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Abstract

Multiaccess protocols allow multiple geographically diverse users to communicate with a

central station or each other over a single broadcast channel. Reservation protocols are a class

of multiaccess protocols appropriate for satellite and radio networks. This thesis investigates

dynamic time slot access control schemes for reservation multiaccess protocols similar to

those investigated by Roberts [1] and others. Previous work has considered this model only

for the case of a static frame subdivision, the majority of the work relying on approximate

methods for analysis. In this thesis, schemes are considered where the subframe allocation is

controlled on a frame by frame basis based on the current state of the finite user population.

The controlled system is modelled as a Markov decision process with the subframe

allocation as the decision variable. Optimality equations are provided and using infinite

horizon dynamic programming techniques, the control policy that maximizes the average

throughput on the channel based on complete state information is found. In addition to

the optimal policy, we propose two heuristic dynamic allocation schemes that while being

suboptimal, have implementation advantages over the optimal. Performance results indicate

that the implementation of dynamic subframe allocation into the model significantly improves

the performance of the network over previously considered fixed allocation schemes, both

in terms of lowering the average message transmission delay and increasing the channel

capacity. Proposed are methods of estimating the unknown state using a variation of Rivest's

[2] pseudo-Bayesian scheme to allow approximation of the dynamic control schemes which

depend on full state information. Simulation results indicate that the implementation of state

estimation does not significantly erode the performance of the dynamic policies. Extending

the model to incorporate multipacket messages is discussed and performance results indicate

that in that case also, protocol performance may be improved using dynamic allocation.
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Chapter 1 INTRODUCTION

1.1 Motivation and Objectives

The research presented in this thesis considers the idea of dynamically allocating channel

resources to the reservation and data subchannels based on system state feedback in a

reservation multiple access protocol. While a great deal of research has been done on

reservation protocols, the work has primarily focussed on systems where the subchannel

allocation is fixed or where dynamic allocation is based on heuristic algorithms. No one

has investigated the idea of fully using the available system state information to optimally

partition the channel dynamically.

We consider a simple reservation model originally proposed by Roberts [1], altering it to

allow a frame-by-frame allocation partition control. Without such control, useful data slots

potentially lie idle, causing decreased bandwidth efficiency. By incorporating this type of

control, the system may adaptively allocate channel resources according to the state of the

system to increase the system throughput. It is obviously desirable to optimize with respect

to system throughput the dynamic allocation strategy. This desire motivates us to develop

a fairly simple reservation model that allows exact mathematical analysis and optimization.

While the theoretical appeal of such an optimal result is indeed significant, it is also important

to bear in mind the implementation complexity of any proposed system. For this reason we

consider not only optimal allocation control, but also heuristic suboptimal strategies which

achieve near optimal performance while holding advantages for real system implementation.

In this thesis, it is necessary to make simplifications in the reservation model to allow

exact numerical analysis of the system performance. One of these assumptions is that the

system state is known by all users. Since this is not necessarily the case in a real network,

it is necessary to develop a channel state estimation technique to allow implementation of
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proposed state-dependant control schemes. Finally, it is of interest to extend the simple

single-packet message model to one where messages are of variable length. This extension of

the model is appealing in that it incorporates a more general family of multiaccess networks.

Specifically our objectives are as follows:

1. to determine, for a fairly simple reservation model, the optimal subframe allocation policy

based on system state feedback which maximizes the system throughput,

2. to compare the performance of the optimal policy performance to previously considered

fixed allocation schemes,

3. to investigate and propose heuristic policies that, while suboptimal, show performance

close to optimal and have implementation advantages over the optimal,

4. to develop a simple and effective state estimator that is necessary for state dependant

allocation schemes,

5. to investigate the extension of these results to multipacket message models.

1.2 Background

1.2.1 Multiaccess protocols

Multiaccess protocols for packet communication systems enable many users at diverse

locations to efficiently share a common broadcast channel for communicating with a central

station or with each other by packet transmissions. The designer of such protocols strives

to achieve a channel access discipline that achieves communication that is both reliable and

bandwidth efficient. While the fixed assignment techniques of time division multiplexing

and frequency division multiplexing are well suited protocols for systems where user traffic

is continuous, these schemes become extremely inefficient when user traffic is bursty and

low rate as is often the case for data traffic. In this case, we desire more flexible protocols

where idle users do not use bandwidth needlessly and users with data to send may transmit

without undue delay. Many such protocols have been implemented and many more proposed
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in the communications literature. The wide variety in protocols reflects the differences in the

physical characteristics of the communications channel being shared, the nature of the traffic

and the characteristics of the user population.

One common characteristic in all multiaccess protocols is that in each there is an amount

of channel bandwidth used to coordinate station access in the flexible assignment scheme.

Thus there is a basic split in the channel, between control overhead and useful data transfer. In

simple contention based random access systems the control overhead is represented by the idle

and collision times between useful data packets. For token rings and busses, the token passing

time is the control overhead. For reservation multiple access protocols, the control overhead

is the reservation subchannel used for reservation request transfer. In all of these cases, the

efficiency of the protocol is dictated by how small the control overhead can be kept relative to

the amount of useful data exchange. For the most part, the great body of work in the literature

on multiaccess protocols is composed of the invention and analysis of heuristic protocols that

control channel access with a minimum of overhead. Finding the optimal policy has been

elusive and research into optimal protocols has lagged behind the more successful heuristic

proposals. In this thesis, we consider the optimization of performance for a specific protocol

within a class of multiaccess protocols referred to as reservation protocols, where perhaps the

channel split between control overhead and data transmission is made most explicitly.

1.2.2 Reservation multiaccess protocols

Within a reservation multiaccess scheme, a terminal with data to send transmits a

reservation request on the shared channel to request future channel time to send its data.

This request is received (by the scheduling station in a centrally controlled system or by

all users in a distributed-control system) and used to allocate channel time to the requesting

user based on the protocol's assignment discipline. Thus, the broadcast channel is essentially

split into two subchannels — a reservation subchannel for reservation request traffic and a
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data subchannel for transmitting data messages on reserved channel time. The channel split

may be achieved by either time-division [1], [3], [4], [5], [6] or frequency division [7], [8].

Requests for reservations may be sent explicitly as small request packets [1], [6], [9] or be

implied by the successful transmission of an initial data packet [3], [4], [8]. Finally, in the

reservation subchannel, protocols may use fixed assignment [9] or random access [1], [4], [8]

as a discipline for request packet transmission.

In this thesis, a protocol is considered that is very similar to that first proposed by

Roberts [1]. The channel is time-divided into the reservation subchannel and data subchannel.

Reservation requests are sent explicitly in a S-ALOHA fashion via minislots in the reservation

subchannel. Successful reservation requests join a global queue and those stations in the queue

have channel time allocated to them in a first come first served basis in the data subchannel.

It is well known that such a protocol is very efficient for systems where the number of users

is large, the round trip signal propagation time is long compared to the packet length and

the users' message lengths are long in comparison with the reservation request packets. As

such, reservation protocols of this type are most appropriate for VSAT (very small aperture

terminal) satellite networks, mobile satellite networks or packet radio networks.

Previous analyses of protocols using minislots for reservation have considered systems

where the partition between the reservation and data subframes is fixed [1], [5], [10]. This

brings about an obvious shortcoming in the protocol. By having a fixed length data subframe,

slots may be wasted when there are no stations waiting to send. This inefficient partitioning

of the channel prompts us to investigate how better to allocate frame slots, to allow the

subframe resource allocation to be more sensitive to the current state of the system. Thus, in

this thesis, we consider the system where the subframe allocation is dynamically set according

to feedback information on a frame-by-frame basis. It is shown in this thesis that the use

of dynamic allocation in the protocol can produce significantly higher throughputs and lower
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average delays than the previously considered fixed schemes for packet transmissions in

medium and high traffic situations.

While use of such dynamic allocation in reservation models is not entirely new, Ours is

the first attempt to optimize this allocation for the model under consideration on the basis

of full state feedback. Rubin [6] proposed a minislot reservation protocol that automatically

adjusts allocation based on a portion of the state information and some traffic estimates, but he

abandons the fixed frame size and makes no attempt to optimize the allocation. Protocols that

use first packet transmission for reserving future slots proposed in [3], [4], [8] implicitly use

partial state information to dynamically allocate channel time but their approach is heuristic in

nature, again with no attempt at optimization. The success of the heuristic dynamic allocation

schemes in these similar protocols further motivates us to not only extend the concept of

dynamic allocation to the minislot reservation model, but to optimize that allocation using

Markov decision process techniques.

1.2.3 Markov decision process theory

Szpankowski [10] uses a detailed Markovian analysis of Roberts [1] model to determine

system performance with a fixed subframe allocation. By reformulating the model from a

simple Markov process with fixed allocation to a Markov decision process with dynamic

subframe allocation, the Markovian formulation becomes a tool for design rather than

for simple analysis. Markov decision process theory includes a well developed group of

techniques for deriving optimal decision policies in Markovian systems. Recent advances

in the field address infinite horizon models with undiscounted rewards, a class that includes

most applications in the field of communications.

By formulating the reservation model as a Markov decision process, we are able to analyze

different dynamic policies explicitly, find the optimal allocation strategy using dynamic

programming techniques and, by Markovian analysis, determine the optimal performance



under such a strategy. While novel to this application, this technique has been applied

successfully to other communication problems in areas of random access control [11],[12],

queueing control [13], [14], and flow control [15], [16].

1.2.4 State estimation

While we assume that full state information is available when deriving the optimal

allocation policy, it must be recognized that the system state is only partially observable

by the stations. Specifically there is a need to estimate the number of stations contending on

the reservation subframe based on the history of observations on that frame. This problem

is encountered for controlling the S-ALOHA random access broadcast channel. Segall [17]

considers the general problem of recursive state estimation for a partially observed Markov

process. His approach, though optimal, proves to be unwieldy and fairly impractical. Other

researchers [2], [18], [19] propose simpler techniques to get a good estimate, their performance

summarized and compared in [20]. Rivest's [2] pseudo-Bayesian scheme emerges as an

especially simple and effective scheme for estimation and lends itself quite handily to be

adapted to our model. Thus in this thesis, a useful state estimation technique is developed

that bears close resemblance to that proposed by Rivest [2].

1.3 Structure of the Thesis

The thesis is organized as follows. Chapter 2 provides a detailed description of the

reservation model and formulates this model as a Markov decision process. The model bears

close resemblance to that proposed by Roberts [1] but with the added capability of allowing

dynamic allocation. The assumptions made in the model are discussed in detail. From

this model, the states, actions, rewards and transition probabilities that uniquely characterize

the Markov decision process are defined. In the Markov formulation, the specific formulas

necessary for determining the throughput and average delay in the system when a control

policy is specified are derived.
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Chapter 3 presents the optimality equations and the dynamic programming algorithm

to determine the optimal allocation scheme for a given set of system parameters based on

the Markov decision process formulation of chapter 2. Furthermore, two simpler heuristic

schemes are proposed which are much more attractive for implementation while giving

performance close to optimal. Exact numerical results for all the policies are calculated

using the formulas presented in chapter 2 and are presented for comparison among the

dynamic schemes and with previously considered fixed schemes. Results indicate that the use

of dynamic allocation policies improves performance dramatically over the fixed allocation

policies that have been previously considered. System capacity under different allocation

schemes is examined and numerical results indicate consistently higher capacities for the

dynamic policies than fixed allocation. The advantages and disadvantages of the different

policies in terms of performance and implementation issues are discussed.

Chapter 4 addresses the problem of state estimation, deriving the expressions for the

optimal true Bayesian estimator and an approximate pseudo-Bayesian estimation algorithm

appropriate for our model. The latter is much more attractive for real-time implementation

and simulation results presented in the chapter indicate that the use of the pseudo-Bayesian

estimator does not significantly undermine the performance of the dynamic schemes.

In chapter 5, we consider variations of the reservation model that handle multipacket

messages. The extension of the results for the single packet message model to the multipacket

model are discussed and some simulation results are presented that indicate that dynamic

allocation schemes improve performance in this case also.

Finally, chapter 6 concludes the thesis, highlighting the major points and proposing further

avenues of research.
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Chapter 2 NETWORK MODEL AND MARKOV
DECISION PROCESS FORMULATION

In this chapter the network model that is used for analysis is described in depth and the

model is formulated as a Markov decision process. The model chosen is fairly archetypical of

reservation models with minislot reservations. The chief difference is that we allow dynamic

subchannel allocation. Since most reservation protocols split the channel into a subchannel

for securing the reservation and a subchannel for servicing reservation, the idea of dynamic

allocation of channel resources would appear to be extendable to other reservation models

and it is likely that improvements similar to those that are revealed in the reservation model

that we consider would be possible in other reservation protocols when dynamic allocation is

implemented. We restrict our attention in this work to one simple model. For exact analysis

and to enable true optimization we are forced to make some simplifying assumptions about

the model to allow the Markovian formulation. The assumptions are discussed in detail in

this chapter.

2.1 The Basic Reservation Model

We consider a reservation model with a finite number M users, each of these users

having a message source and a single message buffer. These stations have no means for

intercommunication outside of the single broadcast channel on which all stations transmit and

receive. Channel time is divided into frames of length F slots, each slot being equivalent

to the length of one packet. We shall assume that all stations are synchronized such that

packet transmissions start at the beginning of a slot and occupy exactly one slot. Frames

are subdivided into a reservation subframe and a data subframe. The reservation subframe

is composed of L slots, each of which is further subdivided into V minislots, each minislot
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being the length of a reservation request packet. Thus, there are F — L data slots in the data

subframe. (See Figure 1.)

H ̂ F slots/frame ^
V minislots/slot

1111^11 11^1111^1111
H-- ^Subframe ^

L slots
LV minislots

 

Data subframe
F-L slots

   

Figure 1. The frame structure of the reservation protocol

The LV reservation slots in the reservation subframe are accessed in slotted ALOHA mode.

Once a station successfully sends a reservation request packet in a reservation minislot, the

message joins a global queue and gets slots reserved in upcoming data subframes. (This

global queue has been referred to in the literature as the "queue in the sky" [10] since it does

not exist in a single location, but rather is maintained by distributed control of all stations.

All stations monitor the number of packets in the queue based on observations on the channel,

and track their own place in the queue.) We initially focus our attention on a situation where

all messages are composed of a single packet. (In chapter 5 we consider the multipacket

message model.) Thus each station is in one of three modes. When it has no message, the

station is in idle mode. When a new message arrives the station goes into contention mode.

When the station has successfully sent a reservation request on the reservation subchannel,

it enters reservation mode. Finally, when the station reaches the head of the global queue

and the packet is sent in the reserved data slots, the station goes back into idle mode to wait

until a new message arrives.

In Roberts' protocol [1], it is assumed that the channel time allocated to the reservation

subframe, L, is fixed for all frames. If we allow L to become a control variable, set according
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to the state of the system, it is proposed that gains can be made in the performance of the

protocol.

The following are the key assumptions made in the model:

1. There are a M users with identical access procedures and traffic characteristics.

2. Each slot may be divided into V minislots, each of which can hold 1 reservation request

packet.

3. Each idle user generates a message in a frame with probability p, referred to as the arrival

probability. Until the message is completely sent, the station is considered to be blocked.

(ie. All newly arriving packets to that station are lost.)

4. When a new message arrives, the station does not send a reservation request until the

following frame. Similarly, when a reservation request is successfully made, the message

may join the global queue only at the beginning of the next frame. Finally when a station

completes a message transmission, it remains blocked until the beginning of the next

frame. (ie. All station states are updated at the start of each frame.)

5. When a station is in contention mode, it will send one reservation request in one of the

LV minislots (chosen at random) of the current frame with transmission probability ps .

The station repeats this until the message is sent successfully at which point the station

enters the global queue.

6. The channel is error free except for collisions, and all stations are perfectly synchronized.

2.2 Delay Modelling

An important characteristic of any broadcast network model is how the round trip delay

is modelled. In local area networks (LAN's) the delay is typically very short with respect to

the message size. For packet radio networks the delay is much greater. For satellite networks,

this round trip propagation delay is in the order of a quarter second which typically spans

the length of a large number of data packets. This range in delay characteristics makes it
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difficult to create a general network model for consideration. Reservation protocols demand

a fairly high level of complexity for individual stations to coordinate access and maintain

synchronization. For this reason, the use of such protocols seem to be best suited for packet

radio and satellite networks. We discuss in this section the issues involved in delay modelling

for these applications.

Archival literature on the subject of reservation protocols [1], [10], [21] have largely

avoided true delay modelling for analysis of the network model. True delay modelling

involves the addition of "wait" states to the straightforward "contention", "reservation" and

"idle" states introduced earlier. This addition of states quickly increases the dimensionality

of the problem and thus computational barriers become insurmountable very quickly. In

later chapters it becomes apparent that such an increase in dimensionality will render exact

numerical analysis inachievable. Some researchers have attempted the high road, doing

analysis with these added "wait" states, but have been forced to rely on approximate methods

to avoid numerical overload [5]. [5] produces a Markovian model with more than 2G/F-1- 5

distinct state variables where G is the round trip delay measured in slots. Most analyses

have, on the other hand, either assumed that the propagation delay is shorter than the data

subframe, thus does not interfere with the state structure [10] or else discounted the presence

of delay completely [1], [21]. This simplification keeps the number of state variables low,

allowing exact Markovian analysis.

In the model as we have defined it with assumption 4, we assume that the delay is

small enough that all stations have the information from the reservation subframe before the

beginning of the next frame. There is no real need for stations to monitor the data subframe

since by assumption 6 we may rely on successful transmissions and correct distributed

maintenance of the global queue. Thus, for a system where control is distributed among

the stations or orchestrated by satellite on-board processing, assumption 4 demands that the
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longest round trip delay in the system G, must be less than the length of the data subframe

(ie. G < F — L). (For a network controlled centrally by a hub earth station, the feedback

delay would be twice the round trip propagation delay.) Considering that the allocation L

may change dynamically from 0 to F, this effectively means that for our model to be strictly

accurate, G=O. While this may indicate that our modelling of delay is not completely true,

past work indicates that the simplification is not a serious one. Kleinrock and Lam [21] show

that adjusting the retransmission probability of a S-ALOHA system such that the average

backoff includes the true delay, the results are close to those produced by the computationally

expensive true modelling approach. Furthermore, Lim and Meerov's [22] investigations show

that in a contention channel, the introduction of delay into the system improves stability and

throughput of the system. Thus, our assumption of small or no delay may act as a worst

case scenario. These results give credence to the notion that valid performance results may

be determined without strictly accurate delay modelling.

2.3 Markov Decision Process Formulation

In the literature, analysis of reservation multiaccess protocols has taken a number of

different forms. In many of the cases, the reservation and data subchannels are treated

independently with the only stipulation being that their average flows are balanced. While

this approach may be valid for a fixed allocation, in the more general model where the

subframe allocation may change from frame to frame, it is difficult to avoid handling the two

subsystems together. We thus handle the system as a whole, formulating and analyzing it as

a two state Markov decision process. From this formulation, we can determine the stationary

state probabilities and thus the system performance measures, throughput and average message

delay.

A Markov decision process [23] differs from a Markov process in two respects. Firstly,

while in a Markov process the probability of being in the current state is a function only
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of the previous state, in a Markov decision process the current state of the system is a

function of not only the previous state, but also of the "decision" or "action" at that previous

state. Secondly, in a Markov decision process there is associated with each state a "reward".

The Markov decision process is a useful formulation in that using this formulation we

may find the decision policy which maximizes the expected reward of the process. For

our reservation model, this translates to finding the allocation policy which maximizes the

expected throughput for the network. Furthermore, since the decision policy is a function of

the system state, specifying the policy transforms the Markov decision process to a simple

Markov process, whose throughput is the expected reward. We now proceed with such a

formulation, defining the states, actions, rewards and transition probabilities that uniquely

define the Markov decision process.

2.3.1 System state

We let the system state be defined by the two dimensional vector„Ck = (Nlc ,Nn E S,

where N1 k and N2k define the number of stations in contention mode and in the global queue

respectively at the beginning of frame k. The state space S, is defined by
Ni E {0^} 

,

E {0,^—

The magnitude of the state space is found to be

ISI = (M + 2)(M + 1)
2

2.3.2 Actions

At the start of frame k, the stations decide on the size of the allocation for the reservation

subchannel Lk, based on the current state information. Thus the allocation policy will be

defined by

Lk = Lk(Sk)
^

(3)

(1)

(2)
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Since we are interested only in stationary policies, we may drop the subscript to give a time

invariant policy

L(Sk) E A -LE^.^ (4)

Thus the policy L, is simply a mapping from the state space onto the set of allowable actions

as defined by A.

2.3.3 Rewards

We would like to find the allocation policy to maximize system throughput. Thus we

chose the reward r to be the expected number of successful packets sent in the frame given

the state and action variables. Since this expectation is the lesser of the length of the global

queue and the data slots in the frame,

L(S k) Min (I , F — L(Sk)) •^ (5)

Thus -7-.L is a vector indicating the reward for each state for the action policy, L.

2.3.4 Dynamic equations

Before deriving the transition probabilities, let us define the dynamic equations of the

system that dictate the system state transitions. For ease of notation, let

ni^Nik ,^7/2^Nj;
(6)

_4+ 1 , 71/2 = 4+1
 
 , a L(Sk) .

Further, we let Xk be the number of new messages generated in frame k, Yk be the number of

successful reservation requests sent in frame k, and Wk be the number of message transmissions

that are successfully completed in frame k. The role of these variables is seen in Figure 2

which illustrates how stations move through the queueing system.

We may now write the set of dynamic equations as follows:

^

n i^—
(7)

7n2 = 71 2 + Yk W k

14
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k

contending^reservation^global queue^data
stations^subframe^ subframe

Figure 2. Queuing control representation of the reservation model

2.3.5 State transition probabilities

The derivation of the transition probabilities is somewhat more complex but is simplified

by assumptions 3-5. In a Markov decision process, the current state is a function of the

previous state and action. Thus a state transition matrix, P L has elements,

Pi = Pr{Sk+1 =^= i, L(i)} •^ (8)

The probability distribution of Yk given that n requests are sent derived in f101 is

Pr{Y k = i n, a}

= f (i, n, a)^ (9)
minfaV,n1

(-1) i (aV)in!^(-1) (aV —

(aV) n i!^(j — i)!(aV — j)!(n — j)!

Since the probability that n requests are sent is binomially distributed, we may write the

probability of exactly Yk success given that ni stations are in contention mode to be

n j 

Pr{ Y k =^
ni

ni, n2, a} =^p s (1 — p 3 ) 1" -71 f (i , n, a)
n=0

By assumption 3, Xk is also distributed binomially,

(10)

pP r^= x^n2, a} =^ni^712) x^1))114 n1 n2^(11)
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Finally,

Wk = min (712, F — a) .^ (12)

Using these expressions, we may now state the state transition probabilities as

P(mi , m2 I ni n21 a)

Pr { Yk 7n2 — n2 + min (n2, F — a) I n i , n2, a} x^(13)

P {X k^— nl 77/2 — n2 + min (n2, F — a) I ni, 712, a}.

Since the probability of being in the next state (ml, 7n2) is a function only of the current state

(ni, 712) and action, a, we can say immediately that the transition probabilities do in fact satisfy

the Markovian property, and thus the process is a Markov decision process. Furthermore,

the transition probabilities are independent of the frame index k and thus are stationary. We

note here again that when a decision policy is specified, the action is a simple function of the

current state and these transition probabilities define a unique Markov process.

2.4 Solving for the System Throughput and Delay

2.4.1 Deriving the throughput of the Markov process

Average channel throughput is commonly used as a measure of the effectiveness of a

multiaccess protocol. For our purposes, we will consider the throughput as the long run

average number of successful packet transmissions per frame, given the initial state S,

71 1' (S)^l   L(Sk) I So^S^ (14)
T^1 k

All non-degenerate policies result in Markov processes with a single ergodic class (see

Appendix A), in which case the throughput is independent of the initial state,

(15)

To find this throughput we must first determine the limiting distribution of the stationary

Markov chain.
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The most common method to find the limiting distribution is to find the equivalent

stationary distribution of the system. A distribution

=^7r2,^}^ (16)

is stationary if

^7ri = 1^
(17)

and 7r 4 P{Sk+1 =^Sk :i} •
-

If the Markov process contains a single recurrent class [24], the stationary distribution is

unique and is equivalent to the limiting distribution,

71-7 = lira P{Sk = i} .^ (18)

Determining the stationary distribution is simply a matter of solving the linear system given

by eqns. (17).

We may now find the throughput by finding the expected throughput for each state (the

state dependant reward) and summing over the limiting distribution, or more simply the

vector product,

L^*=^7.L^.

2.4.2 Expected packet delay

The expected packet delay for the system is the sum of the reservation request packet

delay D1, and the data packet delay D2, both in units of frame durations. If we determine

(19)

the stationary state expectations as follows,
M

E[N1 ] =

M

M - n1

711 > I 71- (i11 ,71 2)
n2=0

M—n2
(20)

and E[N2 ]
n2=0

7 (721,112 )
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we may use Little's formula to determine the delays to be

F E[Ni ]D 1 =^L
^

and
77

,^F E[N2]
1-/2 -=^r^•

77 1'

(21)

Thus we may now write the overall expected message delay to be

D = F ( E[Nli 4- E{N2] )
71

(22)

According to model assumption 4 there is no need to calculate residual delays. By

loosening the basic simplifying assumptions of our model such residual delays would be

introduced.

2.4.3 Summary of steps to find throughput and delay

The following summarizes the steps taken to determine the throughput and delay for a

given stationary control policy L(Ni, N2 ).

1. Calculate the transition matrix with eqn. (13).

2. Use the transition matrix to determine the limiting distribution by solving the system of

eqns. (17).

3. Find the long run average throughput by incorporating the limiting distribution and state

dependant throughputs using eqn. (19).

4. Solve for the expected packet delay using eqns. (20) and (22).
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Chapter 3 SUBFRAME ALLOCATION SCHEMES

In the previous chapter we developed the specific tools to determine the throughput and

delay performance for the network operating under a decision policy. In this chapter we

examine specific policies and compare the performance of the model under these policies.

Previous research has focussed chiefly upon fixed allocation schemes. We determine the

optimal dynamic policy and two heuristic dynamic schemes which improve on the performance

of the fixed schemes. Throughout this section, we continue to assume the ideal situation

where the state information is completely known at each decision point. We will loosen this

assumption in the following chapter and incorporate state estimation into the system.

3.1 Fixed Allocation

Previous research into the reservation model ([1], [10], [5]) considers only the case

where the size of the reservation subframe is fixed with no regard for the system state (ie.

L(Ni, N2) = L f). Szpankowski [10] proposes for his very similar model a simple method for

choosing the best fixed allocation. Here we use the same method, applying it to our model.

If we assume that throughput on the contention channel is 1/e reservation requests per slot,

we may write the flow balance equation to be

V Lf
e

F— L f .^ (23)

This gives us an optimal fixed allocation of

L f^+F vIe .

We use the lower and upper integer values of this result as the two best fixed allocations. By

choosing the lower of these values, we create a situation where there is a bottleneck in the

reservation subchannel. The higher of these values creates a bottleneck in the data subchannel.

(24)
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For the case where F=5, V=3 and M=20, Lf is 2.377, and the two best fixed allocations schemes

are at Lf=2 and Lf=3. For these allocations, we have set the transmission probability ps to

1.0 and 0.6 respectively. In Figures 3 and 4, we plot for these two fixed allocation schemes

the throughput against the arrival probability and the average delay against the throughput as

calculated using the procedure summarized in section 2.4.3. In the case of Lf=2 we can see

that the bottleneck in the reservation subframe has caused decreased throughput when traffic

is high, a phenomenon that is well explored in [10]. The transmission probability p, for that

case was reduced from 1.0 to 0.6 to allow good performance on a fairly large range of traffic

levels while keeping the average delay reasonably low. We have chosen a model with small

frame and population size here to ease the numerical computations. In following sections we

resort to simulation methods to investigate larger population models and compare dynamic

and fixed subframe allocation schemes.

3.2 Optimal Allocation

3.2.1 Optimality equations

We wish to optimize the allocation policy with respect to the system throughput. In the

model that we have defined, this is equivalent to minimizing the average packet delay. In

this section we define the optimality equations used to determine the optimal policy. Finding

the optimal allocation policy corresponds to finding a state-dependant policy L* such that

?7 L* (S) = max 77 L ( S) = q* (S) ,
LEW

(25)

where W is the set of all stationary, non-randomized policies that are dependant only on

the current state. For a finite state and action Markov decision process with average reward

criteria and infinite horizon, it has been show [25] that there exists a policy that is optimal

within this set. A stationary policy L is said to be unichain if its corresponding Markov

chain contains only one recurrent class and possibly a number of transient states. In this case
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77L(S) is independent of the state and is thus a constant [23]. When all stationary policies are

unichain, 7/ * satisfies the set of optimality equations,

_ max f
v L^- 77 * PL f)} . (26)

Recall that PL is the policy dependant transition probability matrix whose elements are

defined by eqn. (13). These optimality equations are derived and fully explained in [23] and

are the equations that uniquely characterize the optimal policy, L*, and its corresponding

optimal expected average reward, 71 *. The decision rule L which achieves the maximum

average reward when a f) that solves the equation is inserted is the optimal policy [23]. v is

referred to in the literature as the bias or the relative value function and is defined by eqn.

(26) up to an additive constant. It is called the relative value function because its elements,

v(S) ; S E S, indicate the relative value in terms of total reward of being in one state versus

another. That is, v(i) — v(j), is the difference in the total reward when a system starts in

state i versus a system that starts in state j. Since there are IS I + 1 unknowns in eqn. (26)

(y* and v(i), i = 1, ,'SD for ISM equations, f) is solvable only up to an additive constant,

thus the values of the relative value function only have relevance with respect to one another.

Looking now at the optimality equations we see that the expression on the right is the

sum of the immediate reward relative to the average reward for that frame, 7 L — ) *, and the

expected relative value for the next frame,

(27)

when the policy L is used. This gives us an intuitive sense of what the optimality equations

represent. The details of the rigorous derivation of (26) are quite complex and the reader is

referred to such texts as [23], [25] and [26] for complete descriptions.

For this optimality equation to hold for our model it must be shown that all policies are

unichain. This is demonstrated in Appendix A.
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3.2.2 Solving for the optimal policy with dynamic programming

Using these optimality equations we would like to find both the optimal allocation policy

L* , and the system throughput, q * . There exists a number of methods to solve these equations.

Both the policy iteration algorithm [27] and the modified policy iteration algorithm [23] for

average reward criterion are presented here. The former is the simpler of the two but the latter

is preferable for its reduced computational load and its attractive convergence characteristics.

We provide here the specific algorithms and discuss the issues of applying these algorithms

to solving the network control problem.

3.2.2.1 The policy iteration algorithm

Policy iteration is an efficient procedure for finding average reward optimal policies in

Markov decision processes (MDP's). It is guaranteed to converge for MDP's with a finite

number of states and actions when all policies are unichain. These conditions hold for our

network control application. The algorithm was first proposed by [27] and consists of four

basic steps. First an initial policy is chosen arbitrarily as the starting point. Second, the

policy is evaluated by determining the throughput for that policy. Thirdly an improved policy

is found. Finally, a stopping criteria is used to determine whether to repeat the second and

third step to continue to improve the policy. It is guaranteed that at each improvement step,

an equal or better policy is found [23] so the last step stops the iterations if the policy has

not changed. The algorithm is:

1. (Initialization) Set n=0 and choose an initial decision rule L„ E 'P.

2. (Policy evaluation) Obtain the average reward of the policy, 77„ and relative value vector,

V ?, by solving

0 = L n — qn + (PLn — ./)^.^ (28)

Note that 7) 7,, is uniquely solvable up to an additive constant.
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3. (Policy improvement) Choose Ln+1 to satisfy

n fL„+1 PL " -" V ii = 
LET
max^L vit} (29)

setting L„+i(S) = L„(S) for each S if possible. Here we have used the relative value

function, updated in step 2, to find an improved policy.

4. (Loop) If Ln+1^L 71 , stop and set L*^L. Otherwise increment n by 1 and return

to step 2.

This algorithm produces a series of decision rules and their respective throughputs and

is guaranteed to converge to solution in a finite number of steps [23]. The algorithm has

been shown to be equivalent to Newton's method for finding the minimum of a function

[24]. An initial policy is arbitrarily chosen and by policy improvement the policy converges

toward the optimal.

The relative value function '5„ is determined by solving eqn. (28) and is unique up to

an additive constant. For convenience, we have set v 11 (S0) = 0, where So, is equivalent to

the empty system state ((N1, N2) = (0, 0)). This setting is commonly made and does not

effect the result of the algorithm.

Note that the solution of eqn. (28) involves solving a system of 1S1 linear equations where

1S1 is defined by eqn. (2). Since IS I is of the order M 2 , the complexity of solving the system

of equations grows with M6 . Since in finding the optimal decision rule many iterations are

potentially needed, this evaluation step becomes very costly. The modified policy iteration

was developed to reduce this computational load by avoiding the explicit solution of the

IS x IS1 system while still guaranteeing convergence when all policies are unichain.

3.2.2.2 The modified policy iteration algorithm

The modified policy iteration algorithm breaks down the policy evaluation step of regular

policy iteration to reduce the computational expense of solving the IS I x 1S1 system. Similarly
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to the policy iteration algorithm, there is a policy improvement step and an evaluation step,

but this time, the evaluation is done iteratively over m steps rather than exactly. We avoid

solving explicitly the IS I xIS I system. Note that when m is infinite, the algorithm is equivalent

to policy iteration since the exact policy evaluation is achieved. The algorithm is:

1. (Initialization) Select f) () , specify (>0 and set n=0.

2. (Policy Improvement) Choose L„ +1 to satisfy

r Ln+1^=^+ PLii„

setting L„+1(S) = L„(S) for each S if possible.

3. (Partial Policy Evaluation)

a. Set k=0 and

0^—^ DLn+1T .Ln+ ,^vn

b. If sp(ft,°,— V„) < c go to 4. Otherwise go to c.

c. If k=m, go to e. Otherwise compute ii,k;+ 1 = qn+ ,^PLn -f'irt,k;

d. Increment k by 1 and return to c.

e. Set v„+ 1^11,171„ increment n, and go to step 2.

4. (Final Policy Improvement) Choose L, to satisfy

LFL, +^= max L, P v„}
LET

This algorithm is guaranteed to converge within a finite number of iterations to an (-

optimal decision rule (ie. nL, > q* — c), where E may be chosen to be arbitrarily small

[23]. In this algorithm, step 3 uses an iterative method to approximate the true relative value

(30)

(31)

(32)
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function, i,„ +1 with the iterative result, ft,",' produced by m iterations. The span semi-norm

used here is defined by

sp(:-E) = max (xi) — min (x2) . (33)

and is used for the stopping criterion in step 3b. The algorithm stops when the norm of

approximate relative value for policy, L 11+ 1 differs from that of policy L„ by less than e.

In our application, 771 = 6 appeared to work well for all the systems considered. For full

details of the modified policy iteration algorithm, and the rationale behind its development,

the reader is referred to [23].

Applying the modified policy iteration algorithm reduced the computational effort of

solving for the optimal policy by up to 60-70% compared to policy iteration when all but

the most trivial systems were analyzed. Despite this, the complexity still grows dramatically

with M since the solution of the system remains to be found, though only partially at each

step. Since there do not exist methods computationally more efficient than the modified policy

iteration algorithm for solving Markov decision processes with large state spaces [23], such

complexity must be endured or the search for the optimal abandoned.

3.2.3 Optimal performance

Here we present some performance results for the optimal policies in a small network

model and compare them with performance results for fixed allocation policies. First, some

mention should be made of how the retransmission probability ps is chosen for our models.

The literature on slotted ALOHA channels has given close consideration to the choice of this

parameter and it has been shown in that case that when ps is fixed, congestion among colliding

packets renders the system unstable when the user population in infinite and bistable when

the population is finite [21]. For a finite population model, the bistable character is revealed

in the way the delay-throughput performance becomes two-valued at high throughput levels

and throughput degrades as the traffic intensity continues to increase. [10] shows that the
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bistable effect is also found in the reservation model when the subframe size is fixed (which

is expected since the reservation subsystem alone is effectively a slotted ALOHA channel).

The approximate methods used to expose this bistability, while seemingly effective when the

subframe allocation is static, are not easily extendable to the dynamic allocation model that

we are considering. Thus we leave detailed stability analysis beyond the scope of our work.

We choose network models where the network parameters are such that we may set p s =1.0

for the dynamic policies without serious performance degradation due to stability problems.

While it may be more appropriate to choose Ps adaptively as a decreasing function of N1

as a means to stabilize the reservation subchannel we will maintain a fixed retransmission

probability for our analysis and leave consideration of an adaptive transmission probability

to further research. For the fixed allocation schemes, we are at times forced to reduce ps

to avoid too serious a degradation in throughput due to congestion. The reader is referred

to [10] for a full treatment of the bistable character of the reservation model when a fixed

allocation policy is used.

The modified policy iteration was implemented with E chosen small enough that further

reduction did not affect the optimal policy. Table 1 shows a sampling of optimal policies

for the parameter set (M=20, V=3, F=5, ps=1.0). We may first note that the optimal policies

change with the traffic level (as indicated by the arrival probability, p). Furthermore, the

optimal policies are a function of both state variables, thus both state variables contain

information useful for allocation control. For the case when complete state information is

available, the average throughput and delays were calculated for the optimal policies. Figures

3 and 4 presented previously in section 3.1 plot the throughput against the message arrival

probability and the delay versus throughput respectively. Since these curves are based on

complete state information, the optimal results represent an upper bound on performance for

the model.
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Table 1. Optimal policies for a range of arrival probabilities for the parameters (M=20, F=5, V=3)
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We can see that at medium and high traffic levels, the improvement of the optimal over

the fixed schemes is indeed dramatic, showing higher capacity in general, lower delays for the

same throughput levels and higher throughputs for the same traffic levels. The best fixed policy

capacity occurs for the allocation L=2 at capacity of near 0.45 packets per slot. By comparison,

optimal allocation gives a capacity of approximately 0.54 packets per slot, an improvement

of 20% over the fixed allocation. From Figure 4 we see that while for the fixed policies the

average delay increases rapidly when throughput approaches capacity of 0.35-0.45, the delay

of the optimal allocation remains fairly flat in that region, near the minimum of 2 frames

per message, as system throughput extends to levels over 0.5 where the delay then increases

quickly as throughput reaches capacity. By examining the specific policies, we see that the

optimal policy achieves this result by adjusting the reservation subframe allocation such that

the attempt rate is near the optimal of 1 request per minislot, ensuring sufficient reservation

minislots to avoid excessive collisions in the reservation subframe.

While these optimal results look promising, there remain some key problems with

achieving these results. First, the optimal policy for the network is a function of the traffic

level as indicated by the arrival probability, p. In all real systems, we can expect the traffic

levels to fluctuate over time. Adapting the optimal policies to this fluctuation would effectively

involve changing policies. It would be preferable for the model to maintain good performance

with a single policy for all traffic levels. Secondly, the optimal allocation at each frame is a

function of both state variables. While the state of the global queue is known with certainty,

the number of contending stations must be estimated by implementing an appropriate state

estimator, increasing complexity in the transmitting/receiving stations. Finally, the complexity

of the modified policy iteration algorithm prevents us from finding the optimal policies for

networks with large population models. Many applications of reservation protocols involve

such large populations and with existing computational means we may not hope to use these
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analytical Markov techniques to solve for the optimal policy and performance when the

dimension of the state space grows into the thousands and tens of thousands. The following

sections propose two heuristic dynamic schemes that address these problems while maintaining

performance close to the optimal. The state estimation problem is considered in chapter 4.

3.3 "Data Priority" (DP) Allocation

Rather than finding the policy that maximizes the long run average throughput as we have

done in the previous section, let us consider a simple policy that sets the allocation to the

value that maximizes the successful data packet transmissions in that frame. We shall refer

to this policy as the "data priority" (DP) policy since as many slots as are needed to service

the global queue (up to the obvious upper limit of F) are allocated to the data subframe, the

remaining slots (if any) allocated to the reservation subframe. Thus,

LDp(Ni, N2) = max (0, F — N2) • (34)

This policy has an advantage over the optimal in that it is only dependant on N2, and thus

no state estimation techniques are required for N1 for implementing this allocation policy.

0 1 2 3 4 5 6 7 8 9 10^11^12^13^14^15^16 17 18 19 20

0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 1 1 1 1 1 1 1 1 1 1 1^1^1^1^1^1^1
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

" 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0
"2 8 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0
11
12

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0 L^(N 1 , N2)DP
13 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0
15 0 0 0 0 0 0
16 0 0 0 0 0
17 0 0 0 0
18 0 0 0
19 0 0
20 0

Table 2. DP policy for the parameters (M=20, F=5, V=3)
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Table 2 shows the DP policy values for the small model with parameter set (M=20, F=5,

V=3). The performance results for the DP policy implemented in the small population model

are plotted in Figures 5 and 6. As expected, we see that the DP policy shows a significant

improvement over the fixed schemes while the throughput levels fall short of the optimal

for medium and high traffic levels. The capacity of the DP policy is approximately 0.515,

a 15% improvement over highest capacity for a fixed allocation scheme. This is less than

the 20% improvement achieved by the optimal policy. However, the DP policy performance

does show a slight degradation at high traffic levels. The throughput begins to decrease with

the traffic level, a sign indicative of an increasing number of collisions in the reservation

subchannel. Since the DP policy does not explicitly use information regarding the number of

contending stations, this congestion problem is not unexpected.

Since the derivation of the DP policy is simple with respect to the dynamic programming

techniques involved in finding the optimal policy, we are no longer restricted to small state

space models for finding the policy. For a very large model though, deriving the throughput

and average delay are costly if the analytical approach of last chapter is used. Solving the

global balance equations is an operation of the order, 4181 3 ) = o(M 6 ) and thus for

a network of only 100 users, the number of floating point operations already runs into the

hundreds of billions. To test the DP policy and compare it to the fixed policies for large

models, we resort to simulation methods. Calculation of confidence levels for this simulation

model cannot be done using the usual statistical methods since there is a correlation between

successive delay and throughput values. We simply choose a high simulation duration. The

relative smoothness of our performance curves indicates that the simulation lengths chosen

are indeed sufficient for comparison among the different policies. Using the parameter set

(M=150, F=12, V=12) we used discrete time simulation over a 20,000 frame duration to

determine the throughput and delay for the model when the DP policy and the two best fixed

allocation were used. Data were gathered over a range of traffic levels and the results appear
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in Figures 7 and 8 where throughput is plotted against the arrival probability and the delay

is plotted versus the throughput respectively. It is apparent that in this larger model, the DP

policy, while showing a capacity increase of 6.7% over the fixed policies, actually shows

higher delays in a region of medium throughput levels. This indicates that while the DP

policy avoids wasted data slots, the fact that the fixed policies balance the allocation between

reservations and data does create better performance at some traffic levels. Note in Figure 8

that for the fixed allocation, L=2, there is a serious degradation in throughput as the traffic

level increases. This is a result of high congestion in the reservation subsystem. This effect

may be reduced by a further reduction of the retransmission probability from p=0.6 at the

expense of higher delays. The dynamic polices do not appear to suffer from the destabilizing

effect of congestion in this model.

3.4 "Maximum Flow" (MF) Allocation

We now consider another policy for subframe allocation. We see in the previous section

that while the DP policy shows higher capacity than the fixed allocation schemes, it is still

outdone by the optimal policy and shows congestion effects at high traffic levels. The optimal

policy achieves this advantage by ensuring a balance between reservations and data packets

while the DP policy simply maximizes the data packet transmissions, Wk .

In light of these observations we now develop a method to improve on the DP policy

by better balancing the flow of traffic through the system while drastically simplifying the

derivation from the modified policy iteration algorithm used for the optimal policy to a simple

one step maximization. We propose a simple maximization of a new criterion, which we will

refer to as the "flow". We define the "flow" in frame k as

F k = Yk + Wk ,^ (35)
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where a is a weighting coefficient. Since Y k is a random variable, we must use the expectation,

E [Fk] as our criterion. The policy which maximizes this expectation will be referred to

henceforth as the "maximum flow" (MF) policy.

From [5] we know that if n' stations each sends a request packet in one of LV minislots

(chosen at random), the expected number of minislots containing a single transmission, Y, is

1 )" '-1
E[Y 71 1 ] = (1 — Lv (36)

Thus,

E[Y Nd )P i.: 1 ( 1 — ps)N1-71'nt 
(1 LL

i' -1

n'=-0 

= ps,1\110 —^)N1-1
LV )

(37)

Thus, from eqns. (35) and (37), we may write the expected flow as a function of the state,

(N1, N2) and the reservation subframe allocation L,

E[Fk],^
\N1-1

LV )^"" (N2, F — L)

It is left now only to determine a good choice for a. By considering Figure 2, we see

that a dictates the value of a successful reservation request transmission with respect to a

data packet transmission. If we choose a=0, we give full priority to the data successes and

thus the MF policy would become identical to the DP policy. Alternatively, if we choose a

very high a, we give high priority to the reservation requests, allocating a high number of

reservation slots for even a small number of contending stations. A desirable choice of a

would lie between these extremes in an attempt to balance the flow equitably. It has been

well established in the literature that the highest throughput on a S-ALOHA channel with an

infinite user population is lie. Thus, in a large population model, we may hope for an average

Vie successful reservation requests per slot. This gives us an idea of the relative worth of a

(38)
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(39)

This proved to be a good choice for the weighting coefficient. Although a detailed sensitivity

analysis was not done on this choice the close resemblance of the resulting MF policy to the

optimal and their similar performance leads us to believe that for this policy derivation this

weighting would appear to be the best or near the best.

We can now find the MF policy, LMF, by maximizing the expected flow,

E[F k LmF(n i ,71, 2 )] = max {E [Fk L]} .^(40)
LEA

The calculations involved then in finding the MF policy are very manageable compared to

modified policy iteration; there are no expensive iterative steps nor risk of non-convergence.

N1
O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5
3 3 3 3 3 3 3 3 3 3 3 4 4 4 5 5 5 5 5
2 2 2 2 2 2 2 2 3 3 3 4 4 4 5 5 5 5
1 1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5
O 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5
O 0 1 1 1 2 2 2 3 3 3 4 4 4 5
O 0 1 1 1 2 2 2 3 3 3 4 4 4
O 0 1 1 1 2 2 2 3 3 3 4 4
O 0 1 1 1 2 2 2 3 3 3 4
O 0 1 1 1 2 2 2 3 3 3
O 0 1 1 1 2 2 2 3 3
O 0 1 1 1 2 2 2 3^L MF (N 1 , Nil
O 0 1 1 1 2 2 2
O 0 1 1 1 2 2
O 0 1 1 1 2
O 0 1 1 1
O 0 1 1
O 0 1
O 0
0

Table 3. MF policy for the parameters (M=20, F=5, V=3)

For the small model (parameters : M=20, F=5, V=3) the MF policy was calculated and

is shown on table 3. The average throughput and message delay were calculated for this
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policy for varying arrival probabilities and the delay-throughput curve and throughput-arrival

probability curve are plotted in Figures 5 and 6 shown in the previous section with the other

policies under consideration. Let us first note that the MF policy is independent of the traffic

level as represented by the arrival probability, p. The policy appears to follow a structure

and bears a very close resemblance to the optimal policy for medium and high traffic levels

(see table 1). From Figures 5 and 6 we see that the performance of the MF policy virtually

matches the optimal. Although it is not apparent from the plots, the MF policy throughput is

in the order of 0.01% less than the optimal. Although the specific values of MF policies are

quite different than the optimal policy values at low traffic levels, the throughput and delay are

virtually the same since the system is generally in low occupancy states (ie. N1 + N2 < M)

where the policies produce equivalent allocations. In these low occupancy states, the optimal

and MF policies allocate the subframe very similarly to the DP policy. These numerical

results for the small model indicate that the MF policy is a very good approximation to the

optimal and gives better performance than the DP policy.

Again, a larger model (parameters : M=150, F=12, V=12) was analyzed under the MF

policy and the simulation results are shown in Figures 7 and 8 (see previous section). The

MF policy shows a higher throughput capacity than the DP policy and consistently lower

delays for the same throughput. This is especially apparent in medium and high throughput

levels. While the performance gain over the fixed allocation schemes is less dramatic for

the large model than the small model, it is still substantial. For medium and low throughput

levels, the MF policy has delays only negligibly different than the DP policy or the best

fixed allocation policy. Again, it must be noted that these results are based on the unrealistic

assumption that complete state information is available to all stations. The following chapter

investigates state estimation implementation and shows that estimation has little effect on the

performance results.
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3.5 Capacity Analysis

We have demonstrated with both analytical and simulation results in previous sections that

dynamic allocation policies in the reservation model have advantages over the fixed allocation

schemes in terms of delay-throughput performance. In particular, the dynamic policies show

dramatically higher capacity, especially in the small model. The performance results shown

have been the result of rather cumbersome analytical or simulation algorithms that are time

consuming and fairly complex. In this section, we develop a simple approximate method for

predicting the capacity gain of using dynamic allocation versus fixed allocation. Results show

that the capacity of the fixed schemes are highly sensitive to traffic and channel parameters

and exhibits a granular effect that prevents them from achieving ideal capacity. Dynamic

schemes, we will show, do not suffer from such an effect and their capacity is robust to

changing system parameters.

For our approximate analysis, we consider an infinite user population model. Although

this is a divergence from the model that we have used to this point, it allows us to get some

general results and is a valid approximation when the population size is large with respect to

the number of minislots in the frame. For an infinite population model, it is well known that

unless some sort of input control is used, a S-ALOHA channel is unstable [28]. Thus for this

capacity analysis, we will assume such control is incorporated. It is well known then that for

a stabilized S-ALOHA channel, the throughput approaches lie as the number of contending

stations grows without bound [28]. Using this assumption [28] points out the ideal capacity

of a reservation multiaccess channel with S-ALOHA used for transmission of reservation

requests. This ideal approximation assumes that at capacity, both the reservation subchannel

and the data subchannel are operating at their individual capacities. These individual capacities

are 1/e and 1 for reservation minislots and data slots respectively. For the transmission of

a packet in a system operating at capacity then, the expected number of minislots used for
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successful transmission of the reservation request is e. Summing the channel time used for

request transmission with the single data slot for the packet transmission, the average number

of slots used by the station for its packet transmission is

1+ V .^ (41)

Thus the ideal capacity (in packets/slot) is the reciprocal,

C =
+ re,- •

This ideal capacity approximation assumes that the subframe allocation is such that the flow

is balanced between the reservation and data subframes.

Indeed, the fixed allocation protocol achieves this capacity when the subframe partition,

L f is set to the ideal allocation which balances the flow through the system,

— F̂^(43)
1 +

But, we are constrained in the system to set Lf to an integer value. As L f deviates from

the ideal, the system exhibits a bottleneck in the reservation subchannel if Lf < L', and a

bottleneck in the data subchannel if L f > L'. The capacity of the channel is then

(VLf F — L
C (L f) = min

Fe^F ) (44)

The maximum capacity for the fixed allocation schemes and the ideal capacity from eqn. (42)

are plotted against the number of minislots per slot, V in Figures 9 and 10 for F=12 and F=5

respectively. Notice that for the fixed allocation, the capacity has a granular effect. When L

may be chosen to satisfy the flow balance of eqn. (43) the fixed allocation capacity matches

the ideal but between those points, the capacity drops blow the ideal in a step like function,

each step representing a different fixed allocation. The steps result from the necessity in the

model of choosing an integer allocation. The deviation of the fixed allocation capacity from

1
(42)
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the ideal is quite dramatic for certain values of V. For example, we see in Figure 9 that for

V=8, the best fixed allocation is L1=2, producing a capacity of 0.6. This is 19% lower than

the ideal capacity of 0.74. Examining the figures, we see that the lower capacities resulting

from this granular effect are most pronounced in the smaller frame size model and at lower

values of V where the ideal capacity curve is the steepest.

By using a dynamic scheme, we may avoid this granular effect. Let us assume a dynamic

allocation scheme, L(ni , n2), where no data slots are left idle (ie. L(ni, n2) > F — n2). For

the MF, DP and optimal policies this criterion holds. At capacity, the number of messages

in the system, ni + n2, grows without bound. In the case of the DP policy, n2 will decrease

from one frame to the next if 7/2 > F. It will increase when n2 < F by at most the number of

minislots in the reservation subframe, (F — n2)V. Therefore 7/2 is strictly finite and ni ---* oo.

Thus for the DP policy, the expected number of messages moving into the global queue by

successful transmission of the reservation request on the reservation subchannel is

VL(ni,n2) E[Y n i , 71 2 ] —^ (45)

The expected number of complete messages sent over the data subchannel when no data slots

are idle is

E[141 I n1,722] = F — L(ni,n2) .

The steady state flow balance equation at capacity,

E P(ni, n2 )E[Y I n i , n 2 ] =^P(ni, n2 )E[W I ni 7t2]
9L 1 ,1L 2^111,1/2

reduces to

E[1]^_
F

 v .
I^c

Thus the capacity of the DP allocation policy is

C 1̂ +

(46)

(47)

(48)

(49)
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C >  1
— 1 + -.pi- •

(51)

the same as the ideal.

It is not as easy to find a general expression of the capacity of the optimal and MF policies

since in these cases n 1 does not necessarily grow without bound at capacity. In general though

we may say that for the optimal policy, the capacity will at worst match the DP capacity.

Since according to eqns. (40) and (35), the MF policy will only favour allocating slots to the

reservation subframe when the expected reservation request throughput is greater than We

per slot, we can expect that for the MF policy,

E[Y 1 ni,n2] > 
VL(n i , n2)^ (50)

e

at capacity. Thus for the optimal and MF policies, the capacity matches or exceed the ideal,

Examining the numerical results in the previous section, we would expect that these capacities

would be very close to this bound. Certainly for high traffic levels, we would expect n 1 to

grow large, the reservation request throughput to approach 1/e, and thus the capacity of the

MF or optimal policies would approach the ideal value. To make a stronger claim would

involve a closer examination of the Markov process underlying the system. This question

involves the Markovian analysis of a countable state process, an avenue of investigation that

may encounter technical barriers.

This capacity analysis uses a model different than our throughput and delay analysis in that

we have assumed an infinite user population and implemented input control. These changes

are necessary to provide a simple approximation. In the finite population model with no input

control, the approximations are close provided some care is taken with the choice of ps for

all policies to prevent congestion from eroding the throughput on the channel. Generally, the

retransmission probability, Ps , should be chosen as high as possible to minimize the request

packet transmission delay, while being low enough to prevent too many collisions in the
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reservation subframe from decreasing the throughput. In the model examined in this work, it

has been found that ps can be safely set to 1.0 except for the fixed allocation policies. This

issue of stability for this model is explored for the fixed allocation policy in [5] and [10]. We

leave detailed analysis of this issue for the dynamic policies to further research.
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Chapter 4 SYSTEM STATE ESTIMATION

It has been proposed in the opening chapters that by dynamic partitioning of the reservation

subframe based on the system state, we may improve the performance of the reservation

multiaccess protocol. We do not of course have full state information. While the number

of stations in the global queue is readily obtained by monitoring successes in the reservation

subframe and message completions in the data subframe, the number of stations in contention

mode is not so easily known. This state variable increases as idle stations become active when

new messages arrive and decreases with the successful transmissions of reservation requests.

Since the stations are geographically diverse and share only the single broadcast channel, the

arrival of new messages cannot be monitored with complete accuracy. Rather, if we assume

that stations can decipher collisions, idleness and successes in the minislots of the reservation

subframe, only partial information is available and a state estimate must be derived based on

the history of the reservation subframe observations. We will refer to idle minislots as holes in

this discussion. In this chapter, this estimation problem is considered and a specific estimation

technique for the system is proposed that is both effective and practical for implementation.

The following are some of the assumptions of our model relevant to the estimation

problem.

• All stations monitor the previous reservation subframe, k and can reliably decipher the

number of collisions Ck, the number of successes Tk, and the number of idle minislots or

holes, Hk. These observations together form the observation vector, Ok (Hk,Tk,('k).

Noting that Ck LkV - Tk - Hk, we may drop the unnecessary entry, Ok (Hk, Tk).

This assumption of ternary feedback is made widely in the literature for estimation of

system backlog for S-ALOHA stabilization [20].
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• All stations monitor the data subframe and can reliably determine the number of message

completions, Wk. Thus the number of stations in the global queue is simply determined

by

N2+1 = + Tk W k • (52)

• All stations maintain an estimate of the common arrival probability, p, for the idle stations

in the network. This allows us to define the estimated number of newly arriving packets

in frame k to be

k (M - 4 - p , (53)

where ilk is the estimate in frame k for the number of contending stations, NIc . In this

chapter, for ease of notation, we let 71 k =

Based on these assumptions we wish to develop a recursive estimator of the form,

istk+i f(Ak,ok) • (54)

In the literature on S-ALOHA stabilization techniques, there appears a number of papers that

address this estimation problem for the single channel model with ternary feedback. (This

would correspond to the LkV = 1 version of the model under consideration here.) While

Segall [17] and Rivest [2] both present the formulas for optimal recursive estimation in this

case, the formulas are impractical and costly to implement. Recognizing this, [2], [19], [20],

[29], and [30] all investigate heuristic schemes to produce reliable estimation with much

simpler implementation. Cunningham summarizes these efforts among others in [20] and

demonstrates with simulations that Rivest's pseudo-Bayesian recursive estimation technique

shows very good performance in comparison with the other estimators. Furthermore, the

pseudo-Bayesian techniques is both a simple and elegant approximation to the true optimal
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Plnk I^=^P(Ok)
P{Ok I nk} P {nk} (55)

Bayesian estimator, and lends itself fairly readily to the extension to the estimation problem

at hand.

For these reasons we choose to adapt the pseudo-Bayesian estimator to our model for

estimation of nk. Initially we derive the true Bayesian estimation formulas and reveal their

crippling complexity. We then follow an approach that parallels Rivest's [2], developing

a simple linear pseudo-Bayesian estimator to approximate the true Bayesian estimator that

performs well in simulation under a variety of system parameters.

4.1 True Bayesian Estimation

The true Bayesian estimation procedure is as follows:

1. Assume an a priori distribution, P {nk }, of the number of contending stations, nk.

2. From our observations Ok in frame k, determine the conditional probability, P{Ok 17/k

3. Determine the a posteriori distribution by Bayes rule as follows,

4. By considering the generation of new packets and the successful transmission of packets,

find the distribution,

13 { nk+1 I Ok
^ (56)

and use its mean as the estimate ii,k+1. We may use eqn. (56) as the apriori distribution

for the next frame.

Following this procedure strictly, it is necessary to track and update the distribution, P {nk}

and eqn. (54) would become

P{nk+l} = f(P{nk},Ok) •^ (57)
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LV-h, LVn!) Hoh+t (LV)(LV - h)

i.t 1 =_

Note that in the finite population model the state space is limited to, nk E [0, 1,^, M], thus

the apriori distribution is a vector, fik with elements

Pk,i =-- P Ink =^= 0 , 1 ,^M.^ (58)

For all other values of nk, the probability is necessarily zero. We may assume the system

is initially empty, thus

^po = (1, 0, 0, 0, . . .) .^ (59)

The conditional probability of the observation vector in frame k may be written as

P(Ok Ink) P(Hk = h, Tk t I nk n)

E p(h, t int) p(ni I n) .
Vn'

Here, n' is the number of requests actually transmitted in the frame. Thus

\

^

P(I / I n)
n
Ti
pi: (1— ps)"

-711 0 < 71 1^n

From appendix B,

(60)

(61)

H i) i+1 (7. —hh)( LV —h —t, (
z — t )^LV — h

)n'-(LV-h)
(62)

(63)

If we denote the aposteriori distribution by the vector ij k̀ with elements

n=-_ rink =^Ok} ,

it may be updated according to eqn. (55) with

P(Ok nk = n)pk,„ 
= E P(Ok Pik = i) Pk,i

IL = 0,1, ...^(64)
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Finally, as in step 4 we must find the distribution of TI, k +1 by considering the generation of

new messages and successful transmission of reservation requests. This distribution will act

as the apriori distribution for the next frame, pk+i . Letting Xk be the number of arriving

messages in frame k, the new state is updated by

n,k+i = nk — Tk X k . (65)

Since we know that distribution of X k is binomial conditional on nk and we know the

distribution of the state, we may now calculate the elements of apriori distribution for the

next frame with

Pk+1,n =
^

Pk,i P {Xk n — i Tk

min (M,n+Tk)
M — —^p _i+i^M —Ar k --n—Tk

Pki^"^(1 — P)^2It -^Tk

(66)

The entire process is repeated for the next frame.

This Bayesian estimation procedure recursively updates a distribution rather than simply

a single estimate of the state. This distribution makes optimal use of the available information

and by recursion, incorporates the history of observation on the channel. This is made possible

only by the Markovian nature of the system. The details of the underlying Markov process

are discussed in detail in the next section. To derive a single estimate of the state in the next

frame is a simple matter of finding the expectation of the apriori distribution,

k+1 = Pk+1,i (67)

While the true Bayesian estimation is the most accurate estimator for our model, it is

unlikely that the procedure as presented is of much use for practical implementation in a real-

time communication system. The calculations involved in finding the aposteriori distribution

according to eqns. (60), (62) and (64) are the largest stumbling block, and as M grows large,
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it is evident that the complexity of the algorithm is infeasible for real-time implementation.

For this reason we investigate an approximation to the true Bayesian estimate that produces

a simple linear estimator. Again, its derivation and resulting form is very similar to that

proposed by Rivest [2].

4.2 Pseudo-Bayesian Estimation for the Reservation Subchannel

To derive the approximation to the Bayesian estimator we follow essentially the same

procedure, making a couple of key simplifying assumptions that alter the resulting estimate

update to be a much simplified expression. Although the simplifying assumptions will

necessarily undermine the accuracy of our result, the need for a practical estimator forces

us to endure these losses. Furthermore, numerical and simulation results in the following

section reveals that the pseudo-Bayesian estimate appears to perform near to the optimal at

a small fraction of the computational expense.

Our first simplifying assumption is made of the apriori distribution of n k . We follow

Rivest in assuming that the distribution may be reasonably approximated with a Poisson

distribution of mean ilk. Thus, let

e —ya k^k

k {ri k}
k 

•nk I (68)

This approximation is made not only to save the amount of information that must be carried

from frame to frame but we will see that with some further simplification, this greatly reduces

the effort in calculating the aposteriori distribution. The Poisson approximation made in the

single channel, infinite user model considered by Rivest is demonstrated to be a reasonably

good one. The approximation seems less valid as applied to our model where we consider

only finite user populations. Obviously, when Ilk  approaches the upper limit of M, the Poisson

distribution breaks down, but if we consider that in typical operation M will be large with

respect to the backlog, the Poisson approximation may be a reasonable one. We will proceed
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despite these doubts emphasizing that such approximations will be necessary to produce a

simpler estimator.

The second key assumption is in our handling of the conditional probability distribution.

Rather than confront the unwieldy joint distribution defined in eqns. (60) and (62) we will

consider each minislot individually. By doing this we assume that the observations on each

minislot are independent of one another. These observations are obviously not independent

and for the sake of simplicity we forfeit the information in the correlation of these observations.

Let Hi, Ti and Ci denote the occurrence in minislot i in frame k of a hole, success and
collision respectively. The conditional probabilities for minislot i are thus

P {Hi nk } EE H(n k ) = (1 —^nk,

P{Ti In k} 

- 

T(nk )^Ps nk (1 — Ps )n1,-1
LV^LV^ (69)

P{Ci I nk} 

- 

C(nk) = 1 — H(n k ) — l(nk) •

We wish now to find the aposteriori distributions for each of the three observations. Using

Bayes rule,

P {nk I^
= P {Hi 1 7'k} x Pijk (nk )

P {Hi}

Using eqns. (69) and (68) and with some manipulation on the numerator, we get

Pok—x)(nk) /Ink I Hi} =
P {Hi}

where

x
LV

Similarly, for the observation of a success or a collision, the aposteriori distributions are

P { nk^=

P {n k^=

x^P(uk„)(nk — 1)
P{TZ}

k (n k) (1 — H(n k ) — ( 710) 
P {Ci}

(73)

(70)

(71)

(72)
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We see then that in the case of the hole, the mean of this new distribution is

rtk — x

and in the case of a success the mean is

x + 1

(74)

(75)

For a collision and for a collision the mean is derived to be

x 2
' (76)+ e x ____ x ___ 1

It is worthwhile to note here that in the case of a hole and a success, the Poisson

distribution of nk is maintained while for a collision it is not. For simplicity, we proceed

despite this fact, acknowledging at this point that the assumption of the a priori distribution

is not exact. It is for this reason that Rivest suffixes the estimator with "pseudo-".

Incorporating the a posteriori distribution means together for observations on all minislots,

we now see that our pseudo-Bayesian estimate for the number of contending stations in frame

k is

= istk — Hkx — Tkx Tk Ck
x2

( ex x 1) (77)

At this point, it becomes apparent that the two simplifying approximations (that the apriori

distribution is Poisson and the minislot observations are independent) allows us to break down

the highly complex procedure in section 4.1 to a simple expression. Adjusting this estimate

by our prediction of the number of arriving packets, and the successful transmission of

packets observed in frame k, the estimate for frame k+1 becomes

14+1^k (M^iik)P^ (78)
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This provides us with a simple formula to estimate the number of contending stations for the

next frame based on the current estimate and observations of the current frame.

Let us now consider how our estimate may be incorporated into the subframe allocation

procedure. First it is important to note that the state estimate i k is a real number as defined

by eqn. (78), but to choose an allocation in the desired policy, the state must be an integer.

We overcome this inconsistency by simply rounding the estimate to the nearest integer. With

the common integer estimate, all stations determine the subframe allocation using a simple

lookup table, matching the state estimate with its respective allocation, Lk = L(A7i,N2).

As long as the feedback to all stations is identical and all stations use the same algorithm to

determine the allocation, the distributed control will be consistent among the stations.

For testing purposes, the pseudo-Bayesian estimation algorithm was implemented into a

simulation of the reservation model. The technique was applied to the MF policy on a 20,000

frame simulation and throughput and average delay were calculated. Again, although we

cannot determine the confidence intervals of the data points using the usual statistical methods,

the comparative smoothness of the resulting curves indicates that this simulation length is

sufficient for a simple comparison among control schemes. Both the small and large models

considered in the last chapter were examined and Figures 11 and 12 show the delay plotted

against the throughput for those two models. We can see that with estimation implemented,

the performance of the system is virtually unchanged. There is a slight decrease in the capacity

for the small model shown in Figure 11 but the difference is less than 2%, and the MF policy

with estimation still shows much better performance than the fixed allocations schemes and

the DP policy, where state estimation is unnecessary. These results are encouraging and

indicate that while we have been forced to make some simplifying approximations in the

derivation of a simple estimator, the resulting pseudo-Bayesian estimate provides for good

performance for a dynamic subframe allocation policy.
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The issues of sensitivity of this state estimator to system parameters has not been

investigated in this work. Analysis of this type is left to further research.
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Chapter 5 MULTIPACKET MESSAGE MODELS

Analysis to this point has focussed exclusively on the single packet message model. In

addition to this model, it is of interest to investigate multipacket message models. Indeed,

as the total message length with respect to the reservation packet length increases, we may

expect the efficiency of the reservation protocol to improve accordingly since proportionally

there is less overhead for reservations per useful data slot. In this chapter we continue

to investigate the use of dynamic subframe allocation but now with models that handle

multipacket message lengths.

For our multipacket message model, users generate messages of variable length rather

than the single packet length messages considered earlier. Such a message model is more

appropriate for traffic composed of e-mail messages, and general data transfers while single

packet messages are more appropriate for such short data transfers as credit card checks and

other types of short standardized data signalling. In slotted systems, users would break the

message into slot sized packets. While the length of the messages may have one of many

possible distributions depending on the nature of the traffic, the exponential distribution is

generally used. When the message is broken into packets of equal length, the exponentially

distributed message lengths lead to geometrically distributed numbers of packets per message.

This distribution covers the full range of possible lengths, from single packet messages to very

long messages and has convenient statistical properties. When a station sends its reservation

packet, it provides reservation for the entire set of data packets in the multipacket message.

For the multipacket models that we will consider, the frame structure remains as in

Figure 1, with stations transmitting reservation requests in slotted ALOHA fashion over the

reservation subframe. Thus, the recursive estimator discussed in chapter 4 remains valid for

the multipacket message models.
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Before beginning detailed analysis of multipacket message models, we must first deter-

mine the specific service discipline for the model by which the messages in the global queue

are allocated slots in the data subframe. In this chapter we consider two distinct service disci-

plines. The two multipacket message models corresponding to these disciplines we will refer

to simply as the Ml model and the M2 model. In both cases, stations send a single reservation

request packet for the entire multipacket message. The Ml model is the simpler of the two,

wherein stations are restricted to sending only one packet per frame and the message's length

is not indicated in the reservation request packet but rather, the message's end is indicated

by an end-of-message (EOM) flag. This type of service discipline is seen in such reservation

protocols as R-ALOHA [3] and that proposed in [31] where a station is limited to securing

only one slot per frame. In a multichannel scenario where one may consider the allocation

of a bank of channels rather than slots in a frame as in [8] and [32], this service discipline

is appropriate since stations can send their packets on only one channel at a time when they

have a single transmitter. Within the M2 model, message length is indicated in the request

packet and stations are allowed to transmit multiple packets within a single frame. This is a

far more general reservation service discipline for multipacket messages, and is assumed in

reservation protocols considered by [4] and [5].

We shall see that the simplicity of the Ml model allows us to carry out a Markov decision

process formulation and policy optimization very similar to that of the single packet model.

The M2 model exhibits a much more complex state structure and we are forced to abandon

attempts at finding an allocation policy based on full state information to optimize throughput

performance. Rather we look at what insight we have gained about heuristic policies from

the single packet message model and the Ml model to propose a version of the MF policy

that shows good improvements over fixed allocation schemes in the M2 model. For both the

Ml and M2 models we provide performance curves which back up our claims that dynamic
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subframe allocation provides better system performance than fixed subframe allocation.

5.1 The M1 Model

5.1.1 Model and Markov decision process formulation

Stations in the M1 model send a single reservation request packet for their entire message.

This reservation request does not indicate the length of the multipacket message and stations

are restricted to sending no more than one packet per frame. Similarly to the single packet

message model, when the station has successfully sent its reservation request packet, that

station joins the global queue, sending its leading untransmitted data packet on the data

subframe when it reaches the head of the global queue. When a packet is sent, if it is the

last packet in the message, the station goes into idle mode and waits for a new message to

arrive. Alternatively, if it is not the last packet, the station rejoins the global queue at the

end of the frame to send its next packet in a subsequent frame. Thus stations are served in a

round-robin fashion. For all stations to be informed at the beginning of the next frame of the

state of the global queue, an EOM flag should indicate that the last packet is being sent. If

the global queue is short so that stations send packets in subsequent frames, this EOM flag

should be indicated in the next to last packet of the message (or in the reservation request

packet for a single packet message) to avoid the station being allocated a wasted data slot

after its message is complete.

Let us assume that for the ith message, the number of packets in the message, r1 is

geometrically distributed with mean message length, R packets. Thus

1^1 r-1
P(r i = r) = -17 1 — 

)^
,^= 1,2, . . .

( 

Using this very simple multiple message model, the Markov decision process formulation

remains very similar to that of the single packet message model. Figure 13 shows how the
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contending^reservation
stations^subframe

stations move through the queuing system. Note that the state of the system at frame k is

still completely defined by the two state variables, the number of stations in contention mode,

Art, and the number of stations currently in the global queue, N. The decision variable

remains the size of the reservation subframe, L(Sk). Similarly, since the stations are confined

to sending only one packet per frame, the reward may be written the same as in the single

packet message model,

rL(Sk) = min^, F — L(Sk)) •^ (80)

Figure 13. Queueing control representation of the M1 multipacket reservation model

The only difference from the single packet message model appears in the state transition

probabilities. Note from Figure 13 that Wk now represents the number of message com-

pletions in frame k. The advantage of the geometric distribution becomes evident now as

we take advantage of its memoryless property to update the system state. Using the same

simplified notation as chapter 2,

^

n a-- Art ,^n2 = N2 ,

7,„^4+1 , 77,2^, a L(Sk)

the distribution of W k conditional on the state and action is

Pr{ Wk = w ni, n 2 , a} =
min (n2,F—a) (82)(min (71,2,z F — a)) Gil ) 1 (1 71:71 ) min n2 ,F—a)—i

(81)
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The distributions of Yk and Xk remain the same as in section 2.3.5 eqns. (10) and (11).

Combining these distributions we write the transition probabilities of the Markov decision

process as

p(mi, n1 2 n i , n 2 , a)
min (ii,,F—a) [Pr {W

k = w l n1 ,n2,a}x

Pr { Y k = 7n 2 — n2 w I n i , n 2 , a} x
^ (83)

Pr {X k = nti — ni 7i2 — n2 + w I nl, n2, a}]•

Again, as in the single packet message model, we see that due to the memoryless property

of the message length distribution the state transition probabilities satisfy the Markovian

property. Note that the single packet message model is identical to the M1 model with R=1.

5.1.2 Dynamic allocation policies

From the Markov decision process formulation we see that the M1 model has a very

similar state structure to that of the single packet model formulated in chapter 2. Thus our

approach to finding good policies is also similar. As in the single packet message model,

we consider fixed allocation schemes, optimal allocation and two heuristic policies. These

policies correspond directly to those examined in chapter 3 for the single packet message

model. Some comments are given as to how each of these policies is adapted for the M1

model. Figures 14-17 show performance results of the different policies in the Ml model.

These results are discussed in section 5.1.3. It should be noted immediately that the reservation

subsystem is unaffected by the extension to the multipacket model and the state estimation

technique discussed in chapter 4 remains unchanged for this model.

5.1.2.1 Fixed allocation

Although Szpankowski [10] proposed his method for finding the best fixed allocation for

specifically the single packet message model, it is simple to extend it to the M1 model. If

the throughput on the reservation subframes assumed to be 1/e requests per minislot, then
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the average reservation overhead for the message will be e/V slots per message. Setting the

proportion of reservation slots to data slots equal to the proportion of the average reservation

overhead to average message length we get

L^e/V
F — L R

and solve to get

F
L 1+ RV/ e

We use the integer values of eqn. (85) for the best fixed allocations.

5.1.2.2 Optimal policy

As in section 3.2, we apply the modified policy iteration algorithm with our new

transition probability matrix to find the optimal policy for the Ml model which maximizes

the system throughput. All nondegenerate policies form unichain Markov processes and thus

the optimality equations (eqn. (26)) apply and the algorithm is guaranteed to converge to the

optimal policy, L*(Ni, N2).

5.1.2.3 DP policy

For the Ml model, the DP policy again maximizes the one-step throughput for the current

frame. Due to the constraint that each station may send at most one packet per frame, at most

/q packets may be sent in the frame and we specify the DP policy to be

LDp(Ni , N2 ) = max (0,F —^.^ (86)

5.1.2.4 MF policy

In section 3.4 a new criteria, referred to as the "flow", was proposed to allow a one

step maximization and thereby approximate the optimal policy without the computational
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complexity of the dynamic programming techniques. For the M1 policy we again use such

a criteria. Since Wk now refers to the number of message completions in the frame, we

now introduce the variable Zk which indicates the number of packet transmissions in frame

k. (In the situation where R=1, Zk Wk , and are thus interchangeable in the single packet

message model.) We define the "flow" in frame k as

Fk = ayk Zk
 

(87)

and set a = e/V. Noting that E [Yk] is defined by eqn. (37) and that Z k =

min (M,F — L) , the expectation of Fk may be maximized with respect to L at each

state to give the MF policy, LMF(N1, N2). It was pointed out in section 3.4 that the MF

policy was attractive for the single packet message model in that it was independent of the

arrival probability, p. This property is maintained for the M1 version of the MF policy.

Furthermore, since E[Fil is independent of the average message length, R, so too will be

the MF policy, and the MF policy derived for the single packet message model will apply

unchanged to the M1 model with the same F and V.

5.1.3 Numerical results

These policies were analyzed for a small network model with parameters {M=20, F=5,

V=3, R=3) and average delay and throughput were calculated using the methods described

in section 2.4. The retransmission probability, ps is set to unity unless otherwise indicated.

The optimal policies for different arrival policies were calculated using the modified policy

iteration algorithm and a set of sample policies appear on Table 4. The MF and DP policies

are identical to those appearing on tables 2 and 3. Notice that as in the single packet

message model, the optimal policies for high traffic levels are very similar to the MF policy,

foreshadowing the almost identical performance of the optimal and MF policies.

Figures 14 and 15 plot the throughput versus the arrival probability and the average delay

against the throughput respectively for the fixed and dynamic policies. In these curves, we see
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0 0 1^1 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 1^1 1^2 2 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 1^1 1^2 2 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NN 7 0 0 1^1 1^2 2 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 1^1 1^2 2 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 1^1 1^2 2 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 10 0 0 1^1 1^2 2 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 11 0 0 1^1 1^2 2 0 0 0
12 0 0 0 0 0 0 0 0 0 p=0.04 12 0 0 1^1 1^2 2 0 0 p=0.10
13 0 0 0 0 0 0 0 0 13 0 0 1^1 1^0 2 0
14 0 0 0 0 0 0 0 14 0 0 0^1 1^0 0
15 0 0 0 0 0 0 15 0 0 0^1 0 0
16 0 0 0 0 0 16 0 0 0 1 0
17 0 0 0 0 17 0 0 0 0
18 0 0 0 18 0 0 0
19 0 0 19 0 0
20 0 20 0

Nit N1
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5 0^1 1^1 2 2 2 2 3 3 3 4 4 4 5 5 5 0 1 1^1 2 2 2 2 3 3 3 4 4 4 5 5

0 0 1^1 1^2 2 2 3 3 3 4 4 4 5 6 0 0 1^1 2 2 2 2 3 3 3 4 4 4 5
0 0 1^1 1^2 2 2 3 3 3 4 4 4 N 7 0 0 1^1 2 2 2 2 3 3 3 4 4 4N2 87
0 0 1^1 1^2 2 2 3 3 3 4 4 '7 8 0 0 1^1 1^2 2 2 3 3 3 4 4

9 0 0 1^1 1^2 2 2 3 3 3 4 9 0 0 1^1 1^2 2 2 3 3 3 4
10 0 0 1^1 1^2 2 2 3 3 3 10 0 0 1^1 1^2 2 2 3 3 3
11 0 0 1^1 1^2 2 2 3 3 11 0 0 1^1 1^2 2 2 3 3
12 0 0 1^1 1^2 2 2 3 p=0.16 12 0 0 1^1 1^2 2 2 3 p=0.22
13 0 0 1^1 1^2 2 2 13 0 0 1^1 1^2 2 2
14 0 0 1^1 1^2 2 14 0 0 1^1 1^2 2
15 0 0 1^1 1^2 15 0 0 1^1 1^2
16 0 0 1^1 1 16 0 0 1^1 1
17 0 0 1^1 17 0 0 1^1
18 0 0 1 18 0 0 1
19 0 0 19 00
20 0 20 0

0^1 2 3 4 5 6 7 8 9 10^1 1^12 13 14^15 16 17 18^19 20 0 1 2 3 4 5 6 7 8 9 10^11 12 13 14 15 16 17 18 19 20
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4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5

2 3 3 3 3 3 3 3 3 3 3 3 4 4 4 5 5 5 5 5 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4 5 5 5 5 5
3 2 2 2 2 2 2 2 3 3 3 3 4 4 4 5 5 5 5 3 2 2 2 2 2 2 2 3 3 3 3 4 4 4 5 5 5 5
4 1^1 1^1 2 2 2 2 3 3 3 4 4 4 5 5 5 4 1^1 1^1 2 2 2 3 3 3 3 4 4 4 5 5 5
5 0^1 1^1 2 2 2 2 3 3 3 4 4 4 5 5 5 0 0 1^1 2 2 2 3 3 3 3 4 4 4 5 5
6 0 0 1^1 2 2 2 2 3 3 3 4 4 4 5 6 0 0 1^1 2 2 2 3 3 3 3 4 4 4 5
7 0 0 1^1 2 2 2 2 3 3 3 4 4 4 7 0 0 1^1 2 2 2 3 3 3 3 4 4 4

N2 8 0 0 1^1 2 2 2 2 3 3 3 4 4 N2 8 0 0 1^1 2 2 2 2 3 3 3 4 4
9 0 0 1^1 2 2 2 2 3 3 3 4 9 0 0 1^1 2 2 2 2 3 3 3 4

10 0 0 1^1 1^2 2 2 3 3 3 10 0 0 1^1 2 2 2 2 3 3 3
11 0 0 1^1 1^2 2 2 3 3 11 0 0 1^1 2 2 2 2 3 3
12 0 0 1^1 1^2 2 2 3 p=0.28 12 0 0 1^1 1^2 2 2 3 p=0.34
13 0 0 1^1 1^2 2 2 13 0 0 1^1 1^2 2 2
14 0 0 1^1 1^2 2 14 0 0 1^1 1^2 2
15 0 0 1^1 1^2 15 0 0 1^1 1^2
16 0 0 1^1 1 16 0 0 1^1 1
17 0 0 1^1 17 0 0 1^1
18 0 0 1 18 0 0 1
19 0 0 19 0 0
20 0 20 0

Table 4. Optimal policies for a range of arrival probabilities
in the M1 model with parameters (M=20, F=5, V=3, R=3)
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Figure 14. Throughput vs. arrival probability in the M1 model for the parameter set (M=20,
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that the dynamic policies all show lower average delays for equivalent throughputs and higher

throughputs for equivalent arrival probabilities than the fixed policies. For example, for a

throughput of 0.58 packets per slot, the fixed allocation schemes operate close to their capacity

with a large delay of over 8 frames. The dynamic schemes all show delays of near 4.5 frames

when operating at that throughput, a reduction of over 40%. Furthermore, the capacities of

the dynamic policies are considerably higher that those of the fixed policies. For this model

the highest throughput achieved by a fixed allocation schemes is 0.637 packets per slot when

L=1 and p=0.13. In comparison, the highest throughputs achieved by the dynamic policies

are 0.751 for the DP policy and 0.792 for the optimal and MF policies, an improvement of

18% and 24% respectively. As in the single packet message model, the MF and the optimal

policies under complete state information are indistinguishable in terms of performance and

both show slightly lower delays for equivalent throughputs than the DP policy. Included

in Figures 14 and 15 are the simulation results of the MF policy implemented with state

estimation incorporated. The introduction of state estimation has eroded the capacity of the

protocol from the complete state information case, but achieves a capacity about 3% higher

than the DP policy and 21% higher than the fixed allocation capacity.

We also examined a larger scale system model with parameters (M=150, F=15, V=8,

R=5). In this case, both the modified policy iteration algorithm and the solving of the global

balance equations of the Markov processes are extremely complex undertakings and we opt

for simulation analysis and abandon the optimal policy. Simulations were conducted for

the policies of interest over a range of traffic levels and delay and throughput statistics

were gathered. The same simulation length of 20,000 frames was used as in the single

packet message model and provides a sufficient accuracy for simple comparison among

policies. Figures 16 and 17 show the simulation results plotting throughput against the

arrival probability and the delay versus the throughput respectively. State estimation is

64



^ L=2
-- - DP policy
^ MF policy

....... ..
.............

..................................

1.0

0.020^0.030^0.040
^

0.050
arrival probability, p

Figure 16. Throughput vs. arrival probability in the M1 model for the parameter set
(M=150, F=15, V=8, R=5) : fixed allocation policy, MF policy and DP policy

20.0

--c-c) 15.0
acucncoa)
E
Cl)
a) 10.0
E
Ei

as
a)

-0^5.0

0.90
^

1.00

0.2 ^
0.010

0.0
0.50^0.60^0.70^0.80

throughput (packets/slot)

Figure 17. Average delay vs. throughput in the M1 model for the parameter set
(M=150, F=15, V=8, R=5) : fixed allocation policy, MF policy and DP policy

65



1

implemented for the MF model and the retransmission probabilities are set at unity. We

see from these results that as in the small model, the dynamic policies show lower delays in

the high throughput regions of the graph and the capacity of the MF policy is the highest.

At throughputs up to near 0.8 packets/slot, the delays of all policies are very close. Beyond

this, the fixed allocation policy shows a sudden increase in delay as it reaches its capacity

at 0.87 packets/slot. In comparison, the DP and MF policies produce capacities of 0.91 and

0.92 respectively, an improvement of approximately 5% over the fixed allocation capacity.

This relative improvement achieved by introducing dynamic allocation, while less than that

for models with smaller frame size, is still encouraging.

5.1.4 Capacity approximation

The capacity approximation technique described in section 3.5 for the single packet

message model may be extended to the M1 model fairly simply. We again look at the case

where M is very large and the reservation subsystem throughput is stable with throughput

approaching l/e reservation packets per minislot when the number of contending stations

grows large. In the Ml case, the average overhead for reservation request packet transmission

is e/V and the ideal capacity

(88)

as discussed in [28]. As in section 3.5, this ideal is a capacity approximation that is based

on the assumption that perfect flow balance exists between the two subchannels. For a fixed

allocation scheme of reservation subframe size Lf , this perfect flow balance is not in general

achieved and the capacity is better approximated by

(L f)( 
 RV Lf F—L

Fe^F )
(89)

due to the bottleneck in the reservation subsystem or the data subsystem caused by choosing

a whole number of reservation slots. By the same line of argument as in section 3.5 we can
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say that the ideal throughput of eqn. (88) is a good approximation for the capacity of the DP

policy, MF policy and optimal policies when M is large. We verify this by finding capacities

by simulation for the MF policy applied to a model with parameters (M=150, F=15, V=8)

and state estimation incorporated for different values of R.

In Figure 18 we plot system capacity against the average message length for the MF

simulations, the ideal capacity (eqn. (88)) and the best fixed capacities (eqn. (89)). The

granular effect that we observed when capacity was plotted against V is again evident in this

figure but now with respect to the average message length, and the difference between the fixed

allocation capacity and the ideal capacity is highly sensitive to R. The MF simulations indicate

that the ideal capacity is a good approximation for the MF capacity for large M. Although the

difference is not evident from the figure, the MF simulation results are within 1% of the ideal.

It is worthy to repeat here that the MF policy is independent of changing average message

length. Thus, the MF policy exhibits the quality of adapting not only to the traffic level, as it
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is independent of the arrival probability, p, but its capacity is robust in the face of changing

average message length. It may be expected that in real systems, the traffic characteristic

would change in this fashion, showing time variance in both intensity and average message

length. It should be noted though, that while the MF policy is independent of these traffic

parameters, the accuracy of state estimation upon which the MF policy depends, almost

certainly depends at least somewhat on these parameters. The extent of this dependance has

not been investigated in this work.

5.1.5 Problems with the M1 model

The M1 model for multipacket messages is simple, allowing policy optimization and exact

Markovian analysis of the policies that we have considered. This simplicity is only possible

because of the following two key constraints put on the operation of the data subsystem:

• Reservation request packets do not contain information regarding the length of the

message.

• Stations may only send one packet per frame.

For a real system, these constraints limit the performance of the protocol substantially. The

first constraint limits the possible information that is available to the system for control of

the allocation. Information on the length of the individual messages is possibly valuable for

subframe allocation control. The second constraint is even more limiting. By allowing the

stations to send only one packet per frame, we are introducing a large minimum delay for

message transmission. Consider a situation where a system has a very low traffic level. If a

station generates a message of length 4 packets, at best, the total transmission delay will be

5 frames, one for the reservation, and 4 for the message. This is indeed an inefficient use of

the channel resource. When the system is very lightly loaded, the delay could be 2 frames,

a 1 frame delay for reservation and another frame for data as all the packets could be sent in

the next frame. At higher traffic levels, forcing the stations to share the data subframe in a
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round-robin fashion seems more legitimate. To address these problems, we look at the more

general multipacket model that does not impose these constraints on the protocol.

5.2 The M2 Model

5.2.1 Model and state structure

The M2 model is a more general one than the Ml model for multipacket message

transmission. The system remains divided into a reservation subsystem and data subsystem

but now the two constraints are loosened. Reservation request packets indicate the number

of packets in the current message of the transmitting station. Furthermore, the stations in the

global queue may send multiple packets in the data subframe. Note that for the Ml model,

all stations in the global queue were identical from the perspective of queue service control

and it was natural to serve them in a round robin fashion. Now, entries into the global queue

are distinguished by their number of remaining packets. As such, to be entirely general,

the system controller should choose not only the number of data slots available for packet

transmission, but also which stations in the global queue should be served. As such, the state

and decision space becomes very large in the completely general case.

To formulate this more general model as a Markov decision process is no longer a

simple derivation and while it may be described as Markovian, the dimensionality of the state

space grows large and the number of possible state grows without bound. The reservation

subsystem is described as always by one state variable, the number of contending stations,

N1. The variables describing the state of the global queue may no longer be limited to a

single number since not only the number of stations in the queue must be represented, but

also the number of remaining packets for each. We may define a set of new state variables,

A, ; i = 1,2,...^,^ (90)

that represent the number of unsent packets at the ith station in the global queue. There are

M such variables since there may be up to M stations in the queue. We no longer need to
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track the number of stations in the queue since that is simply the number of A, which are

non-zero. Thus the state vector becomes

S^Ai, A2, ... Am) .^ (91)

Although at normal unsaturated operation the vast majority of the AZ would be zero, all M+1

elements must be retained in the state vector for the process to be accurately described as

Markovian. When message lengths are assumed to be geometrically distributed, the lengths

may take on any positive integer value. Thus we are faced with a Markov process with a

state space of dimension M+1 and an infinite number of states. While we could consider a

truncated message length distribution to achieve a finite state Markov process, the state space

dimensionality alone is imposing in its size.

The range of available actions in the very general M2 model is no less imposing. Since

the stations in the global queue are distinguished by their number of unsent packets, there may

be advantage for the controller to allocate a specific number of slots in each data subframe

to specific stations. For instance, there may be gains to be made by servicing stations with

short messages to free them for new arrivals and wait to serve stations with long messages

until the queue is less busy. We may define a set of new action variables,

Bi ;^.. F ,^ (92)

specifying the stations that are serviced in the current data subframe. These variables form the

action vector B. The length of the reservation subframe would be implicit in this action vector.

We provide here a very simple example to indicate how a controlling policy may work.

Consider a model where the frame size is F=5, there are currently 4 contending stations and

there are two stations in positions 1 and 2 of the global queue with 5 and 1 unsent packets

respectively. The state would then be
S =^Ai, A2, ... Am)

(93)
:7= (4, 5, 1, 0, 0, ...) .
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A sample policy may allocate one slot for the reservation subframe, 1 slot to complete

service of the station in position 2 and the remaining 3 slots to service the station in position

1. Thus the action vector would be
B (Bi , B2, ... BF)

(94)
= (0,1,1,1, 2) .

A zero indicates that the slot is part of the reservation subframe.

To find an optimal state dependant policy for frame allocation it would be necessary to

formulate this model as a Markov decision process, deriving the action dependant transition

probabilities and state rewards. We stop short of attempting this due to the very large

dimensionality and size of such a formulation. Indeed, we can expect that such an optimal

policy for even quite small network model would be unattainable using the cumbersome

techniques that we applied to the simple two dimensional state space and single action variable

models discussed earlier in this thesis. This author has not seen any applications of Markov

decision process theory of state dimension greater than 2 in the literature. Furthermore, when

the Markov process has a countable number of possible states, there are no general techniques

for deriving an optimal policy in the Markov decision process literature. In this most general

model description, we leave finding the optimal policy as an open research problem and

proceed in the next section to use insights gained in the single packet message model and the

M1 model to find simple dynamic allocation policies that work quite well for the M2 model.

5.2.2 Simple allocation in the M2 model

Having abandoned the high road of Markov decision process formulation and optimization

for the M2 model, we now make some simplifications to the problem that allows us to adapt

the heuristic policies of the M1 model to the more general M2 model. First, let us reduce the

actions to simply the allocation of the size of the reservation subframe, L, and assume that

stations in the global queue are serviced to completion on a first come first served basis. Thus
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we maintain generality in that stations may, and inevitably will transmit multiple packets per

frame. (Essentially, this simplified service discipline is identical to that considered by [5] who

does an approximate analysis of the performance in this case for a fixed allocation policy.)

This simpler service discipline uses a simple subset of the state information specifying N 1 to

be the number of contending stations and N2 to be the total number of packets waiting for

service in the global queue. The latter incorporates all global queue information by summing

the true state variables

N2 A 1 + A 2 . . . Am . (95)

We will refer to these variables as the state although it must be noted that they contain

only a portion (albeit a significant portion) of the state information in the Markov process.

With these state variables, our system very closely resembles that of the M1 model. Since

unsent packets in the global queue are effectively no different than single packet messages

from the standpoint of the data subsystem, it seems logical to apply the MF and DP policies

(which are independent of the average message lengths) with our two state variables N 1 and

the redefined N2. Since the process is no longer Markovian on these state variables, we

cannot apply the Markovian techniques to determine throughput and delay so we incorporate

these policies in simulation for the same model as was examined for the Ml model (F=5,

1i=3, M=20, R=3). A simulation over 60,000 frames was conducted, collecting delay and

throughput statistics for different arrival probabilities. The large simulation length is chosen

here simply because in this smaller model, the time taken for a simulation of this many

frames is not as great as in the larger networks considered in earlier simulations. In any case,

this simulation length provides us with results that enable comparison between the different

models and the allocation policies. Figure 19 plots the average delay against the throughput

for a fixed allocation policy and the MF policy with state estimation for the M2 model and

M1 model simulations. We can see that having allowed stations to transmit multiple packets
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Figure 19. Average delay vs. throughput for a fixed policy and the MF policy with
estimation in the M1 and M2 models with parameters (M=15, F=5, V=3, R=3)

per frame has produced the expected reduction in average message delay at low throughput

levels. In this case the delay is reduced from approximately 4 frames/message for the Ml

model (1 frame for reservation and 3 for data packets) to near 2 frames for the M2 model

(1 frame for reservation and 1 frame for data packets). This reduction is significant and we

may expect the savings to increase with increasing message length. For low traffic levels, we

may expect the Ml model delay to be 1+R frames while the M2 model will produce delays

near 1+R/F. As throughput reaches capacity, the difference in average delay between identical

policies in the Ml and M2 models decreases and seems to disappear at capacity. Capacity

for the same policies for the two models appears the same. This is not unexpected since we

expect the capacity approximation of the MI model to be applicable also to the M2 model.

In summary, loosening the constraints on the MI model has rendered optimization and

Markovian formulation of the general model inachievable. We do find though, that we

can still improve results with dynamic subframe allocation using a portion of the state

73



information and a simple service discipline that does not take advantage of its full range

of options. Capacity remains the same, and the average delay is significantly reduced for

low and medium throughput levels. Finding optimal or improved policies that incorporate

complete state information and the full range of possible global queue service disciplines

remains an open research problem.
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Chapter 6 CONCLUSION

6.1 Summary

In this thesis we have investigated how the reservation multiple access protocol first

proposed by Roberts[1] may be improved by dynamically allocating the size of the reservation

subframe based on state feedback information. It was shown that an optimal allocation

policy exists when complete state information is available and using infinite horizon dynamic

programming techniques, optimal policies were found for specific networks. Numerical

analysis and simulation results demonstrated that the capacity of the broadcast channel is

dramatically improved over previously considered fixed allocation schemes when the optimal

policy is implemented and average message delays are decreased for the same system

throughput.

While the optimal policy is valuable as it produces an upper bound on the system

throughput, the complexity of its derivation and implementation prompts us to investigate

two heuristic allocation policies that show performance results close to optimal while holding

some implementation advantages over the optimal. The MF policy shows the best performance

of the two, almost matching the optimal performance. The DP policy is attractive in that it

depends only on the fully observed state variable for its implementation. Both these policies

are simple to derive, and continue to perform well when the average message length changes

or the system traffic intensity changes. Capacity approximations show that the heuristic

policies can produce capacities close to the ideal capacity for the reservation protocol while

fixed allocation schemes often fall far short of this ideal.

Initial analysis was done on the model with the assumption that complete state information

is available for control. This is an unrealistic assumption, and, in loosening the assumption

it is necessary to find for policies dependant on full state information a suitable technique
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to estimate the number of contending stations using ternary feedback from the reservation

subframe. We have proposed such an estimator, using a variation on Rivest's [2] pseudo-

Bayesian estimator to provide a recursive estimate of the unknown state. Simulation results

have shown that the implementation of this estimator does not significantly depreciate the

performance of the dynamic policies where estimation is necessary.

Finally, we considered the extension of the model to allow multipacket messages. Two

service disciplines were considered. The first depended on severe constraints to allow us to

maintain our Markovian formulation, derive optimal policies and generate exact performance

results by analysis of the Markov process. The second multipacket model, while being

more applicable to real systems, prevents valuable Markovian analysis with its complex state

structure. Thus we were forced to use insights gained from our results for the simpler models

to propose a heuristic dynamic allocation scheme for this more general model and test it

with simulation. For both the multipacket message models, numerical and simulation results

show that the performance of the dynamic allocation policies is improved significantly over

simple fixed allocation.

6.2 Proposals for Further Research

In this research we have demonstrated that altering Roberts model to allow dynamic

subframe allocation can significantly improve the performance of the broadcast channel. The

results are indeed encouraging and it is likely that follow-up research could broaden the

advances made in this work. In this section we propose areas of further work that may prove

beneficial.

In our analysis, the user population in the network had to be finite to allow us to do

finite-state Markovian analysis. Indeed, due to the multiple dimensions of the problem, the

user population had to be quite small to produce analytical results. Since network populations

in a real world application may be quite large and indeed may fluctuate as users go on-line
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and off-line, it would be more realistic to use an infinite population model with a true Poisson

traffic assumption to achieve a more general result. While derivation of the true optimal policy

may be inachievable with this model, use of approximate methods to propose extensions to

and analyze the DP and MF policies for the infinite population model would be beneficial.

The optimal policies in this thesis were derived based on the full state information. A

state estimator was then proposed independently to provide an estimate of the system state to

implement the optimal policy. While we have treated these as separate problems, derivation

of the true optimal policy for the partially observed Markov process would integrate the two

problems, basing the allocation on the aposteriori distribution of the state rather than the state

estimate (the mean of the aposteriori). While in many systems for controlling a partially

observed Markov process these problems may be shown to be separable, it is unknown if this

is the case for the reservation protocol that we have considered. Techniques for analyzing

such control problems are given in [26]. An investigation on these lines would be complex

but would possibly produce a theoretically appealing result.

The improvement in channel performance using dynamic subframe allocation reveals that

state information is indeed valuable for channel access control. While this fact has been

recognized by previous researchers for the stabilization of a simple slotted ALOHA network

[2], [11], [12], [18], this work is the first to use this information explicitly to optimize subframe

allocation. The dynamic programming techniques that we have used rely on the fact that the

model may be reasonable formulated as a Markovian decision process. In the model that we

have considered this has been the case and it is very likely that such Markovian decision

process formulation can be performed for other reservation-type protocols to allow subframe

allocation optimization. These are some similar protocols that may benefit from such analysis.

• R-ALOHA [3] is a reservation protocol that allows users to send multipacket messages

by reserving future slots on the frame by successfully sending their first data packet by
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slotted ALOHA on an unreserved slot. The allocation of slots as reserved or unreserved

is done by a simple heuristic in the R-ALOHA protocol and the use of state feedback for

optimal allocation has not been considered in the literature.

• Leung [8] proposes multichannel reservation protocols for multipacket messages which

use successful first packet transmission by slotted ALOHA to gain reserved data slots

for the rest of the packets. Thus the multiple channels are at each slot allocated to be

reserved for data packets or free for contention. This partition of a fixed number of

channels for access by stations in two distinct modes is not very dissimilar to the single

channel reservation model that we have considered.

Wong and Yum [33] propose a combined random access/reservation protocol for single

packet messages that allows both packet transmission by slotted ALOHA and by minislot

reservation request transmission followed by reserved access. Essentially, time on the

channel is divided between minislots, slotted ALOHA slots and reserved data slots.

Optimizing this three way allocation based on state feedback may improve the system

performance.
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Appendix A Derivation of Conditions for a Policy
to Produce an Ergodic Markov Process

In chapter 3 it was demonstrated that the network model under consideration may be

formulated as a Markov decision process and thus a Markov process when a specific decision

policy is implemented. We wish to show here that for the policies of interest, the Markov

process is unichain. This condition must be met for the regular optimality equations to hold

and for the modified policy iteration algorithm to be guaranteed to converge to an optimal

solution.

A unichain Markov process is one that is composed of a single recurrent class and any

number of transient states. A fairly simple way to show that a process is unichain is to show

that there exists a state that can be reached from all other states within a finite number of

steps. We show in this appendix that the empty state Sk = (0, 0) is such a state for a set of

policies that abide by a couple of conditions.

Let us first set the condition that p < 1. (Although this condition is not actually necessary

for the process to be unichain, the system with p = 1 is really not relevant as obviously a

reservation protocol would not be appropriate in that circumstance.) Let us say that there

occurs a finite consecutive series of frames wherein no new packets arrive. Since the

probability of no arrivals in a frame is non-zero, such a series will occur within a finite

amount of time. At the beginning of such a series, let the system state be S = (Ni , N2 ).

We need simply now to show that the system will empty out in a finite amount of steps

when there are no arrivals. Obviously this is the case if at any state,

E[Yk] E [wk'] > 0 .^ (96)

From eqn. (37) repeated here,

E [Yk] = ps Ni (1 —
LV

) N1-1

^
(97)
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we can see that E[Yk] > 0 if N1 > 0 and L > 0. Also, since

E[W k] = min (N2 , F — L) ,^ (98)

we may say that E[Wk] > 0 if N2 > 0 and L < F. The sum then is greater than zero for

any non-empty state is the following two conditions hold for all non-empty states :

1. If N1 =0then L<F.

2. If N2 = 0 then L > O.

These conditions do not seriously restrict our choice of policies, and indeed, only exclude

degenerate policies which would lock the system into undesirable absorbing states. The vast

majority of possible policies and certainly all policies of interest to us fit these criteria and

thus produce unichain processes.

Although we have looked here at only the single packet message model, it is not difficult to

extend the same argument to the multipacket message model for message length distributions

that have finite mean values.
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Appendix B Joint Probability Distribution for
Observations in the Reservation Subframe
when n' Requests are Transmitted

In chapter 4, the problem is encountered of determining the probability that h holes and

t successes are observed when Ti t request packets are transmitted over LV minislots. This

problem bears close resemblance to the classic occupancy problem [38] where Tt i objects are

randomly placed in LV urns. Feller provides the probability of exactly h empty urns in [38] as

LV^ )71/LV^( LV — h\ (po Lv,n 1 ) = ( -1 ) h ( h)Y: (-1 q i — h^LV (99)

We are left to find joint probability of observing exactly h empty urns and t urns containing

exactly 1 object. Applying Bayes rule as follows,

P(t,h1LV,71, 1 ) = P(t I h,LV,n') x^,^(100)

and using eqn. (99), we are left to find the conditional probability of observing t singly

occupied urns given that exactly h urns are empty.

If we consider that when there are exactly h empty urns, we know with certainty that

the remaining LV — h urns all have at least one object in them. Discounting the guaranteed

single object in each remaining urn from the total number of objects, the problem of finding

the conditional probability becomes one of finding the probability of observing t holes when

71 1 - (LV — h) objects are distributed over LV — h urns. This probability may be found from

eqn. (99) directly to be

P (t I h, LV, nr) =
LV-h^ •^\ -(LV-h)ot LV —^/ LV — h — t^ (101)(_

t )^ )(1 LV i_h)i=t
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Now using eqns. (99), (100) and (101), and with some manipulations, we find the joint

distribution

Hoh+t ( LV) ( LV —
P(t,h L17,7-7')

h )^t

LV-h LV

^(_oi+ LV h (LV — h — t)^j^n'—(LV -h)
(

— h )^— t )^LV )^LV —̂ h )

\ ]
(102)
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Appendix C Glossary of Symbols,
Acronyms and Abbreviations

A : set of all possible reservation allocations

A, : the number of unsent packets at the ith station of the global queue (M2 multipacket

message model)

a : subframe allocation in frame k

B : action vector for the M2 multipacket message model

Ck : number of minislots containing reservation packet collisions in frame k

C : ideal system capacity

D : overall expected message delay

D1 : reservation request packet delay

D2 : data packet delay

DP policy : "Data priority" policy

EOM flag : "End-of-message" flag

F : number of slots per frame

Fk : "flow" in frame k

C : round trip propagation delay

Hk : number of idle minislots in frame k

L : allocation policy mapping the system state, Sk to the allocation Lk

LDP : DP policy

LMF : MF policy

Lf : fixed reservation subframe allocation

Lk : reservation subframe allocation in frame k

: optimal reservation subframe allocation policy

: ideal fixed subframe allocation
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LAN : local area network

M : number of user stations in the network

m l : number of stations in reservation mode at the start of frame k+1

m2 : number of stations in the global queue at the start of frame k+1

MDP : Markov decision process

MF policy : "Maximum flow" policy

• : number of stations in reservation mode at the start of frame k

• : number of stations in the global queue at the start of frame k

n i : number of stations in reservation mode at the start of frame k

n 2 : number of stations in the global queue at the start of frame k

rak : estimated number of contending stations in frame k

Ok : reservation subframe observation vector for frame k

PL : state transition probability matrix when allocation policy L is implemented

p : probability that a new message arrives at an idle user in a frame

ps : reservation request packet transmission probability

1.5k : a priori distribution of the number of contending stations in frame k

: a posteriori distribution of the number of contending stations in frame k

R : average message length

FL : vector indicating the reward for each state when the action policy L is implemented

Sk : system state at the beginning of frame k

S : state space

Tk : number of minislots containing successful reservation packet transmissions in frame k

V : number of minislots per slot

• : relative value function vector

v(i) : element i of the relative value function vector

87



VSAT : Very small aperture terminal

Wk : number of message transmissions that are successfully completed in frame k

Xk : number of new messages generated in frame k

yk number of successful reservation requests sent in frame k

Zk : number of successful packet transmissions in frame k

cx : weighting coefficient for derivation of the MF policy

II* : limiting distribution of the Markov process

7r5 : probability for state S in the limiting distribution of the Markov process

;\k : estimated number of newly arrived packets in frame k

: set of all stationary, non-randomized policies

: system throughput when allocation policy L is implemented

: optimal system throughput
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