
TECHNOLOGY MAPPING AND LAYOUT SYNTHESIS OF DCVS

By

Carly Wong

B. A. Sc. (Electrical Engineering) University of British Columbia, 1990

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

ELECTRICAL ENGINEERING

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

April 1992

© Carly Wong, 1992



In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the

University of British Columbia, I agree that the Library shall make it freely available for refer-

ence and study. I further agree that permission for extensive copying of this thesis for scholarly

purposes may be granted by the head of my department or by his or her representatives. It

is understood that copying or publication of this thesis for financial gain shall not be allowed

without my written permission.

Electrical Engineering

The University of British Columbia

2356 Main Mall 

Vancouver, Canada

V6T 1Z4

Date:
4pra z S. Igq?...



Abstract

Differential Cascode Voltage Switch (DCVS) logic is a dynamic logic family that has a number

of desirable properties. In particular, it is hazard-free, easy to make fully robust path delay-

fault testable, and has a number of unique timing properties that make it very suitable for

self-timed circuits.

This thesis investigates the problem of implementing logic with DCVS, and in particular, the

automatic synthesis of DCVS circuits. This task is challenging because DCVS gates are usually

significantly more complex than standard static CMOS both in terms of internal connectivity

and number of inputs. Most of the work done in circuit synthesis, such as technology mapping

and layout synthesis, are not directly applicable to DCVS.

We present DMAP, a technology mapping and layout synthesis system for DCVS. The sys-

tem operates in three steps. First, the combinational circuit is decomposed and partitioned into

sizable Boolean function clusters. Secondly, DMAP takes each cluster function, and generates a

DCVS cell layout that implements that function. We develop a heuristic algorithm for finding a

suitable transistor path to lay out the DCVS pull-down network. Finally, the generated DCVS

cells are placed and routed inside the CADENCE environment.

Experimental results indicate that DCVS circuits can be implemented with considerably

fewer cells than by conventional mapping techniques. Furthermore, the number of nets that

need to be wired is typically less than twice the number of nets used in standard mapping. This

is better than the intuitive assumption that dual-rail circuits require twice as many wires as

their single-rail counterparts. Large DCVS circuits can be feasibly produced. DMAP is a first

step towards an integrated system for dynamic circuit synthesis.
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Chapter 1

Introduction

Dynamic logic families, such as Differential Cascode Voltage Switch (DCVS) [24], have very

attractive properties both at the device level as well as the design level. This thesis analyzes

the problem of implementing combinational logic with DCVS. DMAP, a technology mapping

and layout synthesis system for DCVS, is presented. The system takes as input, arbitrary

combinational logic, and produces layout cells ready for placement and routing in the CADENCE

design environment.

1.1 Outline of Thesis

The remainder of Chapter 1 reviews basic definitions and notations used in this thesis report.

Discussion of the thesis topic begins in Chapter 2. First, the Computer-Aided Design automa-

tion process is presented. We show, in particular, how the problems of technology mapping and

layout synthesis fit into the design cycle. Conventional methods of attacking these problems are

reviewed. Next, DCVS logic is presented as an attractive design technology. We discuss DCVS's

dynamic operation, DCVS properties, and DCVS applications. We then describe the problem

this thesis seeks to solve: technology mapping and layout synthesis for DCVS. Previous work

related to solving this problem is reviewed.

Chapter 3 describes in detail DMAP, a system which performs technology mapping and

layout synthesis for DCVS. First, an overview of the system is given. Each of the system steps:

circuit clustering, cell generation, and cell connecting, are elaborated on. Clustering is done to

1
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obtain sizable functions from which to implement the DCVS gates in order to achieve minimum

delay between the circuit's inputs and outputs. DCVS cells are generated in a systematic way

in a one-dimensional transistor strip layout style. The cell generation step investigates the

sub-problems of determining suitable DCVS logic trees, transistor path finding, and intracell

routing. CADENCE placement and routing tools connect the generated cell library together to

produce a final DCVS chip layout.

Experimental results of DMAP, and the discussion of these results, are given in Chapter

4. The system presented in this thesis is compared with conventional technology mapping

systems in terms of various factors such as gate count, wire count, and cell area count. Finally,

conclusions and future directions appear in Chapter 5.

1.2 Basic Definitions and Notations

This section is devoted to reviewing some common definitions and notations in graph theory and

integrated circuit theory that will be used in the development of this thesis. Readers already

familiar with the jargon and basics in these areas may wish to skip this section, and proceed to

Chapter 2.

1.2.1 Integrated Circuit Theory

Complementary Metal Oxide Silicon (CMOS) technology has become the most common fabri-

cation process for digital integrated circuit industry. It provides two types of transistors as the

basic building blocks in digital circuit design: the N- type or nMOS transistor; and the P- type

or pMOS transistor. The symbols used to represent them are shown in Figure 1.1. The N-type

transistor is an active-high switching device which acts as a closed switch when its input is

high, i.e., when GATE is high, SOURCE and DRAIN are connected. The P-type transistor

is an active-low switching device which acts as a closed switch when its input is low, i.e., when
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GATE is low, SOURCE and DRAIN are connected.

SOURCE^ SOURCE

GATE GATE

DRAIN^ DRAIN

PMOS
P—type

( b) NMOS
N —type

Figure 1.1: CMOS transistor symbols.

These transistors can be used in different ways to design digital systems. There are two

major classifications of design styles or design technologies used with these CMOS devices:

static CMOS and dynamic CMOS.

PMOS 0
PULL—UP A

TREE
z=n-n

Z — All

NMOS AH
NMOS PULL—DOWN

PULL—DOWN TREE
TREE B

0

(a)
^

(b)

Figure 1.2: (a) Static CMOS (b) Dynamic CMOS

Static CMOS is also referred to as fully complementary CMOS logic. Figure 1.2(a) shows
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a static CMOS 2-input NAND gate. The P-type transistor network, or pull-up (to power), and

the N-type network, or pull-down (to ground), are series-parallel duals of each other. This fact

suggests obvious transistor redundancy, since both networks serve to realize the same function.

This led to the development of dynamic circuits.

A basic dynamic CMOS gate is shown in Figure 1.2(b). It consists of a single logic network

implemented in the pull-down nMOS region (in this case, a NAND function), and operates in

two stages. During the precharge phase when 0 = 0, the P-type transistor is turned on while the

N-type transistor is turned off. This causes the output to be pulled high, while the pull-down

network is "disabled", or non-conducting. During the evaluation phase when 0 = 1, the P-type

transistor is turned off while the N-type transistor is on. As a result, the pull-down network is

"enabled", or conducting.

There are two types of logic in digital circuits. Combinational (Boolean) logic have outputs

that are a function solely of the input values, while sequential logic have outputs that are

functions of the inputs as well as data stored in the circuit.

There are two basic sequencing techniques in digital systems. A synchronous system uses

a fixed global clock with a period that is longer than the worst-case propagation delay. The

major drawbacks of this method are loss of efficiency, clock signal routing, and difficulty in

interfacing with the asynchronous world. An asynchronous or self-timed system have events

initiated by completion signals created by other events. Although timing depends on circuit

delays, the system is guaranteed to sequence properly by adhering to a protocol. This allows for

modular design of the system, and there is no upper limit on the size of the system. However,

asynchronous circuits generally require more hardware than their synchronous counterparts,

and are difficult to design.

1.2.2 Some Computer-Aided Design (CAD) Terms

Standard cell or polycell refers to an existing library of gate cells used by CAD systems to
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build circuits. A macrocell is a generated cell, usually implementing more complex logic than

standard cells. Gate arrays and other regular structures are often considered macrocells.

A net is simply a set of interconnected nodes in a circuit. A netlist is a circuit representation

(which may be a text file, or some other data format) that describes the circuit in terms of

interconnections between components. These components may be transistors, gate cells, or

other circuit building blocks. In other words, a netlist is a "list" of "nets" and the objects

connected to the nets. An input or output rail is a wire coming into or out of a component,

and which connects to other components. Routing refers to connections between inputs and

outputs in a circuit. Global or intercell routing refers to connections between gates or cells in a

circuit, while internal or intracell routing refers to connections between devices within a cell.

The goal of circuit synthesis is to reduce the effort required to design a circuit while at

the same time produce circuits of comparable, if not better, quality than conventional hand-

designed ones. Synthesis in CAD is used at different levels of the design hierarchy to produce

different intermediate circuit representations. We will return to this in Chapter 2.

1.2.3 Graph Theory

Many CAD algorithms use graph representations of circuit networks. Here we define some

common graph terminology. For a more comprehensive coverage of graph theory and graph

algorithms, the reader is referred to [26, 52].

A graph consists of a finite set of vertices or nodes, (i = 1, 2, ...n), and a finite set of edges

or arcs, ei,j, joining a pair of vertices Vi and Vi (ei,i is also said to be incident on V and I/j).

Two vertices are adjacent or neighbours if they are joined by an edge. Two edges are adjacent if

they are both incident to the same vertex. A vertex is of degree k if there are k incident edges.

A directed graph is a graph where all the edges have a direction (e.g., an edge can be followed

from V to V." but not from 173 to Vi). A directed acyclic graph (DAG) is a directed graph with no
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cycles. Two graphs are isomorphic if there is a one-to-one correspondence between the vertices

and edges. For directed graphs, the edge directions also correspond. A tree is a connected

graph with no cycles. A rooted tree T is a tree with one distinguishing node, called the root,

and the remaining nodes are disjoint subtrees T 1 , T2 , ..., Trn . Nodes with no subtrees are called

leaves; remaining nodes are called internal nodes.

A Path (V1 , V2 , ..., Vn) is an ordered sequence of vertices such that from every 14 to V, +1

there exists an edge. A graph is connected if there is a path between any two nodes of the graph.

A path where V1 = V?, is called a cycle. An Euler path, or an Eulerian path, in an undirected

and connected graph, is a path that traverses every edge of the graph exactly once.



Chapter 2

Discussion of Problem

In Very-Large-Scale-Integration (VLSI) circuit design, Computer-Aided Design (CAD) tools

are used to automate parts or all of the design process. Complete design systems, referred to

as silicon compilers [19], automate the whole design process by taking, as input, a high level

behavioral description, and producing final layout. Individual CAD tools automate part of the

design process, producing various intermediate representations. The goal of design automation

is to produce near-optimal results of comparable and/or better quality than manually designed

circuits. The dividing lines between different levels of design abstraction are sometimes quite

fuzzy, but can be generally classified as follows (see Figure 2.1):

1. Behavioral Representation. A behavioral description of a digital system describes the

algorithm, flow and control of information in the system. It is usually described in a

high-level programming-like language such as VHDL [5].

2. Register Transfer Level (RTL) / Logical Representation. At this level, the system is

described in terms of its modules, and their interconnections. The datapath and control

parts of the design are separated, and the purely combinational parts and memory storage

parts of the design are also separated. The control parts are created through a process

called finite state machine synthesis.

3. Gate Level Representation. This level of representation specifies the interconnections

between logic gates. Here, a "gate" is defined as a physical component that realizes a

specific logic function using transistors. For example, a gate level netlist may contain

7



Transistor
Netlist

begin
if RUN='1' then

STOP='0'
else

STOP=1'
end if;

Behavioral
Description

Gate—Level
Netlist

RTL
Description

memory elements + combinational logic

logic minimization

decomposed network

technology mapping

a)
-o
a)
a)a

-oc

cri>‘
0
0
_c
0

Chapter 2. Discussion of Problem^ 8

High—Level Synthesis
(Behavioral Synthesis)

Logic Synthesis

Low—Level Synthesis
(Layout Synthesis)
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Figure 2.1: Levels of representation during digital design automation.
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programmable-devices, standard-cells, or macrocells.

4. Transistor Level Representation. At this level, the complete circuit is described as inter-

connections between transistor elements.

5. Physical Layout. This is the physical layout representation of the design at the polygon

level. The layout of a system includes the layout of the sequential and combinational

parts, as well as the routing of metal wires between the components.

The process of going from level 1 to level 2 is generally referred to as high-level synthesis or

behavioral synthesis, while going from level 3 down to layout is considered low-level synthesis or

layout synthesis. Taking the combinational blocks from the RTL level down to the gate level is

called logic synthesis. In this thesis, we are interested in logic synthesis and low-level synthesis.

In most of the current design automation procedures, the storage elements at the RTL level of

the design are assumed to be predesigned and ready to use. The task of logic synthesis is to

produce a correct final gate level implementation which meets timing and testability constraints,

and tries to minimize area. After this step, the combinational blocks are combined with the

memory elements to form the overall design.

Logic synthesis can be divided into two approaches: two-level synthesis and multi-level

synthesis [12]. Two-level logic synthesis algorithms, generally used for two-level programmable-

logic-array's (PLA) implementations, concentrate on minimizing area by minimizing the number

of PLA product terms [11]. Multi-level logic synthesis, on the other hand, optimizes random

logic, to be implemented with non-array structured gates, such as individual NAND gates or

AND-OR-INVERT (A01) gates. Though some applications are naturally suited to two-level im-

plementations, the multi-level realization generally offers better design freedom and flexibility.

The multi-level logic synthesis task can be considered in two consecutive stages: a technology-

independent optimization step, followed by a technology-dependent mapping step. The first

stage involves applying algebraic Boolean transformations on the combinational circuit, in an



Chapter 2. Discussion of Problem^ 10

attempt to minimize overall layout area of the final chip, the critical path delay time, and to

maximize circuit testability [13, 11]. The second processing step is referred to as technology

mapping. It takes an arbitrary combinational logic description, and "maps" that into some

design technology dependent description, which may use standard cells or programmable de-

vices or macrocells. In other words, it implements the circuit with specific gate choices. It

performs this mapping without significantly altering the structure of the circuit network that

was produced after the first optimization step.

The technology mapping step depends on the design method chosen. The use of pro-

grammable devices, such as programmable logic devices (PLDs) and programmable gate arrays

is becoming increasingly popular in the application-specific-integrated-circuit (ASIC) industry,

and their usage is currently fueling much new research. Examples of some popular architectures

are those by A.M.D, Altera, Xilinx and Actel.

If the standard cell design method is used, it is assumed that the library cells have been

manually predesigned. This is the most common method of technology mapping. Automatically

generated cells are also a design option. Arbitrary logic cells need to be individually synthesized

from the logic description level down to cell layout. This process can be referred to as cell layout

synthesis.

The next two sections in this chapter (Section 2.1 and Section 2.2) will discuss in greater

detail the general problem of technology mapping, and in particular, mapping for standard

cells, as well as the problem of layout synthesis. Subsequently in Section 2.3, we describe a

relatively new design technology called DCVS. DMAP, the system described in Chapter 3 of

this thesis, performs technology mapping and layout synthesis for DCVS.
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2.1 Technology Mapping

In conventional standard cell library design, the problem of technology mapping is one of

chosing the right gates from the cell library to implement the given combinational circuit, while

optimizing for certain constraints such as area and speed. A good mapper should be able to

adapt to changing libraries, and handle different technology-dependent cost functions. The

most popular technology mapping technique is the graph covering method. We will begin by

describing this technique.

2.1.1 Network Representation

Any Boolean network can be represented as a directed acyclic graph (DAG), such as the one

in Figure 2.2(a) 1 . Each node is associated with an output variable y2 , and a representation of

a logic function ft . A directed arc from a node i to a node j exists if the function f3 depends

on the variable yi. The leaves of the graph are the network inputs or primary inputs, while the

roots are the circuit outputs, or primary outputs. If there is an arc from node j to node i, node

j is a fanin of node i, and node i is a fanout of j.

An arbitrary DAG can be partitioned into a forest of trees by making each node with fanout

greater than one, the root of the new tree, as illustrated in Figure 2.2(b).

2.1.2 DAG Matching

It was observed that the standard cell library technology mapping problem is much like the

compiler code generation problem, where a set of high level instructions are mapped onto a

set of machine instructions for a particular target machine [28]. Each high level code sequence

can be represented as a DAG, called a subject graph; each machine instruction for the target

machine can also be decomposed into a small DAG, called a pattern graph. Each pattern DAG

'Henceforth, the terms graph, network, and circuit will be used interchangeably.
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(a)
^

(b )

Figure 2.2: (a) DAG (b) partitioned DAG (forest of trees)

has an associated execution time cost. The optimum code is generated by finding an optimum

mapping to cover the large DAG with the little pattern DAGs [6].

2.1.3 DAG Matching Applied to Technology Mapping

Similarly in technology mapping, each combinational circuit is decomposed into DAGs of stan-

dard form (i.e., the nodes of the graph are base functions such as NANDS and INVERTERS, or

Noits and INVERTERS). If there is any node with fanout greater than one, partitioning is per-

formed by making that node the root of a new DAG. The resulting DAGs form the set of

subject graphs. Each gate in the standard cell library is represented by several small-sized

DAGs decomposed from the logic function of that gate. Since there are many possible trees

for one gate, only the non-isomorphic patterns are used. For example, Figure 2.3 shows two

different DAG patterns for a 4-input NAND gate using 2-input NAND gates and INVERTERS. The

union of the set of DAGs for each library function is used as the set of pattern graphs.
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f

f = abcd

Figure 2.3: Non-isomorphic DAG representations for the function f = abcd.

The technology mapping problem boils down to matching every branch in the subject graph

with one of the tree patterns from the standard cell library. The problem of optimal code

generation, where a subject DAG is matched by pattern DAGs, is an NP-complete problem

[6]. However, in technology mapping where the DAGs are restricted to trees, the problem

becomes linear in both the size of the subject tree and pattern forest. The choice of patterns

depends on the technology mapper's cost evaluation, which may consider area, speed, and other

parameters. Each pattern graph has an associated cost function. Achieving a complete cover

or map means that every node in the subject graph must be contained in one or more of the

pattern graphs, and that each input of a pattern graph is the output of another pattern graph.

DAGON is a technology mapper based on DAG matching developed by Keutzer [28] at AT&T.

This approach was later extended at Berkeley in the MIS logic synthesis system [10].

To illustrate the concept of graph matching, consider Figure 2.4 where technology mapping

is performed on a full-adder circuit using MIS. Figure 2.4(a) shows one decomposition for a

number of basic gates into base form tree patterns. Recall that there are several possible decom-

positions for each gate, and all of them are considered as patterns in matching. Figure 2.4(b)
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cin

cin
a

LA Inv
a

Inv
D-1

inv 
nand3
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(b) (d)

Figure 2.4: Illustration of tree matching in technology mapping.
(a) A possible tree pattern for some library gates.
(b) Decomposed adder circuit before mapping.
(c) Decomposed adder circuit with INVERTERS inserted.
(d) Adder circuit after mapping with MIS-II
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shows the decomposed full-adder circuit. Technology mapping in MIS differs from DAGON pri-

marily by the fact that MIS inserts INVERTERS in the circuit (without affecting functionality)

to enhance the number of successful pattern "matches". From Figure 2.4(c), we can see that

once INVERTERS are added to the circuit, a number of familiar patterns from Figure 2.4(a) can

be identified in the circuit. Finally, Figure 2.4(d) shows the result of the graph matching.

After technology mapping, the structure of the circuit is fixed, and optimizations can no

longer be performed on the combinational circuit as a whole. Any further optimizations would

have to occur inside the gate level. For standard cells, the layout is predesigned and fixed, and

nothing more can be done with the layout before global placement and routing. For generated

cells, the gate's internals can be synthesized to meet still more optimization parameters. Indeed,

this is one of the advantages, and objectives, of cell layout synthesis.

2.2 Cell Layout Synthesis

Laying out a circuit at the physical level is a tedious and time consuming process. It becomes

very costly to do the layout portion of the design (draw, check, and correct layout) by hand.

Therefore, it makes sense to use either layout cells from a pre-drawn standard cell library which

are usually designed to be very compact and efficient, or to use off-the-shelf programmable

devices. As design methods and semiconductor technologies rapidly evolve, it becomes very

costly to maintain a standard cell library. This problem can be significantly alleviated if a

layout synthesis program is used to generate cell layouts of reasonable area and performance.

This way, the technology-dependent factors can easily be modified inside the synthesis program.

Whether to generate basic standard cell libraries, or more complex cells, layout synthesis is of

considerable interest. The automatic design and generation of such polycells include two main

steps:

1. Determining the transistor network (i.e., transistor netlist).
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2. Placing the transistors to meet the design rule specifications.

2.2.1 Static CMOS Cell Layout Synthesis

Most of the work done in layout synthesis has been for complementary static CMOS design.

There is little published work on layout synthesis for dynamic CMOS design. In static CMOS,

the first step of obtaining the transistor netlist is relatively straightforward for smaller functions,

since the logic function of the cell can easily be translated to a series-parallel connection of

transistors, where the pull-up and pull-down networks are duals of each other.

Significant work has been done in cell synthesis for static CMOS standard cells to perform

the second step above: given a transistor netlist, lay out the network to meet design rule

requirements.

2.2.2 Transistor Placement for Static CMOS

Uehara and vanCleemput [58] introduced the automatic generation of cell layout in one-dimensional

transistor arrays. Subsequent work by other people has built on this concept. Given the tran-

sistor netlist, the CMOS static circuit is converted into two graphs, one for the pull-up (P-type

transistor region), and one for the pull-down (N-type transistor region). The vertices corre-

spond to the transistor connections (i.e., SOURCE/DRAIN), and the edges correspond to

the transistors. Figure 2.5(a) shows an example of a CMOS logic gate f = (AB)(C D), and

Figure 2.5(b) shows the two corresponding graph representations for the pull-up and pull-down

networks.

Uehara and vanCleemput's algorithm for finding the layout path is essentially one of finding

Euler paths in the pull-down and pull-up graphs, and then laying out the transistors in two

strips according to the Euler path labeling. An algorithm for finding an Euler path is given

in Appendix A. Sometimes, a graph will not have an Euler path, in which case imaginary
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Figure 2.5:
Finding the Euler path and transistor placement:
(a) Static CMOS gate for the function (AB) * (C D).
(b) Graph corresponding to pull-up and pull-down logic tree.
(c) Euler paths with the same labeling for the pull-up and pull-down graphs.
(d) Corresponding layout of the gate with two transistor strips.
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edges called pseudo-edges are added to the graph. The Uehara and vanCleemput method for

transistor placement can be summarized as follows.

1. Find all the Euler paths that cover the two disjoint pull-up and pull-down graphs.

The objective for finding this path is to allow consecutive transistors in the path to share

a diffusion region. In other words, the source-drain connections of adjacent transistors on

the path are made by abutment in diffusion. Figure 2.5(c) shows an Euler path for the

pull-up graph and one for the pull-down graph.

2. Find a pull-up path and a pull-down path such that the labeling of the two paths are the

same.

Using two paths with the same labeling allows the transistor inputs to be aligned, so that

the inputs can be connected with a vertical polysilicon input rail without any horizontal

routing. This saves area and reduces internal routing complexity. Figure 2.5(d) shows

the corresponding layout of our CMOS circuit example.

3. If the paths in Step 2 are not found, add pseudo-edges to the graph(s) so that the paths

in Step 2 can be found.

When pseudo-edges are added, the resulting Euler path is equivalent to two or more

individual Euler paths joined by edge separations. When laid out, these separations

become diffusion gaps. If the pull-up and pull-down transistor arrays do not have aligning

pseudo-edges, one of the transistor strips will need to have a slightly wider diffusion

connection to allow for alignment. Figure 2.6(a) shows a graph where a pseudo-edge

needs to be added to obtain an Euler path. Figure 2.6(b) shows the added pseudo edge

from node 5 to node 3 and the resulting Euler path.

An improvement of Uehara and vanCleemput's non-optimal heuristic was described in [33],

where an optimal, non-exhaustive, method of minimizing the layout area of complementary
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Figure 2.6: Adding pseudo-edge to find an Euler path.

series-parallel CMOS cells in the standard cell style was developed. A number of other algo-

rithms that extended the basic Uehara algorithm to minimize diffusion or reduce internal wiring

have been described in [9, 25, 44, 47, 61]. Further generalization of the Uehara and vanCleem-

put method was presented in [8], where the layout generation is driven by a combination of

optimization criteria and composition constraints to control various aspects of the layout, such

as wire length, metal utilization, and diffusion breaks.

In addition to this standard-cell transistor-row style, other layout styles have been studied

as well, such as those in [49, 54, 50] and gate matrix styles in [62, 63, 55]. A common feature for

all of them, however, is that the symmetry between the P-type transistor and N-type transistor

networks in full static CMOS design is considered. For dynamic CMOS, mainly the N-type

transistor region is of concern.
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2.3 Differential Cascode Voltage Switch Logic

It is desirable to build VLSI circuits using devices of small power consumption, small area and

delay. It was with these goals in mind that the logic design family, Cascode Voltage Logic

Switch (CVSL) [24], surfaced as an attractive design technology. The logic is achieved by

cascoding differential pairs of N-type transistors to form a stacked pull-down tree capable of

realizing complex Boolean functions within a single gate delay. Its single-ended form, Single-

Ended Cascode Voltage Switch (SCVS) produces one output function from a binary pull-down

tree. On the other hand, its differential form, Differential Cascode Voltage Switch (DCVS) 2 ,

produces both the true and complemented form of the output i.e., each cell computes both q

and the complement v. DCVS exists in both static and clocked (or dynamic) styles as shown

in Figure 2.7. In this thesis, we consider the dynamic version. Before proceeding to describe

the operation of the dynamic DCVS cell, we briefly survey some previous dynamic CMOS

techniques and some of their shortcomings.

2.3.1 Other Dynamic CMOS Technologies

First, let us consider the generic dynamic circuit of Figure 1.2(b). The initial precharge or

"set-up" state of the pull-down network must be nonconducting. To achieve this, a common

design practice is to make all the inputs low to ensure that there is no pull-down path. During

evaluation, when the pull-down network conducts, the output of the network will be pulled

low to ground. This implies that the output of the network must have initially been high for

this transition to occur. However, if this output is connected to the input of another dynamic

gate in a cascading configuration, the required "set-up" condition for the next gate cannot be

achieved.

Krambeck, Lee, and Law [30] solved this dilemma by putting a static INVERTER gate at the

output of the pull-down network. This is called DOMINO logic (Figure 2.8). The output f of

2 DCVS is sometimes referred to as Differential Cascode Voltage Switch Logic (DCVSL) in the literature.
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Figure 2.7: Differential Cascode Voltage Switch: (a) Static (b) Dynamic.

the INVERTER is the real output of the gate, and is precharged low. When this output is fed

into subsequent DOMINO gates, this initial precharged value turns the transistors off. During

evaluation when the pull-down network is conducting, f goes high.

The major drawback of DOMINO is that the gate is non-inverting. DOMINO is, by itself,

an incomplete logic. The pull-down network realizes the complement of some function, while

the static INVERTER forces the gate output to be the uncomplemented function. This makes

implementing arbitrary combinational logic awkward with DOMINO.

An alternative design which provides more logic flexibility is NORA [22], where nMOS pull-

down gates and pMOS pull-up gates alternate. Figure 2.9 shows a N-type gate feeding into a

P-type gate, which feeds into an N-type gate. Since the P-type gate is disabled with inverted

inputs, the first N-type gate output need not be inverted. The P-type gate is precharged when

is high, so that the network is disabled, and the output is connected to ground.

The major drawback of NORA, however, is that the P-type gates tend to switch slower than
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f=AB+CD

(b)

 

Figure 2.8: Dynamic DOMINO design:
(a) Generic DOMINO gate.
(b) Detailed schematic of a DOMINO gate for the function (f = AB + CD).

Figure 2.9: Dynamic NORA design.
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the N-type gates. This is due to lower electron mobility in the p-well. Furthermore, the need to

alternate the two types of gates makes NORA circuits very awkward to design. In comparison,

DCVS circuits have all the advantages of fast-switching dynamic CMOS, while also being easy

to design since every gate realizes both the complemented and uncomplemented form of the

logic function.

2.3.2 DCVS Operation

A basic DCVS cell consists of: a fixed pull-up network, a function dependent pull-down network,

a single pull-down transistor controlled by the precharge signal, and two output inverters. These

components operate together to form a very powerful circuit building block. DCVS takes in

true and complemented input control signals. Figure 2.10 shows a 3-input clocked DCVS

AND/NAND gate. Its operation cycle is as follows.

First, the cell is precharged, i.e., the precharge signal is set low. Consequently, the outputs f

and f of the DCVS cell will both be pulled low. When the precharge signal goes high, depending

on the values on the inputs of the function specific pull-down tree, one of the nodes q and q will

be pulled down, and thus either f or f will go high. If the pull-down tree is designed properly,

i.e., the path function for connecting q to the final precharge transistor is the complement of

the path function for connecting q to the same transistor, then it is easy to verify that for any

DCVS cell, at most one of f and f will ever be high at the same time.

In conventional dynamic design, the gates must be clocked (or precharged) at a minimum

operating frequency to maintain the output values. There are two extra P-type pull-up tran-

sistors in a cascode configuration acting as "staticizers". When either q or q is realized, the

pair of feedback transistors cause the outputs to immediately stabilize. Hence, there is no lower

limit on the frequency of the precharge signal in a DCVS cell. This is important for reliability

reasons as well as when using the logic in more unconventional circuit designs. For exam-

ple, very efficient self-timed circuits can be designed using DCVS logic. In such designs, the
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Figure 2.10: 3-Input DCVS AND/NAND gate.

precharge/evaluation cycle is initiated by the completion of some previous circuit component,

whose timing may be impossible to predict.

2.3.3 DCVS Properties

Early interest in dynamic logic arose from a naive view of circuit layout tradeoffs. It was

thought that due to the absence of a pull-up network, a dynamic logic layout, with roughly half

the transistors of static logic, should be more compact than its static cousin. This argument

was misleading for a couple of reasons. First, most of the area consumption in VLSI layout is

due to wiring, not transistors. Secondly, prevention of latchup in CMOS technologies requires

a comparatively large separation between the pull-up and pull-down regions. This in turn

enforces a very confined topology on any CMOS cell, which in turn prevents either designers or

layout tools from taking advantage of the relatively empty pull-up region presented by dynamic

logic technologies.
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Subsequently, research in dynamic logic has concentrated on the perceived advantages in

power consumption. It was thought that dynamic logic might save power due to two central

effects:

• In static logic, as each gate switches, a short connection between power and ground is

established, with only two weak resistors in the path; this short effect is responsible for a

fair amount of static logic's power consumption.

• Power is consumed each time a gate switches; in static logic, each gate switches potentially

many times during a single evaluation phase. In contrast, a dynamic gate switches only

once.

However, detailed performance comparisons of DCVS with other design methods performed

by Chu and Pulfrey [17] revealed that DCVS power gain is unfounded. For example, when

compared to static design, it was found that DCVS gains in terms of input capacitance and

device count, but looses in regards to power dissipation. In comparison to other dynamic CMOS

design styles (e.g. NORA and DOMINO), DCVS is faster, at the expense of increased device

count and power dissipation.

Recent experiments by Meng[42] further supported this fact. Dynamic logic, due to the

restoring inverter at the output of this gate, does short. Further, power is consumed as each

capacitor in the circuit is charged during the precharge phase, and as half of these nodes are

discharged during evaluation. Finally, though each gate makes a transition only once during

evaluation, there are many more switches than in typical static networks. In fact in DCVS, half

of all the gates switch during partial evaluation.

Despite the illusory advantages of power and size, it is in the area of speed and testability

where dynamic logic shows proven advantages over its static counterpart. More recently, re-

search in dynamic logics has concentrated on advantages in the fields of asynchronous design,

timing verification, testability for various classes of fault, and hazard freedom.
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The most obvious advantage is that dynamic logic, unlike static logic, does not glitch. A

hazard is a momentary transition of the output that should have remained stable. A hazard

can become fatal if it causes a transistion to an improper system state. A glitch is a hazard

that is visible, such as a 0-1-0 or a 1-0-1 transition. In fact, in [37, 39], it was shown that the

two essential properties that a circuit must possess in order to remain hazard-free are:

1. that it be internally noninverting; and

2. that each node be precharged to a specific value before evaluation.

Dynamic CMOS logic is currently the only logic family possessing these qualities. In dy-

namic gates, the outputs are affirmatively driven, and there can only be at most one output

transistion after a precharge. For example, if the outputs are precharged to 0, then they will

either stay at 0, or be driven to 1 during the evaluation stage. Freedom from glitches has some

nice consequences in circuit testing.

A delay fault is a fault which slows down a circuit and impairs the clocked operation of the

circuit. Typically, a delay-fault test consists of a set-up vector, Vl , which is first applied to the

circuit, and a second vector, V2, to see if the outputs change. A path delay-fault test is said

to be robust if it detects a fault in that path regardless of whether or not there are faults in

other paths. Robust delay-fault testing for integrated circuits is regarded as both difficult and

extremely demanding.

Since dynamic circuits have all the nodes initialized during precharge, it can be seen intu-

itively that only the second test vector, V2 is needed to test a path delay-fault. Together with

the hazard-free property of dynamic circuits, McGeer showed that the condition for robust path

delay fault testability (RPDFT) on dynamic circuits was much less demanding than on static

circuits [34]. In particular, it was demonstrated that every minimal sum-of-products form was

robustly path-delay fault testable, and that every multi-level circuit could be made robustly

path-delay fault testable by transformation. In the era of designing for testability, RPDFT is
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a very desirable circuit property.

Perhaps the simplest and most basic fault model for Boolean networks is the stuck-at fault.

A wire is said to have a stuck-at-0 fault if the output of the wire terminal is 0 regardless of

the wire input. Similarly, a wire has a stuck-at-1 fault if the output of the wire terminal is 1

regardless of the wire input. T-irredundant faults are a newly-identified class of stuck-at-faults

where the faults do not change the function of the circuit, but instead act to slow down the

computation of the circuit [40]. In [38, 39], McGeer further demonstrated that one could obtain

a precise upper bound on the true delay of a dynamic logic network even in the presence of

uncertainties in the individual gate delays. This can be shown to be very difficult for static logic

networks[35, 36, 39]. This precision in delay estimate permits us to test for the T-irredundant

faults on dynamic logic networks.

In fact, a number of other timing related questions can be more precisely addressed for

dynamic circuits [40, 38]. This, plus the hazard-free property of DCVS logic and its dual-rail

nature, make DCVS particularly attractive for asynchronous applications.

2.3.4 DCVS Applications

The 1989 Turing award lecture by I.E. Sutherland on his work on "micropipelines" [56] is

an excellent example of the growing importance and potential of asynchronous circuits. A

micropipeline can simply be viewed as a series of fast processing asynchronous computations,

such as multiplication or division, under the control of some small logic blocks, as shown in

Figure 2.11. The control logic generates a precharge signal, P, after the completion signal, C,

from the computational block is activated.

Several designs have been suggested for the control block [56, 59, 48]. The control block

uses a handshaking protocol, such as the H-Protocol[48], to interface with other logic block

segments of the pipeline. When one computational block finishes its job, it sends an "I'm

done" signal (C) to the control block. The control block uses this signal, together with control
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Figure 2.11: Generic asynchronous pipeline.

signals from the previous and next stage computational blocks to determine the current state of

this pipeline section. Eventually, it returns a "go ahead" signal (P) to the logic block when it is

safe for the next round of computation to begin. A completion circuit that generates C can be

easily implemented in DCVS by taking advantage of the gate's differential outputs, as shown

in Figure 2.12. The completion line goes high when both outputs are stable, and remains low

during precharge. A DCVS gate only produces three possible output states for (f,7): (0,0),

(0,1), and (1,0). Note that the pair of staticizing transistors in the DCVS gate ensures that the

state (1,1) is never achieved.

DCVS naturally lends itself to very efficient self-timed circuits. Since asynchronous logic

blocks can compute as fast as the signals propagate through the circuit, micropipeline designs

have superior speed advantages over centrally-clocked systems. Meng and others have designed

a series of circuits, such as multipliers and arithmetic-logic-units, using DCVS signal completion.

These circuits have been demonstrated to operate at speeds comparable to their synchronous
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Figure 2.12: DCVS completion signal generation.

counterparts [41, 43, 27]. More recently, Williams has devised a self-timed IEEE floating-

point division ring which operates in 100 nanoseconds using this technique[60]. However, in

these works the routing of the DCVS differential lines required significant active area penalty.

Furthermore, most of them were built from basic building blocks, such as adders, which were

hand designed. Automatic design synthesis for DCVS is needed for building micropipelines for

other interesting applications. In particular, we need computer tools to help build any arbitrary

combinational DCVS logic blocks.

2.4 Technology Mapping and Layout Synthesis for DCVS

Although DCVS technology has generated much interest due to its attractive features, the

problem of technology mapping for DCVS has not been thoroughly studied. Implementing a

DCVS circuit is challenging due to the fact that the logic is complementary. Consequently, all

signals in the circuit must be duplicated. Intuitively, this leads to twice the number of internal
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nets and connections, and causes global routing area to increase by a factor of two or more.

Since wiring usually take up more area on a chip than the transistors themselves, this would

appear to make DCVS logic highly area-inefficient. However, this issue is not that clear-cut. It

is possible that the larger area could be compensated for by fewer cells of larger complexity.

There are two possible avenues for DCVS design. We can either design a very large cell

library containing very many complex cells and use the standard tree-matching algorithm for

technology mapping, or we can develop a synthesis system that can generate an efficient layout

for an arbitrary DCVS cell given only the Boolean function the cell is to implement.

Since DCVS gates can realize complex Boolean functions efficiently, standard cell libraries

cannot fully take advantage of this feature. Using a standard mapper with a very large library

has several shortcomings First of all, since a complete cell library for all, say 5-input gates,

would contain somewhere in the range of a billion cells, we would clearly have to compromise

and use an incomplete cell library. Hence, the mapper would often be forced to use smaller cells

than absolutely necessary, simply because the cell needed was not in the library. On a more

practical level, it is very time-consuming and costly to design and maintain such a large cell

library. Finally, experimental results [18, 29] have indicated that tree matching-based mappers

can be computationally expensive in matching large cells. In conclusion, using cell libraries of

limited size and functionality is inappropriate for DCVS mapping.

The second approach of cell generation is more appropriate for DCVS. The goal then, is to

generate fewer cells of larger complexity. This approach will maximize the functionality of each

cell and optimize transistor usage, while minimizing the number of cells that need to be routed.

2.4.1 The Problem

Given a circuit description in terms of a set of Boolean equations, we are interested in its final

realization using DCVS cells as building blocks. In general then, there are four steps required
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in transforming the general combinational circuit (assuming some technology-independent op-

timization has been done) into a finished DCVS circuit layout:

1. Decomposing the original large circuit into a set of smaller Boolean functions.

2. Designing the pull-down tree for the DCVS cell corresponding to each such Boolean

function.

3. Laying out each DCVS cell.

4. Placing the cells and connecting them together.

2.4.2 Previous Work in DCVS Synthesis

Although technology mapping and automatic layout synthesis have been studied in general, no

synthesis system has been developed specifically tailored to DCVS logic. In particular, we are

not aware of any system that can take an arbitrary combinational circuit and decompose it into

a collection of "as-large-as-possible" DCVS cells and then automatically generate the needed

cells.

Various automated layout generation tools have been developed over the years. However,

these tools have mostly been tailored towards generating layout for standard CMOS cells,

i.e., cells that have both function dependent pull-up and pull-down transistors. Consequently,

the techniques used in these systems are not directly applicable to DCVS layout generation.

Furthermore, DCVS cells are usually significantly more complex than standard CMOS cells

both in terms of internal connectivity and in terms of number of inputs.

Some previous work has been done towards solving the second step of obtaining compact

DCVS pull-down trees at the transistor netlist level given a Boolean function [16]. Also, the

close relation between binary decision diagrams and the pull-down tree of DCVS cells was

pointed out earlier [13].
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ACORN is an automated physical design system developed at IBM by Yoffa and Hauge

for DCVS macro design that does the second and third steps of the problem [65, 64], namely,

designing the pull-down trees and laying them out. The system uses the brickwall approach for

the physical layout of the DCVS trees, where a two-dimensional tree array style is used. First,

it performs tree placement, followed by local customizations to achieve variable alignments

to improve intercell wirability. The goal is to obtain high density DCVS layout by reducing

congestion caused by the complex internal tree wiring between transistors. ACORN exploits

the fact that for any Boolean function, there are several distinct tree implementations, and

that could lead to different array arrangements. Figure 2.13 shows the function (f = AB + C)

implemented by six different trees. Each square is a transistor controlled by the input labeled

inside the square.

The program chooses the trees to achieve common input alignments between all pairs of

adjacent trees in each of the input rails. This rail optimization allows for signal bussing, hence

reduces metal wiring between blocks. To illustrate the concept of local optimization, consider

two neighbouring DCVS trees as shown in Figure 2.14(a). If the two circuits are wired as is,

the connections would be as in Figure 2.14(b). However, by rearranging the transistors of one

of the trees Figure 2.14(c), the wiring between trees is simplified Figure 2.14(d).

In [53], a better DCVS placement technique is presented, which builds upon the algorithms

in ACORN to achieve a layout system that is provably good. The main drawback with these

systems is that they assume that the initial decomposition step has been performed, i.e., they

assume that the user already has partitioned the circuit into suitable "chunks". Since the size

and characteristics of the final DCVS cell are very difficult to estimate a priori, the partitioning

will likely be non-optimal.

Placement and routing is a significant concern in DCVS design because of the differential

input and outputs. In the brickwall layout approach, no channels are used for the routing.

Instead, all wires pass above the macro regions. ACORN performs this with a wiring tool also
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Figure 2.13: Six different DCVS trees for the function (f = AB + C).
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Figure 2.14: Illustration of local optimization in ACORN:
(a) Two adjacent DCVS trees after synthesis.
(b) Trees wired together.
(c) Trees after transistor rearrangement.
(d) Trees re-wired after local optimization.

developed at IBM [20]. On the other hand, in DCVS polycell designs, routing channels are

allocated. The placement and routing stage is no different for DCVS logic than for most other

CMOS standard cell approaches. The next chapter presents a system which incorporates steps

1 to 4 of the DCVS problem, and which uses a polycell routing method.
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DMAP: A DCVS Technology Mapping and Layout Synthesis System

DMAP is a technology mapping and layout synthesis system for DCVS. Figure 3.1 shows the

flow diagram for the DMAP system. This system consists of two major modules: the clustering

module and the cell generation module. DMAP employs the CADENCE Design System [3] to

perform placement and routing.

circuit input

PLACE & ROUTE

circuit layout
(EDGE)

Figure 3.1: DMAP system flow diagram.
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3.1 System Overview

The goal of the system is to take, as input, a technology independent circuit description, and

produce DCVS layout cells ready for placement and routing in CADENCE.

The DMAP program is incorporated into Berkeley's MIS-II program, and hence can take

an arbitrary circuit input in one of MIS-II's many input formats, such as BLIF (Berkeley

Logic Interchange Format [2]). Once read into the system, the circuit is decomposed, and

then partitioned into single-output, high functionality clusters (or modules). The cluster size

is controlled by layout constraints. In particular, the system makes sure that each cluster

can be laid out in the chosen cell style without violating any design rules. For example, the

cluster size is constrained so that the final cell will have internal transistors that can be routed

in the given layout style. The clustering module produces two outputs: a global netlist file

which specifies the interconnection between the clusters (specified in EDIF, Electronic Design

Interchange Format [4]), and circuit descriptions (at the logic function level) of the individual

clusters (specified in BLIF).

The individual clusters are input to the DCVS cell generation module, where the layout of

each cell is determined, and deposited in an intermediate layout representation (EDIF). After

this, a CADENCE (EDGE) layout representation for each of the cluster functions is generated.

The output of this cell generation module is a library of DCVS cell layouts realizing complex

functions.

Finally, the CADENCE automatic placement and routing program takes the cell library

(EDGE representations), together with the netlist specification of the whole circuit (EDIF),

and produces the final circuit layout (EDGE representation). Each of these steps: clustering,

cell generation, and cell connecting, are now expanded.
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3.2 First Step: Clustering

The problem of circuit clustering or logic partitioning has been of interest for quite some time.

In the days of small scale integration (SSI), it was desired to partition a complex system into

physical components (chips) subject to delay constraints. Since inter-chip delay is significant,

it was desired to minimize the maximum delay (along the critical path) through the whole

design during partitioning. The optimization was carried out using objective functions such

as total wire length, wire length in the longest closed path, or the wire length in the longest

path from a network source to a network sink. To minimize cost, the number of chips should

also be as small as possible. This lead to the earliest form of the "clustering" problem. That

is, the partitioning of a circuit into chips and the routing between them. The first solution to

this problem was an algorithm presented by Lawler, Levitt and Turner [31] 1 for combinational

networks. They assumed a "unit delay" model, defined as follows:

• all gate delays are zero;

• the delay between gates in the same cluster is zero;

• the delay between gates in different clusters is one.

Subsequently, when the scale of integration increased, clustering was applied at many other

levels of the design hierarchy. Touati applied clustering to technology independent circuit delay

optimization [57]. Rather than identifying critical paths, his idea was to cluster the circuit to

minimize the maximum number of clusters on a path. Each of these clusters are collapsed onto

a single node, then simplified. Recently, Murgai et.al . [45] generalized Lawler's algorithm for

a general delay model. This is needed for high capacity clusters (such as LSI and VLSI chips),

which very likely have critical path delays inside the cluster that are comparable to the total

delay of the system.

'Henceforth referred to simply as Lawler's algorithm
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Network clustering has also been applied in the automated design of programmable devices,

such as programmable gate arrays (PGA's) [46]. There are a limited number of configurable

logic blocks (CLBs) on one chip. For example, a typical Xilinx [1] chip has about 320 of these

CLBs to implement random logic. This is further constrained by a maximum limit on the

number of inputs to each CLB and the total wiring connections that are available between the

CLBs. The clustering goal is to minimize the number of blocks used, reduce routing complexity,

and minimize delay on the critical path. The goal of DCVS clustering is quite similar.

3.2.1 Circuit Clustering in DMAP

DMAP partitions the decomposed input circuit onto clusters that can be realized as DCVS

gates. The clustering in DMAP is constrained by the following:

• If all the nodes in the cluster were to form the function of a DCVS pull-down tree, the

number of internal routing tracks needed for internal connections would not exceed a

maximum limit.

• The number of inputs to any cluster does not exceed a maximum limit.

The resulting clusters are rooted trees, each of which is collapsed onto a single function (or

node) that is implemented as a DCVS pull-down tree at the transistor level. Since the delay

between transistors within a cluster is negligible compared to the delay between clusters, it is

safe to assume the unit delay model defined earlier. Hence, it seems that some variation of

Lawler's algorithm, which will be explained in detail below, is quite suitable for our needs.

3.2.2 Lawler's Algorithm

Lawler's algorithm, in its basic form, clusters the circuit to minimize the delay throughout the

network. The clustering procedure is essentially a labeling algorithm, where the label of node i,
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A(i), represents the longest delay along any path from a network input to i. Hence, the longest

delay in the network is the largest label value. Let wi(k) be the sum of the weights of all the

predecessor nodes of node i with label k, and wi be the weight of node i. The weight of a node

is a value associated with some property of the node. A node is added to a cluster of the same

label, wi plus wi(k), where k, the label of node i, does not exceed a maximum M. Figure 3.2

shows a graph after clustering with the Lawler's algorithm for M = 3 and w = 1 for all nodes.

The nodes that belong to the same cluster are drawn together, and the label for each node is

shown in parenthesis beside the node. The numbering of the nodes is in the order that they

are traversed in the algorithm. The labeling algorithm is outlined as follows:

1. Label all input nodes 0.

2. Find an unlabeled node i, all of whose predecessors have been labeled.

Let k be the largest label of any predecessor.
If (wi wi(k) M)

A(i) = k
Else A(i) = k +1.

3. Repeat Step 2 until there are no more nodes.

3.2.3 Modified Lawler's Algorithm

The DMAP clustering algorithm differs from Lawler's in three ways. First, as the reader may

notice from Figure 3.2, Lawler's method produces some inefficient single-noded clusters. That

is, there are single nodes whose fanins and fanouts are of a different label. Without violating

cluster-constraints, nodes 6, 7, and 8 can be put into one cluster; node 10 can be included into

the 9 and 11 cluster; nodes 4, 5, and 12 can be one cluster. The DMAP algorithm recognizes

these cases. Secondly, DMAP uses a different capacity constraint. In fact, DMAP verifies that

the clusters can be implemented in less than the maximum number of tracks allowable by a cell
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Figure 3.2: Illustration of Lawler's clustering algorithm (M = 3).

of standard height and that the number of cluster inputs does not exceed a maximum. Finally,

once the labeling count has been advanced during the node traversal procedure, the completed

clusters are collapsed and generated immediately.

Incorporating these changes then, we develop a "modified Lawler's algorithm". Given any

node 71 in a circuit, we define Tk(n) as the tree built by taking n as root, and including all

nodes labeled k which will ultimately fanin to 71. The algorithm is as follows:

1. Label all input nodes 0.

2. Find an unlabeled node i, all of whose predecessors have been labeled.

Let k be the largest label applied to any predecessors.
Let tree = Tk(i).
If (Satisfy_Constraints(tree))

A(i) = k
Else

A(i) = k + 1
Foreach p = fanin(i)

Let test_tree = Tk(i) plus the node p
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If (Single_Node(p)) AND (S atisfy_Constraints(test_tree)) )
A(p) = A(i)

Else If (A(i) > \(p))
Generate_Cell(p)

3. Repeat Step 2 until there are no more nodes.

The function Satisfy_Constraints(n) checks to see if the tree with root n containing only

those predecessor nodes with the same label, has a logic function that will result in less than the

maximum number of allowed routing tracks when run through a somewhat simplified version of

the cell generation routine. For a 1.2 micron double metal technology, for example, this upper

track limit is 7. Generate_Cell(n) will take the tree with root n containing nodes of the same

label, collapse the tree into one function, and generate the DCVS layout cell for that function.

This operation will be described in Section 3.3.

Figure 3.3 illustrates the DMAP clustering algorithm. Part (a) shows the tree to be clus-

tered, and Part (b) shows the results of clustering. First of all, nodes 1 to 14 are labeled 0.

Suppose that To(15) does not satisfy the cluster-constraints, and node 15 is labeled 1. At this

point, node 15's two fanin trees (To(7) and T0 (14)) are collapsed and the first two clusters, Cl

and C2, are generated. Next, nodes 16 to 30 are labeled 0 because they all fit into one cluster.

The next node to be labeled is node 31. The largest predecessor label is k 1 (node 15). T1 (31)

consists of nodes 15 and 31 (C1 and C2 are considered as inputs to node 16 now). Nodes 16-30

have been labeled 0, and hence are not part of the tree T1 (31). It is found that this tree satisfies

the cluster constraints, and so \(31) = 1. Before proceeding to label the next node, To(30) can

be collapsed and the corresponding cell can be generated to form C3. Similarly, nodes 32 to

61 are labeled, and C5 and C6 are generated. This time, the tree consisting of nodes 46 and

62 (T1 (62)) does not satisfy the cluster constraints, and so A(62) = 2. Then C7 is generated.

Although node 46 is a single-node cluster, its label cannot be incremented without violating

some cluster constraints. C8 is generated. Then, nodes 63 to 72 are labeled 0, and node 73 is

labeled 0. Lastly, we label node 74. At this point, k --,- 2. The tree consisting of nodes 74 and
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Figure 3.3: Illustration of DMAP clustering: (a) original DAG (b) DAG after clustering.
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62 is tested, and found to satisfy constraints, and so A(74) = 2. C4 and C9 are generated. It

is found that adding node 73 to T2 (74) still satisfies constraints. So, finally, the cluster C10,

consisting of nodes 62, 73, and 74 is formed and generated.

In the example just shown, DMAP clustered the circuit into ten clusters. During the process,

two single-noded clusters were encountered (node 46 and node 73), but only node 73 could be

re-labeled and included into a bigger cluster. It is likely that node 46 already contained fairly

high functionality. The longest wire delay in the network is 2 since the largest label is 2. For

example, the path (C6, C8, C10) has a wire delay of 2 and a gate delay of 3.

Finally, after all the nodes have been labeled and all the cells have been generated, the last

step is to output a global netlist file which specifies the connection between the generated cells.

Generate_Cell(n) takes a single output function of single-rail inputs and produces a DCVS cell

with two output functions of dual-rail inputs. Therefore, the original circuit just after clustering

must be dualized, i.e., to correctly duplicate the appropriate rails so the connections to the dual-

rail DCVS cells are correctly made. For example, in Figure 3.3, a netlist of 10 cells, 9 internal

nets, 32 inputs, and 1 output becomes a netlist of 10 cells, 18 internal nets, 64 inputs, 2 outputs,

plus one additional input for the precharge signal. Any DCVS circuit will have about twice as

many outputs and roughly twice as many inputs, as its single-rail counterpart.

3.3 Second Step: Cell Generation

The goal of the DCVS cell generation step is as follows. Given an arbitrary Boolean function

f, lay out the pull-down tree as well as the other transistors needed to construct a DCVS gate

that implements f. By nature of the DCVS structure, this also means implementing T. In

order to facilitate automatic synthesis, a structured layout style is used. Figure 3.4 shows the

layout of a generated 3-input XOR DCVS gate. The shaded and dotted regions are the device

wells, while the unshaded and dotted regions intersecting them are polysilicon. The unshaded

striped regions are metal2, while the unshaded cross-hatched regions are metall. The solid
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regions are either contact or via. The cell consists of two parts: a standard left-half, and a

generated right-half. The two halves are connected by the power and ground rails and three

routing tracks: one for the connection to the source of the N-type precharge transistor; one to

q; and one to q (refer to Figure 2.7).

Figure 3.4: Layout of a generated DCVS 3-input XOR cell.

The left-half contains nine transistors: the two precharge and cross-coupled P-type transis-

tors, the single N-type precharge transistor, and the two static INVERTERS (one N-type transistor

and one P-type transistor). This part is hand-designed and is the same for all the DCVS cells.

The right-half of the cell is the layout of the DCVS pull-down tree. It includes a single strip of

transistors placed along the bottom of the cell and the routing tracks for transistor connections

consuming the remaining space. A one-dimensional transistor layout style is adopted. The

DMAP program takes several steps to generate such a layout, each of which will be elaborated
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on in the following subsections:

• Given the logic function, obtain a DCVS pull-down transistor netlist.

• Given the pull-down netlist, obtain a transistor layout path for this netlist.

• Given the transistor layout path, obtain the track connections between transistors.

• Output the physical layout.

3.3.1 Obtaining the DCVS Logic Tree

There is a very natural relation between binary decision diagrams (BDD) [7] and the pull-down

tree of a DCVS. BDDs are an alternative way of representing logic functions. A BDD is a

directed acyclic graph with two paths directed away from every node: one for the node asserted

true, and one for the node asserted false. The root of the tree is the function to be implemented,

the leaves are 0 or 1 terminals, and the nodes are function variables. Bryant introduced ordered

BDD [14, 15], which requires that for any path from the root to a leaf node, the variables must

have the same ordering. Figure 3.5(a) shows an unordered BDD, and Figure 3.5(b) is an ordered

BDD. Most of the BDD research has focused on ordered BDDs. If unspecified, a "BDD" will

be assumed to be ordered. Although in this thesis we will use algorithms for ordered BDDs, it

should be noted the relationship between BDD and DCVS logic is just as valid for unordered

BDDs. Should future algorithms be developed for unordered BDDs, they can be used for our

purpose as well.

To obtain a DCVS pull-down tree for a function f, the basic idea is to turn the BDD

representing f "upside down". After this, the following conversions are made. The "1" terminal

is labeled q, and the "0" terminal is labeled q. The "1" branch of a variable is labeled with the

variable name, while the "0" branch of the variable is labeled with the complemented variable

name. The root node of the BDD is labeled precharge, and will be connected to the precharge

transistor that conducts to ground. The other nodes are labeled arbitrarily, and correspond to
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(a)
^

(b)

Figure 3.5: (a) Unordered BDD (b) Ordered BDD

electrical nodes in the pull-down circuit. Each edge of the BDD becomes a transistor controlled

by one of the DCVS cell inputs.

To illustrate the transformation of a BDD to the pull-down tree of a DCVS gate, consider

Figure 3.6. Part (a) is a possible BDD for a 3-input XOR function, and part (b) is the same BDD

turned upside down. Part (c) shows the relabeling, and part (d) shows the corresponding DCVS

pull-down tree. Each BDD node converts to two transistors controlled by the complemented

and uncomplemented form of the node variable. Given this straightforward transformation,

one way of synthesizing a DCVS cell is to derive a small BDD representation for the desired

function and then carry out the transformation.

The order that variables appear in a BDD can significantly affect the size of the BDD [15].

Figure 3.7 shows two different BDDs for the same function x i x 2 + x3 x 4 , using different variable

ordering. Clearly, a poor initial choice of variable ordering can cause undesirable effects.



Chapter 3. DMAP: A DCVS Technology Mapping and Layout Synthesis System^47

f=a ebec

(a) (b)

SW* 1>_ prechargeprecharge

(c ) (d)

  

precharge--I
(PR)

Figure 3.6: Converting a BDD to a DCVS pull-down tree:
(a) 3-Input XOR BDD.
(b) "upside down" BDD.
(c) Relabeled BDD.
(d) Corresponding DCVS gate schematic.
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<3,4,1,2>^ <3,1,4,2>
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^

(b)

Figure 3.7: Example of BDDs for the same function using different variable orderings

DMAP creates the DCVS pull-down tree by building an ordered BDD of optimal variable

ordering using the algorithm given in [21]. During the clustering process, a simplified variable

ordering heuristic algorithm [32], implemented in Berkeley's MIS-11 logic synthesis program, is

used to check if a node belongs in a cluster.

3.3.2 Obtaining the Transistor Layout Path

Given the transistor netlist for the pull-down tree and the chosen one-dimensional transistor

layout scheme, the transistors must be laid out in an manner that will give good cell area and

speed, as well as facilitate automatic global placement and routing. The problem of finding the

best layout path to minimize the number of internal transistor connections is very difficult to

solve exactly. Hence, DMAP uses heuristics that appear to give good results.

The basic idea is to perform a priority-based graph walk. The heuristic first tries to find a
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path that will lead to any node that has already been encountered but which still has transistors

connected to it that has not been placed. This seeks to localize all the connections made to

a single node, so that as many different node connections can be shared on one track line

as possible. Given the above, the heuristic then tries to find a path along adjacent nodes to

maximize diffusion sharing. This is essentially equivalent to finding an Euler path [58] in the

transistor graph. If this cannot be done, a pseudo edge separation is inserted, which results in

making the cell width greater. The pseudo code for the algorithm is given below. Initially, all

nodes are marked as INACTIVE. A node become ACTIVE once a transistor connected to the

node has been placed.

Find_Transistor_Path(n) {
While (Edge Set is not empty) {

If (degree(n)=0)
Mark n as FINISHED;
S = set of ACTIVE nodes;

Else
AN = set of ACTIVE neighbours
If (AN is not empty)

S = AN;
Else

RA = set of ACTIVE nodes excluding n;
if (RA is not empty)

S = set of neighbours closest to any node in RA;
Else

S = set of neighbours;
n_next = node in S with smallest degree;
Output edge (n,n_next);
Remove edge (n,n_next) from Edge Set;
Add n_next to the set of ACTIVE nodes;

= n_next;
}

}

In Figure 3.8 we illustrate the first steps in the algorithm for a 3-input XOR function assuming



Path=<0,1,2>

Active=10,1,21

(c)

(precharge)

(q) (i)

Path = <>

Active=101

(a)

Path=<0,1>

Active=10,11

(b)

(precharge)

C)/

Chapter 3. DMAP: A DCVS Technology Mapping and Layout Synthesis System^50

Path=<0,1,2,6>

Active=10,1,2,61

(d)

Path=<0,1,2,6,0>

Active=10,1,2,6/

(e)

Path=<0,1,2,6,0,1,5,6
2,3,5,4,2>

(f)

Figure 3.8: Illustration of DMAP's transistor path finding algorithm.
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the path is started from node 0. ACTIVE nodes are marked with a "tick". Since node 0 has

degree 2, and has no ACTIVE neighbours, the next node can either be node 1 or node 6—both

of which have the same degree. Arbitrarily, node 1 is chosen (Figure 3.8(b)). Node 1 has degree

2, and does not have any ACTIVE neighbours. The set of active nodes, excluding node 1,

only contains node 0, i.e., RA = {0}. There are two shortest paths from node 1 to node 0:

< 1, 2,6, 0 > and < 1,5,6,0 >. The set of neighbours closest to any node in RA is hence {2, 5}.

Arbitrarily, node 2 is chosen, and the Edge and ACTIVE Sets are updated (Figure 3.8(c)). The

next nodes chosen are nodes 6 and 0 (Figure 3.8(d) and Figure 3.8(e)). At this point a pseudo

edge separation must be added from node 0 to an ACTIVE node with smallest indegree—in

this case node 1. Continuing the procedure, the final path, < 0,1, 2,6,0,1,5,6,2,3,5,4,2 >, is

shown in Figure 3.8(f). In summary, the 3-input XOR function is laid out as a DCVS cell in

which the pull-down tree uses ten transistors with only two pseudo edge separations added.

3.3.3 Obtaining the Track Connections

After the transistor layout path is obtained, the next step is to connect the transistors together.

DMAP allows the upper portions of the cell's right-half for such connections. This is done in

a series of tracks parallel to the transistor strip. For our standard design height of 75 design

microns, a maximum of 7 tracks are allowed. As mentioned at the beginning of this section, 3

of these tracks are already used up: one of the nodes to the pull-down precharge, one for the

positive function realization, and one for the complement of the function. This leaves 4 tracks

free for general connections. Once the transistor path is known, the connection points between

transistors is fixed. The problem is to place these connections in a way that will share as many

tracks as possible, hence using as few tracks as possible.

DMAP achieves this by using the Left-Edge-Algorithm (LEA) first given by Hashimoto and

Stevens in [23], and later employed by Berkeley's YACR-II channel router [51]. The connections

between transistors can be viewed as wire segments (Ii), whose ends [xi, yi] are connected by
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a vertical piece of wire down to the transistor row. As in channel routing, the object is to

place these segments on the fewest number of tracks without overlap. The algorithm, which

guarantees minimum tracks, is essentially as follows:

1. Search the set of intervals for the element which has the smallest lower bound.

2. This element is assigned to the first track and removed from the interval set.

3. Search the element in the interval set which has the smallest lower bound which is greater

than the upper bound of the previously chosen interval.

4. This interval is assigned to the track and removed from the interval set.

5. Repeat Steps 3 and 4 until no intervals are left that satisfy the requirement.

6. If the interval set is non-empty, go to Step 1 to start on the assigning for the next track.

Figure 3.9(a) shows 7 track segments, sorted according to left-edge. Figure 3.9(b) illustrates

the tracks after LEA is applied. The horizontal axes of the graphs are the connection points on

the transistor path (which determine the cell-width); the vertical axes are the routing tracks

(which determine the cell-height). The segments 1, 4 and 8 are chosen to put on the first track;

segments 2 and 6 share the second track; and segments 3 and 5 are on the third track.

3.3.4 Layout Issues

Once the transistors and track connection positions are all known, the right-half portion of the

cell can be added together with the standard left-half portion of the cell. The cell information is

written onto a layout specification file in EDIF, which can be read into CADENCE. Figure 3.10

shows some typical generated DCVS cell layouts.

Our designs use a 1.2 micron, Northern Telecom CMOS double metal technology. The cells

are of standard height (75 design units) and variable width. This allows for 7 internal routing
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Figure 3.9: Illustration of Left-Edge-Algorithm.

Figure 3.10: Some generated DCVS cell layouts.
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tracks in the right-half portion of the cell. Metal 1 is used for horizontal routing of track

segments, while metal 2 is used for the vertical connection of these segments to the transistors.

The function inputs are pulled to the bottom of the right-half portion of the cell. The precharge

and two output lines are at the left-half portion of the cell. Jumper pins are inserted where

possible to facilitate global routing.

The right-half portion of the cell can waste space in the routing region. Also, the one-

dimensional array of transistors tends to produce long and short cells, which may make it

difficult for the placement and routing program. However, there are a number of advantages

for us adopting this layout style.

Having a standard left-half that is independent of the pull-down tree laid out in the right-

half allows for flexible changes in the pull-up network and pull-down network. For example, it

may be desired to give the static INVERTERS stronger driving power (since DCVS cells typically

drive many inputs). The size of the INVERTERS transistors can be changed without affecting

the rest of the system. On the other hand, new ways for laying out the pull-down tree can be

easily adopted into the system. This style allows for future extensions of our system for other

forms of dynamic logic.

The one-dimensional transistor strip allows the cells to be "porous" with respect to global

routing. In other words, the input pins act as feedthrough pins, where the input signals can

pass through the pin from the top and bottom directions. Furthermore, the one-dimensional

strip allows for transistor sizing. One of the advantages of cell synthesis is the freedom to vary

the transistor sizes for better performance.
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3.4 Third Step: Connecting Cells Together

At this stage, we have a set of DCVS layout cells specified in EDIF files, and a circuit netlist de-

scription of the interconnection between these cells, also in EDIF format. After some CADENCE-

specific preprocessing steps (Appendix B documents these "fixes" in full detail and glory), the

layout files are converted to EDGE cell representations. CADENCE then reads in the global

netlist file, searches for the layout instances, and performs placement and global routing. The

result is a complete DCVS circuit layout.



Chapter 4

Experimental Results

The system described in the previous chapter was implemented in the C-programming language,

inside the MIS-II programming environment. Exhaustive experiments were done to evaluate

the performance of the system. The primary concern in DCVS synthesis is the final circuit

area, which consists of:

• the total area of the generated cells, and

• the total area of global routing.

In DMAP, the area of each cell is determined by the number transistors in the layout strip

and the number of pseudo-edges. The total area of generated cells is also affected by the number

of cells that are produced by the clustering function. The number of internal routing tracks

used, give an indication of how well the cell area is being utilized. The global routing area is

determined by the number of cells that need to be wired together, as well as the number of

net connections between these cells. We now look at experimental results and examine some of

these factors that influence the final area.

4.1 Evaluating DMAP's Stand-Alone Performance

DMAP was run with industrial benchmark circuits from MCNC (Microelectronics Corporation

of North Carolina) and ISCAS (International Symposium on Circuits and Systems). Table

4.1 and Table 4.2 summarize the statistics of these experiments. Column 2 shows the average

56
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number of transistors in the layout path, while Column 3 shows the number of pseudo-edges in

the layout path. Typically, each cluster contains approximately 20 transistors, which implement

reasonably large sized functions. The small pseudo-edge to transistor count ratio in Column

5 indicates that the path finding algorithm is able to find fairly good layout paths. Column

4 shows the average number of routing tracks that are used for transistor connections in that

cell. It appears that most of the cells do not actually use up all the allowable tracks. This

suggests that better use of space in the right-half portion of the cell can be made. We will

discuss methods of improvement later.

4.2 Comparing DMAP with Conventional Mapping

Since DMAP maps single rail networks onto dual rail circuits, there will always be an area

penalty for using DCVS. In order to understand what the size of the penalty is, we compare

DCVS circuits produced by DMAP with static CMOS circuits mapped with MIS-II using the

IJBC-Northern Telecom CMOS4 standard cell library.

Table 4.3 and Table 4.4 summarize the cell and internal net count of the two approaches.

The number of cells used by DMAP is considerably fewer than that used by the standard cell

method. Often DMAP uses only one fifth as many cells. This means that although DCVS

designs require dual rails, fewer cells need to be routed. Furthermore, the total number of nets

that need to be wired, i.e., unique signals that need to be routed to each cell, is typically less

than twice the number of nets in standard mapping. In fact, a number of circuits have fewer

total nets. This is better than the intuitive assumption that dual-rail circuits require twice as

many wires as their single-rail counterparts.

Table 4.5 and Table 4.6 summarize some cell area comparisons that were made between the

two approaches. For most circuits, the total DCVS cell area is slightly more than twice the

total cell area of the standard cells. This is a relatively good result considering the simplicity

of the chosen cell layout style. It is likely that a more sophisticated layout style will improve
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this significantly.

Circuit
Name

Average No.
Transistors in

Pulldown Tree

Average No.
Pseudo Edges

Average No.
Internal

Routing Tracks

Pseudo-edge/
Transistor

Ratio

C1355 16.8 3.8 5.8 0.2
C17 9.0 1.5 5.5 0.2
C1908 16.9 3.9 5.9 0.2
C2670 16.7 3.4 5.8 0.2
C3540 17.4 3.5 6.0 0.2
C432 18.1 4.0 6.1 0.2
C499 17.8 3.8 5.8 0.2
C5315 20.1 4.1 6.0 0.2
C6288 20.3 4.2 6.2 0.2
C7552 19.7 3.9 5.9 0.2
C880 14.1 3.0 5.1 0.2

Table 4.1: DMAP generated cells for the ISCAS benchmark circuits.

4.3 After Placement and Routing

A few circuits were placed and routed with the CADENCE placement and routing tool. They

were found to have a total circuit area much greater than the corresponding standard cell

circuit. For example, the DUKE2 DCVS circuit was found to be about 3.5 times larger in area

than the standard cell circuit (see Figure 4.1 and Figure 4.2). Note that the DCVS chip has

twice the number of pads as the single rail chip. The ruler scale beside the core area are the

same in both Figures, and can be used to estimate the core areas. However, it is meaningless

to make such comparisons, as the total area is very much dependent upon the placement and

routing program, and which parameters the program optimizes for. Figure 4.3 and Figure 4.4,

which show the core area of the circuit MISEX2, exemplify how much the placement and routing

can affect the circuit area.
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Circuit
Name

Average No.
Transistors

in Layout Path

Average No.
Pseudo-edges

in Layout Path

Average No.
Internal

Routing Tracks

Pseudo-edge
to Transistor

Ratio

5xpl-hdl 9.9 2.2 4.9 0.2
5xpl 15.1 3.2 5.6 0.2
9sym-hdl 14.7 3.1 5.7 0.2
9sym 18.6 4.5 5.6 0.2
9symml 13.8 3.1 5.7 0.2
alupla 22.5 4.8 6.4 0.2
bw 13.8 3.2 5.7 0.2
conl 10.3 2.2 5.3 0.2
duke2 21.6 5.4 5.3 0.3
f2 10.0 3.0 6.0 0.3
f51m-hdl 9.4 2.1 4.8 0.2
f51m 16.6 3.8 5.8 0.2
misexl 12.1 2.9 5.2 0.2
misex2 19.8 4.9 5.0 0.2
misex3 14.4 3.6 5.3 0.2
misex3c 20.9 5.1 5.7 0.2
5xpl 15.1 3.2 5.6 0.2
rd53-hdl 19.3 3.0 6.0 0.2
rd53 19.3 3.0 6.0 0.2
rd73-hdl 19.3 4.3 6.0 0.2
rd73 21.0 5.0 6.2 0.2
rd84-hdl 15.7 3.6 5.6 0.2
rd84 20.8 5.1 6.0 0.2
sao2-hdl 20.1 4.8 5.8 0.2
sao2 18.1 4.4 5.4 0.2
seq 20.0 4.6 6.2 0.2
vg2 19.4 3.8 6.0 0.2
z4ml-hd1 16.9 3.9 5.6 0.2
z4m1 17.0 3.9 5.7 0.2

Table 4.2: DMAP generated cells for the MCNC benchmark circuits.



Chapter 4. Experimental Results^ 60

Circuit
Name

MIS-II
I
Mapped (a) DMAP

I
Mapped (b)

I
(b)/(a)

i

# cells # nets # cells # nets # cells # nets

C1355 732 1250 134 1875 0.2 1.5
C17 6 12 2 18 0.3 1.5
C1908 643 1164 170 1862 0.3 1.6
C2670 1036 1852 233 2648 0.2 1.4
C3540 1478 2721 393 5172 0.3 2.0
C432 260 473 131 1088 0.5 2.3
C499 558 892 98 1744 0.2 2.0
C5315 2033 3992 656 9182 0.3 2.3
C6288 2402 4755 810 9510 0.3 2.0
C7552 3036 6200 652 10544 0.2 1.7
C880 435 760 148 1140 0.3 1.5

Table 4.3: DMAP vs. MIS-II in cell and net count for ISCAS benchmarks.

However, as technology allows for more than two levels of interconnect in the layout, it

becomes possible to perform routing on top of the cells. In this case, only the cell areas would

be of concern. DCVS uses considerably fewer cells than standard mapping. By focusing on

improving the layout style, the DCVS area penalty can be reduced.
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Circuit
Name

MIS-II
I
Mapped (a) DMAP

I
Mapped (b) (b)/(a)

I

# cells # nets # cells # nets # cells # nets

5xpl-hdl 135 275 28 224 0.2 0.8
5xpl 82 130 25 253 0.3 1.9
9sym-hdl 138 225 57 479 0.4 2.1
9sym 203 462 44 664 0.2 1.4
9symml 161 383 48 504 0.3 1.3
alupla 137 246 44 704 0.3 2.9
bw 222 491 36 328 0.2 0.7
conl 23 41 6 44 0.3 1.1
duke2 465 1174 114 2120 0.2 1.8
f2 24 44 4 32 0.2 0.7
f51m-hdl 78 124 30 237 0.4 1.9
f51m 143 273 27 286 0.2 1.0
misexl 69 149 16 183 0.2 1.2
misex2 89 234 17 286 0.2 1.2
misex3 708 1674 229 2656 0.3 1.6
misex3c 514 1244 117 1989 0.2 1.6
rd53-hdl 56 88 3 30 0.1 0.3
rd53 50 98 3 30 0.1 0.3
rd73-hdl 90 141 24 230 0.3 1.6
rd73 136 317 21 284 0.2 0.9
rd84-hdl 122 190 45 410 0.4 2.2
rd84 303 665 50 765 0.2 1.2
sao2-hdl 307 538 172 2924 0.6 5.4
sao2 131 305 33 478 0.3 1.6
seq 2093 4456 685 7980 0.3 1.8
vg2 87 159 30 293 0.3 1.8
z4ml-hdl 69 140 23 220 0.3 1.6
z4m1 54 92 21 93 0.4 1.0

Table 4.4: DMAP vs. MIS-II in cell and net count for MCNC benchmarks.
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Circuit
Name

MIS-II Total
Cell Area (a)

DMAP Total
Cell Area (b)

(b)/(a)

5xpl-hdl 151 303 2.0
5xpl 287 385 1.3
9sym-hdl 252 852 3.4
9sym 47 821 1.7
9symml 401 684 1.7
alupla 246 964 3.9
bw 503 516 1.0
conl 41 67 1.6
duke2 1249 2447 2.0
f2 44 45 1.0
f51m-hdl 159 310 2.0
f51m 293 453 1.5
misexl 159 206 1.3
misex2 234 336 1.4
misex3 1774 3419 1.9
misex3c 1256 2425 1.9
rd53-hdl 100 56 0.6
rd53 104 86 0.8
rd73-hdl 159 461 2.9
rd73 326 436 1.3
rd84-hdl 211 720 3.4
rd84 685 1033 1.5
sao2-hdl 538 3433 6.4
sao2 317 602 1.9
seq 5263 13590 2.6
vg2 405 571 1.4
z4ml-hdl 102 393 3.9
z4m1 122 360 3.0

Table 4.5: DMAP vs. MIS-II in cell area for MCNC benchmarks.
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Figure 4.1: MIS-II mapped chip.
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Figure 4.3: Core area of a MIS-II mapped chip.
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Figure 4.4: Core area of a DMAP mapped chip.
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Circuit
Name

MIS-II Total
Cell Area (a)

DMAP Total
Cell Area (b)

(b)/(a)

C1355 1250 2272 1.8
C17 12 20 1.6
C1908 1164 2903 2.5
C2670 1852 3895 2.1
C3540 2721 6806 2.5
C432 473 2466 5.2
C499 1012 3409 3.4
C5315 4103 12936 3.2
C6288 4755 16135 3.4
C7552 6350 12598 2.0
C880 811 2143 2.6

Table 4.6: DMAP vs. MIS-II in cell area for ISCAS benchmarks.



Chapter 5

Conclusions and Future Work

This thesis addresses the problem of using CAD to implement combinational logic with DCVS.

First, we looked at the design automation process for VLSI, and more specifically, the problems

of technology mapping and layout synthesis. We examined dynamic DCVS logic, its operation,

its distinguishing properties, and DCVS applications. The DCVS synthesis task was analyzed,

and we outlined a system which produces DCVS circuits. DMAP, a technology mapping layout

synthesis system for DCVS was presented in detail. The system performs the tasks of circuit

clustering, transistor path finding, and cell layout connecting. Experimental results were given,

and their implications discussed.

5.1 Main Contributions

The major contributions of this thesis are summarized and highlighted as follows.

• The problem of DCVS circuit synthesis was formulated. DCVS circuits are difficult to

create because of the intricate internal connections and the dual-rail inputs and outputs

associated with each cell.

• We outlined a solution to this problem by introducing an integrated system called DMAP.

By generating as large as possible DCVS cells, the final circuit uses considerably less cells

than if conventional technology mapping were used. As a result, the area penalty of using

DCVS can be reduced because there are less wires to route in the circuit.
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• The DMAP system was designed and implemented. This system takes any combinational

logic block and outputs a DCVS circuit layout. More specifically, it performs the tasks of

technology mapping and layout synthesis. Large DCVS circuits can be produced.

• An algorithm was developed for synthesizing the layout of the DCVS pull-down block in

a systematic and straightforward manner. In fact, this algorithm can be applied to layout

the pull-down block of any dynamic logic, such as NORA and DOMINO. At present, the

synthesis of dynamic cell layout is still unchartered territory. DMAP's layout style can

be easily extended to synthesize other types of dynamic cells.

• An algorithm for circuit clustering was developed based on Lawler's node-labeling pro-

cedure. It achieves minimum delay through the network and partitions the circuit into

modules of sizable functions, subject to a set of constraints. This is a very useful algo-

rithm that can be extended for use in other areas, such as the FPGA (field programmable

gate array) technology mapping problem.

5.2 Future Directions

DCVS circuits are costly in terms of total area. However, we believe that the performance of

DMAP can be improved through further work. In obtaining the DCVS pull-down tree, ordered

BDDs were used. It is possible that unordered BDDs may give better results. Also, other

methods of obtaining the DCVS pull-down tree, such as that in [16] can be experimented with.

It is unclear which decomposed circuit form would better facilitate clustering. In DMAP, 2-

input NANDS and 2-input NORS were used; other circuit decompositions should be experimented

with as well. Using a more sophisticated layout style can improve the total cell area results.

One of the benefits with using a layout synthesis approach, rather than a standard cells

approach for technology mapping, lies in the flexibility in cell style. In particular, a layout

synthesis system can be modified to alter the sizes of different transistors in order to speed up
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the circuit. In fact, the circuit speed can often be dramatically improved by increasing certain

transistor widths. For the layout style we have chosen, it is easy to see how the output driving

INVERTERS can be made wider without significantly increasing the cell area. Furthermore, it is

also possible to reduce the delay in the pull-down network, and thus decrease the delay in the

DCVS cell itself, by modifying the width of some of the input transistors. This later modification

is also possible without a significant area penalty. For a practical DCVS technology mapper,

this "size modification" addition to the mapper is necessary if the maximum speed advantage

of DCVS logic is to be fully utilized.

Combining the ideas of dynamic logic synthesis, and the partitioning of circuits into blocks

for programmable arrays, one interesting direction of development would be "dynamic pro-

grammable gate arrays". It is possible that the right-half portion of the cell can be replaced

with a programmable gate array that can allow for any DCVS function to be programmed.

Each "configurable logic block" will have a standard pull-up layout section to implement the

dynamic precharging functions of the gate. The current one-dimensional transistor row layout

can be extended to a structured array approach with input rails and routing rails. The circuit

can be clustered into DCVS logic blocks in much the same way partitioning needs to be done

for FPGAs. Also, it may be possible to consider the alignment of input variables between the

arrays to facilitate global routing.

Dynamic devices such as DCVS are growing in importance and potential. As asynchronous

theory is further developed and more discoveries into dynamic behavior are made, the use of

DCVS will become increasingly popular. We need intelligent and flexible computer tools to

help build combinational dynamic logic blocks. This thesis is an advance in that direction.
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Appendix A

Algorithm for Finding an Euler Path

The following is a C-like pseudo-code algorithm for finding an Euler Path in a graph.

typedef struct vertex_struct vertex_t;
struct vertex_struct {

char *name;
linked list of edges Edges;

};
typedef struct edge_struct edge_t;
struct edge_struct {

vertex_t *vertexl, *vertex2;
char *label;
linked list pointers *list_entries[3]; /* One on each vertex, and one globally */

};

linked list of edges global_edges;
edge_t *
traverse_arc(m)
vertex_t *m;
{

edge_t *edge;

edge = first arc incident on m to any node with at least two unused edges;
if there are no such edges then
edge = first arc incident on m
delete edge from all three lists it appears on;
return edge;

}

#define other_terminal(edge, vertex) (vertex == edge->vertexl?edge->vertex2:edge->vertexl)

euler_path(n)
vertex_t *n;
{

edge_t *edge;
edge = traverse_arc(n);
m = other_terminal(edge, n);
push edge on path;

while(m != n) {
edge = traverse_arc(m);
push edge on path;
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m = other_terminal(edge, m);
}

while there are unused edges (edges left on global) {
foreach edge on path {

if either vertex of edge has any unused edges {
let m be that vertex;
pathl = euler_path(m);
insert pathl on path after edge;
}

}
}
return path;

}



Appendix B

CADENCE Specific Notes

This document describes the processing steps that need to be done in CADENCE to convert the EDIF
files output from the DMAP clustering program, to final chip layout incorporating of all the cells. The
reader is assumed to be familiar with CADENCE and CADENCE'S programming language SKILL.

The SKILL command ic("info-filename") takes as input a "info-filename" which contains the clus-
tering summary file produced by the clustering program for each circuit. The command consists of two
steps:

1. Fix Cells; To fix the individual cells so that they can be used for our purposes in CADENCE.

2. Make Chip; To create the chip out of those cells, and the lobal circuit netlist.

B.1 Fixing Cells

1. Fix jumper Pins: fixPin(blockname)

In CADENCE, I0 pins are drawn in metal, and are distinguished as "terminals" by using the "pin"
layer of that metal. In EDIF, IO pins are specified terminal ports, but there is no way to specify
that the pin contains a geometry of pin layer (the clustering program simply gives it a bogus
"wire" layer).

The program edif2edge converts the EDIF file to EDGE Layout Rep. fixPin() searches for all
the terminals in the Layout Rep., and creates the geometry of the metal piece. Access direction
specifies which directions the global router can access the pin or port. These are added to the
pins.

All jumpers are named "jumperX" where X is the unique number in the cell. Jumpers are also
declared as ports in EDIF, of layer "wire". They are searched for the string "jumper" in the name,
and then made a pin.

2. Generate Symbol Rep: gensCell(blockname)

This function opens the Layout Rep of the cell, reads in the input and output pin names, and
creates lists for them. These two lists are used in calling the SKILL function GenS which creates
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a symbol with this specified I0 pins.

3. Generate Abstract Rep: GenAb(blockname)

This function generates an Abstract Rep from the blockfile using the function abgen.

4. Fix abstract Rep

After GenAb() is run, we need to change the "Representation/type" property of the Abstract Rep
to "standard" , so that it can be properly recognized.

B.2 Making the Chip

After all the cells have been fixed, the following is done:

1. Run "edif2edge" on the global EDIF file. This creates a Netlist Rep of the circuit.

2. Run the SKILL function "globalize" on the Netlist Rep,

so that CADENCE will join the vdd and gnd with the global vdd and gnd during P&R.

3. Generate a Symbol Rep for the circuit from the Netlist Rep. The function gensCct() scans the
input block for terminals, and creates a list for the input and output pins. This is used to call the
function GenS() to generate Symbol.

4. Generate a new schematic that will be the chip, containing the circuit netlist (placed as a Symbol),
plus all the I0 pads.

The function AddPads(block "symbol" chip "schematic") opens a new Rep called chip/schematic.
In this Rep, it creates and instance of block/symbol. Then it scans for all terminals in block/symbol,
and adds input and output pads as required, including the gnd and vdd pads.
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