HIGH ORDER SUBSYNCHRONOUS RESONANCE MODELSAND MULTI-MODE S'TABILIZATION
by
King Kui Tse
B.Sc. (Hon.), Northeastern University, 1974
A THESIS SUBMITTED IN PARTIAL FULFILMENT OFTHE REQUIREMENTS FOR THE DEGREE OFMASTER OF APPLIED SCIENCE
in
THE FACULTY OF GRADUATE STUDIESin the Departmentof
Electrical Engineering
We accept this thesis as conforming tothe required standard
THE UNIVERSITY OF BRITISH COLUMBIA
June 1977
(C) King Kui Tse, 1977

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. 1 further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of

 Electrical EngineeringThe University of British Columbia
2075 Wesbrook Place
Vancouver, Canada
V6T lW5

Date \qquad

ABSTRACT

Subsynchronous resonance (SSR) occurs in a series-capacitorcompensated power system when a mechanical mass-spring mode coincides with that of the electrical system. In this thesis, a complete high order model including mass-spring system, series-capacitor-compensated transmission line, synchronous generator, turbines and governors, exciter and voltage regulator is derived. Eigenvalue analysis is used to find the effect of capacitor compensation, conventional lead-lag stabilizer, loading and dampers on SSR. Finally, controllers are designed to stabilize multimode subsynchronous resonance simultaneously over a wide range of capacitor compensation.
ABSTRACT ii
TABLE OF CONTENTS iii
LIST OF TABLES v
LIST OF ILLUSTRATIONS vi
ACKNOWLEDGEMENT vii
NOMENCLATURE viii

1. INTRODUCTION 1
1.1 Subsynchronous Resonance 1
1.2 The Scope of the Thesis 2
2. A COMPLETE POWER SYSTEM MODEL FOR SUBSYNCHRONOUS RESONANCE STUDIES 4
2.1 Introduction 4
2.2 The Steam Turbines and Generator Multi-Mass Torsional System 4
2.3 The Turbine Torques and Speed Governor 8
2.4 The Synchronous Generator 10
2.5 The Exciter and Voltage Regulator 14
2.6 State Equations for the Complete System 16
3. EIGENVALUE ANALYSIS OF THE SSR MODEL 18
3.1 Introduction 18
3.2 The Effect of Capacitor Compensation 18
3.3 The Effect of Conventional Stabilizer 18
3.4 The Effect of Loading 19
3.5 The Effect of Dampers 19
4. MULTI-MODE TORSIONAL OSCILLATIONS STABILIZATION WITH LINEAR OPTIMAL CONTROL 29
4.1 State Equations with Measurable Variables 29
4.2 State Equations in Canonical Form 31
4.3 Linear Optimal Control Design 34

Page

4.4 Stabilization of SSR
 35

5. CONCLUSIONS 42
REFERENCES 43
Table Page
3-1 Data for SSR Mode1 20
3-2 Eigenvalues of SSR model at different degrees of capaci- tor compensation without conventional stabilizer 21
3-3 Effect of damper winding for zero total reactance 28
4-1 Eigenvalues of original system and reduced order models without controller at 30% compensation 37
4-2 Eigenvalues of reduced 22nd order model with/without controller and original system with the controller at 30% compensation 38
4-3 Eigenvalues of reduced 22nd order model with/without controller and original system with the controller at 50\% compensation 39
4-4 Eigenvalues of reduced 19 th order model with/without controller and original system with the controller at 30% compensation 40
Figure Page
2-1 A functional block diagram of the complete system for subsynchronous resonance studies 6
2-2 Mechanical mass and shaft system 7
2-3 Torques of a mass-shaft system 7
2-4 A speed governor model for the steam turbine system 8
2-5 A linear model of the steam turbine system 9
2-6 A synchronous machine model 10
2-7 A single line representation of the transmission line 12
2-8 Exciter and voltage regulator mode1 14
2-9 A supplementary excitation control 15
3-1 The effect of capacitor compensation without stabilizer. 22
3-2 Enlarged portion of Fig. 3-1 23
3-3 The effect of capacitor compensation with stabilizer 24
3-4 Enlarged portion of Fig. 3-3 25
3-5 The effect of loading without stabilizer 26
3-6 The effect of loading with stabilizer 27
4-1 The effect of capacitor compensation with controller 41

ACKNOWLEDGEMENT

I wish to express my sincere gratitude to my supervisors, Dr. Y.N. Yu and Dr. M.D. Wvong, for their patience, guidance, many hours of consultation and valuzble advice during the course of the research work and writing of this thesis.

Financial support from a British Columbia Telephone Company Scholarship, a University of British Columbia Summer Research Fellowship and a teaching assistantship is gratefully acknowledged.

Thanks are also due to Mary Ellen Flanagan and Sannifer Louie for typing this thesis.

I am grateful to my parents and Mui Ha in Hong Kong for their patient understanding and encouragement throughout my university career.

```
=NOMENCLATURE
```


General

X	state vector of unmeasurable model
Z	state vector of measurable model
Y	state vector of canonical
A	system matrix of X -mode1
F	system matrix of Z -model
F_{0}	system matrix of Y-model
B	control matrix of X-mode 1
G 。	control matrix of Z -model
G_{0}	control matrix of Y -mode1
U	control vector
M	transformation matrix for Z -mode1
T	transformation matrix for Y-model
λ	eigenvalue
j	complex operator, $\sqrt{-1}$

Mass-Spring System

M inertia coefficient $=2 H$
H inertia constant
K shaft stiffness

D damping
$\theta \quad$ rotor angle
$\omega \quad$ rotor speed
$\omega_{0} \quad$ synchronous speed

Synchronous Machine

i instantaneous value of current
V instantaneous value of voltage
$\psi \quad$ flux-1inkage
R resistance
X reactance
$\delta \quad$ torque angle, rad.
$\omega \quad$ angular velocity, rad./s
Te electrical torque
$i_{t} \quad$ terminal voltage
$P+j Q \quad$ generator output power
Transmission Network
$X_{t}, R_{t} \quad$ reactance and resistance of transformer
$X_{e}, R_{e} \quad$ reactance and resistance of the line
$X_{c} \quad$ reactance of capacitor
Vo infinite bus voltage
Exciter and Voltage Regulator
$\mathrm{K}_{\mathrm{A}} \quad$ regulator gain
$\mathrm{T}_{\mathrm{A}} \quad$ regulator time constant, s
$T_{E} \quad$ exciter time constant, s
$V_{r e f . ~ r e f e r e n c e ~ v o l t a g e ~}^{\text {en }}$
Governor and Turbine System
$\mathrm{K}_{\mathrm{g}} \quad$ actuator gain
$\mathrm{T}_{1}, \mathrm{~T}_{2}$ actuator time constant
T_{3} servomotor time constant
a change in actuator signal
$P_{G V} \quad$ power at gate outlet
$\mathrm{T}_{\mathrm{CH}} \quad$ steam chest time constant
$\mathrm{T}_{\mathrm{RH}} \quad$ reheater time constant
$\mathrm{T}_{\mathrm{CO}} \quad$ cross-over time constant

F_{HP}	high pressure turbine power fraction
$\mathrm{F}_{\text {IP }}$	intermediate pressure turbine power fraction
$\mathrm{F}_{\mathrm{LP} 1}$	low pressure turbine 1 power fraction
${ }^{\mathrm{F}} \mathrm{LP} 2$	low pressure turbine 2 power fraction
T_{HP}	high pressure turbine torque
$\mathrm{T}_{\text {IP }}$	intermediate pressure turbine torque
$\mathrm{T}_{\text {LP 1 }}, \mathrm{T}_{\text {LP2 }}$	low pressure turbine torque
Subscripts	
d, q	direct- and quadrature-axis stator quantities
f	field circuit quantities
D, Q, G	direct- and quadrature-axis damper quantities
c	quantities associate with capacitor
a	armature phase quantities
Superscripts	
-1	inverse of a matrix
t	transpose of a matrix
-	differential operator
Prefix	
Δ	linearized quantities
s	differential operator
p	differential operator

1. INTRODUCTION

1.1 Subsynchronous Resonance [1]

To increase the power transfer capability of a power system, the use of series-capacitor-compensated transmission lines is the best alternative to the addition of transmission lines because of environmental considerations and the limited availability of right-of-way. They are also more economical than other methods such as HVDC. However, subsynchronous resonance (SSR) may occur and shaft damage may result. Two turbine shafts were severely damaged [2] at the Mohave generating station of the Southern California Edison Company because of the excessive torsional oscillations caused by interaction between the electrical resonance of the series-capacitor-compensated system and the natural modes of the multi-mass generator turbine mechanical system.

Subsynchronous resonance may occur in a system in the steadystate or transient state due to a system fault or major switching. The former may be called the steady-state subsynchronous resonance and the latter the transient subsynchronous resonance. The main problems are the self excitation, the torsional interaction, and the transient torques [3]. When SSR occurs, the synchronous machine is selfexcited and behaves like an induction generator. If the negative resis- ${ }^{-}$ tance of the machine, as an induction generator, exceeds the total resistance of the external electrical system, self excitation of SSR occurs.

Torsional oscillation is due to the mechanical modes of the multi-mass turbine-generator system. The torsional frequencies are in the subsynchronous range. If the electrical resonant frequency is equal or close to a torsional mode, the rotor oscillations and the induced voltages will build up and the interaction between the electrical and
mechanical systems ensues [1,4].
Transient torques are caused by system disturbances on a series-capacitor-compensated line and the energy stored in the series capacitor produces large subsynchronous currents in the lines. When the frequency of the current coincides with the natural torsional frequency, transient torque results.

After the reported turbine shaft failures [3], corrective measures have been proposed. Some of them are under serious consideration and others already put into practice. Without too much modification to the existing system, the simplestway to avoid the subsynchronous resonance is to reduce the degree of capacitor compensation. Another suggestion is the installation of passive filter units in series with the generator transformer neutral at the high voltage side. Each filter unit is a high-Q parallel resonant circuit tuned to block the subsynchronous current at a particular frequency corresponding to one of the mechanical modes. Additional amortisseur windings on the pole faces can reduce the effective negative resistance [5]. Supplementary excitation control is being considered and the stabilizing signals are derived from rotor speed. Finally a subsynchronous overcurrent relay has been developed for the automatic protection of generating units in case of sustained subsynchronous oscillations.

1.2 Scope of the thesis

The widely accepted method for subsynchronous resonance studies in engineering practice consists of a two-step analysis [5]. The electrical and mechanical modes are determined separately. The transient elec... trioal torque from the electrical system is calculated first and then applied to the mechanical system as a forcing function. In this thesis, a complete model including the electrical, mechanical and control systems
will be developed and presented in Chapter 2. By using eigenvalue analysis, the effect of various degrees of compensation, loading conditions and conventional supplementary excitation control on subsynchronous resonance will be examined in Chapter 3. For broad-band frequency multimode subsynchronous resonance control, linear optimal controllers will be designed in Chapter 4. A summary of all important results and conclusions will be presented in Chapter 5.
2. A COMPLETE POWER SYSTEM MODEL FOR SUBSYNCHRONOUS RESONANCE STUDIES

2.1 Introduction

For any dynamic or transient stability study of a power system, an accurate model of the system is required. In addition to the individual efforts $[2,7,12]$, a benchmark model has been proposed by the IEEE Subsynchronous Resonance Working Group for SSR studies [20]. In this chapter, a complete subsynchronous resonance model is presented, including steam turbines and generator múlti-mass torsional system, the turbine torques and speed governor, the synchronous generator, the capacitor-compensated transmission lines, and the exciter and voltage regulator. A functional block diagram of the complete system is shown in Fig. 2-1.

2.2 The Steam Turbines and Generator Multi-Mass Torsional System

Assume that the steam turbine-generator set consists of one high-pressure steam turbine, one intermediate-pressure turbine, two lowpressure turbines, one generator rotor and one exciter, all mechanically coupled on the same shaft as shown in Fig. 2-2. They comprise a six-mass torsional system. For the purpose of analysis [13], they are considered to have concentrated masses and to be coupled by shafts of negligible mass and known torsional stiffness. Each mass is denoted by a circular disc, as in Fig. 2-3, with an inertia constant M_{i}, a positive torsional torque $K_{i}\left(\theta_{i+1}-\theta_{i}\right)$ on the left and a negative torque $-K_{i-1}\left(\theta_{i}-\theta_{i-1}\right)$ on the right. There is an external torque T_{i} applied to the mass inna positive direction, an accelerating torque $M_{i} \dot{\omega}_{i}$ in the same direction and a damping torque $D_{i} \omega_{i}$ in the opposite direction. The net accelerating torque becomes

$$
\begin{equation*}
M_{i} \dot{\omega}_{i}=T_{i}-D_{i} \omega_{i}+K_{i}\left(\theta_{i+1}-\theta_{i}\right)-K_{i-1}\left(\theta_{i}-\theta_{i-1}\right) \tag{2-1}
\end{equation*}
$$

where $\quad M_{i}=$ the inertia constant of $i^{\text {th }}$ rotor

$$
\theta_{i}=\text { the rotational displacement for } i^{\text {th }} \text { rotor }
$$

$D_{i}=$ damping coefficient for $i^{\text {th }}$ rotor
$K_{i, i+1}=$ the torsional stiffness of the shaft between the $i^{\text {th }}$ rotor and the $i+1^{\text {th }}$ rotor

By applying equation (2-1) to the six mass turbine-generator system, twelve differential equations are obtained:

High Pressure $\mathrm{p}_{6}=\frac{\mathrm{K}_{56}}{\mathrm{M}_{6}} \theta_{5}-\frac{\mathrm{K}_{56}}{\mathrm{M}_{6}} \theta_{6}-\frac{\mathrm{D}_{66}}{\mathrm{M}_{6}} \hat{\omega}_{6}+\frac{\mathrm{T}_{H P}}{\mathrm{M}_{6}}$

$$
\begin{equation*}
p \theta_{6}=\omega_{6} \omega 0^{-} \tag{2-3}
\end{equation*}
$$

$$
\begin{equation*}
p \theta_{5}=\omega_{5} \omega 0 \tag{2-5}
\end{equation*}
$$

Low Pressure $1 \mathrm{p} \ddot{\omega}_{4}=\frac{\mathrm{K}_{45}}{\mathrm{M}_{4}} \theta_{5}-\frac{\left(\mathrm{K}_{34}+\mathrm{K}_{45}\right)}{\mathrm{M}_{4}} \theta_{4}+\frac{\mathrm{K}_{34}}{\mathrm{M}_{4}} \theta_{3}-\frac{\mathrm{D}_{44}}{\mathrm{M}_{4}} \omega_{4}+\frac{\mathrm{T}_{\mathrm{LP}}}{\mathrm{M}_{4}}$ (2-6)

$$
\begin{equation*}
p \theta_{4}=\omega_{4} \omega 0 \tag{2-7}
\end{equation*}
$$

$$
\begin{equation*}
p \omega=\frac{K_{23}}{M_{2}} \theta_{3}-\frac{\left(K_{12}+K_{23}\right)}{M_{2}} \delta+\frac{K_{12}}{M_{2}} \theta_{1}-\frac{\mathrm{D}_{22}}{M_{2}} \omega-\frac{\mathrm{Te}}{\mathrm{M}_{2}} \tag{2-10}
\end{equation*}
$$

Generator

$$
\begin{equation*}
p \theta_{3}=\omega_{3} \omega o \tag{2-9}
\end{equation*}
$$

$$
\begin{equation*}
p \delta=\omega \omega 0 \tag{2-11}
\end{equation*}
$$

Fig. 2-1 A functional block diagram of the complete system for subsynchronous resonance studies.

The generator has an electric torque output Te , and the exciter electric torque is neglected. Note that while angles are in radians, the speed is in p.u.;

$$
\omega o=1 \text { p.u. }=377 \text { electrical radian } / \text { second }
$$

High	Intermediate	Low	Low	Generator	Exciter
pressure	pressure	pressure 1	pressure 2		
θ_{6}, ω_{6}	θ	,ω_{5}	θ_{4}, ω_{4}	θ_{3}, ω_{3}	δ, ω
θ_{1}, ω_{1}					

Fig. 2-2 Mechanical mass and shaft system

Fig. 2-3 Torques of a mass-shaft system

2.3 The Turbine Torques and Speed Governor

The steam turbine and speed governor representation is based on an IEEE committee report [14]. Usually the speed is sensed between the lowpressure turbine and the generator rotor. Combined with the speed reference, the speed deviation or error signal is derived and relayed through the actuator to activate the servomotor, which in turn opens or closes the steam valves. A block diagram [14] is shown in Fig. 244. Forca linear study, the system equations may be written;

$$
\begin{align*}
& \mathrm{p} \Delta \mathrm{a}=\frac{\mathrm{K}_{\mathrm{g}}}{\mathrm{~T}_{1}} \Delta \omega-\frac{1}{\mathrm{~T}_{1}} \Delta \mathrm{a} \tag{2-14}\\
& \mathrm{p} \Delta \mathrm{P}_{\mathrm{GV}}=\frac{1}{\mathrm{~T}_{3}} \Delta \mathrm{a}-\frac{1}{\mathrm{~T}_{3}} \Delta \mathrm{P}_{\mathrm{GV}} \tag{2-15}
\end{align*}
$$

Fig. 2-4 A speed governor model for the steam turbine system

Fig. 2-5 A Linear model of the steam turbine system
Fig. 2-5 shows a standard turbine representation for stability studies [14]. The system consists of one high-pressure, one intermediatepressure and two low-pressure turbines. Their output torques are denoted by $T_{H P}, T_{I P}, T_{L P 1} 1^{1}, T_{L P 2}$, respectively. There is a reheater between highpressure and intermediate-pressure stages, and crossover pipings between intermediate-pressure and low-pressure stages. The steam into the turbines flow through the governor-controlled valves at the inlet of the steam chest. The time constants of the steam chest, the reheater and the crossover piping are denoted by $\mathrm{T}_{\mathrm{CH}}, \mathrm{T}_{\mathrm{RH}}$, and T_{CO}, respectively. $\mathrm{F}_{\mathrm{HP}}, \mathrm{F}_{\mathrm{IP}}$, $\mathrm{F}_{\mathrm{LP} 1}$, and $\mathrm{F}_{\mathrm{LP} 2}$ represent fractions of the total power developed in the various stages. Therefore

$$
\begin{align*}
& \mathrm{p} \Delta \mathrm{~T}_{\mathrm{HP}}=\frac{\mathrm{F}_{\mathrm{HP}}}{\mathrm{~T}_{\mathrm{CH}}} \Delta \mathrm{P}_{\mathrm{GV}}-\frac{1}{\mathrm{~T}_{\mathrm{CH}}} \Delta \mathrm{~T}_{\mathrm{HP}} \tag{2-16}\\
& \mathrm{p} \Delta \mathrm{~T}_{\mathrm{IP}}=\frac{\mathrm{F}_{\mathrm{IP}}}{\mathrm{~F}_{\mathrm{HP}} \times \mathrm{T}_{\mathrm{RH}}} \Delta \mathrm{~T}_{\mathrm{HP}}-\frac{1}{-\mathrm{T}_{\mathrm{RH}}} \Delta \mathrm{TT} \mathrm{IP} \tag{2-17}\\
& \mathrm{p} \Delta \mathrm{~T}_{\mathrm{LP} 1}=\frac{\mathrm{F}_{\mathrm{LP} 1}}{\mathrm{~F}_{\mathrm{TPP}} \times \mathrm{T}_{\mathrm{CO}}} \Delta \mathrm{~T}_{\mathrm{IP}}-\frac{1}{\mathrm{~T}_{\mathrm{CO}}} \Delta \mathrm{~T}_{\mathrm{LP} 1} \tag{2-18}
\end{align*}
$$

$$
\begin{equation*}
\Delta \mathrm{T}_{\mathrm{PL} 2}=\frac{\mathrm{F}_{\mathrm{LP} 2}}{\mathrm{~F}_{\mathrm{LP} 1}} \Delta \mathrm{~T}_{\mathrm{LP} 1} \tag{2-19}
\end{equation*}
$$

2.4 The Synchronous Generator

The synchronous generator is assumed to have six windings. In addition to the d and q armature windings on the respective axes, there is a field winding f, a damper winding D on the d-axis and two damper windings Q and G on the q-axis. They are schematically shown in Fig. 2-6.

Fig. 2-6 A synchronous machine model

The voltage equations in the linear form are

$$
\begin{align*}
\Delta \mathrm{V}_{\mathrm{d}} & =\mathrm{p} \Delta \psi_{\mathrm{d}}-\omega o \Delta \psi_{\mathrm{q}}-\psi_{\mathrm{qo}} \Delta \omega-\mathrm{R}_{\mathrm{a}} \Delta i_{\mathrm{d}} \\
\Delta \mathrm{~V}_{\mathrm{q}} & =\mathrm{p} \Delta \psi_{\mathrm{q}}+\omega \Delta \Delta \psi_{\mathrm{d}}+\psi_{\mathrm{do}} \Delta \omega-\mathrm{R}_{\mathrm{a}} \Delta \mathrm{i}_{\mathrm{q}} \\
\Delta \mathrm{~V}_{\mathrm{f}} & =\mathrm{p} \Delta \psi_{\mathrm{f}}+\mathrm{R}_{\mathrm{f}} \Delta \mathbf{i}_{\mathrm{f}} \\
0 & =\mathrm{p} \Delta \psi_{\mathrm{D}}+\mathrm{R}_{\mathrm{D}} \Delta i_{\mathrm{D}} \\
0 & =\mathrm{p} \Delta \psi_{\mathrm{Q}}+\mathrm{R}_{\mathrm{Q}} \Delta i_{\mathrm{Q}} \\
0 & =\mathrm{p} \Delta \psi_{\mathrm{G}}+\mathrm{R}_{\mathrm{G}} \Delta i_{\mathrm{G}} \tag{2-20}
\end{align*}
$$

where the flux linkages are
anand the $\psi^{\prime} s, X^{\prime} s, R^{\prime} s$ and $i^{\prime} s$ are the per unit flux linkages, reactances, resistances and currents respectively.

The saturation in the iron circuit is neglected. The stator transient voltages $\mathrm{p} \psi_{\mathrm{d}}$ an $\mathrm{p} \psi_{\mathrm{q}}$, although normally neglected in stability studies $[15,16]$ are retained in this study because the capacitor compensated transmission lines, to which the armature windings are connected in series, must be described by differential equations.

Fig. 2-7 A single line representation of the transmission line

In Fig. $2-7, V_{d}$ and V_{q} are $d-q$ components of the terminal voltage V_{c} is the voltage across the capacitor and V_{ct} is the terminal voltage at the capacitor. The transformer is represented by a reactance X_{t} and a resistance R_{t} and the transmission line by a reactance X_{e} and a line resistance R_{e}.

Let the terminal voltage equations in $\mathrm{a}-\mathrm{b}-\mathrm{c}$ phase coordinates be

$$
\begin{align*}
{\left[V_{t}\right]_{a, b, c}=} & {\left.[R]_{\left[I_{t}\right.}\right]_{a, b, c}+[L] \frac{d}{d t}\left[I_{t}\right]_{a, b, b}+\left[V_{c}\right]_{a, b, c} } \\
& +\left[V_{o}\right]_{a, b, c} \tag{2-22}
\end{align*}
$$

$$
\text { where } \begin{aligned}
{[R] } & =\text { a resistance matrix: } R_{t}+R_{e} \\
{[L] } & =\text { an inductance matrix: } \frac{X_{t}+X_{e}}{\omega O}
\end{aligned}
$$

Let Park's transformation matrix be

$$
[\mathrm{T}]=\begin{gather*}
\mathrm{a} \tag{2-23}\\
\mathrm{a} \\
\mathrm{c}
\end{gather*}\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 1 \\
\cos (\theta-120) & -\sin (\theta-120) & 1 \\
\cos (\theta+120) & -\sin (\theta+120) & 1
\end{array}\right]
$$

and the transformations are

$$
\begin{equation*}
[\mathrm{V}]_{\mathrm{a}, \mathrm{~b}, \mathrm{c}}=[\mathrm{T}][\mathrm{V}]_{\mathrm{d}, \mathrm{q}, \mathrm{o}} \text { and }[\mathrm{I}]_{\mathrm{a}, \mathrm{~b}, \mathrm{c}}=[\mathrm{T}][\mathrm{I}]_{\mathrm{d}, \mathrm{q}, \mathrm{o}} \tag{2-24}
\end{equation*}
$$

Then we have

$$
\begin{gather*}
{[\mathrm{V}]_{\mathrm{d}, \mathrm{q}, \mathrm{o}}=[\mathrm{R}]_{[\mathrm{I}]_{\mathrm{d}, \mathrm{q}, \mathrm{o}}}+[\mathrm{L}]_{\mathrm{dt}}^{\mathrm{d}}[\mathrm{I}]_{\mathrm{d}, \mathrm{q}, \mathrm{o}}+[\mathrm{L}]_{[\mathrm{T}]^{-1} \frac{\mathrm{~d}}{\mathrm{dt}}[\mathrm{~T}] \cdot[\mathrm{I}]_{\mathrm{d}, \mathrm{q}, \mathrm{o}}}} \\
+\left[\mathrm{V}_{\mathrm{c}}\right]_{\mathrm{d}, \mathrm{q}, \mathrm{o}}+\left[\mathrm{V}_{\mathrm{o}}\right]_{\mathrm{d}, \mathrm{q}, \mathrm{o}} \tag{2-25}
\end{gather*}
$$

Note that

$$
[T]^{-1} \frac{\mathrm{~d}}{\mathrm{dt}}[\mathrm{~T}]=\left[\begin{array}{ccc}
0 & -1 & 0 \tag{2-26}\\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \frac{\mathrm{d} \theta}{\mathrm{dt}}
$$

The terminal voltage equation in $d-q$ coordinates when linearized, becomes
where $V_{c d}$ and $V_{c q}$ are the $d-q$ components of the voltage across the capacitor, and V_{0} the infinite bus voltage. The zero component equation is orthogonal to the other two equations and is usually neglected except for asymmetric loading. The capacitor equations may be written

$$
\begin{equation*}
[I]_{a, b, c}=[C] \frac{d}{d t}\left[V_{c}\right]_{a, b, c} \tag{2-28}
\end{equation*}
$$

After transformation, it becomes

$$
\begin{equation*}
[I]_{d, q, o}=[C] \frac{d}{d t}\left[V_{c}\right]_{d, q, o}+[C][T]^{-1} \frac{d}{d t}[T]\left[V_{c}\right]_{d, q, o} \tag{2-29}
\end{equation*}
$$

which when linearized, gives

$$
\left[\begin{array}{c}
\Delta I_{d} \tag{2-30}\\
\Delta I_{q}
\end{array}\right]=\frac{1}{\omega_{o} X_{c}}\left[\begin{array}{c}
\Delta V_{c d} \\
\Delta V_{c q}
\end{array}\right]+\frac{1}{X_{c}}\left[\begin{array}{c}
-\Delta V_{c q} \\
\Delta V_{c d}
\end{array}\right]
$$

2.5 The Exciter and Voltage Regulator

The exciter and voltage regulator mode1 in this thesis is based on an IEEE committee report [18] with some simplification. The regulator input filter time constant, the saturation function and the stabilizing feedback loop are neglected.

Fig. 2-8 Exciter and Voltage Regulator Model

In Fig. 2-8, V_{t} is the generator terminal voltage,
U_{E} the supplementary control, K_{A} the voltage regulator gain, T_{A} its time constant, T_{E} the exciter time constant and E_{FD} a per unit output voltage of the exciter. Although the voltage limits are shown in the figure, they will be neglected in linear analysis. Mathematically we have

$$
\begin{align*}
& p \Delta V_{R}=\frac{K_{A}}{T_{A}} \Delta V_{t}+\frac{K_{A}}{T_{A}} u-\frac{1}{T_{A}} \Delta V_{R} \tag{2-31}\\
& p \Delta E_{F D}=\frac{1}{T_{E}} \Delta V_{R}-\frac{1}{T_{E}} \Delta E_{F D} \tag{2-32}
\end{align*}
$$

where the linearized terminal voltage

$$
\begin{equation*}
\Delta \mathrm{V}_{\mathrm{t}}=\frac{\mathrm{V}_{\mathrm{do}}}{\mathrm{~V}_{\text {to }}} \Delta \mathrm{V}_{\mathrm{d}}+\frac{\mathrm{v}_{\mathrm{qo}}}{\mathrm{v}_{\text {to }}} \Delta \mathrm{v}_{\mathrm{q}} \tag{2-33}
\end{equation*}
$$

Substituting $\Delta V_{\mathrm{d}} \Delta V_{\mathrm{q}}$ from equation (2-27) into equation (2-33) and the results into equation (2-31), we have

$$
\begin{align*}
p \Delta V_{R}= & \frac{V_{d o} K_{A}\left(X_{t}+X_{e}\right)}{V_{t o} T_{A} \omega 0} p \Delta i_{d}+\frac{V_{q o} K_{A}\left(X_{t}+X_{e}\right)}{V_{t o} T_{A}{ }^{\omega \omega 0}} p \Delta i_{q}+\frac{K_{A} V_{d o}}{T_{A} V_{t o}} \Delta V_{c d} \\
& +\frac{K_{A} V_{q o}}{T_{A} V_{t o}} \Delta V_{c q}+\frac{K_{A}}{T_{A} V_{t o}}\left[V_{d o}\left(R_{t}+R_{e}\right)+V_{q o}\left(X_{t}+X_{e}\right)\right] \Delta i_{d} \\
& +\frac{K_{A}}{T_{A} V_{t o}}\left[-V_{d o}\left(X_{t}+X_{e}\right)+V_{q o}\left(R_{t}+R_{e}\right)\right] \Delta i_{q}+\frac{K_{A}}{T_{A}} \Delta u-\frac{1}{T_{A}} \Delta V_{R} \\
& +\frac{K_{A} V_{o}}{T_{A} V_{t o}}\left[V_{d o} \cos \delta_{o}-V_{q o} \sin \delta_{o}\right] \Delta \delta \tag{2-34}
\end{align*}
$$

Fig. 2-9 shows a supplementary excitation control of the leadlag compensation type [19].

Fig. 2-9 A supplementary excitation control

Mathematically,

$$
\begin{align*}
& \mathrm{K}_{\mathrm{S}} \mathrm{~T} \mathrm{p} \Delta \dot{\omega}-\mathrm{T} p \mathrm{~b}=\mathrm{b} \tag{2-35}\\
& \mathrm{~T}_{\mathrm{x}} \mathrm{p} \cdot \mathrm{~b}-\mathrm{T}_{\mathrm{y}} \mathrm{p} \mathrm{c}=\mathrm{c}-\mathrm{b} \tag{2-36}\\
& -\mathrm{T}_{\mathrm{y}} \mathrm{p} \mathrm{u}+\mathrm{T}_{\mathrm{x}} \mathrm{p} \mathrm{c}=\mathrm{u}-\mathrm{c} \tag{2-37}
\end{align*}
$$

2.6 State Equations for the Complete System

The component system equations previously derived can be combined into a single set of state equations in the form of

$$
\begin{equation*}
\underline{\dot{x}}=[\mathrm{A}] \underline{\mathrm{x}} \tag{2-38}
\end{equation*}
$$

where \underline{X} is the state variable vector and [A] the system matrix. Equation (2-38) can be conveniently partitioned

$$
\left[\begin{array}{c}
\dot{x}_{I} \tag{2-39}\\
\hdashline \dot{X}_{I I}
\end{array}\right]=\left[\begin{array}{c:c}
A_{I,}, & A_{I,} I I \\
\hdashline A_{I I, I} & A_{I I, I I}
\end{array}\right]\left[\begin{array}{l}
X_{I} \\
\hdashline X_{I I}
\end{array}\right]
$$

where X_{I} contains the state variables of the mechanical system and $X_{I I}$ those of the electrical system; namely
$X_{I}=\left[\omega_{1}, \theta_{1.1}, \omega, \delta, \omega_{3}, \theta_{3}, \omega_{4}, \theta_{4}, \omega_{5}, \theta_{5}, \omega_{6}, \theta_{6}, a, P_{G V}, T_{H P}, T_{I P}, T_{L P 1}\right]$
$X_{I I}=\left[i_{d}, i_{q}, i_{f}, i_{D}, i_{Q}, i_{G}, v_{c d}, V_{c q}, V_{R}, E_{F D}\right]$
$A_{\text {I, II }}$ represents the coupling between the two systems where the interaction occurs through the electrical torque T_{e}. Since

$$
\begin{align*}
& T_{e}=\left(\psi_{d} i_{q}-\psi_{q} i_{d}\right) \quad \text { per unit } \tag{2-40}\\
& \Delta \mathrm{T}_{\mathrm{e}}=\left\{\left(\psi_{\mathrm{do}} \Delta \mathrm{i}_{\mathrm{q}}+\mathrm{i}_{\mathrm{qo}} \Delta \psi_{\mathrm{d}}-\psi_{\mathrm{qo}} \Delta \mathrm{i}_{\mathrm{d}}-\mathrm{i}_{\mathrm{do}} \Delta \psi_{\mathrm{q}}\right) \hat{k}\right\} / \omega_{\mathrm{o}} \\
& =\left\{\left(X_{q}-X_{d}\right) i_{q o} \Delta i_{d}+\left[\left(X_{q}-X_{d}\right) i_{d o}+X_{a d} i_{f o}^{f}\right] \Delta i_{q}+i_{q o} X_{a d} \Delta i_{f}\right. \\
& \left.+i_{q o} X_{a d} \Delta i_{D}-i_{d o} X_{a q} \Delta i_{Q}-i_{d o} X_{a q} \Delta i_{G}\right\} / \Delta \omega_{o} \tag{2-41}
\end{align*}
$$

Next, the partitioned matrices $A_{I I, I}$ and $A_{I I, I I}$ of the electrical system shall be first assembled in the form of

$$
\begin{equation*}
B \dot{X}_{\overline{\bar{I} I}}=C_{I} X_{I}+C_{I I} X_{I I} \tag{2-42}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\dot{X}_{I I}=B^{-1} C_{I} X_{I}+B^{-1} C_{I I} X_{I I} \tag{2-43}
\end{equation*}
$$

or

$$
\dot{X}_{I I}=A_{I I, I} X_{I}+A_{I I, I I} X_{I I}
$$

where

$$
\begin{equation*}
A_{I I, I}=B^{-1} C_{I} \quad ; \quad A_{I I, I I}=B^{-1} C_{I I} \tag{2-44}
\end{equation*}
$$

Thus we have completed the derivation of the state equations for the overall system.

3. EIGENVALUE ANALYSIS OF THE SSR MODEL

3.1 Introduction

Eigenvalue analysis technique is useful in investigating the stability of systems. The complex eigenvalues are associated with oscillatory modes of the system and the reall part of the eigenvalues provide the information on system damping. When an eigenvalue has a positive real part, instability of the system is indicated.

In this thesis the effect of capacitor compensation, conventional stabilizer and dampers will be investigated using the data taken from the benchmark model [20] Table 3-1.

3.2 The Effect of Capacitor Compensation

Fig. 3-1 and 3-2 show the eigenvalues of the system with various degrees of capacitor compensation, at a particular loading. The pair of eigenvalues corresponding to $\Delta \delta$ and $\Delta \omega$ of the synchronous machine have positive real parts when the compensation is 20% or less. The natural frequencies of the multi-mass torsional system are approximately 298, 203, 160,127 and 99 radians/second which correspond to $47.4,32.3,25.5,20.2$, and 16 Hz respectively. By changing the degree of compensation, the natural oscillation frequency of the transmission system changes. When the frequency of the electrical mode is closedto a mechanical mode, SSR may occur. At 50% and 60% compensation, two mechanical modes are excited simultaneously.

3.3 The Effect of Conventional Stabilizer

Fig. 3-3 and 3-4 repeat the study of the effectoof capacitor compensation, but with the addition of a conventional stabilizer of the lead-lag type. Whereas the pair of eigenvalues corresponding to $\Delta \delta$ and
$\Delta \omega$ of the synchronous machine were unstable for compensation below 30%, Fig. 3-1 shows they are substantially moved to the left half of the complex plane with the supplementary excitation control, Fig. 3-3. However, the lowest mechanical mode of $99 \mathrm{rad} / \mathrm{sec}$ is always excited and shifted to the right-half plane. This is in agreement with other findings [21, 22]. The damping of other mechanical modes is decreased slightly.

3.4 The Effect of Loading

The effect of different loading with and without stabilizer on SSR is shown in Fig. 3-5 and 3-6 respectively. Most of the eigenvalues do not change except those corresponding to the generator mechanical mode. Generally the system becomes more unstable with more leading power factor. Most utilities operate their systems between 0.9 power factor lagging and unity power factor. For this reason, 0.9 power factor lagging is chosen for the studies here.

3.5 The Effect of Dampers

As reported [5] the addition of an amortisseur winding can reduce the possibility of SSR. For this investigation, the additional damper effect is represented by decreased damper impedance. When the total reactance of line and transformer is zero, SSR occurs. The result is shown in Table 3-2. The excited mode is damped out by decreasing the damper impedance which agrees with previous results [5].

Table 3-1 Numerical Values of Mode1 in p.u. system

Mass-spring System Parameters

$$
\begin{array}{lll}
M_{1}=0.068433 & K_{12}=2.822 & D_{11}=0.1 \\
M_{2}=1.736990 & K_{23}=70.858 & D_{22}=0.1 \\
M_{3}=1.768430 & K_{34}=52.038 & D_{33}=0.1 \\
M_{4}=1.717340 & K_{45}=34.929 & D_{44}=0.1 \\
M_{5}=0.311 .178 & K_{56}=19.303 & D_{55}=0.1 \\
M_{6}=0.185794 & & D_{66}=0.1
\end{array}
$$

Synchronous Machine Parameters

$$
\begin{array}{lll}
\mathrm{X}_{\mathrm{d}}=1.79 & \mathrm{X}_{\mathrm{f}}=1.6999 & \mathrm{R}_{\mathrm{f}}=0.00105 \\
\mathrm{X}_{\mathrm{ad}}=1.66 & \mathrm{X}_{\mathrm{D}}=1.6657 & \mathrm{R}_{\mathrm{D}}=0.00371 \\
\mathrm{X}_{\mathrm{q}}=1.71 & \mathrm{X}_{\mathrm{Q}}=1.6845 & \mathrm{R}_{\mathrm{Q}}=0.00526 \\
\mathrm{X}_{\mathrm{aq}}=1.58 & \mathrm{X}_{\mathrm{G}}=1.8250 & \mathrm{R}_{\mathrm{G}}=0.01820 \\
\mathrm{R}_{\mathrm{a}}=0.0015 & &
\end{array}
$$

Exciter and Voltage Regulator

$$
\mathrm{K}_{\mathrm{A}}=50 \quad \mathrm{~T}_{\mathrm{E}}=0.002 \quad \mathrm{~T}_{\mathrm{A}}=0.01
$$

Transmission Line Parameters

$$
\begin{array}{lll}
x_{t}=0.14 & R_{t}=0.01 & x_{e}=0.56 \\
R_{e}=0.02 & x_{c} \text { varies from } 0.056-0.56 \\
& & (10 \%-100 \%)
\end{array}
$$

Governing and Turbine System

$$
\begin{array}{lll}
\mathrm{K}_{\mathrm{g}}=25 & \mathrm{~T}_{1}=0.2 & \mathrm{~T}_{2}=0 \\
\mathrm{~T}_{3}=0.3 & \mathrm{~T}_{\mathrm{CH}}=0.3 & \mathrm{~T}_{\mathrm{RH}}=7.0 \\
\mathrm{~T}_{\mathrm{CO}}=0.2 & \mathrm{~F}_{\mathrm{HP}}=0.3 & \mathrm{~F}_{\mathrm{IP}}=0.26 \\
\mathrm{~F}_{\mathrm{LP} 1}=0.22 & \mathrm{~F}_{\mathrm{LP} 2}=0.22 & \mathrm{~F}
\end{array}
$$

Stabilizer parameters

$$
\begin{array}{lll}
\mathrm{K}_{\mathrm{s}}=20 & \mathrm{~T}=3.0 & \mathrm{~T}_{\mathrm{x}}=0.125 \\
\mathrm{~T}_{\mathrm{y}}=00.05 &
\end{array}
$$

	-0.1817 \pm j298.18	-0.1818 \pm j298.18	-0.1818 $\pm \mathrm{j} 298.18$
	-0.2104 \pm j203.20	+0.1541 \pm j204.35	+0.1560 \pm j202.68
Shaft modes	-0.2266 \pm j160.66	-0.2496 \pm j160.72	+0.9100 $\pm \mathrm{j} 161.42$
	-0.6679 \pm j127.03	-0.6706 $\pm \mathrm{j} 127.03$	-0.6799 $\pm \mathrm{j} 127.08$
	-0.2660 ± 99.13	-0.2877 \pm j 99.21	-0.3545 ± 99.79
Stator/Network	-6.9800 $\pm \mathrm{j} 512.30$	-7.0224 \pm j542.80	$-7.0800 \pm j 591.15$
	-6.0717 \pm j241.01	-6.1984 \pm j209.20	-6.8387 \pm j161.47
	-8.5681	-8.4404	-8.1277
Synchronous	-31.578	-31.920	-32.808
Machine Rotor	-25.397	-25.404	-25.423
	-2.0196	-1.9830	-1.9070
Exciter and	-499.98	-499.97	-499.97
Voltage Regulator	-101.97	-101.91	-101.76
$\lambda \delta \omega$	+0.0415 $\pm \mathrm{j} 8.0234$	$-0.0479 \pm j 8.4801$	-0.2674 $\pm \mathrm{j} 9.5459$
	-0.1416	-0.1417	-0.1418
Turbine and	-4.6679	-4.6160	-4.0496
Governor	-2.9271	-3.0336	-3.3335
	-4.7039 $\pm \mathrm{j} 0.7567$	-4.6732 \pm j0.6269	$-4.7939 \pm j 0.3198$

Table 3.2 Eigenvalues of SSR model at different degrees of capacitor compensation without conventional stabilizer for $\mathrm{P}=0.9$ p.u. at 0.9 power factor lagging.

Fig. 3-1. The effect of capacitor compensation without stabilizer for $P=0.9$ p.u. at 0.9 power factor lagging. (The symbols $1,2,3, \ldots 9$ respectively correspond to $10,20,30, \ldots 90 \%$ compensation)

Fig. 3-2 Enlarged portion of Fig. 3-1.
(The symbols $1,2,3, \ldots 9$ respectively correspond to $10,20,30, \ldots 90 \%$ compensation)

Fig. 3-3. The effect of capacitor compensation with stabilizer for $P=0.9$ p.u. at 0.9 power factor 1agging. (The symbols $1,2,3 \ldots 9$ respectively correspond to $10,20,30 \ldots 90 \%$ compensation)

Fig. 3-4 Enlarged portion of Fig. 3-3
(The symbols $1,2,3, \ldots 9$ respectively correspond to $10,20,30 \ldots 90 \%$ compensation)

Fig. 3-5 The effect of loading without stabilizer
(The symbols $\underset{X}{\mathbb{D}}=0.8$ p.f. leading, $\mathbb{A}=0.9 \mathrm{p} . \mathrm{f}$. leading, $+\dot{=}$ unity power factor
$X=0.9$ p.f. lagging, $\Delta=0.8$ p.f. lagging)

Fig. 3-6 The effect of loading with stabilizer
(The symbols $\mathbb{O}=0.8$ p.f. leading, $\Delta=0.9$ p.f. leading; $+=$ unity power factor $X=0.9$ p.f. lagging, $\diamond=0.8$ p.f. lagging)
original system
damper
impedance x 0.6
damper impedance x 1.5

Shaft modes	$-0.1818 \pm$ j298.18	-0.1818 \pm j298.18	-0.1818 \pm j298.18
	-0.0288 \pm j 202.87	-0.0296 \pm j202.87	-0.0278 $\pm \mathrm{j} 202.87$
	$-0.1536 \pm j 160.52$	$-0.1543 \pm j 160.52$	-0.1528 \pm j 160.52
	$-0.6521 \pm j 126.98$	-0.6522 \pm j126.98	-0.6518 \pm j126.98
	$-0.0238 \pm$ j 98.47	-0.0285 \pm j 98.50	-0.0163 ${ }_{\text {圭 j } 98.42}$
Stator/Network	$-7.1913 \pm j 715.78$	$-7.1841 \pm j 718.50$	$-7.1873 \pm j 712.71$
	+0.3604 \pm j 37.21	-0.2149 \pm j 30.47	+0.9064 \pm j 42.09
	-5.8109	-5.1370	-7.2552
Synchronous	-43.39	-31.63	-55.88
Machine Rotor	-25.60	-25.51	-25.72
	-0.5040	-0.4187	-0.5597
Exciter and	-499.96	-499.98	-499.94
Voltage Regulator	-100.68	-100.43	-100.95
$\lambda \delta \omega$	$-3.8086 \pm$ j 20.07	$-4.1469 \pm$ j 23.81	$-3.7030 \pm$ j 18.24
	-0.1406	-0.1404	-0.1407
Turbine	-4.1296	-4.8816	-3.8373
Governor	-3.1202	-3.0225	-3.1684
	$-4.5440 \pm j 0.1525$	-3.7438 $\pm \mathrm{j}-.5651$	$-4.7916 \pm j-.2688$

Table 3.3 Effect of Damper Winding in zero total reactance and $\underset{P}{P}=0.9$ p.u. at 0.9 power factor lagging.
4. MULTI-MODE TORSIONAL OSCILLATIONS STABILIZATION WITH LINEAR OPTIMAL CONTROL

Linear optimal control theory has been applied to the stabilizer design of power systems $[23,8,24]$. For practical applications, the state variables used in the design must be measurable. Another problem of optimal control design is the choice of the weighting matirices Q and R in the cost index. A simple procedure was proposed [8] which requires thesstate equations in the canonical form. The Q / R ratio in the procedure can be judiciously chosen.

4.1 State Equations With Measurable Variables

The state equations of the system was written in Chapter 2 in the form

$$
\begin{equation*}
\dot{\mathrm{X}}=\mathrm{AX}+\mathrm{Bu} \tag{4-1}
\end{equation*}
$$

where A was given as (2-39). For an excitation control,

$$
B=\left[\begin{array}{llllll}
0 & 0 & 0 & \ldots & 0 & \frac{K_{A}}{T_{A}} \tag{4-2}
\end{array}\right]^{\frac{\mathrm{t}}{\mathrm{t}}}
$$

as in (2-31). Let

$$
\begin{equation*}
Z=M X \tag{4-3}
\end{equation*}
$$

where Z is the measurable variable vector. Then

$$
\begin{align*}
& \dot{Z}=M X=M A M^{-1} Z+M B u \\
& \dot{Z}=F Z+G u \tag{4-4}
\end{align*}
$$

where
$F=M A M^{-1}$ and $G=M B$
Assume that all mechanical system variables, such as angles and speeds of every turbine rotor and that of generator and exciter; torques output from each stage of turbine and governor system and the electrical system variables such as generator power and current, voltage across the capacitor and to ground (generator side), damper currents and voltage output from voltage regulator and exciter, are measurable, then we have

For electrical power

$$
\begin{equation*}
\Delta \mathrm{P}=\mathrm{V}_{\mathrm{do}} \Delta i_{\mathrm{d}}+\mathrm{V}_{\mathrm{qo}} \Delta i_{\mathrm{q}}+i_{\mathrm{do}} \Delta \mathrm{~V}_{\mathrm{d}}+\mathrm{i}_{\mathrm{qo}} \Delta \mathrm{~V}_{\mathrm{q}} \tag{4-5}
\end{equation*}
$$

By substituting V_{d}, V_{q} from equation (2-25)

$$
\begin{aligned}
\Delta P & =m_{11} \Delta i_{d}+m_{12} \Delta i_{q}+m_{14} \Delta V_{c d}+m_{15} \Delta V_{c q}+m_{16} \Delta \delta \\
\text { where } m_{11} & =V_{d o}+\left(R_{e}+R_{t}\right) i_{d o}+\left(X_{e}+X_{t}\right) i_{q o} \\
m_{12} & =V_{q o}-\left(X_{e}+X_{t}\right) i_{d o}+\left(R_{e}+R_{t}\right) i_{q o} \\
m_{14} & =i_{d o} \\
m_{15} & =i_{q o} \\
m_{16} & =v_{o}\left[i_{d o} \cos \delta-i_{q o} \sin \delta\right]
\end{aligned}
$$

For terminal current

$$
\begin{equation*}
\Delta i_{t}=\frac{i_{\text {do }}}{i_{\text {to }}} \Delta i_{d}+\frac{i_{q o}}{i_{\text {to }}} \Delta i_{q} \tag{4-7}
\end{equation*}
$$

or $\quad \Delta i_{t}=m_{21} \Delta i_{d}+m_{22} \Delta i_{q}$
where $\quad m_{21}=\frac{i_{\text {do }}}{i_{\text {to }}}, \quad m_{22}=\frac{i_{\text {go }}}{i_{\text {to }}}$

For voltage across the capacitor

$$
\begin{equation*}
\Delta V_{c t}=\frac{V_{c d o}}{V_{c o}} \Delta V_{c d}+\frac{V_{c q o}}{V_{c o}} \Delta V_{c q} \tag{4-8}
\end{equation*}
$$

or

$$
\Delta V_{c}=m_{44} \Delta \Delta V_{c d}+m_{45} \Delta V_{c q}
$$

where $\quad m_{44}=\frac{V_{c d o}}{V_{c o}}, \quad m_{45}=\frac{V_{c q o}}{V_{c o}}$

For voltage at the terminal of the capacitor.
As shown in Fig. $2-7, \mathrm{~V}_{\mathrm{ct}}$ is the voltage at the generator side of the capacitor with respect to ground

$$
\begin{equation*}
\Delta V_{c t}=\frac{V_{\text {ctdo }}}{V_{\text {cto }}} \Delta V_{c t d}+\frac{V_{\text {ctqo }}}{V_{\text {cto }}} \Delta V_{\text {ctq }} \tag{4-9}
\end{equation*}
$$

where $V_{c t d}$ and $V_{c t q}$ are the d, q components of $V_{c t}$ and can be expressed in terms of the voltage across the capacitor and infinite bus voltages.
or $\quad \Delta V_{c t}=m_{54} \Delta V_{c d}+m_{55} \Delta V_{c q}+m_{56} \Delta \delta$
where $\quad m_{54}=\frac{V_{\text {ctdo }}}{V_{\text {cto }}}, \quad m_{55}=\frac{V_{\text {ctqo }}}{V_{c \text { to }}}$
$\mathrm{m}_{56}=\left[\mathrm{V}_{\text {ctdo }} \cos \delta-\mathrm{V}_{\text {ctqo }} \sin \delta\right] \frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{V}_{\text {cto }}}$
Besides $\mathrm{m}_{11}, \mathrm{~m}_{22}, \mathrm{~m}_{44}$ and m_{55}, the other main diagonal elements are unity. Other off-diagonal elements are zero except those a1ready derived.

4.2 State Equations in Canonical Form

A design procedure has been developed utilising state equations in canonical form [8]:

$$
F_{o}=\left[\begin{array}{ccccccc}
0 & 1 & \cdot & \cdots & \cdot & 0 \tag{4-12}\\
\cdot & 0 & 1 & & & & \cdot \\
\cdot & & & & \cdots & & \\
\cdot & & & & \cdot & & \cdot \\
\cdots & & & & & 1 & \cdot \\
0 & \cdots & \cdot & \cdot & \cdot & 0 & 1 \\
-\alpha_{1} & -\alpha_{2} & \cdot & \cdot & \cdot & -\alpha_{n-1} & \\
c_{n}
\end{array}\right]
$$

Let
$Z=T Y$
'
we shall have

$$
\begin{equation*}
\dot{Y}=T^{-1} \dot{Z}=F_{o} Y+G_{o} U \tag{4-14}
\end{equation*}
$$

where $\quad F_{0}=T^{-1} \mathrm{FT}$
and

$$
G_{0}=T G=\left[\begin{array}{lllll}
0 & 0 & 0 & \ldots & 1
\end{array}\right]^{t}
$$

The transformation matrix T can be found as follows:
Since the eigenvalues remain unchanged with similarity transformation, we shall have

$$
\begin{equation*}
|\lambda I-F|=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \ldots\left(\lambda-\lambda_{n}\right)=0 \tag{4-17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\lambda I-F_{0}\right|=\lambda^{n}+\dot{\alpha}_{n} \lambda^{n-1}+\dot{\alpha}_{n-1} \lambda^{n-2}+\ldots+\alpha_{1}=v 0 \tag{4-18}
\end{equation*}
$$

where $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ are the eigenvalues of the system. The α 's can be determined from (4-16) and (4117),

$$
\begin{align*}
\alpha_{n} & =-\sum_{i=1}^{n} \lambda_{i} \\
\alpha_{n-1} & =\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\ldots+\lambda_{2} \lambda_{3}+\ldots+\lambda_{n-1} \lambda_{n} \\
\alpha_{n-2} & =-\lambda_{1} \lambda_{2} \lambda_{3}-\lambda_{1} \lambda_{2} \lambda_{4}-\ldots-\lambda_{n-2} \lambda_{n-1} \lambda_{n} \\
\sim & \\
\cdot & \\
\alpha_{1} & =(-1)^{n}{\underset{i=1}{n} \lambda_{i}}_{\alpha_{1}}^{n} \tag{4-19}
\end{align*}
$$

Let the transformation T matrix be written as

$$
\begin{equation*}
T=\left[T_{1}, T_{2}, T_{3}, \ldots T_{n}\right] \tag{4-20}
\end{equation*}
$$

where $T_{1}, T_{2}, T_{3}, \ldots T_{n}$ are the column vectors of T matrix. From (4-15) and (4-20), we have

$$
T F_{0}=F T
$$

or

$$
\begin{equation*}
\left[T_{1}, T_{2}, T_{3}, \ldots T_{n}\right] F_{0}=F\left[T_{1}, T_{2}, T_{3}, \ldots T_{n}\right] \tag{4-21}
\end{equation*}
$$

From (4-16) and ($4-21$), we have

$$
\begin{equation*}
\mathrm{T}_{\mathrm{n}}=\mathrm{G} \tag{4-22}
\end{equation*}
$$

Hence, we can compute $T_{1}, T_{2}, T_{3} \ldots T_{n}$ by using the following recursive formula

$$
\begin{equation*}
T_{n-i}=F_{n-i+1}+\alpha_{n-i+1} G \quad i==1,2,3, \ldots n-1 \tag{4-23}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{FT}_{1}+\alpha_{1} \mathrm{G}=0 \tag{4-24}
\end{equation*}
$$

The condition of (4-24) may not be met due to the accumulated computation errors. Let $T_{1}, T_{2}, T_{3}, \ldots T_{n}$ be the computed results and $\hat{T}_{1}, \hat{T}_{2}, \hat{T}_{3}$,
$\ldots \hat{T}_{n}$ be correct values

$$
\begin{align*}
& F \hat{T}_{1}+\alpha_{1} G=0 \\
& F T_{1}+\alpha_{1} G=\hat{\varepsilon} \varepsilon \tag{4-25}
\end{align*}
$$

and the error

$$
\begin{equation*}
\hat{T}_{1}-T_{1} \triangleq n_{1} \tag{4-26}
\end{equation*}
$$

Then $\quad n_{1}=-F^{-1} \varepsilon$
Similarly,

$$
\begin{align*}
& \mathrm{F} \hat{\mathrm{~T}}_{2}+\alpha_{2} \mathrm{G}=\hat{\mathrm{T}}_{1} \\
& \mathrm{FT} \mathrm{~T}_{2}+\alpha_{2} \mathrm{G}=\mathrm{T}_{1} \tag{4-28}
\end{align*}
$$

and

$$
\begin{equation*}
n_{2}=F^{-1} n_{1} \tag{4-29}
\end{equation*}
$$

Therefore,

$$
\begin{array}{ll}
n_{i} & =F^{-1} n_{i-1} \tag{4-30}\\
\hat{T}_{i}=n_{i}+T_{i} & i=2,3,4, \ldots n \\
\end{array}
$$

4.3 Linear Optimal Control Design

The system equations in canonical form were

$$
\begin{equation*}
\dot{Y}=F_{o} Y+G_{0} U \tag{4-14}
\end{equation*}
$$

The characteristic equation of the open loop system is

$$
\begin{equation*}
\left|\lambda I-F_{0}\right|=\lambda^{n}+\alpha_{n} \lambda^{n-1}+\alpha_{n-1} \lambda^{n-2}+\ldots+\alpha_{1} \tag{4-31}
\end{equation*}
$$

Let the desired eigenvalues of the closed-loop system be $\hat{\lambda}_{1}, \hat{\lambda}_{2}, \hat{\lambda}_{3}, \ldots \hat{\lambda}_{n}$ The new characteristic equation will be

$$
\begin{align*}
& \left(\lambda-\hat{\lambda}_{1}\right)\left(\lambda-\hat{\lambda}_{2}\right)\left(\lambda=\hat{\lambda}_{3}\right) \ldots\left(\lambda-\hat{\lambda}_{n}\right) \\
& =\lambda^{n}+\hat{\alpha}_{n} \lambda^{n-1}+\hat{\alpha}_{n-1} \lambda^{n-2}+\ldots+\hat{\alpha}_{1}=0 \tag{4-32}
\end{align*}
$$

Since characteristic equation of the closed loop system is

$$
\begin{align*}
& \left|\lambda I-\left(F_{o}-G_{o} S_{o}\right)\right| \\
& =\lambda^{n}+\left(\alpha_{n}+\beta_{n}\right) \lambda^{n-1}+\left(\alpha_{n-1}+\beta_{n-1}\right) \lambda^{n-2}+\ldots+\left(\alpha_{1}+\beta_{1}\right) \\
& =0 \tag{4-33}
\end{align*}
$$

where

$$
\begin{equation*}
U \triangleq-S_{0} Y \tag{4-34}
\end{equation*}
$$

Equating (4-32) to (4-33) gives

$$
\begin{equation*}
\hat{\alpha}_{i}-\alpha_{i}=\beta_{i} \quad i=1,2,3, \ldots n \tag{4-35}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{0}=\left[\beta_{1}, \beta_{2}, \beta_{3} ; \ldots \beta_{n}\right] \tag{4-36}
\end{equation*}
$$

Finally, the linear optimal controller in measurable state variables

$$
U \triangleq-S_{\mathrm{O}} \mathrm{Y}
$$

or

$$
\begin{equation*}
\mathrm{U} \triangleq-\mathrm{S}_{\mathrm{o}} \mathrm{~T}^{-1} \mathrm{Z} \tag{4-37}
\end{equation*}
$$

4.4 Stabilization of SSR

Because of the number of state variables which can be measured, the 22 nd order and 19 th reduced order models are used for the linear optimal control design. Eigenvalue analysis shows that all the important mechanical and electrical eigenvalues are essentially unchanged; Table 4-1. Single mechanical mode stabilization

At 30% compensation and 0.9 power factor lagging of the reduced 22nd order system without stabilizer, the $204 \mathrm{rad} . / \mathrm{sec}$. or 32.5 hertz mechanical mode is excited and has negative damping (eigenvalues with positive real part). By utilizing the design procedure described in this chapter, an optimal controller can be designed to shift the eigenvalues from $+0.1541 \pm \mathrm{j} 204.35$ to $-6.500 \pm \mathrm{j} 204.35$ and another mechanical mode which is barely stable from $-0.08805 \pm \mathrm{j} 8.4938$ to $-6.000 \pm \mathrm{j} 8.4938$. A11 eigenvalues are stabilized as shown in Table 4-2. The controller is 7.8 $\left(7.823 \Delta \omega_{1}, 0.0964 \Delta \theta_{1},-183.005 \Delta \omega,-8.801 \Delta \delta, 192.487 \Delta \omega_{3},-3.398 \Delta \theta_{3}\right.$, $65.534 \Delta \omega_{4}, 7.448 \Delta \theta_{4},-1.336 \Delta \theta_{5},-47.478 \Delta \omega_{6},-2.738 \Delta \theta_{6},-29.746 \Delta \mathrm{P}$, $28.645 \Delta i_{t}, 1.454 \Delta i_{f}, 1.475 \Delta i_{D},-5.931 \Delta i_{Q},-5.929 \Delta i_{G},-60.094 \Delta V_{c}$, $\left.35.987 \Delta \mathrm{~V}_{\mathrm{c}_{\mathrm{t}}},-0.000260 \Delta \mathrm{~V}_{\mathrm{R}},-0.00259 \Delta \mathrm{E}_{\mathrm{FD}}\right)$).

Stabilization of two mechanical modes simultaneously
For the same system but.with 50% compensation, two mechanical modes were excited $+0.1560 \pm j 202.68$ and $+0.9101 \pm j 161.42$ were excited simultaneously. Another optimal controller is designed to shift the two mechanical modes to $-6.500 \pm j 202.68$ and $-3.500 \pm j 161.42$ as shown in Table 4-3. The controller is (1.124 $\omega_{1},-4.959 \Delta \theta_{1},-23.848 \Delta \omega$, $189.462 \Delta \delta, 13.843 \Delta \omega_{3},-321.301 \Delta \theta_{3}, 24.286 \Delta \omega_{4}, 147.568 \Delta \theta_{4},-6.018 \Delta \omega_{5}$, $4.467 \Delta \theta_{5},-9.927 \Delta \omega_{6},-25.064 \Delta \theta_{6},-26.719 \Delta \mathrm{P}, 29.533 \Delta i_{t},-1.030 \Delta i_{f},-1.007 \Delta i_{D}$, $\left.-6.711 \Delta i_{Q},-6.712 \Delta i_{G},-22.422 \Delta V_{c}, 31.169 \Delta V_{c_{t}},-0.000278 \Delta V_{R},-0.00264 \Delta \mathrm{E}_{\mathrm{FD}}\right)$.

Although the two controllers designed by the procedure presented in this chapter have been proved to be effective in stabilizing the system, the damper currents are not directly measurable. Still another linear optimal controller is designed for the system, without the need for damper currents. The equations associated with the damper windings are dropped, resulting in a 19 th order system. The controller is $\left(1.84 \Delta \omega_{1}, 1.01 \Delta \theta_{1}\right.$, $-41.51 \Delta \omega_{,}-30.63 \Delta \delta, 54.51 \Delta \omega_{3}, 39.93 \Delta \theta_{3}, 7.37 \Delta \omega_{4},-5.77 \Delta \theta_{4},-6.41 \Delta \omega_{5}$, $-3.32 \Delta \theta_{5},-7.46 \Delta \omega_{6},-2.16 \Delta \theta_{6},-1.66 \Delta \mathrm{P}, 2.63 \Delta \mathbf{i}_{t},-0.872 \Delta \mathbf{i}_{f},-2.26 \Delta V_{c}$, $\left.-2.35 \Delta \mathrm{~V}_{\mathrm{tc}},-0.000295 \Delta \mathrm{~V}_{\mathrm{R}},-0.00274 \Delta \mathrm{E}_{\overline{\mathrm{FD}}}\right)$, and the eigenvalues of the system with and without the controller are shown in Table 4-4. Finally the controller is tested on the original system for various degrees of compensation. The results are plotted in Fig. 4-1. It is found that the controller designed for the 19 th order model with 30% compensation, not only can stabilize the original 27 th order system for 30% compensation but also can stabilize the original system from 10 to 70% compensation. This proves the effectiveness of such controller design in wide-rangecompensation multi-mode SSR stabilization.

original	reduced	reduced
system	22nd mode1	19th model

	$-0.1818 \pm j 298.18$	$-0.1818 \pm j 298.18$	$-0.1818 \pm j 298.18$
Shaft modes	$+0.1541 \pm j 204.35$	$+0.1541 \pm j 204.35$	$-0.2290 \pm j 203.22$
	$-0.2496 \pm j 160.72$	$-0.2496 \pm j 160.72$	$-0.2273 \pm j 160.66$
	$-0.6706 \pm j 127.03$	$-0.6706 \pm j 127.03$	$-0.6677 \pm j 127.03$
	$-0.2877 \pm j 99.21$	$-0.2877 \pm j 99.21$	$-0.2627 \pm j 99.14$
Stator/Network	$-7.0224 \pm j 542.80$	$-7.0224 \pm j 542.80$	$-4.8208 \pm j 514.02$
	$-6.1984 \pm j 209.20$	$-6.1984 \pm j 209.20$	$-3.6580 \pm j 238.75$

Table 4-1 Eigenvalues of original system and reduced order models without controller at 30% compensation and $P=0.9$ p.u. at 0.9 power factor lagging.
reduced 22 nd order model without controller
reduced 22 nd order model with controller
original system with controller

	$-0.1818 \pm \div j 298.18$	$-0.1818 \pm j 298.18$	$-0.1818 \pm j 298.18$
	+0.1541 \pm j204.35	$-6.5000 \pm j 204.35$	$-6.5000 \pm j 204.35$
Shaft modes	$-0.2496 \pm j 160.72$	$-3.5000 \pm j 160.72$	$-3.5000 \pm j 160.72$
	$-0.6706 \pm j 127.03$	$-0.6706 \pm j 127.03$	$-0.6706 \pm j 127.03$
	$-0.2877 \pm$ j 99.21	-0.2877 \pm j 99.21	$-0.2877 \pm$ j 99.21
$\lambda \delta \omega$	$-0.0881 \pm j 8.4938$	$-6.0000 \pm j 8.4938$	$-6.2367 \pm j 8.4158$
	$-7.0224 \pm j 542.80$	-7.0224 \pm j542.80	$-7.0224 \pm j 542.80$
Stator/Network	$-6.1984 \pm j 209.20$	$-6.1984 \pm j 209.20$	$-6.1984 \pm j 209.20$
	-8.4858	-8.4858	-9.6038
Synchronous	-31.920	-31.920	-31.923
Machine Rotor	-25:404	-25.404	-25.404
	-2. 1855	-2.1855	-1.5570
Exciter and	-499.97	-499.97	-499.97
Voltage Regulator	-101.91	-200.00	-200.00
			-0\%1404
Turbine and			-4.8741
Governor			-2.8538
			$-3.9883 \pm j 2.9898$

Table 4-2 Eigenvalues of reduced 22 nd order model with/without controller and original system with the controller at 30% compensation and $P=0.9$ p.u. at 0.9 power factor lagging.
reduced 22 nd order model without controller
reduced $22 n d$ order model with controller
original system with controller

	$-0.1818 \pm j 298.18$	$-0.1818 \pm j 298.18$	$-0.1818 \pm j 298.18$
	$+0.1560 \pm j 202.68$	$-6.5000 \pm j 202.68$	$-6.5000 \pm j 202.68$
Shaft modes	$+0.9101 \pm j 161.42$	$-3.5000 \pm j 161.42$	$-3.5000 \pm j 161.42$
	$-0.6799 \pm j 127.08$	$-0.6799 \pm j 127.08$	$-0.6799 \pm j 127.08$
	$-0.3545 \pm j 99.49$	$-0.3545 \pm j 99.49$	$-0.3545 \pm j 99.49$
$\lambda \delta \omega$	$-0.2958 \pm j 9.5621$	$-6.0000 \pm j 9.5621$	$-6.4682 \pm j 9.7544$

Table 4-3 Eigenvalues of reduced 22 nd order model with/without controller and original system with the controller at 50% compensation and $\mathrm{P}=.0 .9$ p.u. at 0.9 power factor lagging.

reduced 19th order model without controller

reduced 19 th order model with controller
original system with controller

	-0.1818 \pm j298.18	-0.1817 $\pm \mathrm{j} 298.18$	-0.1818 \pm j298.18
	-0.2290 \pm j203.22	-6.5000 \pm j203.22	-0.4968 \pm j 203.19
Shaft modes	-0.2273 \pm j160.66	-3.5000 $\pm \mathrm{j} 160.66$	-0.2790 $\pm \mathrm{j} 160.52$
	$-0.6677 \pm j 127.03$	$-0.6676 \pm j 127.03$	-0.6697 \pm j127.04
	-0.2627 \pm j 99.14	-0.2628 \pm j 99.14	-0.2770 ± 99.22
$\lambda \delta \omega$	-0.2266 \pm j7.9054	$-6.0000 \pm j 7.9054$	$-0.1092 \pm j 8.7874$
Stator/Network	-4.8208 \pm j514.02	-4.8208 $\pm \mathrm{j} 514.02$	$-7.1255 \pm j 542.54$
	$-3.6580 \pm \mathrm{j} 238.75$	$-3.6582 \pm j 238.75$	-5.9600 \pm j209.43
	-8.0056	-8.0056	-25.4025
Synchronous			$-2.8136+\mathrm{j} 0.2572$
Machine Rotor			-2.8136-j0.2572
			$-1.6473+j 391.91$
Exciter and	-499.52	-499.52	-773.59
Voltage Regulator	-93.682	-200.00	-1.6473-- j391.91
			-0.1401
Turbine and			-4.6414
Governor			-0.2592
			-4.7914 \pm j0.9552

Table 4-4 Eigenvalues of reduced order model with/without controller and original system with the controller at 30% compensation and $\mathrm{P}=0.9$ p.u. at 0.9 power factor lagging.

Fig. 4-1 The effect of capacitor compensation with controller for $P=0.9$ p.u. at 0.9 power

5. CONCLUSIONS

A high-order power system model for subsynchronous resonance studies is developed. The model includes mass-spring system, synchronous machine, series capacitor compensated transmission lines, turbines and governor, voltage regulator and exciter. The transient terms $p \psi_{d}$ and $\mathrm{p} \psi_{\mathrm{q}}$ are included.

From eigenvalue analysis, it is found that by changing the degree of compensation the frequency of the electrical mode will be changed and that, in some cases, even more than one mechanical mode can be excited at the same time. When a conventional lëad-lag supplementary excitation control for the stabilization of small oscillations is included, it has an adverse effect on the other mechanical modes close to the small oscillation mode. Such finding is in agreement with other previous work [22]. When the damper impedance is decreased, it does reduce the possibility of SSR under ideal conditions [5].

Linear optimal controllers based upon an earlier developed method [8] are designed. Two controllers are designed with a reduced 22nd order model and one with a reduced 19 th order model and the latter controller, not only can stabilize the original 27 th order system for 30% compensation, but also can stabilize the system for wide-range compensation and multi-mode SSR.

REFERENCES

[1] IEEE Task Force, "Analysis and Control of Subsynchronous Resonance", IEEE Publication 76CH1066-0-PWR, IEEE, New York, 1976.
[2] L.A. Kilgore, L.C. Elliott and E.R. Taylor, "The Prediction and Control of Self-Excited Oscillations due to Series Capacitors in Power Systems", IEEE Transactions on Power Apparatus and Systems, Vo1. PAS 90, pp. 1305-1311, May/June 1971.
[3] M.C. Hall and D.A. Hodges, "Experience with 500 KV Subsynchronous Resonance and Resulting Turbine Generator Shaft Damage at Mohave Generating Station", IEEE Publication 76CH1066-0-PWR, pp. 22-25, 1976.
[4] IEEE Committee, "Proposed Terms and Definitions for Subsynchronous Resonance in Series Compensated Transmission Systems", IEEE Publication 76CH1066-0-PWR, pp.55-58, 1976.
[5] R.G. Farmer, A.L. Schwalb and Eli Katz, "Navajo Project Report on Subsynchronous Resonance Analysis and Solutions", IEEE Publication 76CH1066-0-PWR, pp.55-58, 1976.
[6] L.A. Kilgore, D.G. Ramey and M.C. Hall, "Simplified Transmission and Generation Station System Analysis Procedures for Subsynchronous Resonance Problems", IEEE Publication 76CH1066-0-PWR, pp.6-11, 1976.
[7] Colin E.J. Bowler and Donald N. Ewart, "Self-Excited Torsional Frequency Oscillations with Series Capacitors", IEEE Trans. on PAS, Vol. PAS 92, pp. 1688-1695, Sept./Oct. 1973.
[8] B. Habibullah and Yao-Nan Yu, "Physical Realizable Wide Power Range Optimal Controllers for Power Systems", IEEE Trans: on PAS, Vol. 93, pp. 1498-1506, Sept./Oct. 1974.
[9] IEEE Task Force, "Symposium on Adequacy and Philosophy of Modelling: Dynamic System Performance", IEEE Publication 75CH0970-4-PWR, IEEE, New York, 1975.
[10] F.P. dëMello, "Power System Dynamics - overview", IEEE Publication 75CH0970-4-PWR, pp. 5-15, 1975.
[11] Charles Concordia and Richard P. Schulz, "Appropriate Component Representation for the Simulation of Power System Dynamics", IEEE Publication 75CH0970-4-PWR, pp. 16-23, 1975.
[12] P.L. Dandeno, "Practical Application of Eigenvalues Techniques in the Analysis of Power System Dynamic Stability Problems", Canadian Electrical Engineering Journal, Vo1. 1, No. 1, pp. 35-46, 1976.
[13] W.A. Tuplin, "Torsional Vibration", Pitman, England, 1966.
[14] IEEE Committee Report, "Dynamic Models for Steam and Hydro Turbines in Power System Studies", IEEE Trans. on PAS, Vo1. PAS 92, pp. 19041915, Nov./Dec. 1973.
[15] W. Janischewskyj and P. Kunder, "Simulation of the Non-Linear Dynamic Response of the Interconnected Synchronous Machines", IEEE Trans. on PAS, Vol. PAS 91, pp. 2064-2077, Sept./Oct. 1972.
[16] P.L. Dandeno, P. Kunder and R.P. Schulz, "Recent Trends and Progress in Synchronous Machine Modeling in the Electric Utility Industry", Proceeding of IEEE, July 1974.
[17] E.W. Kimbark, "Power System Stability", (Vol. III, pp. 57-60), Wiley, New York, 1956.
[18] IEEE Committee Report, "Computer Respresentation of Excitation Systems", IEEE Trans. PAS, Vō1. PAS 87, pp. 1460-1470, June/July 1968.
[19] F.P. deMe11o and C. Concordia, "Concepts of Synchronous Machine Stability as Affected by Excitation Control", IEEE Trans. PAS, Vol. PAS 88, pp. 316-329, Mar./Apr. 1969.
[20] IEEE Task Force, "First Benchmark Model for Computer Simulation of Subsynchronous Resonance", IEEE Publication F 77 102-7.
[21] W. Watson and M.E. Coultes, "Static Exciter Stabilizing Signals on Large Generators - Mechanical Problems", IEEE Trans. PAS, Vol. 92, pp. 204-211, Jan./Feb. 1973.
[22] V.M: Raina, W.J. Wilson and J.H. Anderson, "The Control of Rotor Torsional Oscillations Excited by Supplementary Exciter Stabilization", IEEE Publication A76 457-2.
[23] H.A.M. Moussa and Y.N. Yu, "Optimal Power System Stabilization Trough Excitation and/or Governor Control", IEEE Trans. PAS, Vol. PAS 91, pp. 1166-1174, May/June 1972.
[24] Y.N. Yu, K. Vongsuriya and L.N. Wedman, "App1ication of an Optimal Control Theory to a Power System", IEEE Trans. PAS, Vo1. PAS 89, pp. 55-62, Jan./Feb. 1970.
[25] J.A. Anderson and V.M. Raina, "Power System Excitation and Governor Design Using Optimal Control Theory", Int. Journal of Control, Vo1. 12, pp. 289-308, 1972.

