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Abstract

Research Supervisor: Prof. E.V. Jull

Recent developments in radar navigation and remote sensing have led to a requirement for

rugged yet inexpensive location markers and calibration targets which present both a very large

scattering cross section and a specified polarization response over a wide angular range. This

study considers several problems related to the analysis and design of passive radar targets

derived from corner reflectors.

Transformation of the polarization response of a target between global and local coordinate

frames is shown to correspond to rotation of the polarization basis by a prescribed angle which is

a function of both the coordinate transformation matrix and the direction of propagation. Once

the angle of rotation has been determined using either spherical trigonometry or vector algebra,

any polarization descriptor can be transformed between coordinate frames by application of a

suitable rotation operator.

The scattering cross section and angular coverage of a conventional trihedral corner reflector

can be altered by modifying the size and shape of its reflecting panels. A numerical algorithm

based on physical optics is used to predict the contribution of triple-bounce reflections to the

response of a reflector with polygonal panels of arbitrary shape. If three-fold symmetry is

broken and the reflector is simply required to present bilateral symmetry, it is found that the

scattering cross section, elevation beamwidth, and azimuthal beamwidth of the reflector can be

chosen independently of each other.

A method for altering the polarization response of a conventional trihedral corner reflector

by adding conducting fins or corrugations to one its interior surfaces is proposed. In calculating

design curves for twist-polarizing or circularly polarizing reflectors by mode-matching, opti

mum accuracy and efficiency are obtained by setting the ratio of free space to groove modes

equal to the ratio of groove width to the period. Methods for obtaining linear and circular
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polarization selective responses are considered. The contribution of triple-bouhce reflections to

the response of such reflectors is a function of the direction of incidence, the orientation of the

reflector, the dimensions of the corrugations, and the size and shape of the reflecting panels.

Experimental results show that prototype twist-polarizing and circularly polarizing reflectors

respond essentially as predicted.
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Chapter 1

INTRODUCTION

1.1 Background and Motivation

Radars function by radiating electromagnetic energy and detecting the presence and character

of the echoes returned by reflecting objects or targets. If these echoes are correlated with

the original transmitted signal, many of the characteristics of the targets can be estimated

including their range, bearing, apparent size or reflectivity, and certain aspects of their physical

geometry. If a series of radar measurements is processed over time, the original estimate of these

characteristics can be refined and the future kinematic behaviour of the target can be predicted.

Radar has traditionally been associated with the detection and navigation of ships and aircraft.

More recently, it has become an important tool for remote sensing of the environment. The

chief problem of radar is to detect targets of interest and estimate their position and physical

characteristics in the presence of interference from clutter returns and noise [1], [2].

The scattering cross section a of a target is defined as the area intercepting that amount

of power which, when scattered isotropically, would produce an echo equal to that actually

returned by the target. Thus,

E2 HS2
a lim 4irr2 lim 4irr2 (1.1)

IE’12 r—cc’ HI2

where E and W are the incident electric and magnetic fields, E8 and Hs are the scattered

electric and magnetic fields, and r is the range at which the scattered field is measured.

Radar cross section or RCS refers to that portion of the scattering cross section which is

associated with a specified polarization component of the scattered wave and is a function of

the size, shape, composition, and orientation of the target, the frequency of the incident wave,

and the polarization state of the radar transmitting and receiving antennas [3], [4].

1



Chapter 1. Introduction 2

The tendency for both natural and man-made objects to depolarize radar echoes in charac

teristic ways has been recognized since the earliest days of radar. It is convenient to describe

the relationship between the polarization states of the incident and scattered fields by a polar

ization scattering operator expressed in matrix form. Several representations are in common

use. The polarization scattering matrix relates incident and scattered fields which have been

expressed as complex polarization vectors while the Mueller matrix relates fields which have

been expressed as Stokes vectors. Other forms, such as the Stokes scattering operator and the

covariance matrix, are used in certain methods for synthesizing arbitrary polarization responses

from sets of experimental data. Measurement of the complete polarization response of a target

requires a radar which is capable of antenna polarization control or agility during transmission

and polarization diversity on reception. Although such radars are considerably more complex

than their conventional counterparts, polarimetric radar signal processing has become an im

portant tool for target detection and classification in several fields including radar meteorology,

geophysical remote sensing, and certain specialized forms of radar navigation [5]—[8j.

It is often necessary to enhance the radar cross section of a cooperative target either to

increase the maximum range at which the target can be reliably detected or to provide a

target with a known response which may be used to assist in radar calibration and performance

verification. Although it is sometimes possible to achieve the desired result simply by making

minor modifications to the natural shape of the target or by disturbing the current distribution

on the surface of the body with discrete impedance loading, it is usually more convenient to make

use of auxiliary devices such as corner reflectors, dielectric lenses, and retrodirective antenna

arrays which have been designed specifically to present a large radar cross section over wide

angular ranges. The characteristics and relative merits of the various types of RCS enhancement

devices have been widely discussed in the literature [9]—{12]. The response characteristics which

are required of such devices are determined by several factors including the distance between

the radar and the target, the reflectivity of the surrounding clutter, the resolution of the radar

in range and azimuth, the combination of transmit and receive polarizations employed by

the radar, and the nature of the target detection or radar calibration algorithm. Beamwidth



Chapter 1. Introduction 3

and pulse width limited radar resolution cells are shown in Figure 1.1. The probabilities of

detection PD and false alarm FFA are determined by the value of the detection threshold and

the probability distribution functions of the target and clutter returns as suggested by the

example presented in Figure 1.2.

x

Figure 1.1: Detection of a point target in ground clutter where the radar resolution cell is either
beamwidth limited (entire ellipse) or pulse width limited (shaded portion of ellipse), a is the
radar cross section of the target, r is the range to the target, h is the height of the radar, 8H
and 8 are the half-power beamwidths of the radar antenna in azimuth and elevation, t is the
pulse duration, C is the speed of light, and c is the depression angle. (after [2, p. 84])

P(x)

Figure 1.2: Probability distribution functions of clutter C and a signal embedded in clutter
S + C and the corresponding probabilities of detection PD and false alarm PFA for a given
detection threshold. (after [2, p. 42])

h

Ic sin a

°fA

Threshold



Chapter 1. Introduction 4

In recent years, the development of airborne and spaceborne imaging radar systems for

geophysical remote sensing and radar-assisted positioning systems for marine navigation has

led to a requirement for rugged yet inexpensive calibration targets and location markers which

present both a very large scattering cross section and a specified polarization response over a

wide angular range. The NASA/JPL synthetic aperture radar (SAR) calibration site shown

in Figure 1.3 is similar to the calibration ranges which have been established by several other

research organizations to assist in the geometric, radiometric, and polarimetric calibration of

SAR imagery [13], [14]. The experimental radar-assisted positioning system depicted in Figures

1.4 and 1.5 is being developed by Transport Canada as a method for allowing large vessels

navigating in inland waterways, harbours, and harbour approaches to accurately determine

their position with respect to cooperative shore-based targets in real time [15]—[19]. While the

requirements for targets used in the calibration of airborne radars can be estimated with a

fair degree of confidence [12]—[14], scattering by terrain at grazing incidence has not been well

characterized [20]—[22] and it is not yet possible to give reliable estimates of the size of targets

required to achieve specified probabilities of detection and false alarm in applications such as

radar-assisted positioning.

Although active targets are physically compact and their scattering cross section, angular

coverage, and polarization response can be modified with relative ease, their usefulness is limited

by several factors including their requirement for an external power source, interaction between

their transmitting and receiving antennas which may lead to regenerative feedback and distor

tion of their response patterns, and the limited reliability and stability of active components.

Despite their greater physical size and finer mechanical tolerances, passive targets provide a

better and more reliable alternative when it is necessary to install devices in remote locations

for extended periods of time. In Figure 1.6, the relative sizes of corner reflectors which present

the same maximum radar cross section (4500 m2) at a frequency of 10 GHz are compared. In

the face of conflicting requirements for a target which presents a large response and wide angu

lar coverage while retaining mechanical ruggedness and ease of manufacture, trihedral corner

reflectors frequently represent the best compromise.
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A A 6,T,8 Trlfledrals
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0 Passive Receivers (L only)

5

Figure 1.3: NASA/JPL synthetic aperture radar
(from [14, p. 227])

calibration site at Goldstone, California.

Figure 1.4: Radar-assisted positioning with respect
(from [15, front cover])

to cooperative shore-based targets.

.. path

Goldstone SAR
Caubratlon Site E

4



Chapter 1. Introduction 6

Building

/ I

.-< Shore Station
<- Reflector

/
/

/ /
/

/
/

Radar Antenna

Figure 1.5: Use of range and azimuth gates to isolate shore station reflectors from surrounding
clutter.

(a)

(b) (e)

3m.

(c) 2m. -

Figure 1.6: Relative size of corner reflectors which present the same maximum radar cross
section (4500 m2) at f = 10 GHz. A spherical target which presents an equivalent response
would have a diameter of over 75 metres. (a) Trihedral corner reflector with triangular panels,
(b) Trihedral corner reflector with square panels. (c) Dihedral corner reflector. (d) Bruderhedral
(a cylindrical sector attached to a flat plate). (e) Top hat reflector. (f) Biconical reflector.
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1.2 Outline

This study considers several problems related to the analysis, design, and implementation of

passive targets including transformation of polarization descriptors between coordinate frames,

modification of the angular coverage and polarization response of conventional trihedral corner

reflectors, design of top hat reflectors with specified response characteristics, and design of

reflection polarizers derived from conducting gratings with rectangular grooves.

In Chapter 2, the problem of transforming representations of polarization state and polar

ization scattering operators between coordinate frames is considered. It is shown that such

transformations correspond to rotation of the polarization basis by a prescribed angle which is

a function of both the transformation matrix which relates the two coordinate frames and the

direction of propagation. Two methods for determining the angle of rotation are derived for

the case in which the local vertical is defined by the direction in each frame. Algorithms for

transforming common polarization descriptors are presented.

In Chapter 3, the problem of predicting the response and angular coverage of a trihedral

corner reflector with panels of completely arbitrary shape is considered. For most purposes,

only triple-bounce reflections from the interior of the reflector need be accounted for since they

completely dominate the response for most directions of incidence. A simple yet robust RCS

prediction algorithm which overcomes many of the limitations of previous work is described. The

response patterns of three-fold symmetric and bilaterally symmetric trihedral corner reflectors

with panels of various shapes are compared and design curves for realizing bilaterally symmetric

trihedral corners with specified response characteristics are given.

In Chapter 4, a method for altering the polarization response of a conventional trihedral

corner reflector by adding conducting fins or corrugations of appropriate dimensions and ori

entation to one of its interior surfaces is proposed. Design curves for twist-polarizing and

circularly polarizing trihedral corner reflectors are given. Methods for realizing linear polariza

tion selective trihedral corner reflectors using similar techniques are proposed. An algorithm

for predicting the contribution of triple-bounce reflections to the response of a depolarizing

trihedral corner reflector as a function of the direction of incidence and the orientation of the
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reflector is derived. Experimental results are presented which show that prototype depolarizing

reflectors respond essentially as predicted.

In Chapter 5, the results of this study are summarized and recommendations for further

work are offered.

In Appendix A, the problem of designing top hat reflectors with specified response char

acteristics is considered. Expressions for the elevation response pattern, maximum scattering

cross section, angle of maximum response, 1 and 3 dB beamwidths, and angle of median re

sponse for 1 and 3 dB beamwidths are derived and used to generate design curves. The results

are used to solve a sample design problem.

In Appendix B, the problem of scattering by a conducting grating with rectangular grooves

is ccrnsidered. Analytical solutions are derived for the cases of TM- and TE-polarized incident

waves by mode-matching between the free space and groove regions. Procedures for determining

the validity of numerical results are described and the problem of determining the minimum

number of modes required to accurately represent the fields in each region is studied. An

implementation of the analytical solutions as a pair of subroutines coded in Fortran 77 is

presented.

In Appendix C, the problem of modifying a conventional trihedral corner reflector to present

a circular polarization selective response is considered. It is shown that such a response cannot

be realized simply by using the techniques of Chapter 4 because the corresponding polarization

scattering matrix cannot be diagonalized. Alternative methods for obtaining such a response

based on the addition of a suitable transmission polarizer to reflectors which present either a

linear polarization selective or a twist polarizing response are proposed.

In Appendix D, the experimental facility which was developed to measure the response

of prototype trihedral corner reflectors is briefly described. Details of its physical layout, the

design and implementation of the CW radar apparatus and digital pattern recorder, and the

results of tests used to verify its suitability for use in the measurement program are given.

Recommendations for future modifications and improvements are offered.
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Chapter 2

TRANSFORMATION OF POLARIZATION DESCRIPTORS

BETWEEN COORDINATE FRAMES

2.1 Introduction

The polarization state of an electromagnetic wave is a vector quantity which refers to the

behaviour with time of the electric field as observed at a fixed point in space. If the wave is

monochromatic, the tip of the electric field vector will trace an ellipse in the plane orthogonal

to the direction of propagation. Such a wave is said to be completely polarized. If the wave

coiltains a random component in amplitude or phase, it will occupy a finite bandwidth and

the polarization ellipse will tend to change shape and orientation with time. Such a wave is

said to be partially polarized. In the extreme case, the tip of the electric field vector will trace

out a figure which is totally random in shape and the wave is said to be randomly polarized

(or unpolarized). The fundamental aspects of wave polarization have been reviewed by several

authors, e.g., [1]—[6].

z

Antenna coordinate frame

x” -

\ /
Local or body-fixed coordinate frame

Global coordinate fra:

Figure 2.1: Coordinate frames used to define polarization state in radar scattering problems.

11
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Since polarization is a vector quantity, its description must be referred to a particular

coordinate frame. When problems involving propagation or scattering in the vicinity of the

earth’s surface are considered, it is often convenient to describe the polarization state of an

antenna or the polarization response of a target with respect to a global coordinate frame in

which the earth’s surface is coincident with the z-y plane and the local vertical is parallel to

the z axis. If the radiation or scattering characteristics of an object can be determined more

efficiently in a different frame or if the object is free to rotate about one or more axes as in

the case of airborne or spaceborne platforms, it may be preferable to define the polarization

characteristics of the object with respect to a local or body-fixed coordinate frame instead,

as suggested by Figure 2.1. In turn, the response of the device is measured in yet another

coordinate frame which is defined by the antenna. However, with the exception of the special

cases considered by Mott [6] and Krichbaum [7], the problem of transforming polarization

descriptors between coordinate frames has received little attention in the literature.

In section 2.2, the concept of polarization state is briefly reviewed. In section 2.3, it is

shown that transformation of a polarization descriptor between coordinate frames corresponds

to rotation of its basis by a prescribed angle which is a function of both the transformation

matrix which relates the two coordinate frames and the direction of propagation. Two methods

for determining the angle of rotation for the case in which the local vertical is defined by the

direction in each frame are derived using spherical trigonometry and vector algebra, respectively.

In section 2.3, methods for determining the elements of the coordinate transformation matrix

are reviewed. Although the matrix can be determined from either the relative directions of

the three principal axes in each coordinate frame or the Euler angles which define a series

of rotations which will transform one coordinate frame into the other, in practice it may be

difficult to obtain these parameters. A third method is derived which permits the elements of

the transformation matrix to be determined from any pair of arbitrary directions which have

been expressed in terms of both coordinate frames. In section 2.4, algorithms for rotating the

basis of several common polarization descriptors are presented.
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2.2 Wave Polarization

The electric field vector E of a plane wave travelling in the direction k may be characterized in

terms of a horizontally polarized component EHI and a vertically polarized component Ef’.

Thus,

E = (EH& + EvI) e_jk.r (2.1)

where k = 27r/A is the propagation constant in free space and the time dependence ejwt has

been suppressed. The amplitudes Ejq and Ev are complex quantities given by

EH = aj , (2.2)

= av , (2.3)

where a and av are the magnitudes of EH and Ev, respectively, and H and 5v are their phase

angles. The coordinate frame (I, , k) can be specified in terms of the triad (i, , ) defined by

a spherical coordinate system such that

k . .

k = r = cosqsin8x+sinqsinOy+cos8z, (2.4)

h = = —sinqx+cosqy, (2.5)
xkj

= kxh — = —cosqcos6—sinq5cos0+sin8, (2.6)

as depicted in Figure 2.2. The definitions of I and I given by (2.5) and (2.6) are somewhat

arbitrary and any pair of orthogonal directions which form a right hand triad with k may be

substituted. In cases where the direction of propagation coincides with the z axis, e.g., the

antenna coordinate frame of Figure 2.1, the definitions of Ii and 13 given by (2.5) and (2.6) are

ambiguous. If

(2.7)

it is common to define h and 13 such that

I. = = ±, (2.8)

15 = kxh = +. (2.9)
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When propagation occurs mainly in the vicinity of the z axis, it is often more convenient to

simply redefine polarization in terms of a new coordinate frame in which ‘, ‘, and ‘ correspond

to , , and , respectively, in the original frame and z’ defines the new local vertical.

z

If the wave is monochromatic, the tip of the electric field vector will trace an ellipse in the

plane orthogonal to the direction of propagation. The shape, sense of rotation, and orientation

of the effipse are sufficient to specify the polarization state of the wave. Consider a polarization

ellipse with semi-major axis OA and semi-minor axis OB, as depicted in Figure 2.3. The

magnitude of the axial ratio R is given by

IRH=g, (1IRIoo),

According to the IEEE convention, the axial ratio is positive for right-hand polarized waves

and negative for left-hand polarized waves while the reverse is true for the ellipticity angle.

The tilt angle r is defined as the angle between the horizontal and the semi-major axis of the

polarization ellipse and is valid over the range _90° r +900. The entire range of possible

polarization states can be mapped onto the surface of a Poincaré sphere as shown in Figure 2.4.

kr

y

x

Figure 2.2: Coordinate system for a plane wave propagating in the direction k.

h

while the ellipticity angle E is defined as

=
— cot1 R, (—45° e +45°).

(2.10)

(2.11)
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A polarization state with ellipticity angle E and tilt angle T corresponds to a point having

longitude 2T and latitude 2c. Linear and circular polarization states map onto the equator and

poles, respectively, while left and right elliptical polarization states map onto the upper and

lower hemispheres.

Figure 2.3: A polarization ellipse with semi-major axis OA, semi-minor axis OB, and tilt angle r.

EQUATOR
REPRESENTS

LOWER HEMISPHERE
RIGHT-HAND SENSE

LONGmJOE =

2X TILT ANGLE

A

h

Polarization
ellipse

LATmJDE =

2X ELLIPTICITY
ANGLE

CIRCULAR POLARIZATIONS

UPPER HEMISPHERE
LEFT-HAND SENSE

LINEAR

Figure 2.4: Mapping of polarization states onto a Poincar sphere. (from [8], p. 82)
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2.3 Transformation of Coordinates

Consider two coordinate frames which are related by a combination of translation and rotation

and let the directions and 2 define the local vertical in each frame. In cartesian coordinates,

the position vectors r’ and R in the two frames are related by a coordinate transformation

matrix [T] such that

L m1 X — Xo

= 2 m2 n2 Y —
, (2.12)

z’ £3 m3 n3 Z—Zo

where the origin 0’ of the x’y’z’ coordinate frame is located at (Xo, Y0, Zo) relative to the XYZ

coordinate frame and l, m1,n1; 12, m2,n2; and 13, m3,n3 are the direction cosines of the x’, y’, z’

axes relative to the X, Y, Z axes, respectively. Since the coordinate transformation matrix is a

unitary matrix, its inverse is identical to its transpose and the reverse transformation is simply

given by

XI XO

y’ + y0 . (2.13)

z’ Z0

The polarization state of a propagating wave can be transformed from one coordinate frame

to another by direct application of either (2.12) or (2.13) to the components of the electric

field vector as described by Mott [6, pp. 212—219). However, this technique is cumbersome

and cannot be easily generalized to the many different’ methods which are used to represent

the polarization state of a wave or the polarization response of a scatterer. The limitations are

particularly apparent in cases where polarization state is described with respect to an elliptically

or circularly polarized basis or where the wave is partially polarized. A more general approach

is suggested by considering transformation of the corresponding polarization ellipse between

coordinate frames. The ellipticity angle c is invariant under either translation or rotation since

it depends only on the magnitude of the axial ratio and the polarization sense of the wave.

Although the tilt angle r is invariant under translation, it will not be preserved under rotation

x

Y

Z

m1 m2 m3

ni 2 fl3
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cosb sini& 0

[Tj= —sin cosb 0

0 0 1

a = T — T, (—90° a +900), (2.15)

where a corresponds to the angle between the unit vectors and ‘ which define the horizontal

plane in each coordinate frame with respect to the direction of propagation, as depicted in

Figure 2.5. In general, it can be shown that transformation of any polarization descriptor

between coordinate frames may be regarded as a change of basis transformation corresponding

to rotation of the polarization basis by an angle a about the direction of propagation.

Figure 2.5: A polarization ellipse showing the relationship between the tilt angles r and r’ in

the xyz and x’y’z’ coordinate frames.

unless the horizontal planes in both coordinate frames are parallel to each other. This condition

will be satisfied only if the coordinate transformation matrix is of the form

(2.14)

which corresponds to rotation about the z aids by an angle b. Otherwise, the difference between

the tilt angles of the polarization ellipse in the two coordinate frames is given by

6
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The angle c between the unit vectors and ‘ is a function of both the direction of propa

gation and the coordinate transformation matrix which relates the two coordinate frames. This

variation is apparent in Figures 2.6 and 2.7 where the parallels of two coordinate frames which

are related by pure rotation are plotted on perspective and Mercator projections, respectively.

Since the Mercator projection is conformal, the angles between the parallels are accurately de

picted at all points on the grid and the variation in the angle with the direction of propagation

can be easily visualized. In the context of radar cross section measurement, Krichbaum [7] has

derived an expression for this angle 1 for the special case in which the direction of propagation is

coincident with the z axis and the coordinate transformation corresponds to rotation about the

x and y axes. Here, two methods for determining the angle cr for any direction of propagation

and coordinate transformation are derived using spherical trigonometry and vector algebra,

respectively. Since translation between the coordinate frames can be neglected, it is convenient

to define

x=X—X0, y=Y—Yo, z=Z—Z0, (2.16)

and reduce (2.9) and (2.10) to

L m1 n1 x

£2 m2 n2 y , (2.17)

z’ £3 m3 n3 z

and

x 4 £2 3

y m1 m2 m3 y’ , (2.18)

Z i 2 713

where the origins of the zyz and z’y’z’ coordinate frames are coincident and l, m1,ni; 12, m2,n2;

and l3 m3,n3 are the direction cosines of the x’, y’, z’ axes relative to the x, y, z axes, respec

tively. Expressions for transforming direction expressed in terms of the elevation angle 6 and

azimuth angle 4 between coordinate frames can be derived from the coordinate transformations

1which he refers to as the polarization angle T.
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Figure 2.6: A perspective
by pure rotation.

projection of the parallels of two coordinate frames which are related

5.0

0,

:2, 90.0

175.0
-180 -135 -90 -45 o 45 90 135 180

• (deg)

Figure 2.7: A Mercator projection of the parallels of two coordinate frames which are related by
pure rotation. Since the projection is conformal, the angles between the parallels are accurately
depicted at all points on the grid.
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(2.17) and (2.18) and the relations

r = 1, 8 = cos1z, 4) = tan(y/x),
219

x = sin 6 cos 4), y = sin9 sin 4), z = cos 9.

The forward transformation is given by

9’ = cos1 { sinS cos 4) + m3 sinS sin 4) + n3 cos 8] , (2.20)

4)’ — tan1
[2sin9cos4)+m2sin9sin4)+n2cos6]

221
— ii sin8 cos 4) + m1 sin 9 sin 4) + n1 cos 9] ‘

while the reverse transformation is given by

8 = cos1 [ni sin 0’ cos 4)’ + n2 sin 9’ sin 4)’ + n3 cos 9’] , (2.22)

4) — tan’
m1 sinS’ cos 4)’ + m2 sin 0’ sin 4)’ + m3 cos ‘

(2 23)
L sin 9’ cos 4)’ + £2 sin 8’ sin 4)’ + £3 COS 6’

Method I

A general expression for the angle a may be derived using spherical trigonometry. Consider two

coordinate frames which are related by pure rotation as shown in Figure 2.6. Let the point 0 be

the common origin of the coordinate frames and let the points Z, Z’, and P be the intersection

of the z axis, the z’ axis, and the direction of propagation with a unit sphere centered about

the origin. The points Z, Z’, and P define the spherical triangle ZZ’P. The great circle angles

defined by the arcs Z’P, ZP, and ZZ’ are designated by z, z’, and p. The angles defined by

the vertices of the triangle opposite to arcs z, z’, and p, are designated by Z, Z’, and P. Since

the vectors which are tangential to and 1 at P correspond to the directions O and ‘ and

the vectors 1, and
,

are orthogonal in both the x’y’z’ and xyz coordinate frames, it can be

shown that the angle P between the unit vectors 8 and ‘ is congruent to the angle a between

the unit vectors and



Chapter 2. Transformation of Polarization Descriptors Between Coordinate Frames 21

In terms of spherical coordinates, the great circle angles z, z’, and p are given by

z = , (2.24)

= Op, (2.25)

p = = , (2.26)

while the vertex angles Z and Z’ are given by

Z = —

(2.27)

= (2.28)

If the point P lies on the great circle defined by the arc ZZ’, the vertex angles Z and Z’ vanish

and a is given by

a = 00 , 00 < (Op — O) < 180°,
(2.29)

= ±180°, —180° < (Op — 8) < 00

However, if the point P is coincident with either the point Z or its antipode, the local horizontal

in the xyz coordinate frame will be undefined and the angle a cannot be determined. Similar

considerations apply if the point P is coincident with either the point Z’ or its antipode. In

all other cases, an expression for the angle a is obtained by applying the laws of sines to the

spherical triangle ZZ’P to give either

sinpsinZ
sina , (2.30)

sin z

— sinO sin(q5p
— c5z’)

— sinO’p

or

sinp sinZ’
ama = , (2.31)

sin z’

— sin O’ sin(qY
— q5)

— sinOp
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then applying the law of cosines to give

cosa = —cosZcosZ’+sinZsinZ’cosp, (2.32)

= — cos(bp — ‘) cos(qV — qYp) + sin@p — ) sin( — p) Cos 8.

Since both the sine and cosine of the angle are known, it is a simple matter to determine the

angle a using a four-quadrant arctangent function, e.g.,

/ sinp sin Z/sinz N
— I\_cosZcosZl+sinZsinZlcosp)

— tan’ ( sin8 sin(4p — c5’z)/ sinO,
—

— cos(p — ‘) cos(4/ — ,) + sin(qp — ‘) sin( — ç1,) cos

Method II

An alternative expression for the angle a may be derived using vector algebra. Let cp define

the horizontal plane of the xyz coordinate frame with respect to the direction of propagation

and be given by

p=—sin4+cos, (2.34)

and let 74 similarly define the horizontal plane of the x’y’z’ coordinate frame and be given by

(2.35)

Let ip be the outward normal to the unit sphere at the point P in the xyz coordinate frame

and be given by

= — sin 8 cos + sin6 sin + cos 0 . (2.36)

The expression for the unit vector in the x’y’z’ coordinate frame given by (2.35) must be

transformed to the xyz coordinate frame. This can be accomplished by determining qY in terms

of 9 and 4> using (2.21) and converting the basis of the vector using (2.18). The scalar triple

product of the unit vectors p, ,, and ip gives

sina=p.(px4), (2.37)
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while the dot product of the unit vectors c7p with , gives

cosa=p.. (2.38)

Since both the sine and cosine of the angle are known, a can be determined using a four-

quadrant arctangent function, i.e.,

a = tan’ ( ‘ (2.39)

If ip is coincident with z axis then the definition of p given by (2.34) is ambiguous. In such

cases, the direction of the horizontal plane with respect to the direction of propagation must

be defined arbitrarily. If p is coincident with the z’ axis, similar considerations apply to the

definition of , given by (2.35).

2.4 Evaluation of the Coordinate Transformation Matrix

In order to apply the results presented in the previous section, it is necessary to determine the

elements of the coordinate transformation matrix which relates the xyz and x’y’z’ coordinate

frames according to (2.17) and (2.18). This can be accomplished if either the relative directions

of the basis vectors defined by the three principal axes in each coordinate frame or a series of

Euler angle rotations which will transform one coordinate frame into the other are known [9],

[101. In the first case, the coordinate transformation matrix is given by

4 m1 n1

[T] £2 m2 2 = • . .
, (2.40)

£3 m3 ri3 ‘• ‘• I’..

where the two sets of basis vectors (i’, ‘, ‘) and (, , ) have been expressed with respect to a

common coordinate frame. In the second case, the transformation is described in terms a series

of angles through which the first frame can be rotated in order to bring it into coincidence with

the second. A maximum of three Euler angle rotations is sufficient to bring any two frames
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into coincidence. One possibility is to begin the sequence with rotation about the y axis by an

angle 4C,

cost 0 sine x

= 0 1 0 , (2.41)

z11 —sine 0 cos z

follow by rotation about the x” axis by an angle ,

1 0 0

= 0 cos i sin , (2.42)

z” 0 — sin cos z”

and conclude with rotation about the z axis by angle ,

cosC sinC 0 x”

=
— C o , (2.43)

z’ 0 0 1 z”

as suggested by Krichbaum [7]. The product of the three rotation matrices given in (2.41),

(2.42), and (2.43) yields the transformation matrix which relates the xyz and x’y’z’ coordinate

frames,

cos cos — sin sin ii sin sin ( cos cos C sin + sin ( sin7 cos

[T] = —sinCcos — cos(sinisin cos(cos —sinCsin+ cosCsiniicos (2.44)

—cosqsin —sing coscos

Since rotation is not commutative, this formulation is not unique and there are several other

combinations of Euler angle rotations which will yield an equivalent coordinate transformation,

e.g., [6], [9], [101.

In practice, it may be difficult to obtain the parameters required by the basis vector and

Euler angle methods for determining the elements of the coordinate transformation matrix. An

alternative method is derived here which allows the matrix to be determined from two arbitrary

directions (8k, qf1) and (02, 2) which have been expressed in terms of both coordinate frames.
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The unit vectors which correspond to these two directions can be determined by applying (2.19)

to the ordered pairs (O,q4), (62,2), and (6,2) to yield

= (xi,yi,zi) (a4,y,z) , (2.45)

= (x2,y2,z2) E = (x,y,z) . (2.46)

A third direction, r3, can be determined from the normalized cross products,

— 1x2 ,

______

T3— , r3= , 2.47
I r X r21 Ir X rI

in order to obtain two sets of vectors (, i, r) and (, , f) which form a linearly independent

set in their respective coordinate frames, i.e.,

X1 X2 X3 xc x

Yi Y2 J3 0, 0. (2.48)

Z1 Z2 Z3 Zc Z Z

From (2.17), it can be shown that

x x x £i m1 n1 z1 X2 X3

c Y Y!3 £2 m2 fl2 Yi Y2 /3 (2.49)

zc z z £3 m3 fl3 z1 z2 z3

Solving for the coordinate transformation matrix gives

—1

L m1 n1 xc x x x1 x2 x3

£2 m2 n2 c Y2 Y!3 Yi Y2 J3 (2.50)

£3 m3 n3 zc Z z!3 zi z2 z3

Since the coordinate matrices satisfy (2.48), they will always have an inverse and (2.50) will

always have a valid solution.
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2.5 Rotation of the Basis of Common Polarization Descriptors

In this section, methods for rotating the basis of polarization coordinates and the complex

polarization vector e.g., [1], [3], [11], are extended to more general cases. Methods for rotating

the basis of the Stokes vector and the coherency basis are derived. Some of the results presented

here have recently been confirmed using a different approach by Mott [6].

Polarization Coordinates and Complex Polarization Ratios

The entire range of possible polarization states of a completely polarized wave can be mapped

onto the surface of a Poincaré sphere so that each polarization state is represented by its

coordinates in either latitude and longitude or elevation and azimuth. For example, a spherical

coordinate system can be devised in which a polarization state W with ellipticity angle E and

tilt angle r is represented by a point having longitude 2r and latitude 2e, as shown in Figure

2.8. If the basis vectors Ii. and £‘ of (2.5) and (2.6) are rotated about the propagation vector

by an angle cr, the coordinates of the polarization state W’ in the new frame are given by

C’ = C, (2.51)

= r—c. (2.52)

Alternatively, the coordinates of the polarization state W may be described in terms of the

polarization angle y and phase angle 6 which are derived from the expression of the correspond

ing plane wave as the weighted sum of orthogonally polarized basis states. For example, the

electric field vector E may be characterized in terms of horizontally and vertically polarized

components with

E (EH, + Evi’) e_ulcr, (2.53)

where the time dependence €i has been suppressed and EH and Ev are complex amplitudes

given by

EH = aj- e3SH , (2.54)

= av e5” , (2.55)
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135°
LINEAR

HORIZONTAL
LINEAR

LHC

Figure 2.8: Poincaré sphere representation of the polarization state W of a plane wave. (after
[8], p. 81)

as described in section 2.2. The quantities aH and av are the magnitudes of EH and Ev,

respectively, and 6H and 5v are their phase angles. The polarization angle 7L and phase angle

are given by

7L = tarf’(av/aH),

=

(—90° 7L +90°)

(—90° ‘5L +900).

(2.56)

(2.57)

Although any pair of orthogonally polarized basis states may be employed, the most common

are horizontal and vertical, 45° and 135° linear, and left and right circular. In the latter cases,

the polarization angle and phase angle are defined in a similar manner to 7L and 6L with

7D = tan1(a135/a45)

613 6135645,

-Ic = tan1(aR/aL),

‘5C

(—90° +90°),

(—90° 5J3 +90°),

(—90° 7c +90°),

(—90° 6c +90°).

(2.58)

(2.59)

(2.60)

(2.61)

LINEAR

450
LINEAR

RHC

and
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In each case, a polarization state W with polarization angle y and phase angle is repre

sented by a point having elevation 27 and azimuth 5. The orientation of the axes from which

and cc are measured is shown in Figure 2.8. The phase reference for orthogonal circular

components is defined in Figure 2.9.

VERTICAL

8C
H OR ZON TA L

Figure 2.9: Definition of the phase reference for orthogonal circular components. (from [8],
p. 82)

Rotation of the basis of polarization coordinates is easily accomplished if they are expressed

in terms of the ellipticity angle E and tilt angle r of the corresponding polarization ellipse.

Expressions for transforming the polarization coordinates (7L, 6L), (7D, 6D), or (7c, 6c) into the

polarization coordinates (e, r) and back can be derived using spherical trigonometry. Consider

the right spherical triangle defined by the points corresponding to horizontal polarization, the

polarization state W, and the polarization state (0, T). For polarization coordinates expressed

with respect to a horizontally aiid vertically polarized basis, the forward transformation is given

by

= sin1 (sin 27L SIfl ccL) , (2.62)

r = tan’(tan27L cos6L) , (2.63)

while the reverse transformation is given by

7L = cos1 (cos 2e cos 2T) , (2.64)

= tan’(tan2c csc2T) (2.65)
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Next, consider the right spherical triangle defined by the points corresponding to 45° linear

polarization, the polarization state W(€, r), and the polarization state (0, r). For polarization

coordinates expressed with respect to a 45° and 135° linearly polarized basis, the forward

transformation is given by

= sin (sifl27D SiflD) , (2.66)

T = _tan_1 (cot 27D sec6D) , (2.67)

while the reverse transformation is given by

= cos1 (cos 2€ sin 2r) , (2.68)

tan1 (tan2E sec2r) . (2.69)

Finally, consider the right spherical triangle defined by the points corresponding to left circular

polarization (45°,0), the polarization state W(€,r), and the polarization state (€,0). For po

larization coordinates expressed with respect to a left and right circularly polarized basis, the

forward transformation is given by

= tan1(1)
— -Ic , (2.70)

r = t5cj/2 , (2.71)

while the reverse transformation is given by

7c = tan’(l)—c, (2.72)

= 2r. (2.73)

The surface of the Poincar sphere can be mapped onto the entire complex plane by a

stereographic projection. Each polarization state is represented by a complex number which is

referred to as the complex polarization ratio p. Rotation of the basis of the complex polarization

ratio is easily accomplished if the ellipticity angle e and tilt angle i- of the corresponding
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polarization ellipse are known. The complex polarization ratio is related to the polarization

coordinates (7L, 6L), (7D, 5I3), and Qyc, c) by

PL = PL (2.74)

PD = PD , (2.75)

pc = ,°c , (2.76)

where the polarization ratio p is defined by

PL = tan7L av/aH, (2.77)

PD = tan’yD a135/a45, (2.78)

Pc tan7c aR/aL, (2.79)

and the phase angle is defined by (2.57), (2.59), and (2.61). Together with (2.62)—(2.73), this

is sufficient to define the transformation of the complex polarization ratios PL, PD, pc to the

polarization coordinates (€, r) and back.

Complex Polarization Vectors

The pair of complex amplitudes which arise from the representation of a plane wave as the

weighted sum of orthogonally polarized basis states may be arranged to yield a complex polar

ization vector, e.g.,

EH
E = , (2.80)

where EH and Ev are the complex amplitudes which correspond to a horizontally and vertically

polarized basis. Rotation of the polarization basis about the propagation vector k by an angle

a is accomplished by application of a rotation operator {R] to the complex polarization vector

E to yield

= [R] E. (2.81)
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If the basis of the complex polarization vector is linear, the corresponding rotation operator

[RU is simply given by

cosa —sina
[RL] . (2.82)

sina cosa

Thus,

E cosa —sina EH
, (2.83)

sina cosa

and
E5 cos a — sin a E45

• (2.84)
E35 sin a cos a E135

If the basis of the complex polarization vector is either elliptical or circular, it must be trans

formed to linear before the rotation operator given by (2.82) is applied. After it has been

rotated, the polarization basis can be restored to its original effipticity by the reverse transfor

mation. This transformation can be performed by an ellipticity operator,

coSE jsinc
[H] = , (2.85)

jsinc cosc

which will modify the ellipticity angle of the polarization basis states which define the upper

and lower element in the polarization vector by € and -, respectively, without affecting their

respective tilt angles [11]. Let be the ellipticity angle of the polarization basis state which

defines the first element in the polarization vector. Since the basis states are orthogonal,

the ellipticity angle of the polarization basis state which defines the second element in the

polarization vector is given by -e. Thus, the general rotation operator [R] for the complex

polarization vector is given by

[R] = [H(c)] [RL(a)] {IJ(—€)] (2.86)

cos e j sin c cos a — sin a cos e —j sinE

j sin c cos E sin a cos a —j sin c cos e
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If the basis is circularly polarized, e = ir/4 and the corresponding rotation operator [Rc] is

given by

e 0
[Rd = . (2.87)

0 e2

Thus,

E eic 0 EL
= . (2.88)

E 0 ei ER

The Stokes Vector

The .Stokes vector representation of a completely polarized wave is given by

So I (IEvI2+ IEHI2) 1

= S1 = Q = *(IEvI2 — IEHI2)
= 1

cos2ecos2T
(2.89)

S2 U IEvIIEHIcos6L cos2csin2r

53 V jIEvIjEHIsin5L sin2c

where EH, Ev, and 6L are defined in (2.54), (2.55), and (2.57), ‘i is the impedance of free space,

1 is the total power carried by the wave, and c and T are the ellipticity and tilt angles of the

corresponding polarization ellipse. For a completely polarized wave,

s=s?+s+s. (2.90)

The normalized Stokes vector is given by

0 1

81 cos2Ecos2r
s = (2.91)

cos2€sin2r

83 sin2e

where

1 = s + s + s . (2.92)
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Since all the elements of the Stokes vector are expressed in units of power, polarimetric data

which are expressed in Stokes format can be spatially and temporally averaged with relative

ease. Also, the elements of the Stokes vector are always expressed in real numbers so recourse to

complex arithmetic is not required. Unlike the complex polarization vector, the Stokes vector

can also represent the polarization state of quasi-monochromatic or partially polarized wave.

In such cases, the Stokes vector can be resolved into a completely polarized component S, and

an unpolarized component S, such that

S=S+S. (2.93)

Then,

S0 l—d 1 1

0 cos2€cos2r dcos2fcos2r
S= =10 +d =1 , (2.94)

S2 0 cos2Esin2T dcos2Esin2T

S3 0 sin2€ dsin2c

where d is the ratio of the power carried by the polarized component of wave S, to the total

power carried by the wave and is given by

+ S + S
d= , 0dl. (2.95)

so

The equivalent normalized Stokes vector is given by

1—d 1 1

0 cos2ecos2T dcos2€cos2r
s = , (2.96)

0 cos 2E sin 2T d cos 2e sin 2r

83 0 sin2€ dsin2E

where the depolarization ratio d is given by

d=/4+$+s, 0dl. (2.97)
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Consider rotation of the polarization basis about the propagation vector by an angle a.

Let S represent the Stokes vector in the original coordinate frame and let 5’ represent the

Stokes vector in the new coordinate frame. From (2.94), S’ is given by

S6 1

S dcos2cos2r’
= Io . (2.98)

dcos2sin2r’

dsin2€

From (2.15), r’ = r — a, and

1

S dcos2cos2(T — a)
1 (2.99)

S dcos2csin2(r — a)

dsin2c

1

d cos 2e(cos 2T cos 2a + sin 2r sin 2a)
10

d cos 2E(sin 2r cos 2a — cos 2T sin 2u)

dsin2c

By inspection, (2.99) can be factored to yield

1 0 0 0 1

0 cos2a sin2a 0 dcos2€cos2r
= 1 (2.100)

0 — sin 2a cos 2a 0 d cos 2e sin 2T

0 0 0 1 dsin2c

Thus, S’ is related to S by

1 0 0 0 So

0 cos 2a sin 2a 0
(2.101)

0 —sin2a cos2a 0 S2

0 0 0 1 S3
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It is convenient to express (2.101) in the form

[5’] = [Rs] [5], (2.102)

where [Rs] is a rotation operator given by

1 0 0 0

o cos2c sin2o 0
[Rs] = . (2.103)

0 —sin2c cos2c 0

0 0 0 1

A modified form of the Stokes vector is sometimes used to simplify the formulation of radia

tive transfer problems, e.g., [4], [12]. From (2.89), expressions for the vertically and horizontally

polarized intensity,

Il-I = _IEvI2 (I+Q)/2, (2.104)

Iv = _IEHI2 = (I—Q)/2, (2.105)

are obtained. These expressions are substituted for the first two elements of the Stokes vector

to yield the modified Stokes vector Sm,

SmO -1H (jEvI2) (1+dcos2ecos2r)

Sml — Iv — —(IEHI2) (1—dcos2Ecos2r)
, (2106)

5m2 U IEvIIEHlcos6L dcos2Ecos2T

Sm3 V IEvWEHIsinL dsin2E

which is related to the conventional Stokes vector S by

C, 1 1 i C
m0 U U “0

Smi 0 0 Si
(2.107)

5m2 0 0 1 0 S2

5m3 0 0 0 1 S3

Consider rotation of the polarization basis about the propagation vector A by an angle . Let

Sm represent the modified Stokes vector in the original coordinate frame and let S represent
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the modified Stokes vector in the new coordinate frame. From (2.101) and (2.107), it can be

shown that the rotation operator [Rm] is given by

00 1 0 0 0
00_i

1 _1 0 0 0 cos2a sin2a 0 1 _1 0 0
— 2 2 2 2

114’mi —

0 0 1 0 0 —sin2a cos2a 0 0 0 1 0

0 001 0 0 0 1 0 001

cos2 a sin2 a sin 2a 0

sin2 a cos2 a _l sin 2a 02 (2.108)
— sin 2a sin 2a cos 2a 0

0 0 0 1

Thus, S is related to S by

S0 cos2 a sin2 a sin 2a 0 SmO

= sin2a cos2a —sin2a 0 Smi
(2.109)

— sin 2a sin 2a cos 2a 0 Sm2

C! 1 C
‘m3 U U U m3

A third variant of the Stokes vector is used to define the data format employed by the JPL

polarimetric imager [4]. The JPL Stokes vector S3 is given by

*(JEHI2+ lEvi2) 1

S31 = j(lEHl2— lEvi2)
= 10

—dcos2€cos2r
(2.110)

5j2 —1IEvilEHicost5L —dcos2Esin2r

5j3 EvllEHIsinbL dsmn2E

and is related to the conventional Stokes vector S by

SjO 1 0 0 0 SO

Si’ 0—1 0 0 Si
= (2.111)

5j2 0 0—10 S2

S33 0 0 0 1 53
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Consider rotation of the polarization basis about the propagation vector k by an angle a.

Let S3 represent the JPL Stokes vector in the original coordinate frame and let S represent

the JPL Stokes vector in the new coordinate frame. From (2.103) and (2.111), it can be shown

that the rotation operator [R3] is given by

—1

1 000 1 0 0 0 1 000

0 —1 0 0 0 cos2a sin2a 0 0 —1 0 0
[R3]=

0 0 —1 0 0 —sin2a cos2a 0 0 0 —1 0

0001 0 0 0 1 0001

1 0 0 0

0 cos2a sin2a 0
V

(2.112)
0 —sin2a cos2a 0

0 0 0 1

Thus, S is related to S3 by

i 0 0 0 s30
S’ 0 cos 2a sin 2a 0 Si1

(2.113)
S’2 0 — sin 2a cos 2a 0 Sj2

S’3 0 0 0 1

The Coherency Matrix

The coherency matrix is another method for representing the polarization state of a partially

polarized wave which is sometimes used [5], [6], [13]. In terms of the Stokes vector, the elements

of the coherency matrix are given by

[J}
11 J12 = (So+S1) (S2+jS3)

. (2.114)
J21 J22 (S2—iS3) (SoSi)

Substitution of the expressions for S0, S, S2, and S3 given in (2.94) into (2.114) yields an

expression for the coherency matrix in terms of the wave intensity Io, the ellipticity angle e and
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tilt angle T of the po’arized component of the wave and the depolarization ratio d,

[J] 1
(1 + dcos2ecos2r) d(cos2Esin2r + jsin 2e)

(2 115)
d(cos2esin2r —jsin2c) (1 — dcos2ecos2r)

The coherency matrix can be resolved into polarized and unpolarized components,

{J] = {J] + [Jr] , (2.116)

to give

[J]—Io
0 1—d

+Iod
(1+cos2os2T) (cos2Esin2r+jsin2E)

1—d 0 (cos2esin2T—jsin2) (1—cos2€cos2r)

(2.117)

Consider rotation of the polarization basis about the propagation vector k by an angle o.

Let [J] represent the coherency matrix in the original coordinate frame and let [J’] represent

the coherency matrix in the new coordinate frame. Since the unpolarized component [J] is

invariant under rotation of the polarization basis,

J1l J,’412 = Jul1 Jul2
, (2.118)

J2l ,‘L22 J2l J22

and only transformation of the polarized component [Jr] need be considered. In the new

coordinate frame, [J] is given by

J71 J72 (1 + cos2€cos2r’) (cos2Esin2r’ +jsin2E)

Jf J
= 10d

(cos2csin2r’—jsin2E) (1—dcos2ccos2r’)
. (2.119)

From (2.15), r’ = r — cr and

J1 J12 (1 + cos2ccos2Qr— cr)) (cos2Esin2(r
—

c) +jsin2c)
=10d

J21 J22 (cos2esin2(r
—

a) —jsin2) (1 — cos2ccos2(T
—

a))

(2.120)

With a little effort, (2.120) can be factored to yield

J1 J12 — cosa sina J,11 J12 cosa —sina
(2121)

J,21 J22 —sina cosa J21 422 sina cosa
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Thus, from (2.118) and (2.121), it can be shown that [J’j is related to [J] by

il ‘i2 = cosa sina J11 J12 CO5O
. (2.122)

J1 J2 —sina cosa J21 J22 sina cosa

Polarization Scattering Operators

The scattering cross section a of a target is defined as the area intercepting that amount of power

which, when scattered isotropically, would produce an echo equal to that actually returned by

the target. Thus,
1Es12

a = urn 4irr2 , (2.123)
r—oo IE’I

where E is the incident electric field, ES is the scattered electric field, and r is the range at

which the scattered field is measured. Radar cross section refers to that portion of the scattering

cross section which is associated with a specified polarization component of the scattered wave

and is a function of the size, shape, composition, and orientation of the target, the frequency of

the incident wave, and the polarization state of the radar transmitting and receiving antennas.

The relationship between the polarization states of the incident and scattered fields can

be described by a polarization scattering operator expressed in matrix form. Following the

definition of scattering cross section presented in (2.123), the polarization scattering matrix [S]

relates incident and scattered fields which have been expressed as complex polarization vectors,

i.e.,

Ef S11 S12 El= . (2.124)
E S21 522 E

When defined with respect to a horizontally and vertically polarized basis, the polarization

scattering matrix can also be used to relate incident and scattered fields which have been

expressed as coherency matrices, i.e.,

Jr1 Jf2 = SHH SHy h J2 5IH

T

(2.125)
47rr2

SVH Svv J J2 Sjj S17
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The Mueller matrix [L] relates incident and scattered fields which have been expressed as Stokes

vectors, i.e.,

L11 L12 L13 L14 S

S = 1 L21 L22 L23 L24 S
• (2.126)

s 4irr L31 L32 L33 L34 S

S L41 L42 L43 L44 S

There are three principal variants of the Mueller matrix which correspond to the conventional,

modified, and JPL Stokes vectors, respectively. In practice, polarization scattering matrices and

Mueller matrices are often normalized by factoring out the scattering cross section of the target

and the range dependence of the response. Other polarization scattering operators which are

derived from the polarization scattering matrix and the Mueller matrix, such as the covariance

matrix and the Stokes scattering operator, are used in computationally efficient methods for

synthesizing arbitrary polarization responses from experimental data [4].

it is convenient to describe scattering problems with respect to a coordinate frame which is

centered on the scatterer. The local coordinate systems used to define the polarization state of

the incident and scattered fields are specified in a manner similar to that presented in section 2.2

for the case of a single propagating wave. However, it is also necessary to specify the relation

ship between the local coordinate systems. According to the forward scatter alignment (FSA)

convention, the propagation vectors of the incident and scattered fields are aligned with the di

rection of propagation while according to backscatter alignment (BSA) convention, they always

point towards the scatterer. While the expressions for the incident field are identical under

both conventions, the expressions for the scattered field and, by extension, the corresponding

polarization scattering operator, are not. The coordinate systems and scattering geometries

corresponding to the FSA and BSA conventions are depicted in Figures 2.10 and 2.11, respec

tively. The subscripts i and s refer to fields expressed with respect to the FSA convention while

the subscripts t and r refer to fields expressed with respect to the BSA convention. The unit
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Figure 2.10: Coordinate systems and scattering geometry for the forward scattering alignment

(FSA) convention. (after [4], p. 18])

Figure 2.11: Coordinate systems and scattering geometry for the backscatter alignment (BSA)

convention. (after [4], p. 18])

A

vs

A

ht

/ kr IVr
/ I

/ _J



Chapter 2. Transformation of Polarization Descriptors Between Coordinate Frames 42

vectors in the local coordinate system for the incident (or transmitted) field are given by

= = E — = —cosqsin02 —sinsin0 —cos92 ., (2.127)

xk= — ,. = —sinx+cosqy, (2.128)
Izxkl

fit f kxh —Ô = —cosq5cos8—sinqcos8+sin8, (2.129)

while the corresponding unit vectors for the scattered (or received) field are given by

= —•k = E — = —cos5sin68—sin4sinO3—cos68, (2.130)

• xk
hr = —h3 = —q = sinq53x—cos4i’3y, (2.131)

Izxkl

= k x h E —8 = —cosq53cos68—sin48cosO3+sin68. (2.132)

Since the coordinate systems lii, fit) and (kr, ‘zr, fi,.) are coincident when the transmitting

and receiving antennas are collocated, the BSA convention is a particularly convenient choice

for use in radar scattering problems. Unless otherwise stated, the BSA convention will be the

convention used in the remainder of this study.

Once the local coordinate systems for the incident and scattered fields have been defined,

it is a simple matter to apply the results derived earlier in this section to the problem of

rotating the basis of either the polarization scattering matrix or the Mueller matrix about the

radial vector i by an angle c. Since the propagation vector = —1, this transformation is

equivalent to rotating the polarization basis about k by an angle —tx. Let [S] represent the

normalized polarization scattering matrix in the original coordinate frame and let [S’] represent

the normalized polarization scattering matrix in the new coordinate frame. The corresponding

scattering equations are given by

ES = [Sj E , (2.133)

= [S’] Et’
. (2.134)
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Since the rotation operator [R] is a unitary matrix,

= [R(—a)] (2.135)

and

Es’ = [RJ’ ES , (2.136)

E” = [RI—’ E’ , (2.137)

where expressions for the rotation operator [RI which are appropriate for use with complex

polarization vectors having linearly polarized, circularly polarized, or arbitrarily polarized basis

states are given by (2.82), (2.87), and (2.86), respectively. Multiplying both sides of (2.136)

and (2.137) by [RI yields

= [RIE’ , (2138)

Et = [Rj E’ . (2.139)

Substituting (2.138) and 2.(139) into (2.133) gives

[RI Es’
= [SI [RI Et’

. (2.140)

Multiplying both sides by [R1’ gives

[Rj’ [R] Es’ = [R]’ [SI [RI Et’ , (2.141)

which simplifies to

= [RI’ [SI [RI Et’
. (2.142)

Thus, by equating (2.134) and (2.142), it can be shown that [S’I and [SI are related by

[S’I = [Rj’ [5] [RI . (2.143)

In a similar fashion, it can be be shown that a Mueller matrix [L’j in the new coordinate frame

is related to the Mueller matrix [L] in the original coordinate frame by

[L’} = [RsI1 [LI [Rs] (2.144)

where expressions for the rotation operator [RsI which are appropriate for use with conventional,

modified, and JPL Stokes vectors are given by (2.94), (2.106), and (2.110), respectively.
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2.6 Conclusions

It has been shown that transformation of a polarization descriptor between coordinate frames

corresponds to rotation of its polarization basis by a prescribed angle which is a function of

both the transformation matrix that relates the two coordinate frames and the direction of

propagation. Two methods for determining the angle of rotation for the case in which the

local vertical is defined by the direction in each frame have been derived using spherical

trigonometry and vector algebra, respectively. Both methods are robust and will yield the

correct result but the method based on vector algebra is more compact and would be easier

to implement in software. Although the elements of the coordinate transformation matrix can

be determined from either the relative directions of the three principal axes in each coordinate

frame or the Euler angles which define a series of rotations which will transform one coordinate

frame into the other, in practice it may be difficult to obtain these parameters. A third method

has been derived which overcomes this limitation by allowing the elements of the coordinate

transformation matrix to be determined from any pair of directions which have been expressed

in terms of both coordinate frames. Algorithms for rotating the basis of several commonly used

polarization descriptors, including polarization coordinates, the complex polarization ratio, the

complex polarization vector, the Stokes vector and several of its variants, the coherency matrix,

the polarization scattering matrix, and the Mueller matrix have been derived.
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Chapter 3

3.1 Introduction

TRUNCATION AND COMPENSATION OF

TRIHEDRAL CORNER REFLECTORS

A trihedral corner reflector is a reentrant structure formed by the intersection of three mutually

orthogonal reflecting panels. In general, a ray incident upon one of its interior surfaces will

undergo reflection from each of the others in succession and will be returned to the source.

Although other scattering mechanisms contribute to the response, triple-bounce reflections from

the interior of the reflector dominate over most directions of incidence. Since trihedral corner

reflectors present a large scattering cross section over a wide angular range, are mechanically

rugged, and can be manufactured with relative ease, they are widely used in radar navigation

and remote sensing as location markers and calibration targets. The relative sizes of trihedral

corner reflectors in common use are compared in Figure 3.1.

(a)

3m.

2m±

1m

0m

Figure 3.1: Relative sizes of trihedral corner reflectors used as location markers and calibration
targets in (a) radar navigation, (b) radar-assisted positioning, and (b/c) radar remote sensing.

(b) (c)
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The dependence of the scattering cross section and angular coverage of a trihedral corner

reflector on the size and shape of its reflecting panels has been recognized since the advent

of radar. In the 1940’s and 50’s, closed-form expressions for the contribution of triple-bounce

reflections to the response of trihedral corner reflectors with triangular, elliptical or rectangular

panels with corners of arbitrary length were derived [1]—[3]. Although it was apparent that a

wide variety of response characteristics could be obtained by appropriate shaping of the reflect

ing panels, a procedure which Robertson [4], [5] referred to as truncation and compensation,

work in this area was not pursued due to the lack of either suitable methods for determining the

response of a trihedral corner reflector with panels of completely arbitrary shape or a need for

physically large targets which would benefit from such modifications. In recent years, interest

in altering the response of trihedral corner reflectors in this manner has been renewed by a

requirement for physically large targets to serve as location markers and calibration targets

in radar navigation and remote sensing [6]—[9]. However, very little design data and related

material to guide the development of such reflectors are available in the literature.

In section 3.2, the problem of predicting the response of a trihedral corner reflector with

panels of completely arbitrary shape is considered and an efficient and robust numerical method

for solving Robertson’s model for the equivalent flat plate area of a trihedral corner reflector

is proposed. In section 3.3, the response characteristics of a selected set of trihedral corner

reflectors which present three-fold symmetry are compared. In section 3.4, the response char

acteristics of trihedral corner reflectors which present bilateral symmetry are considered and

the possibility of increasing the beamwidth of the response of such reflectors in one principal

plane relative to the beamwidth in the orthogonal plane by modifying the size and shape of

the reflecting panels in a suitable manner is examined. Design curves for bilaterally symmetric

reflectors which are composed solely of triangular, elliptical, or rectangular reflecting panels are

given. The response characteristics of a selected set of bilaterally symmetric reflectors which

are composed of combinations of panels with various shapes including triangular, circular, and

square are compared. A related problem, the design of top hat reflectors with specified response

characteristics, is considered in Appendix A.
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3.2 Analysis

A rigorous solution for the scattering cross section of a trihedral corner reflector must account

for the contributions of single, double, and triple-bounce reflections from the interior of the

reflector, deviations of the reflecting panels from perfect flatness and mutual orthogonality, and

diffraction by the panel edges. Numerical techniques such as the finite-difference time-domain

(FD-TD) and the shooting and bouncing ray (SBR) methods have been successfully applied to

the problem and can account for most contributions to the response. However, calculating the

response of a large target is extremely demanding and access to some type of supercomputer

or massively parallel processor is generally required [10], [11]. In the case of an ideal reflector

with reflecting panels which are perfectly flat and mutually orthogonal, the problem can be

simplified considerably. A reasonably complete solution can be obtained by using physical

optics (P0) to account for the contribution of reflections from the interior of the reflector while

using the method of equivalent currents (MEC) to account for first order diffraction from the

edges [12]. Alternatively, a hybrid approach which permits application of the Uniform Theory

of Diffraction (UTD) to the problem can be employed [13]. However, neither of these techniques

can be easily applied to reflectors with panels of completely arbitrary shape.

For the purposes of designing trihedral corner reflectors with specified response characteris

tics, it is usually sufficient to account for the contribution of triple-bounce reflections from the

interior since they completely dominate the response for most directions of incidence. If the

reflector is ideal, a ray which is incident upon one of the interior surfaces will generally undergo

reflection from each of the others in succession and will be returned to the source. However,

the reflecting panels are of finite extent and some rays will fail to intercept one or more of the

panels and will be lost. The equivalent flat plate area A of the reflector can be determined by

launching a set of parallel rays towards the target, tracing each ray as it is reflected by each

of the interior surfaces, and projecting that portion of the reflector which contributes to the

backscatter response onto a view plane which is normal to the direction of incidence, as sug

gested by Figure 3.2. The scattering cross section a of the reflector is related to its equivalent
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(a) (b)

Figure 3.2: Scattering by a trihedral corner reflector with triangular panels. (a) Alternative
ray paths. Path 1-1’ represents a ray which has undergone triple-bounce reflection back to the
source while path 2-2’ represents a ray which has undergone double-bounce reflection and been
scattered in a different direction. (b) The equivalent flat plat area of the reflector for incidence
along the symmetry axis. (c) The equivalent flat plat area for incidence off the symmetry axis.
(from [5], p. 13-11)

x

y

Figure 3.3: Problem geometry and coordinate system for scattering by a trihedral corner re
flector composed of triangular, elliptical, or rectangular panels with corners of arbitrary length.

equivalent flat plate area

(c)

z
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A’

,encepupil

Figure 3.4: Spencer’s model for the equivalent flat plate area of a trihedral corner reflector.
In this example, the intersection of the entrance pupil ABC and exit pupil A’B’C’ gives the
equivalent flat plat area of a trihedral corner reflector with triangular panels for incidence off
the symmetry axis.

flat plate area A by the physical optics relation,

A2
(3.1)

where A is the wavelength of the incident wave.

It is convenient to describe scattering by a trihedral corner reflector with respect to the

coordinate frame shown in Figure 3.3. Spencer [1] empirically derived a simple geometric

model for predicting the equivalent flat plate area of an ideal trihedral corner reflector based on

experiments that he conducted with reflectors fabricated from optical mirrors. In the model,

the polygon which defines the outside edges of the reflecting panels and its inverted image are

projected onto a view plane which is normal to the direction of incidence. The inverted image

is obtained by projecting the original polygon through the apex of the reflector. The projection

and its inverted image are referred to as the entrance pupil and exit pupil of the reflector,

respectively. An example for the case of a reflector with triangular panels is shown in Figure

3.4. According to the model, the equivalent flat plate area of the reflector is the area common

to the two pupils. Using this model, Spencer derived closed-form expressions for the response of

trihedral corner reflectors composed of triangular and square panels with equal corner lengths.

exit pupil

A
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Later, these were extended to the case of trihedral corner reflectors composed of triangular,

elliptical, or rectangular panels with unequal corner lengths by Siegel et al. [2], [3]. In their

formulation, the procedure for calculating the equivalent flat plate area of a reflector begins

with determination of the intermediate quantities p, q, and r from the relations

= sin6sinqS (3.2)

q
= sin6cos

(3.3)

r
= sin6:inqS (3.4)

where a, b, and c are the corner lengths of the reflector along the x, y, and z axes, respectively,

and the direction of incidence is given by the angles 6 and q as depicted in Figure 3.3. The

values given to p, q, and r are then reassigned in order of increasing magnitude such that

jpj JqJ jr. For a reflector with triangular panels, the equivalent flat plate area is given by

p2 + q2 + r2
abcp+q+r—2 , p+qT,

p+q+r
(35)

4abc[p++rj , p+qr,

while for a reflector with elliptical panels, the area is given by

(M N)2 L2 M N2—L2
abc [tan_1 ( 4L ) + tan’ ( )

+vtan_1((M4L2)]
, L+MN,

abc [tan_1 (2)
+tan’

(LN)]
L +M N,

(3.6)

where L = p2, M = q2, and N = r2. For a reflector with rectangular panels, the equivalent flat

plate area is simply given by

abcp(4 — r/q) , q r/2,
(3 7

4abc(pq/r), q r/2.
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These closed-form expressions permit rapid and efficient computation of the equivalent flat

plate area of trihedral corner reflectors with panels having certain specific shapes. In order to

apply Spencer’s model to trihedral corner reflectors with panels having more general shapes

Keen [14), [15) devised a numerical method for determining the size and shape of the polygon

defined by the intersection of the entrance and exit pupils.

Although Spencer’s model accurately predicts the equivalent flat plate area of trihedral cor

ner reflectors with many different panel geometries, it may fail without indication when applied

to reflectors with panels of completely arbitrary shape. This was first noticed by Robertson [4]

who proposed an alternative geometric model which will always yield the correct solution.

Robertson’s model is based on the observation that the absolute values of the coordinates at

which a ray incident from a given direction intersects the three planes defined by the trihedral

axes are identical to the coordinates which define the points of reflection of the ray when it is

incident upon one of the interior surfaces of a trihedral corner reflector. A physical implemen

tation of Robertson’s model is presented in Figure 3.5. Consider the trihedral corner reflector

with panels of arbitrary shape which is shown in Figure 3.5(a). First, the panels of the reflec

tor are replaced by complementary apertures which are derived from each reflecting panel by

reflection about the trihedral axes as shown in Figure 3.5(b). The optical model which results

is shown in Figure 3.5(c). To the observer, the polygons defined by the three complementary

apertures are projected onto a view plane which is normal to the direction of incidence. The

area common to all three polygons is the equivalent flat plate area of the reflector.

Examples of trihedral corner reflectors for which Spencer’s model gives accurate predictions

of the equivalent flat plate area are shown in Figure 3.6 while examples for which the predictions

are erroneous are shown in Figure 3.7. From these cases, it appears that Spencer’s model will

give the correct result if the projections of all three complementary apertures in Robertson’s

model are convex polygons. However, if one or more of the aperture polygons is concave, it is

possible that Spencer’s model will fail without indication and give an incorrect result which will

be larger than the actual value. Although a more formal study of the conditions under which

Spencer’s model fails was not pursued, it is clear that Keen’s numerical implementation is not

suitable for use with trihedral corner reflectors with panels of completely arbitrary shape.
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z

x

z

(a)

(c)

Figure 3.5: A physical implementation of Robertson’s model for the contribution of
triple-bounce reflections to the response of a trihedral corner reflector. (a) A trihedral cor
ner reflector with panels of arbitrary shape. (b) Aperture planes derived from each panel by
reflection about the trihedral axes. (c) An optical model for the equivalent flat plate area of a
trihedral corner reflector. (from [16, p. 240])

(b)
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Figure 3.6: Examples of trihedral corner reflectors for which Spencer’s model gives accurate
predictions of the equivalent flat plate area. (a) Reflector geometry. (b) Spencer’s model:
projection of the entrance and exit pupils of the reflector onto the view plane and determination
of their intersection. (c) Robertson’s model: projection of the aperture planes onto the view

plane and determination of their intersection.
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(b)

Figure 3.7: Examples of trihedral corner reflectors for which Spencer’s model gives erroneous
predictions of the equivalent flat plate area. (a) Reflector geometry. (b) Spencer’s model:
projection of the entrance and exit pupils of the reflector onto the view plane and determination
of their intersection. (c) Robertson’s model: projection of the aperture planes onto the view
plane and determination of their intersection.
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An algorithm for solving Robertson’s model for the contribution of triple-bounce reflections

to the equivalent flat plate area of an ideal trihedral corner reflector can be devised using an

approach similar to the one followed by Keen [14], [15] in his solution of Spencer’s model.

The four geometric primitives used in this algorithm are defined as follows [17]—[19j: A point

is specified by its coordinates P(x, y, z). A line segment is specified by giving its end points

Pi(xi, yi, zi) and P2(x2,Y2, z2). A polyline is a chain of connected line segments which is

specified by giving a list of the vertices F1,. . . , F that define the line segments. The first

vertex is called the initial or starting point while the last vertex is called the final or terminal

point. A polygon is a closed polyline in which the initial and terminal points coincide. The line

segments P1 F2,F2 F3,. . . , FN P1 are called the edges of the polygon. The vertex list for the

exterior boundary of the polygon is traversed in a counterclockwise direction and the enclosed

region has a positive vector area. If the polygon contains interior boundaries (or holes), the

corresponding vertex lists are traversed in a clockwise direction and the enclosed regions have

a negative vector area. Once the polygons which represent the panels of the reflector and the

direction of incidence have been specified, the prediction algorithm is executed in four steps:

1. The polygons which represent the x-y, y-z, and z-x reflecting panels are converted into

corresponding aperture polygons by reflection about the principal axes of the trihedral.

2. The x-y, y-z, and z-x aperture polygons are projected onto a view plane which contains

the origin and is normal to the direction of incidence.

3. The polygon which represents the region that is common to the projection of all three

aperture polygons is determined. This is accomplished by calculating the intersection of

the projection of the x-y aperture polygon and the projection of the y-z aperture polygon

then calculating the intersection of the result and the projection of the z-x polygon.

4. The area of the polygon which represents the region that is common to the projection of

all three aperture polygons is calculated.
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The first step in the prediction algorithm, conversion of the polygons which represent the

reflecting panels into aperture polygons by reflection about the principal axes of the trihedral,

can be performed by inspection. The second step, projection of the aperture polygons onto

a view plane which contains the origin and is normal to the direction of incidence, may be

accomplished by a transformation of coordinates through pure rotation. If the reflector frame

is defined by x, y, and z axes of the trihedral corner reflector, let the x1y” plane define the

view plane and let the z’ axis be coincident with the direction of propagation of the reflected

wave, as suggested by Figure 3.8. If the direction of propagation is given by the elevation and

azimuth angles 8 and 4, the view plane is defined by

—++--=O, (3.8)

and the vector ‘ is given by

(3.9)

where the direction cosines a, 3, and y are given by

a = sin8sinq, (3.10)

/3 = sinOcos, (3.11)

= cosO. (3.12)

z

x,

/4
// Z

/
/ ——

/ —
/ ——

/ ——
/ ——

/—

Figure 3.8: Transformation of coordinates by pure rotation.
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From (3.9), it can be shown that the view plane and reflector coordinate systems are related

by a transformation matrix of the form

4 4 4
X £11 £12 £13 X

= t21 t22 t23 , (3.13)

cosc cosf3 cos z

where t3 corresponds to elements of the coordinate transformation matrix with unknown values.

Since the angle of rotation of the x’-y’ plane with respect to the z’ axes can be defined arbitrarily,

it is convenient to set 113 to zero so that a vector parallel to the z axis will have only a

component in the view plane. Then, from the unitary property of the transformation matrix,

it can be shown that 123 = SlIt 7. Thus,

29 t11 t12 0 x

= t21 122 51117 . (3.14)

z’ cosa cos/3 cos z

In order to determine the values of the remaining elements, the coordinate transformation

matrix may be compared to a prototype transformation matrix which corresponds to rotation

about the z-axis through angle ‘çb followed by rotation about the x’-axis through angle ç which

gives

29 cosib sin& 0 x

= —cosCsint’ —cosCcos& sin( y . (3.15)

z’ sin c sin — sin (cos cos ( z

By inspection of (3.14) and (3.15), it can be shown that

sin( sin , (3.16)

cos( E COS7 , (3.17)

sin’çb cosa/sin( , (3.18)

cos& E —cos/3/sin(. (3.19)
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From (3.16)—(3.19), it can be shown that the view plane coordinate frame is related to the

reflector coordinate frame by

—cos/3/sin7 cosc/sin’y 0 x

= —coscr/tan7 —cos/3/tan7 sin7 y . (3.20)

cosc cos,6 cos z

where , 8, and 7 are given by (3.1O)—(3.12). The projection of each of the aperture polygons

onto the view plane can be determined by transforming the coordinates of each vertex from the

reflector frame into the view plane frame using (3.20) and setting their z’ coordinates to zero.

The third step in the prediction algorithm, determining the region of the view plane which

is common to the projection of all three aperture polygons, is more difficult. A variety of

algorithms for determining the intersection of overlapping polygons have been developed for use

in computer graphics applications and are widely used. Most of these, including the Sutherland

Hodgman and Liang-Barskey polygon-clipping algorithms, are unsuitable for use in prediction

algorithm derived from Robertson’s model because they require at least one of the polygons to

be convex. However, the Weiler-Atherton polygon-clipping algorithm overcomes this limitation

and is capable of clipping a concave polygon with interior holes to the boundaries of another

concave polygon with interior holes [18]—[21j.

In the Weiler-Atherton polygon-clipping algorithm, the subject and clip polygons are de

scribed by circular lists of vertices S1, 52,. . . , SM and C1,C2,. . . , CN, respectively. Before the

actual clipping is performed, the points at which the subject and clip polygons intersect are

determined. The coordinates of the intersection points are inserted into both the subject and

clip polygon vertex lists in the appropriate sequence. In order to establish a bidirectional link

between the vertex lists, each intersection point in the subject polygon vertex list is given a

pointer to the location of the same intersection point in the clip polygon list and vice versa. The

actual clipping is performed as follows: The subject polygon is traversed in a counterclockwise

direction until an intersection is reached. If this series of points lies in the interior of the clip

polygon, they are added to the result list. If the next vertex of the subject polygon lies inside
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the clip polygon, the subject polygon vertex list is followed. Otherwise, the algorithm jumps to

the clip polygon vertex list and follows it to the next intersection. This process continues until

all the intersections have been traversed and the algorithm has returned to the first point in

the result polygon. Methods for implementing the algorithm and enhancing its efficiency and

robustness have beendiscussed in the literature [18)—[21].

Application of the Weiler-Atherton polygon-clipping algorithm to the problem of determin

ing the equivalent flat plate area of a trihedral corner reflector with triangular panels of equal

corner length for incidence along the symmetry axis is demonstrated in Figure 3.9. The projec

tions of the x-y, y-z, and z-x aperture polygons onto the view plane are shown in Figure 3.9(a).

The shaded region represents the area which is common to the projections of all three aperture

polygons. Symbolically, this area may be described by

A = ((Z fl X) fl Y), (3.21)

where Z, X, and Y are the projections of the x-y, y-z, and z-x aperture polygons, respectively.

In Figure 3.9(b), polygon Z is clipped against polygon Y to yield a first result. In Figure 3.9(c),

the first result is clipped against polygon X to yield the final result. The polygon which defines

the region common to the projection of all three aperture polygons is shown in Figure 3.9(d).

The last step in the prediction algorithm is calculation of the area of the polygon which

defines the region common to the projection of all three aperture polygons. If the vertices of

the polygon are given by {S}, the z-directed vector area of the polygon is simply given by

A = S x S1. (3.22)

Once the equivalent flat plate area has been calculated from (3.22), the scattering cross section

of the reflector can be determined from (3.1).
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Figure 3.9: Execution of the Weiler-Atherton polygon clipping algorithm. (a) The x-y, y-z, and
z-x apertures are projected onto the view plane to yield polygons Z, X, and Y, respectively.
(b) Polygon Z is clipped against polygon X to yield the first result list. (c) The polygon defined
by the first result list is clipped against polygon Y to yield the final result list. (d) The final
result list defines the polygon A which contains the area common to polygons Z, X, and Y. In
each case, S refers to points in the subject polygon, C refers to points in the clip polygon,
and I, refers to the points at which the polygons intersect.
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3.3 Reflectors with Three-Fold Symmetry

In this section, the extent to which the response characteristics of trihedral corner reflectors

which present three-fold symmetry can be altered by appropriate shaping of their reflecting

panels is considered. In each case, the contribution of triple-bounce reflections to the scattering

cross section of the reflector was calculated over the entire quadrant defined by the axes of the

trihedral. The resulting array of values in 8 and were then converted to contours expressed

in decibels with respect to the maximum response of the reflector. Although the reflector

coordinate frame of Figure 3.10(a) is a convenient choice for analyzing the response of a trihedral

corner reflector, it is not the most natural choice for presenting response patterns. Instead, the

results were transformed to the global coordinate frame of Figure 3.10(b) in which the z’ axis

is aligned with the local vertical and the direction of maximum response (or the boresight of

the reflector) lies in the horizontal plane and is aligned with the x’ axis.

boresight

boresight

z,

(b)

Figure 3.10: (a) Reflector coordinate frame and (b) global coordinate frame.

z

(a)

z,

x,
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The boresight of a trihedral corner reflector which presents three-fold symmetry is usually

coincident with the symmetry axis defined by 8 54.74° and 4) = 45°. Using the method of

evaluating coordinate transformation matrices that was derived in section 2.4, it can be shown

that the global coordinate frame is related to the reflector coordinate frame by

1 1 1X
— 7 x

— 1 1 1 (323
— 7 77• / .

0 Z

Thus, direction expressed in terms of the angles 9’ and 4)’ in the global coordinate frame is

related to direction expressed in terms of the angles 0 and 4) in the reflector coordinate frame

by

0’ = cos sin8 cos 4) + Vhicos ej , (3.24)

—3=sin8cos4)+ —=sin8sin4)— -3=cos0
4)’ = tan V3 V2 V6 (3.25)

*smn0cos4)_ *slnosln4)_ *cos8

while the reverse transformation is given by

0 = cos1 [_*sino’cos4)’ — çsin0’sin4)’+ Jjcoso’] , (3.26)

—+sin9’cos4)’+ ±sin0’sin4)’
4) = tan1 v2 v2

, (3.27)
sin 8’ cos 4)’ + sin 8’ sin 4)’ + cos 9’

Although the response contours could be plotted on a conventional rectangular grid, distortion

of the pattern can be minimized by using a grid derived from an equal area projection of the

type used in geodesy and cartography [22], [23]. Several common projections are suitable, but

the sinusoidal projection is the easiest to implement and was selected for use here. While

the horizontal axis of the response patterns is expressed in terms of the azimuth angle 4)’, the

vertical axis is expressed in terms of the co-elevation or altitude angle ‘ given by

8’ = 90 — 9 (3.28)

in order to simplify interpretation of the results.
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The angular coverage of symmetrical trihedral corner reflectors with triangular, circular,

and square panels were predicted using the algorithm described in the previous section. The

circular panels were represented by a twenty-sided polygon of equivalent area. The results are

presented in Figures 3.11, 3.12, and 3.13 and summarized in Table 3.1. It is generally found

that attempts to increase the angular coverage of a symmetrical trihedral corner reflector with

a fixed corner length by modifying the shape of its reflecting panels are generally accompanied

by a corresponding decrease in the ratio of the scattering cross section to the physical size of

the reflector, as previously noted by Robertson [5].

Robertson [4] proposed a method for altering the angular coverage of a symmetrical reflector

with triangular panels by removing notches of prescribed width aild depth from the outside edge

of each panel, as shown in Figure 3.14. The depth of the notch can be expressed by a parameter

d/d which is the ratio of the depth of the notch to the length of the median to the outside edge

of the panel. The angular coverage of a Robertson reflector with shallow notches (d/d = 0.25)

is depicted in Figure 3.15. After notching the panels, three equal maxima appear at about

12 degrees off the symmetry axis. Although the angular coverage of the reflectors increases

dramatically, the maximum response is correspondingly smaller. The angular coverage of a

reflector with notches of intermediate depth (d/d = 0.50) is depicted in Figure 3.16. The three

maxima are more pronounced and have shifted outward to about 21 degrees off the symmetry

axis. The angular coverage of a reflector with deep notches (d/d = 0.75) is depicted in

Figure 3.17. The null in the response which has formed along the symmetry axis is -25 dB with

respect to the maximum response. The results are summarized in Table 3.1.

The cumulative probability distribution of the response of symmetrical trihedral corner re

flectors with triangular, circular, and square panels, and Robertson panels with shallow notches

(where d/d = 0.25) over the quadrant defined by the axes of the trihedral is shown in Figure

3.18. Of the four targets, Robertson’s reflector with shallow notches presents the most uniform

response. Siegel et al. [2] claimed that the cumulative distribution of a trihedral corner reflector

with circular panels exceeds that of reflectors with either triangular or square panels. In fact,

the results presented here show that its cumulative distribution is only intermediate.
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Figure 3.11: Angular coverage of a trihedral corner reflector with triangular panels.
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Figure 3.12: Angular coverage of a trihedral corner reflector with circular panels.
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jB

Figure 3.14: Boresight view and panel geometry of trihedral corner reflectors with Robertson
panels where the ratio of notch depth to panel depth, d/d, is (a) 0.25, (b) 0.50, and (c) 0.75.
The shaded portion indicates the equivalent flat plate area of the reflector for incidence along
the boresight.
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Figure 3.13: Angular coverage of a trihedral corner reflector with square panels.

BORESIG HT
VIEW

PANEL
GEOMETRY

d

(a) (b) (c)



Chapter 3. Truncation and Compensation of Trihedral Corner Reflectors 68
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Figure 3.15: Angular coverage of a trihedral corner reflector with Robertson panels where
d/d = 0.25.
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Figure 3.16: Angular coverage of a trihedral corner reflector with Robertson panels where
d/d = 0.50.
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Figure 3.18: Cumulative probability distribution of the response of trihedral corner reflectors
with triangular, circular, square, and Robertson panels (where d/d = 0.25) over the quadrant
defined by the axes of the trihedral.
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Table 3.1:
Response Characteristics of Selected Trihedral Corner Reflectors with Three-fold Symmetry

Maximum Response

Figure Panel Geometry Umax
(1)

Umax
(2)

3.11 Triangular (4ir/3)a4/A2 0.0 dB
3.12 Circular 15.6a4/2 5.7dB
3.13 Square 12ira4/)2 9.5 dB
3.15 Robertson) 0.39a4/A2 -4.1 dB
3.16 Robertson) 0.18a4/)i2 -7.0 dB

3.17 Robertson(s) 0.12a4/)2 -9.4 dB

1 and 3 dB Elevation and Azimuthal Beamwidths of the Main Response Lobe

Figure Panel Geometry 0iB 41dB 03dB 3dB

3.11 Triangular 24° 24° 39° 39°
3.12 Circular 18° 17° 31° 30°
3.13 Square 8° 8° 22° 20°

3.15 Robertson(s) 41° 40° 52° 50°
3.16 Robertson() n/a n/a n/a n/a

3.17 Robertson) n/a n/a n/a n/a

6 and 10 dB Elevation and Azimuthal Beamwidths of the Main Response Lobe

Figure Panel Geometry O6 0o 41odB

3.11 Triangular 52° 51° 63° 61°
3.12 Circular 44° 43° 57° 55°
3.13 Square 36° 35° 50° 50°

3.15 Robertson(s) 61° 59° 70° 66°

3.16 Robertson) 65° 64° 73° 68°

3.17 Robertson(5) n/a n/a n/a n/a

Notes: (1) where a is the corner length of the reflector.
(2) relative to Umax of a trihedral corner reflector with triangular

panels of the same corner length.
(3) where the ratio of notch depth to panel depth, d/d, is 0.25.
(4) where d/d = 0.50.
(5) where d/d = 0.75.
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3.4 Reflectors with Bilateral Symmetry

The response characteristics of bilaterally symmetric trihedral corner reflectors with triangular,

elliptical, and rectangular panels can be predicted using the closed-form expressions for their

equivalent flat plate area which are given by (3.5), (3.6), and (3.7), respectively. Although the

form of the expressions makes it difficult to derive closed-form solutions for either the size and

direction of the maximum response or the azimuthal and elevation beamwidths of the main

response lobe, it is a relatively simple matter to determine these quantities using a numerical

approach. The problem geometry and the reflector coordinate system are shown in Figure 3.3.

It is convenient to define bilateral symmetry by a mirror plane which contains the z axis and

bisects the x-y plane at an azimuthal angle pf 45 degrees. If the length of the corner along the

z axis is given by c and the length of the corners along the x and y axes are given by a, then

the reflector aspect ratio is defined as c/a.

If a reflector presents a single main response lobe and is bilaterally symmetric, the direction

of its maximum response must lie in its mirror plane. While the azimuthal angle cmax of the

direction of maximum response is a fixed quantity, the corresponding elevation angle 6m is a

function of the reflector aspect ratio c/a. A golden section search [24] was used to determine the

elevation angle of maximum response of bilaterally symmetric trihedral corner reflectors with

triangular, elliptical, and rectangular panels. The results are presented in Figure 3.19. Although

the directions of maximum response are coincident when the reflector aspect ratio is unity,

they diverge as the reflector becomes increasingly asymmetric. Trihedral corner reflectors with

triangular panels are of special interest since they present a planar aperture which facilitates

the attachment of either a transmission polarizer or a protective dielectric cover. Since the

intercepts of the plane which defines the reflector aperture are given by the corner lengths of

the reflector, it can be shown that the elevation angle of the normal to the reflector aperture is

given by

= cos1
(2a+ C2)

. (3.29)
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The angle of maximum response 8m and the angle of the normal aperture 8 of bilaterally

symmetric trihedral corner reflectors with triangular panels are plotted as a function of the

reflector aspect ratio c/a in Figure 3.20. Although the direction of maximum response and the

normal to the reflector aperture are coincident if the reflector aspect ratio is unity, they diverge

as the reflector becomes increasing asymmetric. If the reflector aspect ratio is less than unity,

the normal to the aperture is lower than the direction of maximum response. If the ratio is

greater than unity, the reverse is true.

If a trihedral corner reflector has corners of equal length £, it is convenient to express its

scattering cross section in the form

umax — K. (3.30)

The parameter K is a figure of merit which can be used to compare the maximum response

of trihedral corner reflectors with similar dimensions but different panel shapes. Although it

is desirable to employ a similar scheme to express the scattering cross section of a bilaterally

symmetric reflector, the equivalent corner length of’ such a reflector must be defined. Although

the equivalent corner length could be defined in several different ‘ways, it is convenient to simply

take the arithmetic mean of the three corner lengths, i.e.,

a+2c
(3.31)

Using this definition, the parameter K for bilaterally symmetric trihedral corner reflectors with

triangular, elliptical, and rectangular panels is plotted as a function of the reflector aspect ratio

in Figure 3.21.

The azimuthal and elevation beamwidths of bilaterally symmetric trihedral corner reflectors

with triangular, elliptical, and rectangular panels were determined by applying a bracketing and

bisection algorithm [24] to (3.5), (3.6), and (3.7) in a global coordinate frame similar to that

defined in Figure 3.10(b) where the z’ axis is aligned with the local vertical and the x’ axis

is aligned with the direction of maximum response. The results are presented as a function

of the reflector aspect ratio c/a in Figures 3.22, 3.23, and 3.24, respectively. The increase in
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and the converse for large reflector aspect ratios is evident. The angular coverage of bilaterally

symmetric trihedral corner reflectors with triangular panels and reflector aspect ratios of 4.0

and 0.25 are presented in Figures 3.25 and 3.26, respectively.

In certain cases, it has been found useful to realize bilaterally symmetric trihedral corner

reflectors which are composed of combinations of triangular, elliptical, and rectangular panels.

For example, the trihedral corner reflector developed by the European Space Agency for use

as a calibration target in the SAR-580 program is composed of triangular side panels and a

square center panel [8]. The angular coverage of the SAR-580 calibration target and five other

reflectors which have been realized in a similar manner are presented in Figures 3.27 through

3.32. The results are summarized in Table 3.2.

During the course of this study, an alternative approach to the design of bilaterally sym

metric trihedral corner reflectors for use in radar-assisted positioning systems was suggested by

Helmut Lanziiier of Offshore Systems Ltd. [25]. The primary design objective was to produce a

set of reflectors which would support themselves on a horizontal surface with their direction of

maximum response in the horizontal plane. A secondary objective was to provide most of the

reflectors with a planar aperture in order to facilitate the attachment of a protective cover or a

transmission polarizer. Three variations were devised as shown in Figure 3.33. The truncated

reflector of Figure 3.33(a) is simply a symmetrical trihedral corner reflector with triangular pan

els which has been inverted and had its side panels truncated iii such a way that structure is self

supporting when placed on a horizontal surface but the effective flat plate area for incidence

along the boresight is unaffected. The compensated reflector of Figure 3.33(b) is developed

from the truncated reflector by increasing the size of the side panels until maximum aperture

efficiency is obtained. The extended reflector of Figure 3.33(c) is developed from the compen

sated reflector by extending the side panels further still. While the aperture of the reflector

is no longer planar, the result is a large increase in the azimuthal beamwidth. The angular

coverage of the truncated, compensated, and extended reflectors is presented in Figures 3.34,

3.35, and 3.36, respectively. The results are summarized in Table 3.2.
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Figure 3.19: Angle of maximum response 6m of bilaterally symmetric trihedral corner reflec

tors with triangular, elliptical, and rectangular panels vs. the reflector aspect ratio c/a.
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Figure 3.20: Angle of maximum response °m and angle of the normal to the aperture 8 of

bilaterally symmetric trihedral corner reflectors with triangular panels vs. the reflector aspect

ratio c/a.
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Figure 3.21: Maximum response of a bilaterally symmetric trihedral corner reflectors with trian
gular, elliptical, and rectangular panels vs. the reflector aspect ratio c/a where = K £ /A2

and £ = (a + 2c)/3.
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Figure 3.22: Azimuthal and elevation beamwidths of a bilaterally symmetric trihedral corner
reflector with triangular panels vs. the reflector aspect ratio c/a.
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Reflector aspect ratio - c/a

Figure 3.23: Azimuthal and elevation beamwidths of a bilaterally symmetric trihedral corner
reflector with elliptical panels vs. the reflector aspect ratio c/a.

Reflector aspect ratio - c/a

Figure 3.24: Azimuthal and elevation beamwidths of a bilaterally symmetric trihedral corner
reflector with rectangular panels vs. the reflector aspect ratio c/a.
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Figure 3.25: Angular coverage of a bilaterally symmetric trihedrai corner reflector with trian
gular panels and reflector aspect ratio c/a = 0.25.
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Figure 3.26: Angular coverage of a bilaterally symmetric trihedral corner reflector with trian

gular panels and reflector aspect ratio c/a = 4.0.
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Figure 3.27: Angular coverage of a bilaterally symmetric trihedral corner reflector with trian
gular side panels and a circular center panel.
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Figure 3.28: Angular coverage of a bilaterally symmetric trihedral corner reflector with trian
gular side panels and a square center panel.
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Figure 3.29: Angular coverage of a bilaterally symmetric trihedral corner reflector with circular
side panels and a triangular center panel.
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Figure 3.30: Angular coverage of a bilaterally symmetric trihedral corner reflector with circular
side panels and a square center panel.
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1

Figure 3.31: Angular coverage of a bilaterally symmetric trihedral corner reflector with square
side panels and a triangular center panel.
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Figure 3.33: Evolution of Lanziner’s bilaterally symmetric trihedral corner reflector through
(a) truncation, (b) compensation, and (c) extension of the triangular side panels. The shaded
portion indicates the equivalent flat plate area of the reflector for incidence along the boresight.
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Figure 3.35: Angular coverage of a bilaterally symmetric trihedral corner reflector with trun
cated and compensated triangular side panels and a triangular center panel.
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Figure 3.36: Angular coverage of a bilaterally symmetric trihedral corner reflector with trun
cated, compensated, and extended side panels and a triangular center panel.
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Table 3.2:
Response Characteristics of Selected Trihedral Corner Reflectors with Bilateral Symmetry

Maximum Response

Figure Side Panels Center Panel (1) max(2) 9m

3.27 Triangular Circular 6.4a4/A2 1.8 dB 58.5°
3.28 Triangular Square 8.7a4/A2 3.2 dB 61.4°
3.29 Circular Triangular 10.0a4/A2 3.8 dB 51.6°
3.30 Circular Square 21.3a4/A2 7.1 dB 56.9°
3.31 Square Triangular 18.8a4/A2 6.5 dB 49.8°
3.32 Square Circular 28.6a4/A2 8.3 dB 52.8°
3.34 Truncated Triangular (4K/3)a4/A2 0.0 dB 54.7°
3.35 Compensated Triangular (167r/3)a4/A2 6.0 dB 54.7°
3.36 Extended Triangular (l6ir/3)a4/A2 6.0 dB 54.7°

1 and 3 dB Elevation and Azimuthal Beamwidths of the Main Response Lobe

Figure Side Panels Center Panel Oi 4’ii 03dB 3d]3

3.27 Triangular Circular 21° 22° 35° 37°
3.28 Triangular Square 17° 17° 31° 31°
3.29 Circular Triangular 21° 19° 35° 32°
3.30 Circular Square 13° 14° 27° 26°
3.31 Square Triangular 14° 11° 28° 25°
3.32 Square Circular 11° 10° 25° 24°
3.34 Truncated Triangular 16° 23° 30° 38°
3.35 Compensated Triangular 8° 8° 20° 24°
3.36 Extended Triangular 8° 29° 20° 41°

6 and 10 dB Elevation and Azimuthal Beamwidths of the Main Response Lobe

Figure Side Panels Center Panel O6 4’6dB OiodB 4’lOdB

3.27 Triangular Circular 48° 49° 60° 60°
3.28 Triangular Square 45° 45° 58° 57°
3.29 Circular Triangular 48° 45° 60° 57°
3.30 Circular Square 41° 39° 55° 53°
3.31 Square Triangular 41° 40° 54° 53°
3.32 Square Circular 38° 39° 52° 52°
3.34 Truncated Triangular 43° 51° 56° 61°
3.35 Compensated Triangular 33° 40° 45° 55°
3.36 Extended Triangular 33° 52° 45° 62°

Notes: (1) where a is the corner length of the center panel of the reflector.
(2) relative to Um of a trihedral corner reflector with triangular

panels of the same corner length.
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3.5 Effect of Errors in Construction on Reflector Performance

A trihedral corner reflector will present an optimum response if its three reflecting panels are

perfectly flat and its corner angles are exactly 90 degrees. Approximate methods for determining

the extent to which the response degrades as the reflecting panels deviate from perfect flatness

and mutual orthogonality have been presented by Spencer [1], Keen [26], and Trebits [27]. The

reduction in the scattering cross section of a symmetrical trihedral corner reflector with trian

gular panels due to errors in all three corner angles is presented in Figure 3.37. In general, the

tolerances on the corner angles generally decrease as the size of the reflector increases. It has

also been found that the tolerances on the corner angles depend on the shape of the reflecting

panels and the size of the equivalent flat plate area. Although the approximate methods de

scribed by Spencer, Keen, and Trebits may be used to determine the effect of panel deviations

on the response of trihedral corner reflectors with modified panel geometries, numerical tech

niques such as the finite-difference time-domain (FD-TD) and the shooting and bouncing ray

(SBR) methods could also be used to perform the necessary calculations if sufficient computa

tional resources are available [10], [11]. Alternatively, experimental techniques may be used to

assess the effect of construction errors on the response of trihedral corner reflectors [28].

0

w

Figure 3.37: Effect of errors in all three corner angles on the response of a trihedral corner
reflector with triangular panels for incidence along the the symmetry axis. (from [5, p. 13-12])
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3.6 Conclusions

Methods for predicting the scattering cross section and angular coverage of a conventional trihe

dral corner reflector with panels of completely arbitrary shape have been considered. Although

numerical techniques such as the finite-difference time-domain (FD-TD) and the shooting and

bouncing ray (SBR) methods can predict both the contributions of single, double, and triple-

bounce reflections from the interior and the effect of deviations of the reflecting panels from

perfect flatness or mutual orthogonality, they are extremely demanding computationally. If the

reflector is sufficiently large, it is usually sufficient to account for the contribution of triple-

bounce reflections from the interior since they completely dominate the response for most di

rections of incidence. Spencer’s model [1] for the contribution of triple-bounce reflections to the

equivalent flat plate area of an ideal trihedral corner reflector with either triangular or square

panels, and the prediction algorithm subsequently derived from it by Keen [14], [15], may fail

when applied to reflectors with panels of completely arbitrary shape but an alternative model

proposed by Robertson [4] will always provide the correct solution. An efficient and robust

numerical method for solving Robertson’s model has been presented.

The response patterns of ideal trihedral corner reflectors which present three-fold symmetry

have been plotted on grids derived from equal area projections and compared. If the corner

length of the reflector is fixed, it is generally found that attempts to increase the beamwidth

of the response by modifying the shape of the panels are accompanied by a reduction in the

amplitude of the maximum response. If three-fold symmetry is broken so that the reflector

simply presents bilateral symmetry about a mirror plane which contains one of the trihedral

axes and bisects the opposite panel, the beamwidth of the response in one principal plane

can be increased relative to the beamwidth in the orthogonal plane by modifying the shape of

the reflecting panels in a suitable manner. The additional degree of freedom may also prove

useful when a reflector must be designed subject to a constraint such as a requirement that

the modified reflector present a planar aperture in order to facilitate the attachment of either

a transmission polarizer or a protective cover. A set of design curves for bilaterally symmetric
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reflectors which are composed solely of triangular, elliptical, or rectangular reflecting panels has

been presented. The curves present the elevation angle of the direction of maximum response,

the amplitude of the maximum response, and the elevation and azimuthal beamwidths as a

function of the reflector aspect ratio. For the case of a bilaterally symmetric trihedral corner

reflector with triangular panels, the elevation angles of the direction of maximum response and

the normal to the reflector aperture have been compared as a function of the reflector aspect

ratio. The response patterns of selected bilaterally symmetric reflectors which are composed of

combinations of panels with various shapes including triangular, circular, and square have also

been presented and compared. The European Space Agency’s SAR-580 calibration target is

included in this set. A related problem, the design of top hat reflectors with specified response

characteristics, is considered in Appendix A.

Degradation of the response of a trihedral corner reflector caused by deviation of its reflect

ing panels from perfect flatness or orthogonality is an important consideration in the design

and fabrication of calibration targets and location markers. Although the approximate methods

presented by Spencer [1], Keen [26], and Trebits [27] may be used to determine the effect of

panel deviations on the response of trihedral corner reflectors with modified panel geometries,

numerical techniques such as the finite-difference time-domain and the shooting and bounc

ing ray methods mentioned above can also be used to perform such calculations if sufficient

computing resources are available.
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Chapter 4

DEPOLARIZING TRIHEDRAL CORNER REFLECTORS

4.1 Introduction

A conventional trihedral corner reflector returns linearly polarized incident waves without mod

ification but reverses the sense of elliptically or circularly polarized waves. This is often referred

to as a regular polarization response since it is also characteristic of spheres and flat plates.

Although this is an ideal response for targets intended for use with conventional radars which

employ either horizontally or vertically polarized antennas for both transmission and reception,

radars which employ same-sense circular polarization to assist in rain clutter suppression or,

more recently, various forms of polarization diversity to assist in target classification and iden

tification often require calibration targets and location markers with twist-polarizing, circularly

polarizing, or linear polarization selective responses [1], [2]. Several methods for altering the

polarization response of conventional trihedral corner reflectors have been developed over the

years [3]—[12]. The three basic approaches are shown in Figure 4.1.

Figure 4.1: Methods for altering the polarization response of a conventional trihedral corner
reflector. (a) Removal of one reflecting panel and loading of the interior of the reflector with
a low-loss dielectric material (2.3 Er 4). (b) Installation of a transmission polarizer across
the reflector aperture. (c) Replacement of one of the reflecting panels by a reflection polarizer.

(a) (b) (c)

90
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Since it is often necessary to deploy large numbers of calibration targets and location markers

in the field for extended periods of time where they are exposed the effects of sun, wind, and

rain, the mechanical ruggedness of trihedral corner reflectors which incorporate depolarizing

elements and the ease with which such reflectors can be manufactured are important consid

erations. Schemes which require that a transmission polarizer be installed across the reflector

aperture become increasingly difficult to implement as the reflector grows larger and cannot be

applied at all if the reflector doesn’t present a planar aperture [4]—[6]. Schemes which involve

replacing or augmenting one of the reflecting panels with a reflection polarizer oriented such

that the axis of the grating is parallel to one of the principal axes of the trihedral have attracted

considerable interest, particularly in recent years, because they avoid many of the mechanical

problems associated with the use of transmission polarizers and can easily be applied to reflec

tors with panels of arbitrary size and shape [7J—[12]. However, trihedral corner reflectors which

incorporate reflection polarizers that make substantial use of wire grids and dielectric materials

in their construction are relatively fragile [13]—[14j. Although mechanical and environmental

damage can be prevented through the use of protective covers and weatherproof seals, such

measures substantially increase manufacturing costs and are not always effective.

Many of the limitations of previous schemes for altering the polarization response of trihe

dral corner reflectors can be overcome [15j—[16J by utilizing a reflection polarizer derived from

conducting fins or corrugations [17]—{22]. In section 4.2, the scattering properties of conduct

ing gratings with rectangular grooves are reviewed and design curves for twist polarizing and

circularly polarizing trihedral corner reflectors are presented. Methods for realizing conducting

gratings with linear polarization selective responses are proposed. In section 4.3, an algorithm

for predicting the contribution of triple-bounce reflections to the polarization scattering matrix

of a trihedral corner reflector which has been modified by the addition of conducting fins or

corrugations to one of its interior surfaces as a function of the direction of incidence and orien

tation of the reflector is described. In section 4.4, the response patterns of prototype reflectors

with regular, twist-polarizing, and circularly polarizing responses are compared to theoretical

predictions. The results show that the prototype reflectors respond essentially as expected.
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4.2 Scattering by a Conducting Grating with Rectangular Grooves

Consider a plane wave incident on a conducting grating with rectangular grooves as shown in

Figure 4.2. Let the direction of the grooves define the grating axis. If the grating is of infinite

extent, the scattered field will consist of a finite number of propagating plane waves or diffracted

orders and an infinite number of nonpropagating or evanescent waves. If the plane of incidence

is perpendicular to the grating axis, the direction in which the mth diffracted order propagates

is given by the grating equation,

S1flm =sin+m, m ...,—1,0,1,2,... , (4.1)

where km is the angle of reflection of the mth diffracted order, 4j is the angle of incidence, A is

the wavelength of the incident wave, and d is the period of the grating. If I sin q5 1, the mth

diffracted order will propagate away from the surface at angle çb with respect to the x axis.

If sin mI > 1, the mth diffracted order takes the form of an evanescent field which decays

exponentially with increasing distance from the surface of the grating.

The number of diffracted orders which are visible is dependent on the period of the grating

and the angle of incidence. The chart shown in Figure 4.3 is derived by solving the grating

equation at each angle of incidence for the point at which each diffracted order becomes visible

as the period of the grating is gradually increased. Diffracted orders with negative indices will

appear at q = 90° while those with positive indices will appear at 4m = 900. If the grating

period and the angle of incidence are chosen such that

sin — < —1, (4.2)

then only the specularly reflected order will propagate. However, if the grating period and the

angle of incidence are chosen such that the following conditions are satisfied simultaneously,

sin — > —1 , (4.3)

sin—2 < —1, (4.4)

sin+ > +1, (4.5)
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Figure 4.3: Visible diffracted orders as a function of the grating period
incidence j where the plane of incidence is normal to the grating axis.
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Figure 4.2: Problem geometry for scattering by a conducting grating with rectangular grooves
where d, a, and h are the period of the grating and the width and depth of the grooves,
respectively, is the angle of incidence, and 1m is the angle of reflection of the mth diffracted
order.
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then both the m = 0 and the m = —1 diffracted orders will propagate. The Bragg angle

condition corresponds to propagation of the m = —1 diffracted order back towards the source

and is given by

d=
2sinq

(4.6)

It has been found that a grating which satisfies this condition can be made to diffract all the

power in an incident wave into the m = —1 diffracted order by appropriate shaping of its profile.

Since the grating is uniform in the z-direction, the spatial derivatives associated with the

incident and scattered fields vanish in z and Maxwell’s equations divide into two independent

sets,
ôE ôE

= jwe0E, = —jwç,E9, — = —jwi0H , (4.7)
Oy ox Ox 9y

OE . OII OH

-h-— = -jwH, -h-- = jwH, -h-— — = jwe0E. (4.8)

The first, which consists of lIe, E, and E components, is called a transverse magnetic (TM)

or E-polarized field while the second, which consists of E, H, and H components, is called a

transverse electric (TE) or H-polarized field. Let [Sm] be the normalized polarization scattering

matrix which is associated with diffraction into the mth order. Since the TM- and TE-polarized

fields are decoupled, the off diagonal elements of the matrix vanish and [Sm] reduces to

0 c nEE
rc’ 1

EE,m EH,m 1m
[JmJ = = ,

C c n rHH
HE,m HH,m m

where pE represents the complex reflection coefficient for diffraction of a TM-polarized inci

dent wave into the TE-polarized component of the mth diffracted order and [Sm] is expressed

according to the forward scattering alignment (FSA) convention. If the amplitude of the com

plex reflection coefficients 1JE1 = f0HH1 = 1, then the total power in the specular reflected

order will be independent of the polarization state of the incident wave. Such a response is said

to be polarization-operative. However, if the amplitude JEE1 JIH1, then the total power in

the specular reflected order will be dependent on the polarization state of the incident wave.

Such a response is said to be polarization-selective.
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The complex reflection coefficients PEmE and are functions of both the dimensions of

the grating and the direction and wavelength of the incident wave. Since the free space and

groove regions are defined by separable coordinate systems, a rigorous solution to the problem

can be obtained by representing the fields in each region as the weighted sum of orthonormal

basis functions and determining the relative amplitude and phase of the propagating diffracted

orders by mode-matching at the boundary between the regions. A complete derivation of

the solution and procedures for determining the validity of numerical results obtained by this

method are presented in Appendix B. Although the solution will invariably converge to an

essentially constant result as the number of modes used in the field expansions are systematically

and gradually increased, it is shown that the manner in which the solution converges and the

value of the final result will depend on both the number of modes used to represent the fields in

each region and their ratio. This phenomenon is commonly referred to as relative convergence.

Numerical results are presented which suggest that the optimum ratio of groove modes to free

space modes is similar in value to the aspect ratio of the grating, aid. An implementation of

the solution as a pair of subroutines coded in Fortran 77 is also presented.

For the purpose of defining the polarization states of the incident and reflected waves, let

the z axis define the local vertical. If period of the grating is less than one-half wavelength,

only the specular order will propagate. In such cases, the phase difference 6 between the TE

and TM reflection coefficients can be exploited to yield a depolarizing response of the form,

[S]=
SHH SHy = pEE 0 = 1 0

(4.10)
SVH Svy 0 pHH 0 e3

A phase difference of 0 will yield a regular polarization response while phase differences of 180

and 90 degrees will yield twist-polarizing and circularly polarizing responses, respectively. The

co-polar and cross-polar response of regular, twist, and circular polarizers with polarization

responses defined by (4.10) are plotted as a function of the polarization state of the incident

wave in Figures 4.4, 4.5, and 4.6. If the grating is modified in such a way that pE 0, the

linear polarization selective response of Figure 4.7 will be obtained.
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(a)

b

(b)

Figure 4.4: Normalized response of a regular reflector as a function of the polarization state of
the incident wave. (a) Co-polar response. (b) Cross-polar response.

(a) (b)

Figure 4.5: Normalized response of a twist-polarizing reflector as a function of the polarization
state of the incident wave. (a) Co-polar response. (b) Cross-polar response.
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(a)

Figure 4.6: Normalized response of a circularly polarizing reflector as a function of the poiar
izatiori state of the incident wave. (a) Co-polar response. (b) Cross-polar response.

(a) (b)

Figure 4.7: Normalized response of a vertical polarization selective reflector as a function of the
polarization state of the incident wave. (a) Co-polar response. (b) Cross-polar response.

a,

(b)
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For a grating with a vanishingly small period and arbitrarily thin fins, the groove depths

required to realize twist and circularly polarizing responses for normal incidence are simply A/4

and .X/8, respectively. In practice, however, account must be taken of both the finite dimensions

of the grating and the angle of incidence. The groove depths required to realize twist and

circularly polarizing responses were determined as a function of the period and aspect ratio of

the grating and the direction and wavelength of the incident wave by applying a bracketing and

bisection algorithm to a subroutine which calculates the phase difference between the TE and

TM specular reflection coefficients. The calculations were performed using the mode-matching

formulation presented in Appendix B. Twist polarizer design curves for essentially normal

incidence and 45 degree incidence are presented in Figures 4.8 and 4.9, respectively. (The

response of the grating could not be calculated for incidence at 4j = 00 due to the nature of

the analytical formulation so the design curves for normal incidence were calculated at qSj = 10

instead.) As the grating period approaches zero, the groove depth required to yield a twist-

polarizing response converges to A/4 for all aspect ratios and angles of incidence. As the period

of the grating increases, the required groove depth increases for large aspect ratios and decreases

for small aspect ratios. Circular polarizer design curves for essentially normal incidence and

45 degree incidence are presented in Figures 4.10 and 4.11. In this case, the ideal groove depth

is satisfactory only for very thin fins and at normal incidence. The difference between the

groove depths required to realize twist polarizers and circular polarizers with identical aspect

ratios is nearly constant as a function of the grating period. A large difference between the

required groove depths implies that the grating will present the desired polarization response

over a wide operating bandwidth while a small difference implies that the grating will present

the desired response over a relatively narrow operating bandwidth. For normal incidence, the

differences between the required groove depths for gratings with aspect ratios a/d of 0.3333,

0.7500, and 0.9999, are approximately 0.05 A, 0.10 A, and 0.13 A, respectively. Similar results

are obtained for 45 degree incidence. This suggests that twist and circular polarizers derived

from corrugated surfaces should be designed with the largest possible aspect ratios in order to

obtain optimum performance.
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Three methods for realizing a grating which presents a linear polarization selective response

are depicted in Figure 4.12. A grating with a small period and large aspect ratio which has been

loaded with lossy media, as shown in Figure 4.12(a), will present a TE-polarization selective

response since the groove region functions as a resonant absorber for TM-polarized incident

waves [23], [24]. This approach has several disadvantages including the limitations on the mini

mum value of the TM reflection coefficient that can be obtained, the frequency selective nature

of the response, and the vulnerability of the lossy groove media to mechanical or environmen

tal damage. Alternatively, a conventional grating which satisfies the Bragg condition can be

made to diffract the TM-polarized component of an incident wave into the m = —1 diffracted

order while it specularly reflects the TE-polarized component by appropriate shaping of its

profile [25]. Although such a grating will act as a retro-reflector for TM-polarized waves and

cannot be used to realize a linear polarization selective trihedral corner reflector, it has been

shown that gratings can be perfectly blazed for other angles of incidence as well, as suggested

by Figure 4.12(b) [26]. The phenomena of perfect blazing for non-Bragg angle incidence is

not well understood and relatively few examples are known. Also, the direction of the higher

diffracted order is a function of both the wavelength and direction of the incident wave and

must be accounted for when designing an apparatus which incorporates such a polarizer. A

third approach is shown in Figure 4.12(c). A grating with a small period, large aspect ratio,

and a sloped profile which subtends an angle 3, will reflect TM-polarized incident from the

bottom of the groove region at an angle qo with respect to the grating normal but will reflect

TE-polarized incident waves from the top of the corrugations at an angle o — 23. Since the

response is independent of the wavelength of the incident wave and the structure is inherently

rugged, this approach overcomes many of the limitations of the other two schemes. Although

the angle 3 should be as large as possible so that the directions of the TM and TE polarized

reflected waves are separated by a wide angle, the maximum height of the fins is given by

hm = r sin /3 where r is the maximum dimension of the polarizer in the plane perpendicular

to the grating axis. Thus, a practical limit on the slope angle which can be accomodated is

imposed when a physically large polarizer of this type is required.
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Figure 4.8: Twist polarizer design curves for normal incidence.
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Figure 4.9: Twist polarizer design curves for 45 degree incidence.
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Figure 4.11: Circular polarizer design curves for 45 degree incidence.

x

— y

a/d
— 0.9999
- 0.9000

0.7500
0.5000
0.3333Circular polarizer

= 1°

0.0 0.1 0.2 0.3 0.4 0.5

Period - d/A

Figure 4.10: Circular polarizer design curves for normal incidence.
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TE,TM TM TE

Figure 4.12: Linear polarization selective reflectors derived from corrugated surfaces. (a) Spec
ular reflection of TE-polarized incident waves and dissipation of TM-polarized incident waves
in lossy groove media. (b) Specular reflection of TE-polarized incident waves and diffraction of
TM-polarized incident waves into the m = —1 order. (c) Specular reflection of TM-polarized in
cident waves with respect to the base of a polarizer with a sloped profile and specular reflection
of TE-polarized incident waves with respect to the upper surface.
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Thus far, it has been assumed that the plane of incidence is perpendicular to the grating

axis with the phase of the incident wave given by

exp(jk(2)= exp[jk(xcosq5 — ysinq1)] . (4.11)

Since the grating is uniform along its axis, the results are easily extended to the case of oblique

incidence [27]. In this case, the phase of the incident wave is given by

exp(jk() = exp[jk(x sin 6 cos
—

y sin 6 sin ç + z cos 92)J , (4.12)

which is obtained from (4.11) by replacing k by k sin 8: and multiplying by exp(jkz cos 8:). Since

the scattered field also varies with z as exp(jkzcos82),the spatial derivative ô/ôz in Maxwell’s

equations may simply be replaced with jk cos 8. As in the case of perpendicular incidence, the

equations divide into TM-polarized and TE-polarized sets. In the TM-polarized case, E 0

and the field components are expressed in terms of H where

Ô2H Ô2HZ 2 2
2 + 2 + k sin 8 H = 0 , (4.13)

ax ay

Z0 (ÔHZ t9H
Ex+Ey

= )ksin28:
——z— —WY) (4.14)

cos8 (aHZ aH
Hx+Hy

= Jksin281 —-—X+--—--Y) , (4.15)

while in the TE-polarized case, li = 0 and the field components are expressed in terms of E

where
Ô2E Ô2E

+ (4.16)

cos 8 (dEZ OE ‘\
ErX+Eyy

= Jksin28
j---—x+--—Y) , (4.17)

1 (0E2 OEZ
IJ x + H ‘ 3kZ0sin2 8

X — Y} . (4.18)

Since the boundary conditions are identical, the solution to the problem of scattering by a

conducting grating at oblique incidence to the grating axis is identical to the solution for

perpendicular incidence if k is replaced by k sin 8 and all fields are multiplied by exp(jkz cos 8).
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4.3 Scattering by a Depolarizing Trihedral Corner Reflector

The polarization response of a trihedral corner reflector can be modified by replacing one of

its panels by a reflection polarizer derived from a conducting grating with rectangular grooves,

as depicted in Figure 4.13. Projections of a typical ray path in the x-y, z-z, and y-z planes

are also shown. The coordinate frame is identical to that used in the previous section to

describe scattering by a free-standing grating. In order for this type of depolarizing trihedral

corner reflector to function correctly, the grating must be oriented in such a way that all of the

rays which are incident from a given direction undergo identical polarization transformations

regardless of the sequence in which they are reflected by each of the interior surfaces. It can be

shown that this condition will be satisfied if the grating axis is parallel to one of the principal

axes of the trihedral. If the incident field is resolved into orthogonal components which are

TM- and TE-polarized with respect to the grating axis, the components will not be coupled

due to reflection from either the grating or any of the three dihedral corners which comprise the

trihedral corner reflector. As a result, reflection from each interior surface can be represented by

a diagonal polarization scattering matrix and the cumulative transformation due to the three

reflections necessary to return a incident ray to the source will be independent of the sequence

in which the reflections occur. Furthermore, it can be shown that the angles of incidence of the

rays with respect to both the grating normal and the grating axis will be equivalent regardless of

the sequence in which the rays are reflected by the interior surfaces of the reflector. Thus, all of

the rays which are incident on the reflector will undergo identical polarization transformations

on reflection from the grating and the required condition will be met.

For the purpose of defining the polarization states of incident and reflected waves, hence

the polarization response of the reflector, let the z axis define the local vertical in the reflector

coordinate frame. For an arbitrary direction of incidence, it is convenient to specify horizontal

and vertical in terms of the triad (, Ô, ) associated with a conventional spherical coordinate
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Figure 4.13: Replacement of one panel of a trihedral corner reflector by a reflection polarizer
derived from a corrugated surface. (a) View along the symmetry axis. (b) Projection of a
typical ray path in the x-y plane. (c) Projection of a typical ray path in the z-x plane. (d)
Projection of a typical ray path in the y-z plane. If the direction of incidence is (6, 4), the
angle 0 is given by cos’(cos8cos4) and the angle 6 is given by cos’(cos6sin).
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Figure 4.14: Twist polarizer design curves for incidence along the symmetry axis of a trihedral
corner reflector.
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Figure 4.15: Circular polarizer design curves for incidence along the symmetry axis of a trihedral
corner reflector.
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system where

= E = (4.19)

= ZXk
E = —sin+cos, (4.20)

Izxkl

= kxh — = —cosqcos8i—sinq5cos9+sin6, (4.21)

as described in section 2.2. Here, the component of an incident wave which is TM-polarized with

respect to z corresponds to horizontal polarization while the component which is TE-polarized

with respect to z corresponds to vertical polarization.

The polarization scattering matrix of a depolarizing trihedral corner reflector according

to the backscatter alignment (BSA) convention is identical to that of a free-standing grating

according to the forward scatter alignment (FSA) convention for the same direction of incidence.

If only the specular reflected order propagates, the polarization response of the reflector is of

the form

[S]
= SHH SHy = 0 = 1 0

• (4.22)
SVH Svv 0 pHH 0 e6

Since TM- and TE-polarized waves are decoupled upon reflection from the grating even if the

plane of incidence makes an oblique angle with the grating axis, the off diagonal elements of

the polarization scattering matrix given by (4.19) will always vanish in the reflector coordinate

frame of Figure 4.13. The polarization scattering matrix of a target relates the scattered field

ES at the receiver to the incident field E at the target according to

— —jkr S11 S12 E
4 2

— r S21 S22 E
‘ 3)

where both the fields and the polarization scattering matrix have been expressed with respect

to an arbitrarily polarized basis. Often, this expression is normalized by factoring out the

scattering cross section of the target and the range dependence of the response. The polarization

match factor or polarization efficiency between the scattered field and a receiving antenna of



Chapter 4. Depolarizing Trihedral Corner Reflectors

boresight

boresight

z

z,

Figure 4.16: (a) Reflector coordinate frame and (b) global coordinate frame.
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Figure 4.17: Angle of rotation of the projection of the grating axis onto the view plane for
incidence (a) along the symmetry axis and (b) 30 degrees off the symmetry axis.
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polarization state h is given by

IEs.h12
P OP 1. (4.24)

A reflection polarizer designed for incorporation into a trihedral corner reflector should

present the desired polarization response along the same direction of incidence that the reflector

presents its maximum scattering cross section. For reflectors composed of triangular, circular,

or square panels with equal corner lengths, this direction falls along the symmetry axis of the

reflector. In the reflector coordinate frame of Figure 4.13, this direction is given in spherical

coordinates by 8 = 54•740, = 45°. Design curves for twist polarizers and circular polarizers

for incidence along this direction are presented in Figures 4.14 and 4.15, respectively. In the

previous section, it was shown that the response of a grating for oblique incidence to the grating

axis is identical to its response for perpendicular incidence to the grating axis if k is replaced by

k sin 6 and all fields are multiplied by exp(jkz cos 8). In this case, sin 8 is given by and cos 8

is given by i//. This transformation may also be applied in the design of linear polarization

selective reflectors which are based on the concepts described in the previous section.

The response of the target can be altered to suit a particular application by rotating the

target about its symmetry axis [28). After the target has been rotated by an angle c from the

vertical, as shown in Figure 4.19, its polarization scattering matrix is given by

[S’j = [R]’ [S] [R] . (4.25)

If the response is expressed with respect to a linearly polarized basis, the rotation operator [R]

is given by

cosu —sina
[RL] = , (4.26)

sina cosa

while if the response is expressed with respect to a circularly polarized basis, the operator is

given by

eja 0
[Rc] = . (4.27)

0 e3
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For example, if a twist-polarizing target is rotated about its symmetry axis to c = 00, ±90°,

or 180° degrees, it will present a maximum co-polar response for horizontally, vertically, and

circularly polarized incident waves. If the target is rotated to c = ±45° or ±135°, it will still

present a maximum co-polar response to circularly polarized incident waves but will present a

maximum cross-polar response to horizontally and vertically polarized incident waves.

In practice, it is often necessary to describe the polarization response of a depolarizing

trihedral corner reflector with respect to a global coordinate frame in which the horizontal

plane contains the boresight of the reflector and the vertical plane is parallel to the axis of the

grating, as suggested by Figure 4.16. By the methods described in section 2.4, it can be shown

that the global coordinate frame xyz is related to the reflector coordinate frame xyz by

I 1 1 1x
,/ X

= * * .—* , (4.28)

0 z

where the x’ axis in the global coordinate frame corresponds to the symmetry axis of the reflector

and the z’ axis is parallel to vertical. Transformation of the polarization scattering matrix of

a depolarizing trihedral corner from the reflector coordinate frame to the global coordinate

frame corresponds to rotation of its basis by a prescribed angle which is a function of both the

transformation matrix which relates the two coordinate frames and the direction of propagation,

as described in Chapter 2. Let p define the horizontal plane of the xyz coordinate frame with

respect to the direction of propagation and be given by

p=—sin&+cosq, (4.29)

and let , similarly define the horizontal plane of the x’y’z’ coordinate frame and be given by

(4.30)

Let p be the outward normal to the unit sphere at the point P in the zyz coordinate frame

and be given by

= —sin 6cosq +sinsin+ cos9. (4.31)
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The expression for the unit vector , in the x’y’z’ coordinate frame given by (4.30) must be

transformed to the xyz coordinate frame. This can be accomplished by determining qY in terms

of 6 and according to the relation

—3-sin9cos+ -3-sin6sinq— —3-cos0
= tan , (4.32)

and converting the basis of the unit vector çYp according to the relation given by (4.28). Then,

the angle of rotation can be determined from

= tan’ . (4.33)
\ c5p.14 I

If ip is coincident with z axis then the definition of p given by (4.29) is ambiguous. In such

cases, the direction of the horizontal plane with respect to the direction of propagation must

be defined arbitrarily, as noted in section 2.2. If ip is coincident with the z’ axis, similar

considerations apply to the definition of given by (4.30). Although several factors cause

the polarization response of a depolarizing trihedral corner reflector to degrade asthe direction

of incidence shifts away from the boresight, rotation of the projection of the grating axis in

the aperture plane with respect to the local vertical is the most important since it results

in an effective rotation of the corresponding polarization scattering matrix, as suggested by

Figure 4.17.

The polarization scattering matrix corresponding to a circular polarization selective re

sponse cannot be diagonalized when expressed with respect to a linearly polarized basis. As a

result, it is not possible to modify a conventional trihedral corner reflector to present a circular

polarization selective response simply by adding conducting fins or corrugations of appropriate

dimensions and orientation to one of its interior surfaces. Alternative methods for obtaining

such a response based on the addition of a transmission circular polarizer to a linear polariza

tion selective reflector or a circular polarization selective surface to a twist-polarizing reflector

are proposed in Appendix C.
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4.4 Numerical and Experimental Results

In this section, the results of a test program that was conducted in order to evaluate the

response characteristics of depolarizing trihedral corner reflectors which incorporate a reflection

polarizer derived from a corrugated surface are given. Prototype trihedral corner reflectors

which present regular, twist-polarizing, and circularly polarizing responses were designed for

use at the standard marine radar frequency of 9.445 GHz and assembled. Their polarization

and azimuthal response patterns were measured and the results were compared to theoretical

predictions of the contribution of triple-bounce reflections to their response based on the analysis

presented in the previous section. Details of the design and construction of the prototype

reflectors are presented in section 4.4.1. The polarization and azimuthal response patterns of

the prototype reflectors are presented in sections 4.4.2 and 4.4.3, respectively.

The response patterns of the prototype reflectors were measured using the microwave an

tenna range located on the roof of the Electrical Engineering building at the University of

British Columbia. A side view of the outdoor portion of the range is shown in Figure 4.18.

The model tower supports the target at a height of 2.2 metres and travels on a carriage along

15 metres of track down the center of the roof of the east wing of the Electrical Engineering

building. The response pattern of the target will be distorted by near field effects if the range

to the target is too short or by multipath propagation effects if the range is too long. Tests

wee conducted and it was found that the optimum range at which to measure the response of a

prototype reflector is 11 metres. The model tower can be configured to either rotate the target

about a vertical axis for conventional azimuthal pattern measurements or roll the target about

a horizontal axis for polarization response measurements as shown in Figure 4.19. The CW

radar apparatus and the digital pattern recorder which were used to measure and record the

co-polar and cross-polar response of the target under test were developed specifically for use in

this project. A description of the design and implementation of the instrumentation, the results

of tests performed to verify the suitability of the range for use in the measurement program,

and recommendations for future modifications and improvements are presented in Appendix D.
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Figure 4.18: Profile view of the RCS measurement range.
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Figure 4.19: Measurement of the response of a prototype trihedral corner reflector. (a) Polar
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4.4.1 Design and Construction of the Prototype Trihedral Corner Reflectors

A prototype trihedrai corner reflector with a regular polarization response was assembled from

triangular panels with equal corner lengths of 60 cm. At the design frequency of 9.445 GHz, the

prototype reflector presents a maximum scattering cross section of approximately 540 square

metres (27 dBsm) with a half-power beamwidth of approximately 38 degrees in both azimuth

and elevation. The reflecting panels were cut from 12 gauge (approximately 2 mm in thickness)

utility grade (3003) sheet aluminum and secured to 50 cm lengths of 90° angle aluminum of

approximate dimensions 1 in x 1 in x in with rivets spaced approximately 5 cm apart. The

right hand panel of the reflector (as viewed from the front) was secured to the angle aluminum

with #6 flathead machine screws so that it could be removed easily. A mounting flange which

matches the corresponding adapter on the antenna range model tower was secured to the rear

of the reflector in line with the axis of symmetry. Prototype reflectors with twist-polarizing and

circularly polarizing responses were realized by removing the right hand panel and replacing

it with a suitable reflection polarizer. Details of the design and construction of the prototype

depolarizing reflectors are shown in Figure 4.20. A photograph of a prototype reflector with a

twist polarizer installed in place of the right hand panel is shown in Figure 4.21.

The extent to which the response of a trihedral corner reflector degrades as the reflecting

panels deviate from perfect flatness and mutual orthogonality has been discussed by Trebits [29]

and others. The tolerances on the corner angles of a trihedral corner reflector with triangular

panels are presented as a function of the corner length of the reflector in Table 4.1. Each time

the right hand panel of the prototype reflector was replaced, a set square with a corner length

of 30 cm was used to verify that all three panels were mutually orthogonal and, if required,

suitable adjustments were performed. Although commercially designed and fabricated trihedral

corner reflectors intended for use under field conditions are typically manufactured from cast

alumimum tooling plate between 10 and 15 mm thick in order to realize a structure which will

meet the required tolerances [11], [30], [31], the simpler construction technique employed here

was far easier to implement and was deemed adequate for use in the test program.
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900 Angle6Juminum

Shea ,8juminum
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Figure 4.20: Construction details of the prototype depolarizing trihedral corner reflector.
(a) Front view. (b) Rear View.

Figure 4.21: Photograph of the prototype twist-polarizing trihedral corner reflector mounted
on the antenna range model tower.
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Table 4.1:
Tolerances on the Corner Angles of a Trihedral Corner Reflector with Triangular Panels.

(1)
Error in a Single Corner Angle(2) Error in Three Corner Angles(2)

Corner Length
(-1 dB) (-3 dB) (-10 dB) (-1 dB) (-3 dB) (-10 dB)

0.15 m (4.7).) ±5.1° ±8.4° ±14.4° ±2.4° ±4.2° ±7.5°
0.30 m (9.4).) ±2.5° ±4.2° ±7.3° ±1.2° ±2.1° ±3.8°
0.45 m (14.2).) ±1.7° ±2.8° ±4.9° ±0.8° ±1.4° ±2.5°
0.60 m (18.9).) ±1.3° ±2.1° ±3.7° ±0.6° ±1.1° ±1.9°
1.00 m (31.4).) ±0.8° ±1.3° ±2.2° ±0.4° ±0.6° ±1.1°
3.00 m (94.3).) ±0.3° ±0.4° ±0.7° ±0.1° ±0.2° ±0.4°

Notes: 1. )‘. = 3.18 cm.

. 2. which leads to the indicated reduction in the maximum response of the reflector.

-d
-a

fl ri

[

40mm

I

150mm

Figure 4.22: A single segment of a prototype reflection polarizer.

Table 4.2: Dimensions of the Prototype Reflection Polarizers

Type of Polarizer Period d Groove Width a Groove Depth h Aspect Ratio aId
Twist 13.5 mm 12.0 mm 11.5 mm 0.89

(0.426).) (0.379).) (0.355).)
Circular 13.5 mm 12.0 mm 6.0 mm 0.89

(0.426).) (0.379).) (0.186).)

2mm

Note: A = 3.18 cm
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Reflecting panels which present twist-polarizing and circularly polarizing responses were

designed using the methods described in section 4.3 and were assembled from extrusions that

were custom manufactured for the purpose by Alcan Extrusions (Richmond, B.C.) from marine

grade (6061) aluminum. A view of a single segment in cross section is depicted in Figure 4.22.

The closely spaced row of fins along the top of the structure form the reflection polarizer while

the three longer fins which form the base of the structure merely provide mechanical support

during manufacture and points of attachment during assembly. The extrusion was designed to

present a twist-polarizing response. In order to realize a circularly polarizing response, it was

necessary to mill the upper row of fins down to the height specified in Table 4.2. During the

milling procedure, the machinist found it difficult to secure the extrusion to the platform of

the milling machine and problems with vibration were encountered. As a result, the height of

the fins varied slightly along the length of the circularly polarizing reflecting panel. This may

have contributed to the discrepancies that were observed between the measured response of the

circularly polarizing trihedral corner reflector and theoretical predictions.

4.4.2 Polarization Response

The polarization response of each of the prototype reflectors was verified by rotating the target

about its boresight and measuring the co-polar and cross-polar response of the target to a

vertically polarized incident wave as a function of the angle of rotation c, as suggested by

Figure 4.19(a). The result corresponds to taking a cross section through the normalized co

polar and cross-polar response patterns which are presented in Figures 4.4, 4.5, and 4.6 for

ellipticity angle e = 0°. as suggested by Figure 4.23. The tilt angle r of the incident wave in

the reflector frame is related to the rotation angle c by

r a — 90°,

where a = 0° corresponds to vertically polarized incidence. The response patterns of prototype

reflectors designed to present regular, twist-polarizing, and circularly polarizing responses are

presented in Figures 4.24, 4.25, and 4.26, respectively. In the case of the regular and twist-



Figure 4.23: Evaluation of the polarization response of a radar target. Measuring the co-polar
and cross-polar response of the target to a vertically polarized incident wave as a function of the
angle of rotation r, as suggested by Figure 4.19(a), corresponds to taking a cross section through
the normalized co-polar and cross-polar response patterns which are presented in Figures 4.4,
4.5, and 4.6 for ellipticity angle c = 00.
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Figure 4.24: Polarization response of a prototype regular trihedral corner reflector as a function
of rotation about the boresight. (a) Co-polar response

- vv. (b) Cross-polar response
- HV.
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Figure 4.25: Polarization response of a prototype twist-polarizing trihedral corner reflector as a
function of rotation about the boresight. (a) Co-polar response - aVV. (b) Cross-polar response
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Figure 4.26: Polarization response of a prototype circularly-polarizing trihedral corner reflector
as a function of rotation about the boresight. (a) Co-polar response - uvv. (b) Cross-polar
response -
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polarizing reflectors, the measured responses and the theoretical predictions agree reasonably

well. In the case of the circularly polarizing reflector, the general form of the measured responses

is correct but the discrepancy between measurement and theory is relatively large. As noted

above, this may have been due to the problems encountered in milling the fins of the circular

polarizer to the correct height.

4.4.3 Azimuthal Response

The co-polar and cross-polar azimuthal response uvv and HV of each of the prototype tn

hedral corner reflectors were measured as a function of the azimuthal angle /‘ for selected

angles of rotation a with respect to the local vertical axis as suggested by Figure 4.19. The

results are compared to theoretical predictions of the contribution of triple-bounce reflections

to their response based on the analysis presented in section 4.3. The co-polar and cross-polar

azimuthal response patterns of the prototype regular reflector for a rotation angle of 0 degrees

are presented in Figures 4.27 and 4.28. The measured responses and the theoretical predictions

generally agree. The co-polar and cross-polar azimuthal response patterns of the prototype

twist-polarizing reflector after it has been rotated to 0 degrees for maximum co-polar response

are presented in Figures 4.29 and 4.30 while the corresponding response patterns after the

reflector has been rotated to 45 degrees for maximum cross-polar response are presented in

Figures 4.31 and 4.32. Once again, the measured responses and the theoretical predictions

generally agree. The rapid degradation in the polarization response for incidence off the bore-

sight is apparent in both cases. The co-polar and cross-polar azimuthal response patterns of

a prototype circularly polarizing reflector for rotation angles of 0 degrees and 45 degrees are

presented in Figures 4.33 through 4.36. Although the general form of the measured response is

correct, the measured co-polar azimuthal beamwidth of the prototype reflector is slightly wider

than predicted in both cases. Also, the measured cross-polar azimuthal response pattern for

a rotation angle of 0 degrees is substantially higher than predicted. However, the measured

cross-polar azimuthal response pattern for a rotation angle of 45 degrees agrees very well with

the predicted values.
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Figure 4.27: Co-polar azimuthal response pattern of a prototype regular trihedral corner reflec
tor for rotation angle a = 00 and vertically polarized transmission.
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Figure 4.28: Cross-polar azimuthal response patterns of a prototype regular trihedral corner
reflector for rotation angle a = 00 and vertically polarized transmission.
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Figure 4.29: Co-polar azimuthal response pattern of a prototype twist-polarizing trihedral
corner reflector for rotation angle c — 00 and vertically polarized transmission.
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Figure 4.30: Cross-polar azimuthal response patterns of a prototype twist-polarizing trihedral
corner reflector for rotation angle c = 0 0 and vertically polarized transmission.
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Figure 4.32: Cross-polar azimuthal response patterns of a prototype twist-polarizing trihedral
corner reflector for rotation angle a = 450 and vertically polarized transmission.
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Figure 4.31: Co-polar azimuthal response pattern of a prototype twist-polarizing trihedral
corner reflector for rotation angle a = 45° and vertically polarized transmission.
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Figure 4.34: Cross-polar azimuthal response patterns of a prototype circularly-polarizing trihe
dral corner reflector for rotation angle a = 00 and vertically polarized transmission.
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Figure 4.33: Co-polar azimuthal response pattern of a prototype circularly-polarizing trihedral
corner reflector for rotation angle a = 00 and vertically polarized transmission.
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Azimuth Angle - ‘(deg)

Figure 4.35: Co-polar azimuthal response pattern of a prototype circularly-polarizing trihedral
corner reflector for rotation angle c =

450 and vertically polarized transmission.
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Figure 4.36: Cross-polar azimuthal response patterns of a prototype circularly-polarizing trihe
dral corner reflector for rotation angle o = 45° and vertically polarized transmission.
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4.5 Conclusions

A method for altering the polarization response of a conventional trihedral corner reflector by

replacing one of its reflecting panels by a reflection polarizer derived from a conducting grating

with rectangular grooves of appropriate dimensions and orientation has been proposed. Since

a depolarizing reflector of this type does not make use of wire grids or dielectric materials in its

construction, it is less vulnerable to mechanical or environmental damage than other schemes

which have been proposed in recent years. The scattering properties of conducting gratings with

rectangular grooves have been reviewed and analytical solutions to the problem of scattering

by a conducting grating with rectangular grooves have been derived for the cases of TM- and

TE-polarized incident waves by mode-matching between the free space and groove regions. The

results, including an implementation of the solution as a pair of subroutines coded in Fortran

77, are presented in Appendix B.

If the axis of the fins or corrugations are aligned with one of the axes of the trihedral then

all rays incident from a given direction will experience the same polarization transformation

upon reflection from the grating regardless of the sequence in which each ray is reflected from

each of the three interior surfaces of the reflector. If the period of the grating is less than one-

half wavelength and the reflector is oriented so that the projection of the grating axis into the

aperture plane is oriented vertically, the phase difference 5 between the TM and TE reflection

coefficients of the specular reflected order can be exploited to yield a depolarizing response

along the reflector boresight of the form,

[S]=
SHH SHy = 1 0

SVH Svv 0 e

where S is the ratio of the electric field components of the specular reflected order and the inci

dent field. A phase difference of 0 yields a regular polarization response while phase differences

of 180 and 90 degrees yield twist polarizing and circularly polarizing responses, respectively.

Since the grating is uniform in one dimension, the TM- and TE-polarized fields are decoupled
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and SHy =SVH = 0. Design curves for trihedral corner reflectors which present circularly po

larizing and twist polarizing responses along their boresight have been given. The polarization

response of the reflector can be modified by rotating the reflector about its boresight by an

angle c, yielding a response of the form,

cos sinc 1 0 coscr —sino

—sina cosc 0 e6 sinc cosü

Methods for realizing trihedral corner reflectors which present a linear polarization selective

response of the form,

[Sj=
SHH SHy = 1 0

SVH Syy 0 0

have been proposed. The problem of realizing trihedral corner reflectors which present a circular

polarization selective response is considered in Appendix C.

An algorithm for predicting the contribution of triple-bounce reflections to the polarization

scattering matrix of a modified trihedral corner reflector as a function of the direction of inci

dence and the orientation of the reflector has been described. Although several factors cause

the polarization response to degrade as the direction of incidence shifts away from the reflector

boresight, rotation of the projection of the grating axis in the aperture plane with respect to the

local vertical is the most important since it results in an effective rotation of the corresponding

polarization scattering matrix. The polarization and azimuthal response patterns of prototype

reflectors with regular, twist polarizing, and circularly polarizing responses were measured using

the experimental facility which is described in Appendix D. The results show that the reflectors

respond essentially as predicted.
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Chapter 5

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

5.1 Summary and Conclusions

It is often necessary to enhance the radar cross section of a cooperative target either to increase

the maximum range at which the target can be reliably detected or to provide a target with

a known response which may be used to assist in radar calibration and performance verifi

cation. In recent years, a requirement has arisen for rugged yet inexpensive radar reflectors

which present both a very large scattering cross section and a specified polarization response

over a wide angular range for use as calibration targets in airborne and spaceborne imaging

radar systems for geophysical remote sensing and location markers in radar-assisted positioning

systems for marine navigation. Passive targets, such as trihedral corner reflectors, are often

better suited for use in such applications than active targets since they do not require an ex

ternal source of power and are inherently more reliable. This study considers several problems

related to the analysis, design, and implementation of passive targets including transforma

tion of the polarization response of a target or the polarization state of an antenna between

coordinate frames, modification of the angular coverage of a conventional trihedral corner re

flector by appropriate shaping of its reflecting panels, modification of the polarization response

of a conventional trihedral corner reflector by the addition of conducting fins or corrugations

of appropriate dimensions and orientation to one of its interior surfaces, design of top hat re

flectors with specified response characteristics, and design of reflection polarizers derived from

conducting gratings with rectangular grooves.
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In Chapter 2, it is shown that transformation of a polarization descriptor between coor

dinate frames corresponds to rotation of its basis by a prescribed angle which is a function

of both the transformation matrix that relates the two coordinate frames and the direction of

propagation. Two methods for determining the angle of rotation for the case in which the local

vertical is defined by the direction in each frame are derived using spherical trigonometry and

vector algebra, respectively. Both methods are robust and will yield the correct result but the

method based on vector algebra is more compact and would be easier to implement in software.

Although the elements of the coordinate transformation matrix can be determined from either

the relative directions of the three principal axes in each coordinate frame or the Euler angles

which define a series of rotations which will transform one coordinate frame into the other, it

maybe difficult to obtain these parameters in practice. A third method is derived which over

comes this limitation by allowing the elements of the coordinate transformation matrix to be

determined from any pair of dirctions which have been expressed in terms of both coordinate

frames. Algorithms for rotating the basis of several polarization coordinates in common use,

including the complex polarization ratio, the complex polarization vector, the Stokes vector

and several of its variants, the coherency matrix, the polarization scattering matrix, and the

Mueller matrix and several of its variants, are presented.

In Chapter 3, the problem of predicting the scattering cross section and angular coverage of

a conventional trihedral corner reflector with panels of completely arbitrary shape is considered.

Although general purpose numerical techniques such as the finite-difference time-domain (FD

TD) and the shooting and bouncing ray (SBR) methods can predict both the contributions

of single, double, and triple-bounce reflections from the interior and the effect of deviations

of the panels from perfect flatness and mutual orthogonality, they are extremely demanding

computationally. For most purposes, it is sufficient to account for the contribution of triple

bounce reflections from the interior since they completely dominate the response for most

directions of incidence. The empirical model originally proposed by Spencer for predicting the

equivalent flat plate area of ideal trihedral corner reflectors with either triangular or square
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panels (and the numerical implementation of the model that was devised by Keen) may fail

without indication when applied to reflectors with complex panel shapes. A simple yet robust

numerical prediction algorithm which overcomes this limitation is formulated by applying the

approach used by Keen and a polygon-clipping algorithm formulated by Weiler and Atherton to

an alternative model originally proposed by Robertson. The response patterns of ideal trihedral

corner reflectors which present three-fold symmetry about the boresight are plotted on equal

area projection grids and compared. If the corner length of the reflector is fixed, it is generally

found that attempts to increase the beamwidth of the response by modifying the shape of

the panels are accompanied by a reduction in the maximum response and vice versa. A set

of design curves for bilaterally symmetric reflectors which are composed solely of triangular,

elliptical, or rectangular reflecting panels are derived and the response patterns of selected

bilaterally symmetric reflectors which are composed of combinations of panels with various

shapes including triangular, circular, and square are presented and compared. It is found that

if three-fold symmetry is broken so that the reflector simply presents bilateral symmetry about

a mirror plane containing the boresight then the beamwidth of the response in one principal

plane can be increased relative to the beamwidth in the orthogonal plane by modifying the

shape of the reflector panels. The additional degree of freedom is shown to be useful when a

reflector must be designed subject to a constraint such as a requirement that it present a planar

aperture in order to facilitate the attachment of either a transmission polarizer or a protective

cover.

In Chapter 4, a method for altering the polarization response of a conventional trihedral

corner reflector by adding conducting fins or corrugations of appropriate dimensions and orien

tation to one of its interior surfaces is proposed. Since depolarizing reflectors of this type do not

make use of wire grids and dielectric materials in their construction, they are less vulnerable to

mechanical or environmental damage than other schemes which have been proposed in recent

years. They also avoid many of the mechanical problems associated with the attachment of a

transmission polarizer across the reflector aperture. If the axis of the fins or corrugations are
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aligned with one of the axes of the trihedral then all rays incident from a given direction will

experience the same polarization transformation upon reflection from the polarizer regardless of

the sequence in which each ray is reflected from each of the three interior surfaces. If period of

the grating is less than one-half wavelength and the reflector is oriented so that the projection

of the grating axis into the aperture plane is oriented vertically, the phase difference t between

the TM and TE reflection coefficients of the specular reflected order can be exploited to yield

a depolarizing response along the boresight of the reflector of the form,

[S]=t
SHH SHy = 1

, (5.1)
SVH Svv 0 e’6

where S is the ratio of the electric field components of the specular reflected order and the

incident field. A phase difference of 180 degrees yields a twist-polarizing response while a phase

difference of 90 degrees yields a circularly polarizing response. Since the grating is uniform in

one dimension, the TM and TE polarizations are decoupled and SHy = SVH = 0. Design curves

for trihedral corner reflectors which present twist-polarizing and circularly polarizing responses

along their boresight are given. The polarization response of the reflector can be modified by

rotating the target about its boresight by an angle a, yielding a response of the form,

cosa sina 1 0 cosa —sina
[S9= . (5.2)

— sin a cos a 0 e6 sin a cos a

Methods for realizing linear polarization selective trihedral corner reflectors using similar tech

niques are proposed. An algorithm for predicting the contribution of triple-bounce reflections

to the polarization scattering matrix of a modified trihedral corner reflector as a function of

the direction of incidence and the orientation of the reflector is derived. Although several

factors cause the polarization response to degrade as the direction of incidence shifts away

from the boresight, rotation of the projection of the grating axis in the aperture plane with

respect to the local vertical is the most important since it results in an effective rotation of

the corresponding polarization scattering matrix. Prototype trihedral corner reflectors with
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regular, twist-polarizing, and circularly polarizing responses were designed and assembled. Ex

perimental results are presented which show that the prototype reflectors respond essentially

as predicted.

In Appendix A, the problem of designing a top hat reflector with specified response charac

teristics is considered. Since the top hat reflector is a body of revolution, its response pattern is

uniform in azimuth. Expressions for the elevation response pattern, maximum scattering cross

section, angle of maximum response, and 1 and 3 dB elevation beamwidths of a top hat reflector

are derived and design curves are presented. As the angle of maximum response becomes appre

ciably greater or less than 45 degrees, the elevation response pattern will become increasingly

asymmetrical. In such cases, it may be preferable to consider the angle of median response for

a given elevation beamwidth rather than the angle of maximum response. Expressions for the

angle of median response are derived and design curves are presented. The results are used to

solve a sample design problem.

In Appendix B, the problem of scattering by a conducting grating with rectangular grooves

is considered. Analytical solutions are derived for the cases of TM- and TE-polarized incident

waves by mode-matching between the free space and groove regions. Procedures for determin

ing the validity of numerical results which are obtained using this formulation are discussed.

Although the solution will invariably converge to an essentially constant result as the number

of modes used in the field expansion are systematically and gradually increased, it is shown

that the manner in which the solution converges and the value of the final result will depend

on both the number of modes used to represent the fields in each region and their ratio. The

phenomenon is commonly referred to as relative convergence. Numerical results are presented

which suggest that the optimum ratio of groove modes to free space modes is similar in value

to the ratio of the groove width to the grating period. An implementation of the analytical

solutions as a pair of subroutines coded in Fortran 77 is presented.

In Appendix C, the problem of modifying a conventional trihedral corner reflector to present

a circular polarization selective response is considered. It is shown that such a response cannot
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be realized using the techniques described in Chapter 4 because the corresponding polarization

scattering matrix cannot be diagonalized when expressed with respect to a linearly polarized

basis. Alternative methods for obtaining such a response based on the addition of a transmission

circular polarizer to a linear polarization selective reflector or a circular polarization selective

surface to a twist-polarizing reflector are proposed. The performance of such reflectors and

their usefulness in practice will depend on a number of factors that are not considered here

including (1) degradation of the polarization response of either of the polarizers for incidence

off the reflector boresight, (2) possible degradation of the polarization response due to multiple

reflections between the transmission and reflection polarizers, and (3) the mechanical ruggedness

of the modified reflector and the ease with which it can be fabricated.

In Appendix D, the experimental facility which was set up to measure the response of

prototype trihedral corner reflectors is briefly described. Details of the physical layout and the

design and implementation of the CW radar apparatus and digital pattern recorder are given.

Test results show that the facility is suitable for use in the prototype reflector measurement

program. Before the facility is used in future measurement programs, however, consideration

should be given to replacing the existing microwave receiver with a newer model which is less

prone to drift, correcting the backlash in the model tower positioner head, and evaluating the

use of either a berm or a clutter fence to reduce multipath effects.

5.2 Recommendations for Further Work

Although depolarizing trihedral corner reflectors which incorporate conducting fins or corru

gations along one of their interior surfaces will find immediate use as location markers and

calibration targets in polarimetric radar systems used for radar-assisted positioning and geo

physical remote sensing, consideration should also be given to using reflectors of this type as

radar cross section enhancement devices in conventional marine radar navigation. An increas

ing number of civil marine radars are equipped with provision for transmitting and receiving

circularly polarized waves in order to suppress rain clutter. However, mariners must exercise
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caution when using them in this mode because the conventional trihedral corner reflectors which

are used to augment the response of most buoys, channel markers, and navigations hazards are

essentially invisible to a circularly polarized radar. Replacement of conventional reflectors by

depolarizing reflectors which respond equally well to horizontally, vertically, and circularly po

larized incident waves would significantly enhance the safety of marine navigation. Further

engineering studies and field trials should be conducted in order to verify the suitability of de

polarizing reflectors of the type proposed in Chapter 4 for use in such applications. Since such

reflectors would be required in large numbers, it would also be desirable to study alternative

methods of manufacture with the aim of minimizing their unit cost.

Detailed analysis of modified trihedral corner reflectors for engineering purposes would be

simplified if the radar cross section prediction algorithms and software tools described in Chap

ters 3 and 4 were combined into a single integrated software package designed to run on a high

performance UNIX workstation or other platform suitable for numerically intensive comput

ing. A package designed to assist in the evaluation of alternative schemes for truncating and

compensating trihedral corner reflectors should include implementations of the prediction algo

rithm for ideal trihedral corner reflectors based on Robertson’s model (as described in Chapter

3), either the finite-difference time-domain (FD-TD) or the shooting and bouncing ray (SBR)

methods for predicting the response of non-ideal trihedral corner reflectors, and suitable tools

for entering the reflector geometry and displaying the results of the calculations. The FD-TD

and SBR methods are sufficiently demanding of computing resources that it will probably be

necessary to include provision for running them either as background tasks for extended periods

or remotely on a sufficiently powerful host. A package designed to assist in the design of depo

larizing trihedral corner reflectors which incorporate conducting fins or corrugations would also

require code for predicting the response of a conducting grating with rectangular grooves. The

packages should also include a facility for comparing numerical predictions with experimental

results obtained by the user.
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Although recent trials conducted by Transport Canada (Transportation Development Cen

tre, Montreal, P.Q.) have shown that radar-assisted positioning systems based on measurement

of the range and bearing to shore-based cooperative targets can provide vessels navigating in

inland waterways, harbours, and harbour approaches with very accurate position data under

optimum conditions, the lack of data concerning the scattering statistics of terrain at grazing

incidence makes it difficult to give reliable estimates of the size of targets required to achieve

specified probabilities of detection and false alarm. Future development of radar-assisted po

sitioning systems for marine navigation should assign a high priority to the collection of such

data in a variety of representative clutter environments in order to assist in system planning and

evaluation. Future trials should include provision for determining the confidence with which

the cooperative targets are detected against the clutter background in order to provide some

measure of the reliability of such systems.

Three methods for realizing linear polarization selective reflective surfaces derived from

conducting gratings with rectangular grooves are suggested in Chapter 4 including (1) gratings

designed to reflect TE-polarized incident waves while diffracting TM-polarized incident waves

into the m = —1 diffracted order, (2) gratings designed to reflect TE-polarized waves while

dissipating TM-polarized incident waves in lossy groove media, and (3) gratings designed to

reflect TE- and TM-polarized waves in different directions by utilizing a sloped grating profile.

Each type of grating suffers from various limitations. The scattering characteristics of each

scheme should be examined in further detail so that their relative performance and merits can

be assessed in the context of both realizing linear and circular polarization selective trihedral

corner reflectors and their possible use in other quasi-optical systems. The first scheme can

be analyzed simply using the mode-matching formulation presented in Appendix B and some

results have been presented in the literature. Analysis of the second scheme would require

that the representation for the fields in the groove region be modified in order to account

for the effects of the lossy groove media. In both cases, the impact of relative convergence

on calculation of the amplitude of the diffracted orders should be assessed. Since the problem
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geometry of the third scheme is not periodic and the free space and groove regions do not belong

to separable coordinate systems, it will necessary to employ a different approach. Although a

purely numerical technique could be used in such an investigation, it may be simpler to begin

simply by setting up a design parameter matrix, constructing a set of prototype reflection

polarizers, then measuring and comparing the response characteristics of the prototypes.

The task of coding solutions to antenna or scattering problems which involve the predic

tion of polarization dependent effects would be simplified if a standard library of functions

and subroutines was available for performing polarization calculations. Such a library would

include routines for transforming polarization descriptors between coordinate frames based on

the results presented in this study and routines for converting polarization descriptors from one

type to another (e.g., polarization scattering matrix to Mueller matrix), converting polariza

tion descriptors between the backscatter and forward scatter alignment conventions, verifying

the validity of polarization descriptor data, calculating polarization efficiency, and extracting

co-polar and cross-polar nulls and related parameters from polarization response descriptors

based on results generally available in the literature. Since these routines will make extensive

use of matrices and complex variables, the library should initially be coded in Fortran 77. Con

sideration should also be given to producing libraries for use with more specialized numerical

analysis and symbolic algebra packages such as Matlab (The Mathworks, Inc., Natick, MA),

Maple (Waterloo Maple Software, Inc., Waterloo, Ont.), Macsyma (Macsyma, Inc., Arlington,

MA), and Mathematica (Wolfram Research, Inc., Champaign, IL).



Appendix A

DESIGN CURVES FOR TOP HAT REFLECTORS

A.1 Introduction

The top hat reflector is a variant of the conventional dihedral corner reflector which has recently

found use as a calibration target for airborne imaging radars. It may be regarded as a body of

revolution formed by rotating a dihedral corner about an axis of symmetry which is perpendic

ular to both the seam of the dihedral and one of its two reflector panels. As such, its response is

independent of azimuth angle. In practice, a top hat reflector is usually realized by attaching a

right circular cylinder to a flat circular plate such that the cylinder axis is perpendicular to and

passes through the center of the plate although other ground plane configurations have been

considered. The requirements for the cylinder and base to be flat and mutually orthogonal are

similar to those for the panels of a conventional dihedral corner reflector.

Although the top hat reflector was apparently introduced over twenty-five years ago, it was

not discussed in the literature until the early 1980’s [1]. It was not treated in standard references

until much later still and, even so, the discussion is brief and contains obvious errors [2], [3].

Blejer [4] recently extended the simplified model introduced by Johansen [1] to account for the

contribution of single bounce reflections from the cylinder, the cylinder cap, and the annular

base. The design of top hat reflectors is complicated by the dependence of the scattering cross

section and the angle of maximum response on three parameters: the radius and height of

the cylinder and the width of the annular base. In addition, the main response lobe becomes

increasingly asymmetrical as the angle of maximum response becomes either much greater or

much less than 45 degrees to the vertical. Design curves and related material are not generally

available.
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In this appendix, the problem of designing top hat reflectors with specified response charac

teristics is considered. In section A.2, an approximate expression for the scattering cross section

of a top hat reflector is derived as a function of the elevation angle of the incident ray using

a simplified physical optics model which accounts only for the contribution of double-bounce

reflections from the cylinder and the ground plane. In section A.3, design curves which relate

the physical dimensions of a top hat reflector to the direction of its maximum response, its

maximum scattering cross section, and its elevation beamwidth are presented. In section A.4,

the results are used to solve a sample design problem.

A.2 Analysis

Consider a top hat reflector which consists of a right circular cylinder of radius a and height

c attached to a circular ground plane of radius b as shown in Figure A.1. The cylinder axis

coincides with the z-axis and the ground plane lies in the x-y plane. The angle of elevation 8

is measured from the positive z-axis. If the plane of incidence contains the cylinder axis and

the opposite panel is of sufficient extent, a top hat reflector will return an incident ray to the

source in the same manner as would a dihedral corner. Since a top hat reflector is a body of

revolution, its response pattern is uniform in azimuth. The locus of maximum response for

double-bounce reflections is an inverted circular cone which intersects the cylinder in the x-y

plane.

Figure A.1: Problem geometry for scattering by a top hat reflector.
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The contribution of double-bounce reflections to the scattering cross section of a top hat

reflector can be determined using a ray-optical model in which the ground plane is treated as an

image plane of finite extent as shown in Figure A.2. If an incident ray intercepts the cylinder

at height h, radius a, and angle 9, the reflected ray will intercept the x-y plane at a radius

h tan 9 + a. If h> (b — a) cot 9, the point of interception will occur beyond the ground plane

radius b and the reflected ray will not be returned to the source. The effective height c’ of the

portion of the cylinder which contributes to the response is therefore a function of the angle of

incidence and is given by

O<07,
(A.1)

( c, y 9< ir/2,

where
(b—a’

7=tan ) . (A.2)
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2c 2c
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N

Figure A.2: A simplified ray-optical model for scattering by a top hat reflector.
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If a top hat reflector is sufficiently large in terms of wavelength, the contribution of single

bounce reflections from the cylinder, the cylinder cap, and the ground plane of the reflector to

the backscatter response will be extremely small for other than vertical or horizontal incidence

and can be neglected for the purposes of design. This reduces the problem to one of simply

predicting the forward scattering cross section of a cylinder of radius a and height 2c’ where the

plane of incidence contains the cylinder axis. The corresponding problem geometry is shown

in Figure A.3. The intersection of the plane of incidence with the surface of the cylinder is

referred to as the specular line. The unit vectors i and . give the directions of the incident and

scattered rays. The unit vectors ñ and ñ0 denote the outward normal to the cylinder at any

point on its surface and along the specular line, respectively, and are given by

n = cos+sinq, (A.3)

and

ñ0=cos?S0I+sinq0. (A.4)

specular line\EZ

J

Figure A.3: Problem geometry for forward scattering by a cylinder.

Following Knott [5], an approximate expression for the bistatic scattering cross section of

a target can be obtained by evaluating a physical optics integral over the illuminated portion
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of its surface. In the case of scattering by a cylinder with radius a and height 2c’, the physical

optics integral can be expressed as the product of axial and circumferential components

= _j i i, (A.5)

where the axial component I is given by

‘C,

I,
= J ejkz((i_)) dz , (A.6)

—C,

— 2
sin[kc’( (i

— A 7— C
kc’(2

. ( —

, ( .

and the circumferential component I,!, is given by

I,, = I (ñ i) d , (A.8)
J—ir/2

Although (A.8) will yield an exact solution, the resulting expression contains special functions

and is difficult to handle. It is generally more convenient to approximate IqS by the method of

stationary phase where the stationary phase point is the specular line shown in Figure A.4 and

the stationary phase approximation is of the form [6]

2ii- 1/2

I
= J g(q) e)dq g(0)e’° e’’, (A.9)

where

g(q) = (ñ.î), (A.1O)

f() = ka (n. (i
—

(A.11)

and

g(40) = (n0 i) (A.12)

f(,) = ka (ñ0 (1
—

, (A.13)

= ka (n0
.

(1
— ..)) . (A.14)

Substituting (A.12) — (A.14) into (A.9) gives

1/2

(n ) jka(iio.(f-))
[a (n0 .

—

. (A.15)
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An expression for the bistatic scattering cross section of the cylinder is obtained by substi

tuting (A.15) and (A.7) into (A.5) which gives

= —j2c’ [ 2ka ]
1/2 sin kC(Z .(z s))

. i) ejka(no()) (A.16)
n.(i—s) kc (z.(z—s))

In the case of forward scattering, the vectors €, , ñ, and are related as follows:

(1— .) = —2sin8 ñ,, , (A.17)

• (1— .) = —2sin0 , (A.18)

. (f
—

= 0, (A.19)

= —sin0. (A.20)

An expression for the forward scattering cross section of the cylinder is obtained by substituting

(A.17) — (A.20) into (A.16) which gives

= —j2c’ v”ka sin8 &32ka sinO • (A.21)

Since (A.18) is negative, a phase factor ejlr/2 is introduced when its square root is extracted.

Taking the amplitude of (A.21) and squaring the result gives

= acI2sin6. (A.22)

Finally, an approximate expression for the scattering cross section of a top-hat reflector is

obtained by substituting (A.1) into (A.22) to give

ac2sinO, 0<87,

a(0)
= 8ir cos2 (A.23)

—i- a(b — a)2 -y 8 < ir/2,

where a, b, c, and 8 are defined in Figure A.1 and the parameter 7 is given by (A.2). If the

ground plane of the reflector is of very large extent, i.e., b>> c, the angle -y —* r/2 and (A.23)

reduces to

a(8) = ac2sin8, 0< 8< ir/2. (A.24)
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A.3 Design Curves

Angle of Maximum Response

The contribution of double-bounce reflections to the response of a top hat reflector will reach its

maximum value when the angle of incidence is such that any ray incident on the cylinder will

intercept the annulus and vice versa. From Figure A.2, this will occur when c = (b — a) cot 6

so the angle of maximum response 6m is given by

6max = tan1
(b a)

= tan’ , (A.25)

where is defined as the ratio of the width of the annulus to the height of the cylinder. A graph

depicting 8m as a function of is presented in Figure A.4. If the height of the cylinder and

the width of the base are equal, the angle of maximum response is 45 degrees. Doubling the

ratio will lower the angle of maximum response to approximately 65 degrees while halving it

will raise the angle to approximately 25 degrees.

90
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0
0.1 10.0

Figure A.4: Angle of maximum response of a top hat reflector vs. , the ratio of the annulus
width to the cylinder height.
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Maximum Scattering Cross Section

Substitution of (A.25) into (A.23) gives an expression for the maximum scattering cross section

of a top hat reflector

8ir a(b — a)c2
Umax

= A (b — a)2’
(A.26)

8ir 2

_____

= —ac

where (sin 8max) is given by

Sfl umax
= +

. (A.27)

Consider a top hat reflector with a cylindrical component of fixed radius a0 and height c0 which

presents a maximum scattering cross section of o for = 1. As the ratio is altered to

obtain the desired angle of maximum response, the maximum scattering cross section of the

reflector will vary as shown in Figure A.5. The response will drop off rapidly for < 1 and will

asymptotically approach a value of crc, for > 1.

The radius and height of the cylinder can be scaled to compensate for this variation and

so yield a family of top hat reflectors with different angles of maximum response but the same

maximum scattering cross section. With the cylinder height c fixed, the scale factor for the

cylinder radius a is given by

______

a/1+2
(A.28)

a 2

With the cylinder radius a fixed, the scale factor for the cylinder height c (and the corresponding

annulus width b — a) is given by

_____

c 11+c2
—=/ . (A.29)
c0 2

In either case, the corresponding value of b is simply given by

b=a+c. (A.30)

A graph depicting the scale factors (A.28) and (A.29) as functions of the ratio is presented

in Figure A.6.
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Figure A.5: Maximum scattering cross section of a top hat reflector vs. , the ratio of the
annulus width to the cylinder height for fixed values of a and c.
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Figure A.6: Scale factors for the cylinder radius a and height c of a top hat reflector vs. , the
ratio of the annulus width to the cylinder height.
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Half Power Beamwidth

The half-power elevation beamwidth of a top hat reflector is determined by finding the angles

of incidence above and below the angle of maximum response, 0m for which the scattering

cross section fails to half its maximum value and taking their difference. From (A.26),

A (I. 2oir a —a1c (A31)
2 — A Vc2+(b_a)2

Equating (A.23a) and (A.31) then solving for 6 gives the upper half-power angle,

= sin’
(2 i+ 2)

. (A.32)

The lower half-power angle 3dB is determined in a similar fashion. Equating (A.23b) and

(A.28) then cancelling common factors gives a quadratic equation in sin 6,

1 1—sin20
A

2/1+2 = sine

Rearranging terms gives an expression in standard form,

sin26+
(2V-+2)

sin0— 1 = 0, (A.34)

with roots given by

______

• _B+v’B2+4
sin6

= 2
(A.35)

where

B=
1

• (A.36)
2/1+.2

Since is always positive, so too are B and the solution to (A.34) given by

• -B+VB2+4
sin 0

= 2
• (A.37)

Solving for 6 gives the lower half-power angle,

°3dB =
2 J • (A.38)
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Finally, taking the difference between (A.38) and (A.32) gives the total half-power elevation

beamwidth of the reflector

f—B + /B2 + 4’\ . I
03d]3 = sin

2
— sin

2 s/i. + 2
(A.39)

Care must be taken in applying (A.39) since the main response lobe of a top hat reflector is

not symmetric about the angle of maximum response, particularly if > 1. In addition to O3,

the total half-power beamwidth, it is convenient to define the quantities 0U3dB = 9u3dB —

and 0e3dB = —
as the half-power beamwidths above and below the angle of maximum

response, respectively. All three quantities are graphed in Figure A.7 as a function of the ratio

. Although both the total and upper half-power beamwidths increase with , the lower half-

power beamwidth reaches its maximum value when 0.55. The upper and lower half-power

beamwidths are equal and the top hat presents a symmetrical elevation response pattern when

0.51.

90

0
0.1 1.0 10.0

Figure A.7: Half-power elevation beamwidth of a top hat reflector vs. , the ratio of the annulus
width to the cylinder height.
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where B’ is given by

0)w

0

(10—0.1
6UIdB = sin1

/1 + 2)

B+%/B2+4”\
84dB = Sfl1

2

Similar relations may be derived for the 1 dB beamwidth of the elevation response. The

upper and lower 1 dB angles are given by

(A.40)

(A.41)

111—0.1

B’— “ (A42)

and the total 1 dB elevation beamwidth is given by 0u1dB or

-1 (—B’ + i/B’2 + 4 -1
(10-0.1

=
2 } — sin

+ 2}
. (A.43)

As in the previous case, it is convenient to define the quantities 0uldB = 8uldB — °m and

= 9max — 0eldn as the 1 dB beamwidths above and below the angle of maximum response,

respectively. All three quantities are graphed in Figure A.8 as a function of the ratio .
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Figure A.8: 1 dB elevation beamwidth of a top hat reflector vs. , the ratio of the annulus
width to the cylinder height.
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Since the elevation response pattern of a top hat reflector is generally asymmetric about the

direction of maximum response, it may be useful to instead specify the median angle of response

given by 8m = (9, + 8)/2. The angle of maximum response and angles of median response for

1 and 3 dB elevation beamwidths are graphed as a function of the ratio in Figure A.9.
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Figure A.9: Angle of maximum response and angles of median response for 1 and 3 dB elevation
beamwidths vs. , the ratio of the annulus width to the cylinder height.

A.4 Design Example

Consider a requirement for three even-bounce targets to be used in the calibration of an airborne

radar system which operates at a frequency of 10 GHz. The three targets must each present

a maximum scattering cross section of 30 dBsm at elevation angles of 25, 45, and 65 degrees,

respectively, over a wide range in azimuth. Top hat reflectors which meet these requirements

can be designed using the results presented in the previous section.

The ratio which gives the desired angle of maximum response can be determined using

either (A.25) or the graph in Figure A.4. It is found that top hat reflectors which present a

ratio of annulus width to cylinder height of 0.5, 1.0, and 2.0, respectively, will present their

60

45

1.0
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maximum response at the specified angles. This information is sufficient to obtain the 1 and 3

dB beamwidths of the three reflectors using either (A.39) and (A.43) or the graphs in Figures

A.7 and A.8.

The reflector dimensions required to realize a maximum scattering cross section of 30 dBsm

at 10 GHz are determined using (A.26). Once the radar wavelength A and the specified angle

of maximum response have been specified, the maximum scattering cross section depends only

on the product of the cylinder radius a and the square of the cylinder height c. The design of

a top hat reflector which presents its maximum response at 45 degrees is considered first. It is

convenient to choose the diameter and height of the cylinder to be approximately equal. From

(A.26), this gives a cylinder radius a of 0.75 m and a height c of 1.5 m. Since the ratio is

1, the annulus width (b — a) is also 1.5 m which gives a total radius b of 2.25 m. The results

are then scaled to obtain suitable dimensions for the other two reflectors. Assuming that the

cylinder radius is fixed, the dimensions of the other two reflectors can be determined using the

scale factors presented in (A.28) and (A.29) and graphed in Figure A.6.

The results are summarized in Table A.1. In Figure A.10, the three reflectors are drawn

to scale for comparison. In each case, the direction of the maximum response is indicated by

a vector. In Figure A.11, the elevation response patterns of the three reflectors are predicted

using Blejer’s [4] formulation which accounts for double-bounce reflections from the interior of

the reflector and single bounce reflections from cylinder, cylinder cap, and annular base.
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Table A.1: Response Characteristics of Selected Top Hat Reflectors at f = 10 GHz

154

Fi ure Dimensions Response Characteristics
a b C umax 9max OldB

A.10(a) 0.75 m 1.69 m 1.89 m 0.5 30 dBsm 25° 27° 100

A.10(b) 0.75 m 2.25 m 1.50 m 1.0 30 dBsm 45° 36° 15°
A.10(c) 0.75 m 3.75 m 1.33 m 2.0 30 dBsm 65° 450 21°

(c)

Figure A.10: Relative size of selected top hat reflectors which present the same maximum scat
tering cross section. The direction of maximum response is indicated by a vector. (a) 0.5.
(b) = 1.0. (c) = 2.0.
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0•

(a)

0•

(b)

(c)

a (dB)

Figure A.11: Elevation response patterns of selected top hat reflectors which present the same
maximum scattering cross section. (a) = 0.5. (b) = 1.0. (c) = 2.0.
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Appendix B

SCATTERING BY A CONDUCTING GRATING

WITH RECTANGULAR GROOVES

B.1 Introduction

In this appendix, the problem of scattering by a conducting grating with rectangular grooves

is solved for the case in which the plane of incidence is perpendicular to the direction of the

grooves [1], [2]. In section B.2, analytical solutions to the scattering problem are derived for the

cases of TM- and TE-polarized incidence by mode-matching across the boundary between the

free space and groove regions. Since the grating is periodic in y, the fields in adjacent unit cells

differ only by the phase factor exp(jkdsin4) and it is sufficient to consider the fields in a single

unit cell such as the one shown in Figure B.l. Symbols are defined in Table B.l. The fields in

the free space region (x > 0) are represented by an infinite sum of propagating plane waves and

evansecent waves while the fields in the groove region (x < 0) are represented by an infinite

sum of propagating and evanescent parallel-plate waveguide modes. A doubly infinite set of

linear equations in the complex coefficients of either the free space or groove modes is obtained

by applying the condition of continuity of the tangential electric and magnetic fields over the

planar junction between the free space and groove regions and the property of orthogonality

between the normal modes in each set. The set must be truncated or partitioned before it can

be solved numerically. In section B.3, procedures for verifying the correctness and accuracy of

numerical results obtained by mode-matching are described and the problem of determining

the minimum number of modes required to accurately represent the fields in the free space and

groove regions and their optimum ratio is considered. In section B.4, an implementation of the

analytical solutions as a pair of subroutines coded in Fortran 77 is presented.
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y
h

Figure B.1: A unit cell of a conducting grating with rectangular grooves.

Table B.1: Definition of Symbols

Symbol Definition

d period of the grating
a width of the groove
h height of the groove

aid aspect ratio of the grating
A wavelength

çb angle of incidence

q angle of reflection for the mth free space mode or diffracted order

m index for free space modes
n index for groove modes
M number of free space modes in the truncated set of equations

N number of groove modes in the truncated set of equations

k propagation constant in free space (= 2ir/A)

k propagation constant of the nth groove mode

fm orthonormal basis function for TM and TE free space modes

g orthonormal basis function for TM groove modes

g orthonormal basis function for TE groove modes

A2 complex amplitude of the incident TM free space mode

l3 complex amplitude of the incident TE free space mode

Am complex amplitude of the mth scattered TM free space mode

C complex amplitude of the nth TM groove mode

‘3m complex amplitude of the mth scattered TE free space mode

D complex amplitude of the nth TE groove mode

i, characteristic impedance of free space (= f)
Fm complex reflection coefficient of the mth free space mode

x

K a

K d >1
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B.2 Analysis

B.2.1 TM Polarization

Free Space Region

If a TM-polarized plane wave is incident on a grating of infinite extent such that the plane

of incidence is perpendicular to the direction of the grooves, the tangential components of the

electric and magnetic fields in the free space region are given by

H(x, y) = A1 ei 0stxfo + Am e_c0mxfm, (B.1)
m -_

E(x, y) = —A1 cos j ejkcos + Am o cos m e_jk COS mXf
, (B.2)

m=- oo

where

E(x,y)
=

(B.3)

— 1 jksinmy B4Jm — e ,

k = , (B.5)

sinqm = sinq!’j+m, (B.6)

cosq = — sii2 Qm, I SiflmI < 1, (B.7)

= _jsin2 m — 1, sin mI > 1.

The first term in each of (B.1) and (B.2) represents the incident field while the second term

represents the infinite sum of propagating and non-propagating waves which comprise the scat

tered field. The function fm is an orthonormal basis function for both TM- and TE-polarized

modes in the free space region. Equation (B.6) is usually referred to as the grating equation.

The remaining quantities and symbols are defined in Table B.1 and Figure B.1.
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Groove Region

The tangential components of the TM-polarized fields in the groove region are given by

H(x,y) = (B.8)

E(x,y)
=

(B.9)

where the function gn is an orthonormal basis function for TM-polarized modes in the groove

region given by

= i/cos
(nir(x + a/2))

(B.10)

and,.

k = /k2 — (!E)2 , < k , (B.11)

_j(!)2_k2, II>k,

e = 1, n=0, (B.12)

= 2, n=1,2,3

Boundary Conditions

The y-z plane is the interface between the free space and groove regions. The boundary condi

tions for the tangential components of the TM-polarized field are given by

H(0,y) = H(0,y), I’ a/2,
(B.13)

Hz(O,Y) = —K11(0,y), a/2 lvi < d/2,

and
E(0,y) = E(0,y), lvi a/2,

(B.14)
E(0+,y) = 0, a/2 < vi <d/2,

where K represents the surface current density along the top surface of the corrugation.
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Mode Matching

The modal expansions of the tangential magnetic field, (B.1) and (B.8), and the tangential

electric field, (B.2) and (B.9), are evaluated at x = 0 then substituted into the boundary

conditions (B.13) and (B.14), respectively. Continuity of the tangential magnetic field across

the boundary gives

Amfm = IyI<a/2, (B.15)
m=— n=0

while continuity of the tangential electric field across the boundary gives

—2Acosqfo+ Acosqf IyI<a/2, (B.16)
m=—oc n=0

= 0, a/2<IyI<d/2.

These expressions have been simplified by combining the contribution of the incident and spec

ularly reflected components of the fields in the free space region at z = 0 into a single term and

redefining A0 as

AO=Ai+ARef, (B.17)

where .A is the complex amplitude of the incident field and ARe1 is the complex amplitude of

the specularly reflected component of the scattered field.

Inner Products

The inner products of the free space and groove mode basis functions are defined as

d/2

(fm,!m’) = I fmf,ndX, (B.18)
J—d/2

fa/2

(gn,gn’)
= J g,-, dx, (B.19)

— a/2

a/2

(fm,gn)
= j fmg,dX, (B.20)

—a/2

a/2

= J g.fdx. (B.21)
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Since the basis functions are orthonormal,

(fm,fmi) = 0, mm’, (B.22)

= 1, m=m’, (B.23)

(g,gn’) = 0 , ii ii’, (B.24)

= 1, n=n’. (B.25)

The inner products (fm,gn) and (g,,f> are given by

IT 2ksinqrn (kasinq)m
.71/— 2 2

cosj j , n=1,3,5,...
v ad (ksincm) — (n2r/a) 2 j

(fm,gn) = (B.26)

fT 2ksinqm (kasin”
Vad (ksinq5m)2— (nir/a)2

sin
2 ) n = 0,2,4,...

and

I (fm,gn) , n=1,3,5,...
= (B.27)

( (fm,gn) , n=0,2,4,...

since (f,g) = (g,f)*, by definition [4, p. 26].

Substitution and Solution

The inner product of (B.15) with g yields an expression for the groove mode coefficients C in

terms of the free space mode coefficients Am,

Am(fm,gn) = Cn, (B.28)
m= -00

while the inner product of (B.16) with fm yields

—2Acosq + AmCO5bm = Cntan(knh)(gn,fm) . (B.29)

The result is then rearranged to give an expression for the free space mode coefficient Am fl

terms of the groove mode coefficients C,

Am =
k,tan(kh)

n, fm> + (B.30)
n=O cos4m



Appendix B. Scattering by a Conducting Grating 163

A direct solution for the coefficients of the free space modes can be obtained by substituting

(B.28) into (B.30) to give

Am,6mmI= > (B.31)
— — —

j cosqS,m’——oo fl_0__

then rearranging the result to yield an infinite set of linear simultaneous equations in the

coefficients of the free space modes Am,:

Am’ (fm’,gn) (g,f)
tan(kh) —

S, = —2A . (B.32)
— —

j cosq5
m’——-oo n—O

It is convenient to express (B.32) as a matrix equation in the form

([B][C]+[G])A=F, (B.33)

where the elements of [B], [C], [G], A, and F are given by

13 — , : k tan(kh)
— \gn,JmJ-—- , .34

jk COSm

Cnm’ = (fm’,gn) , (B.35)

—

—

Ami = Am’, (B.37)

Fm = —2A. (B.38)

The number of free space and groove modes included in the solution must be reduced from

an infinite number to M and N, respectively, before a numerical solution to (B.33) can be

obtained. The resulting truncated set of equations is of order M.

Alternatively, the coefficients of the free space modes can be determined in an indirect way

by first solving for the coefficients of the groove modes then multiplying the result by the matrix

which relates the two. Since this truncated set of equations is the order N, the time required

to compute a solution can be considerably reduced compared to the direct approach if the ratio

of groove modes to free space modes IV/M in the truncated set is much less than unity. First,
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(B.30) is substituted into (B.28) to yield

( (g’,f) + 2A6) (fm,gn) = (B.39)
m=—-x n’=O m n’O

then the result is rearranged to yield an infinite set of linear simultaneous equations for the

coefficients of the groove modes Ci:

Cstan(kh) _icot(knih)) = —2A(f0,g) . (B.40)

It is convenient to express (B.40) as a matrix equation in the form

([C’][B’] + [G’j)X = F’ , (B.41)

where the elements of [C’], [B’], [G’], X, and F’ are given by

C,cm = (fm,gn> , (B.42)

= jkcosqrn
(g’,f) , (B.43)

= —6,k1cotk1h, (B.44)

X1 = Ctankh, (B.45)

F, = —2A (f0,g) . (B.46)

On solution, the vector X contains the groove mode coefficients C multiplied by the factor

tan(kh). From (B.30), the free space mode coefficients Am are determined by applying the

relation

A—[C’]X+2A6. (B.47)

From (B.17), the specularly reflected component of the scattered field is given by

ARJ = A0 — A, (B.48)

so the specular reflection coefficient for a TM-polarized incident wave is given by

pEE — ARf (B 49
0

— A ‘

A0
= --;+1.
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B.2.2 TE Polarization

Free Space Region

If a TE-polarized plane wave is incident on a grating of infinite extent such that the plane

of incidence perpendicular to the direction of the grooves, the tangential components of the

electric and magnetic fields in the free space region are given by

E2(x,y) = !3je3kc0txfo+ Bme_c0mxfm, (B.5o)
m=-_

H(x,y) B2COSc Skcostf —

BmOS4m e_ikc0mxfm , (B.51)
m=—oo 1o

where fm, k, ‘q0, sinq5m, and cos4m are defined in (B.3) through (B.7) and

j OE(x,y)
.5

“lo ‘‘Y

Groove Region

The tangential components of the TE-polarized fields in the groove region are given by

E(x,y) = (B.53)

H(x, y) = _jD-!_
cos(

(B.54)

where k is given by (B.11) and g is the orthonormal basis function for TE-polarized modes

in the groove region and is given by

(B.55)

Boundary Conditions

The y-z plane is the interface between the free space and groove regions. The boundary condi

tions for the tangential components of the TE-polarized field are given by

H(O,y) = H(O,y), II a/2
(B.56)

H(O,y) = K(O,y), a/2 II d/2,
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where K represents the surface current density along the top surface of the corrugation and

E(O,y) = E(O,y), yIa/2,
(B57)

E(O,y) = 0, a/2 I’I d/2.

Mode Matching

The modal expansions of the tangential electric field, (B.50) and (B.53), and the tangential

electric field, (B.51) and (B.54), are evaluated at x = 0 then substituted into the boundary

conditions (B.56) and (B.57). Continuity of the magnetic field across the boundary gives

2I3 cosçj f0 — >2 ‘3m CO5m frn = >2 Dcot(kh)g, lxi <a/2, (B.58)
m=— n=1

while continuity of the electric field gives

m3mfm = lxI<a/2, (B.59)

= 0, a/d<ixi<d/2.

These expressions have been simplified by combining the contribution of the incident and specu

larly reflected components of the fields in the free space region into a single term and redefining

as

13i +I3Ref, (B.60)

where B is the complex amplitude of the incident field and !3Ref is the complex amplitude of

the specularly reflected component of the scattered field.

Inner Products

The inner products of the TE mode basis functions are defined in a similar way to those for

the TM modes with (fm,g) and (g,, fm) given by

2nir/a (kasinqm”i
V(ksinm)2_(n/a)2

co
2 ) n=1,3,5,...

(fm,g) = (B.61)

• 2n’r/a . (kasinqrn

3Vad (ksinbm)2— (nir/a)2 2 ) ‘ = 2,4,6,...
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and

(fm,g) , n=1,3,5,...

(g,fm)= { , n=2,4,6,...

(B.62)

Substitution and Solution

The inner product of (B.59) with g yields an expression for the free space mode coefficients

‘3m,

Dn(gj,fm) Bm, (B.63)

while the inner product of (B.58) with fm yields

00

Dkcot(kh) 2Bjkcos (f0,g) —
I3mjkcosqSrn (fm,g) . (B.64)

m=— 00

The result can be rearranged to yield an expression for the groove mode coefficients D,

= 2’3
jk cos 00 jk cos çbrn

(f0,gj—
kcot(kh) m=- mkcot(kh) (fm,gj . (B.65)

A direct solution for the coefficients of the free space modes can be obtained by substituting

(B.65) into (B.63) to yield

00/00

= ( jk cosm cos
‘fo,g)) (g,frn) , (B.66)

n=1 \m’=_00 kcot(kh) (f,,g) —2
k cot(kh)

then rearranged to give

00 00 00 jk cosm

_______
_______

jk cos
— ‘3m‘ = ‘3m’ kh) (fm’,gn) fm)_2t3

iJt(k h)
(f0,g) (g,f)

k cot(
m’=—oo m’=—c,o 72=1

(B.67)

The final result is an infinite set of linear simultaneous equations for the coefficients of the free

space modes ‘3m’

00 00
cosml

Co cos
‘3m’ E cot(k72h) (fm’,gn) (g,fm) + , = 2B

m’=—oo
k72cot(k72h)(fo,g72)(g,fm)

(B.68)
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It is convenient to express (B.68) in the form

([B][C] + [G]) X = [B] F, (B.69)

where the elements of [B], [C], [G], X, and F are given by:

Bmn = (g,f,) , (B.70)

— jkcosq5 / Bnm’
— kcot(kh) fm’,gni , .71

—

— Vml ,

Xmi = Bm’, (B.73)

= 2Bi) (f0,g) (B.74)

On solution, the vector X contains the free space mode coefficients 13mrn

As in the case of a TM-polarized incident wave, it may be advantageous to solve for the co

efficients of the groove modes then multiply the result by a matrix which relates the coefficients

of the groove modes to those of the free space modes if N << M. First, (B.63) is substituted

into (B.64) to yield

Dkcot(kh) = 2B jkcos (f0,g) — ( n, (ifm)) jkcosm (fm,g) (B.75)
m=— ,i=1

which is rearranged to give

( Dni (nifm))ikcosbm(fm,g)+ ‘Dikicot(kh) = 2Bjkcosq(f0,g)
m=—oo n’=l n’=l

(B.76)

The final result is an infinite set of linear simultaneous equations for the coefficients of the

groove modes Dpi:

> jkcos (gn’,fm) (fm,g) + 6,kicot(k;h) = 2Bjkcos1(f0,g) . (B.77)
n’1 m—

It is convenient to express (B.77) in the form

([B’J[C’] + [G’]) X’ = F’ , (B.78)
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where the elements of [B’], [C’], [G’], X’, and F’ are given by:

Bm = (fm,g) , (B.79)

= jkcosq5m (g-1,fm) , (B.80)

G1 = 6,kcot(kh) , (B.81)

X, = , (B.82)

F, = 2Bjkcosc(f0,gj . (B.83)

On solution, the vector X contains the groove mode coefficients D. From (B.63), the free

space mode coefficients 13m are given by

1
[B’]x, (B.84)

jk cos

From (B.60), the complex amplitude of the specularly reflected component of the scattered field

is given by

l3Ref 13o — B, (B.85)

so the specular reflection coefficient for a TE-polarized incident wave is given by:

pHH (B.86)

L3
1

13i

B.3 Verification of Numerical Results

The analysis presented in section B.2 is exact but truncation of the mode-matching matrix and

use of a finite word length during computation introduce unavoidable approximations. Fur

thermore, errors in analysis and coding sometimes occur. It is therefore desirable to implement

procedures to assess the correctness and accuracy of the numerical solutions which are obtained.

Three numerical checks which are applicable to this problem include conservation of energy,

reciprocity, and convergence [5].
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Conservation of Energy and Reciprocity

The physical plausibility of numerical results obtained by mode-matching may be verified by

testing for conservation of energy and/or reciprocity among the propagating modes but neither

is a sufficient condition for a valid solution. Such tests serve mainly to indicate problems

introduced by errors in coding or excessive round-off during computation [5], [6]. In the context

of scattering by a reflection grating, conservation of energy among the free space modes may

be expressed as

IAiI2cos4i Ii4mt2C0m , (B.87)

where A and 4j are the complex amplitude and the direction of the incident wave, Am and 4’m

are the complex amplitude and the direction of the mth free space mode, and the summation

includes only those free space modes which are propagating. Reciprocity is a statement that

the response of a system will be unchanged when the source and the observer are interchanged

and can be expressed as

= fm(bm), (B.88)

where Fm(q5) is the complex reflection coefficient of the mth diffracted order in response to a

wave incident at angle q. In the case of the specularly reflected free space mode, çbm = qj and

(B.88) reduces to

= l(—q,). (B.89)

Testing for conservation of energy incurs little computational overhead but testing for reci

procity effectively doubles the length of time required to compute a solution and is rarely done

so routinely.

Convergence

It is necessary to determine whether a sufficient number of modes have been used to approx

imate the fields in the free space and groove regions. Although the solution will invariably

converge to an essentially constant result as the number of modes used in the field expansion
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are systematically and gradually increased, the manner in which the solution converges and the

value of the final result will depend on both the number of modes used in each region and their

ratio, N/M. The phenomenon, which has been dubbed relative convergence, was originally

identified in connection with the formulation of the boundary value problem associated with

a bifurcated waveguide [7]. It has since been shown to occur in a variety of other problems

including diffraction by a strip grating on a dielectric slab [8], [9]. In these cases, Mittra and

others have shown that there usually exists a unique choice for the so-called partitioning ratio

which will yield the correct solution. Although results obtained using an arbitrary partioning

ratio and a large number of modes are usually accurate to within engineering tolerances, use of

the optimum ratio provides both greater accuracy and greater computational efficiency [10].

In Figures B.3 through B.6, the phase difference between the TE and TM specular reflection

coefficients of selected gratings are plotted as a function of the number of groove modes N used

in the solution for fixed values of the corresponding number of free space modes M. In all

cases, the gratings have a period of 0.3333) and are illuminated perpendicular to the direction

of the grooves at an angle of 45 degrees to the normal. Figures B.3 and B.4 present the results

for a pair of twist polarizers with aspect ratios aid of 0.5000 and 0.9999, respectively, while

Figures B.5 and B.6 present the results for a corresponding pair of circular polarizers. The

phase difference converges monotonically until the ratio of groove modes to free space modes

reaches a value equal to the aspect ratio of the grating. At that point, the slope of the curve

increases abruptly and the phase difference begins to converge to a new value which depends on

the number of free space modes. In the limit as the number of free space modes becomes very

large, the difference between the final result and the result obtained at the point of inflection

vanishes which suggests that the result obtained at the point of inflection corresponds to the

correct solution. This is similar to behaviour reported in connection with other formulations in

which relative convergence has been observed and implies that the optimum number of groove

modes is given by truncating the product of the aspect ratio of the grating and the number of

free space modes to be used in the solution, i.e., N0 = Trunc(a/d. M).
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Figure B.2: Convergence of the phase difference between the TE and TM specular reflection
coefficients with the number of groove modes for a reflection twist polarizer with d = 0.3333),
aid = 0.5000, and h 0.2302A illuminated by a plane wave incident at = 45 degrees.
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Figure B.3: Convergence of the phase difference between the TE and TM specular reflection
coefficients with the number of groove modes for a reflection twist polarizer with d = 0.3333 A,
aid = 0.9999, and h = 0.3172A illuminated by a plane wave incident at q5 = 45 degrees.
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Figure B.4: Convergence of the phase difference between the TE and TM specular reflection
coefficients with the number of groove modes for a reflection circular polarizer with d = 0.3333A,
aid = 0.5000, and h = 0.1466A illuminated by a plane wave incident at = 45 degrees.
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Figure B.5: Convergence of the phase difference between the TE and TM specular reflection
coefficients with the number of groove modes for a reflection circular polarizer with d = 0.3333),
aid 0.9999, and h = 0.1641A illuminated by plane wave incident at = 45 degrees.
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B.4 Implementation

Subroutines TMREFL and TEREFL implement the analytical solutions given by (B.41) and (B.78)

and are presented in Listings B.1 and B.2. Given the period d, groove width a, and groove

depth h of the grating (in metres), the angle of incidence 4 (in degrees) and wavelength A

(in metres) of the incident wave, and the number of free space and groove modes M and N

to be used in the solution, they return the complex specular reflection coefficient P0 for TM-

and TE-polarized incident waves, respectively, and an error code to the calling program. Error

code 1 indicates that the solution violates conservation of energy among the free space modes

while error code 2 indicates that the mode-matching matrix passed to subroutine CDSOLN is

singular. Error code 0 indicates that the solution has passed both these tests. If tests for either

reciprocity or convergence are required, they must be performed by the calling program.

Because the solution makes extensive use of complex variables, the subroutines were coded

in Fortran 77. Although the use of language extensions was generally avoided in order to keep

the source code portable between different compilers and platforms, two extensions which are

supported by virtually all modern Fortran 77 compilers were allowed. First, double precision

complex variables (type COMPLEX*16) and the corresponding intrinsic functions were used so

that all floating point calculations could be performed using double precision. Second, variables

of type DOUBLE PRECISION were identified as REAL*8 in type declaration statements for clarity.

Otherwise, the code is fully compliant with the ANSI standard and adheres to the generally

accepted principles of programming style [11]—[13}.

A chart depicting the hierarchy of subprograms which are called by subroutines TMREFL and

TEREFL is presented in Figure B.6. Functions TMINNR and TEINNR are presented in Listings

B.3 and B.4. Given the indices of the free space and groove modes rn and n, the propagation

constant k, the grating period d, the groove width a, and a character variable 0 which specifies

the desired sequence of factors, they return the value of the inner products (f, g) and (g, f)
as given by (B.26/27) and (B.61/62), respectively. Functions KN, ODD, SEQ, E, and CDCOT are

presented in Listings B.5 through B.9. Complex function KN returns the propagation constant
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of the nth groove mode as given by (B.11). Logical function ODD returns true if its argument

is an odd integer. In conjunction with ODD and IF... THEN constructs in functions TMINNR

and TEINNR, real function SEQ is used to select the appropriate sign for the inner products as

specified by (B.27) and (B.55). Complex function CDCOT implements the complex cotangent

function. The remaining subprograms called by subroutines TMREFL and TEREFL were supplied

by University Computing Services and perform operations not directly supported by Fortran

77 such as addition and subtraction of matrices, multiplication of matrices with vectors, and

solution of systems of linear equations. They are presented in Listing B.10 and are documented

in the publication UBC Matrix [14].

TNREFL TEREFL

ThIINNR KN TEINNR KN
I CDCOT CDCOT

CDADD CDADDODD CDMATV ODD CDMATVSEQ CDMULT SEQ CDMULTE CDSET CDSET
CDSOLN CDSOLN

Figure B.6: Hierarchy of subprograms called by subroutines TMREFL and TEREFL.

The subroutines were compiled on a Sun 4/380 workstation (equipped with 32 Megabytes

of RAM) under SunOS 4.1.1 (a variant of 4.2 BSD UNIX) using the standard Sun Fortran

compiler, f77, with all options set to their default values. The UNIX operating system pro

vides a variety of timing and profiling tools which can be used to assist in the evaluation and

optimization of Fortran programs [15]. The total length of time required to execute the two

subroutines, including both system and user time, was determined by running the shell utility

time in conjunction with a test program which simply set the parameters to be passed, called

subroutines TMREFL and TEREFL in succession, then terminated. The results are presented in

Figures B.7 and B.8 as a function of the number of free space and groove modes used in the

solution.
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Figure B.7: Combined execution time of subroutines TMREFL and TEREFL on a Sun 4/380
workstation vs. the number of groove modes used in the solution.
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Figure B.8: Combined execution time of subroutines TMREFL and TEREFL on a Sun 4/380
workstation vs. the number of free space modes used in the solution.
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A call graph analysis of the code was conducted using the profiling utility gprof. The

results are presented in Figure B.9 for numerical solutions using (a) 25 groove modes and 51

free space modes and (b) 50 groove modes and 51 free space modes. In each case, calls to

subroutine CDMtJLT (which calculates the product of matrices [B] and [C] from (B.41) and [B’]

and [C’] from (B.78)) account for approximately two-thirds of the total execution time. The

loading increases quadratically with the number of groove modes and linearly with the number

of free space modes. In contrast, calls to subroutine CDSOLN (which solves for the amplitude

of the groove modes) account for only one-fifth of the total execution time where the loading

also increases quadratically with the number of groove modes but is independent of the number

of free space modes. The remainder of the execution time is spent calculating the elements

of the various vectors and matrices in (B.41) and (B.78). Since the elements of matrices [B]

and [C] (and [B’] and [C’]) are independent on the groove depth h, these results suggest that

execution time could be reduced considerably by not recalculating their product if h is the only

parameter which has changed since the previous call. Such a modification could be implemented

by inserting a SAVE statement into each subroutine in order to preserve the values of the local

variables between calls and applying an appropriate branch on entry.

Figure B.9: Execution profile of subroutines TMREFL and TEREFL for numerical solutions using
(a) 25 groove modes and 51 free space modes and (b) 50 groove modes and 51 free space modes.

(a) (b)



Appendix B. Scattering by a Conducting Grating 178

ListingB.1: SUBROUTINE TMREFL(D, A, H, PHI, L, MFS, NWG, REFL, ERR)

SUBROUTINE TJIREFL( D, A, H, PHI, L, NFS, luG, REFL, ERR)

* Given:
* D - grating period (metres)
* A — groove width (metres)
* H - grating depth (metres)
* PHI — angle of incidence (degrees)
* L — wavelength (metres)
* KFS — number of free space modes
* lUG — number of groove modes

* Result:
* REFL — complex reflection coefficient of zeroth free space mode
* ERR — error return 0 = no errors,
* 1 = energr in free space modes not conserved,
* 2 = matrix to be inverted is singular.
*
* All floating point calculations are done in double precision

PARAJIETER (MAXFS=51, MAXUG51)

* KAXFS, MAXUG - maximum array dimensions
* (see also SUBROUTINE TMIINR)

EXTERNAL CDCOT

INTEGER IFS, JUG, ERR, I, 3, P1, N, ZERO
REAL*8 D, A, H, PHI, L, K, PRRAD, P1, S, SINPH, SUM
COMPLEX*16 REFL, B, C, •E, F, G, R
COMPLEX*16 CDCOT, CDET, COSPH, KI, ThuR
DIMENSION KOLAXFS)
DIMENSION COSPH(-MAXFS/2 :IIAXFS/2), SINPH(-MAXFS/2 :IIAXFS/2)
DIMENSION B(MAXFS,MAXWG), C(MAXWG,MAXFS)
DIMENSION GOIAXUG HAXUG), EOIAXUG,MAXUG)
DIMENSION FOIAXUG5

COMMON P1, SIIPH

ZERO = (MFS+1)/2

P1 = 4D0*DATAN(1DO)

*
* convert angle to radians

PHRAD = PHI * PI/180D0

* calculate free space propagation constant
K = 2D0*PI/L

* tabulate values of sin[phi(m)] and cos[phi(m)) for later use

DO 50, I = -MFS/2, IIFS/2
S = DSIN(PHRAD) + DBLE(H)*L/D

SINPH(M) = S
IF ((S.S).LE.1D0) THEN

COSPE(H) = DCMPLX(DSQRT(1DO-S*S), ODO)
ELSE

COSPH(M) = DCJIPLX(ODO, -DSQRT(S*S-1DO))
EIDIF

SO COITINUE
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Listing B.1: (continued)

* set up the matrices
* matrixB

DO 100, I = 1, IFS
DO 100, 3 = 1, lUG

I = I - ZERO
1=3 -1
B(I,i) = TIIIINR(M, I, K, D, A, ‘gf’) *

$ Kl(K,1,A)/(DCMPLX(ODO,K)*COSPH(M))
100 COITIIUE
* matrixC

DO 200, 3 = 1, lUG
DO 200, I = 1, IFS

1=3 -1
11 = I - ZERO
C(3,I) = TNIN1R(N, 1, K, D, A, ‘fg’)

200 CONTIJUE
*
* [C]*[B) —> [E]

CALL CDNULT(C,B,E,NWG,IIFS,NWG,MAXUG,MAIFS,MIZWG)
* vector F

DO 300, 3 = 1, lUG
13—1
10
F(3) = -2.0*TNIIIR(M, 1, K, D, A, ‘fg’)

300 COITIIUE
* matrixG
400 CALL CDSET(G, lUG, lUG, ?IAXVG, (ODO,000))

DO 500, 3 1, lUG
l3-1
G(J,J) = —CDCOT(K1(K,1,A)*H)

500 CONTINUE
*

• [E]+[G] —> [E]
CALL CDADD(E,G,E,IUG,IUG,NAXUG,KAXUG,MAIWG)

• [E]*[X] = [F]; solve for [I]; [X]—>[F]
CALL CDSOL1(E ,F,1WG,IIAXVG ,CDET)

IF (ABS(CDET).LT.1E-20) THEN
REFL = (000,000)
ERR2
RETURN

EIDIF

* [B]*[F] —> [R]
CALL CDMATV(B ,F,R,MFS,NWG,JIAXFS)

R(ZERO) = R(ZERO) + (100,000)

* check for conservation of energy in propagating free space modes
* (a necessary but not a sufficient condition for a valid solution)

SUM = ODO
ERR = 0

DO 1000, I = 1, IFS
I = I - ZERO
IF (ABS(SINPHOI)) .LE.1DO)

$ SUM = SUM + (CDABs(R(I))**2) COSPH(H)
1000 CONTINUE

IF ( ABS(SUI-DCOS(PHRAD)).GT.0.000IDO ) ERR = 1

* calculation complete!

REFL = R(ZERO)*(-1DO,000)

RETURN
END
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ListingB.2: SUBROUTINE TEREFL(D, A, H, PHI, L, MFS, NWG, REFL, ERR)

SUBROUTINE TEREFL( D, A, H, PHI, L, PIFS, IVG, REFL, ERR)

* Given:
* D — grating period (metres)
* A — groove width (metres)
* H — grating depth (metres)
* PHI — angle of incidence (degrees)
* L — wavelength (metres)
* MFS — number of free space modes
• JUG — number of groove modes

* Result:
* REFL — complex reflection coefficient of zeroth free space mode
* ERR — error return 0 = no errors,
• 1 energy in free space modes not conserved,
* 2 = matrix to be inverted is singular.
*

* All floating point calculations are done in double precision

PARAMETER (MAXFS=51, MAXUG=51)

* MAXFS, MAXUG - maximum array dimensions
* (see also SUBROUTINE TEINIR)

EXTERNAL CDCOT

INTEGER MFS, JUG, ERR, I, J, P1, N, ZERO
REAL*8 D, A, H, PHI, L, K, PERAD, P1, S, SINPH, SUM
COMPLEX*16 REFL, B, C, E, F, G, R
COMPLEX*16 CDCOT, CDET, COSPH, KR, TEIJJR
DIMENSION R(MAXFS)
DIMENSION COSPH(—MAXFS/2:JIAXFS/2), SIJPH(-MAXFS/2:MAIFS/2)
DIMENSION BOIAXFS,MAIUG), C(MAXVG,MAXFS)
DIMENSION G(KAXWG KAXUG), E(MAXUG,MAZUG)
DIMENSION F(MAXWGS

COMMON P1, SINPH

ZERO = (MFS+1)/2

P1 = 4D0*DATAN(1DO)

*

* convert angle to radians
PURAD = PHI * PI/180D0

* calculate free space propagation constant
K = 2D0*PI/L

* tabulate values of sin[phi(m)J and cos[phi(m)] for later use

DO 50, P1 = —HFS/2, PIFS/2
S DSIN(PHRAD) + DBLE(M)*L/D

SIJPH(M) S
IF ((S.S).LE.1DO) THEN

COSPH(M) = DCMPLX(DSQRT(1DO-S*S), ODO)
ELSE

COSPHOI) = DCMPLX(ODO, —DSQRT(S*S-1DO))
ENDIF

50 CONTINUE
*
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Listing B.2: (Continued)

* set up the matrices
* matrixE

DO 100, I = 1, MFS
DO 100, J 1, lUG

N = I - ZERO
1=1
B(I,3) = TEIIIROI, 1, K, D, A, ‘gf’) *

$ DCMPLI(ODO,K)*COSPE(M)
100 CONTIIUE
* matrixC

DO 200, 3 = 1, JUG
DO 200, I = 1, MFS

‘=3
N = I - ZERO
C(J,I) = TEIIIR(M, 1, K, D, A, ‘fg’)

200 COITIJUE
*

• [C)*tBJ —> [E]
CALL CDMULT(C,B,E,IVG,MFS,IUG,MAXUG,MAIFS,MAIWG)

* vectorF
DO 300, 3 1, lUG

1=3
M0
F(3) = 2.0*TEIIIR(M, 1, K, D, A, ‘fg’) •

$ DCMPLZ(ODO,K)* DCIIPLX(DCOS(PERAD))
300 COITIJUE
* matrix G
400 CALL CDSET(G, lUG, JUG, NAXUG, (ODO,ODO))

DO 500, 3 = 1, lUG
‘=3
G(J,J) = Kl(K,l,A)*CDCOT(Kl(R,l,A)*E)

500 CONTINUE -

* [E)+[G] —> [E)
CALL CDADD(E,G,E,IVG,IWG,NAIUG,MAXWG,KAIWG)

* [E]*[X] = [F]; solve for [I]; [X]—>[F]
CALL CDSOLI(E ,F,IWG,NAXUG,CDET)

IF (ABS(CDET).LT.1E-20) THEN
REFL = (000,OD0)
ERR=2
RETURN

EIDIF

* [B]*[F) -> [R]
CALL CDMATV(B,F,R,MFS,IUG,NAXFS)

R(ZERO) R(ZERO)-DCMPLI(ODO,K) * DCIIPLX(DCOS(PHRAD))

* check for conservation of energy lit propagating free space modes

SUM = ODO
ERR = 0

DO 1000, I = 1, MFS
N = I — ZERO
IF (ABS(SIIPH(M)) .LE.1DO)

$ SUM = SUN + C CDABS( R(I)/( DCMPLI(ODO,K) •
$ COSPE(M) ) ) )*.2 COSPH(M)

1000 CONTINUE

IF C ABS(SUM-DCOS(PHRAD)).GT.0.000100 ) ERR = 1

* calculation complete!

REFL R(ZERO)/(DCMPLI(ODO,K)*DCMPLZ(DCOS(PHRAD)))

RETURN
END
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ListingB.3: COMPLEX*16 FUNCTION TMINNR(M, N, K, D, A, 0)

COKPLEX*16 FUNCTION TMIIIRO(, I, K, D, A, 0)

PARAMETER (KAIFS=51)

LOGICAL ODD
INTEGER M, I
REAL.8 K, D, A, DEN, E, NUN, P1, SEQ, SINPH
CEARACTER*2 0

DIMENSION SIJPH(—MAXFS/2 :MAIFS/2)

COMMON P1, SIJPE

DEN = K.SIIPR(M)*K*SINPH(M) - (DBLE(N)*pI/A).(DBLE(I)*pI/A)

IF (ODD(I)) THEN

NUN = DCOS (A.KeSINPH (N) /2D0) *2D0.K*SINPH (K)
TMINNR = DCMPLI(SEQ(O))*DCMPLI(ODO,—IUM/(DEI4’DSQRT(A*D)))

ELSE

NUN = SIN(A*K.SIIPH(M)/2D0) *2D0*K*SIIPROI)
TMIIIR = DCMPLI(DSQRT(E(N)/(A.D)) * IUJI/DEN,ODO)

EIDIF

RETURN
END

Listing B.4: COMPLEX*16 FUNCTION TEINNR(M, N, K, D, A, 0)

COMPLEI*16 FUNCTION TEINNR(M, I, K, D, 1, 0)

PARAMETER (JIAXFS=51)

LOGICAL ODD
INTEGER N, N
REAL*8 K, D, A, DEN, NUN, P1, SEQ, SIIPE
CRARACTER*2 0

DIMENSION SIIPH(-KAIFS/2 :KLIFS/2)

COMMON P1, SliPli

DEN K*SIIPH(M)*K*SIIPHOI) - (DBLE(I)*PI/A)*(DBLE(I)*PI/A)

IF (ODD(I)) THEN

NUN = DCOS(A*K*SIIPH(M)/2D0)*2D0*DBLE(N).PI/A
TEIIIR = DCMPLX(-(IUN/DEI)*DSQRT(2D0/(A*D)) ,ODO)

ELSE

NUN = SIN(A*KSSINPH(M)/2D0)*2D0*DBLE(N)*PI/A
TEIINR = DCWPLI(SEQ(O))*

$ DCMPLI(ODO,-(JUMIDEI)*DSQRT(2D0/(A*D)))

EIDIF

RETURN
END
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ListingB.5: COMPLEX*16 FUNCTION KN(M, N, K, D, A, 0)

CONPLEI*16 FUNCTION KI(K,I,A)

REAL*8 K, A, P1, Q
INTEGER N

P1 = 4D0*DATAN(1DO)
Q = DBLE(N)*PI/A
IF (ABS(Q).LE.K) THEN

KN DCNPLX(DSQRT(K*K-Q.Q), 0Db)
ELSE

IN = DCMPLI(ODO, —DSQRT(Q*Q-K*K))
ENDIF

RETURI
END

Listing B.6: LOGICAL FUNCTION ODD(N)

LOGICAL FUNCTION ODD(N)

* true if N is odd, false if N is even

INTEGER N

IF (KOD(N,2).EQ.o) THEN
ODD = .FALSE.

ELSE
ODD = .TRUE.

ENDIF

RETURN
END

Listing B.7: REAL*8 FUNCTION SEQ(O)

REAL*8 FUNCTION SEQ(O)

* if n is odd, <fm,gn> = <gn,fm> the order is unimportant
* if n is even, <fm,gn> -<gn,fm> the order must be accounted for’

CHAR.ACTER*2 0

IF (O.EQ.’fg’) THEN
SEQ = 1Db

ELSE
SEQ = -1Db

ENDIF
RETURN
END

Listing B.8: REAL*8 FUNCTION E(N)

REAL*8 FUNCTION E(N)

* calculates the Neumann number

INTEGER N
IF (N.EQ.b) THEN

E = 1Db
ELSE

E = 2Db
ENDIF

RETURN
END
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Listing B.9: COMPLEX*16 FUNCTION CDCOT(ARG)

COMPLEX*16 FUICTIOJ CDCOT(LRG)

* find the cotangent of a complex number

CWIPLEX*16 CDSIJ, CDCOS, ARG
REALs8 DIMAG

IF (DIIIAG(ARG).GT.100DO) TEEJ
CDCOT = (ODO,—1DO)

ELSE IF (DIIIAG(ARG).LT.—100DO) TBEk
CDCOT = (0DO,1DO)

ELSE IF (ABs(cDsII(ARG)).LT.1E-1o) TRUI
CDCOT = (1E1O,O.O)

ELSE
CDCOT = CDCOS(ARG)/CDSIJ(AKG)

EWDIF

RETURI
END
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Listing B.1O: UBC Complex Matrix Subroutines

SUBROUTIIE CDADD(1,B,C,M,1,1DIMA,1Dh1,1DIMC)

* [C) <— [A)+[B] Ref: UBC Matrix, p. 15

COMPLEX*16 A(NDIMA,*),B(IDIKB,*) ,C(NDIMC,*)
DO 1 3=1,1
DO 1 I=1,M

1 C(I,J) = 1(1,3) + B(I,3)
RETURN
END

SUBROUTINE CDMATV(A,V,V,M,1,NDINI)
*
* w <- [A].v Ref: USC Matrix, p. 17

COMPLEX*16 A(NDIMA,e) ,V(*) ,w(*)
DO 1 1=1,1
U(I) = (0.00,0.00)
DO 1 3=1,1

1 11(I) = w(I) + 1(1,3) • V(i)
RETURN
END

SUBROUTINE CDMULT(A,B,C,M,J,L,NDIMA,NDIMB,NDIMC)

• [C] <— [A].[B] Ref: USC Matrix, p. 18

COMPLEX*16 1(IDIMA,*),B(IDIMB,.) ,C(NDIIIC..)
DO 1 J=1,L
DO 1 11,M
C(I,J) = (0.DO,O.D0)
DO 1 1=1,1

1 C(I,J) = C(I,J) + 1(I,K) * B(K,J)
RETURN
END

SUBROUTIIE CDSET(1,M,1,IDIMA,X)

• [C] — [A]+[B] Ref: USC Matrix, p. 21

COMPLEX*16 *(IDIMA,*),I
DO 1 3=1,1
DO 1 I=1,M

1 1(1,3) = I
RETURN
END

SUBROUTINE CDSUB(A,B,C,M,N,NDIMA,NDIMB,NDIMC)

* [C] <— [1]-[B] Ref: UBC Matrix, p. 22

COMPLEI*16 A(NDIMA,*) ,B(IDIMB,.),C(IDIMC,*)
DO 1 J11
DO 1 11,M

1 C(I,J) = 1(1,3) — B(I,J)
RETURN
END

SUBROUTINE CDVMAT(V,A,W,M,N,NDIMA)
*
* a <- v.[A] Ref: USC Matrix, p. 24

COMPLEX*16 1(1DIMI,s) ,V(*) ,V(e)
DO 1 3=1,N
W(J) = (0.D0.0.D0)
DO 2 11,M

2 W(J) = V(J) + v(I) • 1(1,3)
1 CONTINUE

RETURN
END
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Listing B.1O: (continued)

SUBROUTINE CDSOLI (A, B, I ,MM ,DET)
*
* [A).x = b; x—>b Ref: UBC Matrix, p. 55

C This routine finds the solution of a system of equations AIB, and takes
C paging into consideration; i.e., operations are done by columns,
C A— matrix of coefficints
C B— vector of right hand sides; on exit array B wiil contain the solution.
C I— order of matrix.
C MM- first dimension of a.
C DET- determinant of matrix is DET*10**JEX

COMMON /NATEXP/ JEX
DIMENSION AOIfI,N),B(*)
COMPLEX*16 A,B,DET,T,TB,DCMPLX
REAL*8 RMAI , QDET , CDABS

JEXO
DETDCMPLX(1 .D0,0.D0)

C decompose a into upper triangular matrix
DO 6 K1,I
M=K
RIIAX=CDABS (A (K , K) )
IF(K.EQ.I) GO TO 14
KP1K+1
DO 1 IKP1,N
IF(CDABS(A(I,K)).LE.RMAX) GO TO 1
M1
RAAXCDABS(A(I ,K))

1 CONTINUE
14 T=A(M,K)

IF(RAAX.LT.1.D-20) GO TO 20
IF(K.EQ.N) GO TO 5
A (11, K) =A (K , K)
A (K , K)
TBB (K)
BOO =B(K)
B(K)=TB
DO 2 I=KP1,N
A(I X)=-A(I K)/T

2 B(I5B(I)+AI,K)*TB
DO 4 JKP1,N
TBA(M,J)
A(M,J)=A(X,J)
A(K,J)TB
IF(CDABS(TB).EQ.0.D0) GO TO 4
DC 3 IKP1,N

3 A(I,J)A(I,J)+A(I,K)*TB
4 CONTINUE

C now get determinant
5 DETDET*T

QDET=CDABS (DET)
IF(QDET.LT.1.D15) GO TO 25
DET=DET*1.D—15
JEXJEX+15

25 IF(QDET.GT.1.D-15) GO TO 30
DETDET*1 .015
JEXJEX-1 5

30 IF(M.NE.K) DET—DET
6 CONTINUE

C now do back substitution
IF(N.EQ.1) GO TO 9
IM1N-1
DO 8 KB1,NM1
KM1N-KB
KKM1+1
B(K)B(K)/A(K,K)
T=-B(K)
DO 8 1=1 XMl

8 B(I)B(I+A(I,K)*T
9 B(1)=B(1)/A(1,1)

RETURN
20 DETDCMPLX(0.D0,0.D0)

JEXO

RETURN
END
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Appendix C

CIRCULAR POLARIZATION SELECTIVE REFLECTORS

C.1 Introduction

Because the polarization scattering matrix which corresponds to a circular polarization selective

response cannot be diagonalized when expressed with respect to a linearly polarized basis, a

trihedral corner reflector cannot be modified to present such a response simply by placing fins

or corrugations of appropriate dimensions and orientation along one of its interior surfaces or

across its aperture. Alternative methods for obtaining such a response based on the addition

of a suitable transmission polarizer to either a linear polarization selective or a twist polarizing

trihedral corner reflector are proposed.

C.2 Concept

A circular polarization selective reflector will return an incident wave of the chosen sense back

to the source but will either absorb an incident wave of the opposite sense or scatter it in a

different direction. With respect to a circularly polarized basis, the normalized polarization

scattering matrices of left and right circular polarization selective reflectors are given by

SLL SLR 1 0
[SJ = = (C.1)

SRL SRR 0 0

and

SLL SLR 0 0
= . (C.2)

SRL SRR 0 1

The co-polar and cross-polar response of circular polarization selective reflectors are plotted

as a function of the polarization state of the incident wave in Figures C.1 and C.2. The
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parameters E and T refer to the ellipticity and tilt angles of the corresponding polarization ellipse.

Although the amplitudes of the co-polar and cross-polar responses of a circular polarization

reflector are invariant under rotation of the target about the line-of-sight, the relative phase of

the response varies linearly with the angle of rotation.

In Chapter 4, it is shown that a conventional trihedral corner reflector can be modified to

present a given polarization response along its boresight simply by placing conducting fins or

corrugations of appropriate dimensions and orientation along one of its three interior surfaces

or across its aperture if the corresponding polarization scattering matrix [S] can be transformed

through rotation about the line-of-sight into a diagonal matrix [S’] of the form

[S’]
= SH 0

, (C.3)
0 S(7

A polarization scattering matrix expressed with respect to a circularly polarized basis [Sj can

be transformed to the equivalent polarization scattering matrix expressed with respect to a

linearly polarized basis [S] by applying the unitary change of basis transformation

[SJ = {U*J [S] {U*]_l , (C.4)

where [U] is the transformation matrix for change of basis from linear to circular polarization

given by

1 1 1

—j
. (C.5)

Applying (C.4) to the matrices of (C.1) and (C.2) gives the normalized linear polarization

scattering matrices of left and right circular polarization selective reflectors,

[Se]
= SHH SHy = —1

(C.6)
SVH Svv 2 1

and

SHH SHy = 1 —j
(C.7)

SVH Svv —j 1
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(b)

Figure C.1: Normalized response of a left circular polarization selective reflector as a function
of the polarization state of the incident wave. (a) Co-polar response. (b) Cross-polar response.

(a)

b

.

(b)

Figure C.2: Normalized response of a right circular polarization selective reflector as a function
of the polarization state of the incident wave. (a) Co-polar response. (b) Cross-polar response.

(a)
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If a depolarizing reflector with the polarization scattering matrix of (C.6) or (C.7) is rotated

about the line-of-sight through an angle a, the off diagonal elements of its new polarization

scattering matrix [S’] are given by

S1 = 2SHV cos2 a — SHy + (Svv — SHH) sin a cos a, (C.8)

where the off diagonal elements SHy and SVH are identical in all coordinate frames for the

monostatic case [1]. Since the diagonal elements of the original matrix are real and the off

diagonal elements are imaginary, S, is complex. In order to diagonalize [5’], the angle of

rotation a must be chosen such that both the real and imaginary components of S, are set

to zero, i.e.,

Re(Sy) = (Svv—SHH)sinacosa = 0, (C.9)

Im(Sy) = 2SHV cos2 a — SHy = 0. (C.10)

Since SHH Svv, (C.9) is satisfied only if a = n r/2 where n is an integer. However, these

values of a will not satisfy (C.10) unless SHy = 0. Therefore, the polarization scattering

matrices of (C.6) and (C.7) cannot be diagonalized and it is not possible to realize a trihedral

corner reflector with a circular polarization selective response simply by placing conducting fins

or corrugations of appropriate dimensions and orientation along one of its interior surfaces or

across its aperture.

C.3 Proposed Implementations

Method I

It may be possible to realize a trihedral corner reflector with a circular polarization selective

response by incorporating both transmission and reflection polarizers in the modified reflector.

One such scheme is shown in Figure C.3. Here a transmission circular polarizer of the type

shown in Figure C.4 is placed across the aperture of a linear polarization selective reflector which

has been oriented to return horizontally polarized incident waves but reject vertically polarized

incident waves. Subject to mechanical constraints, any of the several types of transmission

circular polarizers that have been described in the literature (e.g., [2]) would be satisfactory.
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(a) (b)

Figure C.3: A proposed implementation of a circular polarization selective reflector using a
transmission circular polarizer and a linear polarization selective reflector. (a) Left circular
polarization selective reflector. (b) Right circular polarization selective reflector.

In Figure C.3(a), the axis of the transmission circular polarizer is oriented at -45 degrees

to the vertical. Since left circularly polarized incident waves are converted to horizontal po

larization by the transmission polarizer, they are returned by the linear polarization selective

reflector then converted back to left circular polarization as they pass through the transmission

polarizer a second time. However, right circularly polarized incident waves are converted to

vertical polarization by the transmission polarizer and are either scattered away from the source

or absorbed by the linear polarization selective reflector. Thus, a left circular polarization se

lective reflector has been realized. The polarization scattering matrix of the reflector is given

by

[Sc] = [T][S][T},

— 1 1+j 1+j —1 0 1 1+j 1—j
—

2 1—j 1+j 0 0 2 1—j 1+j (C.11)

— j —1 j

— jl

where [T] and [5] are the polarization matrices of the transmission circular polarizer oriented

as shown and a vertical polarization selective reflector, respectively, according to the BSA
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Figure C.4: A parallel plate transmission circular polarizer. (from [2, sec. 23-5])

convention. If the transmission circular polarizer is oriented with its axis at 45 degrees to the

vertical instead, as shown in Figure C.4(b), a right circular polarization selective reflector is

realized. If the response of the polarizer is now given by [T’], the polarization scattering matrix

of the reflector will be given by

[Sn] = [T’][S][T’j,

1 1+j —1+j —1 0 1 1+j —1+j

= 2 —1+j 1+j 0 0 2 1+j ‘ (C.12)

—

—1 —j
— 2 —j 1

Method II

A second scheme for implementing a circular polarization selective trihedral corner reflector is

shown in Figure C.5. Here a circular polarization selective surface (CPSS) [4, 5] is placed across

the aperture of a trihedral twist reflector. Over most aspects, incident waves of the chosen sense

pass through the CPSS and are returned back to the source by the trihedral twist reflector while

incident waves of the opposite sense are specularly reflected away from the source as suggested

by Figure C.6(a).
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Figure C.5: A proposed implementation of a circular polarization selective reflector using a cir
cular polarization selective surface and a trihedral twist reflector. (a) Left circular polarization
selective reflector. (b) Right circular polarization selective reflector.

If the angle of incidence is normal to the reflector aperture, however, both incident polar

izations will be returned to the source and the response will no longer appear to be polarization

selective, as shown in Figure C.6(b). For a reflector with corners of equal length, this condi

tion occurs along the boresight or direction of maximum response which is clearly undesirable.

This problem also limits the performance of the gridded trihedral, a linear polarization selective

reflector which is realized by mounting a closely spaced parallel grid of thin wires across the

reflector aperture as shown in Figure C.7.

(.R.L

(R.L R

(a) (b)

Figure C.6: Scattering by a right circular polarization selective trihedral corner reflector.
(a) Oblique incidence. (b) Normal incidence.

(a) (b)
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50

Figure C.7: A linear polarization selective gridded trihedral and its co-polar and cross-polar
azimuthal response patterns. (from [3])

Backscatter returns from either the circular polarization selective surface or the closely

spaced grid of parallel wires can be avoided by mounting the reflector in such a way that its

boresight is pointed away from the radar over most aspects. However, this is undesirable if the

corners of the reflector are of equal length because the scattering cross section of the reflector

will be substantially reduced compared to its maximum value and will become much more

sensitive to small changes in the orientation of the reflector. An alternative solution is to force

the boresight and the normal to the aperture to point in different directions by incorporating

bilateral symmetry into the reflector geometry. Consider a trihedral corner reflector with one

corner of length c and two of length a as shown in Figure C.8. If the ratio of the center and

side corner lengths of the reflector (c/a) is increased slightly from unity, the normal to the

reflector aperture will rise in elevation relative to the the reflector boresight angle as described

in Chapter 3. The elevation beamwidth of the reflector will also increase slightly at the expense

of its azimuthal beamwidth. Decreasing the ratio (c/a) instead would have the opposite effect

although the angle of separation will be less pronounced. In either case, the angle of separation

,8 between the normal to the aperture and the reflector boresight will increase and the desired

result will be achieved as suggested by Figure C.8(b).

Trihedral Response
to Cross Component

Grid Response to
Parallel Component

C

0

50 25 25

Aspect Angle
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a

C

(a)

a

(b)

Figure C.8: A bilaterally symmetric trihedral corner reflector with triangular panels. 0 is the
angle between the boresight and the normal to the aperture. (a) Front view. (b) Side view.

The polarization scattering matrix of a hybrid reflector which combines a left CPSS with

polarization matrix [Tj and a trihedral twist reflector with polarization matrix [S] is given by

[Se] = [T] {S} {T]

1 —1 j —1 0 1 —1 j
=

j 1 0 1
• j 1

— 1 —1 j

— jl

(C.13)

By substituting a right CPSS with polarization transmission matrix [T’] for the original, a

right circular polarization selective reflector can be realized. Its polarization scattering matrix

is given by

[Sj = [T’]{S][T’]

— 1 —1 .—j —1 0 1 —1 —j
—

—j 1 0 1 —j 1

—

1 —1 —j
—

—j 1

(C.14)
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A method for realizing a circular polarization selective surface was first described by Tilston

et a!. [4]. An alternative implementation which is easier and less expensive to fabricate than

the original was subsequently devised by Morin [5]. The improved surface consists of a slab of

low dielectric constant material of thickness A/4 which has been divided into a square pattern

of cells of dimension A/2 by A/2. A resonant element which consists of a single piece of wire

which has been bent into three sections is inserted into each cell such that the two end sections

are flush against the front and back faces of the dielectric slab. Left and right CPSS elements

are shown in Figure C.9 where the z-y plane is the plane of the aperture.

(b)

Figure C.9: Elements of a circular polarization selective surface (CPSS). (a) Left CPSS element.
(b) Right CPSS element.

C.4 Discussion

Two methods for realizing circular polarization selective trihedral corner reflectors have been

proposed in this appendix. The performance of such reflectors and their usefulness in prac

tice will depend on a number of factors which have not been considered here including (1)

degradation of the polarization response of either of the polarizers for incidence off the reflec

tor boresight, (2) possible degradation of the polarization response due to multiple reflections

between the transmission and reflection polarizers, and (3) the ease with which the modified

reflector can be assembled and the mechanical ruggedness of the finished product.

x

3/8

(a)
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Appendix D

EXPERIMENTAL ARRANGEMENT

D.1 Introduction

During the course of this study, the microwave antenna range located on the roof of the Elec

trical Engineering building at the University of British Columbia was upgraded and used to

measure the response patterns of prototype depolarizing trihedral corner reflectors as described

in Chapter 4. The principles of radar cross section measurement have been widely discussed

in the literature, e.g., [1]—[5]. In this appendix, the modifications and improvements that were

made to the UBC antenna range in support of the prototype reflector measurement program

are briefly described. In section D.2, the general layout of the antenna range is described. In

sections D.3 and D.4, respectively, the design and implementation of the CW radar apparatus

and digital pattern recorder that are discussed. In section D.5, the results of tests performed to

verify the suitability of the antenna range for use in the measurement program are presented.

Recommendations for future modifications and improvements are offered.

D.2 Overview

A block diagram of the UBC microwave antenna range as it was configured for the prototype

reflector measurement program is shown in Figure D.1. The CW radar apparatus is designed

to measure the co-polar and cross-polar response of targets in the range from 8—12 GHz. The

digital pattern recorder is designed to calibrate the CW radar apparatus and record the re

sponse patterns of antennas or targets under test. It replaces the Scientific Atlanta series 1520

mechanical chart recorder used previously.
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The outdoor portion of the antenna range is shown in Figure D.2. The Scientific Atlanta

model 5851 model tower travels on a carriage along 15 metres of track down the center of the

roof of the east wing of the Electrical Engineering building. The model tower supports the

antenna or target under test at a height of 2.2 metres and can be configured either to rotate

the device about a vertical axis for conventional azimuthal pattern measurements or to roll the

device about a horizontal axis for polarization response measurements. Detailed mechanical

specifications are presented in the model tower operating manual [6].

D.3 CW Radar Apparatus

The CW radar apparatus consists of a CW transmitter, a microwave receiver equipped with an

external crystal mixer, and two standard gain horns mounted side by side on a custom-built

feedthrough mounting adapter. A block diagram of the transmitter and a photograph of the

transmitter shelf are shown in Figures D.3 and D.4, respectively. The signal source is a Marconi

Figure D.2: Photograph of the radar cross section measurement range.
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6052B microwave signal generator which can provide at least 25 mW (14 dBm) of power to a

matched load over the range from 8—12 GHz. The transmitted signal is sampled using an HP

X752C 20 dB directional coupler and monitored using a Marconi 6593A VSWR meter equipped

with a HP X485B detector mount. The exact frequency of the transmitted signal is determined

by tuning the HP X532B frequency wavemeter until a dip is observed on the VSWR meter.

The HP X382A precision attenuator is used to adjust the transmitter output power during

calibration. Detailed specifications for each component are presented in references [7]—[9].

The receiver section of the radar apparatus consists of a Scientific Atlanta model 171OAP

portable microwave receiver equipped with a model M8.2 external crystal mixer. Detailed

specifications are given in the receiver operating manual [10]. The receiver local oscillator (LO)

is tunable from 0.985—2.5 GHz. During operation, the LO output is fed through a RF pad to

the LO arm of a frequency selective tee. This tee couples the LO signal through a coaxial cable

to the external mixer where harmonic mixing takes place. The resulting 45 MHz IF signal is

conducted back through the same coaxial cable and frequency selective tee to a 45 MHz IF

preamplifier and subsequent stages. The receiver provides a signal to the monitor meter on

its front panel which is proportional to the received signal strength. This signal was tapped

and passed through a signal conditioning unit containing an op-amp based current-to-voltage

converter, a low pass filter, and an adjustable gain block in order to provide the 0—10 VDC

output signal required by the digital pattern recorder.

A pair of Scientific Atlanta model 12-8.2 standard gain horn antennas are used as the

transmitting and receiving antennas. The antennas present a boresight gain of 22.10 ± 0.05

dB at a wavelength of 3.2 cm with E-plane and H-plane half-power beamwidths of 12.5 and

13.5 degrees, respectively [11]. They are mounted side by side on a custom-built feedthrough

mounting adapter which is attached to the side of the building penthouse at a height of 2.2

metres as shown in Figures D.5 and D.6. The transmitting horn is mounted so that it is

vertically polarized. The mounting adapter permits the receiving horn to be rotated by 90

degrees in order to permit either the co-polar (0vv) and cross-polar (CHV) response of the
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target to be measured. Arrangements for aligning the horns are shown in Figure D.7. Coarse

alignment is performed using bubble levels which are mounted on the horns and waveguide

as shown. The alignment is completed by optical sighting an alignment target mounted on

the model tower using cross hairs mounted on the front of the horns and the flanges of the

waveguide.

Figure D.3: Block diagram of the CW radar transmitter.

Standard Gain Horn
Scientific Atlanta
Model 12-8.2

Frequency
Meter
HPXS32B

Precision 10dB
Variable Directional
Attenuator Coupler
HP X382A HP X752C

Detector
Mount
HPX485B

Figure D.4: Photograph of the CW radar transmitter.
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Figure D.6: Profile view of the RCS measurement range.

— a2m

Om

(a)

Standard Gain Horn

Front view

Cross-hairs

25cm

(b)

Figure D.7: Arrangement for mechanically aligning the transmitting and receiving antennas.
(a) Alignment aids mounted on the transmitter shelf. (b) Alignment target mounted on the
model tower.

Horn Antennas -3dB

Om 5m lOm 15m

Circular Levels
90° twist section

(as required)

Side\1iew

Feedthrough Mounting Adapter
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A graphical representation of the link budget for the radar cross section measurement range

as configured for measurement of prototype trihedral corner reflectors with a corner length of

60 cm is presented in Figure D.8. The results correspond to the ideal case in which the power

available to the radar receiver is given by the radar range equation,

p — PtGtGr(/A2)
— (47r)3(R/A)4

where G = G,. = 22.1 dB are the gains of the transmitting and receiving antennas, respectively,

u = 27.3 dBsm is the radar cross section of the target, ..\ = 3.18 cm is the radar wavelength,

and R = 11 m is the range to the target. In order to achieve the required dynamic range, the

minimum return from the target must be greater than either the background reflectivity of the

facility or the receiver thermal noise level.

Ea -19

ci)

-J

-49

ci)

Facility Background Level (Crosspolar)

Receiver Thermal Noise Level

14

0

Transmitted Power Level

Maximum RCS Return

Dynamic Range

Minimum RCS Return

0dB

-10dB

-20dB

-30dB

Facility ckgroundJçvel(opplar)

Figure D.8: Radar cross section measurement range link budget.
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D.4 Digital Pattern Recorder

The digital pattern recorder consists of an industry standard personal computer equipped with

a colour VGA display, an 80386SX-25 CPU with a numerical coprocessor, 2 MB RAM, an

80 MB hard disk drive, and custom-designed interface hardware and data acquisition software.

A PC-26 analog-to-digital converter (ADC) expansion card (Boston Technologies, Boston, MA)

equipped with the custom-designed signal conditioning unit described in the previous sec

tion is used to measure the output from the portable microwave receiver. A custom-built

12-bit synchro-to-digital converter (SDC) expansion card based on a Control Sciences Inc.

(Chatsworth, CA) 168F309 integrated 12-bit SDC module is used to measure the angle of

rotation of the antenna or target under test. Design considerations for PC-based laboratory

instrumentation have been widely discussed in the literature, e.g., [12], [13]. A photograph of

the digital pattern recorder, the positioner control unit, and the portable microwave receiver is

shown in Figure D.9.

Figure D.9: Photograph of the digital pattern recorder, positioner control unit, and portable

microwave receiver.
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A set of five independent program modules perform calibration, data acquisition, and diag

nostic functions. The program modules store calibration data, configuration notes, and response

pattern data in ASCII format and employ a consistent user interface. They were coded using

Turbo Pascal, version 5.5 (Borland International, Scotts Valley, CA) and make use of graphics

routines from the Science and Engineering Tools for Turbo Pascal subroutine library, version 6.1

(Quinn-Curtis, Needham, MA). The function of each module is summarized in Table D.1.

Table D.1: Digital Pattern Recorder Program Modules

Module Name Function
Synchro Test DPRSYN • display position of model tower in real time and

verify correct operation of the synchro interface
Receiver Calibration DPR_CAL • generate relative calibration curve for receiver and

verify correct operation of the receiver interface
Pattern Recorder DPR..PAT • record pattern data and configuration notes

for analysis and presentation

Data View DPR_VIEW • view and compare previously recorded data

Receiver Stability DPRSTAB • sample receiver output signal and generate
amplitude distributions and frequency spectra

The synchro test module, DPLSYN, is used to verify that the model tower synchro, the po

sitioner control unit synchro repeater, the synchro-to-digital converter and the interconnecting

cables are functioning correctly. It can also be used to calibrate the speed control on the posi

tioner control unit. The program displays the current angle of rotation and rate of rotation of

the antenna or target under test while it generates a plot of the angle of rotation versus time.

A sample screen display is presented in Figure D.10.

The receiver calibration module, DPR_CAL, is used to measure the transfer characteristic of

the microwave receiver. During a measurement sequence, the pattern recorder module uses this

data to translate the binary code read from the ADC into a relative measure of the received

signal strength in decibels. Relative calibration of the CW radar apparatus is performed with

the equipment configured as shown in Figure D.11(a). After the operator has set the receiver

input signal to the highest level likely to be encountered during the measurement, the program
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prompts the operator to decrement the received signal strength in 5 dB steps using either the

precision microwave attenuator in the transmitter or the IF step attenuator in the receiver and

sample the receiver output. A sample screen display is presented in Figure D.10. After the

calibration sequence is complete, the operator is prompted to either save the relative calibration

data to a ifie or begin the calibration sequence again. Absolute calibration of the CW radar

apparatus can be performed either directly by measuring the response of a calibration target of

similar size to the target under test or indirectly by measuring the effective path loss between

the transmitter and receiver.

An arrangement for performing absolute calibration using an indirect method is shown in

Figure D.12. First, the response of the target is measured using the configuration of Fig

ure D.12(a). Next, the crystal mixer is removed from the receiving horn and mounted on the

10 dB directional coupler in the transmitter as shown in Figure D.12(b). Finally, the precision

microwave attenuator is adjusted until an identical response is observed at the receiver output.

The total insertion loss includes the contributions of both the attenuator and the directional

coupler. Since the distance to the target, the radar wavelength, and the gain of transmitting

and receiving antennas are known, the absolute radar cross section of the target can be deter

mined simply by equating the geometric path loss predicted by the radar equation to the total

insertion loss. Closure is obtained when the results of direct and indirect calibration agree to

within a prescribed tolerance.

The pattern recorder module, DPRPAT, is used to record both the parameters of the test

configuration and the response pattern of the antenna or target under test. A sample param

eter entry screen is shown in Figure D.13. When a new measurement sequence is begun, the

parameter entry screen is replaced by a data acquisition screen which displays the response

pattern as it is being measured. The data acquisition screen can be configured to present the

results on either a rectangular or polar chart spanning either + 90 or +180 degrees. A sample

± 180 degree polar display with a dynamic range of 30 dB is shown in Figure D.14. After data

collection is complete, the operator is returned to the parameter entry screen and prompted to

either save the response pattern data to a file or begin the measurement sequence again.
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Figure D.10: Digital pattern recorder: syncliro test screen.

Use arrow keys for nenu selection

Figure D.11: Digital pattern recorder: receiver calibration screen.
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(a)

Transmitting
Channel (V)

Receiving
Channel (VocH)

(b)

Figure D.12: Equipment configuration for performing relative and absolute calibration of the
CW radar apparatus.

90 twist section
( required)

Digital Pattern Recorder

Digital Pattern Recorder
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X Axis Label:
X Axis Scale:
Sa,ipling Interval:

Use arrou ke!Js for eenu eiect ion

Figure D.13: Digital pattern recorder: parameter entry screen.
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Figure D.14: Digital pattern recorder: data acquisition screen.
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The last two program modules are test articles used to evaluate functions which will be

incorporated into future versions of the receiver calibration and pattern recorder modules. The

receiver stability module, DPR..STAB, is used to assess the short and long-term stability of the

portable microwave receiver while a constant amplitude signal is applied to its input. After the

output of the receiver has been sampled over a period of time ranging from several minutes to

several hours, the results are either viewed directly as time series or processed to yield amplitude

distribution functions and/or frequency spectra. The data viewing module, DPR_VIEW, is a

modified version of the pattern recorder module which is used to view and compare previously

recorded data.

D.5 Facility Evaluation

Radar cross section measurements are affected by a combination of random and systematic

errors. It is convenient to depict these errors by the signal flow graph presented in Figure

D.15 where S represents the actual response of the target, R and T represent errors due to

(1) deviation of the incident field from a plane wave and (2) multipath reflections from the

surrounding facility, and I represents the contribution of general background due to (3) returns

from the target support structure and surroundings and (4) direct transmission between the

transmitting and receiving antennas. In order to determine the suitability of a RCS facility for

use in a measurement program, a series of tests must be performed to assess the magnitude of

these errors and their potential impact on the accuracy of the results obtained.

Transmitter

I

Receiver

R

Figure D.15: Error model for radar cross section measurement.
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Ideally, the target is located sufficiently far away from the transmitting antenna that the

incident field presents a planar wavefront. For a small outdoor antenna range of the type

considered here, such an arrangement is rarely practical since the contribution of the multipath

ray to the response increases rapidly with range. It is often suggested that satisfactory results

will be obtained if the phase deviation over the largest dimension of the target is less than 7r/8

radians. This leads to the so-called far-field criterion which requires that the range to the target

be greater than
2 d2

where d is the largest dimension of the target and A is the radar wavelength. In practice, physical

constraints often make it necessary to measure radar cross section of targets at ranges as low as

one-quarter of the recommended value. The consequences are similar to those encountered when

conducting antenna measurements under similar circumstances. In particular, the apparent

value of the radar cross section obtained by direct solution of the radar range equation will be

less than the actual value that would have been obtained had the incident field been a plane

wave.

A trihedral corner reflector of the type used in the measurement program has triangular

panels of equal length and presents a maximum radar cross section of

4ir £
umax =

where £ is the corner length of the reflector and A is the radar wavelength. Although the largest

physical dimension of a reflector of this type is the distance from the tip of one corner to the

mid-point of the opposite panel, the maximum dimension of the effective aperture is much

smaller and is given by

as suggested by Figure D.16. The maximum aperture dimension, maximum radar cross section,

and far-field range of trihedral corner reflectors with various corner lengths are summarized in

Table D.2.
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(a)

Figure D.16: The effective aperture of a trihedral corner reflector with triangular panels for
incidence (a) along the boresight and (b) at an azimuth angle of 30 degrees.

Table D.2: Response of Trihedral Corner Reflectors with Triangular Panels at 9.445 GHz

Corner length Max. aperture Maximum RCS Far-field range
(cm) dimension (cm) (m2) (dBsm) (m)

15 14 2 3.2 2
30 28 33 15.3 5
45 42 169 22.3 11
60 57 537 27.3 20
75 71 1310 31.2 31

Four tests were conducted in order to assess the suitability of the antenna range for use in

the prototype reflector measurement program. All the tests were performed at the standard

marine radar frequency of 9.445 GHz.

In the first test, the polarization response of the CW radar apparatus was evaluated. The

receiving horn was removed from the feedthrough mounting adapter and attached to the model

tower. The response of the receiving horn was measured at a range of 11 metres as the horn

was rotated about its boresight. The results generally agree with the predicted values and

are presented in Figure D.17. The isolation between the transmitting and receiving horns is

considerably greater than 30 dB when the horns are orthogonally polarized.

In the next two tests, the contributions of near-field and multipath effects to the response

of a target under test were evaluated. A conventional trihedrai corner reflector with a corner

(b)
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length of 60 cm was attached to the model tower. First, the response of the target was measured

as its range was increased from 8 to 16 metres in 0.25 m increments. The results are presented

in Figure D.18. At ranges greater than about 12 metres, rapid variations in the response are

observed which suggest that multipath effects are becoming important. At ranges less than

about 9 metres, evidence of a reduction in the response which is apparently due to near-field

effects is observed. At ranges between 9 and 12 metres, the response varies as hR4 with only

a few perturbations. A second test was performed in order to assess the effect of small changes

in range on the fine structure of the response pattern. The azimuthal response pattern of the

reflector was measured at ranges of 10 and 12 metres and compared. The results are presented

in Figure D.19 where it can be seen that the response patterns are nearly identical. On this basis

of these results, it was concluded that the optimum range at which to measure the prototype

reflectors is 11 metres.

In the last test, the contributions of direct transmission between the horns and unwanted

returns from the model tower and surroundings were evaluated. The conventional trihedral

corner reflector was removed from the model tower and the positioner head was covered by a

small section of microwave absorber. The co-polar and cross-polar responses of the background

was measured in turn as the model tower was rotated in azimuth at a range of 11 metres.

The results are presented in Figure D.20. The co-polar response rises above -30 dB at oniy a

few angles and never rises above -28 dB relative to the maximum response of the prototype

reflector. The cross-polar response never rises above -30 dB.

During the evaluation of the facility, several problems were noted. The gears that rotate the

positioner head about a horizontal axis exhibit a small but noticeable backlash. The effect is

particularly obvious when a large target such as a prototype reflector is mounted on the model

tower. Since procedures for reducing the backlash require the services of a skilled machinist [6],

the problem could not be corrected simply by conducting routine maintenance during the course

of the measurement program. It is recommended that the problem be corrected in the near

future, however.
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Figure D.18: Boresight response of a conventional trihedral corner reflector vs. range.
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Figure D.17: Polarization response of the receiving horn at a range of 11 m.
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Figure D.19: Azimuthal response pattern of a conventional trihedral corner reflector at ranges
of 10 and 12 m.
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Azimuthal response pattern of the model tower at a range of 11 m.Figure D.20:
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The transfer characteristic of the portable microwave receiver tends to drift noticeably after

only an hour. As a result, it was necessary to recalibrate the receiver each time a new series

of measurements was conducted. Since the receiver is over twenty years old and is nearing the

end of its useful life, it is recommended that consideration be given to replacing it.

As noted earlier, multipath reflections were observed when the range to the target was

greater than about 12 metres. It might be possible to significantly reduce multipath effects

(and extend the model tower’s useful range of travel) by employing either a berm or a series

of radar fences to scatter the multipath ray as described by Knott [2, pp. 369—370]. It is

recommended that an experimental program be conducted to assess the effectiveness of such

methods in suppressing multipath effects at this antenna range
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