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Abstract

Battery-powered applications and the scaling of process technologies and clock frequencies
have made power dissipation a first class concern among FPGA vendors. One approach
to reduce power dissipation in FPGAs is to embed coarse-grained fixed-function blocks
that implement certain types of functions very efficiently. Commercial FPGAs contain
embedded multipliers and “Digital Signal Processing (DSP) blocks” to improve the per-
formance and area efficiency of arithmetic-intensive applications. In order to evaluate the
power saved by using these blocks, a power model and tool flow are required.

This thesis describes our development and evaluation of methods to estimate the ac-
tivity and the power dissipation of FPGA circuits containing embedded multiplier and
DSP blocks. Our goal was to find a suitable balance between estimation time, modeling
effort, and accuracy. We incorporated our findings to create a power model and CAD tool
flow for these circuits. Our tool flow builds upon the Poon power model, and the Versa-

tile Place and Route (VPR) CAD tool, which are both standard academic experimental

infrastructure.
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Chapter 1

Introductidn

1.1 Motivation

Power dissipation has become increasingly important in the electronics industry. There

are two reasons for this:

1. There is a growing number of portable electronic applications, which have battery

life constraints

2. Process technologies in the nanometer scale and clock frequencies in the gigahertz

range result in very hot chips and increased cooling costs.

These issues are relevant to both Application-Specific Integrated Circuits (ASICs) and
to Field-Programmable Gate Arrays (FPGAs). With increasing mask costs for ASICs,
FPGAs have become an attractive implementatic;n alternative for low and medium volume
production. However, FPGAS lag behind ASICs signiﬁcantly in their power efficiency. The
additional transistors required for programmability result in higher péwer dissipation per
function. Leakage power is also dissipated in both the used and unlised parts of FPGAs,

and most commercial FPGAs do not have a sleep mode to reduce power in unused parts

(The Actel IGLOO flash-based FPGA is an exception [6]).
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Figure 1.1: 18-bit x 18-bit multipliers combined for 36-bit x 36-bit multiplier

Over the past few years, significant advances have been made at the circuit level [7][8],
archi’cectﬁre level [9], and CAD tool level [10][11}[12]. Still, current FPGAs have been
found to be, on‘. average, 12 times less power efficient than ASICs [13].

A basic FPGA is composed of programmable logic elements (called Look—up Tables or
LUTs), wire segments, and programmable connections/switches that are typically laid out
in a regular pattern. The LUTs in FPGAs typically have 4 to 6 inputs and can implement
any boolean function of these inputs. By configuring each LUT and connecting them
together using the programmable interconnect, users can implement virtually any digital

circuit. To reduce area and improve circuit speed, larger logic blocks are used (typically

composed of a collection of 4-10 LUTSs); they are called clusters.
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One promising approach to reducing power in FPGAs at the architectural-level is
to embed coarse-grained fized-function blocks that implement certain types of functions
very efficiently. Commercial FPGAs contain embedded multipliers and embedded “Dig-
ital Signal Processing (DSP) blocks” to improve the performance and area efficiency of
arithmetic-intensive applications, such as DSP applications [14][15][16][17]. A simplified
example of a DSP block is shown in Figure 1.1; in this diagram, four 18x18-bit multipli-
ers are programmably connected to create a 36x36-bit multiplier, with optional registers
at the multiplier inputs, outputs, and adder stage outputs. Other examples of DSP
block configurations are adder/subtractors, multiply-accumulators, and multiply-adders.
Arithmetic-intensive applications can be implémented in LUTs, but even if LUTSs are en-
hanced with dedicated interconnect for fast carry chains [18] and arithmetic chains [15],
significant performance, density, and power improvements can be obtained by implément—
ing the arithmetic parts of the applications in the embedded blocks {19]. Reference [20]
found that an average area savings of 55%.and an average increase in clock rate of 40.7%
could be ébtained for floating point applications by embedding floating point DSP blocks.

There are several disadvantages of including DSP blocks in an FPGA fabric. If the
blocks are not used (1) the area is wasted, and (2) the blocks will still dissipate leakage
power. This makes it important to try to optimize the size and quantity of embedded
resources included. However, it is difficult to determine what proportion of the FPGA area

should be devoted to embedded blocks because it is difficult to determine what typical

usage is for a device that can implement almost any digital circuit.
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In order to meanirigfully evaluate the power savings that caii be. obtained by using
thevse blocks, an experimental flow that can estimate the power dissipated by FPGAs
containing embedded DSP blocks is required. Commercieii tools from FPGA vendors
provide power estimation that includes thgse blocks; however,. these tools ‘are"cailored
for specific deviées, and do not provide the ﬂexibility needed to investigate alternative
embedded block architectures. |

The Versatile Place and .Route (VPR) tool suite [21] with the Poon power model
[22] has become stand@rd experimental infrastructure to étudy FPGA architecture, CAD,
and power issues (we will refer to the combination of VPR and the Poon power model
as PVPR). The estimates from the power model can be used by FPGA architects. to
evaluate architectures fqr power eﬁiciency, by FPGA users to make power-aware design
decisions, and by FPGA CAD tool <ievelopers to create power-aware CAD algorithms.
However, PVPR only supports homogeneous FPGA architectures containing LUTS and
a routing fabric, and thus is not sufficient to examine architectures containing embedded

DSP blocks.

1.2 Research Goals

The objective of this research is to create an enhanced FPGA CAD flow that can be used
to evaluate the power dissipation of FPGAs containing embedded DSP and arithmetic

blocks. We have imposed the following requirements:

e As PVPR is standard experimental infrastructure for academic FPGA architecture,

CAD, and power studies, our power estimation of the DSP and multiplier blocks
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must be compatible with the PVPR flow.

o As PVPR results are frequently used to perform architectural evaluations, our power
estimation must be fast, to facilitate iterations over tens or hundreds of architectural

alternatives and benchmark circuits.

e To facilitate iterations over many architectural alternatives, our method should aim
to minimize the modeling effort required when introducing a new architecture for

evaluation.

e In order for the power estimates to be meaningful, our method should aim to be as

accurate as possible, within the constraints imposed by the previous requirements.

Fast power estimation techniques m_ake use of average quantities, such as probabil-
ities, to reduce runtime. Details are lost during this averaging, resulting in a runtime
versus accuracy tradeoff. Similarly, reduciﬁg characterization effort typically results in
the capturing of fewer details, again resulting in an effort versus accuracy tradeoff. As the
requirements that we have set for our flow invc;lve both fast estimation and low charac-
terization effort, we expect that we will be sacrificing some accuracy. Therefore, we must

find a suitable balance between speed, characterization effort, and accuracy.

1.3 Research Approach

As will be explained in Chapter 2, power estimation involves two steps: (1) activity

estimation, and (2) power estimation using the activities.
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Dynamic power dissipation is proportional to how often nodes in a circuit switch values
(from logic-0 to logic-1, or logic-1 to logic-0). Activity estimation is the calculation of
how much switching is expected at each node in the circuit. In implementing the gctivity
estimation for FPGA architectures cqntaining embedded DSP blocks, we came across
the following challenge: it is not clear how to propagate activity calculations through a
DSP .block. Traditional activity estimation techniques propagate activities through small '
gates (LUTSs) using transition probability or transition density models [23]; however, these
approaches do not scale well to embedded blocks with tens (Qr even hundreds) of inputs.

The next step is to estimate the power dissipated by the FPGA implementing a user’s
circuit. In implementing algorithms to perform this estimation, we identified the following
challenge: once the pin activities of each embedded DSP ‘block are known, it is still not
clear how to use them to estimate the power dissipated by the embedded DSP block. There
are many possibilities, each providing a different trade-off between power estimation time,
mo'deling effort when a new block is to be investigated, and accuracy. The second technical
challenge is to choose a power estimation technique that provides the best balance between
these factors.

In this thesis we treat each of these two challenges as a separate problem. For each
problem, we develop and evaluate solutions. Then, we. use the best of our solutions to

each problem to create our experimental CAD flow for evaluating FPGA architectures

containing DSP blocks.
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1.4 Organization of Thesis

This thesis is organized as follows. Chapter 2 provides an overview of FPGA architectures,
the FPGA CAD flow, power, and power estimation.. It also descfibes previous work
related to power estimation. Chapter 3 describes the existing PVPR CAD flow and how
our DSP and arithmetic block power model fits into this framework. Chapter 4 describes
our solutions and their evaluation for the problem of activity estimation. Chapter 5
describes our solutions and their evaluation for the problem of power estimation. .Chapter
6 describes how we integrated our solutions from Chapters 4 and 5 to create a Power
Estimation Tool Flow for evaluating FPGA architectures containing DSP blocks, presents
results for two benchmark circuits, and compares the results to those obtained using géte—

level simulation. Finally, Chapter 7 summarizes the conclusions and provides suggestions

for future work.
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Background and Previous Work

2.1 FPGA Architectures

The most basic building blocks of FPGAs are programmable logic blocks, wire segments,
and programmable connections/switches that are typically laid out in a regular pattern.
By programming basic functions into each block and connecting them together using the
programmable interconnect, users can implement virtually any digital circuit.

A number of architectures have been developed to optimize for criteria such as routabil-
ity, area efficiency, and timing. Architectures are frequently classified based on their rout-
ing architecture because most of the area in an FPGA is devoted to routing. Reference [1]
lists the three main categories of commercial FPGA architectures that were available when
that book was written: island-style, row-based, and hierarchical. Today, platform-style
FPGAs are available, which include coarse-grained embedded components.

This thesis will focus on FPGAs based on island-style architectures. Section 2.1.1 will
introduce basic island-style architecture components, Section 2.1.2 will describe modern

enhancements to the basic components, and Section 2.1.3 will describe platform-style

FPGAs. The framework that we build upon is described in Chapter 3.
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Figure 2.1: Island-style Architecture (from [1})

2.1.1 Island-style Architectures

F igure 2.1 shows an island-style architecture, where programmable logic blocks are “is-

lands” in a “sea” of programmable routing fabric [5]. In the traditional island-style ar-
chitecture, the logic blocks are clusters of look-up tables (LUTs). The routing fabric is

composed of wires, programmable connection blocks, and programmable switch blocks.

Look-up Tables

Look-up tables (LUTs) are the most basic elements for implementing logic in an FPGA.

Figure 2.2 shows a 2-input LUT. A K-input LUT (K-LUT) is a memory with 2¥ bits, K
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Figure 2.2: 2-input LUT (from [2]) |
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Figure 2:3: LUT with Flip-flop (from [2])

address inputs, and one output port. By setting the memory. bits, this structure can be
used to implement any combinational function of K inputs. Typical values for K are 4-6.

>T(') implement sequential logic, a LUT is typically paired with a flip-flop to form a
Basic Logic Element (BLE), as shown in Figure 2.3. The output of the BLE is selected

from either the registered or the un-registered version of the LUT.output, ‘depending on

the select bit of the output multiplexer.




Chapter 2. Background and Previous Work 11

Inputs

Feedback

Outputs

LuUT

LuT

F

LuT

LuT

o n o

FF

Figure 2.4: Cluster-based logic block

Cluster-based Logic Blocks

The use of larger logic blocks helps to increase circuit speed and reduces circuit area and
CAD tool processing time. Unfortunately, LUT complexity grows exponentially with the
number of inputs. The use of cluster-based logic blocks addresses this problem. Clusters
are typically composed of a nﬁmber of BLEs, internal cluster routing, and possibly spe-
cialized internal cluster connections, such as carry chains. Within a cluster, BLE inputs
are typically connected to the cluster inputs and BLE outputs by a multiplex;ar—based
crossbar [2].

An example of a cluster-based logic block is shown in Figure 2.4. It has 8 inputs,
contains 4 BLEs, and has 4 outputs. The LUT inputs can be connected to either the
cluster inputs or the BLE outputs via the internal routing. By grouping BLEs that

‘share signals, placement and routing processing time is reduced because the number of

inter-block connections is reduced. This internal routing is also shorter and faster than
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inter-block connections, reducing circuit delay.

Routingv

Logic blocks are connected together and to I/O resources using a routing “fabric” that is

composed of:

e pre-fabricated metal tracks
e programmable switch blocks

e programmable connection blocks

Figure 2.1 shows the components of the routing fabric. The tracks are arranged in
channels, typically horizontally and vertically, to form a grid pattern. Wires run along
these tracks. The connection blocks" connect the wires to the inputs and outputs of logic
blocks adjacent to the channel. The switch blocks connect the horizontal and vertical
wires together to form longer wires and make turns. It should be noted that, although we
consider the switch blocks and connection blocks as separate entities, they are often not
separate in the FPGA circuit layout.

The programmable switches in the switch blocks and connection blocks can be either
buffered or unbuffered. Typically they are buffered to reduce dela&s in long connections;
however, this. increases routing area. Buffered switches can be either unidirectional or
bidirectional. Modern FPGAs use unidirectional switches to get better delay optimization

and a denser routing fabric [24]. Figure 2.5 shows examples of switches typically found in

FPGAs: (a) unbuffered, (b) buffered unidirectional, and (c) buffered bidirectional.
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g

( ) Unbuffered b) Buffered unidirectional (c) Buffered bidirectional

Figure 2.5: Programmable Switches

The routing wires .inside an FPGA can be categorized as either (a) segmented local
routing for connections between logic blocks, or (b) dedicated routing for global networks,
such as clocks or reset/preset lines. The local routing segments can span a single logic
block or multiple Blocks; typically, not all segments %Lre of the same length. The dedicated
routing tracks are designed to ensure low-skew transmission. Commercial FPGAs typically
also include phase-locked loops (PLLs) and delay-locked loops (DLLs) for clock de-skew
on these deaicated lines. They also may include clock multiplexe?s and clock management

circuitry to reduce power consumption by disabling unused parts of the clock network [25].

2.1.2 Enhanced LUT Architectures and Carry Chains

Commercial FPGAs contain improvements to the basic clustered K-LUT and interconnect

FPGAs described in Section 2.1.1.
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Adaptive Logic Module (ALM)

The Altera Adaptive Logic Module (ALM) is a BLE that can implement a single function
of six inputs or two functions that share four inputs [15]. It is based on research that
found that 6-LUTs have better area-delay performance than the typical 4-LUT, but can

result in wasted resources if many of the logic functions do not require six inputs.

Configurable Logic Block (CLB)

The Xilinx Virtex-5 CLB is a BLE based on a 6—LUT with two outputs so that it can
either implement a single function of six inputs or two functions of five (out of the same
six) inputs [26]. As with the ALM, it is based on research showing that 6-LUTs have

better performance, but may waste resources.

Carry chains

Carry chains are dedicated connections between logic blocks that aid in the efficient imple-
mentation of arithmetic operations. They also can be used in the efficient implementation
of logical operations, such as parity and comparison. Fast carry chains are important be-
causé the critical path for these operations is often through the carry.

Figure 2.6 shows a simple carry chain architecture. Each 4-LUT in a BLE can be
fractured to implement two 3-LUTSs; this i‘s sufficient to implement both the sum and
carry, given two input bits (a and b) and a carry input. The carry out signal from

one BLE would typically be connected to the carry in of an adjacent BLE using a fast

dedicated connection. The Z input is used to break the carry chain before the first bit of
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Figure 2.6: Carry Chain Connections to a 4-LUT

an addition.

More complex carry schemes have been published. In [18], carry chains based on carry
select, variable block, and Brent-Kung schemes are described; the Brent-Kung scheme
is shown to be 3.8 times faster than the simple ripple carry adder in Figure 2.6. The
selection of a carry scheme by the FPGA architect involves weighing the area cost of a
faster more complex carry chain against the performance benefits, bécause they are only
beneficial when used. Actel and Xilinx devices include support for carry-lookahead and

Altera devices include support for carry select capabilities.

2.1.3 Platform-style Architectures

With Moore’s Law and the increase in the possible number of transistors on a die, FPGA
manufacturers could afford to sacrifice some silicon area to application-specific circuits.
In 2000, to increase the efficiency and density of designs containing components such as

processors, large memories, and complex arithmetic circuits, FPGA manufacturers began

to release Platform-style FPGAs containing dedicated circuitry for these parts.
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In the context of FPGAs, Intellectual Property (IP) cores are typically reusable circuit
modules or high-level building blocks that can be combined to create a system. These cores
can be soft or hard. Soft cores are implemented in LUTs and hard cores are irﬁplementea
as embedded ASIC blocks in the FPGA. Platform FPGAs contain hard IP cores, such
as processors, large memory blocks, fast multipliers, and Digital Signal Processing (DSP)
blocks. They also contain dedicated interconnect for fast communication between certain

types of adjacent cores.

DSP blocks

To improve the density and address the pefformance requirements of DSP and other
arithmetic-intensive applications, FPGA manufacturers typically include dedicated hard-
- ware multipliers in their devices. Altera Cycloﬁe IT and Xilinx Virtex-I1I/-II Pro devices
contain embedded 18x18-bit multipliers, Which can be split into 9x9—bivt multipliers [27].
The Virtex-II1/-II Pro devices are further optimized with direct connections to the Xilinx
block RAM resources for fast access to input operands. Higher-end FPGAs include DSP
blocks, which are more complex dedicated hardware blocks optimized for a wider range
of DSP applications. Altera Stratix and Stratix II DSP blocks support pipelining, shift
registers, and can be configured lto implement 9x9—bit, 18x18-bit, or 36x36-bit multipliers
that can optiénally feed a dedicated adder/subtractor or éécumulator [15]. Xilinx Virtex-4
XtremeDSP slices confain a dedicated 18x18-bit 2’s complement signed multiplier, adder

logic, 48-bit accumulator, and pipeline registers. They also have dedicated connections

for cascading DSP slices, with an optional wire-shift, without having to use the slower
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general routing fabric [27].

This inclusion of dedicated multipliers or DSP blocks to complement the general logic
resources results in a heterogeneous FPGA architecture. Research has considered what
could be gained from tuning FPGA architectures to specific application domains, in par-
ticular datapaths and DSP.

The‘ work in [28] and [3] is tuned for datapath (arithmetic) circuits.-Datapath circuits
are often composed of regularly structured components, called bit-slices. The authors
propose a multi-bit logic block that uses configuration memory sharing to exploit this
regularity and save area. In typically-sized cluster-based logic blocks (containing 4 to 10
BLEs), coﬁﬁguration SRAM cells consume 39% to 48% of the total cluster area. If each
cluster is used to implement a single bit-slice of the datapath circuit and adjacent clusters
are used to implement adjacent bit-slices, the configuration memory for corresponding
BLEs in the adjacent slices can be shared. A @ulti—bit logic block is illustrated in Figure
2.7, indicating resources that can share configuration memory. The authors also propose
bus-based connections to exploit this regularity to achieve 14% routing area reduction
for implementing datapath circuits. A disadvantage of multi-bit architectu?es is that if
implementation circuits require a different bit-width, some resources may be wasted.

The work in [29] deliberately avoids creating a heterogeneous architecture because the
authors found that DSP applications contain both arithmetic and random loé;ic, but that
a suitable ratio between arithmetic and random logic is difficult to determine. Instead

they develop two “mixed-grain” logic blocks that are suitable for implementing both arith-

metic and random logic by looking at properties of arithmetic operations and properties
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Figure 2.7: Multi-bit Logic Block (from [3])

of the 4-LUT. Their logic blocks are coarse-grained: each block can implement up to
4—bif addition/subtraction, 4 bits of an array multiplier, a 4-bit 2:1 multiplexér, or wide
Boolean functions. Each logic block can, alternatively, implement single output random
logic functions like a nornial LUT. Their architecture reduces configuration memory re-
quirements by a factor of four, which is good for embedded systems or those with dynamic
reconfiguration. Compared to arithmetic-optimized FPGA architectures, it offers efficient
support of a wider raﬁge of DSP applications that vary in the amount of random logic
they contain. However, the cost of this flexibility is additional area overhead.

If applications with very little arithmetic are implemented, further area penalties are

incurred in the case of all of these architectures with specialized arithmetic support,

because most of the arithmetic‘support logic is left unused.
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Figure 2.8: Steps in the FPGA CAD Flow

2.2 FPGA CAD Flow

In order to implement large designs on FPGAs, CAD tools-are essential. They allow
users to work at a high abstraction level, automating optimization and transformation
to a low-level implementation. This section will give a brief overview vof the steps in the
FPGA CAD flow. Figure 2.8 illustrates the steps in the flow.

The input to the top level of the FPGA CAD flow is a behavioral description, typically
in the form of Hardware Description Language (HDL) code or a schematic that describes
what the circuit does, with little or no reference to its structure.

During high-level synthesis, an initial compilation of the design is done, some initial
optimizations are performed, and functional units are scheduled and assigned to the oper-
ations required by the circuit [30]. The result of high-level synthesis is a Register Transfer

Level (RTL) description of the design. An RTL description is typically written in HDL.

RTL code is characterized by a straightforward flow of control, with subcircuits that are
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connected together in a simple way [31].

During the optimization stage of logic synthesis, technology-independent optimizations
are applied to the logic functions that the RTL describes; the result is a netlist of gates.
During the technology mapping stage of logic synthesis, this netlist of gates is mapped
to the set of cells that are available to build the functions. In the case of FPGAs, these
cells are LUTs and flip-flops. The result is a structural netlist of interconnected LUTs
and flip-flops.

Physical design has three stages: (1) packing, (2) placement, and (3) routing. During
the packing stage, the LUTs and flip-flops are packed into coarser-grained cluster-based
logic blocks, with the goals of improving routability and optimizing circuit speed. Packing
together BLLEs that share signals minimizes the number of ‘connections between logic
blocks, thus enhancing routability. Packing together BLEs likely to be on the critical
path makes connections between them go via the fast local interconnect, thus optimizing
circuit speed. |

During the placement stage, the cluster-based blocks are assigned locations in the
FPGA. Goals during placement are to minimize wiring by placing connected blocks close
fogether, to enhance routability by balancing the wiring density across the FPGA, and to
maximize circuit speed by putting blocks likely to be on the critical path close together. |

Fiqally during the routing stage, paths are found in the channels for the wires that
connect the logic blocks. The result is typically refered to as the placéd and routed design.

At that point it could be converted to a bitstream for programming an FPGA.

The widely used Versatile Place and Route (VPR) academic CAD tool for packing,




Chapter 2. Background and Previous Work 21

placement, and routing will be described in Chapter 3.

2.3 Power

The formula for the instantaneous power dissipated at time ¢, p(t), is:
p(t) =i(t) - Vaa (2.1)

where V4 is the supply voltage and i(t) is the instantaneous current drawn from the
supply. To obtain the average power over a time interval, we replace the instantaneous
current by the average current drawn over that interval in Equation 21 Knowing the
peak instantaneous power'is useful when sizing supply lines, whereas knowing the average
power helps in the calculation of battery life and cooling requirements. In this work we
focus on average power.

Power dissipation can be broken down into dynamic and static components. Dynamic
power is dissipated when a gate is switching; it is due to: (1) the charging and discharging
of parasitic capacitances and (2) temporary short circuits between the high and low supply
voltage lines. The average dynamic power of the gate is given by the equation

P =05-aCVAf (2.2)

where o is the activity of the gate, C is the parasitic capacitance of the gate, and f is
the clock frequency. Static power is dissipated when the gate is not switching; it is due

to leakage currents. Typically, in an FPGA, the majority of power dissipated is dynamic

22].
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2.4 Power Estimation

It is important to distinguish between power estimation and power measurerﬁent. Power
measurement involves obt‘aining voltage and current values from a real physical apparatus.
Power estimation involves predicting what the power dissipation would be, based on a
number of assumptions. One reason for performing power estimation is that a physical
"apparatus is not always available. Another reason is- that a wider range of designs can
be considered and evaluated more quickly when we are not constrained to using physical
implementations. Performing power estimates earlier in. the design flow is desirable to
help guide design decisions or identify problems in the design.

Power estimation can take place at any étage in the FPGA CAD flow (Figure 2.8).
The stages higher in the flow are at a higher abstraction level and do not involve imple-
mentation details. As we get lower in the flow, more physical details of the design have
been determined. Performing power estimates at the lower stages in the flow will generally
give more accurate estimates; however, it will take more computational resoﬁrces to take
into account these physical details. In ourl work, we will be performing estimates after
placement and routing.

Power estimation can be.done at different abstraction levels, as shown in Figure 2.9.
At each stage, we need the following types of information so that we can perform the

power analysis:

1. activity estimates, so we can compute the dynamic power dissipation,

2. a description of what the design looks like - this can be either an architectural
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Figure 2.9: Abstraction Levels for Power Analysis (from [4])

description or a netlist - so that we know what components are used and how they

are connected,
3. models of these components and connections-

In a platform-style FPGA, the placed and routed netlist contains representations of
circuit components at multiple levels of abstraction: LUTs, flip-flops, and wires are es-
sentially at the géte level, while DSP blocks and memories can be thought of as being
RTL components, and hard processors can be thought of as being system-level compo-
nents. For this work, we are interested in the lower three abstraction levels in Figure
2.9: circuit-level, gate-level, and RTL. In the following subsections, we will first describe

two categories into which power estimation techniques can be classified. Then we will

describe a number of existing techniques at the three lower abstraction levels. Finally we
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will describe some FPGA-specific power estimation tools.

2.4.1 Simulation-based vs. Probabilistic

Power estimation techniques can be divided into two categories: (1) simulation-based and
(2) probabilistic. Simulation-based techniques simulate the circuit to gather data about
the switching of circuit nodes or even determine the waveform of the current being drawn.
However, simulafion—based techniques require complete and specific information about the
input signals. The accuracy of the simulation results is dependent on how realistic the in-
puts are. Consequently, reference [23] calls simulation-based power estimation techniques
strongly pattern-dependent.

To avoid the problem of determining complete and specific input signal characteristics,
probabilistic techniques are based on typical input signal behaviour. They represent
the avérage behavipur of the inputs using probabilities. Although the estimation is still
dependent on the probabilities provided, it is sufficient to supply typical behaviour instead
of specific behaviour. Thus [23] calls probabilistic power estimation techniques weakly
pattern-dependent. Since calculations need only be performed once on the average data,
instead of on a large number of simulation inputs, probabilistic techniques tend to require

less computational resources than simulation-based techniques; however, some accuracy

is sacrificed by of the use of averaging.
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2.4.2 Techniques: Circuit-level

Typically, at the circuit-level users seek very precise estimates. As a result, circuit-level
techniques tend to be simulation-based, while probabilistic techniques tend to be applied

only at the gate-level and above [32].

SPICE

SPICE provides very detailed, low-level simulation data for a circuit. SPICE standsAfor
Simulation Program with Integrated Circuits Emphasis and is a genefal puirpose analog
circuit simulator for nonlinear DC, nonlinear transient, and linear AC analyses. It uses
mathematical models to represent the devices in the circuit, such as resistors, capacitors,
and transistors [33]. This very detailed simulation can result in high accuracy estimates,
but it requires substantial computational resources, fnaking it unsuitable for large circuits.

SPICE was used in the creation of the Poon power model, which is discussed in Chapter
3. However, the work in this thesis will be done at higher levels of abstraction, due to

runtime and complexity constraints.

2.4.3 Techniques: Gate-level

Simulation-based gate-level analysis is very mature. The most popular type of gate-
level analysis uses event-driven logic simulation, where switching events at the ‘inputs of
a logic gate trigger events at the output after a pre-defined delay. Probabilistic gate-

level techniques exist as well, to reduce the execution time of estimates. We used both

simulation-based and probabilistic gate-level techniques in this work.
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Synopsys PrimePower

Synopsys PrimePower is a simulation-based dynamic power ‘analysis tool for gate-level
power verification that can be used on multimillion-gate designs. It combines gate-level
simulation results with delay and cap@citance inférmation from technology libraries to get
detailed power information. In addition to average power numbers, PrimePower reports

instantaneous power consumption in different parts of the design.

Transition Probability

The Transition Probability Technique relates the average dynamic power of nodes to the
likelihood that they will switch. To use the Transition Probability Technique, we need
the signal probability and the transition probability of each node. The signal probability,
Pyignai, of a node is the average fraction of clock cycles iniwhich the steady state value of
the node is logic high. The transition probability, P, ofa node is the average fraction of
clopk cycles in which the steady state value of the node is different from its initial value
(23].

The Transition Probability Technique makes some simplifying assumptions: zero-
delay, spatial independence of inputs and internal nodes, and temporal independence
of signal values. The assumption of zero-delay means there is, at most, a single transition
of each signal per clock cycle; in reality, there are delays and they can cause the output
of a gate to transition multiple times before settling at its final value for the clock cycle.

The assumption of spatial independence means we assume that there is no correlation be-

tween nodes, although, in reality, the value of one signal may affect the value of another
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signal, in the same cycle. The assumption is made because calculating the correlation
between signals for a large circuit is prohibitively expensive. The assumption of temporal
independence means that we assume, for a given signal, that values in consecutive clock
cycles are inciependent of each other.

With those assumptions, the average power can be calculated using Equation 2.3:

P=05-Vif Z CiP (2.3)

all nodes

where Vjqy is the supply voltage, f is the clock frequency of the circuit, C; is the total
capacitance at node 7, and P, ; is the transition probability at node 7. Because of the zero-
delay assumption, Equation 2.3 only gives a lower bound on the power - unmatched delays
cause multiple transitions at gate outputs. With the temporal independence assumption,
the transition probability can be calculated from the signal probability using Equation

2.4:

Pt - 2 : Psignal(]- - Psignal) (24)

Transition Density

The Transition Density Technique is more accurate than the Transition Probability Tech-
nique and more computationally efficient than event-driven logic simulation. The advan-
tage of the Transition Density Technique over the Transition Probability Technique is

that it distinguishes between multiple transitions of a node in a single cycle, making it

more accurate. Switching activity can also be thought of as transition density, D(z) (for
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node z), which is the average number of transitions of node x per unit time. Formally, it

is given by Equation 2.5,

D(x) £ lim na(T)

T—o0 T

(2.5)

where T is the length of the time interval and n,(T) is the number of transitions in the
time interval of length 7.
Given the transition density of all the nodes, the average power dissipation can be

calculated using Equation 2.6:

P=05-V > CiD(x) (2.6)

all nodes

where V,, is the supply voltage, C; is the capacitance at node 7, and D(z;) is the transition
density of node 1i.

There are two important quantities in the calculation of activities for all nodes in
the circuit using the Transition Density model: static probability and transition density.
Static probability is the probability that the signal is high. To calculate the act.ivity of
each node in the circuit, the transition density for each node is computed, gate-by-gate,
going from the primary inputs to the primary outputs. If we assume that all inputs are

uncorrelated, we can use the relationship

b= 5 P (%) b 27)

all input pins

where f(z) is the logic function of the gate, %f—) = f(@)|g;=1 ® f(2)|z;=0 is the boolean
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difference at the output port with respect to each input z;, D(z;) is the transition density
. ' . e - af(z)
at input z; and D(y) is the transition density at the output, y. P ( S ) can be calculated

from the static probabilities of the inputs z; using the relationships:
e P(X)=1-P(X)
e P(XY)=P(X) -PY)

o P(X +Y)=P(X)+P(Y) - P(X) - P(Y)

where P(X) is Pi(X), the static probability of X.

Lag-one Model

The Transition Density model assumes that there is no temporal correlation. The purpose
of using the lag-one model is to relax this assumption; the lag-one model assumes that
the current value of a signal may depend on the value immediately preceding it. Using the

lag-one model, the switching probability can be calculated using Equation 2.8:

P=3Y |P@@) > Pl,z)|+ Y, |P@): > Plziz) (2.8)

z,€X1 z;€X0 z;€Xo z;€X1
For a boolean function, f, X; is the set of input states such that f (z;) =1V z; € X; and
X, is the set of input states such that f(z;) =0V z; € Xy, P (x;) is the probability that
the current input state is z;, and P (z;, ;) is the probability that the input state will be
z; at the end of a clock cycle if the state was z; at the beginning of the clock cycle. This

equation represents the summation of probabilities over all pairs of input states x;, z; such

that f (z;) = f (;), where an input state is a row of the truth table for f.
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2.4.4 Techniques: RT-level

RT-level estimators are typically based on macro-modeling. Macro-modeling involves cre-
ating power macro-models for the basic functional components in the RTL libraries and
characterizing them [4]. The user of an RTL estimator sees the macro-models as black
boxes. However, créating a macro-model of a component involves characterizing its rep-
resentation at a lower level of abstraction [32]. For example, to do power characterization
for an adder, we might estimate its gate-level implementatio.n and use information about
the gates to derive overall values for its power characteristics.

Although power estimates at higher levels of abstraction are less accurate, they still
i)rovide valuable information. With the increase in the size and compleﬁcity of designs, it
is desirable for designers to be able to estimate the power at a high level of abstraction so
that the information can guide early architectural decisions. Another motivating factor
is that the largest power reductions often come from architectural and algorithmic modi-
fications [34], which are least costly to make early in the design flow. However, although
RTL estimators are available in commercial tools, they have not yet gained widespread
acceptance in design practice. Reference [4] attributes this to the difficulty of quantifying
the accuracy gap between gate-level and RTL power estimation in an industrial setting.
Another deterrent noted by reference [4] is the fact that a large amount of characterization

must be done to make a library of macro-models; this process must be automated to be

efficient.
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Dual Bit Type Method

The Dual Bit Type (DBT) Method [34] is an architecture-level strategy for generating
accurate black-box models of datapath power consumption. Its creators note that, while
typical strategies quantify activity and physical capacitance for their estimates, the strate-
gies do not account for the effect of signal statistics on the activity. In particular, the
authors identify the correlation between sign bits of two’s complement operands as being
an important source of error when using the assumption of réndomized inputs to thé block
being modeled. As an example, consider an FPGA with 8-bit adders and a user circuit
where all the operands are 5 bits wide. The lower 5 bits could be adequately represented
by uniform white noise (UWN) inputs, but the upper 3 bits would always be identical
(correlated) sign-extension values.

The creators of the DBT method propose to account for two input bit types: (1)

correlated sign bits, and (2) UWN operand bits. Recall Equation 2.2:

P =05 -aCVif - (2.9)

To account for the two bit types, instead of using a single capacitative coefficient based
on UWN inputs, they use multiple capacitative coefficients that account for transitions
on each type of data on each input to the block. However, a two-input single-function

module requires 73 capacitive coefficients; the number increases for semi-configurable

multi-function DSP blocks that are found in FPGAs.
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Entropy-based

In reference [35], the authors propose to characterize the average switching activity of
a module by using the averaée switching activity of a typical signal line in the module.
Their goal is to obtain an acceptable estimate with a limited number of design details and
at a significantly lower qomputational cost. They derive simple closed form expressions
to approximate the switching activity in the RTL blocks using the concepts of entropy
and informational energy. However, to manage the complexity of their calculations, they

make the following simpifying assumptions:

e Simplified, uniform network structure: Each level of the circuit has the same number
of nodes and all the gates on each level are assumed to get their inputs from the

previous level.

e Asymptotic network depth: The number of levels in the circuit is large enough to

be considered infinity.

Unfortunately, DSP and arithmetic blocks in FPGAs do not have a uniform network

structure and are not so large that we can approximate their network depth as infinite.

2.4.5 FPGA-specific Power Estimation Tools
Spreadsheets

The most accurate power estimation results for an FPGA design will be after the design

has been implemented (i.e. placed, routed, and then simulated with accurate stimulus

vectors). However, it is valuable to understand the impact of early high-level design
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decisions on power dissipation. Power estimation spreadsheets can be used in the pre-
implementation phase to obtaiﬂ a rough ideé of power dissipation for a design.

These spreadsheets contain detailed device data constants from FPGA manufacturer
datasheets. The user enters environmental conditions, voltage and clock information, logic
utilization, and toggle rates. Early spreadsheets only calculated total power dissipated
for voltage sources and components [36][(37]. The spreadsheets for the latest FPGA fami-
lies from Altera and Xilinx are newer and calculate the\ static, dynamic, and total power
consumption [38][39]. The Xilinx Virtex-4 spreadsheet also provides graphical represen-
tations of power, voltage, and temperature relationships and power used by each type of
component.

It should be noted that these spreadsheets compute power in a device-specific manner,
based on constants. The user is expected to provide toggle activity information for each

block, but (s)he might not know what values to use at such an early stage.

CAD tools

Industrial CAD tools that offer more accuracy than spreadsheets are Xilinx XPower and
Altera PowerPlay Power Analyzer. They are used in the implementation phase, when
design details such as placement and routing have been established.

XPower requires either user supplied toggle rates, as with the spreadsheets, or post-
implementation simulation data to estimate the power consumed [40]. PowerPlay is sim-

ilar, but also includes (for some device families) vectorless activity estimation to statisti-

cally estimate the signal activity of a node using the activities of the signals feeding the
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node and the logic function implemented by th(;, node [41]. The limitation of these tools
is that they apply only to some of the Altera and Xilinx devices.

The Poon power model is a freely available, detailed, flexible power quel that has
been integrated into the Versatile Place and Route (VPR) CAD tool. It estimates the
dynamic, short-circuit, aﬁd leakage power consumed for avwide variety of user-specified

FPGA architectures. It is described in detail in Chapter 3.

2.5 Focus and .Contribution of Thesis

Section 2.1 describes the basic island-style architecture and the improvements that exisé
in commercial FPGAs to improve density énd speed. Unfortunately, available academic
power estimation tools only support basic island-style architecture components. The goal
of this research project is.to enable fast and accurate estimation of power dissipated in
FPGA designs that include embedded mul;ciplier and DSP blocks (for the remainder of
the thesis, both embedded multipliers and DSP blocks will be referred to as DSP blocks).
Our project uses both simulation-based and probabilistic information at the gate-level to
create a Power Estimation Tool Flow that includes automated RT-level embedded DSP
block macro-model characterization.

This Work builds upon the Poon power model and theiwidely used VPR CAD Tool,
which are described in Chapter 3. |

The contributions of this thesis can be summarized as:

1. Identification of a fast and accurate technique to estimate the switching activity of

an embedded DSP block
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2. Identification of a fast and accurate technique to estimate power dissipated by DSP

blocks

3. A tool flow for estimating embedded DSP block power in the context. of FPGA

designs.

The impact _of our enhanced tool flow is threefold; the existence of a freely available,
architecturally flexible FPGA CAD tool that includes power modeling for embedded DSP

blocks enables:

1. the investigation of power-aware architectures containing embedded DSP blocks

2. the investigation of power-aware CAD algorithms for FPGA circuits containing em-

bedded DSP blocks

3. the incorporation of power tradeoffs in the design of user circuits.
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Chapter 3

Framework

This chapter introduces the existing experimenfal CAD tool suite that forms the basis
of our work. Section 3.1 describes the flow of the framework. Section 3.2 describes the
T-VPack tool for packing basic logic elements int§ clustef—based logic blocks and the
original VPR CAD tool. Section 3.3 describes the Poon powef model and the improved
activity estimation tool, ACE-2.0. Section 3.4 describes how our work fits into the existing

framework and the requirements for our work.

3.1 Overall Flow |

Our work is based upon the VPR CAD tool suite, enhanced with the Poon power model
(together PVPR). Frequently, “VPR” refers to the pair of tools T-VPack and VPR, since
they are typically used together. In this thesis, we will do the same. Figure 3.1 illustrates
the steps in the PVPR tool flow. The left _side is fhe original VPR flow. For the Poon
power model, activity estimation was added; this is shown to the right of the original
VPR flow.

The first input to the flow is a netlist describing the user’s circuit. This netlist must be

pre-processed to generate the correct data and data format required by VPR. This pre-
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Figure 3.1: Overall CAD Flow (from [5])

processing involves logic optimizatioﬁ using SIS [42] and technology mapping to LUTs
and flip-flops using FlowMap+FlowPack [43]. The result of technology mapping is a
netlist mapped to the desired FPGA architecture. This mapped netlist and input stimuli
are inputs to the activity estimation module, ACE-1.0, which is based on the Transition
bensity model. The output of ACE-1.0 is switéhing activity information for each node
in the mapped netlist. The mapped netlist, switching activity information, and cluster
architecture parameters are then input to T-VPack, which packs the LUTs and flip-
flops into cluster-based logic blocks. The cluster-based blocks are placed using the VPR
placement engine. The connections between the placed blocks are then routed using the
VPR routing engine. .

VPR generates reports of placement and routing statistics. Architectural investiga-

tions can then be performed by varying the parameters in the parameterized architecture
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description and examining.the resultiﬁg statistics. Algorithmic investigations can also
be performed by making modifications to the packing, placement or routing engines and
examining the statistics for a set of benchmark circuits. The Poon power model adds the
generation of powef statistics for the clock, logic, and interconnect to VPR. These power

statistics can be used in both architectural and algorithmic studies for basic Island-style

FPGA architectures.

3.2 Versatile Place and Route (VPR)

VPR is a freely available CAD tool that is widely used for performing FPGA architectural
studies. It is composed of a packing tool, a placement and routing engine, and a detailed

area and delay model.

3.2.1 Architectural Assumptions

There are a large number of architectural alternatives for FPGAs and not all are supported
by VPR. VPR targets SRAM-based Island-style FPGAs with cluster-based logic blocks
and perimeter I/O. Each SRAM cell is made of six minimum-sized transistors with gate

voltage boosting to overcome the Body effect. Four types of switch block architectures

are supported for the programmable connection of routing tracks: Disjoint [44], Universal

[45], Wilton [46], and Imran [47].
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3.2.2 T-VP_ack

T-VPack is a timing-driven CAD tool; it takes a circuit netlist that has been technology
mapped to LUTs and flip-flops and packs these basic logic elements into larger cluster-
based logic blocks. Before the placgment stage of VPR, the circuit netlist is processed
using the T-VPack tool. As described in Section 2.1.1, the use of coarse-grained logic
‘ blocks results in faster, denser circuits, and in faster place and route runtimés.

T-VPack has the optimization goals of:

e Minimizing the number of inter-cluster connections on the critical path of the circuit

e Reducing the number of connections required between clusters by minimizing the

number of inputs to the clusters

e Minimizing the number of clusters needed

3.2.3 Placement and Routing Engine

The placement tool assigns the cluster-based logic blocks to locations in the FPGA. The
FPGA is modeled as a set of legal locations where logic blocks or [/O pads can be placed.
An initial random placement is constructed, then simulated annealing is used to improve
the solution. Optimization goals involve minimizing wiring and maximizing circuit speed.
As will be described in Section 6.1.2, we modified the placement tool to place DSP blocks
as well. |

Once placement is complete, the routing tool determines which programmable switches

to turn on to make the required inter-logic block connections in the FPGA. VPR represents
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the routing architecture of the FPGA as a directed graph called the routing resource graph.
Two routing algorithms are available: a purely routability-driven algorithm and a timing-

and routability-driven algorithm.

3.2.4 Architectural Flexibility

The reason for VPR’s versatility is its flexible representation of architectures that the user

specifies in an architecture file. The following features can be specified:

e Logic bl‘ock architecture

e Detailed routing architecture
e Channel width

¢ Timing analysis parameters

e Process technology parameters and capacitances

3.3 Poon Power Model

3.3.1 Architectural AsSumptions

As the Poon model is incorporated into VPR, it uses the architectural assumptions made
by VPR. However, the original version of VPR assumes that the clock and other global
signals are implemented using special dedicated resources. The version of VPR enhanced

with the Poon model assumes an H-Tree clock distribution network and uses the total

capacitance of the clock network for power estimation.
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3.3.2 Activity Estimation

In the Poon model, the first step is t;) estimate the activities of the Inodes in the FPGA.
The activity estimatién tool for the power model is called ACE. To distinguish between
major revisions of the tool, the original will be referred to as ACE-1.0 and its sucessor
will be referred to as ACE-2.0 [48]. This section will describe the techniques used for

estimation in ACE-1.0 and ACE-2.0.

ACE-1.0

ACE-1.0 is the original activity estimation tool for the Poon model. It estimates the
static probability (P;), swifching probability (P,), and switching activity (A,) for combi-
national and sequential gate-level circuits using the Transition Density signal model. The
original Transition Density model oniy handles combinational circuits, but was enhanced
to support sequential circuits. To support circuits with sequential feedback, an iterative
technique is used to update the switching probabilities at the output of the flip-flops,
using the expressjons Pi(Q) = Pi(D) and P,(Q) = 2. P(D)- (1 — P(D)). The original
Transition Density model was also enhanced to aécount for logic gate inertial delays by
adding an analytical low-pass filter to filter out very short glitches.

The authors of [48] found ACE-1.0 to be inaccurate for large and/ or sequehtial circuits.
They found that ACE-1.0 overestimates activities and suggest that the low-pass filter
function is insufficient for reducing glitching.. They also attribute the poor sequehtial

circuit performance to the simple expressions used in the iterative technique for updating

the switching probabilities at the outputs of flip-flops. The next subsection describes the
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activity estimator from [48], ACE-2.0, which addresses the weaknesses of ACE-1.0.

ACE-2.0

ACE-2.0 is a faster and more accurate probabilistic activity estimator for the Poon power

model. It has three stages that address the weaknesses of ACE-1.0:

1. Simulation of sequential feedback loops

2. Calculation of P; and P, values for nodes not in sequential feedback loops using the

Lag-one model

3. Calculation of A, using a probabilistic technique that accounts for glitching

The first stage improves the accuracy of activity estimation in sequential circuits. Since
simulation techniques were avoided because of runtime issues, ACE-2.0 onliy simulates the
logic in sequential feedback loops.

In the second stage, ACE-2.0 obtains the P; and P; values using the Lag-one model for
the parts of the circuit not simulated, which produces exact switching probébilities if we
assume that inputs are not correlated [48]. ACE-1.0 uses the Transition Density model,
which assumes that there is no temporal correlation. The purpose of using the lag-one
model is to relax this assumption; the lag-one model assumes that the current value of a
signal may depend on the value immediately preceding it.

The most efficient known implementation of the Lag-one model uses a Binary Decision
Diagram (BDD). However, there is an exponential relationship betweén BDD size and the

number of inputs, making this implementation impractical for large circuits. ACE-2.0

combines BDD pruning with a partial collapsing technique to give smaller BDDs.
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In the third stage, ACE-2.0 calculates the switching activities. It uses a generalization
of the Lag-one model and accounts for glitching by incorporating the concept of a minimum

pulse width for passing glitches.

3.3.3 Power Estimation

The Poon model uses estimated capacitances at the transistor level for each component
inside the FPGA. Then, using the capacitance values and switching activity estimates,
the average power dissipation is calculated. The model was compared against HSPICE
simulations. The Poon model dynamic power estimates were found to be Witilin 4.8% for
routing and 8.4% for logic. For leakage, average difference between the estimates and the
HSPICE results was 13.4%.

Dynamic power is the dominant component of the total power in an FPGA. The
Poon model calculates capacitance values at the transistor level to determine the power
dissipation of LUTSs, multiplexers, and buffers inside logic blocks. It also uses the metal
capacitance of each routing track and the parasitic capacitance of all switches attached
to the track, specified using the process technology parameters in the architecture file, to
calculate the power dissipated in the FPGA routing. The routing power is a large portion
of the dynamic power dissipated. Since the SRAM programming bits in the FPGA do not
change value after configuration, they are not included in the dynamic power calculations.

The dynamic power is calculated using the equation:

P = Z CyVSupplstwingD(y)fclk/Z (31)

all nodes




Chapter 3. Framework 44

The short circuit power is modeled as 10% of the dynamic power, based on extensive
HSPICE simulations in [5].

The leakage power has two components: reverse bias leakage and subthreshold leakage.
As the Poon model was calibrated using a 0.18 um process technology, it assumes that the
reverse bias leakage is negligible. To calculate the subthreshold leakége the Poon model
uses the equation:

-Pleqlc = Idrain (weak inversion) ° Vsupply (32)

It uses a first order analytical estimation model to estimate the subthreshold current.

3.3.4 Architectural Flexibility

Enhancements for the Poon model add support to the architecture file for the flexible

specification of:

e Supply, swing, and gate-source voltage levels
o Leakage and short circuit power parameters

e NMOS and PMOS transistor characteristics

e Clock network architecture parameters

3.4 DSP Block Power Model and Tool Flow

The DSP block power model that we propose is an extension for the PVPR flow. Section

3.4.1 discusses the requirements of the power model we have developed as part of this

work. Section 3.4.2 explains where our work fits in to the PVPR flow.
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3.4.1 Requirements

As stated earlier, our power model must fit into an existing FPGA CAD tool flow. In order
to allow the investigation of future architectures, instead of simply existing commercial
‘architectures, we prefer that this CAD tool be architecturally flexible; it should be possible
to specify a wide range of logic block, routing, clock, _and DSP block architectures.

In an architectural investigation, many iterations of PVPR are executed to gather
data about the impact of varying certain architectural parameters. In order to not hinder
the use of PVPR for an investigation requiring tens (or even hundreds) of iterations, our
power estimation must be fast. Furthermore, in order for the power estimates from the
investigation to be meaningfui, they must be accurate.

The previous requirements pertain to the tool flow that is visible to the PVPR user.
An important input to the tool flow in Figure 3.4.2 is the DSP block characterization data.
As described in Section 2.4.4, a deterrent to the use of macro-modeling at the RT-level
is the fact that a large amount of characterization must be done to make a library of
macro-models; this process must be .automated‘ to be efficient. Therefore, to make our
tool flow attractive, we must minimize the effort required when adding models for new

DSP blocks and automate characterization.

3.4.2 Extending PVPR Flow

Figure 3.2 shows how our model fits into the PVPR flow. Pre-processing of the DSP

blocks in the mapped netlist is required before the activities can be generated for the

nodes in a user’s circuit that contains DSP blocks. Additional characterization data
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Figure 3.2: CAD Flow Enhanced to Support DSP Block Power Estimation

is also required in order to estimate the power of the DSP blocks in the final stage of
processing. The addition of our work to the PVPR flow expands the support of PVPR to
FPGA architectures that contain DSP blocks, thus enabling architectural and algorithmic

investigations with circuits that contain these blocks.

3.5 Chapter Summary

Our work modifies the widely used PVPR 