
VLSI Support for Scheduling and Buffer Management

in High Speed Packet-Switched Networks

by

MEHDI KAZEMI-NIA

B.Sc. in Elec. Eng., Sharif University of Technology, Tehran, 1988

M.A.Sc . in Elec. Eng., The University of Windsor, Windsor, 1994

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

We accept this thesis as conforming

to the required standard

T H E U N I V E R S I T Y OF B R I T I S H C O L U M B I A

January 2000

© Mehdi Kazemi-Nia, 2000

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of ELe.C Cav^f, p„

The University of British Columbia
Vancouver, Canada

DE-6 (2/88)

ABSTRACT

This thesis presents a number of new approaches for designing fast, scalable queuing structures

in VLSI for very high speed packet-switched networks. Such queuing structures are necessary for

implementing packet buffers in switches and routers that have multi Gigabit-per-second (Gb/s)

ports. The thesis addresses the design of two specific queue architectures: balanced parallel

multi-input multi-output (MIMO) buffers, and systolic parallel priority queues (PPQ).

A methodology for the systematic design of order-preserving parallel MIMO buffers is presented.

The MIMO buffer employs an arithmetic-free systolic routing network and bank of parallel FIFO

buffers to yield a load-balanced realization with increased bandwidth. Using this methodology we

derived scalable parallel buffer structures that can be designed to match the rate of ultra high

speed links using current memory technology that uses moderate clock rates. A small prototype of

the MIMO buffer attains a rate of 10.6 Gb/s which is more than adequate to support a Sonet OC-

192 link. The combined use of pipelined architecture and dynamic CMOS circuits resulted in sig

nificant reduction in design complexity and substantial performance gains in speed and area.

The thesis also addresses a generalization of the priority queue concept to a systolic parallel pri

ority queue (PPQ) which can be scaled to meet the requirements of ultra high-speed links using

standard CMOS technology. The PPQ has several applications in implementing real-time fair

schedulers or buffer management algorithms in packet routers. The PPQ maintains prioritized

access to the data it contains at all times, and the access time to the data is fixed and independent

of the PPQ size, i.e. 0(l)-time access. The proposed systolic PPQ is rate-adaptive in the sense

that the PPQ operates correctly even when the queue input rate and output rate are different. This

ii

decoupling of the input and output packet flow rates is a distinguishing feature of the PPQ con

cept because in practice the output rate of the queue is controlled by the available link bandwidth

which may vary (or even become zero) independent of the packet arrival rate.

iii

TABLE OF CONTENTS

A B S T R A C T i i

LIST OF T A B L E S vii

LIST OF FIGURES viii

DEDICATION xi

A C K N O W L E D G E M E N T S xii

CHAPTER 1 Overview and Motivation 1

1.1 Buffer Management for High Speed Links 4

1.2 Packet-Scheduling 5

1.3 Main Contributions and Thesis Organization 7

CHAPTER 2 Survey and Background 11

2.1 Parallel FIFO Buffers 12

2.2 Priority Queues 20

CHAPTER 3 Parallel FIFO Buffers for Gigabit Packet Networks 26

3.1 Introduction . > 26

3.2 M I M O Buffer Design Principals 29

3.2.1 Basic Operation of the MIMO Buffer 29

3.2.2 The M I M O Buffer Structure 30

3.3 The Balanced Distribution Network (BDN) 33

3.4 Dynamic Load Balancing on the B D N 38

3.5 Some Applications of the MIMO Buffers 46

3.6 Summary 54

iv

CHAPTER 4 VLSI Implementation of the Parallel M I M O Buffer 55

4.1 Overview 55

4.2 VLSI Design Strategy 56

4.3 Circuit Diagram of a Switch Element 58

4.4 Design Simulation Results 65

4.5 Summary . . . 68

CHAPTER 5 A Systolic Parallel Priority Queue for High Speed Packet Networks . 69

5.1 Overview 69

5.2 Scheduling Networks and Priority Queues 70

5.3 Systolic Parallel Priority Queue 71

5.3.1 VLSI Word-Model of a Parallel Sorter 74

5.3.2 Recursive Construction of Systolic PPQs 74

5.4 Retimed Design 79

5.5 Summary 83

CHAPTER 6 Scalable PPQs with Output Rate-Control 84

6.1 Introduction . 84

6.2 A PPQ Design with Output Rate-Control 86

6.3 The PPQ Retimed Design with Output Rate-Control . . . 91

6.4 Systolic PPQs with an Unequal Number of Inputs and Outputs . 96

6.5 Bit-Serial Realization of the Systolic PPQ 98

6.6 Structure of Parallel Sorters 100

6.6.1 Recursive Construction of Parallel Sorter 101

6.6.2 Direct Construction of Parallel Sorters 105

6.7 Primitive Sorter Timing 110

6.8 VLSI Design Strategy and Implementation Issues 112

6.9 Summary 115

V

CHAPTER 7 Conclusion and Future Directions 116

BIBLIOGRAPHY 121

APPENDIX A A T M Technology 131

A . l A T M Networking and Switching 133

A.2 A T M Switch Architectures 134

A.3 A T M Buffer Management 140

APPENDIX B Asynchronous System Design 142

vi

LIST OF TABLES

Table 4.1: Transistors'sizes in the nMOS chain 64

Table 6.1: Comparing two methods of implementation of a 2m -cell sorter 109

vii

LIST OF FIGURES

Fig. 1.1: Serial-to-parallel conversion and byte staggering at the opto-electronic interface 4

Fig. 2.1: (a) Operation of a shared-buffer that preserves the cell arrival sequence . . 13
(b) Illustration of pack-and-shift approach in three time-slots

Fig. 2.2: (a) Packing ranked cells on a butterfly network 15

(b) Packing and shifting ranked cells on a butterfly network

Fig. 2.3: Structure of shared buffers in the Knockout switch 17

Fig. 2.4: MIMO buffer and its symbol 19

Fig. 2.5: (a) Parallel buffer 20
(b) A T M access point

(c) Buffer concentrator

Fig. 2.6: Inserting a new arrival into a non-systolic PQ 22

Fig. 2.7: Buffer manager structure 23

Fig. 3.1: MIMO buffer in a multi-stage switch and its symbol 28

Fig. 3.2: Internal structure of the buffer 31

Fig. 3.3: Internal Structure of an 8x8 B D N 33

Fig. 3.4: Input/Output port alignment of the B D N 34

Fig. 3.5: Two states of the switch element 36

Fig. 3.6: I/O diagram of the SWT and cell format 37

Fig. 3.7: Four routing phases of the buffer 39

Fig. 3.8: Folded crossbar array of the B D N 42

Fig. 3.9: Distributed control in the V E C 43

Fig. 3.10: Two configurations for packing the incoming cells 45

Fig. 3.11: Self routing property of banyan networks 46

viii

Fig. 3.12: Internal blocking in banyan networks 49

Fig. 3.13: Expansion modules (ESEs) 51

Fig. 3.14: Buffered-concentration modules (BSEs) 52

Fig. 3.15: Alternative buffered core modules 53

Fig. 3.16: Dilated banyan network with internal buffers 54

Fig. 4.1: Part of the V H D L code 57

Fig. 4.2: Circuit diagram of the crossbar control of SWT 58

Fig. 4.3: Signal and data-path of a SWT 60

Fig. 4.4: Dynamic D-type flip-flop circuit 61

Fig. 4.5: nMOS transistors chain and the RC model 62

Fig. 4.6: Layout diagram of a 4x4 B D N 65

Fig. 4.7: Simulation result of the 4 x 4 B D N during three time-slots 66

Fig. 5.1: A typical scheduling network 71

Fig. 5.2: A PPQ contains ra x w cells 73

Fig. 5.3: The I/O configuration of a 2ra -cell sorter 75

Fig. 5.4: A priority queue with ra inputs, ra outputs, and depth 1 76

Fig. 5.5: Recursive construction of the parallel priority queue PPQ(m, w) 77

Fig. 5.6: Retimed design of PPQ(m, 1) 80

Fig. 5.7: Recursive construction of the systolic parallel priority queue PPQ(m, w) . . 82

Fig. 6.1: PPQ(ra, 1) with inhibit feature 86

Fig. 6.2: Building recursively priority queues with different depth sizes and inhibit feature 88

ix

Fig. 6.3: Several steps of the operation of a PPQ(l, 5) 89

Fig. 6.4: Retimed design of PPQ(m, 1) with inhibit feature 91

Fig. 6.5: PPQs with different depth sizes and inhibit feature 92

Fig. 6.6: Several steps of the operation of a systolic PPQ{2, 3) 94

Fig. 6.7: PPQs with an unequal number of inputs and outputs 97

Fig. 6.8: Two pictorial representations of a primitive sorter 99

Fig. 6.9: Configuration of ST(4) and its two pictorial representations 101

Fig. 6.10: Realization of an 8 -cell sorter 103

Fig. 6.11: Recursive construction of a 2m-cell sorter and its two geometries 104

Fig. 6.12: Configuration of a 6-cell sorter using primitive elements 106

Fig. 6.13: Construction of an 8 -cell sorter ST(8) using primitive elements 107

Fig. 6.14: Realization of a 2m -cell sorter ST(2m) using primitive elements 108

Fig. 6.15: Primitive sorter 110

Fig. 6.16: Circuit diagram of the ST 113

Fig. A . l : A T M cell format and header components 133

Fig. A.2: An A T M switch 135

Fig. A.3: Shared buffer switch architecture 137

Fig. A.4: The buffer manager at each output port of an A T M switch 141

Fig. B . l : Two-phase signalling scheme 145

Fig. B.2: Four-phase signalling scheme 146

Fig. B.3: Two-phase FIFO structure 150

Fig. B.4: Four-phase FIFO structure 151

x

To the memory of my father

xi

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Dr. Hussein Alnuweiri, for his

friendly guidance and support throughout the progress of this thesis. My deepest appreciations go

to Drs. Mike Jackson, and Steve Wilton for their valuable and enlightening discussions. I am also

grateful to Drs. William Dunford and Alan Wagner for their helpful suggestions. My special

thanks to Dr. Fayez El-Guibaly from University of Victoria for his helpful comments to bring this

thesis to fruition.

Finally, I am indebted to my mother who has always encouraged me in following my dreams.

Last but not least, my foremost appreciations go to my wife Elham, without whose love,

inspiration, and support this path would likely not have been traversed.

xii

C H A P T E R 1

Overview & Motivation

The advances in data communications over optical-fibre serial links has paved the way for the

development of high-speed packet switching technologies such as A T M (Asynchronous Transfer

Mode) and wire-speed IP (Internet Protocol) packet forwarding. Until a few years ago, the

performance of the Internet was limited by the speed of the long-haul links, not by capacity of

switches and routers. However, the advancements in switch/router technologies have not kept

pace with advances in optics, and with the rapid provisioning of higher speed links (such as the 10

Gigabit per second Sonet OC-192), and the introduction of wavelength division multiplexing

(WDM), the bottleneck has moved from the links to the switches and routers. Carriers are

1

currently deploying very high-density OC-192 dense wavelength division multiplexing (DWDM)

systems, and leading D W D M vendors have already announced availability of 40 Gigabit per

second (Gb/s) OC-768 systems in the near future1.

The demand for bandwidth is soaring and today's networks lack the ability to scale network back

bone capacities at aggressive rates to accommodate this increased demand for bandwidth. The

explosive growth of Internet users, the increased user demand for bandwidth, and the declining

cost of technology have all resulted in the emergence of new classes high-speed distributed IP-

router architectures with packet-forwarding rates on the order of Terabits per second (Tb/s) .

This recent and unprecedented growth in bandwidth availability, poses a heavy load on the under

lying infrastructure, and there is an immediate need for backbone switch/routers that can scale to

support these demands. There are a broad range of architectures and techniques being proposed,

and several enhanced router architectures have been introduced to meet the demand of the ever

growing bandwidth requirements of the Internet. Vendors have been able to introduce routers that

offer a range of Tb/s of non-blocking switching capacity4. Similarly, current commercial A T M

switches support link speeds reaching up to 10 Gb/s (over Sonet OC-192), and experimental

switches are supporting link speeds of 40 Gb/s 5 [1], [2]. Implementations of these networks

require the development of new hardware architectures using advanced VLSI technology that are

capable of handling large amounts of traffic with throughputs on the order of Gb/s. Moreover,

supporting quality-of-service (QoS) in packet networks requires deploying more sophisticated

1. See http://www.eetirnes.com/news/98/1026news/40-gbit.html
2. See http://www.pluris.com/html/product.html.
3. Such routers are known as switched routers or routing switches because they normally employ a switch

ing fabric and distributed architecture for forwarding packets across the router ports. These routers are
also called layer-3 switches, wire-speed routers, or hardware-based routers.

4. See http://www.pluris.com/html/product.html and http://www.alliancedatacom.com/lucent-nx64000.htm.
5. See http://www.cisco.com/univercd/cc/td/doc/product/atm/index.htm.

2

http://www.eetirnes.com/news/98/1026news/40-gbit.html
http://www.pluris.com/html/product.html
http://www.pluris.com/html/product.html
http://www.alliancedatacom.com/lucent-nx64000.htm
http://www.cisco.com/univercd/cc/td/doc/product/atm/index.htm

queuing policies in the switching or routing nodes. The first-come first-serve (or FIFO) discipline

is no longer adequate in networks that provide service differentiation. Providing QoS guarantees

in both cell- and packet-based networks requires the use of a scheduling algorithm in the switches

and network interfaces. These algorithms need to be implemented in hardware in a high-speed

network. At minimum, some level of priority scheduling must be supported. In more advanced

applications, buffers with rate adaptation features must be deployed between the switch and exter

nal links.

The main challenge is maintaining the correct operation at very high speeds. As the combined

forces of increasing traffic levels and escalating performance demands continue to push network

infrastructures to their limits, new buffering structures are required which can be scaled to match

the ever-increasing link speeds. Such queuing structures are necessary for implementing packet

buffers in switches and routers that have multi Gb/s ports.

Satisfying the QoS requirements for high-speed modern packet switching networks such as A T M

requires a combination of high-level architectural synthesis methods (system design level), the

use of state-of-the-art circuit design techniques, and the efficient realization of distributed control

policies. However, advances in device technology cannot alone meet these demands or it would be

cost prohibitive. Even though, the use of deep submicron CMOS technology as the industry stan

dard for IC manufacturing will eventually enable designers to integrate a variety of components

into a system-on-a-single chip solutions, limitations of deep submicron technologies can still limit

the clock speed.

Therefore, there is an immediate need to achieve speedups using other techniques such as parallel

processing. Employing parallel processing approaches to solve the scalability problem, this thesis

3

develops effective VLSI design methodologies for implementing scalable buffering schemes for

high-speed networking applications, and presents a number of novel approaches. Our approaches

combine the concepts of parallelism, pipelining, dynamic reconfiguration, and interconnection

structures in a unified framework of system design and VLSI implementation.

1.1 Buffer Management for High Speed Links

The ultra high data rates of optical fibre links can not be matched directly by the microelectronic

interfaces and components deployed in today's packet switches. Techniques such as serial-to-par

allel conversion and byte staggering (or multiplexing) are normally employed at the opto-elec-

tronic interface to bring the "parallel" data rate down so that it can be handled by VLSI circuits

running at a typical clock rate of up to few hundred MHz. The process is depicted in Fig. 1.1 for

serial to parallel
conversion super demultiplexer

SONET OC-192

10 Gb/s

-H8 x 1.25 Gb/s

8 x 300 Mb/s
/ I I I I

m r
j. n r m

Z L

8 lines
@ 1.25 Gb/s

4 lines (8 bit each)
@ 2.5 Gb/s

Fig. 1.1: Serial-to-parallel conversion and byte staggering at the opto-electronic interface

4

an OC-192 link that supplies data at a rate of about 10 Gb/s to a switch line-card with high-speed

input buffers (and byte-wide inputs) which are triggered by 300 M H z clocks, i.e. each buffer has

an input rate of 2.5 Gb/s. Because low-cost memories are still limited in speed, a 2.5 Gb/s buffer

will likely be constructed from an interleaved, or a wide data-word, memory structure. Although

faster memory technologies can be employed, such as R D R A M [3], this would normally increase

the buffer cost significantly and would not be the ideal solution for the large capacity buffers nor

mally associated with high-speed links.

The demand on the internal and/or the output buffers of a switch will be even higher because of

the possible instantaneous traffic aggregation from multiple links over an outgoing link. To main

tain low packet loss, it is not uncommon to have the output buffers supporting an input packet rate

several times that of the input link rate, even for well-behaved input traffic [1]. For example, with

10 Gb/s input link rate, an output buffer that receives packets from up to four input links, simulta

neously, must have an aggregate input rate of 40 Gb/s. Supporting this rate require using a parallel

arrangement of at least sixteen 300-MHz FIFO buffers with an 8-bit data-path and the associated

demultiplexing and multiplexing circuitry. Implementation problems do not stop there. A very

undesirable effect of using a parallel FIFO buffer arrangement is the possible out-of-order deliv

ery of packets to the outgoing links. In A T M , preserving the order of cells is mandatory. In this

case, costly cell reordering must take place before the cells leave the switch.

1.2 Packet-Scheduling

Providing QoS guarantees over packet-switched networks, such as the Internet, relies crucially on

the scheduling and buffer management capabilities of the network switches and routers. Packet-

switched networks with efficient packet-scheduling mechanisms can support the diverse QoS

5

requirements of various real-time applications.

Multimedia sessions may have QoS specifications that include bounded end-to-end delay,

bounded delay-jitter, bounded cell-loss rates, and guaranteed minimum link bandwidth. Schedul

ing is required to order packets, for example, to satisfy delay bounds of real-time sessions or to

enforce fair bandwidth allocation for sessions sharing a link.

Packet-switched networks exploit a variety of scheduling schemes to provide the QoS guarantees

for each connection. Priority-based scheduling is one of the most widely used techniques in

packet switches and routers. In this scheme, packets are organized in different priority levels and

served according to their priorities. Normally a packet is assigned an attribute which becomes its

priority number and it is appended to the packet as an additional field. Packets in a buffer are then

ordered and delivered according to their priority value by the scheduler. For example, the priority

number may be a finish-time computed by a weighted fair queuing (WFQ) algorithm [4], [5], or a

class index assigned by a class-based queuing (CBQ) algorithm [6], [7], etc. In any case, access

ing the highest-priority packet requires the use of a priority queue structure. By definition a prior

ity queue is a queuing structure for which the dequeue operation always removes the highest (or

lowest) priority element in the queue. Arbitrating between a large number of packets on a high

speed link requires an efficient hardware implementation of a priority queue. In high-speed net

works, the main challenge is maintaining the correct operation of the priority queue at very high

link speeds, e.g. 2.4 to 40 Gb/s [1].

6

1.3 Main Contributions & Thesis Organization

This thesis presents a number of new approaches for designing fast, scalable queuing structures in

VLSI for very high speed packet-switched networks. Such queuing structures are necessary for

implementing packet buffers in switches and routers that have multi Gb/s ports. Chapter 2 will

draw some comparisons between systolic and non-systolic processing techniques, and survey

shared buffer and priority queue hardware implementations. It will also point out how these issues

have been addressed by various investigators.

The main objective of the thesis is to develop effective V L S I design methodologies for imple

menting scalable buffering schemes for high-speed networking applications. The thesis addresses

the design of two specific architectures: balanced parallel multi-input multi-output (MIMO)

buffer, and systolic parallel priority queue (PPQ). In the following, we elaborate on these two con

tributions and compare them to previous related research.

Balanced Parallel MIMO Buffer: The thesis presents a methodology for the systematic

design of order-preserving MIMO buffers. Using this methodology we derive scalable parallel

FIFO buffer structures that can be designed to match the rate of ultra high-speed links using cur

rent memory technology that uses moderate clock rates. Chapters 3 and 4 develop the design con

cept and VLSI implementation for a parallel M I M O buffer structure which can be used in ultra

high-speed network interfaces and similar applications. The buffer is capable of inputting and/or

outputting multiple packets while maintaining their FIFO (first-in first-out) order. These two

chapters focus on buffer design for fixed-size packets, such as A T M cells (see Appendix A), but

the design strategy can be extended to variable-length packets. Some applications of the MIMO

buffers are outlined in Chapter 3 too.

7

Our approach employs a systolic routing network and bank of parallel FIFO buffers to yield a

load-balanced multi-input multi-output FIFO realization with increased bandwidth [8], [9]. The

MIMO buffer adaptively manages the available buffer space for statistically multiplexed input

traffic. Our systolic routing network provides significant advantages over previously proposed

banyan/butterfly networks since the systolic network eliminates the need for parallel-prefix adders

that compute packet ranks before concentrating them on the output ports. The combined use of

pipelined architecture and dynamic CMOS circuits resulted in significant reduction in design

complexity and substantial performance gains in speed and area. A small 4-input 4-output proto

type buffer has been designed using a triple-metal/single-poly 0.5-u m CMOS technology to dem

onstrate our concepts. The buffer can attain a rate of 10.6 Gb/s which is more than adequate to

support a Sonet OC-192 link.

Although the idea of using a parallel arrangement of FIFO buffers to realize a faster shared FIFO

buffer has been around since the inception of the Knockout A T M switch [10], our realization and

use of such buffer structures differ significantly from previous approaches, as will be pointed out

in the next chapters. Our design approach is truly scalable and has real advantages from VLSI per

spective. Also, in our designs, load-balancing is done using arithmetic-free circuits. As it will be

explained in more details in Chapter 2, typically load-balancing is done using a multistage net

work of adders to do packet-ranking, and routing is done by a second pass through another multi

stage network as was done in the Knockout switch [10], and Multinet switch [11], [12].

8

Systolic Parallel Priority Queue: The thesis also generalizes the priority queue concept to

a parallel priority queue (PPQ) which can be scaled to meet the requirements of ultra high-speed

links using standard CMOS technology. Chapters 5 and 6 present an area-efficient, systolic design

of the PPQ for VLSI implementation. The proposed PPQ is rate-adaptive in the sense that the

PPQ operates correctly even when the queue input rate and output rate are different [21]. This is

an important feature because in practice the output rate of the queue is controlled by the available

link bandwidth which may vary (or even become zero) independent of the packet arrival rate. This

decoupling of the input and output packet flow rates is a distinguishing feature of our PPQ con

cept and has not been addressed in previous literature [22].

In many real applications, it is desirable to decouple the input process to the PPQ from the output

process. Specifically, the PPQ outputs may be intermittently blocked from sending cells due to a

link congestion. This process is usually called output rate-adaptation, and it requires significant

modifications to the conventional architectures. To provide rate-adaptation capability to our PPQ,

we strategically employ data steering blocks, between pipeline stages of PPQ, which are con

trolled by a global "go/stop" signal.

In non-systolic architectures, data insertion is normally performed over a global bus connected to

the inputs of all the modules in the queue [23], as it will be explained in Chapter 2. This creates a

bus loading problem, which adds to the hardware costs (buffers), and decreases the maximum

operating speed of the queue clock [24]. In a systolic PQ implementation, the clock can be faster,

but technology limitations can limit the clock speed. This problem is more serious when dealing

with ultra-fast data links operating at 10 Gb/s (e.g. Sonet OC-192) to 40 Gb/s (e.g. Sonet OC-768)

rate. In this thesis we employ a parallel processing approach to solve this scalability problem for

9

systolic PQs. Our approach embodies a combination of hardware design with more theoretical

parallel processing concepts. The combined use of a systolic structure, and dynamic CMOS cir

cuits facilitated the balancing of design complexity and performance gain, as will be shown in

Chapters 5 and 6.

10

C H A P T E R 2

B a c k g r o u n d & S u r v e y

Buffering structures are integral components of packet networks. With the rapid proliferation of

high speed packet-switching systems, the demand for high speed data buffers and scheduling net

works has increased. Special requirements for such applications, suggest the use of customized

memory-based architectures such as parallel buffers and priority queues. Before proposing effi

cient scalable queuing architectures to implement buffering and scheduling schemes using current

VLSI technology, this chapter reviews previously proposed techniques for designing these buffers

and queuing structures.

11

2.1 Parallel FIFO Buffers

We start this section by considering previously proposed techniques for designing parallel multi-

input multi-output (MIMO) buffers that preserve the FIFO ordering of cells. It is worth mention

ing that such buffers have been also called "shared" FIFO buffers in previous literature and have

been used before in several switch designs, for example, see [10]-[20].

As shown in Fig. 2.1, if a high-speed buffer is constructed from multiple FIFO buffers (as dis

cussed in Chapter 1), then a dynamic balanced distribution network (BDN) stage is needed to

pack and shift the incoming cells so as to balance the load on all FIFO modules while preserving

the arrival order of the cells at the same time. The buffer shown in the figure has 5 input ports and

5 output ports. The five ports are labeled a, b, c, d, and e. The labeled squares in the figure repre

sent cells arriving in three different time-slots (1,2, and 3), and the label of each cell indicates its

arrival time-slot and arrival port. For example, the square label (2c) represents a cell arriving on

port c in time-slot 2.

Typically load-balancing is done using a multistage network of adders to do packet-ranking, and

routing is done in a second pass through another multistage network as was done in the Knockout

switch [10], and Multinet switch [11], [12]. Note that the B D N packs incoming cells in adjacent

output locations and shifts them appropriately to achieve a balanced loading of the FIFO buffers.

Note also the order of cell arrivals is preserved. Fig. 2.1(b) shows the dynamic configuration of the

B D N in each time-slot. In short, the B D N distributes cells arriving in the same time-slot among the

FIFO buffers in a cyclic (or round robin) fashion so that the difference between the contents of any

two buffers does not exceed one cell. Note, that load balancing eliminates the need for combina

tional concentrators and restricts the causes of cell loss to buffer overflow only.

12

TIME-SLOT

3 3d 3c 3b 3a

Incoming cells
in 3 time-slots

2

1

2e 2c 2a

l e Id lb

Cells following
pack-and-shift

a
IBalanced Distribution Network!

(BDN)
E D B

T"
A

T
3d 3c 3b 3a

2c 2a 2e

le Id lb

F I F O buffer bank

C e l l sequence
preserved 3d

2c

f

(a)

le l id i b

A.
\

l e Id l b

First time-slot

2e

L i
2c| |2a

A
ML.

2c 2a

Second time-slot

1
3d 3c 3 b 3a

/ / / /

/ / / /
tc * a a

3d 3c 3b 3 a
1 Third time-slot

(b)

Fig. 2.1: (a) Operation of a shared-buffer that preserves the cell arrival sequence
(b) Illustration of pack-and-shift approach in three time-slots

Several schemes have been proposed to achieve the B D N function using multistage interconnec

tion networks (cf. [25], and the references therein). To perform the pack-and-shift function, cells

are first packed using either a concentrator or a routing network then shifted cyclically to distrib

ute the packed cells evenly among the FIFO buffers at the output. Both the pack and shift func-

13

tions can be implemented by the well known butterfly (which is a banyan type) network [25]. The

butterfly network nodes must have an arithmetic addition capability to perform parallel prefix

addition for ranking the cells arriving at the same time in a given order. Ranking the cells can also

be done by a low-latency adder network, such as the one described in [25].

Fig. 2.2 shows how cells can be packed and shifted (after they have been ranked) on a butterfly

network for a 5 x 5 (5 -input/5 -output or 5 I/O) buffer architecture. Referring to the example in

Fig. 2.2(a), the three cells labeled lb, Id, and le, are first assigned the ranks 0, 1, and 2, respec

tively, then packed by a butterfly network. These ranks will be used as local routing headers to

route these cells to output ports 0, 1, and 2 using a greedy self-routing strategy. At the output of

the ranking network of Fig. 2.2(a) the cells appear labeled by their computed ranks. Fig. 2.2(b)

illustrates a situation where the cells are ranked first, then packed and shifted cyclically by 3 posi

tions. The shift-offset function modifies the ranks of the cells, so that they can be packed and

shifted by the same butterfly network as the one used in Fig. 2.2(a). The routing procedure utilizes

the monotonic routing property of the butterfly to pack-and-shift input cells with no path conten

tion.

It is clear that the above realization of a B D N adds a high degree of complexity and latency to the

buffer design. This approach has been employed in the Multinet switch [11], [12]. The internal

buffers in the Multinet switch implement a partial buffer (PS) sharing discipline that maintains

cells in the correct order [11]. Each PS buffer in the switch is constructed using a reverse banyan

network (similar to the butterfly network illustrated in Fig. 2.2), of appropriate size, that feeds

cells to a bank of FIFO buffers. The reverse banyan network is equipped with a Fetch-and-Add

capability that contributes to balancing the load in the bank of FIFO buffers constituting the PS

14

Rank the cells

l e j N

Ranking Network

Y Y Y Y
l e

(a)
Id l b

Rank the cells

Shift amount (3)
added to the ranks
(base 5)

2e 2c 2a

Ranking Network

Shift-Offset

Y Y Y Y Y Y Y Y
2c 2a 2e

(b)

OJ cell with rank 000

[T J cel l with rank 001

|~2~| cel l with rank 010

[3] cel l with rank 011

["4] cell with rank 100

Fig. 2.2: (a) Packing ranked cells on a butterfly network
(5 I/O - first time-slot)

(b) Packing and shifting ranked cells on a butterfly network
(5 I/O - second time-slot)

15

buffer space. Despite claims of simplicity, the Multinet switch is actually complex and cells can

experience significant delays, mainly because of the structure of the PS buffers. The Fetch-and-

Add reverse banyan network employed in each PS buffer performs arithmetic as well as routing

operations. Three passes of computing and routing through the reverse banyan are required before

cells are finally fed to the bank of FIFO buffers of PS buffer [12]. In current deep submicron

CMOS technologies, the delay in signal propagation over longer wires becomes a significant

design limitation, particularly for a shared buffer architecture with large number of I/O ports. This

limitation is particularly applicable to high wire organizations such as the butterfly network (or

reverse banyan network) typically used in interconnection networks [25].

A somewhat different approach has been employed by the Knockout switch [10] and many of its

realizations (such as the growable packet switch [13], [14], and the M O B A S switch [16]) to

achieve load balancing. The knockout approach employs a lossy deep multi-stage concentration

network followed by a shifter network, as shown in Fig. 2.3. The concentration is performed by

N-to-L combinational tournament circuit, in which packets losing contention are knocked-out

[10]. The parameter L (for the N-to-L concentrator) is selected in the Knockout switch to achieve

a particular cell loss, and cell loss can be reduced by increasing L. The original Knockout concen

trators have depth proportional to N , and their complexity as well as delay can be substantial for

large N .

The PINIUM switch [18] is basically another Knockout switch with the concentrators modified to

perform priority routing of cells. Each such concentrator is constructed from modified bitonic

sorters and mergers [18], [25]. An N-to-L concentrator is constructed iteratively from L-input

bitonic sorters and 2L-to-L bitonic mergers. As in the Knockout switch, the value parameter L

determines the cell loss ratio in the memoryless routing and concentrating part of the switch. The

16

INPUTS
1 2 3 4 5 N

CONCENTRATOR

2 • • •

SHIFTER

PACKET
BUFFERS

1 2 L

OUTPUTS

Fig. 2.3: Structure of a shared buffer in the Knockout switch

main weakness of the switch is the use of sorters in the priority concentrator blocks. The sorters

can incur significant routing delays in large scale versions of the switch. The delay caused by the

use of sorting in the priority concentrators becomes unacceptable at high link speeds. It is also not

clear whether the use of priority concentration can lead to unfairness.

In the Helical switch [19], which is a self-routing multistage banyan network with output as well

as internal buffers, each internal buffer consists of a non-blocking concentrator feeding a bank of

FIFO buffers. Each non-blocking concentrator is constructed using a running adder and a two-

17

dilated reverse banyan network of appropriate size. Correct cell sequence is maintained by the

concentrators. A concentrator routes the incoming cells to the next available concentrator output

in round-robin order. At the concentrator output dummy cells are generated and inserted into the

proper FIFO to maintain the integrity of cell ordering. The dummy cells generated by one stage of

concentrators are not routed by the next stage of concentrators, rather they are used to create idle

cycles that keep later cells from advancing past earlier cells. The concentrators employed in each

stage of the switch can cause significant cell delays. This is caused by the insertion of dummy

cells in internal FIFOs as well as the delays caused by the running adder. In other words, the

delays will grow as the number of stages increase in large switches and the insertion of dummy

cells in internal buffers will aggravate this problem. Additional hidden delays are caused by the

running-adder operations in the reverse banyan networks employed in every stage.

One of the main contributions of this thesis is a very efficient implementation of the pack-and-

shift function using a dynamically reconfigurable systolic interconnection array which is managed

by two simple distributed controllers. The systolic architecture essentially realizes a pipelined

switch array with embedded load-balancing and order-preserving capabilities (see Section 2.2 for

definition of systolic architectures). To our knowledge, the work on parallel FIFO implementation

has been done mainly under the concept of shared output buffer design in high speed packet

switches as reported in [10]-[20]. Our work improves on these techniques by proposing an arith

metic-free, pipelined, load balancing network that forwards cells to a parallel MIMO FIFO bank

[8]. Our design approach is based on a three-stage VLSI architecture as shown in Fig. 2.4 [9]. The

first stage (BDN) is a systolic array of simple switches which performs load-balancing and

ensures proper cell ordering. The second stage is a bank of single-input single-output FIFO buff

ers which operate in parallel. We enhance the flexibility of the design by adding a rotating multi-

18

Fig. 2.4: M I M O buffer and its symbol

plexer (or R M U X) at the output to adapt the buffer rate to that of the output link.

In the system design of the M IMO buffer the following objectives have been pursued: 1) maxi

mum buffer space, 2) minimal routing delay, and 3) packet arrival in the correct order [26]. In

Chapters 3 and 4, the detailed structure of the above realization is reported. Here, it is worth men

tioning that because of the uniform structure of the proposed M I M O buffer, it has the advantages

of simple synchronization and expansion due to the modular structure of the systolic switch array.

It is a truly scalable architecture, and amenable to simple VLSI implementation. As shown in Fig.

2.5, if a rotating multiplexer (RMUX) is applied in the last stage of the parallel buffer, the buffer

can also be employed as an A T M access point or as a buffer concentrator [26]. In addition to their

use in high speed interfaces, these buffers can be utilized in a number of switch architectures [27].

Some of these applications are addressed in Section 3.5.

19

Fig. 2.5: (a) Parallel buffer, (b) A T M access point, and (c) Buffer concentrator

2.2 Priority Queues

As mentioned in Chapter 1, priority queues are essential in implementing link-scheduling algo

rithms. Priority queues can be implemented in software or hardware. Due to the high speed at

which the networks operate, a hardware priority queue is needed to transmit packets at link rates.

For example, in a 10 Gb/s A T M network, an A T M cell can be transmitted every about 42 ns. In a

worst-case scenario the priority queue must determine the next highest priority cell (dequeue

operation) every 42 ns, while being able to accept new cells (enqueue operation) from all incom

ing links within the same time unit. Software solutions are typically not fast enough to keep up

with this packet transmission rate [24]. On the other hand, a scalable hardware solution can oper

ate close to the operating speeds of the link. Also, a hardware solution can overlap enqueue and

dequeue operations with packet transmission to avoid wasting link bandwidth. In hardware imple

mentations, a sequencer determines the departure sequence for the packets that are stored in a

buffer bank. In general, hardware solutions can be categorized in two families: systolic and non-

systolic.

20

Systolic Arrays: The term systolic array, which became popular in the early 80's, refers to certain

processing structures with regular cellular organization and a large number of neighbouring pro

cessing elements with same function [28], [29]. They communicate via direct physical intercon

nections only with a limited number of adjacent processing elements to exchange data. Therefore,

interconnections are local and in a regular pattern. VLSI technology has made one thing quite

clear: simple and regular interconnections have substantial advantages over complicated intercon

nections. The original motivation for proposing the systolic array concept was their high effi

ciency for implementing VLSI systems [28]. Being highly regular and modular structures, they do

not suffer from the VLSI design problems which are typical of other systems. Fitting the principal

constraints imposed by VLSI design and technology, the systolic systems should, in principle, be

able to profit from VLSI as a potential implementation means [29].

A systolic priority queue architecture typically consists of a large number of similar processing

elements which are interconnected to exchange data. In fact, many processors work in parallel and

the data is processed and transferred by pipelining (as will be described in Chapter 5). The first

systolic priority queue was proposed by Leiserson [30]. In recent years, systolic [31], and non-

systolic [33], priority queues were proposed for high-speed network buffers.

In non-systolic architectures [34], data cell insertion is normally performed over a global bus con

nected to the inputs of all the modules in the queue. A priority queue always serves the packet that

has the highest priority. It determines the departure sequence for the packets that are stored in a

buffer bank in such a way that higher priority values are always at the right of lower priority val

ues so they will be accessed sooner. Each entry in the priority queue contains the pair (P,A), where

P is a priority field and A is an address pointer to a packet in a packet memory. In a non-systolic

hardware structure, as shown in the example in Fig. 2.6, these pairs are stored in the sequencer in

21

a descending order. Now, let us consider an example of a newly arrived data cell with P=5 and

A=An. This pair is broadcast to all modules. A l l pairs on the right of A-, including the A - itself,

remain at their positions while others shifted to the left, and the vacant position is replaced with

the new pair (5,An). When the PQ is full, the priority field at the leftmost position of the

sequencer is compared to that of the newly arrived data cell. If the new's one is smaller than it, the

pair (P,A) at the leftmost position is pushed away from the sequencer as the new pair is inserted in

the sequencer.

(5, A„) I
Priority:

Address:

BUS

I TTTT I
15 8 5 4 3

A/
AJ \

After Insertion

15 8 5 5 4 3

AJ

Fig. 2.6: Inserting a new arrival into a non-systolic PQ

22

priority

Write
Controller

1
select

CMUX

Priority Queue
shiftin shiftout

cell

wr
wr-ad rd-ad

Cell Buffer
in out

Fig. 2.7: Buffer manager structure

Fig. 2.7 shows a typical buffer manager structure for an A T M switch (see Appendix A) that uses a

priority queue or sequencer [32]. The buffer manager consists of a cell multiplexer (M inputs and

one output), a cell buffer, an idle-address FIFO, read and write controllers, and a priority queue.

The cell multiplexer (CMUX) located after a switch fabric receives and multiplexes up to M cells

from the switch fabric, where M is the number of cells that are routed through an A T M switch net

work and arrived at an output port. Cells from the inputs are multiplexed onto the cell buffer at

idle-addresses retrieved from a FIFO (only valid cells are stored in the cell buffer). The read/write

23

controllers generate proper control signals for all other functional blocks. The buffer manger

always serves the cell that has the smallest priority value of the P first and they wil l be accessed

earlier by the read controller. In the buffer manager structure, the sequencer determines the depar

ture sequence for the cells that are stored in the cell buffer.

In the non-systolic architecture presented in [34], which is one of the only few dedicated priority

queue designs to be implemented in silicon, a bus structure has been used to access all of the buff

ering modules. At each module the data cell on the common bus is compared to the data cell in the

module. However, because data insertion is performed over a global bus, the queue cannot operate

at very high speed. As seen in Fig. 2.6, before any decision can be made by each module during

an enqueue operation, the new entry must be present at the inputs of all modules. At the VLSI

level, the bus must be routed all over the queue. This creates a bus loading problem, which adds to

the hardware costs (buffers), and decreases the maximum operating speed of the queue clock [24].

The design presented in [36] is also a priority queue controller designed for use in A T M switches.

The chip provides no data storage, but rather maintains a separate logical FIFO queue in external

R A M (random access memory) for each of its four supported priority levels. Although this sim

plifies comparator logic, maintaining separate FIFO's is impractical in the presence of a larger

number of priority levels. Moreover, since A T M switches have equal input and output data rates,

this chip was not designed to accommodate different read and write clock speeds.

A binary tree comparator architecture was presented in [37] whose output is the highest-priority

entry among those in a storage. The architecture consists of a storage block and a comparator tree.

A feedback mechanism is also applied in the design to remove the output of the tree from storage.

Problems with this design include bus loading problem for distributing the new entry to each stor-

24

age element in the storage block, and increased dequeue time resulting from an increase in depth

of the comparator tree. A possible solution to the increased dequeue time is to pipeline the com

parator tree operation to reduce the clock period and increase performance [24].

Chapters 5 and 6 present an alternative design technique using systolic design concept, which can

achieve higher speed, to meet the requirements of ultra high-speed links using standard CMOS

technology [22]. The proposed PPQ has several applications in implementing real-time fair

schedulers or buffer management algorithms in packet routers.

25

CHAPTER 3

Parallel FIFO Buffers

for Gigabit Packet Networks

3.1 Introduction

This chapter presents a methodology for the systematic design of order-preserving multi-input

multi-output (MIMO) buffers for large scale or ultra fast packet switches. It focuses on buffer

design for fixed-size packets, such as A T M cells, but the design strategy can be extended to vari

able-length packets. These buffers are capable of inputting and/or outputting multiple packets

while maintaining their FIFO (first-in first-out) order, and can be used in ultra high-speed network

interfaces and similar applications. Our approach employs a systolic routing network and bank of

26

parallel FIFO buffers to yield a load-balanced M I M O FIFO realization with increased bandwidth

[8]. The MIM O buffer adaptively manages the available buffer space for statistically multiplexed

input traffic. Our systolic routing network provides significant advantages over previously pro

posed banyan/butterfly networks since the systolic network eliminates the need for parallel-prefix

adders that compute packet ranks before concentrating them on the output ports [9]. Also, in our

designs, load-balancing is done using arithmetic-free circuits.

Using this methodology we derive scalable parallel FIFO buffer structures that can be designed to

match the rate of ultra high-speed links using current memory technology that uses moderate

clock rates. Our design approach is truly scalable and has real advantages from a VLSI perspec

tive. As it was described in Chapter 2, if a high-speed buffer is constructed from multiple FIFO

buffers then a balanced distribution network (BDN) stage is needed to pack and shift the incoming

cells so as to balance the load on all FIFO modules while preserving the arrival order of the cells

at the same time. Our design approach is based on a three-part VLSI architecture as shown in Fig.

3.1. The first part is a systolic two-dimensional array (folded crossbar) of simple switches which

performs load-balancing and ensures proper cell ordering. The second part is a bank of single-

input single-output FIFO buffers which operate in parallel. The last part is a rotating multiplexer

(RMUX) which adapts the buffer output rate to the output link rate. Note that the folded crossbar

is used for load balancing in a single MIMO buffer and not for general routing of packets.

An example of how MIM O buffers can be used in a multistage switch is shown in Fig. 3.1. Note

that a M I M O buffer spreads its cells equally among its output links thus achieving load balancing

on the links as well. Each bundle of links connected to the output of a MIMO buffer can be

viewed as a "super link" with aggregate bandwidth equal to the total bandwidth of its individual

links. The proper operation of multiple stages of MIMO buffers is possible because of their order

27

Stage i

o c
in
in
S

IO a Balanced Distribution
Network FIFO Bank Rotating Multiplexer

MIMO Buffer

z
TJ
C
H

+ 2
U
C
H

Fig. 3.1: MIMO buffer in a multi-stage switch and its symbol

preserving capability.

The rest of the chapter is organized as follows. The next section outlines the basic operation of the

MI MO buffer. The buffer architecture and its main components are presented in Section 3.3. Sec

tion 3.4 describes the operation of a balanced distribution network (BDN) and illustrates its pipe

lined operation and dynamic reconfiguration for load balancing. In Section 3.5 some applications

of the M I M O buffer are discussed, followed by a summary in Section 3.6.

28

3.2 MIMO Buffer Design Principals

This section outlines the main principles underlying the VLSI design and performance of MIMO

buffers with the aforementioned properties. Our design approach exploits pipelining, parallelism,

distributed control, and dynamic reconfiguration, as key techniques for achieving scalability and

optimal buffer utilization. Pipelining increases switch utilization, and is used as the main tool for

maximizing hardware utilization. Both data and control paths are pipelined yielding a true systolic

design with short nearest-neighbor interconnections which is ideal from VLSI design perspective.

Parallelization of the data or packet path is employed as the main tool for achieving significant

speed gains in a scalable manner. However, parallelizing the buffer structure may lead to underuti-

lization of memory and wire resources and may also cause out-of-sequence packet delivery as was

pointed out earlier, hence the need for load-balancing and order-preserving control in the M I M O

buffer.

3.2.1 Basic Operation of the MIMO Buffer

The main contribution of this chapter is a very efficient implementation of the pack-and-shift

function using a dynamically reconfigurable systolic interconnection array which is managed by

two simple distributed controllers. The systolic architecture essentially realizes a pipelined cross

bar switch array with embedded load-balancing and order-preserving capabilities. Systolic cross

bar interconnection networks have better composite VLSI performance than other interconnection

networks that use higher wire area such as the butterfly and omega networks [25], especially in

submicron CMOS technologies. Crossbars have the advantage of employing short wire segments

only which allows the use of faster clock rates and achieves higher utilization of silicon area.

29

The proposed folded crossbar network is dynamically reconfigurable in the sense that the recon

figuration is achieved by locally adjusting the switch position within each switching element

based on single-bit information in the cell headers. Each switch element has a set of locally con

trollable switches which enable its I/O ports to be connected internally in various configurations.

Switch control provides for connection autonomy in the sense that different switch elements can

select different configurations based on local decisions made within the element. In the following

section, the structure of this realization is described.

3.2.2 The MIMO Buffer Structure

The proposed M I M O buffer consists of a balanced-distribution network (BDN) feeding a bank of

FIFO buffers, as illustrated in Fig. 3.2. A rotator multiplexer (RMUX) can be attached to the out

puts of the buffer bank to decouple their rate from the output link rate, as will be explained below.

Before proceeding to architectural details, it is useful to identify the main design parameters that

can be used to specify the MIMO buffer architecture based on aggregate bandwidth requirements

and the clock rate of the implementation technology. The main design parameters are:

k: the number of FIFO buffers used and also the number of input links to the MIMO

buffer assuming a constant data-path width of w bits (wires) per link,

m: the number of output links of the MIMO buffer assuming a constant width of w bits

(wires) per link, and

r. the rate of each input (or output) link.

Proper values for the above parameters are determined based on two key restrictions:

R: the aggregate link-rate (in bits-per-second) at the input of the M I M O buffer, and

c: the clock-rate of the M I M O buffer circuit.

30

Incoming
Cells

EH EH I S

B S E H S -

a

Balanced-Distribution Network
(BDN)

Sync. Signals'-

f V E C
: : i : : 3 i : : ± : : i : : :

I I

- 9 L

U
O
X

1 1

w
1 1

1 1

Folded Crossbar1

Switch Array

--------------- j
L _ _ _ _ _

A £ " B + C

Buffer
Bank

RMUX

Fig. 3.2: Internal structure of the buffer

Note that c is a parameter that depends mainly on the technology used. Because of the high-

degree of pipelining used in our design, c will be determined mainly by the access-time of the

FIFO buffers, since all other components have delays much shorter than that.

Given a FIFO buffer whose bit rate is r and clock rate is c, then r = c • w. To match an aggregate

input link rate of R, k input links and k FIFO buffers must be used, where k = \R/r~\. The

R M U X allows further design scalability by decoupling the FIFO rate from the output link rate.

This is an important property of the design since it is normally the case that the aggregate input

rate is higher than the aggregate output rate in the buffers of a packet switch. For example, if the

number of input links is an integer multiple of the output links, i.e. k = n • m form some integer

31

n, then an R M U X with k inputs and m outputs can be used to forward packets from the FIFO

buffers onto the output link. The R M U X samples the FIFO outputs m at a time, and visits all FIFO

outputs in n cycles. Essentially, the R M U X enables the MIMO buffer to operate as a buffered con

centrator which does not incur any packet loss unless the FIFO buffers are full.

As an example, consider the design of a MIMO buffer with an aggregate input rate of 10 Gb/s and

an output rate of 5 Gb/s, when the data-path width is w = 8, and the clock rate that can be sup

ported by the CMOS technology at hand is 320 MHz. In this case, the input link-rate is 2.5 Gb/s,

and so k = 4 , i.e. the M I M O can be designed using a 4 x 4 folded crossbar switching array, 4

FIFO buffers, and a 4-to-2 R M U X .

The scalability feature of B D N can be used to construct very high bandwidth packet memories

from standard FIFO memory units of moderate speed. Specifically, the B D N allows a packet

memory of bandwidth 2(k • r) to be realized from k memory units of bandwidth 2r each [9]. The

B D N also ensures equal utilization of the memory units under all traffic patterns. In the following

section we explain the B D N structure in more detail.

3.3 The Balanced Distribution Network (BDN)

The B D N is the primary routing engine in the MIMO buffer, performing both pack and shift oper

ations. Additionally, the B D N maintains the state of the last shift operation, which indicates the

position of the last FIFO buffer to which a cell has been forwarded. Maintaining this state is

essential for the load balancing operation. The 8 x 8 B D N shown in Fig. 3.3, is comprised of a

folded crossbar simple switching elements (SWTs), a horizontal controller (HOC), and a vertical

controller (VEC). For FIFO operation, the HOC and V E C are constructed from simple networks

32

Input Cells
0—ggj tr—NI \3LJL

— M — I f

& M T T = T x F = ^ b

ft M 1 F ^ = L ^ d

ft bei ^==^=^e

0—N ^^=WLk

Fig. 3.3: Internal Structure of an 8x8 B D N

of delay elements for the purpose of synchronizing the arrivals of cells and control signals at the

appropriate switching elements. In Fig. 3.3, SWTs are represented by squares while delay chains

are represented by circles labeled by the amount of delay, e.g. a circle labeled 5D represents a

delay chain of length 5, where a unit of delay corresponds to one clock period.

33

file:///3lJL

Increasing time

Input Port

" a "

" c "

" d "

[X]: empty cell
tc: clock period
T: cell period

t=to t=to+T t=to+2T
jxruTjrnjxrijmnJxriJuir^^

"b" ti M fr^-frU t r = ^ T X] 1 F = ^ r = 1
h — t 4 d t ^ H 3 c | f r = g F = h — E £ r — 5
h M fi=-M J F ^ * F = ^ = ^ J i = 1

'tĉ

Cell alignment
at HOC input

Cell alignment
at HOC output

Output Port

"A"
"B"
"C"
"D"

t=to+lltc
jxriJTJTruTrixLriJiJiJxnJxri^^

ti 1*1 1?=—aal 1 D m 1
t> M g D M 1

» M 1 ti M 1
tt 3 tl N 1

Cell alignment
at BDN output

Fig. 3.4: Input/Output port alignment of the B D N (crossed squares indicate empty cells)

The B D N operates in a synchronous time-slotted manner, with each time-slot equivalent to one

cell (fixed-size packet) time over a w-bit link. Cell arrivals are always aligned with the beginning

of time-slot for all B D N inputs. Within a time-slot, a B D N receives either a valid or an invalid (or

empty) cell. We assume that a special bit in the cell header is used to indicate whether the cell is

valid or not. Such empty cells will be removed of the cell stream during the packing operation in

the B D N . Note that before entering the B D N , the cells are passed through the HOC which routes

incoming cells through proper delay stages before they enter the B D N .

Fig. 3.4 explains the timing alignments of the cells at the input of the HOC for the 4 x 4 B D N

34

example of Fig. 3.2, also at the input of the folded crossbar (i.e. the output of the HOC), and at the

output of the crossbar before being written into the FIFO buffers. Note the difference between a

clock period which defines one time-unit versus a cell period which defines one time-slot. Basi

cally, the incoming cells (whether valid or empty) are always aligned at the HOC inputs. The

HOC then "staggers" the cells before entering the crossbar. This is a necessary step because cells

in the crossbar can turn-around and rendezvous with one another at a SWT as will be explained

later. However, before leaving the crossbar, the cells are aligned back again.

As mentioned above, the folded crossbar network consists of simple 2-input 2-output switching

elements. Cells enter a SWT from its north port (i.e. port DN) and/or from its west port (i.e. port

Dw). Based on its local state and the information available at its input ports, a SWT will steer the

incoming cells to the proper output ports. A SWT has a set of locally controllable transmission

circuits which enable its four I/O ports to be connected internally in various configurations.

As shown in Fig. 3.5, each SWT can be in one of two modes representing its local state: a cross

(or unswitched) mode and a toggle (or bar) mode. Normally, the SWT is in the cross mode, i.e.

cells from its north (west) port are routed to its south (east) port. Fig. 3.5 also shows the four pos

sible configurations of a SWT based on the type of simultaneous cell arrivals on its two inputs.

Note that empty cells are always routed eastwards where eventually they will be discarded (the

small solid black squares in Fig. 3.3 and other figures in this chapter indicate a cell-discard port).

On the other hand, valid cells are always routed southwards, except when both cell arrivals at a

SWT are valid cells. In this case priority is given to the valid cell from the north port, and the cell

from the west port is propagated eastwards until it is eventually switched to a south port. Other

possible states of the SWT will be discussed under dynamic load balancing on the B D N in the

35

Data North D

Data West Data East [) \

Data South

N
1 r

w

1 r

Empty(E)

Valid(V) v E E

V

Fig. 3.5: Two states of the switch element

next section.

The horizontal controller (HOC) synchronizes the entry of data cells, valid bit indicator and cell

length signals into the folded crossbar switch array. It ensures that cells are properly aligned when

they arrive at each switch element as shown in Fig. 3.4. The HOC function is realized by instanti

ating some delay elements as illustrated in Fig. 3.3. In Fig. 3.3, and other figures in this chapter,

we use the symbol D to denote a basic clocked delay element. Delay chains in the B D N are rep

resented by circles labeled by a multiple of D (e.g. 5D) indicating the length of the delay chain.

The basic delay elements ensure the integrity of the wavefront at any switch element. A delay ele

ment D is basically a clocked register of width w bits (w= 8 is assumed throughout this chap

ter). For proper operation of the B D N , we require such registers to be of the master-slave type. A l l

SWTs and delay elements are triggered by the same clock. Delay element nD can be defined as a

register with a delay equal to n clock periods [8].

36

Cel l Per iod

Valid-bit indicator

DW&DN D M . C e l l b y t e s ,)d>#C
CLK

I,.

jr\sV,

! i j i i

Increasing Time-4-

Fig. 3.6: I/O diagram of the SWT and cell format

Timing Details for a SWT: Before moving on to further discussion of the B D N operation, it is

important to clarify the timing details for a SWT during normal operation. A more detailed dia

gram of the SWT and its data input signals format are shown in Fig. 3.6. In addition to its 4 ports

(DW, DN, DE, and DS), a SWT has a clock signal (CLK), an enable signal (EN), and 5 addi

tional control signals: two input signals Iin, and Pin, and three output signals louV Pout, and

BAR. The I i n signal is used to indicate the beginning of a cell time-slot, while the Pin signal is

employed to determine whether two cells arrive at the DW and DN ports are valid or empty cells.

BAR is a special signal which is propagated among SWTs in the same column to maintain certain

state information, as will be explained in the next section. The correct operation of a SWT

assumes that two byte-aligned cells arrive simultaneously at the DW and DN ports and also syn

chronize with the Iin and Pin signals.

Pout and Iout are two delayed versions of Iin and Pin. As demonstrated in the last section, A T M

37

cells are propagated in the SWT array similar to a wave propagating along the diagonal direction

toward the bottom right corner. The control signals which communicate between adjacent SWTs

ease the synchronization problem. This requires the same phase to the signal arriving at each

SWT. For this reason, the Pin and Iin signals are applied from the top left of the SWT array, and

each SWT distributes these signals through the Pout and Iout output signals to its east neighbor

with the exception of the SWTs in the first column of the square array which disperse these two

signals to both their east and south neighbors. These signals have to pass through delay elements

in each SWT of the architecture as will be shown later. In order to increase speed and minimize

the silicon area of the switch elements, a modified version of domino circuits [38] has been

employed (as will be explained in Chapter 4). The operation of the B D N will be discussed in the

next section.

3.4 Dynamic Load Balancing on the BDN

This section provides additional details on the folded crossbar array architecture and how it per

forms load balancing on the FIFO buffers. We will start by illustrating the operation of an

"unfolded" version of the folded crossbar array, then provide a more formal description of the

folded crossbar architecture and control signals.

Consider the simplified 4 x 4 B D N architecture shown in Fig. 3.7. The crossbar switching array

consists of a primary (square) array and a secondary (triangular) array of SWTs, and both arrays

are arranged in an unfolded configuration. In the topologically equivalent folded crossbar version,

the secondary array is overlaid on the primary array so that the SWTs in column i of the primary

and column i of the secondary array are adjacent.

38

39

Fig. 3.7 illustrates the load-balancing action of the B D N under four waves of input cells according

to the arrival pattern of example of Fig. 3.2. For simplicity, we suppress unnecessary details of the

pipelined operation and explain the operation in terms of routing phases. In a routing phase all the

cells arriving in the same time-slot will be routed completely through the crossbar array, packed,

shifted, and stored in their destination FIFO buffers. A new routing phase is always started in the

primary array. In cases where the shift operation results in cells being pushed out of the rightmost

column of the primary array, the secondary array will complete the routing for such cells.

As shown in Fig. 3.7, the first routing phase will use the first three columns of the primary array.

We say a column has been "used" in a routing phase if one of its SWTs has been set to the toggle

mode. When a SWT is in the toggle mode, it will broadcast its status to all SWTs in the same col

umn (and to the V E C unit) over a special control line. This status is maintained by a special

"used" flag in each SWT. Therefore, in our example, the "used" SWTs can easily identify their

status through the "used" flag (i.e. output signal BAR in the actual SWT circuit). At the end of the

first routing phase, the three incoming cells will end up in FIFO buffers 1, 2, and 3.

In the second routing phase, all SWTs in the first three columns (i.e. columns used in the previous

phase) will be set to the cross configuration. Therefore, any incoming packets in the second phase

will bypass the first three columns of SWTs of the primary array and routing towards the FIFO

buffers will start at column 4 of the primary array as desired. The two incoming packets in the

second phase will be routed through column 4 of the primary array and column 1 of the secondary

array, and will end up in FIFO buffers 4 and 1 respectively. Once the last column of the primary

array has been used (column 4 in this example), the next phase always involves transferring the

state of the columns used in the secondary to the corresponding columns in the primary array, and

routing starts from the next available column in the primary array. In other words, we never start a

40

new routing phase at a column in the secondary array.

The state transfer is carried out by the V E C unit in a straight forward manner. Basically once a

SWT in some column j (j - 1 at the third routing phase of our example) of the secondary array

has been set to toggle mode, its column will be marked as "used" as was explained before. In the

next routing phase the status of columns 1 through j of the primary array is set to "disable" to mir

ror the state of the corresponding columns in the secondary array. In the example of Fig. 3.7, we

have j = l , and the third routing phase will start at column 2 of the primary array as shown.

Then, the fourth routing phase will begin at column 4 of the primary array as shown, i.e. j = 3 at

the fourth routing phase of the example. Note that last column (i.e. column N) of the primary array

is always set to "enable" (in all routing phases). Also, it is important to emphasize that a balanced

load on the FIFO buffers is always maintained at the end of each routing phase.

The details of the structure of a folded crossbar array are shown in Fig. 3.8. Note that the primary

2

array consists of N SWTs arranged in N columns and N rows, with each switch element Si •

(where i, j = 1, 2 , N) connected to each of four nearest-neighbor SWTs through its four

ports. The secondary array consists of N((N - l) / 2) switch elements T- . (where

i = 2, 3 , N and j = 1,2,N - I) arranged in a triangular plane with N - 1 columns and

N - 1 rows. Each switch element (SWT) Ci (where / = 1, 2 , N - 1) acts as a multiplexer,

selecting inputs from either the triangular array or the square array and switching them to the out

put ports. The appropriate number of clock delays are added to ensure that output cells in each

cell cycle appear at the output at the same time. Therefore, the total delay of the B D N is equal to

(3N -l)xtc, where tc is the clock period.

41

Fig. 3.8: Folded crossbar array of the B D N

The control of data flow through the folded crossbar is done in a distributed fashion using the

V E C and the status bits of the SWTs (i.e. BAR signals). As shown in Fig. 3.9, in the V E C unit

there are N, 1-bit register flags, such that register F{ is associated with column i of the primary

array as well as column i of the secondary array. The connectivity between the SWTs and a regis-

42

Reset

-HEN

-MEN

J . s b

BAR!

BARJ-

HIN
r . at BAR

II
Si (0
c

UJ
BART

JEN
rp O A

/ <+1, »•

WEN
'TT B,

BAR

T"

WEN
r at

N, i
BAR

Column i
(primary array)

Column i
(Secondary array)

VEC
Reset

F i } < ^
Reset Reset ! I Resetl

2

ra

£

c
E
o

ra
> .
i _ a

"D
C o o
<0
in c
E
3 o o
.o

ra >. k_
(0

E

CM
C

E
3
O

o

ra
>.
w ra

"D c o o
V
.52.
CM
c
E
3
O

u
.2

ra h_ k_
ra

RJ
E

ra
>.
La
(0

T J
C o o o
•52.
c
E
3
o u
p

ra
>.
k_ a E

• c
E

_3
O
u
.o

Fig. 3.9: Distributed control in the V E C

43

ter i is detailed in Fig. 3.9. Basically, a SWT in column / (of either array) which is set to a toggle

mode in the current routing phase, will force F(- output to "High" in the next routing phase. Since

Fi is connected to their Enable (EN) inputs, all SWTs in column i of the primary array will be

forced into the cross mode in the routing phase when Fl; = 1. Note that the Ft output does not

affect SWTs in the secondary array as well as SWTs in the last column (column AO of the primary

array, i.e. these SWTs are always enabled. This is because the secondary array SWTs must be

always ready to receive packets from the primary array where all new routing phases start. Also,

note that the broadcast delay is ignorable and the dominant delay will be the packet length.

Because data destined to a FIFO buffer may come from either the primary or the secondary array,

a 2-to-l multiplexer is used to select one of the two inputs. Such multiplexers are denoted by C- s

in Fig. 3.8. In any routing phase, only one of the two columns feeding a multiplexer is enabled.

Note that each primary array column is connected to the multiplexer through a delay chain of

length N (labeled ND in Fig. 3.8). This is to equalize the delays in the crossbar so that all packets

will start leaving the crossbar at the same time. Since in practical designs, the values that N can

take will not be very large, e.g. N < 8, the size of and delay of the folded crossbar will not be sig

nificant compared to packet length and buffering delays elsewhere in the design. Observe that

each switching element or delay element introduces one clock delay where a clock delay is equiv

alent to transmitting a unit of data (bit, byte,...) through a SWT. So the dominant delay will be the

packet length, followed by the much longer delay in the FIFO buffer (multi-packet delay, etc).

Actually, the delay of the B D N is completely transparent, because the packet head reaches the

output FIFO while its tail is still at the input port because we use a pipelined (wormhole) routing

technique. The packet timing in Fig. 3.4 illustrates these facts.

44

Alternative Design: The folded crossbar design described above performs both pack and shift

functions. In situations where an efficient design of a shifter (e.g. a barrel shifter) already exists,

the design of the folded crossbar can be greatly simplified since it now needs to perform only the

packing function. Two possible configurations of the packing crossbar network are shown in Fig.

3.10; the crossbar of Fig. 3.10(b) has a shorter overall delay as well as the minimal number of

SWTs.

(a) (b)

0-<JP

£—<m>-u—n-<m

4 5 —dS^-P—•—p-<E>

£ — (3 B > — • — n — n — r w r p
1—m^-o—•—•—•—n—m>

M S H 1 — • — • — • — • — p - < n >

Barrel Shifter
A 'B 'C 5 'E 'F 'G 'H~

-<m-

0 — r W W j - ^ p >

O H H H H i — 0

Barrel Shifter

'B 'C 'D 'E H

Fig. 3.10: Two configurations for packing the incoming cells (shifting by a barrel shifter)

45

3.5 Some Applications of the M IMO Buffers

It has been shown that pure output buffering is inadequate for providing acceptable cell loss under

heavy non-uniform cell traffic for fast packet and A T M cell switching [20]. A network switch ele

ment can employ cell queueing in order to prevent cell loss when congestion occurs in the switch

element. Adding small amounts of internal buffering in the switch element can result in signifi

cant performance gains [52], [53]. The problem therefore is to provide a buffer for use in the inter

nal stages of data packet switch which requires a minimal increase in hardware and reduces losing

packet within the switch. The MIMO buffer structure which is proposed in this thesis fulfills this

requirement for high-speed networking applications [8].

For example, the Knockout switch [10] is one of the most extensively analyzed switch designs

and is often used as a standard against which to compare other designs. This is an output buffered

switch in which the buffers are FIFO memories. The switch simply connects all the inputs to each

output through a concentration stage. Each output port is a module consisting of a concentrator

and a shared buffer. The shared buffer stores the cells until they can be transmitted out the output

port and the concentrator determines which cells to pass through the shared buffer. However, this

type of the pure output buffering is inadequate for general input cell traffic and internal buffering

should be located. Even small amounts of internal buffering can result in significant performance

gains [52]. The M IMO buffer is a hardware solution for this problem.

Furthermore, a VLSI implementation of a simple hierarchical modular A T M switch was proposed

in [27] using the MIM O buffer. The design is based on a generalization of the concept of the

growable structure developed in [42], and employs shared buffers in the front-end of the architec

ture. The proposed switch architecture is based on a buffered fat-tree (BFT) structure [42] which

46

Fig. 3.11: Self routing property of banyan networks

is characterized by full buffer utilization as well as high bandwidth utilization, both achieved with

optimal delay-throughput performance. The BFT switch has a tree topology with hierarchical

sharing of buffer space and bandwidth resources. Each internal node of the BFT is constructed

using shared buffers, each dedicated to a group of output nodes. The main advantage of the BFT

switch over other known output-buffered switch architectures is its robustness to unbalanced (or

non uniform) traffic [42]. The proposed A T M switch architecture has a uniform and regular struc

ture and, has the advantages of: 1) relaxed synchronization for data and clock signals; 2) high

integration density for VLSI implementation; and 3) easy expansion due to the modular structure

of the buffer.

Moreover, the self-routing property of banyan networks, as shown in Fig. 3.11, provides great

simplicity in the control of the switching elements and hence makes them attractive for imple

menting high speed switching nodes [121]. In self-routing, an destination address field (A) is

appended to each cell at the input port before the cell enters to the switch fabric. Each bit of the

destination address field is examined by each stage of the switch element. If the bit is 1, it is

routed to its lower output. As shown in Fig. 3.11, a cell whose destination address is 2 (010) is

47

routed at the input port 4. The first bit of the destination address (0) is examined by the first stage

of the switch element. The cell is routed to the upper output and goes to the second stage. The

next bit (1) is examined by the second stage and the cell is routed to the lower output of the switch

element. At the last stage of the switch element, the last bit (0) is examined and the cell is routed

to its upper output corresponding to the output port 2. Once the cell arrives at the output port, the

destination address is removed.

However, because of the internal blocking property of banyan networks, as illustrated in Fig. 3.12,

they cannot be directly used for switching purposes. Therefore various topologies based on the

banyan network with internal buffering have been studied in the literature [43]-[47]. Besides buff

ering, internal bandwidth of memoryless interconnection is the other important resource of a

switching fabric. The main bottleneck in a banyan network is the limited bandwidth of the inner

links which causes the blocking property. Dilated networks have been proposed in various forms

to increase the internal bandwidth of a switch [49]-[51]. By employing sufficient dilation, the QoS

coupling of different flows within the switch fabric is limited to cell loss which can be made arbi

trarily small. Alternatively, researchers have considered increasing the number of ports of a

switching element to increase bandwidth. Dilated networks are attractive as they provide suffi

cient bandwidth [49]. However, conventional dilated networks do not efficiently utilize the inter

nal bandwidth, while networks with large number of ports per switching element, do not provide

sufficient bandwidth. Therefore, a dilated banyan network model using our novel MIMO buffer

module can be considered to address the problem. The buffer has the ability to increase the

throughput of a network by enabling different switches on a path to operate on different packets at

the same time. This is a form of pipelining that increases the number of packets that can be passed

through the network in a given period of time.

48

Destination Address

Fig. 3.12: Internal blocking in banyan networks

Dilated Banyan Architecture with Internal Buffers: One of the main objective of a switch

design is to develop a highly optimized architecture with respect to bandwidth and buffer utiliza

tion under arbitrary traffic patterns. At the same time the switch should be amenable to VLSI

implementation and scalable. The dilated banyan switch originally proposed in [48] is based on

fully utilizing the internal bandwidth of the banyan network. The architecture has a feasible real

ization using single type of switch and memory modules to construct fabrics of arbitrary dilation.

The uniformity and modularity of the architecture makes it an ideal candidate for practical synthe-

sizable design.

This section provides a modified dilated banyan model which incorporates parallel M I M O buffers

in the internal stages to provide significant performance enhancement under bursty traffic. V H D L

(VHSIC Hardware Description Language [55]) development tools have been employed for the

design and modeling of the switch. Our V H D L model is parametrized in the number of input/out-

4 9

put ports of the switch as well as arbitrary levels of dilation and the number of stages, so that

switches of different sizes can be synthesized from the same V H D L code. The V H D L model has

been also used for timing and functional verification. The switch architecture is outlined in the

following. An investigation of such factors as the impact of different traffic patterns, use of shared

output queueing and various levels of dilation are discussed elsewhere [54].

The dilated banyan architecture is a packet switch with switching elements having multiple input

and output links per port. Basically, the architecture can be constructed from two building mod

ules: expansion switch-element (ESE) and buffered-concentration switch-element (BSE).

A primitive ESE module is defined with two inputs and four outputs, and is denoted by ESE(1:2).

As shown in Fig. 3.13, module ESE(1:2) is constructed from two basic 1x2 switch-elements

(SE's). Expansion modules of larger sizes can be built from a single stage of primitive modules, as

illustrated in Fig. 3.13. Note that in general module ESE(n:2n) is reared by n primitive ESE(1:2)

modules in a single stage.

A basic buffered module (BSE) can be defined as a switching module with four inputs and two

outputs, and is denoted by BSE(2:1). In its simplest form, a buffered module BSE(2:1) is con

structed from one ESE(2:4) module (or two ESE(1:2) modules), and two shared buffers each with

four inputs and one output, as shown in Fig. 3.14. BSEs of larger sizes can be built from a single

stage of primitive ESE(1:2) modules and buffers. Generally, a BSE(2n:n) module is built using n

primitive BSE(2:1) modules (or 2n ESE(1:2) modules), and 2n shared buffers. In other words, a

parallel arrangement of ESEs and shared buffers can be used to construct BSEs of varying size.

This enables the modular growth of the proposed architecture.

5 0

Fig. 3.15 shows our proposal for constructing BSEs of arbitrary input and output dilation using

ESEs of fixed dilation pattern. For example, if module J3SE(4:1) is defined as the basic (or core)

module, as shown in Fig. 3.15, it can be constructed from one ESE(4:8) (or four ESE(1:2)), and

two shared buffers (each with eight inputs and one output). Alternatively, BSE(4:2) can be defined

as the core module. As illustrated in Fig. 3.15, BSE(4:2) can be also built from one ESE(4:8), and

two shared buffers (each with eight inputs and two outputs). This primitive is preferable if two

stages of buffered-concentration modules are needed [54]. Appropriate core modules can be engi-

51

Fig. 3.14: Buffered-concentration modules (BSEs)

neered through performance simulations [54]. Therefore, shared buffers with various number of

inputs and outputs are needed in this network. The MIMO buffer is an ideal candidate for this

application.

Using the described building block modules, a dilated banyan networks with internal buffering

can be designed. In particular, in the proposed architecture the number of input and output links

will grow in the first few stages of the switch. However, in the remaining stages, the number of

links can remain fixed or even decrease. This is based on the observation that in multibuffered

banyan networks, performance improvement has been achieved for buffer sizes of up to four cells

[52], [53]. With buffer sizes greater than that, the improvement in performance is negligible.

52

Name Symbol Structure

As an example, an 8x8 switch using the proposed architecture is shown in Fig. 3.16. The switch is

constructed using four ESE(1:2), four ESE(2:4), and four BSE(4:2) modules. The result can be

translated to 28 primitive ESE(1:2) modules, and 8 shared buffers, each with eight inputs and two

outputs, or alternatively, 16 shared buffers, each with four inputs and one output. Note that other

various levels of dilations are also possible. Therefore, a M I M O buffer is the most important

block of the proposed architecture.

3.6 Summary

This chapter developed the design concept and hardware architecture of a parallel FIFO buffer

structure for high-speed packet networks. Our approach employs a systolic routing network and

53

dilation dilation dilation

Four ESE(1: 2) Four ESE(2: 4) Four BSE(4: 2)
modules modules modules

Fig. 3.16: Dilated banyan network with internal buffers (an 8x8 network example)

bank of parallel FIFO buffers to yield a load-balanced multi-input multi-output FIFO realization

with increased bandwidth. The MIMO buffer adaptively manages the available buffer space for

statistically multiplexed input traffic. Our systolic routing network provides significant advan

tages over previously proposed banyan/butterfly networks since the systolic network eliminates

the need for a running-adder circuit for ranking cells. Load-balancing is done using arithmetic-

free circuits in our design approach. Using this approach we derive scalable parallel FIFO buffer

structures that can be designed to match the rate of ultra high-speed links using current memory

technology that uses moderate clock rates. Our design approach is truly scalable and has real

advantages from VLSI perspective. Some applications of the M I M O buffer were also discussed in

this chapter. The next chapter presents VLSI implementation of the buffer.

54

CHAPTER 4

VLSI Implementation of

the Parallel MIMO Buffer

4.1 Overview

This chapter develops VLSI implementation of the parallel multi-input multi-output (MIMO)

buffer structure (presented in Chapter 3) which can be used in ultra high-speed network interfaces

and similar applications. The combined use of pipelined architecture and dynamic CMOS circuits

resulted in significant reduction in design complexity and substantial performance gains in speed

and chip area. We demonstrate our design approach by showing a balanced M I M O buffer design

in 0.5-u.m CMOS technology operating at about 330 MHz [8]. At this clock rate, and using an 8-

55

bit wide data-path, we show the design of a 4-input 4-output buffer with a throughput of about

10.6 Gb/s. Such a buffer is capable of interfacing to a Sonet OC-192 link with 10 Gb/s bandwidth.

In the next section, we elaborate on VLSI design strategy on the implementation of the buffer.

Circuit design issues are presented in Section 4.3. Then, simulation results are discussed in Sec

tion 4.4.

4.2 VLSI Design Strategy

Two different design strategies have been used to implement our M I M O buffer. The first strategy

involved developing a synthesizable V H D L model of the buffer. Our V H D L model is parame

trized in the number of ports of M I MO buffer as well as the data-path width so that buffers of dif

ferent sizes can be synthesized from the same V H D L code. A portion of the V H D L code that

describes an SWT is shown in Fig. 4.1. The V H D L model has been also used for timing and func

tional verification. However, because our main target was to operate the MFMO buffer at the max

imum possible clock rate, our second design strategy was focused on transistor-level circuit

development.

The first step in our design flow involved full-custom circuit design of the basic buffer using 0.5-

H m CMOS technology, followed by simulating the topmost hierarchical schematic using a circuit

simulator such as Hspice and Spectre provided by our C A D tools from Cadence™ l . After simu

lation, a standard cell layout is developed, Design Rule Check (DRC) is performed, and Logic

Versus Schematic (LVS) is applied to compare the netlist extracted from the layout and the netlist

from the schematic. This step ensures that all nets and blocks defined in the schematic are pre

sented and connected in the layout. After performing place and route (P&R), DRC is applied

1. Cadence Design Systems Inc., San Jose, CA, USA, http://www.cadence.com.

56

http://www.cadence.com

e n t i t y XBAR_CELL i s
port (e l k : i n STD_LOGIC;

en : i n STD_LOGIC;
i _ i n : i n STD_L0GIC;
d_n, d_w : i n STD_LOGIC_VECTOR (XBAR_IN_WIDTH-1 downto 0) ;
p _ i n : i n STD_LOGIC;
bar : out STD_LOGIC;
i _ o u t : out STD_LOGIC;
d_s, d_e : out STD_LOGIC_VECTOR (XBAR_IN_WIDTH-1 downto 0) ;
p_out : out STD_LOGIC);

end XBAR_CELL;

a r c h i t e c t u r e RTL of XBAR_CELL i s
s i g n a l checked, switch : STD_LOGIC;
s i g n a l l a t c h _ s w i t c h : STD_LOGIC;
begin
l o g i c : process (i _ i n , p _ i n , checked, d_n, d_w)
begin

i f (i _ i n = ' 1 ') then
checked <= 1 0 ' ;
switch <= 1 0 ' ;

e l s e
i f ((p _ i n = 1 1 ') and (checked = 1 0 ')) then
i f ((d_n(0).= ' 0 ') and (d_w(0) = 4 1 ')) then

switch <= '1' ;
e l s e

switch <= ' 0 ' ;
end i f;

checked <= 1 1 ' ;
end i f ;

end i f ;
end process l o g i c -

Fig. 4.1: Part of the V H D L code

again to check for design rule errors that may have occurred during P&R, then LVS is used to

check for discrepancies between schematic and layout. Final simulation is performed to check the

effect of parasitic resistors and capacitors introduced in the layout. Circuit simulation results

assure that the B D N unit functions correctly up to about 330 M H z in 0.5-um CMOS technology.

57

E N
I_in

P in

I— 1—i_weak

D N

D W

C L K

MA

BAR
Control

B A R

C L K

Fig. 4.2: Circuit diagram of the crossbar control of SWT

4.3 Circuit Diagram of a Switch Element

The circuit diagram of the crossbar control part of a SWT is shown in Fig. 4.2. The modified dom

ino CMOS circuit technique uses two different clock signals, a (system) clock and a cell clock (i.e.

CLK, and Iin). The use of such dynamic CMOS circuits achieves significant reduction in the

number of transistors and, more importantly, a higher switching speed compared to static circuits.

The circuit operation is based on first precharging the output node capacitance and subsequently,

evaluating the output level according to the applied inputs [38].

In Fig. 4.2, the 1-bit active low cell-clock signal, Iin, is applied to precharge the internal node S in

the SWT in the beginning of every cell cycle. The "BAR Control" block has a simple logic which

generates an active high signal for the entire cell period if both the enable signal (EN) and the

internal signal BEND are active. As mentioned before, the BAR signal is passed as an output of

58

the SWT to indicate the mode of the switch element in each time-slot.

At the beginning of each cell cycle, Iin goes low to precharge the common Drain node of the M5

and M6 transistors (i.e. node S), forcing the SWT to enter or stay in a cross mode (i.e. the internal

node BEND is high). Once node S is precharged to the threshold of the inverter, the output of the

inverter will go low, which turns on the weak p-transistor M 6 [39]. This wil l keep node 5 high as

long as there is no path that will pull the node voltage to ground through the cascaded group of

transistors lead by M 4 . When Pin is asserted, activity bits of the west and north data inputs (Dw

and DN) are compared by Mx, M2, M3, and M 4 transistors. If Dw is high and DN is low, i.e. a

valid cell from the west and an empty cell from the north, these four transistors discharge node S.

The output of the inverter, i.e. node BEND, will then go high once the threshold of the inverter is

reached.

The complete signal and data-path of a SWT is shown in Fig. 4.3. Data inputs Dw, and DN, and

control signals Iin and Pin are first latched by four D_FFs. The BAR signal specifies the direc

tion of data-path in each cell period. The control signals Pin and Iin are passed as two output sig

nals Pout and Iout. The data words Dw and DN are also passed to neighboring SWTs in the same

fashion. Recall that the data-path through a SWT can be w bits wide, as indicated in Fig. 3.2, and

Fig. 3.3.

Fig. 4.4 shows a fast dynamic D flip-flop circuit that we employed in the implementation. The

area of the flip-flop is 592.8 (jxm) based on a 0.5-u m CMOS technology, and circuit simulations

assured that it can operate at clock speeds exceeding 330 MHz.

59

D W

D N

P_in
CLK

D_FF UNo! D W

BAR

D FF

D N

BAR

D_W |—| |—1_

BAR

D FF P_out D FF P_out D FF D FF

BAR

BAR
D E

BAR D S

U n
CLK

D FF Lout D FF Lout D FF D FF

D_FF: D-type flip-flop

Fig. 4.3: Signal and data-path of a SWT

Circuit Design Issues: In Fig. 4.3, note that the low on-resistance of the CMOS transmission gate

usually results in a smaller transfer time compared to those for nMOS-only switches. Normally,

nMOS transistors produce "strong zeros" and pMOS devices generate "strong ones". The single-

device pass gate has the disadvantage that the resistance of the switch increases dramatically

when the output voltage reaches the threshold voltage Vin - Vtn, as the transistor goes into linear

operation mode. Adding a pMOS transistor in parallel with the nMOS solves these problems. In

other words, an nMOS transistor provides a poor "1" and a pMOS a poor "0" level; therefore, the

combination of the two results in a better switch. Also, there is no threshold voltage drop across

the CMOS transmission gate, i.e. threshold loss. When designing static-pass transistor networks,

60

CLK

KM y

out

Fig. 4.4: Dynamic D-type flip-flop circuit

it is essential to adhere to the low-impedance rule under all circumstances. Also, devices close to

minimum-size should be used, unless an external load capacitance is the dominating factor, which

is not the case here because of the systolic architecture.

Also note that the data and control signal path in a SWT involves only one stage of CMOS trans

mission gates which can be sized properly to achieve maximum speed. Therefore, the main speed

limitation of the SWT is due to its controller circuit shown in Fig. 4.2. In the SWT controller cir

cuit, the series connection of nMOS transistors must be designed carefully to avoid unnecessary

delays. The series connected nMOS transistors, which appear in a number of design styles basi

cally for their simplicity and possibly their improved performance, requires careful consideration

and transistor sizing to improve the speed performance of our circuit [40]. The transient perfor

mance of the circuit can be improved by adjusting the nMOS transistor sizes in the pull-down

path, with the objective to reduce the discharge time.

Although, the calculation of the channel resistance and the parasitic capacitance of an nMOS in

61

the series chain is complicated [40], studying the simple RC low-pass filter model, in which each

nMOS is replaced by one link of RC chain consisting of the channel resistance and the parasitic

capacitance, provides a good measure of delay associated with a discharge through a chain of

transistors. Using Fig. 4.5 as a typical transistor chain structure from Elmore's RC model [38],

the delay td of the chain of transistors can be represented by the expression:

\ 7 \7

Fig. 4.5: nMOS transistors chain and the RC model

62

N
ld = 2 Xi W h e r e Xi

x- basically describes the RC time constant for discharging the /th capacitor through all the

resistors in the discharge path to a 63% level. Deriving the propagation delay now becomes iden

tical to the analysis of the resulting RC network. Although this would be only an approximation

of td [40], nevertheless we can get a deeper insight into the problem by studying the simple R C

model. In the case for the chain network of Fig. 4.5 where there are 4 stages, i.e. N = 4, the rela

tion that describes the discharge path can be analyzed as follows. Delay associated with each

stage are X j , x 2 , x 3 , and x 4 , from which a total delay time can be driven:

td = X j + x 2 + x 3 + x 4 = R1G1 + (R1+ R2)C2 + (/?! +R2 + R3)C3 + {Rl+R2 + R3 + RA)CA

The delay model highlights that C 4 contributes the most to the delay. The effect of scaling the

device sizes in each of the stages is seen by rewriting the delay model in the form:

td = Rl(Cl + C2 + C3 + C4) + R2(C2 + C3 + C 4) + R3(C3 + C 4) + RACA

The relation shows that the delay depends on the geometrical dimension of the transistor. Con

sider first the nMOS transistor closest to the output node, i.e. M 4 . If the — ratio of this transis

tor is reduced by a certain factor, two effects are seen: one tends to increase delay, the other tends

to decrease delay. First, the current driving capability will decrease, i.e. the equivalent resistance

of the nMOS transistor will increase. Second, the parasitic drain capacitance associated with this

transistor will decrease. If the length of the nMOS chain is sufficiently long, the increase in resis-

63

tance has little influence upon the combined RC delay time, whereas a reduction of the capaci-

tance significantly decreases the delay. In other words, when the ^ — J is decreased by a fraction

CA
of Ak, in equivalent circuit, C 4 is replaced by -——-, and R4 by R4(1 + Ak); then td decreases.

This implies that we are able to reduce the time delay by scaling the device sizes in the entire

chain. Therefore, the overall delay time can be reduced by decreasing the size of the nMOS tran

sistor closest to the output node. Progressive sizing of transistors in a transistor chain copes with

the extra load of internal capacitances, and scaling of the transistors while keeping the total tran

sistor area constant gives better results than simply reducing the transistor size. The best perfor

mance results when we successively reduce the nMOS transistor's aspect ratios starting from the

top (output) transistor working down towards the ground. As a rule, reduction of about 25% at

each stage usually is a good compromise to speed up a typical circuit based on transistor chain

designs. Table 4.1 lists transistors sizes for the nMOS transistors of Fig. 4.2 when implemented in

0.5-um CMOS technology operating under a 3.3 V power supply.

Table 4.1: Transistors' sizes in the nMOS chain

Transistor Ml M2 M 3 MA

1 — J size ([im)
10.8
0.6

8
0.6

6
0.6

4.8
0.6

64

4.4 Design Simulation Results

We have developed a detailed transistor-level design of a B D N unit with four input ports and four

output ports, where each port is 8-bit wide. We employed a 0.5-um triple-metal/single-poly

CMOS technology1 to obtain the layout shown in Fig. 4.6. The area of the layout is

975 x 1125 (Um) 2 .

Fig. 4.6: Layout diagram of a 4x4 B D N

Full custom design of the B D N based on extensive use of dynamic circuit techniques resulted in a

clock period of 3 ns (about 330 MHz) with acceptable margins. Fig. 4.7 shows four input signals

(a, b, c, and d) and four output signals (A, B, C, and D) of the B D N when the clock is running at

about 333 MHz. Note that only one bit (out of 8 bits) of each input/output signals along with CLK,

Iin, and Pin signals are shown in Fig. 4.7. At this clock speed, a 4 x 4 B D N with an 8-bit wide

data-path, delivers cells (or packets) at a maximum rate of 10.6 Gb/s. Achieving this performance

required close integration of logic and microarchitecture optimization, employing high-perfor-

1. Provided by Canadian Microelectronics Corporation (CMC), http://www.cmc.ca.

65

http://www.cmc.ca

Transient Response

4 . o
0. o

4 . o
o. o

4 . 0
0. 0

4 . 0
0. 0

4 . 0
0. 0

4 . 0
0. 0

4 . 0
0. 0

o: / C L K

II i n
2E

/ P i n
• • T r i , „ , n. i W i i n i i J L

, : /a<8>
F—i. .r—\ .(—i

/b<8>
Fn. m .n fn. m r~v n n n . r*i n. m .rt r~i. r~i m,

*: /c<8>
hnnn.nn^nn.nnnrtn n n n n q , n n n n n.n<i n n n.n n r
p; /d<8>

E—i 1 1 • a • i i 1 A——i 1 1 i_

/A<8>

4 . 0
0. 0

4 . 0
0. 0

-: /b<8> I | I
^ | f 1 ' ' T W . n v i ^ V i j i ^ v m f l - i ' H f i * * ! ^ — • ̂ uJ*?1^—n i n r - *~

i : /p<8>

INPUT PORT

m n m a Hi A
s s H b BDN, H B
S H E c H C
EI El El d ii D

Time-slot: #3 #2 #1

OUTPUT PORT

4.7: Simulation result of the 4 x 4 B D N during three time-slots (clock cycle is 3

66

mance CMOS circuit techniques, and the use of advanced custom design tool suites.

Fig. 4.7 shows the timing simulation of the B D N during three time-slots. For simplicity, the valid

ity bits of the input signals a, b, and c have been asserted in all three phases, and empty cells are

always sent on input port d. Therefore, the first time-slot illustrates the situation when the first

three columns of the primary array of the B D N must be used to route the incoming cells. In time-

slot #2, in addition to the last column of the primary array, the first two columns of the secondary

array are also employed, while in the third time-slot, columns 2, 3, and 4 of the primary array are

utilized. As shown, the outcomes of these three test sets match the expected results.

67

4.5 Summary

This chapter presented hardware realization of the parallel MIMO buffer structure. The combined

use of pipelined architecture and dynamic CMOS circuits resulted in significant reduction in

design complexity and substantial performance gains in speed and chip area. A small 4-input 4-

output prototype buffer has been designed using a triple-metal/single-poly 0.5-u.m CMOS tech

nology to demonstrate our concepts. The buffer can attain a rate of 10.6 Gb/s which is more than

adequate to support a Sonet OC-192 link.

A major problem in the design of VLSI crossbar networks is the simultaneous activation of a large

number of line-drivers at the output leads of a silicon structure. The density of interconnection

lines, their associated drivers, and connectors, pose major performance limitation in VLSI imple

mentations. Fortunately, multilevel metallization (e.g. triple-metal in our 0.5-urn process) has

provided the needed technology to achieve the low-resistance, crossing interconnections. Also,

distributed implementation variations can be considered to avoid select lines altogether. For exam

ple, the control planes (VEC, and HOC) can be used solely as a central contention arbitrator. On

receiving the acknowledgment signals, active cells from input ports are self-routed independently

to their destinations. Another way is a distributed control scheme that avoids a centralized control

plane. This variation gives a modular structure, and has been chosen in our design. Therefore, the

overall switch capacity can increase by simply adding more arrays leading to a truly scalable real

ization. Also, speed optimization of the design required the use of progressive scaling of the tran

sistors in the series chain such that the nMOS transistor closest to the output node has the smallest

width-to-length ratio.

68

CHAPTER 5

A Systolic Parallel Priority Queue

for High Speed Packet Networks

5.1 Overview

Priority-based scheduling is one of the most widely used techniques in high-speed packet net

works. Normally, a packet arriving to a buffer, in a router or a packet switch, is assigned a priority

number which is appended to the packet as an additional field. Packets in the buffer are then

ordered and delivered according to their priority value by the scheduler. A major challenge is

maintaining the correct operation of the priority queue at very high link speeds, e.g. at 2.4 or even

40 Gb/s. This chapter generalizes the priority queue concept to a parallel priority queue (PPQ)

which can be scaled to meet the requirements of ultra high-speed links using standard CMOS

technology.

69

5.2 Scheduling Networks and Priority Queues

Providing quality-of-service (QoS) guarantees for multimedia transport applications over packet-

switched networks, such as the Internet, relies crucially on the scheduling and buffer management

capabilities of the network switches and routers. Scheduling is required to order packets, for

example, to satisfy delay bounds of real-time sessions or to enforce fair bandwidth allocation for

sessions sharing a link. In priority-based scheduling, a packet is assigned an attribute which

becomes its priority number. For example, the priority number may be a finish-time computed by

a weighted fair queuing (WFQ) algorithm [4], [5], or a class index assigned by a class-based

queuing (CBQ) algorithm [6], [7], etc.

In any case, accessing the highest-priority packet requires the use of a priority queue structure. By

definition a priority queue is a queuing structure for which the dequeue operation always removes

the highest (or lowest) priority element in the queue. In this chapter we will associate higher prior

ity with smaller positive values. This is because in a packet scheduler, highest priority is given to

packets with the smallest departure time-stamp.

Fig. 5.1 shows a typical system containing a priority queue (PQ), its associated packet-memory

(PM), and a scheduler. We assume that the priority numbers (P) that enter the PQ have fixed-point

representation and are of equal length. Each entry in the PQ contains the pair (P,A), where P is as

defined above and A is an address pointer to a packet in the packet memory. Basically, when a new

packet arrives at the packet memory its priority number P is stripped off and pushed into the PQ

together with the packet address (which is the pointer A). The pair (P,A) will be referred to as a

data cell. Priority number P consists of an empty-cell indicator bit e, and priority value which

itself is arranged from the most significant bit (MSB) to the least significant bit (LSB). Therefore,

70

->—»
o

Simultaneous
arrivals of multiple
packets

7 ^
m

High speed link

data celjs

co
CO
CD

T3
TJ
CO

m Priority Queue

(PQ)

'n n

Write
Control

Read
Control

co
CO
CD
i _

TJ
X>
CO

Pointer Memory

Packet Memory
(PM) n

Simultaneous
departures of multipl
highest priority pack

High speed link

Fig. 5.1: A typical scheduling network

empty data cells (i.e. for which e=l) can be considered to have the lowest priority. The PQ main

tains a sorted list of data cells according to their P numbers. The result can be easily extended to

the multi-priority case [35]. The next section outlines the basic word-model of our proposed sys

tolic parallel priority queue. The queue architecture in details is also presented in Section 5.3.

Then, a retimed design of the queue is described in Section 5.4.

5.3 Systolic Parallel Priority Queue

A PPQ maintains prioritized access to the data it contains at all times. Incoming data cells are

injected into the PPQ from each of its input ports and the highest priority data cells are read from

a set of output ports. In a non-systolic (or non-pipelined) implementation, the priority queue con-

71

tains, at any given time, a ranked set of data cells. In a systolic implementation, ranking data may

be overlapped with data access as long as we assure that the data cells accessed in any time are the

highest priority ones. This conforms with the general definition of a priority queue that was given

in Section 5.1. Overlapping ranking with data access enhances throughput substantially. The ulti

mate goal of the systolic PPQ design is to allow 0(l)-time access to the head data elements (cells)

in the PPQ. In other words, the access time to the head cells in the PPQ is fixed and independent

of the PPQ size.

The PPQ generalizes the operation of a sequential PQ in the following manner. Whenever a set of

m new data cells is inserted into the PPQ, the queue outputs the n data cells with the n smallest

priority P values among the stored and incoming data cells. We are interested in the realization of

a priority queue that inputs m steady streams of data cells and outputs n steady streams of data

cells in 0(l)-time. For simplicity, we focus mainly on the m = n case in this chapter, but the

PPQ architecture can be easily generalized to the case where m > n as will be discussed in

Chapter 6.

Fig. 5.2 shows a priority queue PPQ(m, m, w) (or for simplicity PPQ(m, w)) which denotes a

systolic PPQ with m inputs, m outputs, and depth w, i.e. it can store up to m x w data cells. In a

single unit of time, PPQ(m, w) is capable of reading m data cells, and delivering the m highest

priority data cells at its output ports. In Fig. 5.2, / denotes the data cell received on input port j

in time-slot i. Similarly, OJ denotes the data cell delivered on output port / in time-slot / . Note

that here a cell period is equal to one time-slot.

72

PPQ(m,w)

Symbol

Fig. 5.2: A PPQ contains mxw cells

This chapter assumes a synchronous VLSI model [41]. In a systolic PPQ, all data cells are pro

cessed and transferred in a pipelined fashion. This implies that the PPQ consists of combinational

logic stages separated by clocked registers. Note the difference between a clock period which

defines one time-unit versus a cell period which defines one time-slot. Each combinational stage,

with its associated registers, form a pipeline stage. As will be described later, each pipeline stage

of the PPQ consists mainly of some registers and a parallel sorter. The PPQ accommodates com

plete data cells in these registers. The incoming m data cells find their right places within the PPQ

through a series of sorting steps. Through this chain of sorting processes, not only do the new data

cells find their positions, but also the entire PPQ rearranges itself. Subsequent arrivals of new data

cells trigger a new series of concurrent sorting procedures and reordering of the PPQ as described

in the next section.

73

5.3.1 VLSI Word-Model of a Parallel Sorter

As mentioned above, each pipeline stage of a PPQ consists mainly of a parallel sorter and register

stages. This section describes the basic functionality of a parallel sorter in a VLSI word-model

[41], [56], where the / bits representing one data cell are input or output through the same set of

I/O ports (i.e. / parallel data-paths). Under this model, one time-slot is equal to one time-unit (i.e.

the cell period is the same as a clock period), and it is possible to store complete /-bit data cells in

the registers of a sorter, and to sort a fixed number of /-bit data cells in one time-unit [25], [57],

[58]. Details on the iterative construction and systolic timing of parallel sorters in a VLSI bit-

serial model are covered in detail in Chapter 6, where it will be shown that the parallel sorter itself

has a systolic structure to maintain high throughput.

The input-output (I/O) configuration of a 2m-cell sorter ST(2ra) is illustrated in Fig. 5.3. At

time-slot t = i, the data cells incoming on the ra inputs of the sorter from the left and the m data

cells from the right inputs are compared. Then the w highest priority data cells are output to the

left, and the ra lowest priority data cells are output in the proper order to the right at time

t = i + A(2ra), where A(2ra) is the delay of ST(2m) and is assumed to be smaller than a single

time-slot.

5.3.2 Recursive Construction of Systolic PPQs

Fig. 5.4 shows the structure of PPQ(m, 1), a parallel priority queue of depth one. PPQ(m, 1) is

constructed from a single 2ra -cell sorter ST(2m) whose right-side outputs are recirculated to its

right-side inputs through a single stage of ra registers in a parallel arrangement. The left-side out-

74

hm -> -+0im

hm-l • •
—•P2m-1 • •

• •

ST(2m)
Ox •4-

<-
•

• • •
• •

om « " 4 n

ST(2m)

Symbol

•• ^o2m

Fig. 5.3: The I/O configuration of a 2m-cell sorter

puts of ST(2m) are also delivered to the output ports of PPQ(m, 1) through a single stage of m

registers. Note that in Fig. 5.4, / . ' denotes the data cell received on input port j in time-slot / , and

/ ' denotes a vector of m data cells received on the m input ports of the priority queue in time-

slot i. In each time-slot, the m data cells in the PPQ and the m data cells incoming from the left

side inputs are compared, and the m highest priority data cells are output to the left and are saved

in the m L-registers on the left-side. The m lowest priority data cells are output to the right where

they become the new contents of the priority queue (i.e. the contents of the m R-registers in the

right-side). Note that this implies the use of edge-sensitive or master-slave type memory devices

as registers (or delay elements D). The ST{2m) block shown in Fig. 5.4 is a combinational sorter

that can sort (or merge) two sets of m input cells according to their priority value. The sorter pro-

75

PPQ(m,l)
, 2 r l

. . . i _ i_

Registers!

Sorter

Registersj-fc

R

PPQ(m,l)

<5>

<2>

Detailed Model

Fig. 5.4: A priority queue with m inputs, m outputs, and depth 1 (PPQ(m, 1))

duces two sets of m outputs, the left-ward outputs produce the m highest priority cells, while the

right outputs produce the m lowest priority cells.

In the following we provide a proof of correctness for the operation of a PPQ(m, w). We start by

observing that a PPQ(m, 1) sorts data in the right order and maintains the m highest priority

cells in its output L-registers as explained above. Now assuming that PPQ(m, w-2) operates

correctly, we proceed to show (by induction) that PPQ(m, w) will also maintain the correct order

of data.

Observe that a parallel priority queue PPQ(m, w) of depth w can be constructed recursively by

76

-9-

9-
PPQ(m,w)

m Y—i—

< 7 i K ' 1

A
|ST(2m)|

«eg.'

; /
/ /

-r-r-
1 ' ' 2

B
IT(2m

C
OH

m Y. I— HReg.'

BT(2m)

•f r •

/ ;

/ /

H R - R -
1.' .' 2

BT(2m)

' i
i i
i i
i i
i ir

BT(2m)

n r •
I ' r -

i i
i i

-r-r-
3 ' ' 4

BT(2m)

_ _ _ _ _ j

T f
I

OH

m

m ,
teeg.'

ST(2m)

/ /
' L

ST(2m) ST(2m)
Keg. s
/
/

/ r
i i

i
i

ST(2m) ST(2m)

1 i i n

ST(2m)

*• <—-W
/ /
i i

1r ••• HHReg.'sf

ST(2m)

1 I

ST(2m) ST(2m) 1
1

/ /
/ /

/
/

ST(2m) ST(2m)
•H / /

ST(2m)

OH

m

m.
« 71 pg.'^

ST(2m)
H r-r-

1 .' ' 2

pT(2m)
|h Hf-Beg.'̂

BT(2m)

Peg.'! I* I f
I I

I I

W -2 ' ' W

(ST(2m)|

I

— H i i
i i
i i
i i r

i i

BT(2m)

w'
m

W-

Fig. 5.5: Recursive construction of the parallel priority queue PPQ(m, w)

cascading a front block consisting of two 2m -cell sorters (labeled A and B) and two banks of m

registers with PPQ(m, w-2), a priority queue of depth w- 2, as shown in Fig. 5.5. Our con-

77

struction method requires that w be an odd integer. The operation of the queue is as follows: first,

the m highest priority data cells coming to the B sorter (in stage 2) from PPQ(m, w - 2) are

compared to the m data cells in the registers on the right-side of the A sorter (in stage 1). After

sorting, the m highest priority cells from sorter B are sent to be compared with the ra incoming

data cells on the input ports of the A sorter in stage 1. At the same time, the m lowest priority data

cells from the B sorter are passed to the right-side where they are pushed into PPQ(m, w - 2) .

Pipeline timing ensures that incoming data cells from the left-side of the B sorter in stage 2 ren

dezvous with data cells coming to the sorter from PPQ(m, w-2) where they are compared. In

the same time-slot, the A sorter in stage 1 compares ra data cell received from stage 2 with ra

incoming data cells on its input ports. The A sorter, then outputs the w highest priority data cells

to the left, and the m lowest priority data cells to the right where they are saved in the registers.

The above explanation completes an induction proof of correctness for the operation of

PPQ(m, w).

Priority queue PPQ(m,w -2) can itself be realized recursively from two 2m-cell sorter

ST(2m) and associated registers, and a priority queue PPQ(m, w - 4) , a priority queue of depth

w - 4. The recursive construction will result in a realization of PPQ{m, w) from w - 1 2m -cell

sorters ST(2m), and a PPQ(m, 1) priority queue realized by a sorter ST(2m) and two banks of

m registers, as was shown in Fig. 5.5. Essentially, the realization is a bidirectional pipeline array

of w consecutive 2m-cell sorters ST(2m) and associated registers, as shown at the end of Fig.

5.5.

The architecture can be described in another manner. Each pair of consecutive sorter stages oper-

78

ate on 2m inputs and produces 2m outputs in one time-slot. The outputs of every other sorter are

latched, and the registers are clocked so that when several of these elements are interconnected,

the changing output of one will not interfere with the input to another. Fig. 5.5 shows how these

stages are interconnected to make priority queues of depth w. Note that the total latency in the

PPQ is limited to the latency in the first sorter, which selects the departing (highest priority) data

cells from the PPQ just after the arrival of the new data cells in the PPQ.

5.4 Retimed Design

Further scrutiny of the PPQ(m, w) design of Fig. 5.5 reveals that even though the PPQ is systolic,

w — 1

it actually consists of — — semisystolic processors or Mealy-machines (in stages 2, 4 , w - \) ,

w + 1

and —-— systolic processors or Moore-machines (in stages 1, 3 , w) [59]. In a systolic proces

sor, the output of the combinational logic of the parallel sorter is directly latched into registers

within the processor [59]. In other words, the outputs of the processor emanate directly from reg

isters. In a semisystolic processor, the outputs of the processor are allowed to flow directly from

combinational logic too.

The flexibility afforded by this semisystolic processor model simplifies the task of designing

implementations of the PPQ. The price to pay is that the time required to carry out any step of the

sorting algorithm will be at least as long as the time required for data cells to ripple through a pair

of sorters between two registers. The minimum time-slot period is lower bounded by this ripple

delay. In this section, we describe a retimed PPQ design in which each stage of the PPQ is a sys

tolic processor. In the retimed design the time-slot is lower bounded by propagation delay through

79

a single sorter.

The semisystolic model can be lagged (or retimed) to form an equivalent systolic network [59].

The retiming problem can be solved by inserting another register (i.e. a delay element D) along

each connection from an output to an input of the ST(2m) sorter to construct PPQ(m, 1) as

shown in Fig. 5.6, where / . ' and t_ are as defined in Section 5.2. As a result of inserting the

PPQ(m,l)

/ 3H 7 1 ^

m
4-Peg.'4

r-*eg.'d •

S o r t e r

4 Peg.'4

L J

PPQ(m,l)
K5>

Detailed Model

Fig. 5.6: Retimed design of PPQ(m, 1)

delay elements (i.e. registers), the input arrivals must be rescheduled so that the correct cells are

compared by the sorter in each step. In particular, the incoming data cells are now inserted to the

80

network in every other time-slot (instead of in each time-slot).

The retimed realization of the PPQ(m, 1) which operates on a parallel stream of width m data

cells separated by one time-slot as shown in Fig. 5.6. The factor-of-two slow-down in the input

rate is due to the retiming transformation that was applied to drive an equivalent systolic network

(consisting of only systolic processors). As suggested in [59], we can recover the loss in efficiency

by realizing two priority queues simultaneously on the same systolic architecture. Although, there

is no extensive difference between the realizations shown in Fig. 5.4 and Fig. 5.6, it can be easily

shown that only the latter one can be used for the recursive construction of a systolic priority

queue with systolic processors, as shown in Fig. 5.7. Note that all stages (processors) of the

PPQ(m, w) of Fig. 5.7 are Moore-machines. A proof of correctness for the operation of the

queue can be completed by induction (similar to the proof in Section 5.2).

Note that in the retimed design, at any given time-slot (i.e. step) half of the sorters are not active

because they receive empty (or invalid) data cells at the registers connected to their inputs. The

other half becomes inactive in the following step. This alternating operation occurs often in the

design of systolic systems as a result of retiming, and is an unavoidable result of the slow-down

design technique [59]. Note that the queue rearranges itself after the arrival of each wave of new

data cells.

81

9-
PPQ(m,w)

m
y ; H

rn ,r

r-Peg.',

BT(2m)

; i
i i
i i
i i

H r V f « « 8 - , s H
1 .' '

ST(2m)

ON
ON

m 7^

m , R —
4 /1 Peg.'

/ 1

BT(2m)

Peg.';
/ ;

i i
i i
i i

W r - f W '

1 / '

hPeg.'!

ST(2m)

i i
i i
i i
i i BT(2m)

i i
i i
i i

* T-TW'4
I i

h-Peg-''

ST(2m)
i m

^ T 7 ^ m OH
OH

BT(2m)

Peg-'
/ /

J - / M / /
/ /

1 ' '
Peg.'4

BT(2m)

T r

Peg.'sf> . . . -1 W) m
i i

it (

^ r ••• +£eg . ' !

2 ' '

BT(2m)

Peg.'sf
/ /

ml L ;

H r - r V
W-2' '

BT(2m)

Pes;.-
J ' m

«
W- i '

111 Cu,
OH

m.
/ PT(2m)

1' '

r - p«s .# —H

4—r ••• -ffeg.

2/ I
M T-T-Pee-''

W-2 ' '

P-Peg-'1

pT(2m)

J _ L _
/ »

H—rrW+H
W

r-peg.'

pT(2m)

4—rpe'f-1

w
Fig. 5.7: Recursive construction of the systolic parallel priority queue PPQ(m, w)

82

5.5 Summary

This chapter presented a parallel priority queue (PPQ) which can be scaled to meet the require

ments of ultra high-speed links using standard CMOS technology. Incoming data cells are

injected into the PPQ from each of its input ports and the highest priority data cells are read from

a set of output ports. The PPQ maintains prioritized access to the data it contains at all times, and

the access time to the data is fixed and independent of the PPQ size, i.e. (9(l)-time access.

The presented design in this chapter is actually the generalization of the priority queue concept

with steady streams of parallel inputs and outputs, i.e. the same input and output rates. The next

chapter develops a novel rate-adaptation feature to allow different input and output rates. This is

an important feature because in practice the output rate of the queue is controlled by the available

link bandwidth which may vary (or even becomes zero) independent of the packet arrival rate.

The next chapter also presents an area-efficient, systolic design of the PPQ for VLSI implementa

tion.

83

C H A P T E R 6

Scalable PPQs with

Output Rate-Control

6.1 Introduction

The proposed systolic parallel priority queue (PPQ) in Chapter 5 is the realization of a queue that

inputs and outputs steady streams of data cells. However, in many real applications, it is desirable

to decouple the input process to the PPQ from the output process. In this chapter we have included

an output rate-adaptation feature to allow the PPQ bandwidth (measured in packets per second) to

be varied dynamically; for example based on the congestion in the upstream link. The chapter also

presents an area-efficient, systolic design of the modified PPQ for VLSI implementation. We

show how the operations of the systolic PPQ can be considered as composite processes which are

realized in bit-serial pipelined circuits [27].

84

The modified PPQ is rate-adaptive in the sense that the PPQ operates correctly even when the

queue input rate and output rate are different. This is an important feature because in practice the

output rate of the queue is controlled by the available link bandwidth which may vary (or even

becomes zero) independent of the packet arrival rate. This decoupling of the input and output

packet flow rates is a distinguishing feature of our PPQ concept and has not been addressed in

previous literature.

Rate-adaptation is realized by an inhibit control signal that blocks output ports while allowing

injection of the data cells into the PPQ. This means that the output rate can be controlled by back

pressure signals from other stages in the network due to lack of buffer space or due to link conges

tion. It is shown that because the operation of the systolic PPQ is pipelined, no degradation occurs

even when the output ports are blocked. The inhibit feature is dictated by an INHIBIT control sig

nal which disables the read PPQ operation. If the INHIBIT signal is asserted during a clock cycle,

the PPQ will accept m incoming cells but will not flush out the m highest priority cells (see Fig.

5.2). INHIBIT is a global control signal which dictates the inhibit configuration inside the PPQ.

The rest of the chapter is organized as follows. The queue architecture with output-rate control

and its main features in details are presented in Section 6.2. Section 6.3 describes how output rate-

adaptation can be incorporated in the retimed PPQ. Section 6.4 addresses the case when the num

ber of parallel inputs to the PPQ is larger than the number of outputs. The bit-serial realization of

the queue is investigated in Section 6.5. Then, we elaborate on the basic core elements of the

queue, i.e. parallel sorters, in Section 6.6. The timing details for a primitive sorter during normal

operation are presented in Section 6.7. In Section 6.8 VLSI design issues on the implementation

of the queue are discussed, followed by concluding remarks in Section 6.9.

85

6.2 A PPQ Design with Output Rate-Control

In many real applications, it is desirable to decouple the input process to the PPQ from the output

process. Specifically, the PPQ outputs may be intermittently blocked from sending cells due to a

link congestion. This process is usually called output rate-adaptation, and it requires significant

modifications to the PPQ architecture. To provide rate-adaptation capability to the PPQ, we strate

gically place a bank of m multiplexers (MUXs) and m demultiplexers (DMUXs) between pipe

line stages. The M U X s and D E M U X s are controlled by a global INHIBIT signal. The resulting

design is illustrated in Fig. 6.1 for PPQ(m, 1). If the output ports are blocked (i.e. where

Fig. 6.1: PPQ(m, 1) with inhibit feature

INHD3IT=1), while cells are still arriving at the PPQ, then the m highest priority data cells are

routed to the right where they become the new contents of the PPQ, and the m lowest priority data

cells are discarded.

86

For larger size PPQs, as illustrated in Fig. 6.2, the INHIBIT signal indicates that the queue should

not move forward (i.e. leftwards in Fig. 6.2), while still implementing the sorting functions

required to insert incoming cells in the proper positions and maintain the appropriate ordering in

the queue. Depending on the value of the INHIBIT signal (0 indicates no inhibit, and 1 indicates

inhibit), the structure of the PPQ is reconfigured using M U X s and D M U X s as shown in the figure.

Note that because of the pipeline operation of the PPQs, no slow-down occurs even when the out

put ports are inhibited. Note that a proof of correctness for the operation of a PPQ(m, w) with

output-inhibit control can be also provided by induction (as in the previous case).

We will explain the operation of the PPQ by means of an example. Several steps of the operation

of a PPQ{\, 5) are shown in Fig. 6.3. In this example, we select the simple one input, one output

priority queue of depth 5. As shown, each incoming data cell is tagged by its priority number. Fig.

6.3 illustrates data propagation between consecutive sorters and the status of the queue after the

arrival of each new data cell. Each step represents the queue structure right after a rising edge

clock signal until right before the next rising edge. The small numbered-squares represent the pri

ority numbers of data cells which are stored in the PPQ registers, while crossed squares indicate

empty registers. The registers are edge-sensitive flip-flops; they latch the data with the rising-edge

of the clock signal at the beginning of each time-slot. The numbered circles represents the priority

number of data cells which are delivered to the output link by the queue. If the queue receives an

INHIBIT=1 signal, it will be reconfigured by M U X s and D M U X s (not shown in Fig. 6.3), so as to

prevent the delivery of any data cells to the output until INHIBIT is deactivated, i.e. iNHIBIT=0.

Note that the state of the INHIBIT signal must be received by the queue before the rising-edge of

the clock. The solid circles indicate the blocking situation dictated by the network.

87

INHIBIT

PPQ(m;3)

Peg.'

BT(2m) BT(2m)
teeg.'d

r-heg-'sP * .

BT(2m)

±3- X

i l k
E

N
H

j
H
in

m
S

H
t/5

Lad m

PPQ(m,w)

m ,

E

H
C/5

U 4J
£ E

H

m

< $ -I
A .

E

H
s

H
c/3

E

H

Fig. 6.2: Building recursively priority queues with different depth sizes and inhibit feature

88

S T E P Departures
' = (] X . Incoming data Cells I Sorter#1 Sorter#2

. . . 7 0 4 5 7 •
Sorter #3 Sorter #4 Sorter #5

I N H I B I T = V

I N H I B I T = d

I N H I B I T = V

INHIBIT = 0

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

. 7 9 4 5 2

. 2 7 9 4 5

. 3 2 7 9 4

. 1 3 2 7 9

. 2 1 3 2 7

. 5 2 1 3 2

. 8 5 2 1 3

. 6 8 5 2 1

. 2 6 8 5 2

. 10 2 6 8 5

. 1 10 2 6 8

. 9 1 10 2 6

. 7 9 1 10 2

. 3 7 9 1 10

. . . 3 7 9 1

. . . 3 7 9

. . . 3 7

• • • 3

<g)«EH
+1

(D«EH

H—EH

< E H
H3M--

r < EH
H3M--

P 1

—• ---HUH777

|«SH-J : - H — | < I H - J 1
Hsm

r-rHW
H—E R

:-HzW

4 - H W
<—EH

H m

—• •---•-run
0«dH---k-

: - H 2 W

(DfgH
H I M 7 7

H I K 7 7 7

- E H 7 7 7

H 7 7 7 ^ * h r-HSJH

«—EH

(3>«IH__:
—

k — E H
7 7 H i K 7 7 7

H — E H

<3)«E}-b T : :-rE>P «—EH

• c a >
4—EH---J*—'

k — E H

« EH
• Effc

<

Ha*

I |̂
Ha*

H - - - H S r K

--Ha*

•
£ 3

5 ^
•HS>
3

H 7 7 7 } ^ 7 •i-E>

H i H 7 - H H I >

• < [8>i

4—{5h-' J

;--E>i
< [6] - - - ...4 1

: H°H 7 7

H—EH
f - EH 7 7 7

k H i H

_H—EH
Fig. 6.3: Several steps of the operation of a PPQ{\, 5)

89

Initially, it is assumed that the queue is empty and its output is not blocked. As long as

INHIBIT=0, the data cells are delivered to the output port and then to the following stage of the

network. In any given time-slot, data is exchanged between two consecutive sorters. For example,

in each time-slot, sorter #2 sorts its inputs from the two registers connected to its input ports, and

passes the higher priority data cell to left. Then, this data cell is compared with a newly arriving

data cell in sorter #1. The same sorting procedure is applied by sorters #2, and #3, by sorters #3,

and #4, and by sorters #4, and #5.

In step 4 (just before the rising-edge of the clock), an INHIBIT=1 signal is issued indicating that

no data cells can be output from the queue in the next step (step 5). This causes the queue to

reconfigure itself through M U X s and D M U X s after receiving the INHIBIT signal. Note that the

queue rearranges itself after the arrival of each new data cell and keeps the new configuration as

long as its output is blocked (step 4-7). Because up to this point the blocking does not persist too

long, the queue becomes just half full during these steps and no overflow (discard) happens.

In step 8 (just before the rising-edge of the clock), the queue receives an INHIBIT=0 signal and

subsequently reconfigures itself for normal operation. In step 9, the queue delivers the highest pri

ority data cell which has been stored in the queue with priority number 2 to the network.

In step 11 (just before the rising-edge of the clock), another INHIBIT=1 signal is issued to the

queue and the queue outputs data cell with priority number 2 after the rising-edge of the clock.

Now, the queue is reconfigured again because of its blocked output. In steps 12 and 13, while the

network still injects new data cells in the queue, the queue has to discard two data cells with prior

ity numbers 9, and 7. It is worth mentioning that cell discard can be avoided if traffic shaping or

congestion control is enforced in the network.

90

In step 14, an INHIBIT=0 signal is issued and the queue gets back to its normal configuration and

gives access to highest priority data cell to the network in each step. The above example shows

that the PPQ rearranges itself after arrival of new data cells. This rearrangement spreads into the

queue like a wave.

6.3 The PPQ Retimed Design with Output Rate-Control

Output rate-adaptation can be also incorporated in the retimed PPQ using the modified design of

Fig. 6.4 for PPQ(m, 1). Depending on the value of the INHIBIT signal (0 or 1), the structure of

Fig. 6.4: Retimed design of PPQ(m, 1) with inhibit feature

the PPQ is reconfigured using M U X s and DMUXs. For larger size PPQs, a global INHIBIT signal

is employed as before to prevent the PPQ from forwarding data cells through its output. The

recursive construction of such a PPQ is illustrated in Fig. 6.5.

91

INHIBIT

PPQ(m,3)

ft/

MReg.'sf

ST(2rn
«eg.'sH

BT(2m)
HReg-'

BT(2m)

^ 1

m , i pn ^

r l o j i — i

m
7 ^

S

H
(Z3

E

H
C/3

E
rs
H
GO

ILafiJ m

PPQ(m,w)

m, 1

s
rs
H

s
rS
H
CO

E

H
175

m
E

•—-
H
W2

rs
H
c/5

E
rs
H
c/3

u m

Fig. 6.5: PPQs with different depth sizes and inhibit feature

92

The dynamic reconfiguration of the retimed PPQ can be illustrated by means of an example. Sev

eral steps of the operation of a two inputs, two outputs priority queue of depth 3, i.e. PPQ(2, 3) ,

are shown in Fig. 6.6 using the same notations as the example of Fig. 6.3. Note that in the retimed

design, at any given time-slot (i.e. step) almost half of the sorters (viz. shaded sorters) are not

active because they receive empty (or invalid) data cells at the registers connected to their inputs.

The other half becomes inactive in the following step. This alternating operation occurs often in

the design of systolic systems as a result of retiming, and is an unavoidable result of the slow

down design technique [59]. Note that the queue rearranges itself after the arrival of each wave of

new data cells and keeps the new configuration as long as its output is blocked (steps 5-10).

Because up to this point the blocking does not persist too long, the queue becomes half full during

these steps with no overflow.

In step 11 (just before the rising-edge of the clock), the queue receives an PNHIBIT=0 signal and

subsequently reconfigures itself for normal operation. In step 15 (just before the rising-edge of the

clock), another INHIBIT=1 signal is issued, and the queue will be reconfigured because of its

blocked outputs. Because the PPQ is full, the injection of any new data cells will cause some older

lower priority cells at the queue tail to be discarded. In steps 16 and 18, data cells with priority

numbers 12, 13, 9, 10 are discarded. In step 19, an INHIBIT=0 signal is received and the queue

goes back to its normal configuration.

93

Fig. 6.6: Several steps of the operation of a systolic PPQ(2, 3)

94

Fig. 6.6 (cont'): Several steps of the operation of a systolic PPQ(2, 3)

95

6.4 Systolic PPQs with an Unequal Number of Inputs and Outputs

We now discuss the case when the number of parallel inputs to the PPQ is larger than the number

of outputs. Fig. 6.7 shows a PPQ(m, n, w) which is a systolic PPQ with m inputs and n outputs

and depth w, where m>n, and w is an odd integer. Instead of using 2m -cell sorters ST (2m),

we employ ST(m + n) sorters in this structure. Note that each ST(m + n) has m + n inputs and

m + n outputs. In each step, data cells incoming on the m inputs of the sorter from the left and the

n data cells from the right-side inputs are compared. Then the n highest priority data cells are

output to the left, and the ra lowest priority data cells are output to the right.

As illustrated in Fig. 6.7, the basic PPQ(m, n, I) is constructed from a single sorter ST(m + n)

whose n highest priority left-side outputs are delivered to the output ports through n registers.

From the m lowest priority right-side output, n outputs are recirculated to its right-side inputs

through n registers, and the remaining m-n lowest priority cells are discarded. In other words,

the PPQ discards lowest priority cells before blocking occurs.

For larger sizes PPQs, each stage operates on m + n inputs and produce m + n outputs in a single

step. Note that as soon as the queue gets full, the m-n data cells with lowest priority numbers

have to be discarded in every other step. This cell rejection takes place in addition to the discard

ing process that occurs due to the blocking feature.

96

PPQ(m,n?l)
m.

INHIBIT
1—

H
tf)

S
+
S

H

,m-n

m-n.

PPQ(m,n,3)

Fig. 6.7: PPQs with an unequal number of inputs and outputs

97

6.5 Bit-Serial Realization of the Systolic PPQ

The previous sections focused on the operation of the PPQ under a word-level VLSI model which

assumes that a fixed number of elements can be sorted in 0(l)-time. Although such circuits are

realizable in current VLSI technology, they may require excessive silicon area [60]. Bit-serial

sorters can be employed instead to reduce area at the expense of longer sorting time. In this sec

tion, we show how the operations of the systolic PPQ can be considered as composite processes

which are realized in bit-serial pipelined circuits.

The sorting techniques of this chapter are implemented on a suitable bit-level VLSI model [41],

[56], for which the following assumption holds: operations are performed under the bit-serial

model of parallel computation and must be completed in one time-slot. Under this model it is not

possible to store the entire bits representing one data cell in one node, nor is it possible to sort

serial-bit data cells in one time-unit. However, the buffers at the outputs of each sorter must be

large enough to contain entire data cells. In general, any fast bit-serial sorter can be used in our

PPQ provided that it can be interfaced properly to the registers of each stage. In the following we

provide delay analysis for a PPQ using such circuits.

PPQ Timing and Delay Analysis: As discussed in Chapter 5, the priority number of a data cell is

assumed to be (k + 1)-bit tuple (e, p{, p 2 , p k) , with e being the empty-cell indicator, px the

most significant priority bit (MSB), and pk the least significant priority bit (LSB). Thus, empty

data cells (i.e. for which e=l) are considered as the lowest priority (largest P value) data cells.

The core element in a bit-serial realization of a sorter is a simple bit-serial primitive sorter ST,

which operates on two inputs. A primitive sorter, shown in Fig. 6.8, is a comparator device with

98

two inputs, Ix and I2, and two outputs, Ox and 02, that performs the following functions:

Ox = MIN(IX,I2) and 02 = MAX{IX,I2).

Two basic geometries (i.e. pictorial representations) are shown in Fig. 6.8 for the primitive sorter

(a) Square Geometry (b)Linear Geometry

12

Ii

ST OL 12

o- ST • a

Fig, 6.8: Two pictorial representations of a primitive sorter

ST. The "square" geometry (Fig. 6.8-a) will be used in constructing parallel sorters with larger

dimensions, while the "linear" geometry (Fig. 6.8-b) will be employed in constructing priority

queues of various depths. Note that the internal structures of the two geometries are identical.

The primitive sorter compares the two data cell serialized in time starting with the most significant

bit of the priority number P, and moving to the next less significant bit in the next clock cycle. The

realization of such sorter is well known and can be found in many text books [25], [61]. For our

analysis it is important to realize that the delay of a primitive sorter is equivalent to that of a single

flip-flop (or primitive delay element D). Thus, in each input-output path, the combined delay of a

primitive sorter with its one-bit register is fixed and is defined as sorting cycle of a primitive sorter

(i.e. A(2) or simply A) which is equal to one clock period or one unit of time.

99

Under the assumption that each primitive sorter has a unit time sorting cycle, i.e. A = 1, we can

define A(2m) as the time taken by a ST(2m) sorter to complete a sorting operation on all of its

input data cells. Thus, A(2m) is the delay of a 2m -cell sorter ST(2m) measured in terms of unit

delays (or As). This period is the time which it takes to sort the incoming data cells and make

them available at the outputs of the sorter, and is determined by the maximum delay path that an

input data cell encounters as it passes through the sorter.

It is important to observe that the correct operation of the proposed systolic PPQ requires that we

employ a stage of delay elements with a delay equal to the sorting cycle of ST(2m). Such a delay

element will be denoted by D(2m) and its total delay is equal to A(2m). Note that a delay ele

ment D(2m) can be realized using A(2m) primitive delay elements D (which itself has delay

equal to A=l) in series. The function of a primitive delay element D is mainly that of a basic

edge-triggered flip-flop where output transitions take place following the rising edge of the clock

tick.

6.6 Structure of Parallel Sorters

Chapter 5 presented a realization of a systolic parallel priority queue PPQ(m, w) based on a lin

ear interconnection of 2m-cell sorters, and additional registers. The feasibility and efficiency of a

PPQ therefore relies crucially on the sorter realization. In this section, we show that equally mod

ular and recursive realizations can be derived for the sorters. We focus mainly on small sorter

design, since for most practical realizations we expect the number of inputs to a sorter will be less

than 8.

100

This section presents a method for the recursive construction of small sorters from a VLSI synthe

sis perspective. The authors are aware of the wide body of literature on the design of sorters [25],

[58], [61]. Our main concern here is optimizing the design of small sorters. Although this method

may not result in sorters with a minimal number of gates, it has advantage of having a very com

pact recursive specification of the sorter in terms of the parameter m. This can be advantageous

from high-level synthesis (using hardware description languages such as V H D L or Verilog) per

spective. In the following, two different methods are proposed for implementing a 2m -cell sorter.

6.6.1 Recursive Construction of Parallel Sorters

In the first approach, a 2m -cell sorter ST(2m) can be constructed recursively from m -cell sorters

ST(m). Note that this.assumes that m = 2 , k = 1, 2, For m = 2, Fig. 6.9 shows that 5

14
ST

12

ST

ST

ST

ST > 0 3

0>

1 "2
Square Geometry Linear Geometry

O] = MIN{1VI2,I3,IA)

04 = MAX(IVI2,I3,I4)

Ox<02<03<04

Fig. 6.9: Configuration of 57/(4) and its two pictorial representations

101

primitive sorters ST (i.e. 2-cell sorters) are required to construct a 4-cell sorter ST(4). The

equivalent five comparator sorting network is well known and can be found in [25], [61]. Two

primitive delay elements D are also employed to assure the proper synchronization of the incom

ing data cells. Essentially, the delay elements equalize the sorting cycle, or delay, along all input-

output paths of the sorter, so that all data cells experience the same delay inside the sorter.

Two basic geometries (i.e. pictorial representations) are also shown in Fig. 6.9 for ST(4). The

"square" geometry will be used in constructing larger sorters, while the "linear" geometry will be

used in constructing a priority queue PPQ(2, w), where w is an odd integer.

Fig. 6.10 illustrates how an 8-cell sorter ST'(8) can be constructed from five 4-cell sorters and

four D(4) delay elements. Delay chains in the parallel sorters are represented by shaded ovals.

Again, the delay elements guarantee that all incoming data cells in one time-slot leave the sorter

in the same time. Two equivalent geometries for the 8 -cell sorter ST(S) are also demonstrated in

Fig. 6.10.

This procedure can be applied recursively to realize a systolic 2m -cell sorter ST(2m) from five

ST

m -cell systolic sorters ST(m) and m delay elements D(m), as shown in Fig. 6.11. Let n (2m),

and nD(2m) denote, respectively, the number of primitive ST sorters and primitive D delay ele

ments used to construct ST(2m). Also note that A(2m) denotes the delay of ST(2m), as defined

in Section 6.5. Then, the following results can be easily derived from the recursive construction of

ST(2m)

102

I8_
I?

16

Is

ST(4)
1

13 J4

ST(4)
2

0 1 0 2 ° 3 ° 4

Ox = MIN(IX,I2,...,IS)

6>8 = MAX(I{,I2,...,IS)

Ox<02<....<0%

II, 12 I3, I4

l8_

IT.

Is

M M
Square Geometry Linear Geometry

Fig. 6.10: Realization of an 8-cell sorter

103

II. . . . Jm/2

I 2m _ r * * i

l3m/2+l

ST(m)
i

bm/2

Lm+l

Im/2

ST(m)
2

o o
l m/2

6>, = MIN(IvI2,...,I2m)

02m = MAX{Ix,I2,...,I2m)

0{<02<... <02m

ST(m)
4

•

•

T

ST(m)
3

f &) ^

l a y

ST(m)
e

•

• ••

o

o 2m

o 3m/2+l

3m/2

m+l

m/2+i m

I l l

1.2m

• • •

••• 12m • •
Im+l

• •
2m

1.2m

• • • ST(2m)
2m • • •

12m • •
Im+l

ST(2m)
m+l

Im+l o
1 II

••• m+l •
•

•

6 of*
• * Im

l m m

Square Geometry Linear Geometry

Fig. 6.11: Recursive construction of a 2m -cell sorter and its two geometries

104

ST Jog 2m log25
n (2m) = 5 = m

n (2m) = 2(6 - 5) = 2(m - m)

Ktn \ ^ l 0 g 2 / M 1 0 8 2 3

A(2m) = 3 = m

It is worth mentioning that in Fig. 6.10 4-cell sorters 3, 4, and 5 (and similarly in Fig. 6.11 m -cell

sorters 3, 4, and 5) can be replaced by three merger units [25]. Although, this realization might be

preferable because the structure of a merger is simpler than that of a parallel sorter (e.g. a 4 -cell

merger can be implemented using 4 comparators [25]), this mixed implementation would sacrifice

the true modularity of the sorter. Also, since PPQs normally employ small sorters, e.g. m < 4 , the

hardware saving from employing mergers would be small.

6.6.2 Direct Construction of Parallel Sorters

The recursive construction method described above, although simple to specify, can result in

higher complexity implementations, especially as m gets larger. In this section, we explore an

alternative construction that reduces both the size and the sorting cycle of the sorter. In this

approach, the 2m-cell sorter ST(2m) is realized directly using primitive sorters and delay ele

ments. This method can be used to construct any ST(2m) sorter, where m = 2k, k = 1, 2, ...,

i.e. m is an even integer.

Fig. 6.12 shows the structure of a 6-cell sorter ST(6). The delay elements are used in the sorter

to ensure that both inputs arrive at the same time to each primitive sorter and to ensure that all data

cells which arrive in one time-slot leave the sorter at the same time. This structure can be

105

16

Is

S T

14

12

S T

S T

H S T

S T C | - | ^ | S T

1
ST S T

S T S T

o ft

0 , = MINdi,^,...,^)

06 = MAX(IVI2,...,I6)

Ol<02<....<06

STJ

OL

Fig. 6.12: Configuration of a 6 -cell sorter using primitive elements

expanded for more input ports as shown in Fig. 6.13 for an 8 -cell sorter ST(&), and in Fig. 6.14

for the general case of a 2m -cell sorter ST(2m). The systolic sorter of Fig. 6.14 is comprised of

a two dimensional systolic array with two triangular sub-arrays and one square array of sorters

2 1
containing m primitive sorters. Each triangular array also includes - (m - l) (m - 2) primitive

sorters. For this approach, the following bounds can be derived:

106

0 8 = MAX(IVI2,...,IS)

ol<o2<....<os

Fig. 6.13: Construction of an 8 -cell sorter 51(8) using primitive elements

107

Fig. 6.14: Realization of a 2m -cell sorter ST(2m) using primitive elements

108

n 1 (2m) = 2rn'-2m+\

D N 2 _ _
« (2m) = 2m - 2m - 2

A(2m) = 3 (m - 1)

ST D
where n (2 m) , " (2 m) , and A(2m) are as defined before (Section 6.6.1).

Table 6.1 compares the number of elements and the sorting cycle to construct a 2m -cell sorter

ST(2m) with both approaches for specific values of m.

Table 6.1: Comparing two methods of implementation of a 2m-cell sorter

m
Approach 1 Approach 2

m
ST

n (2m)
D

n (2m)
A(2m) ST

n (2m)
D

n (2m)
A(2m)

2 5 2 3 5 2 3

4 25 22 9 25 22 9

8 125 182 27 113 110 21

16 625 1342 81 481 478 45

In Section 6.8, implementation issues of primitive sorter and delay elements are presented. But

before moving on to further discussion of the implementation issues, it is important to clarify the

timing details for a primitive sorter during normal operation in Section 6.7.

109

6.7 Primitive Sorter Timing

A primitive sorter ST receives data cells from two inputs, and steers these data cells depending on

their priority values. The sorter has a set of locally controllable switches which enable the four

input/output ports to be connected internally in various configurations. While enable signal is on,

depending on data cells' priority values, each primitive sorter ST has two states: pass (or for

ward) mode and switched (or return) mode.

The ST and its two possible states are shown in Fig. 6.15-a. Normally, ST is at the pass mode,

12
°1

12
° 1

ST

ST

(a)

Ii

°2
II

12
- 0 2

12

« - Il

CLK
EN L

ST
PASS

01

P. —ft,
12

(b)

Address
k

Priority value F"?^'ceL indicator bit

I I i i i i i

12

i • i i i

T T T T \ J

(c)

Fig. 6.15: Primitive sorter: a) pass and switched modes, b) More detailed I/O diagram,
c) Timing and format of input signals.

i.e. data cells from the left-side are routed to the right-side, and data cells from the right-side prop

agate to the left-side. While the switching mode is enabled in the sorter, if the priority level of the

data cell arriving from the west is higher than that of the data cell arriving from the east, i.e. the P

value of 12 is smaller than that of / , , then the ST state is toggled so that the data cell from the

110

left-side is routed back to the west, and the data cell from the right-side is routed back to the east.

In other words, higher priority (smaller P value) data cells always propagate westwards. In the

other case, the data cell from the left-side propagates to the east, and that from the right-side prop

agates to the west.

A more detailed diagram of ST and its data cell input signals format are also shown in Fig. 6.15.

In addition to its four ports(/ 1 ,I 2 , Ox, and 02), a SWT has a clock signal (CLK), an enable sig

nal (EN), and 5 additional control signals: two input signals pn , and pj2, and three output signals

Po\' Po2< a n d PASS. The pn signal is used to indicate the beginning of a data cell time-slot,

while the pi2 signal is used to indicate the timing of incoming data cells priority field (i.e. both

empty-cell indicator bit and priority value). PASS is a special signal which shows the mode of ST

(pass or switched). The correct operation of a ST assumes that two bit-serial aligned data cells

arrive simultaneously at the I{ and I2 ports and also synchronized with the pn and pi2 signals.

Signals pol and po2 are two delay versions of pn and pi2. As demonstrated in the previous sec

tion (see figures 6.9-6.14), data cells are propagated in a general 2m-cell sorter ST(2m) similar

to a wave propagating along the diagonal direction toward the bottom right corner. The control

signals which communicate between adjacent STs ease the synchronization problem. This

requires the same phase to the signal arriving at each 57". For this reason, the pn and pi2 signals

are applied from the top left 57" s of the ST(2m), and each ST distributes these signals through

the poX and po2 output signals to its east and south neighbors. These signals have to pass through

some delay elements in each 57" as will be shown later. In order to increase speed and minimize

i l l

the silicon area of the primitive sorters, a modified version of domino circuits [38] has been

employed. The design strategy and implementation issues of the PPQ will be discussed in the next

section.

6.8 VLSI Design Strategy and Implementation Issues

Two different design strategies have been used to implement our systolic PPQ. The first strategy

involved developing a synthesizable V H D L model of the queue. Our V H D L model is parame

trized in the number of input/output ports of the queue as well as the depth of the queue so that

PPQs of different sizes can be synthesized from the same V H D L code. The V H D L model has

been also used for timing and functional verification. However, because our main target was to

operate the PPQ at the maximum possible clock rate, our second design strategy was focused on

transistor-level circuit development for the basic blocks rather than synthesizing the V H D L code.

The first step in our design flow involved full-custom circuit design of the basic blocks using the

0.5-(im CMOS technology, followed by the same design procedure as described in Section 4.2.

Then, using a recursive structural V H D L program which uses the custom design basic blocks as

its core elements, a systolic PPQ is realizable. Again, our structural V H D L model is parametrized

in the number of input/output ports of the queue as well as the depth of the queue so that PPQs of

different sizes can be synthesized from the same V H D L code. Circuit simulation with Hspice

assured that the PPQ unit function correctly up to about 330 M H z under a 3.3 V power supply in

0.5-fim CMOS technology.

The circuit diagram of control part of a ST is depicted in Fig. 6.16. The modified domino CMOS

circuit technique uses two different clock signals, a (system) clock and a cell clock (i.e. CLK, and

112

.PASS

D_FFkx>- PASS U>, i

PASS — f u j —=— 1 1

D_FF ™ 5 5

a

EN

n weak

S ^TOG
PASS

CONTROL PASS IV. PASS

CLA:

X 7

p - D. _FF

(LA:
p - D. _FF

(LA:

p
02

Fig. 6.16: Circuit diagram of the ST

piX). Similar to the circuit diagram of the switch element in Chapter 4, the use of such dynamic

CMOS circuits achieves significant reduction in the number of transistors and, more importantly,

a higher switching speed compared to static circuits. The circuit operation is based on first pre-

113

charging the output node capacitance and subsequently, evaluating the output level according to

the applied inputs [38]. A progressive scaling of the transistors in the series chain of our design is

beneficial. As discussed in Chapter 4, a graded sizing of nMOS transistors in series structures,

where the nMOS transistor closest to the output node has the smallest width-to-length ratio, yields

the best performance [40].

The complete signal and data-path of the ST is also shown in Fig. 6.16. Data inputs 7j , and I2,

and control signals pn , and pi2 are first latched by four D_FFs. The PASS signal specifies the

direction of data-path in each cell period. The control signals pn , and pi2 are passed as two out

put signals pol and po2 to the neighbor STs, to the east and south, after one clock cycle delay.

The data words / j , and 7 2 are also passed to neighboring STs in the same fashion. Based on a

triple-metal/single-poly 0.5-nm CMOS technology, the area of the primitive sorter, which con-

sists of 64 transistors and is depicted in Fig. 6.16, is about 4040 (\im) , while the area of the

2
primitive delay element is about 592 (fira) .

114

6.9 Summary

A systolic Parallel Priority Queue (PPQ) for the packet networks was designed and its high-speed

operation performance was verified. The proposed PPQ is rate-adaptive in the sense that the PPQ

operates correctly even when the queue input rate and output rate are different. This is an impor

tant feature because in practice the output rate of the queue is controlled by the available link

bandwidth which may vary (or even becomes zero) independent of the packet arrival rate. This

decoupling of the input and output packet flow rates is a distinguishing feature of our PPQ con

cept and has not been addressed in previous literature.

This chapter also described how output rate-adaptation can be also incorporated in the retimed

PPQ. Then, the case when the number of parallel inputs to the PPQ is larger than the number of

outputs was addressed. Finally, the chapter presented an area-efficient, systolic design of the PPQ

for VLSI implementation. In this design, the combined use of a systolic structure, and dynamic

CMOS circuits facilitated the balancing of design complexity and performance return. Circuit

simulation with Hspice assured that the PPQ unit function correctly up to about 330 M H z under a

3.3 V power supply in 0.5-pm CMOS technology.

115

C H A P T E R 7

Conclusion & Future Directions

The explosion in data traffic volumes in recent years and the consequent fiber expansion are forc

ing system designers to rapidly increase packet network capacity. A critical issue in designing of

these packet network is the realization of high speed data buffers. The main thrust of this thesis is

the development of two scalable queuing structures in VLSI for very high speed packet-switched

networks. The main motivation for this work is the emerging need for scalable architectures for

high speed interfaces and packet scheduling systems. However, all architectures and circuits pre

sented in the thesis can be employed in other applications (for example see Section 3.5 in Chapter

3).

116

A methodology for the systematic design of order-preserving multi-input multi-output (MIMO)

buffers was presented in Chapters 3 and 4. These buffers are capable of inputting and/or

outputting multiple packets while maintaining their FIFO order, and adaptively manage the

available buffer space for statistically multiplexed input traffic. Our approach employs a systolic

routing network and bank of parallel FIFO buffers to yield a load-balanced buffer realization with

increased bandwidth [8]. Using this methodology we derived scalable parallel M I M O FIFO buffer

structures that can be designed to match the rate of ultra high-speed links using current memory

technology that uses moderate clock rates. Using a 0.5-um CMOS technology, a small prototype

of the MIM O buffer was designed which attains a rate of 10.6 Gb/s which is more than adequate

to support a Sonet OC-192 link [9]. The combined use of pipelined architecture and dynamic

CMOS circuits resulted in significant reduction in design complexity and substantial performance

gains in speed and silicon area. Although the idea of using a parallel arrangement of FIFO buffers

to realize a faster shared FIFO buffer has been around for many years, our systolic routing net

work provides significant advantages over previously proposed banyan/butterfly networks since

the systolic network eliminates the need for parallel-prefix adders that compute packet ranks

before concentrating them on the output ports. In our designs, load-balancing is done using arith

metic-free circuits. Our design approach is scalable and amenable to simple VLSI implementa

tion.

In Chapter 5, an area-efficient, systolic design of the parallel priority queue (PPQ) for VLSI

implementation was presented [21]. The PPQ maintains prioritized access to the data it contains at

all times, and the access time to the data is fixed and independent of the PPQ size, i.e. 0(l)-time

access. A major challenge is maintaining the correct operation of the priority queue at very high

link speeds. The PPQ can be scaled to meet the requirements of ultra high-speed links using

117

standard CMOS technology. The presented design in Chapter 5 is the generalization of the prior

ity queue concept with steady streams of parallel inputs and outputs, i.e. the same input and out

put rates.

Chapter 6 developed a novel rate-adaptation feature to allow different input and output rates for

the PPQ [22]. This is an important feature because in practice the output rate of the queue is

controlled by the available link bandwidth which may vary (or even become zero) independent of

the packet arrival rate. In many real applications, it is desirable to decouple the input process to

the PPQ from the output process. Specifically, the PPQ outputs may be intermittently blocked

from sending cells due to a link congestion. The proposed PPQ in Chapter 6 is rate-adaptive in the

sense that the PPQ operates correctly even when the queue input rate and output rate are different.

To provide rate-adaptation capability to our PPQ, we strategically employed data steering blocks,

between pipeline stages of PPQ, which are controlled by a global "go/stop" signal. This means

that the output rate can be controlled by back pressure signals from other stages in the network

due to lack of buffer space or due to link congestion. This decoupling of the input and output

packet flow rates is a distinguishing feature of our PPQ concept and has not been addressed in

previous literature. Chapter 6 also presented an area-efficient, systolic design of the modified PPQ

for VLSI implementation, and addressed how the operations of the systolic PPQ with output

rate-control can be considered as composite processes which are realized in bit-serial pipelined

circuits.

118

Future Directions

Recently, there has been much interest in using more complex, active queue management

algorithms [112] such as multiclass RED (random early detection) [113]-[115] and WFQ

(weighted fair queuing) [116]-[118]. To use the proposed PPQ for more sophisticated scheduling

algorithms of these queue managements, future improvements are necessary to provide some new

features to the architectures. Moreover, the PPQ architectures presented in Chapters 5 and 6

consist of several identical pipeline stages, where each pipeline stage of the PPQ includes mainly

some registers and a parallel sorter as its own processing element. One of the immediate

improvements is to apply more advanced processing elements instead of parallel sorters for other

promising applications [62]. For example, the processing elements can accumulate certain values

while sorting packet headers.

It has been reported that although the global clocking schemes simplifies hardware design, the

self-timed approach has definite advantages [63], [64] (see Appendix B). Systolic architectures

are typically designed under the strict synchronous model of computation. However, for our PPQ

architecture it is possible to redesign the sorters as asynchronous processing elements, whereby

each computes its output values only when all its inputs are available resulting in a self-timed

design [62]. The asynchronous design approach eliminates the need for a global clock and

circumvents the problems arising from clock skew. Nevertheless, our systolic PPQ designs are

heavily pipelined and retimed; critical paths are properly balanced and little room is left to obtain

an asynchronous benefit. Moreover, an asynchronous benefit of this kind must be balanced against

a possible overhead in completion signaling and asynchronous control [64]. A self-timed design

also has the potential for reduced power consumption relative to its synchronous counterpart. A

119

synchronous circuit is either quiescent (i.e., the clock is turned off) or active entirely (i.e., clock

on). An asynchronous circuit, by contrast, consumes energy only when is active. In other words,

self-timed circuits can potentially achieve low power consumption because unused circuits parts

can automatically turn into a stand-by mode. However, it is not obvious to what extent this

advantage is fundamentally asynchronous. Synchronous techniques such as clock gating may

achieve similar benefits, although they have their limitations. In general, the potential of

asynchronous design for low-power depends on the application [64]. Additional savings in power

can be accomplished by using self-timed circuits with a mechanism that adaptively adjusts the

supply voltage to the smallest possible while maintaining the performance requirements [65]. An

important consideration that may limit the applicability of this technique is that the supply voltage

must vary at a slow rate relative to the internal operational speed of the circuit, otherwise it may

interfere with the operation of the circuit. In summary, the issue of clocking in our designs and

possible self-timed versions of the PPQ architectures need further investigation [62].

120

B I B L I O G R A P H Y

[1] S. E. Butner, and R. Chivukula, "On the Limits of Electronic A T M Switching," IEEE
Network, vol. 10, no. 6, pp. 26-31, Nov./Dec. 1996.

[2] S. E. Butner, and D. A . Skirmont, "Architecture and Design of a 40 Gigabit per second
A T M Switch," in Proc. Int'l. Conf. Comp. Design, Austin, T X , pp. 352-357, Oct. 1995.

[3] Richard Crisp, "Direct Rambus Technology: The New Main Memory Standard," IEEE
Micro, vol. 17, no. 6, pp. 18-28, NovVDec. 1997.

[4] A . Demers, S. Keshav, and S. Shenker, "Design and Analysis of a Fair Queuing
Algorithm," A C M Sigcomm '89, Austin, Sep. 1989.

[5] A . K. Parekh, "Generalized Processor Sharing Approach to Flow Control in Integrated
Services Networks," Technical Report LIDS-TH-2089, MIT, Cambridge, M A 02139, Feb.
1992.

121

[6] D. Clark, S. Shenker, and L . Zhang, "Supporting Real-Time Applications in an Integrated
Services Packet Network: Architecture and Mechanism", A C M Sigcomm '92, pp. 14-26,
Aug. 1992.

[7] S. Floyd, and V. Jacobson, "Link-sharing and Resource Management Models for Packet
Networks," IEEE/ACM Trans, on Networking, vol. 3 no. 4, pp. 365-386, Aug. 1995.

[8] M . Kazemi-Nia, and H . Alnuweiri, "VLSI Design of Parallel FIFO Buffers for Gigabit
Packet Networks," accepted for publication in the IEEE Trans, on VLSI Systems.

[9] M . Kazemi-Nia, and H . Alnuweiri, "Parallel Buffer Design for High Speed Interfaces," in
proc. CCBR '99, pp. 102-113, Ottawa, Nov. 1999.

[10] Y. S. Yeh, M . G. Hluchyj, and A. S. Acampora, "The knockout switch: A simple
architecture for high-performance packet switching," IEEE J. on Select. Areas in Com-
mun., vol. 5, no. 8, pp. 1274-1283, Oct. 1987.

[11] H. S. Kim, "Design and Performance of Multinet Switch: A Multistage A T M Switch
Architecture with Partially Shared Buffers," IEEE/ACM Trans, on Networking, vol. 2, no.
6, pp. 571-580, Dec. 1994.

[12] H. S. Kim, "Multinet Switch: Multistage A T M Switch Architecture with Partially Shared
Buffers," Infocom '93, pp. 4c.3.1 - 4c.3.8, 1993.

[13] K. Eng, M . J. Karol, and Y. Yeh, "A Growable Packet (ATM) switch Architecture Design
Principles and Applications," IEEE Trans, on Communications, vol. 40, no. 2, pp. 423-
430, Feb. 1992.

[14] K. Y. Eng, M . J. Karol, and Y. Yeh, "A High-Performance Prototype 2.5 Gb/s A T M Switch
For Broadband Applications," Globecom' 92, pp. 111-117, 1992.

[15] K. Y. Eng, M . J. Karol, and Y. Yeh, "Concentrator-based growable packet switch," U . S.
Patent 5-256-958, Oct. 26, 1993.

[16] H.J Chao, and B. Choe, "Design and Analysis of a Large-Scale Multicast Output Buffered
A T M Switch," IEEE/ACM Trans, on Networking, vol. 3, no. 2, pp. 126-138, April 1995.

[17] H . J. Chao, "A Recursive Modular Terabit/Second A T M Switch," IEEE J. on Selec. Areas
in Commun., vol. 9, no, 8, pp. 1161-1172, Oct. 1991.

[18] K. L . E. Law, and A. Leon-Garcia, "A Large Scalable A T M Multicast Switch," IEEE J. on
Selec. Areas in Commun., vol. 15, no. 5, pp. 844-854 June 1997.

122

[19] I. Widjaja, and A . Leon-Garcia, "The Helical Switch: A Multipath A T M Switch Which
Preserves Cell Sequence," IEEE Trans, on Communications, vol. 42, no. 8, pp. 2618-2629,
Aug. 1994.

[20] A . Pattavina, "Nonblocking Architectures for A T M Switching," IEEE Communication
Magazine, vol. 31, no. 2, pp. 38-48, Feb. 1993.

[21] M . Kazemi-Nia, and H . Alnuweiri, "A Parallel Priority Queue (PPQ) with Rate
Adaptation for High Speed Networks," in proc. C C B R '99, pp. 90-101, Ottawa, Nov.
1999.

[22] M . Kazemi-Nia, and H. Alnuweiri, "A Systolic Parallel Priority Queue (PPQ) with Output
Rate-Control for High Speed Networks," submitted for publication in the IEEE Trans, on
VLSI Systems, June 1999.

[23] H . J. Chao, and N . Uzun, "A VLSI Sequencer Chip for A T M Traffic Shaper and Queue
Manager," IEEE Journal of Solid-State Circuits, vol. 27, no, 11, pp. 1634-1643, Nov.
1992.

[24] S.-W. Moon, J. Rexford, and K. Shin, "Scalable hardware priority queue architectures for
high-speed packet switches," IEEE Real-Time Tech. and Applic. Symp., pp. 203-212,
June 1997.

[25] F. T. Leighton, Introductions to Parallel Algorithms and Architectures: Arrays - Trees -
Hybercubes, San Mateo, C A : Morgan Kaufmann, 1992.

[26] M . Kazemi-Nia, and H . Alnuweiri, "Balanced Multiport Buffer Design in Silicon," IEEE
A T M '96 Workshop, pp. HW.1-6, San Francisco, C A , Aug. 1996.

[27] M . Kazemi-Nia, and H . Alnuweiri, "VLSI Implementation of Highly-Optimized Scalable
A T M Switches," 18th Symp. on Communications, pp. 101-104, Kingston, Canada, June
1996.

[28] H. T. Kung, "Why systolic architectures," Computer, vol. 15, no. 1, pp. 37-46, Jan. 1982.

[29] C. E. Leiserson, Area-Efficient VLSI Computation, Ph.D. dissertation, Dept. Computer
Science, Carnegie-Mellon University, 1981; published in a book form, Cambridge,
Massachusetts: MIT Press, 1983.

[30] C. E. Leiserson, "Systolic Priority Queues," Caltech. Conf. on VLSI , pp. 200-214, Jan.
1979.

[31] M . Hashemi and A. Leon-Garcia, "A General Purpose Cell Sequencer/Scheduler for A T M
Switches", IEEE Infocom '97, Kobe, Japan, April 1997.

123

[32] H.J Chao, "A Novel Architecture for Queue Management in the A T M Networks," IEEE J.
on Selec. Areas in Commun., vol. 9, no. 7, pp. 1110-1118, Sep. 1991.

[33] H.J Chao, and N . Uzun, "A VLSI Sequencer Chip for A T M Traffic Shaper and Queue
Manager," in Proc. Globecom '92, pp. 1276-1281, 1992.

[34] H . J. Chao, and N . Uzun, "A VLSI Sequencer Chip for A T M Traffic Shaper and Queue
Manager," IEEE Journal of Solid-State Circuits, vol. 27, no, 11, pp. 1634-1643, Nov.
1992.

[35] H.J Chao, and N . Uzun, "An A T M Queue Manager Handling Multiple Delay and Loss
Priorities," IEEE/ACM Trans, on Networking, vol. 3, no. 6, pp. 652-659, Dec. 1995.

[36] G.C. Heinze, R. palmer, I. dresser, and N . Leister, "A three chip set for A T M switching," in
IEEE Custom Integr. Circ. Conf., pp. 14.3.1-14.3.4, May 1992.

[37] D. Picker, and R.D. Fellman, "A VLSI Priority Packet Queue with Inheritance and
Overwrite," IEEE Trans, on VLSI systems, vol. 3, no. 2, pp. 245-253, June 1995.

[38] N . Weste, and K. Eshraghian, Principles of CMOS VLSI Design - a Systems Perspective,
Addison-Wesley, 2 edition, 1993.

[39] J.A. Pretorius, A.S. Shubat, and C A . Salama, "Charge redistribution and noise margins in
domino CMOS logic," IEEE Trans. Circ. Syst., vol. 33, no. 8, pp.786-793, Aug. 1986.

[40] M . Shoji, "FET Scaling in Domino CMOS Gates," IEEE J. of Solid-State Circuits, vol. sc-
20, no. 5, pp. 1067-1071, Oct. 1985.

[41] J. D. Ullman, Computational Aspects of VLSI , Rockville, M D : Computer science press,
1984.

[42] H . M . Alnuweiri, and R. Beraldi, "A General Class of Highly-Optimized Scalable A T M
Switches," Globecom '95, Singapore, Nov. 1995.

[43] W. Marcus, "A CMOS Batcher and Banyan Chip Set for B-ISDN Packet Switching," IEEE
J. of Solid-State Circuits, vol. 25, no. 6, pp. 1426-1432, Dec. 1990.

[44] M . D. Marco, " Distributed Routing Protocols for A T M Extended Banyan Networks,"
IEEE j . on Selec. Areas in Commun., vol. 15, no. 5, June 1997.

[45] P. C. Wong, and M . S. Yeung, "Design and Analysis of a Novel Fast Packet Switct —
Pipeline Banyan, IEEE/ACM Trans, on Networking, vol. 3, no. 1, pp. 63-69, Feb. 1995.

124

[46] F. Tobagi, "Fast Packet Switch Architectures for Broadband Integrated Services Digital
Networks," Proc. of the IEEE, vol. 78, no. 1, pp. 133-167, Jan. 1990.

[47] J. S. Turner, "Design of a Broadcast Packet Switching Network," IEEE Trans. Commun.,
vol. 36, no. 6, pp. 734-743, June 1988.

[48] M . Alimuddin, H . M . Alnuweiri, and R. W. Donaldson, "The Fat-Banyan A T M Switch,"
IEEE Infocom '95, pp. 659-666, April 1995.

[49] E. T. Bushnell, and J. S. Meditch, "Dilated Multistage Interconnection Networks for Fast
Packet Switching "IEEE Infocom '91, pp. 1264-1273, 1991.

[50] C. P. Kruskal, and M . Snir, " The performance of Multistage Interconnection Networks for
Multiprocessors," IEEE Trans, on Computers, vol. c-32, no. 12, pp. 1091-1098, Dec.
1983.

[51] T. Szymanski, and S. Shaikh, "Markov Chain Analysis of Packet-Switched Banyans with
Arbitrary Switch Sizes, Queue Sizes, Link Multiplicities, and Speedups," IEEE Infocom
'89, pp. 960-971, 1989.

[52] Y. Mun, and H . Y. Youn, "Performance Analysis of Finite Buffered Multistage
Interconnection Networks," IEEE Trans, on Computers, vol. 43, no. 2, pp. 153-162, Feb.
1994.

[53] H. Yoon, K. Y. Lee, and M . T. Liu, "Performance Analysis of Multibuffered
Packet-Switching Networks in Multiprocessor Systems," IEEE Trans, on Computers, vol.
39, no. 3, pp. 319-327, March 1990.

[54] C. M . Chu, H . Tayar, and H. M . Alnuweiri, "Enhanced Packet Switching on a Dilated
Banyan Switch with Back Pressure," in Proc. ISCA '99, pp. 130-134, Mexico, 1999.

[55] EEEE Standard V H D L Language Reference Manual, std 1076-1993, New York: IEEE,
1993.

[56] C. D. Thompson, "Area-time complexity for VLSI," Proc. A C M Symp. Theory
Computation, May 1979.

[57] D. E. Knuth, The Art of Computer Programming. Vol. I l l : Sorting and searching, Reading,
M A : Addison-Wesley, 1973.

[58] H. M . Alnuweiri, "A New Class of Optimal Bounded Degree VLSI Sorting Networks",
IEEE Trans, on Computers, vol. 42, no. 6, pp. 746-752, June 1993.

[59] T. H . Cormen, C. E. Leiserson, and R. L . Rivest, Introductions to Algorithms, Cambridge,
M A : The MIT Press, 1990.

125

[60] C. D. Thompson, "The VLSI complexity of sorting," IEEE Trans, on Computers, vol. C-
32, no. 12, pp. 1171-1184, Dec. 1983.

[61] D. E. Knuth, The Art of Computer Programming. Vol. l U : Sorting and searching, Reading,
M A : Addison-Wesley, 1973.

[62] M . Kazemi-Nia, and H. Alnuweiri, "A Self-timed Parallel Priority Queue (PPQ) with
Output Rate-Control," in preparation.

[63] S. Hauck, "Asynchronous Design Methodologies: An Overview," Proc. of the IEEE, vol.
83, no. 1, pp. 69-93, Jan. 1995.

[64] C. H. Van Berkel, M . B. Josephs, and S. Nowick, "Applications of Asynchronous
Circuits," Proc. of IEEE, vol. 87, no. 2, pp. 223-233, Feb. 1999.

[65] L . Nielsen, C. Niessen, J. Sparso, and K.V. Berkel, " Low-power operation using self-
timed circuits and adaptive scaling of the supply voltage," IEEE Trans, on VLSI Systems,
vol. 2, no. 4, pp. 391-397, Dec. 1994.

[66] Craig Partridge, Gigabit networking, Addison-Wesley Pub., 1991.

[67] T. Koinuma, and N . Miyaho, " A T M in B-ISDN Communication Systems and VLSI
realization." IEEE J. of Solid-State Circuits, vol.30, no. 4, pp. 341-347, April 1995.

[68] M . Hlucchyj, and M . Karol, "Queueing in high-performance packet switching," IEEE J.
on Select. Areas in Commun., vol. 6, no. 9, pp. 1587-1597, Dec. 1988.

[69] H . Kuwahara et al., "A shared buffer memory switch for an A T M exchange," in Proc. ICC
'89, Boston, M A , June 1989, pp. 118-122.

[70] T. Kozaki, N . Endo, Y. Sakurai, O. Matsubara, M . Mizukami, and K. Asano, "32 x 32
Shared Buffer Type A T M Switch VLSI's for B-ISDN's," IEEE J. on Selec. Areas in
Commun., vol. 9, no. 8, pp. 1239-1247, Oct. 1991.

[71] M . Katevenis, P. Vatsolaki, and A . Efthymiou, "Piplelined Memory Shared Buffer for
VLSI Switches," Proc. of Sigcomm '95, Cambridge, M A , pp. 39- 48, 1995.

[72] Notani et al., "An 8x8 A T M Switch LSI with Shared Multi-buffer Architecture," Proc. of
Sym. on VLSI Circuits Digest of Technical Papers, pp. 74-75, 1992.

[73] C. Zukowski, and T.B. Pei, "VLSI implementation of A T M buffer management," Proc. of
IEEE Int. Conference on Communications, pp. 716-720, 1991.

[74] M . Katevenis, P. Vatsolaki, and A . Efthymiou, "Piplelined Memory Shared Buffer for
VLSI Switches," Proc. of Sigcomm '95, Cambridge, M A , pp. 39- 48, 1995.

126

[75] G. Kornaros, C. Kozyrakis, P. Vatsolaki, and M . Katevenis, "Pipelined Multi-Queue
Management in a VLSI A T M Switch Chip with Credit-Based Flow Control," in Proc. 17th
of A R V L S P 97, Ann Arbor, MI, USA, pp. 127-144, Sept. 1997.

[76] R. O. Onuvural, Asynchronous Transfer Mode Networks: Performance Issues, Artech
House, 1994.

[77] C. Fayet, A . Jazques, and G. Pujolla, "High speed switching for A T M : the BSS,"
Computer Networks and ISDN Systems, pages 1225-1233, 1994.

[78] M J . Karol, M . G . Hlucchyj, and S.P. Morgan, "Input versus output queueing on a
space-division packet switch," IEEE Trans. Commun., vol. 35, no. 12, pp. 1347-1356,
Dec. 1987.

[79] Y. Watanabe, Y. Nakasha, Y. Kato, K. Odani, and M . Abe, "A 9.6-Gb/s H E M T A T M
Switch LSI with Event-Controlled FIFO," IEEE J. Solid-State Circuits, vol. 28, no. 9, pp.
935-940, Sep. 1993.

[80] M.J. Karol, M . G . Hlucchyj, and S.P. Morgan, "Input versus output queueing on a
space-division packet switch," IEEE Trans. Commun., vol. 35, no. 12, pp. 1347-1356,
Dec. 1987.

[81] H. Shi, and O. Wing, "A Novel Design Approach of A T M Switches for VLSI
Implementations," Proc. of Elec. & Comp. Eng. Canadian Coference, pp. 684-687, 1993.

[82] Y. Watanabe, Y. Nakasha, Y. Kato, K. Odani, and M . Abe, "A 9.6-Gb/s H E M T A T M
Switch LSI with Event-Controlled FIFO," IEEE Journal of Solid-State Circuits, vol. 28,
no. 9, pp. 935-940, Sep. 1993.

[83] S. L i , "Theory of periodic contention and its application to packet switches," Infocom '88,
pp. 320-325, 1988.

[84] N . McKeown, T. E. Anderson, "A Quantitive Comparison of Scheduling Algorithms for
Input-Queued Switches," Infocom '96.

[85] C L . Seitz, System Timing. In Introduction to VLSI Systems, C A . Mead, and L . A .
Conway, Eds., Addison-Wesley, 1980.

[86] E. Brunvand, N . Michell, and K. Smith, "A Comparison of Self-timed Design using
FPGA, CMOS, and GaAs Technologies," Proc. of IEEE Intl. Conf. on Computer Design,
pp. 76-80, 1992.

[87] E. Brunvand, "The Non-Synchronous Rise (NSR) Processor," Proc. Annual Intl. Conf. on
System Sciences, Hawaii, pp. 428-435, 1993.

127

[88] J. Novak, and E. Brunvand, "Using FPGAs to Prototype a Self-Timed Floating Point
Co-Processor," Proc. of IEEE Custom Integrated Circuits Conf., pp. 85-88, 1994.

[89] Tierno et. al., "A 100-MIPS GaAs Asynchronous Microprocessor," IEEE Design and Test
of Computers, vol. 11, no. 2, pp. 43-49, Summer 1994.

[90] G. M . Jacobs, and R. W. Brodersen, "Self-Timed Integrated Circuits for Digital Signal
Processing Applications," IEEE VLSI Signal Processing HI, pp. 197-208., 1989.

[91] G . M . Jacobs, and R.W. Brodersen, "A Fully Asynchronous Digital Signal Processor Using
Self-Timed Circuits," IEEE Journal of Solid-State Circuits, vol. 25, no. 6, pp. 1526-1536,
Dec. 1990.

[92] C. H . Lau, D. Renshaw, and J. Mavor, "Data Flow Approach to Self-Timed Logic in
VLSI," Proc. of IEEE Intl. Symp. on Circuits and Systems, pp. 479-482, 1988.

[93] V. Akella, and G. Gopalakrishnan, "SHILPA: A High-level Synthesis System for Self-
Timed circuits," Proc. Intl. Conf. Computer-Aided Design, pp. 587-591, 1992.

[94] D. Lloyd, and S. Jones, "Improved self-timed circuit design method," Elec. Letters, vol.
28, no. 5, pp. 492-493, 27th Feb. 1992.

[95] S.L. Lu, "Design of hardware efficient self-timed circuits," Elec. letters, vol. 29, no. 1, pp.
6-7, 7th Jan. 1993.

[96] N . R. Poole, "Self-timed logic circuits," IEEE Elec. & Commu. Eng. Journal, vol. 6, no. 6,
pp. 261-270, Dec. 1994.

[97] Komori et. al., "The Data-Driven Microprocessor," IEEE Micro, vol. 9, no. 3, pp. 45-59,
June 1989.

[98] Yamasaki et. al., "VLSI Implementation of a Variable-Length Pipeline Scheme for Data-
Driven Processors," IEEE Journal of Solid-State Circuits, vol. 24, no. 4, pp. 933-937, Aug.
1989.

[99] I.E. Sutherland, "Micropipelines," Commun. Assoc. Comput. Mach., vol. 32, no. 6, pp.
720-738, June 1989.

[100] S.L. Lu, "Implementation of Micropipelines in Enable/Disable CMOS Differential
Logic," IEEE Trans, on VLSI , vol. 3, no. 2, pp. 338-341, June 1995.

[101] Spaso, J. Staunstrup, and M . D. Sorensen, "Design of delay insensitive circuits using
multi-ring structures," Proc. European Design Automation Conf., Hamburg, pp. 15-20,
1992.

128

[102] J. Spaso, and J. Staunstrup, "Design and Performance Analysis of Delay Insensitive Multi-
Ring Structures," Proc. Annual Intl. Conf. on System Sciences, Hawaii, pp. 349-358,
1993.

[103] T. H . Meng, Synchronization Design for Digital Systems, Kluwer Academic publishers,
1991.

[104] L . G. Heller, and W. R. Griffin, " Cascode voitage switch logic: A differential CMOS logic
family," in ISSCC Dig. Tech. Papers, pp. 16-17, New York, Feb. 1984.

[105] T. Wuu, and S. Vrudhula, "A Design of a Fast and Area Efficient Multi-Input Muller
C-element," IEEE Trans, on VLSI, vol. 1, no. 2, pp. 215-219, June 1993.

[106] S.L. Lu, "Improved design of CMOS multiple-input Muller C-element," Elec. letters, vol.
29, no. 19, pp. 1680-1682, 16th Sep. 1993.

[107] M . Shams, J. Ebergen, and M . Elmasry, "Modeling and Comparing Implementations of
the C-Element," IEEE Trans, on VLSI , vol. 6., no. 4, Dec. 1998.

[108] K.V. Berkel, "Beware the isochronic fork," The VLSI Journal "Integration", no. 13, pp.
103-128, 1992.

[109] I. M . Filansky, and H. Baltes, "CMOS Schmitt Trigger Design," IEEE Trans, on Circuits
and Systems—I: Fundamental Theory and Applications, vol. 41, no.l , pp. 46-49, Jan.
1994.

[110] D. L . Jackson, R. Kelly, and L . E. M . Brackenbury, "Differential register bank design for
self-timed differential bipolar technology," IEE Proc.-Circuits Devices Syst., vol. 144, no.
5, Oct. 1997.

[I l l] R. Kelly, and L . E. M . Brackenbury, "Design and modeling of a high performance
differential bipolar self-timed microprocessor," IEE Proc. -Comput. Digit. Tech., Vol. 144,
No. 6, November 1997.

[112] B . Braden, D. Clark, J. Crowcroft, B . Davie, D. Estrin, S. Floyd, V. Jacobson, G. Minshall,
C. Partridge, L . Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, and L . Zhang,
"Recommendations on Queue Management and Congestion Avoidance in the Internet,"
Internet Draft, March 1997.

[113] S. Floyd, and V. Jacobson, "Random Early Detection Gateways for Congestion
Avoidance," IEEE/ACM Trans, on Networking, vol. 1, pp. 397-413, Aug. 1993.

[114] S. Floyd, and V. Jacobson, "On Traffic Phase Effects in Packet Switched Gateways,"
Internetworking: Research and Experience, vol. 3, pp. 397-413, Aug. 1993.

129

[115] D. Lin, and R. Morris, "Dynamics of Random Early Detection," in Proc. A C M Sigcomm
'97.

[116] A. K. Parekfi, and R. G. Gallager, "A Generalized Processor Sharing Approach to Flow
Control -- The Single Node Case," in Proc. Infocom '92, vol. 2, pp. 915-924, May 1992.

[117] A. K. Parekh, and R. G. Gallager, "A Generalized Processor Sharing Approach to Flow
Control in Integrated Services Networks: The Multiple Node Case," in Proc. Infocom '93,
vol. 2, pp. 521-530, 1993.

[118] A. Demers, S. Keshav, and S. Shenker, "Analysis and Simulation of a Fair Queuing
Algorithm," Internetworking: Research and Experience, vol. 1, no. 1, pp. 3-26, 1990.

[119] C. Aras, J.F. Kurose, D.S. Reeves, and H . Schulzrinne, "Real-Time Communication in
Packet-Switched Networks," Proc. of IEEE, vol. 82, no. 1, pp. 122-138, Jan. 94.

[120] H . J. Chao, and N . Uzun, "An A T M Routing and Concentration Chip for a Scalable Multi
cast A T M Switch," IEEE Journal of Solid-State Circuits, vol. 32, no, 6, pp. 816-828, June
1997.

[121] H. J. Siegel, Interconnection Networks for Large-Scale Parallel Processing: Theory and
Case Studies, McGraw-Hill, second edition 1990.

130

A P P E N D I X A

ATM Technology

Asynchronous transfer mode, or A T M , has been standardized by ITU-T (International Telecom

munication Union - Telecommunication Standardization Sector, formerly known as CCITT) as

the transfer mode for the future multimedia communication systems because of its ability to

address the broadband integrated services digital network (B-ISDN) requirements [46]. It allows a

single architecture to efficiently support connections carrying traffic at widely different band-

widths, and to handle bursty traffic as expected in some multimedia applications. The A T M tech

nique provides a universal interface, using short fixed-length packets, called cells, for all types of

media transmission (data, voice, and video). Cells belonging to many different connections can

interleave in a cell stream transported over a physical link. It is worth noting that despite its name,

131

A T M , uses a synchronous physical layer, such as SONET and S D H 1 [46]. In other words, the bit

stream in the network is synchronous. The word asynchronous refers to the fact that the cell

stream allocation for services is not synchronous and channels are signified in the A T M cell

header.

A T M systems for B-ISDN should handle a wide range of quality of service (QoS) parameters

such as cell delay, cell loss rate, and cells delay-jitter in a multimedia environment [119], because

the characteristics of real-time communication applications differ significantly from those that are

non real-time. Typically, the desired delivery time for each message across the network is deter

mined by a specific maximum delay or latency, resulting in a deadline being associated with each

message. On the other hand, non-real-time applications may have strict cell loss-rate require

ments. For example, real-time applications such as voice and interactive video have strict end-to-

end delay requirements, and signals must be delivered within a specified period of time, while

data transfers such as remote file access require low loss-rates and must be delivered reliably.

Another important performance metric for real-time traffic is delay-jitter, commonly defined as

the maximum variation in the delay experienced by cells in a single connection. Many real-time

applications, particularly those which are interactive, require a bound on delay-jitter, in addition

to a bound on the delay. Note that certain real-time applications such as non-interactive television

and audio broadcasting may require bounds on delay-jitter but not delay.

1. Synchronous Optical Network, SONET, has been chosen as the standard for the future broadband data
communication systems in the North America by the American National Standards Institute (ANSI). In
Europe, ITU-T has adopted synchronous digital hierarchy, SDH, as a standard compatible with SONET.

132

A. l ATM Networking and Switching

Before the introduction of A T M , two different types of public switching networks, circuit switch

ing and packet switching, have been developed for different types of communication services

[66]. Circuit switching networks are used for applications such as telephony in which continuous

low rate signal channels with very low delay are needed, while packet switching networks are

used for computer data transfers which may require high speed data transfers in a short period of

time and the application is not sensitive to the data transfer delay. In A T M networks the benefits of

those two networks are combined, and the information which includes voice, data, and motion

video is divided into fixed length packets (called cells) which are asynchronously multiplexed and

transmitted over networks. An A T M cell is composed of 48 bytes of data and 5 bytes header, as

shown in Fig. A. 1. The single most important A T M standard concerns the definition of the cell

Header

<— 5 bytes • 48 bytes

G V V p C H
F P C IT

T
L E Information Field

C 1 1 1 P C

4 8 16 3 1 8 384

Fig. A . 1: A T M cell format and header components

header. The header contains information about the routing and the cell content. The primary use

of the header tag is to identify cells belonging to the same virtual channel and to make routing

possible.

The connection identifier consists of two sub-fields, a 16-bit virtual channel identifier (VCI) and

133

an 8-bit virtual path identifier (VPI). Together they are used to route the cell to its destination. The

main purpose of the FT field is to distinguish between cells containing user data and network

information. The cell loss priority (CLP) bit allows a two-level loss priority (CLP = 0 for high,

CLP = 1 for low) to be specified explicitly for individual cells. Low loss priority cells should be

discarded before cells of high loss priority if congestion occurs and necessitates a loss of cells.

Notice that cell priority may be indicated explicitly for each cell. The header error control (HEC)

field uses a cyclic redundancy check for error protection of the cell header. It provides single bit-

error correction and multiple bit-error detection.

A T M is a connection-oriented technology. It uses the concept of virtual path to make connection

between each pair of network nodes. Connections can be established dynamically by the commu

nicating partners themselves via a signalling protocol. This process creates an entry in a table at

user network interface (UNI) that is used to map the cell header's VCI label into the internal

(manufacturer dependent) information necessary to route the cell to the appropriate physical out

put port of the switching fabric, as shown in Fig. A.2.

A.2 A T M Switch Architectures

A switch performs three basic functions: routing to connect inputs to their output destinations,

scheduling or arbitrations when cells arriving simultaneously at different inputs are destined for

the same output, and (optionally) queueing at switch inputs or outputs to hold those cells that lose

the arbitration. An important characteristic of a packet switch is its blocking probability. In an

A T M switch this characteristic determines the cell loss rate. There are two different sources of

blocking in a switch. Internal blocking is due to the limited number of routing hardware resources

inside the switch. This kind of blocking can be eliminated by providing wider data paths or large

134

Dat

ATM cell

Header

Ii

c *l

\

\

N

Incoming
Headers

Cell
Switch
Fabric

/

/

V
Outgoing
Headers

Header/Link
Translation

Table

(a)

Input
Line

Header Output
Line Header

•i
a
b
c

Ox
?y j

k
t • • •
• • • •
• • • •

IN
a
b
c

O v

Ow

I
m
n

(b)

"I IH l * l
o,i IM _ \A m

I H I IM

Fig. A.2: An A T M switch: a) data flow through the switch fabric, b) translation table

135

internal buffers. The other source of blocking is due to output contention caused by the simulta

neous arrival of several cells at the same output. The degree of output blocking depends on the

statistics of the incoming cells. While it may not be totally eliminated, output blocking can be

reduced arbitrarily by using larger buffers to temporarily store the extra cells forwarded to a par

ticular output.

Although several buffering disciplines have been reported for fast packet switching [46], not

many of these architectures have been implemented. Implementing a design in actual hardware

poses real challenges, and many good designs on paper are not feasible for implementation [67].

Based either on the structure of the underlying fabric or the placement of the buffers, switch fab

rics can be classified in a number of ways. Based on the fabric structure, there are three basic

architectures: the shared-memory, the shared-medium (bus), and the space-division switches [68].

A shared-memory switch consists of a single dual-ported memory shared by all input and output

lines. The incoming cells are multiplexed and are written to the shared memory, as shown in Fig.

A.3. In the shared-memory architecture [69]-[73], the control logic must be able to handle, in a

single time slot, incoming cells from N inputs, enqueue them in the proper addresses in the shared

memory, and select up to N outgoing cells for output. If we assume that the speed of each input

line is equal to F Mbit/s, shared-memory switches need a memory throughput of 2NF. If N is large

then, the controller speed as well as the access speed of the buffer memory become bottle-neck for

the high bit-rate operation. This restricts the number of input-output lines of a single switch and

hence its scalability. A new organization for a shared buffer based on multiple memory banks,

addressed in a pipelined fashion, has been presented in [74], [75]. The centralized controller

remains to be the major bottleneck in the design. Thus, fully-shared memory switches have the

advantage of requiring less memory to meet a given loss probability, but they have high control

136

2
fl a e

Input
Ports

Shared

Memory

Controller

2
3
a
3
O

Output
Ports

Fig. A . 3: Shared buffer switch architecture

complexity, and relatively long access time.

A shared-medium switch consists of a common high-speed medium (typically a high-speed bus)

onto which the input lines are synchronously multiplexed. At the output, there is an address filter

and a first-in-first-out (FIFO) buffer for each output line. The function of the address filter is to

extract the packets which are meant for a particular output and to store them in the FIFO buffer for

that output. In an NxN shared-medium switch, the bandwidth of the bus must be equal to N

times the rate of a single input line. Therefore, as the number of links attached to the medium and

their speeds increase, the medium speed becomes a bottleneck. The first shared medium switch

for A T M was ATOM (ATM output buffer modular) switch [76]. It applied a bit-slice organization

to alleviate the bottleneck of the medium speed. Another shared-medium switch, which has been

called PARIS (packetized automated routing integrated system), was designed for variable length

packets [76]. More recently a bus structure based on sequentially scheduling the inputs and paral-

137

lei transfer has been reported [77]. However, a parallel bus of 425 wires has been used, which

seems to be highly excessive. Because the shared-medium supports broadcasting and multicasting

naturally, it is not surprising that muticasting is very easy to implement with a shared bus. How

ever, the shared-medium architecture results in separate buffers for each output, and hence

requires more memory in order to achieve a required cell loss probability.

Space-division switches are classified into two major categories based on their routing capabilities

[78], non-blocking and blocking switches. In non-blocking switches, internal blocking within a

switch will not occur due to the existence of a sufficiently large number of non-overlapping inter

nal paths. However, blocking may still happen at the output ports of the switch. In blocking

switches, internal blocking can occur when two or more packets contend for the same link within

the switch. Internal blocking and output contention cause degradation in throughput. To reduce

throughput degradation, buffers may be provided at the input ports (input queuing), output ports

(output queuing), or internally at the switching elements (internal or cross-point queuing). Each

buffering method is characterized by different types of drawbacks. Input queueing with FIFO

buffers is simple to implement but has the worst performing architecture. Mainly, input buffering

has low throughput (about 58.6%) due to head-of-line (HOL) blocking effects [79]. In each rout

ing step, only the front (head-of-line) packet of each input queue is considered for possible rout

ing to its destined output; if it collides with the front packet from another queue, then it has to

wait, and so do all the packets in its queue, even if they were destined to currently idle outputs.

This is known as head-of-line blocking. It can be increased to 70% by having two cells in each

buffer competing for the output ports in each cell time interval [68].

With output queuing, all cells contending for the same output port are stored in the output buffers

until they can be read out. Output buffering increases the throughput over input buffering, since

138

more than one cell can be delivered to the output when output contention occurs, which is not pos

sible with input buffering. Output queueing achieves optimal delay/throughput performance [80]

but requires switches (or at least the output buffers) to operate at a faster rate than the effective or

peak rate of the incoming traffic. Pure output buffering exerts poor utilization of buffers, because

buffers are exclusively dedicated to each output. Because of the above limitations of input or out

put buffered switches, the combined input/output buffered switch is a good compromise which

has been proposed and studied by some researchers [42], [81], [120].

Buffers may also be placed at the cross-points of the crossbar switch (internal buffering) [82].

A T M switches of this type have similar performance to output queuing switches with the differ

ence that the queue for each output is distributed among N buffers (for an NxN switch). Internal

buffering is used to alleviate internal blocking, but it has several limitations: the complexity of the

switching elements is increased and the internal buffers introduce random delays within the

switching fabric, causing undesired cell-delay variation in the network. This approach also suffers

from a rapid nonlinear growth in memory complexity with switch size.

Because HOL blocking degrades performance in the worst case [83], the standard approach has

been to abandon input buffering and instead use output buffering. By increasing the bandwidth of

the internal interconnect, multiple cells can be forwarded at the same time to the same output, and

queued there for transmission on the output link. However, HOL blocking effects can be greatly

reduced by using a separate queue for each output [80], where any cell queued at the head of an

input queue is eligible for forwarding across the switch. The central problem with random-access

input queues is the need for fast scheduling - quickly finding a maximal conflict-free set of cells to

be forwarded across the switch, such that each input is connected to at most one output, and vice

139

versa. Work in [84] has evaluated some alternative approaches to the scheduling of cells in a high

bandwidth input-queued A T M switch. These approaches are based on distributed deterministic

scheduling with rotating priorities, but the control overhead is high and their actual efficiency

remains to be verified.

We should think of speed-up as a logical concept since the implementation can be done by

increasing the clock speed, by increasing the parallelism, or by increasing both. As we mentioned

earlier, shared buffer switches need a memory throughput of 2NF (N: number of input/output

lines, F: speed of each input line). However, output buffering switches need speeds of only

(N+1)F. In this sense, output buffering switches are superior to shared buffer switches due to their

simple output queue control, and more relaxed memory access time requirements. On the other

hand, in the combined input/output buffer type switch, internal switching must be L times faster

than the input or output port speed to reduce the effects of HOL blocking (L: speed ratio within a

switch). Therefore, the memory access speed required for the combined input/output buffers is

(L+1)F. Finally, the required speed for each buffer in internal buffering method is 2F.

A.3 A T M Buffer Management

In an A T M network, various types of traffic are multiplexed to efficiently utilize the network

bandwidth and resources. Therefore, A T M networks have to provide multimedia services with

diversified traffic flow characteristics and QoS requirements. In such environments, the bandwidth

efficiency can be improved by defining multiple QoS classes and using a flow control method

which manages the required QoS of each class individually. A priority buffer manager provides a

QoS control method for an A T M switching node. The buffer manager at each output port of an

A T M switch, as shown in Fig. A.4, is responsible for scheduling cell transmissions and selectively

140

discarding cells. Cells with higher delay (and/or delay-jitter) priority will be transmitted first,

while cells with higher loss priority will be discarded last when the buffer is full. Note that the

assignment of the delay and loss priorities to each service can be completely independent. For

instance, voice and interactive video services need higher delay priority but lower loss priorities

because they can tolerate higher cell loss rates without noticeable imperfection. Conversely, data

traffic requires higher loss priorities but lower delay priorities.

1 — Buffer
Manager

• • ATM •
• Switch • •

N — / fc
Buffer

' M * Manager w

1

Fig. A.4: The buffer manager at each output port of an A T M switch

141

A P P E N D I X B

Asynchronous System Design

During the last decade there has been a revival in research on asynchronous circuits. Synchronous

digital design is based on two major assumptions: all signals are binary, and time is discrete.

Asynchronous circuits maintain the assumption that signals are binary, but remove the assumption

that time is discrete. The asynchronous scheme with an appropriate handshake protocol is a

design discipline where the sequencing of events is controlled by the internal delays of system

elements rather than by an external clock. In place of a global clock, an asynchronous system only

needs a reset signal and external handshaking signals to synchronize its operation. Internally,

stages communicate at their own speed. To highlight the difference between the synchronous and

asynchronous timing disciplines, the following example was presented [85]. A synchronous sys-

142

tem works like a scheduled train line. A particular passenger has to synchronize his/her travel plan

with the schedule of the train. On the other hand, an asynchronous (or self-timed) system is like

traveling with your own car. There is no fear of missing a scheduled departure time, and no wait

ing in a station for a train to arrive. You may visit a new place whenever you have finished visiting

an old location. It is a sequence of events and we are interested only in ordering them.

The potential advantages of self-timed systems over their synchronous counterparts have created a

resurgence of interest in asynchronous design methodologies. One important design consideration

in synchronous designs is clock skew, which is the difference in arrival times of the clock signal at

different parts of the circuit. The asynchronous design approach eliminates the need for a global

clock and circumvents the problems arising from clock skew. This is becoming an important con

sideration when large amounts of both chip area and design time are dedicated to clock circuits

and clock distribution. Currently, in some applications, significant silicon area and design effort

are required for clock generation and distribution to maintain skew within acceptable limits.

These factors become progressively more difficult as feature sizes shrink. With the advances in

technology, the silicon area penalty of using asynchronous design is becoming less significant,

and the performance penalty is being similarly reduced.

A self-timed design also has the potential for reduced power consumption relative to its synchro

nous counterpart. A synchronous circuit is either quiescent (i.e., the clock is turned off) or active

entirely (i.e., clock on). An asynchronous circuit, in contrast, only consumes energy when and

where active. However, it is not obvious to what extent this advantage is fundamentally asynchro

nous. Synchronous techniques such as clock gating may achieve similar benefits, but they have

their limitations. In general, the potential of asynchronous for low-power depends on the applica

tion [64].

143

From a system design point of view, asynchrony means design modularity. As digital systems

become complex, it is advantageous to adopt a modular design approach to simplify the design

task to local timing considerations only. However, asynchronous circuits are more difficult to

design in an ad hoc fashion than synchronous circuits.

Another important advantage of using asynchronous systems is the separation of timing from

functionality which means that, the same circuit can be implemented in a variety of technologies

without modification to the circuit [86], [89], [110], [111]. These potentials of asynchronous digi

tal system design have stirred the interest of many researchers and industries. Asynchronous

design is now progressing from a fashionable academic research topic to a viable solution to a

number of digital VLSI design challenges [64]. Researchers have a great liking for creating new

terms. As a result, asynchronous system design has also been called self-timed [90]-[96], data-

driven [97], [98], micropipelined [99], [100], delay-insensitive [101], [102], or speed-independent

[103] system design.

The discipline of timing management is the key to the effective design of any large scale digital

system. In a synchronous system, we know when data are valid because the clock signal is

asserted. In self-timed circuits, we need another method of determining when data are valid. We

require a strategy based on some form of a request-acknowledge handshaking scheme. Seitz [85]

illustrates two different request-acknowledge protocol strategies: a four-phase signalling protocol

(also known as return-to-zero protocol, or Muller signalling), and a two-phase signalling protocol

(also known as non-return-to-zero protocol, or transition-signalling).

The two-phase signalling is the most energy efficient and least time consuming signalling scheme.

Fig. B . l illustrates the working of this transition signalling protocol. Using a transition as a basic

144

event, a sender can issue a request by causing a transition on the request wire (Req). The sending

module is responsible for keeping the information on the data wires valid for as long as the

receiver desires. After a certain time, depending on the delay of the element, the receiver can

acknowledge that the data is no longer needed by causing a transition on an acknowledge wire

(Ack). We observe that there are two transitions made in one data transaction and it takes two

transfers to go back to the original state. The term two-phase is used because of these two distin

guishable states in each transaction.

Request (Req)

Sender Receiver
Data

\ - L Ack

1 Data

L Req
I

One Transaction Next Transaction

Fig. B . l : Two-phase signalling scheme

145

In four-phase signalling scheme, there are total of four transitions made to the request and

acknowledge signals in one transfer. Fig. B.2 shows a complete four-phase transaction with each

of its four distinct phases. The four-phase handshake protocol always uses the rising transitions to

initiate operation and the falling transitions to reset. It is common to initialize the signal wires to a

low state. This means that after a complete four-phase transaction the signal wires again both be

low. The four phases are:

1. Quiescent: Req low and Ack low. This indicates that no transaction is in progress.

2. Requesting: Req high and Ack low. The sender has issued a request, and the receiver has not yet

acknowledged.

3. Acknowledging: Req high and Ack high. The receiver has acknowledged the request.

4. Clearing: Req low and Ack high. The sender has initiated the clearing phase of the protocol by

dropping its request signal. The receiver has not yet responded by lowering its acknowledgment.

Req

-L Ack

Data

2 - - 3 - - 4 _ -

One Transaction

Fig. B.2: Four-phase signalling scheme

146

Two-phase signalling means that both the rising and falling edges of the signals can flag an action.

In contrast, the four-phase scheme uses only the rising or the falling transition to flag actions.

Both the two-phase and the four-phase protocols are delay-insensitive and thus are very useful for

communication between asynchronous modules. Two-phase signalling can be faster because it

requires only half the number of the transitions that four-phase signalling requires. Obviously,

systems designed using the two-phase signalling convention will have twice as much throughput

than systems designed using the four-phase signalling scheme. Additionally, less power is con

sumed when fewer transitions are required. However, two-phase signalling may require special

circuits not normally available as packaged parts, and more strict design constraints than systems

employing the four-phase signalling convention. In VLSI , four-phase signalling are more suited to

modules that deal with data rather than just control signals. Since only a rising edge initiates a

communication, four-phase circuit structures generally are simpler than their two-phase counter

parts.

Sutherland introduced a timing discipline called the transition-signalling framework, based on

what was called micropipelines [99]. Micropiplines use the two-phase signalling (also called bun

dled data convention [99]) as proposed by Seitz [85]. For the successful operation of micropipe

lines using the two-phase bundled data convention, the delays in data transmission across stages

should be less than the delays encountered in transmitting control signals. The work reported in

[99] uses static CMOS to implement the data processing blocks of the pipeline. This suggests that

in general a delay element needs to be introduced in the control wires of the bundle to satisfy the

timing requirements. Jacobs, Broderson [90], [91], and Meng [103] have described another

approach to design using the transition signalling framework and a four-phase signalling scheme.

They use dynamic cascaded voltage switch logic (DCVSL) to implement the logic processing

147

blocks [104].

Control circuitry for transition signalling is necessary to perform logical combination of events

besides the self-timed elements. Control circuits for the above request-acknowledge protocols are

built out of modules that form various logical combinations of events. The exclusive OR circuit

acts as the OR element for events. A Muller C-element acts as the A N D element for events. A C-

element is a bi-stable element whose output goes high only when all inputs are high and whose

output returns low only when all inputs are low; otherwise the output stays unchanged.

The C-element is one of the basic units in the early approaches to designing self-timed circuits,

and many researchers have come up with its circuitry [105]-[107]. The conventional implementa

tion of the C-element, however, suffers from early threshold problems which are a prime source

of hazards and should be avoided in asynchronous circuits [108]. The term early threshold refers

to low logic thresholds for up-going transitions and high logic thresholds for down-going transi

tions. To avoid such hazardous behavior, a new design for the C-element has been developed to

overcome the early threshold voltage problem [62]. Hysteresis is the property of this circuit in

which the input threshold level changes as a function of the output level. In particular, when the

input level passes the threshold level, the output level changes and the input threshold level is sub

sequently reduced so that the input level must return beyond the previous threshold level before

the C-element's output changes state again. This modification eliminates the early threshold volt

age problem. The proposed C-element circuit is of hysteretic nature with its implementation based

on the Schmitt trigger circuit [109].

Since, the clocked-logic conceptual framework is poorly matched to FIFO memory design [99],

self-timed FIFO presented in a number of applications [26], [64], [79]. In self-timed approach,

148

each stage of FIFO operates at its own pace, using control information only from adjacent stages.

There are two control wires between stages and data flow is synchronized with the signals on the

control wires, but not with an external clock signal. The data signals automatically cascade

through the stages and the propagation gate delay is asynchronous with any external signal. Exter

nal control signals are needed only at the FIFO entrance and exit. The time taken at each stage,

which depends on the interstage propagation delay, determines the upper limit of the FIFO's oper

ating frequency. Besides, the self-timed FIFO does not require complex clock distribution and the

storage capacity can be easily expanded.

There are two versions of the self-timed FIFO: a two-phase FIFO, and a four-phase FIFO. For

both types, a string of Muller C-elements interspersed with inverters is the only logic required to

control the pipeline. In two-phase FIFO shown in Fig. B.3, a set of event-controlled storage regis

ters (two-phase registers) connected in series serve as the FIFO data path, while a string of Muller

C-elements serve as its control. The event-controlled storage element (two-phase register) is

required to respond to both the rising and falling voltage transitions, such that a new value is

stored in the register on each transition of the control signals.

A 4-cycle FIFO can be developed in a similar discussion. A very simple circuit can be derived for

the event control of a 4-cycle FIFO, as shown in Fig. B.4. Note that now two C-elements are

required to implement the four-phase handshake between FIFO stages. A four-phase handshake

can be also viewed as two, two-phase, handshakes executed in sequence. There is also a NOR gate

to assure that input data are not allowed to pass through the register until the final falling acknowl

edge signal of the next stage.

A significant difference between the storage elements (registers) used in the two FIFO's is that the

149

Fig. B.3: Two-phase FIFO structure

4-cycle storage elements will respond only on the rising transitions, or if the level of the request

input is high. Naturally, data must propagate through a two-phase self-timed FIFO faster than the

control events propagate through its control. Sutherland [99] assures this as follows. First, the C-

elements used in the control circuit are more complex than the storage element used in the data

path, and are inherently slower. Second, the layout of the circuit ensures that the zigzag path of the

control signals has longer wires than those in the data path. If above condition can not be guaran

teed, the request (Req) signal arrival at a stage must be delayed by an amount equivalent to the

computation time of the current block.

150

151

