
AN AUTOMATED VISION SYSTEM FOR
DETECTION AND COUNTING OF UNEATEN FOOD PELLETS

IN A FISH SEA CAGE

by

Michael David Foster

B.A.Sc., The University of Waterloo, 1986

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

Department of Electrical Engineering

We accept this thesis as conforming
to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

June 1993

© Michael David Foster, 1993



Date

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

(Signature

Department of^ tiv cue

The University of British Columbia
Vancouver, Canada

DE-6 (2/88)



Abstract

A system which quantifies the number of food pellets eaten by salmon in a sea cage

would be beneficial to both fish farmers, and researchers. Such a system could be used

for reducing food wastage, determining time-related feeding patterns, ensuring fish

receive the correct dosage of drugs, etc. We developed algorithms for detection and

counting of food pellets from recorded video image sequences, which could be used to

determine actual feeding rates in a sea cage. The number of food pellets eaten over time

is determined by counting the number of pellets not eaten. The method involves counting

the number of pellets of a known size, falling through the view area of an underwater

video camera. The size of the view area of the camera varies with the size of the food

pellets used. The pellets, which appear white underwater, are counted as they enter the

view area of the underwater camera, and are tracked in this area to avoid recounting. For

each video frame in the sequence, image preprocessing is done, followed by object

detection, object classification, and object tracking and counting. Original algorithms

were developed for this project to automatically threshold images, track objects in

consecutive frames, and count the objects entering the view area of the camera. The

algorithms were implemented on a personal computer based image processing system.

Experiments were carried out to test the algorithms with pellet densities used in actual

feeding situations. The utility of the algorithms was confirmed by the experimental

results. The average count error for the tests performed was approximately +/-10%. The

recommended improvements to the counting algorithms should significantly reduce this

error.
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Chapter 1
Introduction

1.1 Motivation

Feed wastage affects fish farm operating costs, profits, appropriate additive delivery, and

the magnitude of the environmental impact. Salmon feed averages $1.25/kg and

represents 45-60% of the operating costs on a commercial sized sea cage farm. The feed

conversion ratio FCR is used as a measure of feed usage and is defined as the ratio of the

mass of the food ration placed in the net to the mass gain of the salmon in the net, over a

given time period. The daily ration is judged by observing fish feeding activity at the

surface. Feeding is usually discontinued when the fish feeding activity greatly

diminishes. The FCR in the industry averages 1.5 for Atlantic salmon and 2.0 for

Chinook salmon (British Columbia Salmon Farmers Association). Under more controlled

farming conditions, a FCR of 1.0 for Atlantic salmon was achieved without negatively

affecting growth (Austreng et al., 1987; Storebaldcen and Austreng, 1987). The optimal

feed conversion would be the one which produces the biggest fish using the least amount

of feed in the shortest time period.

In order to determine the optimal FCR, the true ration must be known. This is the ration

actually consumed by the fish. Salmon farmers in British Columbia currently do not

measure or control food pellet wastage; although wastage have been reported to range

between 15-40% on commercial sea cage farms (Seymour and Bergheim, 1991; Thorpe

et al., 1990).

A reduction in the quantity of uneaten pellets would benefit the industry in a number of

ways. Decreased operating costs would be one benefit of reducing wastage. Feed pellet

loss adversely affects the environment, fish health, and fish quality because uneaten

pellets accumulate underneath farms. Knowledge of pellet loss is critical for assuring



proper dose delivery when the pellets contain colouring agents, vaccines, vitamins, and

antibiotics. Another benefit of reducing the quantity of uneaten food pellets could be an

increased use of automatic feeders. The manual feeding of salmon on a sea cage farm is

very time consuming. Currently, salmon are fed by hand for 4 hours a day in the winter

months, and 8 hours a day in the summer months. Automatic feeders are not commonly

used because feed wastage has been reported to be as high as 40% (Thorpe et al., 1990).

To accurately measure the ration and feed wastage, fish farmers need a measurement tool

to give them feedback on pellet loss during a feeding period. Aquaculture researchers

would also benefit if a system were available to provide data on how much feed is not

being eaten when they run feeding experiments. Hydroacoustic detection of food pellets

(Juell, 1991) is one method used to detect food waste. A hydroacoustic sensor is used to

detect food waste (a group of uneaten food pellets) and signal an automatic feeder. The

automatic feeder is turned off when any amount of food waste is detected. The system

does not count the uneaten food pellets, and therefore cannot be used for more complex

automatic feeder control where some waste is acceptable. Another method of estimating

food waste is to suspend a sheet below the sea cage during the feeding period (Shepherd

and Bromage, 1988), retrieve it after feeding, and count the food pellets that were

wasted. This method does not provide immediate feedback during feeding. Only after

feeding can the wastage be assessed.

Food pellets are available in various sizes and are dark brown to black in colour.

However, they appear white when viewed underwater using a low light camera pointing

straight down. This effect makes it possible to detect the pellets using underwater video

cameras and analyze the images using digital image processing algorithms
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1.2 Problem Statement

In this study, we addressed the problem of developing an economical video camera based

pellet detection and counting system, for use on salmon farms. The system could be used

to study feed wastage and its effects on operating costs, additive delivery, and the

magnitude of environmental impact. Count data from a single camera, or a number of

cameras throughout the sea cage could be provided to an automatic feeding system. The

feeder system would be automatically controlled using count data, and many man-hours

of labour would be eliminated. This application is not the primary goal of this project,

but can incorporate the results presented in this thesis.

1.3 Objective and Scope

The objectives of this study were to determine the applicability of a manual video camera

based pellet detection and counting system, and to develop an automatic version of this

manual system using image analysis algorithms A farmer would be able to lower a video

camera (pointing straight down) to a desired depth, and using video replay, count the

number of pellets that are falling through the view area of the camera (Figure 1) at that

depth. With this information, the farmer would have some numerical data on how much

feed is being eaten by the fish above camera level. By placing the camera near the

bottom of the sea cage, an estimate of how much feed is being wasted would be obtained.

This system could be used to record the change in pellet loss during a feed event, as well

as calculate the total amount lost.
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Video Camera

Figure 1 - View Area of Video Camera

The manual approach to counting food pellets from video replay could be laborious

depending on the length of the feeding period. An operator would have to watch a

videotape of the entire feeding period and keep an accurate count of the food pellets

falling past the camera. An automatic pellet counting system was therefore developed

and tested.

There were two major steps involved in the development of the automatic counting

system. These were, detecting the food pellets in the images, and correctly tracking food

pellets from one image to the next. A typical image from the underwater camera would

contain food pellets and salmon. The salmon are dark in colour when viewed from

above, but parts of the fish's body appear white if a salmon turns on its side.

Occasionally, other objects which appear light in colour are present in the water. It was

important to distinguish salmon and other objects from food pellets so they were not

included in the food pellet count. Tracking objects was necessary to ensure each pellet

was only counted once.
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The automatic algorithms were used to 1) isolate the pellet and non-pellet objects in the

image, 2) measure features of the objects and classify them as food pellets or other

objects, 3) track pellets from one frame to another, and 4) maintain a count of the

number of pellets that have passed through the view area of the underwater camera. The

system was tested in order to estimate and identify counting errors. The automatic food

pellet counting process is shown in Figure 2.

Camera Positioning

Acquisition of Images on Videotape

Extraction of Frame Sequences for Analysis

Preprocessing of Frame Sequence

viv

Object Detection on Frame Sequence

[Object Feature Extraction

V

Object Classification

Object Matching

Pellet Counting

Figure 2 - Pellet Counting Process
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The goals of the project, and the constraints on development of the system are discussed

in Chapter 2. The equipment used in both the manual and automatic food pellet counting

systems are described in Chapter 3. Details on how the food pellets are imaged by the

digital camera, and different methods of automatically segmenting and detecting the food

pellets in an image are discussed in Chapter 4. The algorithms used to classify objects in

the image as either food pellets, or other objects using measurable features of the objects,

are presented in Chapter 5. Food pellet tracking between images and problems associated

with tracking and maintaining an accurate count of the number of food pellets passing

through the view area of the camera are described in Chapter 6. In Chapter 7, the

experimental results obtained using the algorithms developed are discussed.
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Chapter 2
Goals and Constraints

The goal of this project was to discover methods that could be used to manually and

automatically detect and count food pellets falling through the view area of an

underwater camera. Some initial investigations were done at the beginning of the project

to determine the development possibilities given the time constraints. The following

constraints were placed on the development of the counting system.

A real-time implementation of the automatic pellet counting system was not attempted

because the development hardware was not powerful enough to digitally process the

acquired images in real time. At this point in the project it was not practical to purchase

equipment capable of real time processing, until the capabilities of the algorithms were

established.

The pellet counting systems were designed to accurately count food pellets passing

through the view area of the camera in densities which will occur in typical feeding

situations. These densities can be determined using standard feeding tables which list the

amount of food that should be feed to fish of a certain mass.

The food pellet counting system was designed to work under a variety of weather and

natural illumination conditions. Only natural light is used for image acquisition in order

to reduce the complexity of the image acquisition hardware. The light level at a given

depth is dependent on many factors including weather (clear, cloudy, raining), the time

of year, water visibility, and density of fish above camera level (fish block light coming

down through the water column). Problems associated with insufficient illumination will

not be addressed in this project. It is assumed that a more expensive, higher sensitivity
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camera could be purchased or an underwater light source could be used to eliminate any

insufficient illumination problems.

The camera system used in the development of this project was designed for

experimental use only. For a commercial pellet counting system, the camera and rig

should be easy to move in and out of the water, and therefore must be lightweight and

transportable. The camera system and rig are described in section 3.2.

Determining the optimum placement of cameras in the sea cage in order to get an

accurate sample of the total number of pellets falling is beyond the scope of this project.

The issue of changing feeding methods in order to get uniform feeding at a known rate

will not be addressed.
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Chapter 3
Equipment for Acquisition and Analysis

3.1 Introduction

In this section, the equipment used for image sequence acquisition and analysis is

described. The image acquisition equipment is required by both the manual and

automatic pellet counting systems. The image analysis equipment is required for the

automatic pellet counting system. The image acquisition equipment is used to acquire

and storing the image sequences at the site. The image analysis equipment is used to

transfer the image sequences to the computer system and perform analysis. The

equipment required to carry out these two functions is described in this section.

3.2 Image Acquisition and Storage

The image acquisition and storage equipment is used to capture and store image

sequences on videotape when the salmon are being fed in the sea cage. The equipment

consists of three main components, a externally controlled digital camera, a super VHS

videotape recorder, and the underwater camera housing and support rig.

The camera used was the Panasonic WV-B400 CCD (Charge-coupled Device) camera.

The camera outputs a video signal with 525 lines of horizontal resolution at a rate of 30

frames per second. It is equipped with a wide angle lens with a focal length of 4.8 mm

The view area of the camera covers 76.5 degrees. It has low light capabilities and can

operate at a minimum illumination of 0.5 lux (20 lux recommended). The camera

aperture is automatically controlled, and compensates for the illumination level. The

shutter speed of the camera is controlled manually from an external controller on the

surface (Figure 3).



The super VHS videotape recorder used for the project was the JVC AG-1960. In record

mode, the video recorder takes the signal from the camera as input, and stores in on super

VHS videotape. The super VHS capability of the video recorder enables it to store better

quality (higher resolution) images than a standard VHS recorder. A standard VHS

recorder stores approximately 240 lines while a super VHS recorder records

approximately 400 lines. When a video frame is transferred to the computer for analysis,

it is digitized. Digitization involves determining the intensity value of each pixel in the

image by interpolating the data in the video frame. A video frame is digitized into an

image with 512 pixels horizontally by 480 pixels vertically. In order to ensure that the

digitized image is an accurate representation of the original image, the high resolution of

super VHS videotape is required. Resolution is very important for this image processing

application since small objects (food pellets) are being imaged. When high resolution

video frames are used, detection and analysis are much easier to perform, and the results

are more accurate than if the same scene were digitized from a low resolution video

image.

In order to use the camera in the sea cages, an underwater camera housing encases the

camera to protect it from moisture (Figure 3). The dome port of the underwater camera

housing was designed by International Hardsuits to produce optically correct images (i.e.

the dome port negates the effect of the refraction of light due to the air, glass, water

interface). The rig is used to mount the camera system so that its position and orientation

can be controlled. In the sea cage, the rig system is lowered to the desired depth and

positioned using ropes.
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S-VHS Videotape

Sea Cage

Figure 3 - Image Sequence Acquisition Equipment
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3.3 Image Analysis

The image analysis equipment is used to convert the video images stored on videotape to

digitized images on the computer system, and analyze them to determine pellet counts.

The equipment consists of three main components, an IBM compatible personal

computer, an Imaging Technologies image processing board and software, and a super

VHS time code generator/reader video recorder (Figure 4).

The IBM compatible personal computer has a 80486 processor, a 130Mb hard disk and

dual displays (computer monitor and image monitor). An Imaging Technologies

hardware accessory board plugs into one of the expansion slots in the computer. The

board has a video signal input. Video frames are extracted and digitized from the video

input. The board contains extra memory for image frame storage, specialized hardware

for image processing operations, and a video output port so images can be displayed on

the image monitor.

Video Signal

Figure 4 - Image Analysis Equipment
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An Imaging Technologies software library was used for program development. This

library contains hundreds of software functions that can be used in development

programs. The library contains functions that interface with the Imaging Technologies

hardware accessory board to load and save images, perform convolutions on images, and

many other operations. The combination of the computer, the hardware accessory board,

and the software library allows a programmer to write 'C' programs to extract data from

images, and perform other numerical operations on images. Figure 5 shows the frame

coordinate system used by the Imaging Technologies image processing system. This

coordinate system will be used in this document. The size of the images used are 512

pixels horizontal by 480 pixels vertical.

Image
Frame

• (x,y)

Figure 5 - Digital Image Coordinate System

A super VHS time code generator/reader video recorder is used to extract sequences of

images from super VHS videotape. The machine that was used was the JVC BR-S822U

with the time code generator/reader expansion card, the time base correction card, and

the RS-232 interface port. This machine is capable of laying time codes on one of the

audio tracks of the videotape. This time code is used to identify each individual frame on

the videotape. The computer is used to control the machine via the RS-232 port on the

video recorder. A computer program can be used to search for a specific frame on the

13



videotape by reading the time codes on the tape. When the desired frame has been

reached, it can be acquired by the Imaging Technologies image processing card, and

stored on the hard disk for later analysis. Using the time codes on the tape, a sequences

of frames can be captured and stored at a desired sampling rate automatically.
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Chapter 4
Detecting Objects in Images

4.1 Introduction

Object detection involves separating the objects in the image from the background and

determining the position of each object in the image. Correctly identifying objects which

represent food pellets in an image is one of the most important operations in the counting

system. If objects other than food pellets are mistakenly counted as food pellets, or

objects that are food pellets are not counted, the pellet count will be inaccurate. The first

stage of object identification is object detection. In this stage, all objects, food pellets and

other particles are separated from the background and their positions are recorded. This

information is then used by the object classification algorithms. In this section, an

explanation of how food pellets are imaged by the digital camera is given, and different

methods of object detection are discussed and evaluated.

4.2 Imaging of Food Pellets

Food pellets are manufactured using an extrusion process. The pellets are cylindrical in

shape. The sides are very smooth, and the ends where the pellets were broken off after

extrusion are rough. Although the food pellets appear dark brown to black on the surface,

they appear white in images taken in the water with the underwater camera. This effect is

observed because the camera is highly sensitive (0.5 lux), and automatically compensates

for the amount of light available. The camera opens the aperture in order to make the

overall light level about 18% gray. When the camera is looking straight down into the

water column, the background is very dark, so the aperture of the camera is opened wide.

When the food pellets are in view, they reflect the sunlight (food pellets are

approximately 5-6% reflective), and are therefore much lighter than the background, and

appear white relative to the background. This is very important for detection, since if the

pellets appeared dark gray, they would be virtually undetectable in the image.
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As the camera is lowered into the water column, the sunlight reaching the pellets is

attenuated by the water above the camera and blocked by fish above the camera. Under

certain conditions, there will not be enough light for the system to work properly. The

camera will be operating at its limits, and food pellets will not appear white and will be

undetectable. In these cases, a more sensitive camera or an underwater light source is

required.

In order for the food pellets to appear white in the captured images there must be

approximately 3.5 meters (dependent on water visibility and light conditions) between

the camera and the bottom of the net. This is required because the bottom of the net,

which is white, must be very dark in colour relative to the food pellets. Since the camera

must be at least 4 meters below the surface of the water, the pellet counting systems can

only be used in sea cages which are at least 7.5 meters deep.

The maximum coverage of the camera depends on the pellet size used and the resolution

of the video camera. As a result of using a wide angle lens on the underwater camera (to

maximize the coverage area of the camera), food pellets in the captured images decrease

in size rapidly as the pellets move away from the camera. Pellets smaller than 7mm in

diameter become virtually undetectable at very small distances. This means that the

coverage area of the camera is very small when using small pellets. Table 1 shows the

theoretical area of objects imaged by the camera in pixel units corresponding to different

object-camera distances (512 x 480 pixel image, view angle of camera - 76.5 degrees). In

practice, these areas are approximately 1 to 2 pixels larger due to CCD bloom (cells in

the CCD which detect high intensity light levels, increase the intensity values detected by

neighbouring cells). In order to accurately detect a food pellet object in the image, the

object should be represented by at least 4 pixels. When using 7mm pellets (area 38.5-

75.7 mm2, depending on orientation), pellets 1.00 to 1.25 meters away from the camera

16



and closer can be accurately detected. This corresponds to camera coverage of

approximately 2.5-3.9 square meters.

Table 1 - Theoretical area of pellet objects in pixel units vs. distance from object to
camera

Distance from Object to Camera (meters)
(Camera Coverage Area (meters2))

Object Area (mm 2) 0.50 0.75 1.00 1.25 1.50 1.75 2.00
(Approximate Pellet Size) (0.62) (1.4) (2.5) (3.9) (5.6) (7.6) (10.0)

1.00 (1mm) 0.42 0.19 0.11 0.07 0.05 0.03 0.03
4.00 (2mm) 1.69 0.75 0.42 0.27 0.19 0.14 0.11
9.00 (3mm) 3.79 1.69 0.95 0.61 0.42 0.31 0.24
16.00 (4mm) 6.74 3.00 1.69 1.08 0.75 0.55 0.42
25.00 (5mm) 10.5 4.68 2.63 1.69 1.17 0.86 0.66
36.00 (6mm) 15.2 6.74 3.79 2.43 1.69 1.24 0.95
49.00 (7mm) 20.7 9.18 5.16 3.30 2.29 1.69 1.29
64.00 (8mm) 27.0 12.0 6.74 4.32 3.00 2.20 1.69
81.00 (9mm) 34.1 15.2 8.54 5.46 3.79 2.79 2.13

100.00 (10mm) 42.2 18.7 10.5 6.74 4.68 3.44 2.63

4.3 Correlation Matching

One traditional method of object detection is correlation matching. This method involves

matching a prototype image of the object to be detected with sub-sections of the input

image. If a positive match is made with a sub-section of the input image, then there is a

high probability that the object is present in that sub-section of the image. This prototype

can be any size, but is usually small to minimize computation. The intensity values of the

prototype image w(x,y) are correlated with the intensity values of the sub-section of the

input image as follows.
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f(x,y)
Input Image

R(m,n)Correlation Result

Prototype Occured in Original Image at this Point

w(x,y)
Prototype

Correlation R(m,n) = E Ef(x,y)*w(x —m, y —n)
^

(4.1)
x y

where: f(x,y) is an image of size MxN^m=0,1,...M-1^n=0,1,...N-1
w(x,y) is a prototype image of size JxK J<M^K<N
the value of the prototype image is equal to zero outside the defined region

The correlation is repeated for every sub-section of the input image (Figure 6). When the

correlation value is high, it is very likely that the object is present in that sub-section.

One, or any number of prototype images representing objects being searched for can be

used. For example the same object in a number of different orientations, or a number of

different sizes can be searched for using a number of prototypes, each representing the

object in a different orientation, or a different scale.

Figure 6 - Correlation Matching
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Initially, correlation matching seemed to be a good method to use to detect food pellets

in an image. However, there are number of reasons why correlation matching was not

used.

The first reason why correlation matching was not used is that there is a large variation in

the length of the food pellets. Since the pellets are made using an extrusion process, the

width of the pellets is consistent, but the length is not. Since there is a large variation in

length is it difficult to determine a prototype image that will yield high correlation values

for pellets of different lengths.

The second reason for not using correlation matching is the fact that the pellets are being

imaged as they fall through the water column. The image of a pellet decreases in size as

the pellet falls away from the camera. Also pellets fall in different orientations. Since the

pellets are cylindrical, the shape appears very different as the orientation changes. All

these factors make it very difficult to use correlation matching. A very large number of

prototypes would be necessary. These would include prototypes representing a number of

different orientations, and a number of different sizes for each orientation. The number

of prototypes necessary would make it very computationally expensive to detect the food

pellets in an image.

The final reason correlation matching is not suitable is the fact that food pellets are not

always imaged as distinct objects. In some cases, the images of two or more food pellets

overlap. There are methods to separate the pellets (described in section 4.6), but after

separation, the shape of the pellet is severely altered, and would not match any of the

shape prototypes used for correlation matching.
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Correlation matching is not a good method to use to detect food pellets in an image

because the length of the pellets is highly variable, it is too computationally expensive to

take into account the number of shape prototypes necessary, and when the images of two

or more food pellets overlap, correlation matching is impossible even after separation.

4.4 Thresholding and Region Growing

Since it is not feasible to use correlation matching to detect objects in the digital image,

another method of detection was developed. This method consists of two processes,

thresholding and region growing. Thresholding is done to separate the objects from the

background, and transform the 8 bit image with 256 levels of gray to a two bit (binary)

image with two levels of gray - black and white. Region growing is used in the object

detection algorithm to determine the locations and sizes of all objects in the binary

image.

The threshokling operation involves choosing a gray level (threshold value) and then

remapping each pixel in the image based on the threshold value. All pixels with gray

levels greater than the threshold value are set to 255 (white) and pixels with gray levels

less than or equal to the threshold are set to 0 (black). The difficulty arises in choosing

the threshold value that will remap the image such that the background becomes black,

and the food pellets and all other objects become white, with as little noise as possible

(i.e. white pixels not corresponding to food pellets or other objects). A method was

developed for this project to determine an acceptable threshold value automatically.

A histogram of an image is a graph of the frequency of occurrence of each gray level in

the image. In an image that contains no food pellets or other objects, all the pixels have

values near the black (0) end of the histogram. In this case the histogram values are

typically normally distributed with a mean near 0 and a small variance (Figure 7).
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Figure 7 - Histogram of Image without Objects

In an image that does contain food pellets and other objects, since the pellets and objects

are lighter gray than the background, the histogram contains values above the

background levels (Figure 8).

Figure 8 - Histogram of Image with Objects
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In order to properly threshold the image, a threshold value must be chosen to transform

all background pixels to black, and all pixels representing food pellets or other objects to

white. If an estimate of the normal distribution of the background gray levels is obtained,

it can be used to find an estimate of the maximum gray level in the background. If the

image is thresholded at this value, all pixels representing background will be transformed

to black while all pixels representing objects will be turned to white.

The equation of a normal distribution with mean u and variance cr2 is:

f (x) _  k exp( 1(x — u)
\Go-^a )

Determining the threshold to use to separate the food pellets from the background can be

done by fitting a normal distribution to the gray levels representing the background

pixels in the histogram. The mean of the normal distribution, u, is taken as the gray level

where f(x) is maximum. The threshold is chosen as (u+3a).

Determining the Optimum Threshold for Object Separation

1. low pass filter the histogram 3 times to smooth any noisy data

2. find the gray level that corresponds to the maximum value of the histogram in the

black end - denote this gray level by index u

3. find f(u), it can be expressed as follows:

f (u) —

  

(4.3)
-1-27ra

2

(4.2)
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4. choose an index near u - index i. Using 4.3, solve the normal equation (4.2) for a

i —u= ^ (4.4),^
—2(1n( f (i)) —1n( f (u)))

5. repeat Step 4 for 5 other points near u and average a's obtained - aavg

6. Since 99.7% of the normal distribution lies in range (u-3aav-,u 1g +- aavg), we should

threshold the image at u+3aavg. This sets the majority of the background pixels

black, and most objects in the image white.

In a sequence of images, the threshold value used to separate objects from the

background is found to be fairly consistent throughout the sequence. In an image that

contains many food pellets, the histogram may become skewed towards the white end. A

skew can be determined by comparing the a values obtained using points (step 5) on

opposite sides of the mean (u). In this case, the algorithm could be improved by using an

average of the threshold values used for previous frames in the sequence, instead of the

threshold value determined using the method described above.

Now that the image is reduced to a binary one, the object detection algorithm is used to

determine from a binary image, a list of the objects present in the image. The centroid

and the area of each object is also stored. In the algorithm, the image is scanned row by

row. If a white pixel (pixel with a value of 255) is found (signifying the location of an

object), the region growing procedure is initiated with this pixel's (seed pixel)

coordinates as input. The region growing procedure is used to determine the size of the

object, as well as the objects centroid. The object detection algorithm is presented below.
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Object Detection Algorithm

1. Read pixel value at location (0,0)

2. If pixel has value of 255, start region growing procedure using current pixel location

as seed location - Increment object count by one

3. Read the pixel value at the next location (x-coordinate increased by 1, if at end of

row set x-coordinate to 0, increment y-coordinate by 1 - row by row scan).

If at end of image STOP

Else - GOTO step 2

The region growing procedure consists of repetitive searches for pixels with a value of

255 which are connected. Initially the 4-neighbours (Figure 10) of the pixel sent to the

procedure (seed pixel) are checked to see if any of them have a value of 255. For each

neighbour that does have a value of 255, its 4-neighbours are checked to see if any of

them have a value of 255. After the 4-neighbours of a pixel have been checked, its

location is stored in a data structure, a count of the number of pixels in the object is

incremented, and a value of 128 is written to the pixel so it is not counted again. This

repetitive search procedure continues until all the pixels in the object have been

accounted for (none of the pixels in the object have 4-neighbours which have a value of

255). The centroid is then calculated using the coordinate values stored in the data

structure. The coordinates of the centroids, and the number of pixels in the object are

then stored. The region growing procedure then ends. The region growing procedure is

presented below. The region growing function takes the coordinates of the seed pixel as

input.
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Region Growing Procedure

1. Set the seed pixel to the value 128. Put its coordinates on the queue. Set the number

in the queue to 1.

2. If the queue is not empty

- get the pixel coordinates off the queue

- decrement the number in queue by 1

- increase the pixel count by one.

Else GOTO step 5.

3. Read the gray levels of the 4-neighbours of the pixel. For each neighbour that has a

value of 255, store its coordinates in a data structure, put its coordinates on the

queue, and set its value to 128. Increase the number in the queue by 1 for each of the

4-neighobours that had a value of 255.

4. GOTO step 2.

5. Use the pixel coordinates in the data structure to determine centroid of object. Store

centroid and number of pixels in object.

6. Return to the object detection algorithm.

When the region growing procedure ends, control returns to the object detection

algorithm. The scan for a pixel with a value of 255 is resumed where it left off before the

region growing procedure was initiated. The pixels that form the object detected by the

region growing procedure were all set to a value of 128. Therefore none of these pixels

will be used to initiate another region growing procedure. The object previously detected

will be ignored for the rest of the object detection algorithm. The object detection

algorithm ends when the scan reaches the end of the image. When the algorithm ends, a
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list of the objects present in the image, and the centroid and size of each object have been

stored. Figure 9 shows a binary image with the results from the object detection

algorithm.

This algorithm requires a significant amount of storage space when operating on large

objects. The algorithm could be implemented more efficiently by eliminating the storage

of the pixel coordinates in the data structure. A total of the x coordinates, a total of the y

coordinates, and the total number of pixels in the object could be maintained. After all

the pixels in the object were determined, the centroid could be determined from these

totals.
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Object^Position^Number^of Pixels
Object 1^(301,155)^8
Object 2^(250,176)^132
Object 3^(433,218)^127
Object 4^(339,222)^86
Object 5^(309,268)^17
Object 6^(288,275)^16
Object 7^(315,288)^44
Object 8^(360,295)^211
Object 9^(388,321)^65
Object 10 (212,398)^13

10 objects detected

Figure 9 - Results from Object Detection Algorithm
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4.5^Dilation and Erosion

In order to preprocess objects for separation of overlapping objects, and feature

extraction and classification, dilation and erosion are performed to smooth the edges of

the objects and remove noise in the image. These operations use the values of the

neighbours of each pixel in the image to determine its new value. The following figures

show two different types of neighbours used in calculations.

2^ 4^3^2
(x,y-1)^ (x-1,y-1)^(x,y-1) (x+1,y-1)

3^A^1^5^A^1
(x-1,y)^(x,y)^(x+1,y)^(x-1,y)^(x,y)^(x+1,y)

4^ 6^7^8
(x,y+1)^ (x-1,y+1) (x,y+1) (x+1,y+1)

^

4-neighbours of pixel A^8-neighbours of pixel A

Figure 10 - 4 and 8-neighbours of a pixel

Dilation is used to fill in small gaps in the objects. If four or more of the 8-neighbours of

a pixel have a value of 255, and the pixel itself has a value of 0 or 255, then the pixel is

set to a value of 255. Otherwise its value is unchanged. This is achieved by convolving

the image with a mask with the following form.

111
141
111

followed by a division by 4. If the result is greater than or equal to 255, the pixel

corresponding to the center weight in the mask (4) is set to 255, otherwise the value of

the pixel is unchanged. An example of the dilation process is shown in Figure 11.

28



Image After Dilation

Original Image

Figure 11 - Example of Dilation Operation

Erosion is used to remove extraneous pixels from the frame. If five or more of the 8-

neighbours of a pixel have a value of 0, then the pixel's value is set to 0. If less than five

of the 8-neighbours have a value of 0, then the value of the pixel is unchanged. This

operation is achieved by convolving the image with a mask with the following form.

111
181
111
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followed by a division by 16. If the result is less than 176, then the pixel corresponding

to the center weight in the mask (8) is set to 0, otherwise the pixel is set to 255. An

example of the erosion process is shown in Figure 12.

Figure 12 - Example of Erosion Operation

To preprocess the image for separation of overlapping objects, dilation is performed,

followed by erosion. These operations smooth the edge of the object so the object

separation process can be performed if necessary.
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4.6^Separating Overlapping Objects

Since the underwater camera is viewing a three dimensional medium, it is possible that

two or more food pellets will appear to overlap in the camera image. In order to maintain

an accurate count of food pellets falling past the underwater camera, overlapping objects

must be detected and separated before counting.

Given a list of pixels that make up an object, an algorithm has been developed to

determine if the object represents two or more overlapping pellets, and if so determines

how to separate them. The algorithm was developed by improving an algorithm

described by Poon (Poon, 1989; Poon et al., 1992). After the dilation and erosion

operations, the separation of overlapping objects can be done. The algorithm consists of

four main steps:

Separating Overlapping Objects

1. Detect the boundary pixels of the object

2. Calculate an estimate of the tangent at each boundary point in the object

3. Determine the curvature at each boundary point in the object

4. Use the zero crossings in curvature to divide the object if necessary

Each of these steps are explained in the sections following.

4.6.1 Detecting the Boundary Pixels of an Object

After the object detection algorithm has been executed, a list of objects, their sizes, and

their centroids have been stored. The boundary pixel detection routine uses the centroid

of the object as a starting point. The routine contains the following steps:
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Boundary Pixel Detection

1. start at the centroid of object (xc,yc)

2. increase the x-coordinate until the pixel at that coordinate (xn,yc) has a value of 0.

Pixel at coordinates (xn-1,yc) is a boundary pixel.

3. follow the boundary of the object moving counter clockwise, storing coordinates

until coordinate (xn-1,yc) is reached again.

After the initial boundary pixel is determined, the boundary is followed using codes to

determine the direction of movement from the current boundary pixel to the adjacent

valid boundary pixel. In order to be a valid boundary pixel, the pixel must have a value

of 255 (must be part of the object), and it must be an edge pixel. To be an edge pixel, at

least one of the 4-neighbours of the pixel must have a value of 0 (not part of the object).

Codes are assigned based on the position of the next valid boundary pixel relative to the

current boundary pixel as follows:

^

Code 3^Code 2^Code 1

^

(x-1,y-1)^(x,y-1)^(x+1,y-1)

Current Boundary
^Code 4^Pixel^Code 0

^

(x-1,y)^(x,y)^(x+1,y)

^Code 5^Code 6^Code 7

^

(x-1,y+1)^(x,y+1)^(x+1,y+1)

Figure 13 - Movement Codes

In order to maintain the same direction of movement (counterclockwise) around the

object, the next boundary pixel is determined using the previous movement code, and the

movement codes of all valid adjacent boundary pixels. At the beginning of the algorithm,

32



the previous movement code is set to 4. This starts the movement in a counterclockwise

direction.

The next boundary pixel is determined as follows: The search for a valid boundary pixel

begins at the movement code one counter clockwise position from the movement code

directly opposite the previous movement code (i.e. if the previous movement code was 5,

the movement code directly opposite code 5 is code 1, so the search begins one position

counter clockwise from that position - movement code 2). If the pixel corresponding to

that movement is a valid boundary pixel, then the current position is updated to this new

boundary pixel. If the pixel in that position is not a valid boundary pixel, then the pixel

corresponding to the movement code one counter clockwise position from that is

checked. This search is continued until the next valid boundary point is found.

Figure 14 shows an example of the operation of the algorithm. At boundary pixel 4, there

are three valid boundary points corresponding to movement codes 0,3, and 4. Since the

previous movement code was 4, the search for a valid boundary pixel starts at movement

code 1. There is not a valid boundary point corresponding to movement code 1, so the

movement code one counter clockwise position away (movement code 2) is checked.

There is not a valid boundary pixel corresponding to movement code 2, so movement

code 3 is checked. There is a valid boundary pixel corresponding to movement code 3, so

the pixel corresponding to movement code 3 becomes the next boundary pixel.
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First
Boundary

Pixel

Starting
Point

Movement Codes:
2,3,4,3,6,5,6,6,6,7,0,0,1,2,2

Figure 14 - Object Boundary Determination

At the end of the procedure, the coordinates of all the boundary pixels have been stored

in order as they occur around the boundary of the object. The number of boundary pixels

in the object has also be stored. These coordinates are used in the next section. Figure 15

shows an example of the results of the boundary detection routine.
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Original Object

Boundary of Object

Figure 15 - Example of Boundary Detection

4.6.2 Estimating the Tangent at each Boundary Pixel

Since the object consists of discrete pixels, an exact calculation of the tangent at each

point in the boundary cannot be computed. However, an estimate of the tangent can be

calculated. An accurate estimate of the tangent cannot be obtained by using only two

adjacent boundary pixels. Since a boundary pixel can only occur in one of eight locations

relative to a neighbouring boundary pixel, the tangent angle computed would be one of

only eight angles. Clearly, more than two boundary pixels must be used to determine a
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tangent estimate at each pixel in the boundary. The tangent estimate at a boundary point i

is determined using the neighbouring four boundary points on either side of the boundary

point i as follows:

Let the x[1],x[2],...x[i],...x[n-1],x[n] represent the x-coordinates of the n boundary pixels
Let the y[1],y[2],...y[i],...y[n-1],y[n] represent the y-coordinates of the n boundary pixels

4

dx[i] = Ex[i +j] —x[i —j]
J=1

4

dY[i] = Ey[1.+A —y[i —j]
J=1

Since the boundary points form a closed curve, wraparound is used when an index is

greater than n or less than 1. For example x[0]=x[n] and x[n+2]=x[1].

The tangent angle, theta[i] at boundary point i can then be calculated as follows:

if dx[i]=0^theta[i]=90.0*dy[i]/abs(dy[i])^(4.7)

otherwise^theta[i]=atan(dy[i]/dx[i])^(4.8)

Figure 16 shows results of determining the tangent at each boundary point in the given

image. The tangent points theta[1...n] are used in the next section.

(4.5)

(4.6)
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Boundary of Object

Pixel Tangent Estimate
(434,336) -87.1
(434,335) -76.0
(433,334) -68.2
(433,333) -61.2
(432,332) -57.0
(431,331) -55.0
(431,330) -51.7
(430,329) -45.0

(431,343) 63.4
(432,342) 65.8
(433,341) 68.2
(433,340) 70.7
(433,339) 73.3
(433,338) 78.7
(434,337) 84.3

Figure 16 - Example of Tangent Estimates

4.6.3 Determining the Curvature at each Boundary Pixel

The change in the tangent is an estimate of the second derivative of positions of the

boundary points, or the curvature of the boundary points. An estimate of the curvature at

boundary pixel i is obtained as follows:

curvaturel[i]=--theta[i+1]-theta[i]^(4.9)

curvature2N—theta[i]-theta[i-1]^(4.10)
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The curvatures are then adjusted to be in the range -90 degrees to 90 degrees as follows:

if curvaturel[i]<-90^curvaturel[i]=curvaturel[i]+180^(4.11)

if curvaturel[i]>90^curvaturel[i]=curvaturel[i]-180^(4.12)

The same adjustment is done for curvature2[i].

The curvature at boundary pixel i is then calculated as follows:

curvature[i]=0.5*(curvature1[i]+curvature2N)^(4.13)

Figure 17 shows how curvature values change as the object boundary changes from

concave to convex. The curvature values are used to divide the object if necessary.

Curvature

+ W ±

+

Figure 17 - Curvature for Concave and Convex Objects
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4.6.4 Using Zero Crossings in Curvature to Divide the Object if Necessary

Figure 18 shows plots of the curvature values for two objects. Object 1 is a single object

and division is not necessary. Object 2 consists of two overlapping objects, and division

is desired. In the plot for Object 1, there are no zero crossings. In the plot for Object 2,

there are two sets of zero crossings. The zero crossings correspond to a change in

curvature, and identify which boundary pixels should be used to divide the object. To

divide the object, a boundary pixel with the minimum curvature from within each of the

two sets of zero crossings are connected with a black line. Figure 19 shows the results of

executing overlapping object separation on the two objects. Object 1 has not been

divided, and Object 2 has been divided. These are the correct results for these cases.

Curvature

                                

Object I

                    

Boundary Pixel

                      

Zero Crossings

         

Curvature

                                

Object 2

         

Boundary Pixel

                                 

Figure 18 - Curvature Plots for Two Different Objects
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Object I Object 2

Figure 19 - Results of Object Division for Two Objects

In some cases, small negative curvature values are calculated for boundary points that do

not correspond to points where the object should be divided. When there are more than

two areas of negative curvature, the two areas containing the largest negative curvatures

are used for object separation. When curvature is calculated for large objects that should

not be divided, often there are two or more areas of negative curvature. This does not

occur often for small objects. The reason that large objects are more likely to have areas

of negative curvature is that as object size increases, the average curvature of the object

decreases, and therefore small variations in curvature can result in areas of negative

curvature. This does not occur for small objects. Since the average curvature is large for

small objects, small variations from the average curvature will still be positive. In order

to prevent large objects that should not be divided from being divided, the curvature

values are adjusted before zero crossing detection is done. The adjustment depends of the

size of the object. If the object is small, the curvature values should not be changed a

great deal. It is acceptable to subtract a small constant curvature from all the pixels in a

small objects. This constant amount should not be large enough to cause objects to be

divided that should not be divided. If the object is large, a constant curvature should be

added to prevent objects that should not be divided from being divided. The constant

amount should not be so large that large objects that should be divided are not divided.
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Equation 4.14 shows the curvature adjustment which was used. For large objects, the

average curvature will be small, so the second term should be large (larger than K2), and

a positive constant will be added. For small objects, the average curvature will be large,

so the second term will be small (slightly smaller than K2) and a small negative constant

will be added. The determination of the constants is discussed in the results section.

curvature[i] =curvature[i] + K1 —K 2
C AVG

where: CAvG=average curvature of all boundary points with positive curvature
Ki and K2 are constants

(4.14)

4.6.5 Case of more than two overlapping objects

In the case of more than two overlapping objects. The separation procedure can be

repeated a number of times. The division procedure using zero crossings will be more

complex in order to properly separate one object at a time from the group. This

procedure has not been developed for this thesis.
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Chapter 5
Measuring Features / Classifying Objects

5.1 Introduction

After objects have been detected in the image, it must be determined which objects

represent food pellets, and which objects represent fish and other particles or objects in

the water. Properties of the objects are measured, and these values are used to classify

each object as either a food pellet or something else. In this section, the features chosen

to classify the objects are presented, the methods of measuring these features are

discussed, and classification using these features is described.

5.2 Features used to Distinguish Food Pellets from Other Objects

In the classification process, an object is identified as being a member of one of a number

of groups (or classes) based on its characteristics. Features of the object are measured in

order to quantify the characteristics of the object. The measured characteristics can then

be numerically compared to the classes and a decision regarding which class the object is

a member of can be made. In this application, objects are classified as being a member of

one of two groups: food pellet objects, or other objects.

Ideal features for classifying objects into one of two groups have values that are very

different for the two groups. The difficulty in classification lies in determining features

that have significant differences in value for the two classes. In this application, the

objects of interest are food pellets. These pellets have a cylindrical shape. Since the size

of a food pellet in the image depends on the distance between the camera and the pellet,

and food pellets can appear in different orientations in the image, the feature

measurements taken from objects in the image must be invariant to both rotation and

scaling. The features must measure properties that food pellet objects exhibit, but other

objects do not, or vice versa, in order to achieve an accurate classification.
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In this section, the four features used for classification are examined. These features are

1) circularity, 2) bounding area ratio, 3) minor to major axis ratio, and 4) minimum to

maximum radius ratio.

5.2.1 Circularity

Circularity is a measure of the roundness of the object, and is defined as:

Circularity —  Perimeter2 (5.1)
4 r • Area

Circular objects will have circularity values close to 1.0. As object shape varies from

circular, the circularity value will vary from 1.0. Food pellet objects are close to circular

in most orientations, so this feature is useful for discriminating food pellet objects from

other objects that are not circular.

To determine the perimeter of an object, the following steps are performed:

Calculating the Perimeter of an Object

I. determine the boundary pixels of the object (described previously in section 4.6.1)

2. start at one of the boundary pixels, and move around the object incrementing the

perimeter by a value depending on the direction of movement from pixel to pixel as

shown below (movements are from center pixel to one of its eight neighbours)

1.414 1.0 1.414

1.0 X 1.0

1.414 1.0 1.414
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Object AreaBounding Area Ratio — (5.2)
Bounding Box Area

5.2.2 Bounding Area Ratio

The Bounding Area Ratio is defined as:

where the bounding box is a rectangle surrounding the object (Figure 21)

After the objects in an image have been detected, the area and centroid of each object is

known. To calculate the bounding area ratio for each object, the bounding box area for

each object must be determined. The steps required to calculate the bounding box area

[19] are presented below:

Calculation of the Bounding Box of an Object

1. determine the rotation angle 0 of the object using moments of inertia

The Central Moment U(p,q) is defined as:

U(p,q) = E Dx -3-0P (y --yrf(x,y)^(5.3)
x y

- _
where: (x, y) are the coordinates of the centoid of the object

f(x,y) is the intensity of the object at (x,y)

The row moment of inertia is U(2,0)

The column moment of inertia is U(0,2)

The row-column cross moment of inertia is U(1,1)

The moment of inertia covariance matrix is defined as:

u .....[U(2,0) U(1,1)1
L uom U(0,2)

(5.4)

By performing singular value decomposition on U, the diagonal matrix A is

obtained.
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V C‘,IAJI.

(e ,e21)
Vector
(e,2,e22)

(X2)°5

ETUE =A^ (5.5)

E .[e1, e12

e21 e22

A =V'
L^A 2

The columns of E contain the eigenvectors of U and the diagonal of A contains the

eigenvalues of U. If the object is an ellipse, the eigenvectors and eigenvalues have

the physical meaning implied in Figure 20.

Figure 20 - Moments of Inertia used to Determine Rotation Angle

The rotation angle 0 is determined as follows:

if A, >X2, 6) =tart-1 ( e '
ell

ift,2 >Ai, 0 =tan (-1 e 2
e12

(5.6)

(5.7)

(5.8)

(5.9)
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2. determine the extremities (,amin,amax4min,Omax) of the bounding box ((a,i3) -

Figure 21) of the object from the rotation angle and the boundary pixels of the

object.

a =cos0(x —x) —sin t9(y —y) +x
(5.10)

= —sin 0(x —x) +cos 0(y —y) +y

where: (x,y) are the coordinates of one of the boundary pixels

3. calculate the area of the bounding box from the extremities

bounding box area =( ocmax —arnin )0max —Anin^ (5.11)

The bounding area ratio will always be less than or equal to 1.0. Food pellet objects

typically have bounding area ratios around 0.74. This feature can be used to help

discriminate food pellet objects from objects which have a smaller bounding area ratio.

Figure 21 - Calculation of Bounding Box Area
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5.2.3 Minor to Major Axis Ratio

The minor to major axis ratio is defined as:

Length of Minor AxisMinor to Major Axis Ratio —
Length of Major Axis

(5.12)

The minor to major axis ratio will always be less than or equal to 1.0. Food pellet objects

typically have minor to major axis ratios between 0.65 and 1.0. This feature can be used

to help discriminate food pellet objects from objects which have a small minor to major

axis ratio.

5.2.4 Minimum to Maximum Radius Ratio

The minimum to maximum radius ratio is defined as:

Minimum Radius of Object Minimum to Maximum Radius Ratio —^ (5.13)
Maximum Radius of Object

The minimum and maximum ratios are determined by calculating the distance from the

centroid of the object to each of the boundary pixels and storing the minimum and

maximum distances calculated. The minimum to maximum radius ratio will always be

less than or equal to 1.0. Food pellet objects typically have minimum to maximum radius

ratios between 0.6 and 0.8. This feature can be used to help discriminate food pellet

objects from objects which have a larger or smaller minimum to maximum radius ratio.
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5.3^Classification Using Feature Values

Using the four feature values measured from an object, the object can be classified as

belonging to either the food pellet object group or the other object group. Measurements

are taken in feature space to determine which class the unknown object is a member of.

Feature space is the n-dimensional space defined by the n features. In this case the

feature space is a four dimensional space. Classification is done by calculating the

distance in feature space from the object to the class mean for the food pellet object

group. The smaller this distance is, the more likely that the object belongs to the food

pellet object group. The first step in the classification process is to determine the class

mean for valid food pellet objects. This is done by collecting the feature values for a

large number of objects that are known to be food pellets and calculating the means for

each feature as follows.

For N valid objects that are known to be food pellets, the class mean is defined as:

1 N^M f2Em=— x. =i
N i=1 — m f 3

(5.14)

where:

f 1,

f 2,
x, =^ (5.15)

f3,

is the vector which contains the feature values fl, f2i,f3i, and f4i for the ith food pellet

object and where mn, mc,me, and mf4 are the means for the four features.
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The Euclidean distance from the origin of the feature space to a point x in the feature

space is defined as:

dE (x,0) =[(x)T(.1)]°.5^ (5.16)

In order to use this Euclidean distance measure, the following transformation is required.

x' =(x —m)^ (5.17)

This transforms the feature space so the class mean is at the origin. The distance measure

then becomes the distance from the class mean m to a point x in the feature space and can

be determined as follows:

d E (2c_,Ln_) =[(^=RI —111)T (-1.rn)] 05 (5.18)

Figure 22 shows the effect of this transformation on the feature space (2-D feature space

shown).

Feature Space^ Feature Space
Before Transformation^ After Translation

Figure 22 - Feature Space Transformation
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N- r(x. —m)(x,
N^— —i=1

(5.19)

Using the Euclidean distance from a class mean to an object (represented by a point in

the feature space) as a measure of the probability that the object is a member of that

class, is adequate in the case where the features are uncorrelated and have equal variance.

Figure 23 shows why the Euclidean distance is not adequate when the features are

correlated and do not have equal variance.

Figure 23 - Euclidean Distances used for Classification

In Figure 23 a class of objects is represented by two features. The features are correlated

and their variances are not equal. The Euclidean distance from the class mean to P1 is the

same as the Euclidean distance from the class mean to P2. However, P1 is not a member

of the class but P2 is. Therefore, a classifier based on Euclidean distance alone cannot

accurately classify P2 as a member of the class, and exclude P1 from the class.

A transformation of the feature space is necessary to uncorrelate the features and scale

the variances of the features so both features carry equal weight in the distance measure.

The covariance matrix of the class can be determined as:
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The feature space can be transformed by a weighting matrix of the following form (2-D

case)

w .[ W11 W12 ]

W21 W22

The transformations applied to the feature space are defined as:

x' =(x —ni)
x" =Wx' =W(x —m)

(5.20)

(5.21)
(5.22)

Figure 24 shows the desired results of these transformations on the feature space. After

the second transformation, the features become uncorrelated, and the variances become

equal.
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Feature Space^ Feature Space
Before Transformation^ After Translation

x2"

Feature Space
After Rotation and Scaling

Figure 24 - Feature Space Transformations

Incorporating these transformations into the distance measure, it becomes:

dw(x,m) =[(W(x —m))T W(x —1)]"^(5.23)

dw(x,m) =Rx _my wz w (x _n)r^(5.24)

To uncorrelate the features and equate the variances of the features, a weighting matrix

that transforms the covariance matrix to the identity matrix is required.

WSW T^ (5.25)
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From this, it can be found that

(5.26)

Therefore the distance measure becomes:

cl,(x,m) =[(x —m)T (x —m)r^(5.27)

This distance measure is called the Minimum Intra-Class Distance (MICD) measure. It is

used to get an unbiased measure of distance from the class mean when the features are

correlated and the variances of the features are not equal.

Using the MICD distance measure, objects can be compared to the class mean without

effects from correlated features or unequal variances affecting the measure. Figure 25

shows a plot of some equal MICD distance contours on the original feature space. The

equation of an equidistant contour is:

[(x. —m.)T (x —m)]°5 =k^(5.28)

where k is a constant.
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Di stance=a

Distance=b

Distance=c

Distance=d

^• Xi

MICD Equidistant Contours
a>b>c>d

Figure 25 - Equidistant MICD Contours on Original Feature Space

In order to classify unknown objects as either food pellet objects, or other objects, the

following steps are performed.

Object Classification

I. Obtain a large set of known pellets objects and determine the feature values for each

object.

2. Use the feature values from the known pellet objects to calculate the class mean in

and the covariance matrix S.

3. For each of the known pellet objects, calculate the MICD distance from the class

mean.

4. Choose a MICD distance that is larger than most if not all of the distances obtained

in step 3. This is the classification distance.

5. For an unknown object, measure the feature values, and calculate the MICD

distance from the pellet object class mean. If the MICD distance obtained is smaller
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than the classification distance obtained in step 4 (in feature space, the object is

inside the equidistant contour defined by the classification distance), then classify

the object as a pellet object, otherwise, classify it as a non-pellet object.

Steps 1 to 4 are only performed once. The class mean m, the covariance matrix S, and the

classification distance are stored, and used to calculate the MICD distance for each

unknown object.
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Chapter 6
Counting Objects using Object Tracking

6.1 Introduction

The goal of this project is to count the number of food pellets that fall through the view

area of the underwater camera. After objects representing food pellets have been detected

in a sequence of frames, the objects must be counted in such a way as to avoid counting a

single food pellet more than once. Some method of object tracking must be implemented

in order to track a single pellet throughout the sequence of frames so it is only counted

once. In this chapter, the algorithm that was developed to accomplish this goal is

presented.

6.2 Overview

There are many different methods of tracking objects through a video sequence. Many

methods, [2],[13],[14],[16] assume the size and shape of the object, or targets on the

object, remain constant throughout the sequence. They then use predictor methods to

estimate the position of the object from its past motion history. A search for the object is

carried out in an area around this position. Searching is done using template matching,

histogram matching, or other gray level comparison methods.

The problem with using a tracking method of this type for this project is that the food

pellet objects change in size and shape between consecutive image frames. Since the food

pellets are falling past the camera, the food pellet objects generally get smaller in

consecutive frames. A method of tracking is required which can accommodate changes in

the size and shape of the object between consecutive frames. Horton [7] describes a

method of matching objects in consecutive frames using a cost function which is based

on measurements of the objects shape and size. The weightings of the different

measurements that make up the cost function can be varied. This is the type of matching
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•

Falling Food Pellet

•

•

Video Camera

method that was implemented for this project. A distance function (similar to Hortons

cost function but including other measurements in addition to shape and size type

measurements) is used to match objects in consecutive frames. The tracking and counting

algorithm takes into account factors specific to this application.

6.3 Object Counting Algorithm

The geometry of pellet motion is shown in Figure 26. It can be seen that when food

pellets fall through the view area of the underwater camera, they will always enter the

image frame at one of the edges. If a food pellet falls straight down the water column, the

pellet motion in the image frame will be from the edge of the frame inward. These two

properties were used to develop the object counting algorithm used in this project. To

examine the operation of the algorithm an example will be explained.

•

•

Frame at T1

Frame at T2

Frame at T3

Frame at T4

Figure 26 - Food Pellet Motion

In this example, it will be assumed that two frames, Frame i and Frame i+1 have

undergone object detection and classification, and a list of valid objects representing food

pellets is available for each frame. Figure 27 shows Frame i and Frame i+1 with food

pellets, the New Object Area and the Center Area labeled.
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Figure 27 - Two Consecutive Image Frames

The object counting algorithm involves tracking objects from Frame i to Frame i+1 and

counting new objects in Frame i+1 that have just entered the view area of the underwater

camera. The new objects that are counted are objects that were not tracked from Frame i,

and are located in a thin band around the edge of the frame (New Object Area). The

algorithm is presented below:

Object Counting Algorithm for Frame i and Frame 1+1

1. Execute the object matching algorithm between objects in Frame i and objects in

Frame i+1

2. All objects in the New Object Area of Frame i+1 that were not matched with objects

in Frame i are counted, and the resulting number is added to the total pellet count.

3. i=i+ 1

4. if frame i+1 exists GOTO STEP 1, else STOP
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Object tracking is done to ensure that if a pellet does not move out of the New Object

Area between frames, or a pellet moves back into the New Object Area from the Center

Area, it will not be counted again. The width of the New Object Area depends on the

sampling frequency of the frames. The longer the sampling frequency, the wider the New

Object Area must be. This is true because if the New Object Area is too narrow, a food

pellet could enter the frame, and move through the New Object Area and into the Center

Area between frames, and the algorithm would not count it. The wider the New Object

Area, the greater the possibility of an error in the object count due to loss of track of a

pellet. The width of the New Object Area is proportional to the maximum distance a food

pellet can move between two frames, which varies with the frame sampling rate.

The choice of frame sampling rate affects the complexity of the object tracking

algorithm. The higher the sampling rate, the easier tracking becomes because objects

move very small distances between frames. Therefore, the object matching algorithm

would not need to be as complex. However, as the sampling frequency is increased, the

number of frames to be processed increases, and the computational power required

increases. There is a trade-off between the sophistication of the object matching

algorithm, and the processing power required.

One cause of error in pellet count occurs when the computer loses track of food pellets as

they move through the view area of the camera. Loss of track of a food pellet could occur

in a number of situations. If a fish or other object moved between the camera and a food

pellet between Frame i and Frame i+1, the pellet would not be visible in Frame i+1, and

a loss of track would occur. If the fish or other object moved out of the way between

Frame i+1 and Frame i+2, the pellet would reappear in Frame i+2. If the pellet

reappeared in central area of the frame, there would not be a problem, tracking would
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resume on the pellet through subsequent frames. If however, the pellet reappeared in the

New Object Area, the algorithm would not be able to differentiate the pellet from a new

pellet entering the view, and would recount it. Therefore the New Object Area should be

as narrow as possible in order to minimize the possibility of recounting error due to loss

of track of objects. The use of a narrow New Object Area requires a high sampling

frequency between frames, and consequently more processing power. If a pellet fell out

of range of the camera between Frame i and Frame 1+1, the pellet would not be visible in

Frame i+1, and a loss of track would occur. In this case, tracking would simply cease for

this object, as there is no possibility of the object reappearing in future frames, and no

counting error would occur.

The object matching algorithm is the most important step of the object counting

algorithm, and will be described in the next section.

6.4^Object Matching Algorithms

The object matching algorithm is used to determine the new positions of objects detected

in Frame i, in Frame i+1. This information can be used to determine if new objects have

entered the view area of the camera in Frame i+1. In order to match objects in Frame i

with objects in Frame i+1, a distance measure is used to determine the probability that an

object in in Frame i should be matched with an object (i+l)m in Frame i+1. In Figure 28,

two frames, Frame i and Frame i+1 are shown with their respective objects. An overlay

of Frame i and Frame i+1 is also shown, along with the desired matching result.
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Figure 28 - Object Matching Example

The probability that two objects should be matched is measured by a distance function.

The distance function can incorporate many measures such as Euclidean distance,

relative sizes of the objects, and other factors. The smaller the value of the distance

function, the 'closer' the two objects are, and the higher the probability that they should

be matched.
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An object in in Frame i is matched with an object (i+l)m in Frame i+1 if:

1) object i+lm is the closest object in Frame i+1 to object in

2) object in is the closest object in Frame i to object i+lm

3) the distance between objects in and i+lm is smaller than a maximum distance.

This can be stated as:

distance(in,(i+l)m) <= distance(in,(i+l)k) V (i+l)k E Frame i+1
^

(6.1)
distance(in,(i+l)m) <= distance(ii,(i+l)m) V i1 E Frame i

^
(6.2)

distance(in,(i+l)m) <a certain maximum distance^(6.3)

where the maximum distance dependent on the maximum Euclidean distance a pellet can
move between frame times (dependent on sampling frequency)

distance(in,i+1m) is dependent on a number of factors which are explained in section 6.5.

Three algorithms were developed for this project that can be used to match objects using

the above distance measures. Each algorithm has its advantages and disadvantages. These

three algorithms are presented in the sections following.
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6.4.1 Large Storage, Minimum Number of Distance Calculations Algorithm

In this algorithm, all distances from each object in Frame i to all objects in Frame i+1 are

calculated. The distances are stored in an array (Figure 29).

Objects in Frame i

Objects
in
Frame i+1

1 2 • • • n
1 distance(1,1) distance(2,1) .^.^. distance(n,l)
2 distance(1,2) distance(2,2) .^.^. distance(n,2)

.

.
.
.

.

. •
.

.

.
m distance(1,m) distance(2,m) .^.^. distance(n,m)

Figure 29 - Distance Array for Large Storage Algorithm

The array is then used to match objects in Frame i with objects in Frame i+1 as follows.

Object s in Frame i+1 should be matched with object t in Frame i if the following

conditions are met:

1. distance(t,^) is the minimum distance in row s
2. distance(t,^) is the minimum distance in column t
3. distance(t,^) is less than a certain maximum distance

The algorithm starts on the first row and finds the column with the minimum entry. If

this entry is also the minimum in that column, and the distance is less than the maximum

distance, then the objects are matched. If two objects are matched, then the maximum

distance is written into all the entries in row s and column t to prevent these objects from

being used for subsequent matches. If the objects are not matched, the algorithm moves
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on to the next row. The algorithm cycles through the rows repeatedly until no matches

are made in a cycle. The algorithm is presented below.

Large Storage Object Matching Algorithm

1. match=0, s=1

2. if object s is unmatched, fmd the minimum distance in row s - found in column t

3. if entry (t,^) is the minimum in column t, object t in Frame i is unmatched, and

distance(t,^) is less than the maximum distance then object t in Frame i is matched

with object s in Frame i+1, match=match+1

all entries in row s and column t are changed to the maximum distance

4. Increment s and repeat STEPS 2 and 3 until the last row is reached. If the last row is

reached and match=0 (no matches in last cycle) - END, else GOTO STEP 1

This algorithm has the advantage that it requires the minimum number of calculations of

distances between objects in the two frames. For any matching algorithm with n objects

in Frame i and m objects in Frame i+1, the minimum number of distance calculations is

n*m. If (n-m) is close to zero, then the number of distance calculations required is in the

order of n2 (0(n2)). The disadvantage of this algorithm is the large amount of storage it

requires. For n objects in Frame i and m objects in Frame i+1, the algorithm requires

m*n units of storage. If large amounts of storage are available, this algorithm is the best

of the object matching algorithms presented.

6.4.2 Small Storage, Maximum Number of Distance Calculations Algorithm

In this algorithm, a match for each of the m objects in Frame i+1 is determined one

object at a time as follows: The distances from an object s in Frame i+1 to all objects in

Frame i are calculated, and the minimum distance is determined. Let the object in Frame
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i corresponding to the minimum distance be object t. The distances from object t in

Frame i to all objects in Frame i+1 are calculated. If the minimum distance corresponds

to object s in Frame i+1, and the distance is less than the maximum distance, then object

s in Frame i+1 is matched with object t in Frame i, and both objects are marked as being

matched so they are not used in subsequent matches. The algorithm then moves to the

next unmatched object in Frame i+1. The algorithm cycles through the objects in Frame

i+1 repeatedly until no matches are made in a cycle. The algorithm is presented below.

Small Storage Object Matching Algorithm

I. match=0; s=1

2. if object s in Frame i+ I is unmatched, calculate the distance to all unmatched

objects in Frame i and store the results

3. Sort the distances in ascending order.

4. for object in Frame i corresponding to minimum distance (object t), calculate

distances to all unmatched objects in Frame i+1 and store the results.

5. Sort the distances in ascending order.

6. If the minimum distance corresponds to object s in Frame i+1, and the distance is

less than the maximum distance, match object t in Frame i with object s in Frame

i+1. Mark the objects as being matched so they are not used in subsequent matches.

match=match+ 1

7. Increment s and repeat STEPS 2 to 6 until the last object in Frame i+1 is reached. If

the last object is reached and match=0 (no matches in last cycle) - END, else GOTO

STEP 1
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This algorithm has the advantage that it requires a very small amount of storage. For n

objects in Frame i and m objects in Frame i+1, the algorithm requires only 2m+2n units

of storage. 2n units to store the n distances from objects in Frame i+1 to all objects in

Frame i, and their corresponding object numbers. 2m units to store the m distances from

objects in Frame i to all objects in Frame i+ 1, and their corresponding object numbers.

The disadvantage of the algorithm is the large number of distance calculations that must

be performed. For n objects in Frame i and m objects in Frame i+1, the minimum

number of distance calculations can be determined as follows:

Step 1
^

Calculate n distances to objects in Frame i. Calculate m distances to objects

in Frame i+1 two objects are matched

Step 2
^

Calculate n-1 distances to objects in Frame i. Calculate m-1 distances to

objects in Frame i+1 two objects are matched

Step m-1 Calculate 2 distances to objects in Frame i. Calculate 2 distances to objects in

Frame i+1 - two objects are matched

The total number of distance calculations (if n<m) is:

+ Ek n(n +1) m(m +1) (m —n)(m —n +1) Ek^ —mn +n
k=1^k=m-n+1^2^2^2

(6.4)

The total number of distance calculations is approximately equal to n*m, the same

number of calculations required by the large storage algorithm. If (n-m) is close to zero,

the number of distance calculations is 0(n2). However, this is the best case. In the best

case, for each object s in Frame i+1, the closest object in Frame i to that object (object t)
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is always its match (object s in Frame i+1 is the closest object to object t in Frame i, and

the distance is less than the maximum distance). This is very unlikely and therefore the

algorithm will most likely require many more calculations than required in the best case.

In the worst case, only one match is made for each cycle through the m objects in Frame

i+1. The total number of distance calculations is:

E(n —k)(m —k) +(n —k) = Enm —nk —mk +k2 +n —k
k=0^ k=0

=n2m +n2 —(m +n +1) Ek + Ek2
k=0^k=0

2^2=n m +n —(m +n +1) n(n +1) n(2n +1)(n +1) 
2^6

(6.5)

If (n-m) is close to zero, the number of distance calculations will be 0(n3). This is much

larger than the number of calculations required in the best case. In the average case, the

number of distance calculations will be between 0(n2) and 0(n3). If large amounts of

storage are not available, this algorithm is an alternative to the large storage algorithm,

but requires much more computation. However, this algorithm can be modified to

maintain the low storage requirement, and reduce the amount of computation required.

This modification is presented in the next section.
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6.4.3 Small Storage, Intermediate Number of Distance Calculations Algorithm

The small storage algorithm can be modified to reduce the number of distance

calculations required, and maintain the low storage requirements. The algorithm is

described in this section.

In this algorithm, matches are made between objects using the same method as was used

in the previous algorithm, but if the closest object in Frame i (object t in STEP 4 of

previous algorithm) is not matched with object s in Frame i+1, the second, and third

closest objects are tried before moving on to the next object in Frame i+1. Since it is

unlikely that for each object in Frame i+1, the closest object in Frame i to that object is

its match, the closest three objects are tested. It is likely that one of the closest three

objects will be its match. The algorithm is presented below.

Second Small Storage Object Matching Algorithm

1. match=0; s= 1

2. if object s in Frame i+1 is unmatched, calculate the distance to all unmatched

objects in Frame i and store the results

3. Sort the distances in ascending order. count=1

4. OBJECT = object in Frame i corresponding to minimum distance (object t)

5. calculate distances from OBJECT to all unmatched objects in Frame i+ 1 and store

the results.

6. Sort the distances in ascending order.
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7. If the minimum distance corresponds to object s in Frame i+1, and the distance is

less than the maximum distance, match object t in Frame i with object s in Frame

i+1. Mark the objects as being matched so they are not used in subsequent matches.

match=match+ 1

8. if a match was not made, and count=1 - repeat STEPS 4-7 for OBJECT = second

closest object in Frame i from STEP 3. count=2

9. if a match was not made, and count=2 - repeat STEPS 4-7 for OBJECT = third

closest object in Frame i from STEP 3. count=3

10. Increment s and repeat STEPS 2 to 6 until the last object in Frame i+1 is reached. If

the last object is reached and match=0 (no matches in last cycle) - END, else GOTO

STEP I

This algorithm has the same storage requirements as the previous algorithm (2m+2n units

of storage). In the worst case, the algorithm will perform exactly the same number of

distance calculations as the previous algorithm, and in the average case, it will perform

fewer calculation than the previous algorithm. The exact number of distance calculations

required will depend on how often an objects match is one of the three closest unmatched

objects.
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6.5 Distance Measure Between Objects

The distance measure between two objects (one in Frame i at (x ,yi), the other in Frame

i+1 at (x2,y2)) is inversely proportional to the probability that the two objects should be

matched (i.e. the probability that the objects represent the same particle moving through

the view area of the camera). The distance measure is composed of a number of

individual measurements. The measurements are:

1. Euclidean distance ratio measure - The Euclidean distance between the centroids of

the two objects (centroids at (xi,yi) and (x2,y2)). It is likely that the position of an

object moving through the view area of the camera will not change by a large amount

between the two images. Therefore the Euclidean distance between two objects in

consecutive frames will be small if the objects should be matched. The Euclidean

distance is defined as:

Euclidean Distance =V((x2 —x1 )2 +(y2 —Y1 )2)
^

(6.6)

As a result of the camera geometry, objects near the edge of the frame tend to move

larger distances between frames than objects closer to the center of the frame. The

maximum distance an object can move between frames is dependent on its position

within the frame. This distance is used to prevent matching objects that are too far

apart. The maximum distance is defined as follows:

The center of the frame has coordinates (xc,ye)
The top right corner of the frame has coordinates (xmax,0)
The maximum distance from center is defined as:

Maximum Distance from Center = Euclidean Distance ( (xc,ye), (xmax,0) )

The maximum movement at the edge of the frame is Me
The maximum movement at the center of the frame is Mc
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The maximum distance an object can move depending on position (Distance from

Center is the Euclidean distance from the center of frame to the centroid of the object

in Frame i) within the frame is defined as:

(M —M ) xDistance from CenterMaximum Distance — "
Maximum Distance from Center

(6.7)

The Euclidean distance ratio Er is then defined as:

Euclidean Distance(( x , ), (x2 , y2 )) 
Euclidean Distance Ratio^=^ (6.8)

Maximum Distance

This ratio is a measure of the closeness of the objects. A low value indicates a high

probability that the objects should be matched, while a value near 1.0 indicates a

lower probability of a match.

2. Area ratio measure - The ratio of the areas of the two objects. It is likely that the

size of an object moving through the view area of the camera will not change by a

large amount between the two images. Therefore the ratio of the areas of two

objects in consecutive frames (areai and areali+i) should be close to 1.0 if the

objects should be matched. The size ratio is defined as:

if area, >area,+, Area Ratio A,. —
areai+,

 

area;
(6.9)

if area ^Area Ratio A, =
area;

area,+,
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Object 1
(x1,311)

Center
(x0Y.) Distance(Center, Object 2)

Object 2
(x2,Y2)

Motion
VectorDistance(Center,Objectl)

3. Motion vector between two objects - The motion vector is the vector formed by

joining the centroids of two objects in consecutive frames. As a result of the camera

geometry, objects generally tend to move from the edge of the frame inward,

towards the center of the frame. Measurements can be made to determine if the

motion of the object is towards or away from the center of the frame, and how

close to the center of the frame the motion vector lies.

In most situations, if the distance from Object 2 in Frame i+1 to the center is further

than the distance from Object 1 in Frame i to the center, then the motion vector does

not point inward, and the two objects should not be matched (Figure 30).

Figure 30 - Motion Vector between Objects in Consecutive Frames

A measure of the deviation of the motion vector from the center point can be
obtained by calculating the distance from the center to the closest point on the
vector path (Figure 31).
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Figure 31 - Measure of Deviation of Motion Vector from the Center Point

The minimum distance to the center Dc is calculated as follows:

equation of vector line: y = m xx + b (6.10)

—Y=m = 2^1Y (6.11)slope of vector
x2 -.X 1

y —intercept =b =y2 —mx2

D, = abs(mx, —y, +b)

(6.12)

(6.13)
1/M2 +1

The larger the minimum distance to the center, the less likely that Object 1 and

Object 2 should be matched.

6.5.1 Combining Distance Measures

The total distance used for object matching can be calculated as a weighted combination

of the individual distance measures as follows:

Distance =1/(weE,. )2 +(wa (1.0 —A„))2 +(w,D, )2^(6.14)
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where:
Er,Ar,Dc are Euclidean distance ratio, area ratio, minimum distance from motion vector

to center
we,wa,wc are weightings for each component distance measurement

The weightings can be adjusted for different conditions. In some situations, use of one or

more of the individual distance measures may adversely affect matching, so they should

be eliminated from the total distance measure by weighting them by 0.
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Chapter 7
Experimental Results and Discussion

7.1 Introduction

In this chapter, the performance of each of the various components of the food pellet

counting system are discussed. Problems encountered in each part are described and

possible solutions are suggested. Overall system tests are described, and counting

accuracy results are presented.

7.2 Image Acquisition

The quality of the images analyzed by the computer is an important factor in the food

pellet counting process. If the quality of the images is low, the information extracted

from the images is noisy, and analysis becomes more difficult. In digital images, quality

can be described by two factors. The first factor is accuracy in measuring the intensity

level of each pixel in the image. As the accuracy decreases, the image will become more

noisy, and the quality will decrease. The second factor in image quality is the number of

pixels used to represent the image (resolution). As the number of pixels used to represent

the image decreases, the value of the image from an image analysis standpoint decreases.

The image sequences were acquired by a standard RS-170 CCD camera, and stored on

SVHS videotape. A frame grabber card was then used to extract images from the

videotape, digitize them, and store them on the computer. The images available for

computer analysis were 512 by 480 pixels. Noise is added to the images in the process of

storing images on videotape, and in the process of transferring them from videotape to

the computer. In addition, the quality of the images output from the camera is not high.

The camera is made for television quality output, not for applications which require

highly accurate gray level information. Therefore, the quality of the images stored on the
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computer is significantly lower than desirable. Higher quality images can be acquired

using better equipment.

If a digital camera were used to capture and store images at a given sampling rate, the

images available for computer analysis would be of much higher quality than those

currently available. A digital camera can produce high resolution images with highly

accurate pixel intensity values. Digital cameras can capture images 1000 by 1000 pixels,

2000 by 2000 pixels and larger. Using a digital camera bypasses the process of storing

images on videotape, and transferring the images from videotape to the computer for

analysis. Therefore the noise introduced by these processes is eliminated.

Another problem in image acquisition occurred in extracting images from videotape. The

videotape was time coded so individual frames could be acquired by the frame grabber

and stored. Unfortunately when a specific frame was cued up on the VCR, and held in

STILL mode, the VCR interpolated one of the fields of the image (i.e. one of the fields

was from data off the videotape, and the other field was interpolated from this data). This

meant that all the data stored on the tape was not being used. To resolve this problem,

frames were acquired from the video signal while the VCR was in PLAY mode. The

computer received the time codes from the VCR as the tape played, and when the desired

time code was returned, the frame grabber was activated to capture the desired frame.

The problem with using this method was that the frame grabber did not consistently grab

a complete frame. Often it grabbed one field from one frame, and the other field from the

following frame. This caused a problem, because if an object moved between frames, it

appeared in slightly different locations in the two fields.
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It was decided that the inaccuracy introduced by interpolating fields was the lesser of the

two problems and therefore images were acquired while the VCR was in STILL mode.

For better results, the problem with acquiring image frames must be corrected.

Image sequences of falling food pellets were acquired at a number of different sites, in

different weather conditions, and with and without fish in the view area of the camera.

Some initial image sequences were acquired in grow-out tanks at the Department of

Fisheries labs in West Vancouver. These tanks are cylindrical, 3 meters in diameter and 1

meter deep. The bottom of the tank was painted black so the food pellets would appear

white in the images. The tanks were not deep enough to do tracking and counting

experiments because food pellets never fell out of the view area of the camera. This

footage was used to determine if measurements taken from pellet objects in the image

could be used to identify the orientation of the food pellet, and the distance from the

camera to the food pellet. This data was obtained to be used for a counting method which

involved counting food pellets as they passed through a thin layer at a known distance

from the camera. It was determined that since a pellet object is quite small in the image

(represented by a small number of pixels), measurements taken from the object would

not be accurate enough to reliably determine the orientation of the pellet and the distance

from the camera to the pellet. Therefore, this method of counting food pellets was

abandoned.

Another problem that occurred during image acquisition was that when food pellets

passed very close to the front of the camera, they were shadowed from the overhead

illumination by the camera rig, and therefore did not appear white. Under these

circumstances, these food pellets would not be detected by the object detection routines,

and would therefore not be counted. One possible solution to this problem would be to
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attach a transparent shield (Figure 32) around the camera housing to prevent food pellets

from coming too close to the front of the camera.

Food pellets 7mm in diameter and larger were used in the development of the automatic

counting system. The system can be used with any size of pellet, but the pellet size will

determine the effective coverage area of the camera. In farming practice, the size of the

food pellet used is increased as the fish increase in size.

In order to use the pellet counting systems in a sea cage, the sea cage must be of

sufficient depth. The camera must be far enough away from the bottom of the net so that

in the images, the net appears dark relative to the food pellets. Prior experiments

indicated that the camera should be at least 4 meters below the surface of the water in

order to avoid the back scatter of light off suspended particles in the first 4 meters of

water. These constraints define a minimum sea cage depth for which the systems will

work properly.
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Some sample data was acquired in a commercial sea cage owned by BC Packers on

Broughton Island. This cage measured 15 meters by 15 meters by 21 meters deep.

Sequences of food pellets with and without fish were acquired in this cage. This footage

was used to develop the current tracking and counting algorithm.

Image footage was also acquired at the Pacific Biological Station in Nanaimo, B.C. The

sea cages at this site measured 7.62 meters by 7.62 meters by 7.62 meters deep. This

footage was used to test the tracking and counting algorithm. 9.5mm food pellets were

distributed in the view area of the camera in amounts consistent with actual feeding rates.

7.3 Preprocessing

After images sequences were transferred from the videotape to the computer, each frame

was preprocessed before performing object detection. Preprocessing involved automatic

thresholding to separate the objects in the image from the background, and dilation and

erosion to clean up the thresholded image. After each frame was preprocessed, it was

stored for future use.

The automatic threshold determination algorithm performed well in most cases. In some

cases where there were large fish in the frame, or many food pellets, the optimal

threshold was not automatically determined. The algorithm requires a good estimate of

the background gray level distribution to function properly. Since there were many

objects in the frame, the gray level distribution of the image was skewed, and an accurate

estimation of the background gray level distribution could not be determined. Therefore

the correct threshold value was not chosen.

In order to get a more accurate estimation of the background gray level distribution, the

image could be divided in to a number of sections, and for each section an intensity
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histogram could be calculated. The automatic threshold deteithination algorithm could be

executed on each section, and a threshold estimate would be calculated for each section.

These estimates could then be used to determine the best threshold to use for the entire

image. The benefits of this approach can be illustrated by considering an image frame in

which a small number of the sections contained many food pellets or lightly coloured

fish, but the rest of the sections contain few food pellets. By taking an average of the

thresholds returned for each section by the automatic threshold determination algorithm,

a threshold would chosen which was very close to the threshold determined for the

sections with few food pellets. This threshold would be close to the optimal threshold for

the image. Instead of simply using the average of the thresholds determined for each

section, more sophisticated algorithms for determining the optimal threshold to use could

be developed.

The dilation and erosion operators are useful for cleaning up the image after

thresholding. The dilation operator fills in holes in objects and the erosion operator

removes extra pixels which are not part of objects. The problem with these operators is

that the execution time is relatively long. However, with the current image quality, they

are necessary.

7.4 Object Detection

In the object detection procedures, the objects in the image are first located, then any

overlapping objects are separated. After overlapping object separation, all the objects in

the image are located and their centroid positions and sizes are stored. It is necessary to

repeat object detection after overlapping object separation because if a single object has

been divided into two objects, the positions of the centroids of the two objects must be

stored instead of the position of the original object.
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As mentioned previously, the object detection algorithm could be implemented more

efficiently. However, in some uses of the object detection algorithm, a list of the

coordinates of all the pixels in the object is desirable. For example, when calculating

moments of inertia for object classification (5.3), it is necessary to know the coordinates

of each pixel in the object as well as the centroid of the object. Therefore the choice of

which type of implementation of the algorithm to use is dependent on the necessity of

storing the coordinates of all the pixels in the object.

Separating overlapping objects involves determining the boundary pixels of the object,

and calculating the curvature at each boundary pixel. The curvature values are then used

to determine if the object should be separated, and if so, how it should be separated.

Since the object is a discrete representation of the actual object, and the object is small

(not represented by many pixels), the calculated curvature values are often inaccurate.

This inaccuracy can result in negative curvature values being calculated for boundary

pixels which should have positive curvature values. In the separation procedure, areas of

negative curvature are joined with a black line to separate objects. If the curvature values

for some boundary pixels are determined to be negative when they should be positive,

the object may be divided incorrectly, or divided when it should not be divided. One

solution to this problem would be to use higher resolution images. When a food pellet is

represented by more pixels, the curvature estimate would tend to be more accurate, and

separation errors would decrease. Otherwise, perhaps a more accurate estimate of

curvature could be obtained using a different method.

As described in Chapter 4, the curvature values are adjusted before determining if an

object should be divided. The constants used for curvature adjustment were determined

by gathering a small set of objects, some for which division was desired, and others for

which division was not desired. The areas of minimum curvature and the average
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positive curvature for each object were calculated. The curvature adjustment constants

were then adjusted so the division algorithm would correctly divide the objects for which

division was desired, while not dividing the objects for which division was not desired

(i.e. the non-overlapping objects). The curvature adjustment was performed as follows:

.^140.0curvaturek I =curvature[i] +^ 15.0
C AVG

(7.1)

A detailed study into setting the curvature adjustment constants was not performed. Tests

with a large set of objects could be performed to optimize the values of the constants for

better overlapping object separation.

The method developed for separating overlapping objects can correctly divide only two

objects which are overlapping. It three or more object are overlapping, the object

separation algorithm will fail. The algorithm will fail because it will not be able to

identify which sections of negative curvature correspond to which objects. Figure 33

shows three overlapping objects with a representation of the curvature along the

boundary.
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The first figure shows a set of three overlapping objects. The graph shows the curvature

along the boundary of the set of objects. It can be seen that the curvature along the

boundary of the set of objects becomes negative in four places. The second figure shows

the desired object separation result; negative curvature point 1 has been joined to

negative curvature point 4 with a white line, and negative curvature point 2 has been

joined to negative curvature point 3. This division results in the correct separation of the

three objects. However, applying the overlapping object separation algorithm in its

current form would not necessarily result in this correct separation. The third figure

shows another possible separation. Point 1 has been joined to point 2, and point 3 has

been joined to point 4. This division results in an incorrect separation. Other separation

results are also possible. The problem is that the algorithm does not know which negative

curvature sections to join together to achieve correct separation. The problem becomes
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greater when more than three objects are overlapping. When overlapping objects are not

correctly separated, the pellet counting algorithm cannot operate correctly, and an error

in the pellet count is introduced. The frequency of food pellets overlapping in an image is

dependent on the density of pellets falling through the water column. In the experiments

that were carried out for this thesis, two food pellets overlapping was fairly common, but

three or more pellets overlapping was not common. If higher densities of food pellets

than were used for these experiments are used, a method of separating three or more

overlapping food pellets would likely be required.

7.5 Feature Extraction and Classification

Four features were used for object classification. The features used were circularity,

bounding box ratio, minor to major axis ratio, and minimum to maximum radius ratio.

All the features are rotation and scaling invariant. Invariance to rotation and scaling is

required for this application as food pellets appear in different rotations and are scaled

depending on their distance from the camera.

Circularity measures the 'roundness' of an object. On most pellet objects, the circularity

value was an accurate measure of the 'roundness' of the object. However, when objects

were small (less than 10 pixels in area), the circularity measure was inaccurate. This

inaccuracy was a result of the discrete nature of the digital images. When objects are

small, their shapes are not well represented by a small number of pixels. If a small

circular object is represented by a small number of relatively large pixels, the perimeter

is measured to be proportionally smaller than it should be for the measured area. The

circularity value will then be smaller than 1.0, and this may cause the object to be

classified incorrectly. If circularity is to be used as a feature for classification, higher

resolution images should be used, so feature measurements are more accurate.
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The bounding box ratio measures the ratio of the area of the object to the area of the

minimum size rectangle that completely encompasses the object. This feature is useful

for discriminating between pellet objects, and objects which may not be convex (a line

between any two points on the object lies entirely inside the object). The majority of

pellet objects are convex. For most pellet objects, the bounding box ratio should be near

1.0. If an object had a hole in it (non-convex object), the bounding box ratio would be

less than 1.0, and should therefore be classified as a non-pellet object. The key in

calculating the bounding box ratio is determining the rotation of the minimum area

bounding rectangle that completely encompasses the object. In the current

implementation, the orientation of the object is estimated using moments of inertia, and

the dimensions of the bounding rectangle are determined using this orientation. However,

this method does not always yield the minimum area bounding rectangle. Figure 34

shows an object for which the currently used algorithm calculates the bounding box ratio

incorrectly. The figure shows an object, the best fit bounding box, and the bounding box

calculated by the currently used algorithm. It can be seen that the calculated bounding

box has a much larger area than the best fit bounding box. In this case, the bounding box

ratio should be close to 1.0, but because the calculated bounding box is so large, the ratio

will be much less than 1.0.
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Figure 34 - Error in Bounding Box Determination

The reason why the bounding box is calculated incorrectly is that the object is

symmetrical in both the X and Y dimensions. The row and column moments of inertia

are therefore both 0 or very close to 0, and the orientation is then calculated be close to 0

degrees. Since the orientation is calculated incorrectly, the bounding box is calculated as

shown. One solution to this problem would be to abandon the algorithm using moments

of inertia to calculate orientation. The bounding box areas for orientations from -89

degrees to 90 degrees could be calculated, and the orientation which yielded the

minimum bounding box area could be used. This approach would be more

computationally expensive, but would yield more accurate results.

The minor to major axis ratio is a measure of shape used to discriminate pellet objects

from non-pellet objects. The major axis is the axis defined by the orientation of the

object and the minor axis is the axis 90 degrees from the major axis. The orientation of

the object used for this measure is the orientation calculated for the bounding box ratio.

As described previously, the method used for calculating orientation has some problems.
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It is therefore necessary to get a better estimate of orientation to obtain a more useful

feature value for the minor to major axis ratio.

The minimum to maximum radius ratio is another measure of shape used to discriminate

pellet objects from non-pellet objects. The minimum radius is the minimum distance

from the centroid to the boundary of the object, and the maximum radius is the maximum

distance. There were no problems in measuring these distances, but for very small objects

the distances are small, and a single pixel change in the distance can drastically affect the

radius ratio value. It would be more accurate to use higher resolution images so the

radius distances would be larger, and the radius ratio would be more accurate.

In order to accurately classify objects using the four features, some estimate of the values

of these features for valid pellet objects is required. A sample set of 1686 valid pellet

objects was collected from image sequences on videotape, and the four features values

were measured for each pellet object. The means of each feature measurement and the

4x4 covariance matrix were then calculated.

The mean vector (5.14) was calculated to be:

0.851
0.739
0.806
^ (7.2)

0.656_

M
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The covariance matrix (5.19) was calculated to be:

0.0418 —0.0046 —0.0073 —0.0110-
—0.0046^0.0054^0.0014^0.0031
—0.0073^0.0014^0.0135^0.0143
—0.0110^0.0031^0.0143^0.0213

(7.3)

The minimum intra-class distance (MICD) from the class mean was then calculated for

each of the pellet objects. Figure 35 shows a histogram of the MICD distances obtained.

Frequency and Cumulative Frequency of M1CD Distances

s=

M1CD Distance

Figure 35 - Histogram of MICD Distances for Valid Pellet Objects

It can be seen that very few of the valid pellet objects had MICD distances greater than

approximately 16 (97.27% of the objects have MICD distances of less than 16.0) from

the class mean. In classifying objects as pellet object or other objects, two type of errors

can be made. A false positive error would occur when a non-pellet object is classified as

a pellet object. A false negative error would occur when a pellet object is classified as a

non-pellet object. Both types of errors are detrimental, but for different reasons. If a non-

pellet object is classified as a pellet object, the calculated pellet count will be larger than

88



the actual pellet count, and feeding may be stopped prematurely. Therefore, the fish may

still be hungry, and the fish farmers will not get as high a growth rate as possible. If a

pellet object is classified as a non-pellet object, the calculated pellet count will be smaller

than the actual pellet count, and wasted feed will be unaccounted for. Feeding may not be

stopped soon enough, and extra food will be wasted. The size of the equidistant contour

used for object classification will depend on which type of error it is more important to

reduce. If it is more important to reduce false positive errors, the size of the equidistant

contour should be reduced to encompass the majority of the valid pellet objects, but

eliminate a few valid pellet objects. If it is more important to reduce the false negative

errors, the size of the equidistant contour should be expanded to encompass all of the

valid pellet objects, and as a result also encompass some non-pellet objects. There are

tradeoffs involved in both approaches, and the MICD classification distance (size of

equidistant contour) should be modified according to the requirements of the individual.

The object classification algorithm was tested on both valid food pellet objects and on

non-pellet objects. The algorithm successfully classified most valid pellet objects, but did

not perform well on non-pellet objects. Most of the non-pellet objects were fish. When

fish are separated from the background using the preprocessing algorithms, often the

entire fish is not separated from the background. Small pieces of the fish have gray levels

above the threshold value used for preprocessing. Many of these small pieces look very

similar to valid pellet objects. Therefore, it is not surprising that these small pieces are

often classified as valid pellet objects. There are a number of methods which may be

used to eliminate this problem.

A more sophisticated object detection algorithm could be used to completely separate

fish from the background. The fish object would not be similar to a valid pellet object,

and would therefore be classified as a non-pellet object. The object classification
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algorithm could be improved. By using more information, such as measurements which

use the original gray levels of the object and the area around the object, classification

may be improved so pieces of fish would not be classified as valid pellet objects. Another

method to prevent pieces of fish from being classified as valid pellet objects would be to

prevent fish from entering the view area of the camera. This might be accomplished by

placing the camera in a netted structure below or inside the sea cage. This would make

the image acquisition equipment more cumbersome, and may eliminate the need for

object classification altogether.

7.6 Object Tracking

The pellet counting system was implemented on a personal computer, the small storage

object matching algorithm described in section 6.4.3 was used. This algorithm requires a

small amount of memory with some sacrifice in speed. Since the personal computer does

not have a lot of memory, this algorithm was the best choice. The matching algorithm

performed well in most circumstances.

One of the problems with the current object matching algorithm is that it optimizes

object matching locally instead of globally. In the local optimization object matching

algorithm, an object in in Frame i is matched with an object i+lm in Frame i+1 if:

distance(in,(i+l)m) <= distance(in,(i+l)k) V (i+l)k E Frame i+1 (7.4)
distance(in,(i+l)m) <= distance(ii,(i+l)m) V i1 E Frame (7.5)
distance(in,(i+l)m) <a certain maximum distance (7.6)

Using this algorithm, matches are made on the basis of distance between objects only,

there is no overall goal of optimizing all the object matches between the frames. Figure

36 shows the results of executing two object matching algorithms on a set of objects (the
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circles represent the positions of objects in frame i, the squares represent the positions of

objects in frame i+1)

111\*
2 3 w

4

Local Optimization^Global Optimization

Figure 36 - Two Object Matching Approaches

In the local optimization case, object 2 is matched with object 3 because the distance

between them satisfies the above criteria. Object 1 is then matched with object 4

(assuming the distance between them is less than the maximum distance) because object

1 is the only unmatched object available. By matching objects 2 and 3, the algorithm is

forced into the long distance (and therefore unlikely) match of objects 1 and 4. Because

object matching is locally optimized, the algorithm does not take into account the effect

that making a match will have on other objects in the frames. This demonstrates the need

for a global optimization algorithm.

In the global optimization example in Figure 36, object 1 would be matched with object

2, and object 3 would be matched with object 4. This matching solution globally

minimizes the total distance between matched objects in the frames. To eliminate

matching errors when using a local optimization object matching method, a global

optimization object matching method could be implemented. A global optimization

object matching algorithm would likely be more computationally expensive than the

local optimization algorithm, but could reduce errors in object matching.
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There are several situations which will cause the object tracking and counting algorithm

to return incorrect results. These errors are explained, and possible solutions to eliminate

these errors are described.

One possible error in object counting occurs if a food pellet object is occluded in the

frame where it is in the New Object Area. Figure 37 shows a frame sequence which

illustrates this problem. In the first frame, the food pellet object is not visible. In frame

i+1, the food pellet has entered the New Object Area, but is occluded by a fish. In frame

i+2, the fish has moved away, and the food pellet is in the Center Area. Since the food

pellet was never detected in the New Object Area, it will not be counted, and therefore

the overall pellet count will be incorrect.

Frame i
^

Frame i+1
^

Frame i+2

Figure 37 - Example of Counting Error

One possible solution to this type of problem is to increase the width of the New Object

Area. With a wider New Object Area, a food pellet would be in this area for a longer

period of time, and there would be less of a chance of another object occluding it for the

entire time. Another solution might be to shield the view area of the camera, so food

pellets could get in, but other large objects such as fish could not.
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Another type of error occurs when a food pellet in the New Object Area in one frame is

tracked to a different food pellet in the New Object Area in the next frame. Figure 38

illustrates this problem. New

Object
Area

Figure 38 - Example of Counting Error

Object 1 represents a food pellet object in the first frame. Object 2 is the same food pellet

in the second frame, and object 3 is a new food pellet in the second frame. For a correct

object count, object 1 would be matched with object 2, and object 3 should be counted as

a new object since it is in the New Object Area. In this case, object 1 is matched with

object 3. Since object 1 has been matched with object 3, object 3 will not be counted as a

new object, and the object count will not be incremented.

One possible solution to this type of problem would be to increase the sampling rate so

objects do not move large distances between frames. However, with large pellet

densities, this type of error will occur occasionally using the current method of food

pellet counting.

Figures 39 and 40 show two examples of actual object tracking results (note the direction

of motion is towards the center of the frame). Figure 40 shows an example of a food

pellet in the New Object Area in one frame being tracked to a different food pellet in the

New Object Area in the next frame - the second type of error described above.
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Figure 39 - Object Tracking Example
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Figure 40 - Example of Error in Object Matching

The sampling rate is chosen based on the time available for processing. A higher

sampling rate makes object tracking more accurate because objects move smaller

distances between frames, but processing takes more time.

The width of New Object Area is chosen to match the sampling rate used. The width has

to be large enough such that a pellet entering the view area of the camera will always be

in the New Object Area in at least one frame. Therefore, the width should be a little

larger than the maximum distance a food pellet can move from the edge of the image

inward in one frame period. Using the sample image sequences, this distance was

estimated by measuring the movement of food pellets in a number of cases. The width of

the New Object was set to 100 pixels, with a sampling rate of approximately 4 frames per

second.
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The distance measure used for object matching is composed of three measurements

(section 6.5); the Euclidean distance ratio, the area ratio, and the distance of the motion

vector from the center. Each of these measurements are weighted and combined to form

the total distance. The individual weightings can be adjusted to favour different

situations. For example, if there is an upward current or turbulence, the motion vectors of

falling pellets may not be center pointing, so the distance of the motion vector from

center measurement should carry very little weight in the total distance measure.

The weightings used for the total distance measure are very important for accurate object

matching. If a relatively insignificant measurement is weighted highly, and a significant

measurement is weighted low, there will be many object matching errors, and the object

count will likely be inaccurate. Experimentation with the three weights in typical

situations is required to get a useful weighting scheme. Other individual measurements

with corresponding weights can be added to the total distance measurement if the three

measurements are not sufficient. For the image sequences used for this project, it was

found that the best weighting scheme was to weight the Euclidean distance ratio 1.0, and

the area ratio 0.75. The distance of the motion vector from the center was weighted

differently for different image sequences. In some sequences it was weighted by 0.1, and

in others it was weighted by 0. In the sequences for which is was weighted by 0, the

camera was moving from side to side with the motion of the water, so the direction of

motion of the food pellets was not towards the center.
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7.7 Counting Experiments Performed and Results

To test the food pellet tracking and counting system, a number of image sequences

acquired under different conditions were used. These sequences were sampled and the

images were stored on the computer system for analysis. An operator went through each

sequence frame by frame counting the number of food pellets entering the view area of

the camera in every frame. The computer algorithm was then executed using the image

sequence and the pellet count after analysis of each frame was recorded. The computer

algorithm output could then be compared to the count recorded by the operator after each

frame to determine when the algorithm yielded the correct result, and when it made

errors. The causes of individual errors could then be examined.

The image sequences used as input were designed to approximate the pellet densities

occurring in actual feeding situations. These densities were calculated from standard

feeding tables which list the mass of food a fish requires per day as a percentage of the

fish's body mass. Table 2 shows the approximate number of food pellets entering the

view area of the camera per minute for different cage densities (number of kilograms of

fish per cubic meter of water). According to standard feeding tables, in 16 degree water,

800g fish should be fed 1.55% of their body mass per day using 9.5mm food pellets

(Source: White Crest Mills Feed Chart). These calculations assume a 9 5mm food pellet

can be detected up to 1.5m from the camera (corresponding to a camera coverage of 5.6

square meters) and a sea cage size of 15 meters by 15 meters by 21 meters deep.
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Table 2 - Number of Food Pellets Entering Camera View per Minute

Cage

Density

kg/m3

Number

800g Fish

in Cage

Mass of

9.5 mm

Feed per

Day

(kg)

Number of

Pellets per

Day for

Entire

Cage

Number of

Pellets Passing

Camera per

Day

(None Eaten)

Pellets/min

Passing Camera

(4 hours feeding)

(None Eaten)

5 30972 384 345646 12914 54

6 37166 460 414775 15496 65

7 43360 537 483904 18079 75

8 49554 614 553034 20662 86

9 55749 691 622163 23244 97

10 61943 768 691292 25827 108

11 68137 844 760421 28410 118

Table 3 shows the results of using the computer algorithm to count food pellets falling

through the view area of the camera. A set of 25 frames sampled at approximately 4

frames per second were used for each test. In tests 1 to 10, food pellets were falling past

the camera at a rate of approximately 120 pellets per minute. In test 11 to 18, food pellets

were falling past the camera at a rate of approximately 200 pellets per minute. There

were no fish in the water during these tests.
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Table 3 - Results of Counting Trials

Test Actual Food

Pellet Count

Computer Food

Pellet Count

Number of

Counting Errors

Overall Error in

Computer Count

1 8 8 2 0%

2 14 16 2 +14.29%

3 15 15 4 0%

4 11 11 2 0%

5 14 13 1 -7.14%

6 12 10 2 -16.67%

7 10 13 4 +30.00%

8 18 17 3 -5.56%

9 9 12 3 +33.33%

10 12 14 2 +16.67%

11 23 24 2 +4.35%

12 26 24 2 -7.69%

13 22 20 4 -9.01%

14 17 19 2 +11.76%

15 20 21 3 +5.00%

16 20 20 2 0%

17 23 21 2 -8.70%

18 23 21 2 -8.70%
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The average count error was approximately +/-10%. It should be noted that the overall

error information is not very significant. Certain errors can cause the computer count to

be too low, and other types of errors can cause the computer count to be too high. These

two types of error can cancel each other out, and produce a misleading overall error

measurement. This is the case in test 1. Although two errors were made, they cancelled

each other out, so the computer count was correct. The number of errors the computer

algorithm made for each test is a more significant indication of the accuracy of the

algorithm. It is important to determine what kinds of errors occurred. Table 4 shows the

frequencies of different types of errors that occurred in the 19 tests.

Table 4 - Frequency of Occurrence of Different Counting Errors

Cause of Counting Error Number of

Occurrences

% of Total

Errors

Incorrectly tracking an object 12 27.27%

Classifying a valid pellet object as a non-pellet object 11 25.00%

Incorrectly failing to divide/dividing an object 9 20.45%

Error in object detection 7 15.91%

Valid pellet object moved through New Object Area

between frames and was therefore undetected

3 6.82%

Classifying a non-pellet object as a valid pellet object 2 4.55%

Incorrectly tracking of an object was the most frequently occurring error. This is

followed by classifying a valid pellet object as a non-pellet object, incorrectly dividing/or

failing to divide an object, and errors in object detection. These four types of errors make

up 88.63% of the errors that occurred in the tests.
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From these results is can be seen that object tracking should be improved. This may be

accomplished by increasing the frame sampling rate. If objects move smaller distances

between frames, object tracking will become less error prone. This adjustment will also

reduce errors which occurred when an object moved through the New Object Area

between frames, and was therefore undetected. The distance measure used for object

matching can also be adjusted to improve tracking. Object classification is another area

for which improvements are required. If the view area of the camera were enclosed in a

net structure as described previously, object classification may be unnecessary.

Otherwise, a more accurate object classification method is required.

Object division was another major cause of counting errors. A more detailed study into

determining the values of the constants used for curvature adjustment may be necessary.

Errors in object detection were the final major cause of error in the computer count.

Many of these errors were caused when food pellets were too close to the front of the

camera. By adding a transparent shield around the camera (described in 7.2), the

frequency of this type of error should be reduced.
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Chapter 8
Conclusion

In this study, the problem of counting the number of food pellets falling through the view

area of an underwater camera has been investigated. A solution to this problem is

required in order to give fish farmers a measurement tool for determining the number of

food pellets that are not eaten during a feeding period. This tool could be used to reduce

food pellet wastage, and at the same time ensure the fish are getting enough food. A

manual pellet counting system was developed, and image analysis algorithms to be used

to automate the manual counting system were designed and tested.

The uneaten food pellets falling past an underwater camera can be counted manually.

The manual counting of food pellets from video replay could be laborious depending on

the length of the feeding period, however the manual pellet counting system will provide

valuable data until the automatic counting system is fully developed.

Given a sequence of images of food pellets falling through the view area of an

underwater camera, an automatic counting system was designed to 1) isolate the objects

in the image, 2) measure features of the objects and use these features to classify the

objects as food pellets or other objects, 3) track pellets from one frame to another, and 4)

maintain a count of the number of pellets that have passed through the view area of the

underwater camera. The effective camera coverage is dependent on the size of the food

pellets used.

A new automatic threshold determination algorithm was developed for this project. This

algorithm accurately separated objects in the image from the background. The dilation

and erosion operators improved the quality of the images by filling in holes and
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eliminating noise. The overlapping object detection and separation algorithm was

developed for this project by improving an algorithm developed by Poon (Poon, 1989,

Poon et al., 1992). The algorithm performed well on the majority of objects. The object

classification algorithms performed well in classifying pellet objects, but did not

accurately classify non-pellet objects. Recommendations were made that may improve

classification, or completely eliminate the need for classification. An algorithm used for

matching objects in consecutive frames was designed for this project. The algorithm

succeeded in correctly matching objects in most images. Some improvements to the

object matching algorithm were suggested.

The algorithms developed for determining if a new food pellet has entered the view area

of the camera, and tracking previously counted pellets to avoid recounting, were original

methods developed for this project.

A number of tests were performed using image sequences containing food pellets falling

through the view area of the camera at rates likely to be encountered in practice. The

utility of the algorithms was confirmed by these experimental results. The average count

error was approximately +1-10%. A set of 450 frames were used in the pellet counting

tests. A total of 44 errors were made by the counting algorithms during these tests.

These results as well as observations from development work were used to identify areas

of the food pellet counting process which could be improved in the future.
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8.1 Future Considerations

The algorithms we developed for this project represent the first stage in the development

of a commercial automatic pellet counting system. Future work on the automatic system

will focus on reducing the count error. Areas of the automatic pellet counting system

requiring improvement are identified, and some suggested improvements are described.

Image acquisition is the first step in the pellet counting process. It was observed that as

the camera is lowed down in the water column, the light reaching the camera may be

insufficient to illuminate the food pellets enough so they can be detected by the camera.

A large number of fish above camera level greatly reduce the available illumination.

There are two possible solutions to this problem. An underwater light source could be

attached to the camera, or a more light sensitive camera could be used.

The use of a high resolution digital camera would improve the accuracy of many

algorithms used in the pellet counting process. By switching to a digital camera, the

quality of the image sequences used for analysis would be higher, and the need for the

video equipment would be eliminated.

If food pellets come too close to the front of the camera, the camera blocks the light, the

pellets do not appear white, and are not detected. A transparent shield should be placed

around the camera during image acquisition to prevent food pellets from coming too

close to the front of the camera.

The overlapping object detection and separation algorithm requires improvements to

eliminate problems of separating objects that should not be separated, or not separating

objects that should be separated.
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The object classification algorithm developed does not very accurately classify non-pellet

objects. Non-pellet objects such as fish will be present in an actual feeding situation. One

possible solution would be to improve the classifier to use additional information such as

the original gray levels of the object. Another solution would be to enclose the view area

of the camera in a netted structure to prevent fish from entering the view area. This

would likely eliminate the need for object classification.

The object matching algorithm is used to match objects in consecutive frames. A local

optimization object matching algorithm is used, however, it may be more accurate to

implement a global optimization object matching algorithm. Additional components can

be added to the distance measure used for object matching, and investigations should be

carried out to determine the best weighting scheme to use for the distance measure.

Increasing the sampling rate would require more processing power, but would make the

object matching algorithm more accurate.
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Nomenclature

4-Neighbours^The 4-neighbours of a pixel are the 4 pixels to the North,
South, East and West of the pixel.

8-Neighbours^The 8-neighbours of a pixel includes the 4-neighbours of
the pixel, and the 4 pixels to the NE, NW, SE, and SW of
the pixel.

Binary Image

Bounding Box

CCD Bloom

CCD Camera

Camera Coverage

Digital Image

Digitization

Features

Feed Conversion Ratio

An image containing only two shades of gray, black and
white.

The bounding box of an object is defined as the minimum
area rectangle which completely encloses the object.

The effect that occurs when a CCD element is saturated,
and the intensities of neighbouring CCD elements are
increased above their correct values.

A Charge Coupled Device camera. The imaging element is
composed of an array of CCD elements. Each element
measures the intensity of a small area of the image.

The area which is imaged by the camera at the maximum
distance from the camera for which objects can be
adequately resolved.

An image represented by a number of discrete points
(pixels), each with an associated intensity value (0-black to
255-white).

The process of converting an analogue image to a digital
image of a certain resolution. The value of each pixel in the
digital image is determined from the analogue image.

Attributes of an object that can be quantified.

Ratio of mass of food fed to an animal to the mass gain of
the animal.

Frame Grabber^A device which is capable of real time digitization and
capture of images from a video source.

Gray Level^The intensity value of a pixel which can be in the range of
0 to 255 (0-black, 255-white).
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Grow-Out Tanks

Image Fields

Image Histogram

Loss of Track

Motion Vector

Neighbouring Pixels

Non-Pellet Object

Object Tracking

Pellet Object

Pixel

Resolution

Sampling Rate

Sea Cage

Small cylindrical tanks used to raise small salmon to a
certain size before transferring them to larger nets.

A video image is composed of two interlaced fields, the
odd field and the even field. The fields are displayed one
after the other and each field is displayed at a rate of 60Hz.

An image histogram is a display of the number of
occurrences of each gray level from 0 to 255 in the image.

Correctly tracking an object involves determining the
motion path of the object through a sequence of frames.
Loss of track occurs when the position of the object is not
known for one or more frames in the sequence.

A vector describing the motion path an object takes
between two image frames

Pixels adjacent to a pixel. Either the 4-neighbours, or the 8-
neighoburs. If unspecified, the 8-neighbours are assumed.

An object in an image which represents anything other than
a food pellet

Tracking a single object throughout a sequence of image
frames.

An object in an image which represents a food pellet

The smallest unit of a digital image. Each pixel has an
associated intensity value.

The number of pixels used to represent a digital image. The
greater the number of pixels used the represent the image,
the higher the resolution of the image.

The rate at which digital frames are extracted from the
videotape. The time difference between consecutive digital
image frames.

An netted enclosure used to raise salmon in the open ocean.
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Thresholding Setting all the pixels with intensity values higher than the
threshold value to 255 (white), and all pixels with intensity
values less than or equal to the threshold value to 0 (black).
Creates a binary (2-intensity) digital image from a gray
level digital image.

Visibility A measure of the clarity of the water. Often measured with
a Secchi disc. which is a white circular object. The Secchi
disc is lower down in the water column until it is no longer
visible, and the distance is was lowered to when it was last
visible is called the visibility.
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