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Abstract

In medical diagnosis a proper uncertainty calculus is crucial in knowledge representation.

Finite calculus is close to human language and should facilitate knowledge acquisition.

An investigation into the feasibili: of finite totally ordered probability models has been

conducted. It shows that a finite model is of limited usage, which highlights the impor

tance of infinite totally ordered models including probability theory.

Representing the qualitative domain structure is another important issue. Bayesian

networks, combining graphical representation of domain dependency and probability the

ory, provide a concise representation and a consistent inference formalism. An expert

system QUALICON for quality control in electromyography has been implemented as

a pilot study of Bayesian nets. The performance is comparable to that from human

professionals.

Extending the research into a large system PAINULIM in neuromuscular diagnosis

shows that the computation using homogeneous net representation is unnecessarily com

plex. At any one time a user’s attention is directed to only part of a large net, i.e., there

is ‘localization’ of queries and evidence. The homogeneous net is inefficient since the

overall net has to be updated each time. Multiply Sectioned Bayesian Networks (MS

BNs) have been developed to exploit localization. Reasonable constraints are derived

such that a localization preserving partition of a domain and its representation by a set

of subnets are possible. Reasoning takes place at only one of them due to localization.

Marginal probabilities obtained are identical to those obtained when the entire net is

globally consistent. When the user’s attention shifts, a new subnet is swapped in and

previously acquired evidence absorbed. Thus, with /3 subnets, the complexity is reduced
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approximately to 1/6.

Reducing the complexity with MSBN, the knowledge acquisition of PAINULIM has

been conducted using normal hospital computers. This results in efficient cooperation

with medical staff. PAINULIM was thus constructed in less than one year. An evaluation

shows very good performance.

Coding probability distribution of Bayesian nets in causal direction has several ad

vantages. Initially the distribution is elicited from the expert in terms of probabilities of

a symptom given causing diseases. Since disease-to-symptom is not the direction of daily

practice, the elicited probabilities may be inaccurate. An algorithm has been derived for

sequentially updating probabilities in Bayesian nets, making use of the expert’s symptom

to-disease probabilities. Simulation shows better performance than Spiegeihalter’s {O, l}

distribution learning.
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A Guide for the Reader

This thesis has been written for readers from various backgrounds including artificial

intelligence, medical informatics, and biomedical engineering.

Chapter 1 contains the background on Bayesian belief networks and related uncer

tainty management formalisms. Bayesian belief networks combine probability theory and

graphical representation of domain models. Appendix A contains an introduction about

concepts from graph theory which are relevant to this thesis. Readers unfamiliar with

graph theory should read this appendix before reading the main body of the thesis.

Chapter 2 contains results of an investigation into the feasibility of using finite totally

ordered probability models for uncertainty management in expert systems. Readers who

are mainly interested in positive results and applicable techniques may skip this chapter.

Chapter 3 describes the construction and evaluation of QUALICON, an expert system

coupling digital signal processing and Bayesian networks for technical quality control in

nerve conduction studies. Researchers in medical informatics and biomedical engineering

who are interested in learning about the practical application of Bayesian networks and

coupled expert systems will find this chapter useful.

Chapter 4 contains the theory for Multiply Sectioned Bayesian Networks (MSBNs)

and junction forests. Its implementation in WEBWEAVR shell and application in

PAINULIM are described in Chapter 5.

Chapter 5 describes the construction and evaluation of PAINULIM, an expert neu

romuscular diagnostic system for patients presenting a painful or impaired upper limb.

Researchers in medical informatics and biomedical engineering who are interested in the

practical application of the MSBN technique will find this chapter particularly relevant.

xii



Chapter 6 contains the algorithm of learning for sequential updating conditional prob

abilities in Bayesian networks using the expert’s subjective posterior probabilities.
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Chapter 1

INTRODUCTION

In this chapter, the status of computers in medicine is reviewed in Section 1.1: the review

covers the status of expert systems in neuromuscular diagnosis. Section 1.2 reviews

rule-based expert systems and uncertainty management formalisms other than Bayesian

networks. Section 1.3 reviews Bayesian networks as a natural and concise representation

for uncertain knowledge.

1.1 Neuromuscular Diagnosis and Expert Systems

The thesis research addresses practical issues in building medical expert systems. The

medical area is neuromuscular diagnosis.

The computer is now assisting doctors and technicians in the neuromuscular diagnosis

by performing the following functions: data acquisition/analysis; database management;

and documentation. Computers have failed to assist doctors directly in their diagnostic

inference and clinical decision making [Desmedt 89].

In general medicine, the same failure was true until the mid 70’s. The failure was

partly due to the limitations of conventional techniques for medical decision making (the

clinical algorithm or flow chart, and the matching of cases to large data bases of previous

cases [Szolovits 82]). The failure was also partly due to the unawareness of proper ways

to apply normative probability and decision theories.

On the other hand, as Szolovits [1982] put it: “Modern medicine has become techni

cally complex, the standards set for it are very high, conceptual and practical advances

1



Chapter 1. INTRODUCTION 2

are rapid, yet the cognitive capabilities of physicians are pretty much fixed. As more

and more data become available to the practicing doctor, as more becomes known about

the processes of disease and possible interventions available to alter them, practitioners

are called on to know more, to reason better, and to achieve better outcomes for their

patients.” In response to the need for more sophisticated diagnostic aids, medical expert

systems appeared in the field of AT in medicine.

Expert systems are computer programs capable of ijiaking judgments or giving as

sistance in a complex area. The tasks they perform are ordinarily performed only by

humans. They are commonly separated into 2 major components: knowledge base which

includes assumptions about the particular domain, and the inference engine which con

trols how the knowledge base is to be used in solving a particular problem. Since the

mid 70’s, researchers in AT have built expert systems in many medicine areas to assist

the doctors in diagnosis or therapy (e.g., MYCIN for the diagnosis and treatment of

bacterial infections [Buchanan and Shortliffe 84], and INTERNIST for the diagnosis in

internal medicine [Pople 82]). New expert system technologies are still evolving as limi

tations to existing technologies are recognized. Limited successes in different aspects of

performance have been achieved.

Back to the area of neuromuscular diagnosis, several (prototype) expert systems have

appeared since the mid 80’s: LOCALIZE [First et al. 82] for localization of peripheral

nerve lesions; MYOSYS [Vila et al. 85] for diagnosing mono- and polyneuropathies; MY

OLOG [Gallardo et al. 87] for diagnosing plexus and root lesions; Blinowska and Ver

roust’s system [1987] for diagnosing carpal tunnel syndrome; ELECTRODIAGNOSTIC

ASSISTANT [Jamieson 90] for diagnosing entrapment neuropathies, plexopathies,

and radiculopathies; KANDID [Fuglsang-Frederiksen and Jeppesen 89] and MUNIN

[Andreassen et al. 89] aiming at diagnosing the complete range of neuromuscular disor

ders. Satisfaction in system testing with constructed cases have been reported, while
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oniy one of them (ELECTRODIAGNOSTIC ASSISTANT) reported clinical evaluation

using 15 cases of 78% agreement rate with electromyographers. Most of the systems are

rule-based. The limitation of rule-based systems is reviewed in Section 1.2. MUNIN

uses Bayesian networks for representation of uncertain knowledge; and is still under

development. Just as the expert system techniques are evolving, their application to

neuromuscular diagnosis is still one for ongoing research.

1.2 Representation Formalisms Other Than Bayesian Networks

Construction of an expert system faces an immediate question: What is a proper knowl

edge representation and inference formalism? The answer depends largely on the char

acteristics of the task to be performed by the target system.

Medical diagnosis is characterized with probable reasoning, or more formally, rea

soning under uncertainty. The uncertainty comes from the incomplete knowledge about

biological process within the human body, from the incomplete observation and monitor

ing of patient conditions, and from dynamically changing relations between many factors

entering diagnostic process. A proper knowledge representation for reasoning under un

certainty is required which includes the representation of qualitative domain structure

and an uncertainty calculus.

Perhaps the most widely used structure in expert systems is a set of rule in rule

based systems. This section reviews rule-based systems, their advantages and limitations.

There has been a set of uncertainty calculuses used in expert systems. This section

also reviews those calculuses notable in Al which associate single real numbers with

uncertainty. An investigation of the feasibility of using a finite number of symbols to

denote degrees of uncertainty will be presented in Chapter 2. The reason for reviewing

those calculuses together with rule-based systems is because some of them (i.e., MYCIN
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certainty factor and odds likelihood ratios) can only be applied in conjunction with rule-

based systems.

Bayesian networks has been chosen as the knowledge representation in this thesis

research. The networks combine graphic representation of domain dependence and prob

ability theory. This combination overcomes many limitations of rule-based systems.

Bayesian network techniques will be reviewed in section 1.3.

There has been controversy in the artificial intelligence field about the adequacy of

using probability for representation of beliefs [Cheeseman 88a, Cheeseman 88b]. I will

not attempt to enter into this controversy. Rather, my review discusses why Bayesian

networks seem appropriate for building medical expert systems and thus are adopted in

this thesis research.

1.2.1 Rule-Based Systems

An expert system which deals with probable reasoning will have a knowledge base which

consists of a qualitative structure of the domain model and a quantitative uncertainty

calculus. The same qualitative structure can usually accommodate different uncertainty

calculuses. Perhaps the most widely used structure in expert systems is a set of rules

in rule-based systems. All the methods for representing uncertainty reviewed in this

section can be incorporated with rule-based systems. Rules in such systems consist of

antecedent-conclusion pairs, “if X, then Y” with the reading “if antecedent X is true,

then conclusion Y is true”. A rule encodes a piece of knowledge.

An inference network is a directed acyclic graph (DAG) in which each node is labeled

with a proposition. The set of rules in a rule-based system, which does not contain cyclic

rules, can be represented by an inference network in which each arc corresponds to a

rule with direction from antecedent to conclusion. The ‘roots’ of an inference network

are labeled with variables about which the user is expected to supply information. The
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‘leaves’ are variables of interest. Figure 1.1 is a inference network representing 4 rules:

“if B, then A”, “if C, then A”, “if D, then A” and “if E, then D”. B, C, E are roots

and A is a leaf. Below rule-based systems are considered in terms of inference networks.

1.2.2 The Method of Odds Likelihood Ratios

This subsection reviews the representation of uncertainty in rule-based expert systems

by odds and likelihood ratios, and the propagation of evidence under this representation.

Such an approach is used in the expert system PROSPECTOR [Duda et al. 76] which

helps geologists evaluate the mineral potential of exploration sites. The formulation of

Neapolitan [1990] is followed.

With the method of odds likelihood ratios, uncertainty to the rules are represented

by conditional probabilities in the form p(XIY) where X is the antecedent and Y is the

conclusion’. Suppose for each rule “if X, then Y”, the conditional probabilities p(XIY)

and p(XY) are determined; and for each node Y in the corresponding inference network,

except for the roots, the prior probability p(Y) is determined. Then the prior odds on

1111 Bayesian networks the order of X and Y will be reversed.

B
C

E

D

Figure 1.1: An inference network

A
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Y is defined as 0(Y) = p(Y)/p(Y). The posterior odds on Y upon learning that X is

true is defined as O(YIX) = p(YIX)/p(TIX). The likelihood ratio of X is defined as

L(XIY) = p(XIY)/p(XIY). Notice that p(Y) = O(Y)/(1 + 0(Y)).

With the above definition, the evidence propagation can be illustrated with the ex

ample in Figure 1.2. As in the figure, likelihood ratios are stored at each arc, and

prior probabilities are stored at each node except for roots. If one has evidence that

E is true, then 0(DIE) L(EID)0(D). To propagate the evidence to A in a sim

ple way, it is assumed that A and E are conditionally independent given D. Then

p(AIE) = p(AD)p(DE) + p(AD)p(DiE). Note the assumption is not valid if multiple

paths exist from E to A. If in another case, one has evidence that B and C are true,

one would like to know 0(AjBC) where the concatenation implies ‘AND’. Assume that

B and C are conditionally independent given A, then 0(AIBC) = L(BIA)L(CIA)0(A).

Again, the assumption is not valid’ in a multiply connected network.

B

L(EID)
L(EjD)

C D

L(BJA)

L(IA)

E

P(D)

Figure 1.2: An inference net using the method of odds likelihood ratios

Several limitations of the method of odds likelihood ratios have been reviewed by

Neapolitan [1990]:

A P(A)

1. The method is restricted to singly connected networks. Many application domains
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can not be represented.

2. An inference network with odds and likelihood ratios associated can only be used

for reasoning in the designed direction but not in the opposite direction.

3. For all the nodes except roots, prior probabilities are to be specified. Since priors

are population specific, they are difficult to ascertain. A medical expert system

constructed using data from one clinic might not be deployed in another clinic

because the population there was different.

1.2.3 MYCIN certainty factor

The most widely used uncertainty calculus in rule-based systems is called certainty factor

and it was originally used in MYCIN [Buchanan and Shortliffe 84]. General probabilistic

reasoning based on probability theory required the specification of exponentially large

number of data which lead to intractable computation associated with belief updating

[Szolovits and Pauker 78, Buchanan and Shortliffe 84]. For example, a full joint proba

bility distribution over a domain with a binary variables requires specification of 2 — 1

parameters. The parameters had to be updated when the new evidence became available.

The primary goal in creating the MYCIN certainty factor was to provide a method to

avoid this difficulty.

In a rule-based system using certainty factors for reasoning under uncertainty, a rule

“if X, then Y” is associated with a certain factor CF(Y, X) [—1, 1] to represent the

change in belief about Y given the verity of X. CF(Y, X) > 0 corresponds to increase in

belief, CF(Y, X) < 0 corresponds to decrease in belief, and CF(Y, X) = 0 corresponds

to no change in belief. Representing a rule-based system by an inference network, the

certainty factors are stored at arcs as in Figure 1.3.

The MYCIN certainty factor model provides a set of rules for propagating uncertainty
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B

CF (A. B)

CF(A,B)

Figure 1.3: An inference net using the MYCIN certainty factors

through an inference network. Figure 1.3 illustrates sequential and parallel combination

in an inference network. If one has evidence that E is true, then the certainty factors

CF(D,E) and CF(A,D) can be combined to give the certainty factor CF(A,E) by

sequential combination

I CF(D,E)CF(A,D) CF(D,E)>0.
CF(A,E)=

-

I -CF(D,E)CF(A,D) CF(D,E)<0

If instead one has evidence that B and C are true, then the certainty factor CF(A, BC)

is given by parallel combination

CF(A, BC) = I CF(A, B) + CF(A, C)(1
-

CF(A, B)) CF(A, B)CF(A, C) 0

( CF(A,B)+CF(A,C) CF(A1—min(ICF(A,B)I,ICF(A,C)j) ‘
‘ J’’ ‘

The calculus of the MYCIN certainty factor has many desirable properties which

would be expected from an uncertain reasoning technique. However, in the original work

of the MYCIN certainty factor, there was no operational definition of a certainty fac

tor [Heckerman 86, Neapolitan 90]. That is, the definition of a certainty factor does

not prescribe a method for determining a certainty factor. Without an operational def

inition there is no way of knowing whether 2 experts mean different things when they

E
CF(t3,E)

CF(JJ)

C
D

A V
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assign different certainty factors to the same rule. Heckerman [1986] gives probabilistic

interpretations of the MYCIN certainty factor. He shows that these interpretations are

monotonic transformations of the likelihood ratio reviewed in section 1.2.2. Therefore the

MYCIN certainty factor makes the same assumptions as the method of odds likelihood

ratios and shares the same limitations [Neapolitan 90].

1.2.4 Dempster-Shafer Theory

Unlike probability theory, which assigns probabilities to every member of a set ‘I’ of

mutually exclusive and exhaustive alternatives and requires that the probabilities sum to

unity, the Dempster-Shafer (D-S) theory [Shafer 76] assigns basic probability assignments

(bpa) to every subset of ‘P (member of 2’’) and requires that the bpas sum to unity. For a

proposition C, the bpa assigned to {C} and the bpa assigned to {} do not have to sum to

unity. Thus D-S theory allows some of the probability to be unassigned, that is, it accepts

an incomplete probabilistic model when some parameters (either prior probabilities or

conditional probabilities) are missing [Pearl 88]. In this sense, D-S theory is an extension

of probability theory [Neapolitan 90]. Medical diagnosis involves repetition and it is

possible to obtain a complete probability model. The model may not be accurate and

further refinement may be required (Chapter 6).

Unlike probability theory, which calculates the conditional probability that Y is true

given evidence X, D-S approach calculates the probability that the proposition Y is

provable given the evidence X and given that X is consistent. Pearl [1988] argues that

D-S theory offers a better representation when the task is one of synthesis (e.g., the class

scheduling problem) where external constraints are imposed and the concern centers on

issues of possibility and necessity; he also argues that probability theory is more suitable

for diagnosis.

A pragmatic advantage of probability theory over D-S theory is that it is well founded
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and well known. An expert system based on a well known theory will certainly benefit

in the knowledge acquisition and in communicating with users.

1.2.5 Fuzzy Sets

Fuzzy set theory [Zadeh 65] deals with propositions which have vague meaning such

as “the symptom is severe” or “the median nerve conduction velocity is normal”. It

associates a real number from [0, 1] with the membership of a particular element in a set.

For example, if a patient has a median nerve conduction velocity of 58 m/sec, the result

has its membership 1 in the set of ‘normal’ results. If the velocity is 44 m/sec, the result

has membership 0 in the ‘normal’ set. When the velocity value is 50 m/sec, the result

has a partial membership, say, 0.7 in the ‘normal’ set.

Some researchers [Pearl 88, Neapolitan 90] view fuzzy set theory as addressing a fun

damentally different class of problems than those addressed by probability theory, cer

tainty factor and the Dempster-Shafer theory. All but fuzzy set theory deal with well

defined propositions which are definitely either true or false. One is simply uncertain

as to the outcome. Cheeseman [1986,1988a,1988b] makes a strong claim that fuzzy sets

are unnecessary (for representing and reasoning about uncertainty, including vagueness),

probability theory is all that is required. He shows how probability theory can solve the

problems that the fuzzy approaches claim probability cannot solve.

1.2.6 Limitations of Rule-Based Systems

Section 1.2.2 and 1.2.3 reviewed 2 methods for reasoning under uncertainty in rule

based systems. This subsection concentrates on the questions: Are rule-based systems

suitable for probable reasoning? In which situations are they appropriate knowledge

representation?

The basic principle of rule-based systems is modularity. A rule “if X, then Y” has the
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procedural interpretation: “If X is in the knowledge base, then regardless of what other

things the knowledge base contains and regardless of how X was derived, add Y to the

knowledge base” [Pearl 88]. The attractiveness of rule-based systems is high efficiency in

inference. This stems from modularity. However, the principle is valid only if the domain

is certain. That is, rule-based systems are appropriate for applications involving only

categorical (as defined by Szolovits and Pauker [1978]) reasoning [Neapolitan 90].

When reasoning under uncerta1ty, the rule “if X, then Y with uncertainty w” reads

as: “If the certainty of X undergoes a change 5x, then regardless of what other things

the knowledge base contains and regardless of how 5x was triggered, modify the current

certainty of Y by some amount 6y, which may depend on w, on x, and on the cur

rent certainty of Y” [Pearl 88]. Pearl discusses three major problems resulted from the

principle of modularity in probable reasoning.

• Improper handling of bidirectional inferences. This is a restatement of the third

limitation in section 1.2.2. If X implies Y, then verification of Y makes X more

credible. Thus the rule “X implies Y” should be used in two different directions:

deductive - from antecedent to conclusion, and abductive - from conclusion to an

tecedent. However, rule-based systems require that the abductive inference to be

stated explicitly by another rule and, even worse, that the original rule be removed.

Otherwise, a cycle would be created.

• Difficulties in retracting conclusions. Two rules “If the ground is wet then it rained”

and “If the sprinkler was on then the ground is wet” may be contained in a system.

Suppose “the ground is wet” is found. The system will conclude “it rained” by first

rule. But if later “the sprinkler was on” is found, the certainty “it rained” should

be decreased significantly. However, this can not be implemented naturally in a

rule-based system.
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• Improper treatment of correlated sources of evidence. Recall that both the odds

likelihood ratio method and the certainty factor method assume singly connected

inference networks. Rule-based systems respond only to the degrees of certainty

to antecedents and not to the origins of these degrees. As a result the same con

clusions will be made whether the degree of certainty originates from identical or

independent sources of information.

Heckerman and Horvitz [19871 analyze the inexpressiveness of rule-based systems.

• Only binary variables (proposition variables) allowed. When multi-valued random

variables are needed, they have to be broken down into several binary ones and the

naturalness of representation is lost.

• Multiple causes. When multiple causes exist, they are represented by an expo

nential number of binary variables, and the representation can not accommodate

different evidence patterns.

With these problems in mind, one must conclude that generally rule-based systems

are not appropriate for applications that require probable reasoning.

1.3 Representing Probable Reasoning In Bayesian Networks

This section briefly introduces Bayesian networks as a natural, concise knowledge repre

sentation method and a consistent inference formalism for building expert systems. The

substantial advances of Bayesian network technologies in recent years are reviewed.

1.3.1 Basic Concepts of Probability Theory

Two major interpretations of probability exists: objective or frequentist interpretation,

and subjective or Bayesian interpretation [Savage 61, Shafer 90, Neapolitan 90]. The
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former defines probability of an event E as the limiting frequency of E in repeated

experiments. The latter interprets probability as degree of belief held by a person. In

building a medical expert system based on probability theory, one usually has to take

a medical expert as the major source of the probabilistic information. Thus Bayesian

interpretation is naturally adopted.

Although philosophically the 2 interpretations represent 2 different camps, practi

cally, they are not significantly different as far as physicians’ belief in uncertain relations

in medicine is concerned. The medical literature substantiates the fact that many physi

cians believe that probabilities, according to the frequentist’s definition, exist, and that

the likelihoods which they assign, are estimates of these probabilities based on their

experiences with frequencies [Neapolitan 90j. My personal experience with neurologists

in building PAINULIM expert system is also in agreement with this viewpoint. The

Bayesian formulation of probability will be adopted in this thesis. In Chapter 6, an in

teraction between the 2 interpretations is utilized to improve the accuracy of knowledge

representation.

The framework of Bayesian probability theory consists of a set of axioms which

describes constraints among a collection of probabilities provided by a given person

[Pearl 88, Heckerman 90b}.

o p(AC) 1

p(CjC) = 1

If A and B are mutually exclusive,

then p(A or BIG) = p(AfC) + p(BIC) (sum rule)

p(ABIC) = p(AJBC)p(BIC) (product rule)

where A, B are arbitrary events and C represents the background knowledge of the

person who provides the probability. The probability p(AIC) represents a person’s belief

in A given his background knowledge C. The following rules, to be used in the thesis,
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can be proved from the above axioms.

p(IC) = 1
— p(AIC) (negation rule)

If B1,.. . , B are mutually exclusive and exhaustive then

p(AB1IC) + ... +p(ABjC) = p(AC) (marginalization)

p(AIBC) = p(BjAC)p(AIC)/p(BC) (Bayes theorem)

1.3.2 Inference Patterns Embedded In Probability Theory

As a well founded theory, probability theory embeds many intuitive inference patterns,

which renders it a suitable uncertainty calculus for probable reasoning. The following

briefly discusses some patterns used in medical diagnosis.

Bidirectional reasoning Probability allows both predictive and abductive (diagnostic)

reasoning. Carpal tunnel syndrome (cts) is a common cause of pain in forearm. If one

has a probability p(painful forearmicts) = 0.75 and also knows John has cts, then one

would predict with high confidence John would suffer from pain in forearm. On the other

hand, if one also has p(cts), p(painful forearm), and knows Mary does suffer from pain in

forearm, then one can compute p(ctspainful forearm) by applying Bayes theorem. The

diagnosis will be based on p(ctspainfu1 forearm).

Context sensitivity Both cts and thoracic outlet syndrome (tos) cause pain in fore

arm. The pain in the forearm is equally likely from either cause. Cts has much higher

incidence than tos, say p(cts) = 0.25 and p(tos) = 0.02 in a clinic. A patient with painful

forearm is 12 times more likely to have cts than tos. But if later through other means

the patient is found to have tos, then the painful forearm can be explained by tos. Cts

becomes much less likely. The probability for this case will have p(ctslpainful forearm)

= HIGH, and p(ctspainfu1 forearm & tos) = LOW. That is, the original belief in cts is
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retracted in the new context.

Explaining away In the above example, the confirmation of tos makes the alternative

explanation tos for painful forearm less credible. That is, tos explains painful forearm

away from cts.

Dynamic dependence Cts and tos are independent diseases, i.e., knowing oniy a

patient having or not having cts tells one nothing about whether he has tos or not.

However, knowing a patient has a painful forearm will render the 2 diseases related

in the diagnostic process. Further evidence supporting one of them will decrease the

likelihood of another.

Readers are referred to Pearl [1988] for an elaborate discussion of the relationship

between probability theory and probable reasoning.

1.3.3 Bayesian Networks

Bayesian networks are known in the literature as Bayesian belief networks, belief net

works, causal networks, influence diagrams, etc. They have a history in decision analysis

[Miller et al. 76, Howard and Matheson 84]. They have been actively studied for prob

able reasoning in Al for about a decade. Formally a Bayesian network [Pearl 88] is a

triplet (N,E,P).

• The domain N is a set of nodes each of which is labeled with a random variable

characterized by a set of mutually exclusive and exhaustive outcomes. ‘Node’ and

‘variable’ are used interchangeably in the context of Bayesian nets.

• E is a set of arcs such that (N, E) is a DAG. The arcs signify the existence of direct

causal influences between the linked variables. The basic dependence assumption
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embedded in Bayesian nets is that a variable is independent of its non-descendants

given its parents.

Uppercase letters (possibly subscripted) in the beginning of the alphabet are used

to denote variables, corresponding script letters are used to denote their sample

spaces, and corresponding lowercase letters with subscripts are used to denote their

outcomes. For example, in binary case, a variable A has its sample space A =

{a1,a2}, and II has its sample space ‘H = {h1,h22}. Uppercase letters towards

the end of the alphabet are used to denote a set of variables. If X N is a set of

variables, the space ‘I’(X) of X is the cross product of sample spaces of the variables

XAEXA. 7r is used to denote the set of parent variables of A, e N.

P is a joint probability distribution quantifying the strengths of the causal influ

ences signified by the arcs. P is specified by, for each A2 E N, the distribution

of the random variable labeled at A conditioned by the values of At’s parents ir

in the form of a conditional probability table p(AIir). p(Air) is a normalized

function mapping ‘({A} U r) to [0, 1]. The joint probability distribution P is

P = p(A1 . .. A) = flp(AI)

For medical application, nodes in a Bayesian net represent disease hypotheses, symp

toms, laboratory results, etc. Arcs signify the causal relations between them. The proba

bility distribution quantifies the strengths of these relations. For example, “cts (C) often

causes pain in forearm (F)” can be represented by an arc from C to F and a probability

p(fiIci) = 0.75.

The term ‘causal’ above is to be interpreted in a broad sense. Correspondingly, arcs in

a Bayesian net could go either direction. But in medical applications, it is usual to con

sider diseases as causes and symptoms as effects. Shachter and Heckerman [1987j show
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that if arcs in Bayesian nets are directed from disease to symptoms, the DAG construc

tion is usually easier and the resultant net topologies are usually simpler. Furthermore,

conditional probabilities of symptoms given diseases are related to the symptom causing

mechanisms of diseases, and are usually irrelevant to the patient population. Thus only

priors of diseases need to be changed when an expert system is built at one clinic and

used at another location with a different patient population. Whereas both the priors for

symptoms and the probabilities oJiseases given symptoms are patient population depen

dent. Directing arcs from symptoms to diseases will require total revision of probability

values in a Bayesian net when the system is to be used with a different population.

As stated above, Bayesian networks combine probability theory with graphic represen

tation of domain models. The necessity of this combination is two-edged. For one thing,

encoding a domain model with a DAG conveys directly the dependence and independence

assumptions made of the domain. The DAG facilitates knowledge acquisition and makes

the representation transparent. For another, graphical models allow quick identification

of dependencies by examining DAGs locally. Therefore efficient belief propagations are

possible [Pearl 88] and the difficulty associated with general probabilistic reasoning (sec

tion 1.2.3) can be avoided. The study of inference in Bayesian networks heavily depends

on the study of the DAG topologies. In the thesis, when the topology of a Bayesian

network is mentioned, it always means the topology of the corresponding DAG.

Probabilities associated with Bayesian networks have different meanings depending

on their location of storage in the networks and the stage of inference. Some convention

is appropriate to avoid confusion. Before any inference takes place, the probabilities

associated with root nodes (with zero in-degree) are called prior probabilities or priors.

The probabilities associated with non-root nodes are called conditional probabilities.

After the evidence is available, the updated probabilities conditioned on evidence are

called posterior probabilities. When it is clear from the context, they are just called
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probabilities.

1.3.4 Propagating Belief in Bayesian Networks

Inference in a Bayesian network is essentially a problem of propagating changes in belief

and computing posterior probabilities as new evidence is obtained. Since the appeal

of Bayesian networks for representing uncertain knowledge has become increasingly ap

parent over the last few years [Howard and Matheson 84, Pearl 861, there has been a

proliferation of research seeking to develop new and more efficient inference algorithms.

Two classes of approaches can be identified. One class of approaches explores approx

imation using stochastic simulation and Monte Carlo schemes. A good review on this

class is given by Henrion [1990]. Another class of approaches explores specificity in com

puting exact probabilities. Since this thesis research adopts the exact method, the major

advances in this class are reviewed below.

The first breakthrough in efficient probabilistic reasoning in Bayesian networks is

made by Kim and Pearl [1983]. They develop an algorithm, applicable to singly connected

Bayesian networks (Figure 1.4), for propagating the effect of new observations. Each

node in the network obtains messages from its parents (ir messages) and its children (A

messages). These messages represent all the evidence from the portion of the network

lying beyond these parents and children. The single-connectedness guarantees that the

information in each message to a node is independent and so local updating can be

employed. The algorithm’s complexity is linear in the number of variables.

Heckerman [1990] provides QUICKSCORE algorithm which addresses networks of

diameter 1 as the one in Figure 1.5. The upper level consists of disease variables and

the lower level consists of ‘finding’ variables. Note the net is multiply connected (Ap

pendix A). The algorithm makes three assumptions. All variables are binary. Diseases
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Figure 1.4: The DAG of a singly connected Bayesian network
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B1

DISEASES

. . .

FINDINGS

Figure 1.5: The DAG of a Bayesian network with diameter 1



Chapter 1. INTRODUCTION 20

are marginally independent and findings are conditionally independent given diseases2.

Diseases interact to produce findings via a noisy-OR-gate. The time complexity of

Q UICKSCORE is (D(nmi2m2) where n is the number of diseases, m1 is the number

of negative findings, and m2 is the number of positive findings.

Unfortunately, many applications can not be represented properly by a singly-connected

net of diameter 1. An example of a general multiply connected Bayesian network is given

in Figure 1.6. Pearl [1986] presents ioop cutset conditioning as an indirect method for

inference in multiply connected networks. Selected variables (loop cutset) are instanti

ated to cut open all ioops such that resultant singly. connected networks can be solved

by A — ir message passing, and the results from the instantiations are combined.

Shachter [1986,1988a] applies a sequence of operations called arc-reversal and barren

node reduction to an arbitrary multiply connected Bayesian net. The process continues

until the network contains only those nodes whose posterior distributions are desired

with the evidence nodes as immediate predecessors.

Baker and Boult [1990] extend the barren node reduction method to prune a Bayesian

network relative to each query instance such that saving in computational complexity is

2This implies that the net topology is of diameter 1.

B1

Figure 1.6: The DAG of a general multiply connected Bayesian network
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obtained when evidence comes in a batch.

Lauritzen and Spiegeihalter [1988] describe an algorithm based on a reformulation of

a multiply connected network. The DAG is moralized and triangulated. Then cliques are

identified to form a clique hypergraph of the DAG. The cliques are finally organized into

a directed tree of cliques3 which satisfies running intersection property. They provide

an algorithm for the propagation of evidence within this secondary representation. The

complexity of the algorithm is (D(prm) where p is the number of clique in the clique

list, r is the maximum number of alternatives for a variable in the network, and m is the

maximum number of variables in a clique. Pearl [1988] proposes a clustering method with

many similarities but propagates evidence in a secondary directed tree by \ — r message

passing. The directed tree approach and the following junction tree approach all have the

advantage of trading compile time with run time for ‘reusable systems’. Here reusable

systems mean those systems where the domain knowledge is captured once and is used for

multiple cases, as opposed to the decision systems which are created for decision making

in a non-repeatable situation.

Jensen, Lauritzen, and Olesen [1990] further improve the directed clique tree approach

and they organize clique hypergraph into an (undirected) junction tree to allow more

flexible computation. Similar work was done by Shafer and Shenoy [1988]. A close look

at the junction tree approach is included in Chapter 4.

3The ‘directed’ property is indicated by Henrion [1990], Neapolitan [1990], and Shachter [1988b] since
the cliques are ordered and this order is to be followed in belief propagation.
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THE FEASIBILITY OF FINITE TOTALLY ORDERED PROBABILITY

ALGEBRA FOR PROBABLE REASONING

Medical diagnosis is featured by probable reasoning and a proper uncertainty calculus is

thus crucial in knowledge representation for medical expert systems. A finite calculus is

plausible since it is close to human language in communicating uncertainty. An investi

gation into the feasibility of using finite totally ordered probability models for probable

reasoning was conducted under Aleliunas’s Theory of Probabilistic Logic [Aleliunas 88].

In this investigation, the general form of the probability algebra of these models and the

number of possible algebras given the size of probability set are derived. Based on this

analysis, the problems of denominator-indifference and ambiguity-generation that arise in

reasoning by cases and abductive reasoning are identified. The investigation shows that

a finite probability model will be of very limited usage. This highlights infinite totally

ordered probability algebras including probability theory as uncertainty management

formalism for probable reasoning.

This chapter presents the major results of the investigation. The results are mainly

taken from Xiang et al. [1991a]. Section 2.1 discusses the motivation and criteria of the

investigation. Section 2.2 presents the mathematical structure of finite totally ordered

probability models. Section 2.3 derives the inference rules under these models. Section 2.4

identifies the problems of these models both intuitively and quantitatively. Section 2.5

presents an experiment which exhaustively investigates models of a given size with an

example.

22
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2.1 Motivation

The investigation started in the early stage of this thesis research when two engineering

applications of AT in neurology, EEG analysis and neuromuscular diagnosis, were un

der consideration. Probable reasoning is the common feature of both domains. When

consulted about the formalism of representing uncertainty in EEC analysis, the experts

claimed that they did not use nurers, but rather used a small number of terms to de

scribe uncertainty. This motivated a desire for a formal finite non-numerical uncertainty

calculus. In such a calculus, the domain expert’s vocabulary about uncertainty could be

used directly in encoding knowledge and in reasoning about uncertain information. This

would facilitate knowledge acquisition and make the system’s diagnostic suggestion and

explanation more understandable.

There were few known finite calculus for general uncertainty management [Pearl 89,

Halpern and Rabin 87], but Aleliunas’ probabilistic logic [Aleliunas 88] was explored, be

cause it seemed to be based on clear intuitions, and to allow measures of belief (probability

values) to be summarized by values other than just real numbers.

Aleliunas [1988] presents an axiomatization for a theory of rational belief, the Theory

of Probabilistic Logic (TPL). It generalizes classical probability theory to accommodate a

variety of probability values rather than just [0, 1]. According to the theory, probabilistic

logic is a scheme for relating a body of evidence to a potential conclusion (a hypothesis) in

a rational way, using probabilities as degrees of belief. ‘p(PQ)’ stands for the conditional

probability of proposition P given the evidence Q, where P and Q are sentences of some

formal language L consisting of boolean combinations of propositions. TPL is chiefly

concerned with identifying the characteristics of a family F of functions from L x L to the

set of probabilities P. The probability values P are not constrained to be just [0, 1], but

can be any values that conform to a set of reasonably intuitive axioms (Appendix B.1).
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The semantics of TPL is given by ‘possible worlds’. Each proposition P is associated

with a set of situations or possible worlds S(P) in which P holds. Given Q as evidence,

the conditional probability p(PQ), whose value ranges over the set P, is some measure

of the fraction of the set S(Q) that is occupied by the subset S(P&Q).

TPL provides minimum constraints for a rational belief model. For the application

domain in question the following criteria are thought desirable:

Ri The domain experts do not express and communicate uncertainty using numerical

values in their practice. Their language consists of a small set of terms ‘likely’,

‘possibly’, etc., used to describe the uncertainty in their domain. Thus a finite set

of probability values is required.

R2 Any two probability values in a chosen model should be comparable. An essential

task of a medical diagnostic ystem is to differentiate between a set of competing

diagnoses given a patient’s symptoms and history. It is felt as though totally ordered

probabilities are needed in order to allow for totally ordered decisions when one has

to act on the results of the diagnoses.

R3 Inference based on a TPL model should generate empirically intuitive results. That

is, the inference outcomes generated with such a model should reflect, as far as

possible, the reasonable outcomes reached by a human expert.

Although these criteria are formed from the point of application in question, it is

believed that they are shared by many automated reasoning systems making decisions

under uncertainty. Based on the first 2 criteria, the focus is placed on finite totally

ordered probability models.



Chapter 2. FINITE TOTALLY ORDERED PROBABILITY ALGEBRA 25

2.2 Finite Totally Ordered Probability Algebras

2.2.1 Characterization

To investigate the mathematical structure (probability algebra) of the probability space,

the characterization of any finite totally ordered probability algebra under TPL axioms

[Aleliunas 88] is given in the proposition below. For more about universal algebra, see

Burns and Sankappannvar [1981] and Kuczkowski and Gersting [1977]. This proposition

is a restriction of the Probability Algebra Theorem [Aleliunas 86] (Appendix B.2) to

finite totally ordered sets.

The smallest element of P is denoted as 0, and the largest element of P as 1. There

are a finite number of other values between 0 and 1.

Proposition 1 A probability algebra defined on a totally ordered finite set P with order

ing relation ‘<‘satisfies TPL axioms if

Condi An order preserving binary operation ‘*‘ (product) is well defined and closed on

P.

Cond2 ‘*‘ is commutative, i.e., (Vp, q e P) p * q = q * p.

Cond3 ‘*‘ is associative, i.e., (Vp, q, r E P) p * (q * r)
=

(p * q) * r.

Cond4(Vp,q,reP)(p*q=r)=(rmin(p,q)).

Cond5 No non-trivial zero, i.e., (Vp, q E P) p * q = 0
=

(p = 0 V q = 0).

Cond8 (Vp, q E P) p < q =‘ (r E F) p = r * q. The solution will be denoted as

r = p/q.

CondT (VpP)0p1.

Cond8 (Vp P) p * 1
=

p.
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Cond9 A monotone decreasing inverse function i[.] is well defined and closed on P, i.e.,

(Vp<qEP)i[pj>i[q].

CondlO (Vp E P) i[i[p]] = p.

Proof:

One needs to show the equivalence of Condi,. . . ,CondiO, to Ti,. .. ,T7 of Probability

Algebra Theorem (Appendix B.2). Cond4 and CondiO are not obvious in the theorem

and they are included in proposition i for the convenience of later use. They are proved

here from TPL axioms AX1,. .. ,AX12 (Appendix B.i) directly.

Condi and Cond3 are equivalent to Ti. Cond2 is equivalent to T5.

Proof of Cond4. With Cond2, it suffices to prove r q. By AX1O, let p = f(BjA)

and q = f(AIi). Then

p*q = f(BA)*f(Ai)

< f(BA) * f(AA) (f(Afi) <f(AA))

= f(B&AA) (AX8)

= f(B!A) (AX5)

Cond5 is equivalent to T6. Cond6 is equivalent to T7. Cond7 is equivalent to T4.

Cond8 and Cond4 are equivalent to T2. Cond9 is equivalent to T3. CondiO is implied

by AX3.

D

From now on any Finite Totally Ordered Probability Algebra satisfying proposition 1 is

referred as legal FTOPA. The general form of all legal FTOPA is derived in section 2.2.2.
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2.2.2 Mathematical Structure

Here only those probability algebras with at least 3 elements are considered’. A finite

totally ordered probability set with size n is denoted as P = {e,,e2,.. . , e,_1,e}, where

1 = e1 > e > ... > e,_1 > e,, 0. For example, P = {e,, e2,e3,e4} could stand for

{certain, likely, unlikely, impossible}. This linguistic interpretation is left open.

The uniqueness of the inverse function i[.] of any legal FTOPA is given by the following

lemma.

Lemma 1 For a legal FTOPA with size n, the inverse is uniquely defined as

i[ek] = e.f_k (1 k n).

Proof:

By CondlO, the inverse is symmetric and it suffices to prove for k n/2.

For k = 1, i[ei] e, by Cond7. Assume i{eiJ > e,. Then i[e] > i[i{ei]] = e1 which

is contradictory to CondT. Hence i[e,] = e.

Suppose i[e} for j n/2. For k = j + 1 < n/2 + 1, assume i[ej+i] <

which implies i[e+i] By Cond9, this further implies e31 i[e_÷i] = e3

which is contradictory to ordering < e. Thus, i[e+iJ

Assume i[e1] > e_3. Then e1 < i[e_], i.e. i[e_] e. By Cond9, e_3

i[e] which is contradictory to e_, > e_+i.

D

Thus given the size of a legal FTOPA, only the choice of the product function is left.

A probability p e F is idempotent if p * p = p. Idempotent elements play important

roles in defining probability algebras as will be shown in a moment. The following

2 lemmas describe properties of idempotent elements. Aleliunas [1986] gives similar

statement to that in lemma 3.
‘Probability algebra with 2 elements is equivalent to propositional logic [Aleliunas 87].
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Lemma 2 Any legal FTOPA has at least 3 idempotent elements, namely e1, e_1 and

e.

Proof:

The proof is trivial for e1 and e. e_ * e_1 by Cond4 and e_ * e_ > e7

by Cond5. Therefore e_ * =

Lemma 3 For any legal FTOPA, ifp E P is idempotent, then (Vq € F) p*q = min(p, q).

Proof:

Assume q > p. Then (r € P) r * q = p. Therefore p * p = r * (q * p) = p implies

q*p p. But by Cond4, q *p <p which proves q*p =p.

Ifq <p, then (reP)r*p=q. Then q*p=r*(p*p)=r*p=q.

D

Proposition 2 For a finite totally ordered set with size n 3, there exists only one legal

FTOPA with 3 ide mpotent elements. The ‘*‘ operation on it is defined as

e, ifiorj_—n
e * e =

( eflfl(1+3_1,fl_1) otherwise.

Proof:

Let denote a legal FTOPA with size n and k idempotent elements.2 Let

denote e, * e2. The following proves the proposition constructively.

(1) In case of i or j = n, the proposition holds due to lemma 3. By non-trivial zero,

zero part of the product table is entirely covered within this case.

21n general, for a pair of n and k, there may be more than one legal FTOPA. Thus M,k does no
necessarily stand for a unique model characterized by n and k.
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e e2 63 64

e1 e2 e3 e1 e e2 e3 64

e e e2 e3 e2 62 63 63 64

62 e2 62 63 e3 63 63 e3 64

e3 63 e3 e3 e4 64 e4 e4 64

M4,3

(2) What is left is to prove tb non-zero part of the product table (the second half

of the product formula) which is bounded by two idempotent elements e1 and e_1. For

the completeness of the product table, the zero parts are still included in the following

tables although they are not relevant to the remaining proof.

For M3,3 and M4,3 the proposition holds (see the product tables). It is not difficult to

check that they satisfy proposition 1 and any change to these product tables will violate

proposition 1 in one way or another.

Suppose a unique legal FTOPA Mm,3 exists with product defined as in the proposition.

As for Mm+i,3 (table below), the product a1 (i + j m) should be constructed in the

same way as in Mm,3, i.e., the second half of product formula

= en(i+j_1,m) = ei+i_1

applies within this portion as does in Mm,3. If this portion could be changed without

violating proposition 1, the corresponding portion in Mm,3 could also be changed which

is contradictory to the uniqueness assumption for Mm,3.

Further one can show the uniqueness of for all (i, j <m <i + i)
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e1 e2 e3 em_i emem+i

ei e1 e2 e3 em_i emem+

e2 e2 e3 ... em_i a2,m_i emem+

e3 e3 ... em_i a3,m_2a3,m_iemem÷

aj,m_j+i
aj+1,m_j

em_i em_i ... ?

em em . em

em+i em+i ...

Note: ‘?‘ stands for product items to be c osen.
Mm+i,3

By associativity, one has

(e * e2) * em_i e+i * em_i

= aj+i,m_j

e * (e2 * em_i) e * em_i+1

= ai,m_j+i (2 j m — 2) (a)

Also one has

e2 * (ei * em_i) = e2 * ai,m_i

= (e2 * ei) * em_i e1 * em_i

= aj+1,m_i (2 i m —2) (b)

From order preserving property of ‘*‘, one knows

= em_i V = em (i,j <m < i +j).

Suppose a2,m_i = em_i. Then from (b),

e2 * a2,m_i = e2 * em_i = a2,m_i = em_i = a3,m_i.

Similarly, and from commutativity and order preserving, one has

aj,j=em_l (i,j<m<i+j).
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This means that em_I is also an idempotent element which is contradictory to the 3

idempotent elements assumption. Therefore, a2,m_I = em. Then from (a) and order

preserving, one ends up with = €m (i,j <m <i + i)•
D

The second part of the above proof for product bounded by e1 and e_1 does not

involve the 0 element at all as already stated. Thus for any legal FTOPA with more than

3 idempotent elements, the proposition holds for each diagonal block of its product table

bounded by two adjacent idempotent elements. The non-diagonal part of the product

table is totally determined by lemma 3, the order preserving and solution existing prop

erty. Thus one has the following theorem 1. Given proposition 2 and above description,

the proof is trivial.

Theorem 1 Given a finite totally ordered set P = {ei,e2,.. . , e,} with ordering relation

e1 > e2 > ... > e, and a set I of indexes of all the idempotent elements on P, I =

{i1,j2... , jm} where i1 < j2 < < m there exists a unique legal FTOPA whose product

function is defined as

min(e,ek) if j = ii

* ek = e11fl(3+k_,1+1) if <j, Ic i’+’

ek if ji1<k<ij1

and whose inverse function is defined as

i[ek] = e+1_k

Theorem 1 says that, given the set of idempotent elements, a legal FTOPA is totally

defined. From theorem 1 and lemma 2 one can easily derive the following corollary.

Corollary 1 The number of all the possible legal FTOPA of size n 3 is
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=

where C is the number of combinations taking i elements out of m.

Theorem 1 and corollary 1 provide the possibility of exhaustive investigation for any

legal FTOPA of a given size.

2.2.3 Solution and Range

Once a legal FTOPA is defined, its solution table is forced. Inverses to the operation

* : P x P —* P will not be unique. For this reason, it is necessary to introduce a

probability range denoted by [1, u] representing all the probability values between lower

bound 1 and upper bound u.

{l,uJ = {v Pjl v u}

[v, v] is written as just v. One has the following corollary on single value probability

solution. Its proof can be found in Appendix D.

Corollary 2 Given a finite totally ordered set P = {e1,e2,. . . , e} with ordering relation

e1 > e2 > ... > e and a set I of indexes of all the idempotent elements on P, I =

{i1, 2, .. . , im} where i1 < j2 < •.. < m the solution function (multiple value) of a legal

FTOPA is forced to be:
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ek

e.j

if

if

if

[ek if

product and solution

j=1

k = n,j n

k > j,

ii + 1 <k i1+1 — 1,

ii + 1 <ii+1 — 1

k = j, i1 < k < i1÷’

k = ii+1, i1 <j <l+l

Ic =j = i1,k 1,n

j i1 < Ic < i1+1

tables for three legal FTOPAs of size 8

Definition 1 For any legal FTOPA, the product of two ranges [a, b] (a b) and [c, ci]

(c < d) is defined as

[a,bJ * [c,d] = {zIx E [a,b]&y [c,d]&z = x * y}.

And the solution of above two ranges with additional constraint a d is defined as

[a, b]/[c, d} = {zjdx [a, b]3y E [c, d]x = y * z}.

One can prove the following proposition.

Proposition 3 For any legal FTOPA, the product of two ranges [a, b} (a b) and [c, ci]

(c < d) is

if

if

if

ek/e =

[e1, ei]

[ej1+,,e1+1+j_j]

[ek, ei]

In Appendix C.1, the

are presented.

The solution of two single valued probabilities may become a range which will par

ticipate in further manipulation. Thus the product and solution of ranges should be

considered before we can manipulate uncertainty in an inference chain.

[a,b]*[c,d] [a*c,b*dj.
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And the solution of above two ranges with additional constraint a d is

I [LB(a/d), UB(b/c)j if b
[a,bj/[c,d]

[LB(a/d), ej] if b> c

where LB and UB are lower and upper bounds of ranges.

It should be noted that, in general, product and solution of legal FTOPAs do not

follow commutativity. For example, in model M8,8,

(e2 *e5)/e5 = [e5, ei] e2 * (es/es) = [e5,e2j.

Thus the order of product and solution in evaluation of conditional probability

p(AIB&C) = p(A&BC)/p(BC)

= (p(BAC) * p(AjC))/p(BC)

can not be changed arbitrarily.

2.3 Bayes Theorem and Reasoning by Case

Having derived the mathematical structure of legal finite totally ordered probability mod

els, one needs deductive rules. In this investigation, DAG and conditional independence

assumption made in Bayesian nets are adopted as the qualitative part of the knowledge

representation. Instead of using probability theory to represent uncertainty as Bayesian

nets, the legal FTOPAs are used. Call the resulting overall representation a quasi

Bayesian net. The quasi-Bayesian nets are implemented by PROLOG programs with

the approach described by Poole and Neufeld [1988]. The inference rules thus required

are Bayes theorem and reasoning by cases.
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Bayes theorem provides a way of determining the possibility of certain causes from

the observation of effects.3 It takes the form:

p(PIQ&C) = p(QIF&C) * p(PIC)/p(QIC)

which is the same with the one introduced in section 1.3.1 for probability theory. But

here the order of calculation is to be followed as it appears as discussed in section 2.2.3.

Reasoning by cases is an inference rule to compute a Londitional probability by parti

tioning the condition into several mutually exclusive situations such that the estimation

under each of them is more manageable. The simplest form considers the cases where B

is true and where B is false:

p(A(C) = p((A&B) V (A&C)

Under probability theory, it can be derived from marginalization rule in section 1.3.1:

p(AIC) = p(AB&C) . p(BC) + p(AC) p(iC)

Using TPL, the . becomes *, and one does not have the +. This can, however, be

simulated using product and inverse. The corresponding formula under TPL is given by

the following propositions.

Proposition 4 Let A, B, and C be three sentences. p(AC) can be computed using the

following:

fi = i[p(AI&C) * i{p(BIC)]]

f2 = i[p(AIB&G) * p(BIC)/fi]

p(AC) = i[fi*f2J.
3Canse and effed are used here in a broad sense.
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Using quasi-Bayesian nets, the probability of a hypothesis given some set of evidence

can be computed by applying the two inference rules, namely, Bayes theorem and rea

soning by cases [Poole and Neufeld 88].

2.4 Problems With Legal Finite Totally Ordered Probability Models

2.4.1 Ambiguity-generation and Denominator-indifference

‘vVith the mathematical structure of legal finite totally ordered probability models and

the form of relevant deductive rules derived, one can assess these probability models as

to how well they fit in with the intuition.

To begin with, examine the solution of legal FTOPA which has all its elements

idempotent. The solution takes the form of (compare to Appendix C.1)

(ek if j<k
ek/e =

j [ej,e1] if k=j

Note that e3 does not have direct influence on the result of the first case of the solution.

Name this phenomenon as denominator-indifference. Also, name the emergence of range

in the second case of the solution operation as ambiguity-generation.

To analyze the effect of denominator-indifference and ambiguity-generation on appli

cation of Bayes theorem, apply Bayes theorem to

p(AjB&C)

= p(A&BIC)/p(BC)

= Jp(A&BIC) if p(ABIC)p(BIC)

I [p(A&BIC), ej] if p(A&BC) = p(BjC)

In the first case, the probability p(BC) does not affect the estimation of p(AIB&C)
due to denominator-indifference. In the second case, ambiguity-generation produces a
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disjunct of all the probabilities larger than p(BIC) which is a very rough estimation.

Neither satisfies the requirement for empirically satisfactory probability estimates.

To analyze the effect of denominator-indifference and ambiguity-generation on rea

soning by cases, consider applying proposition 4 to

max(p(A&BC), p(ARiC))

if p(A&BC) p(A&C)
p(AC)= —

[max(p(A&BJC), p(A&BIC)), ei]

if p(A&BC) = p(A&HIC)

Here again, in the first situation, denominator-indifference forces a choice of outcome

from one case or another instead of giving some combination of the two outcomes. One

does not get an estimation larger than both which is contrary to the intuition. In the

second situation, a very rough estimation appears because of ambiguity-generation. Note

that, when max(p(A&BIC),p(A&EC)) is small, p(AIC) can span almost the whole range

of probability set P.

The analysis here is in terms of a model that has all of its values idempotent. The

other case to consider is what happens at the values between the idempotent values.

Consider M,3 which has minimal number of idempotent elements. By proposition 2,

its product is

I e(I+_l,_l) if i,j
e, * e3 =

otherwise.

Its solution simplifies to (compare to Appendix C.1)

e if k=n>j

ek/e = if j k <n — 1

[en_i,e7jJ if k = n — 1

In this algebra, it is quite easy for a manipulation to reach the probability value e....1:
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1. Whenever one of the factors of product is the product will be e1 unless the

other factor is e.

2. Whatever takes the value e2, its inverse will be e_1.

3. Products of low or moderate probability tend to reach e_1 due to quick decreasing

of product.

4. e/e_ 2 for all 2 j <n 2.

Once e_1 is reached, any solution will be ambiguous. This ambiguity will be prop

agated and amplified during further inference in Bayesian analysis or case analysis. Al

though e_ is a value one should try to avoid, there is no means to avoid it. Here

one sees an interesting trade off between the two problems. In M,3, the denominator-

indifference disappears. But, since manipulations under this model move probability

values quickly, they tend to produce e_ more frequently and thus one suffers more from

the ambiguity-generation.

As all finite totally ordered probability algebras can be seen as combinations of

the above two cases, they must all suffer from the denominator-indifference and the

ambiguity-generation. The question is how serious the problems are in an arbitrary

model. This is to be answered in the next section.

2.4.2 Quantitative Analysis of the Problems

Given the constraint of legal FTOPA in choosing a probability model, one is free to select

the model size n and to select among alternative legal FTOPAs once n is fixed. A

few straightforward measurements are introduced to quantify the degree of suffering in

a randomly chosen model.
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The number of ranges in a model’s solution table and the number of elements cov

ered by each range mirror the problem of ambiguity-generation of the model. Define a

measurement of the amount of ambiguity in a model as the number of elements covered

by ranges in its solution table minus the number of ranges.

Definition 2 LetS = {ri,r2,. . . ,r} be the set of ranges in the solution table of a legal

FTOPA. Let w3 be the number of values covered by range r3. Let M be the number of

different solution pairs in the solution table.

The amount of ambiguity of the algebra is defined as

A = —1.

The relative ambiguity of the algebra is defined as

R=A/M.

Example 1 The three legal FTOPAs with size 8 in Appendix C.1 all have A 21 and

R=O.6.

One has the following proposition. The proof can be found in Appendix D.

Proposition 5 The amount of ambiguity of any legal FTOPA with size n is

A = (n — 1)(n — 2)/2.

The relative ambiguity of the algebra is

R= (n—2)/(n+2).

The number of solution pairs satisfying e3/ek = e3 reflects the seriousness of denomi

nator-indifference of the model. Define the order of denominator-indifference as this

number minus the number of such e3s.
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Definition 3 Let d, be the number of times e3/e,. = e3 for 1 k <j in a legal FTOPA

of size n. The order of denominator-indifference of the algebra is defined as

Od = >Zd —1.

Example 2 The three legal FTOPAs M8,3, M8,8 and M8,4 in Appendix C.1 have Od
values 0, 15 and 9 respectively.

Define the order of mobility of a model to express the chance with which a product or

a solution transfers an operand to a different value. The higher this order, the more likely

for a manipulation to generate an idempotent element and produce ambiguity afterwards.

Definition 4 The order of mobility °m of a legal FTOPA is defined as the number

of distinct product pairs a * b in its product table such that a * b < mm [a, bj.

Example 3 The three legal FTOPAs M8,3, M8,8 and M8,4 in Appendix C.1 have Om

values 15, 0 and 6 respectively.

One has the following proposition. The proof can be found in Appendix D.

Proposition 6 For any legal FTOPA with size n and a set I of indexes of all its idem

potent elements I = {i1,i2,. . . ,i} where i1 < 2 < •.. < z its order of denominator-

indifference is
k— 2

Od
=

1) (m+i

its order of mobility is
k—2 Im+1im1

0m .7,
m1 3=1

and

°d + Om = (n — 2)(n — 3)/2.
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Example 4 The three legal FTOPAs with size 8 in Appendix C.1 all have Od+Om 15.

Proposition 5 tells us that all the legal FTOPAs of same size have same amount of

ambiguity. Increasing size increases R which approaches 1 as n approaches infinity.

Proposition 6 says that,

1. among legal FTOPAs of same size n, the order of denominator-indifference Od

changes from lower bound 0 at M,3 to upper bouid (n — 2)(n — 3)/2 at

2. the upper bound of Od as well as °m increases with model size n;

3. given n, the sum Od + °m remains constant and thus if a model suffers less from

denominator-indifference, it must suffer more frequently from ambiguity-generation

due to the increase in its mobility.

2.4.3 Can the Changes in Probability Assignment Help?

After explored model size and alternative models given size, the final freedom that re

mains is the assignment of probability values. From Corollary 2, it is apparent that, in

general, denominator-indifference and ambiguity-generation happen only in certain re

gions of the solution table. So, is it possible, by choosing certain set of probability values

as prior knowledge, to avoid intermediate results falling onto those unfavorable regions?

To help answer this question, a derivation of conditional probability p(firelsrnoke

& alarm)4 for a smoke-alarm problem in Figure 2.7 is given in Appendix C.2. The

calculation involves 2 applications of Bayes theorem, and 3 of reasoning by cases. It

requires 19 products, 9 solutions, and 14 inverses.

In general,

4The four nodes involved form a minimum set which has alternative hypotheses (fire and tampering)
and allows accumulation of evidences (smoke + alarm).
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1. a product tends to decrease the probability value until an idempotent value is

reached.

2. a solution tends to increase the probability value or cause a large range to occur

(especially for idempotent values).

3. an inverse tends to transfer small value into big and vice versa.

Since many operations are required even in a small problem and each operation tends

to move the intermediate value around the probability set, the compound effect of the

operations are not generally controllable.

To summarize, in the context of legal FTOPA, there seems to be no way to get

away with the problem of denominator-indifference and ambiguity-generation by means

of clever assignment of probability values; increasing model size does no good in reducing

the difficulty; selecting among different models trades one trouble with another.

In the next section, these problems are demonstrated by an experiment.

Figure 2.7: Smoke-alarm example
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2.5 An Experiment

All the 32 legal FTOPAs with size 8 were implemented in PROLOG and their perfor

mance were tested by the smoke-alarm example (Figure 2.7) from Poole and Neufeld

[1988]. The PROLOG program has basically the same structure, but inverse, product,

solution, as well as Bayes theorem and reasoning by cases are redefined.

Table 2.1 lists the probabilities in the knowledge base together with numerical values

used by Poole and Neufeld [1988] for comparison.

p(fire) = e6 0.01 p(smokefire) = e2 0.9
p(tamperirig) = e6 0.02 p(smokeI7E) = e6 0.01
p(alarmfire&tarnpering) = e4 0.5 p(leavingjalarm) = e2 0.88
p(alarrnfire&tampering) = e2 0.99 p(1eavinga1arm) = e7 0.001
p(alarmflE&tampering) = e2 0.85 p(reportjleaving) = e3 0.75
p(alarrnIflE&tarnpering) = e7 0.0001 p(reportIleaving) = e6 0.01

Table 2.1: Probabilities for smoke-alarm example

The following posterior probabilities are calculated in all 32 possible legal FTOPAs

with size 8 (using quasi-Bayesian nets) and in [0, 1] real number probability model (using

Bayesian nets) as a comparison.

p(slf), p(a f), p(st), p(alt), (fIs), p(fa), p(f Is&a), p(ts), p(tla), p(t Is&a)

The first four probabilities are deductive which, given cause acting, estimate the

probabilities of effects appearing. The remaining six are abductive which, given effects

observed, estimate the probability of each conceivable cause. The results are included in

Appendix C.3.
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• Among the 32 legal FTOPAs, eight of them produced identical value for the ab

ductive cases:

p(fs) = p(fa) = p(fs&a) = e6,

and 16 others produce the identical ranges for all the abductive cases about fire.

According to Table 2.1, smoke does not necessarily relate to fire (p(s7) e6). Nor

does alarm (p(alf&t) = e2’) As a result, observing only one of smoke and alarm,

one is not quite sure about iire. Intuitively, adding the positive evidence alarm to

smoke should increase one’s belief for fire. As well, adding to alarm the evidence

smoke which is independent of tampering indicates higher chance of fire causing

alarm. Thus this intuitive inference arrives at

p(fsa) > p(fls) & p(fjs&a) > p(f a)

which the results obtained from the above mentioned 24 legal FTOPAs do not fit

in with.

To illustrate how this happens, evaluate p(fls&a) in model M8,4 with idempotent

elements {e, e5, e7,e8}.

p(fls&a) = p(slf&a) * p(fa)/p(sa) = e2 * e6/e4 = e6/e4 = 66

Pay attention to the solution in last step. The result is no larger than p(f Ia) = 66

due to denominator-indifference. One does not get extra evidence accumulating.

• One of the very useful results provided by [0, 1] numerical probability is that al

though p(fI) = 0.48 and p(fa) = 0.37 are moderate, when both smoke and alarm

are observed p(fs&a) = 0.98 is quite high which is more intuitive than the case

above. According to Table 2.1, fire is the only event which can cause both smoke
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and alarm with high certainty (p(sf) = p(alf) = e2). Thus observing both simulta

neously one would expect a higher probability. But the remaining 8 legal FTOPAs

give only ambiguous p(fls&a) spanning at least half of the total probability range.

Consider the evaluation of p(fs&a) in model M8,4 with idempotent elements

{ €, e, e7,e8}.

p(fls&a) = p(sjf&a) * p(fla)/p(sja) = 62 * es/es es/es = [64, ei]

Notice the solution in last step.

• In the deductive case, the situation is slightly better. Some models achieve the same

tendency as [0, 1] probability in deduction (e.g., p(st) <p(alt)). Some achieve the

same tendency with increased ambiguity. Others either produce identical ranges for

different probabilities or do not reflect the correct trend. The slight improvement

attributes to less operations required in deduction (only reasoning by cases but not

Bayes theorem is involved). Since reasoning by cases needs the solution operation,

it still creates denominator-indifference and generates ambiguity.

Our experiment is systematic with respect to legal FTOPAs of a particular size 8.

Although a set of arbitrarily chosen probability is used in this presentation, it has been

tried to vary them in a non-systematic way, but the outcomes are basically the same.

2.6 Conclusion

The motivation of this investigation is to find finite totally ordered probability models

to automate reasoning under uncertainty and to facilitate knowledge acquisition and

explanation in expert systems.

Under the theory of probabilistic logic [Aleliunas 88], the general form of finite totally

ordered probability algebras is derived and the number of different models is deduced
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such that all the possible models can be explored systematically.

Two major problems of those models are analyzed: denominator-indifference, and
ambiguity-generation. They are manifested during the processes of applying Bayes the
orem and reasoning by cases. Changes in size, model and assignment of priors do not
seem to solve the problems.

All the models with size 8 have been implemented in a PROLOG program and tested
against a simple example. The results are consistent with the analysis.

The investigation reveals that under the TPL axioms, finite probability models will
have limited usefulness. The premise of legal FTOPA is {TPL axioms, finite, totally
ordered}. It is believed that TPL axioms represent the necessity of general inference
under uncertainty. ‘Totally ordered’ seems to be necessary for a probability model to be
useful. Thus it is conjectured that a useful uncertainty management mechanism can not
be realized in a finite setting.

The result of the investigation does not leave the probability theory as the only
choice for representation of probable reasoning. But it does highlight infinite totally
ordered probability algebras including probability theory. Since the appeal of Bayesian
networks for representing uncertain knowledge has become increasingly apparent; and
substantial advances have been made in recent years on reasoning algorithms in Bayesian
nets, Bayesian networks are adopted as the framework of this research.



Chapter 3

QUALICON: QUALITY CONTROL IN NERVE CONDUCTION

STUDIES BY COUPLING BAYESIAN NETWORKS WITH SIGNAL

PROCESSING PROCEDURES

Before more complicated diagnostic problem was tackled (Chapter 5), a pilot study on

Bayesian networks was done with a problem of quality control in nerve conduction studies.

The resultant system is QUALICON. The corresponding network has a small size (less

than 20 variables and singly connected) and thus is a good testbed. While the solution to

the problem contributes to the information gathering stage of neuromuscular diagnosis.

This chapter presents major issues in the implementation of QUALICON. The results

are mainly taken from Xiang et al. [1992]. Section 3.1 introduces the QUALICON do

main. Section 3.2 describes the overall structure of QUALICON. Section 3.3 discusses the

knowledge representation of QUALICON. Section 3.4 presents a preliminary evaluation

of QUALICON.

3.1 The Problem: Quality Control in Nerve Conduction Studies

Nerve conduction studies are now used routinely as part of the electrodiagnostic examina

tion for neuromuscular diagnosis. Their clinical value is demonstrated in the examination

of diseases or injuries which might be difficult to diagnose with (needle) EMG alone. The

clinical procedures involve the placement of surface electrodes, delivering of stimulating

impulse to nerve or muscle, and recording of nerve or muscle responses (action potentials).

47
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The procedures are fairly simple to perform, are easily tolerated, and require little coop
eration from the patient. Interpretation of the results, however, requires knowledge of the
range of normal values, the morphology of normal potentials and, of equal importance,
the sources of technical error which may affect the finding [Goodgold and Eberstein 83].
Since abnormalities can be due to technical error or disease, identification of technical
error is a major element of quality control in nerve conduction studies.

Contemporary equipment used for nerve conduction studies is usually capable of
computerized measurement of latency, amplitude, duration and area of nerve and muscle
action potentials and resulting conduction velocities. However, computerized measure
ments assume that stimulating and recording characteristics and electrode placements
are correct; they do not take cognizance of technical acceptability. The development of
an appropriate technique for automating the quality control is addressed in this Chapter.

3.2 QUALICON: a Coupled Expert System in Quality Control

Since identification of technical errors are based on observations of recorded nerve and
muscle responses, the problem is of the nature of diagnosis, i.e., given the abnormal out
comes, explaining the cause. Since stimuli are applied to and responses are generated
through complex biological systems, namely, human bodies, much uncertainty is involved
in the interpretation of abnormal responses in terms of possible technical errors. Thus
the problem is in many aspects similar to a medical diagnostic problem, the limitation
of conventional techniques and promise of application of AT technique apply as discussed
in the beginning of this thesis. Since the recorded responses take the form of contin
uous signals, it is essential to ‘couple’ the expert system technique with the numerical
procedures for signal processing in order to develop a feasible technique as a solution.

The term ‘couple’ needs some explanation. The concept of coupled expert system
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emerges, when rule-based systems are dominant, from a need to apply expert system

techniques to domains where numerical information is largely involved and is processed

by conventional numerical procedures. At that time, expert systems are considered as

‘symbolic’ since rule-based systems use rules for inference which are different than con

ventional ‘numeric’ computation. Therefore, the coupled expert system was defined as

a system which links numeric and symbolic computing processes; has some knowledge

of the numerical processes embedded; and reasons about the application or results of

these numerical processes [Kowalik 86]. In light of newer expert system methodology for

probable reasoning, namely Bayesian networks which compute extensively the (numeri

cal) posterior probability using algorithms, it is not appropriate to characterize expert

systems which do not deal with numerical information other than measurement of uncer

tainty as simply ‘symbolic’. Thus, my suggestion is to define a coupled expert system as

a system which links numerical processes not directly involving inference with computing

processes (symbolic or numeric) for inference; has some knowledge of the (non-inferential)

numerical processes embedded, and reasons about the application or results of these nu

merical processes.

A prototype expert system QUALICON coupling Bayesian networks with numeri

cal procedures for signal processing has been developed in the thesis research, which

automates quality control in nerve conduction studies. The system was developed in

cooperation with Neuromuscular Disease Unit (ND U) of Vancouver General Hospital

(VGH). Utilizing information for stimulating and recording parameters for a given nerve

or muscle action potential, QUALICON compares specific characteristics with values

from a normal database determining the qualitative nature of each feature. Probabilistic

reasoning allows QUALICON to provide the user with recommendations on the accept

ability of the potential. If it is not technically acceptable, the most likely explanation(s)

of the problem is/are provided with information on how to correct it.
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Figure 3.8 illustrates the 3 modules comprising the framework of QUALICON, namely:

the Feature Extraction (FE) module, the Feature Partition (FP) module and Probabilis

tic Inference Engine (PIE) module. There are also 2 knowledge bases: a Normal Database

(ND) and a Bayesian Net Specification (BNS).

LATENCY
DURATION
AMPLITUDE
RATIO

Figure 3.8: QUALICON system structure

FE consists of a set of numerical procedures extracting numeric or symbolic features

from an action potential. These routines consult ND in determining their best heuristic

strategy. ND contains the normal value ranges (in terms of means and standard devi

ations) of all the numeric features to be examined. Normal value ranges for distal and

proximal are distinguished. It combines the statistics derived from several hundred nor

mal studies in NDU of VCH, and the electromyographic “expertise” from neuromuscular

USER
nerve studied numeric features
stimulus position evidence summary
recording position recommendations
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specialist A. Eisen and registered EMG technician M. MacNeil. FP partitions the nu

meric features against ND translating them into symbolic descriptions of the potential.

When all the features are available in symbolic form they are fed into PIE for probabilis

tic inference. PIE reasons with BNS as the background knowledge and with the symbolic

features as new evidence to generate recommendations with respect to any technical error

in test setup.

The FE and FP modules are programmed in C, and the PIE module is programmed

in PROLOG.

3.3 Development of QUALICON

Important technical issues involved in the development of QUALICON is presented in

this section, which concern knowledge representation, robust feature extraction, coupling,

and an algorithm for probabilistic reasoning.

3.3.1 Feature Extraction and Partition

Feature Selection

A set of features of numerical data provides a basic interface between signal processing

and Bayesian net components. Two criteria are used in the feature selection. (1) Utiliza

tion of human expertise as a resource in building QUALICON requires that the selected

features be mainly composed of those used in daily practice. (2) The set of features

should have sufficient differential power, i.e. they should enable different potentials to be

characterized mostly by different sets of feature values.

Based on the criteria, 6 variables are chosen: LATENCY, DURATION, AMPLI

TUDE (peak to peak), WAVE SEQUENCE, RATIO, and STIMULATION ARTIFACT.

The first 3 are routinely used features. WAVE SEQUENCE is selected to characterize
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the basic morphology of the potentials. This feature can take 4 symbolic values: bnpb

(baseline negative positive baseline), bpnb, bpnpb, and ab_seq (abnormal sequence) for

CMAPs (Compound Muscle Action Potentials) and pnp, npn, np, and ab_seq for SNAPs

(Sensory Nerve Action Potentials). bnpb (Figure 3.9(a)) and pnp are the wave sequences

seen in normal potentials; bpnb and npn (Figure 3.10(a)) are most often created by re

versed polarity of recording electrodes; bpnbp (Figure 3.10(b)) and np usually signify

the misplacement of recording electrodes; and ab_seq encapsulates any wave sequences

different from the above 3.

The feature RATIO is selected to complement WA VE SEQ UENCE. It is defined as the

ratio of negative peak amplitude over positive peak amplitude. Although not explicitly

used in routine electromyography, this feature is employed implicitly in combination with

the basic morphology. In Figure 3.10(b), the ratio is 3.75mV/(4.7—3.75)mV = 3.95. This

is larger than normal and therefore the entry in ‘summary’: “Positive dip too shallow”.

STIMULATION ARTEFACT takes 3 symbolic values: negative (upwards), positive

(downward), and isoelectric. An otherwise normal potential except STIMULATION

ARTEFACT = positive could well be produced by reversing the stimulating polarity.

The latency will be prolonged but could still be within normal range. Without using this

feature, an abnormal setup might be overlooked (Figure 3.9(b)).

Determine values for feature variables

Some features like STIMULATION ARTEF14CT and WAVE SEQUENCE are intrinsi

cally symbolic. Others like LATENCY could be extracted in symbolic form from rough

estimates of numeric values. The quality control task does not logically require any fea

tures in numeric form since all the features must be symbolic when entering the final

symbolic computation stage, and computation savings could be achieved by abandoning

accurate numerical measurement. The choice of accurate measurement of LATENCY
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Figure 3.9: QUALICON report: (a) Normal CMAP evoked by tibial nerve stimulation
at ankle. Recorded at abd. hallucis; (b) Same but with a reversed stimulus polarity.
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Figure 3.10: QUALICON report: (a)

ulation at finger 2 (normal subject).

Median nerve SNAP recorded at wrist, with stim

Recording polarity was reversed. (b) The CMAP
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is recorded from median nerve of a healthy person with stimulation at wrist and with
recording electrode misplaced.
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(and the other variables) is made in order to present the user with values with which

they are familiar. The partition into symbolic values follows normally.

Two methods determining the onset and end of a CMAP are presented by Meyer

and Hilfiker [1983]. ‘Slope threshold’ identifies the 2 critical points when 2% of the

maximal slope are reached. ‘Power threshold’ signals the points corresponding to 0.1

and 0.999 of the integrated squared potential. Even though the methods perform well

in ‘semiautomatic’ condition, they are sensitive to artifacts without human supervision.

For the quality control task, a robust strategy is required.

The problem is treated by developing a technique named guided filtering which (1)

introduces the knowledge about the wave morphology and guides the search for critical

points; and (2) adopts noise rejection and suppression filtering. Figure 3.11 depicts the

feature extraction strategy used by FE module. The following are the important steps

employed.

• Detecting stimulation artifacts in distal CMAP. The first few samples are averaged

and compared with 2 thresholds to determine the symbolic value of the variable.

This approach cannot be applied to SNAPs since, when the stimulation polarity

is reversed, only a short positive component appears in the stimulation artefact

reflecting the high gain used (Figure 3.12). Thus the following rules are applied

to the first T ms samples: (1) if successive positive samples of TP ms are found

with their average greater than Ni 1W, the STIMULATION ARTEFACT takes

the value downward; (2) if the average over T ms is lower than -N2 iiV, the value

is upwards; (3) otherwise the value is none. The parameters T, TP, Ni and N2

depend on the electromyograph used and the sampling interval.

• ND contains the means and 2 standard deviations for LATENCYand DURATION.

The linear combination of these defines a time period P = [1, u] (Figure 3.13). The
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I Determine stim artefact /

Consult ND

Find all turning points

I Find tiobal extrerna for CMAP

/ Determine wave sequence

Guided filtering for onset & .fl4. /
1.

Measure lat. , dur. • amp. ratio

Figure 3.11: Feature extraction strategy

most significant part of the nerve response lies within P with a probability close to

1. Most of the noise and artefact before the onset or after the end are outside P.

The values for the remaining features are searched only through the samples in P.

• In determining turning points within F, another level of noise suppression is adopted

to catch the turning points which define the basic patterns of wave sequences. Turn

ing points corresponding to small perturbations are ignored. This technique is sim

ilar to that developed for EEG processing [Gotman and Gloor 76]. Two successive

turning points (one a local maximum and the other minimum) with their difference

of amplitudes less than a preset threshold are ignored.

• Once turning points are found, a pattern matching suffices to determine the value

for the WAVE SEQ UENCE.
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• The onset and end of SNAP coincide with turning points. Estimation of the onset

and end of CMAP requires additional search. A digital filter (Figure 3.13) is used

in the form:

—

a + Zk_(W_l)(xi+k —

Ui— 2+ (x+ — X+k+1)

where x is the sample data, i the time index, 2w + 1 the window width and a a

preset constant. The minimum (maximum) of y indicates the onset (end) of CMAP.

a prevents denominator from being 0 when the window slides over flat baseline.

The filtering over the window width smooths any small perturbation, and provides

another level of noise suppression. Increasing the window width strengthens the

noise suppression but decreases the sensitivity of the filter. The filtering is only

applied to the period [1, f(y)] for onset estimation. f(y1) is initialized to j the time

index of the turning point corresponding to the negative peak of CMAP. When y

drops below a threshold which signifies the onset is nearby, f(y) takes the value

i + /3 where /3 is a preset constant.

Figure 3.12: SNAP produced by reversing stimulation polarity



Chapter 3. QUALICON: A COUPLED EXPERT SYSTEM 58

Figure 3.13: Illustration of Guided Filtering

For estimation of the end, the filtering is applied to [d, d + 71 (d + u) where d is

the time index of the turning point corresponding to the positive peak of CMAP,

and is a preset constant determined by the estimation of the maximum possible

length between d and the end.

In summary, this technique, named guided filtering, attempts to utilize fully the avail

able knowledge and information up to the moment during its search process. Initially,

the general knowledge about the nerve-stimulation pair guides the search. As the search

progress, new information about turning points and wave sequence are absorbed to lo

calize further search for the onset and end. It simulates human heuristic which starts

with some expectation and search is guided by information obtained during the search.

In this way, not only the overall processing is very efficient, but since in each step the

search is kept local, the effect of artefact and noise is minimized.

ii T
i+fl
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Partitioning Numeric Features

Partition is also a feature interpretation process. It involves (1) straightforward mapping

of numeric features against the normal database ND, for example, into less_than_normal,

normal and greater_than_normal; and (2) capturing the dependency in feature interpreta

tion. Two kinds of dependency required consideration in partition. The first is technically

obvious. For instance, if WAVE SEQUENCE = ab_seq, no values could be assigned to the

variables AMPLITUDE, DURATION etc. In this case, call these variables inapplicable.

Another kind of dependency reflects the experts’ context dependent view of numeric

features. For exampic, in the case of CMAP if the stimulus is applied proximally, the

possibility of LATENCY = less_than_normal will not be considered. This is because

individual variation in limb length precludes a standard interstimulus distance. Likewise

when AMPLITUDE = normal, even if the DURATION is below normal range, it is still

interpreted as normal. This is probably due to inability to accurately determine the end

of the potential (where it returns to baseline). In both examples, the dimension of certain

variables changes depending on the context.

3.3.2 Probabilistic Reasoning

Construction of Bayesian Networks

Due to the difference in nerve conduction studies with respect to CMAPs and SNAPs.

Two separate Bayesian nets with similar topology are constructed for C MAPs and SNAPs

respectively, and only one of them needs to be evaluated at a particular session. The net

for CMAP is shown in Figure 3.14. Each box (a node) in the network represents a vari

able with its name underlined and its alternative values listed. The root is STIMULUS

POSITION which affects the distribution of OPERATION which in turn determines the

likelihood of observing different feature values.
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OPETATI ON
normal
rey_st irn_po lar ity
rev_rec_po lar ity
m isp lace_st im_e lect
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submax_st irn
supermax_st im

Figure 3.14: Bayesian subset for CMAP
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A system dealing with technical errors must make assumptions about the knowledge

and skill levels of potential users. QUALICON has intended users as residents, fellows

and technologists learning in a hospital EMG laboratory. It is further assumed that the

inadequate operations are mutually exclusive since it is unlikely that 2 or more could

occur in combination given the intended user level. Assuming mutual exclusion, different

technical errors can be represented by a single node OPERATION. In this way simplicity

in the network structure is gained and an efficient evaluation algorithm (section 3.3.2)

can be developed.

After the topology of the net is decided, the conditional probabilities for all links

are acquired from subjective judgement of a domain expert in the form like p(WAVE

SEQUENCE = bpnb I OPERATION = reversed recording polarity).

Although not constructed for diagnostic purposes, QUALICON recognizes that ab

normal potentials could result from disease rather than a technical error. When an

abnormal potential is encountered QUALICON attempts to interpret the abnormality in

terms of a technical error but also raises the possibility of disease (e.g. recommendation

2 in Figure 3.10). If an unacceptable recording could not be overcome by correcting the

identified technical error then disease becomes the likely cause.

The net for CMAP shown in Figure 3.14 reflects the influence among relevant variables

in the most general case. When the network is used in particular situation, it must

adapt to the reality. For instance, when STIMULUS POSITION = proximal, STIM

ARTEFACT usually can no longer be detected. QUALICON will remove the node STIM

ARTEFACT together with its relation with OPERATION in this case. Likewise, when

WAVE SEQUENCE is found to be ab..seq, DURATION, AMPLITUDE, and RATIO

will be removed. This is a higher level parallel of inapplicability raised in the previous

subsection. Heckerman, Horvitz, and Nathwani [1989] discuss this similar issue.
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Inference Algorithm in QUALICON

In a QUALICON session, after the feature extraction and partition are finished, QUAL

ICON is able to reason at the Bayesian net level where STIMULUS POSITION (Fig

ure 3.14) and all other applicable feature variables are known. At this time, only the

value of OPERATION is to be estimated (i.e., given the evidence, only the probabilities

of OPERA TION are to be evaluated). A simple and efficient algorithm to take advan

tage of this net structure is developed. With the algorithm, only the probability of one

alternative value needs to be calculated in full length; the rest can be obtained by a

negligible amount of computation. Figure 3.15 depicts the DAG used in QUALICON

which is slightly simplified for illustration of the algorithm.

A.

;;
Figure 3.15: A DAG to illustrate the inference algorithm in QUALICON

Algorithm 1 Suppose a set of evidence is given as {a, c,d} with the value of E unknown.

Assuming B {b1,. . . , b,}, the probability p(b1a&c&d) (i 1,... , n) can be computed

in the following way.
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step 1 For p(biIa&c&d) = p(bi&c&dla)/p(c&dla), retrieve the knowledge base to calcu

late

p(b&c&dIa) =p(cb)p(dIbj)p(ba) (i = 1,.. .,n)

p(c&dla) = p(b&c&dIa)

and cache the intermediate results.

step 2 For the rest of the probabilities to be evaluated, no knowledge base retrieval is

needed at all. Fetch the cache content to obtain

p(b Ia&cd) = p(b&c&dIa)/p(c&dja)

It can be easily derived that in the case there are m known children of B (m = 2

is illustrated above), the algorithm requires inn multiplication, n division, and n — 1

addition. That is, the time complexity of the algorithm is linear to the number of

features and number of technical errors considered.

Out of the 7 alternative values of OPERA TION, those with their posterior probabil

ities above 1/7 (above-equal-likelihood) are chosen as the basis of the recommendations

for the user. The probabilities are attached to the corresponding recommendations (Fig

ure 3.9, 3.10).

3.4 Assessment of QUALICON

3.4.1 Assessment Procedure

In order to test the validity of QUALICON, 84 muscle and nerve action potentials are

elicited and recorded from normal volunteers using standard procedures (see Table 3.2).

For recording compound muscle and nerve action potentials, evoked by either proximal

or distal stimulation, filter settings are fixed at 2 Hz to 10 kHz and 20 Hz to 2 kHz, re

spectively. Five different types of technical error are introduced: reversal of stimulating



Chapter 3. QUALICON: A COUPLED EXPERT SYSTEM 64

muscle or nerve recording condition
normal sti_rev rec..rev sti_mis rec_mis sub_max

median motor distal 2 1 2 2 2 1
median motor proximal 2 2 1
median sensory 2 6 4 3 1
ulnar motor distal 2 1 2 2 2 1
ulnar motor proximal 2 1 2 1
ulnar sensory 3 1 2 4 2
post. tib. motor distal 2 2 2 3 1
post. tib. motor proximal 1 1 2
sural sensory 2 2 2 1 2 2
subtotal 17 17 14 9 16 11

Table 3.2: Potential recording conditions.
Technical errors introduced include reversal of stimulating (sti_rev) or
recording (rec_rev) polarity, misplacement of stimulating (sti_mis) or
recording (rec_mis) electrodes, and use of submaximal stimulating cur
rent (sub..sti). Empty entry: no potential recorded under corresponding
condition.

(Sti_rev) or recording (Rec_rev) polarity, misplacement of stimulating (Sti_mis) or record

ing (Rec_mis) electrodes, and use of submaximal stimulating current (sub_max). Only 1

error is introduced at a time. No distribution about errors introduced is assumed. In an

alyzing the potentials QUALICON is blinded as to whether an error has been introduced

or not. Two physicians, 1 technician and 1 resident also manually analyze the data. In

doing so they are given information as to the nerve stimulated, stimulating and recording

sites, and are allowed to select from: Normal, Sti_rev, Rev_rev, Stim_mis, Rec..niis, and

Sub_max in making their interpretations. Multiple options of up to 3 are allowed when

it is difficult to make a single choice. If an option matches the actual technical error, the

interpretation is recognized as a success. The success rate is defined as the number of

successes/the total number of interpretations made.
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3.4.2 Assessment Results

The assessment is treated as Bernoulli trials (Appendix E). The success rate of QUAL

ICON is 73% compared to average success rate 57% for manual assessment (excluding

assessor 4 who is a resident in training) (Figure 3.16(a)). Given the result, it can be

derived, using the standard statistic technique (Appendix E) that the 95% confidence

intervals of success probabilities fr QUALICON (pc) and 3 human average (ph) are

(0.62, 0.82) and (0.46, 0.68), respectively. Further more, the hypothesis H0 : p = Ph (as

opposed to H1 : pQ > ph) is accepted at 0.01 level of significance but rejected at 0.05

level of significance. Thus it can be safely concluded that QUALICON performed as well

as, or better than human assessment did on the task.

One would have noticed that the success rate (both QUALICON and human) is

not high. The average inter-human agreement rate for the different, imposed, errors is

depicted in Figure 3.16(b). Agreement is high for recognition of a normal potential and

one in which the recording electrode is inverted. There is much poorer agreement between

individuals for the other technical errors reflecting the limited amount of information that

is provided which would have been necessary. In daily practice, a series of potentials are

usually recorded on a nerve or muscle. Comparison among them is an important clue

for detecting technical errors. This suggests the use of multiple potentials in a group in

detecting errors in the future extension of QUALICON.

3.5 Remarks

The experienced electromyographer(EMGer) or technologist can usually detect a techni

cal error as a cause of an abnormal potential rapidly and with ease. Doing so is a vital

element in the quality control of electromyography. Contemporary equipment automates

much of the requisite measurements needed, for example, in performing nerve conduction
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Figure 3.16: (a) Manual success rates of human assessors compared to QUALICON. (b)
Average agreement rate for manual assessment. (this excludes the assessor 4 who is a
resident in training)
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studies but does not take cognizance of error as a cause of abnormality. Artificial intel

ligence offers a possible solution to this problem as demonstrated through the coupled

knowledge based prototype system QUALICON.

QUALICON is not the first attempt in computerized quality control in nerve conduc

tion studies. With conventional signal processing and database techniques, deviations of

features from reference values are used {Stalberg and Stalberg 89] to turn on a warning

display. MUNIN [Andreassen et al. 89], currently under development by large research

groups, is one system which gives a test guide in electromyography. MUNIN displays

where the electrodes should be placed and other test setup information but does not

check for technical errors. QUALICON is unique in that it tries to pinpoint what is the

most likely technical error given the recorded abnormal potential.

The intended user of QUALICON are residents, fellows and technologists learning

in a hospital EMG laboratory. Given the level of knowledge and experience in nerve

conduction studies, QUALICON only considers the most common technical errors in this

context. Also, development of appropriate technique rather than a complete system is

emphasized in this work. Thus 6 kinds of technical errors are considered in QUALICON

including reversal of stimulating or recording polarity, misplacement of stimulating or

recording electrodes, and use of submaximal or supermaximal stimulating current.

QUALICON’s task is to recognize abnormal potentials due to technical errors. An

abnormal potential due to disease is defined, from QUALICON’s point of view, as an

abnormal potential which is technically correction-resistant. No attempt is made for

QUALICON to differentiate among disease states. With the success in applying Bayesian

network technique for recognition of technical errors the next step of my thesis research

is to extend the technique to disease diagnosis.

Currently, QUALICON supports quality control for nerve conduction studies derived

from median and ulnar, motor and sensory nerve, posterior tibial motor nerve and sural
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sensory nerve conductions. The CMAPs and SNAPs used by QUALICON can be ac

quired from any electromyograph capable of producing digitized potentials. With efficient

signal processing and inference algorithms implemented for QUALICON, it takes 6 sec

onds to evaluate a potential in an IBM AT compatible. The short processing time with

such a small computer means that QUALICON can be easily included in a computerized

electromyograph.

In an assessment using 84 potentials, QUALICON’superformance is compared with

human professionals. QUALICON’s 95% confidence interval of success probability is

assessed as (0.62, 0.82), with corresponding interval for average human professional as

(0.46, 0.68). The assessment suggests QUALICON performs as well as human profes

sional with the given task. It is currently used as a teaching instrument at NDU of

VGH.

Future extension to QUALICON can be expected in supporting other nerves routinely

used in nerve conduction studies; and strengthening the knowledge base to include such

factors as the effect of age. Although QUALICON detects only 6 types of technical

errors, its success suggests that a more sophisticated system can be built using the same

approach to deal with broader technical errors.



Chapter 4

MULTIPLY SECTIONED BAYESIAN NETWORKS AND JUNCTION

FORESTS FOR LARGE EXPERT SYSTEMS

With QUALICON’s performance being satisfactory, the neuromuscular diagnosis involv

ing a painful or impaired upper limb was tackled using Bayesian networks. This is the

PAINULIM project. Two major problems arose.

First, the PAINULIM project has a large domain. The Bayesian network represen

tation contains 83 variables including 14 diseases and 69 features each of which has up

to three possible outcomes. The network is multiply connected and has 271 arcs and

6795 probability values. When transformed into a junction tree representation (to be

detailed below), the system contains 10608 belief values. To process the problem of

this complexity with a reasonable system response time demands powerful computing

equipment.

On the other hand, the tight schedule of the medical staff demands that the knowl

edge acquisition (including initial network construction, subsequent system testing and

refinement) should be conducted within the hospital environment where most computing

equipment consists of small personal computers.

These two conflicting demands motivates the development of a technique to reduce

the computational complexity. The result is the general technique of Multiply Sectioned

Bayesian Networks (MSBNs) and junction forests presented in this chapter. The MSBN

technique is an extension to the d-separation concept [Pearl 88] and the junction tree tech

nique [Andersen et al. 89, Jensen, Lauritzen and Olesen 90]. The application of MSBN

69
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to PAINULIM is presented in chapter 5.

Section 4.1 introduces an important observation called localization which is to be

associated with large application domains. MSBN exploits localization. Section 4.2 re
views background research, particularly, the d-separation concept [Pearl 881 and the junc

tion tree technique [Jensen, Olesen and Andersen 90, Jensen, Lauritzen and Olesen 90]
[Andersen et al. 89] on which the MSBN technique is based. Section 4.3 explains why

‘obvious’ solutions to exploit localization do not work, and Section 4.4 gives an overview

of the MSBN technique. These two sections serve to motivate and guide readers into the

subsequent sections which present the mathematical theory necessary for the technique.

4.1 Localization

As Cooper (1990) has shown, probabilistic inference in a general Bayesian net is NP-

hard. Several approaches have been pursued to reduce the computational complexity of

inference in Bayesian nets; these are reviewed in section 1.3.4. Here the exact methods

in section 1.3.4 are restated briefly and the problems that remain are discussed.

Efficient algorithms have been developed for inference in Bayesian nets with special

topologies [Pearl 86, Heckerman 90aJ. Unfortunately many domain models can not be

represented by these special types of Bayesian nets. For sparse nets, Lauritzen and

Spiegelhalter [1988] have created a secondary directed tree structure to achieve efficient

computation. Jensen, Lauritzen and Olesen [1990] and Shafer and Shenoy [1988] have

created an undirected tree structure. Creating secondary structures offers also the ad

vantage of trading compile time (the computation time spent in transforming a Bayesian

net into a secondary structure) with run time (the computation time spent in infer

ence). This advantage is particularly relevant to reusable systems (e.g., expert systems).
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However, for large applications, the run time overhead (both space and time) is still for
bidding. Pruning Bayesian nets with respect to each query instance is yet another exact
method with savings in computational complexity [Baker and Boult 90]. A portion S of
a Bayesian net may not be relevant given a set of evidence and a set of queries. It can
be pruned away before computation. In light of a piece of new evidence, S may become
relevant but can not be restored within the pruning algorithm. If networks have to be
pruned for each set of queries, t1i advantage of trading compile time with run time will
also be lost. The MSBN technique can be viewed as a way to retain the advantage of
the pruning algorithm, but to overcome its limitations.

This chapter addresses domains representable by general but sparse networks and
characterized by incremental evidence. It addresses reusable systems where the proba

bilistic knowledge can be captured once and be used for multiple cases. Current Bayesian
net representations do not consider structure in the domain and lump all variables into

a homogeneous network. For small applications, this is appropriate. But for a large

application domain where evidence arrives incrementally, in practice one often directs
attention to only part of the network within a period of time, i.e., there is ‘localization’
of queries and evidence. More precisely, ‘localization’ means 2 things. For an average
query session, first, only certain parts of a large network are interesting’; second, new

evidence and queries are directed to a small part of a large network repeatedly within
a period of time. When this is the case, the homogeneous network is inefficient since

newly arrived evidence has to be propagated to the overall network before queries can

be answered.

“Interesting’ is more restrictive than ‘relevant’. One may not be interested in something even thoughit is relevant.



Chapter 4. MULTIPLY SECTIONED BAYESIAN NETWORKS 72

The following observation of the PAINULIM domain based on the practice in Neuro

muscular Disease Unit (ND U), Vancouver General Hospital (VGH) illustrates localiza

tion.

A neurologist, examining a patient with a painful impaired upper limb, may tem

porarily consider only his findings’ implication on a set of diseases candidates. He may

not consider the diagnostic significance of each available laboratory test until he has fin

ished the clinical examination. After each clinical finding (about 5 findings on an average

patient), he dynamically changes his choice of the most likely disease candidates. Based

on this he chooses the best question to ask the patient next or the best examination

to perform on the patient next. After the clinical examination of the patient, findings

highlight certain disease candidates and make others less likely, which may suggest that

further nerve conduction studies are of no help at all, while (needle) EMG tests are di

agnostically beneficial (about 60% of patients have only EMG tests, and about 27% of

patients have only nerve conduction studies). Since EMG tests are usually not comfort

able for the patients, the neurologist would not perform a test unless it is diagnostically

necessary. Thus he would perform each test depending on results in previous ones (about

6 EMG tests performed on an average patient, and 4 for nerve conduction studies).

The above scenario and above statistics illustrate both aspects of localization. During

the clinical examination, only clinical findings and disease candidates are of current

interests to the neurologist; and during EMG tests, only EMO test results and their

implications on a subset of the diseases are under the neurologist’s attention; furthermore,

for a large percentage (87%) of patients, only one of EMG or nerve conduction studies is

required. If the neurologist is assisted by a Bayesian network based system, the evidence

and queries would repeatedly (about 5 times) involve a ‘small’ part of the network during

each diagnostic period (the clinical or the EMG). For 87% of patients certain parts of

the network (either the EMG or the nerve conduction) may not be of interest at all. If
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the Bayesian net representation is homogeneous, each batch of clinical findings has to

be propagated to all the EMG and nerve conduction variables which are not relevant at

the moment. Likewise, after each batch of EMO tests, the overall net has to be updated

even though the neurologist is only interested in planning the next EMO test.

A large application domain can often be partitioned naturally in terms of localiza

tion. In the PAINULIM domain, a natural subdomain can be formed from the knowledge

about the clinical symptOms and a set of diseases. Another natural subdomain can be

formed from the knowledge about EMO results and a subset of diseases. The third nat

ural subdomain can be formed from the knowledge about nerve conduction study results

and a different subset of diseases. One problem of current Bayesian net representations is

that they do not provide means to distinguish variables according to natural subdomains.

Heckerman [1990b] partitions Bayesian nets into small groups of naturally related vari

ables to ease the construction of large networks. But once the construction is finished,

the run time representation is still homogeneous. -

If groups of naturally related variables in a domain can be identified and represented,

the run time computation can be restricted to one group at any given stage of a query

session due to localization. In particular, one may not need to propagate new evidence

beyond the current group. Along with the arrival of new evidence, attention can be

shifted from one group to another. Chunks of knowledge not required with respect to

current attention remain inactive (not being thrown away) until they are activated. This

way, the run time overhead is governed by the size of the group of naturally related

variables, not the size of application domain. Computational savings can be achieved.

As demonstrated by Heckerman [1990b], grouping of variables can also help in ease and

accuracy in construction of Bayesian networks.

Partitioning a large domain into separate knowledge bases and coordinating them in
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problem solving have a history in rule-based expert systems termed blackboard arch itec

tures [Nii 86a, Nii 86b]. However a proper parallel for Bayesian network technology has

not yet appeared.

This chapter derives constraints which can often be satisfied such that a natural (lo

calization preserving) partition of a domain and its representation by separate Bayesian

subnets are possible. Such a representation is termed a multiply sectioned Bayesian net

work (MSBN). In order to perform efficient evidential reaoning in a sparse network, the

set of subnets are transformed into a set of junction trees as a secondary representation

which is termed a junction forest. The junction forest becomes the permanent repre

sentation for the reusable system in which incremental evidential reasoning takes place.

Since the junction trees preserve localization, each of them stands as a computational

object which can be used alone during reasoning. Multiple linkages between the junction

trees are introduced to allow evidence acquired from previously active junction trees to

be absorbed into a newly active junction tree of current interest. In this way, localiza

tion naturally existing in the domain can be exploited and the above illustrated idea is

realized.

4.2 Background

This section reviews the background research particularly related to the MSBN technique

which is not included in section 1.3.

4.2.1 Operations on Belief Tables

The following introduces the belief table representation of probability distribution on a

set of variables, and the mathematical operations on belief tables.

A belief table [Andersen et al. 89, Jensen, Olesen and Andersen 90], or potential
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[Lauritzen and Spiegeihalter 88] denoted as B() is a non-normalized probability distri

bution. It can be viewed as a function from the space of a set of variables to the reals.

For example, the belief table B(X) of a set X of variables maps ‘1(X) (the space of X

defined in section 1.3.3) to the reals. If x E ‘(X), the belief value of x is denoted by

B(x). Denote a set X of variables and corresponding belief table B(X) with an ordered

pair (X, B(X)) and call the pair a world.

For Y X, the projection y E 11(Y) of x E 11(X) to the space 11(Y) is denoted

as Frj,(y)(x). Denote the marginalization of B(X) to Y X by ZX\Y B(X) which

specifies a belief table on Y. The operation is defined as the following. If B(Y)

Zx\Y B(X), then for all y €

B(y)= B(x).
Prj( Y) (x)=y

Similarly denote the multiplication of B(X) and B(Y) by B(X) * B(Y) which specifies a

belief table on X U Y. If B(X U Y) B(X) * B(Y), then for all z E ‘P(X U Y), B(z)

B(x)*B(y) where x = Prjs(x)(z) and y = Prj,(y)(z). Denote the division of B(X) over

B(Y) by B(X)/B(Y) which specifies a belief table on XUY. If B(XUY) = B(X)/B(Y),

then for all z e I’(X U Y), B(z) = B(x)/B(y) if B(y) 0 where x = Prjp(X)(z) and

y = PrjJ,(y)(z).

4.2.2 Transform a Bayesian Net into a Junction Tree

The MSBN technique is an extension to the junction tree technique [Andersen et al. 89,

Jensen, Lauritzen and Olesen 90] which transforms a Bayesian net into an equivalent

secondary structure where inference is conducted (Figure 4.19). Because of this restruc

turing, belief propagation in multiply connected Bayesian nets can be performed in a

similar manner as can in singly connected nets. The following briefly summarizes the

junction tree technique. Readers not familiar with the terminologies should refer to
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Appendix A.

Moralization Transform the DAG into its moral graph.

Triangulation Triangulate the moral graph. Call the resultant graph a morali-triangu

lated graph.

Clique hypergraph formation Identify cliques of the morali-triangulated graph and

obtain a clique hypergraph.

Junction tree construction Organize the clique hypergraph into a junction tree of

cliques.

Node assignment Assign each node in the DAG to a clique in the junction tree of

cliques.

Belief universes formation For each clique C: in the junction tree of cliques, obtain

its belief table B(C) by multiplication of the conditional probability tables of its

assigned nodes. Call the (Ci, B(C1)) a belief universe. When it is clear from the

context no distinction is made between a junction tree of cliques and a junction

tree of belief universes.

Inference is conducted through the junction tree representation. An absorption op

eration is defined for local belief propagation. Global belief propagation is achieved by

a forward propagation procedure DistributeEvidence and a backward propagation proce

dure CollectEvidence.

Belief initialization Before any evidence can be entered to the junction tree, the belief

tables are made consistent by CollectEvidence and DistributeEvidence such that

the prior marginal probability for a variable (of the original Bayesian net) can be

obtained by marginalization of the belief table in any universe which contains it.
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Evidential reasoning When evidence about a set of variables (of the original Bayesian

net) is available, the evidence is entered to universes which contain the variables.

Then the belief tables of the junction tree are made consistent again by CollectEv

idence and DistributeEvidence such that the posterior marginal probability for a

variable can be obtained from any universe containing the variable.

The computational complexi;y of evidential reasoning in junction trees is about the

same as the reasoning method by Lauritzen and Spiegeihalter [1988] which can be viewed

as performed on a (secondary) directed tree structure [Shachter 88, Neapolitan 90]. But

junction trees are undirected and allow more flexible computation. The junction tree

representation is explored in this chapter since its flexibility is of crucial importance to

the MSBN extension.

4.2.3 d-separation

The concept of d-separation introduced by Pearl (1988, page 116-118) is fundamental in

probabilistic reasoning in Bayesian networks. It permits easy determination, by inspec

tion, of which sets of variables are considered independent of each other given a third set,

thus making any DAG an unambiguous representation of dependence and independence.

It plays an important role in our partitioning of Bayesian networks.

Definition 5 (d-separate [Pearl 88]) If X, Y, and Z are 3 disjoint subsets of nodes

in a DAG, then Z is said to d-separate X from Y, if there is no path between a node

in X and a node in Y along which 2 conditions hold: (1) every node with converging

arcs (head-to-head node) is in Z or has a descendent in Z and (2) every other node

(non-head-to-head node) is outside Z.

A path satisfying the conditions above is said to be active; otherwise it is said to be

blocked by Z.
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For example, in the DAG 0 of Figure 4.17, {F1} d-separates {F2} from {H1,H2}.

{H2,H3,H4}d-separates{E1,E2,E3,E4}from the rest. The path between A3 and E4 is

blocked by H4.

The importance of d-separation lies in that in a Bayesian network X and Y are condi

tionally independent given Z if Z d-separates X from Y [Geiger, Verma and Pearl 90J.

4.3 ‘Obvious’ Ways to Explore Localization

Recall that, the ‘localization’ means (1) for an average query session, only certain parts

of a large network are interesting; and (2) new evidence and queries are directed to small

part of a large network repeatedly within a period of time. An obvious way to explore

localization in multiply connected networks is to preserve localization within subtrees of

a junction tree by clever choice in triangulation and junction tree construction. If this

can be done, the junction tree can be split and each subtree can be used as a separate

computational object. The following example shows that this is not always a workable

solution.

Consider the DAG 0 in Figure 4.17. Suppose variables in the DAG form three groups

naturally related which satisfy localization:

C1 = {A1,A2,A3,A4,H1,H2,H3,H4}

G2 = {F1,F2,H1,H2}

G3 = {E1,E2,E3,E4,H2,H3,H4}

One would like to construct a junction tree of it which preserves localization within

three subtrees. The graph T in Figure 4.17 is the moral graph of 0. Only the cycle

A3 — H3 — E3 — — H4 — A3 needs to be triangulated. There are six distinct ways

of triangulation out of which only two do not mix nodes in different groups. The two

triangulations have a link (113, 114) in common and they do not make significant difference
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Figure 4.17: A DAG 0, its moral graph T, one of Vs triangulated graph A, and the
corresponding junction tree F. Each clique in F is numbered (the number is separated
from clique members by a

P
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in the following analysis. The A in Figure 4.17 shows one of the two triangulations. The

nodes of graph 1’ are all the cliques in A.

The junction tree F does not preserve localization since cliques 7, 8, 9, 12 and 1

correspond to group G1 but are connected via cliques 10 and 11 which contains E3 from

group G3. Examine the morali-triangulated graph A to see why this is unavoidable.

When there is evidence towards A1 or A2 in A, updating belief in group G3 requires

passing the joint distribution of H2 and H3. But updting the belief in A3 and A4

requires passing only the marginal distribution of H3. That is to say, updating the belief

in A3 and A4 needs less information than group G3. In the junction tree representation

which insists on a single information channel between any two cliques, this becomes a

path from cliques 7, 8, and 9 to clique 12 or 1 via cliques 10 and 11.

In general, let X and Y be two sets of variables in a same natural group, and let

Z be a set of variables in a distinct neighbor group. Suppose the information exchange

between pairs of them requires the exchange of distribution on sets Ixy, 1xz and Iyz of

variables respectively. Sometime Ixy is a subset of both Ixz and Iyz. When this is the

case, a junction tree representation will always indirectly connect cliques corresponding

to X and Y through cliques corresponding to Z if the method by Andersen et al. [1989],

and Jensen, Lauritzen and Olesen [1990] is followed.

However, there is a way around the problem with a brute force method. In the above

example, when there is evidence towards A1 or A2, the brute force method pretends that

updating the belief in A3 and A4 needs as much information as G3. What one does is

to add a dummy link (H2,A3) to the moral graph T in Figure 4.17. Then triangulating

the augmented graph gives the graph A’ in Figure 4.18. The resultant junction tree 1”

in Figure 4.18 does have 3 subtrees which correspond to the 3 groups desired. However,

the largest cliques now have size 4 instead of 3 as before. In binary case, the size of total

state space is 92 instead of 84 as before.
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In general, the brute force method preserves natural localization by congregation of

the set of interfacing nodes (nodes H2,H3,H4 above) between natural groups. In this

way, the joint distribution on interfacing nodes2 can be passed between groups through

a single channel, and preservation of localization and preservation of tree structure can

be compatible. However, in a large application domain with the original network sparse,

this will greatly increase the amount of computation in each group due to the exponential

enlargement of the clique state space. The computation amount increased could outweigh

the savings gained by exploring localization in general.

The trouble illustrated in the above 2 situations can be traced to the tree structure of

junction tree representation which insists on single path between any 2 cliques in the tree.

In the normal triangulation case, one has small cliques but loses localization. In the brute

2] will be shown later that when the set of interfacing nodes possesses certain property, the joint
distribution on the set is the minimum information to be exchanged.

Figure 4.18: A’ is a triangulated graph. F’ is a junction tree of A’.
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force case, one preserves localization but does not have small cliques. To summarize, the

preservation of natural localization and small cliques can not coexist by the method of

Andersen et al. [1989], and Jensen, Lauritzen and Olesen [1990]. It is claimed here that

this is due to a single information channel between local groups of variables. In the

following, it is shown that by introducing multiple information channels between groups

and by exploring conditional independence, one can pass the joint distribution on a set

of interfacing variables between groups by passing only marginal distributions on subsets

of the set.

4.4 Overview of MSBN and Junction Forest Technique

As demonstrated in the previous section, in order to explore localization, tree struc

ture and single channel requirement have to be relaxed. Since the computational advan

tage offered by tree structure has also been demonstrated repeatedly, it is not desirable

totally to abandon tree structure. Rather, it is desirable to keep tree structure within each

natural group, but allow multiple channels between groups. The MSBNs and junction

forests representations extend the d-separation concept and the junction tree technique

to implement this idea. This section outlines the development of these representations.

Each major step involved is described in terms of its functionality. The problems possibly

encountered and the hints for solutions are discussed. The details are presented in the

subsequent sections. Since the technique extends the junction tree technique reviewed in

section 4.2.2, the parallels and the differences are indicated. Figure 4.19 illustrates the

major steps in transformation of the original representation into the secondary represen

tation for both techniques.

The d-sepset The purpose is to partition a large domain according to natural localiza

tion into subdomains such that each can be represented separately by a Bayesian subnet;
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A USEN MSBN
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b9 local computation
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A consistent Junction A consistent Junction

tree of belief forest of belief
universes universes

Figure 4.19: Left: major steps in transformation of a USBN (UnSectioned Bayesian
Network) into a junction tree. Right: major steps in transformation of a MSBN into a
junction forest.
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and that these subnets can cooperate with each other during inference by exchanging

minimum amount of information between them. In order to do that, one needs to find

out the technical constraints which have to be followed during the partition. This can be

formulated conceptually in the opposite direction. Suppose the domain has been repre

sented with a homogeneous network. The task is to find necessary technical constraints

to be followed when the net is partitioned into subnets according to natural localization.

Section 4.5 defines d-sepsets whose joint distribution is the minimum information to be

exchanged to keep neighbor subnets informed. It is shown that in the junction tree rep

resentation of the homogeneous net, the nodes in d-sepsets actually serve as information

passageways between nodes in different subnets. Thus the d-sepset is a constraint on the

interface between each pair of subnets.

Sectioning Continuing in the conceptual direction, section 4.6 describes how to section

a homogeneous Bayesian net into subnets called sects, based on d-sepsets. The collection

of these sects forms a MSBN. It is described how probability distribution should be

assigned to sects relative to the distribution in homogeneous network. Particularly, it is

necessary to assign the original probability table of a d-sepnode to a unique sect which

contains the d-sepnode and all its parent nodes, and assign to the same d-sepnode in other

sects a uniform table. This is necessary, for one thing, because if a sect does not contain

a d-sepnode’s all parents as in the homogeneous net, the size of probability table of the d

sepnode must be decreased; for another, because this assignment will guarantee the joint

system belief constructed later to be proportional to the joint probability distribution of

the homogeneous net.

In order to perform efficient inference in a general but sparse network, one wants to

transform each sect into a separate junction tree which will stand as an inference entity.

When doing so, it is necessary to preserve the intactness of the clique hypergraph resulted
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from corresponding homogeneous net. That is, one has to ensure each clique in the orig

inal hypergraph will find at least one host sect. This imposes another constraint, termed

soundness of sectioning, on the overall organization of sects. Actually the soundness

of sectioning plus d-sepset interface imposes conditional independence constraints at a

macro level, i.e., at the level of sects (as opposed to conditional independence at the level

of nodes). In addition to a necessary and sufficient condition for soundness, a guiding

rule called covering subDAG is provided to ensure soundness. Its repeated application

forms a second rule called hypertree which can be used for creating sophisticated MSBNs

whose sectioning is sound. Although there exists MSBNs of sound sectioning which do

not follow the 2 rules, it is shown that computational advantages are obtained in MSBNs

sectioned according to the rules. Further discussion will therefore only be directed to

MSBNs satisfying the 2 rules.

Moralization and triangulation To transform a MSBN into a set of junction trees

requires moralization and triangulation as reviewed in section 4.2.2. However in the

MSBN context, an operational option is available, i.e., transformation can be performed

globally or by local computation at the level of sects. The global computation performs

moralization and triangulation in the same way as in the junction tree technique with care

to be taken not to mix nodes in distinct sects into one clique. An additional mapping of

the resultant morali-triangulated graph into subgraphs corresponding to sects is needed.

But when space saving is concerned, local computation is desired. The pitfalls and

procedures in moralization and triangulation by local computation is discussed.

Since the number of parents for a d-sepnode may be different in different sects, the

moralization in MSBN can not be achieved by ‘pure’ local computation in each sect.

Communication between sects is required to ensure parent d-sepnodes are moralized

identically in different sects.



Chapter 4. MULTIPLY SECTIONED BAYESIAN NETWORKS 86

The criterion of triangulation in the MSBN is to ensure the ‘intactness’ of resulting

hypergraph from the corresponding homogeneous net. Problems arise if one insists in

triangulation by local computation at the level of sects. One problem is that an inter

sect cycle will be triangulated in the homogeneous net, but the cycle can not be realized

by viewing locally in each sect involved. Another problem is that cycles involving d

sepnodes may be triangulated differently in different sects. The solution is to let sects

communicate during triangulation. Since moralization ‘and triangulation both involve

adding links and both require communication between sects, the corresponding local

operations in each sect can be performed together and messages to other sects can be

sent together. Therefore, operationally, moralization and triangulation in MSBN are not

separate steps as in the junction tree technique. The corresponding integrated operation

is termed morali-triangulation to conceptually reflect this reality.

In section 4.7.1, the above concept of ‘intactness’ of hypergraph is formalized in terms

of invertibility of morali-triangulation. it is shown that if the sectioning of a MSBN is

sound, then there exists an invertible morali-triangulation such that the ‘intactness’ of

hypergraph is preserved. Section 4.7.1 provides an algorithm for an invertible morali

triangulation assuming a covering subDAG.

Next steps in the junction tree technique In the junction tree technique, after

triangulation, further steps of transformation are identification of cliques in the morali

triangulated graph (clique hypergraph formation) and junction tree construction. In

MSBNs, these steps are performed in the similar way for each sect as the junction tree

technique. A MSBN is thus transformed into a set of junction trees called a junction

forest of cliques. See Andersen et al. [1989], and Jensen, Lauritzen and Olesen [1990] for

technique details involving these steps.
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Linkage formation An important extension of MSBNs and junction forests to the

junction tree technique is the formation of multiple information channels between junc

tion trees (in a junction forest) such that a joint distribution on a d-sepset can be passed

between a pair of junction trees by passing through marginal distributions on subsets of

the d-sepset. In this way, the exponential enlargement of the clique state space caused

by brute force method (section 4.3) can be avoided. These channels are termed linkages

(section 4.7.2). Each linkage is a set of d-sepnodes which links 2 cliques ach in one of

the 2 junction trees involved. During inference, if evidence is obtained from previously

active junction tree, it can be propagated to newly active neighbor junction tree through

linkages between them.

As can be imagined, multiple linkages can cause redundant information passage or

confuse the information receiver. The problem can be avoided by coordination among

linkages during information passing. Since the problem manifests differently during belief

initialization and evidential reasoning, it has to be treated differently. In both cases,

information passing is performed one linkage at a time. During initialization, (redundant)

information already passed through other linkages is removed from the linkage belief table

before the latter is passed over. Operationally, one orders linkages. The intersection of

a linkage with linkages ordered before it is defined as the redundancy set of the linkage.

The redundancy set tells a linkage what portion of information has to be removed during

information passing. During evidential reasoning, a DistributeEvidence is performed

after each information passing to avoid confusion in the receiving junction tree. With

linkages and redundancy sets created, one has a linked junction forest of cliques.

Formation of joint system belief of junction forest The joint system belief of the

junction forest is defined (section 4.7.3) in terms of the belief on each junction trees, the

belief on linkages and redundancy sets such that it is proportional to the joint probability
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distribution of the homogeneous net. With the joint system belief defined, one has a

junction forest of belief universes. When it is clear from the context, only ‘junction

forest’ is used without differentiating between its different stages.

Consistency and separability of junction forest As in the case of the junction tree

technique, one would like to obtain marginal probability of a variable by marginaliza

‘tion of the belief in any belief universe of any junction tree which contains the variable,

i.e., by local computation. In. the case of the junction tree technique, this requires the

consistency property which can be satisfied by performing the DistributeEvidence and

the CollectEvidence as reviewed in section 4.2.2. In the context of a junction forest, an

additional property called separability is required (section 4.8) due to multiple linkages

between junction trees. It imposes a host composition constraint on the composition of

linkage host cliques. The function of linkages is to pass the joint belief of the correspond

ing d-sepset. When linkage hosts are ill-composed, what is passed over is not a correct

version of joint belief on the d-sepset. The marginal probabilities thus obtained by local

computation will also be incorrect. It is shown if all the junction trees in a junction for

est satisfies the host composition condition, then separability is guaranteed. Why these

conditions usually hold naturally is explained. The remedy when the condition does not

hold is also discussed. With a junction forest structure satisfying the separability, and

with a set of operations performed to bring the forest into consistency, one is guaranteed

to obtain marginal probabilities by local computation.

Belief initialization Belief initialization (section 4.9.3) in a junction forest is achieved

by first bringing the belief universes in each junction tree into consistency, and then

exchanging prior belief between junction trees to bring the junction forest into global

consistency. When exchanging beliefs, care is to be taken on (1) non-trivial information
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(recall that d-.sepnodes in some sects are assigned uniform tables during sectioning) could

be contained in either side of the 2 junction trees involved; and (2) not to pass redundancy

information through multiple linkages. Section 4.9 defines several levels of operations to

initialize belief of a junction forest by local computation.

Evidential reasoning Only 1 junction tree in a junction forest needs to be active due

to localization and great computational savings are possible when repeated computa

tion of the junction tree is required. Whenever new evidence becomes available to the

currently active junction tree, it is entered and the tree is made consistent such that

queries can be answered. Thus the computation complexity of a MSBN/junction forest

is 1/,8 where /3 is the number of sects in the MSBN. When the user shifts attention, a

new junction tree replaces the currently active tree and all previously acquired evidence

is absorbed through the operation ShiftAttention. The operation requires only a chain

of neighbor junction trees to be updated. During the inter-junction tree updating, one

needs to ensure no confusion is resulted from multi-linkage information passing.

4.5 The d-sepset and the Junction Tree

4.5.1 The d-sepset

As discussed in section 4.4, the problem of partitioning a Bayesian net by natural local

ization can be conceptually formulated as though the domain has been represented with

a homogeneous network. The task is to find out the technical constraint to partition the

net into subnets such that the subnets can be used separately and cooperatively during

inference with minimum amount of information exchange. This section defines the most

important concept for partitioning, namely, d-sepset. Then some insights are provided

into its implication in the secondary structure of DAGs.
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Definition 6 (d-sepset) Let D D’ U D2 be a DAG. The set of nodes I = N’ fl N2

is a d-sepset between subDAG D’ and D2 if the following condition holds.

For every A1 E I with its parents 7r in D, either ir ç N’, or 7r C N2.

Elements of a d-sepset are called d-sepnodes. When the above condition holds, D is

said to be sectioned into {D’,D2}.

Note in general a DAG D = D’UD2does not imply that D is sectioned into {D1,D2}

since the intersection of the corresponding 2 sets of nodes may not be a d-sepset.

Lemma 4 Let a DAG D be sectioned into {D’,D2} and I = N’ fl N2 be a d-sepset. I

d-separates N’ \ I from N2 \ I.

Proof:

It suffices to prove every path between N’ \ I and N2 \ I is blocked by I. Every path

between N’ \ I and N2 \ I has at least one d-sepnode. From definition of d-separate, if

one of the d-sepnode in a path is a non-head-to-head node, the path is blocked.

In the case of a single d-sepnode path, by definition, the d-sepnode must be a non-

head-to-head node. In case of multiple d-sepnode path, for any 2 adjacent d-sepnodes on

the path, one of them must be a non-head-to-head node.

D

The lemma can be generalized into the following theorem which states that d-sepsets

d-separate a subDAG from the rest of the DAG. Note when a d-sepset is indexed with 2

superscripts, their order is immaterial.

Theorem 2 (completeness of d-sepset) Let a DAGD be sectioned into {D’, .. . , D”}

and I = N1 fl N’ be the d-sepset between D and D’. UI11 d-separates N1 \ UI1

from N \ N.
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The theorem implies that the joint distribution on d-sepsets is the minimum informa

tion to be exchanged between a Bayesian subnet and the rest of the network. Consider

a DAG (N, E) sectioned into 3 > 1 subDAGs. Let A denote the set of all the non-d

sepnodes in one of the subDAGs, C denote the set union of all the d-sepsets between the

chosen subDAG and its neighbor subDAGs, and B denote the set N \ A \ C. From the

above theorem, C d-separates A from B. Thus p(ABC) = p(AC)p(BC)/p(C). When

evidence is available such that some of the variables in A are instantiated, one can update

p(AC) into p’(AC) = p’(A)p(CA). One can update p(C) into p’(C) by marginalization

on p’(AC). Then it follows that p’(BC) = p(BIC)p’(C), and that the updated joint

distribution p’(ABC) p’(AC)p’(BC)/p’(C). Note that updating p’(BC) is through

replacing p(C) by p’(C) - the posterior joint distribution on the d-sepset union.

Example 5 The DAG 0 in Figure 4.17 is sectioned into {0, 02, 0} in Figure 4.20.

j12
= {H,, H2} is the d-sepset between 0’ and 02; j13

= {H2,H3,H4} is the d-sepset

between 0’ and 0; and 123 = {H2} is the d-sepset between 02 and 0. 112 U J13 =

{H,,H2,H3,Hj d-separates the rest of 0, from the rest of 02 and 03.

There is a close relation between d-sepset and usual graph separator given in propo

sition 7. If Z is the graph separator of X and Y, then the removal of the set Z of

nodes from the graph (together with their associated links) would render the nodes in X

disconnected from those in Y.

Proposition 7 Let a DA G D be sectioned into {D’, D2}. The set of nodes I = N’ fl N2

is a d-sepset between D’ and D2 if I is a graph separator in the moral graph of D.

Proof:

Suppose I = N’flN2 is a d-sepset. For any A, e N’\I and A2 E N2\I, moralization

will not create links between A, and A2. Hence I is a graph separator in the moral graph

of D.



92Chapter 4. MULTIPLY SECTIONED BAYESIAN NETWORKS

Figure 4.20: The set {0’, 02, 0} of 3 subDAGs (top) forms a sectioning of 0 in Figure
4.17. {A’, A2,A3} (middle) is the set of moralitriangUlat graphs of {0’, 92, 93}, and

= {r’, r2,F3} (bottom) is the corresponding junction forest obtained by Algorithm 2.
The ribbed bands indicate linkages.
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On the other hand, suppose I separate N’ \ I from N2 \ I in moral graph M of D,

and I is not a d-sepset. Then there exists A E I such that A has a parent A, e N’ \ I

and a parent A2 E N2 \ I. But then there would have been a link between A, and A2 by

moralization. Thus I is not a separator in M. Contradiction.

D

The properties of d-separation in the DAG representation of Bayesian networks have

been studied extensively [Pearl 88, Geiger, Verma and Pearl 90]. It can be used to derive

Pearl’s propagation algorithm in singly-connected Bayesian nets [Neapolitan 901. But

to my knowledge, its implication in secondary structure has not been examined. The

definition of the d-sepset now allows to do so.

4.5.2 Implication of d-sepset in Junction Trees

By representing a multiply connected Bayesian network in its secondary structure - junc

tion tree, flexible and efficient belief propagation can be achieved. With the d-sepset

concept defined, one would like to know how information is passed in the junction tree

between nodes separated by the d-sepset in the original Bayesian network.

Lemma 5 Let a DAG D be sectioned into {D’, D2} and I = N’ fl N2 be the d-sepset.

A junction tree T can be constructed from D, such that the following statement is true.

For all pairs of nodes A, N’ \ I and A2 E N2 \ I, if A, is contained in

clique C, and A2 in C2, then on the unique path between C, and C2 in T,

there exists a clique sepset Q containing only d-sepnodes.

Proof:

[Step 1J First, prove T can be constructed such that C, C2. By definition of the

d-sepset, A, and A2 are not adjacent in D. Cliques are formed through moralization
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and triangulation. If A, and A2 both are adjacent to a d-sepnode H, by definition of

d-sepset, A, and A2 can not both be H’s parents. Thus moralization does not create a

.link between A, and A2.

Enforce the following rule for triangulation: if a cycle contains 2 or more non-adjacent

d-sepnodes, add a link between 2 such d-sepnodes first.

After moralization, if there is only 1 path between A1 and A2, triangulation will not

add a link between them. If there are more than 1 path, at least 1 cycle is formed. For

any such cycle including A, and A2, 2 paths between A, and A2 can be identified. On

each of the 2 paths, there must be at least 1 d-sepnode. With the above rule followed,

a link between 2 such d-sepnodes is always added such that there is no need to link A1

and A2 to triangulate D.

Since A1 and A2 are not linked initially; and not during moralization and triangula

tion, they will not be contained in the same clique in T.

[Step 2] Proceed from C, to C2 along the unique path in T connecting them to find

Q. Examine C,’s neighbor clique C.

Case 1: Cr C I. Then Q = Ci fl C.

Case 2: Cr contains nodes in N2 \ I. By step 1, C, does not contain nodes in N2 \ I

and C, does not contain nodes in N’ \ I. However, C, fl Cr . Therefore Q = Ci fl Cr.

Otherwise C contains nodes in N’ \ I. In this case, proceed to Cr’s neighbor C,, and

above examination is repeated. Since the other end of the path is C2 which contains no

node in N’ \ I, some point along the path one will eventually hit either case 1 or case 2.

D

The lemma can be generalized to the case of any finite number of subDAGs. This is

the following proposition. Its proof is similar to the lemma.
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Proposition 8 (belief relay) Let a DAG D be sectioned into {D’,.. . , D} and I =

UI’ be the union of d-sepsets between D and its neighbor subDAGs. A junction tree

T can be constructed from D, such that the following statement is true.

For all pairs of nodes A1 e N \ I and A2 E N \ N, if A1 is contained in

clique C1 and A2 in C2, then on the unique path between C1 and C2 in T,

there exists a clique sepset Q containing only d-sepnodes in I.

Example 6 Recall the DAG 9 in Figure 4.17 which is sectioned into {9’, 92,93) in

Figure 4.20 with I = {H2,H3,H4} being the d-sepset between 91 and 93• Consider the

node A3 in clique {H3,H4,A3) and the node E2 in clique {E4,E3,E2} in the junction

tree F in Figure 4.17. In the path between the 2 cliques, the sepset {H3,H4} between

cliques {H3, 114, A3} and {H3,H4,E3} contains only d-sepnodes.

When new evidence is available, it can be propagated to the overall junction tree

through sepsets between cliques [Jensen, Lauritzen and Olesen 90]. Therefore, the above

proposition means that a junction tree can be constructed such that evidence in N \ I

must pass through at least 1 sepset containing only nodes in I in order to be propagated

to nodes in N \ N.

Theorem 2 and Proposition 8 suggest that one can organize the clique hypergraph

such that the cliques corresponding to different subDAGs separated by d-sepsets can be

organized into different junction trees. Communication between them can be accom

plished through d-sepsets. This idea is formalized below.

4.6 Multiply Sectioned Bayesian Nets

4.6.1 Definition of MSBN
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Definition 7 (MSBN) Let S = (N, E, P) be a Bayesian network; D = (N, E) be sec

tioned into {D’,. . .,D1} where Dt (N1,E1); and P = N1flN be the d-sepset between

D1 and D (1 i,j 3;i j). Assign d-sepnodes to subDAGs in the following way.

For each d-sepnode A, if the in-degree i of A in subDAG D satisfies ii

(j = 1,... ,6) then assign A to subDAG D and break ties arbitrarily.

Assign probability distribution F for subDAG Dt (i = 1,. . . , /3) in the following way.

For all node A E N1, if A is a d-sepnode and A is not assigned to D1, assign to

A a uniform probability table.3 Otherwise assign to A an identical probability

table as that in (N, E, F).

Call S1 = (D1;F1) (N1,E1; pi) a sect and call the set of sects {S’,. . . , S’3} a

Multiply Sectioned Bayesian Network (MSBN).

The original Bayesian net S is called an ‘UnSectioned Bayesian Network (USBN)’.

Note that the sectioning of a Bayesian network is essentially determined by the sectioning

of the corresponding DAG D. It doesn’t matter which way to break ties. There will be

no significant difference in further processing.

Example 7 Suppose the variables in DAG 0 in Figure 4.17 are all binary. Associate

the probability distribution P given in Table 4.3 with 0. (0, F) is an USBN.

Given the USBN (0, F), and corresponding 3 subDAGs 01, 02 and 0, a 3-sect

MSBN {(91, F’), (02, P2), (93,F3)) can be constructed. First assign d-sepnodes H1,.

H4 to the subDAGs. H2 and H4 must be assigned to 01. H1 can be assigned to either

3This is necessary, for one thing, because if a sect does not contain a d-sepnode’s all parents as in the
homogeneous net, the size of probability table of the d-sepnode must be decreased; for another, because
this assignment will guarantee that the joint system belief constructed in section 4.7.3 is proportional
to the joint probability distribution P.
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p(h11)= .15

p(h2iIa2iaii)= .8696
2iIa2iii2)= .7

P(h2122G11) .6
p(h211a22o12)= .08

p(h31)= .3

p(h411a31) .25
p(h4iIa32)= .4

p(ai,Ihii) = .8
p(a11h12)= .1

P(G2lih3l) .8
P(a21132)= .1

Table 4.3: Probability distribution associated with DAG 0 in Figure 4.17.

97

or 02, and H3 can be assigned to either 0’ or 0. Here it is chosen to assign all 4

d-sepnodes to 0’. Based on this assignment and P given, the probability distribution for

each sect can be determined (Table 4.4). Note the uniform probability tables assigned

to d-sepnodes in 02 and 03.

Table 4.4: Probability distribution associated with subDAGs 0’, 02 and 0 in Figure
4.20.

p(a31 h31) = .3 p(e21 eMe41) = .9789
p(a311h32)= .8 211e31e42)= .8

p(e2i1e32e41)= .9
p(a411h41)= .9 211e32e42) .05
p(a411h42)= .2

p(eajlh2jh3i)= .7702
p(f11Jh11h21)= .7895 p(e31jh21h32)= .35
p(fjjh11h22)= .5 p(e311h22h31)= .65
P(1111h12h21) .6 p(e311h22h32)= .01
p(f111h12h22)= .05

p(e411h41)= .8
P(f2lIflI) .4 (e411h42)= .15
P(f211f12) .75

(eiiIe3i)= .2
P(e111e32) = .7

1

p(h11)= .15 p(h11)= .5 p(hjj)= .5

p(h21ja21a11)= .8696 p(h21) .5 p(h21) = .5
p(h211a21a12)= .7
p(h211a22a11)= .6 p(f1iIh,1h21)= .7895 p(h31) = .5
p(h211a22a12)= .08 p(fiiIhiih22)= .5

p(fiiIhi2h2i)= .6 p(e11[e31)= .2
p(h31)= .3 p(f111h12h22)= .05 P(eill32)= .7

p(h411a31)= .25 P(f2lIfll) = .4 p(e211e31e41)= .9789
p(h41ja32)= .4 P(f21 1112) = .75 211e31e42)= .8

2i1e32e4i) .9
p(aiiIhii) .8 p(e2jIe3242)= .05
p(a111h12)= .1

p(e311h21h31)= .7702
P(a2lIhal) = .8 p(e311h21h32)= .35
p(a211h32)= .1 p(e311h221z31)= .65

p(e311h22h32)= .01
p(a311h31)= .3
p(a311h32)= .8 p(e411h41)= .8

P(e4l1h42)= .15
p(a411h41)= .9
p(4iIh42)= .2
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4.6.2 Soundness of Sectioning

In order to perform efficient inference computation in a multiply connected Bayesian

net, the junction tree technique transforms the Bayesian net into a clique hypergraph

through moralization and triangulation. Then the hypergraph is organized into a junction

tree, and efficient inference can take place. Because of the computational advantage of

junction trees, in the context of a MSBN, one would like to transform each sect into a

junction tree representation. The immediate question is: for an arbitrary MSBN, what

is the condition in the transformation such that correct inference can take place in the

resultant set of junction trees. The following reviews the major theoretical results related

to this question.

Lauritzen et al. [1984] show that the clique hypergraph of a graph is decomposable

if the graph is triangulated. Jensen [1988] proves that a hypergraph has a junction

tree if it is decomposable. Maier [1983] proves the same in the context of relational

database. Jensen, Lauritzen and Olesen [1990] and Pearl [1988] show that a junction

tree representation of a Bayesian net is an equivalent representation in the sense that the

information about joint probability distribution can be preserved. Finally, a more flexible

algorithm (compared to [Lauritzen and Spiegelhalter 88]) is devised on the junction tree

representation of multiply connected Bayesian nets [Jensen, Lauritzen and Olesen 90].

The above results highlight the importance of clique hypergraphs resulted from tri

angulation of original graphs. Thus, when one tries to transform each sect in a MSBN

into a junction tree, it is necessary to preserve the intactness of the clique hypergraph

resulted from corresponding USBN. This is possible only if the sectioning of DAG D of

the original USBN is sound defined formally below.

Definition 8 (soundness of sectioning) Let a DAGD be sectioned into {D’,.. . ,

If there exists a clique hyperyraph from D such that for every clique Ck in the hype rgraph
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there is at least 1 subDAG D satisfying Ck N, then the sectioning is sound. Call D

the host subDAG of clique Ck.

Although the soundness of sectioning is defined in DAGs, the concept is useful only

in the context of MSBNs. Therefore when the sectioning of DAG is sound, it is said that

the sectioning of the corresponding USBN into the MSBN is sound.

If the sectioning of a DAG D is unsound, then one will find no host subDAG for at

least 1 clique in all possible hypergraphs from D. If a MSBN is based on this sectioning

of DAG, it is impossible to maintain the autonomous status of sects in the secondary

representation.

Example 8 In Figure 4.21, {D’, D2,D3} is an unsound sectioning of D. The clique

hypergraph for D must have clique {A, B, C} which finds no host subDAG from D’, D2,

and D3.

Figure 4.21: Top left: A DAG D. Top right: The set of subDAGs from an unsound
sectioning of D. Bottom left: The junction tree T from D.

E

ABD

T

The following develops necessary and sufficient condition for soundness of sectioning.
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Lemma 6 LetA1—.. .—A_1—B1—...—B3_l—Cl—...—Ck_I—. ..—A1 be a cycle con

sisting of nodes from 3 or more sets: X = {A1, . . . , A1_1,B1}, Y = {B1,. . ., B_1,C1},

and so on. The nodes from a same set are adjacent in the cycle, and 2 adjacent sets

have a node in common. Then triangulation of this cycle must create a triangle with its

3 nodes not belonging to any single set.

Proof:

The proof is inductive. The lemma is trivially true if the cycle involves only 3 nodes.

Assume the lemma is true when the cycle involves n = 3 sets and the cycle 0 is

A1 — . . . — A_1 — B1—.. . — B3_ — C1 — ... — Ck_1 — A1, i.e., there are i nodes in set 1, j
in set 2, and kin set 3. If 1 more node is added to set 3 (k’ = k+ 1) such that a node Ck

is added between Ck_l and A1 of cycle 0, then one can first add a chord between Ck_l

and A1, and triangulate the rest of the cycle. Since the remaining untriangulated cycle

is exactly the cycle 0, the lemma is true by assumption. Since the 3 sets are symmetric

and the nodes in any set above can be augmented by nodes from any sets other than the

above 3, the proof is valid in general.

D

If a MSBN has only 2 sects, the sectioning is always sound. Unsoundness can arise

only when there are 3 or more sects. The following shows exactly the case where a

sectioning is unsound.

Theorem 3 (inter-subDAG cycle) A sectioning of a DAG D to a set of 3 or more

subDAGs is sound if there exists no (undirected) cycle in D which consists of nodes from

3 or more distinct subDAGs such that the nodes from each subDAG are adjacent on the

cycle.

Proof:
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Let D be a DAG sectioned into {D’,.. . , D} (/3 3). Suppose, relative to this

sectioning, D has no cycle which consists of nodes from 3 or more distinct subDAGs such

that the nodes from each subDAG are adjacent on the cycle. By definition of d-sepset,

moralization of D may triangulate existing cycles but will not create new cycle. Thus

by assumption, in moral graph of D, all cycles consisting of nodes from more than 1

subDAG such that the nodes from each subDAG are adjacent on the cycle can involve

nodes from at most 2 subDAGs. By the argument in Stp 1 of the proof for Lemma 5,

all the 2-subDAG crossing cycles can be triangulated without creating cliques containing

non-d-sepnodes in both subDAGs. Thus the sectioning is sound.

On the other hand, suppose, relative to the sectioning, there is a cycle in D which

consists of nodes from 3 or more distinct subDAGs such that the nodes from each subDAG

are adjacent on the cycle. Then, by lemma 6, the triangulation of this cycle must create a

triangle with its 3 nodes not belonging to any subDAG. Hence the sectioning is unsound.

D

Given a DAG and a sectioning, search for inter-subDAG cycles relative to the sec

tioning is expensive, especially by local computation when space is concerned. Even if

a sectioning is decided to be sound, it may not be computationally desirable at later

reasoning stages as will be discussed at corresponding sections. Furthermore, each sect

in a large system (MSBN) is constructed one at a time. If a sectioning is not sound and it

can only be discovered after all sects have been constructed, the overall revision would be

disastrous. Thus one would like to develop simple guidelines for sound sectioning which

could be followed during incremental construction of MSBNs. The following covering

subDAG rule is one of such guidelines.

Theorem 4 (covering subDAG) Let a DAG D be sectioned into {D’,. . . , D’}. Let

= N2 fl N’ be the d-sepset between D2 and Div. If there is a subDAG D such that
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N1 UjkPlc then the sectioning is sound. The subDAG D is called the covering

subDAG relative to the sectioning.

In the context of a MSBN, call the sect corresponding to the covering subDAG as the

covering sect. Note that the covering sect rule actually imposes a conditional indepen

dence constraint at a macro level.

Proposition 9 Let S1 and S be any 2 sects in a MSBN with a covering .ect S’ (
j k). The 2 sets of variables N2 and N are conditionally independent given N’.

Example 9 Consider the 3-sect MSBN {(0’, F’), (92, F2), (93, F3)} constructed.

(91, F’) is the covering sect.

Note, in general, the covering sect of a MSBN may not be unique. As far as the

soundness is concerned, one is as good as the others. Practically, the one to be consulted

most often or the one with the least size is preferred for the sake of computational

efficiency which will be clear later.

The covering sect is usually formed naturally. For example (Chapter 5), in a neu

romuscular diagnosis system, the sect containing knowledge about clinical examination

contains all the disease hypotheses considered by the system. The EMG sect or nerve

conduction sect contains only a subset of the disease hypotheses based on diagnostic

importance of these tests to each disease. Thus the clinical sect is a natural covering sect

with all the disease hypothesis as d-sepnodes interfacing the sect with other sects.

The covering subDAG rule can be repeatedly used to create sophisticated MSBNs

which are sound. When doing so, a global covering subDAG requirement is replaced by

a local covering subDAG requirement. A local covering subDAG is a subDAG interfacing

two or more subDAGs and including all d-sepsets among them in its domain.

Theorem 5 (hypertree) Any MSBN created by the following procedure is sound.
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Start with any single subDAG. Recursively add a new subDAG D to pre

vious subDAGs such that if D has nonempty d-sepsets with more than one

previous subDAGs, then one of the previous interfacing subDAGs must be a

local covering subDAG which covers all the d-sepsets resultant from the addi

tion.

The following example illustrate the hypertree rule. It also explains that the sectioning

determined by the procedure is sound.

Example 10 Figure 4.22 depicts part of a MSBN constructed by the hypertree rule.

Each box represents a subDAG with boundaries between boxes representing d-sepsets.

The superscripts of subDAGs represent the order of their creation. D’, D4,D5 are local

covering subDAGs.

Figure 4.22: A MSBN with a hypertree structure.

It is easy to see that the inter-subDAG cycle as described in theorem 3 can not happen

in this MSBN due to its hypertree structure, and hence the sectioning is sound.
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Note that the hypertree rule also imposes a conditional independence constraint at a

macro level.

Proposition 10 Let S and 5’ be any 2 sects with an empty d-sepset in a MSBN sec

tioned by the hypertree rule. Let Sk be any sect on the unique route mediating Si and Si

on the hypertree. The 2 sets of variables N and N’ are conditionally independent given

Nk.

It should be indicate that the covering subDAG rule and the hypertree rule do not

cover every case where sectioning is sound.

Example 11 The 3-sect MSBN {D’, D2,D3} in Figure 4.23 has no covering subDAG.

But the sectioning is sound.

Note that, although the sectioning of the MSBN in Figure 4.23 is sound, this kind of

structure is restricted. For example, one can add arcs between A and B in D’, between A

and C in D2, but as soon as one adds 1 more arc between B and C in D3, the theorem 3

is violated and the sectioning become unsound. That is, when n subDAGs (n 3) are

interfaced in this style, there can be at most n — 1 of them being multiply connected.

Further computational problems with such structure will be discussed in the appropriate

latter sections.

Since MSBNs constructed by the covering subDAG rule or the hypertree rule have

sound sectioning, are less restricted, and have extra computational advantages (to be

discussed in latter sections) over the MSBNs which do not follow these rules, the following

study is directed to only the former MSBNs.

Conceptually, all MSBNs constructed by the hypertree rule can be viewed as MSBNs

with covering subDAGs when attention is directed to local structures. For example, if

one pays attention to D’ in Figure 4.22 and its surrounding subDAGs, one can view
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Figure 4.23: Top left: A DAG D. Top right: A junction tree T from D. Bottom left:
{ D’, D2,D3} forms a sound sectioning of D. Bottom right: The junction trees from the
MSBN in Bottom left.

D2,D4,D6,D7,D8 as 1 subDAG, D3,D5,D9,D10,D” as another, D’2,D’3 and D14,D’5

as 2 others. Thus the MSBN is viewed as one with a global covering subDAG D’.

Likewise, when one is concerned with relation between D’4 and D15, the MSBN can

be viewed as one satisfying the covering subDAG rule with /3 = 2. Therefore, the

computation required for a MSBN of a hypertree structure is just the repetition of the

computation required for a MSBN with a global covering subDAG. On the other hand,

a MSBN with a global covering subDAG is a special case of the hypertree structure.

Hence, the following study is often simplified by considering only one of the 2 cases.

I

D

HI

T1
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4.7 Transform MSBN into Junction Forest

In order to perform efficient inference in a general but sparse network, it is desirable to

transform each sect of a MSBN into a junction tree which will stand as an inference entity

(Section 4.4). The transformation takes several steps to be discussed in this section. The

set of subDAGs of the MSBN are morali-triangulated into a set of morali-triangulated

graphs from which a set of clique hypergraphs are formed. Then the set of clique hy

pergraphs are organized into a set of junction trees of cliques. Afterwards, the linkages

between the junction trees are created. Finally, belief tables are assigned to cliques and

linkages and a junction forest of belief universes is constructed.

4.7.1 Transform SubDAGs into Junction Trees by Local Computation

The key issue is morali-triangulating subDAGs of a MSBN into a set of morali-triangulated

graphs. Once this is done, the formation of clique hypergraph and the organization of

junction tree for each subDAG are performed the same way as in the case of a USBN and

a single junction tree [Andersen et al. 89, Jensen, Lauritzen and Olesen 90]. As men

tioned before, the criterion in morali-triangulation of a set of subDAGs of a MSBN into a

set of clique hypergraphs is to preserve the ‘intactness’ of the clique hypergraph resulted

from the corresponding USBN. The concept of ‘intactness’ is formalized below.

Definition 9 (invertible morali-triangulation) Let D be a DAG sectioned into

{D’, . . . , D’} where D has domain N. If there exists a morali-triangulated graph G

of D, with the clique hypergraph H, such that G = U1G where G2 is the subgraph of

G induced by N, and H = U1H where H is the clique hypergraph of G, then the

set of morali-triangulated graphs {G’,.. . , G} is invertible. Also the transformation of

{D’,... , D’3} into {G’, .. . , G} is said to be an invertible morali-triangulation.
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A morali-triangulated graph G is equivalent to the corresponding clique hypergraph

H in that given one of them the other is completely determined. By definition 8, if the

sectioning of a MSBN is sound, then there exists a clique hypergraph H whose every

clique is a subset of the domain of at least 1 subDAG of the MSBN. Thus one has the

following theorem.

Theorem 6 (existence of invertible morali-triangulation) There exists an invert

ible morali-triangulation for {D’,.. . , D} sectioned from a DAG D, if the sectioning is

sound.

One could construct a set of invertible morali-triangulated graphs of a MSBN by first

performing a global computation (moralization and triangulation) on D to find C, and

then determining its subgraphs relative to the sectioning of the MSBN. The moralization

and triangulation would be the same as in the junction tree technique with care to be

taken not to mix nodes in different subDAGs into one clique. However, when space

requirement is of concern, MSBNs offer the possibility of morali-triangulation by local

computation at the level of subDAGs of sects. Each subDAG in a MSBN is morali

triangulated separately (message passing may be involved) such that the collection of

them is invertible. The following discusses how this can be achieved.

Example 12 In the example depicted in Figure 4.17 and 4.20, 0 is sectioned into

{ 01, 02, O} by a sound sectioning and {A1,A2,A3} is a set of invertible morali-triangu

lated graphs relative to the sectioning. The desire is to find A1 (i = 1,2,3) from

(i = 1,2,3) by local computation.

Since subDAGs of a MSBN are interfaced through d-sepsets, the focus of finding a set

of invertible morali-triangulated graphs by local computation is to decide whether each
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pair of d-sepnodes is to be linked. Coordination between neighbor subDAGs is necessary

to ensure correct decisions. The following considers this systematically.

Call a link between 2 d-sepnodes a d-link. Call a simple path (A,, A2, . . . , A,) a d-path

if A1,..., A2 and As,... ,Ak (1 i,i + 1 j,j k) are all d-sepnodes, while all the

other nodes on the path are non-d-sepnodes. A d-link is a trivial d-path. Each morali

triangulated graph G from an invertible morali-triangulation may generally contain 6

types of d-links.

Arc type inherited from the subDAG. That is, if 2 d-sepnodes are connected originally

in the subDAG, there is a d-link between them in G. Decision on this type of

d-links is trivial.

ML type created by local moralization. For example, the d-links (H,, H2) in A2 and

(H2,H3)in A3.

ME type created by moralization in neighbor subDAGs. For example, the d-links

(H1,H2) and (H2,H3) in A’. Decision on this type of d-links requires commu

nication between neighbor subDAGs.

Cy type created to triangulate inter-subDAG cycles. For example, the d-link (H3,H4)

in A’ and A3. Decision on this type of d-links requires communication between

neighbor subDAGs.

TL type created during local triangulation. After the above 4 types of d-links have been

introduced to the moral graph of a subDAG, there may still be un-triangulated

cycles within the moral graph involving 4 or more d-sepnodes. The example used

above is too simple to illustrate this and the next type.

TE type created by local triangulation in neighbor subDAGs. The triangulation of a

cycle of length> 3 involving only d-sepnodes is not unique. If 2 neighbor subDAGs
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triangulate such a cycle by local computation without coordination, they may tri

angulate in different ways and result in different set of cliques for the nodes in the

d-sepset. Therefore communication is required such that a subDAG may adopt

the d-links introduced by triangulation in neighbor subDAGs. The argument also

applies to the case of triangulating cycles consisting of general d-paths.

An algorithm for morali-triangulation of subDAGs of a MSBN into a set of invertible

triangulated graphs under the covering subDAG assumption is given below.

Algorithm 2 (morali-triangulation with a covering subDAG) Let D’ be the cov

ering subDAG in the MSBN.

1. For each subDAG Dt, do the following: (1) moralize D, and add d-links due to

moralization to ML (a. set of node pairs); (2) search for pairs of d-sepnodes con

nected by a d-path in the moral graph of D, and add the pairs found to Cy (a set

of node pairs).

2. For D’, do the following: (1) for each pair of nodes of D’ contained in one of

ML (i > 1), connect the pair in the moral graph of D’; and (2) for each pair

of d-sepnodes contained in both Cy’ and one of Cy (j > 1), connect the 2 nodes

in the moral graph of D’; (3) triangulate the augmented moral graph of D’ (the

morali-triangulation of D’ is completed); and () add d-links to DLINK (a set of

node pairs).

3. For Dt (i = 2,. .. , j3), do the following: (1) for each pair of nodes of Dt contained

in DLINK, connect the pair in the moral graph of D; and (2) triangulate the

augmented moral graph of D. The morali-triangulation of D is completed.

Note that the above process has 2 passes through all the subDAGs. The following

theorem shows the invertibility of the morali-triangulation.
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Theorem 7 (invertibility of Algorithm 2) The morali-triangulation by Algorithm 2

is invertible.

Proof: V

The key issue is to decide on d-links. The algorithm considered only neighbor relations

between the covering subDAG and other subDAGs. The first step is to show this is

sufficient. a

Let da and db be 2 d-sepnodes between 2 subDAGs D and Db. Let D’ be the covering

subDAG. It is claimed that if da and d join 2 simple paths in D and Db respectively to

form an inter-subDAG cycle, then they must join 2 simple paths in D and D’ as well.

Since da and db both are contained in D’ which is connected, it is certainly true.

Similarly, if there is a cycle involving d-sepnodes in the d-sepset between D and Db,

these d-sepnodes are also in the d-sepset between D and D’.

Now it is a simple matter to show: the ME type d-links are introduced by step 2 (1)

and step 3 (1); the Cy type d-links are introduced by step 2 (2) and step 3 (1); and the

TE type d-links are introduced by step 2 (2) and step 3 (1).

D

Example 13 The following is a recount for morali-triangulation ofU1O in Figure 4.20

by Algorithm 2.

1. Aftersteplofthealgorithm,ML1= q,ML2 = {(H1,H2)},andML3= {(H2,H3)};

Cy’ = {(H,, H2), (H2,H3), (H3,H4)}, Cy2 {(H1,H2)}, and

Cy3 = {(H2,H3), (H2,H4), (H3,H4)}.

2. After step 2, the morali-triangulated graph A’ of G’ is completed by adding d-links

(H1,H2), (H2,H3), (H3,H4) to O”s moral graph, and then triangulating (nothing

is added). DUNK will contain {(H1,H2), (H2,H3), (H3,H4)}.
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3. After step 3, the morali-triangulated graph A2 of O is completed without change to

its moral graph; the morali-triangulated graph A3 of (33 is completed by adding the

d-link (H3,H4) to its moral graph, and then triangulating (with the link (E3,H4)

added).

As mentioned in section 4.4, after the morali-triangulation, the other steps in trans

formation of a MSBN into a set of junction trees of cliques are: identifying cliques of the

morali-triangulated graphs to form a set of clique hypergraphs and then organizing each

hypergraph into a junction tree. These steps are performed in the same way as in the

junction tree technique. Throughout the rest of the chapter, it is assumed that junction

trees are obtained through a set of invertible triangulated graphs, and it is said that the

junction trees are obtained by invertible transformation.

Call a set of junction trees of cliques from an invertible transformation of subDAGs

of a MSBN as a junction forest of cliques denoted by F = {T’,.. . , T} where T2 is the

junction tree from the subDAG Dt.

4.’T.2 Linkages between Junction Trees

Just as d-sepsets interface subDAGs, linkages interface junction trees transformed from

subDAGs and serve as information channels between junction trees during inference.

The extension of the MSBN technique to the junction tree technique is to allow multiple

linkages between pairs of junction trees in a junction forest such that localization can be

preserved within junction trees and the exponential explosion of the sizes of clique state

spaces associated with the brute force method (section 4.3) can be avoided.

Definition 10 (linkage set) Let I be the d-sepset between 2 subDAGs D° and Db. Let

T and Tb be the junction trees transformed from D’ and D’ respectively. A linkage of

T relative to T6 is a set I of nodes such that the following 2 conditions hold.
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1. Boundary: there exists a clique C2, E T’t such that 1 = C2, fl I. C2, is called a host

clique of 1;

2. Maximum: there is no subset of I that is also a linkage.

In general there may be more than one linkage between a pair of junction trees. Define

L to be the set of all linkages of T relative to Tb.

Proposition 11 (identity of linkages) Let T and Tb be the junction trees from sub

DAGs D and Db respectively. If L is the set of linkages of T relative to Tb and L

is the set of linkages of Tb relative to Ta, then L = Lba.

Proof:

A linkage consists of the d-sepnodes which are pairwise connected. In an invertible

morali- triangulation, d-sepno des are connected identically in both morali- triangulated

graphs involved.

Example 14 In Figure 4.20, linkages between junction trees are indicated with ribbed

bands connecting the corresponding host cliques. The 2 linkages between I” and I’ are

{H3,H2}and {H3,H4}.

Given a set of linkages between a pair of junction trees, the concept of a redundancy

set can be defined. As mentioned in section 4.4, redundancy sets provide structures

which allow redundant information to be removed during inter-junction tree information

passing. The concept will be used for defining joint system belief in section 4.7.3 and

defining the operation NonRedundancyAbsorption in section 4.9.2. To define the redun

dancy set, one needs to index linkages such that the redundancy sets defined based on

the indexing possess certain desirable property which will become clear below. Index .a

set L of linkages by the following procedure.
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Procedure 1 1. Pick one of the junction trees in the pair, say Ta. Create a tree G

with nodes labeled by linkages in Lab. Connect 2 nodes in G by a link if either

the hosts of corresponding linkages are directly connected in T, or the hosts of

corresponding linkages are (indirectly) connected in T by a path on which all

intermediate cliques are not linkage hosts. Call this tree a linkage tree.

2. Index the nodes (linkages in Lw’) of G into L1,L2,... in any order that is consistent

with G, i.e., for every i > j there is a unique predecessor j(i) <i such that L() is

adjacent to L1 in G.

With linkages indexed this way, the redundancy set can be defined as the following.

Definition 11 (redundancy set) Let a set of linkages L’ — {L1,. . . , L9} be indexed

by procedure 1. Then for this set of indexed linkages, a redundancy set R, for index i

is defined as

ifi=1

( L, fl L,(2) i > 1; j(i) < i and Lj(:) adjacent to L1 in linkage tree G

Note that a linkage tree is itself a junction tree, and redundancy sets are sepsets of

the linkage tree.

Example 15 There are 2 linkages between F’ and F3 in Figure 4.20. Consider junction

tree F3. The linkage tree G has 2 connected nodes, one labeled by the linkage {H3,H2}

and the other by {H3,H4}. An indexing L, = {H3,H2} and L2 = {H3,H4} defines 2

redundancy sets R1 = and R2 = {H3}.

With linkages and redundancy sets constructed, one has a linked junction forest of

cliques.
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4.7.3 Joint System Belief of Junction Forest

Let (D, F) be a USBN, S {S’,.. . , S} be a corresponding MSBN with a covering

sect 51, and F = {T’, . . . , T} be the junction forest from an invertible transformation.

Let TI be the junction tree of D with cliques Cs and sepsets Qi. Let P (i > 1) be the

d-sepset between S and 5’. Let L’ (i > 1) be the set of linkages between T and T’;

and R (i > 1) be the corresponding set of redundancy sets.

Construct a joint system belief for the junction forest through an assignment of belief

tables to each clique, clique sepset, linkage and redundancy set in the junction forest.

First, for each junction tree T in F, do the following.

• Assign each node nk E N1 to a unique clique C, E C such that 0r contains k and

its parents 7rk. Break ties arbitrarily.

• Let Fk denote the probability table associated with node k• For each clique C

that has assigned nodes k, . . . , nj, associate it with belief table B(Cr) = Pk*..

• For each clique sepset Q,, e Q1, associate it with constant belief table B(Q).

Then for each set of linkage L’, do the following.

• Associate each linkage L e L with constant belief table B(L).

Define the belief table for redundancy set R E R as

B(R)= B(L)
LZ\RZ

Define the belief table for d-sepset P as

BI — FJLZEL B(L)

FIRER’ B(R)
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Define the belief table for each junction tree T as

B(T’) FICXEC’ B(C)

— fJQEQ B(Q)

Here the notation B(T) is used in stead of B(N’) to emphasize that it is related to

the junction tree. Note B(11) and B(T1) are mathematical objects which do not have

•corresponding data structures in the knowledge base. Comparing the form of joint prob

ability distribution for an USBN (section 1.3.3) and the assignment of probability tables

for nodes in a sect (Definition 7), it is easy to see that B(T1) is proportional to the joint

probability distribution of S relative to that assignment.

Define the joint system belief for the junction forest F as

B(F) = fl B(T)

fl2B(I)

The notation B(F) in stead of B(N) is used for the same reason as above. With this

definition, one has the following lemma.

Lemma 7 The joint belief B(F) of a MSBN is proportional to the joint probability dis

tribution F of the corresponding USBN.

To see this is true, it suffices to indicate that each d-sepnode, appearing in at least 2

sects, carries its original probability table as in (N, E, F) exactly once by Definition 7,

and carries uniform table for the rest.

Example 16 Table 4.5 lists the constructed belief tables for belief universes of junc

tion forest F = {1”, I2, f3} in Figure 4.20. The belief tables for sepsets, linkages, and

redundancy sets are all constant tables at this stage.

Having constructed belief tables for cliques, sepsets, linkages, redundancy sets and

junction forest, using the definition of world of section 4.2.1, one can talk about belief



Chapter 4. MULTIPLY SECTIONED BAYESIAN NETWORKS 116

Table 4.5: Constructed belief tables for belief universes of junction forest F = {1”, F2, F}

NodeAss.
F2
EQ

.4
.75
.6

.25
NodeA,s.
H2, F1 H1

EQ
.7895

.6
.2 105

.4

.5
.05
.5

.95

E(r’) 8(r2)
Clique NodeAss. Clique

{H2,H1,A1) 111,A1 {F2,F1)
Config. EQ Conf ig.
{h31,h11,h11) .12 (121111)
{h21,h11,h12} .03 (121.112)
{h21,h12,h11} .085 (122.111)
{h21,h12,h12} .765 (f22.112)
(h22,h11,h11} .12 Clique
(h22,h11,h12} .03 (H2,F1,H1}
{h22,h12,h11} .085 Config.
{h22,h12,h12} .765 (h21,f11,h11)

Clique NodeAss. (h21,f11,h12)
{H2,A2,A1} H2 {h21,f12,h11)

Config. EQ {h211f12,h12)
(h21,a21,a11) .8696 {h22,f11,h11)
{h21,a21,a12) .7 {h22,f11,h12)
{h21,a22,a11) .6 (h22,f12,h11)
{h21,a22,a12) .08 (h22,f12,h12)
{h22,a21,a11} .1304
{h22,a21,a12) .3
{h22,a22,a11) .4
{h22,a22,a12) .92

Clique NodeAss.
(H3,H2,A2) H3A2

Config. EQ
{h31,h21,a21) .24
{h31,h21,a22) .06
{h31,h22,a21} .24
{h31,h22,a22} .06
{h32,h21,a21) .07
(h32,h21,a22) .63
{h32,h22,a21) .07
{h32,h22,a22) .63

Clique NodeAss.
{H3,A3,H4) A3,H4

Config. EQ
{h31,a31,h41 } .075
{h31,a31,h42) .225
(h31,a32,h41} .28
{h31,a32,h42) .42
{h32,a31,h41) .2
{h32,a31,h42) .6
(h32,a32,h41) .08
(h33,a32,h42) .12

Clique NodeAss.
{H4,A4) A4
Conf ig. EQ
{h41,a41} .9
{h41,a42} .1
{h42,a41} .2
{h42,a42) .8

E(r3)

Clique
{E1 , E3)
Conf i g.
{e11 , e31 )
(e11 , e32)
{e12,e31)
{e12,e32)

Clique
(H3,H2,E3)

Conf i g.
(h31 , , e31)
{1i31 , , e32)
(h31 , h22,e31)
{h31 , ,e32)
(h32, , e31)
{h32,It21,e32)
(It32,It22,e31)
(It32,It22,e32)

Clique
(82,E3,E4)

Conf ig.
{e21 , e31,e41)
(e21 e31,e42)
{e21 32, e41)
(e21 e32,e42)
(e22,C31,e41)
(e22,e31,e42)
{e22 , e32,e41)
(e22 , e32,e42 }

Clique
(E3,E4,H4)

Conf ig.
(e31 , e41 , It41)
(e31 ,e41 ,It42)
(e31 , e42 , It41)
(e31,e42,It42)
{e32,e41 , It41)
(e32 , e41 , It42)
(e32,C42,It41)
(e32,e42,It42)

Clique
(H3,E3,H4)

Config.
(It31,e31,It41)
(It31,e31,It42)
{It31 , e32, It41)
(It31,e32,It42)
(It32,e31,It41)
(It32,e31,It42)
(It32,e32,It41)
(It32,e32,It42)

NodeAss.

EQ
.2
.7
.8
.3

NodeAss.
H3,H2,

EQ
.7702
.2298

.65

.35

.35

.65

.01

.99
NodeAss.

EQ
.9 789

.8

.9
.05

.0211
.2

.95
NodeAss.
E4, H4

EQ
.8

.15
.2

.85
.8

.15
.2

.85
Node Ass.

EQ

in Figure 4.20. Config: Configuration. Node Ass: Nodes Assigned.
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universes, sepset worlds, linkage worlds, redundancy worlds, and junction forest of belief

universes. These terms will be used below.

The preceding has an assumption of a covering sect. The joint system belief of a

junction forest with a hypertree structure can be defined in the similar way. As there

is no need to consider the d-sepset/linkages between non-covering sects above, in the

hypertree case, there is no need to consider the d-sepset/linkages between neighbor sects

covered by a local covering sect. Therefore in practice, these linkages are never created.

One sees another computational advantage of the covering sect rule and the hypertree

rule.

4.8 Consistency and Separability of Junction Forest

Part of the goal is to propagate the information stored in different belief universes in

different junction trees of a junction forest to the whole system such that marginal

probability of variables can be obtained from any universes containing them with lo

cal computation.4 The information to be propagated can be the prior knowledge in the

form of products of original probability tables from the corresponding USBN. The infor

mation to be propagated can also be evidence entered from a set of universes possibly in

different junction trees. The following defines consistency and separability that are the

properties of junction forests which guarantee the achievement of this goal.

4.8.1 Consistency of Junction Forest

The property of consistency partly guarantees the validity of obtaining marginal proba

bilities by local computation. In the context of the junction forest, 3 levels of consistency

can be identified.

4Obtaining marginals by local computation is what the junction tree technique is developed for. More
is obtained from junction forests, namely, exploiting localization.
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Definition 12 (local consistency) Neighbor universes (C1,B(C1)) and (C,, B(C3)) in

a junction tree T with sepset world (Qk, B(Qk)) are consistent if

B(C1) x B(Qk) cx B(C3)
C,\C CJ\CI

where ‘x’ reads ‘proportional to’. When the relation holds among all neighbor universes,

the junction tree T2 is said to be consistent. When all junction trees are consistent, a

junction forest F is said to be locally consistent.

Definition 13 (boundary consistency) Host universes (C,, B(Cj) and (Cs, B(C’))

of linkage world (Lk,B(Lk)) are consistent if

B(C)cB(Lk)c B(C)

When the relation holds among all linkage host universes, a junction forest is said to

have reached boundary consistency.

Definition 14 (global consistency) A junction forest is said to be globally consis

tent if for any 2 belief universes (possibly in different junction trees) (Ci, B(C)) and

(Ci, B(C))

B(C)c B(Cj)
C,\C

Theorem 8 (consistent junction forest) A junction forest is globally consistent if it

reaches both local consistency and boundary consistency.

Proof:

The necessity is obvious. The sufficiency is proven below.

Let (Ci, B(Cj) and (Cr’, B(C)) be 2 universes in junction trees Tt and P of junction

forest F respectively. Let 3 be the d-sepset between the 2 corresponding sects. One has
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Z = CnC ç I. By definition of linkages, they have the maximum property. Therefore,

there exists a linkage L 2 Z with its hosts being (C,,, B(C)) and B(Cj).

Since C, 2 2 Z, Z is contained in all cliques in the unique path between G, and

Ct,. Because S is locally consistent,

B(C) x B(CJJ.
Ct\Z C\Z

Similarly,

> B(C) cc B(C).
C\Z

Because T also reached boundary consistency,

B(C,,) cc B(C)
C\Z G3W\Z

Therefore

B(C)c B(Cj)
C\Z C\Z

D

4.8.2 Separability of Junction Forests

In the junction tree technique, consistency is all that is required in order to obtain

marginals by local computation. In junction forests, this is not sufficient due to the ex

istence of multiple linkages. The function of multiple linkages between a pair of junction

trees is to pass the joint distribution on the d-sepset by passing marginal distributions on

subsets of the d-sepset. By doing so, one avoids the exponential increase in clique state

space sizes as outlined in section 4.3. When breaking down the joint into the marginals,

one must ensure the joint can be reassembled from the marginals, i.e., one must pass

a correct version of the joint. Otherwise, the correctness of local computation is not
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guaranteed. Since passing the marginals is achieved by passing the belief tables on link

ages and redundancy sets, the structure of linkage hosts is the key factor. The following

defines separability of junction forests in terms of the correctness of local computation.

Then the structural condition of linkage hosts is given under which the separability holds.

Definition 15 (separability) Let F = {TI1 i ,6} be a junction forest with do

main N and joint system belief B(F). F is said to be separable if, when it is globally

consistent, for any T’ over subdomain N

B(F) cc B(T)
N\N

The following lemma is quoted from Jensen for latter proof of proposition 12.

Lemma 8 [Jensen 88]

Let T be a junction tree from clique hypergraph (N, C). Let C1 and C2 be 2 adjacent

cliques in T. Let T’ be the graph resulting from T by union of Ci and C2 into one clique,

and by keeping the original sepsets. Then T’ is a junction tree for clique hypergraph

(N, (C \ {C1,C2}) U {C1 U C2}).

The following is the structural condition for separability to be proved below.

Definition 16 (host composition) Let a MSBN by sound sectioning be transformed

into a junction forest. Let S1 be a sect in the MSBN; T be the junction tree of St; I be

the d-sepset between S1 and any distinct sect; and L be the set of linkages between T and

the junction tree for the other sect.

Recursively remove from T every leaf clique which is not a linkage host relative to L.

Call the resultant junction tree as a host tree.

T satisfies a host composition condition relative to L, whenever the following is

true.
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1. If a non-d-sepnode is contained in any linkage host in T, then it is contained in

exactly 1 linkage host; and

2. if a set of non-d-sepnodes are contained in any non-host clique in the host tree, and

each element appears in some host clique, then the set must be contained in exactly

1 linkage host.

Example iT The host composition condition is violated in the host trees of Figure 4.24.

The following shows the violation and the resultant problem. Assume both trees are

consistent.

First consider the top tree. Let L consist of linkages L1 {A, D} and L2 {A, E}.

Let their hosts be C1 = {A, B, D} and C2 = {A, B, E} which are adjacent in the tree.

B is a common non—d-sepnode - a violation of part 1 of the host composition condition.

Even if all the belief tables are consistent, in general,

B(ABD)B(ABE) B(AD)B(AE)
B(AB) B(A)

That is, the joint distribution on the d-sepset {A, D, E} constructed from belief tables

on linkages and redundancy sets is inconsistent in general.

Consider the bottom tree. Let L and C1 be the same. Let the host C2 = {A, E, G}

which is connected to C1 through a non-host C3 = {A, B, G}. {B, G} is a set of non-d

sepnodes violating the part 2 of the host composition condition. If Ci and 03 are united

as described in lemma 8, the resultant graph is still a junction tree. If let

B(C13)= B(C1)B(C3)/B(Q13)

where B(Q13) is the original belief for sepset between C and 03, the joint belief for the

new tree is exactly the same as before and the new tree is consistent. Now the common

node 0 in 013 and 02 creates the same problem illustrated above.
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C2

c::::: C2

Figure 4.24: Two example trees for violation of the host composition condition. I: the
d-sepset. The ribbed bands indicate linkages.

Proposition 12 Let a MSBN by sound sectioning be transformed into a junction forest

F. Let S be a sect in the MSBN; T’ be the junction tree of S in F; I be the d-sepset

between S’ and any distinct sect; and L be the set of linkages between T and the junction

tree for the other sect. Let all belief tables be defined as in section 4.7.3.

When F is globally consistent, B(I) satisfies

B(I) x B(T)
N \I

iffT2 satisfies the host composition condition relative to L.

Proof:

[Sufficiency] The proof is constructive. Denote the host tree of T relative to L by

T’ and denote T”s domain by N’. Marginalize B(T) with respect to N \ N’. This is

done by marginalization of B(Tt) recursively with respect to unique variables in each leaf

clique not in T’. This results in

B(T2)=B(T’)
Nt\N’

where B(T’) is the joint belief for the consistent junction tree T’. Note N \ N’ contains

no d-sepnodes.
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Second, unite non-host cliques into linkage hosts in T’. Suppose C is a non-linkage-

host with host clique neighbor(s). Choose the neighbor host C, containing all the non

d-sepnodes of C1 which appear in host cliques. Since T’ is a junction tree and the host

composition condition holds, one is guaranteed to find such a C,. By lemma 8, the graph

resulting from T’ by union of C, C, into a new clique Ck, and by keeping the original

sepsets is still a junction tree on domain N’. The host composition condition still holds

in the new graph. If let

B(Ck) = B(C)B(C)/B(Q3)

where B(Q13) is the original belief for sepset between C2 and C, the joint belief for the

new junction tree T(1) is exactly the same as B(T’) and T(1) is consistent. Repeat the

union operation for all non-hosts, one ends up with a consistent junction tree T” with

only linkage hosts (possibly new composition) and every non-d-sepnode in N’ appears

in exactly 1 host. If for every clique in T”, marginalize each clique belief with respect

to its (unique) non-d-sepnodes; remove these non-d-sepnodes from the clique; assign the

marginalized belief to the new clique and keep the sepset belief invariant, one ends up

with a new consistent junction tree T” with its joint belief

BT” c B(T’).
N’\I

Note that T” is just the linkage tree in the procedure 1. That is, all the cliques in T”

are linkages, and all the sepsets are redundancy sets. Therefore,

B(I) cc B(T”).

[Necessityj Suppose there are 2 or more linkages in L, and the host composition

condition does not hold in T. Obtain the host tree T’ in the same way as in the sufficiency

proof. Recursively unite each non-host clique with a neighbor host clique if there is one,
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and assign the belief for the new clique in the same way as in the sufficiency proof. The

resultant is a consistent junction tree T”. Since the host composition condition does

not hold in T’, and the uniting process does not remove non-d-sepnodes from any host,

there is at least 2 neighboring cliques C1 and C2 in T” such that they have a set of

common non-d-sepnodes. Denote the 2 cliques as C1 = X U Y U W and C2 = X U Z U W

(Figure 4.25) with L1 = C fl I = X U Y and L2 C2 fl I = X U Z. That is, C1 and C2

share a set of d-sepnodes X and a set of non-d-sepnodes W. Even if all the belief tables

are consistent, in general,

B(C1)B(C2)— B(XuYuW)B(XuZuW)

w 12 w
B(X U Y)B(X U Z) — B(L1)B(L2)

B(X) - B(R1)

where R is the intersection of L1 and L2 (a redundancy set). That is, the distribution

on In (C1 U C2) is not consistent with the distribution constructed from the belief tables

on the corresponding linkages and redundancy set in general. The above C1 and C2 are

chosen not including unique non-d-sepnodes in each of them. If this is not the case, these

non-d-sepnodes can always be removed by marginalization at each of the 2 cliques, and

the result is the same. If L = {L1,L2}, the proof is complete.

Consider the case L contains more than 2 linkages. In this case, the the left side of

the above equation represents a correct version of the marginal distribution on a subset

of d-sepset I, while the right side is an inconsistent version of the same distribution

defined in terms of belief of linkages and redundancy sets (section 4.7.3). Now, it suffices

to indicate that, in general, if the marginal distribution is inconsistent, the joint is also

inconsistent.

The proposition shows that the belief table B(I) defined in section 4.7.3 is indeed the

joint belief on d-sepset I when the host composition condition is satisfied and the forest
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59uw

L1=C1fl1 = XUY L2=C2fl1 = XUZ

Figure 4.25: Part of a host tree violating the host composition condition. I: the d-sepset.
The ribbed bands indicate linkages.

is consistent. Now it is ready for ie following result on separability.

Theorem 9 (host composition) Let {S’, . . . , S} be a MSBN satisfying the hypertree

condition. Let F = {TIl i /} be a corresponding junction forest with joint system

belief B(F). F is separable if the host composition condition is satisfied in all pairs of

junction trees with linkages constructed.5

Proof:

Assume F has reached global consistency. First, unite all the cliques in each junction

tree into a huge clique with the belief table for the junction tree as its belief. Connect

the huge cliques as they are connected in the hypertree (that is, if the linkages between

2 trees are not created as discussed in section 4.7.3, do not connect the 2 corresponding

huge cliques), and assign the original B(I) to their sepset. The resultant graph is a

junction tree due the hypertree structure of the MSBN. By proposition 12, the tree is

consistent with joint belief being B(F), and for any T over subdomain N

B(F) cx B(T1)
N\N1

iff the host composition condition is satisfied.

EJ

5Recall that when a MSBN has a hypertree structure, no linkage is created between junction trees
whose corresponding sects are covered by a local covering sect.
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The host composition condition can usually be satisfied naturally in an application

system. Since d-sepsets are the only media for information exchange between sects, d

sepnodes usually involve many inter-subDAG cycles. The consequence is that they will

be heavily connected during morali-triangulation and form several large cliques in the

clique hypergraph as well as some small ones. On the other hand, non-d-sepnodes rarely

form connections with so many d-sepnodes simultaneously and hence will rarely be the

elements of these large cliques. To be an element of more than 1 such large clique is

even more unlikely. Because linkages are defined to be maximal, these large cliques will

become linkage hosts.

For example, in the PAINULIM application system (Chapter 5), there are 3 sects and

correspondingly 3 junction trees. The host composition condition is satisfied naturally in

all 3 trees. Figure 4.26 gives one of them. The 4 linkage hosts contain no non-d-sepnode

at all.

When the host composition condition can not be satisfied naturally, one can add

dummy links between d-sepnodes in the moral graph before triangulation such that link

age hosts will be enlarged and the condition is satisfied. Hence, given a MSBN, a sep

arable junction forest can always be realized. The penalty of added links is increased

amount of computation during belief propagation due to increased sizes of cliques and

linkages. In the worst case, one resorts to the brute force method discussed in section 4.3

in order to satisfy the host composition condition for certain pairs of junction trees. If

the system is large, sectioning may still yield computational savings on the whole even

if cliques are enlarged at a few junction trees.

One of the key results now follows.
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Figure 4.26: T is a junction tree in a junction forest taken from an application system
PAINULIM with variable names revised to simplify. An upper case letter in a clique
represents a d-sepnode member, and a lower case letter represents a non-d-sepnodes
member. The cliques C1,C2,C3,C4 are linkage hosts.

Theorem 10 (local computation) Let F be a consistent and separable junction forest

with domain N and joint system belief B(F). Let (Cs, B(C)) be any universe in F. Then

B(F)cB(C)
N\CX

Proof:

Let (Ci, B(C)) be a universe in one of the junction tree T of F, Let the subdomain
of TX be NX and its belief be B(Tz). Since F is consistent and separable, by definition
of separability one has

B(F)=B(Tx)
N\NX

and TX is a consistent junction tree. Jensen, Lauritzen and Olesen [1990] have proved that
the belief of a consistent junction tree marginalized to any of its universes is proportional
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to the belief of that universe. Hence

B(F)cx (> B(F))xB(C)
N\CX NS\C N\Nx

With the above theorem, the marginal belief of any variable in a consistent and

separable junction forest can be computed by marginalization of the belief table of any

universe which contains the variable. In this respect, a consistent and separable junction

forest behaves the same as a consistent junction tree [Jensen, Lauritzen and Olesen 90].

It will be seen that, in the context of junction forests, additional computational advantage

is available, i.e., the global consistency is not necessary for obtaining marginal belief by

local computation.

4.9 Belief Propagation in Junction Forests

Given the importance of consistency of junction forests, a set of operations are introduced

which bring a junction forest into consistency. Since the purpose is to exploit localization,

only operations for local computation at the junction tree level are considered. That is,

at any moment, there is only 1 junction tree resident in the memory. This junction tree

is said to be active.

4.9.1 Supportiveness

Jensen, Lauritzen and Olesen [1990] introduced the concept of supportiveness. Let (Z,

B(Z)) be a world. The support of B(Z) is defined as

= {z E ‘P(Z)Ibelief of z > 0}.

A junction tree is supportive, if, for any universe (C2,B(Cj) and for any neighboring

sepset world (Q3,B(Q)), L(B(Ci)) Z(B(Q)). The underlying intuition is that,
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when beliefs are propagated in a supportive junction tree, non-zero belief values will not

be turned into zeros.

Here the concept is extended to junction forests. A junction forest is supportive, if

all its junction trees are supportive, and if, for any linkage host (C:, B(C)) and corre

sponding linkage world (L3,B(L2)), L(B(Ci)) ç B(Lj)).

The construction in section 4.7.3 results in a supportive junction forest.

4.9.2 Basic Operations

Operations for Consistency within a Junction Tree

The following operation brings a pair of belief universes into consistency.

Operation 1 (AbsorbThroughSepset) [Jensen, Lauritzen and Olesen 90]

Let (C0,B(C0)) and its neighbors (C1,B(C1)),..., (Ck,B(Ck)) be belief universes in

a junction tree. Let (Q1,B(Q1)),.. . ,(Qk,B(Qk)) be the corresponding sepset worlds.

Suppose z.(B(C0)) C L.(B(Q)) (i = 1,... ,k). Then the AbsorbThroughSepset of

(C0,B(C0)) from (Ci, B(Cj) (i = 1,. . ., k) changes B(Q:) and B(C0) into B’(Q1) and

B’(C0).

B’(Q1) = B(C2) i=1,...,k

k

B’(C0) = B(C0)fJB’(Q1)/B(Q1)

This operation is performed at the level of belief universe. Jensen, Lauritzen and

Olesen [1990] show that the operation changes neither the supportiveness of a junction

tree nor the joint system belief in the context of a junction tree. In the context of a

junction forest, the supportiveness is also invariant after AbsorbThroughSepset. This is

because the operation does not increase the support of any linkage host and does not
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change linkage beliefs directly. The invariance of joint system belief for the junction

forest is obvious given the definition of joint system belief and the invariance of beliefs

for junction trees.

The following are three high level operations which bring a junction tree into consis

tency.

Operation 2 (DistributeEvidence) [Jensen, Lauritzen and Olesen 90]

Let (C0,B(C0)) be a universe in a junction tree. When DistributeEvidence is called

in (C0,B(C0)), it performs Absorb ThroughSepset to absorb from the caller if the caller

is a neighbor and calls DistributeEvidence in all its neighbors except the caller.

Suppose a junction tree is originally consistent. If evidence is entered6 in one of its

belief universes and DistributeEvidence is initiated from that universe, then the resulting

junction tree is still consistent.

Operation 3 (CollectEvidence) [Jensen, Lauritzen and Olesen 90]

Let (C0,B(C0)) be a universe in a junction tree. When CollectEvidence is called

in (C0,B(C0)), it calls CollectEvidence in all its neighbors except the caller, and when

they have finished their CollectEvidence, (C0,B(C0)) performs Absorb ThroughSepset to

absorb from them.

DistributeEvidence and CollectEvidence are operations performed at the level of belief

universes. Since they are composed of AbsorbThroughSepset, they do not change the

supportiveness and joint system belief of junction forest. The combination of these 2

operations yields the operation UnifyBelief which brings a supportive junction tree into

consistency and is performed at the level of junction trees.

6The concept of evidence entering is defined later.
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Operation 4 (UnifyBelief) UnifyBelief can be initiated at any universe (C0,B(C0))

in a junction tree. (C0,B(C0)) calls CollectEvidence in all its neighbors and when they

have finished their CollectEvidence, (C0,B(C0)) calls DistributeEvidence in them.

Operations for Belief Exchange in Belief Initialization

Belief initialization brings a junction forest into global consistency before any evidence

is available. One problem arises w*ien there are multiple linkages between junction trees.

Care is to be taken not to count the same information passed on different linkages multiple

times. The following two operations pass information through multiple linkages during

belief initialization. NonRedundancyAbsorption is performed at the level of linkage hosts.

ExchangeBelief calls NonRedundancyAbsorption and is performed at the level of junction

trees. ExchangeBelief ensures the exchange between junction trees of prior distribution

on d-sepsets without redundant information passing.

Operation 5 (NonRedundancyAbsorption) Let (C, B(C)) and (Ci, B(C)) be 2

linkage host universes in junction trees T’ and Tb respectively. Let (Lx, B(L)) and

(R, B(R)) be the worlds for corresponding linkage and redundancy set. Suppose

z(B(C:)) ç .(B(L)).

The NonRedundancyAbsorption of (C, B(C)) from (Ci, B(C)) through linkage

L, changes B(L), B(R) and B(C) into B’(L), B’(R) and B’(C) respectively.

B’(L) = B(C)
C\LX

B’(R) = B’(L)
LX\RX

B’C’ — B1C” *
B’(L)/B’(R)

“ ‘ — “ B(L)/B(R)

The factor 1/B’(R) above has the function of redundancy removal.
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At initialization, the belief tables for linkages and redundancy sets are in the state

of construction, i.e., constant. Hence, B(L) and B(R) above are constant tables. If

B’(L) is constant, which is possible because constant probability tables are assigned to

d-sepnodes in some sects in Definition 7, then after the operation

> B’(C) oc > B(C).
C\LX C\LX

That is, if C has no information to offer, then C will not change its belief. If C\LX B(C)

is constant, then after the operation

B’(C) oc ( B(C)) /( B(C)).
C\LX C\RX

That is, if C has new information and C contains no non-trivial information, then the

belief of C will be copied with red4ndancy removed. If none of B’(L) and ZCa\LX B(C)

is constant, then after the operation

B’(C) * ( B(C)) /( B(C))).
C\LX C\RX

That is, if none of the above cases is true, the belief from both sides will be combined

with redundancy removed. Since

C > B(C)) =

CXb\LX

the supportiveness of the junction forest is invariant under NonRedundancyAbsorption.

Since
B’(C) - B(C)

B’(L)/B’(R) — B(L)/B(R)

the joint system belief is invariant under NonRedundancyAbsorption. This operation is

equipped at each linkage host.
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Operation 6 (ExchangeBelief) Let L be the set of linkages between junction trees T

and Tb. When T’ initiates ExchangeBelief with Tb, the NonRedundancyAbsorption is

performed at all linkage host universes in Ta.

Since ExchangeBelief is composed of NonRedundancyAbsorption, the siipportiveness

of the junction tree and its joint system belief are invariant under the ExchangeBelief.

The operation is equipped at the level of junction trees. After ExchangeBelief, the non

trivial content of joint distribution on d-sepset at T” will be passed onto T without

redundancy.

Operations for Belief Update in Evidential Reasoning

Evidential reasoning propagates evidence obtained in one junction tree to the junction

forest. A junction tree receiving updated belief on the d-sepset from a neighbor junction

tree may be confused due to multiple linkage evidence passing. The following 2 opera

tions handle the evidence propagation between junction trees. AbsorbThroughLinkage

propagates evidence through one linkage and is performed at the level of linkage hosts.

UpdateBelief calls AbsorbThroughLinkage to propagate evidence from one junction tree

to another, and is performed at the level of junction trees. It is used during evidential rea

soning when both junction trees are consistent themselves but may not reach boundary

consistency between them.

Operation F7 (AbsorbThroughLinkage) Let (C, B(C)) and (Ci, B(C)) be 2 link

age host universes in junction trees T’1 and Tb respectively. Let (Lw, B(L)) be the corre

sponding linkage world. Suppose z(B(C)) z.S.(B(L)). The AbsorbThroughLink

age of(C, B(C)) from (Ci, B(C)) changes B(C) and B(L) into B’(C) and B’(L)
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as the following.

B’(L) = B(C)

B’(C) = B(C) * B’(Lx)/B(Lr)

After AbsorbThroughLinkage,

B’(C)= B(C)

Since

z.(B(C)) C B(C)) = z(B’(L))

the supportiveness of a junction forest is invariant under AbsorbThroughLinkage. The

operation makes the belief of C up-to-date with respect to the belief of C on their

common variables.

Operation 8 (UpdateBelief) Let L = {L1, .. . , Lk} be the set of linkages between

junction trees T’ and Tb with corresponding linkage hosts Cr,.. . , C. When T initiates

UpdateBelief with Tb, the operation pair Absorb ThroughLinkage and then Distribu

teEvidence is performed at Ce,... , C.

Since the operation is composed of AbsorbThroughLinkage and DistributeEvidence,

the supportiveness of the junction forest is invariant under the operation.

Since after UpdateBelief,

B’(C) = B(C) x = 1,. . . , k

and T’ is consistent, the effect of the operation is

BI(Ta) = B(T) * B’(I)/B(I)
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where I is the d—sepset between 5a and Sb or equivalently

BI(Ta)/Bl(I) = B(T)/B(I)

which implies the joint system belief is invariant under the operation.

Note that after each AbsorbThroughLinkage in operation UpdateBelief, a Distribu

teEvidence is performed. This is used to avoid confusion in the information receiving

junction tree possibly resulted from multiple linkages information passing. The following

simple example exemplifies this necessity.

L XUZ vuz

Figure 4.27: An example illustrating the operation UpdateBelief.

Example 18 Let junction tree T’ (Figure 4.27) have 2 linkage host C1 = L1 X U Z

and C2 = L2 = Y U Z where X, Y Z are 3 disjoint sets of nodes. Let B(C1), B(C2)

and B(Z) be the belief tables of the 2 hosts and their sepset respectively. Suppose new

information is passed over to Tt through the 2 linkages from its neighbor junction tree.

If AbsorbThroughLinkage is performed at L1 and then L2 Without a DistributeEvidence

between the 2 operations, then the belief on 2 host cliques will be updated to B’(C1),

B’(C2), while B(Z) is unchanged. If C1 initiates an AbsorbThroughSepset from C2 in

the process of propagating the new information to the rest of T, the belief on C1 will

become

B”(C1)= B’(C1)(B’(C2)/B(Z)) ç B’(C1)
1’

which is not expected. This is because Z B’(C2)ç B(Z).
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With a DistributeEvidence between the 2 AbsorbThroughLinkage operations, there

is B’(Z) = y B’(C2). The result of AbsorbThroughSepset becomes

B”(C1)= B’(C1)(B’(C2)/B’(Z)) cx B’(C1)
Y

which is correct.

4.9.3 Belief Initialization

Before any evidence is available, an internal representation of beliefs is to be established.

The establishment of this representation is termed initialization by Lauritzen and Spiegel-

halter [1988] for their method. The function of initialization in the context of junction

forests is to propagate the prior knowledge stored in different belief universes of different

junction trees to the rest of the forest such that (1) prior marginal probability distribu

tion for any variable can be obtained in any universe containing the variable, and (2)

subsequent evidential reasoning can be performed.

The following defines operations DistributeBelief and CollectBelief which are anal

ogous to DistributeEvidence and CollectEvidence but at the junction tree level. The

operation Beliefinitialization is then defined in terms of DistributeBelief and CollectBe

lief just as UnifyBelief is defined in terms of DistributeEvidence and CollectEvidence but

at the junction forest level.

Two junction trees in a junction forest is called neighbors if the d-sepset between the

2 corresponding sects is nonempty.

Operation 9 (DistributeBelief) Let T be a junction tree in a junction forest. When

DistributeBelief is called in T, it performs UpdateBelief with respect to the caller if

the caller is a junction tree and then calls DistributeBelief in all its neighbors except the

caller and caller’s neighbors.
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Operation 10 (CollectBelief) Let T’ be a junction tree in a junction forest. When

CollectBelief is called in T1, it calls CollectBelief in all its neighbors except the caller

and caller’s neighbors. when they have finished, T performs ExchangeBelief with respect

to each of them followed by a UnifyBelief on T1.

Operation 11 (Belieflnitialization) Beliefinitialization can be initiated at any junc

tion tree T in a junction forest f T is transformed from a local covering sect. T calls

CollectBelief in all its neighbors, and when they have finished Tt calls DistributeBelief in

them.

All 3 operations do not change the supportiveness and joint system belief. Thus one

has the following theorem.

Theorem 11 (belief initialization with hypertree) Let {S’,.. . , S} be a MSBN with

a hypertree structure. Let F = {T’,. . . , T} be a junction forest with T being the junc

tion tree of S1. Let B(F) be the joint system belief constructed as section 4.7.3. After

Belieflnitialization, the junction forest is globally consistent.

Note that the Beliefinitialization does not involve direct information passing between

neighbors of a local covering sect. This is also the case during evidential reasoning to be

discussed latter. As assumed in section 4.7.3, the linkages between these neighbors are

not created in the first place. This saving is possible only if the MSBN has a hypertree

structure.

Example 19 Beliefinitialization is initiatedat 1” in Figure 4.20. It calls CollectBelief

in F2 and F3. Since the latter do not have neighbors other than the caller and caller’s

neighbor, only UnifyBelief is performed in F2 and F3. Table 4.6 lists the belief tables for

belief universes in junction trees F2 and P3 after their UnifyBeliefs.
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Table 4.7 and Table 4.8 list the belief tables for belief universes of the junction for

est and the (prior) marginal probabilities for all variables of the corresponding MSBN

respectively after the completion of Beliefinitialization. The marginal probabilities are

identical to what would be derived from the USBN (F, P) with F in Figure 4.17 and P

in Table 4.3. The marginals are obtained by marginalization of belief universes which

contain the corresponding variables.

Once belief initialization is completed, the junction forest becomes the permanent

representation which will be reused for each query session.

4.9.4 Evidential Reasoning

The joint system belief defined in section 4.7.3 is proportional to the prior joint distribu

tion representing the background domain knowledge. Initialization allows one to obtain

prior marginal probabilities with efficient local computation. When evidence about a

particular case becomes available, one wants the prior distribution to change into the

posterior distribution.

Evidence is represented in terms of evidence functions. Two types of evidence are

considered here as by Jensen, Olesen and Andersen [1990]. The first type has a value

range of {0, 1} where ‘0’ stands for that the corresponding outcome is impossible and ‘1’

stands for that the corresponding outcome is still possible with relative belief strength

remaining the same. The second type is a restriction. It has the same function value

range but the function assigns ‘1’ to only one outcome. This type of evidence arises when

the corresponding evidential variables are directly observable. Both types of evidence

functions can be entered to junction forests by multiplying the prior distribution with

the evidence function.

Call the overall process of entering evidence and propagating evidence as evidential
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B(r2) 2(r3)
Clique NodeA33. Clique NodeAsa.
{F2,F1} F2 {E1,E3} E1
Config. B() Config.
{f21,fii} .7758 {e11,e31} .7121
(f21,f12} 1.545 {e11,e32} 3.108

(122,fll} 1.164 {e12,e31} 2.848

(122112) .5151 {e12,e32} 1.332
Clique NodeAss. Clique NodeA3s.

{H2,F1,H1} H2,F1,H1 {H3,H2E3} H3,H2,E3
Conf 19. 20 Config. 20

{h21 fii h11} .7895 {h31,h21,e31) 1.54
{h21,f11,h12} .6 {h31,h21,e32} .4596
{h21,j12,h11} .2105 {h31,h22,e31) 1.3
{h21,f12,h12} .4 {h31,h22,e32} .7
(h22,f11h11} .5 {h32,h21,e31) .7
{h22,f11,h12} .05 {h32,h21 ,e32) 1.3
{h22, 112 h11} .5 {h32,h22e31} .02
{h22,f12,h12} .95 {h32h22,e32} 1.98

Clique NodeAss.
{E2E3,E4} P22

Cool ig. 20
{e21,e31,e41} 1.656
{e21,e31,e42} 1.495
{e21,e32,e41} 1.898
{e21e32,e42} .1165
{e22e31,e41} .0356
{e22e31,e42) .3738
{e22c32e41} .2109
{e22,e32,e42} 2.214

Clique NodeAss.
{E3,E4,H4} E4,H4

Conf 1g. 20
{e31e41h41} 1.424
{e31 e41 h42) .2670
{e31e42,h41} .3560
{e31,e42,h42} 1.513
{e32,e41,h41} 1.776
{e32,e41,h42} .3330
{e32,e42h41} .4440
{e32,e42,h42} 1.887

Clique NodeAss.
{H3,E3,H4}

Config. B()
{h31,e31,h41} 1.42
{h31,e31h42} 1.42
{h31,e32h41} .5798
{h31,e32h42} .5798
{h32,e31,h41} .36
{h32,e31,h42) .36
{h32,e32h41} 1.64
{h32,e32,h42) 1.64

Table 4.6: Belief tables for belief universes in junction trees P2 and P3 in Figure 4.20
after Collect Belief during Beliefiniti alization.



Table 4.7: Belief tables for belief universes of junction forest F =

4.20 obtained after the completion of Beliefinitialization.
{f’,f2,f3}in Figure
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B(r1) 8(F2) B(r3)

Clique NadeAsa. Clique NodeAss. Clique NodeAss.
{H2,H1,A1} H1,A1 {F2,F1} F2 {E1,E3) E1

Config. 80 Config. 80 Config. 80
{h21,h11,h11} .8203 {f21,fll} 1.160 {e11,e31} .564
{h21,h11,h12} .08166 (121,112) 5.324 {e11,e32} 5.026
(h21,h12,h11} .5810 {f22,flI} 1.741 (e12,e31} 2.256
(h21,h12,h12} 2.082 {f22112} 1.775 {12,e32) 2.154
{h22 , h11 } .3797 Clique NodeAss. , Clique NodeAss.
{h22,h11,h12) .2183 {H2,F1,H1} H2,F1,H1 {H3H2E3} H3,H2,E3
{h22,h12,h11 } .2690 Config. 80 Config. B()
{h22,h12,h12) 5.568 {h21,f11,h11} .7121 {h31h21,e31} 1.444

Clique NodeA3s. {h21,f11,h12} 1.598 {h31,h21,e32} .4310
{H2,A2,A1} H2 {h21,f12,h11} .1899 {h31,h22,e31} .731

Config. B() {h21,f12,h12} 1.065 {h31,h22e32} .3936
{h21,a21,a11} .5526 {h22,f11,h11} .2990 {h32,h21,e31} .5915
{h21,a21,a12} 1.725 {h22,f11,h12} .2918 {h32,h21,e32} 1.098
{h21,a22,a11} .8487 (h22,f12,h11} .2990 {h32,h22,e31} .0531
{h21,a22,a12} .4388 (h22,f12,h12} 5.545 (h32,h22,e32) 5.257
{h22,a21,a11) .08289 Clique NodeAss.
{h22,a21,a12} .7394 {E2,E3,E4) E2
{h22,a22,a11} .5658 Config. B0
{h22,a22,a12} 5.047 {e21,e31,e41} 1.020

Clique NodeAss. {e21 , e31 e42 } 1.422
{H3,H2,A2} H3,A2 (e21,e32,e41) 2.182

Config. B() {e21,e32,e42} .2378
{h31,h21 a21} 1.763 {e22e31,e41} .02194
{h31 h21 ,a22} .1120 {e22,e31,e42} .3555
{h31,h22,a21} .6366 {e22,e32,e41} .2424
{h31,h22,a22} .4880 {e22,e32,e42} 4.518
{h32,h21 a21) .5143 Clique NodeA3s.
{h32,h21,a22} 1.176 (E3,E4,H4) E4,H4
{h32,h22,a21} .1857 Config. 80
{h32,h22,a22} 5.124 {e31 ,e41 ,h41} .7622

Clique NodeAss. {e31 e41 , h42} .2801
(H3,A3,H4} A3,H4 {e31,e42,h41} .1906

Config. EQ (e31e42,h42} 1.587
(h31,a31,h41) .225 {e32,e41,h41} 1.658
{h31,a31,h42) .675 {e32,e41,h42} .7662
{h31,a32,h41 } .84 {e32,e42,h41} .4145
{h31,a32,h42} 1.26 {e32,e42,h42} 4.342
{h32,a31,h41} 1.4 Clique NodeAss.
{h32,a31,h42} 4.2 {H3,E3,H4}
{h32,a32,h41} .56 Config. B()
{h32,a32,h42} .84 {h31,e31,h41} .7723

Clique NodeAss. {h31 , e, h42 } 1.403
{H4,A4} A4 {h31,e32,h41} .2927
Conjig. EQ {h31,e32,h42} .5319
{h41,a41) 2.723 {h32,e31,h41} .1805
{h41 a42) .3025 {h32,e31,h42} .4641
{h42,a41} 1.395 {h32,e32,h45} 1.780
{h42,a42} 5.58 {h32,e32,h42} 4.576
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.15 p(a11)= .205 p(fij)= .2901 i’(ii)= 559
(h21)= .3565 p(a21)= .31 p(f21)= .6485 p(e21)= .4862

.3 p(e31)= .282
p(h41)= .3025 (a41)= .4118 p(e41)= .3466

Table 4.8: Prior probabilities from junction forest F = {I”, F2, F} in Figure 4.20 ob
tained after the completion of Belieflnitialization.

reasoning. After a batch of evidence is entered to a junction tree, UnifyBelief can be

performed to bring the junction tree into consistency. This is the same in the context of

junction forests as in the junction tree technique. However, in order to obtain posterior

marginal distributions on variables in the current active junction tree, the global con

sistency of the junction forest is not necessary. Before this is formally treated, several

concepts are to be defined.

Here only junction forests transformed from MSBNs with hypertree structures are

considered. When a user wants to obtain marginal distributions on variables not con

tained in the currently active junction tree, it is said that there is an attention shift. The

junction tree which contains the desired variables is called the destination tree.

Definition 17 (intermediate tree) Let S, S, SC be 3 sects in a MSBN with a hy

pert ree structure, and T, T, Tk be their junction trees respectively in the corresponding

junction forest. P is the intermediate tree between T1 and Tc if the removal of S from

the MSBN would render the hype rtree disconnected with S and S’ in different parts.

Due to the hypertree structure, one has the following lemma.

Lemma 9 Let a junction forest be transformed from a MSBN with a hype rtree structure.

Let T and P be 2 junction trees in the forest. The set of intermediate junction trees

between T and T’ is unique.

The following defines an operation ShiftAttention at the junction forest level. It is

performed when the user’s attention shifts.
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Operation 12 (ShiftAttention) Let F be a junction forest whose corresponding MSBN

has a hype rtree structure. Let T° and Tim+1 be the currently active tree and destination

tree in F respectively. Let {T”,.. . , Tmn} be the set of m intermediate trees between Ti0

and Tim+1 such that Tb, Tu1,. . . ,T, Tim+1 form a chain of neighbors.

For i = 1 to m + 1, T’ performs UpdateBelief with respect to Tui_1.

Before each attention shift, several batches of evidence can be entered to the currently

active tree. When an attention shift happens, ShiftAttention swaps in and out of memory

sequentially only the intermediate trees between the currently active tree and destination

tree without the participation of the rest of the forest. The following theorem shows that

this is sufficient in order to obtain the marginal distributions in the destination tree.

Theorem 12 (attention shift) Let F be a consistent junction forest whose correspond

ing MSBN has a hypertree structure. Start with any active junction tree. Repeat the

following cycle for finite times:

1. repeatedly enter evidence to the currently active tree followed by UnifyBelief for

finite times;

2. use ShiftAttention to shift attention to any destination tree.

The marginal distributions obtained in the final active tree are identical as would be

obtained when the forest is globally consistent.

Proof:

Before any evidence is entered, the forest is consistent by assumption. Before each

ShiftAttention, the currently active tree is consistent due to UnifyBelief. The support

iveness of the forest is invariant under the execution of the cycle. The joint system belief

changes (correctly) under only evidence entering but remains invariant under other op

erations of the cycle.
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Transform the initial consistent forest into a junction tree F’ of huge universes as

in the proof of theorem 9. Each huge universe in F’ corresponds to a tree in F. The

active tree and destination trees corresponds to an ‘active’ universe and destination

universe. The evidence entering in F and the subsequent UnifyBelief correspond to the

evidence entering in F’. The ShiftAttention in F corresponds to performing a series

of AbsorbThroughSepsets starting at the neighbor of the ‘active’ universe down to the

destination universe in F’.

Note that after each series of AbsorbThroughSepset operations in F’, the belief table

of each sepset of F’ is the marginalization of the belief in the neighbor more distant

from the destination universe in the junction tree F’. Therefore, at the end of cycles

in F, if a DistributeEvidence is performed in F’, it will be consistent and the belief in

the destination universe does not undergo further change. That is, the belief on the

destination tree at the end of the cycles is identical to what would obtained when the

forest is globally consistent.

D

4.9.5 Computational Complexity

Theorem 12 shows the most important characterization of the MSBN and junction forests,

namely, the capability of exploitation of localization to reduce the computational com

plexity.

Due to localization, the user interest and new evidence will remain in the sphere of

one junction tree for a period of time. The judgments obtained is at the knowledge level

of overall junction forest while the computation required is at. the level of the currently

active tree. Compared to the USBN and single junction tree representation where the.

evidence has to be propagated to the overall system, this leads to great savings in terms

of time and space requirement when localization is valid.
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When the user subsequently shifts interest into another set of variables contained

in a destination tree, only the intermediate trees need to be updated. The amount of

computation required is linear to the number of intermediate trees and to the number

of linkages between each pair of neighbors. No matter how large is the overall junction

forest, the amount of computation for attention shift is fixed once the destination tree

and mediating trees are fixed. For example, in a MSBN with a covering sect, no matter

how many sects are in the MSBN, the attention shift updates maximum 2 sects.

Given the analysis, the computational complexity of a MSBN with /3 sects is about

1//3 of the corresponding USBN system when localization is valid. The actual time

and space requirement is little more than 1//3 due to the repetition of d-sepnodes and

the computation required for attention shift. The computational savings obtained in

PAINULIM system is discussed in the chapter 5.

Example 20 Complete the example on junction forest F = {F’, 12, F3} with evidential

reasoning. Suppose the outcome of variable E3 in 1’ is found to be e31. Table 4.9 lists

B’(1’3) which is obtained after evidence entering and UnifyBelief; B’(F’) and B’(F2)

both of which are obtained after a ShiftAttention with destination F2. Table 4.10 lists

the posterior marginal probabilities after the ShiftAttention.

Before closing this section, the following example demonstrates the computational

advantage, during attention shift, provided by covering sects.

Example 21 In figure 4.23, D is sectioned into {D1,D2,D3} by sound sectioning with

out a covering sect. The MSBN is transformed into the junction forest {T’, T2,T3} by

an invertible transformation. If evidence about E, and then about G comes, the first

piece of evidence will be entered to T’, and then T’ will send message to T2. After

entering the second piece of evidence, T2 will be the only one up-to-date. Now if one
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Table 4.9: Belief tables for F = {1”, F2, F} in Figure 4.20 in evidential reasoning. B’(F3)
is obtained first after E3 = e31 is entered to F3 and the evidence is propagated to the

NodeAss.
F2
BQ

5.523
10.79
8.285
3.598

Node A as.
H2, F1 H1

B()
3.638
9.450
.9702
6.300
.3644
.3556
.3644
6.757

B’(F3) B’(F1) B’(r2)

Clique NodeAss. Clique NodeAss. Clique
(E1,E3} {H2,H1,A1} H1,A1 (F2,F1}
Config. B() Config. B() Conf ig.
(e11,e31} .5640 (h21,hll,hll) 4.105 (121,111)
(e11,e32) 0 {h21,h11,h12} .5036 {121,f12}
{e12,e31} 2.256 (h21,h12,h11) 2.908 (122,111)
{e12,e32) 0 (h21,h12,h12} 12.84 {f22,f12}

Clique NodeAss. (h22 , h1, } .4627 Clique
{H3,H2,E3} H3,H2,E3 (h22,h11,h12} .2661 (H2,F1,H1}

Conjig. B() (h22,h12,h11) .3278 Config.
{h31,h21,e31} 14.44 {h22,h12,h12} 6.785 (h21,jll,hll}
{h31,h21,e32} 0 Clique NodeAs,. {h21,fll,h12}
{h31,h22,e31} 7.31 (H2,A2,A1} H2 (h21,j12,h11}
{h31,h22,e32} 0 Config. B() (h21,j12,h12}
(h32,h21,e31) 5.915 {h21,a21,a11} 3.732 (h22,j11,h11)
(h32,h21,e32) 0 {h21a21,a12) 11.65 (h22,j11,h12}
{h32,h22,e31) .5310 {h21,a22,a11} 3.281 (h22,j12,h11)
(h32,h22,e32) 0 {h21,cz22,a12) 1.696 {h22,f12,h12}

Clique NodeAss. {h22,a21,a11) .4190
(E2,E3,E4} E2 {h22,a21,a12) 3.737

Config. B() {h22,a22,a11) .3715
(e21 , e31 ,e41) 1.020 {h22,a22,a12) 3.313
(e21,e31,e42} 1.422 Clique NodeAss.
(e21,e32,e41) 0 {H3,H2,A2) H3,A2
(e21,e32,e42) 0 Config. B()
(e22,e31,e41} .02194 (h31,h21 °21) 13.58
(e22,e31,e42} .3555 (h31 ,h21 “22) .8623
(e22,e32,e41} 0 (h31,h22,a21) 4.138
(e22,e32,e42} 0 (h31 ,h22,022} 3.172

Clique NodeAss. (h32,h21,a21} 1.800
{E3,E4,H4} E4,H4 {h32,h21,022} 4.115

Config. B() {h32,h22,a21) .01857
{e31 ,e41 ,h41} 7.622 {h32,h22,a22} .5124
{e31 , e41 , h42 } 2.801 Clique NodeAss.
(e31 c42 h41} 1.906 {H3,A3,H4} A3,H4
(e31,e42,h42} 15.87 Conjig. B()
{e32,e41,h41} 0 (h31 ‘“31 ,h41) 1.632
(e32,e41 , h42} 0 (hi a31 ,h42} 4.895
(e32,e42,h41} 0 {hi ,a32,h41} 6.091
(a32,e42,h42} 0 (“31 ,a32,h42} 9.137

Clique NodeAss. {h32, a31, h41) 1.289
{H3,E3,H4} {h32,a31,h42) 3.867

Config. B() {h32,a32,h41) .5157
{h31,e31,h41} 7.723 {h32,a32,h42) .7735
(h31 , e31 , h42) 14.03 Clique NodeAss.
(h31,e32,h41) 0 {H4,A4} A4
(h31,e32,h42} 0 Config.

(h32, e31 ,h41 } 1.805 {h41, “41) 8.575
{h32,e31,h42} 4.641 {h41,a42) .9528
(h32,e32,h41} 0 {h42,a41) 3.734
(h32,e32,h42} 0 {h42,a42) 14.94

junction tree. B’(F’) and B’(F2) are obtained afterwards by ShiftAttention.
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p(hjj) = .1893 p(a11) = .2767 p(f) = .4897 p(e11) = .2
.7219 p(cz21)= .6928 P(f21)= .5786 p(e21) .8661

p(h31)= .7714 p(a31)= .4143 P(e31) 1
p(h41)= .3379 p(a41) .4365 P(e4l)= .3696

Table 4.10: Posterior probabilities from junction forest F = {I”, F2, F} in Figure 4.20
after evidence E3 = is propagated by ShiftAttention.

is interested in the belief on H, the belief tables on {B, F} and {C, F} in T3 have to

be updated. However T2 can not provide distribution on {B, F}. Thus, T2 has to send

message to T3 about {C, F}, then send message to T’. Then T’ can becomes up-to-date

and send distribution on {B, F} to T3. One sees 3 message passings are necessary, and

linkages between each pair of junction trees have to be created and maintained. More

message passings and more linkages are needed when there are more sects organized in

this structure. When n sects are inter-connected and there is a covering sect, only n-i sets

of linkages need to be created; and maximum 2 message passings are needed to update

the belief in any destination tree.

4.10 Remarks

This chapter presents MSBNs and junction forests as flexible and efficient knowledge

representation and inference formalisms to exploit localization naturally existing in large

knowledge-based systems. The systems which can benefit from the technique are those

reusable, representable by general but sparse networks, and characterized by incremental

evidential reasoning.

The MSBNs allow the partition of a large application domain into smaller natural

subdomains such that each of them can be represented as a Bayesian subnetwork - a

sect, and can be tested and refined individually. This makes the representation of a

complex domain easier and more precise for knowledge engineers and makes the resultant
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system more natural and more understandable to system users. The resultant modularity

facilitates implementation of large systems in an incremental fashion. The constraints

technically imposed by MSBNs on the partition are found to be d-sepsets and soundness

of sectioning.

Two important guidelines for sound sectioning are derived. The covering subDAG

rule is suitable for partition according to categories in the same abstraction level. While

the hypertree structure is suitable for partition of domain with hierarchia1 nature. It

provides a formalism to represent and reason at different levels of abstraction. MSBNs

following the rules allow multiply connected sects, do not require expensive computation

for validation of soundness of sectioning, and have additional computational advantage

during attention shift in evidential reasoning.

Each sect in the MSBN is transformed into a junction tree such that the MSBN is

transformed into a junction forest representation where evidential reasoning takes place.

The constraints on transformation are found to be the invertibility of morali- triangulation

and separability.

Each sect/junction tree in the MSBN/junction forest stands as a separate compu

tational object. Since the technique allows transformation of sects into junction trees

through local computation at the sect level, and allows reasoning to be conducted with

junction trees as units, the space requirement is governed by the size of 1 sect/junction

tree. Hence large applications can be built and run on relatively smaller computers

whenever hardware resource is of concern.

For large application domain, an average case may involve only a portion of the

total knowledge encoded in a system, and one portion may be used repeatedly over a

period of time. A MSBN and junction forest representation allows the ‘interesting’ or

‘relevant’ sect/junction tree to be loaded while the rest of the junction forest remains

inactive and stays in the secondary storage. However, the judgments made on variables
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in the active junction tree are consistent with all the knowledge available, including both

prior knowledge and new evidence, embedded in the overall junction forest. When user’s

attention shifts, inactive junction trees can be made active and previous accumulation of

evidence is preserved. This is achieved through transfer of joint belief on d-sepsets. The

amount of computation needed for this shift of attention is that required by the operation

DistributeEvidence in the newly active junction tree times the number of linkages between

the 2 junction trees when there exists a covering sect. Therefore, when localization is

valid during consultation, the time and space requirements of a MSBN system of /3 sects

with a covering sect or with a hypertree structure are little more than 1//3 of that required

by a USBN system, assuming equal size of sects. The larger a MSBN system, the more

computational savings can be obtained.



Chapter 5

PAINULIM: AN EXPERT SYSTEM FOR NEUROMUSCULAR

DIAGNOSIS

a

This chapter discusses the implementation of a prototype expert system called PAINULIM.

The system assists EMGers in neuromuscular diagnosis involving the painful or impaired

upper limb. Section 5.1 introduces the PAINULIM domain, and compares PAINULIM

with MUNIN. Section 5.2 discusses how localization is exploited in PAINULIM using

the MSBN technique (Chapter 4). Section 5.3 discusses other issues in knowledge rep

resentation of PAINULIM. Section 5.4 introduces a expert system shell WEBWEAVR

which is used in development of PAINULIM. Section 5.5 provides a query session with

PAINULIM to show its capability. Section 5.6 presents an evaluation of PAINULIM.

5.1 PAINULIM Application Domain and Design Criteria

As is reviewed in section 1.1, several expert systems in the neuromuscular diagnosis field

have appeared since the mid 80’s. Satisfaction in system testing with constructed cases

have been reported, while only one of them (ELECTRODIAGNOSTIC ASSISTANT

[Jamieson 90]) reported clinical evaluation using 15 cases of 78% agreement rate with

electromyographers (EMGers). Most of these systems are rule-based systems which are

reviewed in Chapter 1. MUNIN [Andreassen et al. 89] as a large system has attracted

much attention and it can be used as a yard stick against which to compare PAINULIM.

MUNIN project started in the mid 80’s in Denmark as part of the European ESPRIT

149
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program. MUNIN was to be a ‘full expert system’ for neuromuscular diagnosis. Func

tionalities to be included would be test-planning, test-guide, test-set-up, signal processing

of test results, diagnosis, and treatment recommendation. The intended users of MUNIN

would range from novice to experienced practitioners. The knowledge base would ulti

mately include full human neuroanatomy. MUNIN adopts Bayesian networks to represent

probabilistic knowledge. Substantial contributions to Bayesian network techniques were

made (e.g., [Lauritzen and Spiegelhalter 88, Jensen, Lauritzen and Olesen 90]).

The MUNIN system is to be developed in 3 stages. In the first stage a ‘nanohuman’

model with 1 muscle and 3 possible diseases has been developed. In the second stage a

‘microhuman’ system with 6 muscles and corresponding nerves is to be developed. The

last stage would correspond to a model of the full human neuroanatomy. The only clinical

experience with MUNIN is contained in the phrase: “we expect semi-clinical trials of the

‘microhuman’ to give the first indrcation of clinical usefulness” [Andreassen et al. 89].

PAINULIM started in 1990 at University of British Columbia in the Department

of Electrical Engineering with cooperation from the Department of Computer Science

and at the Neuromuscular Disease Unit (NDU) of Vancouver General Hospital (VGH).

Expertise needed to build PAINULIM’s knowledge base was provided by experienced

electromyographer Andrew Eisen and Bhanu Pant. Rather than attempting to cover

the full range of diagnosis as does MUNIN, PAINULIM sets to cover the more modest,

but realizable, goal of diagnosis for patients suffering from a painful or impaired upper

limb due to diseases of spinal cord and/or peripheral nervous system. About 50% of the

patient entering NDU of VGH can be diagnosed with PAINULIM. The 14 most common

diseases considered by PAINULIM include: Amyotrophic Lateral Sclerosis, Parkinsons

disease, Anterior horn cell disease, Root diseases, Intrinsic cord disease, Carpal tunnel

syndrome, Plexus lesions, Median, Ulnar and Radial nerve lesions. PAINULIM uses

features from clinical examination, (needle) EMG studies and nerve conduction studies
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to make diagnostic recommendations.

PAINULIM requires from the users specific knowledge and experience:

• minimum competence in clinical medicine especially in neuromuscular diseases;

• basic knowledge of nerve conduction study techniques; and

• minimum experience of EMG patterns in common neuromuscular diseases.

PAINULIM will benefit the following users:

• students and residents in neurology, physical medicine and neuromuscular diseases;

• doctors who are practicing EMG and nerve conduction in their offices;

• experienced EMGers as a formal peer review (self evaluation); and

• hopefully different labs to adapt uniform procedures and criteria for diagnosis.

Clinical diagnosis is performed in steps as anatomical, pathological and etiological.

PAINULIM currently works at the anatomical level only. Extension to other levels is

considered as one of the future research topics.

Given the level of knowledge and experience of intended user of PAINULIM, the sys

tem does not attempt to represent explicitly the neuroanatomy involved in the painful or

impaired upper limb. Rather, PAINULIM chooses to represent explicitly the clinically

significant disease-feature relations which is one of the most important part of the ex

pertise of experienced neurologists. This choice allow rapid development of PAINULIM

which can work directly at the clinical level.

PAINULIM is based on Bayesian belief networks as is MUNIN. The PAINULIM

project has benefited from the research results of MUNIN, especially the junction tree

technique (section 4.2.2); but, PAINULIM is not limited to duplicating the techniques
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developed in MUNIN; rather the Multiply Sectioned Bayesian Networks and Junction

Forests technique presented in chapter 4 is the extension to the junction tree technique

in an effort to achieve more flexible knowledge representation and more efficient inference

computation.

5.2 Exploiting Localization in PAINULIM Using MSBN Technique

5.2.1 Resolve Conflict Demands by Exploiting Localization

The PAINULIM project has a large domain. The Bayesian network representation con

tains 83 variables including 14 diseases and 69 features each of which has up to 3 possible

outcomes. The network is multiply connected and has 271 arcs and 6795 probability

values. When transformed into a junction tree representation, the system contains 10608

belief values. During the system deyelopment, the tight schedule of medical staff demands

(1) knowledge acquisition and system testing within hospital environment where most

computing equipments are personal computers; and (2) short response time in system

testing and refinement. Implementation in hospital equipments will also facilitate the

adoption of the system when it is completed. On the other hand, the space and time

complexity of PAINULIM system tends to slow down the response and to demand more

powerful computing equipments not available in the hospital lab.

This conflict demands motivated the improvement on current Bayesian network rep

resentation in order to reduce the computational complexity. The ‘localization’ naturally

existing in the PAINULIM domain (section 4.1) inspired the development of the MSBN

technique (chapter 4). The following briefly summarizes the description on localization

in the PAINULIM domain.

Localization means that, during a particular consultation session in a large application

domain represented by a Bayesian net, (1) new evidence and queries are directed to small
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part of a large network repeatedly within a period of time; and (2) certain parts of the

network may not be of interest to users at all. An EMGer bases his diagnosis on 3 major

information sources: clinical examination, (needle) EMG studies and nerve conduction

studies. The examination/studies are performed in sequence. Based on the practice in

NDU of VGII, about 60% of patients have only EMG studies, and about 27% of patients

have only nerve conduction studies. The number of clinical findings on an average patient

is about 5. The number of EMG and nerve conduction studies performed on an average

patient are about 6 and 4 respectively. All findings are obtained incrementally.

5.2.2 Using MSBN Technique in PAINULIM

Based on localization, PAINULIM uses the MSBN representation. The domain is parti

tioned into 3 natural localization preserving subdomains (clinical, EMG and nerve con

duction) which are separately represented by 3 sects (CLINICAL, EMG, and NCV) in

PAINULIM (Figure 5.28). The (sub)domain of each sect contains the corresponding

feature variables and relevant disease variables. Using this representation, the 3 sects

are created and tested separately. This modularity allows the EMOer to concentrate on

one natural subdomain at a time during network construction rather than to manage

the overall complexity at the same time. This eases the task of knowledge acquisition in

both the part of the EMGer and the part of the knowledge engineer. Problems in each

sect can thus be isolated and corrected quickly and easily.

The 3 sects are interfaced by common disease variables. The d-sepset between CLIN

ICAL and EMG contains 12 diseases, and the d-sepset between CLINICAL and NCV

contains 10 diseases. All the disease variables have no parent variables and thus the

d-sepset constraint (section 4.5) is satisfied. The CLINICAL sect has all the 14 disease

variables considered in PAINULIM, and it becomes the covering sect (section 4.6.2).

Thus the soundness of sectioning is guaranteed in PAINULIM. This representation is
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natural because clinical examination is the stage where all the disease candidates are

subject to consideration.

After the 3 sects are created, they are transformed into a junction forest (Figure 5.29).

The MSBN technique allows the transformation to be conducted by local computation

at the level of sects (section 4.7.1). Thus the space requirement for transformation is

governed by the size of only 1 sect.

Multiple linkages are created between junction trees such that evidence can be prop

agated from one to another during evidential reasoning. There are 3 linkages between

CLINICAL tree and EMG tree (thick lines in Figure 5.29). The sizes of their state spaces

are 768, 1536, and 1536 respectively. Without introducing multiple linkages (using the

brute force method in section 4.3), the d-sepset would form a clique with state space

size 6144, which would greatly increase the computational complexity in each sect. This

is because this large clique would have all the other cliques in the same junction tree

as neighbors. During evidential reasoning, the belief table of this large clique would be

marginalized and updated as many times as the number of neighbor cliques.

With the 3 junction trees linked and joint system belief initialized, the resultant

consistent junction forest becomes the permanent representation of the PAINULIM do

main where evidential reasoning takes place. The original MSBN still serves as the user

interface while the computation for inference is solely performed in the junction forest.

Since the junction forest representation preserves localization, the run time computa

tion of PAINULIM can be restricted to only one junction tree. Thus the time and space

requirements are governed by the size of one sect, not the size of the forest. If PAINULIM

were represented by a USBN, the size of total state space of the junction tree would be

10608. This overall junction tree has to be updated for each batch of evidence. Using

the MSBN technique, the sizes of total state space of each junction tree are 7308, 6498

and 2178 (in order of CLINICAL, EMG and NCV) respectively. The largest size 7308
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will govern the space requirement and will put an upper bound on time requirement.

The mean size 5328 gives an average time requirement which is about half of the amount

required by a USBN system with size 10608. Due to localization, each tree will have

to be computed about 5 times (recall that findings in 3 subdomains come in 5, 6 and 4

batches respectively on an average patient) before an attention shift. Thus the overall

time saving is about half compared to a USBN system.

When a user’s attention is shed from the current active tree to another tree, the

latter is swapped from secondary storage into main memory and all previously acquired

evidence is absorbed. The posterior distributions obtained are always based on all the

available knowledge and evidence embedded in the overall system. Thus the savings in

space and time do not sacrifice accuracy. The computational savings thus obtained trans

late immediately to smaller hardware requirement and quicker response time. With the

MSBN technique, it has been possible to use hospital equipments (IBM AT compatible

computers) to construct, refine and run PAINULIM interactively with EMGers right in

VGH lab. EMGer’s before-, inter-, and after-patient time can be utilized for knowledge

acquisition and system refinement. The inference time for each batch of evidence takes

from l2sec in NCV to 28sec in CLINICAL. The attention shift takes from 24sec to lO6sec

depending on the currently active tree and the destination tree. The efficiency in cooper

ation with EMOers gained greatly speeded up the development of PAINULIM (less than

a year).

5.3 Other Issues in Knowledge Acquisition and Representation

5.3.1 Multiple Diseases

Many probability-based medical expert systems have assumed that diseases are mutu

ally exclusive, for example, PATHFINDER [Heckerman, Horvitz and Nathwani 89] and
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MUNIN’s nanohuman system [Andreassen et al. 89]. A few did not, for example, QMR

[Heckerman 90aj. When this assumption is valid, diseases can be lumped into 1 variable

in the Bayesian network which simplifies the network topology.

PAINULIM considers 14 most common diseases in patients presenting with a painful

or impaired upper limb. Since a patient could suffer from multiple neuromuscular dis

eases, the assumption of mutually exclusive diseases is not valid in the PAINULIM do

main. PAINULIM has therefore represented each disease by a separate node.

Although this representation is acceptable for most of the 14 diseases, there is an

exception: Amyotrophic lateral sclerosis (Als), and Anterior horn cell diseases (Ahcd).

Both are disorders of the motor system. Ahcd involves only the lower motor neuronal

system (between the spinal cord and the muscle), but Als additionally involves the upper

motor neuron (between the brain and the spinal cord). However when one speaks of Als it

is not considered as an Ahcd plus disease, but an entity by itself. Therefore, conceptually,

an EMGer would never diagnose a patient to have both Als and Ahcd. This conceptual

exclusion is represented by combining the 2 into 1 variable which is Motor Neuron Disease

(Mnd). The variable has 3 exclusive and exhaustive outcomes: Als, Ahcd, Neither.

All the disease variables and most of the feature variables are represented as binary.

That is, oniy ‘positive’ or ‘negative’ outcomes are allowed. ‘Positive’ corresponds to

‘severe’ or ‘moderate’ degree of severity, and ‘negative’ corresponds to ‘mild’ or ‘ab

sent’. This choice is made for simplicity in both knowledge acquisition and inference

computation. More refined representation is planned when the system’s performance is

satisfactory at the current grade level.
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5.3.2 Acquisition of Probability Distribution

In PAINULIM, a feature variable can have up to 7 parent disease nodes. For example,

wk_wst_ex can be caused by Mnd, Rc67, Rc81, Pxutk, Pxltk, Pxpcd, and Radnn. It re

quires 384 numbers to fully specify the conditional probability distribution at wk_wst_ex.

It would be frustrating if all these numbers have to be elicited from a human EMGer.

The leaky noisy OR gate model [Pearl 88, Henrion 89] is found to be a powerful tool

for distribution acquisition in PAINULIM. When a symptom can be caused by n explicitly

represented diseases, the model assumes (1) each disease has a probability to produce the

symptom in the absence of all other diseases; (2) the symptom-causing probability of each

disease is independent of the presence of other diseases; and (3) due to the possibility of

unrepresented diseases there is a non-zero probability that the symptom will manifest in

the absence of any of the diseases represented explicitly.

In discussion with EMGers, it is found that the above assumptions are quite valid

in the PAINULIM domain. A symptom will occur in any given disease with a unique

frequency. Should there exist more than one disease that could cause the same symptom,

the frequency of occurrence of this particular symptom will be heightened. Using the

leaky noise OR gate model, the above distribution for wk...wst.ex is assessed by eliciting

only 8 numbers. Seven of them takes the form

p(wk_wst_ex = yesRadnn = yes and every other disease = no)

and one of them takes the form

p(wk_wst_ex = yesall 7 parent disease = no)
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5.4 Shell Implementation

Figure 5.30: Top left: drawing a sect with mouse operation; top right: naming a vari
able and specifying its outcomes; middle left: specifying the conditional probability
distribution for a variable; middle right: specifying the sects composing the MSBN
of PAINULIM; bottom left: specifying the d-sepset to be entered next; bottom right:
specifying a d-sepset.

An expert system shell WEBWEAVR is implemented which incorporates the MSBN

technique and leaky noisy OR gate model. This shell is in turn used to construct the

PAINULIM expert system.

WEBWEAVR shell is written in C and is implemented in an IBM PC to suit the

computing environment at the NDU, VGH where PAINULIM is constructed. It can be

run in XT, AT or 386 although AT or above is recommended.
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The shell consists of a graphical editor (EDITOR), a structure transformer

(TRANSNET), and a consultation inference engine (DOCTR). EDITOR allows users to

construct MSBNs in a visually intuitive manner. TRANSNET transforms constructed

MSBNs into junction forests.

DOCTR does the evidence entering and evidential reasoning. It can work in 2 different

modes: interactive or batch processing. The interactive mode allows user to enter evidence

and obtain posterior distributions in an interactive and incremental way. This mode is

used during consultation session. The batch processing mode allows user to enter all the

evidence to a file for a patient case. Then DOCTR makes diagnosis based on the file.

This mode is majorly used for system evaluation such that large amount of cases can be

processed without human supervision.

DOCTR provides 2 modes for screen layout: network and user-friendly. The network

mode (Figure 5.28) displays the full sect topology such that parent-child relation can

be traced along with the marginal distributions. The user-friendly mode (Figure 5.31)

does not display arcs of the network but labels variables with names closer to medical

terminology. The former layout provides richer information while the latter gives neat

screen.

Figure 5.30 illustrates the WEBWEAVR shell with 6 screen dumps. In the upper

left screen, a sect is drawn using a mouse. In the upper right screen, the name of a

variable and its possible outcomes are entered. In the middle left screen, the conditional

probability distribution for a child variable is entered. Each sect can be constructed

in this way separately. In the middle right screen, the composition of the MSBN for

PAINULIM is specified. In the bottom left screen, a menu is displayed which allows a

user to specify the d-sepset to be entered next. In the bottom right screen, the d-sepset

between CLINICAL and EMO sects is specified.

WEBWEAVR supports the construction of any MSBN which has a covering sect.
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Since clinical examination is always the first stage in the diagnosis of a patient,

PAINULIM begins with the CLINICAL subnet. Before any evidence is available, the
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Porting it into SUN workstation and X-Window is under consideration.

5.5 A Query Session with PAINULIM

In this section, a query session with PAINULIM in the diagnosis of a particular patient

is illustrated with snapshots of major steps.
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prior distributions for all the diseases and symptoms can be obtained which reflect the

background knowledge about the patient population in NDU of VGH. The top screen in

Figure 5.31 shows the CLINICAL sect with prior distributions displayed in histograms.

The user-friendly display mode is used here for better illustration.

The patient presents with tingling in the hand, weakness of thumb abduction, weak

ness of wrist extension, and loss of sensation in the back of the hand. After entering

the evidence into the CLINICAL sect, the impression is Cts (0.808) and Radial nerve

lesion (0.505). The bottom screen in Figure 5.31 highlights the diseases and features with

posterior probability greater than 0.1.

After attention is shifted to NCV sect, PAINULIM suggests (Figure 5.32 top) that

the most likely abnormalities on NCV are from the Median sensory study (0.785), the

Median to ulnar palmar latency difference (0.777), the Median motor distal latency (0.58)

and the Radial motor and sensory study (0.43 and 0.51 respectively).

After values for Median, Radial and Ulnar nerves are entered, the revised impression

(Figure 5.32 bottom) is Cts (0.912) and Radial nerve lesion (0.918).

With attention further shifts to EMG sect, PAINULIM (Figure 5.33 top) prompts

that the most likely EMG abnormalities are in the Edc (0.791), the Triceps (0.789), the

Apb (0.827) and the Brachioradialis (0.840) muscles.

Data entered is that the Apb and the Edc are abnormal, while the Fdi is normal. The

final impression (Figure 5.33 bottom) reads as Cts (0.992) and Radial lesion (0.922).

The above snapshots illustrate the diagnostic capability of PAINULIM. Another im

portant usage is education. Given a patient with Cts and Radnn, Figure 5.34 displays

highly expected (above 80% likelihood) positive features for the patient which can be

used in training.

For the patient case in the above diagnosis, out of 6 highly expected CLINICAL

features 4 are positive and 2 negative; out of 4 EMG features 2 are positive and 2
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Figure 5.32: Top: NCV sect with evidence from CLINICAL and EMG sects absorbed;
bottom: final diagnosis after nerve conduction studies are finished.

unchecked; out of 5 NCV features 1 is positive, 3 unchecked and 1 negative. Thus the

majority of checked features matches the expectation for multiple disease Cts and Radnn,

which explains the diagnosis reached above from one perspective.

5.8 An Evaluation of PAINULIM

This section presents the procedure and results of a preliminary evaluation of PAINULIM.
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Figure 5.33: Top: EMG sect with evidence from CLINICAL sect absorbed; bottom:
posterior distributions after EMO findings are entered.

5.6.1 Case Selection

76 patient cases in NDU of VGH are selected. They have been diagnosed by EMGers

before used in the evaluation. The selection is conducted such that there is a balanced

distribution among diseases considered by PAINULIM. Table 5.11 lists numbers of cases

involved for each disease. If a case involves multiple diseases, that is, either the patient

was diagnosed as suffering from multiple diseases or differentiation among several com

peting disease hypotheses could not be made at the time of diagnosis, then the count of
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Figure 5.34: Highly expected feature presentation of a patient with both Cts and Radnn.
Top: CLINICAL sect. Middle: EMO sect. Bottom: NCV sect.
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each disease involved will be increased by 1. The total number of count is 124. Thus the

ratio 124/76 serves as an indication of multiple-disease-ness of the case population. 3

cases not considered by PAINULIM but presenting with a painful or impaired upper limb

are also included in the evaluation to test PAINULIM’s performance at its limitation.

disease count disease count disease count disease count
Als 5 Inspcd 2 Cts 16 Pd 3
Ahcd 1 Pxutk 6 Mednn 5 Normal 12
Rc56 8 Pxltk 8 Ulrnn 16 Other 3
Rc67 19 Pxpcd 8 Radnn 6
Rc81 6
subtotal 39 24 43 18

Table 5.11: Number of cases involved for each disease considered in PAINULIM

5.6.2 Performance Rating

Unlike the evaluation for QUALICON (chapter 3), in the PAINULIM domain, there is

no absolutely certain way to know the ‘real’ disease(s) given a patient case. The best one

can do is to compare the expert system with the human expert and to take the human

judgment as the golden standard. Since no human expert is perfect, the evaluation

conducted this way may have its limitation. Both the system and human may make the

same error, or the system may be correct while the human makes an error.

In evaluating PATHFINDER, Ng and Abramson [1990] uses ‘classic’ cases with known

diagnoses. The agreement between the known diagnosis and the disease with top proba

bility is used as an indicator of PATHFINDER’s performance. Heckerman [1990b] asks

the expert to compare PATHFINDER’s posterior distributions with his own and to give

a rating between 0 to 10.

In the PAINULIM domain, human diagnosis can be single disease or multiple diseases,
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and can have different degrees of severity. Sometimes even the human diagnosis is unsure

because the test studies are not well designed or incomplete. Thus a more sophisticated

rating method than the one used by Ng and Abramson [1990] is desired for the evaluation

of PAINULIM. A more objective rating than the one used by Heckerman [1990b] is also

targeted such that the rating can be verified by persons other than the evaluator.

For each case, the patient documentation is examined and the values for feature vari

ables are entered to PAINULIM to made a diagnosis. The posterior marginal probabilities

of diseases produced by PAINULIM are compared with the EMGer’s original diagnosis.

5 rating scales (EX (excellent), GD (good), FR (fair), PR (poor), and WR (wrong))

are informally defined. The definition is not exhaustive but serves as a guideline for the

evaluation.

For each disease involved (possibly a disease not considered by PAINULIM as will be

clear below), PAINULIM’s performance is rated by the following rules.

1. For a disease judged by the EMGer as severe or moderate, the rating is EX if its

posterior probability (PP) by PAINULIM falls in [0.8, 1] (GD: [0.6, 0.8); FR: [0.4,

0.6); PR: [0.2, 0.4); WR: [0, 0.2)).

2. For a disease judged by the EMGer as mild, the rating is EX if its PP falls in [0,

0.4] (GD: (0.4, 0.6]; FR: (0.6, 0.7]; PR: (0.7, 0.8]; WR: (0.8, 1]).

3. For a disease judged by the EMGer as absent, the rating is EX if its PP falls in [0,

0.2] (GD: (0.2, 0.4]; FR: (0.4, 0.6]; PR: (0.6, 0.8]; WR: (0.8, 1]).

4. For a disease judged by the EMGer as uncertain as to its likelihood because of

evidence which cannot be easily explained, the rating is EX if PAINULIM suggests

the same disease or other disease(s) whose anatomical site(s) is/are close to that

suspected by the EMGer, with PP falling in [0, 0.6] (GD: (0.6, 0.7]; FR: (0.7, 0.8];
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PR: (0.8, 0.9]; WR: (0.9, 1]).

5. For a disease not represented by PAINULIM but judged by the EMGer as the

single disease diagnosis of the case in question, the rating is EX if the PPs of all

represented diseases fall in [0, 0.2] (CD: (0.2, 0.4]; FR: (0.4, 0.6]; PR: (0.6, 0.8];

WR: (0.8, 1]).

6. If PAINULIM provides an akernative diagnosis of PP in [0.70, 1]; and the alterna

tive is agreed upon by a second EMGer to whom only the evidence as presented to

PAINULIM is available, then the rating is EX. The rating is also EX, if PAINULIM

provides a diagnosis of PP in [0.3, 0.7) based on evidence ignored by the origi

nal EMGer, but which the second EMCer considers significant and agrees with

PAINULIM.

The above 1, 2, and 3 are used when the EMGer has a confident diagnosis. 4 is used

when the EMCer has a unsure diagnosis. 5 is used to rate PAINULIM’s performance at

its limitation. 6 is used when human diagnosis is biased by nonanatomical evidence not

available to PAINULIM, or when PAINULIM behaves superior to the human diagnosti

cian. After the rating for each disease is assigned, the lowest rating is given as the rating

of PAINULIM’ performance for the case in question.

5.6.3 Evaluation Results

The evaluation of 76 patient cases has the following outcomes: EX: 65, CD: 6, FR: 2, PR:

1, WR: 2. The excellent rate is 0.86 with 95% confidence interval being (0.756, 0.925)

using the standard statistic technique (Appendix E). The good or excellent rate is 0.93

with 95% confidence interval being (0.853, 0.978). A closer look at the cases evaluated

is worthwhile.
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Among the 76 cases, there are 38 cases where the EMGer is confident about the

diagnosis. The performance of PAINULIM is EX for 36 of them, and GD for the other 2.

Thus for cases where evidence is complete, PAINULIM performs as well as the EMGer.

There are 8 cases where the EMGer is either confident about the diagnosis of a single

mild disease, or is unsure about a single mild disease. For these 8 cases, PAINULIM’s

posterior probabilities for all disease hypotheses are below 0.2, which says none of the

diseases is severe or moderate. Thus PAINULIM performs equally well as the EMGer in

the case of a single mild disease.

For at least 7 cases, PAINULIM indicates a second disease which is not mentioned by

the EMGer. Careful examination of the feature presentation would show that the cor

responding features are indeed not explained by the EMGer’s diagnosis. PAINULIM’s

behavior in these cases is considered superior to that of the EMGer. For several other

cases where the EMGer’s diagnosis is unsure about the possible diseases, PAINULIM in

dicates several candidates (with probability greater than 0.3) best matching the available

evidence which provide hints to human users for a more complete test study.

For the 2 cases diagnosed as a disease in the spinal cord or peripheral nervous system

but not represented in PAINULIM, PAINULIM’s performance is EX for one and GD for

the other. The posterior probabilities of all disease variables are below 0.3. This is inter

preted as saying the patient is not in a severe or moderate disease state for any represented

disease (not to be interpreted as normal). As stated earlier, PAINULIM represented 14

most common diseases of spinal cord and/or peripheral nervous system presented with a

painful or impaired upper limb. The diseases in this category which are not represented

in PAINULIM include: Posterior interosseous nerve lesions, Anterior interosseous nerve

lesions, Axillary nerve lesions, Musculocutaneous nerve lesions, Suprascapular nerve le

sions, and Long thoracic nerve lesions. They are not represented in current version of

PAINULIM because their combined incidence is less than 2%. The evaluation shows
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that outside its representation domain, PAINULIM does not confuse such a disease with

represented diseases whenever the unrepresented disease has its unique feature pattern.

On the other hand, the evaluation reveals several limitations of PAINULIM. One

limitation relates to unrepresented diseases. One case in evaluation is diagnosed by the

EMGer as Central Sensory Loss which is a disorder in the central nerval system. It is

outside the PAINULIM domain but also characterized by a painful impaired upper limb.

When restricted within the PAINULIM domain, the disease presentation is similar to

Radnn. PAINUILM could not differentiate and gives probability 0.62 to Radnn (the

rating is WR).

PAINULIM works with limited variables. For example in the clinical sect, the variable

‘lslathnd’ which represents loss of sensation in the lateral hand and/or fingers, does not

allow distinguishing between the front of the hand (Median nerve, Cts or Rc67) and the

back of the hand (Radial nerve, Plexus Posterior cord, Rc67). When evidence comes

towards one of them but not the other, instantiation of lslathnd will enforce (incorrectly)

a group of diseases.

One of the other important lesson is on the assessment of numerical data in the

PAINULIM representation. PAINULIM represents each disease with 2 states. ‘Positive’

corresponds to ‘severe’ or ‘moderate’ degree of severity, and ‘negative’ corresponds to

‘mild’ or ‘absent’. This choice is made for the reason explained in section 5.6.1. When

assessing conditional probabilities for PAINULIM, the above mapping has to be kept

consistently. When a probability

p(wk_wst_ex = yes IRadnn = yes and every other disease = no)

is assessed, the condition ‘Radnn = yes’ means either severe or moderate Radnn. Without

emphasizing the mapping, the EMGer could include mild Radnn in his mind which

increases the population considered and lower the assessed probability.
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Another source of inaccuracy in the numerical probabilities come from limited experi

ence for certain diseases. When a disease is very rare (for example, Inspcd), the EMGer

giving the probabilities may have rare experience with the disease and thus provides

inaccurate assessment. A few cases rated as FR or PR or WR are due to inappropri

ate assessment of conditional probabilities. Further fine tuning is planned for the next

version of PAINULIM.
4’

57 Remarks

The development of PAINULIM has shown that the MSBNs and junction forests tech

nique provides a natural representation and an efficient inference formalism. Using the

technique, the computational complexity of PAINULIM is reduced by half with no re

duction of accuracy. The development of PAINULIM has thus benefited from efficient

cooperation with medical staff, and rapid system construction and refinement.

The evaluation of PAINULIM’s performance using 76 patient cases shows the good

or excellent rate is 0.93 with 95% confidence interval being (0.853, 0.978). The case pop

ulation is not selected sequentially (taking whatever patient case coming in a sequence)

in order to have a balanced distribution among diseases considered by PAINULIM. If

sequential population is used, even better performance can be expected. This is be

cause normal or mild cases, or Cts cases will occupy even larger percentage than in the

population used for the evaluation, and PAINULIM has performed excellently for these

cases.

The deficiencies of current PAINULIM are recognized in (1) not sufficiently elaborated

feature variables; (2) room for further fine tuning of numerical parameters; and (3)

limitations with central nerval system disorder presenting with a painful or impaired

upper limb. The improvement calls for further refinement and extension in PAINULIM’s
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representation.

An important application of PAINULIM would be the assistance of test design. A

correct and efficient neuromuscular diagnosis depends largely on good test design which

will allow the gathering of minimum amount of but sufficient diagnostic information.

However, when faced with difficult cases (initial evidence points to different directions)

and many test alternatives, an EMGer may not be able to come up with an optimal test

design. This has been true in several cases used in the evaluation. Withbut good test

design and constrained by time and patient, an EMGer would have to make a diagnosis

(after test) with limited and incomplete information.

There has been evidence that human thinking is often biased in making judgment

under uncertainty [Tversky and Kahneman 74}. Thus an expert system like PAINULIM

capable of reasoning rationally under uncertainty under complex conditions (multiply

connected network and evidence pointing to different directions with different degrees of

support to various hypotheses) would be a very helpful peer in test design. The benefit

would be a better test design and an improved diagnostic quality. As demonstrated in

section 5.5, given current available evidence, PAINULIM can prompt the EMGer the

most likely disease(s) and most likely features. The confirmation of these features would

lend further support to the disease(s); and the negative test results for these features

will tend to exclude the disease(s) for further investigation. Patil et al. [1982] discuss

several strategies in test design. This functionality has not been fully explored and

made sufficiently explicit in the current version of PAINULIM. It is a future research

topic. Since the likelihood of features depends on the current likelihood of diseases, the

performance of PAINULIM in the diagnosis suggests promising potentials of its extension

to the test design.

Explanation capability is important in communication between the system and its

user both in diagnosis and in test design, and can add great usefulness to PAINULIM.
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Section 5.5 demonstrates certain explanation functions available in the current version

of PAINULIM. A sophisticated explanation facility would give reasons why a particular

disease is likely; and it would give further reasons why this disease is more likely than

another one. Such a facility would be a future research topic.



Chapter 6

A LEARNING ALGORITHM FOR SEQUENTIALLY UPDATING

PROBABILITIES IN BAYESIAN NETWORKS

As described in section 1.3.1, in building medical expert systems, the probabilities nec

essary for the construction of Bayesian networks usually have to be elicited from medical

experts. The values thus obtained are liable to be inaccurate. This has also been the

experience with PAINULIM (Chapter 5). The sensitivity analysis of a medical expert sys

tem PATHFINDER shows that probabilities play an important role in PATHFINDER’s

performance and minor changes in all of its probabilities have a substantial impact on

performance [Ng and Abramson 90]. Therefore, methodologies which allow the represen

tation of uncertainty of probabilities and improvement of their accuracy are needed.

This chapter presents an Algorithm for Learning by Posterior Probabilities (ALPP)

for sequential updating of probabilities in Bayesian networks. The results are mainly

taken from Xiang, Beddoes and Poole [1990b]. Section 6.1 reviews 3 representations of

uncertainty of probabilities: interval, auxiliary variable, ratio and corresponding methods

for updating probabilities. Section 6.2 presents the idea of learning from expert’s posterior

probabilities in order to overcome the limitation of the existing updating method for the

ratio representation. Section 6.3 presents ALPP. Section 6.4 proves the convergence of

ALPP. Section 6.5 presents the performance of ALPP in simulation.

175
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8.1 Background

Several formalisms for representation of uncertainty of probabilities in Bayesian networks

have been proposed. Some of them have corresponding methodologies incorporated to

improve the accuracy of probabilities. One formalism represents probabilities by intervals

[Fertig and Breese 90]. The size of an interval signifies the degree of uncertainty to

the probability it represents. No known method directly uses this representation for

improvement of accuracy of probabilities.

Another formalism represents the uncertainty of probabilities by probabilities of

probabilities [Spiegelhalter 86, Neapolitan 90, Spiegeihalter and Lauritzen 90]. Auxiliary

variables (nodes) are added to Bayesian networks. Their outcomes are the probabilities

of variables in the original Bayesian net. The distributions of these auxiliary variables,

therefore, are the probabilities of probabilities. With this representation, the updating

of probabilities can be performed within the probabilistic inference process.

Yet another formalism represents probabilities by ratios of imaginary sample sizes

[Cheeseman 88a], [Spiegelhalter, Franklin and Bull 89]. A probability p(symptomAl

diseaseB) is represented as x/y where y is an imaginary patient population with disease

B and among these patients x of them show symptom A. The less certain the probability

p(symptornA diseaseB) is, the smaller the integer y. Spiegehalter, Franklin and Bull

[1989] present a procedure for sequentially updating probabilities represented as ratios.

The procedure is presented in the form directly applicable to Bayesian networks of di

ameter 1 with a single parent node (possibly multiple children). Here, a single child case

(p(.symptomAdiseaseB)) is used to illustrate the idea. When a new patient with disease

B is observed, the sample size y is increased by 1, and the sample size x is increased

by 1 or 0 depending on if the patient shows symptom A. With more and more patient

cases processed, the probability approaches the correct value. The improvement of this
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method is the focus of this chapter.

The limitation of the updating method for the ratio representation is the underlying

assumption that when updating p(symptomAdiseaseB), whether disease B is true or

false is known with certainty (thus the method will be referred as {0, 1} distribution

learning). The assumption is not realistic in many applications. A doctor would not

always be 100% confident about a diagnosis he or she made of a patient. This argument

is expanded in the section below.

6.2 Learning from Posterior Distributions

The spirit of {0, 1 } distribution learning is to improve the precision of probabilities elicited

from the human expert by learning from available data. What else does one really have in

medical practice in addition to patients’ symptoms? It may be possible, in some medical

domain, that diagnoses can be confirmed with certainty. But this is not commonplace.

A successful treatment is not always an indication of correct diagnosis. A disease can be

cured by a patient’s internal immunity or by a drug with wide disease spectrum. One

subtlety of medical diagnosis comes from the unconfirmability for each individual patient

case.

For most medical domains, the available data beside patients’ symptoms are physi

cian’s subjective posterior probabilities (PPs) of disease hypotheses given the overall

pattern of patient’s symptoms. They are not distributions with values from {0, 1}, but

rather distributions from [0, 1]’. The diagnoses appearing in patients’ files are typically

not the diagnoses that have been concluded definitely; they are only the top ranking dis

eases with physician’s subjective PP omitted. The assumption of {0, 1} posterior disease

distribution may, naively, be interpreted as an approximation to [0, 1] distribution with 1

‘Note that {O, 1} denotes a set containing only elements 0 and 1, and [0, 1] is a domain of real numbers
between 0 and 1 inclusive.
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substituting top ranking PP, and 0 substituting the rest. This approximation loses useful

information. Thus a way of learning directly from [0, 1] posterior distribution seems more

natural and anticipates better performance.

In dealing with learning problem in a Bayesian network setting, three ‘agents’ are

concerned: the real world (Dr, Fr), the human expert (Do, Fe), and the artificial system

(D3,F3). It is assumed that all 3 can be modeled by Bayesian networks. As the building

of an expert system involves specifying both the topolcrgy of DAG D and probability

distribution F, the improvement can also be separated into the two aspects. For the

purpose of this chapter, Dr, De, and D3 are assumed identical, leaving to be improved

only the accuracy of quantitative assignment of P3.

As reviewed in section 1.3.3, a medical expert system based on Bayesian nets usually

directs its arcs from disease nodes to symptom nodes, thus encoding quantitative knowl

edge by priors of diseases and conditional probabilities (CPs) of symptom given diseases.

This results in the ease of DAG construction, simplicity of net topology, and portability

of the system. Given that a Bayesian net is constructed with such directionality, and

the desire to improve accuracy of CPs by PPs, a question which arises is whether PPs

are any better in quality compared to CPs also supplied by the human expert. To avoid

possible confusion, it is emphasized that the CP here is the conditional probabilities of a

symptom variable given its disease parent variables, and the PP is the joint probabilities

of a set of (relevant) disease variables given the outcomes of a set of symptom variables.

The former is stored explicitly in Bayesian networks as parameter, while the latter is

not explicit parameter even if the arcs in the network were directed from symptoms to

diseases.

In my cooperation with medical staff, it was found that the causal network is a natural

model to view the domain, however, the task of estimating CPs is more artificial than

natural to them. Forming posterior judgments is their daily practice. An expert is an
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expert in that he/she is skilled at making diagnosis (posterior judgement), not necessarily

skilled at estimating CPs. It is the expert’s posterior judgment that is the behavior one

wants the expert system to simulate.

An excellent argument supporting the idea of using PPs to improve CPs has been

published by Neapolitan [1990]:

For example, sometimes it is easier for a person to ascertain the probabi1-

ity of a cause given an effect than that of an effect given a cause. Consider the

following situation: If a physician had worked at the same clinic for a number

of years, he would have seen a large population of similar people with certain

symptoms. Since his job is to reason from the symptoms to determine the

likelihood of diseases, through the years he may have become adept at judg

ing the probabilities of diseases given symptoms for the population of people

who attend this clinic. On the other hand, a physician does not have the task

of looking at a person with a known disease and judging whether a symptom

is present. Hence it is not likely that the physician would have acquired the

ability from his experience to judge the probabilities of symptoms given dis

eases. He does ordinarily learn something about this probability in medical

school. However, if a particular disease were rare in the population, whereas

a particular symptom of the disease were common, and the physician had not

studied the disease in medical school, he would certainly not be able to deter

mine the probability of the symptom given the disease. On the other hand,

he could readily determine the probability of the disease given the symptom

for this particular population. We see then that in this case it is easier to

ascertain the probabilities of causes given effects. Notice that these condi

tional probabilities are only valid for the population of people who attend
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that particular clinic, and thus we would not want to incorporate them into

an expert system. We could, however, use the definition of conditional prob

ability to determine the probabilities of symptoms given diseases form these

conditional probabilities obtained from the physician. These latter probabili

ties could then be used in an expert system which would be applicable at any

clinic.

The task imposed on expert by the method presented here is actually more natural

than that argued by Neapolitan. Experts will be asked for PPs given a set of symptoms

(not just one as is seen in a moment), and thus the task will be close to their daily

practice.

Furthermore, Kuipers and Kassier [1984] has been cited by Shachter and Hecker

man [1987] to show “experts are more comfortable when their beliefs are elicited in the

causal direction”; Tversky and Kahneman [1980] has been cited by Pearl [1988] to show

“people often prefer to encode experiential knowledge in causal schemata, and as a conse

quence, rules expressed in causal forms are assessed more reliably”. Neither Shachter and

Heckerman nor Pearl made explicit distinction between ‘qualitative’ and ‘quantitative’

knowledge. Careful examination of the studies by Kuipers and Kassier and Tversky and

Kahneman reveals the following two points. Both experts and ordinary people prefer

to encode their qualitative knowledge in terms of causal schemata. People often give

higher probabilities in the causal direction than those dictated by probability theory.

These studies support the reliability of causal elicitation of qualitative knowledge. These

studies do not support the reliability of causal elicitation of quantitative (probabilistic)

knowledge. The reliability issue is left open.

Finally, Spiegehalter et al. [1989] has reported that the assessment of CPs by human

experts is generally reliable, but has a tendency to be too extreme (too close to 0 or 1).
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B1 B2B3 134

Figure 6.35: An example of D(1)

If one could assume that the human expert carries a mental Bayesian network and

PPs are produced by the network, it is postulated that the CPs the expert articulates,

which consists of F of the system, could be a distorted version of those in Fe. Also,

Fe may differ from F in general. Thus, 4 categories of probability distributions are

distinguished: F, Fe, P3, and the PPs produced by Fe (written as ps). One’s access to

only P3 and pe(hypothesesevidence) is assumed. The goal is to use the latter to improve

P3 such that the system’s behavior will approach that of expert.

How can PP be utilized in the updating? The basic idea is: instead of updating

imaginary sample sizes by 1 or 0, increase them by the measure of certainty of the

corresponding diseases. The expert’s PP is just such a measure. Formal treatment is

given below.

6.3 The Algorithm for Learning by Posterior Probability (ALPP)

The following notation is used:

D(1) DAGs of diameter 1 (The diameter is the length of the longest directed path in the

DAG. An example of D(1) is given in Figure 6.35.);

(D(1), F) Bayesian net with diameter 1 and underlying distribution F;
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B, € B1 = {bi,.. . , b1,.1} the ith parent variable in D(1) with sample space B1;

A3 € A3 = {a31,.. . , ai,} the jth child variable in D(l) with sample space A3;

A e ‘I’(A) the set of all child variables in D(l) with space

a31 element of ‘I’(A) with A3 instantiated as

Yk1k2...k the imaginary sample size for joint event bIk1b2k2 . being true;

xl3k1k2...k the imaginary sample size for joint event alblk1 . .. being true;

6, impulse function which equals 1 if for the cth fresh case As’s outcome is ai,, and

equals 0 otherwise (superscripts denote the orders of fresh cases);

PrO, PeO, Ps() probabilities contained or generated by (Dr(1), Fr), (De(1), Fe) and (D3(1),

F3) respectively.

A Bayesian net (D(1), F) 2 is considered where the underlying distribution is com

posed via

N M

p(Bi . . . BNA1 . . . AM) II p(B1) II p(AI7r)
i=1 j=1

where 7r is the set of parents of A.

Each of the CPs is internally represented in the system as a ratio of 2 imaginary sample

sizes. For child node A1 having its parent nodes B1 ... BQ (Q 1), a corresponding CP

is

p(all1Iblk1. . .bQkQ) = Xkikq/Ykikq

where the superscript c signifies the cth updating. Only the real numbers Xki kq and

are stored. The prior probabilities for A1’s parents can be derived as

2Whether it is a subnet or a net by itself is irrelevant.
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c — Yl...kQ
— c-. c

I_.,kl,...,kQ Ykj...kq

For a (D(1), F) with M children and with all variables binary, the number of numbers

to be stored in this way is upper bounded by 2 2” where is the in-degree of child

node i. Storage saving can be achieved when different child nodes share a common set

of parents.

Updating F is done one child node at a time through updating xs and ys associated

with the node as illustrated above. Once the xs and ys axe updated, the updated CPs

and priors can be derived. The order in which child nodes are selected for updating is

irrelevant.

Without losing generality, we describe the updating with respect to above mentioned

child node A1. For the cth fresh case where ac is the symptoms observed, the expert

provides the PP distribution p(bik1 . . . bNkNlac). This is transformed into

P(b1k1 .
.. bQkQIac) = p(bi1 . .. bNkNIac)

bq+l ,...,bN

The sample sizes are updated by

c c—i cc ft L C
= XlIkl...kQ + Oj1PeLLh1k, . ..LQkQ a

C c—i it L c
Yki...kq = Yk1...k0 +PekUlki . . . a

8.4 Convergence of the Algorithm

An expert is called perfect if (De(1), Fe) is identical to (D(1), Fr).

Theorem 13 Let a Bayesian network (D3(1), F3) be supported by a perfect expert equipped

with (D(1), Fe). No matter what initial state P3 is in, it will converge to F by ALPP.
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Proof:

Without losing generality, consider the updating with respect to A1 in section 6.3.

(1) Priors. Let {a(1), a(2),. . .} be the set of all possible conjuncts of evidence. Let

u(t) be the number of times at which event a(t) is true in c cases; and u(t) = c. From

the prior updating formula of ALPP,

limp(bk)

— urn ?J°k1...k + E,_iPe(b1ki .. . law)
— C—*QO C + YZk1,...,kq Y1...kQ

= lirn! ( Epe(k . . . bQkQIa(t))u(t))
t

= Pe(blki . . . bQkqla(t))pr(a(t))
t

= p(b1k, . ...bqkqla(t))pe(a(t)) (perfect expert)
t

pe(blk, ... bq) = Pe(bikj)
k1 ,...,k_1,k+i ,...,kq

(2) CPs. Let u111 (t) be the number of times at which event a11 (t) is true in c cases.

Following ALPP, one has

Xlik1k+ £j=15T’Pe(11kj . . . law)
lirnp3(aljjblk1...bQk) =

+EiPe(l’lki ...bQkQla”)

— II
_lpe(b1kl...bQkqlaw)

— -T E=iPe(b1ki .. . bav)

— E Pe(blk1 . . . bej au, (t))u111 (t)

— limc...’Ezpe(blki . .. bQkla(z))u(z)
— EtPe(blki . . . bQkQlalzl(t))pr(alll(t))

— EzPe(11ki . . . bQkQla(z))pr(a(z))

E Pe(blki . . . Ia11, (t))pe(ajj, (t))
= (perfect expert)

zPe(1’1k, . . . bQkqla(z))pe(a(z))
Pe(blki . .. bqkQall,) / L L

= IL L = pe1ail, 01k, . . . UQkq
peU1k, . UQkQ)

D
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A perfect expert is never available. One needs to know the behavior of ALPP when

supported by an imperfect expert. This leads to the following theorem.

Theorem 14 Letp be any resultant probability in (D3(1),F3) after c updating by ALPP.

p converges to a continuous function of F.3

Proof:

(1) Continuity of priors.

Following the proof of theorem 13, the prior p(b1k1) converges to

f E pC(bikl...bQkQIa(t))
t C

where p(blk, . . . a(t)) is an elementary function of F, and so does f. Therefore,

converges to a continuous function of Fe.

(2) Continuity of CP.

From theorem 13, p(ai11 Iblk1 ... bqk) converges to

— tPe(bIki . .
. bQkQIallt(t))uh1t)

— Ep(b1k1 . . .

where Pe(blki . .. a(z)) is an elementary function of Fe.

Theorem 14, together with Theorem 13, says that when the discrepancy between F

and F,. is small, the discrepancy between F3 and F,. (F as well) will be small after enough

learning trials. The specific form of the discrepancy is left open.

The absolute value of PPs is not really important in many applications but the pos

terior ordering of diseases be. A set of PPs defines such a posterior ordering. Claim a

100% behavior match between (D, F1) and (D, F2) if for any possible set of symptoms the

3By ‘F is a function of Ps’, it is meant that F takes probability variables in P as its independent
variables which in turn themselves have [0,1] as their domain.
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tampering(T) fire(F)

heat alarm(H) smoke alarm(S) report(R)

Figure 6.36: Fire alarm example for simulation

two give the same ordering. The minimum difference bettveen successive PPs of (D, F1)

defines a threshold. Unless the maximum difference between corresponding PPs from 2

(D, P)s exceeds the threshold, 100% behavior match is guaranteed. Thus as long as the

discrepancy between Fe and F,. is within some (D,.(1), Fr) dependent threshold, a 100%

match between the behavior of P3 and that of Fe is anticipated.

6.5 Simulation Results

Several simulations have been run using the example in Figure 6.36. It is a revised version

of the smoke-alarm example in Poole and Neufeld [1988]. Here heat alarm, smoke alarm

and report are used as evidence to estimate the likelihood of joint event tampering and

fire. Each variable, denoted by uppercase letters, takes binary values. For example, F

has value f or 7 which signify the event fire being true or false.

The simulation set-up is illustrated in Figure 6.37. Logical sampling [Henrion 88] is

used in the real world model (D,.(1), Fr) to generate scenarios {T,., F,., H,., S,., R,.}. The

observed evidence {Hr, S,., R,.} is fed into (De(1), Fe). The posterior distribution pe(TFI

H,.S,.R,.) is computed by the expert model and is forwarded to update system model

(D,(1), F3).

To compare the performance between ALPP and {0, 1} distribution learning, a control

model (D(1), F) is constructed in the set-up. It has the same DAG structure and initial
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{Tr,Fr}
(D(1),P)

{T,F}

(Dr(1)J{Hr,Sr,Rr}! (De(1),Pe)

(D3(1),P3)
pe(TFIHrSrRrI

Figure 6.37: Simulation set-up

probability distribution as (D3(1), F3) but is updated by {0, 1} distribution learning.4

Two different sets of diagnoses are utilized in different simulation runs by (D(1), F)

for the purpose of comparison. In simulation 1, 2 and 3 to be described below, the top

diagnosis {Te, F} made by (D(1), Fe) is used. In simulation 4, the scenario {Tr, F} is

used. The former simulates the situation where posterior judgments could not be fully

justified. The latter simulates the case where such justification is indeed available.

For all the simulations Pr is the following distribution.

p(hjft) 0.50 p(sjft) 0.60

p(hJfT) 0.90 p(sIfT) 0.92

p(h7t) 0.85 p(sI7t) 0.75

p(hlfl) 0.11 p(s17i) 0.09

p(rjf) 0.70 p(f) 0.25

p(rj7) 0.06 p(t) 0.20

P3 and P are distributions with the maximal error 0.3 relative to Pr. The initial

imaginary sample size for each joint event FT is set to 1. Such setting is mainly for the

purpose of demonstrating the convergence of ALPP under poor initial condition. The

distribution error should generally be smaller and initial sample sizes be much larger in

case of practical application where the convergence will be a slowly evolving process.

4The original form of {0, 1} distribution learning is extended to the form applicable to D(1).
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(De(1), P) (.D3(1),P3) (D(1), P)
behv. max. behv. max.

diag. mat. err. mat. err.
trial No. rate rate S-E rate C-E
0 0.30 0.30
1’.’25 68% 60% 0.14 48% 0.21
2650 76% 96% 0.10 12% 0.25
51’100 80% 100% 0.06 36% 0.27
101200 76% 100% 0.03 33% 0.28

Table 6.12: Summary for simulation 1. I1e — Fri = 0.

Simulation 1 is run with F being the same as Fr which assumes a perfect expert.

The results are depicted in Table 6.12. The diagnostic rate of (De(1), Fe) is defined as

A/N where N is the base number of trials and A is the number of trials where the top

diagnosis agrees with {Tr, Fr} simulated by (Dr(1), Fr). The behavior matching rate of

(D3(1),F5) relative to (D(1), Fe) is defined as B/N where B is the number of trials

in which (D3(1),F3)’s diagnoses have the same ordering as (D(1), Ps). The behavior

matching rate of (D(1), F) to (De(1), F) is similarly defined.

The results show convergence of probability values in F3 to those in F (maximum

error(S-E) —* 0). The behavior matching rate of (D3(1), F3) increases along with the con

vergence of probabilities and finally (D3(1), F3) behaves exactly the same as (D(1), Ps).

An interesting phenomenon is that, despite F = Fr, the diagnostic rate of (D(1), F)

is only 76% in the total 200 trials. Though the rate is dependent on the particular

(D, F), it is expected to be less than 100% in general. In terms of medical diagnosis,

this is because some disease may manifest through unlikely symptoms, making other

diseases more likely. In an uncertain world with limited evidence, mistakes in diagnoses

are unavoidable. More importantly, P3 converges to F under the guidance of this 76%

correct diagnoses while F does not. The maximum error of F remains about the same
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throughout the 200 trials and the behavior matching rate of (D(1), P) is low. Similar

performance of (D(1), F) is seen in the next two simulations. This shows that under the

circumstances where good experts are available but confirmations to diagnoses are not

available, ALPP is robust while {0,1} distribution learning will be misled by the errors

in diagnoses. This is not surprising since the assumption underlying {0,1} distribution

learning is violated. One will gain more insight into this from the results of simulation 4

below.

An imperfect expert is assumed in simulation 2 (Table 6.13). The distribution Fe

differed from F,. up to 0.05. Because of this error, F converges to neither Fe (as shown

in Table 6.13) nor F,.. But the error between F, and F approaches a small value (about

0.07) such that after 200 trials the behavior of F, matches that of F perfectly.

(1)e(1),Pe) (D,(1),P,) (D(1),P)
behv. max. behv. max.

dliag. mat. err. mat. err.
trial No. rate rate S-E rate C-E
0 .300 .300
1100 84% 82% .058 32% .272
101200 86% 92% .122 43% .287
201’.’300 80% 100% .067 32% .290
301400 83% 100% .076 36% .292

Table 6.13: Summary of simulation 2. IF — F,.I = 0.05.

If the discrepancy between P, and F,. is further increased so that the threshold dis

cussed in last section is crossed, (D,(1), F,) will no longer converge to (D(1), Fe). This

is the case in simulation 3 (Table 6.14) where the maximum error and root mean square

error (rms) between F and F,. are 0.15 and 0.098 respectively. The rms error is calculated

over all the priors and conditional probabilities of F and F. Introduction of rms error

for interpretation of simulation 3 is because maximum error itself, when not approaching
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to 0, does not give good indication of the distance between the two.

(D(1), P) (D3(1),_F3)
behv. rms rms max.

diag. diag. mat. err. err. err.
trial No. rate rate rate S-B S-R S-B
0 .170 .169 .39
1”.25 80% 84% 20% .086 .079 .17
2675 74% 74% 40% .071 .068 .11
76’175 73% 73% 53% .050 .083 .087
176-.’375 79% 79% 46% .059 .072 .095
376’475 78% 78% 43% .061 .071 .119

(De(1),Pe) (D(1),P)
behv. rms rms max.

diag. diag. mat. err. err. err.
trial No. rate rate rate C-B C-R C-E
0 .170 .169 .39
125 80% 80% 32% .110 .091 .20
2675 74% , 74% 38% .110 .092 .16
76175 73% 73% 38% .098 .092 .15
176375 79% 79% 23% .100 .090 .15
376”475 78% 78% 26% .096 .084 .15

Table 6.14: Summary of simulation 3. Fe — F71 0.15.

The simulation shows that the behavior matching rate of P8 and P is quite low

(43% after 475 trials). Since the diagnostic rate of Fe is also lower (77%), one could ask

which one is better. One way of viewing this is to compare the diagnostic rates. It is

observed that, among F3, P and F, no one is superior than others if only top diagnosis is

concerned. More careful examination can be obtained by comparison of distances among

models. It turns out that the distance (S-E) and distance (S-R) are smaller than the

distance (E-R) with corresponding rms errors 0.061, 0.071 and 0.098 respectively.

The above 3 simulations assume that only the subjective posterior judgments are

available. In simulation 4, it is assumed that the correct diagnosis is also accessible. This

time, (D(1), F) is supplied with the scenario generated by (Dr(1), Fr). Fe is the same
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as P,..

The results (Table 6.15) shows that ALPP converges much quicker than {0,1} distri

bution learning even the latter has access to ‘true’ answers to the diagnostic problem.

After 1500 trials, (D3(1), F3) reduces its maximum error from (De(1), Fe) to 0.041 and

matches the latter’s behavior perfectly, while (D(1), F) is still on its way of convergence

with its error about 2 times larger and its behavior matching rate 80%.

(De(1), Fe) (D3(1), F3) (D(1), P)
behv. max. behv. max.

diag. mat. err. mat. err.
trial No. rate rate S-E rate C-E
0 .300 .300
1100 88% 95% .130 60% .375
101600 78% 98% .048 72% .045
6011100 78% 93% .052 61% .075
11011500 79% 100% .041 80% .079
1501’170O 81% 100% .025 85% .093

Table 6.15: Summary of simulation 4. P — Fri = 0 and ‘true’ scenario is accessible to
{0, 1} distribution learning (Fe).

Real world scenarios could be distinguished as being common or exceptional. An ex

pert with knowledge about the real world tends to catch the common and to ignore the

exceptional. Thus the diagnostic rate will never be 100%. This is the best one could

do given the limited evidence. The PPs provided by the expert contain the informa

tion about the entire domain, while a scenario contains only the information about this

particular scene. Thus, although both (D3(1), F3) and (D(1), P) converge, the former

converges quicker. This difference in convergence speed is expected to emerge wherever

the diagnosis is difficult and the diagnostic rate of the expert is low (for example, in some

area where disease mechanism is not well understood and diagnostic criteria are not well

established).
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6.6 Remarks

Several features of ALPP can be appreciated through the theoretical analysis and simu

lation results presented.

• ALPP provides an alternative way of sequentially updating conditional probabilities

in Bayesian nets when confirmed diagnosis is not available.

• Under ideal conditions (perfect expert for ALPP and confirmed diagnosis for {O,1}

distribution learning), both ALPP and {O,1} distribution learning converge to the

real world model. However, ALPP converges faster than {O,1 } distribution learning

due to the richer information contained in expert’s posterior judgments.

• When human expert’s judgment is the only available source and the expert is not

perfect but fairly good (his mental model is different from but close to the real

world model), ALPP still converges to expert’s posterior behavior and improve the

system model towards real world model up to a small error. On the other hand,

{O,1} distribution learning will be misled by unavoidable mistakes made in expert’s

diagnoses due to the violation of its underlying assumption. Consequently, it could

only simulate expert’s behavior up to top diagnosis, both posterior ordering and

model parameters (probability values) are far out.

• As is argued at the beginning of this chapter, expert’s diagnoses are indeed the

only available source in many applications. Thus to use {O,1} distribution learning

in these domain one must simplify the expert’s posterior distribution to a {O,1}

distribution. On the other hand, to use ALPP one has to obtain from the expert the

overall real value distribution, which may not be practical. A proper compromise

might be to ask the expert to provide a few top posterior probabilities and assign

the remaining value uniformly to other probabilities.
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• ALPP is directly applicable to Bayesian networks of diameter 1 as {O,1} distribution

learning would. Although the topology is not feasible for many applications, there

are domains the topology is adequate, for example, the Bayesian net version of

QMR (its precursor is INTERNIST, one of the first expert systems in internal

medicine) [Heckerman 90a, Heckerman 90b] and PAINULIM, among others.
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SUMMARY

The thesis research aims to construct medical expert systems which will be of practical

use. The attitude adopted is to identify practical problems in the engineering practice

and to solve the problems scientifically (as opposed to ad hoc approaches). The accom

plishments of this research include the engineering part and scientific part which are

closely related.

Contributions to theoretical knowledge

• The limitation of finite totally ordered probability algebras has been shown the

oretically. This highlights the use of infinite totally ordered probability algebras

including probability theory.

• The technique of multiply sectioned Bayesian networks (MSBN) and junction forests

has been developed. This technique allows the exploitation of localization natu

rally existing in a large domain such that the construction and deployment of large

expert systems using Bayesian networks can be practical.

• An algorithm for learning by posterior probabilities (ALPP) has been developed.

This algorithm is useful for sequential updating conditional probabilities in Bayesian

networks in order to improve the accuracy of (quantitative) knowledge representa

tion. The algorithm removes the assumption that diagnoses must be confirmed.
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Accomplishments in engineering

• WEBWEAVR, an expert system shell has been implemented in IBM compatibles

which embeds the MSBN technique.

• PAINULIM, an expert neuromuscular diagnostic system for patients with a painful

or impaired upper limb has been constructed. The utilization of the MSBN tech

nique has made possible the owledge acquisition and system refinement of PAIN

ULIM being conducted within hospital environment. This has resulted in more

efficient cooperation with medical experts and greatly speeded up the development

of PAINULIM.

• QUALICON, a coupled expert system in technical quality control of nerve conduc

tion studies has been constructed.

Limitations of the work

• The MSBN technique is only used in a single domain. Only the sectioning with a

covering sect is used in the application. The applicability of the technique to many

other domains requires future experience.

• The performance of ALPP has been shown through simulation but it has not been

evaluated through real application.

Topics for future research

• Test design in a multiply sectioned Bayesian network. System prompt for acquisi

tion of evidence most beneficial to a diagnosis given current state of belief has been

the topic of expert system research. In chapter 4, the attention shift is described as
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originated by the user. Under the context of a MSBN, system prompt for acquisi

tion of evidence from neighbor sect can be another reason for attention shift. How

to generate the prompt for the target sect for attention shift is an open question.

The test design within a sect also deserves further exploration.

• Explanation of inference in a multiply sectioned Bayesian network. Qualitative

and intuitive explanation of inference is important for the acceptance of expert

systems. The MSBN technique allow the representation of categorical and hierar

chical knowledge. How to frame an explanation in terms of evidence distributed in

different categories or hierarchies requires future research.

• Only the marginal distribution is obtained in the MSBN technique (in the junction

tree technique as well). Is there a way to obtain the most likely combination of

hypotheses?

• The representation incorporating decision analysis with Bayesian nets is usually

termed influence diagram. Incorporating decision analysis with a MSBN (for, i.e.,

treatment recommendation) introduces new problems and possibilities.
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Appendix A

Background on Graph Theory

Graph theory plays an important role in characterizing Bayesian networks and devel

oping efficient inference algorithms for Bayesian networks. In this Appendix, the basic

concepts of graph theory relevant to this thesis are introduced. For formal treatment

of the graph theoretical concepts introduced, see [Golumbic 80, Gibbons 85, Jensen 88,

Lauritzen et al. 84].

A.1. Graphs

A graph G is a pair (N, E) where N = {A,,.. . , A} is a set of nodes and E =

{(A, A,)IA, A3 E N; i j} is a set of links between pairs of nodes in N. A directed graph

is a graph where links in E are ordered pairs and an undirected graph is a graph where

links in E are unordered pairs. Call the links in directed graphs by arcs when concerned

with their directions. A subgraph of a graph (N, .E) is any graph (Nyc, E’) satisfying

Nk C N and Ec C E. Given a subset of nodes N’ C N of a graph (N, E), the subgraph

induced by N’ is (N’, E’) where E’ = {(A, A) E EIA E N’ & A3 E N’}. The union

graph of subgraphs G’ = (N’, E’) and G2 = (N2,E2) is the graph (N1 U N2,E’ U E2)

denoted G1 U G2.

Example 22 Figure A.38 shows eight examples. G1 = (N’, E’) is a undirected graph

where N’ = {A,, A2,.. . , A6} and

E’ ={(A,,A2),(A1,A4),(A2,A3),(A3,A4),(A4,A5),(A4,A)}

204
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is a set of unordered pairs. G4 = (N4,E4) is a directed graph where N’ = N1 and

= {(A,, A2), (A1,Aj, (A3,A2), (A4,A3), (A5,A4), (A4,A6)} is a set of ordered pairs.

G’ is the union graph of subgraphs G2 and G3 (G’ =G2UG3). Likewise, G4 = G5UG6.

Both G2 and G are also subgraphs of G7 but G7 G2 U G3 since the link (A,, A5) in

G7 is not contained in either subgraph.

Figure A.38: Examples of graphs

A path in graph (N, E) is a sequence of nodes A,, A2,. . . , A, (k > 1) such that

(As, A1,) e E. A path in a directed graph can be directed or undirected (i.e., each arc

is considered undirected). A simple path is a path with no repeated node except that

A, is allowed to equal Ak. A cycle is a simple path with A1 = Ak. Directed graphs

A1 A5

A2 A4

A3 A6

A5

A4

Ga A6

A1 A5

A2 A4

c4 A3 A6
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without directed cycle are called DAGs (directed acycic graphs). Define the diameter of

a DAG as the number of arcs of the longest directed path in the DAG. A graph (N, E)

is connected if for any pair of nodes in N there is an undirected path between them. A

graph is singly connected or is a tree if there is a unique undirected path between any

pairs of nodes. If a graph consists of several unconnected trees, call the graph a forest.

A graph is multiply connected if more than one undirected path exists between a pair of

nodes. Note: a graph can be multiply connected but NOT connected!

Example 23 In Figure A.38, A1 — A2 — A3 — A4 — A6 is a path in G’. It is also an

undirected path in G4. A5 —* A4 —* A3 —* A2 is a directed path in G4.

A6 — A4 — A1 — A2 — A3 — A4 — A5 is not a simple path in G1, but A1 — A2 — A3 — A4 — A6

is. A1 — A2 — A3 — A4 — A1 is a undirected cycle in G4. There is no directed cycle in G4.

There would be one in G4 if the arc (A1,A2) were reversed. Therefore, G4 is a DAG.

G3 is a singly connected graph or is a tree. G5 is a singly connected DAG or is a tree.

G4 is a multiply connected DAG.

The diameters of DAGs G5, G6, and G4 are 1, 2, and 3 respectively.

Only connected DAGs are considered in this thesis since an unconnected DAG can

always be treated as several connected ones. Define a subDAG of a DAG D = (N, E) as

any connected subgraph of D. A DAG D is the union DAG of subDAG D’ and D2 if

D=D1UD2.

Example 24 Tn Figure A.38, G4 is the union DAG of subDAGs G5 and G6 (G4 =

G5uG6).

If there is an arc (A1,A2) from node A1 to A2, A1 is called a parent of A2, and A2

a child of A1. Similarly, if there is a directed path from A1 to Ak, the two nodes are

called, respectively, ancestor and descendant, relative to each other. The in-degree of a

node (denoted by i) is defined as the number of its parents.
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Example 25 In G4 of Figure A.38, A, and A5 are the parents of A4 and A4 is their

child. A2 has 4 ancestors namely A,, A3, A4 and A5. The in-degree of A4 is 2 and the

in-degree of A1 is 0.

For each node in a DAG, if links are added between all its parents and the directions

on arcs are dropped, the graph thus formed is the moral graph of the DAG. A graph is

triangulated if every cycle of lengtI> 3 has a chord. A chord is a link connecting 2 non

adjacent nodes. A maximal set of nodes all of which are pairwise linked is called a clique.

Algorithms for triangulating graphs have been developed, for example, the Lexicographic

search [Rose et al. 76] with time complexity Q(ne) where n is the number of nodes and

e the number of links, and the maximum cardinality search [Tarjan and Yannakakis 84]

with time complexity (5(n + e).

Example 26 In Figure A.38, G7 is the moral graph of G4. G8 is a triangulated graph

of G7.

A.2 Hypergraphs

A hypergraph is a pair (N, C) where N is a set and C 2N is a set of subsets of N.

Define the union of hypergraphs similarly to the union of graphs. The union hypergraph

of (N’, C’) and (N2,C2) is (N’ UN2,C1 U C2) denoted (N’, C1) U (N2,C2). Let (N, E)

be a graph, and C be the set of cliques of (N, E). Then (N, C) is a clique hypergraph of

graph (N, E).

If a clique hypergraph is organized into a tree where the nodes of the tree are labeled

with cliques such that for any pair of cliques, their intersection is contained in each of the

cliques on the unique path between them, then the tree is called a junction tree or join

tree. The intersection of 2 adjacent cliques in a junction tree is called the sepset of the 2

cliques. Given a hypergraph, its junction trees can be characterized as maximum-weight
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spanning-tree if it has one [Jensen 88]. The algorithm for constructing maximum -weight

spanning-trees can be found in, e.g., [Gibbons 85].

Example 27 Consider the graph G8 in Figure A.38 where N8 = {A1,A2, ... , A}. The

set of cliques of G8 is C = {{A1,A2,A4}, {A2,A3,A4}, {A1,A4,A5}, {A4,A6}}. Therefore

(N8,C) is a clique hypergraph of G8. Figure A.39 is a junction tree of the hypergraph

(N8,C), where nodes are labeled with cliques (in ovals) and links are labeled with sepsets

of cliques (in squares).

Figure A.39: A junction tree with nodes (ovals) labeled with cliques and links labeled
with sepsets of cliques (squares).
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Reference for Theory of Probabilistic Logic (TPL)

B.1 Axioms of TPL

The content of this section is taken from Aleliunas [1988] with minor changes to simplify

the presentation.

Axiom 1 (TPL axioms) Axioms about the domain and range of each f in F.

AX1 The set of probabilities, P, is a partially ordered set. The ordering relation is ‘s’.

AX2 The set of sentences, L, is a free boolean algebra with operations &, V, and, and it is

equipped with the usual equivalence relation ‘E’. The generators of the algebra are

a countable set of primitive propositions. Every sentence in L is either a primitive

proposition or a finite combination of them.

AX3 If P X and Q Y, then f(PIQ) = f(XIY).

Axioms that hold for all f in F, and for any F, Q, R in L.

AX4 If Q is absurd (i.e., Q R&), then f(IQ) = f(FIF).

AX5 f(F&QIQ) = f(FIQ) f(QIQ).

AX6 For any other g in F, f(PIP) = g(PIP) = 1.

AX’T There is a monotone non-increasing total function, i, from P into P such that

f(P1R) = i(f(PIR)).

209
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AX8 There is an order-preserving total function, h, from P x P into P such that

f(P&Q IR) = h(f(PIQ&R), f(QIR)). Moreover, if f(P&QR) = 0, then f(PIQ&R)

= 0 or f(QIR) = 0, where 0 = f(IR) is defined as a function of f and R.

AX9 11 f(PIR) f(PI) then f(PIR) f(FIRVTh f(PR).

Axioms about the richness of the set F.

Let 1 = P V P. For any distinct primitive propositions A, B and C in L, and for

any arbitrary probabilities a, b and c in P, there is a probability assignment f in F (not

necessarily the same one in each case) for which

AX1O f(AI1) = a, f(BIA) = b, and f(CIA&B) = C.

AX11 f(AIB) = f(AI) = a and f(BIA) = f(Bl) = b.

AX12 f(AI1) = a, and f(A&BI1) = b, whenever b a.

B.2 Probability Algebra Theorem

The content of this section is taken from Aleliunas [1986].

Theorem 15 (Probability algebra theorem) Any probability algebra (under TPL ax

ioms) defined on the partially ordered set (poset) P satisfies the following conditions:

Ti P is a partially ordered semigroup with an order preserving operation ‘*‘.

T2 0*x=O andl*x =xforanyx inP.

T8 P is a self-dual poset equipped with an isomorphism, i, from P to its dual.

T4 P is a poset bounded by 0 and 1, i.e., 0 x 1 for any x in P.

T5 P is commutative, i.e., x * y = y * x.

T6 P has non-trivial zero, i.e., x y implies that x = 0 or y = 0.
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Ti’ P is a naturally ordered semigroup, i.e., x y implies z(x = y * z).

Conversely, the above 7 conditions are also sufficient to characterize a probability

algebra.
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e1

€2

€3

€4

e5

€6

e7

e e2 e3 e4 e5 e6 e7 €g qPei e2
e1

e2
e3

e4

e6

€7’

e3 e4 € e6 €7 €

Solution table p/q

One of M8,4 with idempotent elements e1, €4 e7 and €8

C.2 Derivation of p(firelsmoke&alarm) under TPL

p(fls&a) = p(slf&a) *p(fla)/p(sla)

where

p(s jf&a)

p(sla)

and

p(f Ia)

where

p(alf)

and

= p(sjf);

= p(s&(fV7)Ia)

= i[i[p(s17)] * j[p(If) * p(fa)/i[p(s7) * p(71a)]]J;

= p(alf) * p(f)/p(a)

= p(a&((f&t) V (f&’) V (7&t) V (Tkt))If)

= i[i[p(aIf&) * pQ)} * i[p(alf&t) * p(t)/i[p(alf&T) * (OJ]1

e1 e2 e3 e4 € e6 e7 e8

€2 e3 €4 €4 € €6 € e8

e3 e4 e4 e4 e5 e6 €7 e8

€4 e4 e4 e4 e5 e6 €7 €

€5 e5 € € €6 e7 €7 €

€6 €6 e6 €6 €7 €7 €7 e8
e7 e7 €7 €7 e7 e7 e7 €8

€8 e8 €g € €8 € e5 €

€ € €3 e4 € €6 €7 e8

e1 e2 [e4,e3j € e6 €7 e8
e1 [e4,e2j € e6 €7 e8

[e4,ei] e5 €6 €7 €8

[€4, eu € [€7,€6] €g

[e4,e1] [e7,e5] €g

[e7,e1j €8

p(a) = p(a&((f&t) V (fm) V (7&t) V (7&)))
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= i[f1*f2*f3*f4J

C.3 Evaluation of Legal FTOPAs with Size 8

Figure C.40 plots the evaluation results of the following 14 posterior probabilities from

smoke-alarm example by Poole and Neufeld [1988] using all the 32 legal FTOPAs of size

8. The conventional probability model (MO) is included for comparison.

p(slf), p(alf), p(1If) p(rff); p(sjt), p(aIt, p(IIt), p(rlt);p(fIs), p(fja), p(fls&a); p(tls), p(t(a), p(tls&a)

The following table lists model labels (L) used in Figure C.40 and their corresponding

idempotent element subscripts (S). ‘MO’ labels the conventional probability model.

where

f’

f2

f3

f4

= i[p(a17&T) *p(7) *p(T)]

= i[p(aIf&t) *p(7) *p(t)/f1]

= i[p(alf&T) * P(f) * * f2)J

= i[p(alf&t) *p(f) *p(t)/(f1* f2 * fe)].

L S L S L S L S

Mi 1,7,8 M9 1,2,5,7,8 M17 1,2,3,4,7,8 M25 1,3,5,6,7,8

M2 1,2,7,8 M1O 1,2,6,7,8 M18 1,2,3,5,7,8 M26 1,4,5,6,7,8

M3 1,3,7,8 Mu 1,3,4,7,8 M19 1,2,3,6,7,8 M27 1,2,3,4,5,7,8

M4 1,4,7,8 M12 1,3,5,7,8 M20 1,2,4,5,7,8 M28 1,2,3,4,6,7,8

MS 1,5,7,8 M13 1,3,6,7,8 M21 1,2,4,6,7,8 M29 1,2,3,5,6,7,8

M6 1,6,7,8 M14 1,4,5,7,8 M22 1,2,5,6,7,8 M3O 1,2,4,5,6,7,8

M7 1,2,3,7,8 M15 1,4,6,7,8 M23 1,3,4,5,7,8 M31 1,3,4,5,6,7,8

M8 1,2,4,7,8 M16 1,5,6,7,8 M24 1,3,4,6,7,8 M32 1,2,3,4,5,6,7,8

In each sub-graph, the vertical scale represents the probability range with 0 = e8 and

1 = e. And horizontally arranged are the probabilities with the same order above. The
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predictive probabilities with identical condition are shown in the first 8 positions in 2

groups. The diagnostic probabilities with a fixed hypothesis are shown in the last 6

positions in 2 groups. As is analyzed in Section 2.5, none of the models through 1 to 32

gives satisfactory results.

L.;3 E1W I

iM 117 MS

n L rLUW .

UuU_ii
U

—

0 0

— .-+ V W Lfl ‘$1 W

,— .-.

Figure C.40: Evaluation result of smoke-alarm example by 32 legal FTOPAs of size 8
f: fire; t: tampering; a: alarm; 5: smoke; 1: leaving; r: report.
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M21

0DII

Figure C.40 (cont)
f: fire; t: tampering; a: alarm; s: smoke; 1: leaving; r: report.

LM15

CCI L

—

Ml 6

n

Ml?

Lilt LL1OO I
0

— —

M22

0

__

0

M23

I1u I
n

— —

LA LA If.

w QI



Appendix D

Proofs for corollary and propositions

Proof of Corollary 2

Proof:

To prove p/q = r, it suffices to show r * q = p. Below the 7 cases are shown in the

order of their appearance in the Corollary.

(Case 1) Equivalent to ek * e1 = ek which is in turn equivalent to Cond8 of proposi

tion 1.

(Case 2) Equivalent to e * = e which is in turn equivalent to Cond4 of proposi

tion 1.

(Case 3) Equivalent to e * e = ek where e = ek_+ and e+1_2 e, e1+,. First,

show this is the second case of Theorem 1. Clearly, ij < y < i11 — 1 i1i. Also

x =
— j + i1 > i1, and k

— j + i1 <ii+1 — 1 — (i1 + 1) + ii = i1+1 — 2 i+i.

Second, show emjfl(÷j_ji,j÷i) = ek. This is true because x
—

j — i1 = k < i1..1.

(Case 4) Equivalent to e, * ek = ek where x = i1 and i1 <k < i1i. It is true by the

third case of Theorem 1.

(Case 5) Equivalent to e, * = e+1 where e < and <

e÷i. First, show this is the second case of Theorem 1, that is, e, e e [e11+1,e1+i]. This

is obviously true for e and the lower bound of e. For the upper bound, from i11 > j,
one has ij

—
j 1, and thereforee1+1+1 e1.

Second, show emin(z+y_ii,ii+i) = e+1 which is equivalent to x + y — ii ii+’. Since the

lower bound is i1 + 1 for x, and i11 for y, this is certainly true.
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(Case 6) Equivalent to er * e1 = e1 where e e1 which is true by Lemma 3.

(Case 7) Covered by the third case of Theorem 1.

C

Proof of Proposition 5

Proof:

A solution table (see appendix C.1) can be viewed as a different layout of a product

table. An entry in the column labeled ‘q’ is one factor. A table entry in the same line

as the first factor is another factor. The entry in the line labeled ‘p’ and in the same

column as the second factor is the product.

Since product operation ‘‘ is well defined, all the probabilities will appear in each

line of the table entries (possibly several of them appear together in a range). Therefore,

there are n(n — 1) table entries. There are O.5n(n + 1) — 1 distinct solution pairs. Their

difference is just the amount of ambiguity by definition.

A = {n(n — 1)] — [O.5n(n + 1)
—

1] = (n — 1)(n — 2)/2

Proof of Proposition 6

Proof:

(Od) From Corollary 2, all the incidences of e/e = er to be counted are covered

by the case 7 of the corollary. Among {e2, .. . , e,}, there are k — 2 idempotent elements

which determine k — 3 intervals. For each interval, the case 7 dictates m+1 — m columns

in the solution table with m — 1 entries in each column to be counted.

(Om) From Theorem 1, e, * e < min(e1,,e) happens only in the second case. Since

idempotent elements do not follow the relation by Lemma 3, only m <X, y <m+1 needs

to be considered, and there are k —2 such intervals ((ik..i, ik) does not contribute to Om).

For each interval, if x is fixed, y goes through m+l —
— 1 values. Since only distinct
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product pair is to be counted, each interval contributesE:11_tm_l

Now it suffices to show min(x + y
— m+i) > x, y. Trivially, m+l > X, y. Also

X+(y_im)>X+1 >. Similarly X+Ym >Y

(Od + Om) Rewrite Od as

k.-2 m+lm1

0d > (im+iim)
“=2 j=O

Thus

i22 321 4131 k—1k—21

Od+Om = (i2+j—1)+ (i3+j—1)+... (ik_2+j—1)
j=1 j=O 3=0 j=0

Note the last addend of each sum is 1 less than the 1st addend of the next sum; and

there are tkl — 2 addends in total. Thus,

k—1 —2 ..3

Od+0m E j=j=(n—3)(n—2)/2
j=1 j=1

D



Appendix E

Reference for Statistic Evaluation of Bernoulli Trials

The content of this appendix is taken from Larsen and Marx [1981].

Any set of repeated independent trials with each trial having just 2 possible outcomes

(success and failure) are called Bernoulli trials. The probability p associated with success

is called success probability.

E.1 Estimation for Confidence Intervals

Definition 18 Suppose that y successes are observed in n independent Bernoulli tri

als. The probability interval [pl,P2] is the 100(1 — a)% confidence interval for success

probability p if

P(pi<p<p2IY=y)=1—a

where Y is the variable for number of successes.

The above defined lower and upper confidence limits p and P2 for p are the solutions

of

Cp(1 _p1)=

Cp(1 _p2)=

where

ci-
— j!(n —

is the number of combinations taking j elements out of n.
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E.2 Hypothesis Testing

Let x and y denote the numbers of successes observed in 2 independent sets of n and

m Bernoulli trials, respectively. Let Px and py denote the true success probabilities

associated with each set of trials. An approximate generalized likelihood ratio test at

the a level of significance for hypothesis H0 Px = py versus hypothesis H1 : Px py is

gotten by rejecting H0 whenever

n m

is either < —z,,2 or +z12 where

1 PZQ/2 2

J e ‘2dx = a/2.
v,-oo



Appendix F

Glossary of PAINULIM Terms

F.1 Diseases Considered in PAINULIM

Ahcd : Anterior horn cell disease

Als: Amyotrophic Lateral Sclerosis

Cts: Carpal tunnel syndrome

Inspcd : Intrinsic cord disease

Mednn: Median nerve lesion

Mnd: Motor neuron diseases (including Ahcd and Als)

Pd: Parkinsons disease

Pxltk: Plexus lower trunk

Pxpcd: Plexus post cord

Pxutk: Plexus upper trunk

Radnn: Radial nerve lesion

Rc56 : C56 Root disease

Rc67: C67 Root disease

Rc81 : C8T1 Root disease

Ulrnn: Ulnar nerve lesion

222
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F2 Clinical Features in PAINULIM

bcpex: Biceps reflex exaggerated

bcpls Biceps reflex lost/diminished

lsbkhdfrm: Loss of sensation in back of hand/forearm

isdisoc : Dissociated sensory loss

lslatfrm: Loss of sensation in lateral forearm

lslathnd: Loss of sensation in lateral hand/fingers

lsmedfrm: Loss of sensation in medial forearm

lsmedhnd: Loss of sensation in medial hand/fingers

isuparm: Loss of sensation in upper arm

radex: Radial/Supinator reflex exaggerated

radls: Radial/Supinator reflex lost/diminished

rad_pn: Radicular pain

rigid : Rigidity

pnirm: Pain or tingling in the forearm

pniind: Pain or tingling in the hand

pn.shd: Pain or tingling in the shoulder

spstc : Spasticity

tcpex : Triceps reflex exaggerated

tcpls : Triceps reflex lost/diminished

tremor : Tremor of limbs/hands

twitch : Muscle twitch or fasciculations

wk....arm: Weakness of the arm

wking±c: Weakness of finger flexion

wk...shld: Weakness of the shoulder
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wk_th.abd: Weakness of thumb Abduction

wk...th_ext: Weakness of thumb extension

wk_th.Jx: Weakness of thumb flexion

wk_wst_ex: Weakness of wrist extension

F.3 EMG Features in PAINULIM

adm: Abductor digiti rninimi

apb : Abductor pollicis brevis

bchrd: Brachioradialis

bcps : Biceps brachil

edc: Extensor digitorum communis

deltd: Deltoid

fasc: Fasciculation

fcu: Flexor carpi ulnaris

fdi : First dorsal interosseous

fdp23: Flexor digitorum profundus 2,3

fdp45 : Flexor digitorum profundus 4,5

fpl: Flexor pollicis longus

latdrs : Lattismus dorsi

lvscp: Levator scapulae

other : Muscle in other limb/trunk

pmcv: Pectorajis major clavicular

pmsc : Pectoralis major sterno-clavicular

prt : Pronator teres

psS6: Paraspinals C5,6
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ps67: Paraspinals C6,7

ps8l: Paraspinals C8,T1

rhmj: Rhomboideus major

spspn: Supraspinatus

srant : Serratus anterior

trcps : Triceps

F.4 Nerve Conduction Features in PAINULIM

mcmp: MEDIAN COMPOUND MUSCLE ACTION POTENTIAL

mf2I: MEDIAN finger2 SNAP latency

mf2a: MEDIAN finger2 SNAP amplitude

mmcb: MEDIAN motor CONDUCTION BLOCK

mmcv: MEDIAN motor CONDUCTION VELOCITY

mmdl: MEDIAN motor DISTAL LATENCY

minfw: Median “F” response

mupl: MEDIAN to ULNAR palmar latency difference

radm: Radial motor study

rads: RADIAL sensory study

ucmp: ULNAR COMPOUND MUSCLE ACTION POTENTIAL

uf5a: ULNAR fingerS SNAP amplitude

uf5l: ULNAR fingerS SNAP latency

umcb: ULNAR motor CONDUCTION BLOCK

umcv: ULNAR motor CONDUCTION VELOCITY

umfw: Ulnar “F” response



Appendix G

Acronyms

AT: Artificial Intelligence

ALPP : Algorithm of Learning by Posterior Probability

BNS : Bayesian Network Specification (in QUALICON)

CLINICAL : clinical sect of PAINULIM

CMAP : Compound Muscle Action Potential

CP : Conditional Probability

DAG : Directed Acyclic Graph

DOCTR: DOCToR - a module in WEBWEAVR

EDITOR: a module in WEBWEAVR

EEG : ElectroEncephaloGraphy

EMG: ElectroMyoGraphy

EMGer: ElectroMyoGrapher

FE: Feature Extraction (in QUALICON)

FP: Feature Partition (in QUALICON)

FTOPA: Finite Totally Ordered Probability Algebra

MSBN : Multiply Sectioned Bayesian Network

NCV: Nerve Conduction Velocity

ND : Normal Data (in QUALICON)

NDU: Neuromuscular Diseases Unit

PAINULIM: PAINful or impaired Upper LIMb
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PIE: Probabilistic Inference Engine (in QUALICON)

PP : Posterior Probability

QUALICON : QUALIty CONtrol

SNAP : Sensory Nerve Action Potential

TPL : Theory of Probabilistic Logic

TRANSNET : TRANSform NETwork - a module in WEBWEAVR

UBC: University of British Columbia

USBN : UnSectioned Bayesian Network

VGH: Vancouver General Hospital

WEBWEAVR: WEB WEAVeR




