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ABSTRACT 

It has been hypothesised (Moore 1976) that vocal fold pathology will manifest 

itself in voiced sounds when vibratory characteristics are disrupted. This thesis examines 

the effects that pathologies have on the vocal folds through the use of a computer 

simulation model of the human phonatory system. 

A damped, nonlinear, multiple-mass spring model combined with a transmission 

line vocal tract model, was developed and mathematically simulated on a computer. 

Configurational parameters were then varied asymmetrically in order to examine the 

vibratory characteristics of the system. In particular, the glottal flow and speech signals 

from the glottal and vocal tract subsystems were observed for perturbations. Next, jitter, 

shimmer, and harmonics to noise ratio analyses were made and the results compared 

to a database of analysed speech recordings from Vancouver General Hospital. Finally, 

an approximate mathematical analysis was made examining the underlying nonlinear 

oscillatory phenomena. 

The study showed that the model, a hybrid between the simple two mass 

Ishizaka and Flanagan model (1972) and the more complex Titze (1973, 1974) model, 

was able to simulate the desired asymmetrical conditions. Perturbation phenomena were 

successfully simulated and the results found to be in good agreement with both real 

data and data obtained from previously published models. The mathematical analysis 

revealed the observed perturbations to be characteristic of second and third order 

subharmonics found in nonlinear oscillatory systems. It was also shown that the driving 

forces discussed by Titze (1980) (ie the Bernoulli effect, vertical phasing and vocal 
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tract loading) all appear directly in the proposed dynamical equation. 
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Glossary of Terms 

abduction - when the opposing vocal folds separate and the gap widens 

adduction - when the opposing vocal folds come together 

autonomous - an oscillatory system which does not have a forcing function. 

Bernoulli effect - when the flow in a pipe is abrupdy consticted, the flow rate is 

maintained by increasing the flow velocity. As a consequence, the pressure falls, 

sometimes to a negative value, resulting in a 'sucking' effect 

compliance - acoustic capacitance, the ability to absorb and store more and more air 

in the same volume by increasing the density of the gas in the chamber. 

convergent glottis - the shape of the vocal fold along the z axis determines whether 

the orifice is narrowest at the exit (convergent) or at the opening (divergent) of the 

glottal constriction. 

dysphonia - synonymous with pathology, but usually referring to pathologies in which 

function is impaired. 

epithelial - referring to the outer skin layer of the vocal fold. 

epithelium - the outer layer of the fold which contains the mucosal fluid and covers 

the vocalis muscle. 

flaccid - soft or limp reaction to the aerodynamic forces and the muscle contractions 

controlling the vocal fold's movement 
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glottal - pertaining to the chamber, orifice or gap created between the vocal folds 

when they are apart 

glottis - the actual opening between the folds. 

glottic chink - a triangular opening at the posterior end of the glottis which does not 

close during adduction. It is usually found in patients with Muscle Tension Dysphonia. 

HNR - the Harmonics to Noise Ratio as defined by Yumoto, Gould and Baer (1980). 

It is a measure of the hoarseness of the voice. 

inertance - acoustic inductance, the inertia of the air in the chamber causes a 

reluctance or delay in movement of the flow. 

jitter - the cycle to cycle changes in the fundamental pitch period of the speech 

signal. 

larynx - synonymous with vocal folds and vocal cords. The organic tissue that 

undergoes vibration. 

laryngeal carcinoma - cancer of the larynx. 

lpa - largest peak amplitude plot Plots the largest positive amplitude peak in each 

period of the speech wave. It is a simple measure of shimmer. 

mechanoreceptor - nerves sensitive to mechanical movement. 

medial edge - the inner edge of the vocal fold that collides with the opposing fold. 

mucosa - a term describing the mucous fluid layer and other fibrous layers that cover 

the vocalis muscle. In the simulation model, however, it refers to the upper mass that 

is supposed to represent the movement of the superficial layer of the lamina propria. 
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mucosal wave - refers to the wave-like motion of the mucosal fluid (the superficial 

layer of the lamina propria) in the vertical direction. It occurs as a result of the 

pressure below the folds. The term is synonymous with vertical phasing, which 

describes the phase delay as the wave travels from the bottom to the top surface of 

the fold. 

ppd - pitch period duration ploL Plots the length (in milliseconds) of each period in 

the speech signal. The period is determined by a manual period marking procedure. 

shimmer - cycle to cycle variations in the amplitude of periodic speech waves. 

squamous cell layer - thin, flat, planar surface oriented cells. 

subglottal - refers to the chamber below the larynx, which includes the lungs and the 

trachea. 

supraglottal - refers to the vocal tract, the chamber above the larynx from the 

superior surface of the larynx to the lips. 

transglottal pressure - refers to the pressure differential in the vertical axis between 

the entrance and exit of the glottal chamber, velum - a flap of tissue that can seal 

the nasal chamber from the vocal tract 

vena contracta - describes the rapid contraction of an orifice in a pipe, which results 

in a loss in pressure greater than would be found for a pipe with a gradual 

constriction. 

vocal tract loading - the acoustical load of the vocal tract chamber, including the 

compliance, inertance and resistance. 

vocalis - the muscular component of the vocal fold tissue. 
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CHAPTER 1 

INTRODUCTION 

Research on the biophysics of speech has burgeoned in the last two decades 

with the advent of signal processing techniques and high-speed computers for analysis, 

synthesis, and simulation. However, the speech process is still not fully understood, and 

thus far, little work has been done in the area of synthesising pathological speech. 

1.1. Motivation for the Study 

The purpose of this study is to determine whether abnormal speech patterns 

are a direct manifestation of vocal fold pathology. This is of interest to medical 

researchers and speech scientists because it may aid in characterising the changes in 

the speech and relating them to the biomechanical changes caused by pathology. 

Hopefully, as the link between pathologies and their subsequent speech is better 

understood, improved features in the speech indicative of abnormality will be found. 

This could then lead to the earlier diagnosis of pathologies. 

A further benefit is an improved understanding of the interaction between the 

air flow through the vocal fold opening and the tissue of the fold, and as a result 

the general understanding of vocal fold oscillation will be improved. 

In this study, a computer model capable of simulating conditions found in 

pathological cases will be developed which, it is hoped, will allow abnormal speech to 

be synthesised, analysed, and ideally, classified according to specific pathologies. 

1.2. Possible Approaches 

1 
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The problem of quantifying the presence and effect of a pathology may be 

approached in two ways; (1) by analysing the speech wave through the use of signal 

processing and pattern recognition techniques and (2) through the synthesis of 

pathologies by computer modelling (ie. analysis by synthesis). 

Researchers approaching the problem through the analysis of speech waves have 

experienced limited success - due in large part to the fact that this is essentially a 

"Black Box" approach. Features indicative of specific pathologies have been difficult to 

obtain. Consequently, it has been difficult to determine direct cause-effect relationships 

between the pathology type and specific perturbations in the resulting speech. Success 

has mainly occured in cases where the discrimination is between pathological and 

normal classes only, without classification of pathology type (the features used with the 

greatest success have been those related to jitter (cycle to cycle period fluctuations) 

and shimmer (cycle to cycle amplitude fluctuations)). Nonetheless, as an aid to 

clinicians and as an objective method for quantifying perceptual tests, pattern analysis 

techniques are a useful tool with good possibilities in the future. 

The second approach, analysis by synthesis, is the approach taken by this study. 

1.3. Models - Past and Present 

1.3.1 The Linear Model 

As a first approximation, speech is considered to be a linear process (Fant 

1960). The speech process is modelled as two linearly separable filters, representing the 

glottal and supraglottal chambers, excited by an impulse train. The glottal volume 

velocity, or flow pulse train, is the output of the two-pole low pass filter representing 

the glottal chamber. It is used as the input for the supraglottal, or vocal tract filter, 

which is either a cascade of two-pole filters or an acoustic tube of varying diameters 

and lengths, modelled as a transmission line network. 
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Because the model presented by Fant is linear, no interaction between the 

subglottal, glottal, and vocal tract systems is assumed. Work by Ishizaka and Flanagan 

(1972), Ananthapadmanabha and Fant (1982), and Rothenberg (1983) has shown this 

assumption to be clearly incorrect Interaction does indeed occur between the glottis 

and the vocal tract and models based on this (Flanagan and Landgraf, 1968), (Ishizaka 

and Flanagan, 1972), (Titze, 1973) (Ananthapadmanabha and Fant, 1982) have been 

found to give synthesized speech a more natural sound as compared to the strictly 

linear synthesis systems (eg.LPC). 

Another limitation of the linear model is that mathematical abstraction of the 

filtering effect of the vocal folds, (ie. its representation as a two-pole low pass filter), 

precludes modelling using physical or biomechanical parameters. 

1.3.2 Alternatives to the Linear Model 

To date, efforts by Flanagan and Ishizaka (1972) and Titze (1973, 1974, 1976, 

1979) in this area have led to the development of a number of more complex models 

of the vocal cords - ones which involve nonlinear aerodynamics, nonlinear mass-spring 

systems, the simulation of multiple discrete mass systems, and which allow the use of 

biomechanical parameters. In these models the vocal cords are interactively coupled to 

the subglottal and vocal tract systems. 

1.3.3 The Single Mass Model 

The first quantitative self oscillating model was created by Flanagan and 

Landgraf (1968). The cords were modelled as single opposing masses fixed to the 

lateral laryngeal wall by nonlinear (cubic) springs and nonlinear dampers. Only lateral 

displacement was allowed. The external flow-induced force applied to the masses was 

determined by the pressure in the cavity between the opposing folds. The pressure was 

a function of the nonlinear resistance to the flow, which was in turn determined by 
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the cross-sectional area through which the flow occurred. Since the cross-sectional area 

was dependent on the position of the masses, a feedback relationship was created 

between the flow induced force and the tissue displacements. 

A transmission line model of the vocal tract was concatenated to the 

Flanagan-Landgraf model allowing interaction between the vocal folds and the vocal 

tract. The model was self contained with excitation being provided by the constant 

lung pressure source. The one-mass model was successful in demonstrating sustained 

oscillation, but failed to oscillate for a capacitive vocal tract load and was incapable of 

demonstrating vertical phasing (a mode of vibration in which the upstream and 

downstream parts of the cords vibrate with a phase difference). 

1.3.4 Two Mass Models 

To incorporate these details, multiple mass models were developed with one of 

the most successful being a two mass model, (Ishizaka and Matsudaira, 1968, 1972), 

where the masses were aligned in the direction of flow so as to represent the upper 

and lower margins of the medial, or inner surface. The separation of the upper and 

lower margins enabled the model to simulate the travelling mucosal wave. 

Ishizaka and Matsudaira's work was extended by Ishizaka and Flanagan (1972) 

who incorporated glottal impedance equations that included the inertial impedance of 

the air in the glottis. Fig 1.1 is a schematic, in frontal cross section, of their two 

mass approximation The parameters in the diagram represent various mass, spring, and 

damping constants, as well as pressures at various points (Pij) in the system. 

1.3.5 Longitudinally Distributed Masses 

Ishizaka and Flanagan's work was further extended by Titze (1973, 1974) who 

introduced longitudinally distributed masses to create a • cord-like coupled mass system. 



5 

s u b g l o t t i s P s g 

F r o n t a l s e c t i o n o f m o d e l 
f o r t h e i t h m a s s 

Figl.l Ishizaka-Flanagan two mass model. After Ishizaka and Flanagan, (1972). 

According to Titze each vocal fold could be thought of as two strings in the 

longitudinal direction (normal to the flow, see Figl.2) with unequal tensions and mass 

densities, coupled together, and fixed to the walls of the larynx. (In comparison, 

Ishizaka and Flanagan used single masses for each string and did not attach the string 

end points to the larynx). 

The cords were physiologically associated with the epithelial mucous membrane 

and the vocalis muscle-ligament combination respectively. The longitudinal tensions in 

the strings restricted movement by acting in the lateral (x) and vertical (z) direction 

but not in the longitudinal (y) direction. 

Titze observed, however, that for normal phonation the upper margin (mucosal 

string) started at the same vertical level as the vocalis string but moved to the region 

above the vocalis as soon as phonation started and remained above throughout 

phonation - indicating that the vertical degree of freedom was unnecessary (ie for 
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Figl.2 Multiple Mass Model Used by Titze. After Titze, (1973) 

normal phonauon the behaviour of Titze's model was exactly the same as Ishizaka and 

Flanagan's). 

The distribution of mass in the longitudinal dimension provided the flexibility 

to examine higher "string" modes of vibration that have been observed in films of 

the larynx. It also enabled localised parameter values to be used so that localised 

pathologies could be simulated. Unfortunately very little experimentation with pathology 

simulation was performed by Titze. 

The only well documented study that has examined pathologies through the use 

of a computational model has been by Isshiki and Ishizaka (1976), using Ishizaka and 

Flanagan's two mass model. Their study was essentially one of observation with very 

little analytical results. They achieved some perturbation phenomena but could not 

account for its presence beyond stating that it was a nonlinear phenomena requiring 

asymmetric parameters. The study was also limited because there' was no mass 
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distribution in the longitudinal direction. 

1.3.6 Continuum Models 

Two other models of note have been developed in recent years - one using 

finite difference techniques (Titze 1979), the other using finite element techniques (Titze 

and Haghighi, 1983). The finite difference model was three dimensional and used 

normal and shear stresses in a three-layered structure as biomechanical parameters. The 

parameters were made linear, however, and not cubic as in the discrete element 

models. Another drawback was that it was computationally expensive, requiring the 

solution to large matrix equations due to large regular mesh sizes. 

The finite element model is the present state of the art, but it has not yet 

been refined, existing only as a two dimensional planar model. It is also 

computationally more expensive than the discrete model, although the ability to use 

irregular mesh sizes makes it faster than the finite difference technique. 

1.3.7 The Proposed Model 

In this study, we restricted ourselves to a discrete element model because it was felt 

that: 

finite difference and finite element models were computationally expensive 

the finite element model was only two dimensional and no software packages 

for three dimensional finite elements were available 

the existing finite difference model only used linear stress strain equations 

the discrete element model had already successfully produced some 

perturbations (Isshiki and Ishizaka, 1976). 

Since the Isshiki-Ishizaka (1976) and Titze (1973) models were both partially 

successful, it was felt that a contribution could be made to the understanding of 
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pathologies by developing a model which combined features from both models - with 

attention focused on the examination of asymmetric and localised pathologies through 

the use of mass and stiffness changes. It was also felt that a mathematical analysis 

could be made using the simple lumped element model that would identify the 

physical reasons for self oscillation and perturbation phenomena. 

1.4. Aims of the Study 

The goals that have been chosen for this study are: 

to establish a computer model of the vocal folds which is reasonably close to 

physiology 

to make the model flexible enough so that asymmetric and localised 

abnormalities of biomechanical parameters can be simulated 

to explain phenomena that have occured in these and other results, using 

nonlinear oscillation theory. 

1.5. Thesis Organisation 

The following chapters discuss various aspects of vocal fold modelling such as 

physiology, choice and implementation of the model, choice of parameters, analysis and 

validation of the model, and discussion of the results with respect to expected 

mathematical behaviour, as well as in comparison to observed results. 

Chapter two introduces the physiology of the larynx and examines the vocal 

fold's role as a vibrator during phonation. Pathologies are briefly discussed so that the 

link between organic changes and analogous mechanical changes is established. 

Chapter three discusses the phonatory system in terms of the physics involved 

and presents the mathematical relationships required to achieve a continuous time 

model. 
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Chapter four presents the results of the simulations and discusses them in 

comparison to results obtained from other models and to clinical experiments. 

Chapter five analyses the results mathematically to show why one might 

deterministically expect perturbations to occur under certain conditions. 

Chapter six, the concluding chapter, presents the major findings and suggests 

future work. 



CHAPTER 2 

VOCAL FOLD PHYSIOLOGY AND ANATOMY 

In this chapter we examine the anatomy and physiology of the phonatory 

organs, the vocal fold's structural suitability for vibration, and the process through 

which phonation is achieved. By reviewing the physiology, the formulation of the 

proposed model will be made concrete. 

The following description is adapted from Hirano (1980). It is abridged so as 

to include only the basics required for understanding the form and function of" the 

musculature. 

2.1. Brief Overview 

The production of continuous speech requires complex and precise control of 

the peripheral phonatory organs by the central nervous system and other self-regulated 

subsystems. The phonatory organs include the pulmonary system, intrinsic and extrinsic 

laryngeal musculature, and jaw and lip articulators. 

In this discussion, the speech signal is limited to voiced sounds since these 

sounds utilise the vocal folds heavily without complications due to movement of the 

vocal tract or to nasal tract coupling through the velum (though coupling to the vocal 

tract and subglottal tract are expected). The vibratory pattern of the folds can then be 

observed in relative isolation under steady state conditions. 

2.2. Control 

10 
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During speech, the speech centre of the cerebral cortex determines the sequence 

of sounds to be produced. Commands from this high order centre are transmitted to 

the motor cortex, which are linked by the motor nerves to the spinal cord. Nerves in 

the spinal cord distribute the excitations they receive to the respiratory, laryngeal and 

articulatory muscles. Sensors in the phonatory and other peripherally involved organs 

help in Finely regulating the muscles so that the desired sounds are achieved. These 

feedback sensors are auditory as well as mechanoreceptive in nature. 

2.3. Descriptors of Vibration 

According to Hirano (1981) the parameters involved in phonation can be 

divided into three major groups: 

1. Parameters regulating the vibratory pattern 

2. Parameters describing the vibrator)' pattern 

3. Parameters specifying the nature of the sound generated. 

1. Parameters Regulating the Vibratory Pattern 

Regulatory parameters can be either physiological or physical descriptors. 

Physiology alludes to those factors describing phonatory, articulatory and 

respiratory muscle activity. Physical . descriptors are those factors used in 

equations to describe the motion eg. expiratory force, fold position, fold shape, 

elasticity, mass, and tract shape, among others. These primary physical factors 

determine secondary features resulting from the motion eg. the pressure profile 

between the glottal folds, the volume velocity, and the glottal impedance. 

These secondary factors are aerodynamic parameters. 

2. Parameters Describing the Vibratory Pattern 

The vibratory pattern is described by the fundamental period or frequency, 

measures of irregulatories in amplitude or period (shimmer and jitter), wave 



12 

motion descriptors, contact area at glottal closure, and glottal area waveforms 

(the area through which air flows). 

3. Parameters Specifying the Nature of the Sound Generated 

The nature of the resulting sound output wave is largely determined by the 

vocal fold vibration pattern, which determines the flow through the vocal tract. 

The speech output is specified in acoustic or psychoacoustic terms. The 

acoustic parameters are fundamental frequency, intensity, and frequency 

spectrum, and the psychoacoustic parameters are pitch, loudness and voice 

quality. 

2.4. Macro Anatomy of the Laryngeal Musculature 

The human larynx is located near the base of the neck, linking the trachea to 

the vocal tract Two fleshy folds align longitudinally along the posterior-anterior 

direction in the throat to form the larynx, and their function is to control the glottal 

constriction The dominant function of the larynx is to act as a valve to control air 

flow to and from the lungs during respiration. A secondary function is phonation. 

During phonation the folds act like a membranous constriction across the air 

passage with a slit at the centre. Steady pressure from below the larynx sets the 

flexible folds into vibratory motion, and the surrounding musculature fine tunes the 

control. The larynx consists of soft tissues supported by a skeleton of semirigid 

cartilages able to undergo limited movement Movement of the cartilages is controlled 

by the intrinsic and extrinsic laryngeal muscles which align the cartilages in certain 

positions suitable for specific tasks such as swallowing or phonation. The intrinsic 

muscles affect the biomechanical properties of the folds, adjusting the shape, position 

and elasticity. Once this is achieved, the intrinsic muscles will then interact passively 

with the intraglottal air pressure to maintain phonation. The cartilages remain fixed as 
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long as steady phonation is desired, but once new sounds are required, the extrinsic 

muscles readjust the cartilage skeleton. 

2.4.1 Intrinsic Muscle Functions 

The following descriptions refer to Fig 2.1 

1. Cricothyroid (CT) - When the CT contracts the folds are brought 

paramedially into the centre to line up with the posterior cricoarytenoid (PCA) 

and the anterior commisure. The entire vocal fold is stretched, elongated and 

thinned, causing the medial edge to be sharp. Mechanically, all layers are 

stiffened and the airway is opened in a triangular shape. 

2. Vocalis (VOC) - Contraction of the vocalis muscle adducts the folds making 

them shorter and thicker, with a rounded edge. The body of the fold is 

actively stiffened while the covering layer is passively slackened. The airway is 

completely sealed. 

3. Lateral Cricoarytenoid (LCA) - Activation of this muscle brings the fold in 

medially, but lowers the tip of the vocal process of the arytenoid cartilage, 

causing the fold to elongate and become thinner. All layers are passively 

stiffened. There is a very small glottal chink present below the arytenoid 

cartilage. 

4. Interarytenoid (IA) - Contraction of the IA adducts the arytenoid cartilage 

without changing the mechanical properties of the folds. The airway is not 

fully sealed. 

5. Posterior Cricoarytenoid (PCA) - The tip of the vocal process of the 

arytenoid cartilage is abducted and elevated, causing the fold to be lifted at 

the posterior end. The fold is thinned but the edge is rounded. Mechanically, 

contraction of the PCA causes all layers to be passively stiffened resulting in 

poor abduction. 



14 

Fig2.1 A schematic of laryngeal muscle cartilage function (After Hirano, 1981); 1. 
thyroid cartilage; 2. cricoid cartilage; 3. arytenoid cartilage; 4. vocal ligament; 5. 

posterior cricoarytenoid ligament 
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Before phonation, the combined activity of all these muscles controls the initial 

position of the fold, and during phonation the muscles regulate the tissue stiffness. 

2.5. Tissue Structure 

Humans possess the ability to phonate over a wide, continuous range of 

fundamental frequencies, intensities, and qualities. This ' is achieved in musical 

instruments by using multiple strings, whereas in humans it occurs with just a single 

pair of folds. 

One reason for this remarkable ability is the intrinsic muscle control of the 

cartilage frame of the larynx. Because so many muscles are involved, a large variety 

of pre-phonatory shapes can be established. 

Another more important reason, however, is the layered structure of the internal 

tissue of the cord. Hirano (1977, 1979) found that the human vocal fold consists of 

five layers - a vocalis muscle, and a mucous membrane (mucosa) consisting of four 

sublayers, which covers the vocalis. The layers are oriented longitudinally, making it 

easier for vibrations to occur laterally in string, or cord like modes, and each layer 

can have different biomechanical parameter values for stiffness, damping, mass, and 

volume, thus enabling the fold to exhibit a wide variety of properties. 

The vocalis, which can be likened to stiff rubber bands oriented longitudinally, 

makes up the bulk of the mass of the vocal fold. 

The mucosa is subdivided into the epithelium and three other layers, which are 

known together as the lamina propria. 

The epithelium, which consists of stratified squamous cells, is very thin and 

stiff (longitudinally), and its purpose is to maintain the shape of the fold. 

The three layers which make up the lamina propria are; the superficial layer 
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which contains loose fibrous components and has a consistency of soft gelatin; 

the intermediate layer which contains elastic fibers and can be compared to a 

bundle of soft rubber bands oriented longitudinally; and the deepest layer 

which consists almost entirely of collagenous fibers which are less flexible than 

the more superficial layers and mechanically comparable to bundles of cotton 

thread, again oriented longitudinally. The intermediate and deep layer of the 

lamina propria are commonly grouped together as the vocal ligament (see 

Fig2.2). 

mucosa 

opening phase 

Fig2.2 Vocal fold tissue structure 

The continuum model of Titze and Talkin (1979) treats the five layers 

as three: the cover - made up of the epithelium and the superficial lamina 

propria; the . transition or ligament consisting of the intermediate and deep 

layers; and the body, consisting of the vocalis muscle. Each layer can have 

different biomechanical parameter values for stiffness, damping, mass, and 

volume. This enables the vocal fold to exhibit a wide variety of properties. 
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The longitudinal orientation of the various layers aids in vibration, 

making it easier for vibrations to occur laterally in string, or cord-like modes. 

The layered structure, however, is not uniform along the length of the vocal 

fold. At the anterior and posterior endpoints, the fold is strengthened by 

masses of collagenous fibers and other elastic fibers. These fibers protect 

against the stresses that occur during vibration, while the relative lack of 

collagenous fibres in the centre (longitudinally speaking) makes the centre part 

the most pliant 

Control of these properties is passive in the epithelial and lamina 

propria layers, and both active and passive for the vocalis. This means that 

the vocalis is able to control its stiffness by its own contraction, whereas the 

epithelium and lamina propria are externally controlled by the action of the 

intrinsic and extrinsic muscles as the cartilages are manoeuvered about In 

summary, we observe that the tissue structure is conducive to vibration. The 

parallel orientation of the fibres permits string-like vibration modes, and the 

multiple layered structure, with control by a number of muscles, allows a 

wide range of frequencies to be produced. The fact that the outermost 

mucosal layer is jelly-like permits travelling waves, which move vertically from 

the sublaryngeal surface to the supralaryngeal surface of the larynx, to occur. 

Work by Baer (1975) in the area of high speed cinematography and Stevens 

(1977) in laryngeal modelling has shown this to be the case. 

2.6. Pathologies 

Pathologies of the vocal folds can be placed in two broad 

classifications - organic and functional. 
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An organic disease is a pathology which results in a vocal fold with 

tissue properties that are abnormal. This classification is further divided into 

mass lesions where growths are present, and neurological pathologies where the 

local nerve fibers and motor units are abnormal, resulting in disturbed 

feedback control. 

For functional dysphonia, the origin is not organic. The cause is 

usually psychological, indicating that control of the voice is altered abnormally 

at a higher level of control (ie. the brain). 

In sections 2.6.1 and 2.6.2 we discuss a few of the major pathologies, 

their etiology, and the likely mechanical changes caused by them. The 

discussion is limited to organic pathologies. 

2.6.1 Mass Lesions 

Mass lesions of the vocal folds can occur at any age, but here we 

limit ourselves to adult disorders. Any of the following changes in the folds 

can be produced by a mass lesion -

an increase in the mass of the fold and surrounding tissue 

an alteration in the shape of the fold and the airway 

restricted mobility - possibly preventing complete closure 

a change in the tension in the fold - possibly causing excessive tightness at 

closure. 

a change in elasticity and viscosity 

Examples of pathologies with mass lesions are: 

Nodules - bilateral fleshy masses arising on the outer mucosal layer. They 

are usually one symptom of muscular tension dysphonia (MTD) (Morrison et 

al, 1983), the other signs being excessive tension of the arytenoid, 
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para-laryngeal and suprahyoid (extrinsic) muscles, and a posterior glottic chink 

(incomplete closure at one end even when the folds are fully adducted). The 

lesion often consists of fibrous matter. It remains on the surface layer and 

does not penetrate the vocal ligament In biomechanical terms, mass and 

stiffness of the outer layer around the lesion is increased, with other layers 

unaffected. The glottal chink is a position of the folds where the posterior 

section, from the nodules to the arytenoid cartilages, never closes, even during 

phonation. This leads to a breathy and harsh quality in the voice. In general, 

MTD and the resulting nodules will occur in people who use the voice 

excessively in stressful conditions eg. singers and teachers. Nodules arise from 

the reaction of the tissue to abnormally forceful collisions of the folds. 

Chronic laryngitis is one specific manifestation of MTD. Because the cause of 

the nodules is not organic, removal from stress usually aids in recovery, 

(b) Carcinoma (cancer) - in almost all cases (Aronson, 1980), carcinoma originates 

in the epithelium. It is not restricted to this area however, and being 

malignant, it rapidly invades the ligament and vocalis, eventually consuming 

the entire vocal fold and beyond, increasing the mass and stiffness of any 

layer it invades. Hoarseness is usually the initially perceived symptom. 

Mechanically, a notable feature of carcinoma is that its effects are asymmetric 

and it may develope as a local lesion or it may consume the whole fold. 

2.6.2 Neurologic Diseases 

As discussed earlier neurophysiological control is necessary for maintaining 

phonation. Abductor-adductor muscle contractions maintain the tone of the vocal fold, 

keeping tension relatively constant optimal and bilaterally symmetric. 
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Abnormal voice is inevitable when a disease attacks the neural system 

responsible for fine tuning phonation. The manifestations of abnormal voice may vary 

widely depending on the location of the lesion on the nervous system. 

Neurological disorders can produce a consistent or a variable response in the 

acoustic signal, depending on whether the disease produces a constant or a fluctuating 

abnormal vocal fold oscillation. Here we discuss two examples where the effects are 

always present For those disorders with a consistent response, a certain voice quality, 

loudness, and intensity, while abnormal, is always present 

An example of this is Parkinson's disease, or hypokinetic dysphonia. The 

patient's voice is breathy (due to possible incomplete bilateral closure), reduced in 

intensity, and reduced in pitch range. Nerve damage inhibits lower motor neurons 

causing rigidity and slowness of response in the laryngeal and respiratory musculature, 

explaining why the patient cannot achieve a wide frequency range or vary stress 

patterns. Biomechanically we might assume increased longitudinal stiffness over the 

entire length of both of the folds. 

Another example of a constant disorder is flaccid dysphonia or laryngeal 

paralysis. With this disorder, the lesion can occur anywhere along the vagus nerve, 

with the exact position determining the degree of impairment The disease causes 

bilateral or unilateral paralysis of the laryngeal muscles. The vocal fold becomes fixed, 

often resulting in incomplete closure during vibration. Other symptoms of paralysis are 

breathy voice, reduced intensity, and poor maximum phonation times. (An interesting 

feature which commonly occurs in unilateral paralysis is diplophonia. This is the 

simultaneous perception of two pitches. Less common is triplophonia, the perception of 

three pitches.) The mucosa is left unaffected by the muscle paralysis. Mechanically, the 

mass and stiffness of the body is decreased as the muscle atrophies. The cover and 

ligament, however, are not affected. 
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2.7. Summary 

The process of phonation is controlled by a number of systems; 

the brain 

the auditory feedback system 

the laryngeal cartilage system 

and the mechanoreceptor feedback system. 

• Parameters describing phonation and vibration can be classified into three major 

groups; 

vibratory regulators 

vibratory descriptors 

voice output descriptors 

The macro anatomy of the laryngeal musculature and the vocal fold tissue's 

structure is conducive to vibration. 

The following pathologies have been described and possible biomechanical 

changes noted; 

nodules 

cancer 

Parkinson's disease 

and laryngeal paralysis. 



CHAPTER 3 

MODELLING THE VOCAL FOLD AND ITS VIBRATIONS 

In this chapter we discuss the physics through which oscillation is maintained 

and present the proposed model. The first section describes the vibration, the next 

seven present the equations involved and their implementation, and the last section 

briefly describes the underlying phenomena that maintains oscillation. 

Equations are drawn from fluid dynamics, mass-spring dynamical systems, and 

network theory, based on work by Fant (1960), Ishizaka and Flanagan (1972), and 

Titze (1973). 

3.1. A Description of Vibration 

During phonation, air leaves the lungs as a constant pressure source and is 

forced between the vocal folds. The interaction between the air as it passes through 

the glottis and the internal tensile forces in the vocal fold tissue results in sustained 

vibration. The amplitude of vibration causes the opposing folds to collide and seal the 

airway periodically, resulting in a train of flow pulses. The pressures between the folds 

at any instant are a function of the flow, and the external forces on the tissue are 

generated from these pressures. 

Farnsworth (1940) produced some of the first photographs of vibrating vocal 

cords using high speed cinematography, capturing features of the vibratory pattern lost 

to stroboscopy. For phonation in the chest register (normal male phonation) he 

observed the medial surface of the folds to be relatively blunt and rounded, allowing 

contact with the opposing fold to occur over a vertical surface of several millimeters. 

22 



23 

In a relaxed state, with closure occurring over several millimeters, the cords begin to 

open from below, and the opening progresses upward and outward. This vertical phase 

difference in upper and lower margins occurs simultaneously with the larger, dominant 

transverse motion, permitting the passage of air. The phase difference is the result of 

the mucosal fluid, which moves from the medial glottal to the supraglottal surfaces. 

The motion of the vocal folds is a semi-passive response to the air flow. This 

concept is known as the myoelastic-aerodynamic theory of phonation, first discussed by 

Ferrein (1741) and later formulated in physical terms by Van den Berg (1958). 

3.2. Structure of the Model 

The proposed model is a hybrid of the Titze (1973) and Ishizaka-Flanagan 

(1972) models - distributing masses longitudinally, but permitting only one degree of 

freedom per mass (in the lateral direction) as in the Ishizaka-Flanagan model. Vertical 

motion is not permitted. 

Fig 3.1 is an elevated view of the vocal cords, the frontal section appearing as 

for Fig 1.1. Masses m m and m y represent the upper and lower margins of the medial 

surface. They are connected to the wall by nonlinear springs k f f l and ky, representing 

the stiffness of the tissue, and dampers d m and d y, representing the viscous resistance 

of the tissue. The masses are coupled together by a nonlinear spring stiffness k£. 

Aerodynamic pressures (indicated as Pij in Fig 1.1) are time and area 

dependent functions. The areas A y and A m are cross sectional and provide passage for 

the flow. T y and T m are the longitudinal tensions for the vocalis (lower) and mucosa 

(upper) regions respectively. 

The rest of the transverse couplings in Fig 3.1 are not shown in order to 

preserve clarity. Large particle displacements are permitted and the end points of the 
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t z ( v e r t i c a l ) 
mucosa 

t h r o a t wa 
v o c a l i s 

11 

i h r o a t w a l l 

t h r o a t w a l l * x ( l a t e r a l ) 

M u l t i p l e mass d i s c r e t e model 

Fig3.1 Elevated view 

longitudinal tension "strings" are fixed. Five masses per row has been chosen to 

minimise the computation effort, yet it permits localisation of parameter values. The 

number of longitudinal eigen modes has been reduced from infinity (for a continuum 

model) to a maximum of five. This is justifiable since the energy in higher modes 

should be negligible. With five masses, it is expected that at least the first three 

modes will be represented well. 

3.3. Nature of the Tensile Forces 
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3.3.1 Lateral springs 

Referring to Fig 3.1, kc> the coupling spring between the upper and lower 

margins, represents the attachment between the epithelium holding the mucosal fluid 

and the underlying muscle. The springs k y and k m are an equivalent lateral tension 

caused by the contraction of the intrinsic muscles. They are given a nonlinear cubic 

characteristic to match the stiffnesses measured by Kaneko (1968). The lateral forces 

are thus of the form (Ishizaka and Flanagan, 1972): 

F. = k ( Ax + 77 Ax 3 ) kv vv v 'v v ' 

F, = k ( Ax + T? Ax 3 ) km nr m 'm m ' 

F, = k ( (x - x ) + 77 (x - x )3 ) ...(3.1) kc cv v v nr 'cv v nr ' ...w-^ 

where Ax is the relative displacement from initial positions. These stiffness functions 

are known as cubic hardening functions for positive r\. 

During closure, the masses collide together, generating extra forces that push 

the masses back to equilibrium. This tensile deformation is represented as an extra 

spring force occurring only during collision ie. 

F , = h ( Ax + 7? Ax 3 ) vcol vv cv 'v cv ' 

F , = h Ax + 7? Ax 3 ) ...(3.2) mcol m cm 'v cm ' v ' 

where Ax and x are the relative distances past the point of initial collision 
cv cm r r 

contact 

3.3.2 Longitudinal Forces 

The forces caused by the longitudinal strings are more complicated, and depend 

on the relative positions of adjacent masses. Consider the free body diagram of the 



ith mucosal mass in Fig3.2 
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Fern ( i ) 

F k c ( i ) 

T m ( i ) 

Tm ( i + l ) 

> F k m ( i ) 

> F d m ( i ) 

Fig3.2 Free body diagTam of ith mucosal mass 

T (i) and T (i + l) are the forces generated by the relative movement m m 

between adjacent masses.They produce components in the y and x dimension. As in 

Titze (1973), and Titze (1979) the masses have no motion in the y direction, so the 

effective contribution from T (i) (and T (i+l)) is the sinusoid of the angle created 
m m 

between the mass positions (Fig3.3). Thus, 

W 1 * = T m < « ?m<™ ' \ n ® r m « 
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F (i) = T (i + l)[ x (i + l) - x (i) ]/ r (i + l) ....(3.3) tmpv' nr ' m ' m w J nr ' v ' 

r (i) is the shortest distance between the masses m(i) and m(i-l) (w, the 

longitudinal width of each mass is constant). Subscripts a and p indicate anterior and 

posterior positions relative to the i ^ 1 mass. 

F t m a ( i ) 

r m ( i ) \ T m ( i ) 

y A 

xm ( i ) xm ( i - l T 

Fig3.3 components of the longitudinal forces 

T (i) Is a nonlinear function of the relative strain between the adjacent masses, m 
Van den Berg (1960), Hirano (1979), and Kaneko (1968) have made studies of the 

elastic properties of the various types of tissues in excised human larynges, and have 

shown that the general stress-strain characteristic is of the form 

S= S (1 - e" T / T) max v ..(3.4) 

where T is the tension in g/cmJ, S is the maximum strain, T is a stress constant 
iXLclX 

in g/cmJ, and S is the unknown strain (Titze, 1973). The above equation can be 
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rearranged to calculate T, giving 

T = ±gTln( 1 - |S|/Smax )th.dep ...(3.5) 

Where T is now measured in dynes, g is gravity in cm/s2, and th and dep are 

thickness and depth dimensions which give the cross sectional area through which T 

normally acts. The ± sign indicates that compression and expansion can occur, 

depending on the strain. When strain S is positive, the negative sign is used to make 

T positive since the logarithm will always be negative. Conversely, when S is negative, 

the positive sign is used. 

For the mucosa then, 

T (i) = ±gth (i)dep (i) T ln( 1 - IS (i)|/S ) ...(3.6) n r ' 6 n r ' F n r ' m v 1 nr 7 1 mmax ' v ' 

where i= 1....5 masses 

T (i) is more complicated because the effects of the ligament and the muscle 

are combined, along with a constant tension T which is present regardless of the 

strain. T can be thought of as the stress due to vocalis muscle contraction, varying 
cLCl 

from about zero to 1000 g/cm2 (10 g/mm2) (Van den Berg, 1958). For steady 

phonation, T . is constant T is thus r act v 

T v(i) = ±gthi(i)dep1(i) Tjln( 1 - |S y(i)|/S l m a x ) + gthy(i) dep v(i)T a c t 

±gthv(i)depv(i) r y ln( 1 - |S y(i)|/S v m a x ) ...(3.7) 

Fig 3.4 graphs the tensions from equation 3.7 for the following parameter values; 

thj = 0.1 cm 

th = 0.3 cm 
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depj = 0.1 cm 

depv = 0.3 cm 

Tj = 800 g/cm2 

T y = 300 g/cm2 

g = 981 cm/s2 

Tact = 1 5 0 S / c m J 

Slmax = ° - 4 

S = 0.8 vmax 

The strains are calculated from nearest neighbour distances, r(i). Hence, from Fig 3.3 

r m ( i ) = / [ ( x m ( i _ 1 ) " x m ( i ) ) 2 + w ' ] 

ry(i) = • [ (xy(i-l) - xy(i))2 + w2 ] ...(3.8) 

and S (i) = (r (i) - r (i))/ r (i) nr ' v nr ' mov " mo v' 

S (i) = (r (i) - r (i))/ r (i) v w v v v ' vo vo ...(3.9) 

where r (i) and rvQ(i) are the original nearest neighbour distances. The pre-phonatory 

displacements for each of the masses need not be of the same value, permitting 

triangular, rectangular, or elliptical longitudinal shapes to be used. It should be noted 

from Fig 3.4 that the vocalis strain S y will never exceed 0.4 as the tension T y will 

reach infinity at 0.4. 

3.4. Damping Forces 

The damping forces arise because of the viscous resistance to movement within 

and between tissues. In a similar fashion to Titze (1973), the damping coefficients are 

calculated from the equations: 



teisioi ((•) 

Fig3.4 Stress-strain characteristic of Tv. After Titze, (1973) 
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dy(i) = 2p y(iy [ my( ky(i) + kc(i) + |Tv(i)|/rv(i) + |T v(i + l)|/r v(i + l) ) ] 

d (i) = 2p (iV [ m ( k (i) + k (i) + IT (i)|/r (i) + IT (i + l)|/r (i + l) ) ] m w y mv A 1 nr nr' c v' 1 n r n n r ' 1 nr 71 nr 7 ' J 

...(3.10) 

Equations 3.10 aie derived from the equation for critical damping for a simple 

mechanical vibrator ie.; 

d = V(mk) 

except that for a body surrounded by springs the equivalent k is the sum of the 

spring constants, regardless of the direction in which they act. Thus, T v(i)/r v(i) and 

T (i+l)/r (i+l) are the equivalent spring stiffnesses in the tension string, k v and kc 

are the linear components of the lateral stiffness constants, and p y and p m are the 

damping factors for the vocalis muscle and for the mucosal layer respectively. 

3.5. Summary of Tissue Forces 

Let us now collate the tensile and damping forces. 

From equation 3.10, the damping forces are: 

F d v (0 = -d v0)xv(i) 

Fdm(i) = - V i ) i m ( i ) 

From equation 3.7, 3.8, and 3.9, the longitudinal contributions to the tensile forces are: 

Ftva ( i ) = Tv ( i ) [ ( xv ( i - 1 ) ' xv ( i ) ) / rv ( i ) ]  

Ftvp ( i ) = Tv ( i + 1 ) [ ( xv ( i + 1 ) " V ^ V 1 ) ]  

Ftma« = T m » ' V*" 1) " xm«> / rm« J 
Ftmp« = Tm<i+1> I <xm<i+1> " xm«) / rm« 1 
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From equation 3.1 the lateral spring forces are: 

F k v(i) = ky(i)[ (xy(i) - xvo(i)) + rjv(xv(i) - xyo(i))3 ] 

F, (i) = k (i)[ (x (i) - x (i)) + TJ (x (i) - x (i))3 ] km v ' m w l v m w mov " ' nr m v ' mov " J 

F k c(i) = kc(i)[ (xm(i) - xv(i)) + Tjc(xm(i) - xy(i))3 ] ...(3.13) 

The additional forces during collision are, from equation 3.2 : 

F v c o l ( i ) = (\<0 - V o l » > + W V ^ " V o l « ) 3 ^ 

F m c o l « = - W ' » + W ' m ® ~ J "<3-14> 

where: 

xvcQj(i), and x

m c o ](0 are the displacements when the medial surfaces first 

collide. 

xyo(i) and x

m o ( 0 aTe the initial pre-phonatory displacements 

The dynamic equations for any mass pair (vocalis and mucosa) are then: 

m x (i) = F . (i) + Ft (i) + F, (i) + F, (i) + F, (i) + F ,(i) + v vv dv v' tva tvp kv kc vcol 

F (i) ev v' 
mm*mM = F^Ci) + F ^ i ) + F ^ i ) + F ^ i ) - F ^ i ) + F ^ i ) + 

F (i) enr' 

...(3.15) 

where F (i) and F „( i ) are the external forces generated by the flow. These forces ev x' em 

are discussed in the next section. 

3.6. Derivation of Flow Induced Pressures 

The external forces arise due to air flow from the lungs. Expressions can be 

derived for the pressures on the medial surfaces using fluid mechanics. There are 
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several significant phenomena dictating the form of the expressions and these are; 

1. The size of the glottis and fold. 

Typically the dimensions of the vocal folds are 1.5 cm long, 0.3 cm thick, 

and 0.3 cm deep. The glottal opening is 1.5 cm long and up to 0.3 cm 

wide. These dimensions are much smaller than the fundamental frequency 

wavelengths in phonation (for f < 4000 Hz, the wavelength is > 10 cm), 

and so one dimensional planar waves are commonly assumed. 

2. Gas compressibility. 

The compressibility of a gas flowing through an orifice can be neglected if 

the ratio of orifice to atmospheric pressure is less than 0.01 (Ishizaka and 

Matsudaira, 1972). Based on Ishizaka and Matsudaira's work, this ratio is 0.008 

for the vocal fold constriction. 

3. Viscous resistance. 

Schiller (1922) calculated that for smooth pipes, the critical Reynolds number 

for turbulence is 

Re = vilv - 1160 

where r is the pipe radius, v is the average velocity of flow, and v is the 

kinematic viscosity of air, or c = v/p where u is the shear viscosity and 

p is the density of the fluid. Ishizaka and Matsudaira established a Reynolds 

number of Re= 1150, and assumed that laminar flow occurred within the 

constriction. The flow was analogous to that between two parallel plates 

separated by a small distance h (the distance between the left and right 

medial surfaces). A pressure drop due to viscous resistance was calculated as 

= Ry(i)U(i) + Rm(i)U(i) ...(3.16) 
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where Ry(i) = [12Mthv(i)w3]/ Ay(i)3 

and Rm(i) = [12Mthm(i)w2]/ 

4. Presence of a Vena Contracla. 

When the cross-sectional area from the subglottal to the glottal region 

contracts rapidly a vena contracta is produced, causing a greater loss in energy 

and pressure than would be expected from a less rapid transition. Van den 

Berg, Zanteema and Doornenbal (1957) empirically determined a loss factor for 

the drop in pressure between the subglottal cross-section and the entrance to 

the glottis to be 

Rc(i)Ug(i)2 ...(3.17) 

where R£(i) = 1.37p/ (Ay(i)J). 

p is the air density, U (̂i) is the glottal flow for the i ^ branch, Ay(i) is the 

cross sectional area at the entrance, and 1.37 is an empirical constant. According to 

Ishizaka and Matsudaira, the vena contracta is indicative of turbulent flow. 

5. Pressure Recovery 

At the exit of the upper medial surface, there is a pressure recovery as the 

flow leaves the constriction and enters the first supraglottal chamber. Ishizaka 

and Matsudaira have determined an expansion coefficient that is dependent on 

the area ratio ie 

a = ( 1 - 5Am(i)/A„ y 

where A m is the constriction area, and A 0 is the supraglottal chamber area. 

The increase in pressure due to expansion is thus 

= R£(i)Ug(i)2 ...(3.18) 
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where i y i ) = (1 - 5Am(i)/A0)2(p/2)/Am(i)J 

6. Pressure Discontinuity 

At the juncture of the upper and lower medial surfaces, the discretisation 

from a continuously diverging or converging glottis to one with just two areas 

causes a discontinuity in the pressure and velocity. Assuming a continuous 

flow, 

U (i) = A (i)v (i) = A (i)v (i) 

where v_(i) and v (i) are the velocities of flow in the mucosal and vocalis m v 

chambers. The change in kinetic energy due to the change in pressure 

(Ishizaka and Matsudaira, 1968) is: 

= P( vy(i)3 - vm(i)2 )/2 = Rt(i)Ug(i)2 

where Rt(i) = p( 1/Am(i)2 - l/A y(i) J )(02 -(3.19) 

7. Flow Inertia 

Because the cords oscillate, the flow will vary with time. We can thus 

calculate a change in pressure due to the inertance of the air mass within 

the cord and the time varying flow (Ishizaka And Matsudaira, 1968). The 

change due to air inertia is: 

= Ly(i)dUg(i)/dt + Lm(i)dUg(i)/dt 

where Ly(i) = pthy(i)/ Ay(i) and 

L m 0) = Pthm(i)/ A f f l(i) ...(3.20) 

Depending on dU (i)/dt, the pressure change in equation 3.20 may be a gain or a 
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loss. Because the areas at the entrance and exit of the glottis are large, the inertances 

at the contraction and expansion are small enough to neglect. 

3.6.1 Summary of Flow Induced Forces 

Collating the presssure changes due to the contraction, internal glottis and 

expansion, a pressure distribution can be found (Ishizaka and Flanagan,1972) 

The resulting pressure profile is thus: 

P s - P n(i) = R c(i)U g(i) J 

Pi.(i) - P»(0 = R v(i)U g(i) + Ly(i)dUg(i)/dt 

P»(0 - Pu(i) = R t(i)U g(i) 2 

P2.(i) - P»0) = Rm (0U g(i) + L m(i)dU g(i)/dt 

P„(i) - P, = R e(i)U g(i) J ...(3.21) 

where the pressure points are shown in Fig 1.1. From this, 

F e v(i) = (P»(i) + P„(i))wthv(i)/2 

F e m ( i ) = (P21(i) + P„(i))wthm(i)/2 ...(3.22) 

When closure occurs, there is no flow. This is modelled by increasing the 

glottal impedances to a very large value. There are, however, aerodynamic forces 

generated during collision in addition to those due to the collision of the tissues 

(F c Qj). These arise due to the transglottal pressure. The subglottal and post glottal 

pressures are present regardless of closure, building up when the glottis is closed and 

helping to force the masses apart Thus, for different closure conditions (see Fig 3.5) 
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we present alternative equations for F g v , F e m -

(a) u p p e r m a r g i n s e a l e d 

(b) l o w e r m a r g i n s e a l e d 

(c) b o t h m a r g i n s s e a l e d 

Fig3.5 Closure conditions 

(a) when only the upper medial edge is sealed 

F e m « = <Ps - P ° > / 2 

F e y(i) = Psthy(i)w .-(3.23) 

(b) when only the lower medial surface is closed 

F e m « = *'*m®« 

F«,(9 = (pc " P « ) / 2 K®" - ( 3- 2 4 )  

(c) when both surfaces are closed 
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(Ps - P„)/2 [ thm(i)/(thv(i) + thm(i)) ]thm(i)w 

(Pg - P„)/2 [ thv(i)/(thv(i)+thm(i)) ]thv(i)w ...(3.25) 

3.7. Vocal Tract and Subglottis Models 

The vocal tract is represented in this model as a transmission line of 10 

cylindrical, hard walled acoustic tubes, of variable cross-sectional areas and lengths. The 

acoustic impedances are derived by Flanagan (1960) and Ishizaka and Flanagan (1972). 

To account for viscous losses due to friction along the walls, the acoustic resistance 

R is n 

R n = 27rv/(Anp/iW/27r) a l n A n

2 ...(3.26) 

where 

A n is the cross-sectional area 

1 is the tube length 

p is the air density 

M is the kinematic viscosity 

W is the fundamental frequency of the vocal folds (approximated as »/(k /m ) 

a is an empirical attenuation coefficient broadening formant bandwidths, usually 

equal to 25 

The air inertance is approximated as 

L n = pl n/(2A n) ...(3.27) 

F (i) = enr' 

F (i) = ev v' 

and air compressibility is 

C = 1 A /(pcJ) n n n V K ' ...(3.28) 
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where c is the speed of sound. Cfi is a significant impedance since Afi and 1 are 

much larger in the tract than in the glottis. 

The vocal tract is terminated by the lips, which act as an integrator. The load 

is equal to that for a circular piston in an infinite baffle, and is represented by a 

resistance R r a d and inductance in parallel. Flanagan approximates these impedances 

by 

Rrad = 128pc/(9^A rad) ...(3.29) 
and L r a d = 8p/ (3V(7rA r a d)) 

where A r a d is the tube area created by the lips. A network representation of the 

entire system appears in Fig 3.6 

The glottal constriction is coupled to the lungs via the tracheal subglottal tube. 

Ishizaka et al. (1976) estimated the cross-sectional area and length of a tube 

possessing the same acoustic impedance as the lung-trachea subglottal system to be 

equivalent to a simple acoustic tube 20 cm long and 2.5 cm2 in area. In the 

proposed model, the subglottal impedances are defined in the same way as for the 

vocal tract i.e. transmission line resistance, inertance and compliance. 

3.8. Network Representation 

As there are five masses in the longitudinal dimension the glottal branch is 

repeated in parallel five times. Vocal tract and subglottal tract models are then 

concatenated to the glottal model to complete the speech system (see Fig 3.6). It 

should be noted that the glottal impedances are time varying and nonlinear functions 

of the constriction areas while the vocal tract and subglottis impedances are fixed. 

3.9. Implementation Notes 

1. The network in Fig 3.6 was solved using loop analysis. A continuous 
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G l o t t a l i m p e d a n c e Z (Area, t i m e ) 
Bc(l) Lv(i) flv(i) flt(i) La(i) Rod) Re(i) 

• _ 4 " P l l ( i ) P12(i) P21(i) P22(i) V—. P s V •• for 1-1 5 V Po 

Rs Ls LB G l o t t i s 
Z 

R l LI LI R l Rn Ln Ln Rn Lrad 

t « ^T^D 
Rrad 11 i 

Lungs • s u b g l o t t i s Vocal t r a c t Lips 

Fig3.6, Network model of phonation 

language, ACSL, was used with the VAX 11/750 in the Electrical Engineering 

Department to model the system 

2. As the flow pulses have discontinuities due to closure of the glottis, the 

Adams-Moulton variable step integration method was used to maintain accuracy 

and speed. 

3 Solution of the currents in the glottal loop (the five parallel branches) 

requires a matrix solution as instabilities occur when the differential equations 

are solved serially. The following differential equations were derived from 

Fig3.6: 

(a) The subglottal loop; 
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where U gtot 

where 

dU /di = [P, - R V - (1/C (U - U „Jdt ] /L sg L sg sg v sg'-" o v sg gtot' J sg 

...(3.30) 

I Ug(i) 
1 = 1 

(b) The glottal loop; 

[L][dDg] = ( [RlfUg] + [R"][Ug'] + [l/cnr* Ug] 

+ [r](l/C g )/^ Usgdt + [Hd/Cj)/^ Ujdt )/[L"] 

..(3.31) 

= B 

b(i) = [ - ( R s g + R } % U gG) - (Rv(i) + Rm(i))Ug(i) 

t 3 t 5 

+ (1/C )JZ U dt + ( l /C , ) /* U,dt - ( 1/C + 1/C, )L U 0)dt 
S6 O f̂c 1 0 1 sfc 1 j _ , fc 

+ (Rc(i) + Re(i) + Rt(i))U (i)2 ]/( Ly(i) + Lm(i) + L + Lj ) 

..(3.32) 

The right hand side of 3.31 consists of values known from the previous time step. 

The equation is thus of the form [LJdu = E . The [L] matrix elements are 

calculated from the loop equations and are; 

1 al al al al 
a2 1 a2 a2 a2 
a3 a3 a3 a3 a3 
a4 a4 a4 1 a4 

a5 a5 a5 a5 1 
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where 

a i = ( Lsg + L l ) / ( L s g + L i + Lv(0 + L

m « ) -(3.33) 

(c) Vocal tract loops are solved using network loop analysis for k = l 10 

If k=l 

dUj = [ - (R 1 + R 2 )U X - (1/C2)J^ (Uj - U2)dt 

t 5 

- (1/Cj)/^ (Uj -Z Ug(j)dt ]/(Ll + L 2) 

If k= 2,...8 then 

du k = [ -d/c k)/^ <uk - uk_pdt 
" < 1 / C k + 1 < <Uk " U k + l>d t 

" <Rk + R k + l>Uk + 4 + l> 

If k= 9 

d U 9 = f " <Rrad + R9>U9 + RradU10 

- ( 1 / C 9 ) / ^ (U 9 - Ug)dt ] /L 9 

If k= 10 

d U 10 = - <U10 - U9>Rrad / Lrad 

The Rj, L and C are the impedances for the ith vocal tract tube. Once the above 

differential equations are solved, the newly found currents are used to calculate new 

pressure drops and aerodynamic forces. The tissue displacement equations in equation 

3.15 are solved using the aerodynamic forces, and from the displacements the new 
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cross-sectional areas are found. Now the new glottal impedances can be calculated, 

thus completing the cycle. 

3.10. Asymmetric Modelling 

To allow for distinct left and right cords, the equations are duplicated so that 

the cords are modelled separately, but coupled together through the common flow. The 

area through which the flow occurs is calculated as: 

Ay(i) = w( xyl(i) + X v r(i) ) 

A (i) = w( x ,(i) + x (i) ) nr ' v ml v ' mr ' ' 

where the displacement is measured from the midline between the folds. 

3.11. The Underlying Nature of the Aerodynamic Forces 

The pressures generated in the glottis arise from the air flow. Unfortunately, it 

is difficult from the acoustic circuit analogy to appreciate the significance of the 

interaction and timing of the components of the aerodynamic forces because they are 

not explicitly derived in circuit equations 3.30 to 3.34. The aerodynamic forces 

occurring under certain conditions during the oscillation period are: 

1. subglottal pressure during closure 

2. impulsive negative Bernoulli forces generated when the folds are open but 

narrowly constricted (ie. just before closure and just after opening). 

3. velocity dependent forces created by the vertical phasing between the upper 

and lower margins 

4. velocity dependent forces created by the glottal and vocal tract load impedance 

3.11.1 Subglottal Pressure During Closure 
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At closure, a buildup of pressure due to the constant lung pressure source 

helps to force the folds apart. The lower margin leads the upper margin, and air 

flows through once the folds open completely. Once air flows, the subglottal pressure 

decreases and the pressure profile becomes the dominant driving force. 

3.11.2 Negative Bernoulli Forces 

The Bernoulli force is a "sucking" force which arises when fluid enters a 

narrow orifice. The constriction causes a rapid drop in pressure and an increase in 

velocity. Often the pressure in the orifice can be negative relative to atmospheric 

pressure, sucking the medial margins inwards. The force is impulsive - greatest just 

before closure and just after opening, when the orifice is smallest 

Early researchers assumed that the dominant force required to sustain oscillation 

was due to the Bernoulli effect (Van den Berg, 1958), (Fant 1960). However, the 

Bernoulli effect creates impulsive pressures of the same magnitude and sign, without 

regard to the direction of tissue movement This means that the energy supplied to 

the tissue by the Bernoulli force just before closure is cancelled by the Bernoulli force 

opposing motion that arises just after opening. There is thus no net gain of energy to 

overcome tissue damping and help sustain oscillation. 

Ishizaka and Matsudaira (1968, 1972), Stevens (1977), and Titze (1980, 1983, 

1985) have suggested that other mechanisms, such as vertical phasing and inertial 

loading by the glottis and vocal tract contribute to the driving force and input the 

energy necessary to overcome tissue damping into the system. 

3.11.3 Vertical Phasing 

Experimental work by Ishizaka and Matsudaira (1968) (cit: Stevens (1977)) on 

steady state converging, diverging, and uniform glottal shapes has shown that the lower 
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margin's pressure is dependent on the relative width between the left and right upper 

margins. For instance, when the upper width is very small and the lower width is 

much larger (a convergent glottis), the pressure on the lower margin is positive, aiding 

outward movement (this situation occurs when the fold is in its opening cycle). 

Conversely, when the lower width is small and the upper width is much larger 

(a divergent glottis shape), the pressure on the lower margin is negative, causing the 

lower margin to be sucked into closure. Again, this aids the direction of movement as 

the situation only occurs when the fold is in its closing cycle. For a uniform glottis 

(upper and lower widths the same), the pressure is always close to zero, providing no 

driving force. Phase lag is thus a necessary component for net energy input from the 

aerodynamic flow. 

Ishizaka and Matsudaira showed that the direction of the aerodynamic force on 

the lower margin depended on the relative displacements of the margins and aided the 

direction of motion 

ie. Fext = <2>(x - x ) ^ v v nr 

where v is the vocalis, or lower margin; m is the mucosal, or upper margin; and 

Fext is the vertical phasing contribution to the aerodynamic force. 

The magnitude of the aerodynamic stiffness <t> is inversely proportional to the 

average glottal width of the margins. Thus <f> is relatively large for situations near 

closure, and small when the glottal width is large. 

Fext helps to sustain oscillation by providing some of the energy required to 

overcome the losses due to tissue damping. By adding to the Bernoulli forces when 

the glottal width is small, the total aerodynamic force is large and negative just before 

closure (aiding the direction of motion) and small and negative just after opening. 

Thus while the force just after opening opposes motion, it does so with less energy 
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than just before closure and so the resulting asymmetric force provides a net energy 

input. 

3.11.4 Inertial Loading Forces 

Titze (1983) demonstrated that inertial lag due to glottal and vocal tract 

inertance could create a velocity dependent force similar to the force generated by 

phasing, hence reinforcing the effects of the vertical phasing force. Depending on the 

conditions, the resulting summative force just after opening could be either slightly 

positive or negative. 

3.12. Summary 

In chapter three we have proposed a nonlinear multiple mass-spring system as 

a representation of the vocal folds. 

Vocal tract and subglottis models have been concatenated using a transmission 

line representation. Implementation of the model has required a matrix representation to 

ensure stability. 

The proposed model simplifies the Titze (1973) model by eliminating the z 

degree of freedom, thus decreasing computation time. The frontal (side) view is the 

same as that for the Ishizaka-Flanagan (1972) model. All equations may be found in 

Titze (1973), and Ishizaka and Flanagan (1972). 

The underlying forces maintaining oscillation are not explicitly represented in the 

model equations, but analyses by Ishizaka and Matsudaira (1972), and Titze (1983, 

1985) have shown that -

the Bernoulli effect 

vocal tract loading 
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subglottal pressure during closure 

and vertical phase difference 

play a part in sustaining oscillation. The terms related to the above phenomena and 

other perturbatory phenomena will be derived in chapter five. 



CHAPTER 4 

SIMULATION OF THE VOCAL FOLD 

In this chapter, the simulations are presented and analysed. The chapter is 

divided into two major sections - the normal fold, and the pathological vocal fold. 

In the first section, time domain signals such as the speech pressure wave, the 

glottal volume velocity, and the tissue displacement waves are introduced. All plots are 

made using cgs units. The characteristics of these signals are compared to equivalent 

signals obtained from the Ishizaka-Flanagan model and from the database at the Voice 

Lab at Vancouver General Hospital. 

In the second section, various asymmetric configurations are examined. The 

resulting waves are analysed using jitter, shimmer and harmonics-to-noise ratio 

measures (Yumoto, Gould and Baer, 1982) and then compared to: 

1. the VGH database 

2. analytical results from speech data gathered by Monsen (1979 NIH) 

3. Isshiki and lshizaka's asymmetric model (Isshiki and Ishizaka, 1976) 

4.1. Selection of Parameter Values 

The tissue parameter values used in this model are derived from work by 

Kaneko (1968), Titze (1973), and Hirano (1979). Since the model is a hybrid between 

the two discrete mass models previously discussed, the values do not agree exactly 

with those used by the original authors, but are generally within the same order of 

magnitude. The parameter values used in the studies mentioned above have been 

48 
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"finetuned" to establish a set of parameters more amenable to the hybrid nature of 

the model, the overall objective being to achieve speech, volume velocity, and 

displacement waves consistent with experimental evidence, with less regard to matching 

specific parameter values. 

The modelling of pathologies has proven to be an arduous task. While some 

parameters for the normal fold have been published, (Kaneko, 1968), there have been 

very few studies on pathologies. Hirano (1979) suggests trends or relative changes from 

the normal case for some parameters, but specific values are not given. Only Isshiki 

and Ishizaka's study (1976) using the two mass model has provided any concrete 

figures (the parameter ranges they chose were probably determined by trial and error, 

however). Since their work was performed using a model (as in this study) rather 

than with real speech, the perturbations achieved were due to the characteristics of the 

model and not the real pathological larynx, making the study less conclusive. Due to 

the lack of data for pathologies, there is a danger of assuming a physically 

unrealisable set of values which still achieves the desired results. This problem cannot 

be solved until experimental data for the pathological cord becomes available. 

4.1.1 Values for the Normal Vocal Fold 

The following parameters represent the normal vocal cord in this model. All 

values apply to both left and right cords. 

1. Mass - Typical values for the lower and upper masses are the same as in 

Ishizaka and Flannagan's model ie. 

m = 0.025 g v & 

m = 0.005 g for i= 1....5 m 

2. Lung pressure PT - Chosen to be 10cm H 2 0 or 10 kdyne/cm2. This is 
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within the typical range suggested by Hirano (1981). 

Dimensions - The longitudinal length, vertical depth and lateral thickness are 

taken from Titze (1973) to be: 

w = 0.28 cm 

depv(i) = 0.25 cm 

dep H) = 0.1 cm r m 

depj(i) = 0.1 cm 

th (i) = 0.25 cm v v ' 

th (i) = 0.05 cm n r ' 

thj(i) = 0.1 cm respectively. 

Lateral stiffness - The equivalent linear parameters used by Ishizaka and 

Flanagan were: 

k = 16 kdvnes/cm v 

k c = 5 kdynes/cm 

and k = 1.6 kdynes/cm. m 

As the proposed model has additional stiffnesses due to the 

longitudinal tensions, the lateral stiffnesses chosen by Ishizaka and Flanagan 

have been reduced to compensate. The appropriate values have been 

determined by trial and error to be 

k y = 5 kdynes/cm 

and k = 0.5 kdynes/cm. m 

The criterion for selection was based on the achievement of speech, volume 

velocity flow, and edge emplacement waves consistent with published speech 
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data and existing models. In conjunction with the lateral stiffnesses, the 

longitudinal tensions permit the maximum lateral excursion of the mucosal and 

vocalis masses to be approximately 0.12 cm and the glottal flow to be 

between 300 and 500 cm37s, which is typical for the healthy cord (Hirano, 

1983). 

kc = 3.5 kdynes/cm gives a phase lag of 60° between the upper and 

lower masses. This phase lag agrees with Baer's results estimating a 1 m/s 

vertical travelling wave velocity, and a 60° lag for a glottis of similar 

dimensions to the proposed model (Baer, 1975). 

Nonlinear lateral coefficients are -

V . V . ??~ =100 ' v ' c ' m 

h = 3k =15 kdyne/cm v v J 

h „ = 3k = 1.5 kdyne/cm m m 

V o l ' "mcol = 5 0 0 

These values are based upon measurements of static stress-strain measurements 

for an excised human larynx by Ishizaka and Kaneko (1968). Ishizaka and 

Flanagan (1972) demonstrated that the given values for T? produced a curve 

of lung pressure versus fundamental frequency with a rise of 2.5 Hz/cm H 2 0 

in their model, which is in good agreement with measurements by Baer 

(1975). 

Longitudinal stiffness The stress constants and maximum strains have been 

estimated by Hirano (cit: Titze 1980) using canine tissue. The values are 

approximately the same for humans, and estimates from the curves yield 

r = 800 m 

Tj = 800 

r y = 300 
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S = 0.3 mmax 

S, = 0.4 lmax 

S = 0.8 vmax 

T a c t =1.50 g/cm2 

These values differ significantly from the data used in Titze's discrete model, 

but the resulting vibratory patterns in our results agree well with the 

Ishizaka-Flanagan model, suggesting that Hirano's experimental data is more 

accurate than that used by Titze (1973), who used 5 g/mm2 for T , 
3.CI 

equivalent to the chest register of phonation. The proposed hybrid model used 

values between 0.25 and 2.0 g/mm2, rather than 5 g/mmJ since abduction was 

difficult to achieve using the greater value. 

Damping - p y and p m have been experimentally determined by Kaneko 

(1968) and Flanagan and Landgraf (1968) to be of the order of 0.1 and 0.6 

respectively when not in collision, and 1.1 and 1.6 (close to critical damping) 

during collision. The increased damping during collision represents adhesion 

between the medial surfaces, causing energy to be lost as the surfaces suck 

together. 

Initial configuration - The prephonatory position of the masses is controlled 

by muscular adjustment (section 2.4). Ishizaka and Flanagan estimate the 

typical initial glottal cross sectional area to be 0.05 cm2 for both the upper 

and lower margins. In the proposed model, an oval constriction shape is used 

with the following initial displacement values. 

V / 1 * ' xvo<5>- W1* W5> = °-012 ™ 

xvo(2), xvo(3), xvo(4), xmo(2), xmo(3), xmo(4) = 0.021 cm 

The total cross-sectional areas A and A „ each sum to 0.05 cm2 

v m 
Vocal tract - As previously mentioned in section 3.6, the vocal tract consists 
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of 10 cylindrical acoustic tubes of variable cross-sectional area and length. For 

these simulations the vowel /a/ was adapted from Fant (1960) (see Appendix 

A). 

4.2. Simulation of the Normal Vocal Fold 

The normal configuration of the vocal fold was simulated and various 

parameters recorded for the vowel /a/. The following discussion interprets the results. 

4.2.1 Speech, Flow, and Area Waves 

In the proposed electrical/acoustical analogy, the speech (SPEECH) and glottal 

volume velocity (UTOT) waves are equivalent to voltage/pressure and current/flow 

respectively. The area waves represent the total glottal area open to the flow measured 

at the upper (A t t) (AMTOT) and lower (A y t o t ) (AVTOT) margins. Points to note 

in Fig 4.1 are: 

1. The negative' areas indicate closure of the glottis and continued displacement 

of the centre of mass. The area waves are asymmetric when negative due to 

conditions during, just before and just after collision when the driving forces 

are large and asymmetric. 

2. The constant delay of approximately 60° between the lower and upper margin 

displacements (with A leading A m t) is indicative of vertical phasing and 

occurs in spite of the fact that both margins are initially at the same width. 

The two masses synchronise with a constant phase delay because of mutual 

synchronisation (also observed by Minorsky (1962) and Ishizaka and Matsudaira 

(1972)). 

A qualitative explanation has been made by Titze (1976, 1980) which 

suggests that the masses of Ishizaka and Matsudaira's system vibrate with a 
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Fig4.1 Speech, area and flow waves for normal cords. 
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combination of the first two modes of the coupled . system. The first mode 

requires the masses to move in phase, while the second mode requires them 

to vibrate 180° out of phase at a higher frequency than the first mode. 

Proportions of both modes are excited by the impulsive, flow induced 

aerodynamic forces, causing the masses to vibrate at a phase difference of 

60°. Titze (1976) concluded that the masses would vibrate at the frequency of 

the first mode. 

Ishizaka and Matsudaira (1972) and Ishizaka (1980), however, 

analytically showed that the two natural modes of their two-mass system (the 

same modes discussed by Titze (1976)), when coupled to the flow, degenerated 

into a single frequency midway between the two non-flow-coupled modes. 

They also showed that the synchronised phase delay was part of the 

phenomenon. 

Minorsky (1962) derived a similar explanation to Ishizaka and 

Matsudaira's for two coupled, detuned, Van der Pol oscillators as part of a 

treatise on nonlinear oscillatory behaviour. He analytically demonstrated that the 

oscillators synchronised together at a frequency midway between the 

autonomous frequencies of each separate system, with a constant phase lag. It 

is probable that Ishizaka and Matsudaira's explanation is more likely than 

Titze's, although a definitive answer has not yet been found. 

3. The glottal flow wave Utot is skewed to the right with a steep falling slope, 

in contrast to the area waves which have symmetrical slopes. This is due to 

the inertia of the air in the glottis and the vocal tract As the glottis opens, 

the transglottal pressure tries to accelerate the air through but the inertia of 

the air mass causes a time lag, resulting in a less steep initial slope. At 

closure the airway seals, causing the flow to fall rapidly to zero, producing a 
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steep negative slope. 

4. The steep falling slope of the flow followed by the discontinuity at closure 

provides the energy input to the vocal tract Just after the flow goes to zero, 

there is a large impulse in the speech wave indicating large instantaneous 

energy content (the observed 0.5 ms delay is due to the time taken for the 

pressure wave to traverse from the glottis to the lips). After the initial 

excitation at closure, the energy of the pressure (SPEECH) wave exponentially 

decays as the impedances in the vocal tract attenuate the signal, since the 

tract is not excited again until the beginning of the next period. 

5. The flow wave shows temporal detail not observed in the area waves due 

to the interaction between the supraglottal (vocal tract), the subglottal, and the 

glottal systems. This is because the flow is dependent on the transglottal 

pressure and the glottal impedance. The glottal impedance is approximately 

inversely proportional to the areas A ^ . and A „ „ which are nearlv 
vtot mtot 

triangular when positive. If the transglottal pressure is constant as in a simple 

model with fixed sub and supraglottal pressures, the glottal flow is also nearly 

triangular. However, the vocal tract, with its varying areas and lengths reflects 

pressure waves back toward the glottis, causing the supraglottal, and 

consequently the transglottal pressure to vary. This variation is reflected in the 

flow but not in the area waves because of the inertia of the tissue masses. 

6. The fundamental pitch, marked at the excitation points in the speech, is 124 

Hz. This is within the expected 80 to 160 Hz range for normal adult males. 

7. The maximum current is about 375 cmVs, which is within the normal range 

for phonation. 

4.2.2 Velocity Wave 
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Fig 4.2 plots (i) the medial edge displacements of left and right vocal cords 

and (ii) the velocity of the flow (VEL) and its relationship to the area A 
vtot" 
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Fig4.2 (i) displacements and (ii) flow velocity and area, for normal fold 

Points to note are: 

1. Since the vocal cords are symmetric, the phase and magnitude of left and 

right cord displacements are also symmetrical. 



58 

2. The flow velocity has a saw-tooth shape due to closure of the cords. When 

both the lower and upper margins open, the velocity begins to increase along 

with the displacements and the flow, but lags the displaced area due to 

inertial (inductive) lag as v is a function of U (v = U /A ). When the 

lower margins close, the velocity immediately falls to zero since the flow 

stops. Note that if the inductive loading from the tract is not large, and if 

collision does not occur, the flow velocity is approximately in phase with the 

displaced area. A Fourier series approximation is used in chapter five to show 

that a 1/2 subharmonic is possible. 

4.2.3 Phase and Energy Plots 

Fig 4.3 is the phase plane plot of the lower vocalis margin of the right vocal 

cord. The system reaches a stable but asymmetrical limit cycle. The asymmetrical 

character is due to the changing nature of the system during collision. 

Note that the trajectory crosses over itself, indicating that the system is not a 

simple autonomous system (Minorsky, 1962). In chapter five we present the argument 

that the crossed trajectory can occur only if the system is not second order ie third 

or higher order since the system is autonomous (not forced). 

Fig 4.4 is a plot of the equivalent restoring force vs the displacement of the 

upper, medial edge (assuming that the centre of gravity can enter the negative 

displacement region). The equivalent restoring force is a summative force which 

includes the tissue damping and stiffness forces, and the aerodynamic forces. It may be 

thought of as an acceleration vs displacement plot. Note that the forces are summed 

up as the total contribution from both the upper and lower masses. The displacement 

tracks the medial edge as it enters collision, but follows the continued movement of 

the centre of mass. By summing the forces on both masses, we can compare our 
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Fig 4.3 Velocity phase plot showing stable limit cycle 

result with Titze (1983) where the force and displacement was measured midway 

between the upper and lower margins. Points to note are: 

1. The upper left enclosed area is traversed anticlockwise, indicating that energy 

is dissipated when the displacement is negative. The lower right enclosed area 

is traversed clockwise, indicating energy absorbtion. When steady state 

oscillation is reached, both areas should be equal. (To prove this, force 

displacement graphs for all masses in the system need to be acquired and the 

areas summed, but this requires too much memory). 
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8 . ENERGY EXCHANGE 

^ 4 . 0 0 - 2 . 0 0 0 . 0 0 2 . 0 0 4 . 0 0 6 . 0 0 8 . 0 0 
XUR ( 3 ) - 1 0 - 2 

Fig 4.4 Equivalent restoring force vs displacement, showing energy exchange 

The plot is very similar to that produced by Titze (1983) (see Fig 4.5) 

except that the loops of Fig 4.5 lie along the -kx axis because Titze's model 

assumes linear stiffness. In Fig 4.4 however, a cubic stiffness characteristic 

suggesting a -kx3 path is used, which causes a more upright "figure-8". 

The two figures also differ when the displacement is negative because in the 

proposed model the mass is allowed to collide with its opposing margin. The 

extra spring forces introduced to simulate collision, and the impulsive subglottal 

pressure P g result in a force during collision much larger than in Titze's case, 

which does not model the collision. 
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EQUIVALENT 
RESTORING 
FORCE 

Fig 4.5 Equivalent restoring force. After Titze, (1983) 

4.2.4 Force and Displacement 

A time plot of the restoring force and the displacements reveals the changes 

occurring as the folds oscillate (see Fig 4.6). There are three regions of special note, 

and these are 

1. Just prior to the lower margin closing (point (a)), the Bernoulli sucking force 

is large and negative, and with additional negative forces due to vertical 

phasing and inertial vocal tract loading the sum force produces a large, 
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Fig 4.6 Areas and equivalent restoring force as functions of time 

impulsive, negative force. 

2. Just after closure of the lower margin (b), the vocalis mass is subjected to a 

buildup in pressure due to P , the subglottal pressure. P g is momentarily very 

large (Koike, 1980) and consequently the aerodynamic force, proportional to 

(P - P0)/2, increases to a very large value. At this time P0, the pressure 

just above the glottis, is negative due to air mass inertia (although its 

magnitude is relatively insignificant in comparison to P ). The negative P0 aids 

in bringing the upper margins together. 
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3. At point (c) the upper margin has just left the collision, and the air begins 

to flow again. At this time, the lower margin is wider than the upper 

margin producing positive vertical phasing and loading forces. Consequentiy the 

negative Bernoulli force is counteracted by these positive forces and the 

resultant force is much less negative, and possibly positive depending on the 

relative magnitudes. 

4.2.5 Perturbation Analysis of the Normal Wave 

Pitch period duration and largest-peak amplitude perturbation plots are presented 

in Fig 4.7 

P i t c h p e r i o d d u r a t i o n (ms) vs p e r i o d No. 

8.11 

8 .09 

20 

L a r g e s t peak a m p l i t u d e ( d y n e s / c m ) v s p e r i o d No. 

Fig 4.7 Perturbation plots, normal speech, from model 

The pitch period duration versus period number plot appears relatively stable, indicating 

that very little jitter is present The amplitude plot is a measure of the magnitude of 

the largest peak in each period. In this case the variation is extremely small (less 

than 0.2%). 
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The Harmonics-to-Noise ratio (HNR) is a measurement of the cycle to cycle 

consistency of the waveform, separating the periodic content from the assumed additive 

noise, assuming zero mean amplitude for the noise. (A derivation of the HNR appears 

in Appendix B). For the simulated normal case HNR= 37.7 dB which is very high 

when compared to real speech data (usually 15 to 25 dB for non- pathological voices. 

(Kojima et al, 1980)). This is not unexpected, however, since we have not modelled 

turbulence, which would contribute a significant random noise component. 

4.2.6 Comparisons With Other Data 

Fig 4.8 is a plot of the speech, flow and area signals from the 

Ishizaka-Flanagan model for the vowel /a/. In comparison with Fig 4.1 the results are 

very similar, although the fundamental frequencies are different (124 Hz for Fig 4.1 vs 

160 Hz). The area and flow waves are also smaller than in Fig 4.8. 

Fig 4.9 is from Davis (1976) using a patient with a normal voice. Both the 

speech wave (A) and the glottal volume velocity (flow, B) show very similar results to 

those obtained by the Ishizaka-Flanagan and the proposed models. The flow wave in 

Fig 4.9 was obtained by inverse filtering the speech and then low pass filtering the 

resulting residual signal. 

Recordings from a subject with normal vocal cords obtained from Vancouver 

General Hospital are presented in Fig 4.10. The first plot is of 128 msecs of speech 

for the vowel /a/, and shows periodic excitation followed by a period of attenuation. 

Again the apearance of the signal is consistent with simulated speech. The ppd and 

lpa plots appear to have a random nature, but the variation lies within relatively small 

bounds. The resulting HNR is 22.3 dB, which is well within the expected range for 

normal cases. 
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Fig 4.8 Results from the Ishizaka-Flanagan model using /a/. After Ishizaka and 
Flanagan, (1972) 
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4.3. The Pathological Vocal Fold 

In this study we had great difficulty in associating specific parameter values 

with particular pathologies, since very little work has been performed prior to this 

time in collating the necessary data. 

The approach taken here was to vary the mass, lateral stiffness and longitudinal 

constant tension values, either locally, or by changing an entire fold. The mass or 

stiffness was increased by a factor of 1.5 or 2.0, and the tension was varied between 

150 (normal) and 25 (flaccid). The resulting speech waves were analysed using jitter, 

shimmer and harmonics-to-noise ratio measurements (Appendix B). 

4.3.1 Unilateral Stiffness Change 

In this series of simulations, the effect of increasing the lateral stiffness of an 

entire fold was investigated. 

(1) The right fold's lateral stiffnesses k , k and k were increased bv a factor of v ' e v c m 

1.5, with T = 150 (normal value). 
3.CI 

The resulting speech and flow waves presented in Fig 4.11 appear to be very 

regular, with little evidence of perturbation. 

Observation of the phase plot (Fig 4.12) for the third vocalis mass reveals a 

single limit cycle, and as a consequence, the ppd and lpa plots (Fig 4.13) are 

very stable. 

HNR = 35.9dB, a very high value near that of the normal fold. 
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Fig4.11 Speech, Flow Waves for Unilateral stiffness change, T = 150 
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P i t c h p e r i o d d u r a t i o n (ms) vs p e r i o d No. 

27 
Fig4.13 ppd and lpa Plots for Unilateral Stiffness Change, T = 150 

O.CI 

Unilateral stiffness increase (as for (1)), T = 25 
aCl 

The speech, flow and area waves appear in Fig4.14. From these waves, we 

can observe a slightly larger volume of flow, and significant changes in all 

waves on alternating cycles. 

The amplitude peaks in the speech signal are alternately attenuated, and the 

flow waves have a different shape at every second cycle. The cause of this 

phenomenon can be traced back to the area waves, where the amplitude 

reveals the presence of a 1/2 subharmonic. 

The plot of left and right displacements (Fig4.15) shows that the suffer right 

cord (B) is smaller in amplitude and leading the left cord, although the 

frequency of oscillation for each cord is exactly the same. 

The energy exchange plot (Fig 4.16) reveals two trajectories. Unequal areas 

are enclosed, indicating a net gain in energy for the mass pair examined. 

Since the oscillation for the system is stable, then the other masses in the 
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Fig4.14 speech, flow and area waves for unilateral stiffness change, T a c t 
= 25 



system are dissipating energy to maintain energy equilibrium. 

The lpa plot is presented in Fig4.17. The variation in peak amplitude 

clearly of a subharmonic nature. 

HNR = 16.8 dB indicating a significant amount of perturbation. 

Fig4.15 Left and right displacements, unilateral stiffness change, T = 25 
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,.16 Energy Exchange Plot. Unilateral Stiffness Change. T f t C t -
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L a r g e s t peak a m p l i t u d e (dynes/cm 2) v s p e r i o d No. 

20 

Fig4.17 lpa vs period #, Unilateral Stiffness Change, T = 25 
aCl 

4.3.2 Localised Stiffness Changes . 

The lateral stiffnesses, k , k , and k , of the second and third elements of 
v c m 

the right fold were increased by a factor of two. 

(1) At T = 150 v ' act 

The ppd and lpa plots show the speech signal to be very stable, although 

there is a slight but perceptually insignificant 1/3 subharmonic in the lpa 

plot (Fig4.18) 

As a result of the steady tissue vibration, HNR = 36.1 dB, a very high 

value indicating that local stiffness changes have no effect at this value of 

act" 
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P i t c h p e r i o d d u r a t i o n (ms) vs p e r i o d No. 

The phase plot (Fig4.19) shows a relatively stable system experiencing some 

slight variations in the trajectory compared to Fig4.3. 

The ppd and lpa plots (Fig4.20) have small jitter and shimmer components 

which are irregular. 

HNR = 18.6 dB, indicating that the irregular components have a significant 

effect on the amount of noise. 



Fig4.19 Phase plot Localised Stiffness Change, T = 25 
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P i t c h p e r i o d d u r a t i o n (ms) vs p e r i o d No. 

9-32' 

9.26 
15 

L a r g e s t peak a m p l i t u d e (dynes/cm 2) v s p e r i o d No. 

4.3.3 Discussion of Results from Stiffness Changes 

It appears from this set of simulations that stiffness changes are able to excite 

perturbations, but only when the constant tension T is very low. To determine 
etCt 

whether low T or an asymmetrical change in stiffness produces the perturbations, a 
a C l 

simulation was carried out with a normal configuration, but T = 25. The resulting 
a C t 

flow and displacement waves (Fig4.21) and phase plot (Fig4.22) reveal the subharmonic 

nature to be still present indicating that T is a controlling factor. 

The pathology that the low T might represent is superior laryngeal nerve 
3.CI 

paralysis, a flaccid dysphonia in which the paralysed fold is characterised by a 

decrease in longitudinal tension. This may be bilateral or unilateral in its effect 

depending on where the lesion occurs. Gerratt and Hanson (1985) produced 

photoglottograms of patients with this paralysis and a regular perturbation was observed. 

They described the perturbation as possessing a regular component in which the third 

pulse was consistently larger. It is likely, based on the findings presented here,in 
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Fig4.21 Flow and Displacements, normal, T = 25 
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Fig4.22 Phase plot, normal, T = 2 5 K act 

chapter five, and by Isshiki and Ishizaka (1976) that it is a 1/3 subharmonic (in our 

study the 1/3 subharmonic did not manifest itself, although the dynamical equation 

proposed in chapter five indicates that it is possible). 

The cause of the 1/2 subharmonic is discussed in chapter five, but here the 

discussion is limited to its effect on the speech and flow waves. The 1/2 subharmonic 

manifests itself by modulating the fundamental tissue displacement, causing the 

amplitude of vibration to be reduced on alternate cycles. The flow pulse, which is 
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proportional to the displacement, similarly alternates in magnitude and duration. The 

closing slope of the flow wave is steeper for the larger amplitude cycles, and 

consequently the speech receives more energy, being proportional to dU /dt Thus, the 

modulation of the displacement amplitude manifests itself in the speech as alternately 

large and small peak amplitudes, and also in period duration, since the flow closure 

point will vary with the flow closing-slope. 

By unilaterally increasing the stiffness, one would expect a smaller amplitude 

and increased frequency just for the affected cord. However, it is apparent from Fig 

4.15 that while the suffer cord's amplitude has decreased the same frequency is 

attained by both the left and right cords. This result agrees well with work by 

Tanabe et al. (1972) who experimented with live canine larynges and found the same 

phenomena. The frequency synchronisation occurs because the folds are coupled across 

the glottal gap by the common air flow, resulting in a mutually synchronised 

fundamental frequency between the expected left and right frequencies. We thus 

observe that the synchronisation between the upper and lower margins within a fold 

due to explicit spring coupling also occurs between the folds through the aerodynamic 

flow (although the coupling terms are obscure). 

The energy exchange plot of Fig 4.16 has unequal enclosed areas indicating a 

net energy gain. This is not possible in an enclosed oscillatory system, so other masses 

in the system must be dissipating more energy than they receive so as to maintain 

the overall energy balance. 

By localising the stiffness changes, the subharmonic behaviour is disturbed 

causing the perturbation to be more random, or perhaps a combination of 1/2, 1/3 

and lower subharmonics (see chapter five). 
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It should be noted that HNR values have been reduced to half by decreasing 

the value of T . However, in comparison with HNR values measured by Kojima et 

al. (1980), 18 dB is at the lower range for nonpathological voices, and if judgement 

were made only on the results of the HNR analysis, the local stiffness changes would 

produce a borderline pathological case. 

4.3.4 Unilateral Mass Changes 

Changes in mass were simulated as a comparison to the stiffness changes. In 

this series of simulations the mass was varied unilaterally over the entire cord. In the 

following section localised changes are considered. 

All masses on the right fold (both the vocalis and mucosal strings) were 

increased by a factor of two at T values of 150 and 25. 
3.CL 

(1) T a c l = 150 

The speech and flow waves in Fig 4.23 reveal a consistent, steady signal at 

111 Hz with litde evidence of pertubation. 

The displacement plot of Fig 4.24 shows the right fold mass element with a 

smaller amplitude than the left, and lagging. In comparison, increased stiffness 

caused the stiffer fold to lead the unaffected fold. 

The phase plot (Fig 4.25) shows a single steady state trajectory confirming the 

absence of jitter or shimmer. 

As a result, HNR = 40.26 dB 
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Fig4.24 Displacements for Unilateral Mass Changes, T = 150 
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Fig4.25 Phase plot for Unilateral Mass Changes, T = 150 
SLCt 

T = 25 act 

The speech, area and flow waves of Fig4.26 do not reveal any observable 

perturbations. 

The frequency of oscillation is 87.7 Hz, significantly less than for T = 
aCt 

150. This is due to the relaxed longitudinal tension. 

The phase plot (Fig4.27), after an initial buildup, settles into a stable 

trajectory. 

HNR = 40.8 dB 
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Fig4.27 Phase plot for Unilateral Mass Changes, T = 25 
3.CL 

4.3.5 Localised Mass Changes 

The second and third masses of the right vocalis and mucosal strings were 

increased by a factor of two for T ^ = 150 and 25. 
act 

(1) T a a = 150. 

Speech, flow and area waves (Fig4.28) appear to be very stable. 

The phase plot (Fig4.29) shows a single stable trajectory. 

HNR = 35.7 dB 
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Fig4.29 Phase plot for Localised Mass Changes, T = 150 

ct = 2 5 

The speech and flow waves reveal (Fig4.30) that the 1/2 subharmonic is 

present, but there is an unstable random component affecting the waves. 

The displacement waves (Fig4.31) also have a random component in the 

amplitude, indicating that tissue displacement variation causes the jitter and 

shimmer in the speech. 

The phase plot (Fig4.32) of the third mass on the right fold shows a highly 

unstable trajectory. 

Fig4.33 and Fig4.34 shows energy exchange diagrams for both the left and 

right fold. The trajectory shape in each plot is different, and they both 

possess the random component that modulates the steady state trajectory. This 
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is surprising, since only the right fold has undergone local mass changes. 

Ppd and lpa plots in Fig4.35 again show a significant random jitter and 

shimmer component, with about 10 Hz variation in frequency, between 89 and 

97 Hz 

As a result, HNR = 7.9 dB, a value that lies in the range for pathologies 

(Kojima et al, 1980 ) 

Fig4.31 Displacements for localised mass changes, T = 25 
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Fig4.32 Phase plot for localised mass changes, T = 25 



93 

Fig4.33 Energy exchange plot for left fold, localised mass changes, T = 25 
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Fig4.34 Energy exchange plot for right fold, localised mass changes, T, 
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P i t c h p e r i o d d u r a t i o n (ms) vs p e r i o d No, 
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L a r g e s t peak a m p l i t u d e (dynes/cm ) vs p e r i o d No. 

407 

214 

Fig 4.35, ppd and lpa plots, localised mass changes, T =25 
£LCt 

4.3.6 Discussion of Results from Mass Changes 

As for the stiffness changes, no perturbations were observed for any variation 

in the masses for T = 150. The high value of T inhibited the appearance of 
3.CL 3.CI 

any subharmonics or other phenomena, probably because T lay in a region of 
3.CI 

parameter space that did not allow subharmonics to manifest themselves. 

At T = 25 however, perturbations appeared for certain configurations. For 

nonlocalised mass changes, no perturbations resulted. Note, however, that a subharmonic 

appeared in the simulation of Fig 4.21 where there were no mass changes and a 

decrease in T ^ . Clearly the increased masses have an effect on the presence of 

perturbation, as do the stiffnesses. The effects oppose each other, with unilateral 
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stiffness increases enhancing the subharmonic and unilateral mass increases inhibiting the 

subharmonic. 

In the simulations using localised mass changes, the objective was to model 

cancer, which can be localised and invasive, and causes significant hoarseness. The local 

mass changes resulted in a phase trajectory with a large random component as well as 

the 1/2 subharmonic. The combined effect significantly decreased the harmonic content 

of the speech and was more dramatic than for localised stiffness changes, which 

randomised the trajectory to a small extent but inhibited the 1/2 subharmonic. 

To determine whether the random components were due to the asymmetry of 

the model, local mass changes were made to both folds. The resulting speech and 

flow waves in Fig 4.36 show much the same results as for Fig 4.30, although the 

speech wave amplitude was reduced due to the shallow negative slope of the flow 

pulse. The energy diagram (Fig 4.37) still shows the random component, and as a 

result HNR = 0.38 dB, indicating very poor harmonic structure. Fig 4.38 displays the 

ppd and lpa plots, the frequency ranging from 73 to 98 Hz. This simulation would be 

analogous to vocal nodules, polyps or bilateral cancer, in which both folds are affected 

at the same location. Note, however that this simulation did not attempt to simulate 

the glottal chink, nor keep the nodule on the surface. 



'ssSinnp sraa [KXDJ pzrarertq IOJ MOU prre qoasds '9£>3y 



98 

Fig4.37, Energy diagram for bilateral local mass changes, T = 25 
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P i t c h p e r i o d d u r a t i o n (ms) vs p e r i o d No. 

15 

Fig4.38, ppd and lpa plots for bilateral local mass changes, T = 25 
aCL 

4.4. Comparisons with Other Pathological Data 

The proposed model has demonstrated that it can produce some interesting 

perturbation phenomena, but we cannot conclude that the model is valid unless there 

is evidence that the human vocal fold, under pathological conditions, produces similar 

phenomena. 

In this section we present data from two sources that appear to confirm the 

validity of the model. These sources are 
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the database of pathologies at Vancouver General Hospital 

data from a study by Monsen (1979) using real pathological speech 

4.4.1 Patients from Vancouver General Hospital 

The first case is for a 63 year old male suffering from chronic laryngitis, 

which is similar in its effects to laryngeal paralysis, the vocal cords becoming weak 

and flaccid. Fig 4.39 shows the speech, ppd and lpa plots for this case. The speech 

wave is very similar to the speech waves produced in the simulation of laryngeal 

paralysis except that the lpa plot has a random component. The ppd plot however 

shows a 1/2 subharmonic with a frequency range of 98 to 107 Hz. The resulting 

HNR = 4.5 dB, a figure indicating severe hoarseness. 

The second case is for a 65 year old male with Tl Glottic cancer. The speech 

wave in Fig 4.40 does not look like the wave normally associated with /a/, but this 

could be due to the effects of the cancer. The ppd plot reveals a strong 1/3 and 

1/4 subharmonic structure, ranging from 132 to 181 Hz. The lpa plot again shows a 

random shimmer effect HNR = 5.5 dB, indicating severe hoarseness. 

The third case, a 62 year old man, also has T l Glottic cancer. Fig 4.41 shows 

the speech, ppd and lpa plots. The ppd and lpa plots are almost completely random, 

with a frequency range from 107 to 114 Hz. HNR = 12.0 dB, again well within the 

range for pathologies. 

Each of the patients presented in this section clearly illustrate the phemonena 

predicted in chapter five, although the effect appears to be larger in real data than in 

the simulations. 

As final evidence, we present the frequency versus period number plots found 

by Monsen (1979) in his study on the vocal function of hoarse voices (Fig 4.42). It 
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can clearly be seen that for dry hoarse voice there is a 1/2 subharmonic present, 

while for harsh hoarse voice there is a random component modulating the 

subharmonic. 
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Fig4.42, Frequency vs period number for dry hoarse and harsh hoarse voice. After 
Monsen, (1979). 
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4.5. Summary 

In this chapter we have presented the most significant results among the many 

simulations carried out The results illustrate the effects of changing stiffness and mass 

separately so that the effects may be classified as due to either stiffness or mass. 

In doing so, the actual simulation of particular pathologies has not truly been 

accomplished. This has been done for two reasons, the first of which is that very 

little is known about the biomechanical parameters to be used in simulating 

pathologies. The second reason is that it is probable that much more can be gained 

by separating the effects of mass and stiffness than by combining them into a 

potpourri of changes which are poorly understood. 

The significant features shown in these simulations are 

a low value of T is necessary for any perturbations to occur. 

subharmonics of order 1/2 occur for this value of T . regardless of the 
act 

presence of any other changes in the model, indicating that asymmetry is not 

required. 

unilateral (uniform) stiffness increases enhance the subharmonic. 

unilateral mass increases inhibit the subharmonic. 

local stiffness increases introduce a small random component but inhibit the 

subharmonic. 

local mass increases enhance the subharmonic and produce a large random 

component. 

bilateral localised mass increases also results in a large random component, 

the HNR values are higher than those obtained by Kojima et al (1980) and 

Yumoto, Gould and Baer (1982) but since turbulent flow and random muscle 

excitation is not modelled, this is not surprising. 

HNR values are much lower for local mass changes than for all other cases 
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due to the random modulation. 

in comparison with the data base from VGH, the ppd and lpa plots for the 

simulated cases are very similar. 

data from Monsen also shows regular subharmonic perturbations and irregular 

random perturbations which appear to be a combination of subharmonic and 

random effects. 

The following table lists the HNR values (in dB) as T a c t is decreased from 

150 to 25 ('s' indicates the presence of a subharmonic and Y the presence of random 

effects). 

Table I HNR values for all simulation cases 

Simulation HNR at 150 HNR at 25 

normal 37.7 17.5 (s) 

unilateral stiffness 35.9 16.8 (s) 

local stiffness 36.1 18.6 (s,r) 

unilateral mass 40.26 40.8 

local mass 35.7 7.9 (r) 

bilateral local mass 0.38 (r) 

R e a l da ta 

normal 22.3 

chrome laryngitis 4.5 (sj) 

Tl Glottic Cancer (1) 5.5 (s,r) 

Tl Glottic Cancer (2) 12.0 (r) 
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CHAPTER 5 

ANALYSIS 

In this chapter, an approximate analysis of vocal fold oscillation and 

perturbation is derived. The model is based on work by Titze (1983), using a single 

mass-spring oscillator vibrating normally to the flow. In his model vertical phase lag 

was represented by a travelling wave moving axial to the flow on the surface of the 

mass, and collision was not considered. 

The analysis carried out in this chapter extends Titze's work, and shows that 

some of the perturbation phenomena are deterministic and implicit in the equations 

describing the system. Certain terms in the developed equations are, according to 

Hayashi (1964) and Minorsky (1962), indicative of subharmonic oscillations often found 

in nonlinear oscillatory systems. 

5.1. The One Mass Model 

The final equation derived by Titze (1983) defined the differential equation for 

the tissue excited by the pressure created due to the aerodynamic flow. This equation 

is 

mx + rx + kx = 2y2T( R̂ -v + LpV )(x„ + x) + 2y2TLr,vx 

= PyT ...(5.1) 

where m = tissue mass 

r = tissue damping 

k = tissue stiffness (kx is replaced by kx + kr?x3 for a cubic hardening function) 
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y = the longitudinal length of the glottis 

T = thickness (from the bottom of the lower margin to the top of the upper 

margin) 

Rj = the downstream resistance as seen from the midpoint of the glottis. It is the 

summation of the vocal tract load and the post-midpoint glottal resistances R{, 

R , and R . Thus m e 

R = R + R + R + R 
T t m c L 

Lp = the downstream inductance due to the inertia of the air mass within the glottis 

and the vocal tract Thus 

*T = \ + L m 

v = the velocity of the flow 

x = lateral tissue displacement as measured from the midpoint of the thickness 

dimension 

x0 = the initial displacement for the tissue. 

P = the midpoint driving pressure 

If we now substitute for v in equation 5.1, we can find terms representing the 

effective component aerodynamic forces. The flow velocity v in Fig 4.4 is of the same 

frequency and approximately in phase with the tissue displacement, with a saw tooth 

shape in which half the period is zero. A Fourier series for v is 

v(t) = V/4 - (2V/7r2)cosw0t - (2V/327r2)cos3w„t - (2V/527r2)cos5w„t ... 

+ (V/7r)sinw0t - (V/27r)sin2w„t + (V/37r)sin3w0t - ... ...(5.2) 

where w0 is the fundamental frequency and V is the maximum velocity. 

A reasonable approximation to v is the function incorporating the four lowest 

frequency terms of the Fourier expansion i.e. 
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v(t) = V/4 - (2V/7rJ)coswot + (V/7r)sinw„t - (V/27r)sin2w0t ...(5.3) 

Fig5.1 is a plot of equation 5.3. The similarity between Fig5.1 and Fig4.4 is 

reasonable if we note that the discontinuities producing the saw tooth result from 

collision. If collision does not occur, the velocity will more closely resemble Fig5.1. 

T i 1 1 1 i 1 1 1 1 1 1 1 1 1 i i i r 
0.0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4 

T I M E ( S ) 

Fig5.1 Four term approximation to v(t) 

Substitution of this time driven function for v is not informative since there 

are still two variables, x and t involved. However, since the velocity function is the 
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same frequency as the displacement, let 

x = sinw0t ; x = w0cosw0t ; and x = -w§sinw0t = -wjx 

v is now a function of x. 

Thus 

V = V/4 - (2V/7T2W0)X + VX/7T - (V/7TW0)XX 

V = (2Vw0/7T2)x + V X / 7 T + (Vw0/7r)x2 - ( V / T T W 0 ) X 2 ...(5.4) 

The right hand side of equation 5.1 becomes 

= 2y2T[ R^V/4 - ( 2 V / T T 2 W 0 ) X + V X / T T - ( V / T T W 0 ) X X ) ( x 0 + x) 

+ L T((2Vw 0/7r 2)x + ( V / T T ) X + (V W 0 / T T)X 2 - ( V / T T W 0 ) X 2)(X0 + x) 

+ L j j f V/4 - (2V/7r2Wo)x + (V/ir)x - (V/irw0)xx)x ] ...(5.5) 

Expanding 5.5, and setting a = 2y2T 

= a[ R T Vx 0 /4 - (R T x 0 2V/7r 2 w„)x + ( R ^ V / T O X - (RTx0V/7rw0)xx + ( R T V / 4 ) x 

- ( R T 2 V/ i r 2 w 0 ) x x + (RTV/7r)x2 - ( R T V/7rw„)x 2 x + (Lrx02Vw0/7r2)x + ( L ^ V / T O X 

+ (LpXoVWo/TrJx 2 - ( L p X o V / T r w o J x 2 + (lT2Vw0/7r2)x2 + (L- rV/7r)xx + (LpVwo/TrJx3 

- ( L p V / T T W o J x x 2 + (Lj-VAOx - (Lj^V/ irX)^ 2 + (Lj-V/iOxx - (LrV/7rw0)xx2 ] 

...(5.6) 

The impedances R-p and Lj. consist of a constant vocal tract load and a 

variable glottal load that varies inversely with the size of the glottal constriction. 

Consequently during the periods just after the glottis opens and just before it closes, 

the impedances become very large and the pressures are most significant in terms of 

magnitude. Fig 5.2 is an illustration of the types of forces that can occur near the 

closure points. The terms in equation 5.6 can be associated with each of the diagrams. 
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Points to note are 

1. Bernoulli forces 

Fig 5.2a illustrates those forces which are negative regardless of the 

direction of motion. Collating these terms we have 

a[ -(L TV/7rw 0)xx 2 - ( L ^ V / T r ^ x 2 -(LYV/irv/0)xx 2 - ( L ^ o V / T r w o ) ^ 2 ] 

These forces are the Bernoulli forces, producing a negative 'sucking' force 

regardless of the direction of motion of the mass. It should be noted that 

these terms are divided by w0, which is very large when the fundamental 

frequency is 100 Hz. Consequently, these forces while significant, are not 

dominant. 

2. Velocity dependent forces opposing motion 

The forces in Fig 5.2b are velocity dependent, but oppose the 

direction of motion. These terms are 

a[ - ( R T X o 2 V / 7 T 2 W 0 ) X - ( R p X o V / T T W o J x X - ( R T 2V / 7 r 2 w 0 ) x x - ( R T V / 7 r w 0 ) x 2 x ] 

Similar to those terms producing the Bernoulli effect, a w0 divisor is present, 

and thus the forces are not dominant 

3. Forces opposing the Bernoulli forces 

The forces in Fig 5.2c, 

a[ I ^VXo / 4 + (RjXoV/irfr + ( R T V / 7 r ) x 2 + (R T V / 4 ) x + 

(LTXo2Vw0/7T2)x + (LT2Vw0/7r2)x2 + (LTx0Vw0/7r)x2 + ( L j -VWo / f f ) ^ 

oppose the Bernoulli forces. Although there is no w0 divisor they are 

relatively small near closure as they are multiplied by x (the displacement 

determining the constriction), which is very small near closure. R^Vx 0/4 is of 



113 

constant magnitude, aiding the opening cycle and opposing the closing cycle. It 

is dominated, however, by the velocity dependent forces aiding motion. 

4. Velocity dependent forces aiding motion 

The forces represented by Fig 5.2d are the largest' pressure dependent 

forces driving the system as they are not all functions of x or l/w0. They 

are, however, functions of the impedance L p indicating that inertial loads due 

to the vocal tract or the glottis are important in sustaining oscillation. The 

velocity dependent terms are: 

aKLjJtoV/iOx + (LrV/7r)xx + (Lj-VMJx + (Lj.V/ir)xx] 

o o 
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Fig5.2b Velocity dependent forces opposing motion 
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Fig5.2c Forces opposing the Bernoulli forces 
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a 
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7.50 

Fig 5.2d Velocity dependent forces aiding motion 

The dynamic equation for the system can be found by substituting 5.6 into 5.1 

and rearranging, giving 

mx + x[ (r - a(lj.V/4 + L ^ V / * - R Tx 02V/7r 2 W 0 )) 

-a(2LTV/7r - RT2V/ir !w 0 - RTx0V/7rw0)x + (aRTV/7rw0)xJ + (aLpXoV/irwoJx 

+ (a2LTV/7rw0)xx ] 

+ x( k - a(RTx0V/7r + R J V/4 + L^Vwo/Tr 2 ) ) 

- ax2( RTV/7r + LpXoVwo/Tr + LpX02Vw0/7r2 ) 

+ x3(kn - aLpVwo/Tr) + ( a L ^ V / j r ^ x 2 - aRpVxo/4 = 0 ...(5.7) 

The terms with a w0 divisor may be neglected when considering the most 

significant forces since for a typical frequency of 100 Hz, w0 = 2007T. Thus, for 

example, consider the relationship between 

LpXoV/TT : R ^ V / T T 2 

w0 
...(5.8) 
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which equates to 

L p : 2RT/200ff2 

From Titze (1983) an appropriate L p : ratio is 1 : 50. Thus the ratio in 5.8 is 

approximately 20 : 1, or a 5% contribution by the R^ term. A comparison of all 

other l/w0 terms reveals a similar or smaller contribution, and consequentiy in this 

study these terms are neglected. 

Equation 5.7 can thus be simplified to 

mx + x( (r - a ^ V M + LpXoV / i r ) ) - (a2LTV/7r)x ) 

+ x( k - a(RTx0V/ir + Rp .V/4 + L-pX02Vw0/7r2)) 

- X2a(RTV/7T + L p X o V W o / T T + L^VWo / T T 2 ) 

+ x3(k?j - a L p V w o / f f ) - aRTVx„/4 = 0 ...(5.9) 

A number of terms important to sustained oscillation can be observed in 

equation 5.9. 

1. Damping 

The damping or velocity coefficient is no longer constant, and may be 

negative when the sinusoidally varying (a2Lj,V/7r)x is greater than 

(r - a ( L T V / 4 + LJXOV/TT)). The (r - aCLj.V/4 + LpXoV /Tr)) term is a 

threshold preventing the damping coefficient from becoming negative, the 

positive inertial impedance Lj. countering the dissipation from r and reducing 

the threshold. When the overall damping is negative, energy is absorbed from 

the air flow by the tissue to compensate for tissue losses. 

The sinusoidal variation in -(a2LT,V/7r)x produces an alternately 

negative and positive damping which results in the absorption and dissipation 
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of energy. Thus the inductive load Lp is one of the dominant factors in 

maintaining the energy balance in the system, as it helps to overcome the 

dissipative effect of the tissue damping. 

As Lp varies inversely with the size of the constriction, when the 

displacement is very large, Lp is very small, resulting in a higher threshold, 

and possibly preventing a negative coefficient value. The system thus dissipates 

energy momentarily until the high threshold decreases with increasing Lp and 

decreasing x. Another possible explanation for the momentary dissipation is 

that the system becomes a Van der Pol oscillator due to the (aR-pV/7rw0)x2x 

term in 5.7. Equation 5.7 resembles the Van der Pol equation 

x + M(X 2 - 1)X + x = 0 

when x becomes very large, as the x2 becomes significant in spite of the 

decreasing R-p, and the w„ divisor. 

Near closure, however, Lp is large, so the threshold is easily 

overcome, and for positive displacement energy is absorbed. 

Observation of the energy diagram of Fig 4.4 (the normal fold) 

illustrates the described phenomena, with dissipation occurring for both negative 

displacement and large positive displacement, and absorption for all positive 

displacements less than peak. 

2. Vertical phasing 

Until now the effects of vertical phasing have not been discussed and 

in fact equation 5.1 was developed by Titze (1983) without introducing this 

phenomenon (although later in his paper vertical phasing is considered). It is 

clear from equation 5.9 that oscillation is possible without it, but we will now 
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consider the effect it has on oscillation, based on Titze's study (1983). 

' When vertical phasing is present, the glottis is divergent when the fold 

is approaching closure, as the upper margin orifice A m t o t is larger than the 

lower A ^ , and midpoint margins. If we consider a fold in which no vertical vtot c 

phasing occurs, (A _ = A_„ J , the viscous resistance R will be greater vtot mtot m a 

than for the divergent glottis since the area A m is less. In fact, it is 

possible for the divergent glottis shape to exhibit a small pressure recovery, 

causing R m to be very small. As a result Rj is reduced in magnitude. 

The opposite phenomenon occurs when the vocal fold is in its opening 

cycle, as the lower margin leads the upper, resulting in a convergent profile. 

A-mtot is less than for a fold not exhibiting vertical phasing, and consequently 

R m and R^ are greater. The impedances L and L-p respond in a similar 

way. 

The effect of the vertical phase lag then, is to provide glottal 

impedances which are asymmetrical in magnitude (direction, or velocity 

dependent). Thus, during glottal opening, the impedances for a convergent 

profile increase causing an increased midpoint pressure. As a result the masses 

are aided in the direction of motion. During closure, on the other hand, the 

impedances decrease and consequently the forces opposing closure decrease 

allowing the masses to be 'sucked' in. 

3. Stiffness 

The terms proportional to x, x2, and x3 determine the 'spine' of both 

the energy diagram and the frequency response. The presence of terms 

involving L j and R j modify the spine by decreasing the gradient Note that 

the presence of the x2 term is solely due to the aerodynamic flow and not 
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the tissue. 

krjx3 is commonly known as the cubic hardening function in Duffings 

equation (cit p378, Meirovitch, 1975), and its presence results in a frequency 

response which does not possess a fixed resonance frequency. For a damped 

system, Duffings equation is of the form 

x + wJx = e( -2pwx - w2(ax + /3x3) + Fcos fit ) ...(5.10) 

with a frequency response as in Fig5.3. Fcos Sit is an external harmonic 

forcing function. 

Fig5.3 Frequency response for Duffings equation. After Meirovitch (1975) 

Ishizaka and Flanagan (1972) examined the effect of increasing subglottal 

pressure on the fundamental frequency (Fig5.4) for various TJ ( T J V > T2c> and 77 m 

were all varied by the same amount). The 7? controlled the 'spine' of the stiffness 

function. 

TJ is the equivalent of /3 in Duffings equation. The trend of increasing fundamental 

frequency with greater 7} (or 0) is apparent in both Fig5.3 and Fig.5.4. 
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Fig5.4 PI vs fo for the Ishizaka-Flanagan model.After Ishizaka and Flanagan, 1972 

According to Hayashi (1964), it is possible for submultiple oscillations 

of the fundamental frequency to appear with the fundamental. Two 

requirements are necessary in the differential equation, and these are 

(1) stiffness functions of the form 

bx2 + cx3 + + 

which will give subharmonics of 1/2 and 1/3 (order 2 and 3). 

and (2) The equation must be driven by an external harmonic function. 

Equation 5.9 fulfills the first requirement, but not the second. The 

second requirement is necessary as it allows the system to traverse a non 

unique phase trajectory (this is prohibited in a second order autonomous 

system). A second order equation such as equation 5.9 is not an adequate 

representation of the proposed model, as data from real pathological speech 

(Monsen, 1979), and the simulations carried out in this study have shown non 

unique trajectories and a 1/2 subharmonic. The equations must therefore be 

reconsidered by expanding to the two mass system. 

4. Subharmonic Perturbations 
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5.2. Fourth Order Systems 

Titze's model (1983), assuming a single mass system, results in the autonomous, 

second order differential of equation 5.9. A phase plot of the motion of such a 

system would be expected to display a trajectory which moves out to a single limit 

cycle following a unique trajectory (without crossing over itself). Fig 4.3 shows, for the 

normal cord, a trajectory which is not unique. This implies that the proposed 

simulation model does not conform exactly to equation 5.9. For a trajectory to deviate 

from its unique path either 

(1) an external harmonic forcing function is present, 

or (2) the system is of higher than second order. 

A single mass system such as the Flanagan-Landgraf model cannot exhibit a 

non-unique phase trajectory, and therefore cannot undergo the subharmonic oscillations 

seen in chapter four. 

To explain the presence of the 1/2 subharmonic, the proposed simulation model 

must be thought of as a system of two second order systems coupled together 

(representing the upper and lower masses respectively) to form a fourth order 

autonomous system in which each second order system acts as a driving function for 

the other. 

5.2.1 Expansion to a Fourth Order System 

If, instead of a one mass system, two masses are assumed, then the pressures 

at some distance above and below the midpoint can be used to drive each of the 

masses. As in the Ishizaka- Flanagan model, a coupling spring between the two masses 

is added, producing an additional force k (x - x ). Thus, let P be the driving r c v m v 

pressure at the midpoint of the vocalis mass, and P be the equivalent pressure for 
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the mucosa. Assume that the relationships between P , P and P are calculated bv 
v m 

moving upstream and downstream from the midpoint respectively. Then 

P y = P + (L/2)(u + tid) + (Rv/2)(u + ud) 

and 

P m = P - (L /2)u - (R /2)u ...(5.11) m m m K ' 

where u, u are the flow and flow differential, with 

u = 2y(x0 + x)v 

u^ and as the displacement flow and differential due to the incremental area 

change caused by lateral tissue dislacement ie. u^ = 2yTx 

R , R . L , and L are the glottal impedances defined in the proposed model. 
V m V m o r r f 

Then, 

P y = 2y(RTv + LpV) (x0 + x) + (Lr,v/T)2yTx + L u / 2 + L u d / 2 + 

Rvu/2 + R yu d/2 ...(5.12) 

If u d = 2yTx, u d = 2yTx, u = 2y(x0 + x)v, 

and ii = 2y(x0 + x)v + 2yx v then 

P y = 2y(x„ + x)( R Tv + Lj-v + + L y v / 2 ) 

+ 2y( LpV + Lyv/2)x + 2yT(Ry/2 )x + 2yTLx II 

= 2y(x0 + xX(Rj + R / 2 )v + (1^ + L/2)v) 

+ 2yx((Lp + Ly/2)v + TR y/2) + 2yTLyx/2 ...(5.13) 

Substituting equation 5.4 for v and v and letting 

R° = Rp + R y/2 and 
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L° = Lp + L y /2 

an expression purely in terms of x can be derived. A further substitution of 

x = (x + x )/2 v v nr 

x = (x + x )/2 v v nr 

x = (x + x )/2 v v nr 

gives an expression in terms of x y and x . 

Thus P yT 

(x y + xm)aL y/4 + (a/2)(xy + xm)[ L°V/4 + L°x„V/7r + R y/2 ] 

+ (a/4)(xv + xm)(x v + xm)[ 2L°V/7r ] 

+ (a/2)(x + x )[ R°x„V/7r + R°V/4 + L°x 02Vw 0/7r 2 ] 

+ (a/4)(xy + xm)(xv + xm)[ R°V/7T + L ox cVw 0/7r + L°2Vw 0/7r 2 ] 

+ (a/8)L°Vw,/ir)(x + xm) 3 + aR°Vx„/4 ...(5.14) 

where the terms with a w0 divisor are neglected as before. The. derivation of the 

dynamical equation is identical to that for equation 5.9 except for the terms 

(2yTRy/2)x + lyTL^i 12 (which are not functions of v or v), and the use of R° 

and L°. Thus, if the vocalis differential equation is 

m x + r x + kx + T ? k x 3 + k(x - x ) = yTP ...(5.15) v v v v v ' v v v c v nr ' v v / 

then the following equation is derived: 

x y(m v - aLy/4) + xv((ry - a(L°V/4 + L°x 0V/7r + Ry/2)/2 - (a/2)(L° V/Tr)x y) 

+ xy( k y + k c - (a/2X R°x„V/7r + R°V/4 + L° x„2Vw„/7rJ)) 

- x ya(R°V/7r + L°x„Vw0/7r + L°2Vw„/7r 2) 

+ x^(kvi?y - (a/8)(LoVw0/7r)) - aR°Vx„/4 
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x L 174 + x ( (a/2)(L°V/4 + L° X 0 V / T T + R /2) + (a/2)(L° V / T T ) X ) m v nr v A v ' v / v ' m ' 

+ x m (a/2)(R° X „ V / T T + R°V/4 + L° x„2Vw0/7r2) 

+ x 2 (a/4)(R° V/7T + L°2Vw0/7T2) + x3 (a/8)(L° Vw0/7r) m m 

+ [ a/4(L02V/7r)( x m x y + x y x m ) + (a/2Xx y x m ) (R° V / T T + L°x„Vw0/7r 

+ L°2yw 0 /7r 2 ) + (a/8)(L°w 0V/ir)( 3x yxm + 3xmxy) ] ...(5.16) 

the Q terms are cross coupling terms. It can be seen that both the left and right 

sides of equation 5.11 have a similar form to 5.4, and assuming x m is a sinusoidal 

function, we can expect it to act as a driving function for the left hand side. 

In a similar fashion, the mucosal pressure is derived as: 

P m = P - (Lm/2)(2y(Xo + x)v + 2yxv) - (R/2)2y(x0 + x)v ...(5.17) 

where u and ti have been replaced by the same expressions used previously. 

Substituting equation 5.1 for P, 

P m = 2y(x0 + x)[ (R T - Rm/2)v + (1̂ . - L f f l/2)v] + 2yx(IT - W 2 ) v 

...(5.18) 

Substituting 

Rj. - R m / 2 = R t 

L , - L m / 2 = Lf, 

and equation 5.4 for v, equation 5.17 can be expressed in terms of x only. The 

resulting equation 5.19 neglects the terms involving the divisor w0, for reasons 

described previously. 

yTP = ax(Lf)V/4 + Ltx„V/7r) + axx(Lf2V/7r) 
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+ ax( RtxoV/7r + RfV/4 + Lt2Vw 0/7r 3) 

+ axJ(RfV/7r + Ltx0Vw„/7r + Lt2Vw0/7r2) + ax3LtVw0/7T + aRfVx0/4 

...(5.19) 

Equation 5.19 can be equated to a mucosal tissue differential equation similar to 5.16 

and x can be replaced by (xy + x )/2 to eventually yield 

x_m m m 

+ x m ( r m - (a/2)LfV/4 + Ltx„V/7r) - (a/4)xmLtV/TT ) 

+ xm[ k m + k c - (a/2)( Rtx0V/7r + RfV/4 + LfXo2Vw0/7r2 )) 

- (a/4)x^( RfV/Tr + LfxoVwo/Tr + Lt2Vw„/7r2 ) 

+ xm( km7?m - (a/8XLtVw0/7r)) - aRtx„V/4 

x y( (a/2)(LtV/4 + LtxoV/7r) + (a/4)x Lf 2V/TT 

+ xy[ k c + (a/2)( RtxoV/7r + RfV/4 + Ltx02Vw„/7r2 )) 

+ (a/4)x2

r( RfV/Tr + LtxcVw„/7r + Lt2Vw„/7r2) + (a/8)xy(LtVw0/7r) 

t + (a/4)((x x + x x )Lf2V/7r v / v v m m m v' ' 

+ (axvxm/2)( RfV/Tr + Ltx0Vwo/7r + Lt2Vw0/7r2 ) 

+ (3a/8)(LtVw„/7rX x ^ + ) ] ...(5.20) 

Equation 5.20 has a very similar form to 5.16, but lacks inertially coupled 

terms. By expanding the equations to fourth order, the driving forces now become 

obvious as each of the masses provides the driving force for the other. The second 

requirement for subharmonic oscillation has thus been fulfilled. 

5.3. Perturbations 

5.3.1 Further Examination of Subharmonics 
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According to Hayashi (1964), a 1/2 subharmonic is apt to occur only when the 

stiffness nonlinearity is asymmetrical 

ie. ax + bx2 + cx3 

whereas 1/3 subharmonics can occur when ax +cx3 terms are present, regardless of 

the presence of bx2. Thus, since ax + bx2 + cx3 is present, it is possible for 

subharmonics of both 1/2 and 1/3 to occur. 

Thus far, equations 5.16 and 5.20 have proven too difficult to solve, so the 

appearance of subharmonics, while likely, has not been analytically proven. However, 

the simulations presented in chapter four demonstrate phenomena that appear to be 

subharmonics, and it is our contention that this is the mechanism for regular 

perturbation in the model, and that it is also manifested in real vocal fold vibration. 

As evidence we recall the real data obtained by Monsen (Fig 4.42) and we 

also present in Fig 5.5 the pitch vs period number plot attained by Isshiki and 

Ishizaka (1976) for various tension imbalances using the two mass model. It is evident 

from Fig 4.42 and Fig 5.5 that small subharmonic components of of 1/2, 1/3 and 

higher order modulate the fundamental. 

In our simulations, the subharmonic only appears for low T . There are two 
3.CI 

possible reasons for this, and they are rooted in both linear and nonlinear oscillation. 

In a linear oscillatory system, the amount of damping determines the amplitude 

and decay of the vibration. As an analogue, one might expect equations 5.16 and 5.20 

to respond similarly. The Ftot vs time plot in Fig 4.6 shows an impulsive force 

indicating a rich harmonic spectrum. By decreasing T the tissue damping and 

stiffness decreases (equations 3.7 and 3.10). Thus the superharmonics and subharmonics 

can appear without being attenuated by the damping. 
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Fig5.5 Frequency Fluctuation Plot After Isshiki and Ishizaka (1976) 

An analysis by Minorsky (1962) for a nonlinear system with a 1/2 subharmonic 

showed the subharmonic amplitude to be optimally dependent on the stiffness. Thus 

for greater stiffness the conditions may have been less than optimal for the 

subharmonic, and by decreasing the stiffness conditions became more favourable. 

5.3.2 Irregular Perturbation 

At present, it is unknown how irregular vibrations appear. It is likely that they are a 

combination of subharmonics and harmonics from the nonlinear stiffnesses, and from 

the cross coupled terms appearing in 5.16 and 5.19. Also, since the driving forces tend 

to be impulsive, it is possible that the higher harmonics of vibration are excited, 

confusing the situation even more. 
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Another alternative is that the system is undergoing chaotic oscillation, though 

this difficult to show. 

5.4. Summary 

A mathematical approximation has been introduced extending Titze's treatise on 

the physics of vocal fold oscillation (Titze, 1983). Subharmonics have been proposed as 

a possible cause of regular jitter and shimmer perturbations that have appeared in 

simulations using the proposed model, Isshiki and Ishizaka's model, and in speech data 

gathered by Monsen (1979). 

The equations developed in chapter five indicate that the regular perturbation 

phenomena is deterministic and implicit in the model. They also illustrate the 

components of the driving forces discussed in section 3.9. The effects of these terms 

can be seen in the energy exchange diagrams of chapter four. It is interesting to note 

that the energy input to overcome damping is provided by the tract loading, and is 

not implicit in the differential equations for the tissue. This implies that sustained 

oscillation requires aerodynamic flow. 

Finally, we observe that the appearance of perturbations requires a third or 

higher order system. The proposed model, and that of Ishizaka and Flanagan (1972), 

are fourth order coupled systems in a form appropriate for sustaining oscillation and 

producing subharmonics. 



CHAPTER 6 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

In the course of this investigation we have established a hybrid simulationmodel 

by building upon existing models. This has been used to successfully investigate 

asymmetric conditions of vibration. A set of flow coupled differential equations has also 

been proposed that appears to explain much of the phenomena observed in real 

speech. The following sections outline the major findings of this study and propose 

further areas for investigation. 

6.1. Summary and Conclusions 

The simulation model is a hybrid of the discrete two mass Ishizaka-Flanagan 

model (1972) and the discrete multiple mass model proposed by Titze (1973, 1974). 

Proposing such a hybrid enables us to asymmetrically vary and localise biomechanical 

parameters. The resulting simulations have revealed interesting phenomena such as 

subharmonics and random perturbations. 

The results are presented in terms of phase plots and energy exchange plots 

which are ideal for examining the oscillatory stability and the displacement dependent 

energy dissipation-absorption mechanism. Speech, flow, cross-sectional area and 

displacement plots are also presented so that time dependent relationships can be 

observed. 

Perturbations have been analysed using pitch period duration (ppd) and largest 

peak amplitude (lpa) plots which attempt to show the changes in period and amplitude 

of the speech wave over time. These changes may be regular (periodic) or random. 
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The plots show end point phenomena i.e. the period length and the peak amplitude, 

but do not adequately represent the effect jitter and shimmer have throughout the 

entire fundamental period. To display these effects better, the HNR value (Yumoto, 

Gould and Baer, 1982) has been calculated. 

The flow coupled differential equations developed in chapter five extend work 

done by Titze (1983), unifying the differential equations into a function dependent only 

on the lateral displacement By doing this, the various components of the aerodynamic 

forces are isolated and our understanding of their effects clarified. For example, vertical 

phasing and vocal tract loading have been incorporated to explain the oscillatory 

stability in terms of velocity dependent negative damping, Bernoulli effect forces and 

absorption-dissipation mechanisms. Vertical phasing and loading have previously been 

discussed by Titze (1980, 1983, 1985), Ishizaka (1981), and Conrad (1983) within their 

own models, and this analysis reinforces their conclusions and furthermore predicts 

phenomena that may be the cause of perturbed speech. 

Oscillatory instabilities observed in the simulation model have been explained 

assuming subharmonics of order 1/2 and 1/3, which are present in the differential 

equations. Although the simulation model is not directly derived from the differential 

equations of chapter five, the energy exchange diagrams produced by the proposed 

hybrid simulation model (the equations and results of chapters three and four) and by 

Titze (1983) (which is the result that would be derived from the simulation of the 

equations of chapter five) are so similar that there is little doubt that the two cases 

represent the same situation. It should be noted that the 1/3 subharmonic is inherent 

in the tissue parameters but the 1/2 subharmonic appears through the presence of the 

flow. The manifestation of these subharmonics is dependent on the value of T the 
cLCl 

longitudinal tension, which determines the damping and stiffness in the tissue. Other 

instabilities which are more random in nature have been observed for localised 
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parameter changes. The equations do not show how this irregular perturbation arises, 

but it is likely that it is due to the interaction of the many sub and superharmonics 

of the fundamental. 

The results of the simulations agree well with data from the Isshiki and' 

Ishizaka model, the Voice Lab, and Monsen (1979), which all display both regular 

subharmonic perturbations and random perturbations. The HNR ratios are higher in the 

simulation results than for real speech data, probably because the model does not 

incorporate turbulent flow, random perturbations in parameter values or three 

dimensional flow characteristics. 

We can conclude that the model has successfully simulated the major 

phenomena present in vocal fold oscillation, demonstrating the flexibility and suitability 

for modelling pathologies. 

The flow coupled differential equations, although not solved for, are in a form 

recognisable as likely to sustain oscillation, and under certain conditions, produce regular 

and irregular perturbations. Thus the investigation has succeeded in attaining all the 

proposed goals, and we feel that the field will benefit greatiy from this study since 

few analysis or simulation studies have been performed in the area of speech 

perturbations. It is gratifying to observe the predicted phenomena in the real 

pathological speech data, indicating that this study is on the right track. 

6.2. Recommendations 

Since this study performed a limited range of simulations much work can be 

done before it is necessary to advance to a three dimensional finite element model. It 

is necessary, however, for more scientific data on biomechanical parameters for 

pathological cases to be made available, especially for changes in mass, stiffness and 

tension, (we should recognise however that the two mass form of the proposed model 
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is not an ideal anatomical model of the vocal cords, and cpnsequendy some of the 

recorded parameters are not suitable for use in the mass-spring approach). 

Given this data, future work could be attempted in any of the following areas 

using this model to investigate: 

the effect of the posterior glottic chink 

the random variation of biomechanical parameters using a normal distribution. 

This would model the effect of nerve innervation and muscle contraction in 

the fold. 

the incorporation of turbulent flow to model the irregular medial edge when 

a polyp or carcinooma exists. 

the analytical solution to the proposed differential equations 

the simulation of the set of differential equations proposed in chapter five. 

The last recommendation is the most logical as it would demonstrate 

conclusively the similarity between the hybrid simulation model (and the 

Ishizaka-Flanagan model) and our equations (derived from Titze (1983)). This would 

enable us to unify the previous discrete models with the recentiy proposed analytical 

models of Titze (1983) and Conrad (1983). 
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APPENDICES 

APPENDED A: Vocal Tract Measurement Data 

The cross sectional area and length data for the vocal tract in the vowel 

configuration /a/ are derived from Fant (1960) The sections are variable in length 

with section 1 beginning just above the glottis and section 10 ending with the lips. 

The areas and lengths to each section are listed below: 

Section Area (cm2) Length (cm) 

1 2.6 0.5 

2 1.3 1.5 

3 4.0 0.5 

4 2.1 1.0 

5 0.7 2.0 

6 1.3 1.5 

7 2.2 2.0 

8 4.7 2.0 

9 8.0 4.5 

10 5.0 2.0 
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APPENDIX B: Harmonics to Noise Ratio 

The harmonics to noise ratio (HNR) used in this study is derived from 

Yumoto, Gould and Baer (1982), in which a measure was proposed for quantifying the 

hoarseness severity in sustained vowels (hoarseness describes a perceived abnormality of 

the voice). 

According to Yanagihara (1967) hoarse vowels have high frequency noise 

content, noise in the main formants, and a loss of high frequency harmonics. The 

degree of hoarseness can thus be assessed by the extent to which noise replaces the 

harmonic structure. The algorithm used by Yumoto, Gould and Baer (1982) is based 

on the assumption that sustained vowels consist of periodic components (the harmonics) 

and additive noise (of zero mean amplitude). 

The effects of both jitter and shimmer are included in this algorithm, the 

deviations from the expected amplitude are assumed to be caused by the noise, so 

HNR is a direct measure of the shimmer in the signal. The effect of jitter is more 

subtle, and arises because of the formulation of the HNR. 

Consider a speech signal f(t). It can be considered as a concatenation of many-

waves fj(r) of period r, where r is a constant length for all pitch periods. If f.(r) 

is averaged over n periods, then 

n 
f (T) = L f.(T)/n 
avv ' v ' 

The noise component, or amplitude shimmer, should then average to zero. This average 

signal wavelet then possesses the harmonic content of the general speech signal. 

The presence of jitter means that the signal is not truly periodic and so T 

must be considered very carefully. In Yumoto et al, T is chosen to be the longest 

pitch period Tmax in the signal. Consequently, for the purposes of calculating the 
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average signal, all shorter duration wavelets are padded with zeros. The average 

wavelet then does not see any contribution from the short wavelets, but has a small 

contribution from the longer wavelets (reduced by a factor of n). * 

The energy content of the average wavelet is the harmonic measurement H 

used for calculating HNR. Thus 

H = n r Tmax ^ 
o av 

The noise N is measured as the deviation by each wavelet f. from the average 

wavelet over T.. Thus 
1 

n m 
N = I / l (f.(r) - f (r))2dr 

Q
 v i v ' avv " 

Integrating to T. means that the effect of Tmax is only apparent for the pitch period 

that has a period of Tmax. By integrating over T. the contribution due to varying 

period lengths is incorporated in the noise computation. 

In our experience HNR is highly dependent on pitch period estimation and so 

it is necessary that a highly accurate marking scheme be employed. If the period is 

estimated to the nearest sampling point errors that appear to be jitter can occur due 

to poor sampling resolution. Consequently, for this implementation of HNR a simple 

visual marking scheme using the speech signal is used as an initial estimate, and then 

a parabolic interpolation of the peak in the autocorrelation wave of the speech signal 

is used as a more accurate estimate. The HNR measurements using the VGH database 

have shown that pathologies range from 0 to 20 dB, which is compatible with the 

simulation results. The difference between these results and those of Yumoto et al. 

may be attributable to the more accurate period estimation technique. 


