
Global Petri Net Modeling of
Hybrid Systems and Fault Analysis

By
Mohammad Rezai

B.E . Electrical and Electronics Engineer ing,

Bharathidasan University, Tiruchirapall i, India, 1987

M . S c . E n g . Electrical Engineer ing, University of New Brunswick, Fredericton, 1990

A THESIS SUBMITTED IN PARTIAL FULFILLMENT O F

THE REQUIREMENT FOR THE D E G R E E O F

DOCTOR O F PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES

(DEPARTMENT O F ELECTRICAL ENGINEERING)

W e accept this thesis as conforming

/ tOythe , required standard

THE UNIVERSITY OF BRITISH COLUMBIA

1996

© Mohammad Reza i , 1996

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department

The University of British Columbia
Vancouver, Canada

Date

DE-6 (2/88)

Abstract

In this dissertation, a new methodology for the modeling and analysis of hybrid systems

is presented. Hybrid systems are those which have both event-driven (asynchronous) and

time-driven (synchronous) elements. This new methodology is based on an extension of

the Petri net (PN) theory. Petri nets have proven themselves to be an excellent modeling

tool for discrete-event systems and computer architectures. This new extension of Petri nets,

which is called a Global Petri Net (GPN), provides a means for extending these capabilities

to discrete-time systems. Although, many extensions of PNs have been developed over the

years, the GPN methodology is the first one to perform the modeling, analysis, and simulation

of discrete-event and discrete-time dynamic systems in a unified PN framework.

The GPN is formally defined, and the structural and behavioral differences between PNs

and GPNs are presented. The derivation of GPNs from the basic PN, and derivation of the

G P N dynamic equations are also given. Next, two modeling examples are provided. These

two examples show that the GPN formalism can be used to model hybrid systems in various

application areas.

Analysis techniques, which can be used to investigate the system properties, are devel­

oped. These analysis techniques are based on the construction of the system reachability

tree and linear algebraic equations. The properties which are analyzed by these techniques

include controllability, boundedness, stability, and conservation. Theorems and proofs of

these properties are stated and proven.

An example of a distributed hybrid system is modeled at various levels of abstraction.

This system consists of a hydraulic control system and its interfaces with a bus-based

communication system. At the highest level, the system is modeled as a discrete-event

system. At the lowest level, where the details of the hydraulic control system are modeled,

a hybrid model is used. The nets at all levels are simulated and analyzed by the global Petri

net simulation and analysis tool (GPNSAT), written specifically for this research.

ii

Various system level faults for a hydraulic control system are modeled and simulated.

For each fault type, the simulation shows how various system outputs are affected. At each

level of abstraction, the hybrid system is simulated and analyzed for various properties, such

as stability, boundedness, controllability, conservativeness, and liveness. Analysis methods

developed for GPNs provide distinct fault signatures for each of the system fault types.

These fault signatures can be used to distinguish successfully each fault in a detection and

recognition scheme.

The major contribution of this thesis is the extension of Petri nets to encompass hybrid

systems. This new modeling approach can be applied to a variety of systems in application

areas such as, manufacturing, multimedia, production, digital, and communication systems.

This extension also enables one to examine the impact of faults in either part of the system

(synchronous or asynchronous) and the effect that fault would have on the other parts of the

system. These effects can be analyzed or simulated either at design time or run-time.

iii

Contents

Abstract ii

List of Tables ix

List of Figures x

List of Definitions xiv

List of Symbols and Abbreviations xv

Acknowledgments xvii

Dedications xviii

Chapter I Introduction . . . 1

1.1 Problem Definition and Research Motivation 1

1.2 Real-T ime Control Sys tems 2

1.3 Hybrid Sys tems 3

1.4 Dissertation Contributions 7

1.5 Dissertation Layout 8

Chapter II Petri Net Modeling of the Systems 10

11.1 Petri Net Definition 10

11.2 Petri Net Graph 12

11.3 Petri net Dynamics 12

11.4 A n Example of a P N 13

11.5 Why Petri Nets? 14

11.6 Ass ign ing Time to Petri Nets 16

11.7 Review of S o m e Relevant Petri nets : . . . 17

11.7.1 Fault Detection by Petri Nets: 17

11.7.2 Digital Control Sys tems : 17

11.7.3 Petri Nets as Discrete Control lers: 18

iv

11.7.4 Failure Model ing and Ana lys is in a Material Handl ing

Sys tem: 18

11.7.5 Cont inuous Petri Nets: 18

11.7.6 Hybrid Petri Nets: . 19

Chapter III Global Petri Nets: Definitions and Examples 21

.111.1 T imed Petri Net Definition 22

111.2 Global Petri Net Definition 22

111.3 G P N Graph . 2 3

111.4 G P N Dynamics . 24

111.5 An Example of a G P N 25

111.6 Derivation of the G P N from Convent ional P N 28

111.7 Derivation of G P N Dynamics Equation 29

111.8 Compar ison of the P N and the G P N Model ing 34

111.9 P lace and Transition Types in G P N 37

111.9.1 Transition Types : 37

111.9.2 P lace Types : . 39

111.10 Advantages of Model ing with the G P N 40

III.10.1 Hybrid Model ing; Water Tank Flow Control Examp le : 40

111.11 G P N Model ing of a Six-Transistor X O R Gate 43

111.11.1 M O S Transistor: 43

111.11.2 G P N Model ing with M O S Transistors: 46

111.11.3 Simulat ion Conc lus ions 49

V

Chapter IV GPN Properties and Analysis Methods 50

IV.1 G P N Model ing Issues 51

IV. 1.1 Hybrid Transition Matrix: 51

IV.1.2 A Sub-c lass of G P N s (When A is a Diagonal Matrix): 53

IV.2 Condit ion for G P N Modelabil i ty . . . 55

IV.2.1 An Examp le : 57

IV.2.2 Modelabil i ty Condit ion for the Synchronous Part of G P N s : . . 58

IV.3 G P N Hierarchy 58

IV.4 Ana lys is Methods 59

IV.4.1 Reachabi l i ty Tree: 59

IV.4.2 Linear Algebraic Method: 65

IV.5 Controllability 67

IV.5.1 Controllability (When A is an Identity Matrix): 67

IV.5.2 Controllability of Time-variant Sys tems : 68

IV.6 Conservat ion 69

IV.6.1 Conservat ion of G P N s with Diagonal A Matrix: 70

IV.6.2 Conservat ion of any Given G P N : 70

IV.7 Boundedness and Stability 71

IV.8 L iveness 74

IV.9 Sa feness : 75

IV. 10 Reachabi l i ty . : . 75

vi

Chapter V Global Petri Net Simulation and Analysis Tool (GPNSAT) . 76

V.1 Model ing Procedure 76

V.2 G P N S A T Top View Structure 77

V. 3 G P N S A T Substructures 78

V.3.1 Human Interface: -. . 78

V.3.2 Net Utilities: 79

V.3 .3 Simulators: . . 82

V . 3.4 Ana lys is Tools: 83

Chapter VI Modeling and Analysis of a Hydraulic Control System . . 85

VI. 1 Overal l Sys tem Structure: Level 0 85

VI. 1.1 Petri Net Ana lys is of the Model at Level 0: 91

VI.2 A More Detai led Model of the Overal l Sys tem: Level 1 94

VI.3 A Hydraul ic Control Sys tem 96

VI.4 G P N Model of the Hydraul ic Sys tem: Level 2 99

VI.5 G P N Analys is of the Hydraul ic Sys tem 103

VI.5.1 Linear Algebra ic Ana lys is : 103

VI. 5.2 Reachabi l i ty Tree Ana lys is : 105

VI. 6 Simulat ion and Ana lys is Per formance 106

Chapter VII Fault Modeling and Analysis by GPN 108

VII. 1 Sys tem Level Faults . 1 0 8

VII.2 Hydraul ic Sys tem Faults 110

VII. 2.1 Sensor Faults Mode l : 111

vii

VII.3 Fault Scenar ios : Simulat ion and Ana lys is 113

VII.3.1 Sensor One Ga in Change Fault Simulat ion: 113

VII.3.2 Sensor One Ga in Change Fault Ana lys is : 114

VII.3.3 Sensor Two Ga in Change Fault Simulat ion and Ana lys is : , 1 1 7

VII.3.4 Senso rs B ias Faults Simulat ion and A n a l y s i s : . . 119

VII.4 Other Fault Types 121

Vll.4.1 Actuator Faults Model ing: 121

VII.4.2 Actuator Faults Simulat ion and Ana lys is : 122

VII.4.3 Disturbances and Sys tem Parameter C h a n g e s : 124

VII.5 Fault Condit ions Mode led by a G P N 125

Chapter VIII Conclusions and Future Work 127

VIM.I Future Work 129

Chapter IX Bibliography 131

Appendix A Modeling of Logic Gates by GPNs 141

A.1 Inverter Gate 141

A.2 A N D Gate . 1 4 2

A .3 N A N D Gate 142

A .4 N O R Gate 142

A .5 O R Gate 143

Appendix B Derivation of the Hybrid Transition Matrix 144

Appendix C Diagonal A Matrix Transformation 147

Appendix D The Hybrid System Global Petri Net Parameters 155

Appendix E Fault Detection, Identification and Reconfiguration (FDIR)

Scheme 157

v i i i

List of Tables

Table 111.1 Structural Differences between the P N and the G P N 34

Table III.2 Simulat ion Resul ts of the G P N Represent ing an X O R Gate . . 47

Table VI.3 Roots of Hk + I Matr ices Formed by the Firing of Var ious

Hybrid Transi t ions. . 105

Table VII.4 Senso r One Ga in Change Faults and Their Ana lys is

Resul ts 117

Table VII.5 Sensor Two Ga in Faults and Their Ana lys is Resul ts 119

Table VII.6 Sensor B ias Faults and Their Ana lys is Resul ts 121

Table VII.7 Actuators Faults and Their Ana lys is Resul ts . 124

Table A.8 The Truth Table for Var ious Digital Logic Ga tes 141

ix

List of Figures

Figure 1.1 A Typical Real -T ime Control Sys tem 3

Figure 1.2 Sys tem Classi f icat ion and Thes is S c o p e 7

Figure II.3 A Simple Example of a Petri Net Model ing a Printing

P rocess 13

Figure III.4 A n Example of a Simple G P N 25

Figure III.5 A Genera l G P N with all Poss ib le A rcs 31

Figure III.6 Var ious Transition Types in the G P N . 38

Figure III.7 Var ious P lace Types in the G P N . 4 0

Figure III.8 (a) A Simple Flow control Sys tem, (b) The G P N Model of (a). . 41

Figure 111.9 P lace Markings Versus Time Plots for the Flow Control

Example . . 42

Figure 111.10 n M O S and p M O S Transistor Symbo ls . . . 43

Figure 111.11 Hybrid G P N Model of an n M O S Transistor 44

Figure 111.12 Simulat ion Plots of Different Vol tages in an Ana log G P N

Model of an n M O S Transistor 46

Figure 111.13 The Six-Transistor X O R Gate 47

Figure 111.14 Plots of the Input and Output Signals of the Hybrid Model of

the X O R Gate 48

Figure 111.15 H S P I C E Simulat ion Resul ts of the Six-transistor X O R Gate. . 49

Figure IV. 16 Hybrid Transit ions 51

Figure IV.17 Two Examples of Nets not A l lowed by Diagonal A

Restriction 54

Figure IV. 18 Two Examples of Nets A l lowed by Diagonal A Matrix

Restrict ion 55

Figure IV. 19 A n Algorithm for Construct ing G P N and P N Reachabi l i ty

Trees 61

X

Figure IV.20 Examples of a G P N used for Construct ion of G P N R T s . (a) A

G P N with only Asynchronous Transit ions, (b) A G P N with an

Extra Synchronous Transition 63

Figure IV.21 Reachabi l i ty Tree of the G P N Given in Figure IV.20(a) 64

Figure IV.22 Reachabi l i ty Tree of the G P N Given in Figure IV.20(b) 65

Figure V .23 Model ing Procedure U s e d for Translat ion of Sys tem

Speci f icat ions into a Complete Net Mode l . 77

Figure V .24 The Overal l Structure of the G P N Simulat ion and Ana lys is

Tool (G P N S A T) 78

Figure VI.25 Block Diagram of a Hydraul ic Control Sys tem Hardware

Structure. . ' . . 86

Figure VI.26 Block Diagram of a Distributed Sys tem at Level 0. 87

Figure VI.27 Petri Net Mode l of the Sys tem shown in Figure VI.26 88

Figure VI.28 Simulat ion Resul ts of the P N Model G iven in Figure VI.27.

(a) P lace pi Marking, (b) P lace p2 Mark ing, (c) P lace p 3

Marking, (d) P lace pA Marking 90

Figure VI.29 Simulat ion Resul ts of the P N Model G iven in Figure VI.27

when the Number of Bus Channe ls is Increased to Two. (a)

P lace pi Marking, (b) P lace p2 Mark ing, (c) P lace p 3 Marking.

(d) P lace PA Marking 91

Figure VI.30 The Reachabi l i ty Tree of the Petri Net Shown in Figure VI.27 . 92

Figure VI.31 A More Detai led Model of the Overal l Sys tem: Level 1. . . . 94

Figure VI.32 A Petri Net Model of the Distributed Sys tem Given in Figure

VL'31 . 9 5

Figure VI.33 Schemat ic Diagram of a Two-stage Hydraul ic Valve Sys tem . 97

Figure VI.34 Block Diagram Representat ion of the Plant and the Controller

Corresponding to Transit ions U and t 6 in Figure VI.32 98

xi

Figure VI.35 Global Petri Net Model of the Plant Shown in Figure VI.34. . 99

Figure VI.36 Global Petri Net Model of the Controller Shown in Figure

VI.34 100

Figure VI.37 Compar ison of Simulat ion Resul ts of the Complete Sys tem by

the G P N Model and a Convent ional Control Sys tem

Simulator, (a) Plant Output P l a c e d in Figure VI.35, (b)

Control Input P lace Ve in Figure VI.36, (c) Plant Output X0,

(d) Control Input Ve 101

Figure VI.-38 Result of the Simulat ion of the Complete Sys tem by the G P N

Model (a) Plant Output Validity P lace P 5 in Figure VI.32, (b)

Control Input Validity P lace p 1 0 in Figure VI.32 102

Figure VII.39 Simulat ion Resul ts of the Hybrid Sys tem when the Bus

A c c e s s e s are not Met. (a) Hydraul ic Sys tem Output (Place

X0 Marking), (b) Control Input (Place Ve Marking), (c)

Desi red Input Validity (Place p2) Marking, (d) "All Other"

Subsys tem (Place P 7) Marking. 110

Figure VII.40 A Sensor Fault Model 111

Figure VI 1.41 A Sensor Fault Model as a More Detai led Representat ion of

Sensor Transition 112

Figure VII.42 Simulat ion Plots of the First Sensor Ga in Faults, a-b) Senso r

Cut off.t?/ = 1. c-d) Sensor Ga in Change to Gf = -0.5. e-f)

Sensor Ga in Change to Gf = - 1 . g-h) Sensor Ga in C h a n g e

to Gf = -1.5 115

Figure VII.43 Simulat ion Plots of the S e c o n d Sensor Ga in Faults, a-b)

Sensor Cut off, Gf — 1. c-d) Sensor Ga in C h a n g e to

Gf = - 4 . e-f) Senso r Ga in Change to Gf = - 7 . . 118

X l l

Figure VII.44 Simulat ion Plots of the Sensors B ias Faults, a-b) Sensor B ias

of "10,(1 = 10. c-d) Sensor B ias of 100, d = 100 120

Figure VII.45 An Actuator Fault Model 122

Figure VII.46 Simulat ion Plots of the Actuator Faults, a-b) Actuator

Cu to f fC / = 1. c-d) Actuator Ga in Change to Gf = -0.2. e-f)

Actuator Ga in Change to Gf = -1.2. 123

Figure A .47 The Inverter Gate Mode led by a G P N 141

Figure A .48 The A N D Gate Mode led by a G P N 142

Figure A .49 The N A N D Gate Mode led by a G P N 142

Figure A .50 The O R Gate Mode led by a G P N 143

Figure C.51 A Two-P lace , Two-Transit ion G P N with All Poss ib le A rcs . 147

Figure E.52 The FDIR S c h e m e Block Diagram 158

xiii

List of Definitions

Definition 2.1 Petri Net Section II. 1

Definition 2.2 Enabled Transition Section II.3

Definition 3.1 Timed Petri Net Section i n

Definition 3.2 Global Petri Net Section IH.2

Definition 3.3 Diagonalizing Function Section IH.7

Definition 3.4 One Function Section III.7

Definition 3.5 PN Incidence Matrix (N Section JJL7
Matrix)

Definition 3.6 PN Transition Firing Vector Section IH.7

Definition 3.7 GPN Transition Firing Section IH.7
Matrix

Definition 3.8 GPN Dynamic Equation Section IH.8

Definition 3.9 : PN Dynamic Equation Section IIJ.8

Definition 3.10 : Synchronous Transition Section IH.9

Definition 3.11 : Asynchronous Transition Section IH.9

Definition 3.12 : Real Place Section IH.9

Definition 3.13 : Integer Place Section IH.9

Definition 4.1 : Hybrid Transition Section IV.1

xiv

List of Symbols and Abbreviations

Symbol Definition

A Synchronous Arc Weight Matrix
Connecting Places to Transitions, Standard
Control Matrix

B Synchronous Arc Weight Matrix
Connecting Transitions to Places, Standard
Control Matrix

DEDS Discrete Event Dynamic System

Diag Diagonalizing Function

Fk G P N Transition Firing Matrix at Instant k

fk PN Transition Firing Vector at Instant k

FDIR Fault Detection, Identification and

Reconfiguration

FTP File Transfer Protocol

G P N G lobar Petri N e t -

GPNRT Global Petri Net Reachability Tree

GPNSAT Global Petri Net Simulation and Analysis
Tool

Hybrid Matrix at Time Instant k

Human Interface

Health Monitoring Process

Identity Matrix

Time Instant, Sapmling Instant

Number of Places

Marking at Time Instant k

Initial Marking

Incidence Matrix

Number of Transitions

One Function

H(k),Hk

HI

HMP

I

k

1.

M(k),Mk

M (0)

N .

n

One

XV

Symbol
P = {Pl,P2, • • • ,Pm} .

Pi

Po

P N

P N R T

RT

T — {ti, ̂ 2,tn}

T P N

u

w, pi

Wi tp

X

Y

z

u

Definition
Places

Input Place

Output Place

Petri Net

Petri Net Reachability Tree

Reachability Tree

Transitions

Timed Petri Net

Transition Times

Input Vector

Asynchronous Arc Weight Matrix
Connecting Places to Transitions

Asynchronous Arc Weight Matrix
Connecting Transitions to Places

State Vector

A n Abrbitrary Vector, Output Vector

z Transform

Infinity Element in a Reachability Tree

xvi

Acknowledgments

My first and foremost thanks go to my supervisors, Professor Mabo R. Ito and Professor

Peter D. Lawrence, for their guidance and insight. They remained my source of inspiration

and faith in this work. Their support and assistance are gratefully appreciated.

I wish to acknowledge my Ph.D. supervisory committee members, Dr. Andre lyanov and

Dr. Jeffrey Joyce, who provided me with the most needed help since the start of this research.

I also hope to thank Dr. D. Cherchas for acting as the chair of the examining committee

and conducting the defence. I am also heavily indebted to my external examiner, Dr. K.

Valavanis, and members of my examining committee, Drs. A . Mackworth, M . Davies and

G. Bond. I would like to thank them all for their excellent comments and suggestions.

Next, I would like to sincerely thank our EE secretaries, Leslie Nichols and Doris Metcalf,

who always looked after all the forms and office work.

And finally I should thank my friends in the EE department and high performance

computing lab, especially Kendra Cooper for proofreading my thesis draft, and my Iranian

friends at U B C who provided the "home away from home" feeling for my family.

xvii

Dedications

To my wonderful wife Fereshteh, whose support, under­

standing and encouragements made it all possible.

And

To our sweet daughter, Raumina who has made our lives

so much more fun, purposeful, and motivated.

xvii i

Chapter I Introduction

In this dissertation, a new methodology for the modeling of hybrid systems is developed.

Hybrid systems are defined as systems which have both time- and event-driven parts. Such

systems can be found in many application areas, such as manufacturing [1], real-time control

systems [2], communication [3], robotics, and production [4]. This modeling technique can

also be used for the modeling and simulation of faults in these systems [5]. The system is

modeled by a new extension of Petri nets which can replicate the system at various levels of

abstraction. This analytical and redundant model can be used to detect and recognize faults.

This chapter is an overview of the preliminary notions, concepts, and definitions which

are required in the presentation of these research findings. It starts by defining the problem

and stating the research objectives. Then the primary application area, the control of real­

time systems, is described. Hybrid systems are also defined, and their characteristics are

discussed. The chapter ends by enumerating the dissertation contributions and presenting

the dissertation layout.

1.1. Problem Definition and Research Motivation

Control and system scientists have mainly considered systems whose states change with

time. Such systems are referred to as time-driven systems. But with the advent of computers

and digital devices, we are faced more and more with systems whose dynamics change

with events [6]. These events, which are either internal to the systems or are due to the

environment, result in discontinuous states. The state trajectories of such systems are. made

up of these changes. Such systems are referred to as discrete-event or event-driven systems.

Modeling, simulation, and analysis of any practical system (with a computer and

communication parts), has to consider both the time-driven and event-driven sub-systems.

Systems which comprise both these sub-systems are called hybrid systems. Event-driven

systems have been modeled by many methods, such as Petri nets [7], state machines [8],

1

/. Introduction 2

finite state Markov chains, queueing networks, and Statecharts. On the other hand, control

system theory has dealt with the modeling, design, and simulation of time-driven systems.

In this thesis, a new methodology and technique is developed and presented which can

study hybrid systems using a single modeling tool. This methodology can be applied to

any system which is to be modeled and studied as a hybrid system. The study of faults

in dynamic systems is a very good example for application of hybrid system modeling

[9]. Faults are considered events which change the dynamic (time-driven) behavior of the

systems. Modeling fault-prone systems as hybrid systems will allow one to study and predict

the effects of faults on overall system behavior [10]. In this way these faults can be detected

and recognized by schemes developed for this purpose.

The modeling methodology, which is presented in this thesis, can be applied to any type

of hybrid systems. This is shown through a series of examples. One example, which is dealt

with quite thoroughly in Chapter in , is modeling of a digital X O R gates composed of MOS

transistors. These transistors are modeled at both the analog and digital (switch) levels.

However, our primary target area is modeling and analysis of real-time control systems

which is described next.

1.2. Real-Time Control Systems

Real-time controllers are used increasingly in various facets of life, ranging from home

appliances to large and complex systems for industrial and military applications. Real-time

means that the correctness of the computation, or the decision, depends not only on the

logical correctness, but also on the time at which the result is produced [11]. It should

be noted that a fast computation does not guarantee real-time correctness since it may not

be completed at the appropriate time [12]. Typical real-time control systems consist of an

object or controlled environment connected to a control system (computer) via sensors and

actuators (Figure 1.1). Sensors accept data at regular periods or are event-driven [13]. The

/ . Introduction 3

sensor inputs are used, along with the control strategy, to calculate the control inputs. These

control inputs are applied to the system through the actuators.

Sensors
Status

Control
System

(Computer)

Sensors ^ .

Control
System

(Computer)

Target
System

Control
System

(Computer)
Command

Actuators Actuators ^

Figure 1.1 A Typical Real-Time Control System.

1.3. Hybrid Systems

Since the advent of computers, and their widespread use in everyday life, a new class

of systems has emerged called hybrid systems. The prime characteristic of hybrid systems

is that they incorporate both continuous components, usually called plants, and also digital

components such as digital computers, sensors and actuators controlled by programs. These

programs are designed to select, control and supervise the behavior of the continuous parts.

The control program reads the sensor data, sampled at discrete times, computes the next

control law and imposes it on the plant.

The challenge is to develop methodologies which, given a performance specification

and system description, extract control programs which will force the plants to meet their

performance specifications. This objective cannot be met with any of the traditional modeling

and analysis methodologies, which are aimed specifically at either of the continuous-time or

discrete-event systems [14]. '

The modeling and analysis of hybrid systems is a complex task which has slowly been

gaining attention. Examples of hybrid systems include robots, multimedia applications,

communication networks, and supervisory control systems. The motivation for studying

hybrid systems is to extend the scope of system theory to handle these examples. The ability

to model such systems will provide a means for their control and performance evaluation.

/ . Introduction 4

The computer and its interfaces in all systems can be characterized as discrete-event

dynamic systems (DEDS) [15]. The state of DEDS changes only when an event occurs. It

is assumed that nothing important occurs between two successive events. The dynamics of

the system are the result of complex interactions of various conditions and events in it [16].

Examples of an event are the pressing of a floor button in an elevator, arrival of a part in a

manufacturing system, or failure of a computing system [17].

Another class of systems commonly encountered are those whose dynamics depend on

time, referred to as time-driven systems. These systems (continuous time, discrete-time, and

sampled-data) have been studied under traditional control system theory. In these systems,

the maps from output measurements to control inputs are continuous. Time-driven systems

are characterized by differential or difference equations and have been studied in much

greater detail compared to DEDS.

There has been an increasing interest in the study of hybrid systems which has resulted

in many approaches to their modeling and analysis. A good starting point for the study of

these works are [18, 19, 20]. In the following some of these works are reviewed. Modeling

and analysis of hybrid systems by Petri nets are reviewed at the end of next chapter after

PNs are formally defined.

Hybrid systems are inherently concurrent and reactive [21]. A hybrid modeling method­

ology should incorporate techniques for specifying real-time constraints. Hybrid systems are

mostly modeled as interacting networks of automata, possibly with infinite number of states,

and input and output letters [22]. An automaton consists of sets of states, input symbols,

output symbols, transition functions and initial conditions. Timed automata are defined as

those which accept timed input strings [23]. This modeling is used for control of intelligent

space vehicles [22]. The main problem with this approach is that it dichotomizes the system

into symbolic (discrete) and non-symbolic (continuous) parts. As a result an interface is

needed to convert continuous-time signals into sequence of symbols and vice versa. The

complexity of the interface determines the ability to model and analyze various systems.

/. Introduction 5

The interface given in [22] is quite simple and works only for constant plant inputs. More

complex interfaces complicate the analysis of the overall system.

Another approach is to model the hybrid systems as products of nonlinear control and

finite state automata [24]. According to this view, the automaton switches between the control

systems, and that the switching is a function of the discrete input symbols or letters that it

receives. The plant state-space is divided into regions (modes). For example, an aircraft

control system may have climbing, descending and level flight modes. To go from one mode

to a desired one needs a look-up table for suitable control [18]. The mode switching is quite

ad hoc since even for simple continuous plants, the identification of possible behaviors is

mathematically a very complex task. Moreover, identifying the effects of the proposed mode

switching scheme is even more complicated. The stumbling block for the implementation of

this scheme is the need for high speed database retrieval in real-time applications.

Manna and Pnueli use an extended version of discrete transition systems (itself an

extended version of Statecharts), called phase transition systems to specify hybrid systems

[25, 26]. Two types of semantics are considered. Super dense semantics is based on hybrid

traces, and sampling computations sample the continuous behavior of a hybrid system at

countably many observation points. The first one provides a more accurate description of

the behavior whereas, the latter semantics is easier for verification. A compromise can

be achieved by considering important events. Determination of important events is system

dependent and requires a through knowledge of the system behavior which is very difficult

for any moderately-complex system. The verification is based on an extension of temporal

logic approach which has proven useful for the formal analysis of discrete systems. Their

method uses sampled computation and important events together with an inductive proof

rule to verify properties of hybrid systems [21]. •

Constraint nets are developed as an algebraic computation model of general dynamic

systems [27, 28, 29]. The plants, control structure and environment are modeled in a

single on-line framework under multiple levels of abstractions. The system requirements

/ . Introduction 6

are specified by temporal logic and timed V-automata. Extended linear temporal logic is

used to represent temporal properties such as safety, liveness and real-time response. Timed

V-automata are developed by defining timed states from V-automata and are used to represent

any formula in real-time temporal logic. Model checking and stability analysis are used

for behavior verification. The constraint nets approach falls short in analyzing the system

properties such as controllability and observability. Such properties may possibly be specified

and analyzed at the requirement specification stage but the current work does not address

them explicitly. Another limitation is that this method cannot specify uncertainties using

probabilistic and stochastic system behavior.

As a general observation it is worth nothing that there seems to be a gap between the

hybrid system modeling approaches attempted by the computer science and the control system

research communities. The language used and the problem statement are very different even

though they are aimed at modeling and analyzing the same systems. There is an urgent

need for methods which can close this gap and pose the problem in a manner and structure

which is understandable by both communities. The methodology developed in this thesis is

an important step in this direction.

Figure 1.2, which is adapted from [30], shows the scope of our research and its domain

as a part of system theory classification. Our research is concerned with a restricted class

of hybrid systems. They include the systems that can be modeled by the grey ovals in

this classification. The term hybrid system in this thesis refers to the class of dynamic,

time-invariant, discrete-time systems which are either event- or time-driven. Continuous-

time systems which can be discretized (for example, by sampling) can also fall within this

domain.

/ . Introduction 7

(^Systems

(Static •) (Dyn a m i c

Time-Varying) Q Time-lnvariantJ)

(^Continuous-Time_) ^Di$Cfete--Tirne^.

Time- Driven ") (^Even-Driven^)

Figure 1.2 System Classification and Thesis Scope.

1.4. Dissertation Contributions

The main contributions of this dissertation are the development of a method for the

modeling and analysis of hybrid systems within the Petri Net framework and an examination

of their fault-modeling and detection issues. These contributions can be listed as follows:

1. Development of a new methodology for modeling hybrid systems, based on a new

extension of Petri net formalism. This extension, called global Petri net, can be used to

model both discrete-time and discrete-event systems (Chapter III).

2. Definition and derivation of GPN dynamic equations (Chapter III).

3. Development of a set of analysis tools for checking the properties of systems modeled

by GPNs. These tools examine the net properties, such as boundedness, stability,

conservation, and controllability (Chapter IV). A sub-class of GPNs is also developed

and defined, which can ease the analysis burden.

4. Development of a simulation and analysis package called GPNSAT. This package can

model, simulate, and analyze any given hybrid system (Chapter V).

5. Application of the methodology developed to a hybrid system consisting of a hydraulic

control system, its input-output interfaces, and a communication system. This system is

simulated and analyzed for the relevant properties (Chapter VI).

6. Application of the above principles in modeling faults in a hybrid system. These fault

models are simulated and analyzed by the GPN methodology (Chapter VII).

/. Introduction 8

1.5. Dissertation Layout

This dissertation comprises eight chapters. The present chapter was devoted to problem

specification and research motivation.

The second chapter provides the fundamental definitions related to the modeling of

discrete-event systems by Petri nets (PNs). We define the PN structure and dynamics. These

definitions are essential for following the rest of this thesis' notations and concepts. The

reasons for choosing this platform, to solve the problem at hand, are given and its power

and shortcomings are also described. A brief survey of some of the PN-related research in

modeling control systems and fault analysis is provided at the end of this chapter.

Chapter III formally defines global Petri nets. Derivation of the G P N from conventional

PN and derivation of the GPN dynamic equations are also given. At the end of this chapter

some modeling examples are included. These examples are used to show the ease and power

of modeling with the GPN, and are chosen from different areas of application.

Chapter IV is devoted to the investigation of GPN properties and analysis methods. First,

some modeling issues, which will be useful in the later analysis, are discussed. The GPN

modelability conditions are derived next. It is shown what sort of systems can be modeled

with this net. Then, the GPNs hierarchy is discussed. The analysis methods used for GPNs

are explained in the final two sections. The application of analysis methods in finding the net

properties such as controllability, reachability, boundedness, and stability are also explained.

Chapter V describes the tool which has been developed to assist in the modeling,

simulation, and analysis of hybrid and discrete-event systems. This tool is called the "Global

Petri Net Simulation and Analysis Tool (GPNS AT)". Some of its salient features are presented

and use of the tool is described.

In Chapter VI , application of the GPN in the modeling and analysis of a complete real­

time hybrid control system is demonstrated. This system includes a hydraulic control system

with its interfaces with the other parts of the system. The system is modeled as a distributed

/. Introduction 9

computing system, with nodes dedicated to various tasks such as control, actuation, and

operation.

Chapter VII is dedicated to fault modeling, simulation, and analysis by global Petri nets.

The system, described in the previous chapter, is used to model and analyze faults in a

hybrid system. The chapter starts with system level faults (bottlenecks) and then models and

analyzes hydraulic system faults.

Conclusions are given in the last chapter. The scope and limitations of the GPN modeling

and simulation are discussed. This chapter also includes some recommendations for future

research directions.

Chapter II Petri Net Modeling of the Systems

Petri net (PN) theory [31, 32] was developed by Carl Petri [33] in 1962, primarily as

an abstract and formal representation of information flow. Over the years it has turned into

one of the most powerful tools for the modeling of systems exhibiting concurrency and

synchronization characteristics. Petri nets in their various forms have been used to model

and analyze systems in different application areas such as manufacturing [34—36], real-time

processing [37, 38], computer architecture [39, 40], dynamic control [41, 42], supervisory

control [43-45], material handling [46, 47], and robotics [48].

In this chapter we start by providing the basic Petri net concepts and definitions which

are essential for following the rest of this thesis. We then present an outline of the reasons

for choosing the Petri net as our modeling tool. At the end of this chapter, a survey of the

works related to modeling of real-time control systems by Petri nets is given. This survey

also includes the works which use PNs for fault detection and identification.

11.1. Petri Net Definition

The Petri net is a directed graph consisting of two types of nodes, called places and

transitions. Weighted and directed arcs connect places to transitions, or vice versa. Any

given system is modeled as sets of conditions and events. Places represent conditions, and

transitions represent events. Each transition has a set of input and output places which

represent the pre-conditions and post-conditions of the transition. The state of a net is

modeled by the presence or absence of a token in the places. The number of tokens in

a place is also referred to as the marking of the place. The initial marking represents the

initial condition or the initial state of the net. The state of the net is changed by the firing

of transitions, which models the events taking place. An event can happen only when its

pre-conditions are satisfied and is represented by an enabled transition. The firing of a

10

//. Petri Net Modeling of the Systems 11

transition changes the marking of its input and output places, modeling a change in its pre-

and post-conditions. We now formally define a Petri net.

Definition 2.1. Petri Net: [31, 32] A Petri net (PN) is a five tuple structure defined as

where P — {pi,P2, •••,Pi} is a finite set of places, and / > 0.

T = {h,t2, ...,tn} is a finite set of transitions, and n > 0 (any arbitrary place is

represented as p, and any arbitrary transition as t).

There are two weight functions, Wpt and Wip, which attach a positive integer weight

to each arc of the net connecting places to transitions (pt) and transitions to places (tp),

respectively.

The initial marking is represented by M(Q) = [mi(0) m 2(0) . . . m/(0)] and is a

function from the set of places to the non-negative integers (superscript T in this thesis

always refers to transpose of a matrix). The marking at any arbitrary. time instant k is

represented as M(k) = [mi(fc) m,2(k) ... mi(k)] and sometimes is referred to as the

number of tokens in each place.

The other formal Petri net definition which is widely used [31, 49] defines PN as:

where P, T, M(0) are the same as defined in Definition 2.1. I is an input mapping

P x T —> {0,1} (input incidence application [49]) corresponding to the set of directed

arcs from P to T. These arcs are called input arcs. O is an output mapping T x P ^ { 0 , l }

(output incidence application [49]) corresponding to the set of directed arcs from T to P.

These arcs are called output arcs.

The conversion between these two forms of definition is straightforward and is governed

by the following equations.

PN = (P,T,WpUWtp,M(0)), (HI)

PN = {P,T,I,O,M(0)) (H.2)

//. Petri Net Modeling of the Systems 12

wpt=[wPitj], (n.3)

where WVtij = I(Pi,Tj) and

Wtp= [Wtjpi], (H.4)

where WijPi = 0(Tj,Pi). Wpt and Wtp are called input and output incidence matrices.

11.2. Petri Net Graph

The graphical representation is one of the attractive features of Petri nets. It allows

a precise and easily understood display of the formal theory. Places and, transitions are

represented by circles and bars, respectively. Arcs are shown by arrows, and tokens by small

dots inside the places. Arc weights are represented by numbers placed close to the arcs.

Absence of a number indicates a weight equal to one.

11.3. Petri net Dynamics

The state of a net is represented by the number of tokens in each place. The movement

of tokens between places describes the dynamics of the net, and is accomplished by firing

of the enabled transitions. Let *x and x' be called the preset and postset of x, where x

is either a place or a transition.

Definition 2.2. Enabled Transition: [31, 32] Places P l and p0 are called input and output

places of transition t if they belong to the sets't and t*, respectively: Then, transition t G T

is called enabled under a marking M(k) of a PN iff Vpj € ' t : MPi(k) > Wpt(pt,t).

An enabled transition can be fired which yields a new marking, given by

MPi(k + 1) = MPi(k) - Wpt(Pi,t) forallPie't, (H.5)

MPo(k + 1) = MPo(k) + Wtp(t,Po) for all p0 € f , (E.6)

Mp(k + 1) = Mp(k) otherwise. (JJ.7)

//. Petri Net Modeling of the Systems 13

II.4. A n Example of a PN

The following example is meant to illustrate the above concepts and definitions. Fig­

ure II.3 shows a Petri net which models a printing process. There are five places rep­

resenting various conditions, such as paper availability and printer queue, as defined by

P = {pi,p2,P3,P4,P5} = { Paper Available, Printer Queue, Printer Idle, Printing, Print

Ready}. There are also three transitions, given as T = { i i , ^ , ^ } = (Print Request Ar­

rives, Start Printing, Finish Printing}. Printing can start when there is enough paper, a print

request, and an idle printer.

Paper
Available

Finish
Printing

Print Request
Arrives Q Print

Ready

Figure n.3 A Simple Example of a Petri Net Modeling a Printing Process.

Arc weight matrices are written as:

0 1 0
0 1 0
0 1 0
0 0 1
0 0 0

Wi tp

0 1 0 0 0
0 0 0 1 0
0 0 1 0 1

Each element of the arc weight matrices, Wpt and Wip, represents an arc connecting a place

to a transition or vice versa, respectively. For example Wpt(l,2) — 1 indicates that there is

an arc connecting place p\ to transition ti with an arc weight equal to one.

The initial marking, with reference to the figure, is written as:

Af(0) = [3 1 1 0 0

//. Petri Net Modeling of the Systems 14

which indicates that there are three units of paper, one print request, and an idle printer.

Under this condition, the transition representing "start printing" is enabled. This transition

fires by removing a token from each of its input places (paper available, printer queue, and

printer idle). It then adds a token to its output transition, showing that printing is taking

place. The place marking vector then becomes:

M (l) = [2 0 0 1 0] T .

The printing completion is modeled by the firing of transition £3. This transition removes a

token from the place which is modeling the printing job (J04) and adds a token to the print

ready place (ps). This state is presented by the following marking:

M(2)=.[2 0 1 0 1] T . •

The next printing job starts once there is a new request in the printer queue, represented

by a token in the place P2.

11.5. Why Petri Nets?

Many modeling and analysis methods, such as dataflow graphs [50, 51], higraph and

statechart [52, 53], state machine design, constraint modeling [54, 29, 28], and structured

design have been used to model and design various computing systems. Each of these

methods has found success in the design of a particular type of system. However, if

we compare the PN modeling with each of the above methods, it offers one or more of

the following advantages over these methods. These advantages are listed to justify our

selection of this method:

1. The model can represent concurrency and synchronization, which are integral parts of

any computer system.

2. Both hardware and software can be represented by this model.

3. PN models can be developed and analyzed for various abstraction levels from system

level transactions down to the circuit logic level [39, 55]. As noted in [56], a hierarchical

//. Petri Net Modeling of the Systems 15

description is not only desirable, but is essential since it is impossible to describe any

real system with a sufficient degree of detail in a single model.

4. There have been already many methods developed to analyze the Petri net model [57,

58]. Some of these methods are marking tree, reachability, liveness, boundedness, and

invariance analysis [59, 60].

5. There is already a well-established interest in the PN theory which can benefit our model

development efforts. There are many commercial PN tools which can be useful for

modeling, analysis, and simulation of the model [61, 62]. There are at least two World

Wide Web and FTP sites which provide the latest information on Petri nets and the latest

tools [63, 64] available.

6. PNs are very easy to understand and work with, due to their graphical and precise

representation scheme.

7. With the addition of temporal and stochastic specifications, the PN provides a structured

framework for system simulation and performance evaluation.

8. PNs can be used in the various steps of system development and operation, such as

requirement definition, design, testing, simulation and, on-line replication.

There are, however, some drawbacks to and trade-offs in using Petri nets which have to

be considered. These are the following:

1. Only discrete-event (asynchronous) systems can be modeled with the basic Petri nets. In

most real-time control systems, we encounter many elements which have to be modeled

as time-driven systems.

2. Even though the basic Petri net has a mix of simplicity and power of expression for

essential interactions, it needs further capabilities to be able to model the complexities

of actual systems [56]. Moreover, useful extensions for real-time applications are still

limited.

3. Modeling, analysis and simulation of a PN is very expensive and requires a large amount

of processing power and time.

//. Petri Net Modeling of the Systems 16

4. Some of the analysis methods are restricted to subclasses of PNs. This issue is addressed

in Chapter IV on GPN analysis methods.

Our extension of the Petri net theory, which will be formally presented in the next

chapter, is meant to address some of these shortcomings. Here we would like to point out

the folio wings:

1. Hierarchical modeling and distributed detection ease the processing burden and allow

more detailed modeling only when it is needed.

2. A new extension to the existing PN is presented which will greatly increase its modeling

capabilities and ease of modeling for real-time systems.

3. This new extension has the capability of modeling hybrid systems with both discrete-

time and event elements.

11.6. Ass ign ing Time to Petri Nets

There are two approaches for adding temporal specifications to the basic PN. A stochastic

PN (SPN) [65] is obtained by associating exponentially-distributed firing times to the

transitions. Stochastic models are well-suited to performance evaluation but are not suitable

for the modeling of real-time systems. In real-time systems, we are concerned with the worst

case timing requirements because the system receives input from uncontrollable environments

and not meeting the timing requirements may have catastrophic results. Thus, SPNs cannot

be satisfactorily used for modeling real-time systems.

The other method for temporal specification is to assign time to transitions or, alterna­

tively, to places [66, 48]. In the first extension, time is associated with each of the transitions

of the original model. With this model, transition firing is no longer an instantaneous event

as defined in the original PN model. Another extension associates a delay to each place

in the classical net. It has been shown that assigning time to a transition or a place are

equivalent, and any one of them can be transformed to the other one [67].

//. Petri Net Modeling of the Systems 17

The two most important extensions are time P N and timed PN (TPN). The time PN

extension [68] defines and associates an interval [tmin,tmax], with each transition, which

represents the minimum and maximum time during which an enabled transition should fire.

Timed PNs are formed simply by associating a transition firing time to each transition [66].

II.7. Review of S o m e Relevant Petri nets

In this section we review some of the prominent research in Petri net modeling which has

been aimed at modeling dynamic systems and/or fault detection and identification. We will

briefly describe some of their salient features and discuss their advantages and shortcomings.

The interested readers are referred [69-75] for further information about these issues.

11.7.1. Fault Detection by Petri Nets: Petri nets have been used to model a pressurized

water reactor's cooling loop [76]. This model is used to detect faults such as leaks in vessels

or temperature drifts in the sensors. This method is suitable for detecting failures with

very long time constants. Fault detection is performed by checking whether the number of

tokens in the places representing the cooler loop remains constant (conservativeness property).

The actual, number of tokens per place is compared with the initial token content of the

total process. The method presented is applicable only to systems which have physical

conservation qualities. In addition, this method can only detect fault as no attempt is made

at recognizing its cause. In other words, it cannot localize the fault.

11.7.2. Digital Control Systems: The main purpose of this work [77] is to describe a

programmer workbench. A workbench is a package which helps with the creation of a

program, in which the code to be tested runs, together with a comprehensive diagnostic

utility. A Petri net model is used to define how the utilities of the workbench and the

different parts of the control system exchange data. Places and transitions represent data

storage (mailboxes) and functions, respectively. Tokens are used to show if a place has all

the expected data. This method does not model time-driven processes but instead represents

them as a set of conditions and discrete-events.

//. Petri Net Modeling of the. Systems 18

II.7.3. Petri Nets as Discrete Controllers: This paper [78] presents an approach to the

specification, modeling, and analysis of discrete manufacturing systems. Petri nets have

been used for controller specification and implementation. The control computer uses a PN

model of the controlled system, using the marking of the net, to determine control actions.

In generating a PN model, state values in the systems specification are mapped into distinct

PN places. For example, state X , with the possible state values a, b, c, and d, would be

mapped onto four PN places. This.sort of modelling can be used only for systems which

have a limited number of states with just a few discrete values. Otherwise, the net size can

explode even for small examples. The reduced reachability graphs are used which permit

efficient evaluation of the state behavior of the system sub-components.

n.7.4. Failure Modeling and Analysis in a Material Handling System: Petri nets are

used for modeling, simulation, and analysis of failures in a material handling system [47].

A new extension of Petri nets is used called Extended P N (EPN). Six types of places, such

as action, sink, and switch are used to model different conditions which arise in the system

[46]. Failures considered in the system include both hard failures (in conveyer belts, camera,

or the robots), and soft failures (due to transient faults). Reachability graphs are used to

analyze safeness, liveness and reversibility properties.

H.7.5. Continuous Petri Nets: The markings in an ordinary Petri net have either a binary

or an integer value. A binary marking represents the validity of a condition whereas, an

integer marking may signify the number of clients in a queue or the number of parts in a

resource.

The continuous Petri net is a model in which the number of marks in the places are

positive real numbers [79,49]. The inspiration for, having real number markings comes from

research in production systems in which the number of parts is modeled by real numbers.

In this model each mark is cut into infinitely smaller pieces. A transition is enabled if all

of its input places have a marking greater than zero (in conventional Petri nets, the markings

//. Petri Net Modeling of the Systems 19

should be greater than or equal to one). A quantity TJ of transition Tj can be fired with

0 < Tj < min(M(pa),..., M(p(,)) , where (M(pa),..., M(pb)) is the set of input places of

Tj. Then, TJ is known as a firing quantity. In each transition firing, this quantity is subtracted

and added to the input places and output places of the firing transition, respectively.

The difference between a discrete PN and a continuous PN is not a structural difference,

since they differ only in their markings. Therefore, all structural properties which hold true

for the former are true for the latter as well.

Timed continuous Petri nets are formed by assigning a firing speed to each transition.

A transition can start firing when it is enabled. Firing frequency or speed is taken to be the

inverse of transition delay defined as transition time for the timed Petri nets. Once a transition

fires, tokens are transferred according to the firing speed of the transitions. In this way, the

marking of a net changes continuously instead of in discrete steps, as in Petri nets. There

are two approximations in calculating the firing speeds associated with each transition. The

resulting models, corresponding to these approximations, are called constant speed continuous

Petri nets (CCPN), and variable speed continuous Petri nets (VCPN) [49,80].

The main problem with this methodology is that the variable speed is dependent upon

the markings of the net. Computation of the firing speed for transitions with variable speed

becomes very expensive. In addition, construction of evolution graphs, which are used instead

of the reachability trees, is more complicated. In these graphs one needs to include the firing

speed of each transition. These speeds keep changing with changes in the markings. Finally,

determination of enabled transitions, even in the case of CCPN, is not as straightforward as

for simple PNs and this determination needs a complex algorithm to be implemented.

II.7.6. Hybrid Petri Nets: Hybrid Petri nets have been defined by the same group of

researchers who have developed the continuous PN [80,41,49]. A hybrid PN is composed of

both discrete PN places and transitions (D-places and D-transitions) and continuous PN places

and transitions (C-places and C-transitions). Markings and arc weights of the continuous parts

can take any positive real number value, just as with continuous PNs.

//. Petri Net Modeling of the Systems 20

There are a few issues which should be addressed in evaluating the hybrid Petri net

methodology. The first two of these issues have to do with the approximations which are

made in modeling different processes. The first approximation is with regard to the markings.

Each mark is divided into smaller pieces called tokens. For this approximation to approach

the continuous space that it is intended for, the token size should be infinitely small. Since

this division cannot be by infinity, any division is in fact a discretization but probably at

smaller granularity.

The second issue to consider here is that the continuous process or firing is just an

approximation of a discrete event [80], and is not a time-driven process. A transition cannot

fire if its input conditions are not satisfied (if there is no token in its input places), clearly

indicating that it is event-driven and not time-driven. In a hybrid PN, "continuous" really

means breaking down a discrete-event which, for example, takes two seconds to occur into

a large number of small instances of time. If we define hybrid systems as those which have

both event-driven and time-driven processes [15], then hybrid PNs would be a misnomer,

since in fact all transitions in a hybrid PN are event-driven.

The last issue is the limitations in terms of the markings which can be represented by

this method. Since the marking is limited to positive real values only, we cannot have any

negative markings. The developers of this method have not felt the necessity of having

negative markings since their prime application area is the modeling of production systems.

In these systems, positive real numbers would suffice for modeling resources, queues, and

parts. But when one considers other application areas such as modeling of dynamic and

control systems, the necessity for markings with negative values becomes evident.

Chapter Ml Global Petri Nets:
Definitions and Examples

This chapter describes various features and attributes of a new extension of Petri nets

called the GPN (Global Petri Net). We start with our formal definitions of timed Petri nets

[66] and the GPN and then describe the GPN operation, using an example. The derivation

of the GPN from a conventional PN and the derivation of the G P N dynamic equations are

given in the next two sections. A comparison of the PN and G P N modeling is also presented

and discussed. Next, various place and transition types allowed in the GPN formalism are

described. The final section provides two modeling examples to demonstrate GPN modeling

capabilities.

There are many extensions suggested by various researchers which are meant to increase

the modeling power of PNs. These extensions usually are aimed at a particular application

or area of interest and lack a generality which could benefit other classes of applications.

Moreover, any increase in modeling power is accompanied by a decrease in the analytical

power of the net [31]. In this section, we introduce our extensions to the original PN and call

the resulting net a Global Petri Net (GPN). The global Petri net is developed to furnish a new

methodology for modeling real-time control systems. This modeling tool has the advantage

of preserving many of the PN analysis capabilities, as shown in the next chapter.

The Global Petri net (GPN) is a concise extension of the original Petri nets which enables

one to model more complex systems. This new extension is developed for modeling hybrid

systems which have both time-driven and event-driven parts. The GPN is very general and

facilitates the modeling of any kind of digital system, including the digitized versions of

analog plants and computer hardware and software. This class of systems covers a large area

of applications, including systems in real-time control, robotics, and manufacturing.

21

///. Global Petri Nets: Definitions and Examples 22

Since the concept of time is essential in the definition of the GPN, we first present our

method of adding temporal specifications to the original Petri net which was defined in the

previous chapter.

111-1 _ T imed Petri Net Definition

In the present modeling methodology, we associate time with transitions. This approach

is very close to the way time is represented in actual real-time control systems.

Definition 3.1. Timed Petri Net (TPN): Timed Petri net (TPN) can be defined formally as

TPN — (PN, TT), (EI.12)

where PN is as defined in Equation (II. 1), and TT is an n-vector of 0 < tt < oo transition

times specified in k sampling times. Each transition, tn, takes ttn sample periods to complete.

This time corresponds to the maximum time a transition would take to complete in an actual

system, without causing any fault or noticeable performance degradation. A transition fires

as soon as all its pre-conditions are met and takes a maximum of tt sampling time to finish.

The firing starts by removing tokens from the firing transition's.input places. The transition

in this time period is busy and therefore cannot be fired unless the previous firing has ended.

Firing ends by updating all of its output.places.

III.2. Global Petri Net Definition

Places in a GPN correspond to system parameters, variables, or states. The system

dynamics can be observed by looking at the places, which collectively describe the state

which, the system is in. Transitions represent processes or operation of various components.

A process can be as simple as an addition operation of two numbers, or as complex as an

entire system structure.

Tokens are the major source of departure of the GPN from the original PN. Tokens.in

the original Petri net have.a binary value and therefore result in markings that can have

///. Global Petri Nets: Definitions and Examples 23

only positive integer values. In the global Petri net, markings can take any real number

value, including negative values. The positive integer restriction on tokens limits the type

of systems which can be modeled. The token in this case can only represent the validity of

certain conditions (for example presence and number of parts in a manufacturing system).

The inclusion of markings with any real number value enables us to model any state even

those which take negative values.

Another major deviation from the conventional P N is the types of arcs which are allowed

under G P N formalism. There are two types of arcs in a G P N . Event-driven or asynchronous

arcs (whose weights are assigned by arc weight matrices Wpi and Wip) are the same as

those defined for the Petri net models (Equation II. 1). In addition, there are the synchronous

(time-driven) arcs, which are represented by A and B matrices. When A and B matrices

have all zero elements, a G P N reduces to a P N .

Definition 3.2. Global Petri Net (GPN) : G P N is a triple structure defined as:

GPN = (TPN, A , B) , (HI. 13)

where

TPN = (P,T,Wpt,Wtp,M(0),TT) .

P, T, Wpt, Wtp and T T are the same as those defined for the T P N (Equation 111.12).

M (0) is an m-vector of initial markings of real numbers, A is an / x n matrix of real value

arc weights drawn from places to transitions, and B is an n x I matrix of real value arc

weights drawn from transitions to places.

III.3. G P N Graph

The G P N graph is very similar to the P N graph. The only difference is that tokens

are represented as numbers instead of dots inside the places. Synchronous arcs with arc

///. Global Petri Nets: Definitions and Examples 24

weights A and B are shown by double arrow arcs. The transition time is scribed beside the

transitions. The default value for transition time is one sampling period and may be omitted

from the graph,and the definition.

III.4. GPN Dynamics

In a GPN, firing is an execution of a transition by which the value of one or more

markings in the corresponding places are changed. State evolution or dynamics of the net

are represented by changes in the marking.

Every transition can have both input event (asynchronous) arcs, whose arc weights are

given by Wpi and time (synchronous) arcs, with arc weights given by the A matrix. A

transition which has no input event arc always is enabled, and fires according to its transition

time, or in other words, it will fire as soon as it is not busy.

Let sets of all input and output places of a transition t, be denoted as 't and f,

respectively. Each individual place belonging to one of these sets can be written as pl

and p0, respectively. Transitions which have input asynchronous arcs must meet the PN

firing condition, which is Vp;. G *t : Mpi(k) > Wpt(pi,t). . *

Firing of the transition t results in the following changes in the current state (marking)

of input places of the transition t:

MPi(k + l) = MPi(k)-A{pi,t)MPi{k)-Wpt(Pi,t) forallpie't. (EL 14)

MPl(k) and MPi(k + 1) represent before and after firing markings of input place pi. A(pi,t)

and Wpt(pi,t) represent elements of the arc weight matrices A and Wpt, connecting place Pi

and transition t. For transition output places, the change in marking can be represented as:

M P o i k + 1) = MPo(k) + B(t,p0)MPt(k) + Wtp{t,p0) for all p0 G f and P l G ' t .

(in. 15)

Places, which do not belong to either of transition input or output places, are not affected

by the firing; therefore, we can write:

Mp(k + 1) = Mp(k) for all p 0 {%f} . (111.16)

///. Global Petri Nets: Definitions and Examples 25

These concepts are illustrated through an example in the next section. The equations for

the system dynamics are derived in Section III.7 of this chapter. Modeling advantages and

the GPN capabilities are explored more fully through some other examples at the end of

this chapter.

III.5. An Example of a GPN

In this section we present a simple example to show the dynamics of a GPN. Figure

III.4 shows a net with three places and three transitions.

3

Figure m.4 An Example of a Simple GPN.

Net parameters, as defined in Equation (III. 13), can be written from the figure as:

///. Global Petri Nets: Definitions and Examples 26

Wpt =

A =

P = {Pl,P2,Ps}

T = {h,t2,t3}
0 0 0
0 0 3
1 0 0

2 1 0
0 0 0
0 0 0

mi(0)
m 2(0)
m 3(d)

B =

M(0) =

0 0 0
0 0 0
0 0 1

0 0 3
0 - 4 0
0 0 0

- i o . r
2.0
17.8

Cm. 17)

This example has three different types of transitions. £2 is a synchronous transition since

it has no asynchronous input arcs. This transition does not have a pre-condition for its firing

and fires instantly when it completes the previous firing. i 3 is an asynchronous transition and

fires only when its pre-condition is satisfied, that is when its input place marking is greater

than the arc weight connecting them. The arc weight (Wpt(2, 3)), in this case, is equal to

three. t\ is a hybrid transition since it has both types of input arcs. A complete discussion

of the G P N arc types is given in Section III.9. Now we can go through a series of firing to

show how the state of the net changes due to the firing of various transitions.

At time instant k = 0, the initial marking is M(0) =-[Mi(0) M 2(0) M 3 (0)] T =

[—10.1 2.0 17.8] . Under this marking, transitions t\ and t2 are enabled. t\ is enabled

since M 3 (0) = 17.8, which is greater than 14^(3,1) = 1. £2 is a synchronous transition

so it is always enabled. Transition i 3 is not enabled since the marking of place p 2 = 2.0

is smaller than the arc connecting this place to transition t3. The sets of input and output

places for these enabled transitions can be written as:

•*2 = { p i } , f2 = {p2}. (m.i8)

The firing of transitions t\ and t 2 results in changes in their input place (pi and p3)

markings. By substituting appropriately from Equation (111.18) in Equation (111.14), we have

///. Global Petri Nets: Definitions and Examples 27

the following: .

M i (l) = M!(0) - A(l, l) M i (O) - ,4(1,2)71^(0)

M 3 (1) = M 3 (0) - W p t (3 , l) . (EI.19)

Changes in the output places' (p 2 and ^3) markings due to these transitions firing can be

found by substituting the arc weights and initial makings, in Equation (HI. 15):

M 2 (l) = M 2 (0) + 5(2,2)Mi(0)

M 3 (l) = M 3 (0) + £ (l i 3) M i (0) , (EI.20)

The overall effect of the firing of transitions t\ and £2 can be written,by combining Equations

(EI.19) and (EI.20).

M i (l) = M J C O) - l)Mi (O) - A (l , 2) 7 ^ (0)

M 2 (1) = M 2 (0) + B(2,2)M 1 (0) (EI.21)

M 3 (l) = M 3 (0) + 5(1 ,3)7^(0) - Wpt(3,1) .

The new markings can be obtained by substituting the net parameters (Equation IE. 17)

in the above equations.

M i (l) = -10.1 - 2(—10.1) - 1(-10.1) = 20.2

M 2 (l) = 2 - 4(—10.1) = 42.4

M 3 (l) = 17.8 + 3(—10.1) - 1 = -13.5

or

M (l) = [20.2 42.4 -13.5] T - . (EI.22)

With this new marking transition, £3 becomes enabled, but t\ gets disabled since the

marking of pz is negative. The sets of input and output places for the enabled transitions

///. Global Petri Nets: Definitions and Examples 28

ti and h can be written as:

'*2 = { P 1 } , * 5 = {P2>,
*h = {pi}, n = {p3}.

(m.23)

The firing of transitions t2 and £3 results in a new marking:

Mi(2) = M i (l) - A(, l ,2)Mi(l) = 20.2 - 20.2.= 0

M 2 (2) = M 2 (l) + B(2 ,2)Mi(l) - Wpt{2,3) = 42.2 + (-4)20.2 - 3 41.6

M3(2) = M 3 (1) + Wip(3,3) = -13.5 + 1 = -12.5

or

M(2) = [0 -41.6 -12.5] T (EI.24)

Under this new marking, only transition ti is enabled. However, its firing cannot change

any of the markings since marking of its input place pi, at the present time instant is zero.

III.6. Derivation of the GPN from Conventional PN

In this section we show how the GPN structure can be derived from the conventional

Petri nets. Rewriting the equation for Petri net dynamics, Equation (1X5):

. MPi(l) = MPi(0)- Wpt(Pl,t) for all P i e't ..

MPi(2) = MPt(l) - Wpt{Pi,t) =MPi(0) - 2 x Wpt(Pi,t),

MPi{k) = MPt(k - 1) - Wpt(pi,t) = MPi(0) - k x.Wpt(Pi,t) . (m.26)

MPt(k + 1) = MPi(k) - Wpt(Pl,t) for all P l G *t . (EI.25)

At time instants k = 0,1,2, . . . ,k, while the transition is enabled, we have

Rewriting the counterpart equation of G P N dynamics (only the synchronous elements),

equation (EI. 14), and substituting for time instant k=l, we get

///. Global Petri Nets: Definitions and Examples 29

MPi{k-+l) = MPi(k)-A(Pi,t)MPi(k) -forallpiE't,

MPi(l) = MPi(0) - A(pi,t)MPi(0) . (HI.27)

Comparing equations (111.26) and (111.27), if we choose

Wpt(t,pi) = —- , (m.28)

and run the net for k time samples, we get the same result as if we had run the equivalent

GPN for only one sample time. This is one of the reasons it is more concise to model the

dynamics of a complex system by a GPN.

Similarly.if we compare equations (U.6) and (111.15), we need to choose

Wtr(t,Po)=EMpm, (m.29)

and run the PN for k time samples, to get the equivalent GPN.

III.7. Derivation of G P N Dynamics Equation

In this section we develop the equations which govern the dynamics of a GPN. This

derivation is carried out for a general example and is extended for any given net. In the

following derivation we need to define two functions. These two functions are used in the

equations which describe GPN dynamics equations. Their importance and usefulness become

clear later, when they are used in the derivation.

Definition 3.3. Diagonalizing (DiagQ) Function: This function adds the elements of a

matrix row and puts the result in the diagonal element of that row. It is denoted by Diag().

///. Global Petri Nets: Definitions and Examples 30

The following shows its operation:

/ / 0 =

Diag{Q) =

On
021

0 3 1

0 1 1 + 0 1 2

0
0

th

0 1 2

0 2 2

0 3 2

0
0 2 1 + 0 2 2

0

en

'31

0
0
+ 0 3 2

(DX30)

Definition 3.4. One{) Function: This function replaces all non-zero elements of a matrix

with one. Zero elements remain the same. This function is written as One(). The following

is an example of its use:

If S =

One(S) = One

2.1 0
- 3 1

th en
"2.1 0' "1 0'
- 3 1) - 1 1

(TJJ.31)

The following is a general form of a two-place, two-transition net with all possible arcs

among them included. Double and single arrow arcs represent time-driven (synchronous)

and event-driven arcs, respectively.

///. Global Petri Nets: Definitions and Examples 31

A(1,1)

A(2,1)

Figure HI.5 A General GPN with all Possible Arcs

A(1,2)

A(2,2)

Net parameters for this example are written as

A =

Wpt =

P = {P1,P2}

Wpt(l , l) Wpt(l,2)
Wpt{2,l) Wpt{2,2)

A(l,2)
-4(2,2)

Wtp =

T = {tht2}
~Wtp{l,l

B =
5(1,1]
73(2,1]

5(1,2)
5(2,2)

Wtp(l,2)
Wtp{2,l) Wip{2,2)

Mi(0)
M(0) =

M 2(0)

Definition 3.5. Petri Net Incidence Matrix N: N is called the Petri net incidence matrix

and is defined as

N = W< T tp Wpt = Wtp{l, 1) - Wpt(l, 1) Wtp(2,1) - Wp t (l , 2)
[Wtp{l,2) - Wp*(2,l) Wi p(2,2) - Wpt(2,2)

///. Global Petri Nets: Definitions and Examples 3 2

Definition 3.6. Petri Net Transition Firing Vector: In a Petri net, the firing of various

transitions is represented by a firing vector with a size equal to the number of transitions.

Every element of the vector corresponds to a transition. A non-zero entry in the vector shows

the number of firings of the respective transition. For example, fk = ^

time instant k, transition one is fired twice, whereas transition two is not fired at all.

indicates that at

Definition 3.7. Global Petri Net Transition Firing Matrix: In a GPN, the firing sequence

is shown both by a vector and a matrix. The firing sequence vector, fk, is used for the

asynchronous part of the net. Fk which is used for the synchronous part, is a square matrix

of size n (number of transitions). This matrix is diagonal, and each element of the main

diagonal corresponds to a transition. The relation between the firing sequence vector and

the GPN firing matrix is

Fk = Diag(fk). (EI . 3 4)

In this thesis we use both Diag(fk) and Fk interchangeably to refer to the firing sequence

matrix.

For the GPN in Figure IH.5, assuming transition t\ is enabled, the transition firing vector

^ ' . This transition firing will change the net marking to at time instant k = 0 will be fo =
0

M 1 (l) = M 1 (0) - A (l , l) M i (0)

+B(1, l)Mi(O) + B{\, 1)M 2(0) - Wpt{l, 1) + Wtp(l, 1) ,

M 2 (l) = M 2 (0) - A(2,1)M 2 (0)

+5(l ,2)Mi(0) + fl(l,2)M2(0) - Wpt(2,l) + Wtp(l,2) ,

Or

MM) M (l)

+

Mi(0)
M 2(0)_

5(1,1) 5(1,1)
5(1,2) 5(1,2)

0
0

^(2,1:

Mt(0)
M 2 (0)

'Mi(O)
M 2 (0) + Wtp(l,l)-Wpt(l,l)

Wtp{l,2)-Wpt{2,\)
(LTI.35)

///. Global Petri Nets: Definitions and Examples 33

Using the Diag{) and One() functions, we can write the following:

= Diag | -4(1,1
0

= Diag

5(1,1)
5(1,2)

0
-4(2,1

A (l , l) ,A(1,2)
-4(2,1) A(2,2)

5(1,1)
5(1,2)

Y
0

-4(1,1)
A(2 , l)

= Diag(Af0

"1 0"
1 0

' i r "1 0"
i i 0 0

5(1,1) 5(1,2)
5(2,1) 5(2,2)

5(1,1) 5 (l , 2) n n T

5(2,1) 5(2,2).

= [One(A)Diag(f0)B]J

T

(J H . 3 6)

We can also write the following expression for the asynchronous part of the net:

Wtp(l,l)-Wpt(l,l)
Wtp(l,2)-Wpt(2,l)\

Wtp(l, 1) - Wpt{l, 1) Wtp(2,1) - Wpt{l, 2)
.W t p (l , 2) - Wpt(2,l) Wtp(2,2) - W^(2,2)

"1"
0

(HI. 37)
Nfo .

Substituting from expressions (JJI.36) and (UI.37) in equation (UI.35), we get

M{\) = M(0) - Diag{Af0)M(0) + [One{A)Diag{f0)B]TM{0) + Nf0. (HI.38)

Now,

H0 = (-Diag{Af0) + [One{A)Diag{f0)B] T (HI.39)

is called the hybrid transition matrix (H matrix for short). This matrix is defined formally

in the next chapter. Substituting for the H matrix, we get

M (l) = M(0) + H0M{0) + NfQ.

For any time instant k we can write

M(k + 1) = M(k) + HkM(k) + Nfk , (HI.41)

where Hk is written as

///. Global Petri Nets: Definitions and Examples 34

Hk = (-Diag(Afk) + [One{A)Diag{fk)B]T) (11X42)

or

Hk = (-Diag(AFk) + [One{A)FkB]T) . (111.43)

III.8. Compar ison of the PN and the G P N Modeling

In this section we elaborate some of the structural and behavioral differences between

the PN and the GPN modeling. Table III. 1 summarizes the major modeling and structural

differences between the PN and the GPN. It shows what their elements are and what they

represent.

PN/GPN -
Element

GPN
Representation

Graphical
Representation

(GPN)

PN
Representation

Graphical
Representation

(PN)

Place (P) Condition o Condition o
Transition (T) Event, Change

of State 1 Event 1
Arcs (Ws, A,

B)
Relation

— ' •
Relation •

Token, Marking
(M) '

Condition
Validity, State

Variable

Condition
Validity

I * * \

Table 111.1 Structural Differences between the PN and the GPN.

To demonstrate the G P N and the PN behaviorial differences, we start by looking at the

dynamics of each net.

///. Global Petri Nets: Definitions and Examples 35

Definition 3.8. GPN Dynamic Equation: The GPN dynamics, according to equation

(111.41), can be defined by

M(k + 1) = M(k) + HkM(k) + N.fk . (111.44)

If Both A and B matrices are zero, that is if there are no synchronous arcs, then

Hk = (- D (0 . / 0) + [0(0).Z)(/o).0]T) = 0 . (m.45)

If Equation 111.45 is substituted in Equation III.44, the PN dynamic equation can be found.

Definition 3.9. PN Dynamic Equation: is given as

M(k + 1) = M(k) + N.fk . (111.46)

As can be seen from equations (111.46) and (111.44), PN and GPN have different dynamics.

In a PN, a new marking is an addition of the old marking and the token movement; in other

words, it is an additive type of net. On the other hand for a GPN, a new marking in addition,

has a term which is a multiplication of the previous marking. This part can be called the

multiplicative one. A GPN, therefore, is a more generalized version of a conventional PN.

A Petri net is suitable for modeling discrete-event systems, whereas a GPN is geared

towards modeling both discrete-time and discrete-event systems. G P N modeling gives us a

tool which can be used to model and analyze a complete real-time system.

Another difference in the operation of the two nets is the way a change in the firing

sequence affects the marking. Let us write the marking changes for a PN due to two

transition firings /o and f\.

M (l) = M(0) + N.f0 ,

M(2) =M(l) + N.h .

///. Global Petri Nets: Definitions and Examples 36

Substituting for M (l) in M(2), we get

M(2) = M(0) + /vXfo + /i).
If we change the order of the firings (first f\ and then /n), we get

M(1) = M(0) + N.f1,

M{2) = M(l) + N.f0 .

Then the final state is

M(2) = M(0) + N(f1 + f0).

In the above case, irrespective of which transition firing (/o or /i) we go through first,

the final state M(2) will be the same (assuming that the order of transition firing does not

change the enabling of transitions). The reason for this equality is that

N(fo+'fi) = N(f1+f0).

Now we look at similar marking changes for a GPN:

Af(l) = Af(0) + H0M(0) + N.fo

M(2) = M(l) + HiM(l) + /V./i .

Substituting for M(l) in the equation for M(2), we get

M(2) = M(0) + / / 0 M (0) + # iM (l) + 7V(/i + /o) . (HI.53)

If we change the order of transition firing, we get a different marking,

M(2) = M(0) + / / iM(0) + 5 0 M (1) + N(f0 + /,)•,

which is not the same as the one in the previous firing order.

(HI.54)

///. Global Petri Nets: Definitions and Examples 37

In a Petri net, it does not matter in what order transitions are fired unless they change

the set of enabled transitions. In the above example, if we had fired Transition two before

Transition one, we would still get the same result. In general, future states of a PN depend

on its structure, initial condition, and the number of times each transition fires. For a GPN,

however, the future states not only depend on the initial condition and structure of the net,

but also on the order that transitions are fired.

III.9. Place and Transition Types in G P N

Any place in a GPN is either of real or integer type, depending on the type of arcs

connected to it. Any transition, however, can be either of synchronous or asynchronous

type. Hybrid places and transitions are also defined to be of one of these types. The type

of a transition or a place depends on the type of arcs which are connected to them. These

types easily can be determined by examining arc weight matrices A , B, Wpt, and Wtp.

HL9.1. Transition Types: Any transition in a GPN is of either synchronous or asyn­

chronous type, depending on its input arcs.

Definition 3.10. Synchronous Transition: A transition is synchronous if it has no input

asynchronous arc; that is, transition tj is synchronous if all members of column j of weight,

matrix Wpi are zero. This type of transition has no input pre-condition. It fires as soon as

its previous firing is completed and remains busy for a period equal to the transition time

associated with it.

Definition 3.11. Asynchronous Transition: A transition is asynchronous if it has at least

one asynchronous input arc; that is, transition tj is asynchronous if at least one member of

column j of weight matrix Wpt is non-zero. An asynchronous transition fires only when

its input conditions are satisfied. It remains busy for a period equal to the transition time

associated with it.

///. Global Petri Nets: Definitions and Examples 38

Figure III.6 shows all the possible configurations which a transition can have, and the

resulting types. In row (a), all transitions are of the synchronous type since there are no

asynchronous input arcs. The types of output arcs have no effect on the types of transitions

as can be seen in the Figure in.6. Rows (b) and (c) show only asynchronous transitions;

since all the transitions have at least one input asynchronous arc. Hybrid transitions such

as those in row (c), also can be classified according to this rule. Items (b.l) and (b.3) are

labelled as 'Not Defined', since it is not possible to have synchronous output arcs without

having synchronous input arcs. Row (d) shows transitions with no input arcs. Items (d.l)

and (d.3) are labelled as 'Not Defined' for the same reason that was stated for (b.l) and

(b.3). However, (d.4) is also 'Not Defined' since it is an isolated transition. Finally, (d.2)

is a synchronous transition since it has no input condition and fires in regular intervals

determined by its transition time.

(a. 1) Synchronous (a.2) Synchronous (a.3) Synchronous (a.4) Synchronous

(b.1) Not Defined (b.2) Asynchronous (b.3) Not Defined (b.4) Asynchronous

(c. 1) Asynchronous (c.2) Asynchronous (c.3) Asynchronous (c.4) Asynchronous

(d.1) Not Defined (d.2) Synchronous (d.3) Not Defined (d.4) Not Defined

Figure III.6 Various Transition Types in the GPN.

///. Global Petri Nets: Definitions and Examples 39

IIL9.2. Place Types: Places in GPNs are of either the real or the integer types. Their types

also depend on the type of arcs which are connected to them.

Definition 3.12. Real Place: A place is real if it is connected to at least one synchronous

input or output transition; that is, place p; is real if at least one member of row i of weight

matrix A or i column of weight matrix B is non-zero. A real place gets updated every time

one of its input of output synchronous transitions fires. The marking of a real place can have .

any real value between minus infinity and plus infinity, unless a bound is specified.

Definition 3.13. Integer Place: A place is of the integer type if there is no synchronous

transition connected to it; that is, place pi is integer if all members of row i of weight matrix

A or i column of weight matrix B are zeros. The marking of an integer place can take

only positive integer values.

Figure IH.7 shows all possible configurations of a place and its resulting type. Both

input and output places, for each case, are drawn to show how they are affected by the

type of transitions they are connected to. Places Pi in Figure III.7(a.4) and Pi in (b.4) are

'Not Defined', since they are isolated places which are not permitted either by PN or GPN

definitions. The rest of the classifications are quite easy to figure out and are done according

to the rules defined above.

///. Global Petri Nets: Definitions and Examples 40

(b.1) (b.2) • (b-3) (b.4)

F= Integer fj integer Fj Integer F> Integer

P2 Real p | n t e g e r P2 Real P2 Not Defined

Figure m.7 Various Place Types in the GPN.

111.10. Advantages of Modeling with the G P N

In this section and the next we explore the GPN modeling capabilities and advantages

through a series of examples. These examples are simple enough for illustration purposes

but demonstrate the feature being discussed. The modeling of a simple flow control system

is illustrated by the example in this section. The second example, in the next section shows

how a six-transistor X O R gate can be modeled by a GPN. This section starts with modeling

of nMOS and pMOS transistors. The modeling and simulation of X O R gates are performed

by adding up these transistor models to form a larger GPN.

m.10.1. Hybrid Modeling; Water Tank Flow Control Example: The following exam­

ple often is used to show a simple hybrid system [30, 81]. Figure 111.8(a) shows a simple

water tank with a closed loop flow control. The height of the water in the tank at any instant

is represented by h. The water level is increased due to the flow into the tank, until the

desired height H is reached. At this point water raises the float sufficiently to block the flow.

///. Global Petri Nets: Definitions and Examples 41

T H

h

(a) -(b)

Figure ni.8 (a) A Simple Flow control System, (b) The GPN Model of (a).

This system can be represented by the following relation:

M * + i) = (?<5 + /

[h[k) else
(EI.55)

where f is the height increase due to the constant flow into the tank when the valve is open.

While h is smaller than H, its value gets increased by f. This system can be modeled by

a GPN as shown in Figure 111.8(b). This net has three places and four transitions. The net

parameters can be written as:

P = {H,Dtff,h}

A =

0 0 0 0
0 0 1 0
0 0 0 0

1 0 0 0
0 0 0 1
0 1 0 0

r0 0 0

Wi tp

B =

0 0 0
o 1 /
0 0 0

1 1 0
0 -1 1
0 0 0
0 0 0

(ni.56)

A l l transitions except t3 are synchronous and fire at all instants. Place Diff represents the

difference between H and h. Transition £3 fires when place Diff =H — h marking is greater

than zero, or h < H. Depending on this condition the dynamics of the system changes.

When h < H or Diff > 0, all transitions fire and we get the following system equations:

///. Global Petri Nets: Definitions and Examples 42

H(k + 1) = H(k) + H(k) - H(k) = H(k)

Diff(k + 1) = Diff(k) - Diff(k) + H(k) - h(k) + 1 - 1 = H(k) - h{k) (111.57)

h(k + 1) = h(k) + h(k) - h(k) + f = h(k) +' / .

When h exceeds H , the Diff place marking becomes negative, and transition £3 is no

longer enabled; therefore, only transitions t\,t2, and £4 fire. The resulting dynamics equation

then becomes:
H(k + 1) = H(k) + H(k)'-H(k) = H(k)

Diff(k + 1) = Diff(k) - Diff(k) + H(k) - h(k) = H(k) - h{k) (111.58)

h(k + 1) = h(k) + h(k) - h(k) = h(k) . .'
Figure III.9 shows how the place markings change. The desired input ' H ' , the error signal

'Diff', and the height of the water 'h ' are plotted by ' * ' , ' ' — ' , and '+' signs, respectively.

The desired input H is set at 20. The water is added at two units per sampling time (f=2)

until the error signal becomes zero and stops the flow.

Time

Figure III.9 Place Markings Versus Time Plots for the Flow Control Example.

///. Global Petri Nets: Definitions and Examples 43

111.11. G P N Modeling of a Six-Transistor X O R Gate

In this section we will show how a six-transistor X O R gate can be modeled by a GPN.

Modeling of various logic gates by GPNs are described in Appendix A. Here, we will first

show the modeling and simulation of a single MOS transistor. We will then proceed to

model and simulate an X O R gate composed of six of these transistors. The results of the.

simulation are compared with those obtained by conventional VLSI analog simulation by

HSPICE program.

11.1. M O S Transistor: The Metal Oxide Semiconductor (MOS) transistor has four ter­

minals, called gate, drain, source, and substrate (body) [82]. The gate controls the flow of

charge between the source and the drain. The fourth terminal, the body, cannot be used for

performing useful logic and is not considered here. There are two types of MOS transistors:

nMOS and pMOS. Figure III. 10 shows the symbols for these types.

D D

S S

a) nMOS b) pMOS

Figure III. 10 nMOS and pMOS Transistor Symbols.

Hybrid Model of M O S Transistors:

The hybrid model of an nMOS transistor is shown in Figure III. 11. There are five places

in this net, representing the voltages at the three terminals and two voltage differences. The

voltages at gate {VQ) and source (Vs) act as the input places, and the drain voltage (Vp)

acts as the output place. In addition to these, the two internal places determine how the

differences in the voltage levels of the terminal voltages control the output voltage.

///. Global Petri Nets: Definitions and Examples 44

A l l transitions in this net, except transition £3, are synchronous and fire in all sample

periods no matter what their input place markings are. Transition £3 is asynchronous and is

controlled by the gate-to-source voltage, Vgs, which is defined as

Transition £3 is enabled when Vgs is greater than 1, that is when VG is larger than Vs.

The drain-to-source voltage is computed as

Figure in . 12 shows the simulation results for a set of inputs. The source voltage Vs

(place P2 marking) was assumed to be at five volts throughout the simulation. The markings

of the remaining four places are shown as plots III.12(a)-(d). Gate voltage VQ is at zero volt

initially, which keeps the transistor off. VG is then changed to seven volts, which causes

the transistor to conduct.

Plot III. 12(d) shows the drain voltage (YD). We have marked three regions in this plot,

which mark the three stages that the transistor model goes through. The first region is called

Vgs(k + 1) = VG(k) - Vs(k) + I .

Vds(k + l) = Vs(k)-VD(k) .

-1

Figure HI. 11 Hybrid GPN Model of an nMOS Transistor.

///. Global Petri Nets: Definitions and Examples 45

the "non-conducting" region, which corresponds to the case when the gate voltage is not

large enough to turn the transistor on. In this region, transition £4 does not fire, and therefore

the drain voltage (Vn) remains at zero volts.

The second region corresponds to the behavior which can be approximately described as

Ohmic. In this region the drain voltage increases until it almost equals the source voltage.

In this region, transition £4 fires, and the drain voltage (V/j) starts increasing to the level set

by the source voltage Vs. The rate of this increase can be controlled by the arc weight r,

which connects transition £4 to place Vp, according to the following equation:

VD(k + 1) = VD(k) + VD(k) - VD(k) + rVd3(k)

or

VD(k + l) = VD(k) + rVd3{k) .

The last part is called the "saturation region", and it corresponds to a situation where the

voltages stabilize at their final values. This happens when the drain voltage nearly equals

the source voltage. In this region transition £4 is still enabled and firing, but it has no effect

on the drain voltage. This is due to the reason that, the source-to-drain voltage difference,

modeled by place V<is, is nearly equal to zero.

///. Global Petri Nets: Definitions and Examples 46

(a) Gate Voltage (P1 Marking)
8i • • •

6

o 4

2

0 I 1 , . 1
0 10 20 30 40 .

Time Sample
(c) Drain to Source Voltage (P4 Marking)

0 10 20 30 40
Time Sample

(b) Gate to Source Voltage (P3 Marking)
4i • 1

2

- 4

- 6 ' ' • ' 1

0 10 20 30 40

Time Sample

(d) Drain Voltage (P5 Marking)

o

c
o 'cn c 0) / c o DC / ° CO
cn c

/ cn
/ a> Re

/ o c c
o / o o

-c
on

di

O
hm

i

at
ur

at
i

c to o to
z

0 10 20 30 40
Time Sample

Figure ni.12 Simulation Plots of Different Voltages in an Analog GPN Model of an nMOS Transistor.

m.11.2. G P N Modeling with M O S Transistors: In this section we will use the GPN

models for the MOS transistors, developed in the previous sections, to model and simulate

an X O R gate. Figure III. 13 shows a six-transistor X O R gate; The first two transistors on

the left, P i and N\, form an inverter which inverts the B input. The other four transistors

work together to provide the logical operation needed for the X O R gate.

///. Global Petri Nets: Definitions and Examples 47

Figure III. 13 The Six-Transistor XOR Gate.

A six-transistor X O R gate at the hybrid level can be built by connecting six hybrid MOS

transistor models, which were developed in Section 11.1. This was done by replacing the

transistors in Figure 111.13 with their hybrid models, shown in Figure IE. 11. The modeling

and simulation was carried out, and the results are summarized in Table IE.2. The model

was checked for a set of A and B inputs. The output entries show the final values of these

signals before new inputs are introduced. The output of the inverter and the X O R gate are

exactly as expected.

A B B A@B

0 0 5 0

0 5 0 5

5 0 5 5

5 5 0 0

Table ni.2 Simulation Results of the GPN Representing an XOR Gate.

///. Global Petri Nets: Definitions and Examples 48

Figure in. 14 shows the plots for the input and output signals of the XOR model. Each

plot shows how the signals change before settling at their steady state value. The input

signals cover a range of all possible inputs.

The output of the XOR gate, shown in plot 111.14(d) takes a few samples before reaching

its final steady state value. The XOR output is formed by addition of the outputs of the four

transistors on the fight hand side of Figure in. 13 (transistors Pi, P$, N2, and 7V3). After

every change in the inputs A, and B, each of these transistors should produce its final output,

before the XOR output can reach its final value.

(a) Input A

100 200
Time Sample

(c) Output!
7

100 200
Time Sample

300

300

(b) Input B

0-

100 200
Time Sample

(d) Output AffiB

100 200
Time Sample

300

300

Figure 111.14 Plots of the Input and Output Signals of the Hybrid Model of the XOR Gate.

Figure 111.15 show the results of the simulation of the same gate by HSPICE program.

The simulation is performed at analog level and using the same schematic circuit diagram

as shown in Figure in. 13. The inputs and outputs are shown as four separate plots and are

as marked in Figure III. 15.

///. Global Petri Nets: Definitions and Examples 49

5.(/A

I
r t
H
JjJ I I I I I L_J l_l I I 0I I LU I I I I I I L J I L

5.0

4-L

5.0. n-
rj

0.0 £
0

5.0,
u
1 r

0.0 L

IB -HJ--

J I I I l j l I I I l l \\ h l I L

/inv B

B--

J L J I I L_J L

n
———H i

I
i
i
i

r* a
ij I I i i i il r 1 1 o1

1
i

ii i i I I

i
I I 1 1$ 1 1 1 1 h 1

/xor AB • • r

! /
/ 11 J I I I L_j I I I I I I Hi I i i ft i i i i h i x10" -3

0.00 100. 200.

Figure III. 15 HSPICE Simulation Results of the Six-transistor XOR Gate

300.
time

III.11.3. Simulation Conclusions In this section a modeling example by a. GPN was

presented. This example was chosen from an area (analog circuit simulation), quite different

from the main focus of the thesis which is modeling and simulation of real time control

systems. This example also illustrates how both digital and analog behavior can be modeled

by GPNs. The simulation results and their comparison with a conventional simulation method

(HSPICE) show the accuracy and correctness of modeling and simulation by GPNs.

Chapter IV GPN Properties and Analysis Methods

One of the main advantages of using a global Petri net for modeling systems is that

the resulting model can be analyzed to find the system properties. The uniqueness of GPN

analysis methods are in their ability to investigate the properties such as controllability and

stability of hybrid systems. The controllability and stability, and other properties of discrete-

event systems are analyzed by ordinary Petri net models. But, the extension of these analysis

methods to hybrid systems is what sets GPN apart. Some of the original Petri net analysis

techniques can be extended for GPN modeling. In this chapter, we investigate some of the

important G P N properties and then develop the necessary tools to analyze them.

Modeling any actual system requires a large net with many places and transitions. This

results in a large incidence and hybrid transition matrices which may be computationally

difficult to check for GPN properties such as liveness and reachability. One way to handle

such problems is by synthesis of GPNs. The basic idea is to start with a simple GPN which

coarsely represents the system to be modeled, but is simple to analyze. Then more places

and transitions are added to capture more modeling details. The additions are carried out in

such a manner to preserve the properties which are proven for the more coarse models. In

this thesis, we have not dealt with GPN synthesis explicitly, but the developments in Chapter

VI are carried out in the top-down synthesis approach just described.

We start this chapter by discussing some of the modeling issues which are useful in later

analysis. We continue with a discussion of the modelability of a given system by a GPN.

We show what types of systems can be modeled with this net, and derive the condition

for it. Then, hierarchy of GPNs is discussed. In the final two sections, analysis methods

used for the GPN are introduced, and their application in finding system properties such as

controllability, reachability, and stability is presented.

50

IV . GPN Properties and Analysis Methods 51

IV.1. G P N Modeling Issues

To put modeling by a GPN in a proper perspective, we first need to discuss the following

modeling issues. Then, we will introduce a sub-class of GPNs which will ease the GPN

analysis.

IV.1.1. Hybrid Transition Matrix: The next state of a GPN at any given instant k is

determined by its dynamic equation, derived in the previous chapter (Equation in.41) as

where Hk is called the hybrid transition matrix, and is written (Equation 111.42) as

As can be seen from Equation (IV.63), corresponding to each transition sequence vector

fk we get a different Hk matrix. This is true only for transition sequence vectors which

include a hybrid transition. To explain and prove this property, we first have to define a

hybrid transition.

Definition 4.1 Hybrid Transition: A hybrid transition is one which has both asynchronous

and synchronous type input arcs (at least one of each). Firing of a hybrid transition affects

the H matrix. A hybrid transition is by definition an asynchronous transition, since its firing

depends on its input place marking. Hybrid transitions do not fire in every sampling period.

Of the transitions shown in Figure 111.6, only four can be called hybrid transitions.

M{k + 1) = M(k) + HkM{k) + Nfk , (TV.62)

(IV.63)

Figure IV. 16 Hybrid Transitions.

IV . GPN Properties and Analysis Methods 52

Now let any given transition be classified either as a pure synchronous, a pure asyn­

chronous, or a hybrid transition. Corresponding to each transition, is an element in the

transition firing vector. If n is the total number of transitions, then

n = nps + npa + nh , (IV.64)

where nps, npa and nh, represent the number of pure synchronous, pure asynchronous, and

hybrid transitions, respectively.

Thereom 4.1 : The number of different H matrices possible for a given GPN is equal to

{0 if ripS — 0 and n^ = 0

1 if nps > 1 and n/t = 0 (IV.65)

2 n " i f n h > \ .

Proof : The proof is intuitive but can be explained as below:

1.. When both nps and nh are zero, it means we have only pure asynchronous transitions

and our net reduces to a timed Petri net. In this case, we simply have no H matrix.

2. When there is at least one pure synchronous transition and no hybrid transition, all these

pure synchronous transitions fire simultaneously and in every clock cycle, which gives

us a single H matrix.

3. When there is one or more hybrid transitions, we get a different H matrix based on

what combination of these transitions is fired. For example, for a net with two hybrid

transitions; nh = 2, there will be 2nh = 2 2 = 4 different H matrices. These correspond

to the cases where no hybrid transition fires, one of the two hybrid transitions fires and,

when both fire simultaneously. In this case, the number of pure synchronous transitions

does not matter since their firing coincides with one of the above 4 cases.

Having different H matrices and consequently different dynamic equations is one of the

strong points of modeling by a GPN. This allows a single model to represent many different

dynamics of a system which are switched by events (firing of transitions).

IV . GPN Properties and Analysis Methods 53

IV .1.2. A Sub-class of GPNs (When A is a Diagonal Matrix): An increase in the mod­

eling power of a Petri net extension always is accompanied by a decrease in its analytical

or decision power. Peterson in [31] states that "This has resulted in the development of

sub-classes of PNs with reasonable structural restrictions which will increase the decision

power of the restricted net models while not overly restricting the modeling power". Some of

these sub-classes mentioned in the literature are state machines, marked graphs, and simple

PNs [41].

One of the restrictions in the case of a GPN is with regard to the A matrix. A is

the matrix of synchronous arc weights connecting places to transitions. If we consider the

expression for the hybrid matrix

HK = -Diag{A.Fk) + [One(A).FK.B}T , (IV.66)

when matrix A is a diagonal matrix, it means that there are equal number of transitions and

places and there is just one synchronous arc connecting each place to a transition. In that

case (One(A)) reduces to an identity matrix, and Equation (IV.66) reduces to

HK = -A.Fk + [Fk.B]T,

HK = —A.Fk + 5Tif,

since Fk is diagonal,

HK=(BT-A)Fk. (IV.67)

As can be seen in Equation (IV.67), we can take the firing sequence matrix Fk out of the

H matrix expression. This is a great help in the analysis of the GPN, as will be seen later.

This sub-class of GPNs will have the following restriction:

|P*| = | T | = 1. (IV.68)

That is, the set of output transitions of every place and the set of input places of every

transition have exactly one member. Figure IV. 17 shows a couple of cases which are not

IV . GPN Properties and Analysis Methods 54

allowed under this formulation. In Figure IV. 17(a),

P* — {̂ 1,̂ 2} and theref ore \p'\ — 2 . (IV.69)

This is a violation of the restriction given in Equation (IV.68). In Figure IV. 17(b),

£i = {j0i,P2/ and therefore |£i | = 2 . (IV.70)

This is another example of a violation of the restriction given in Equation (IV.68).

(a) (b)

Figure IV.17 Two Examples of Nets not Allowed by Diagonal A Restriction.

The restriction, imposed to insure that the A matrix becomes diagonal, seems to curtail

our ability to model any sort of conflicts. But we should point out that this restriction applies

only to the synchronous arcs. For example in Figure IV. 17(a), we can have an asynchronous

arc instead of each of the synchronous arcs and not violate the restriction. In that case, we

have modeled a conflict between £1 and t2.

The above restriction does not affect our ability to model synchronization, since we can

have

\'P\ = \T*\=n . (IV.71)

Figure IV. 18 shows two examples of nets which model synchronization and are allowed

under the above restriction.

IV . GPN Properties and Analysis Methods 55

Figure IV.18 Two Examples of Nets Allowed by Diagonal A Matrix Restriction.

We have developed a procedure which converts GPNs with non-diagonal A matrices

to GPNs which have diagonal A matrices. Appendix C illustrates this procedure through a

general two-place, two-transition GPN. Originally, a GPN is considered which has a non-

diagonal A matrix with all non-zero elements. Then, the G P N is transformed to one with

a diagonal A matrix. The transformed GPN parameters (A, B,Wpt,Wtp) are obtained in

terms of the first GPN parameters.

The resulting nets in all cases are larger than the original ones since either the number of

places or transitions are increased to make these numbers equal. But, the reduction in analysis

complexities very well justifies the conversion especially for analyzing system properties

such as controllability and conservation which are analyzed by linear algebraic methods.

This should become evident in later parts of this chapter when the analysis methods for

GPNs with both diagonal and non-diagonal A matrices are described.

IV.2. Condit ion for G P N Modelability

Modelability of any given system by a GPN is defined as the condition which allows

the system to be represented by the GPN parameters (a set of places, a set of transitions,

appropriate weight matrices and a marking vector). As it was shown in Chapter III and

Appendix A, many different types of systems can be modeled by GPNs. These include

logic gates and functions, certain types of non-linearities (such as saturation and deadbands),

analog and digital electronic devices, and dynamic control systems. The only limitation is to

be able to specify the system behavior in terms of a set of states and a set of equations relating

IV . GPN Properties and Analysis Methods 56

those states. These equations are formed into a set of state-space matrices. These relations

(matrices) can be time-variant even though only time-invariants ones are considered in this

thesis.

Any such systems is modeled by one of the following two methods. First, for the

synchronous part of the system, if the system dynamics are given in the form of a set of

state space matrices, we can write the equivalent H matrix and subsequently set up the net

by determining its A and B matrices. Then we have to find out how events affect these

states and accordingly set up Wpt and Wtp matrices. Alternately, if the system is described

by a set of relations among its parameters in terms of parallel operations or precedences, we

can write the net arc weight matrices and then find the H and N matrices.

Here, we show the condition for finding the synchronous part of the H matrix by the

first method, through an example. The second method is straightforward since we already

have the required matrices.

Dynamics of GPN is described by

Since we are concerned only with the synchronous part of the system, we assume the N

matrix is null. A l l time-invariant linear systems that can be represented by state space can

also be represented by the above equation. H matrix is defined as

To construct the net we need to find the number of places and transitions and establish

matrices A and B. The number of places is fixed by the dimension of the H matrix. In

the simplest form, if we model the system such that it has an equal number of places and

transitions, and let A and F be our identity matrices, then:

M(k + 1) = M(k) + HkM{k) + Nfk. (IV.72)

(IV.73)

Diag(A.F) = Diag(I.I) = I ,

IV . GPN Properties and Analysis Methods 57

and

[One(A).F.B] = [One(I).I.BY = B1 (TV.74)

If we substitute from Equation (IV.74) in Equation (IV.73), we will have

H = B - I . (IV.75)

Equation (IV.75) above, gives the sufficient condition for any given H to have a

representation by a GPN. In many cases we can find a smaller net, that is a net with fewer

transitions, which can represent the H matrix. The following example illustrates this point.

IV .2 .1. An Example: Let a given system and its corresponding H matrix be

"mi (A + 1)" '1 0
_m2(k + 1) _

c
3 1

,r
_m2(A;) _

H 0 0" H
3 0

(IV.76)

Now as shown above, if we take A=I and F=I, then

BT = H + J

B =

1 0
3 1

1 3
0 1

This results in a net with two places and two transitions. This net also can be represented

by a smaller net with only 2 places and one transition. In that case we have

A and B = [1 3]

The H matrix for the second net is exactly the same as the first one.

IV . GPN Properties and Analysis Methods 58

IV.2.2. Modelability Condition for the Synchronous Part of GPNs: In this section we

would like to show the general condition by which we can find a set of A and B matrices

to model a given equation, where A is not necessarily an identity matrix. Assuming that

every transition in a net fires exactly once (there are no hybrid transitions), we can write

the state equations as

M(k + 1) = M(k) + HM(k)

where

= (- 0 + $)

e = Diag(A) and $ = [One(A).B]T .'

Every H matrix member can be calculated as

Hij = —Oij + <f>i:j
n n

Ht>J = -] T (AAO + Yl 0(AJtN).BN>l for i = j

(TV .19)

N=l N=l
Hi

(IY.80)

n
HltJ = 0(AjiN).BNti for i± j ,

where n is the number of equations and N is an arbitrary variable. According to the above we

have p 2 equations corresponding to H matrix members, and (p x t) unknowns corresponding

to A matrix and (p x t) corresponding to B matrix. Therefore, as long as the number of

transitions is smaller than half the number of places, we have more equations than unknowns

and can be assured of finding appropriate A and B matrices. This is only the sufficient

condition for modelability of a given matrix. In most cases finding A and B matrices is

much easier than solving these equations.

IV.3. G P N Hierarchy

In modeling any system with a high degree of complexity, we need to model it at various

levels of abstraction since it reduces the analysis burden. A G P N can model different systems

at various degrees of abstraction.

IV . GPN Properties and Analysis Methods 59

A G P N can be used for two purposes. In its general form it can model a dynamic system,

with changes in its dynamics represented by a switching matrix which is event-driven. This

switching takes place by the firing of enabled transitions, and it is modeled by firing sequence

matrix F. In the special case when F is an identity matrix, the dynamics of the net are fixed.

This special case can be used to model a dynamic plant in parts of or in its entirety.

The dynamics of a GPN are such that every place is a function of one or more of the

other places including itself. In building a model, the number of places is in direct proportion

to the number of parameters which should be monitored in the system. When a place is not

an input place, it can be written as a function of other places. That way we can reduce

the number of places.

Any general system can be represented by a net with an equal number of transitions

and places: That is, for modeling any system we need a maximum of / places and /

transitions. Now, if we eliminate a place by writing it as a function of other places, then we

get fewer places as well as. fewer transitions, and consequently a smaller net. The advantage

of modeling with the GPN is that we can do all the hierarchical reduction from the H matrix

and then translate the final result into a GPN model.

IV.4. Ana lys is Methods

The two main approaches to the analysis of a Petri net are reachability tree and linear

algebraic methods. The first method is based on constructing the set of all reachable markings

of the net. This analysis method is only useful for small nets since the reachability tree size

explodes rapidly with an increase in the state space size. The linear algebraic method does

not involve this problem but may be restricted to only a sub-class of nets [83, 84]. These

two methods are described in the following sections. It is shown how they can be applied

to analyze a given GPN.

IV.4.1. Reachability Tree: The First analysis method is based on constructing a complete

reachability tree (RT) or a subset of all reachable states. The tree found by this method

IV . GPN Properties and Analysis Methods 60

depends on the initial marking of the net, therefore, this method is considered a behaviorial

analysis technique rather than a structural one. By looking at an RT we can discover many of

the modeled system properties, such as boundedness, conservativeness, and liveness. These

properties will be defined formally in the next section. Use of the RT method for system

analysis is explored in the chapter on systems analysis.

The main advantage of RT analysis is that it can be used for any system, unlike the linear

algebraic method, which might be restricted to a sub-class of nets. It should be noted that a

combination of these two methods is necessary for a complete analysis. The main' problem

with the RT method is that the size of an RT can become very large for any non-trivial system.

The construction of an RT starts with assignment of the initial marking as the root node

of the tree and then finds the other nodes by firing each enabled transition. Arcs represent

the transition firings and show how a node is reached from other nodes. Each new state

is either a middle node or a terminal node. A terminal node can be either an " O L D " or a

" D E A D E N D " type. A tree is complete when all the branches end with a terminal node.

Next, we present an algorithm for the construction of the GPN reachability tree (GPNRT)

and then follow it with an illustrative example.

Algorithm for Construction of a G P N R T An algorithm for the construction of GPN

reachability trees (GPNRT) has been developed and is given in Figure IV. 19. This algorithm

is based on a standard algorithm which is used for constructing Petri net reachability trees

(PNRT), as in [85, 31, 49].

IV . GPN Properties and Analysis Methods 61

Figure IV. 19 An Algorithm for Constructing GPN and PN Reachability Trees.

1. Start with the initial marking M(0) as the root node and label it " N E W " .

2. While there is a " N E W " node left, do the following:

2.a. Select a " N E W " node and call it marking M .

2.b. If M is identical to a marking already processed, then tag M " O L D " and go back to step

2.a. For real places, if the marking is close enough to a marking already processed,

it is marked "OLD".

2.c. Check if any transition is enabled under marking M ; if not, label it " D E A D E N D " and go

back to step 2.a. (Note: Synchronous transitions are by definition always enabled.)

2.d. While there are enabled transitions at M , do the following for each enabled asynchronous

transition t-[,t2,...,tn and all of the synchronous transitions at M :

2.d.i.Obtain the marking M ' that results from firing asynchronous transition t\, t2,tn

and all of the synchronous transitions at M .

2.d.ii.On the path from the root to M , if there exists a marking M " such that M'(p) > M"(p)

for each Integer place and M ' is not equal to M " , then replace M'(p) by u for each

real place such that M'{p) > M"(p).

2.d.iii.On the path from the root to M , if there exists a marking M " such that

M'(p) > M"{p) for some real places while the sign (+/-) of all other place

markings in M ' and M " remain the same, then replace M'(p) by u> for each real

place such that M ' (p) > M"(p).

2.d.iv.On the path from the root to M if there exists a marking M " such that M'{p) <

M"(p) for some real places while the sign (+/-) of all other place markings in

M ' and M " remain the same, then replace M'(p) by — u> for each synchronous

place such that M'(p) < M"(p).

2.d.v.Introduce M ' as a node and draw an arc with label t form M to M ' and tag M ' " N E W " .

2 .d.vi .END

2.e. E N D

3. E N D

IV . GPN Properties and Analysis Methods 62

The modifications to the basic algorithm are presented in boldface. Description of this

algorithm is given by highlighting the main differences between this algorithm and the one

for the PNRT.

1. We have two types of places in a GPN. Integer places have markings which only take

positive integer values and real places which can have real number markings. In the

latter case we can have an infinite number of possible states which may differ from each

other only by the slightest margin. To limit the number of states that a GPNRT can have,

we have introduced a closeness criterion for deciding if a marking is an " O L D " node or

not. By this measure, if a marking is within a threshold from an " O L D " node, it is taken

to be the same one. This is implemented as step 2.b. in Figure IV. 19. The closeness

measure is to be decided by the system designer since it may vary for different systems

and depends on the magnitude of the variable that any particular marking represents. A

threshold which is too small will increase the size of the RT, whereas a large one may

result in missing some important dynamics in the way markings evolve. For markings

modeled in this thesis, the threshold was taken to be anywhere from 0.1 to 0.01.

2. There are also two types (synchronous and asynchronous) of transitions in a GPN.

Synchronous transitions always are enabled, and fire according to their transition time. In

this GPNRT implementation, we have assumed that the transition time for all transitions

is the same and is equal to one sampling period. Therefore, all synchronous transitions

fire simultaneously and at all sampling periods. Asynchronous transitions are enabled

once their input conditions are satisfied. Starting from the root node, we fire one of the

asynchronous transitions along with all the synchronous ones to get to the next state.

When there are no enabled asynchronous transitions, only synchronous ones are fired.

Further, when there are no synchronous ones in the system, that node is marked " D E A D

END". This step is implemented as step 2.c. in Figure IV. 19.

3. An RT can become infinite if the markings are unbounded. To keep the tree finite, a

special character u is used which has the following properties. For any constant C,

IV . GPN Properties and Analysis Methods 63

LO ± C — LO, LO > C, LO > 'to. A place marking in a PN becomes an LO when its value is

increased by a transition firing, while all others remain the same or increase due to the

same firing. The reasoning behind this is that the firing of such a transition can repeat

an infinite number of times and increase the marking of the output place to infinity. This

is possible since none of the markings is decreased which would disable this transition.

This step is implemented as step 2.d.ii. Markings of a GPN, unlike those of a PN,

can take negative values. Therefore, a place marking can go out of bound both in the

negative and positive directions. In this algorithm, we mark the possibility of crossing

a negative bound by — LO. An LO or —LO appear in a real place marking, according to the

rules shown in steps 2.d.iii. and 2.d.iv.

G P N Reachability Tree Examples: Figure IV.20(a) shows a G P N with four places and

two transitions. Both transitions are asynchronous since their firing depends on the availabil­

ity of tokens in place p\. Figure IV.20(b) shows another net which is almost the same as the

one in Figure IV.20(a), with the exception of an extra synchronous transition t 3. We will use

these two nets to illustrate how their RTs differ due to this extra transition. The reachability

trees for these two nets (a) and (b) are shown as Figures IV.21 and IV.22, respectively.

These RTs are found by the algorithm described earlier.

P? P4 P2
 P4 l 3

(a) (b)

Figure IV.20 Examples of a GPN used for Construction of GPNRTs. (a) A GPN with

only Asynchronous Transitions, (b) A GPN with an Extra Synchronous Transition.

IV . GPN Properties and Analysis Methods 64

We start by describing the tree found for net which is shown in Figure IV.21(a). The

initial making of the net is M (l) = [1 0 1 0] , which is shown as the main (root)

node of the tree . This node is written as (1 0 1 0). Under this marking condition,

both t\ and t2 are enabled. Firing of transition t\ results in node (1 1 1 0). This firing

increases the second place marking while keeping all others the same. According to standard

PNRT, with this condition we should get an infinity character, UJ, in the place p2 marking.

But since p2 is a synchronous place we should apply the GPNRT rule instead. By this rule,

we do not get an u> since we have a change in the sign of the other place markings (a change

from "0" to positive "1").

Firing transition t2 from the root results in marking (0 0 0.5 1). This node is a

" D E A D E N D " since no transition can be fired form this marking as is shown in Figure

IV.21.

Starting from node (1 1 1 0), we can fire both transitions. The firing t2 results

in another " D E A D E N D " node in (0 0 0.5 1). Fifing of transition t\ gives us node

(1 to 1 0). The infinity term w, in place p2, indicates that this place is unbounded and

can increase infinitely under the same firing condition.

Firing transition £i from node (1 u 1 . 0) does not produce a new node, and therefore

this node is marked "OLD" . Transition t2 gets us another " D E A D E N D " node. This

completes the GPNRT for this net.

R O O T

DEAD END

Figure IV.21 Reachability Tree of the GPN Given in Figure IV.20(a).

IV . GPN Properties and Analysis Methods 65

Next we construct the GPNRT for the net given in Figure IV.20(b). The only difference

between this net and the previous one (Figure IV.20(a)) is an extra synchronous transition

£3. This transition has no firing condition and fires every sample period, along with any

other asynchronous transition which might be enabled and firing. Therefore, as can be seen

in Figure IV.22, all arcs have £3 as one of the transitions being fired. This extra transition

produces some extra nodes. An interesting observation is that there is no " D E A D E N D "

node since transition t 3 fire can under any condition. A l l the extra nodes.in this RT are

produced due to this fact.

ROOT

OLD

Figure TV.22 Reachability Tree of the GPN Given in Figure IV.20(b).

A program was written which computes all the nodes of a given GPN and produces a

complete reachability tree. This program will be described in Chapter V.

IV.4.2. Linear Algebraic Method: The linear algebraic method is based on an analysis

of the dynamic equations of a given net [86]. By checking whether these equations satisfy

certain conditions, we can find out about the modeled system properties. Due to the difficulty

of the analysis, these properties might be restricted to certain classes of nets as will be shown

in the following sections. The dynamic equations for a PN are given as

M{k + l) = M{k) + Nfk

IV . GPN Properties and Analysis Methods 66

M(k + 2) = M(k + l) + Nfk+1

= M(k) + N[fk + fk+1]

U f=[fk + ---+Jn],

M(k + n) = M{k) + Nf . " (IV.81)

By analyzing equation (IV.81) we can prove certain properties for a given PN. These

properties are given in the next section. The dynamic equations of GPNs which are used for

the matrix equation analysis method are -given below.

M(k + 1) = M(k) + HkM(k) + Nfk ,

M(k + 2) = M(k) + HkM{k) + Hk+1M(k + l) + Nfk+1,

M(k + n) = M(k) + Hk+j^Mik + j - l) + Nf. (TV.82)
i=i

Equation (IV.82) represents the dynamic equation, which can be used in this analysis

method. If we consider the GPNs with a diagonal A matrix, we can substitute

HK=(BT-A)FK

in Equation (IV.82) and get

• M(k + 1) = M(k) + (5 T - A)FKM(k) + Nfk ,

M(k + 2) = M(k)+ [BT - A^FKM(k)

+ (BT -A)Fk+1M(k + l) + Nfk+i ,

IV . GPN Properties and Analysis Methods 67

M(k + n) = M{k) + (BT -A)J2 Fk+j^Mik + j - 1) + Nf . (IV.84)

The linear algebraic method does not depend upon the initial marking of the net and only

takes into account the structure of the net. Many of the system properties can be proven by

this method and are described in the following sections.

These two methods (linear algebraic and reachability tree), can be applied in the analysis

of GPNs to investigate the modeled system properties. In the following section, we will

examine each of these properties in detail and show how they can be investigated by any

of these two methods.

IV.5. Controllability

The Controllability of a control system is defined as an answer to the question "Is it

possible to steer a system from a given initial state to an arbitrary state in a finite time

period?" [87]. A Petri net is said to be completely controllable if any marking is reachable

from any other marking [85]. Controllability of GPNs is defined as follows: given an initial

marking M(k), is it possible to reach any desired marking M(k+n), with the given H matrix,

in a finite sample time n?

IV.5.1. Controllability (When A is an Identity Matrix): As we have shown, to be able

to take the firing matrix out of the.H matrix, we need to transform the A into a diagonal

matrix. When this transformation is made, we get time-invariant matrices, which are easier

to analyze. In such a case, for a GPN we have

M(k+-l) = M(k) + HkM(k) + Nfk'.

When matrix A is diagonal, Equation (IV.85) can be written as

M(k + 1) = M(k) + (BT - A)FkM{k) + Nfk

(IV. 85)

(IV.86)

IV . GPN Properties and Analysis Methods 68

where Hk, Fk, and fk are H and F matrices, and f vector at time instant k, respectively.

Assuming initial marking M(0), and substituting k = 0,1, 2 , . . . , we get

M (l) = M(0) + [BT - A)FoM(0) + yv/o ,

M(2) = M(0) + [BT - A) F o M (O) + NfQ + (BT - A) ^ M (1) + Nf, ,

M(3) = M(0) + (# R - A) F0M(0) + Nf0

+ ^BT-A^F1M{l) + Nf1 + ^BT-A^F2M(2) + Nf2. (TV. 87)

In the same manner, for k = re, we have

ii n

M(n) = M(0) + [BT - A) F j - j Af (j - 1) + JV .

i=i i=i

If we take the initial marking M(0) to the other side, we get

M(n)-M(0)

B1 -AY-.-'-AB1 -A)\N\---\N

K - i M (n - l)

F0M(0)
In­

fo
Then, the controllability condition is that the

Rank (BT - Ay.---\[BT - Ay.N\---\N = n.

(IV.89)

(IV.90)

IV.5.2. Controllability of Time-variant Systems: When A is taken to be any given matrix

(without restriction of being a diagonal matrix), then our H matrix becomes time-variant of

the following general form:

M(k + 1) = M(k) + HkM(k) + Nfk

IV . GPN Properties and Analysis Methods 69

The controllability matrix of such a system is given as [88]

[P0,P,,...,Pn^] ,

where

Po = [Hk N]\ (IV.92)

and

Pl+l = -P, + Pt(k + l).

IV.6. Conservat ion

When the total token count in a set of PN places remains constant, those places are

called conservative. This property is useful in modeling resource allocation in a system. By

showing that the number of tokens in a set of places remains constant, we are assured that

no resource is created or destroyed. This property can also be used for systems with some

conservation properties, for example, conservation of energy assuming no losses.

A GPN is said to be conservative if, starting from an initial marking M(k) and for all

reachable markings,

Y,MPi{k)= Y,MPi(k + l). , (IV.93)
P.EP P.EP

Equation IV.93 is the condition for strict conservation, which rarely holds for systems. A

more general form can be written as

M^+1Y = MlY , (IV.94)

where Mk+i = M(k + 1) and Mk = M(k) are the markings at instants k + 1 and

k, respectively. Y is an arbitrary m-dimensional vector. The weak conservation condition

checks the weighted sum of the markings. We first derive the conservation condition for

GPNs which have a diagonal A matrix, and later for any given GPN.

IV ; GPN Properties and Analysis Methods 70

IV.6.1. Conservation of GPNs with Diagonal A Matrix: From the definition of the dy­

namics of a GPN with a diagonal A matrix, we have

Mk+1 = Mk+ (BT - A) FkMk + Nfk . (IV .95)

Transposing both sides and multiplying by a vector Y yields

T
Ml+1Y = MT

kY + MJ

kFk{BT - A) Y + ft' NTY .

Now the condition for conservativeness of a given net can be derived as

which gives us

BT - A)TY = 0 ,

and NTY = 0 ,

Mk+iY = MIY •

(IV.97)

Vector Y is called a P-invariant, and its properties are discussed in the literature [49].

Theorem 4.1. Conservation Condition (When A is diagonal): A GPN with a diagonal A

matrix is said to be (partially) conservative if there exists an arbitrary positive weighting

integer y(p) for every (some) place p, such that M^^Y — MkY = constant and

(BT - A) Y = 0 and NTY = 0 . (IV.99)

IV.6.2. Conservation of any Given G P N : Any given GPN can be written as a series of

nets with different H matrices. The conservation property should be ascertained for each of

the H matrices. Let the dynamics of a net be given as

Mk+l = Mk + HkMk+ Nfk . (IV. 100)

Now depending on the firing condition of the net we get different H matrices, which can

be written as H\,Hi,—,Hj. Then the condition for conservativeness of such a net will be

NTY = 0 and
(IV. 101)

H?Y - 0, HjY = 0 , a n d HjY = 0 .

IV . GPN Properties and Analysis Methods 71

Theorem 4.2. Conservation Condition (Any GPN): A G P N with H matrices

Hj, H2,Hj is said to be (partially) conservative if there exists an arbitrary positive

weighting integer y(p) for every (some) place p, such that Y = M^Y = constant and

NTY = 0 and
(IV. 102)

HjY = 0, HTY = 0 , a n d HJY = 0 .

The conservation property can also be analyzed by the R-tree method. For this we have
to inspect the tree and see if the conservation condition holds for each node of the tree.

Obviously a set of places with an infinity sign to in one of them cannot be conservative.

IV.7. B o u n d e d n e s s and Stability

Boundedness of an event-driven system and stability of a time-driven system are very

similar concepts. Boundedness examines whether one or more of the system states can grow

beyond a limit or bound. Stability of a system checks whether for given bounded inputs to

the system, its outputs would continue to remain bounded (Bounded Input Bounded Output,

BIBO). These properties are the most important characteristics of any given system.

A place in a PN is called I-bounded if the marking of that place cannot exceed a positive

integer number I. A PN is bounded if all its places are bounded. Boundedness of a GPN

is defined in the same manner. A place in a GPN is called R-bounded if the marking of

that place cannot exceed a real number R. A GPN is bounded if all its places are bounded.

Since marking in a GPN can have both negative and positive values, we will have both

negative and positive bounds.

We start this section by showing how the boundedness of a PN is determined by the

linear algebraic method. We then show why this method is not sufficient to determine GPN

boundedness and present our analysis method.

Theorem 4.2. P N Boundedness Condition: [85] A given PN is bounded if there exists a

vector Y such that

3Y > 0 and NTY < 0 . (IV. 103)

IV . GPN Properties and Analysis Methods 72

Proof: [85] The equation for P N dynamics can be written as

Mk+1 = Mk + Nfk . (IV. 104)

If we take the transpose of each matrix and multiply both sides by Y , we get

Mi^Y = MiY + fiN1Y . (IV. 105)

Since Mk and fk are both positive, then NTY becomes negative. Therefore, we can write

Ml+lY<MlY . (IV. 106)

The bound on each individual place marking can be written as

(IV. 107)

In a GPN, however, not all the places are of PN types and can have both negative and

positive markings. Stability or boundedness of a GPN depends on both its synchronous and

asynchronous parts. Either proof of stability of the H matrix or boundedness of synchronous

places alone does not prove the overall system stability and boundedness.

Theorem 4.3. G P N Boundedness and Stability Condition: Any given GPN is both

bounded and stable if there exists a vector Y such that

and all roots of its characteristic equations, given by the eigenvalues of [zl — H(z) — I],

lie inside the unit circle.

Proof: The dynamic equation of a GPN is

3Y > 0 and N1 Y < 0 (IV. 108)

M(k + 1) = M(k) + HkM(k) + Nfk ,
(IV. 109)

M(k + l) = (Hk.+ I)M{k) + Nfk .

If we write the z-transform for this equation, we get

IV . GPN Properties and Analysis Methods 73

zM(z) = \H{z) + I)M(z) + Nf{z) , ..
(IV. 110)

M(z) = [zi - H(z) - I}~lNf(z) .

The stability of this net then depends upon where the poles of the system or the roots of

the system characteristic equation, given by the eigenvalues of [zi — H(z) — I], fall. Places

with eigenvalues of less than one (whose corresponding poles are within the unit circle) are

stable and bounded no matter what the N matrix is. Places with eigenvalues greater than

one are unstable and consequently unbounded. Places with their poles on the unit circle are

critically stable, and their stability and boundedness depend on the TV matrix.

L e m m a 4.3.1. Boundedness and Stabil i ty Condit ions of Cr i t ica l ly Stable Places: Any

place with its corresponding H matrix row or column equal to a zero vector has an eigenvalue

equal to one. Such places are critically stable can become unbounded if their corresponding

elements in vector NTY are not less than or equal to zero.

Proof: The dynamic equations governing the changes in the place markings are given by

the folio wings:

zM(z) = .(H(z) + I)M(z)'+ Nf(z)

M(z) = [zl - H{z)- I]~lNf{z) .

The change in a place marking is a function of the corresponding H matrix elements

and the previous markings. The following equation shows the H matrix in terms of the net

IV . GPN Properties and Analysis Methods 74

parameters A, B, and F matrices. Derivation of this expression is given in Appendix B.

H = -Diag(Af) + [One(A)Diag(f)B]T =
n n n n

- E ftijfj + E 0 i j f j b j i E o2jfjbji . . . E oijfjbj!
j-1 j-1 j=l j=l

n n n n

T,oijfjbj2 ~ E (hjfj + E o2jfjbj2 . . . y.Otjfjbj2

n n n n
E Oljfjbjl E 0 2 j / j & j / • • • - E aljfj + E 0 / i / i & j n

i= i (iv. 112)

The change in place pz marking is governed by the ith row of the H matrix at that instant.

A l l the elements in the ith row of the H matrix can become zeros, either because of weight

matrices A and B, or the transition firing matrix F. In this case the characteristic root (poles of

the system) due to that place will be of the form (z-1). That is, the pole falls on the unit circle.

If the whole of the H matrix becomes a null matrix, then

zM(z) = M{z) + Nf(z)
(IV. 113)

M{z) = [zI-I\-lNf{z).

This is the dynamic equation of the PN. In this case the stability problem becomes a

boundedness problem and is dealt with the same way we deal with the PNs.

Boundedness also can be analyzed by reachability tree analysis. Presence of an infinity

symbol in a place marking indicates that that place is unbounded.

IV.8. L iveness

Another problem which is of interest in resource allocation is avoidance of deadlock [89,

90]. A deadlock in a Petri net is defined as a transition or a set of transitions which cannot

fire [85]. A transition is potentially fireable if, starting from an initial marking, there is a

reachable marking in which that transition is fireable. A net is called live if all transitions

in that net are potentially fireable.

In a GPN, all pure synchronous transitions (those which have no pre-conditions for the

firing), are live all the time since they can continue firing no matter what marking their input

IV . GPN Properties and Analysis Methods 75

places have. However we can have a situation where the fired transition does not change

the markings. For example when the input place marking is zero, the transition firing can

go on, but the input and output place markings are not altered by the firing. Therefore

in liveness analysis of the GPNs, we consider only the synchronous transitions which can

become unabled due to their input place markings.

The liveness of a net depends on its initial marking and that is why it is analyzed by

the reachability tree method. The reachability tree analysis only proves the liveness of a

net for a given initial marking. Structural liveness, in general, is difficult to show and only

certain classes (such as free-choice and marked graph nets) can be handled [91] by linear

algebraic methods.

IV.9. Safeness

Safeness is a special case of the boundedness property. In the Petri net theory, a safe

place can have only zero or one token at a time or is 1-bounded. This way a place can be

represented by a flip-flop. This property can be used in fault detection to check if a place

has erroneously acquired more than one token when it was meant to be a safe one. This

property can be defined only for the asynchronous global Petri net places and not for its

synchronous ones.

The way to check for this property is the same as the one for checking the boundedness

except that the bound is taken to be equal to 1.

IV.10. Reachability

Reachability is the most basic problem of a Petri net analysis. A marking is reachable

if there exists a sequence of transition firing which, starting at the initial marking, results

in that marking. The reachability problem is analyzed both by reachability tree and matrix-

equation methods. Reachability of a set of places also can be analyzed and is referred to

as sub-marking reachability.

Chapter V Global Petri Net Simulation
and Analysis Tool (GPNSAT)

In this chapter some of the main issues regarding the development and use of a tool for

simulation and analysis of hybrid systems are discussed. We start by showing how a net

structure can be prepared from other types of information known about the system. We then

continue by describing the tool structure and its various functions.

V.1. Model ing Procedure

Figure V.23 shows the GPN model development procedure. It shows how various system

specifications can be translated into GPN parameters. Any system to be modeled can be

specified as a set of events and conditions, state space representation, transfer function, or a

set of logical statements or simultaneous equations. The modeling procedure changes these

specifications into a set of GPN model parameters, such as number of places, transitions, and

arc weight matrices. This gives us a number of small GPN models which, when combined

by the GPN engine, can represent the complete system. The G P N engine is used for model

simulation and analysis. At first we show a top view of the tool structure and then describe

its various parts.

76

V . Global Petri Net Simulation and Analysis Tool (GPNSAT) 77

Transfer
Function

Set of Events
and Conditions

State Space
Logical

Statements
Simultaneous

Equations

Modeling Procedure

G P N Parameters P ,T ,A,B , . .

GPN
Models

GPN
Models

GPN Engine

Simulation
t

Analysis

Figure V.23 Modeling Procedure Used for Translation of System Specifications into a Complete Net Model.

V.2. G P N S A T Top View Structure

The GPN simulation and analysis tool (GPNSAT) consists of many parts, as shown in

Figure V.24. Rounded boxes represent different modules written for performing simulation

and analysis of Petri and global Petri nets. The four main parts are the human interface, net

utilities, simulators, and analysis tools.

A l l of these programs have been written in M A T L A B [92]. The M A T L A B package is

very suitable for our purposes since many of the required matrix manipulation routines are

already provided. Moreover, routines written in the M A T L A B programming language or C

can be used to provide a structured environment for program development.

V. Global Petri Net Simulation and Analysis Tool (GPNSAT) 78

At the heart of the GPNSAT is a human interface which takes the input parameters and

passes them onto various programs as desired by the user. Inputs can be entered interactively

through a keyboard or via an already composed file. Outputs are displayed both graphically

and numerically, Input/output devices in Figure V.24 are represented by grey boxes.

input
from

Keyboard

Input
from
File

Display Human Interface

Simulators

PN) [GPN

Figure V.24 The Overall Structure of the GPN Simulation and Analysis Tool (GPNSAT).

V.3. G P N S A T Substructures

In this section we describe some of the programs which have been written to model, sim­

ulate, and analyze various systems by the GPN formalism. Some important implementations

issues are discussed, and the trade-offs are explained.

V.3.1. Human Interface: This module is used for interacting with the user to obtain net

parameters. The user has two options for inputting the net parameters. S/he can do it

interactively by answering a series of questions, or ask the program to access the required

information, which is stored in a file. This module can also import directly the parameters

from the net integrator described later on.

Once the parameters are input, the human interface checks to make sure that there are no

inconsistencies in the data. These inconsistencies could be the result of entering arc weight

V . Global Petri Net Simulation and Analysis Tool (GPNSAT) 79

matrices with inappropriate sizes, forgetting to enter initial markings, or simply a violation

of the PN/GPN rules as given by the PN/GPN formal definitions. The user is informed of

any input inconsistencies which are detected by the HI, and is asked to check and re-enter

the parameters.

V.3.2. Net Utilities: The net utilities module consists of a set of programs used for defining

nets. A routine called type checker is used to determine what the types of different transitions

and places are. The net integration module takes smaller nets as its input and puts them into

a large net, which can then be used for simulation or analysis. In the following we describe

each of these routines.

Type Checker: Types of places and transitions play an important role in the simulation

of GPNs. Depending on what the types are, different firing rules are applied. The types

of places or transitions can be defined by the user, and then there will not be any need to

use this routine. But if the types are not known or need verification, this routine can check

them. Definitions of types of GPN places and transitions were given in Section in.9. These

definitions and the algorithm based on them, which determines these types from given arc

weight matrices, are used in this routine.

Net Integration: As mentioned in Section V . l , modeling with GPN can be carried out by

constructing a series of small nets representing various parts of the complete system. These

smaller nets can then be juxtaposed to form a complete picture of the total system. The

advantage of this kind of modeling is that smaller nets can be analyzed individually and their

properties proved before being integrated into the system. Another advantage is that we can

modularize the modeling and analysis processes. It this way a module can be used in many

parts of the system and, if the need arises, it can be replaced by a new one.

Let two smaller nets be defined as:

GPNX = (P i , r i , W p t l , W t p i , A i , £ i , M i (0))

V. Global Petri Net Simulation and Analysis Tool (GPNSAT) 80

and

GPN2 = (P2,T2,Wpt2,Wtp2,A2,B2,M2(0)),

with their places given as

P\ = {Pl,P2,---,Pl,Pl+i,---,Pl+c} and

P2 = {pi,Pl+i,...,Pl+c,Pl+c+l,---,Pc+l>}-

That is, GPN\ has I + c places, out of which the last c places are the same one as those of

net GPN2. Net GPN2 has c + l' places, with first c places same as those of GPN\. The

transitions of the two nets are given as

T\ = {ti,t2, ...,tn,tn+i,tn+2, ...,tn+(i} and

T2 = {tn,tn+i, ...,tn+(i,tn+(i+i,i^+w'}-

That is, GPN\ and GPN2 have n + d and n + d transitions, respectively. Out of these

transitions, they share d transitions. The transitions are numbered such that the first n + d

transitions belong to GPN\, and the last d + n transitions belong to GPN2.

The weight matrices for these two nets have the following dimensions:

GPNX Matrix Size Matrix Size
I + c x n + d Br n + d x I + c

wPh I + c X n + d n + d x I + c

GPN2 A2 c + l' X d + n' B2 d + n' x c + l
wpi2 c+l' X d + n' wtP2 d + n' x c + l'

These two nets can be combined to form a larger net. This resulting net has a smaller

number of places and transitions than the two nets put together, since we can eliminate the

V. Global Petri Net Simulation and Analysis Tool (GPNSAT) 81

redundant transitions and places which are common to both nets. The new net, called GPN,

has the following structure:

where

GPN = (P, T, Wpt, Wtp,A, B, M(0)),

P = {Pl, P2, • • •, Pl, Pl+1, • • •, Pl+c ,Pl+c+l,—,Pl+c+l'},

T = {ty, t2, tn, t n-|_i,t n + ([, £ „ + c (+ i , ...,t1l+([+ni}.

The dimensions of the combined net weight matrices are:

GPN Matrix Size Matrix Size
A l + c + l'xn + d+n' B n + d + n'xl + c + l1

Wpt l + c + l'xn + d+n1 Wtp n + d + n'xl + c + l'.

The A and B matrices, given A-[,B\,A2, and B2 can be written as:

A

Pi
P2

Pl
Pl+1

Pl+c
Pl+c+1

Pl+c+V

U ' u til 7̂1 + 1

A,

A i
0 0 0

0 o o -
. 0 0 0 A 2

tn+d
A i 0 0 0

0 0 0

0 0 0

A 2

Ai

A 2

n+d+n'

B

tn+d
tn+d+i

t 11+d+n'

Pl P2 Pl Pl+1

B,

5 i

0 0 0

0 0 0

. 0 0 0 B2

Pl+c Pl+c+1 • •
Bx 0 0 0

0 0 0

0 0 0

B2

Bx

• Pl+c+V

B2

The Wpt and Wtv matrices also can be formed in a similar fashion.

V. Global Petri Net Simulation and Analysis Tool (GPNSAT) 82

V .3.3. Simulators: Simulation modules simulate many different types of PNs and GPNs.

Both timed and untimed versions of these nets are simulated. The first version of this simu­

lator was written for ordinary PNs. Later, timing specifications were added, which enabled

modeling of timed Petri nets (TPN). The human interface, based on the net parameters, can

decide which one of the simulators is needed. It then can call the appropriate simulator to

perform the simulation.

Petri Net Simulator: The PN simulator can model any discrete-event system. After getting

the net parameters form the human interface routine, it can run the simulation for a specified

number of sample periods. At the end of the simulation run, the results are presented

graphically by plots of the variations in token counts of each place.

The simulator consists of many smaller routines, with each performing a specific task.

For example, one routine is used to decide which transition should be fired next when there

are more than one enabled transitions. This selection can be decided by a random order

assignment or can be prioritized. In the latter case, some transitions have a higher priority

and are fired first.

The simulator program is a loop which runs for the number of time instants specified

by the user. In each pass, the first thing to do is to find the transitions which are enabled.

This is done by applying the PN enabling rules. Once all enabled transitions are determined,

one of these transitions is selected to be the next one to be fired. The transitions are fired

by subtracting tokens, specified by the arc weights connecting them to their input places,

from the input places markings.

Once the firing is done in this way, a flag is set to mark the transition busy for the

time specified by its transition time. Then the pass is continued by checking whether any

more transitions are still enabled, taking into account the token movements after the first

firing in that run. This is continued until there are no more enabled transitions left. Then

the present pass ends and a new one starts by checking whether any transition has finished

V . Global Petri Net Simulation and Analysis Tool (GPNSAT) 83

its firing. Completion of a transition firing is completed by adding tokens to output places

of the transition.

In the untimed version of this simulator, no time is specified for transitions. The firings in

this case are atomic actions, and additions and subtractions of tokens are done simultaneously.

Other details of the simulation are the same as for the timed version.

Global Petri Net Simulator: The GPN simulator was written based on the PN simulator.

Its major difference is its capability in simulating synchronous and hybrid nets. The GPN

simulation program also consists of many smaller modules. Some of these modules are the

same as the ones in the PN simulator, but some are written specifically for GPN simulation.

Two routines new to this simulator are ones which implement functions OneQ and

Diag{), defined in the GPN dynamic equations. These functions are necessary in every

simulation pass to find the system H matrix.

Like the PN simulator, every simulation pass starts by deciding which asynchronous

transitions to fire next. After firing the first enabled transition, the process continues until

all enabled transitions are found. The synchronous transitions are fired once in every pass,

unless they are busy completing their earlier firing.

V.3.4. Analysis Tools: Another important part of the GPNSAT is its analysis tools. This

part also can be invoked by the human interface upon the user's request. The analysis tools

module is dedicated to analyzing the given nets. Both reachability tree and linear algebraic

analysis methods are available. These programs can check a variety of net properties such

as boundedness, stability, and controllability. Depending upon which property one wants,

one or both of the analysis methods are used.

Reachability Tree Analysis: The module for reachability tree construction is based on the

algorithm developed in Figure IV. 19. This algorithm can be used for construction of both

PN and GPN reachability trees, using two different routines. The programs closely follow

V . Global Petri Net Simulation and Analysis Tool (GPNSAT) 84

the steps enumerated in the algorithm. In MATLAB, a number called Inf is used to denote an

arbitrarily large number. This value is used in defining the infinity (LO) nodes of the tree. The

RT program continues generating new nodes until all the branches of the tree are processed.

At the end, each node is defined as one of the two types, DEAD END or OLD.

Once the RT is constructed, we can check for different net properties, such as bound­

edness, liveness, and conservation.

Linear Algebraic Analysis: The other analysis tool is based on the linear algebraic method.

This method finds all possible H matrices for a given net by firing different combinations

of hybrid transitions. These H matrices, along with the system incidence matrix N, form

the basis for the analysis. This method finds the boundedness property by checking if the

inequalities formed by

3Y > 0 and NTY < 0

hold true. The stability of the system is checked by finding whether the roots of

[zl — H(z) — 1} fall within or outside the unit circle.

Chapter VI Modeling and Analysis of
a Hydraulic Control System

In this chapter we demonstrate how our extension of the Petri net theory, developed in

the previous chapters, can be used to model and analyze a complete real-time hybrid control

system. We also w i l l show how this system is simulated and analyzed by the G P N S A T

package.

We have chosen a real-time hydraulic control system, which is a very good example

of a hybrid system. This system has many interacting parts with stringent fault detection

and identification requirements. One of the advantages of using a Petri net is the ability to

model a system at various levels of abstraction. This advantage becomes quite evident in the

following presentation. We have modeled the system as a distributed computing system with

nodes dedicated to various tasks, such as control, monitoring, and supervision. A t the highest

level, the system interactions are modeled by a conventional Petri net as an asynchronous

system. Later in this chapter, parts of the system are modeled at a more detailed level as

hybrid subsystems.

VI.1. Overall System Structure: Level 0

Figure VI.25 shows a block diagram representation of the hardware structure of a

hydraulic machine control system [93]. This structure was used for the dynamic simulation

and control of teleoperated hydraulic manipulators [94]. The system consists of a controller,

a computing node (C P U and memory), and a controlled subsystem, which is an excavator.

There are also many sensors and actuators which are used for detection and application of

outputs and control inputs, respectively. A l l of the subsystems are connected to a system bus

which also can be replaced with a communication channel when the system is implemented

in a teleoperated mode.

85

V M E Bus

Sys tem
Control ler

C P U
&

Memory

A / D D/A R/D

Servo-Va lves

Joyst icks Pressure
Transducers

Resolvers

Excavator

Hydraulics • Structure

_ - - i

Operator

Figure VI.25 Block Diagram of a Hydraulic Control System Hardware Structure.[93]

VI. Modeling and Analysis of a Hydraulic Control System 87

Figure V-I.26 shows a generalized and simpler representation of the previous block

diagram. It shows a number of subsystems connected to and sharing a common system bus.

We assume that the bus is the critical resource, which should be shared by the subsystems,

and that its performance and utilization could affect the whole system. Any other part of

the system, such as CPU or memory, could also be treated and studied as a resource. But

in this study we consider only the bus.

The subsystems are numbered one through N , of which the first two and the last one

are shown in Figure VI.26. Each subsystem can access and take hold of the bus and use

it for its transactions, while the others wait for its release. At this level, the system can be

modeled as an asynchronous system. We are not interested in the internal functions of each

subsystem and model only the bus utilization.

Sys tem Bus

Subsystem
One

Subsystem
Two • • •

Subsystem
N

Figure VI.26 Block Diagram of a Distributed System at Level 0.

The above system is modeled by a Petri net, as shown in Figure VI.27. There are four

places representing the three subsystems and the system bus as places p\ — p±, respectively.

Arrival of a token in one of the first three places indicates that that particular subsystem has

a task to perform and needs to access the system bus. Transitions t\ —h represent the arrival

of tasks at subsystems one through three, respectively. These transitions represent external

events and fire due to external conditions not modeled within this system. Transitions t± —1§

represent the system bus accesses by subsystems p\ — p$, respectively.

VI. Modeling and Analysis of a Hydraulic Control System 8 8

S u b s y s t e m

*i O n e

S y s t e m B u s S u b s y s t e m

h T w o

S u b s y s t e m

N t6

Figure VI.27 Petri Net Model of the System shown in Figure VI.26.

Net parameters for this example are defined as

P = {Pl,P2,P3,P4} T = {t i ,<2,*3,*4,*5,*6}

w, pt

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 1 1

Wi tP

"1 0 0 0"
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1

(VI. 126)

M(0) = [1 0 0 1

TT=[5 10 15 2 4 6] .

P and T are the sets of places and transitions, respectively. The Wpt and Wip matrices

give the weight of the arcs connecting places to transitions, and vice versa, respectively. For

example, Wpt (1,4) = 1 indicates that place p\ is connected to transition by an arc whose

weight is 1. M(0) = [1 0 0 1] is the initial marking or the marking at time instant

zero. It indicates that initially there is one token in places P \ and p±, and none in other

places. This is illustrated in Figure VI.27 by the presence and absence of dots (tokens) in the

circles representing the respective places. TT is the transition time vector, which associates

a time with each transition firing. TT(4) = 2 indicates that transition £ 4 takes 2 sampling

periods to complete (each system bus access by subsystem one lasts 2 sampling periods).

The net in Figure VI.26 was simulated by the simulation package described in the

previous chapter. Figure VI.28 shows the results of a simulation run. Plots (a) through

VI. Modeling and Analysis of a Hydraulic Control System 89

(d) are the token count at places p\ — p±, respectively. Subsystems one through three get a

new token, at the rate defined by their input transition firing time. For example, place p\

receives a token every five sample periods as a result of the firing of its input transition t\.

Subsystems two and three receive a new token every 10 and 15 sample periods, as determined

by their input transition firing time. Ideally, each token should be consumed by the place

output transitions before a new one arrives. That is, each subsystem should have a chance

to access the bus frequently enough to avoid a pile-up of tokens at the place representing

it. The token arrival time and bus access time for this example were selected so that the

pile up situation, happens. As can be seen in plots (a) and (b), token counts (marking) at

places p\ and p2 get larger as time goes on. This is more severe in the first subsystem since

it gets updated more often. On the other hand place 753 marking, shown as plot (c), never

exceeds one, indicating that the bus can keep up with the new token arrivals at this place.

The marking at place p± is given as plot (d). This plot shows how the bus switches between

idle and busy states. The bus utilization for this case is around 92%. This could be around

100% if it were not for the initial idle time in the beginning, when none of the subsystems

needed the bus. The bus utilization and accumulation of tokens in subsystems can be used

to decide when a faster bus is needed.

VI. Modeling and Analysis of a Hydraulic Control System 90

(a) Place p1: Representing Subsys. One (b) Place p2: Representing Subsys. Two

0 50 100 0 50 100
Time Sample Time Sample

Figure VI.28 Simulation Results of the PN Model Given in Figure VI.27. (a) Place

pi Marking, (b) Place p 2 Marking, (c) Place p3 Marking, (d) Place pi Marking.

In the current example all subsystems were taken to have the same access priority. We

can easily simulate many different operation scenarios to study the effect of having a faster

bus, more than one bus, less frequent token arrivals, and various priority policies amongst

the subsystems. A l l these are done simply by changing one or more of the initial settings

for the net. For example, let us increase the number of bus channels from one to two by
rp

setting the initial marking to M(0) = [1 0 0 2] . In this case, the bus can easily meet

the transaction demands by the three subsystems. Figure VI.29 shows the plots of the same

parameters as those already shown in Figure VI.28. As can be seen, all the bus accesses by

the three subsystems are going through in time, and no pile-up of tokens takes place.

VI. Modeling and Analysis of a Hydraulic Control System 91

(a) Place p1: Representing Subsys. One
1.51 • 1

Time Sample
(c) Place p3: Representing Subsys. N

1.5i • 1

i 1
o o
c

0 50 100
Time Sample

(b) Place p2: Representing Subsys. Two
1.51 • 1

§ 1
o

O
c
CD
° 0.5

0 50 100
Time Sample

(d) Place p4: Representing System Bus
2rn-n-ni—in i in n 1 m i n n—rrr-n

100
Time Sampt

Figure VI.29 Simulation Results of the PN Model Given in Figure VI.27 when the Number of Bus Channels is

Increased to Two. (a) Place p\ Marking, (b) Place p2 Marking, (c) Place p 3 Marking, (d) Place p\ Marking.

VI.1.1. Petri Net Analysis of the Model at Level 0: We can use the given Petri net to

analyze the system model for the various properties which were described earlier.

Reachability Tree Analysis: We start the analysis by constructing the reachability tree for

the previous example. We use the RT construction tool described in Chapter V to obtain the

reachability tree shown in Figure VI.30.

VI. Modeling and Analysis of a Hydraulic Control System 92

ROOT

(co,co,co,1)

OLD

Figure VI.30 The Reachability Tree of the Petri Net Shown in Figure VI.27

Figure VI.30 can be used to investigate many of the modeled system properties. These

are as follows:

1. Boundedness: The appearance of the infinity symbol to indicates the possibility of

unboundedness in a particular place. With reference to the tree, we conclude that the first

three places, representing the subsystems, are unbounded. As we saw in the simulation

results, this situation can happen when the subsystems cannot access the bus before the

next token arrives. Place four, representing the system bus, is safe since its marking

never exceeds one. We also constructed the RT for the case where there are two bus

channels available. The only difference was in the number of tokens in place p± since it

can now have some nodes with two tokens. A l l other markings remained the same. This

shows that, with the current structure, the number of bus channels does not eliminate

the possibility of a subsystem going unbounded.

2. Liveness: Another interesting fact deduced from the above analysis is the absence of

deadlocks, since none of the nodes are marked " D E A D END". This and the fact that

the fourth place marking never exceeds one, indicates the mutually exclusive use of the

bus by subsystems without getting into a deadlock situation.

3. Conservation: Neither the complete net nor any set of its places is conservative, as the

appearance of the UJ symbol in the places' marking indicates.

VI. Modeling and Analysis of a Hydraulic Control System 93

4. Reachability: As the RT shows, only those states in which place four has one token

are reachable. A l l other places may reach any marking, starting from the given initial

marking.

Linear Algebraic Analysis: Other properties of the net can be investigated by the linear

algebraic method. The incidence matrix for this net can be written as

N = W\ T
tp pi (VI. 127)

" 1 0 0 - 1 0 0
0 1 0 0 - 1 0
0 0 1 0 0 -1
0 0 0 0 0 0

For this net to be bounded, given that Y is an arbitrary positive vector, the following

inequalities should hold:

NTY =

" 1 0 0 0" "0"
0 1 0 0 ~yi' 0
0 0 1 0 2/2 < 0

-1 0 0 0 2/3
<

0
0 -1 0 0 J/4. 0
0 0 -1 0 0

(VI. 128)

(VI. 129)

These inequalities can be written as

2/i<0

2/2 < 0

2/3 < 0

-yi<0

-2/2 < 0

-2/3 < 0 .

Since the first three above inequalities contradict the original assumption of Y being

positive, we conclude that the net is not bounded. In fact, this is the same result obtained

by the RT analysis.

Controllability of the net can be checked by the rank of the incidence matrix N . Since

VI. Modeling and Analysis of a Hydraulic Control System 94

rant k[N I =3 (VI. 130)

is less than the number of places m=4, this net is not controllable. This is due to the

fact that place four, which represents the system bus, cannot be made to have any arbitrary

number of tokens.

VI.2. A More Detailed Model of the Overall System: Level 1

In the previous section we showed how a distributed computing system can be modeled

and analyzed at its highest level as an asynchronous system by a Petri net. In this section

we present the modeling of this system at a more detailed level of abstraction. Figure

VI.31 shows part of the distributed system, consisting of three subsystems. The first two

subsystems represent the field and computing subsystems, which are physically separate and

communicate through the system bus. To enable study of the effects of all other subsystems,

we have lumped everything else together into a subsystem called ' A l l Other Subsystems'.

The field unit consists of the plant and its input-output interfaces with the world, such as

sensors and actuators.

System Bus

Desired
Input

Actual
Output

Sensors

Control
Input

Actuators

Plant

Desired
Input

Field Subsystem

Desired
Input

Control
Input

*• Controller

Actual
Output

Computing Subsystem

All Other
Subsystems

Figure VI.31 A More Detailed Model of the Overall System: Level 1.

VI. Modeling and Analysis of a Hydraulic Control System 95

This system at this level can be modeled by another Petri net, as shown in Figure VI.32.

This net provides a more detailed description of the system under study by modeling the

internal structure of each subsystem.

All Other Subsystems

t-t — I — Field Subsystem

Figure VI.32 A Petri Net Model of the Distributed System Given in Figure VI.31.

Places Transitions

Pl : User Input P7 : All Other Subsys. ti U ser U : Controller
P2 : Sensor Output Ps Desired Input Sensor t7 Bus Access

P3 : Control Input Ps •• Actual Output h Actuator Bus Access
Pi Actuator Output Pio : Controller Output U Plant u Bus Access
Pb •' Plant Output Pn System Bus h Sensor tio : Bus Access
p6 : Sensor Output

The above net is still a conventional Petri net and does not have any of the GPN nodes.

In a system represented by an event-driven model, we only know when an event starts and

ends and have no idea what happens in between. For example when both places ps and ^9

have a token (both the desired input and the actual output are present), the controller routine

VI. Modeling and Analysis of a Hydraulic Control System 96

can run which is modeled by the firing of transition t§. The next information available to us

is when this process is completed. The completion is modeled by the arrival of a token at

place PIQ. We have no idea what happens while the event is in progress.

The other information which is missing in the discrete-event model is the actual (quanti­

tative) value of each signal. For example, all we know is that the control input is generated

and available (a condition). But we have no information as to what its value is. In or­

der to see the dynamics of the system in between events, we can model the process as a

time-dependent element by a GPN.

In Figure VI.32, transitions £4 and t$ represent the plant and the controller, respectively.

These transitions are shown as boxes instead of bars. Each of these transitions can be

modeled by a GPN with both synchronous and asynchronous elements.

VI.3. A Hydraulic Control System

The parts of the system that we have chosen to model are the field and computing

(controller) subsystems (Figure VI.31). The resulting model at this level is a global Petri net

which represents a hybrid system consisting of both time and event-driven parts. The GPN

modeling methodology used in this example can be applied to other hybrid systems, including

those in flexible manufacturing systems, process control, robotics, and communication

systems.

The system shown in Figure VI.33 is a two-stage electro-hydraulic valve along with

its control circuitry [95, 96]. It consists of a pilot spool valve whose movement varies the

differential pressure acting at the ends of the main spool. The output flow rate from the main

spool is used to drive the piston, which is provided with a feedback loop.

VI. Modeling and Analysis of a Hydraulic Control System 97

Figure VI.33 Schematic Diagram of a Two-stage Hydraulic Valve System [95]

By deriving the relevant equations which describe the hydraulic system (Figure VI.33),

we can draw the block diagram shown in Figure VI.34. It is a second order system with

feedback. A l l the parameters in the block diagram correspond to those in the schematic

diagram represented in Figure VI.33.

We derived the transfer function for the block diagram in Figure VI.34 as

X ~ir~
—- = • — CVI 132s)

V - 2AmAr C2 I KfAr C I 1 V ' '
KvKaKrK\K\Pf ° KpK[y/J£ '

The above transfer function can be written in the state space form described by the

following equations:

X(s) - AX{s) + BU(s)

Y(s) = CX{s) .
(VI. 133)

VI. Modeling and Analysis of a Hydraulic Control System 98

Field Subsystem

X
V

X X X
K A K R • M P g / 2 1/A

m
—=t J K;V P s/2 —*• l /A R

0
J

Controller Subsystem

Figure VI.34 Block Diagram Representation of the Plant and the

Controller Corresponding to Transitions <4 and t6 in Figure VI.32.

X0 and Xm which are output and main valve displacements, respectively, are selected

as the system states. We have also selected the outputs to be the same as these two states.

The control input (Ve) is the difference of the reference input (Vi) and the feedback from

the system (X0).

(VI. 134)

With this structure, we will have the following state space matrices in terms of the system

variables:

X(s) = xi(s)
X2{s)

=
~X0(s)~
xm{s)y

Y(s) =
'Xo(s)'
Xm(s)_

s) = Ve(s

A = 0
0 0

C =

B =

'1 0'
0 1

0

(VI. 135)

The controller was designed by varying the feedback gains to attain a fast tracking of the

system reference inputs and a small steady state error. The control input can be written as

VI. Modeling and Analysis of a Hydraulic Control System 99

U(s) = Ve(s) = Vi(s) - KpY^s) - KfY2{s), (VI.136)

where Vl is the reference input, and Kp and Kf are the feedback gains.

The system was converted from continuous to discrete-time by assuming a zero-order

hold on the inputs and a sample time equal to 0.02 seconds. The discretized system in state

space form can be written as

X(k + 1) = AX(k) + BU(k),
(VI. 137)

Y(k) = CX(k),

where X , Y and U represent the same states, outputs, and inputs, respectively. The system

parameters (A, B and C matrices) for the discrete model are

A
"0 2.5' B = ' 0 '

C =
'1 0"

0 0
B =

0.1
C =

0 1
(VI. 138)

VI.4. GPN Model of the Hydraulic System: Level 2

In this section we present the GPN model of the hydraulic system and then show how

it can be integrated into the model developed at level 1. As a general procedure, we should

represent each of the inputs, outputs and system states as distinct places. The relation among

these states or places is modeled by transitions and arcs connecting them. Figures VI.35 and

VI.36 represent the GPN models for the plant and the controller respectively.

Figure VI.35 Global Petri Net Model of the Plant Shown in Figure VI.34.

The a and b in the above figure are given as

VI. Modeling and Analysis of a Hydraulic Control System 100

(VI. 139)

Figure VI.36 Global Petri Net Model of the Controller Shown in Figure VI.34.

The complete hybrid system consists of the net in Figure VI.32 with transitions t 4 and

t$ replaced by their equivalent GPNs (shown in Figures VI.35 and VI.36). The system at

this level was simulated by the GPNSAT (Global Petri Net Simulation and Analysis Tool)

package .

Figures VI.37(a) and (b) show the plant output and the control input, respectively, as

simulated by the GPN model. These are the states modeled by places Ve and Y\ in Figure

VI.35. We would have obtained the same results if we had simulated the system as a

conventional control system without any of the distributed communications (system bus).

The results of the simulation by a conventional control system simulation program

(MATLAB), in continuous-time, are shown in Figures VI.37(c) and (d) for comparison.

The plant was discretized at 0.02 second (50 Hz) as mentioned in the previous section. In

each sample period, which takes 0.02 seconds, the outputs are sensed and control inputs are

applied exactly once. The transition time of the system bus is chosen to be one third of the

plant sampling time, i.e. 0.02/3 = 0.0067 second. The reason for this selection is that the

VI. Modeling and Analysis of a Hydraulic Control System 101

bus has to be accessed at least three times during each plant sampling period. These accesses

are by two output sensors (twice) and by the actuator input (once). In this way, the speed

of the communication (bus access) is three times that of the plant sampling time. That is,

transitions £ 4 and t$ take three times as long to fire as do transitions £ 7 — £ 1 0 .

The GPN simulation was run for 100 sampling periods (each equal to one transition

sampling time). Because of the reason just explained, the results that we get after 100

transition sampling periods (100 x 0.02/3 = .66 second of real time operation) of simulation

by the GPN model is the same as those obtained after 33 sampling periods (33 x 0.02 = .66

second of real time operation) of simulation by the M A T L A B program.

a) Plant Output (GPN Simulation) (b) Control Input (GPN Simulation)

50
Time Sample

100 50
Time Sample

100"

(c) Plant Output (Continuous-time Simulation) (d) Control Input (Continuous-time Simulation)
200

A

150

to A
£ 100
E

50 V

0
10 20 30

Time Sample
40 10 20 30

Time Sample
40

Figure VI.37 Comparison of Simulation Results of the Complete System by the.GPN Model and

a Conventional Control System Simulator, (a) Plant Output PlaceXo in Figure VI.35,

(b) Control Input Place Ve in Figure VI.36, (c) Plant Output X0, (d) Control Input Ve.

Figure VI.38 shows the token count for places ps and pio. A token in place ^5 indicates

that the plant output has been read from the plant. A token in place pw shows that the

VI. Modeling and Analysis of a Hydraulic Control System 102

control input is computed by the controller and can be used to access the system bus to pass

the value to. the plant.. The token count for the first 100 samples is plotted here. As can

be seen in Figure VI.38, there is a regular access at almost every third time sample. The

token count becomes one when a new value of the control input is calculated, and drops to

zero once it is transferred by the system bus. It should be mentioned that these places are

of the asynchronous type, and their synchronous behavior shows that the system is working

as expected. As a result, the bus accesses are going through very regularly and exactly at

every third sample. In the next chapter we show what happens when there are timing faults

and all the bus accesses cannot get through.

0.8

Is 0.6 h

8
0.2

0
I

1

0.8

1 0.6h

o

0.2

0

(a) Plant Output Validity Marking (Place 5)

Li
10 20 30 40 50 60 70 . 80 90

Time Sample

(b) Control Input Validity Marking (Place 10)

100

10 20 30 40 50 60 70 80 90 100
Time Sample

Figure VI.38 Result of the Simulation of the Complete System by the GPN Model (a) Plant

Output Validity Place p 5 in Figure VI.32, (b) Control Input Validity Place p10 in Figure VI.32.

VI. Modeling and Analysis of a Hydraulic Control System 103

VI.5. G P N Analys is of the Hydraulic System

In this section, the complete GPN model is analyzed in order to check the properties of

the hydraulic control system. A complete analysis requires both the RT and linear algebraic

methods.

VI.5.1. Linear Algebraic Analysis: The complete system is modeled by a net consisting

of the Petri net represented in Figure VI.32 and global Petri nets in Figures VI.35 and VI.36.

The complete system GPN diagram and its parameters, such as weight matrices, are given

in Appendix D.

For this system to be both stable and bounded, we need to have a bounded incidence

matrix N and stable H matrices. We first look at the boundedness property. The system

incidence matrix N = Wjp — Wpt can be written as

"1 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0"

0 1 0 0 0 0 0 -1 0 0 0 o 0 0 0
0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0

0 0 . 4 -1 0 -1 0 0 0 0 -1 - 1 0 0 0
0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 o. -1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 -1 0 -1 0 4- 0 0 -1 -1 0 0 0

0 0 0 -1 0 -1 4 0 0 0 -1 - 1 0 0 0

0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0
0 0 0 0 0 0 ' 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .

N is bounded iff, for an arbitrary vector Y > 0, the inequalities resulting from NTY < 0 hold

true. If we substitute N from above into NTY < 0 we get the following set of inequalities:

yi <0 2/2 - 2/1 < 0 ' 4 j / 4 - j/3 < 0
2/5 - 2/4 - 2/8 - 2/9 < 0 J/6 - 2/5 < 0 2/10 - 2/4 - 2/8 - 2/9 •< 0

4?/9 - 2/6 < 0 4 i / 8 - t/2 < 0 2/3 - yio < 0
-2 /4 - ys - 2/9 < 0 .

VI. Modeling and Analysis of a Hydraulic Control System 104

The above set of inequalities was run through the analysis tools of GPNSAT and could

not be satisfied. As an example, the first inequality y\ < 0 is clearly against the condition

of Y being a positive vector and indicates that the first place is unbounded. We therefore,

conclude that the net is unbounded.

There are all together four hybrid transitions (n^ = 4), in the net. These transitions

are 241 in Figure VI.35, and U\,te2, and 264 in Figure VI.36. According to Theorem 4.1 in

Chapter IV, we will have 2h" = 2 4 = 16 H matrices. These matrices correspond to when

one or more of these hybrid transitions fire.

2 4] 261 262 ^64

Location of
Roots of H+I
Matrix not on
the Unit Circle

0 0 0 0 None

1 0 0 0 0

0 1 0 0 -0.2

1 1 0 0
-0.1+0.7i,
-0.l-0.7i

0 0 1 0 0

1 0 1 0 0,0

0 1 1 0 -0.2,0

1 1 1 0
-0.1+0.7i,

-0.l-0.7i, 0

0 o 0 1 None

1 0 0 1 0

0 1 0 1 -0.2

1 1 0 1 -0.1+0.7i,
-0.1-0.7i .

0 0 1 1 0

1 0 1 1 . 0,0

Table VI.3 Roots of Hk + I Matrices Formed by the Firing of Various Hybrid Transitions. (Continued) . . .

http://-0.l-0.7i
http://-0.l-0.7i

VI. Modeling and Analysis of a Hydraulic Control System 105

0 1 1 1 -0.2,0

1 1 1 1 -0.1+0.7i,
-0.l-0.7i, 0

Table VI.3 Roots of Hk + I Matrices Formed by the Firing of Various Hybrid Transitions.

For this system to be stable at all times, the roots of all characteristic equations formed

by firing different hybrid transitions should have roots inside the unit circle. That is the

eigenvalues of the various Hk + I matrices should be less than one:

M(k + 1) = M{k) + HkM(k) + Nfk

(VI. 142)
M(fc + l) = (Hk + I)M(k) + Nfk .

Table VI.3 shows the location of the roots for all system H matrices, found by firing

of various transitions. The first four columns show which of the four hybrid transitions are

fired. The fifth column shows the location of the roots corresponding to those firings. For

example in the first row, no transition is fired. This is the case when none of the hybrid

transitions is able to fire. A l l roots of the H+I matrix in this case lie on the unit circle. The

last row corresponds to the case where all transitions are fired and the system is working

under normal or fault-free conditions. In this case, all roots are on the unit circle except

three, which are located inside. This shows that all places are stable.

A l l rows in between the first and last rows represent cases where one or more transitions

are not fired. They correspond to the situation in which one or more of the system level data

transmission is not transferred. For example in row 15, transition £41 has not fired, which,

shows the case in which the control input is not applied to the plant.

A cursory look at the roots presented in the table reveals that the system is stable under

all firing conditions. That is, no matter what hybrid transition fails to fire, the hydraulic

system will remain stable.

VI.5.2. Reachability Tree Analysis: The reachability tree of this net was constructed by

the GPNSAT package. The tree is quite large since there are about 15 places, each having

http://-0.l-0.7i

VI. Modeling and Analysis of a Hydraulic Control System 106

many different possible markings. Therefore, the tree cannot be drawn here, but, the results

of the RT inspection can be summarized as follows:

1. Boundedness: The infinity symbol w appears in places p\, P2, and ps, indicating that

these places can become unbounded. Unboundedness of place p\ is due to the transition

which reads the operator's input. If these inputs are not processed fast enough, the place

may go unbounded. Places p2 and ps can also become unbounded due to the same

reason (non-processing of input data).

2. Liveness: As with the higher level representation of the system, there are no deadlocks

detected (there were no nodes labeled " D E A D END").

3. Conservation: The complete net is not conservative, due to the presence of infinite

nodes. There might however be some subset of bounded places which are conservative.

4. Reachability: The RT showed that the only reachable states are those in which place

pu (which represents the system bus) has one token.

VI.6. Simulation and Analys is Performance

A l l the simulation and analysis works were performed by GPNSAT (GPN simulation

and analysis tool) which was described in the previous chapter. A l l routines in GPNSAT are

written as M A T L A B [92] m-files. The net (at level-2) has 15 places and 15 transitions. The

simulation of this net for 200 transition sampling periods takes about 115 seconds, running on

a SUN SPARC 5 workstation. 200 transition sampling periods represent 200 x 0.02/3 = 1.33

second of real time operation. The simulation of the net at levels zero and one take

significantly less time since they have fewer places and transitions. The time complexity

of the simulation program is 0(p x t) where p and t are the number of places and transitions

respectively.

The linear algebraic analysis takes almost no time and produces virtually instantaneous

results. The construction of the reachability tree for this net (at level-2) takes more than

VI. Modeling and Analysis of a Hydraulic Control System 107

two hours time since over 500,000 different states are to be constructed and checked for

various properties.

Chapter VII Fault Modeling and Analysis by GPN

This chapter is dedicated to fault modeling, simulation, and analysis by global Petri

nets. We only consider off-line analysis of faults and no attempt is made to use the GPN

methodology for on-line detection and identification of faults. A fault detection, identification,

and reconfiguration scheme is proposed in Appendix E. The scheme is based on recognition

of fault conditions by comparing the actual system outputs with those simulated by a GPN

based simulator. We shall use the system described in the previous chapter in order to show

how faults in a hybrid system can be modeled and analyzed. We start with system level

faults (bottlenecks) and see how they affect the system. We then get into how hydraulic

system faults can be represented.

VII.1. System Level Faults

One of the most important factors in the design and operation of distributed discrete-

event and hybrid systems is the utilization of critical resources. These resources become the

system bottlenecks, and their management poses a serious challenge [97]. As described in

the previous chapter, the bus in our hybrid system is modeled as a resource used by various

subsystems. In the simulation results shown there, we had assumed that the subsystem

marked " A l l Other" was dormant and did not need to access the bus (Figure VI.32). In that

case, the bus was capable of meeting the demands. This manifested itself in all bus accesses

going through on time and as per request [98].

To show how the system would behave if the system bus accesses did not go through,

we simulated the system with some extra load. This is done by assigning a token to the

initial marking of the place representing the " A l l Other" subsystem. When we do this, the

system bus has to serve this client as well; and therefore, it cannot keep up with all the bus

transactions which are requested.

108

VII. Fault Modeling and Analysis by GPN 109

The results of this simulation are plotted in Figure VII.39. The first two plots show

the plant output and the control input. There is a noticeable difference in the plots when

compared with the previous simulation results (Figure VI.37). Even though the system does

not become unstable, the plant output takes a longer time to reach its desired value. The

cause of this can be found in plot (c), which shows the token count at place p2. This place

represents the validity of the data which the desired input sensor (e.g. input joystick) reads.

When the system bus is able to meet all demands, there will a regular bus access by this

place. That means the marking can never exceed one, since the token is consumed before

the next one arrives. But in the present simulation run, the bus access demands are not met.

That is why we see two and even three tokens in placep2-

Plot VII.39(d) shows the token count at place p-j. This place represents the "all Other"

subsystem. We have chosen the arc weights so that one token is deposited in this place after

every bus access. As is seen from the final token count at this place, there have been over

thirty bus accesses by this subsystem. This represents the extra load on the bus, which has

caused the difference in the hydraulic system behavior.

VII. Fault Modeling and Analysis by GPN 110

(a) Plant Output (b) Control Input

0 50 100 0 50 100
Time Sample Time Sample

Figure VII.39 Simulation Results of the Hybrid System when the Bus Accesses are not Met.

(a) Hydraulic System Output (Place X0 Marking), (b) Control Input (Place Ve Marking), (c)

Desired Input Validity (Place p2) Marking, (d) "All Other" Subsystem (Place p7) Marking.

VII.2. Hydraulic System Faults

In this section we consider how different faults in the hydraulic system can be modeled

by a GPN. In the later sections we take up the simulation and analysis of these faults. The

faults considered are as follows:

1. Sensor faults

2. Actuator faults

3. Disturbances

4. System parameter changes.

These faults in the GPN model can be represented as events which happen asynchronously

[99, 100]. Each fault condition is explicitly modeled by a place. Presence of a token in that

VII. Fault Modeling and Analysis by GPN 111

place indicates a potential fault. The fault occurs when the transition enabled by that fault

place is enabled. In the following section we present the sensor fault modeling in detail and

then apply the same technique to other fault types.

VH.2.1. Sensor Faults Model:

Let a sensor be modeled as a simple gain as described by the following equation [101]:

where Y(k), Ys(k) , and Gs represent plant outputs (which are the sensor inputs), sensor

outputs, and sensor gain, respectively [102]. We consider two types of faults and represent

them with the following equation:

where Gf and d are a faulty gain change and a faulty bias, respectively. When all four

transitions fire (/i = f2 = = ft = 1), we will have

Y3(k+.l) = GsY(k), (VH143)

Ys(k + 1) = Ys(k) - hGfY{k) + f2GsY(k) + hd - f4Ys(k) , (VH.144)

Ys(k + 1) = (Gs-Gf)Y(k) + d. (VII. 145)

This system can be modeled with the global Petri net shown as Figure VII.40.

I s "

4s

Figure VII.40 A Sensor Fault Model.

VII. Fault Modeling and Analysis by GPN 112

The GPN parameters can be written as

I>={FS.Y.YS.I).<}
"1 0 0 0"
0 0 0 0
0 0 0 0
0 0 1 0

0 0 0 0
1 1 0 0
0 0 0 1
0 0 0 0

pi Wi tp

A = B

0 0 0 0 '
0 0 0 0
0 0 d 0
0 0 0 0

0 0 - G f 0
0 0 Gs 0
0 0 0 0
0 0 0 0

(VH.146)

; M(k)=.[Fs(k) -Y(k) Ys(k) Da(k)].

The above net can be used instead of the transitions representing sensors as shown in

Figure VII.41. The sensor transitions in the net representing the hybrid system are transitions

ti and £5 (Figure VI.32). Places ps and pe here are the same places as in Figure VI.32.

These two asynchronous places indicate whether the plant output (sensor input) and sensor

output data are valid. The box representing transition t 2 models the sensor which is itself a

smaller net; it was represented earlier, in Figure VII.40.

Figure VII.41 A Sensor Fault Model as a More Detailed Representation of Sensor Transition.

VII. Fault Modeling and Analysis by GPN 113

VII.3. Fault Scenar ios : Simulation and Ana lys is

Fault simulation can be carried out by the GPN Simulation and Analysis Tool (GPNSAT).

The net, modeling the system, is simulated as before. A fault is activated once the place which

represents it gets a token. For example, in Figure VII.41, a gain change fault is introduced

when place Fs gets a token. The presence of a token in this place enables transition t\s.

The firing of this transition effectively changes the sensor gain from a no fault value of-C?5

to a faulty value, (C?s — Gf).

The sensor bias fault is activated by the presence of a token in place Ds. The firing of

transition t^s, which is enabled by this place, adds a bias to the eventual sensor output. The

effects of these changes are reflected in the system simulation.

To give an illustration of the simulation results, let us start with the gain change faults in

the first sensor. This sensor reads X0 and feeds it back to the controller. We introduced the

fault with various gain values, Gf. The results are plotted in Figure VII.42. The simulation

is run for the normal (no fault) system for 100 samples. This is sufficient for the system

to reach the desired output and settle at its steady state values. At this point, faults are

introduced by placing a token in the appropriate places.

VII.3.1. Sensor One Gain Change Fault Simulation: Figures VII.42 (a) and (b) show

the hydraulic system output y\ — X0 and control input U = Ve when there is a break in

the feedback]oop. This can be modeled by having (C7S — Gf) = 0orC7 s = G / = l . The

value of Gs in the proceeding simulation runs is always taken to be one. Gain changes are

achieved by changing Gf. As can be seen from the simulation results, the effect of this

fault is to introduce a steady state error in the output. The reason for this can be seen in

the analysis of these faults later on.

The next two plots in Figures VII.42 (c) and (d) represent the plant output, X0 and control

input, Ve, when Gf = —0.5. This makes the faulty sensor gain [Gs — Gf) = 1 — (—0.5) =

VII. Fault Modeling and Analysis by GPN 114

1.5. The steady state effect of this fault is similar to the previous one with final steady state

error of a different value. The transient behavior of this fault, however is, quite different.

The third fault introduced is a change of sensor gain to 2. This can be done by having

Gf = —1. This fault causes an oscillatory type of behavior as can be seen in the plots in

Figures VII.42 (e) and (f). The final fault in this series is a change of gain to 2.5 by setting

Gf = —1.5. This fault makes the system unstable. The plant output and control input plotted

in Figures VII.42 (g) and (h) keep increasing until they go out of bound.

VII.3.2. Sensor One Gain Change Fault Analysis: An analysis of the net representing

the faulty system reveals many of the its properties. The most important property is the

stability of the whole system or its parameters. This can be analyzed by the linear algebraic

method developed in the earlier chapters.

VII. Fault Modeling and Analysis by GPN 115

50 100 150 200
Time Sample

50 100 150 200
Time Sample

200

o>150
g
c5
2 100

50

200

o>150 c

CD o to
100

°- 50

0

200

CO 150

100
CD o ra
°- 50

2000

(b) Control Input

H

0 50 100 150 200
Time Sample

(d) Control Input

0 50 100 150 200
Time Sample

(f) Control Input

50 100 150 200
Time Sample

-400
50 100 150 200 0 50 100 150 200

Time Sample Time Sample

Figure VII.42 Simulation Plots of the First Sensor Gain Faults, a-b) Sensor Cut off,G/ = 1 • c-d) Sensor Gain

Change to Gf = —0.5. e-f) Sensor Gain Change to Gf = —1. g-h) Sensor Gain Change to Gf = —1.5.

Table VII.4 summarizes the type of faults introduced, the roots of their characteristic

VII. Fault Modeling and Analysis by GPN 116

equations found by checking the H matrices, and the effect of these faults. The first row

shows the situation for the non-faulty system. As mentioned earlier, the two roots of the

hydraulic system lie at —0.1 + 0.7i and —0.1 — 0.7i. These roots are within the unit circle,

which is why the system remains stable. We observe this behavior in all of the simulation

plots in Figure VII.42, up to the 100th sample.

The gain change faults which do not force these roots out of the unit circle (row 2 and

3) of Table VII.4, have no effect on the system stability. Therefore, they only cause a steady

state error, as seen in the simulation results.

The gain change fault of Gf = —1 (4th row), which makes the fault sensor gain of

two, causes the roots to fall right on the unit circle. This makes the system behave in an

oscillatory manner (critically stable), which is also evident in Figures VII.42 (e) and (f).

The faults in the next two rows are the ones which make the system unstable (any sensor

gain greater than two). Again, this is because the roots found by an analysis of the H matrix

fall outside the unit circle. This is the kind of system behavior depicted in Figures VII.42

(g) and (h).

Fault Type
First Sensor
Overall Gain

Roots Condition

No Fault
Gf=0

1 -0.1+0.7i
-0.l-0.7i

Stable, No Error

Sensor cut off Gf=l 0 0, -0.2
Stable, Steady State

Error

Gf=-0.5 1.5
-0.1+0.8602i
-0.1-0.8602i

Stable, Steady State
Error

Gf=-l 2 -0.1+0.995i
-0.1-0.995i

Oscillatory

Table VII.4 Sensor One Gain Change Faults and Their Analysis Results. (Continued) . . .

http://-0.l-0.7i

VII. Fault Modeling and Analysis by GPN 117

G/=-1.05 2.05
-0.1+1.0075i
-0.1-1.0075i

Unstable

Gf=-1.5 2.5
-0.1+1.11361
:0.1-1.1136i

Unstable

Table VI1.4 Sensor One Gain Change Faults and Their Analysis Results.

VII.3.3. Sensor Two Gain Change Fault Simulation and Analysis: Figure VII.43 and

Table VII.5 summarize the simulation and analysis results of faults caused by a change

in gain of the second sensor. The results and conclusions of their analyses are similar to

those for the first sensor. For the second sensor, any gain fault of Gf = —6.5 (overall sensor

gain of 7.5), causes the system to become oscillatory. Any gain larger than that makes the

system unstable.

VII. Fault Modeling and Analysis by GPN 118

a) Plant Output

50

40
CD
C

ar
ki

30

CD
O 20
CO

D_
10

0

4000

-4000

50 100 150
Time Sample

(c) Plant Output

JW—

50 100 150
Time Sample

e) Plant Output

50 100 150
Time Sample

200

200

200

200
(b) Control Input

0 50 100 150
Time Sample

(d) Control Input
200

c»150
I*
(5
S 100
0)
O
JS
°- 50

Jlr"—

50 100 150
Time Sample

x 1 o4 0 C o n t r o ' ' n P u t

50 100 150
Time Sample

200

200

200

Figure VII.43 Simulation Plots of the Second Sensor Gain Faults, a-b) Sensor Cut off,

Gf = 1. c-d) Sensor Gain Change to Gf = —4. e-f) Sensor Gain Change to Gs = —7.

An interesting observation in comparing the results of the two sensors analyses is that

gain changes produce different roots and, consequently, different transient behavior. This

difference can be a basis for the recognition of anticipated faults by different sensors in a

VII. Fault Modeling and Analysis by GPN 119

fault diagnostic procedures capable of capturing these distinguishing parameters.

Fault Type
Second Sensor
Overall Gain Roots Condition

No Fault
Gf=0

1
-0.1+0.7i
-0.l-0.7i

Stable, No Error

Sensor cut off C7/=l 0
0+0.7i
0-0.71

Stable, Steady State
Error

'G/=-4 5
-0.5+0.5i
-0.5-0.5i

Stable, Steady State
Error

Gf =-6.5 7.5 -1, -0.5 Oscillatory

Gf=-6.55 7.55 -1.0196, -0.4904 Unstable

Gf=-1 8 -1.1742, -0.4258 Unstable

Table VII.5 Sensor Two Gain Faults and Their Analysis Results.

VII.3.4. Sensors Bias Faults Simulation and Analysis: The last set of sensor faults we

consider include the disturbances which act as biases on the sensor output. In this particular

system, since the outputs of the system sensors are added up by the control routine, the bias

on each sensor has a similar effect and cannot be distinguished. In fact, all bias faults act

as changes in the reference input.

The simulation results for two bias values are plotted in Figure VII.44. As can be seen,

no matter what the amount of the bias is, the bias faults only introduce a steady state error.

The reason for this can be found by referring to Table VII.6.

http://-0.l-0.7i

VII. Fault Modeling and Analysis by GPN 120

a) Plant Output

50 100 150
Time Sample

(c) Plant Output

200

50 100 150 200
Time Sample

200
(b) Control Input

200

50 100 150
Time Sample

(d) Control Input

200

50 100 150 200
Time Sample

Figure VII.44 Simulation Plots of the Sensors Bias Faults, a-b) Sensor Bias of I0,d =10. c-d) Sensor Bias of 100, d = 100.

These faults or any other bias faults do not change the H matrix, since they are modeled

by the asynchronous places and transitions. Therefore, the bias faults do not affect the

dynamics of the system, such as the roots of the H matrix. A stable system can absorb these

kind of faults or load changes and stay stable.

Fault Type Roots Condition

No Fault -0.1+0.7i
-0.1-0.7i

Stable, No Error

Table VTJ.6 Sensor Bias Faults and Their Analysis Results. (Continued) . . .

VII. Fault Modeling and Analysis by GPN 121

d=10
-0.1+0.71
-0.1-0.7i

Stable, Steady State Error

d=100
-0.1+0.7i
-0.1-0.7i

Stable, Steady State Error

Table VII.6 Sensor Bias Faults and Their Analysis Results.

VII.4. Other Fault Types

In this section we move to other types of hydraulic system faults. These faults, like the

sensor faults modeled earlier, are common in all types of control systems. Here we briefly

describe how these faults can be modeled. The same type of fault analysis that was carried

out for sensor faults can be applied to these fault types as well.

VH.4.1. Actuator Faults Modeling: As the first step, for analysis of actuator faults, we

need to model the actuators used in our system. Then these models which take the form of

GPNs, can be integrated into the system GPN. In general and in its simplest form, actuators

can be modeled as a gain which is described by the following equation:

Ua(k + l) = GaU(k), (VE.147)

where U(k) is the control input which is computed by the control subsystem and sent to the

actuator; Ua(k) is the actuator output which is applied to the plant to control it; and Ga

is the actuator gain when there is no fault. The actuation process takes a finite amount of

time (eg., one sampling period).

For this type of actuator we can consider two types of faults: a gain change fault and a

bias fault. These faults can be modeled by the global Petri net shown in Fin Figure VII.45.

VII. Fault Modeling and Analysis by GPN 122

Figure VII.45 An Actuator Fault Model.

The operation of this net can be represented by the following equation:

Ua{k + 1) = Ua{k) - fiGfU(k) + f2GaU{k) +'j3d - UUa(k), ' ; (VH.148)

where Gf and d are a faulty gain change and a faulty bias, respectively. Gain change and

bias faults are activated when asynchronous transitions t\a and tia, respectively fire. When

all four transitions fire (/ i = f2 — fo — JA — 1), we will have

Ua(k+l) = (Ga-Gf)U(k) + d. . (VII.149)

VII.4.2. Actuator Faults Simulation and Analysis: The GPN model developed for the

actuator can be integrated into the main net which represents the overall system. This can

be done by replacing the transition which models the actuator (transition of Figure VI.32)

by the net in Figure VII.45. This was done for the system we have been modeling in this

thesis. This system was simulated, and various faults were introduced. Figure VII.46 shows

the plot of three such fault cases.

The first two plots (Figures VII.46 (a) and (b)) represent the case when the actuator's

connection to the rest of the system is broken. The next case represent an actuator gain

change, which does not cause instability in the system, since the roots of the system

VII. Fault Modeling and Analysis by GPN 123

characteristic equations remain within the unit circle as can be seen in Table VII.7. The

final two plots (Figures VII.46 (e) and (f)) show a gain change fault of Gf — —1.2. This

fault makes the overall system unstable, as any actuator gain of greater than two would.

(a) Plant Output

50 100 150
Time Sample

(c) Plant Output

50 100 150
Time Sample

(e) Plant Output

50 100 150
Time Sample

200

200

200

200

o)150

(b) Control Input

CD o ra

100

°- 50

0

•

. L . — /

50 100 150
Time Sample

(f) Control Input

50 100 150
Time Sample

50 100 150 200
Time Sample

(d) Control Input

200

200

Figure VII.46 Simulation Plots of the Actuator Faults, a-b) Actuator CutoffG/

c-d) Actuator Gain Change to Gj = —0.2. e-f) Actuator Gain Change to Gf =

= 1.

-1.2.

VII. Fault Modeling and Analysis by GPN 124

Table VII.7 below summarizes some of the analysis results for the actuator faults. It

shows what the effects of various actuator gain changes are, and what gains make the system

unstable. These results are found by analyzing the faulty system H matrix.

Fault Type
Actuator Overall

Gain
Roots Condition

No Fault
Gf=0

1 -0.1+0.7i
-0.1-0.7i

Stable, No Error

Gf=-02 1.2
-0.12+0.7652i
-0.12-0.7652i

Stable, Steady State
Error

Gf=-l 2 -0.2+0.9798i
0.2-0.9798i

Oscillatory

Gf=-\2 2.2 -0.22+1.0255i
-0.22-1.02555i

Unstable

Actuator Cut off
Gf=0

0 No Roots Stable, no output

Table VII.7 Actuators Faults and Their Analysis Results.

Vn.4.3. Disturbances and System Parameter Changes: Other types of faults in control

system (such as the hydraulic system under study) which are commonly considered are system

disturbances, and parameter changes. Disturbances could be due to change in the load, and

can be modeled in exactly the same way as was done with sensor bias faults. They can be

taken to originate from asynchronous places.

System parameter changes are reflected in changes in system state space matrices, (A, B,

C, and D). These changes are usually very slow acting and occur gradually and over a long

period of time. The cause of these can be a change in the environment, such as temperature

or pressure. These changes can be modeled by changing the GPN model. The same type

of analysis can be applied to the modified models.

VII. Fault Modeling and Analysis by GPN 125

VII.5. Fault Condi t ions Modeled by a G P N

In this final section we list some of the fault conditions which can be manifested in

a GPN model. Simulation and analysis of these faults is the first step in detection and

identification of them [99, 100]. The detection of faults can be accomplished by comparing

the fault (actual) signals with the modeled (estimated) signals. The difference is called the

fault residual and is used to detect a fault when it crosses certain threshold. The identification

of faults can be done by analyzing the frequency characteristic of the fault residuals (poles

and zeros of the signal) [99, 100].

The analysis techniques developed in this dissertation can help in analyzing the system

for these fault conditions. A fault detection, identification, and reconfiguration scheme

is proposed in Appendix E. This scheme is based on recognition of fault conditions by

comparing the actual system outputs with those simulated by a G P N based simulator.

1. Boundedness: One of the main symptoms of any control system going unstable is that

some of the system parameters go beyond a bound or threshold. By analyzing that if a

system is capable of going or has gone out of bound, we can detect many of the faults.

2. Reachability: This property is useful in investigating if a faulty state is reachable with

the given state of the system. By knowing that a faulty state is reachable, we can be

ready to check for it when the system is actually running.

3. Controllability: Given a marking which corresponds to a faulty state, is it always

possible to steer the system to a safe state in a finite number of samples? This question

can be answered by the controllability property. This analysis can be used in recovering

from faults and reconfiguring the system.

4. Liveness: Another important issue in the design of a fault-tolerant system is avoidance

of deadlock states. Liveness property shows whether a system is capable of getting into

a deadlock state from a given initial marking or not.

5. Conservation: This property can check if the total token content of a set of places

should remain constant. When this holds for a non-faulty system, any violation of this

VII. Fault Modeling and Analysis by GPN 126

property is a symptom of a fault in the system. There are many examples of such

properties in physical systems such as preservation of energy, and the amount of oil or

coolant in a motor.

6. Timing Faults: Another set of faults which are very essential in our analysis are timing

faults. These faults can be due to a delay in the system, or a breakdown. In many

systems, tokens in a particular place should be consumed before a new token arrives.

Accumulation of tokens is a symptom of a timing fault.

Chapter VIII Conclusions and Future Work

The main objective of this research was to develop a new methodology for the modeling,

simulation, and analysis of hybrid systems. Petri nets have proven to be an extremely

useful tool for modeling and analyzing discrete-event systems. Linear control system

theory has solved many of the problems in the control and identification of dynamic and

time-driven systems. Our new modeling methodology, which is called a global Petri net

(GPN), successfully combines the capabilities of these two powerful tools into a single tool.

Although, many additions have been made to the PN theory and practice over the years

(including Continuous and Hybrid PNs), this is the first work, to the best of our knowledge,

that allows modeling, simulation, and analysis of discrete-event and discrete-time dynamic

systems to be performed within a unified PN framework.

Conventional Petri nets can model only discrete-event (asynchronous) systems. In a

system represented by an event-driven model, we know only when an event starts and ends,

and have no idea what happens in between events. The other information which is missing

in a discrete-event model is the actual (quantitative) value of each signal. A l l we know is

that a signal is generated and available (a condition), but, we have no information about what

its value is. To be able to see the dynamics of the system in between events, we must model

the process as a time-dependent element in a GPN. The G P N is very general and facilitates

modeling of any kind of digital system, including the digitized versions of analog plants,

computer hardware and software, and human interactions.

We formally defined the GPN and showed the structural and behavioral differences

between the PN and GPN formalisms. Derivation of the GPN from the basic PN and the

derivation of the GPN dynamic equations were also given. The resulting structure was very

similar to both the Petri net and the state space representation of dynamic systems. This

similarity makes it more appealing and intuitive for both Petri net and control communities.

127

VIII. Conclusions and Future Work 128

We have also included a few examples, which were used to illustrate the scope of

modeling by the GPN. These examples showed how various type of hybrid systems can be

modeled by GPN. One example specifically dealt with modeling and simulation of logical

gates at both analog and switch levels. These examples showed how easy and intuitive it

was to model with the GPN.

We also discussed the structural and behavioral differences between the PN and the GPN

models. One of the main differences is in the way markings are presented. Tokens in the

conventional PN can only take binary values, resulting in positive integer markings. But

in the GPN formulation, markings can have any real number value. The other important

difference is the type of arcs which are allowed. There are two types of arcs allowed in the

G P N structure. The first one, which is the same as the arcs in the PN model, is called the

asynchronous arc. These arcs set the condition for the firing of transitions. The second type,

which is exclusive to the GPN, is called the synchronous arc. These arcs do not impose

any conditions on the transitions to which they are connected. These two major differences

enable the GPN to model hybrid systems.

We have developed some techniques for analyzing the systems modeled by the GPN.

These techniques are based either on the construction of a reachability tree or on linear

algebra. The properties which can be analyzed by these methods are controllability, bound­

edness, stability, liveness, and conservation. Theorems regarding proof of these properties

are stated and proven. Some of these properties are defined for a sub-class of GPNs to ease

the analysis burden. This sub-class is defined in the thesis, and the reasons for reduction in

the required analyses are explained. We have developed a theorem which enables us to find

the number of hybrid transition matrices for a given net. We have also discussed some other

modeling issues such as the GPN modelability and hierarchy.

To assist us in our research, a tool called GPNSAT (Global Petri Net Simulation and

Analysis Tool) was developed. The tool's structure and its salient features are described in

the thesis. The GPNSAT package was used for all of our PN and GPN modeling, simulation,

VIII. Conclusions and Future Work 129

and analysis.

A distributed hybrid system was modeled by the GPN methodology. This system

consisted of a hydraulic control system, along with its various parts, such as sensors, actuators,

controller, and the communication links. The modeling was carried out at different levels of

abstraction. At the highest level the system was modeled as a discrete-event system. At the

lowest level, where we modeled the details of a hydraulic control system, a hybrid model

was used. At each level the system was simulated and analyzed by the GPNSAT.

Fault modeling and analysis for the hybrid system also was performed. Various system

level faults were modeled for a hydraulic control system, its sensors, and its actuators. These

faults in the GPN model are represented as events which happen asynchronously. Each

fault condition is explicitly modeled by a place. Presence of a token in that place indicates

a potential fault. The fault happens when the transition enabled by that fault gets fired.

The analysis of these faults by the G P N analysis methods showed that these faults can be

distinguished from each other successfully in a GPN-based detection and recognition scheme.

The GPN analysis method can be used in model-based schemes for fault detection and

recognition. These schemes monitor the operation, detect faults, and initiate the recovery

process by comparing the system's actual outputs with the outputs estimated by the use of

the system model. We have shown that there exists a single tool which can be used to model

both the plant and the computer controlling it. In this fashion, a single detection scheme is

sufficient to monitor the entire system and diagnose various forms of faults.

VIII.1. Future Work

There are many different routes that the present research can lead to. One can pursue this

work in applying these theories to other real-life examples such as multimedia, manufacturing

processes, robotics, and work cell scheduling. Another direction is to work in developing

more analysis techniques or refining the ones presented in this dissertation. Here, we provide

some pointers to the future directions.

VIII. Conclusions and Future Work 130

The main limitation of modeling and analysis by GPNs is the growth in the number of

states (places) when the system complexity increases. This specially becomes onerous in

simulation and reachability tree analysis algorithms. This growth also limits the applicability

of this method for on-line detection and identification of faults. Due to this reason only

off-line fault analysis was attempted in this thesis. This shortcoming can be overcome when

higher speed processors and more efficient algorithms are used.

Some system properties such as liveness and reachability were analyzed only by reach­

ability tree method. There is still a need for developmental of techniques based on linear

algebraic methods to deal with these properties.

One assumption made in developing the analysis methods was that the transition time

of all synchronous transitions is the same. However, the GPN simulation program allows

the specification of different transitions times. The analysis of hybrid systems with different

synchronous transition times would be a very useful and interesting undertaking.

In the construction of reachability trees, we have not specified the transition time. The

next version of RTs can take this into consideration. This might reduce the size of the tree,

since some of the states may not be reachable when the transitions are timed.

On the implementation side, we do not have a graphical editor for the GPNSAT. There

are many PN editors in shareware. These editors can be modified to accept GPN parameters

as well. Another area to develop is to optimize the programs written for the GPNSAT. This

can help reduce the running time and memory requirements of these programs.

Bibliography

[1] R. Williams, B. Benhabib, and K. Smith, " A Hybrid Supervisory Control System for

Flexible Manufacturing Workcells," in Proc. of IEEE International Conf. on Robotics

and Automation, pp. 2551-2556, 1994.

[2] J. A. Stiver and P. Antsaklis, "Modeling and Analysis of Hybrid Control Systems," in

Proc. of the 31st Conf. on Decision and Control, Tuscon, Arizona, pp. 3748-3751, 1992.

[3] M . Marsen, G. Balbo, and G. Bruno, "TOPNET: A Tool for the Visual Simulation of

Communication Networks," IEEE Journal on Selected Areas in Communications, vol. 8,

no. 9, pp. 1735-1747, 1990.

[4] R. Valette, M . Courvoisier, and D. Mayeux, Control of Flexible Production Systems and

Petri Nets, pp. 266-27. in Application and Theory of Petri Nets, Selected Papers from

the 3rd European Workshop, Springer-Verlag, 1983.

[5] R. J. Abbott, "Resourceful Systems for Fault Tolerance, Reliability and Safety," ACM

Computing Surveys, vol. 22, no. 1, pp. 35-68, 1990.

[6] M . D. Lemmon and P. Antsaklis, "Event Identification in Hybrid Control Systems," in

Proc. of the 32nd Conf. on Decision and Control, San Antonio, Texas, pp. 2323-2328,

1993.

[7] P. Peleties and R. DeCarlo, "Analysis of a Hybrid System Using Symbolic Dynamics

and Petri Nets," Automatica, vol. 30, no. 9, pp. 1421-1427, 1994.

[8] P. Zave, "An Operational Approach to Requirements Specification for Embedded

Systems," IEEE Trans, on Software Engg., vol. 8, no. 3, pp. 250-269, 1982.

[9] J. R. Connet, E. J. Pasternak, and B. D. Wagner, "Software Defenses in Real-Time Control

Systems," in Proc. of the Fault Tolerant Computing Symposium FTCS-2, pp. 94-99, 1972.

131

IX. Bibliography 132

[10] R. Doraiswami, M . Kaye, and M. . Rezai, "Detection and Identification of Sensor,

Actuator and Excessive Load Faults," Proc. of Canadian Conf. on Elect, and Comp.

Engg., Montreal, 1989.

[11] J. H . Lala, R. E. Harper, and L. S. Alger, " A Design Approach for Ultrareliable Real-

Time Systems," IEEE Computer Magazine, pp. 12-22, May 1991.

[12] G. Bruno, A. Castella, G. Macario, and M . P. Pescarmona, "Scheduling Hard Real

Time Systems Using High-Level Petri Nets," Application and Theory of Petri Nets

1992, Lecture Notes in Computer Science, Springer-Verlag, vol. 616, pp. 93-112, 1992.

[13] H. Kopetz and W. Merker, "The Architecture of M A R S , " in Proc. of Fault Tolerant

Computing Symposium FTCS-15, pp. 274-279, 1985.

[14] C. Cao, "Supervisory Control of a Class of Hybrid Dynamic Systems," in Proc. of 1993

IEEE Midwest Symposium on Circuits and Systems, pp. 967-970, 1993.

[15] Y . Ho, "Performance Evaluation and Perturbation Analysis of Discrete Dynamic

Systems," IEEE Trans, on Automatic Control, vol. 32, no. 7, pp. 563-572, 1987.

[16] M . Heymann, "Concurrency and Discrete Event Control," IEEE Control Systems

Magazine, pp. 103-112, June 1990.

[17] A . Ichikawa and K. Hiraishi, "Analysis and Control of Discrete Event Systems

Represented by Petri Nets," Discrete Event Systems: Models and Applications, 11 AS A

Conf, Sopron, Hungry, Lecture Notes in Control and Inf. Systems, Springer-Verlag,

pp. 115-134, 1987.

[18] R. L . Grossman, A. Nerode, A. P. Ravn, and H. Rischel(Eds.), Hybrid Systems. Springer-

Verlag, New York, 1993. -

[19] P. Antsaklis(Eds.), Hybrid Systems II, Lecture Notes in Computer Science, Vol. 999.

Springer-Verlag, New York, 1995.

[20] R. Alur, T. A . Henzinger, and E. D. Sontag(Eds.), Hybrid Systems III: Verification and

Control, Lecture Notes in Computer Science, Vol. 1066. Springer-Verlag, New York,

IX. Bibliography 133

1996.

[21] Z. Manna and A. Pnueli, "Verifying Hybrid Systems," in Hybrid Systems, Lecture Notes

in Computer Science, Springer-Verlag, vol. 736, pp. 4-35, 1993.

[22] P. Antsaklis, A . Stiver, and M . Lemmon, "Hybrid Systems Modeling and Autonomous

Control Systems," in Hybrid Systems, Lecture Notes in Computer Science, Springer-

Verlag, vol. 736, pp. 366-391, 1993.

[23] R. Alur and D. Di l l , "The Theory of Timed Automata," in Real-Time: Theory and

Practice, Lecture Notes in Computer Sc., Springer-Verlag, vol. 600, pp. 45-73, 1991.

[24] R. L. Grossman and R. Larson, "Viewing Hybrid Systems as Products of Control

Systems and Automata," Proceedings of the 31st Conference on Decision and Control,

Tucson, Arizona, pp. 2953-55, 1992.

[25] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems.

Springer-Verlag, New York, 1992.

[26] O. Maier, Z. Manna, and. A. Pnueli, "From Timed to Hybrid Systems," in Real-Time:

Theory in Practice, Lecture Notes in Computer Science, Springer-Verlag, vol. 600,

pp. 447-484, 1991.

[27] Y . Zhang, A Foundation fro the Design and Analysis of Robotic Systems and Behaviors.

PhD thesis, , Ph.D. Thesis, Dept. of Comp. Sc., University of British Columbia, 1994.

[28] Y . Zhang and A. K. Mackworth, "Wil l The Robot Do the Right Thing?," in Proc.

Artificial Intelligence 94, Banff, Alberta, pp. 255-262, May, 1994.

[29] Y . Zhang and A. K. Mackworth, "Design and Analysis of Embedded Real-Time

Systems: An Elevator Case Study," Tech. Rep. 93-4, Dept. of Comp. Sc., University

of British Columbia, 1993.

[30] C. G. Cassandras, Discrete Event Systems: Modeling and Performance Analysis. Asken

Associates Inc. Pub., 1993.

IX. Bibliography 134

[31] J. Peterson, Petri Net Theory and the Modeling of Systems. Prentice-Hall, Inc., N.J.,

USA, 1981.

[32] W. Reisig, Petri Nets: An Introduction. Springer-Verlag, 1985.

[33] W. Brauer, "Carl Adam Petri and Informatics," in Concurrency and Nets: Advances in

Petri Nets, Springer-Verlag, pp. 13-21, 1987.

[34] J. Ghofraniha and M . Rezai, "Dynamic Scheduling of a Job Shop Using a Petri Net

Model," in Proc. of Production and Manufacturing Engg. Conference, Tehran, Iran,

1993.

[35] M . Zhou and F. Dicesare, "Adaptive Design of Petri Net Controllers for Error Recovery

in Automated Manufacturing Systems," IEEE Trans, on Systems, Man, and Cybernetics,

vol. 19, no. 5, pp. 963-973, 1989.

[36] M . D. Jeng and F. DiCesare, " A Review of Synthesis Techniques for Petri Nets with

Applications to Automated Manufacturing Systems," IEEE Trans, on Systems, Man, and

Cybernetics, vol. 23, no. 1, pp. 310-312, 1993.

[37] J. E. Coolahan and N . Roussopolous, " A Time Petri Net Methodology for Specifying

Real-Time System Timing Requirements," in Proc. International Workshop on Timed

Petri Nets, Torino, Italy, pp. 24-31, 1985.

[38] C. Ghezzi, D. Mandrioli, S. Morasca, and M . Pezze, " A Unified High-Level Net

Formulation for Time-Critical Systems," IEEE Trans, on Software Engg., vol. 17, no. 2,

pp. 160-172, 1991.

[39] J. Baer, "Modelling Architectural Features with Petri Nets," in Petri Nets: Applications

to Other Models of Concurrency, vol. Lecture Notes in Computer Sc. Springer-Verlag,.

no. 255, pp. 258-277, 1986.

[40] Y . Shieh, D. Ghosal, P. R. Chintamaneni, and S. K. Tripathi, "Modeling of Heirarchical

Distributed Systems with Fault-Tolerance," IEEE Trans, on Software Engg., vol. 16,

no. 4, pp. 444-457, 1990.

IX. Bibliography 135

[41] R. David and H. Alia, "Petri Nets for Modelling of Dynamic Systems—A Survey,"

Automatical, vol. 30, no. 2, pp. 175-202, 1994.

[42] C. L. Beck and B. Krogh, "Models for Simulation and Discrete Control of Manufactur­

ing Systems," in Proceedings of Conf. on Robotics and Automation, pp. 305-310, 1986.

[43] R. Sreenivas and B. H. Krogh, "On Petri Net Models of Infinite State Supervisors,"

IEEE Trans, on Automatic Control, vol. 37, no. 2, pp. 274-277, 1992.

[44] A . Giua and F. DiCesare, "Petri Net Structural Analysis for Supervisory Control," IEEE

Trans, on Robotics and Automation, vol. 10, no. 2, pp. 185-195, 1994.

[45] D. Gracanin, P. Srinivasan, and K. Valavanis, "Parametrized Petri Nets and Their

Application to Planning and Coordination in Intelligent Systems," IEEE Trans, on

Systems, Man, and Cybernetics, vol. 24, no. 10, pp. 1483-1497, 1994.

[46] S. Ramaswamy, K. Valavanis, and S. Landry, "Modeling, Analysis and Simulation of

a Material Handling System with Extended Petri Nets," Proc. of the 31st Conference

on Decision and Control, pp. 1665-1672, Dec. 1992.

[47] S. Ramaswamy and K. Valavanis, "Modeling, Analysis and Simulation of Failures in

a Material Handling System with Extended Petri Nets," IEEE Trans, on Systems, Man,

and Cybernetics, vol. 24, no. 9, pp. 1358-1373, 1994.

[48] P. Freedman, "Time, Petri Nets and Robotics," IEEE Trans, on Robotics and Automation,

vol. 7, no. 4, pp. 417^133, 1991.

[49] R. David and H . Alia, Petri Nets and Grafcet Tools for modelling discrete event systems.

Prentice-Hall, 1992.

[50] G. R. Gao, A Code Mapping Scheme for Dataflow Software Pipelining. Kulwer

Academic Publishers, 1991.

[51] E. A. Lee, "Dataflow Programming for Parallel Implementation of Digital Signal

Processing Systems," in Discrete event Systems: Models and Applications, Lecture Notes

in Control and Information Systems, Springer-Verlag, vol. 103, pp. 135-148, 1987.

IX. Bibliography 136

[52] D. Hard, "On Visual Formalisms," Communications of the ACM, vol. 31, no. 5, pp. 514—

530, 1988.

[53] N . Day, " A Model Checker for Statecharts (Linking Case Tools with Formal Methods),"

Master's thesis, Dept. of Computer Science, University of British Columbia, 1993.

[54] R. C. Waters, "System Validation via Constraint Modeling," ACM SIGPLAN Notices,

vol. 26, no. 8, pp. 27-36, 1991.

[55] Shapiro, "Validation of VLSI Chip Using Heirarchical Colored Petri Nets ," Microelec­

tronics and Reliability, vol. 31, no. 4, pp. 607-625, 1991.

[56] J. D. Noe, "Nets in Modeling and Simulation," in Net Theory and Applications, Lecture

Notes in Computer Science, Springer-Verlag, vol. 84, pp. 347-367, 1980.

[57] K. Jensen, "Coloured Petri Net : A High Level Language for System Design and

Analysis," Advances in Petri Nets 1990, Lecture Notes in Computer Science, Springer-

Verlag, no. 483, pp. 342-416, 1990.

[58] K. Jensen, Coloured Petri Nets: Basic Concepts, Analysis Methods, and Practical Use.

Springer-Verlag, 1992.

[59] B. Berthomieu and M . Diaz, "Modeling and Verification of Time dependent Systems

Using Time Petri Nets," IEEE Trans, on Software Engg., vol. 17, no. 3, pp. 259-273,

1991.

[60] T. Agerwala, "Putting Petri Nets to Work," IEEE Computer, pp. 85-94, Dec. 1979.

[61] K. Jensen, "Computer Tools for Construction, Modification and Analysis of Petri Nets,"

in Petri Nets: Applications and Relationships to other Models of Concurrency, Lecture

Notes in Computer Science, Springer-Verlag, vol. 255, Part II, pp. 4-19, 1986.

[62] F. Feldbrugge, "Petri Net Tool Overview 1989," Advances in Petri Nets 1989, Lecture

Notes in computer Science, Springer-Verlag, no. 424, pp. 151-178, 1989.

[63] J. Goutal, "List of Tools Based on Petri Nets at CRIM (Centre de Recherche

Informatique de Montreal) @ http://www.crim.ca/Domaines_Services/GL/PETRI/,"

http://www.crim.ca/Domaines_Services/GL/PETRI/

IX. Bibliography 137

1995.

[64] "Petri Nets on World Wide Web (WWW) @ http:/www.daimi.aau.dkTpetrinet/," 1995.

[65] G. Florin, ,C Fraize, and S. Natkin, "Stochastic Petri Nets: Properties, Application and

Tools," Microelectronics and Reliability, vol. 31, no. 4, pp. 669-697, 1991.

[66] W. M . Zuberek, "Timed Petri Nets, Definitions, Properties and Applications," Micro­

electronics and Reliability, vol. 31, no. 4, pp. 627-644, 1991.

[67] J. Sifakis, "Performance Evaluation of Systems Using Nets," Net Theory and Appli­

cations, Proc. of Advanced Course on General Net Theory of Processes and Systems,

Lecture Notes in Computer Science, Springer-Verlag, vol. 84, pp. 307-319, 1980.

[68] P. Merlin arid D. J. Faber, "Recoverability of Communication protocols- Implications of

a Theoretical Study," IEEE Transaction on Communications, vol. 24, no. 9, pp. 1036-

1043, 1976.

[69] G. Bruno and G. Marchetto, "Process Translatable Petri Nets for Rapid Prototyping of

Process Control Systems," IEEE Trans, on Software Engg., vol: 12, no. 2, pp. 346-357,

Feb. 1986.

[70] K. Brand and U . Kopainsky, "Principles and Engineering of Process Control with Petri

Nets," IEEE Trans, on Auto. Control, vol. 33, no. 2, pp. 138-149, Feb. 1988.

[71] R. Valette, Petri Nets and Reliable Real Time Systems, pp. 222-227. in Application and

Theory of Petri Nets, Springer-Verlag, 1982.

[72] M . . R. Zargham and K. Danhof, "Toward a Definition of Fault Analysis for Petri Net

Models," Information Processing Letters, vol. 34, pp. 299-305, May 1990.

[73] N . Levenson and J. Stolzy, "Safety Analysis Using Petri Nets," IEEE Trans, on Software

Engg., vol. 13, no. 3, pp. 386-397, 1987.

[74] V. Krasnohaev and L. Krasnobaev, "Application of Petri Nets for Modeling of Detection

and Location of Intermittent Faults in Computers," Automation and Remote Control,

vol. 49, no. 9, pp. 1198-1204, 1989.

http://www.daimi.aau.dkTpetrinet/

IX. Bibliography 138

[75] T. Murata, "Some Recent Applications of High-Level Petri Nets," in Proc. of 1991

IEEE International Sym. on Circuits and Systems, Singapore, pp. 818-821, 1991.

[76] J. Prock, " A New Technique for Fault Detection Using Petri Nets," Automatica, vol. 27,

no. 2, pp. 239-245, 1991.

[77] P. Cofrancesco, A. Cristoforetti, M . Villa, R. Scattolini, and D. W. Clarke, " A

Workbench for Digital Control Systems," IEEE Control Systems Magazine, pp. 102-

105, 1991.

[78] R. G. Willson and B. H. Krogh, "Petri Net Tools for the Specification and Analysis of

Discrete Controllers," IEEE Trans, on Software Engg., vol. 16, no. 1, pp. 39-50, 1990.

[79] J. L . Bail, H . Alia, and R. David, "Asymptotic Continuous Petri nets: An Efficient

Approximation of Discrete Event Systems," in Proc. of the 1992 IEEE Inter. Conf. on

Robotics and Automation, pp. 1050-1056, 1992.

[80] N . Zerhouni and H. Alia, "Dynamic Analysis of Manufacturing Systems Using

Continuous Petri Nets," in Proc. of the 1990 IEEE Inter. Conf. on Robotics and

Automation, pp. 1070-1075, 1990.

[81] A. K. Martin and C. H . Seger, "Discrete Conservative Approximations of Hybrid

Systems," Tech. Rep. 93-44, Dept. of Comp. Sc., University of British Columbia, 1994.

[82] L. A . Glasser and D. W. Dobberpuhl, The Design and Analysis of VLSI Circuit. Addison-

Wesley Pub. Co., 1991.

[83] W. Reisig, "Combining Petri Nets and Other Formal Methods," Application and Theory

of Petri Nets 1992, Lecture Notes in Computer Science, Springer-Verlag, vol. 616,

pp. 24-44, 1992.

[84] K. Lautenbach, "Linear Algebraic Techniques for Place/Transition Nets," Advances in

Petri Nets in Lecture Notes in Comp. Science, Springer-Verlag, pp. 142-167, 1987.

[85] T. Murata, "Petri Nets: Properties, Analysis and Applications," Proc. of the IEEE,

vol. 77, no. 4, pp. 541-580, 1989.

IX . Bibliography 1 3 9

[86] W. Reisig, "Petri Nets and Algebraic Specifications," Theoretical Computer Science,

no. 80, pp. 1-34, 1991.

[87] K. Ogata, Discrete-Time Control Systems. Prentice-Hall, N.J., 1987.

[88] K. S. Tsakalis and P. Ioannou, Linear Time-Varying Systems: Control and Adaptation.

Prentice-Hall, N.J., 1993.

[89] N . Viswanadham, Y . Narahari, and T. L. Johnson, "Deadlock Prevention and Deadlock

Avoidance in Flexible Manufacturing Systems Using Petri Net Models," IEEE Trans,

on Robotics and Automation, vol. 6, no. 6, pp. 713-723, 1990.

[90] N . N . Ivanov, "Algebraic Method of Determining Nonexistence of Deadlock Markings

of Petri Nets," Automation and Remote Control, vol. 52, no. 17, part 2, pp. 986-989,

1991.

[91] A . A . Desrochers and R. Y . Al-Jaar, Application of Petri Nets in Manufacturing Systems.

IEEE Press, New York, 1995.

[92] " M A T L A B User Manual, Version 4.2 by the MathWorks, Inc., USA," March 1994.

[93] N . Sepehri, Dynamic Simulation and Control of Teleoperated Heavy-Duty Hydraulic

Manipulators. PhD thesis, Dept. of Mechanical Engg., University of British Columbia,

1990.

[94] P. D. Lawrence, F. Sassani, N . S. and. U Wallersteiner, and J. Wilson, "Computer-

Assisted Control of Excavator-Based Machines," in 7995 International Off-Highway &

Powerplant Congress & Exposition, Milwaukee, Wisconsin, 1993.

[95] D. McCloy and H. Martin, Control of Fluid Power: Analysis and Design. John Wiley

& Sons, 1980.

[96] P. Dransfield, Hydraulic Control Systems - Design and Analysis of their Dynamics.

Lecture Notes in Control and Information Sciences, Springer-Verlag, 1981.

[97] R. Valette, J. Cardoso, and D. Dubois, "Monitoring Manufacturing Systems by Means

of Petri nets with Imprecise Markings," Proc. of IEEE Int. Symposium on Intelligent

IX. Bibliography 140

Control, pp. 233-237, 1989.

[98] M . Rezai, M . R. Ito, and P. D. Lawrence, "Modeling and Simulation of Hybrid Control

Systems by Global Petri Nets," in Proc. of 1995 IEEE International Symposium on

Circuits and Systems, Seattle, USA, vol. II, pp. 908-911, May 1995.

[99] M . Rezai, M . R. Ito, and P. D. Lawrence, "Petri Net Based Fault Tolerance," in Proc. of

Iranian Conference on Electrical Engineering ICEE-94, Tehran, Iran, vol. on Control,

pp. 199-208, 1994.

[100] M . Rezai, P. D. Lawrence, and M . R. Ito, "Analysis of Faults in Hybrid Systems by

Global Petri Nets," in Proc. of 1995 IEEE International Conference on Systems, Man

and Cybernetics, Vancouver, Canada, 1995.

[101] M . Rezai, M . Kaye, and R. Doraiswami, "Fault Identification in Digital Control

Systems," in Proc. of I AST ED International Conf. on Control and Modeling, Tehran,

Iran, 1990.

[102] J. C. Delaat and W. C. Merril, " A Real Time Microcomputer Implementation of Sensor

Failure Detection for Turbofan Engines," IEEE Control Systems Magazine, pp. 29-37,

June 1990.

Appendix A Modeling of Logic Gates by GPNs

In this appendix we show how logic gates are represented by GPNs. We show the nets

for simpler gates. More complicated gates and switches can be built up by putting these

gates together. Table A.8 shows the truth table for various logic gates. We will make use

of this table in our presentation in this appendix.

A B A A.B A.B A + B A + B

0 0 1 0 1 0 1

0 1 1 0 1 1 0

1 0 0 0 1 1 0

1 1 0 1 0 1 0

Table A.8 The Truth Table for Various Digital Logic Gates.

A . 1 . Inverter Gate

We start with the inverter gate since the GPN model representing this gate is the simplest.

The inverter gate inverts the logic sense of a binary signal. If we represent the input to this

gate as A (the first column of Table A.8), the output is given by A (the third column).

This gate can be modeled by two places representing the input and output and a transition

representing the logical operation.

Figure A.47 The Inverter Gate Modeled by a GPN.

Figure A.47 shows the net modeling an inverter. The transition fires irrespective of the

marking of place A. The output will just be the opposite of the input.

141

A.2. A N D Gate

The logical operation of the A N D gate is presented by the fourth column of Table A.8.

The global Petri net model of this gate is given in Figure A.48 and consists of three places and

one transition. The transition will fire only when both inputs are equal to one which results

in changing the output to one. The output remains zero for all other combinations of inputs.

Figure A.48 The AND Gate Modeled by a GPN.

A.3 . N A N D Gate

The GPN representing the N A N D gate can be constructed by putting the first two (AND

and Inverter) nets described above together. The N A N D gate logical operation is given by

the fifth column of Table A. 8.

Figure A.49 The NAND Gate Modeled by a GPN.

A.4 . NOR Gate

Since modeling a NOR gate by the GPN methodology is simpler than modeling an OR

gate, we show the NOR model first. According to DeMorgan's theorem, we can write:

142

A + B = A.B (A.150)

where the left hand side is the NOR operation. Therefore, if we invert our inputs A and B and

then A N D them, the result will be the same if we had done a NOR operation on the inputs.

Using this logic, the G P N modeling a NOR gate can be developed as shown in Figure A.50.

Inverter

AND

©
Figure A.50 The OR Gate Modeled by a GPN.

A . 5 . O R G a t e

The GPN model of the OR gate can be constructed by adding an inverter to the output

of the NOR gate in Figure A.50.

143

Appendix B Derivation of the Hybrid
Transition Matrix

In this appendix we present the derivation of H matrix expression in terms of the global

Petri net parameters such as the weighting matrices and the transition firing vector. H matrix

is part of the GPN dynamic equation:

M(k + l) = M(k) + HkM{k) + Nfk.

H matrix at any instant k is defined by:

(B.151)

Hk = -{Diag{Afk)) + [One(A)Diag(fk)B]T . (B.152)

We derive the expression for H matrix irrespective of the time instant k by substituting in:

H = -(Diag(Af)) + [One(A)Diag(f)B)T , (B.153).

For an m place, n transition GPN, the weighting matrices (A and B) and transition firing

vector (/) are given as:

"an ai2 • hi • • . bu- r/ii

A =
2̂1 • 0,2n

B -
hi >̂22 : • hi

f =
h

.a/1 a/2 • • «/?i . .hi h 2 • • h i . -fn -

(B.l 54)

Diag(Af) can be written by matrix multiplication of A and / , and then diagonalizing

the resulting vector Af by Diag function:

Af

n

E a2jfj
3 = 1

n

E aijfj
•i=i

Diag(Af) .=

E aijfj 0

i=i
n

0 E a2jfj

0

0

n

E aijfj

(B.155)

144

To find the second element on the right hand side of Equation (IV.73), we need to find

the following:

One(A)

on
0 2 1

0 1 2

0 2 2

Ion °i2

0\n

Oln

Diag(f)

7i 0.

0 h

0 0

0
0

fn

(B.156)

Multiplying these two matrices gives us:

One(A)Diag(f) =

' 0 1 1 / 1 0 1 2 / 2

0 2 1 / 1 0 2 2 / 2

• • oi n / ,
• • 02nfi

0 / 1 fl O12 fn ••• .Olnfn

(B.157)

Multiplying the above matrix by B and then taking transpose:

{One{A)Diag{f)B\ =

• n n
E oijfjbji X) oi-jfjbj2

i=i i=i
n n

E 02jfjl>j\ E °2]fjbj2

i=i i=i

E oijfjbji E oijfjbj2

-i=i i=i

E oij/i^7
n

E 02j/j&iJ

E °ljfj hjn

(B.158)

[O n e (A) D ^ (/) B] J =

E (:'1.,/Al E 02.;/;,^l

E Olj / j 6 j 2 E 02>/i6j2

E o\jJ)bji J2 oijfjbj,
•3 = 1 3 = 1

E oijfjbji

71

E oi,7A'2

E % 7 J 6 J T
• i=i

(B.159)

Finally substituting from Equations (B.155) and (B.159) in Equation (B.153), we find

the expression for H matrix in terms of the net parameters.

145

H = -Diag(Af) + [One(A)Diag(f)B]T = '
n n n n E aijfj + E °\jJ.,b.i\ E °2jfjbji ••• E °ijfjbi\ j=i j=i j= i y=i

n n n n
E Oijfjbj2 - E «2i/i + E <>2jfj!>j2 • • • E °o/A'2
i = i i = i i = i i = i

?J n , ' ii ii E °\jfibii E o2.;./'/̂ 7 • • • - E "uli + E wo/A»
7=1 7 = 1 7 = 1 7 = 1

(B.160)

146

Appendix C Diagonal A Matrix Transformation

The analysis burden for any given global Petri net can be reduced if the net with a non-

diagonal A matrix is transformed to a net with a diagonal A matrix which has an equivalent

subnet. Two GPNs are said to have equivalent subnets if for a subset of their places, the

changes in the markings of those palets are exactly the same for any string of events. In this

appendix, a procedure for diagonalization of an A matrix is presented thorough a general

case example. Figure C.51 shows a two-place, two-transition GPN with all possible arcs.

Figure C.51 A Two-Place, Two-Transition GPN with All Possible Arcs

The net (GPNi) parameters can be written as:

GP^ = (P, T, A, B, Wpt, Wtp, M)

{*1,*2J

Wtp(l,l) Wip(l,2)
Wtp{2,l) Wtp{2,2)

Wpt =
Wp t (l , l) Wpt{\,2)
Wpt{2,\) Wpt{2,2)\

T

Wtp =

147

A = an an B = hi &12

« 2 1 « 2 2 hi h2
M(k) 'Mi{k)'

M2{k)

The A matrix above is not a diagonal matrix. We need to transform this matrix into

a diagonal one. In the following, we show how this transformation will affect other net

parameters. The GPNi dynamic equation is givens as:

M(k + 1) = M(k) + HkM(k) + Nf(k) .

We start by finding the incidence matrix N, and the hybrid matrix H. The incidence

matrix N can be written as:

Wtp'l, 1) - Wpt{l, 1) Wtp{2,1) - Wpt(l,2)'
Wtp(l,2)-Wpt(2,l) Wtp(2,2)-Wpt(2,2)_ '

The state transition vector is

/(*) = fk= \ff •

The hybrid matrix H is defined as:

Hk = (-Diag{Afk) + [One{A)Diag{fk)B]T). (C.165)

The overall dynamic of this net is governed by this equation. We need to find each

element of the above equation and substitute in it.

« n / i + 0 1 2 / 2

0 2 1 / 1 + 0 2 2 / 2

Diag(Afk) = Diag

N = Wl- Wpt =

Afk =
« 1 2 fl

0 2 1 « 2 2 h

« l l / l + 0 1 2 / 2

0 2 1 / 1 + 0 2 2 / 2

0 1 1 / 1 + 0 1 2 / 2 0
0 0 2 1 / 1 + 0 2 2 / 2

148

° N E { A > ~ [0(a21) 0(a22)

Since we are assuming all elements of A matrix are nonzero.

' i r

i i

Diag(fk) = Diag

One{A)Diag{fk)B

One(A)Diag(fk)B =

7 i " \ - 7 i o"
h .) - .0 f2_

h
0

0
h

hi
hi

hi
hi

hhi + fihi fih2 + fih2

Jihi + f2hi hhi + hhi,

fihi + f2hi fihi + hhi
Jihi + hhi hhi + hhi.

Substituting from above equations in Equation (C.165), we find the hybrid transition

matrix to be:

[One(A)Diag(fk)BY =

HK

-«n/i - 0 1 2 / 2 + fihi + hhi hhi + hhi
hhi + hhi -anh - a2ih + hhi + hhi

(C.173)

We want to transform the above net so that we have a new net with a diagonalized A

matrix. Let the net which is obtained by this transformation be represented as:

1 1 1 1
GPN^ = [P ,T ,A,B,Wpi,Wtp,M).

There are four distinct synchronous output arcs, corresponding to the A matrix elements

an , an, an and 0 2 2 - Therefore, the size of the new A (denoted asA) has to be 4 x 4 so that

we have only one element on each row and each column of the new A = A matrix. We

will have a net which has four places and four transitions.

P = {PUPIIPZIPA) = {PUP2,Pld,P2d},

T = {hiht^tu = {h,ht2d,tid}-

149

The first two places and transitions are the same as the ones in the previous net and the

other two are dummy places and transitions. The net parameters are selected such that the

marking of places pz = pu and p\ = p2d are always equal to p\ and p2 respectively. The

other net parameters are selected as:

Wpt =

wip =

Wpt(l,l) Wpt(l,2)

Wpt(2,l) Wpt{2,2)
0
0

Wtp(l,l) Wtp(l,2)

Wtp(2,l) Wtp(2,2)
0
0

0
0

0 0
0 0

Wpt(l,2) Wpt(l,l)
Wpt(2,2) Wpi(2,l)_

0 0
0 0

Wtp(2,l) Wtp(l,l)

Wtp{2,2) W i p (l , 2) J

A =

M (k) =

a n 0
0 Gt22

0 0
0 0
M\(k)
MJk)
M3(k)
M'4(k)

0
0

au
0

0 '
0
0

a2i.
M i (A;)

M2(k)
Mi(k)
M2(k)

B =

h}2 bp
b22 bp

J32 ^33

4̂2 hi
_ J

f (k) = fk =

Uk)\

J44

'fi(k)
h{k)
f2(k)

A l l net parameters for GPN1 in the above are written in terms their of counterpart parameters

in GPN\, except B matrix. We need to find this matrix and show that by this transformation,

we do not change the net behavior. The incidence matrix for GPNX can be written as:

wip{\,\)-wpt{ix
Wtp(\,2)-Wpi{2X

0
0

N =Wtp- Wpt =
W i „ (2 , l) - W p t (l , 2)
W i „ (2 , 2) - W p t (2 , 2)

0 Wtp{2X
0 ' Wtp(2,2

o • 0
0 0
-Wpt(l,2) W t p (l , l) - W p t (l , l]

-Wpt(2,2) Wtp(l,2)-Wpt{2X

If we compare Equations (163) and (178), we see that contribution to changes in the

marking of equivalent places in GPN\ and GPN[due to these two equations are the same.

150

Next we will rind the hybrid transition matrix for GPNA.

A h

O i l 0 0 0 " vr O l l / l

0 « 2 2 0 0 h « 2 2 j"2
0 0 « 1 2 0 h auf2
0 0 0 0 2 1 . fl . 0 2 1 / 1 .

Diag(Af'k

(

Diag

0 1 1 / 1 \ " 0 1 1 / 1 0 0 0

0 2 2 / 2 0 0 2 2 / 2 0 0

0 1 2 / 2 0 0 auf2 0

. 0 2 1 / 1 . / 0 0 0 0 2 1 / 1

One

O(an) 0 0 0 " "1 0 0 0"

0 0 (a 2 2) 0 0 0 1 .0 0

0 0 0 (a] 2) 0 0 0 •1 0

0 0 0 O(o 2l) 0 0 0 1

Diag[fk) =

/1 0 0 0

0 h 0 0

0 0 / 2 0

0 0 0 h

One[X)Diag(f'k)B' = Diag^B =

7i 0 0

0 h 0

0 0 h
0 0 0

0

0

0

fl

bJl b}2 b}3 • bJ4
b21 b22 bp b24

b34 ^31 ^32 ^33

hi b42 b43 b44

One A)Diag[fk)B

hb' i " i i

hbi2
hbn
.hb

14

hb21
hbp
f2bp
hb24

hhi
hbp
hbp
hbu

Diag

hb4i

hb42

hbp
flb44

h)B

151

The hybrid transition matrix for GPNX can then be written as:

h\\ h\2 his hu

hl\ h 2 2 /i23 ^24

^31 ^32 ^33 ^34
h\i /i42 /134 /i44

Hi. =

Yl&ll - O l l / l h \ \ /2&31 / l ^ l

/ l bp hb'22 - «22/2 (/2 &32 / l h}2

fibp • f2bp /2&33 -012/2 . ^ 4 3
/l&'l4 /2 &24 / 2 ^ 4 ' / l &44 ~ a21 .fl

(C.186)

The changes in the marking of the net GPNi (before transformation can be written by

reference to Equation C.173. The change in marking of the first place is given as:

Mi(k + 1) = [-aufi - 012/2 + hhi + f2b2i]M1(k)

+ [fibn + f2b2i]M2(k)

Similarly, the changes in the second place markings is given by:

M2(k + 1) = [/i6i2 + /2622]MiO)

+ [- 0 2 l / l - O22/2 + flb\2 + / 2 ^ 2 2 J ^ 2 (^)

For the transformed net GPN[to be equivalent of the original net (GPNi), the changes

in its marking should be exactly the same as the changes in the marking of the original net.

The changes in the marking of GPN[is governed by the dynamic equation given in

Equation (C.186). The changes in the first place marking of GPN' is given as:

M'i(k + l)=[fibn-aufi\M'1(k)

+f2b'2iM2(k) +. f2b'31M3{k) + hb'41M'4{k).

152

Now, since we are taking the dummy places pz and p 4 to be same as p\ and pi

respectively, their markings also should be taken to be equivalent. The changes in marking

of the first place in GPN[given in Equation (189) can be written as:

M'1(k + 1)= \-anfi + hb'u+f2bJM[(k)

+ /l&41 +/2&21 M2(k)

Comparing Equations (190) and (190), we can find the values of P>' matrix (of GPN[) in

terms of elements of A and B matrices (of GPN\) so that the behavior of these two nets

becomes equivalent. These values are found to be:

hi = hi bp = hi
hi = hi - a n b41 = 6 n

Similarly, we can write the changes in marking for the other three places in GPN[and

find the values of remaining elements in B' matrix.

M2(k + 1)= fih2 + f2b32 M^k)

+ -022/2 + f2b22 + h h 2 M 2 i k)

M 3(fc + 1) = M1(k + T -012/2 + /2^33 + /l&13 Ml(k)

+

M4(k + l) = M2(k + l)= fibu + f2bu M,(k)

+ - 0 2 l / l + /l&41 +/2^24 M2{k)

153

In this fashion the B matrix is found to be:

B

b}l bJ2 b}3 b}4

b21 b22 bp b24

b31 b32 bp b$4

.^41 b42 b43 b44

bU h 2 bu - «11 &12

&21 2̂2 • b21 b22 — 0-22

&21.-G12 b22 hi • b22
hi h2 - a2i hi h2

Therefore, if we select the second net (GPN[) parameters according to the following,

any general two-place, two-transition non-diagonal net can be transformed to a diagonal one.

GPN, = [P ,T ,A,B ,Wpt,Wtp,M .

P = { p i ^ f t v ^ } = {Pl,P2,Pld,P2d},

T = 1*1^2^.3^4} = {tl,t2,t2d, hd}-

A

an 0 0 0
0 «22 0 0
0 0 au 0
0 0 0 «21

B =

hi
hi

hi - au
hi

bn bu - an
h 2 hi
hi hi

bn - a2i hi

bi2
h 2 — 022

h 2

b12

wpt =

Wtp =

Wpt(l,l) Wpt{l,2)
Wpt(2,l) Wpt(2,2)

0 0
0 0

W i p (l , l) Wtp{l,2)
Wtp(2,l) Wtp(2,2)

0
0

0
0

0 0
0 0

Wpt(l,2) Wpt(l,l)
Wpt{2,2) Wp t (2,l)

0 • 0
0 0

Wtp(2,l) Wtp(l,l)
Wtp{2,2) Wip{l,2)

M (k)

'Mi(k)
M'2(k)
M3(k)

X (f c) ,

'Mi(ky
M2(k)
Mi(k)
M2(k)

f (k) = fk =

7 i (*) "

f'Ak)
h(k)

L/4(*).

7 i W
Hk)
Hk)
Jl(k).

154

Appendix D The Hybrid System Global
Petri Net Parameters

In this appendix we include the G P N parameters for the hybrid developed in Chapter

VI. These are parameters which were used for all the simulation and analysis carried out

in that chapter.

GPN = {P,T,WpttWtp,A,B,M(0),TT},

where P=15, T=15 and

w,

0 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

.0 0

1 0

0 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 1

0 0

0 0

0 0

0 1
0 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 4

0 0

0 0

0 0

0 0

0 0

1 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 1

1 0

0 0

0 0

0 1

0 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 1

0 0

0 0

0 0

1 0

0 0

0 0

0 0

0 0
1 1

0 0

0 0

0 0

0 0
0 0
0 0
0 0
0 0
0 0

0 0

0 0

0 4

0 0

1 0

0 0

0 0

0 0

0 0

0 0

0 0 0

0 0 0

0 0 0

0 0 1
0 0 0

0 0 0

0 1 0

0 0 1

0 0 1

1 0 0

1 1 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 1 0

4 0 1
0 0 1
0 0 1
0 0 1
0 0 0

.0 0 0

0 0 0

0 0 0

0 0 0

0 0

0 0

0 0

1 0

0 0

0 0

0 0

1 0

1 0

0 0

0 0

0 0

0 0

0 0

0 0

.0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

(D.201)

(D.202)

(D.203)

155

B

•o 0 0 0 0 0 0 0 0 0 0 0 0 0 0"
0 0 0 0 0 o. 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

.0 0 0 0 0 0 0 0 0 0 1 o • 0 0 1.

"0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 .0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
A,, K

2

0

0

0 0 0

0 .0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
AT

0

0
A T

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 -KjKa A'rA'i A'c KTK1 2 n 0 0 0 0 0 0 0 0 0 0 0 0 Am u
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0. 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 o- 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 p 0 1 0

.0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

M(0) = [0 1 0 4 1 0 0 0 4 1 1 25 0 0 of,

(D.204)

(D.205)

(D.206)

and finally,

TT - [3 1 1 3 1 3 1 1 1 1 3 3 1 1 1]. (D.207)

156

Appendix E Fault Detection, Identification
and Reconfiguration (FDIR) Scheme

Figure E.52 shows the configuration for a fault detection, identification and reconfigu­

ration (FDIR) scheme. This scheme can be used for the excavator system along with all

of its peripheral and input/output devices. This system consists of a set of sensors in form

of joysticks. These are used to enter the desired input as Cartesian coordinates. These are

converted to joint angles which in turn are the inputs of the controller. The actuation is

provided through pilot valves and hydraulic subsystem. The position of them arm is read

and fedback to the system through joint angle sensors.

The fault detection, identification and reconfiguration (FDIR) scheme can written in

M A T L A B . This scheme receives the system parameters and compares these with the estimated

parameters provided by the global Petri net (GPN).

The actions taken by the FDIR scheme will include an alarm with announcement of the

fault type and logging of the appropriate data. The system may also be configured in an

attempt to reach a safe and acceptable state by changing the controller parameters.

157

Fault / Disturbance

Desired Input

Joy Sticks

Joint Angles ^

Inverse
Kinematics

Joint
Angle
Sensors

Controller Pilot
Valves

Links Hydraulics

Global Petri Net Model

t
Estimated Parameters

Fault Detection, Identification &
Reconfiguration Scheme

(FDIR)

J
Alarm & Data Log

Figure E.52 The FDIR Scheme Block Diagram

Reconfiguration

158

