 1) of the top path. To overcome this difficulty, Jelinek [16] proposed a

quantized version of the algorithm in which the paths are placed at random into substacks

according to their metric values. All paths whose metric values are within a certain range

17

Chapter 2 Convolutional Coding and Sequential Decoding

are stored in a substack. That is a path of metric F is inserted into substack H if

HzS.F<(H+1)A, (2.5)

where \ is the substack spacing in metric value. In this quantized stack, the search for

the top path reduces to the search for the highest non-empty substack. The path that is

to be extended is taken at random or usually in a first-in last-out mode. In our computer

simulation, the first-in last-out mode was used which is suggested by Johannesson [31]

to be near-optimal.

The decoding effort of USD is usually measured by the distribution of the number

of computations per either decoded bit or decoded block. In this thesis, the number of

computations per block is used. A computation is defined as one hypothesis of a node to

be on the correct path.3 The lower bound given by Jacobs and Berlekamp [30] together

with the upper bounds given by Savage [321, Falconer [33] and Jelinek [34] have shown

that the computational distribution of USD is essentially Pareto. Specifically, define

as the total number of computations required to decode the first A branches of the

code tree using sequential decoding. With the assumption of correct decoding, Jacobs

and Berlekamp [30] showed that for all codes, any DMC and any USD algorithm, CK

satisfies

P(CKsD > N) > N exp {_o(v’iT) }, (2.6)

where 0 (/17) is an asymptotically unimportant term,4 and the Paretian exponent ct

is defined by the following parametric equation

R =E0()/c. (2.7)

A computation in the stack algorithm is an extension of the top node, while in the Fano algorithm, it is usually defined to be
a forward move [5].

0(b) represents that the value can be upper-bounded by Abs, where A is a finite constant for all indexes i.

18

Chapter 2 Convolutional Coding and Sequential Decoding

The function Eo(a) in (2.7) is the smallest concave function greater than or equal to the

Gallager function E0(cx) [5]. Using the random coding technique over an ensemble of

trellis codes [35], Savage, Falconer and Jelinek showed that for a DMC, the first-branch

computations C1 of sequential decoding is upper-bounded as

P(C1 N) AN, (2,8)

where p < Pr, which is defined as R = Eo(pr)/pr,5and A is a finite constant independent

of N [36]. Moreover, it was noticed that asymptotically, the lower bound gives an accurate

description of the computational distribution for good codes and practical sequential

decoding algorithms [311.

The computational performance of USD with a specific convolutional code depends

on the decoding algorithm employed and the distance properties of the forward code.

In particular, optimum forward sequential decoding performance requires rapid initial

column distance growth of the forward code for fast decoding and minimum erasure

probability, and a large free distance (dfree) for minimum error probability [37, 38].

Specifically, for a code with rate R and a BSC with a crossover probability p satisfying

R<1n2+pln —H(p), (2.9)
‘—p

where H(p) = —plnp — (1
—

p) ln (1
—

p) is the entropy function, the distribution

P(C1 > N) for a specific time-invariant convolutional code is upper-bounded by [38]

P(C1 N) <• exp{—id[log N] + log N}, (2.10)

where o-, 5 and are parameters which are functions of p and R, but independent

of N, and are as defined in [38].

pr = a if the channel is a BSC, but Pr a in genera’.

19

Chapter 2 Convolutional Coding and Sequential Decoding

The distance profile d of a forward code is defined as the column distance function

(CDF) over only the first constraint length (i.e., d [d0, d1, “, dm1) [8]. Since the

distance profile determines the initial column distance growth of the forward code, and

is easier to compute than the entire CDF, it is usually used instead of the entire CDF as

a criterion for selecting codes for use with sequential decoding. A code is said to have

a d superior to a d’ of another forward code of the same memory order m, when there

is some i m such that

dj{j: (2.11)

A forward code is said to have an optimum distance profile (ODP) [8] if its d is superior

to that of any other forward code of the same memory order.

23 Backward Coding/Decoding

Because data is transmitted with a known (e.g. zero) tail in a block mode, all paths

depart from and terminate at the same state S. A path in the trellis or tree diagram can

thus be viewed in reverse as starting from the final state S0 and terminating at the initial

state So. Every such path also corresponds to an encoded sequence. When viewed as

starting from the final state, the distinct paths in the tree or trellis define a code which

we refer to as the backward code. From the tree (trellis) of the original forward code,

one can generate the backward tree (trellis) for the backward code. Figures 2.4 and 2.5

show, respectively, the backward trellis and tree for the backward code obtained from

the original forward code (3, 1, 2) of Figure 2.1. Note that a backward code sequence

is obtained by simply reversing the original forward code sequence. In addition, the

20

Time units

Figure 2,4 Backward code trellis diagram for the encoder of Figure 2.1.

corresponding information sequences are reversals of each other, as well. For example,

the highlighted path on the

Chapter 2 Convolutional Coding and Sequential Decoding

0 1 2 3 4 5 6

21

Chapter 2 Convolutional Coding and Sequential Decoding

100 010 111
100 1

010 111 000
011

001 101 111
010

111 000 000
110

011 010 111
001

111
000 000 000

100 010 111
011

V 010 111 000
0 110

001 101 111
101

111 000 000
000

011 010 111
110

101 111 000

000
110 101 111

000
000 000 000

Figure 2.5 Backward code tree diagram of the encoder of Figure 2.1.

22

Chapter 2 Convolutional Coding and Sequential Decoding

forward code tree of Figure 2,3 corresponds to the information sequence (1101) and the

code sequence (111, 010, 110, 100, 101, 011). Their equivalent reversed information

and code sequences are (1011) and (110, 101, 001, 011, 010, 111), respectively (see the

highlighted path on the backward tree of Figure 2.5).

It can be readily shown that the transfer function matrix Gr(D) of an (n, k, m)

backward convolutional code can be expressed in terms of the transfer function matrix

of the forward code [39] by

g(D’) g’)(D_l)
,, g(D’)

Gr(D) = Dm
g(D’) g(D_’)

::‘

1_1)
, (2.12)

g (D’) g’(D’) .0 (D’)

As an example, consider the encoder of Figure 2.1. The transfer function matrix of its

corresponding backward encoder is Gr(D) = [1 + D + D2, 1 + D2, D + D2].

It appears from the above discussion that, given a convolutional encoder, one can

perform backward encoding by feeding the information bits to be encoded from the right

side of the registers, and set the registers to shift left.

A forward (n, k, m) convolutional code is said to be invertible if there exists an n

x k matrix G(D) such that

G(D)G’(D) = ID6 (2.13)

for some 6 0, where I is the k x k identity matrix [8]. For an (n, 1, m) convolutional

code, this means that there exists a feedforward inverse G(D) of delay S (S 0) if

and only if [40]

GCD [g(1)(D),g2(D),’ ‘ ‘ , g)(D)] = D6, (2.14)

23

Chapter 2 Convolutional Coding and Sequential Decoding

where GCD denotes the greatest common divisor. For an (n, k, m) convolutional code

with k > 1, let A (D), i = 1, 2,..., (), be the determinants of the () distinct k x k

submatrixes of the transfer function matrix G(D). Then a feedforward inverse G’ (D) of

delay 6 exists if and only if

GCD[z(D) : i = l,2,•••, ()] = (2.15)

for some 6 0 [401. Also, (2.14) or (2.15) is a necessary and sufficient condition for

a code to be noncatastrophic. We now show that a backward convolutional code is

invertible provided that the forward code is invertible.

Lemma 2.1: For an invertible (n, 1, m) convolutional code, the delay S in (2.14) is

always no greater than m, since deg [g(i)(D)] mfor all i.

Lemma 2.2: For an invertible (n, k, m) convolutional code with k > 1, the delay S in

(2.15) is always no greater than km, since deg[A(D)] km for all i.

Theorem 2,1: A backward code corresponding to an invertible (n, 1, m) convolutional

code with delay S is invertible and its delay is equal to (m — 5).

Proof: From (2.14), we can write

GCD [g() (D’), g(fl_1) (D’), . . .
, g(’) (D’)] = D, (2.16)

and

GCD [Drng(n) (D’),. . . , Dmg(l) (D—’)] = (2.17)

From (2.12), we can write (2.17) as

GCD [g.’(D),g2(D),’’’ ,g1c(D)] = (2.18)

24

Chapter 2 Convolutional Coding and Sequential Decoding

From Lemma 2.1, we know that m -6 0. Q.E.D.

Theorem 2.2: A backward code corresponding to an invertible (n, k, m) convolutional

code (Ic> 1) with delay 6 is also invertible and its delay is equal to (km — 6).

Proof According to (2.12), we can write

GCD[Lri(D) i = 1,2,..., ()] = GCD[Dkm/(D_1) : i 1,2,•., ()].
(2.19)

From (2.15), we can write

GCD[A1(D_1) : i = 1,2,••, ()] = D6, (2.20)

Therefore, from (2.19) and (2.20) we can write

GCD[Lri(D) : i = ()] = Dkm, (2,21)

and from Lemma 2.2, we know km — 6 0. Q.E.D.

According to the above discussion we can write the following.

Corollary 2.1: A backward convolutional code is noncatastrophic if and only if its

forward code is noncatastrophic.

Corollary 2.2: Decoding of a forward invertible convolutional code can be performed

using the corresponding backward code, This will be called backward decoding as

opposed to the usual forward decoding.

Property 2.1: The distance spectrum [8] ofa backward convolutional code is identical

to that of the corresponding forward code. This is because the Hamming weight of

any path on the forward code tree or trellis is the same as the corresponding path on

the backward code tree or trellis. As a consequence of this property, when maximum

25

Chapter 2 Convolutional Coding and Sequential Decoding

likelihood decoding is used, the error performance of a backward code is the same as

that of the corresponding forward code.

Property 2.2: The distance profile of a backward code is usually differentfrom that of

the correspondingforward code. This is rather obvious and can be seen from the forward

and backward code trees of Figures 2.3 and 2.5. For this example, the first coefficient

of the distance profile of the forward code is equal to 3; whereas for its corresponding

backward code, it is equal to 2. As a consequence of this property, backward sequential

decoding is in general not as efficient as its corresponding forward sequential decoding

when a forward ODP code is used.

With our bidirectional sequential algorithms to be discussed later, decoding is per

formed in both forward and backward directions. It is thus desirable to use codes that

possess the same good distance profile in both directions (see Theorem 4.1 in Chapter 4).

A sufficient condition for a forward code to have the same distance profile as its corre

sponding backward code is symmetry. A code is said to be symmetric or reversible [41,

42j if the code generators of the forward code are the same as those of the corresponding

backward code. For example, the code with generators g’)(D) = 1+D+D2 andg2(D)

= 1+D2 is symmetric. Moreover, since this code has an optimum distance profile [43j

we call it a symmetric bidirectional optimum distance profile code. A code is said to

have a symmetric bidirectional optimum distance profile (SBODP) if it is symmetric and

its distance profile is optimum. Unfortunately, most known ODP codes do not possess

the property of symmetry. However, one can search for new symmetric codes that have

a good distance profile.

26

Chapter 2 Convolutional Coding and Sequential Decoding

24 Search for Good Symmetric Codes

Using a computer search procedure [44, 45], we have found good symmethc (2, 1,

m) non-systematic codes with m ranging from 2 to 25. In our computer search, we first

attempt to find a symmetric code with the same distance profile as the corresponding

known ODP code. If more than one code is found, we select the one with the highest

dfree and the minimal number of paths of weight dfree. Of course, we considered only

noncatastrophic codes. Results are given in Table 2.1, Also included in the table are the

free distances of known ODP codes. Distance spectra of the found SBODP codes are

listed in Table 2.2. In Table 2.2, adiree+j denotes the number of paths of weight dfree + ,

while Cdf +i denotes the total number of nonzero information bits on all these paths.

From Table 2.1, one can immediately notice that SBODP codes do not exist for some

values of m, which are marked by dash signs. Moreover, as it can be seen from Table

2.1, to find a SBODP code, usually dfree had to be sacrificed. In the following, some new

codes which slightly compromise the distance profile for a better dfree are presented.

27

Chapter 2 Convolutional Coding and Sequential Decoding

Table 2.1 Symmetric bidirectional optimum distance profile (SBODP) codes6

m G2 dfree dfree of ODP

2 7 5 5 5

3 — — — 6

4 23 31 6 7

5 — — — 8

6 127 165 8 10

7 — — — 10

8 — — — 12

9 1157 1731 12 12

10 2251 3003 9 14

11 5247 7125 12 14

12 — — — 15

13 27537 37275 12 16

14 56777 77735 12 17

15 134277 176435 16 18

16 222511 304443 14 19

17 475417 741571 16 20

18 1346477 1762635 18 21

19 — — — 22

20 5734323 6261675 18 22

21 12022373 15744405 20 24

22 31065423 23340731 21 24

23 44407043 61070111 18 26

24 176153077 134442235 24 26

25 221446737 373544611 24 27

6 The m = 2 SBODP code is the known ODP code found by Johannesson [43] and is listed here for completeness.

28

Chapter 2 Convolutional Coding and Sequential Decoding

Table 2.2 Distance spectra of SBODP codes

m (adjr+ji = 0, 1,2,
[cdfr+j = 0, 1,2, 1

4 23 31 6
(1,0,4,0,22,0,124,0,682,0)

[1,0,10,0,96,0,778,0,5616,0]

6 127 165 8
(1,0,5,0,35,0,187,0,1074,0)

[2,0,15,0,188,0,1275,0,9350,0]

9 1157 1731 12
(8,0,16,0,159,0,741,0,5027,0)

[32,0,78,0,1150,0,6390,0,52470,0]

10 2251 3003 9
(1,0,1,1,,1,18,21,27,110,256)

[1,0,5,4,9,88,123,186,796,2060]

11 5247 7125 12
(3,0,10,0,33,0,216,0,1216,0)

[10,0,42,0,228,0,1702,0,11248,0]

13 27537 37275 12
(1,0,2,0,11,0,54,0376,0)

[2,0,6,0,68,0,352,0,3278,0]

14 56777 77735 12
(2,0,0,0,10,0,16,0,208,0)
[4,0,0,0,46,0118,01420,0]

15 134277 176435 16 (13,0,0,0,166,0,96,0,3651,0)
[60,0,0,0, 13 30,0,734,0,37790,0]

16 222511 304443 14
(2,0,3,0,7,0,59,0,237,0)

[5,0,13,0,36,0,455,0,1966,0]

17 475417 741571 16
(2,0,1,0,33,0,97,0,751,0)

[6,0,7,0,220,0,753,0,7386,0]

18 1346477 1762635 18
(1,0,12,0,51,0,302,0,1801,0)

[5,0,70,0,365,0,2720,0,18953,0]

20 5734323 6261675 18
(1,0,1,0,12,0,89,0,474,0)

[5,0,6,0,92,0,782,0,5034,0]

21 12022373 15744405 20
(3,0,8,0,36,0,196,0,1246,0)

[24,0,56,0,288,0,1782,0,14312,0]

22 31065423 23340731 21
(1,5,7,18,30,74,175,341,863,2097)

[5,36,37,168,298,670, 1721,3686,9883,253661

23 44407043 61070111 18
(1,0,2,0,4,0,19,0,54,0,)

[1,0,10,0,20,0,116,0,406,0]

24 176153077 134442235 24
(2,3,26,42,93,173)

[16,13,234,350,884,1769]

25 221446737 373544611 24
(4,0,17,0,78,0,508,0,2780,0)

[26,0,135,0,756,0,5540,0,34644,0]

29

Chapter 2 Convolutional Coding and Sequential Decoding

In the event that no SBODP code can be found, we then slightly decrease the distance

profile to find a good code (large dfree and good distance profile). The same method can

be applied when the dfree of a SBODP code is inferior to that of the known ODP code. We

shall refer to this symmetric non-ODP code as an almost BODP (SABODP) code, The

computer search results are listed in Table 2.3. The dash sign in Table 2.3 indicates that

no code with a better dfree is found after slightly decreasing the distance profile. Distance

spectra of the found SABODP codes are listed in Table 2.4. The search for SABODP

codes is conducted as follows. We first examine all codes obtained through possible

modifications of the last four coefficients of the distance profile of the corresponding

ODP code. Then, among these codes, we select the one with the highest dfree and the

best distance profile. The last four coefficients of the distance profile of the obtained

codes are given in the last column of Table 2.3. When the distance profile is slightly

decreased, a code with a better dfree may be found. For example, dfree of the SBODP

code of memory m = 23 is equal to 18. When only the last coefficient of the distance

profile is decreased by one, a SABODP code with dfree = 24 is found.

Notice that for any (2, 1, m) systematic code to be symmetric, the second adder of

the encoder should be connected to only the last stage of the shift register. This would

result in a very poor code in terms of both the free distance and the distance profile.

30

Chapter 2 Convolutional Coding and Sequential Decoding

Table 2.3 Symmetric almost bidirectional optimum distance profile (SABODP) codes

m G’ , dm dfree dfree of ODP

2 — — — — 5

3 13 15 2,3,3,3 6 6

4 — — —
— 7

5 57 75 3,4,4,4 8 8

6 — — — — 10

7 247 345 4,5,5,5 10 10

8 507 705 5,5,5,6 10 12

9 — — — — 12

10 2617 3615 6,6,6,6 12 14

11 — — — — 14

12 16767 12345 6,7,7,7 14 15

13 24433 33045 6,7,7,7 14 16

14 47263 63271 7,7,8,8 16 17

15 — — — — 18

16 232357 367131 8,8,8,8 16 19

17 723705 507627 8,8,8,8 18 20

18 1167671 1712517 8,8,9,9 19 21

19 2714477 3744635 9,9,9,9 20 22

20 5267447 7117325 9,9,9,9 20 22

21 17242231 11444257 9,9,9,10 22 24

22 32427561 21675053 9,10,10,10 22 24

23 55231643 61346255 10,10,10,10 24 26

24 - - - - 26

25 - - - - 27

31

Chapter 2 Convolutional Coding and Sequential Decoding

Table 2.4 Distance spectra of SABODP codes

m G’ djree (ad1,,+,i = 0, 1,2,
[Cdf,,+ji = 0, 1,2,

3 13 15 6
(2,0,10,0,49,0,241,0,1185,0)

[4,0,38,0,277,0,1806,0,11063,0]

5 57 75 8
(3,0,12,0,70,0,397,0,2223,0)

[8,0,46,0,400,0,2925,0,20446,0]

7 247 345 10
(4,0,19,0,95,0,539,0,3111,0)

[10,0,86,0,649,0,4400,0,30287,0]

8 507 705 10
(2,0,10,0,51,0,287,0,1560,0)

[4,0,36,0,289,0,2118,0,13984,0]

10 2617 3615 12
(2,0,15,0,71,0,383,0,2333,0)

[6,0,65,0,494,0,3053,0,22486,0]

12 16767 12345 14
(2,0,20,0,93,0,612,0,3283,0)

[6,0,111,0,701,0,5456,0,35447,0]

13 24433 33045 14
(3,0,10,0,47,0,280,0,1687,0)

[11,0,52,0,323,0,2478,0,17675,0]

14 47263 63271 16
(6,0,27,0,140,0,808,0,4745,0)

[34,0,151,0,1120,0,7520,0,52014,0]

16 232357 367131 16
(1,0,2,0,38,0,239,0,1131,0)

[10,0,6,0,246,0,1917,0,11114,0]

17 723705 507627 18
(1,0,29,0,119,0,578,0,3433,0)

[3,0,182,0,953,0,5816,0,39833,0]

18 1167671 1712517 19
(4,7,1,25,74,138,353,953,2090,5351)

[20,58,3,182,612,1242,3369,10278,23840,66680]

19 2714477 3744635 20
(5,0,45,0,160,0,851,0,5184,0)

[24,0,319,0,1440,8775,0,61394,0]

20 5267447 7117325 20
(1,0,19,0,101,0,423,0,2492,0)

[4,0,143,0,884,0,4295,0,29122,0]

21 17242231 11444257 22
(9,0,58,0,275,0,1290,0,7381,0)

[49,0,488,0,2695,14502,0,94513,0]

22 32427561 21675053 22
(1,0,44,0,128,0,793,0,4094,0)

[11,0,368,0,1078,0,8648,0,50150,0]

23 55231643 61346255 24
(14,0,60,0,348,0,1959,0,10600,0)

[108,0,592,0,3602,0,24395,0,145826,0]

32

Chapter 3
Bidirectional Sequential
Decoding Algorithms

In this chapter, BSD algorithms in which the code tree is explored from both

forward and backward directions are presented. Operations of all the proposed algorithms

are essentially the same, except for their stopping rules. In our BSD algorithms,

two separate stacks are used. One is used for the forward search of the tree and is

called the forward stack (FS), while the other is used for the backward search and

is called the backward stack (BS). Starting from the root nodes of the forward and

backward trees (trellises), respectively, forward and backward search operations are

performed alternatively according to the usual stack algorithm. Define the total number

of computations needed to decode one block by any BSD algorithm as the sum of the

computations performed by forward and backward decoders.

The proposed BSD algorithms can be classified into two categories: BSD-no-merge

and BSD-merge. In BSD-merge, decoding stops whenever a path in one stack (PS or

BS) merges with a path in the other stack. A path in one stack is said to merge (or

agree) with a path in the other stack if the two paths share the same encoder state at a

common tree level. In the class of BSD-no-merge, forward and backward portions of the

decoded path do not have to agree with each other.

In the following, Algorithm TAmeet which belongs to the class of BSD-no-merge is

first presented and analyzed. Next, two algorithms, Algorithm TAmerge and Algorithm

Timerge, which belong to the class of BSD-merge, are presented and analyzed. Finally,

33

Chapter 3 Bidirectional Sequential Decoding Algorithms

Algorithm HTTmerge, which is a hybrid scheme of B SD-merge and BSD-no-merge, is

presented. For the convenience of describing the following algorithms, let 1FTQP denote

the level of the top node in the FS, and IF the farthest level7 reached by the forward

decoder, Similarly, let iBTOP denote the level of the top node in the BS, and ‘B the

farthest level reached by the backward decoder.

3.1 Algorithm TAmeet, a BSD-no-merge

Algorithm TAmeet stops decoding whenever a path in one of the two stacks meets

a path in the opposite direction, and these two meeting paths do not have to agree with

each other. The level of the forward tree at the meeting point is denoted by 1. As

a consequence, the portion of the tree explored by forward decoder does not overlap

with the portion explored by backward decoder, as illustrated by Figure 3.1. Algorithm

TAmeet is as follow.

Algorithm TAmeet:

Step 0: Place the root nodes of forward and backward trees in the FS and BS,

respectively.

Step 1. Compute the metrics of all successors of the top node in the FS, and enter

the new nodes in the FS, ordered with respect to their cumulative metrics.

Step 2.’ Remove from the FS the node whose successors were just inserted.

Step 3: Check if 1F +18T0p = L. If yes, stop decoding and go to step 7. Otherwise,

go to the next step.

The farthest level is not necessarily equal to the level of the top node because the decoder allows backtracking.

34

Chapter 3 Bidirectional Sequential Decoding Algorithms

Stop decoding if one of the Meeting point 1
nodes is at the top of FS or BS

+

® Extended node

0 Unextended node

Figure 3.1 Illustration of the stopping rules of Algorithm TAmeet.

Step 4: Compute the metrics of all successors of the top node in the BS, and enter

the new nodes in the BS, ordered with respect to their cumulative metrics.

Step 5: Remove from the BS the node whose successors were just inserted.

Step 6: Check if1FT0P+ 1B L. If yes, stop decoding and go to step 10. Otherwise,

return to step 1.

Step 7: The top path8 in the BS is accepted as the backward portion of the decoded

path. The forward portion of the decoded path is selected from the FS, whose end node

is at level IF, (select the one with the highest metric value if there is more than one

path at level IF). If mm ([m/2] , iBo) = 1B’rop’ retreat m
— 1BTOP branches from

the end node of the forward portion of the decoded path, then take the information

8 Defined as the path with the top node as its end node,

Forward tree

root node

1
Backward tree

root node

L branches

35

Chapter 3 Bidirectional Sequential Decoding Algorithms

symbols corresponding to the rest of the path as the decoded symbols, and go to step

13. Otherwise go to the next step.

Step 8: If mm ([m/21, iF) = 1F retreat m
— 1F branches from the end node of the

backward portion of the decoded path, then take the information symbols corresponding

to the rest of the path as the decoded symbols, and go to step 13. Otherwise go to the

next step.

Step 9: Retreat the last rrn/21 and [m/2J branches from the forward and backward

portions of the decoded path, respectively. Take the information symbols corresponding

to the rest of the two paths as the decoded symbols, and go to step 13.

Step JO: The top path in the FS is accepted as the forward portion of the decoded

path. The backward portion of the decoded path is selected from the BS, whose end

node is at level lB (select the one with the highest metric value if there is more than

one path at level IB). If mm ([rn/2j , = 1FTOP’ retreat m
— 1FTQP branches from

the end node of the backward portion of the decoded path, then take the information

symbols corresponding to the rest of the path as the decoded symbols, and go to step

13. Otherwise go to the next step.

Step 11: If mm (Em/21,1B) = 1B retreat m
— 1B branches from the end node of the

forward portion of the decoded path, then take the information symbols corresponding

to the rest of the path as the decoded symbols, and go to step 13. Otherwise go to the

next step.

Step 12: Retreat the last [rn/2J and Em/21 branches from the forward and backward

portions of the decoded path, respectively. Take the information symbols corresponding

36

Chapter 3 BidirectionaL Sequential Decoding Algorithms

to the rest of the two paths as the decoded symbols.

Step 13: Output the decoded information symbols.

When the channel is not too noisy, the forward and backward portions of the decoded

path may actually merge (agree) with each other since a sequential decoder always follows

the most likely path. Should this not be the case, a valid path (not necessarily the correct

one) can be assembled by retreating rn branches from forward and backward portions of

the decoded path, as described above.

Note that in the absence of a burst in a block, the meeting point I would most of

the time fall near the middle of the tree. However, should there be a single burst error

within a block, it is expected that the meeting point would occur near the middle of the

burst. Thus by retreating about m/2 branches from forward and backward meeting paths,

the burst error may be totally eliminated if its length is less than m.

The meeting point 1 at the end of decoding in Algorithm TAmeet is equal to 1FTQP

decoding is stopped at step 6, or (L
— 1BTOP) if decoding is stopped at step 3. Note that

forward and backward decoders always meet somewhere in the tree, i.e. 1 < 1 < L — 1.

Let x be an arbitrary level in the forward code tree, and imagine cutting the tree into

two separate subtrees at this level. Let C denote the number of computations needed

by the forward decoder to decode x branches without searching beyond level x of the

forward tree, i.e., when the top node in the PS reaches depth x for the first time. This is

equivalent to decoding an x branch-tree without a terminating tail. Similarly, let C_

denote the number of computations needed by the backward decoder to decode an (L — x)

branch-tree without searching beyond level (L — x) of the backward tree. Clearly, for any

37

Chapter 3 Bidirectional Sequential Decoding Algorithms

DMC and any fixed arbitrary level x, random variables C and Cf are independent

because the forward and backward search areas are disjoint.

Let us assume that the amount of time to hypothesize (extend) one node is the

same for both the forward and the backward decoders. Let CL denote the total number

of computations needed to decode one block by Algorithm TAmeet, By the nature of

Algorithm TAmeet, we can write the following property.

Property 3.1: Let I be the meeting point, then

— J 2C(and C_1 Cf, if decoding is stopped at step 6
(3 J)L —

2CE_1 + 1 and C1F Cf_1 + 1, if decoding is stopped at step 3

ProofS According to Algorithm TAmeet, if decoding is stopped at step 6, the forward

decoder must have extended the same number of nodes as the backward decoder. if

decoding is stopped at step 3, however, the forward decoder must have extended one

more node than the backward decoder. Let us first assume that decoding is stopped at

step 6. By the definition of the meeting point I (see Figure 3.1), we know that1FTQP = 1,

which means CL = 2C(. Moreover, since 1B = L — 1 1BTOP’ then C_1 > Cf.

Now, suppose that decoding is stopped at step 3. In this case, CL = 2C_1 + 1 since

1BTOP = L—l, where the additional computation is due to the last extension by the forward

decoder. Moreover, since 1F = 1 1FTOP’ then Cf > Cf_1 + 1. Q.E.D.

Corollary 3.]: Let I be the meeting point, then

CL — 1 <2 mm (cf, cf_1), (3.2)

since CL — 1 < 2Cf and CL — 1 2C_1 according to Property 3.].

38

Chapter 3 Bidirectional Sequential Decoding Algorithms

Obviously, CL = 2C(= 2Cf_1 if and only if both top nodes in the FS and BS

are at forward tree level I at the end of decoding, i.e., both top nodes are at the meeting

point I. It is worth noticing that the minus one in (3.2) can actually be ignored and thus

C’L is essentially equal to 2 mm (Of’, cf_1).
Now, we introduce an important property which is the foundation in our analysis of

the computational performance of the proposed BSD in Chapter 4.

Property 3.2: Let integer i E [1, L — 1], then

— 1 <2 max {min(Cf. cP_j]. (3.3)

Proof First of all, note that there must exist a meeting point in Algorithm TAmeet,

i.e., I < 1 < L — 1. By Corollary 3.1, one can write

— 1 <2mm (c(,o_). (3.4)

Moreover, we can write

max [min(CfCf_j)] mmn(Cf,Cf_j), (3,5)

since 1 < 1 < L — 1. Q.E.D.

In fact, it is easy to see that CL is virtually equal to 2 max [mm (of, C_)] .

This approximation, however, is not necessary for the proof of the upper bounds on the

computational distribution of Algorithm TAmeet in Chapter 4.

It is interesting to point out that Forney’s scheme [22] belongs to BSD-no-merge

since forward and backward decoders do not need to agree with each other, and its

Note that CL mm (cr, ce,) for all possible i.

39

Chapter 3 Bidirectional Sequential Decoding Algorithms

total number of computations is equal to 2mm (Ci, of), where Cf and of denote

the number of computations needed by forward and backward decoders to decode the

whole block, respectively.

Let us now compare Algorithm TAmeet with the bidirectional M algorithm [28], It

is obvious that they both belong to the same category of BSD-no-merge since merging

between the forward and backward portions of the decoded path is not required in both

algorithms. The main difference, however, is in the nature of the search algorithm

employed in the forward and backward decoders. In the bidirectional M algorithm the

number of computations per decoded branch is constant, whereas in Algorithm TAmeet

that number is variable since backtracking is allowed, As a consequence, erasure free

decoding is possible in the bidirectional M algorithm, while Algorithm TAmeet can not

guarantee it, On the other hand, the bidirectional M algorithm suffers the correct path

loss problem. Another difference is how they handle a burst. In Algorithm TAmeet,

forward and backward decoders search into forward and backward trees alternatively no

matter how many or where the bursts are located. At the end of decoding, both decoders

in Algorithm TAmeet retreat about m I 2 branches. In the bidirectional M algorithm,

however, in order for the first decoder encountering a burst to wait for the other decoder’s

help from the opposite direction, a burst detection method is required. Moreover, only

the bad decoder retreats m branches at the end of decoding. The BER of the bidirectional

M algorithm degrades with increasing block length L [281, while in Algorithm TAmeet,

the BER improves as L increases (see Chapter 5 for analysis and simulation results).

40

Chapter 3 Bidirectional Sequential Decoding Algorithms

32 Algorithm TAmerge, a BSD-merge

In BSD-merge, decoding does not stop whenever two opposing paths meet each

other as in the algorithm described above. Instead, a merging test is applied to opposing

paths and decoding stops only when the test is successful. We present in the following

Algorithm TAmerge which belongs to the class of BSD-merge,

Algorithm TAmerge works in the same way as Algorithm TAmeet, except that at the

meeting point I decoding is not stopped, unless a pair of forward and backward paths

merge with each other. Instead, decoding is continued until a pair of merged forward and

backward paths is found. Let I denote the level of the forward tree when this happens.

Obviously, here the portion of the tree searched by forward decoder does overlap with that

portion searched by backward decoder, as illustrated by Figure 3.2. More specifically,

Algorithm TAmerge is as follow.

Algorithm TA merge:

Steps 0 to 2 are exactly the same as in Algorithm TAmeet.

Step 3: If 1 BTOP +iF > L, check the top path in the BS with all paths with depths equal

to L
— 1BTQP in the FS. If one (or more) merging path is found, stop decoding. Among

all merging paths, select the one with the highest cumulative metric as the decoded path.

Otherwise, go to the next step.

Steps 4 and 5 are exactly the same as in Algorithm TAmeet.

Step 6: If1FTQP +lB> L, check the top path in the FS with all paths with depths equal

to L
— 1Frop in the BS. If one (or more) merging path is found, stop decoding. Among

41

Chapter 3 Bidirectional Sequential Decoding Algorithms

Merging point 10

1

\

\—

\\ Q- o

\

• Correct path

— -o-- — Incorrect path

L branches

Figure 3.2 Illustration of the overlapping in BSD-merge.

all merging paths, select the one with the highest cumulative metric as the decoded path.

Otherwise, go to step 1.

It is worth pointing out that all nodes in one stack (FS or BS) can be easily linked

with respect to their depths. Hence, in the merging test (steps 3 and 6), it is easy to

find all those nodes which should be tested with the top node in the opposite direction.

During the merging test at steps 3 and 6, the top path in either the FS or BS is only

tested with end nodes of paths in the opposite direction, which are at the same level with

the tested top path. A natural question that may arise is whether two opposing paths

may pass each other or not since intermediate nodes are not being examined during the

merging test. For example, Figure 3.3 illustrates such a situation where two opposing

Forward tree
root node 0- —

\

K

Backward tree
root node

1
0

\ —

\

0 —

42

Chapter 3 Bidirectional Sequential Decoding Algorithms

paths may have common encoder states at some of their intermediate nodes, We now

show that the events shown in this figure can not take place in Algorithm TAmerge.

(d)

Figure 3.3 Example of opposing paths passing each other.

First of all, events like (c) and (d) in Figure 3.3 can not happen unless event (a) or

(b) occurs in the first place. This is because both forward and backward decoders must

reach their predecessors before any further extensions. We are going to show that events

(a) and (b) in Figure 3.3 can not occur in algorithm TAmerge. Clearly, events (a) and

(b) are the same type of event. Hence, only event (a), which is shown in Figure 3.4 for

more detail, will be considered in the following.

• common encoder state

(C)

43

Chapter 3 Bidirectional Sequential Decoding Algorithms

L) U

B]

Figure 3.4 Typical impossible event in Algorithm TAmerge.

Figure 3.4 implies that the backward path with end node BO merges with the forward

path with its intermediate node FO. Moreover, EQ and BO are the only common nodes

between the forward and backward paths. As Figure 3.4 indicates, (Ii, 12, , Im)

denotes the common encoder state. Moreover, the encoder state of node B] is either

(12,J3, , J,O) or (12,13,’’ , ‘m, 1). Let denote the last bit of the encoder state

B]. Similarly, let denote the last bit of the encoder state F]. Since FO is the

intermediate state of the forward path, all successors of node FO must have been reached,

and FO is consequently removed from the FS (steps 1 and 2 in Algorithm TAmerge). Let

F] and F]’ be the successors of FO as illustrated in Figure 3.4. Since FO and BO are

the only common nodes between forward and backward paths, Fl and B] are common

nodes, i.e. = Otherwise, nodes Fl’ and B] will share a common encoder

state, as indicated in Figure 3.5.

Now, let us assume that F] is still in the FS, which means F] has not been extended

level x level

FOE]’

‘mi

44

Chapter 3 Bidirectional Sequential Decoding Algorithms

• common encoder state

Figure 3.5 Illustration of a typical impossible event in Figure 3.4.

levelx÷1 = 10

• common encoder state

Figure 3.6 Illustration of the possible event.

yet before the backward path reached node BO. According to step 3 in Algorithm

TAmerge, however, decoding must have been stopped at the time when B] is at the

top of the BS. Thus, BO does not have any chance to be reached because B] must be

at the top of the BS before BO can be reached. This is illustrated in Figure 3.6, which

clearly shows that end node F] of the forward path merges with end node B] of the

backward path.

Next, let us assume that F] is not in the FS, which means F] has already been

extended. As shown in Figure 3.7, let P2 and F2’ denote the successors of F], and

assume that F2 and B2 have the same encoder state. Clearly, Figure 3.7 shows the same

F]

level x

Stop decoding when
B] becomes the top
node in the BS.

45

Chapter 3 Bidirectional Sequential Decoding Algorithms

type of event as that in Figure 3.3 (d) since there is more than one common encoder

state. Based on our discussion above, this event can not occur before an event like that

in Figure 3.3 (a) or (b) happens. Following this same line of reasoning, we get the

following property.

level x

. common encoder state

Figure 3.7 Illustration of another impossible event.

Property 3.3: in Algorithm TAmerge, forward and backward paths in the FS and BS

can only merge at their end nodes. That is merging paths can not overlap each other.

Since the decoded path is a merged path, forward and backward portions of the

decoded path will never overlap in Algorithm TAmerge. Furthermore, we can conclude

that overlapped forward and backward paths in Algorithm TAmerge do not have the

same encoder state at any of their common tree levels because otherwise Property 3.3

would be breached.

Two forward and backward paths are said to be totally distinct as long as they do

not overlap or do not share the same encoder state at any common tree level in their

overlapping portion. Figure 3,8 illustrates all possible types of paths in the FS and in

the BS. In Figure 3.8 (a), forward and backward paths do not have a chance to meet.

46

Chapter 3 Bidirectional Sequential Decoding Algorithms

In Figure 3.8 (b), merged forward and backward paths do not overlap, while in Figure

3.8 (c) forward and backward paths do not share any common encoder state in their

overlapping area. Thus, we can write the following property.

Forward tree
level !F

Xp

Backward tree
level 1B

(c)

Figure 3.8 Distinct forward and backward paths in the FS and BS.

Property 3.4: in Algorithm TAmerge, all paths in the FS are totally distinct from all

paths in the BS,

Like in Algorithm TAmeet, forward and backward decoders cannot reach their

terminal nodes in Algorithm TAmerge because all successors of the root nodes of forward

(a)

(b)

47

Chapter 3 Bidirectional Sequential Decoding Algorithms

and backward trees were reached at the beginning. Thus, forward and backward decoders

must merge somewhere in the tree, i.e., 1 < 10 < L — 1. In the following analysis

of Algorithm TAmerge, correct decoding is assumed, which is a good approximation,

especially for long memory codes. For an arbitrary forward tree level x, let us define

C as the number of computations required to correctly decode the first x branches

by forward decoder. Similarly, define as the number of computations required to

correctly decode the last (L-x) branches by backward decoder. Unlike Algorithm TAmeet,

forward decoder may extend incorrect paths beyond level x before it finally decodes all x

branches. Backward decoder may also extend incorrect paths beyond level (L-x) before

it finally decodes all (L-x) branches.

Now, let CL denote the total number of computations needed by Algorithm TAmerge

with the assumption of correct decoding. By analogy to Algorithm TAmeet, we can

claim the following properties.

Property 3.5: Let 10 be the merging point of Algorithm TAmerge, then

I 20(and Cf. Gf’, if decoding is stopped at step 6
(3.6)

2C_10+l and C(CL1 + 1, if decoding is stopped at step 3

Proof Similar to Algorithm TAmeet, if decoding is stopped at step 6, forward

decoder must have extended the same number of nodes as backward decoder. If decoding

is stopped at step 3, however, forward decoder must have extended one more node than

backward decoder. Without loss of generality, let us assume that decoding is stopped

by step 6. Thus, the top node at the FS is at level 1 when decoding is stopped,

and the forward decoded path up to this top node is correct. Hence, the forward

48

Chapter 3 Bidirectional Sequential Decoding Algorithms

decoder must have performed exactly C(computations. Furthermore, the algorithm

does not require that the backward decoder totally decodes the last (L
— l) branches, i.e.,

Of Of’. Q.E.D.

Coro1lay 3.2: Let 1 be the merging point in Algorithm TAmerge, then

—1 <2mm (C(,Cf_1), (3.7)

according to Property 3.5. Similar to the discussion of Corollary 3.1, CL is almost equal

to 2 (or,
Property 3,6: Let integer i e [1, L — 1], then

CL — 1 <2 max [rnin(O[, Of_)]. (3.8)

Proof’ Same as the proof of Property 3.2. Q.E.D.

Similar to Algorithm TAmeet, one can easily conclude that CL is practically equal

to 2 max [mm (Of’, c)]. Strictly speaking, the number of computations without the

assumption of correct decoding is less than or equal to that with the assumption.

We now examine the merging test (step 3 and step 6) of Algorithm TAmerge in more

detail. In Algorithm TAmerge, decoding stops whenever a top path either in the FS or in

the BS merges with any path from the opposite direction. Clearly, the number of paths

being tested in the merging test is a random variable. This variable is small under good

channel conditions and increases as the channel gets noisier. Suppose that the top path

in the BS merges with a forward path FP which is not at the top of the FS (step 3). The

end node of FP is at the merging point 1 according to Property 3.3. As a consequence of

49

Chapter 3 Bidirectional Sequential Decoding Algorithms

this merging, forward decoder does not need to extend all forward paths whose metrics

are higher than M[FP] to decode the forward portion of the decoded path FP. In other

words, the merging test at step 3 effectively reduces the number of computations needed

by forward decoder to decode PP. Similarly, the merging test at step 6 may reduce the

number of computations needed by backward decoder if the top path in the FS merges

with an opposite path that is not at the top of the BS. Hence, the multiple examinations

of the top path in one stack with all paths in the opposite stack results in a reduction

in computational variability since the overall number of computations per decoded block

is reduced. The parallel to this is the multiple path extensions in the generalized stack

algorithms of Haccoun and Ferguson [19], which allows a reduction in computational

variability at a cost of an increase in average number of computations per decoded block.

Note that in Algorithm TAmerge, the average number of computations is not increased,

but is even reduced, as it will be shown in Chapter 4,

33 Coarsening on Algorithm TAmerge

In order to efficiently perform the merging test in Algorithm TAmerge, nodes have

to be linked together with respect to their depths. However, this introduces the drawback

of extra processing time and memory needed for storage in forward and backward

decoders. In the following, we provide two modified algorithms, quite similar to

Algorithm TAmerge but without the aforementioned drawback. These two algorithms

work best with quantized stacks.

The modification is done in the merging test of Algorithm TAmerge (steps 3 and

6). Here, the merging test is only performed among all nodes in the highest non-empty

50

Chapter 3 Bidirectional Sequential Decoding Algorithms

substacks in the FS and BS instead of testing the top node in each stack with all possible

merging nodes in the opposite direction. As a consequence, however, two opposing paths

may pass each other because forward and backward portions of the merged path may not

coexist in the highest non-empty substacks at the same time. in other words, forward and

backward portions of the merged path may overlap, as illustrated in Figure 3.3. In order

to reduce the possibility of two opposite paths passing each other, not only the endpoints

of the two possible merging paths should be tested but also other possible merging points

in the overlapping area as will be described later.

Coarsening I (Algorithm TTmerge):

Steps 0 to 2 are the same as in Algorithm TAmeet, except the top node is now any

node in the non-empty highest substack,

Step 3: If 1F + 1B > L, check all paths in the non-empty highest substack in the

BS with all paths in the non-empty highest substack in the FS. If there is an overlap

between forward and backward paths that are being tested, check all encoder states in

the overlapping area. If one or more merging paths is found, stop decoding. Among all

merging paths, select the one with the highest cumulative metric as the decoded path.

Otherwise, go to the next step.

Steps 4 and 5 are the same as in Algorithm TAmeet, except the top node is now any

node in the non-empty highest substack.

Step 6: If 1F + 1B > L, check all paths in the non-empty highest substack in the

FS with all paths in the non-empty highest substack in the BS. If there is an overlap

between the forward and the backward paths being tested, check all encoder states in

51

Chapter 3 Bidirectional Sequential Decoding Algorithms

(b)

Figure 3.9 Merging test in Algorithm TTmerge,

the overlapping area. If one or more merging paths is found, stop decoding. Among all

merging paths, select the one with the highest cumulative metric as the decoded path.

Otherwise, go to the next step.

Step 7: Check if the node to be extended in the highest non-empty substack in the

FS is a terminal node in the forward tree. Check if the node to be extended in the highest

non-empty substack in the BS is a terminal node in the backward tree. If either one is

a terminal node, stop decoding and that top path is accepted as the decoded path. In

the event that both top paths in the PS and BS are terminal nodes in the forward and

backward trees, respectively, the path with the highest cumulative metric is selected as

the decoded path. Otherwise, go to step 1.

possible merging nodes

(a)

path inFS BS

to

L

52

Chapter 3 Bidirectional Sequential Decoding Algorithms

If two opposing paths pass each other and one of them reaches the end of its

corresponding tree, clearly the decoding should be stopped. Therefore, step 7 is needed

in Algorithm TTmerge. However, step 7 can be eliminated if we treat the forward and

backward root nodes as connected with zero paths. For example, if the top node in the

FS is at level L, it can be viewed as a merging node with the backward root node.

The merging test in Algorithm TT’merge is illustrated in Figure 3.8. In Figure 3.8 (a),

the forward and backward paths do not overlap and thus only the end points are tested.

However in Figure 3.8 (b), forward and backward paths do overlap over to branches. In

this case all intermediate nodes are examined. This involves t0+1 comparisons which

can be done by simply performing one exclusive-OR operation between the last m+to

information symbols of the tested paths, and checking if there exits m consecutive zeros,

In case the depth of one of the tested paths is smaller than (m + to), the shorter one can

be viewed as one rooted by a zero path of any length.

It is interesting to notice that the number of nodes in the highest forward and backward

substacks varies according to the channel conditions. When the channel is quiet, only

the correct node is likely to float in the highest substack. As the channel condition

degrades, the number of nodes in the highest substacks tends to increase. This means

that the merging test involves a variable number of examinations, which depends on the

channel conditions.

Coarsening 2 (Algorithm HTTmerge):

We now describe Algorithm HTTmerge which is a hybrid version of Algorithm

TTmerge and Algorithm TAmeet. Algorithm HTTmerge is exactly the same as Algorithm

53

Chapter 3 Bidirectional Sequential Decoding Algorithms

Tlmerge except that the number of information symbols required to be the same in the

merging test of Algorithm TTmerge (steps 3 and 6), denoted m, is less than m, The idea

is that if two opposing paths agree on their last mj < m branches, it is anticipated that

they would eventually agree on all m last branches if decoding is continued. Of course

this may not happen all the time, especially if mh is relatively small, and this premature

stopping may introduce additional decoding errors. If mh=m, Algorithm HTTmerge

becomes equivalent to Algorithm TTmerge. In the other extreme, if mt=O, it becomes

equivalent to Algorithm TAmeet. Clearly, Algorithm HTTmerge reduces the amount

of computations by compromising the error performance since the number of matching

information symbols mh is less than m. Hence, Algorithm HTTmerge can provide a

trade-off between computational effort and error performance by controlling the number

of matching information symbols in the merging test.

54

Chapter 4
Computational Performance of BSD

In this chapter, we analyze the computational performance of the proposed BSD

algorithms. It is assumed that the channel is a DMC. Also, BSD using the stack algorithm

is assumed. However, all results in this chapter can be applied to arbitrary BSD sequential

decoders. Let denote the total number of computations performed by any BSD

algorithm for decoding one block of L branches (including a known tail), where one

computation is defined as in Chapter 3, i.e., the extension of one node from either

forward or backward direction. We are mainly concerned with the distribution of CfSD,

i.e., P (CfSD > N). In the following, we first quickly demonstrate the property of the

computational distribution by a simple approach. Then, Algorithm TAmeet is analyzed

in detail. More specifically, upper bounds on the computational distribution are given

by Theorem 4.1 (for a specific time-invariant convolutional code) and by Theorem 4.2

(for an ensemble of trellis codes). Moreover, we conjecture that Theorem 4.2 can be

applied to Algorithm TAmerge. A lower bound on the computational distribution for any

code and any type of BSD is also derived. The average number of computations and

the computational cutoff rate of BSD are then discussed. Finally, extensive computer

simulation results are provided, confirming our theoretical analysis.

4.1 A Simple Approach to Computational Distribution

Before giving the general derivation, we first quickly show interesting results on

the computational distribution of BSD when the code rate is below the computational

55

Chapter 4 Computational Performance of BSD

cutoff rate Rcomp. Let us define a dip [36, 46] on the correct path as the largest metric

difference between two consecutive non-adjacent breakout nodes (see Figure 4.1 (a)).

Notice that the dip is almost the same whether decoding is performed from forward or

backward direction because the metric of the backward correct path is the mirror image

of its corresponding metric of the forward correct path (see Figure 4.1 (a) and (b)).

Alternatively, the dip can be viewed as a “noise burst” [30], It is admitted that the Pareto

distribution P (CysD > N) N—Pr is caused by the following two opposing effects:

(i) the probability of the dip size (burst length) y decreases exponentially with ; (ii)

the number of computations necessary to decode the correct path increases exponentially

with ‘y [5, 15, 30, 32, 36, 46, 47]. All these suggest the inherent inability of USD to

deal effectively with a large dip (long burst). These difficulties arise from the essential

nature of USD algorithms, i.e., searching only from one direction, and not from any

fundamental limitations on convolutional codes or from any basic difficulties arising

from the dip (burst) [30]. In the following, we demonstrate that the proposed BSD

relieves the inefficiency of USD by attacking the dip (burst) form both forward and

backward directions.

Suppose that the code rate is below Rcomp, experimental evidence [48] indicates that

with a very high probability only one important dip exists in a block. Moreover, it is

easy to see that C’ is an increasing function of x, while G_ is a decreasing function

of x. Hence, according to Property 3.2, C/’ cf_1 in Algorithm TAmeet, where I

is the meeting point. Similarly, in Algorithm TAmerge, Cr C_ where 1 is the

merging point. Thus, Algorithm TAmeet and Algorithm TAmerge optimally break every

received block into two portions that require roughly the same number of computations

56

Chapter 4 Computational Performance of BSD

1

(c)

Figure 4.1 (a) Correct path metric with forward decoding. (b) Correct path metric with
backward decoding. (c) Correct path metric with bidirectional decoding.

for decoding. Also, portions of the decoded forward and backward paths in the FS and

BS will never overlap in Algorithm TAmeet and Algorithm TAmerge.

In summary, the proposed BSD algorithms attack the dip (burst) from both sides,

and halt somewhere near the middle of the dip. Hence, with the assumption of correct

Forward tree
root node

o Nonbreakout node
• Breakout node

(a)

Backward tree
root node DIP

(b)

Forward tree
root node

Optimum meeting (merging) point

Backward tree
root node

57

Chapter 4 Computational Performance of BSD

decoding, the meeting (or merging) event can be viewed as the breaking of the dip in

an almost optimal way, i.e., into two almost equal parts (see Figure 4.1 (c)). It seems

plausible that the required amount of computations by the proposed BSD is approximately

the amount required by a USD to move through two dips (bursts) of half the original size.

This is why our BSD needs substantially less computations. Therefore, if USD needs

N cx exp -y computations for any given correct path dip ‘-y, our BSD asymptotically needs

about twice of exp cx /T computations for the same dip. If this characterization is

valid, we can conclude that

p(CBSD > N) P(Cy8D > (N)2)

2 N2Pr. (4.1)

Note the factor two in the exponent of the distribution (4.1).

4.2 Upper Bounds to Computational Distribution
of Algorithm TAmeet

The computational effort to decode a given block depends on the strategy of the

algorithm, the transmitted and the received sequences. For the convenience of analysis,

define a random variable C as C 2 max [mm (Of, Ce_)j. We first derive upper

bounds to the distribution function of the random variable C, then we will apply them

to CL of Algorithm TAmeet.

Lemma 4.1:

P(C> N) < P(cf > N/2)F(Cf_ N/2), (4.2)

where the summation is over all possible values ofx, i.e., 1 < x < L — 1.

58

Chapter 4 Computational Performance of BSD

ProofS By the definition of the random variable C, one can immediately write

P(C> N) P(max{rnin[C,C_]} N/2)

p (min[C, C_] N/2), (4.3)

where the summation is over all possible values of x, i.e., 1 <x < L — 1. The inequality

in (4.3) is obvious since the summation includes the maximization point. Because random

variables C’ and Cf_i are independent for any fixed arbitrary x, one can write (4.2)

[49]. Q.E.D.

Before we continue the derivation of the upper bound, we need the following lemma.

Lemma 4.2: The distribution P(CK’’ > N) of USD to decode A branches in afinite

A branch code tree (or infinite code tree) is upper bounded by

P(GKSD N) AP(C1 — 1), (4,4)

where C1 denotes the number of computations peiformed by USD in order to decode the

first branch in an infinite code tree.

Proof’ For an infinite code tree, according to the union bound, we have [20]

P(CK >N) <P(Oct
N_A)

N_A)

=AP(C1_l) (4.5)

where CK’ denotes the number of computations required to decode the first A infor

mation branches in an infinite tree, and Cj is the number of computations by USD in

59

Chapter 4 Computational Performance of BSD

order to decode the t-th branch. For an infinite code tree, C = 01 since the number

of computations performed by USD to decode one branch is the same for all branches.

For a finite code tree, we have

P(CK8D N) P(CK18D > N)

AP C>——1 (4,6)

because CK Q.E.D

Lemma 4.2 confirms that there exists no essential difference between P (cS) N)

and P(C1 N) as Jacobs and Berlekamp suggested in [30]. From now on, we let of
and C1B denote the number of computations required to decode the first branch in the

infinite forward and backward code trees, respectively.

Theorem 4.1: For a specific time-invariant convolutional (i.e., linear trellis) code t!

with rate R and a BSC with a crossover probability p satisfying (2.9), the computational

distribution of Algorithm TAmeet is upper bounded by

P(CL > N) <A1 . exp{—t(d[log N — log (uL)]

+ d[log N — 1og (uL)]) + 21og N} (4.7)

where A1 is a finite constant independent ofN. Here , q, d[x], c1[x], ndF and are

the same as defined by Chevillat and Costello [38]. The superscripts F and B denote the

corresponding forward and backward codes of Q, respectively.

Proof’ Using Chevillat and Costello’s upper bound, which is given by (2.10) for a

specific time-invariant convolutional code [381, we can express of as

P(cf — <a n .exp{_itd[logu (— q1og (Y
— i)} (4.8)

60

Chapter 4 Computational Performance of BSD

and Cj8 as

1B N B 1N
2(L — x)

— 1) < exp{—d 1og
2(L — x)

— 1) +

log(2(LN_X) _1)}. (4.9)

Thus, according to Lemmas 4.1 and 4.2, we can write

P(C N) •(L—x)•ndF .exP{_(d[1ogu
(_)]+

d [iogu
(2(L x)

1)]) + log [(x)
_i)] }. (4.10)

Notice that the CDF is a non-decreasing function and log (a — 1) > log (a) — 1 when

a 2 and u 2. We can thus write

P(C N) <2 x (L
— x).ndF exP{_(d{logu ()_]

+ d [iogu
(2(L - X))

1]) + 1og [() (-

2 —-- 1---- F
•2 mu . [x. (L — x)] mu . “z .exp{—(d [1ogN

— log (2uL)} + d[1og N — logy (2uL)]) + 2log N}

= A1 exp{—t(d[1og N — 1og (2uL)]

+ d[1og N — 1og (2uL)]) + 2q1og N}. (4.11)

According to Property 3.2, we know that CL — 1 < C, Hence, P(CL > N)

P(C> N). Q.E.D.

Theorem 4.1 shows that rapid column-distance growth of both forward and backward

codes are essential to make BSD efficient. Using a computer search procedure, we have

provided in Chapter 2 SBODP and SABODP codes which have the same rapid column

distance growth rate from both forward and backward directions.

61

Chapter 4 Computational Performance of BSD

However, if the convolutional code used is optimum from one direction but is very

bad from the other direction, one can expect that the distribution of computations using

BSD falls close to that using USD from the optimum direction, as the above bound

indicates. A systematic ODP code is one typical example. Therefore, systematic codes

are in general not suitable for BSD algorithms.

Corollaiy 4.]: For a symmetric convolutional code (e.g., a SBODP or SABODP

code), Theorem 4.1 can be written as

P(CL > N) <A1 (ndj2 . exp {2(—d[1og N — 1og (2uL)] + 1og N)}, (4.12)

since d[x] = d[x] d[x] and d’ = = Notice the factor two in the

exponent of the distribution (4.12).

Furthermore, the above bound (Theorem 4.1) can also be shown to be related to

random-coding results, For an ensemble of trellis codes, d[x] = d[x] = n x/2,

< N/2 and ndB < N/2 [38]. Therefore, for an ensemble of trellis codes, Theorem

4.1 can be expressed as

P(CL> N) <2 2i [x . (L — x)].
(N)2

. exp{—2(n/2
—) log N

+ n1og (2uL)}

= A1 (2uL).
()2

. exp {—2(n/2 —)log N}

= A2N2” (4.13)

where J, = (au. n — 2q)/(2lnu) — 1, which is the same as that of USD [38]. Moreover,

A2 and J, are functions of the channel and code rate but independent of N.

The above arguments are more clearly demonstrated by the following theorem. Notice

that Lemmas 4.1 and 4.2 can be applied to an ensemble of codes.

62

Chapter 4 Computational Performance of BSD

Theorem 4.2: Let Pr be defined by R = E0(Pr) / Pr On any DMC and for large

N, the computational distribution of Algorithm TAmeet for an ensemble of trellis codes,

P(CL > N), is upper bounded by

P(CL > N) A3N2, (4.14)

where P <Pr is the Pareto exponent of USD and A3 is a finite constant independent ofN.

Proof According to Lemma 4.1, 4.2 and (2.8), one obtains

N) <A2x(L_x)(_
‘Y[2(Lx)

—

i]

=22A2N2[x(L —)]1+P(i — 2L— x)_P
(4.15)

in (4.15) for N sufficiently large such that N> 2L, the terms in the last two brackets are

very small and can be bounded by a constant. Therefore,

P(C> N) <A3N2, (4.16)

where

A3 = 22A2 [x(L — x)J’ (i
— 2x) — 2(L— x)] _P

[x(L — x)]1+P(l +) [i +
2px)]

<22PA2(1 + p + p2/4) [x(L — x)]1. (4.17)

From Property 3.2, we know that CL — 1 < C. Hence, P(CL > N) <

P(C N). Q.E.D.

From our computer simulation evidence (see section 4.6), we suggest that Theorem

4.2 can be applied to good specific time-invariant convolutional codes. The reason

63

Chapter 4 Computational Performance of BSD

is as follows. Experimental results [48) have demonstrated that inequality (2.7) can

actually be used as an approximate expression for the computational distribution with

good specific time-invariant convolutional codes. Moreover, Anderson [50, 51] showed

that good specific time-invariant convolutional codes follow the random code properties

quite closely. In other words, good specific time-invariant convolutional codes have

pseudorandom characters although they are not random.

4.3 Extension to Other BSD Agorithms

In this section, we conjecture that the same asymptotic random coding upper bound

(Theorem 4.2) also applies to Algorithm TAmerge. Algorithm TAmerge is similar to

Algorithm TAmeet except for the stopping rules. More specifically, Property 3.2 of

Algorithm TAmeet and Property 3.6 of Algorithm TAmerge are basically the same. By

analogy to the analysis of Algorithm TAmeet, we can write

P(GmeTe
> N) P(GL > N) P (min[G, cf] > N/2), (4.18)

where0Amerge is the true number of computations of Algorithm TAmerge, i.e. without

the assumption of correct decoding. Hence, the only question is that for any fixed arbitrary

x whether C and are independent or not.

As defined in Chapter 3, for an arbitrary forward tree level x, random variables

O and Of are the number of computations required to correctly decode x and (L-x)

branches by forward and backward decoders, respectively. Furthermore, unlike Algorithm

TAmeet, both forward and backward decoders may extend incorrect paths beyond level

x before the end of decoding. Thus, some incorrect nodes searched by forward decoder

may also be visited by backward decoder.

64

Chapter 4 Computational Performance of BSD

Let Df’ be the forward incorrect path subset generated from forward tree level i,

Similarly, let D denote the backward incorrect path subset generated from backward

tree level j. According to the operation of sequential decoding, C is a function of the

metrics of the correct path up to level x and metrics of incorrect paths in the subsets Dr,

1 =1, 2, ..., x, [31, 46, 52J. Thus, one can write

= f(M[xF(h)], M[F]), where h e [1, x] and F E U Dr. (4.19)

Here, XF(h) is the forward correct path up to forward tree level h, and *F is a forward

incorrect path. Similarly, one can write

= f(M[xB(h)],M[B]), where he [1,L — x] and B C UDP. (4.20)

Here, xB(h) is the backward correct path up to backward tree level h, and $cB is a

backward incorrect path.

Strictly speaking, on a random code tree, C and C_ are not truiy independent,

because an incorrect forward path *F may share some common nodes with an incorrect

backward path xB. Fortunately, the probability of this event gets smaller as the code

memory m increases.10 Hence, by neglecting the above event, we can consider C’

and cf essentially independent, and thus conjecture that Theorem 4.2 also applies to

Algorithm TAmerge.

In Algorithm TTmerge, forward and backward merged paths may overlap each other,

and hence the analysis of the computational distribution is even more difficult (if not

impossible). However, as our computer simulation results (see Figure 4.9 in section 4.6)

10 The probability of this event is in the same order of the probability of error, which is shown in Chapter 5 to decrease
exponentially with m.

65

Chapter 4 Computational Performance of BSD

suggest, the overlapping area is insignificant, especially when code rate R Thus,

it seems reasonable to suggest that the computational performance of Algorithm TTmerge

can be approximated by that of Algorithm TAmeet if the code rate R

Finally, it is easy to see that the computational distribution of Algorithm HTTmerge

is upper bounded by that of Algorithm TTmerge and lower bounded by that of Algorithm

TAmeet. Clearly, Algorithm HTTmerge is closer to Algorithm TTmerge when the number

of required matching information symbols mh is close to the code memory m. Otherwise,

it is more like Algorithm TAmeet. This phenomenon is clearly observed in the computer

simulations (see Figure 4.2 in section 4.6).

4.4 Lower Bound to Computational Distribution

Following Jacobs and Berlekamp [30], we show that with the assumption of correct

decoding no algorithm of BSD type can have a computational distribution better than

N2°.

Theorem 4.3: For all convolutional (or trellis) codes, any DMC, and with the as

sumption of correct decoding, the distribution P (Cf > N) of any BSD algorithm is

lower bounded by

p(CBSD> N) 22aN_2exp{_O(/i)}, (4.21)

where a is defined in parametric equation (2.7).

Proof Let us separate every received block into two almost equal parts, i.e. forward

tree search operations will not go beyond forward tree level [(L — m)/2j and backward

tree search will not go beyond backward tree level F(L — m)/21 by the help of a genie as

66

Chapter 4 Computational Performance of BSD

defined by Jacobs and Berlekamp [30]. Notice that there are m branches in the codeword

tree separating the portions considered by the genie-aided forward and backward decoders,

allowing them to choose codeword paths independently. Let Cm)/2Jand

denote the total number of computations required before first correctly decoding the

[(L — rn)/2J branches by the idealized forward decoder and the [(L — m)/2] branches

by the idealized backward decoder, respectively. Obviously under the assumption of

correct decoding, > 2mm _m)/2J0RL_m)/21] for any BSD algorithm.

Therefore, we can write

> N) P (2mm [C_m)/2j,C_m)/2l]> N)

= (C_mIj > N/2, C_m)/2l> N/2). (4.22)

By the assistance of a genie, forward and backward search areas do not overlap, i.e.

events (C_m)I2j> N/2) and (0_m)/21 > N/2) are independent for any DMC.

Therefore, we finally get

P(0BsD > N) (Cm)/2j> N/2) .
p (Cm)/2l> N/2)

{ (*)
a

exp
[-Oi (vci)]

=22aN_2aexp [_o(/iT)]. Q.E.D. (4.23)

Combining the lower bound (Theorem 4.3) and the upper bound (Theorem 4.2), we

demonstrated that the computational distribution of the proposed BSD is Pareto, and its

Pareto exponent is between 2c and 2p, where p < Pr is the Pareto exponent of USD.

Since the Pareto exponent of USD is approximately c or Pr, we conclude that the Pareto

exponent of BSD is approximately twice that of USD,

67

Chapter 4 Computational Performance of BSD

4.5 Average Number of Computations

In this section, we examine the average number of computations of BSD and show

that it is smaller than that of USD. The computational cutoff rate of BSD is then discussed,

We define the average number of computations per decoded branch, denoted by Gb,

as the total number of computations used to correctly decode one block divided by the

block length L. Using Jacobs and Berlekamp’s approximation [301 for the distribution

of CKSD, which is given by

P(CKSD > N) AN, (4.24)

we can approximate the distribution of BSD as

> N) (r_1L)2 N, (4.25)

where we assume L >> m, and ignore the difference between L(L — m)/2j and

— m)/21 since both tenns are almost equal to L I 2 when L is large.

The total number of computations per decoded block of BSD can be any integer in

the interval [L, M] where M is the maximum number of computations in BSD. Thus,

BSD —

1 BSDECb 7L

= NP(Cf = N)

N [(cfSD> N) —
p (cf > N)]

M-l M

= (N + l)P(C > N) — NP(Cf > N)
N=L-1 N=L

68

Chapter 4 Computational Performance of BSD

M-l

=P(cfsD>N)+P(cfsD>L_l)

—

SD > M). (4.26)

In (4.26), P(C > L — i) = 1 and p(cfS) > M) = 0. Therefore, using (4.25),

(4.26) becomes

M-l

E[C] =l+yzP(Cf8D>N)

M—l

1 + 22a_2 L > N2’. (4.27)

Moreover, similar to [30], we can write

M-l M

— L2j, a
(4.28)

lnM—lnL,

Finally, using (4.28), we obtain

1L jl—2a L2(1_a)l .i 1
E [csD] . + L —

a -

(4.29)
11+222L(1nM—lnL),

Similarly, one can get the average number of computations per decoded branch for

USD as

E C-° f 1 + — L’), a 1 (4.30)
H1+1nMi—1nL, a=1’

where M1 is the maximum number of computations in USD.

From (4.29) and (4.30), it can be seen that E [c°] is smaller than E for

any a. However, the difference becomes less significant when a is much larger than

69

Chapter 4 Computational Performance of BSD

one, This is because the average computation for both USD and the proposed BSD is

essentially one computation per branch when a >1. However, it is expected that higher

order moments of the computation will be significantly improved by the proposed BSD

even for high a.

Let us now discuss the computational cutoff rate. The computational cutoff rate

of sequential decoding is defined as the supremum of rates for which the average

computation per branch is bounded [301. It is well known that with the assumption of

correct decoding the computational cutoff rate Rcomp of USD is equal to E0(]) [30, 53].

Rcomp is a truly critical channel parameter, and with the assumption of correct decoding

the average number of computations per decoded branch of USD is unbounded if the

code rate R > R0 [30, 53]. In the following theorem, it is shown that the computational

cutoff rate for BSD with the assumption of correct decoding is the same as that of USD.

Theorem 4.4: Consider an infinite sequence of convolutional (or trellis) codes {}
and any DMC. For code j, let R denote its rate and m its memory. Suppose each code

has n symbols per branch in its codeword tree, and R1 R for all i, for some R > R01,

Code is used with block length L1 (including a known tail to terminate the encoder in

a known state) for BSD. Equiprobable codewords and arbitrary sequential decoder are

assumed. Under the assumption of correct decoding,” (fL —* oc and L (i +

for any i and some 0 < eo 1, then the expected number of computations per branch

satisfies

E [CsD] oo (4.3])

u This assumption is equivalent to defining the number of computations needed to be infinite if BSD makes decoding error.

70

Chapter 4 Computational Performance of BSD

Proof’ See Appendix A. Q.E.D.

As a simple approach, from (4.29) one can actually show that E [GSD]
—* co when

L — cc and a < 1. However, it is important to notice that the above computational

cutoff rate is based on the assumption of correct decoding. As suggested by Anderson

[51], this assumption is unrealistic and in fact there is no cutoff rate phenomenon for

sequential decoding as long as Fe > 0. Nevertheless, the cutoff rate is a bound such that

above this rate the average computation will increase exponentially. From (4.29) and

(4.30), one can easily see that when a < 1, i.e. above the cutoff rate, E [CD] is much

smaller than E [C1] although it is also much larger than one. Hence, the useful range

of code rates with the proposed BSD is increased compared to that with USD according

to Anderson’s definition on a “useful decoder” [51].

46 Numerical and Simulation Results

Computer simulations have been performed in order to verify the above theoretical

results. Non-systematic rate r = 1 / 2 (bits per channel symbol) convolutional codes were

used. All algorithms were run over a BSC with a transition probability p under strictly

identical conditions (i.e., using the same code and noise sequences), in order to make

them comparable. In our computer simulations, metrics were scaled into integers. In

Algorithm TAmeet, Algorithm TAmerge and Algorithm HTTmerge, the substack spacing

was chosen to be equal to one, i.e., using unquantized stacks. Different substack

spacing values, namely L = I and zi = 7 were chosen in Algorithm Tlmerge. Notice

here that there may exist more than one path in the highest non-empty substack even

when z I.

71

Chapter 4 Computational Performance of BSD

Figure 4.2 shows the distributions of the total number of computations per decoded

block of both USD and BSD algorithms for the case p = 0.0409, corresponding to a

Pareto exponent Pr = 1.1 (i.e., R0 = 0.52 bits per channel symbol). A SBODP code

of memory m = 23 was used, and 200,000 blocks each of length L = 400 bits (377

information bits) were simulated for each algorithm. The Pareto approximations for

USD (stack algorithm z = 1) and BSD (Algorithm TAmerge) are also indicated on the

figure. As expected, the use of BSD results in a significant reduction of the computational

variability of sequential decoding. More specifically, the slope of the straight line that

approximates the tail of the distribution of Algorithm TAmerge is equal to 2.16, which is

more than twice that of USD. This is in agreement with our derived upper bound on the

computational distribution (Theorem 4.2), Moreover, it also agrees with the lower bound

(Theorem 4.3), i.e., less than 2cr. It can be noticed from Figure 4.2 that the slopes of the

computational distributions of all BSD-merge algorithms are similar to that of Algorithm

TAmeet, which suggests that the additional computations associated with the merging test

are asymptotically unimportant as compared to the computations of Algorithm TAmeet

when the code rate R <

As Forney [36] suggested, Figure 4.2 shows that an unidirectional quantized stack

algorithm (z2i=7) increases the computational effort compared to an unidirectional unquan

tized stack algorithm (z=1). However, Figure 4.2 shows that the tail of the computational

distribution of Algorithm TTmerge improves when the quantized stack algorithm (=7)

is used. This is due to the fact that if the substack spacing L is increased, more paths

will be tested in the merging test so that the chance of merging gets enlarged.

72

P
ro

ba
bi

li
ty

P
(C

L
>

N
)

C Q
.

CD t-
)

0
0

CD
.

Cf
2 1

CD

C C

—

C

CD
II

C C C

C
)

CD 0

0
0

C C C

0
, (J

C C

0
0

0
0

0

Chapter 4 Computational Performance of BSD

For comparison purposes, the computational distribution of Fomey’s scheme [22]

built on the stack algorithm is also depicted in Figure 4.2. As we pointed out in Chapter

3, the total number of computations of Forney’s scheme is equal to 2 mm (Ci, CL9.

Hence, the minimum number of computations with this scheme is equal to twice that

of USD. Clearly, as indicated in the figure, Fomey’s scheme does not provide any

significant advantage over conventional USD. This is mainly because the dip size in the

correct path metric is essentially the same whether decoding is performed from forward

or backward directions (see Figure 4,1). Thus, the number of computations, which is

mainly determined by the dip size of correct path metric, is basically the same for both

forward and backward decoders.

Table 4.1 shows the average number of computations per decoded branch of different

algorithms. Clearly, the average number of computations is reduced by using the

proposed BSD. Table 4.1 also shows the number of erasure blocks (undecoded blocks)

with a maximum allowed computation Cijm = 8000. These results suggest that our

BSD can significantly alleviate the erasure or overflow problem, which is the main

obstacle in the application of sequential decoding. Furthermore, Table 4.1 shows that

with an increase in computations of about 3% with Algorithm TAmerge compared to

Algorithm TAmeet, decoding errors (18.3% decoded blocks were in error after decoding

by Algorithm TAmeet) were practically eliminated.12 Thus, with the use of the merging

test in BSD, decoding errors can be significantly reduced. For Algorithm HTTmerge,

Figure 4.2 and Table 4.1 suggest that there exists a substantial computational gain by just

letting m = (m — 1) in the merging test. Thus, Algorithm HTTmerge can easily provide
2 For a more detailed analysis and computer simulation results on the error perfomiance of the proposed BSD, refer to Chapter
6.

74

Chapter 4 Computational Performance of BSD

SBODP Code m = 23 Ave. comp.
Erasure blocks Error blocks

Pr’’, L=400, 2x 10 5runs per branch

USD (unquantized stack
1.621 1324 0

algorithm_z = 1)

USD (quantized stack algorithm
1.776 1743 0

L = 7)

Algorithm
1.264 7 36614

TAmeet (z2i = 1)

Algorithm
1.303 21 1

TAmerge_(L = 1)

Algorithm
1.390 84 1

rrmerge_(= 1)

Algorithm
1.393 59 0

TTmerge_(z = 7)

Algorithm HTTmerge
1.333 39 1

(mh = m — 1, L = 1)

Algorithm HTT’merge
1.319 31 3

(mh = m — 2, = 1)

a trade-off between computational effort and error performance by adjusting the number

of matching information symbols m.

Figure 4.3 compares the computational distributions of Algorithm TAmerge for ODP,

SBODP and SABODP codes all of memory m = 23, using the same parameters as

in Figure 4.2, It can be seen from this figure that the distribution of the number of

computations per decoded block using a SBODP code is better than that with an ODP

code. However, the distribution of the number of computations per decoded block using

a SABODP code is almost identical to that with a SBODP code. With a SABODP code,

no errors were found after decoding because its free distance (equals to 24) is much

larger than the free distance of the SBODP code (equals to 18). These simulation results

Table 4.1 Comparison of average computations for L = 400, Ciim = 8000 and p = 0.0409.

75

Chapter 4 Computational Performance of BSD

are clearly in agreement with our theoretical observations.

Figure 4,4 shows the distributions of the total number of computations per decoded

block of different algorithms using a systematic ODP code (m = 23). As expected, this

figure shows that the computational distribution of BSD is almost the same as that of

USD. This is due to the fact that the backward code of an ODP forward code is too

poor and hence the backward decoder can hardly ever help in decoding. Figure 4.4 also

demonstrates that the number of computations needed in Forney’s scheme is essentially

equal to twice that of USD.

Figure 4.5 shows the computational distributions of the total number of computations

per decoded block of both USD and our BSD algorithms for the case p = 0.0594,

corresponding to a Pareto exponent Pr = 0.68 (i.e., R0 = 0.44 bits per channel

symbol). The same code as in Figure 4.2 was used again, and 10,000 blocks each

of length L = 200 bits were simulated for each algorithm. The Pareto approximations

of these distributions are also indicated on the figure. In Figure 4.5, the computational

distribution of Algorithm TAmeet (a BSD-no-merge) clearly violates the lower bound

given by Theorem 4.3 because there were too many decoding errors (44.1% decoded

blocks were in error as illustrated in Table 4.2),13 However, no errors were noticed

after decoding by Algorithm TTmerge, while only one block was in error after decoding

by Algorithm TAmerge. The slope of the straight line that approximates the tail of

the computational distribution of Algorithm TAmerge is equal to 0.89, which is more

than twice that of USD. Again, it agrees with our upper and lower bounds. Moreover,

Notice thai the lower bound in Theorem 4.3 is based on the assumption of correct decoding.

76

Chapter 4 Computational Performance of BSD

0

A

c-)

• 10

Figure 4.3 Distribution of the total number of computations per decoded
block for different codes using the same parameters as in Figure 4.2.

400 800 1200 1600 2000 4000 8000

N

77

Chapter 4 Computational Performance of BSD

A

c-)

L

Figure 4.4 Distribution of the total number of computations

per decoded block for a systematic ODP code (Pr 1.1).

8000

0
10

N

78

Chapter 4 Computational Performance of BSD

the slopes that approximate the computational distributions of Algorithm TTmerge and

Algorithm TAmerge are almost the same.

Table 4.2 compares the average number of computations for different algorithms for

the case p = 0.0594. The number of erasure blocks and the number of error blocks are

also shown in the table. It can be seen that the number of erasure blocks is substantially

reduced by using the proposed BSD. Also, by using the merging test, almost all errors

associated with Algorithm TAmeet were avoided, Furthermore, by comparing Table

4.1 and Table 4.2, one can notice that the improvements in the average number of

computations of our BSD compared to that of USD are more significant when the Pareto

exponent Pr is less than one. As anticipated, the useful range of code rates [51] with

our BSD is increased as compared to the case with USD. These observations agree with

our suggestions made in section 4.5.

Figure 4.6 shows the distributions of the total number of computations per decoded

block of both USD and our BSD algorithms for the case p = 0.0289, corresponding to

a Pareto exponent Pr = 1.5 (i.e., Rcomp = 0.58 bits per channel symbol), The same code

as in Figure 4.2 was used, and 5,000,000 blocks each of length L = 400 bits were run

for each algorithm. Again, the slopes that approximate the computational distributions

of the different BSD algorithms are quite similar. Once again, these simulation results

are in agreement with our analytical results.

Table 4.3 compares the average number of computations for different algorithms

for the case p = 0.0289. The average number of computations, the number of erasure

blocks and the number of error blocks are also shown in Table 4.3. It can be noticed

that BSD-merge eliminates all decoding errors associated with Algorithm TAmeet (4.7%

79

0

A

c)
10

10

Chapter 4 Computational Performance of BSD

Figure 4.5 Distribution of the total number of computations per
decoded block for the case L = 200 and p = 0.0594, i.e., Pr 0.68.

4000

10

iv

80

Chapter 4 Computational Performance of BSD

Table 4.2 Comparison of average computations for L = 200, Cijm = 4000 and p = 0.0594.

SBODP Code m = 23 Ave. Coffi
Erasure blocks Error blocks

Pr=°68,L=200, i04 runs per branch

USD (unquantized stack
4561 1175 0

algorithm_ = 1)

USD (quantized stack
5.106 1382 0algorithm_ = 7)

Algorithm
1,541 0 4406

TAmeet (z = 1)

Algorithm
2.284 166 1TAmerge_(L = 1)

Algorithm
2.799 293 0TTmerge_(z = 1)

Algorithm
2.894 306 0TTmerge_(= 7)

blocks). Moreover, the additional number of computations due to the merging test is

only 0.5% with Algorithm TAmerge compared to Algorithm TAmeet. All results show

that the additional computations due to the merging test are worth the reward and those

computations can be ignored when the code rate R <Reomp. As indicated in the table,

the average number of computations of USD and our BSD are quite comparable here.

However, due to the reduction in computational variability, as shown in Figure 4.6, it is

expected that higher order moments will be smaller with the proposed BSD than with

USD.

Figure 4.7 shows the empirical probability masses of merging and meeting points in

BSD for the two cases Pr = 1.1 and Pr = 1.5. It can be seen that statistically, there is

essentially no difference between the meeting and merging points. This implies that the

overlapping portion between forward and backward search areas when the merging test

81

0 C Q
.

CD

0 CD
. 0

II
CD

0
0

CD
II 0
0

0

CE
].

f
l

C C I

P
ro

ba
bi

li
ty

P
(C

L
>

N
)

— o
o

0 C 0
0 0 C

—
—

o
C

0

C C C C 0

Chapter 4 Computational Performance of BSD

Table 4.3 Comparison of average computations for L = 400, Clim = 4000 and p = 0.0289.

SBODP Code m = 23 Ave. comp.
Erasure blocks Error blocks

Pr=L5,L=400, 5x 106 runs per branch

USD (unquantized stack
1.139 575 0

algorithm_L = 1)

USD (quantized stack algorithm
1.167 4336 0

__7)

Algorithm
1,107 5 233321

TAmeet (z = 1)

Algorithm
1.113 11 0TAmerge_(L = 1)

Algorithm
1.122 42 0

TTmerge_(= 1)

Algorithm
1.137 15 0

TTmerge_(z = 7)

is used is negligible when the code rate R <R01,, Moreover, Figure 4.7 also shows

that the probability mass of the merging (meeting) point is concentrated towards the

middle of the block. That is to suggest that when the channel is relatively quiet (i.e.,

Pr > 1), the merging (or meeting) point is more likely to be near L / 2, which means

that the computational lower bound on the computational distribution (Theorem 4.3) is

quite accurate in this case.

Figure 4.8 shows the empirical probability masses of the merging points for Algorithm

TAmerge and Algorithm TTmerge and that of the meeting point of Algorithm TAmeet,

for the case Pr = 0.68. As can be seen, the probability mass of the merging point with

Algorithm TAmerge is quite similar to that with Algorithm TTmerge. However, unlike

the above case (i.e., R < Rcomp), here the probability mass of the meeting point starts

to differ from that of the merging point. This suggests that the additional number of

83

Chapter 4 Computational Performance of BSD

0.07

0,06

0.05

—. 0.04

-.S

0.03

0.02

0.01

0
0 400

Figure 4.7 Probability mass of merging and meeting when code rate

100 200 300

x

84

Chapter 4 Computational Performance of BSD

computations needed for merging from the first meeting point increases as the code rate

increases beyond Rcomp.

Figure 4.9 shows the empirical distributions of overlapping lengths in Algorithm

TAmerge and Algorithm TTmerge, which is defined as = 1F + 1B — L at the end of

decoding. O, represents the portion of the tree over which forward search and backward

search overlap each other. In Figure 4.9, the block length L=200 for the case Pr = 0.68,

and L=400 for Pr = 1.1 and Pr = 1,5. As expected, the distribution of the overlapping

length decays faster as the channel becomes less noisy. Figure 4.9 suggests that the

distribution of the overlapping length decays in an exponential fashion. This is because O,

is essentially the sum of the deepest depths reached by forward and backward decoders,

and it is known that the distribution of the depth x of an incorrect path explored by a

sequential decoder decreases exponentially with x [4, 38].

Finally, since in BSD two separate tree search processors can work in parallel, it

seems more reasonable to define a computation in BSD as hypotheses (extension) of two

nodes, one on the forward direction and the other one on the backward direction. Clearly,

all analyses in this chapter still hold except that “N” should be replaced by “2N”. As

a result of this definition, our computer simulation results should be shifted horizontally

to the left by a factor of two.

Figure 4.10 compares the distributions of Algorithm TTmerge (L = 1) for different

SABODP codes (m = 12, 16, 23) using the same parameters as in Figure 4.2, but with

the new definition of one computation with BSD. The number of blocks used for each

simulation was 200,000 each of length L = 400. The maximum number of computations

allowed to decode one block was set to 4000. The computational distributions of USD

85

Chapter 4 ComputationaL Performance of BSD

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0
200

Figure 4.8 Probability mass of merging and meeting when code rate > R01.

0 50 100 150

x

86

00

T
j

CD 0 C CD C CD CD

P
ro

ba
bi

li
ty

P
(O

>
X

)

0

n 0 C
) C C
l)

C C

Chapter 4 Computational Performance of BSD

Table 4.4 Comparison of computational and error performances
of different m with the new definition of one computation.

SABODP Codes Ave. comp.
Erasure blocks Error blocks

Pr1,L=400, 2x i05 runs per branch

USD (unquantized stack
1.571 2761 100

algorithm_A = 1, m = 12)

USD (quantized stack algorithm
1.564 2793 11

A = 1, m = 16)

USD (quantized stack algorithm
1.530 2595 0

A = 1, m = 23)

Algorithm Tlmerge
0.710 42 383

(A = 1, m = 12)

Algorithm TTmerge
0.707 73 27

(A = 1, m = 16)

Algorithm Tlmerge
0.700 77 0

(A = 1, m = 23)

are also shown in Figure 4.10. Moreover, the number of erasure blocks, the number

of error blocks, and the average number of computations, (using the new definition of

one computation with BSD) are shown in Table 4,4, Similar to USD, the number of

computations of BSD is essentially not related with m. However, the error performance

is improved with increasing m.

In summary we have demonstrated that the use of the proposed BSD can reduce

both the computational variability and average number of computations of sequential

decoding. It should be pointed out at this stage that in our comparison of BSD-merge

algorithms with USD, we did not take into account the additional processing time needed

to perform the merging test in BSD-merge. However, one can use extra processors to

perform this task that would not slow down the node extension operations of sequential

decoding. Therefore, it seems that the additional complexity due to the merging test

88

Chapter 4 Computational Performance of BSD

Figure 4.10 Distribution of the total number of computations

for different m with the new definition of one computation.

A

0
10

—1
10

-2
10

-3
10

10200

\
Unidirectional

“ Stack Algorithm

‘\ ‘% V (A=l)

\\
‘c

‘

Algorithm TTmerge — — — —

(A=l)

%...

—c•
\%.,

SABODP Codes
m=23
m=16
m = 12 — —

— — — —
%.

400 600 800 1000

N

2000 4000

89

Chapter 4 Computational Performance of BSD

is unimportant compared to the significant improvements in computational performance

obtained by using the proposed BSD.

90

Chapter 5
Error Performance of BSD

In this chapter, the error performance of the proposed BSD algorithms is analyzed

through the random coding argument. We assume that the channel is a DMC and BSD

is based on the stack algorithm. However, all results obtained in this chapter can also

be applied to arbitrary BSD sequential decoders, It is obvious that the error performance

of any BSD is lower bounded by that of Viterbi decoding since sequential decoding is

suboptimum. Thus, we only need to develop upper bounds on the error performance of the

proposed BSD. First, the basic elements of the error performance of USD are summarized.

Then, we deal with the probability of decoding error of B SD-merge (Algorithm TAmerge

and Algorithm ‘TTmerge). Finally, the error performance of BSD-no-merge (Algorithm

TAmeet) is discussed. It is found that for an ensemble of linear trellis codes the error

performance of BSD-merge is asymptotically the same as that of USD, while the bit error

probability of Algorithm TAmeet satisfies the random coding bound for block codes.

5.1 Error Performance of USD

The basic results of the error performance of USD are summarized in the following.

Let x(j) denote the correct path from root node to level j. Let x (t) denote an incorrect

path which diverges from the correct path x at level i and remerges at level (i + t).

A proto-error event as defined by Forney [36] is an event for which some incorrect

path x(t) has a metric M[x(t)j at the point of convergence with the correct path x

91

Chapter 5 Error Performance of BSD

such that

M[x(t)] rninM[x(j)j. (5.1)
.2 t

By definition, no error can occur without a proto-error event whereas a proto-error event

may not necessarily lead to a decoding error for a unidirectional unquantized stack

algorithm [36]. Furthermore, for an incorrect path to remerge with the correct path, t

must be no less than the code constraint length K. For an ensemble of linear trellis codes,

the block error probability p8D, and the bit error rate with a unidirectional

unquantized stack algorithm can be bounded by [6, 12, 36]

pUSD < [1_U o(1)/R]2G 0 R (1
— E)Rcomp

(52)

I [l__E(5)IR]2e , (1
— e)Rcomp R (1 —

and

pU9D < I [l_U , 0 R (1
—)Rcomp

b

—

en’o(6), (1
— e)Rcomp R (1 —

where is a positive number, R is the code rate as defined in (2.2), E0(S) is the Gallager

function [5], Ci,, is the channel capacity, and for Rcomp < R < C,,, S e [0, 1] is the

solution of

R=
(l—e)E0(8)

(5.4)

and for 0 R Rcomp, S = 1.

Now, define a proto-error event with a bias B as the event for which some incorrect

path x(t) has a metric M[x(t)] at the point of convergence with the correct path x

such that

M[x(t)j minM[x(j)] — B, (5.5)

92

Chapter 5 Effor Performance of BSD

where B is a positive number. Thus, for the unidirectional quantized stack algorithm

with a substack spacing , no error can occur without a proto-error event with a bias B

= z. Hence, it can be shown that the error performance of the unidirectional quantized

stack algorithm is asymptotically the same as that of an unquantized one but with an

insignificant increase factor of A6 = e’(’6)in (5.2) and (5.3) [6, 36].

5.2 Error Performance of BSD-merge

In this section, the error performance of Algorithm TAmerge using unquantized stacks

is analyzed in detail. The results are then extended to other BSD algorithms. Although

the following analysis assumes unquantized stacks, it can be easily generalized to the

case of quantized stacks, in a similar way as for USD [6, 36].

Let Smg denote the common encoder state of forward and backward portions of the

merged path at the merging point 1. Obviously, Smg can be either correct or incorrect.

Figures 5.1 and 5,2 show some typical situations in BSD where the common encoder

state Smg is correct and incorrect, respectively. As indicated in Figure 5.1, there is

always a possibility that more than one forward (backward) path may merge with more

than one path in the opposite direction at encoder state Smg. Should this occurs, Algorithm

TAmerge always choose the one (perhaps not the correct one) with the highest cumulative

metric. In any case, the encoder state Smg at the merging point 10 in Figure 5.1 is assumed

to be the correct one. In Figure 5.2, however, Smg is an incorrect encoder state. In the

following, we divide the derivation of the block and bit error probabilities into three steps

to prove that the error performance of Algorithm TAmerge is asymptotically the same as

that of USD. In the first step, we show that if the encoder state Smg is correct, decoding

93

Chapter 5 Enor Performance of BSD

S mg

Figure 5.1 Example of error events with a correct merging encoder state.

Merging point 10

Backward tree level i

Figure 5.2 Example of error events with an incorrect merging encoder state.

errors can be upper-bounded by the proto-error event with a bias), where) is the largest

possible one branch metric drop. In step 2, we investigate the probability that the encoder

state Smg is incorrect. Finally, the overall error performance is derived in step 3.

Before investigating the above situations in detail, we need the following lemmas.

Consider an incorrect path (t) which diverges from the correct path x at level i and

Forward correct path Backward correct path

Merging
point 10

Forward incorrect paths

Backward incorrect paths

• Correct encoder state

Forward correct path

Forward tree level i
Backward correct path

Forward incorrect paths

S mg
Backward incorrect paths

• Correct encoder state
Incorrect encoder state

94

Chapter 5 Error Performance of BSD

stretches out t branches from the correct node i. First of all, an incorrect path will be

extended by a sequential decoder using an unquantized stack algorithm only if [6, 36]

M[$c(t)] rninM[x(j)]. (5.6)

Thus, one can immediately write the following lemma.

Lemma 5,1: An incorrect path 5c(t) (either in forward decoding or in backward

decoding), which diverged from the correct path at level i and remained unmerged up to

level (i + t), may be on the top of the stack only f

M[*(t)]> mm M[x(j)] (5.7,)

where (i + h) denotes the farthest level of the correct path reached by the unquantized

stack algorithm.

Furthermore, notice that for any path present at any position in the stack, the parent

node of that path must have been at the top of the stack at an earlier time. Thus, we

can write the following lemma.

Lemma 5.2: An incorrect path j(t) (either in forward decoding or in backward

decoding), which diverged from the correct path at level i and remained unmerged up to

level (i + t), could be in the stack only if

> mm M[x(j)] —). (‘5.8)
iji+h

where (i + h) denotes the farthest level of the correct path reached by the unquantized

stack algorithm.

We now proceed with the derivation of the error probability of Algorithm TAmerge.

95

Chapter 5 Error Performance of BSD

Step 1: Analyze the error performance of Algorithm TAmerge given that the encoder

state Smg is correct. According to the operations of Algorithm TAmerge, merging can

occur at either step 3 or step 6. Without loss of generality, we suppose that decoding is

stopped at step 3. This means that the end node of the backward portion of the decoded

path at level l is at the top of the BS, whereas the end node of the forward portion of

the decoded path could be at any position in the FS. As indicated in Figure 5.1, decoding

error in this case is clearly upper-bounded by proto-error events,

More specifically, let us suppose that there exists a forward incorrect path that merges

with a backward incorrect path which is at the top of the BS. Clearly, decoding errors

in the backward portion of the decoded path belong to proto-error events without a bias.

Furthermore, according to Lemma 5.2, the metric of the forward incorrect path in the FS

can not be lower than the minimum cumulative metric of the forward correct path minus

\. Hence, the decoding error event near the merging point 1 made by the forward decoder

is bounded by the proto-error event with a bias B = \. Clearly, any other decoding errors

(if any) in the forward decoder can be upper-bounded by the proto-error event without

a bias. In summary, all error events in Algorithm TAmerge when the encoder state Smg

is correct can be upper-bounded by the proto-error events with a bias B = A. Thus, we

can write the following lemma.

Lemma 5.3: if in the merging test the encoder state Smg is correct, decoding error

events in Algorithm TAmerge can be upper-bounded by the proto-error events with a bias

\, which is asymptotically the same as that of USD.

Step 2.’ Investigate the probability that the encoder state Smg is incorrect. Since the

96

Chapter 5 Error Performance of BSD

encoder state Smg is incorrect, a decoding error must exist around the merging point 1

(see Figure 5.2). Let us define this decoding error event between the last diverging points

of the correct forward and backward paths as the merging error event (see Figure 5.3).

Clearly, only one such event can occur within each decoded block. Let pMerge denote

the probability of the merging error event. Obviously, outside the merging error event,

everything is the same as in USD, as illustrated in Figure 5,2.

Correct path
Forward tree level i+h1 Incorrect path

+ Backward tree level i

Forward tree level i
Backward tree level D

Merging point 1= i+t1

i.e. backward tree level j +t2

Figure 5,3 Illustration of the merging error event.

In Figure 5.3, we assume that forward and backward incorrect paths diverge from the

correct path at forward tree level i and backward tree level j, respectively. As indicated

in the figure, tj is the length of the forward portion of the decoded path from level i,

and t2 is the length of the backward portion of the decoded path from level j. Let the

ensemble of all possible forward incorrect paths which diverge from the correct path at

S mg

97

Chapter 5 Error Performance of BSD

forward tree level i be denoted by X(i). Similarly, let X(j) denote the ensemble of

all possible backward incorrect paths which diverge from the correct path at backward

tree level]. Let *F,(t1) denote a forward incorrect path in X(i) whose end node is at

forward tree level (i + t1). Analogously, let B,(t2) denote a backward incorrect path

in (j) whose end node is at backward tree level (j + t2). According to Property 3.3,

t + t2 = L
—

j — i and the merging point 10 = i + t1 = L
— (j + t2) since the forward

and backward portions of the decoded path wifi never overlap. Let (i + hi) denote the

farthest depth of the forward correct path reached by forward decoder, Similarly, let (j

+ h2) denote the farthest depth of the backward correct path reached by the backward

decoder. Obviously, h1 + h2 t1 + t2 according to Property 3.3.

Clearly, not all paths in X.(i) and X(j) can pairwise merge. Let .(i; j) contain

all paths in i) and j) which are pairwise merging paths. It is obvious that

1(i; j) can be viewed as the set of all incorrect paths which diverge and remerge with

the correct path at forward tree level i and L —j. Define 1(i; j) as the total number of

pairwise merging incorrect paths contained in the set .(i; j). Hence, t + t2 > K, and

I (i;j) (u — l)uL_i_i_K = (u — l)utl+t2_K [6]. Now, let pMere(j1h1,t2,h2)

be the probability of the merging error event as shown in Figure 5.3. Note that if

parameters i, t1, t2 are given, parameterj is also determined since j = L — (i + tl + t2).

We will demonstrate that the upper bound on P(i, t1, h1,t2,h2) is only related with

(t1 + t2) and (h1 + h2) after averaging over the ensemble of linear trellis codes.

Lemmas 5.1 and 5.2 are all that we need to determine the upper bound on the

probability of the merging error event, and the method used in our derivation follows

98

Chapter 5 Error Performance of BSD

closely that of Viterbi and Omura [6]. Also, it is important to notice that conditions in

Lemmas 5A and 5.2 are only necessary but not sufficient.

Lemma 5,4: Given i, t1, h1, t2, h2, the probability of the merging error event in

Algorithm TAmerge is upper-bounded by

i+hi j+h2
pMere(1h1,t2,h2) < > P(yx) e_M [xp*r)1 e_M[(T)1

x eM[,j(t1)]eM[*B,j(t2)] (5.9)

I (F,(il);B,2(L2))eX(i;j) I
wherej = L — (i+ti +t2).

Proof’ Without loss of generality, we assume that decoding is stopped at step 3 in

Algorithm TAmerge. That is merging occurs between a top path xB(t2) in the BS and

a path xF(t1) which could be at any position in the FS. According to Lemmas 5.1 and

5.2, we can write

M[F,(t1)] — mm M[xF(Ti)]+) 9F(i,tl,hl) O (5J0)
:<r1z+hi

and

M[*B,(t2)] —
mm M[xB(r2)] 9B(j,t2,h2) 0. (5.11)

Moreover, 5cF,j(tl) and XB,,(t2) must share the same encoder state Smg at level 10, i.e.,

(*F,(t) XB,f(12)) e X(i;j).

Similar to [6, 36], we can write

pMerge(t1, h1, 12, h2)<P(yx)q(y), (5.12)

99

Chapter 5 Error Performance of BSD

where the received code vector14 runs over all symbols between forward tree level i and

backward tree level j, and the indicator function q5(y) is defined as

(1, if gF(i,tl,hl) 0 and gB(j,tl,h2) 0
q(y) for some (*F,(t);kB,(t2)) E X(i;j) (5J3)

1 0, otherwise.

As in [6, 36], if for a given y, (y) = 1, then for u 0

exp {.gF(i, t1, hi)}.exp {agB(i, t2, h)} l,for some (kF,(t1); B,(t2)) C X(i;j).

(5.14)

Hence for this y

exp{u .gF(i,tl,hl)} .exp{ .gB(j,t2,h2)}]6 1 = (y), a, 0.

(ti) ;xB,,(12))EX(s;j)

(5.15)

while if (y) = 0, (5.15) holds trivially. Also, we can write [36, 6]

i+hi

exp —uS{ mm M[xp(Tl)]} exp —uSMxF(T)], (5.16)
r=s

and
j+h2

exp—crS{ mm M[XB(T2)]} < exp—aSMxB(T)]. (5.17)
,r2j+h2

T=)

Substituting (5.16) and (5.17) into (5.15), and combining (5.12) and (5.15) yield

(5.9). Q.E.D.

As in [54, 35, 6], define the exponent functions15

fi() = In P(y) q(x) []
,

(5.18)

14 Notation is simplified if we do not specify the dimensions of vectors; they are either implicit or specifically designated after
each equation.

Note fi(o8) = —Ec(, 8)—.78R, f2(J, 8) = —Ecj(r, 6) and f(o, 8) = —E1(o, 8)+8R, where Ec(, 8), Eci(o, 6)
and Ez(cr, 8) are defined by Viterbi and Omura [6 pp. 358].

100

Chapter 5 Effor Performance of BSD

f2(a, 6) = in P(){ q(x) [)] q(x’)
[P(Y)]

, (5.19)

and

(5.20)

By applying Holder inequality [4] to the above exponent functions, we can write

efl(A) exp —(1 —)E0[/(1
—)] = (5.21)

ef2(M <exp —{(1 — 6)Eo{6/(1 — 6)] + u6E0[(1 — cr)/cr]} = 6cSie, (5.22)

and

<exp —6E0[(1
—)/j = 6je()äR, (5.23)

where 8c and S are as defined in [6 pp.359].

Now, we are ready to show that the upper bound on P(i,t1,h1,t2,h2) is only

afunction oft1 +t2 = L—j —i K and h1 +h2 < t1 +t2.

Lemma 5.5: Given parameters i, tj, h1, t2, and h2, the ensemble average probability

of the merging error event in Algorithm TAmerge is upper-bounded by

pMergc(
ti,h1,t2,h2) (enR —l)3S(h1+h2)S(t1+t2)e_6nKR, (5.24)

where u>0,6 [0,1],t1 +12 > K,h1 1,h2 1, and h1 + h2 ti +t.

Proof’ According to Lemma 5.4 and letting S e [0, 1] as in [4, 6, 36, 54], we can

write

i+hi i+h2
pMerge(

t1, h1, 12, h2) P(yx) eT5M[xF(T)1 e_0SM[xB(T)1

101

Chapter 5 Error Performance of BSD

(S

x eM[F,j(t1)1 x eM[Bj(t2)1

((*Q);*n3(i2))X(i;.j)

i+h1 i+h2

< e’X X(i;j) P(ylx) >
x {eM[*Fi(u1)1 X eM[(t2)]}

< — l)Su(t1+t2_k

i+h1 j+h2

x P(yx) e_L13M[xF(T)i

x {eaM{*Fi(ul)1} X {e’M[3(t2)i} . (5.25)

Obviously, (5.25) is independent of indexes i and j due to the ensemble average. For

the sake of simplicity, let i = j = 0 in above summations, and omit subscripts i and j

in (5,25). Also, note that there is no difference in the ensemble average of the forward

and backward codes. Thus

pMcrgc (i, t1 h1,t2, h2) e’(u — l)Su(tt2_I)6

h1 h2

x P(yjx) e_M[xF(1’)1

x {eM[F(l
)i}5{

eJM[B(t2)]

=e(u — 1)Su(t12_K)sT(hi,t1)T(h2,t2), (5.26)

where

T(h, t)
Y x(h:)

(S

x q[(tj)jeUMt1 , (5.27)

102

Chapter 5 Error Performance of BSD

and where x(h1) and *(t) are codeword segments of h1 and t1 branches, respectively.

Notice the similarity between equation (5.27) and equation (6.2.9) in Viterbi and Omura

[6]. Hence, we can write T(hL, t) as

T h
— fexpn{(h —t)[f1(u6) +6R]+tf2(u,6)}, t

528(— expn{(t — h)[f3(,6) — 6R] +hf2(u,6)}, t h

Substitute (5.21) through (5.23) into (5.28), we obtain

T(h,t) < flhSfltze_ThtiöR (5.29)

Finally, substitute (5.29) into (5.26), and note u = enR by the definition of the code rate

in (2.2), to obtain (5.24). Q.E.D.

In the following, we show that for an ensemble of linear trellis codes pMerge and

pMerge have the same exponential exponent as pUSD and Pb’D but with an insignificant

increase factor of e/(1) at most.

Theorem 5.]: For an ensemble of linear trellis codes, the probability of the merging

error event is upper-bounded by

(A —nKR
pMerge <) rl7e V —

— “comp (530)e
—

A7e0(S), Rcomp R C1’

where

A7 = (enR
— i) (5.31)

is a finite constant, and for Reomp R C, 6 [0, 1] is the solution of

R
E0(6)

(5.32)

while for 0 R Rcomp, S = 1.

103

Chapter 5 Error Performance of BSD

Proof The probability of the merging error event without any condition is given by

pMerge = (5.33)
Vi,21,hi,t2,h2

According to Lemma 5.5, given parameters i, t1, h, t2, and h2, the ensemble average

probability of the merging error event is upper-bounded by

pMerge(t1,h1t,h2) < e6A (e7lR —

i)6fl(h1+h2)fl(t1+L2)_nKR (5.34)

where u 0,6 C [0,lj,t1 +t2 K,h1 > l,h > 1, and h1 + h2 <t1 +t2. Moreover,

one can write [6]

l,6j <1, if =
1

and R<
E0(6)

(5.35)

Thus letting R = E0(6)/6 where 8 C [0, 1], h1 = = 1 and t = K, we can bound

(5.34) by

pMerge(
t1,h1,t2,h2) eA68K(emR —l)6e_SnKR

< eTf (e — i) (5,36)

As in [6], choose 6 = 1 if B < E0(1) = Rcomp. Substituting (5.36) into (5.33), proves

the above theorem. Q.E.D.

Note that in (5.30) A7 = A6 (e — 1) if z = \. Thus, A7 has the similar effect to

that of quantizing the stack in USD with = \. Therefore, by comparing (5.30) with

(5.2) of USD, one can conclude that the additional error if any due to the merging error

event has the same exponent as USD.

Step 3: Now, we are ready to show that the overall error performance of Algorithm

TAmerge is asymptotically the same as that of USD.

104

Chapter 5 Error Performance of BSD

Theorem 5.2: For an ensemble of linear trellis codes, the probability of error with

Algorithm TAmerge is upper-bounded by

pTAmerge <A6PsD +
pT9e, (537)

Proof’ Let A, B and B’ be some events where B’ is the complement of event B.

Thus, we can write

P(A) = P(A, B) + P(A, B’)

= P(AB)P(B) + P(AIB’)P(B’). (5.38)

Now let A be the decoding error event and B the event that the encoder state Smg is

correct, Then P(AIB’) 1 and we can write

P(A) = P(AIB)P(B) + P(B’)

< P(AIB) + P(B’). (5.39)

Combining (5.39) and Lemma 5.3, we complete the proof. Q.E.D.

Corollary 5,1: For an ensemble of linear trellis codes, the probability of error with

Algorithm TAmerge is upper-bounded by

pTAmerge <2A6PJSD. (5.40)

Corollary 5.1 suggests that the error probability of Algorithm TAmerge is at most

twice that of a quantized USD with =

105

Chapter 5 Error Perfomiance of BSD

Theorem 5.3: Given that the encoder state Smg is incorrect, the bit error probability

ofAlgorithm TAmerge follows the same upper-bound as that of a unidirectional quantized

stack algorithm with =

Proof According to the definition in [6], the bit error probability is the expected

number of bit errors in a given sequence of received bits normalized by the total number of

bits in the sequence. Thus for a trellis code with block length L and log2 u information

bits per branch,

TAmerge . E[Nbl
13b (Smg is incorrect) = (5.41)

(L — m)log2u

where Nb is the total number of bit errors in the L-branch code sequence given that the

encoder state Smg is incorrect.

Now, let nb(T) denote the expected number of bit errors caused by an incorrect path

diverging at forward tree level T. As indicated in Figure 5.2, Nb can be divided into

three parts i.e.,

i—rn L—m

E[Nbj E[n(r)] + E[nb(i, t1,h1,t2,h2)] + E[nb(r)], (5.42)

where the first and third terms correspond to the total number of bit errors outside the

merging error event, and the second term represents the number of bit errors due to the

merging error event with parameters i, tj, hj, t2, h. The inequality in (5.42) follows

from the fact that bit error sequences outside the merging error event may overlap [6].

As in [6], we can write

E[nb(i, t1, h1, 12, h2)] (t + t2 — K + 1) log2 (u)P(i, t, h1, 12, h2), (5.43)

106

Chapter 5 Error Performance of BSD

since (t1 + t2 — K + 1) log2 (u) is the number of bit errors due to the merging error

event. According to Lemma 5.5, E[nb(i, t1,h1,t2,h2)] is only related with parameters

t t + t2 and h h1 + h2, where t K and 0 < h t. Moreover, since pMere(h)

follows the same upper bound as that of the proto-error event with a bias \, we can write

L—m

E[Nb] e° E[nb(T)J (5.44)

where o 0 arid 6 e [0, 1].

Substitute (5.44) into (5.41), we can write

L—m
pTAmer9e(g i incorrect)

(L -_rn)log2u > E[nb(T)j. (5.45)

Notice that aside from the factor e, the right side of (5,45) is the upper bound of

the bit error probability of a unidirectional unquantized stack algorithm [6 pp. 312j.

As discussed earlier, e°’ has the same effect as using a unidirectional quantized stack

algorithm with = \. Q.E.D.

Similar to the proof of Theorem 5.2, one can write

P(A) = P(AIB)P(B) + P(AIB’)P(B’)

= P(AB) + P(B’) [P(AIB’) — P(AIB)], (5.46)

where B still denotes the event that the encoder state Smg is correct. Now, let P(A) be

the bit error probability with Algorithm TAmerge. Then, P (A B) is the bit error rate

of Algorithm TAmerge given that the encoder state Smg is correct, and P(AIB’) the bit

error rate given that Smg is incorrect.

In (5.46), P(B’) is the probability that Smg is incorrect, which is upper-bounded by

Theorem 5.1. Furthermore, According to Lemma 5.3, P(AB) follows the same upper

107

Chapter 5 Error Performance of BSD

bound as for a unidirectional quantized stack algorithm with =).. Similarly, according

to Theorem 5.3, P(AB’) also follows the same upper bound as for a unidirectional

quantized stack algorithm with =). Although P(AIB) P(AIB’) in general, we can

still conclude that the second term in (5.46) compared to the first term is asymptotically

unimportant. Thus, the following corollary follows.

Corollary 5.2: For an ensemble of linear trellis codes, the bit error probability of

Algorithm TAmerge is asymptotically upper-bounded by

pTAmerge <A6PD. (5.47)

According to Corollaries 5.1 and 5.2, one can conclude that the error performance

of Algorithm TAmerge is asymptotically the same as that of USD. More accurately, the

error performance of Algorithm TAmerge using unquantized stacks is similar to that of

a unidirectional quantized stack algorithm with =

The error performance of Algorithm TTmerge using unquantized stacks is better than

that of Algorithm TAmerge since the metric of its merged path is higher than or equal

to the merged path metric in Algorithm TAmerge. This is because the merging test in

Algorithm TTmerge is only performed among paths in the highest forward and backward

substacks. The error performance of Algorithm HTTmerge is close to that of Algorithm

TTmerge when the number of required matching information symbols mh is close to

the code memory length m. On the other hand, when that number is zero (or close to

zero), Algorithm HTTmerge behaves like Algorithm TAmeet. Thus, one can say that

the error performance of Algorithm HTTmerge, is upper-bounded by that of Algorithm

108

Chapter 5 Error Performance of BSD

TAmeet and lower bounded by that of Algorithm TTmerge. Furthermore, the number

of computations needed by Algorithm HTTmerge decreases as mh decreases. Hence,

Algorithm HTTmerge can easily provide a trade-off between the error performance and

computational effort by controlling the number of matching information symbols m

during the merging test.

53 Error Performance of Agorthm TAmeet

According to Property 2.1 in Chapter 2, the distance spectra of the forward and

backward codes of a specific time-invariant convolutional code are exactly the same.

Suppose we let forward and backward decoders decode to the ends of their trees

independently. Then, the error performance of the backward decoder is expected to be

almost the same as that of the forward decoder. In Algorithm TAmeet, however, decoding

stops whenever the search areas of forward and backward decoders meet. In other words,

the searching areas of the forward and backward decoders will never overlap. The benefits

are that the computational effort is reduced to its minimum among our proposed BSD

algorithms and the extra merging test which might be time consuming is not required.

However, the disadvantage is that the decoded forward and backward paths may not

merge (agree) with each other. Thus, Algorithm TAmeet may make additional decoding

errors near its meeting point. Hence, the error performance of Algorithm TAmeet is

obviously worse than that of any other BSD algorithms with a merging test.

In Algorithm TAmeet, both decoded forward and backward paths retreat about m /2

branches from their end nodes.’6 Thus, the length of the retreated branches, m / 2, can

16 Here, we ignore the Diophantine constraint, i.e., treat m 12 as a integer.

109

Chapter 5 Error Performance of BSD

be viewed as the length of the backsearch limit for the last decoded information symbols

by forward and backward decoders. For the rest of the decoded information symbols, the

backsearch limit is clearly greater than m / 2. Hence, the decoded information symbols

near the beginning and end of each block are more reliable than those near the meeting

point. Thus, we can upper-bound the bit error probability of Algorithm TAmeet by that of

USD with a backsearch limit equal to [m/2j. Clearly, the above upper bound indicates

that the BER of Algorithm TAmeet is essentially not related with the block length L.

Furthermore, the above argument suggests that a long block length is preferred in order

to reduce the actual BER with Algorithm TAmeet.

For an ensemble of linear trellis codes, Zigangirov [55] provided an upper bound on

the bit error probability of USD with backsearch limit r that is greater than the constraint

length K. When the backsearch limit 7 is equal to or less than the constraint length K, it

is known [12, 56, 57] that the probability of error satisfies the random coding bound for

block codes. Therefore, we can conclude that the random block coding exponent applies

to the bit error probability of Algorithm TAmeet, and thus we can write

pTAmeet < A8 [m/2J n[Eo(pr)—prR] (5.48)

From the above discussion, one can see that the only reason the error performance of

Algorithm TAmeet is worse than that of USD is because it does not require the decoded

forward and backward paths to merge with each other.

5.4 Numerical and Simulation Results

in order to verify the analysis results, lengthy computer simulations were conducted.

110

Chapter 5 Error Performance of BSD

Since decoding errors rarely occur with a long memory code, a short memory (m = 10)

SABODP code was used. Similar to Chapter 4, the code rate was chosen to be equal to

0.5, a BSC channel was used, and metrics were scaled into integers in the simulations.

Moreover, all algorithms were run under strictly identical conditions (i.e., using the same

code and noise sequences) in order to make the results comparable.

Results are shown in Tables 5.1 and 5.2 for Pr = 1.1 and Pr = 0.68, respectively.

In these simulations, the one branch metric drop) = 16 and 14 for Pr = 1.1 and Pr =

0.68, respectively. 50,000 blocks of length L = 400 were simulated for each algorithm

in Table 5,1, while 5,000 blocks of length L = 200 were simulated for each algorithm

in Table 5.2. In addition, the computational limit for each algorithm was selected large

enough to make the erasure probability negligible.

As expected, Tables 5.1 and 5.2 show that the error perfonnance (both bit and block

error rate) of Algorithm TAmerge is similar to that of USD. More precisely, the BER

of Algorithm TAmerge with unquantized stacks is very close to that of a unidirectional

quantized stack algorithm with a substack spacing).. Moreover, as Corollary 5.1

suggested, the block error probability of Algorithm TAmerge with unquantized stacks

is upper-bounded by twice that of unidirectional quantized stack algorithm with z =

Tables 5.1 and 5.2 suggest that the error performance of Algorithm Timerge with =

1 is very close to that of a unidirectional unquantized stack algorithm. Table 5.1 also

shows that the error performance of Algorithm TTmerge with a small A, i.e., A < A, is

slightly better than that of Algorithm TAmerge using unquantized stacks. One can also

notice from Tables 5.1 and 5.2 that the error performance of Algorithm TT’merge with A

= A is close to that of Algorithm TAmerge with A = 1. Moreover, when m = (m — 1)

111

Chapter 5 Error Performance of BSD

Table 5.1 Error performance comparison of different
algorithms for the case Pr = 1,1, i.e., R < Rcomp

SABODP Code m=10 Error Erasure Max. Ave.
BER

Pr=” ,L=400,5 x 1 runs blocks blocks comp. comp./br.

USD (unquantized stack
1.86e-4 261 0 163045 1.824

algorithm_ = 1)

USD (quantized stack
5.73e-4 649 4 2e5 3.383

algorithm_ = 16)

Algorithm
8,09e-3 14552 0 9278 1.274

TAmeet (= 1)

Algorithm
6,08e-4 962 0 9364 1.310

TAmerge (z = 1)

Algorithm
1.39e-4 340 0 17567 1.397

TTmerge_(= 1)

Algorithm
2.79e-4 496 0 16877 1.403

TTmerge_(zS. = 7)

Algorithm
8.07e-4 1188 0 23383 1.876

TTmerge_(= 16)

Algorithm HTlnierge (nih
3.52e-4 672 0 9562 1.336

= rn—i,_z = 1)

Algorithm HTfmerge (rnh
6.57e-4 1204 0 9562 1,322

= m —2, = 1)

and = 1, the error performance of Algorithm HTTmerge is similar to that of Algorithm

TTmerge. The trade-off between the error performance and computational effort that can

be provided by Algorithm HTTmerge is clearly apparent in Tables 5.1 and 5.2.

The average and maximum number of computations, and the number of blocks

remained undecoded (erasure blocks) with different algorithms are listed in Tables 5.1

and 5.2. As it can be seen, the maximum number of computations and the average

number of computations necessary to decode a block using the proposed BSD are much

less than those needed by USD. Moreover, the simulation results suggest that a large

112

Chapter 5 Error Performance of BSD

Table 5.2 Error performance comparison of different
algorithms for the case Pr = 0.68, i.e., R > R0

SABODP Code m=10 Error Erasure Max. Avg.
BER

pr=0.68,L200,5X runs blocks blocks comp, comp./br.

USD (unquantized stack
l,99e-2 413 4 2e5 18.434

algorithm_L=1)

USD (quantized stack
3.88e-2 770 6 2e5 32.5 14

algorithm_with z=l4)

Algorithm
4.88e-2 3047 0 2545 1.559

TAmeet (= 1)

Algorithm
l.58e-2 591 0 3095 1.898

TAmerge_(A = 1)

Algorithm
9.27e-3 300 3 2e4 3.026

Tlmerge_(z=1)

Algorithm
2.91e-2 871 0 19107 4.144

Tlmerge_(LS=14)

Algorithm HTlmerge
1.39e-2 515 0 6758 2.108

(mh = m - 1,_L=1)

Algorithm HTTmerge
l.70e-2 716 0 4258 1.938

(mh = m 2,_ti=l)

in Algorithm TTmerge does not benefit both the error performance and average

computations. Thus, a small value of L seems to be a better choice for the overall

performance of Algorithm TTmerge as well as Algorithm HTTmerge.

Finally, we examine the effect of block length L on the error performance of the

proposed BSD algorithms. Simulation results of the error performance of Algorithm

TAmeet and Algorithm TAmerge are shown in Table 5.3 and Table 5.4, respectively. It

can be noticed from Table 5.3 that the BER of Algorithm TAmeet improves slightly as

L increases, which confirms the findings in section 5.3. The BER of all algorithms with

a merging test is not sensitive to L. However, as expected, the block error probability

113

Chapter 5 Effor Performance of BSD

Table 5.3 Error performance comparison of Algorithm
TAmeet (L\ = I) for different block length L

SABODP Code m=10
L=l00 L=200 L=t300 L=400 L=500

pr=l.1,5X10 I’UflS

Bit error rate (BER) l.03e-2 9,84e-3 8.90e-3 8.09e-3 7.56e-3

#of error blocks 8869 11944 13482 14552 15348

of erasure blocks 0 0 0 0 0

Max. #ofcomp. 583 2805 5021 9278 11200

Ave. comp. / branch 1.142 1.202 1.244 1.274 1,302

Table 5.4 Error performance comparison of Algorithm
TAmerge (z = 1) for different block length L

SABODP Code m=10
L=100 L=200 L=300 L=400 L=500

pr1.l,5X10 fllflS

Bit error rate (BER) 3.07e-4 4.62e-4 5.50e-4 6.08e-4 6.52e-4

of error blocks 151 409 664 962 1256

of erasure blocks 0 0 0 0 0

Max. #ofcomp. 1133 3074 6465 9364 11362

Ave. comp. / branch 1.189 1,247 1.283 1.310 1.335

increases with increasing L, for all the algorithms under study.

Tables 5.3 and 5.4 indicate that Algorithm TAmerge and Algorithm TAmeet have

basically the same maximum and average number of computations when the code rate is

lower than Rcomp. This argument is especially true when L is not too small. Thus, the

additional computations introduced by the merging test are asymptotically insignificant,

and are worth the improvements in error performance. Moreover, the maximum and

average computations is much smaller than those of USD for all values of L. In other

words, the number of erasure blocks with the proposed BSD is much smaller than those

of USD under the same maximum number of computations.

114

Chapter 6
Bidirectional Multiple Stack Algorithm

The main disadvantage of sequential decoding algorithms is their inherent overflow

problem. The number of computations in sequential decoding is a random variable with

a Pareto distribution. Hence, there is always a small fraction of blocks which require an

infeasible number of computations and thus cannot be completely decoded. This ratio of

undecodable blocks is often called the erasure probability Per. Several known techniques

have been proposed to alleviate the overflow problem of sequential decoding [14—16,

18, 19, 58J,

In Chapter 3, we proposed BSD algorithms which were shown to significantly

reduce the erasure probability. The proposed BSD algorithms improve the computational

performance by approximately doubling the Pareto exponent of conventional sequential

decoding techniques. However, the decoding effort is still a random variable with a

Pareto distribution, and the overflow or erasure problem is still not eliminated.

Chevillat and Costello [18] proposed an interesting decoding algorithm, called multi

ple stack algorithm (MSA), that allows erasure-free decoding. The basic idea is to make

use of higher order stacks for blocks that require an excessive number of computations

to be decoded. However, to achieve a good error performance with the MSA, a large

amount of memory is needed.

In this chapter we propose to modify the MSA to accommodate bidirectional tree

search [29], as described in Chapter 3. We refer to this decoding algorithm as bidirectional

multiple stack algorithm (BMSA). It is found by analysis as well as computer simulations

115

Chapter 6 Bidirectional Multiple Stack Algorithm

that the use of bidirectional decoding with the MSA improves the performance in terms

of computational effort, memory requirements and decoding errors.

First, the basic elements of the conventional MSA are reviewed briefly. The BMSA

is then discussed in detail and its performance is evaluated by analysis and computer

simulations. Finally, different decoding algorithms, including the MSA, the new BMSA

and the Viterbi algorithm, are compared on the basis of their memory requirements, bit

error performances and computational efforts.

61 The Multiple Stack Algorithm (MSA)

The multiple stack algorithm (MSA) eliminates the overflow problem entirely at

the expense of a substantial increase in stack and buffer storage requirements. It is a

modification of the stack algorithm which employs several stacks to alleviate the problem

of stack overflow. The basic functions of the MSA are illustrated in Figure 6.1. Initially,

the MSA decoder operates as a conventional stack algorithm. If a terminal node in

the tree is reached before the first (primary) stack with size Zfvls is filled, decoding is

complete, and the decoded sequence is identical to that of a conventional stack algorithm.

However, if the first stack is filled and an extensive search is needed, the top T nodes of

the first stack are transferred to the second stack and decoding resumes using only the T

transferred nodes. If the end of the tree is reached before this stack is full, the terminal

node is accepted as a tentative decision and is stored in a tentative register. The decoder

clears the second stack, returns to the first stack, and attempts to find another tentative

decision, The new tentative decision is compared to the preceding one, and the better one

is retained and stored in the register. The process of transferring T nodes to another stack

116

Chapter 6 Bidirectional Multiple Stack Algorithm

is not limited to the second stack. Additional stacks are formed as needed. If a stack

fills up before the end of decoding, T nodes are transferred to a higher order (secondary)

stack until a tentative decision is made. For simplicity, we assume that all secondary

stacks have the same stack size, i.e., ZM = ZMSA, i = 2, 3,.... The MSA terminates

decoding when it reaches the end of the tree in the first stack, or if a predetermined

computational limit Cijm is reached while the search is in progress. In both cases, the

best tentative decision is accepted as the final decision.

Transfer if
I 1full

Transfer if Transfer if
Z2 if full Z3 if full

1 TopTnodes I

Second Stack Z2 Third Stack Z3

First Stack Zi

Figure 6.1 Illustration of the multiple stack algorithm.

The major difference between the single stack algorithm and the multi-stack algorithm

is well described by their names. The single stack algorithm stops the decoding process

when the stack is full and erases the undecoded block. The MSA continues decoding

in secondary stacks to reach a decision. When a tentative decision is made in one of

the secondary stacks, and the computational limit Gum has not been reached, the MSA

Top T nodes

117

Chapter 6 Bidirectional Multiple Stack Algorithm

returns to previous stacks to refine the tentative decision. Decoding stops either after

satisfactorily achieving first-stack decoding or by reaching the computational limit.

In [18], the block error probability of the MSA, is upper-bounded by

pMSA PeUSD + p1USD (6.1)

where PY is the block error probability of the single stack algorithm with an infinite

stack size, and pf-’ is the probability of the first stack overflow. It is shown in [18] that

/ \Pr
P1 A9 (Z1 — 1) , (6,2)

where A9 is a constant and Pr is the Pareto exponent of USD as defined in Chapter 2.

Similarly, the bit error probability of the MSA can be upper-bounded by

pjfrISA <pUSD + (6.3)

As pointed out by Viterbi and Omura [6], the block error probability is not a

reasonable performance measure, and ultimately the most useful measure is the bit error

probability. Moreover, as suggested in Chapter 5, the bit error probability of sequential

decoding, including our BSD, is independent of the block length L. Hence, in this chapter,

the bit error probability is the criteria used to measure the error performance of various

algorithms.

According to (6.3), in order to achieve a low bit error probability with the MSA, both

pJSD and P5 must be very small. It is trivial to make pS) very small by employing

a long memory convolutional code, The objective is then to make P-”-’ as small as

118

Chapter 6 Bidirectional Multiple Stack Algorithm

the desirable error performance. However, to make pfSD very small, say comparable

to PbU9D with a long memory code, the size of the first stack must be chosen very large.

As indicated in (6,2), pSD only decreases in a Pareto function with an increase in the

first stack size ZtsA, This means that a substantial first stack size ZsA is needed to

make pf9D relatively small. As it will shown later, the use of the proposed BSD is an

alternative to reduce the first stack overflow probability for a given first stack size.

Chevillat and Costello [181 investigated the distribution of block computations for

the first tentative decision of the MSA. They showed that it is Pareto before the first

stack is filled, decreasing exponentially thereafter, They also analyzed the computational

distribution for the final decision and gave the following upper bound:

(A9N-, N < — 1
P(Cp > N) < pfJSD Z- N Cm (6.4)

0, N > Cim,

where cj’’ is the total number of computations required for the final decision and p <

Pr’ However, no experimental results on the final computational distribution are reported

in the literature. Since the number of computations for the final decision represents the

overall computational performance of the decoder, in the rest of this dissertation, the

computational distribution for the final decision will be the focal point.

In all computer simulations reported in this chapter, antipodal signaling over an

additive white Gaussian noise (AWGN) channel with hard decision at the output of a

coherent demodulator is assumed. Figure 6.2 shows empirical results of the computational

distribution for the final decision of the MSA with parameters L = 128, T = 3, ZM = 11

A7, Ciim = 2000, Eb / N0 = 4.58 dB, corresponding to Pr = 1, and ZfL’5’A = 4L, 5L, 6L.

The code used is an m = 7 SABODP code of rate r = 1 / 2 (see Table 2.3).

119

0
10

A

-, 10

Chapter 6 Bidirectional Multiple Stack Algorithm

N

1536 2000

Figure 6.2 Empirical computational distribution for the final decision of the MSA.

As indicated by (6,4), it can be seen from the figure that the computational distribution

for the final decision can be divided into three different segments. Before the first stack

becomes full (i.e., N Zf’), the computational effort follows a Pareto distribution

as in the case of a conventional infinite stack size algorithm. After the first stack fills

up (i.e., Zj’lsA < N < Gum), the distribution quickly reaches a computational floor,

10
128 256 384 512 640 768

120

Chapter 6 Bidirectional Multiple Stack Algorithm

Finally, after the computational limit (i.e. N> Ciim) is reached, it becomes zero.

The behavior of the first and last segments of the final computational distribution

are obvious. The behavior of the second segment (i.e., ZSA < N Gum) can be

explained as follows. Whenever the first stack fills up, the algorithm transfers T nodes to

the second stack. The transferred nodes may either include the correct one, or they can

all be incorrect nodes, In the first case, the correct node is amongst the transferred nodes

in the secondary stacks. As described before, the decoding process is stopped only if a

tentative decision is reached in the first stack, or if the computational limit is reached.

Since the current decoding path is only accepted as a tentative decision, the MSA will

not stop decoding even after the correct final node is located in a secondary stack. Let’s

assume that the correct final node is in the i-th (i>]) stack. The MSA empties the i-th

stack and returns to the (i —])-th stack. Since the correct node is removed from the i-th

stack, there is no correct node in any of the stacks.17 It is therefore unlikely to return

to the first stack and reach a tentative decision, In other words, with a high probability,

decoding will not stop until the computational limit is reached.

Next, assume that all the transferred T nodes are incorrect. Since there is no correct

node in the second stack, it will take many computations to find one tentative decision

and it is therefore very likely to require higher order stacks, Assume that the tentative

decision is made in the i-th (1>]) stack. The MSA empties the i-th stack and returns

to the (i —])-th stack and tries to find another decision. After many computations, if

the computational limit is not yet reached, the MSA will finally return to the first stack.

However, the MSA can only extend T nodes before the first stack fills up again. This

17 Here, we ignore the fact that an incorrect path may merge with the correct path since this only occurs with a small probability.

121

Chapter 6 Bidirectional Multiple Stack Algorithm

implies that there is a very small chance that a tentative decision can be reached within

the T extensions in the first stack. If the first stack fills up again, another T nodes will

be transferred to the second stack. Hence, if the correct node is not transferred into the

second stack, during the first time, it may be transferred into the second stack during the

second, third, etc. times. In summary, whenever the first stack fills up, the MSA will

not, most of the time, stop the decoding process until the computational limit is reached.

6.2 Bidirectional Multiple Stack Algorithm (BMSA)

A bidirectional multiple stack algorithm (BMSA) is constructed in this section, which

combines the ideas of BSD and the use of multiple stacks. Any of the BSD algorithms

described in Chapter 3 can be used. However, Algorithm TTmerge is chosen due to its

ease of implementation and good error and computational performances.

The BMSA based on Algorithm TTmerge consists of a number of forward and

backward finite-size memory stacks. We assume that the pairs of forward and backward

stacks are of the same size, denoted by ZPM. Initially, decoding with the BMSA

is exactly the same as with Algorithm Timerge. If decoding is terminated before the

two stacks fill up, the decoded sequence is the same as that with Algorithm TTmerge,

However, should one of the stacks (FS or BS) fill up, like in the conventional MSA,

the T top nodes in that stack are transferred to a secondary stack, and decoding resumes

using only the T transferred nodes. Once a merged path is found,18 that path is taken

as a tentative decision, and is stored in a register. The secondary stack is then cleared,

and decoding continues on the primary stacks. If, however, one of the stacks fills up

For simplicity and ease of implementation, the merging test is only conducted between nodes of top non-empty substacks of
the current pair of forward and backward stacks.

122

Chapter 6 Bidirectional Multiple Stack Algorithm

before a decision is reached, the T top nodes in that stack are transferred to yet another

secondary stack, and decoding resumes once again using only the T transferred nodes.

This process is continued, that is secondary stacks are used as needed. Once a tentative

decision is found in a given pair of forward and backward stacks, these two stacks are

cleared, and decoding resumes on the predecessor stacks in the attempt to refine that

tentative decision. Decoding is stopped whenever a decision is reached in the pair of

primary stacks or when a predetermined computation limit Cijm is reached. In any event,

the best tentative decision is accepted as the decoded path. A detailed description of the

BMSA is given below, Let SF denote the current number of the forward stack, and SB

the current number of the backward stack. The steps are as follow:

Step 0: Place the root nodes of forward and backward trees in the 1st FS and the

1st BS, respectively. Set SF = 5B = I.

Step 1: Compute the metrics of all successors of any node from the highest non-

empty substack in the SFth FS, remove this node from the SFth FS, and enter the new

nodes in their proper substack in the Spth FS.

Step 2: If 1F + 1B > L, check all paths in the highest non-empty substack in the

SBth BS with all paths in the highest non-empty substack in the SFth FS. if one or more

merging paths is found, select the one, including the one already in the tentative register

if any, with the highest cumulative metric as a tentative decision and go to step 13.

Otherwise, go to the next step.

Step 3: If the SFth FS is full, transfer T nodes from the highest non-empty substack

to the (SF + 1)th FS,’9 and set SF = SF + 1. Go to the next step.

19 If the highest non-empty substack contains less than T nodes, pick the rest from the next inghest non-empty substack,

123

Chapter 6 Bidirectional Multiple Stack Algorithm

Step 4: Check if the node to be extended in the highest non-empty substack in the

SBth BS is a terminal node of the backward tree. If yes, compare that path with the one

in the tentative register, if any, select the better one, and go to the next step, Otherwise,

go to step 6.

Step 5: If 5B = 1, stop decoding and take the path in the tentative register as the

decoded path. Otherwise, go to step 15.

Step 6: If the number of computations is equal to Cjjm, stop decoding and take the

path in the tentative register as the decoded path. Otherwise, go the next step.

Step 7: Compute the metrics of all successors of any node from the highest non-

empty substack in the SBth BS, remove this node from the stack and enter the new nodes

in their proper substack in the SBth BS.

Step 8: If 1F + 1B L, check all paths in the highest non-empty substack in the

SFth FS with all paths in the highest non-empty substack in the SBth BS. If one or more

merging paths is found, select the one, including the one afready in the tentative register,

if any, with the highest cumulative metric as a tentative decision and go to step 16.

Otherwise, go to the next step.

Step 9: If the SBth BS is full, transfer T nodes from the highest non-empty substack

to the (SB + J)th BS, and set SB = 5B + 1. Go to the next step.

Step 10: Check if the node to be extended in the highest non-empty substack in the

SFth FS is a terminal node of the forward tree. If yes, compare that path with the one

in the tentative register, if any, select the better one, and go to the next step. Otherwise,

go to step 12.

124

Chapter 6 Bidirectional Multiple Stack Algorithm

Step 11: If 5F = 1, stop decoding and take the path in the tentative register as the

decoded path. Otherwise, go to step 18.

Step 12: If the number of computations is equal to Ciim, stop decoding and take the

path in the tentative register as the decoded path. Otherwise, go to step 1,

Step 13: If SF = 1 and SB = 1, stop decoding and take the path in the tentative

register as the decoded path. Otherwise, go to the next step.

Step 14: If SF > 1, empty the SFth FS, set SF SF — 1, and go to the next step.

Otherwise, remove the merged node from the 1st FS, and go to the next step.

Step 15: If SB > 1, empty the SBth BS, set SB = SB — 1, and go to step 6. Otherwise,

remove the merged node from the 1st BS, and go to step 6.

Step 16: If SF = 1 and 5B = 1, stop decoding and take the path in the tentative

register as the decoded path. Otherwise, go to the next step.

Step 17: If 5B > 1, empty the SBth BS, set SB = 5B — 1, and go to the next step.

Otherwise, remove the merged node from the 1st BS, and go to the next step.

Step 18: If SF> 1, empty the SFth PS, set 5F = 5F — 1, and go to step 12. Otherwise,

remove the merged node from the 1st PS, and go to step 12.

6.3 Computational Properties of the BMSA

Define the total number of computations CfMSA needed to decode one block by the

BMSA as the sum of the computations performed by forward and backward decoders.

Let Z1 = 2ZpM Zf’, and Z = 2ZpM = Z/’ for i=2,3, . As in the

MSA, the size of the 1st stack ZpMs4 should be made large enough so that only the

very noisy blocks, which are potential erasures in conventional BSD, use higher order

125

Chapter 6 Bidirectional Multiple Stack Algorithm

forward and backward stacks. On the other hand, the size of the secondary stacks ZM9A

should be made substantially small for the BMSA to quickly advance through forward

and backward trees, and find a reasonably good tentative decision.

For T1, at most L pairs of stacks are formed before reaching the first tentative

decision. Once a tentative decision is made, the decoder returns to previous stacks to

refine the tentative decision. The BMSA is therefore erasure-free if one or more tentative

decisions are made before reaching the computational limit Cijm. In the worst case

scenario, where forward and backward decoders do not merge before the final forward or

backward node is reached, the number of computations needed by the BMSA to guarantee

erasure-free decoding would be twice the critical number of computations for the MSA,

Ccrii, which is given by [18]
L—rn—1

Gcrii = (i) + 2m. (6.5)

Therefore, to ensure erasure-free decoding using the BMSA with T=], we must have

Gum > 2 X Gcrit. (6.6)

Although the above criteria for selecting Cijm is extremely conservative, it offers an easy

and safe design rule.

Clearly, the computational properties of the first tentative decision of the BMSA are

similar to those of the MSA. Thus, following [18] and using the approximation on the

computational distribution of Algorithm TTmerge (see Chapter 4), one can write

Property 6.]: The first stack overflow probability for the BMSA, Pj”, is given by

the erasure probability of Algorithm TTmerge with primary stack size Z1. That is,

pSD = P(cf8D
> z1 — i) A1o(Z — i)_2Pr, (6,7)

126

Chapter 6 Bidirectional Multiple Stack Algorithm

where A10 is a constant independent of Zi, and Pr is the Pareto exponent.

From (6.7) and (6.2), it can be noticed that p1B9D is much smaller than p9D for a

given Z1. In other words, to achieve a given overflow probability, the required Zj with

the BMSA is much smaller than that with the MSA, To quantify this reduction in stack

size, let ZsA(P1,Eb/No), and ZjBM(P1,Eb/N0)denote respectively, the stack sizes

needed with the MSA and the BMSA to achieve a certain first stack overflow probability

Pj. at a given signal to noise ratio Eb I N0. The first (primary) stack size saving ratio2°

can be expressed by

‘MSAD 12 IT’.T\

s -

(68)
zPMSA(P,Eb/No)’

which can be simplified to

(A9/P1)

(A1o/Pi)2

— (A rp_1/2Pr

1

=A11P’12, (6,9)

where A11 is a constant that depends on the channel condition and the decoder used, which

can be determined by simulation. For comparison purpose, from now on, we let A11 = 1.

Figure 6.3 shows a plot of S3 as a function of P1 for different values of Pareto

exponent Pr. As shown in this figure, the smaller the required first stack overflow

probability Pj is, the greater is the saving in Zj. Moreover, the saving in the primary

stack size increases as the Pareto exponent (or EbIN0)decreases. For instance, when Pr

20 The first stack size saving ratio represents approximately the saving in the total memory size since the first stack is much larger
than the secondary stacks.

127

Chapter 6 Bidirectional Multiple Stack Algorithm

150

100

50

0
102 iü-

Figure 6.3 The first stack saving as a function of Pj.

= 1 (E,IN=4.58 dB), and P1 = i03, the primary stack size saving is about 32 times.

For the same Pj. S = 18 for Pr = 1.2 (Eb/N05.O dB).

As for the total number of computations for the final decision of the BMSA, following

[18], we can write the following property.

350

300

250

200

io-4
P1

128

Chapter 6 Bidirectional Multiple Stack Algorithm

Property 6.2: The final computational distribution of the BMSA is upper-bounded by

(A1oN2, N <Z1 — 1
P(CfMSA > N) < N 0lim (6j

1 0, elsewhere,

where the Pareto exponent p < Pr’ and Z1 =2ZBMsA.

The computational distribution of the final decision for the BMSA reaches a floor

beyond a certain threshold like that of the conventional MSA. However, since pD <<

pSD for a given primary stack size Z1, when compared to the MSA, the computational

floor is substantially reduced with the BMSA.

In order to verify the above properties, computer simulations were performed using

50,000 blocks each of length L = 128. The signal to noise ratio Eb / N0 was fixed to

4.58 dB, corresponding to a Pareto exponent of Pr 1. The code used is a SABODP,

non-systematic rate r = I / 2 memory m = 7 code (see Table 2.3). The stacks in both

the MSA and the BMSA were quantized with = 7.

Figure 6.4 shows the results of the final computational distributions of the MSA and

the BMSA for different values of the first stack size Z1 with parameters T = 3, Z = 11,

and Ciim = 2000. The Pareto approximations are plotted as solid straight lines on the

figure. As it can be seen from this figure, the simulation results are in total agreement

with the analytical properties discussed above.

Figure 6.5 shows the results of the final computational distributions of the MSA and

the BMSA for different values of T. The different parameters used are: Z1 = 6L, Z = 1]

andC11m2000. This figure suggests that the first stack overflow probability and the final

number of computations are essentially independent of parameter T, as it was predicted

by analysis (see (6.7) and (6.10)).

129

Chapter 6 Bidirectional Multiple Stack Algorithm

Figure 6.4 Empirical computational distribution
for the final decision using Z1 as a parameter.

Figure 6.6 shows the results of the final computational distributions of the MSA and

the BMSA for various values of Z. The different parameters used are: Cijm = 2000, 3300

and 4500 for Z = 11, 21 and 31, respectively, T = 3, and Z1= 6L. Clim is increased with

Z in order to guarantee erasure-free decoding. This figure shows that parameter Z does

not affect either the first stack overflow probability or the final number of computations,

A

I

0
10

—1
10

-2
10

-3
10

128

L__
MSA:: Z1=512

Zi = 640 -

0
Z1=768

- //

I \
— — .

BMSA

Pareto
Approximation

256 384 512 640 768

N

1536 2000

130

10_i

A

io2

According to the above analysis and computer simulation results, the primary stack

size Zj is the dominating factor in the final computational effort for both the MSA and

the BMSA, while Ciim is mainly determined by Ccrit to guarantee erasure-free decoding.

The average number of computations of the proposed BMSA is now examined,

0
10

Chapter 6 Bidirectional Multiple Stack Algorithm

256 384 512 640 768

-3
10

128

N

Figure 6.5 Empirical computational distribution
for the final decision using T as a parameter.

as it was predicted by analysis (see (6.7) and (6.10)).

1536 2000

131

A

I

0

Chapter 6 Bidirectional Multiple Stack Algorithm

N

Figure 6.6 Empirical computational distributions
for the final decision using Z as a parameter.

4500

Following the derivation of the average number of computations of the proposed BSD

in Chapter 4, we get the following.

Property 6.3: The average number of computations per branch of the BMSA is upper-

128 256 384 768 1536 2304

132

Chapter 6 Bidirectional Multiple Stack Algorithm

bounded by

{ A,0 LL
— 1)12P

— (Z1 — 1)1_2P]
p

, (Oil)E [CBMSA] <A12 + (2p-1)L [
— [1n(Zi—1)—1n(J—1)j, p=

where the Pareto exponent p < Pr and A12 is a constant given by

pBSDIC Zi)
A12 1 + ‘S hm

— (6.12)
L

Proof Similar to the analysis for the proposed BSD in Chapter 4, the average number

of computations per branch can be expressed by

C:m —1

E[CM9A] = 1 + P(CfM.9A > N), (6,13)
N=L

where P(CfM’A > N) is upper-bounded by (6.10). Substituting (6.10) into (6.13),

yields

Z11 pBSDf —z1)1 ‘S1imE[GM5]
<j A1oN2+

L
+1

N=L
z1—1

A10

=
N + A12, (6,14)

N=L

where A12 = 1 + PiBSD(Ciim
— Z1)/L. Moreover, since

z, 1

N2’°
< f x2°dx

NL L-1

= { — 1)’ — (Z1 — i)1_2P]
P 2 (6.15)

ln(Zi—1)—ln(L—1),
—

and substituting (6.15) into (6.14) the above property is proved. Q.E.D.

133

Chapter 6 Bidirectional Multiple Stack Algorithm

Similarly, for the MSA, the average number of computations per branch can be

bounded by

E [cM] <A13 + (p-)L [(L —

— (Z1 — i)1_P], # (6.16)
{ln(Z1—l)—ln(L—1)], p=l

where Al? is a constant and is defined as below

pUsDi Z
A13 1 +

urn — 1) (6.17)

By comparing (6.11) and (6.16), one can notice that under the same parameters,

the average number of computations with the BMSA is smaller than that with the MSA,

Under the same Cijm, in order to reduce the average number of computations, the primary

stack size Z1 should be increased. This indicates a clear trade-off between the required

memory and the computational performance for both the MSA and the BMSA. However,

the BMSA offers a substantial improvement in terms of computational performance and

memory requirements compared to the MSA, as it was shown above. Moreover, one can

notice from (6.11) and (6.16) that the average number of computations is less sensitive

to Ciim for the BMSA as compared to the MSA.

Table 6.1 shows some empirical results of the average number of computations for

different values of Z1. As predicted, in all cases, the use of the BMSA results in a

significant reduction of the average number of computations.

Table 6.1 Average number of computations as a function of Z1

SABODP (m = 7), L =128, 5x104 runs Z1 = 512 Z1 = 640 Zj = 768
Eb/No = 4.58 dB, T = 3, Z = 11, Ciim = 2000

MSA 2.512 2.347 2.256

BMSA 1.576 1,504 1.478

134

Chapter 6 Bidirectional Multiple Stack Algorithm

Table 6.2 shows some empirical results of the average number of computations for

different values of T, These results indicate that parameter T is not related with the

average number of computations. This can also be seen from the analytical expressions

given by (6.11) and (6.16).

Table 6.2 Average number of computations as a function of T

SABODP (m = 7), L = 128, 5x i0 runs
E/NO=4.58dB,Zjt768,Z=ll,Cjj= T1 T=2 T=3

2000

MSA 2.256 2.256 2.256

BMSA 1.475 1.477 1.478

Table 6.3 shows some empirical results on the average number of computations as

a function of Cjjm. The results confirm that the average number of computations is less

sensitive to Cijm in the case of the BMSA compared to the MSA.

Table 6.3 Average number of computations as a function of Cijm

SABODP (m = 7), L = 128, 5x runs Cjjm = 2000 Ciim 3300 Ciim = 4500

Eb/No=4.S8dB,Z]=768,T=3 (Z=11) (Z=21) (Z=31)

MSA 2,256 2.803 3.310

BMSA 1.478 1.522 1.555

6.4 Error Performance of the BMSA

The error performance of the BMSA can be derived in the same way as for the

conventional MSA [18]. One can hence write the following property.

Property O.4: The bit error probability of the BMSA is upper-bounded by

pBMSA <pBSD
+ (6.18)

135

Chapter 6 Bidirectional Multiple Stack Algorithm

where pSD is the bit error probability of BSD using a single pair of infinite size FS

and BS.

The effect of parameters Z1, T and Z on the bit error probability of the BMSA is

now provided.

6.4.1 Effect of Parameter Zj

Based on the results in Chapter 5, pSD of BSD-merge is asymptotically the same

as that of USD. As it was found in the previous section, for the same primary stack

size Z1, the first stack overflow probability pBSD of the BMSA is much smaller than

that of the conventional MSA. For example, as shown in Figure 6.4, for Z1 = 768,

p1BSD is around 5 x i0, whereas Pfr’ is only about 5 x 10—2. Hence, by employing

the BMSA, the error performance can be substantially improved without increasing the

primary stack size Zi.

Figure 6.7 shows the bit error probability curves of the MSA and the BMSA

as a function of Z1 for the two values Lb/No = 4.58 dB (Pr 1) and Lb/No =

5.55 dB (Pr = 1.5), which are drawn in dotted and dashed lines, respectively. The

parameters used in the decoding are the same as those used for Figure 6.4. As it can be

seen from the figure, the error performance of both the MSA and the BMSA improves

as Zj increases, up to a certain floor which is determined by the error performance limit

of the employed code, that is pBSD of B SD-merge or pJ.9) of USD. For reference, we

obtained p8D through computer simulations using Algorithm TTmerge with unlimited

sizes of FS and BS. Results are plotted on Figure 6.7 as straight lines. The error floor

at Lb/No = 4.58 dB is around 3 x i0, and at Lb/No = 5.55 dB it is around lO,

136

Chapter 6 Bidirectional Multiple Stack Algorithm

With the BMSA, the error floor is practically reached with Z1 = 640 and Z1 = 512 for

Eb/No = 4.58 dB and Eb/No = 5.55 dB, respecfively. For Eb/No 4.58 dB and Zj =

640, we can get an approximation of p1BSD which is about 7 x i0 from Figure 6.5.

To achieve this same value with the MSA, using the Pareto approximation on Figure 6,5,

the required Z1 is about 5356, which is 8 times more than that of the BMSA.

Figure 6.7 Bit error probability of the BMSA and MSA as a function of Zi.

‘
‘

10_I

-2
10

-3
l:J.:1 10

-4
10

‘ %.

‘4

‘
\

‘

‘4
‘4

‘4.

‘-

—---.

4%

-4

44
4-

‘%4%4

MSA E BMSA

Error Floor (Pr_ 1)

Error Floor r 1.5) -

-5

10121 256 384 512 640 768

Zi

137

Chapter 6 Bidirectional Multiple Stack Algorithm

6.4.2 Effects of Parameters T and Z

As suggested by Chevillat and Costello [18], T and Z have no significant effects on

the error performance of the MSA. Similar arguments also hold for the BMSA. Tables

6.4 and 6.5 show the error performance of both the BMSA and the MSA as a function

of T and Z with the same parameters used for Figures 6,5 and 6.6, respectively. As

expected, the error performance is independent of parameters T and Z. Thus, T and Z can

be used to improve memory requirements and computational performance.

Table 6.4 Error performance as a function of parameter T.

Table 6.5 Error performance as a function of parameter Z.

SABODP code MSA BMSA
m = 7, L = 128
5xlO4runs Z=ll Z=2l Z=31 Z=ll Z=21 Z=31

EbIN0=4.58 dB

BER 1.84e-2 l.81e-2 l.80e-2 3,88e-3 3.81e-3 3.81e-3

of error blocks 3464 3457 3454 1802 1796 1795

6.5 Comparison with Viterbi Decoding

We now compare the proposed BMSA with the optimum Viterbi algorithm (VA).

Figure 6.8 shows the BER of the various algorithms found through computer simulations.

The codes and parameters used are as follow:

SABODP code MSA BMSA
m = 7, L = 128
5xl04runs T=l T=2 T=3 T=l T=2 T=3

Eb/No=4.58 dB

BER l.88e-2 1.86e-2 l.84e-2 3.96e-3 3.89e-3 3.88e-3

#of error blocks 3503 3480 3464 1809 1803 1802

138

Chapter 6 Bidirectional Multiple Stack Algorithm

• A rate 1/2 memory m = 7 optimum free distance code [7] was used with VA.

• A rate 1/2 memory m = 7 SABODP code was used with both the MSA and the

BMSA. The different parameters used with both the MSA and the BMSA are: L =

128, T = 3, Z = 11, Z1 = 640, and Cijm = 2000.

• Another rate 1/2 memory m = 10 SABODP code was used with the BMSA. The

different parameters used are: L = 128, T = 3, Z = 11, Z1 = 1024, and Gum = 2300.

As expected, the BER performance of the BMSA is better than that of the conven

tional MSA. For example, for the same code and the range of Eb/No shown in Figure

6.8, the BMSA is about 0.5 dB better than the MSA. The VA using the optimum rate

1/2 code performs better than the BMSA for the same code memory m. However, as the

memory m of the code used increases, the error performance of the BMSA improves.

For example, with the m = 10 code, the error performance of the BMSA is about 0.4

dB better than that of the VA at a BER = j5, This improvement in BER can be even

made larger by using a longer memory code. For the BMSA, the average number of

computations per decoded bit is typically less than 2 (see Table 6.1). This is much smaller

than that of the VA, which requires 2” computations per bit. However, as pointed out by

Ma [21], a node extension is executed much faster with the VA than with a sequential

decoder (typically 10 times faster), Nevertheless, the overall decoding speed with the

BMSA remains faster than with the VA, More importantly, the decoding complexity with

the BMSA is virtually insensitive to the code memory m.

Moreover, it was found by Ma [21] that as the code memory m increases, the MSA

tends to require less memory for decoding than with the VA. Furthermore, we have shown

that the proposed BMSA not only performs better than the MSA, but also requires less

139

B
E

R

ti
c

C
)
)

C
-

CD
CD

C
C) C

‘
r-,

)
C

-
D

C

z
-

q
C

— C
C

C
CD

-
f

-
t

C CD
C

C
D

C.
’)

tT
i

-
C

CD
CD

C
L

tt

C
tI

C
C

CD
C

C-
f CD

CD
•

C C
-

C
CD

—ti
c

C)
C

-
-

_
f

ti
c

2
C

CD

$.-
ti

c C.
D

d
<

0
CDCD

CD

CD
CD

C

Chapter 7
Conclusions and Suggestions
for Further Research

In a system using convolutional coding and sequential decoding, data is transmitted

in blocks, and each block is terminated by a known tail. A conventional sequential

decoder searches the tree from the forward direction, starting from initial encoder state

(initial root of the tree), up to the final encoder state (end root of the tree). The main

drawback of sequential decoding is the variability of its decoding effort which could cause

decoding erasures. In order to alleviate this drawback, efficient bidirectional sequential

decoding (BSD) techniques, in which the tree is simultaneously searched from forward

and backward directions, were proposed and analyzed in this dissertation.

The relationships between backward coding and forward coding have been examined

in detail. Good convolutional codes, with memory m ranging from 2 to 25, suitable for

bidirectional decoding have been found through computer search. These codes possess

the same distance properties from both forward and backward directions.

In the proposed BSD, two decoders are used; one is called forward decoder (FD),

and is used to search the tree from forward direction; while the other is called backward

decoder (BD), and is used for the backward search of the tree. Forward decoding and

backward decoding are performed simultaneously, and stop somewhere in the tree. In

one class of BSD, which are referred to as BSD-merge, decoding stops whenever FD and

BD reach a common encoder state somewhere in the tree. In the other class of BSD,

that is BSD-no-merge, no common encoder state is required, and decoding stops when

141

Chapter 7 Conclusions and Suggestions for Further Research

FD meets BD. Different BSD algorithms were constructed based on the stack algorithm;

Algorithm TAmeet which belongs to the class of B SD-no-merge, Algorithm TAmerge

and Algorithm TTmerge which belong to BSD-merge, and finally Algorithm HTTmerge

which is a hybrid version of BSD-merge and BSD-no-merge.

The computational performance of the proposed BSD algorithms has been analyzed in

detail. It was found that the distribution of the total number of computations per decoded

block is still Pareto, as that of unidirectional sequential decoding (USD). However, the

advantage of the proposed BSD appears as an increase in the Pareto exponent, and hence

as a decrease in the computational variability. This results a decrease in the erasure

probability. More specifically, it is proved by using the random coding approach that the

Pareto exponent of BSD using Algorithm TAmeet is asymptotically twice that of USD.

It is conjectured that this also applies to Algorithm TAmerge. On the other hand, it was

found that the computational cutoff rate of sequential decoding remains unchanged, but

the use of BSD reduces the average number of computations per decoded block. Extensive

computer simulations were performed which confirmed our theoretical analysis.

Based on the random coding approach, the error performance of BSD-merge is

shown to be asymptotically the same as that of USD. Moreover, the bit error probability

of Algorithm TAmeet is found to satisfy the random coding bound for block codes.

Computer simulations were conducted and found to agree with the analytical findings.

Among all the proposed BSD algorithms, Algorithm TAmeet is the simplest one in

terms of implementation. However, its error performance is relatively poor compared to

that of USD. Both Algorithm TAmerge and Algorithm TTmerge offer good computational

142

Chapter 7 Conclusions and Suggestions for Further Research

and error performances. The merging test is more demanding in Algorithm TAmerge than

in Algorithm TTmerge, and therefore, Algorithm TTmerge may be preferred in practice.

Algorithm HTlmerge is very useful as it can provide a tradeoff between computational

effort and error performance.

None of the above four schemes can completely eliminate the erasure problem.

Therefore, the idea of BSD was combined with the MSA, and an efficient erasure-free

bidirectional MSA (BMSA) was constructed, Through analysis and computer simulations,

it is shown that the new BMSA offers substantial advantages over the MSA in terms of

computational effort, memory requirements and error performance. The BMSA appears

as an attractive alternative to the VA where low error probabilities and high decoding

speeds are required.

Some interesting problems for future research are:

1. The implementation aspects of the proposed BSD algorithms need to be investigated.

One interesting systolic search was recently proposed for the stack algorithm [59]. It

would be nice to see how and if this idea can be adapted to the BSD algorithms.

2. BSD can be used for the decoding of tree-like block codes. Of course one needs

to examine the distance properties of these tree-like block codes from the backward

direction. Perhaps good block codes suitable for BSD need to be designed.

3. Recently sequential decoding was successfully applied to trellis codes [58], and good

long memory trellis codes were found. Similarly, the proposed BSD algorithms can

be applied to trellis codes. Our analysis is general and applies to both convolutional

and trellis codes. However, one needs to find good symmetric trellis codes that

143

Chapter 7 Conclusions and Suggestions for Further Research

possess good distance properties from both forward and backward directions. Note

that the rate 1/2 SBODP or SABODP codes are suitable for Gray mapped QPSK

modulation since in this case the Euclidean and Hamming distances are equivalent.

4. It would be of interest to see how well the proposed BSD algorithms perform

for resolving intersymbol interference (1ST) channels, compared to conventional

sequential decoding [60],

5. Finally, the BSD idea can be combined in conjunction with the buffer looking

algorithm which is another erasure-free decoding method proposed recently by Wang

[58]. A study of this approach is also of interest.

144

References

[1] C. E. Shannon, “A Mathematical Theory of Communication,” Bell Syst. Techn. J.,
vol. 27, July and Oct. 1948.

[2] J. M. Wozencraft and 1. M. Jacobs, Principles of Communication Engineering. New
York: Wiley, 1965.

[3] W. W. Peterson and E. J. Weldon, Error-Correcting Codes. Cambridge, Mass.: MIT
Press, 2nd ed., 1972.

[4] F, Jelinek, Probabilistic Information Theory. McGraw-Hill Book Company, 1968.

[5] R. G. Gallager, Information Theory and Reliable Communication. New York: Wiley,
1968.

[6] A. J. Viterbi and J. K. Omura, Principles of Digital Communication and Coding.
McGraw-Hill Book Company, 1979.

[7] V. K. Bhargava, D, Haccoun, R. Matyas, and P. Nuspi, Digital Communication by
Satellite. New York: Wiley, 1981,

[8] S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications.
NJ: Prentice-Hall: Englewood Cliffs, 1983.

[9] A. J. Viterbi, “Error Bounds for Convolutional Codes and an Asymptotically Optimum
Decoding Algorithm,” IEEE Trans. on Inform. Theory, vol. IT- 13, pp. 260—269, April
1967.

[10] J. B. Anderson and S. Mohan, “Sequential Coding Algorithms: A Survey and Cost
Analysis,” IEEE Trans. on Comm., vol. COM-32, pp. 169—176, Feb. 1984.

[11] J. M. Wozencraft and B. Reiffen, Sequential Decoding. Cambridge, Mass.: MIT
Press, 1961.

[12] H. L. Yudkin, “Channel State Testing in Information Decoding,” Sc.D. Diss., Dept.
Elec. Eng., MJ.T., Cambridge, 1964.

[13] R. M. Fano, “A Heuristic Discussion of Probabilistic Decoding,” IEEE Trans. on
Inform. Theory, vol. IT-9, pp. 64—73, April 1963.

145

[14] G. D. Forney, Jr. and E. K. Bower, “A High-Speed Sequential Decoder: Prototype
Design and Test,” IEEE Trans. Commun. Technol., vol. COM-19, pp. 82 1—835, Oct.
1971.

[15] K. S. Zigangirov, “Some Sequential Decoding Procedures,” Probi. Peredach.
Inform., vol. 2, no. 4, pp. 13—15, 1966.

[16] F. Jelinek, “Fast Sequential Decoding Using a Stack,” JBMJ. Res. Develop., vol. 13,
pp. 675—685, Nov. 1969.

[17] J, W. Layland, and W. A. Lushbaugh, “A Flexible High-Speed Sequential Decoder
for Deep Space Channels,” IEEE Trans. Commun. Technol., vol. COM-19, pp. 813—
820, Oct. 1971.

[181 P. R. Chevillat and D. J. Costello, Jr., “A Multiple Stack Algorithm for Erasurefree
Decoding of Convolutional Codes,” IEEE Trans. on Comm., vol. COM-25, pp. 1460—
1470, Dec. 1977.

[19] D. Haccoun and M. J. Ferguson, “Generalized Stack Algorithms for Decoding
Convolutional Codes,” iEEE Trans. on Inform. Theory, vol. IT-21, pp. 638—651,
Nov. 1975.

[20] P. R. Chevillat, “Fast Sequential Decoding and a New Complete Decoding
Algorithm,” Ph.D. Diss., Dept. Elec. Eng., Illinois Institute of Technology, Chicago,
IL, May 1976.

[21] H. H. Ma, “The Multiple Stack Algorithm Implemented on a Zilog Z-80 Micro
computer,” IEEE Trans. on Comm., vol. COM-28, pp. 1876—1882, Nov. 1980,

[22] G. D. Forney, Jr., “Final Report on a Coding System Design for Advanced Solar
Missions,” Rep. NAS2 -3637, Contract NASA CR73167, NASA Ames Res. Center,
Moffett Field, CA, 1967.

[23] L. R. Bahi, C. D. Cullum, W. Frazer, and F. Jelinek, “An Efficient Algorithm for
Computing Free Distance,” IEEE Trans. on Inform. Theory, vol. IT-18, pp. 437—
439, May 1972.

[24] K. J. Larsen, “Comments on ‘An Efficient Algorithm for Computing Free Distance’,”
IEEE Trans. on Inform. Theory, vol. IT-19, pp. 577—579, July 1973.

146

[251 M. Rouanne and D. J. Costello, Jr., “An Algorithm for Computing the Distance
Spectrum of Trellis Codes,” IEEE J. on Selected Areas in Commun., vol. 7, pp. 929—
940, Aug. 1989,

[26] F. Hemmati, “Bidirectional Trellis Decoding,” 1990 IEEE Book of Abstracts of
Information Theory Symposium, San Diego, p. 107, Jan. 1990.

[27] D. Haccoun and J. Belzile, “Bidirectional Algorithms for the Decoding of Convo
lutional Codes,” 1990 IEEE Book of Abstracts of Information Theory Symposium,
San Diego, p. 177, Jan. 1990.

[28] J. Belzile and D. Haccoun, “Bidirectional Breadth-First Algorithms for the Decoding
of Convolutional Codes,” IEEE Trans. on Comm., vol. 41, pp. 370—380, Feb. 1993,

[29] K. Li and S. Kallel, “Bidirectional Sequential Decoding Algorithms,” IEEE
Symposium on Information Theory, in San Antonio, TX, USA, Jan. 1993.

[30] I. M. Jacobs and E. R. Berlekamp, “A Lower Bound to the Distribution of
Computation for Sequential Decoding,” IEEE Trans. on Inform. Theory, vol. IT-
13, pp. 167—174, April 1967.

[31] R. Johannesson, “On the Distribution of Computation for Sequential Decoding Using
the Stack Algorithm,” IEEE Trans. on Inform. Theory, vol. IT-25, pp. 323—33 1,
May 1979.

[32] J. E. Savage, “Sequential Decoding — the Computation Problem,” Bell Syst. Techn.
J., vol. 45, no. 1, pp. 149—175, 1966.

[33] D. D. Falconer, “An Upper Bound on the Distribution of Computation for Sequential
Decoding with Rate Above Rcom,” M.i.T.-RLE Quart. Progress Rept., pp. 174—179,
April 1966.

[34] F. Jelinek, “An Upper Bound on Moments of Sequential Decoding Effort,” IEEE
Trans. Inform. Theory, vol. IT-iS, pp. 140—149, January 1969.

[35] 0. D. Forney, Jr., “Convolutional Codes. II. Maximum-Likelihood Decoding,”
Inform. Contr., vol. 25, pp. 222—266, 1974.

[36] 0. D. Forney, Jr., “Convolutional Codes. III. Sequential Decoding,” inform. Contr.,
vol. 25, pp. 267—297, 1974.

147

[37] P. R. Chevillat and D. J, Costello, Jr., “Distance and Computation in Sequential
Decoding,” IEEE Trans. on Commun., vol. COM-24, pp. 440—447, April 1976.

[38] P. R. Chevillat and D. J. Costello, Jr., “An Analysis of Sequential Decoding for
Specific Time-Invariant Convolutional Codes,” IEEE Trans. on Inform. Theory,
vol. IT-24, pp. 443—451, July 1978.

[39] K. Li and S. Kallel, “Bidirectional Sequential Decoding for Convolutional Codes,”
1991 IEEE Pacific Rim Conference on Communications, Computers and Signal
Processing in Victoria, B.C., Canada, May 1991.

[40] J. L. Massey and M. K. Sam, “Inverses of Linear Sequential Circuits,” IEEE Trans.
on Comp., vol. C-17, pp. 330—337, April 1968.

[41] J. L. Massey, “Reversible Codes,” Inform. and Control, vol. 7, pp. 369—380, 1964.

[42] J. P. Robinson, “Reversible Convolutional Codes,” IEEE Trans. on Inform. Theoty,

pp. 609—610, July 1968.

[43] R. Johannesson, “Robustly-Optimal Rate One-Half Binary Covolutional Codes,”
IEEE Trans. on Inform. Theory, vol. IT-21, pp. 464—468, July 1975,

[44] R. Johannesson and E. Paaske, “Further Results on Binary Covolutional Codes
with an Optimum Distance Profile,” IEEE Trans. on Inform. Theory, vol. IT-24,

pp. 264—268, March 1978.

[45] M. Cedervall and R. Johannesson, “A Fast Algorithm for Computing Distance
Spectrum of Convolutional Codes,” IEEE Trans. on lnform. Theory, vol. 35,

pp. 1146—1159, Nov. 1989.

[46] D. Haccoun, “A Markov Chain Analysis of the Sequential Decoding Metric,” IEEE
Trans. on Inform. Theory, vol. IT-26, pp. 109—113, January 1980.

[47] J. B. Anderson and S. Mohan, Source and Channel Coding.’ an Algorithmic
Approach. Kluwer Academic Publishers, 1991.

[48] J. K. L. Jordan, “The Performance of Sequential Decoding in Conjunction with
Efficient Modulation,” IEEE Trans. Commun. Technol., vol. COM-14, pp. 283—297,
June 1966.

[49] A. Papoulis, Probability, Random Variables, and Stochastic Processes. McGraw-
Hill Book Company, 1965.

148

[50] J. B. Anderson, “Limited Search Trellis Decoding of Convolutional Codes,” IEEE
Trans. on Inform. Theory, vol. IT-35, pp. 944—955, Sept. 1989.

[51] J. B. Anderson, “Sequential Decoding Based on an Error Criterion,” IEEE Trans.
on Inform. Theory, vol. IT-38, pp. 987—1001, May 1992.

[52] D. Haccoun, “A Branching Process Analysis of the Average Number of Computa
tions of Stack Algorithm,” IEEE Trans. on Inform. Theory, vol. IT-30, pp. 497—508,
May 1984.

[53] E. Arikan, “An Upper Bound on the Cutoff Rate of Sequential Decoding,” IEEE
Trans. on Inform. Theory, vol. IT-34, pp. 55—63, January 1988.

[54] F. Jelinek, “Upper Bounds on Sequential Decoding Performance Parameters,” IEEE
Trans. Inform. Theory, vol. IT-20, pp. 227—239, March 1974.

[55] K. S. Zigangirov, “On the Error Probability of Sequential Decoding on the BSC,”
IEEE Trans. inform. Theory, vol. IT-18, pp. 199—202, January 1972.

[56] K. S. Zigangirov, “Algorithm of Sequential Decoding in which the Error Probability
Increases in Agreement with the Random Coding Bound,” Probi. Peredach. Inform.,
vol. 4, pp. 83—85, 1968.

[57] K. S. Zigangirov, “Procedures of Sequential Decoding,” Coding and Complexity -

C1SM Courses and Lectures No. 216, Springer-Verlag, Wien, New York, pp. 109—
130, 1975.

[58] F. Q. Wang, “Efficient Sequential Decoding of Trellis Codes,” PhD. Diss., Dept.
Elec. Eng., University of Notre Dame, Notre Dame, Indiana, Dec. 1992,

[59] C. Y. Chang and K. Yao, “Systolic array architecture for the sequential stack
decoding algorithm,” Advanced algorithms and architectures for signal processing,
vol. 696, pp. 196—203, 1986.

[60] F. Xiong, A. Zerilc and E. Shwedyk, “Sequential Sequence Estimation for Channels
with Intersymbol Interference of Finite or Infinite Length,” IEEE Trans. Commun.,
vol. 38, pp. 795—804, June 1990.

[61] B. Hajek, “Hitting-time and Occupation-time Bounds Implied by Drift Analysis with
Applications,” Advances in Applied Probability, vol. 14, pp. 502—525, 1982.

149

Appendix A
Proof of Theorem 4.4

In the proof of Theorem 4.4, we need a lemma (see Lemma 2.2 of [61] for a more

general result).

Lemma Ad: Suppose a real-valued random variable V satisfies E[V] 7> 0 and

I V < M almost surely,for some constants and M. Then for any > 0,

E [eV] —TI(+ M) + eflM, (Ad)

In particular, for , = (1 /M) in (1 + /M),

E [e] <(1 + /M)[1 — ln(1 + /M)] <1. (A2)

Proof The proof follows from noting that e”
=

(TI/k! 1
—

V +

[e1M
— (1 + TIM)]. Q.E.D.

Proof of Theorem 4.4: Similar to the proof of the computational lower bound

in Theorem 4.3, separate every received block into two almost equal parts, i.e., lev

els [1, [(L — m)/2J] for forward tree search operations and [[(L — m)/2j + m, L] for

backward tree search. Here, L and m denote any L and m for any code j. Also

with the assumption of correct decoding, CfSD > mm [C_m)/2j,CRL_m)/21] where

and C_m)/2ldefined in the proof of Theorem 4.3, are independent ran

dom variables.

Now, let l be an arbitrary integer of multiple n and less than [(L — m)/2J . n, and

define U [(L — m)rI/2l?lj. For I j U, define NJ to be the set of nodes in the

150

forward tree at segment j1, that are descendants of the correct end node of segment (j —

1)1. Given that the end node of the segment (j
—

l)l, is correctly decoded, let cf be the

number of distinct nodes in NJ that are hypothesized (extended) by the idealized forward

decoder before correctly decoding the segment jl. Then c$. Define a

similar quantity, n, to be the number of nodes in NJ that are at least as likely to be

the correct nodes at segment j1,. Then, because the codewords are a priori equiprobable

and correct decoding is assumed, one can use Lemma 3.1 in [53]21 to show that

E[cr] E[n]. (A3)

Lemma 3.1 of [53] assumes that the stack algorithm is used. However, its proof remains

valid for any sequential decoder for which one can determine which of two nodes at the

same level is hypothesized (extended) first, by considering only the received message

up to that level.

Now let K denote the DMC channel. For every Q > 0 and 0 < o 1, one can always

choose a finite l(K, R,60,Q) sufficiently large to satisfy the condition of Lemma 6.1

in [53], and thus

[exp (l(R — R1)/8) —2] > 32Q(1 + ‘)n’. (A.4)

Therefore, using Lemma 6.1 in [53] into (A.3), we can write

E[cf] _E[n2]

exp [l(R — R)/8]

> l6Ql(1 + + 1, 1 <j <U. (A.5)

21 The quantities defined by Arikan in [53j do not count the correct node itself (and thus equal one less than the quantities defined
here), but clearly the result still holds

151

Let = 16Ql(1 + E)n’, JI = 1, and M = X where Xj denote the size

of the channel input alphabet. Then, E — > 1 and cr — ILOI < M since

o < cr < exp (Rl), 0 < .uo < E [c’j < exp (Rl), and for distinct codewords,

exp (Rl,) X. Let = (1/M) In (1 + l/M). By Lemma A.l,

E[exp (_ii(cr —
<8, (A.6)

where 8 = (1 + l/M)[l — ln(l + l/M)], and 8 < 1.

Since cr, 1 <j < U are identically distributed, independent random valuables, one

can use Chemoff bound and get

P{(F) o} E[exP (-(cro))]

= {E[exp (-(cr -))] }
(A.7)

Now choose Lo(K, R,E0,Q) so that:

(1) L0 > 4(1 +e1)l/n and
(A.8)

(2) L0 > 2l(l +o)(l —1n2/lnO)/n.

SupposeL L0 and L (1 + e’)m. Then

P(C_m)/2j> uo) p(cr > Uo)

= Uo)

1 —

> 1/2. (A.9)

152

In the same way, one can show

P(C_m.)/21 > Ui0) > 1/2, (A.1O)

FC and (BCSince C[(Llfl)/2j j(L—mj)/21
are independent, we have

E[C’’] =

IFC BCE [mm CL(Lm.)/2j, G1(L.m)/2])] /L

> (1/2)(1/2)U0/L

>Q. Q.E.D,(A.11)

153

Appendix B
List of Acronyms

AID Analogy-to-Digital

AWGN Additive White Gaussian Noise

BD Backward Decoder

BMSA Bidirectional Multiple Stack Algorithm

BODP Bidirectional Optimum Distance Profile

BS Backward Stack

BSC Binary Symmetric Channel

BSD Bidirectional Sequential Decoding

BSD-merge Bidirectional Sequential Decoding With a Merging Test

BSD-no-merge Bidirectional Sequential Decoding Without a Merging Test

CDF Column Distance Function

DIA Digital-to-Analogy

DMC Discrete Memoryless Channel

Eb/No Energy Per Bit to Noise Ratio

FD Forward Decoder

FEC Forward Error Correction

FS Forward Stack

GCD Greatest Common Divisor

ISI Intersymbol Interference

154

modem Modulator/Demodulator

MSA Multiple Stack Algorithm

ODP Optimum Distance Profile

QPSK Quaternary Phase Shift Key

SABODP Symmetric Almost Bidirectional Optimum Distance Profile

SBODP Symmetric Bidirectional Optimum Distance Profile

USD Unidirectional Sequential Decoding

VA Viterbi Algorithm

155

