
Activity-based Power Estimation and Characterization of DSP
and Multiplier Blocks in FPGAs

by

Nathalie Chan King Choy

B . A . S c , University of Toronto, 2004

A T H E S I S S U B M I T T E D I N P A R T I A L F U L F I L M E N T O F
T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

M A S T E R O F A P P L I E D S C I E N C E

in

The Faculty of Graduate Studies

(Electrical and Computer Engineering)

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

October, 2006

© Nathalie Chan K i n g Choy, 2006

11

A b s t r a c t

Battery-powered applications and the scaling of process technologies and clock frequencies

have made power dissipation a first class concern among F P G A vendors. One approach

to reduce power dissipation in F P G A s is to embed coarse-grained fixed-function blocks

that implement certain types of functions very efficiently. Commercial F P G A s contain

embedded multipliers and "Digi ta l Signal Processing (DSP) blocks" to improve the per

formance and area efficiency of arithmetic-intensive applications. In order to evaluate the

power saved by using these blocks, a power model and tool flow are required.

This thesis describes our development and evaluation of methods to estimate the ac

t iv i ty and the power dissipation of F P G A circuits containing embedded multiplier and

D S P blocks. Our goal was to find a suitable balance between estimation time, modeling

effort, and accuracy. We incorporated our findings to create a power model and C A D tool

flow for these circuits. Our tool flow builds upon the Poon power model, and the Versa

tile Place and Route (V P R) C A D tool, which are both standard academic experimental

infrastructure.

i i i

T a b l e o f C o n t e n t s

Abstract i i

Table of Contents i i i

List of Tables v i

List of Figures v i i

Acknowledgements ix

1 Introduction 1

1.1 Mot iva t ion 1

1.2 Research Goals 4

1.3 Research Approach 5

1.4 Organization of Thesis 7

2 Background and Previous Work 8

2.1 F P G A Architectures 8

2.1.1 Island-style Architectures 9

2.1.2 Enhanced L U T Architectures and Car ry Chains 13

2.1.3 Platform-style Architectures 15

2.2 F P G A C A D Flow 19

2.3 Power 21

2.4 Power Es t imat ion 22

2.4.1 Simulation-based vs. Probabil is t ic 24

2.4.2 Techniques: Circuit-level 25

2.4.3 Techniques: Gate-level 25

2.4.4 Techniques: RT-level . ' . . 30

2.4.5 FPGA-spec i f i c Power Es t imat ion Tools 32

2.5 Focus and Contr ibut ion of Thesis 34

Table of Contents iv

3 F r a m e w o r k 36

.3.1 Overall F low 36

3.2 Versatile Place and Route (V P R) 38

3.2.1 Archi tectural Assumptions 38

3.2.2 T - V P a c k 39

3.2.3 Placement and Rout ing Engine 39

3.2.4 Archi tectural F lex ib i l i ty 40

3.3 Poon Power M o d e l 40

3.3.1 Archi tectural Assumptions 40

3.3.2 A c t i v i t y Es t imat ion 41

3.3.3 Power Es t imat ion 43

3.3.4 Archi tectural F lex ib i l i ty . 44

3.4 D S P Block Power M o d e l and Tool F low 44

3.4.1 Requirements 45

3.4.2 Extending P V P R Flow 45

3.5 Chapter Summary .• • • 46

4 A c t i v i t y E s t i m a t i o n 48

4.1 Mot iva t ion for developing A c t i v i t y Es t imat ion Techniques 48

4.2 Techniques for A c t i v i t y Est imat ion of an Embedded Block 49

4.2.1 Gate-Level Technique 49

4.2.2 Independent Output Technique 51

4.3 Methodology and Results for Ac t iv i t y Est imat ion 53

4.3.1 Output Nodes of D S P Block . . 54

4.3.2 Downstream Nodes of D S P Block 58

4.4 Conclusions for A c t i v i t y Est imat ion 60

4.5 Chapter Summary 61

5 P o w e r E s t i m a t i o n 63

5.1 Techniques for Power Es t imat ion 63

5.1.1 Objectives 63

5.1.2 The Constant Technique 64

5.1.3 The Lookup Technique 64

5.1.4 The P i n C a p Technique 65

5.2 Methodology for Power Characterization 66

5.2.1 Constant Technique 67

5.2.2 Lookup Technique 67

Table of Contents v

5.2.3 P i n C a p Technique 67

5.3 Evaluat ion 68

5.4 Conclusions for Power Est imat ion 71

5.5 Chapter Summary 72

6 Power Estimation Tool Flow 73

6.1 Overal l F low 73

6.1.1 Functionali ty 73

6.1.2 Modifications to P V P R 75

6.2 F low Demonstration and Comparison to Gate-Level Simulat ion 76

6.2.1 Mot iva t ion 76

6.2.2 Terminology 77

6.2.3 Methodology 78

6.2.4 Results 82

6.3 Chapter Summary 84

7 Conclusion 86

7.1 Summary and Contributions 86

7.2 Future Work 87

7.2.1 Benchmarks : 88

7.2.2 G l i t c h Characterization 89

7.2.3 Board-Level Verification 89

Bibliography 91

A d i t c h i n g Characterization Attempt 95

B Detailed Results from Comparison 98

v i

L i s t o f T a b l e s

6.1 Parameters added to the P V P R Architecture Fi le Format 76

6.2 V P R Power Analysis Results - . 83

6.3 Overal l Percentage Error for F I R Fi l ter Results 84

6.4 Overal l Percentage Error for Differential Equat ion Solver Results 84

B . l F I R Fi l ter Results for 0.25 Average Input A c t i v i t y 98

B.2 F I R Fi l ter Results for 0.50 Average Input A c t i v i t y 99

B .3 F I R Fi l ter Results for 0.75 Average Input A c t i v i t y . 100

B.4 Differential Equat ion Solver Results for 0.25 Average Input A c t i v i t y 101

B .5 Differential Equat ion Solver Results for 0.50 Average Input A c t i v i t y 102

B.6 Differential Equat ion Solver Results for 0.75 Average Input A c t i v i t y 103

L i s t o f F i g u r e s

1.1 18-bit x 18-bit multipliers combined for 36-bit x 36-bit multiplier 2

2.1 Island-style Architecture (from [1]) 9

2.2 2-input L U T (from [2]) 10

2.3 L U T wi th Flip-flop (from [2]) 10

2.4 Cluster-based logic block 11

2.5 Programmable Switches 13

2.6 Carry Cha in Connections to a 4 - L U T 15

2.7 Mul t i -b i t Logic Block (from [3]) 18

2.8 Steps in the F P G A C A D Flow 19

2.9 Abstract ion Levels for Power Analysis (from [4]) 23

3.1 Overal l C A D Flow (from [5]) 37

3.2 C A D Flow Enhanced to Support D S P Block Power Es t imat ion 46

4.1 Gate-Level Technique 49

4.2 Independent Output Technique 51

4.3 Output P i n Act ivi t ies for Unregistered Mul t ip l ie r 54

4.4 Output P i n Act iv i t ies for Registered Mul t ip l ie r 55

4.5 Output P i n Act iv i t ies for Unregistered D S P Block 56

4.6 Output P i n Act iv i t ies for Registered D S P Block 56

4.7 18-bit x 18-bit Mul t ip l iers Combined for 36-bit x 36-bit Mul t ip l ie r 57 '

4.8 F I R Fi l ter Used for A c t i v i t y Experiments 58

4.9 A c t i v i t y Results for the F I R Fi l ter 59

4.10 Ac t iv i t y Results for the Converter 60

5.1 Methodology for Power Est imat ion Experiments 66

5.2 Power Est imat ion Experimental Methodology 68

5.3 Power Est imat ion Experiment Results 69

5.4 Power Est imat ion Experiment Results 70

6.1 Power Est imat ion Tool F low . . '. 74

List of Figures v i i i

6.2 Terminology 77

6.3 fir.3_8.8: F I R Fi l ter Circui t 78

6.4 Differential Equat ion Solver Circui t 79

6.5 18-bit x 18-bit multipliers combined for 36-bit x 36-bit multiplier 80

6.6 Simulat ion Flow Pseudocode 81

6.7 F low for Determining Simulation Power Estimate of Each D S P Block Instance 82

A . l Power Characterization Flow 96

A . 2 Testbench Pseudocode 96

ix

A c k n o w l e d g e m e n t s
I would like to thank my supervisor, Professor Steve Wi l t on , for teaching me so much

these last two years and for providing many opportunities to interact w i t h the F P G A

community and to gain valuable teaching experience. I would like to thank everyone in

the Socwilton, Soclemieux, and other System-on-Chip groups for their ideas, advice, and

good company. Peter Jamieson (from the Universi ty of Toronto), Brad , Dipanjan, Julien,

and Vic to r were incredibly helpful when I was getting started wi th al l the tools. Roozbeh

and Roberto were also great resources.

I am grateful to Al t e ra and the Natura l Sciences and Engineering Research Counc i l of

Canada for funding my project and to my defense committee for volunteering their time.

Thank you to Scott and Lesley for your emotional support during the academic rough

patches and for knowing exactly what I was going through. Also thank you to Steph

and Jess for your emotional support and encouragement during the non-academic rough

patches, the roommate antics, and the entertaining adventures.

Final ly , I would like to dedicate this work .to my family, friends, and my dragon boat

family (Swordfish, R o l i , and U C Water Dragons crews) who kept me sane through a very

intense last two years.

Chapter 1. Introduction 1

Chapter 1

Introduction

1.1 M o t i v a t i o n

Power dissipation has become increasingly important in the electronics industry. There

are two reasons for this:

1. There is a growing number of portable electronic applications, which have battery

life constraints

2. Process technologies in the nanometer scale and clock frequencies in the gigahertz

range result in very hot chips and increased cooling costs.

These issues are relevant to both Application-Specific Integrated Circui ts (ASICs) and

to Field-Programmable Gate Arrays (F P G A s) . W i t h increasing mask costs for A S I C s ,

F P G A s have become an attractive implementation alternative for low and medium volume

production. However, F P G A s lag behind A S I C s significantly in their power efficiency. The

additional transistors required for programmability result in higher power dissipation per

function. Leakage power is also dissipated in both the used and unused parts of F P G A s ,

and most commercial F P G A s do not have a sleep mode to reduce power in unused parts

(The Ac te l I G L O O flash-based F P G A is an exception [6]).

Chapter 1. Introduction 2

Figure 1.1: 18-bit x 18-bit multipliers combined for 36-bit x 36-bit multiplier

Over the past few years, significant advances have been made at the circuit level [7] [8],

architecture level [9], and C A D tool level [10] [11] [12]. S t i l l , current F P G A s have been

found to be, on average, 12 times less power efficient than A S I C s [13].

A basic F P G A is composed of programmable logic elements (called Look-up Tables or

LUTs), wire segments, and programmable connections/switches that are typical ly laid out

in a regular pattern. The L U T s in F P G A s typical ly have 4 to 6 inputs and can implement

any boolean function of these inputs. B y configuring each L U T and connecting them

together using the programmable interconnect, users can implement vir tual ly any digi tal

circuit. To reduce area and improve circuit speed, larger logic blocks are used (typically

composed of a collection of 4-10 L U T s) ; they are called clusters.

Chapter 1. Introduction 3

One promising approach to reducing power in F P G A s at the architectural-level is

to embed coarse-grained fixed-function blocks that implement certain types of functions

very efficiently. Commercial F P G A s contain embedded multipliers and embedded "Dig

ital Signal Processing (DSP) blocks" to improve the performance and area efficiency of

arithmetic-intensive applications, such as DSP applications [14] [15] [16] [17]. A simplified

example of a DSP block is shown in Figure 1.1; in this diagram, four 18xl8-bit multipli

ers are programmably connected to create a 36x36-bit multiplier, with optional registers

at the multiplier inputs, outputs, and adder stage outputs. Other examples of DSP

block configurations are adder/subtractors, multiply-accumulators, and multiply-adders.

Arithmetic-intensive applications can be implemented in LUTs, but even if LUTs are en

hanced with dedicated interconnect for fast carry chains [18] and arithmetic chains [15],

significant performance, density, and power improvements can be obtained by implement

ing the arithmetic parts of the applications in the embedded blocks [19]. Reference [20]

found that an average area savings of 55% and an average increase in clock rate of 40.7%

could be obtained for floating point applications by embedding floating point DSP blocks.

There are several disadvantages of including DSP blocks in an F P G A fabric. If the

blocks are not used (1) the area is wasted, and (2) the blocks will still dissipate leakage

power. This makes it important to try to optimize the size and quantity of embedded

resources included. However, it is difficult to determine what proportion of the F P G A area

should be devoted to embedded blocks because it is difficult to determine what typical

usage is for a device that can implement almost any digital circuit.

Chapter 1. Introduction 4

In order to meaningfully evaluate the power savings that can be obtained by using

these blocks, an experimental flow that can estimate the power dissipated by F P G A s

containing embedded DSP blocks is required. Commercial tools from F P G A vendors

provide power estimation that includes these blocks; however, these tools are tailored

for specific devices, and do not provide the flexibility needed to investigate alternative

embedded block architectures.

The Versatile Place and Route (VPR) tool suite [2 1] with the Poon power model

[2 2] has become standard experimental infrastructure to study F P G A architecture, C A D ,

and power issues (we will refer to the combination of V P R and the Poon power model

as PVPR). The estimates from the power model can be used by F P G A architects to

evaluate architectures for power efficiency, by F P G A users to make power-aware design

decisions, and by F P G A C A D tool developers to create power-aware C A D algorithms.

However, P V P R only supports homogeneous F P G A architectures containing LUTs and

a routing fabric, and thus is not sufficient to examine architectures containing embedded

DSP blocks.

1.2 Research Goals

The objective of this research is to create an enhanced F P G A C A D flow that can be used

to evaluate the power dissipation of FPGAs containing embedded DSP and arithmetic

blocks. We have imposed the following requirements:

• As P V P R is standard experimental infrastructure for academic F P G A architecture,

C A D , and power studies, our power estimation of the DSP and multiplier blocks

Chapter 1. Introduction 5

must be compatible wi th the P V P R flow.

• A s P V P R results are frequently used to perform architectural evaluations, our power

estimation must be fast, to facilitate iterations over tens or hundreds of architectural

alternatives and benchmark circuits.

• To facilitate iterations over many architectural alternatives, our method should aim

to minimize the modeling effort required when introducing a new architecture for

evaluation.

• In order for the power estimates to be meaningful, our method should a im to be as

accurate as possible, wi th in the constraints imposed by the previous requirements.

Fast power estimation techniques make use of average quantities, such as probabil

ities, to reduce runtime. Details are lost during this averaging, resulting in a runtime

versus accuracy tradeoff. Similarly, reducing characterization effort typically results in

the capturing of fewer details, again resulting in an effort versus accuracy tradeoff. A s the

requirements that we have set for our flow involve both fast estimation and low charac

terization effort, we expect that we w i l l be sacrificing some accuracy. Therefore, we must

find a suitable balance between speed, characterization effort, and accuracy.

.1.3 Research Approach

A s w i l l be explained in Chapter 2, power estimation involves two steps: (1) activity

estimation, and (2) power estimation using the activities.

Chapter 1. Introduction 6

Dynamic power dissipation is proportional to how often nodes in a circuit switch values

(from logic-0 to logic-1, or logic-1 to logic-0). A c t i v i t y estimation is the calculation of

how much switching is expected at each node in the circuit. In implementing the act ivi ty

estimation for F P G A architectures containing embedded D S P blocks, we came across

the following challenge: it is not clear how to propagate activity calculations through a

D S P block. Tradit ional activity estimation techniques propagate activities through small

gates (L U T s) using transition probabili ty or transition density models [23]; however, these

approaches do not scale well to embedded blocks wi th tens (or even hundreds) of inputs.

The next step is to estimate the power dissipated by the F P G A implementing a user's

circuit . In implementing algorithms to perform this estimation, we identified the following

challenge: once the p in activities of each embedded D S P block are known, it is s t i l l not

clear how to use them to estimate the power dissipated by the embedded D S P block. There

are many possibilities, each providing a different trade-off between power estimation time,

modeling effort when a new block is to be investigated, and accuracy. The second technical

challenge is to choose a power estimation technique that provides the best balance between

these factors.

In this thesis we treat each of these two challenges as a separate problem. For each

problem, we develop and evaluate solutions. Then, we use the best of our solutions to

each problem to create our experimental C A D flow for evaluating F P G A architectures

containing D S P blocks.

Chapter 1. Introduction 7

1.4 Organization of Thesis

This thesis is organized as follows. Chapter 2 provides an overview of F P G A architectures,

the F P G A C A D flow, power, and power estimation. It also describes previous work

related to power estimation. Chapter 3 describes the existing P V P R C A D flow and how

our D S P and arithmetic block power model fits into this framework. Chapter 4 describes

our solutions and their evaluation for the problem of activity estimation. Chapter 5

describes our solutions and their evaluation for the problem of power estimation. Chapter

6 describes how we integrated our solutions from Chapters 4 and 5 to create a Power

Estimation Tool Flow for evaluating F P G A architectures containing D S P blocks, presents

results for two benchmark circuits, and compares the results to those obtained using gate-

level simulation. Final ly , Chapter 7 summarizes the conclusions and provides suggestions

for future work.

8

Chapter 2

Background and Previous Work

2.1 F P G A Architectures

The most basic building blocks of F P G A s are programmable logic blocks, wire segments,

and programmable connections/switches that are typically la id out in a regular pattern.

B y programming basic functions into each block and connecting them together using the

programmable interconnect, users can implement vir tual ly any digital circuit.

A number of architectures have been developed to optimize for criteria such as routabil

ity, area efficiency, and t iming. Architectures are frequently classified based on their rout

ing architecture because most of the area in an F P G A is devoted to routing. Reference [1]

lists the three main categories of commercial F P G A architectures that were available when

that book was written: island-style, row-based, and hierarchical. Today, platform-style

F P G A s are available, which include coarse-grained embedded components.

Th is thesis w i l l focus on F P G A s based on island-style architectures. Section 2.1.1 w i l l

introduce basic island-style architecture components, Section 2.1.2 w i l l describe modern

enhancements to the basic components, and Section 2.1.3 w i l l describe platform-style

F P G A s . The framework that we bui ld upon is described in Chapter 3.

Chapter 2. Background and Previous Work 9

Programmable routing switch

Figure 2 . 1 : Island-style Architecture (from [1])

2.1.1 Island-style Architectures

Figure 2 .1 shows an island-style architecture, where programmable logic blocks are "is

lands" in a "sea" of programmable routing fabric [5]. In the tradit ional island-style ar

chitecture, the logic blocks are clusters of look-up tables (L U T s) . The routing fabric is

composed of wires, programmable connection blocks, and programmable switch blocks.

Look-up Tables

Look-up tables (L U T s) are the most basic elements for implementing logic in an F P G A .

Figure 2 .2 shows a 2-input L U T . A K- inpu t L U T (K - L U T) is a memory wi th 2K bits, K

Chapter 2. Background and Previous Work 10

Inputs
»>

Inputs

SRAM
cells

0 0
0 0
0 0
1 1

00
01
10
11

Output

Figure 2.2: 2-input L U T (from [2])

Select bit P

4-input LUT

Clock
D Flip-flop

Figure 2.3: L U T wi th Flip-flop (from [2])

Output

address inputs, and one output port. B y setting the memory bits, this structure can be

used to implement any combinational function of K inputs. Typica l values for K are 4-6.

To implement sequential logic, a L U T is typical ly paired wi th a flip-flop to form a

Basic Logic Element (BLE), as shown in Figure 2.3. The output of the B L E is selected

from either the registered or the un-registered version of the L U T output, depending on

the select bit of the output multiplexer.

Chapter 2. Background and Previous Work 11

Inputs

Figure 2.4: Cluster-based logic block

Cluster-based Logic Blocks

The use of larger logic blocks helps to increase circuit speed and reduces circuit area and

C A D tool processing time. Unfortunately, L U T complexity grows exponentially wi th the

number of inputs. The use of cluster-based logic blocks addresses this problem. Clusters

are typically composed of a number of B L E s , internal cluster routing, and possibly spe

cialized internal cluster connections, such as carry chains. W i t h i n a cluster, B L E inputs

are typically connected to the cluster inputs and B L E outputs by a multiplexer-based

crossbar [2].

A n example of a cluster-based logic block is shown in Figure 2.4. It has 8 inputs,

contains 4 B L E s , and has 4 outputs. The L U T inputs can be connected to either the

cluster inputs or the B L E outputs v i a the internal routing. B y grouping B L E s that

share signals, placement and routing processing time is reduced because the number of

inter-block connections is reduced. This internal routing is also shorter and faster than

Chapter 2. Background and Previous Work 12

inter-block connections, reducing circuit delay.

Routing

Logic blocks are connected together and to I / O resources using a routing "fabric" that is

composed of:

• pre-fabricated metal tracks

• programmable switch blocks

• programmable connection blocks

Figure 2.1 shows the components of the routing fabric. The tracks are arranged in

channels, typical ly horizontally and vertically, to form a grid pattern. Wires run along

these tracks. The connection blocks connect the wires to the inputs and outputs of logic

blocks adjacent to the channel. The switch blocks connect the horizontal and vertical

wires together to form longer wires and make turns. It should be noted that, although we

consider the switch blocks and connection blocks as separate entities, they are often not

separate in the F P G A circuit layout.

The programmable switches in the switch blocks and connection blocks can be either

buffered or unbuffered. Typica l ly they are buffered to reduce delays in long connections;

however, this increases routing area. Buffered switches can be either unidirectional or

bidirectional. Modern F P G A s use unidirectional switches to get better delay opt imizat ion

and a denser routing fabric [24]. Figure 2.5 shows examples of switches typical ly found in

F P G A s : (a) unbuffered, (b) buffered unidirectional, and (c) buffered bidirectional.

Chapter 2. Background and Previous Work 13

P

(a) Unbuffered (b) Buffered unidirectional (c) Buffered bidirectional

Figure 2.5: Programmable Switches

The routing wires inside an F P G A can be categorized as either (a) segmented local

routing for connections between logic blocks, or (b) dedicated routing for global networks,

such as clocks or reset/preset lines. The local routing segments can span a single logic

block or multiple blocks; typically, not a l l segments are of the same length. The dedicated

routing tracks are designed to ensure low-skew transmission. Commercial F P G A s typical ly

also include phase-locked loops (P L L s) and delay-locked loops (D L L s) for clock de-skew

on these dedicated lines. They also may include clock multiplexers and clock management

circuitry to reduce power consumption by disabling unused parts of the clock network [25].

2 . 1 . 2 Enhanced L U T Architectures and Carry Chains

Commercia l F P G A s contain improvements to the basic clustered K - L U T and interconnect

F P G A s described in Section 2.1.1.

Chapter 2. Background and Previous Work 14

Adaptive Logic M o d u l e (A L M)

The Al te ra Adaptive Logic Module (ALM) is a B L E that can implement a single function

of six inputs or two functions that share four inputs [15]. It is based on research that

found that 6 - L U T s have better area-delay performance than the typical 4 - L U T , but can

result in wasted resources if many of the logic functions do not require six inputs.

Configurable Logic Block (C L B)

The X i l i n x Vir tex-5 C L B is a B L E based on a 6 - L U T wi th two outputs so that it can

either implement a single function of six inputs or two functions of five (out of the same

six) inputs [26]. A s wi th the A L M , it is based on research showing that 6 - L U T s have

better performance, but may waste resources.

C a r r y chains

Carry chains are dedicated connections between logic blocks that aid in the efficient imple

mentation of arithmetic operations. They also can be used in the efficient implementation

of logical operations, such as parity and comparison. Fast carry chains are important be

cause the cri t ical path for these operations is often through the carry.

Figure 2.6 shows a simple carry chain architecture. Each 4 - L U T in a B L E can be

fractured to implement two 3 - L U T s ; this is sufficient to implement both the sum and

carry, given two input bits (a and b) and a carry input. The carry out signal from

one B L E would typical ly be connected to the carry in of an adjacent B L E using a fast

dedicated connection. The Z input is used to break the carry chain before the first bit of

Chapter 2. Background and Previous Work 15

a

b

2-LUT 2-LUT 2-LUT 2-LUT

P

Carry in

- 7 -
3-LUT

*~T'
3-LUT Carry out S u m out

Figure 2.6: Carry C h a i n Connections to a 4 - L U T

an addition.

More complex carry schemes have been published. In [18], carry chains based on carry

select, variable block, and Brent -Kung schemes are described; the Bren t -Kung scheme

is shown to be 3.8 times faster than the simple ripple carry adder in Figure 2.6. The

selection of a carry scheme by the F P G A architect involves weighing the area cost of a

faster more complex carry chain against the performance benefits, because they are only

beneficial when used. A c t e l and X i l i n x devices include support for carry-lookahead and

Al t e ra devices include support for carry select capabilities.

2.1.3 Platform-style Architectures

W i t h Moore 's Law and the increase in the possible number of transistors on a die, F P G A

manufacturers could afford to sacrifice some silicon area to application-specific circuits.

In 2000, to increase the efficiency and density of designs containing components such as

processors, large memories, and complex arithmetic circuits, F P G A manufacturers began

to release Platform-style F P G A s containing dedicated circuitry for these parts.

Chapter 2. Background and Previous Work 16

In the context of F P G A s , Intellectual Property (IP) cores are typical ly reusable circuit

modules or high-level bui lding blocks that can be combined to create a system. These cores

can be soft or hard. Soft cores are implemented in L U T s and hard cores are implemented

as embedded A S I C blocks in the F P G A . Platform F P G A s contain hard IP cores, such

as processors, large memory blocks, fast multipliers, and Digital Signal Processing (DSP)

blocks. They also contain dedicated interconnect for fast communication between certain

types of adjacent cores.

DSP blocks

To improve the density and address the performance requirements of D S P and other

arithmetic-intensive applications, F P G A manufacturers typical ly include dedicated hard

ware multipliers in their devices. A l t e ra Cyclone II and X i l i n x Vir tex- I I / - I I P ro devices

contain embedded 18xl8-bit multipliers, which can be split into 9x9-bit multipliers [27].

The Vir tex-I I / - I I P ro devices are further optimized wi th direct connections to the X i l i n x

block R A M resources for fast access to input operands. Higher-end F P G A s include D S P

blocks, which are more complex dedicated hardware blocks optimized for a wider range

of D S P applications. A l t e r a Strat ix and Strat ix II D S P blocks support pipelining, shift

registers, and can be configured to implement 9x9-bit, 18xl8-bit , or 36x36-bit multipliers

that can optionally feed a dedicated adder/subtractor or accumulator [15]. X i l i n x Vir tex-4

X t r e m e D S P slices contain a dedicated 18xl8-bit 2's complement signed multiplier, adder

logic, 48-bit accumulator, and pipeline registers. They also have dedicated connections

for cascading D S P slices, wi th an optional wire-shift, without having to use the slower

Chapter 2. Background and Previous Work 17

general routing fabric [27].

This inclusion of dedicated multipliers or D S P blocks to complement the general logic

resources results in a heterogeneous F P G A architecture. Research has considered what

could be gained from tuning F P G A architectures to specific application domains, i n par

ticular datapaths and D S P .

The work in [28] and [3] is tuned for datapath (arithmetic) circuits. Datapath circuits

are often composed of regularly structured components, called bit-slices. The authors

propose a multi-bit logic block that uses configuration memory sharing to exploit this

regularity and save area. In typically-sized cluster-based logic blocks (containing 4 to 10

B L E s) , configuration S R A M cells consume 39% to 48% of the total cluster area. If each

cluster is used to implement a single bit-slice of the datapath circuit and adjacent clusters

are used to implement adjacent bit-slices, the configuration memory for corresponding

B L E s in the adjacent slices can be shared. A mult i-bi t logic block is illustrated in Figure

2.7, indicating resources that can share configuration memory. The authors also propose

bus-based connections to exploit this regularity to achieve 14% routing area reduction

for implementing datapath circuits. A disadvantage of multi-bit architectures is that if

implementation circuits require a different bi t -width, some resources may be wasted.

The work in [29] deliberately avoids creating a heterogeneous architecture because the

authors found that D S P applications contain both arithmetic and random logic, but that

a suitable ratio between arithmetic and random logic is difficult to determine. Instead

they develop two "mixed-grain" logic blocks that are suitable for implementing both arith

metic and random logic by looking at properties of arithmetic operations and properties

Chapter 2. Background and Previous Work 18

01 <

8 to

3 *C

3 C

P
,BLE #1

I-

BLE #N

-
BLE *1 BLE #1

BLE #N

Cluster #1

J L
Cluster #2

J L
Cluster #3

Figure 2.7: Mul t i -b i t Logic Block (from [3])

of the 4 - L U T . Their logic blocks are coarse-grained: each block can implement up to

4-bit addition/subtraction, 4 bits of an array multiplier, a 4-bit 2:1 multiplexer, or wide

Boolean functions. Each logic block can, alternatively, implement single output random

logic functions like a normal L U T . Their architecture reduces configuration memory re

quirements by a factor of four, which is good for embedded systems or those wi th dynamic

reconfiguration. Compared to arithmetic-optimized F P G A architectures, it offers efficient

support of a wider range of D S P applications that vary in the amount of random logic

they contain. However, the cost of this flexibility is additional area overhead.

If applications wi th very litt le arithmetic are implemented, further area penalties are

incurred in the case of al l of these architectures wi th specialized arithmetic support,

because most of the arithmetic support logic is left unused.

Chapter 2. Background and Previous Work 19

Behavioral Description

Hii/i-L'wrl tVil-w.is

Register Transfer Level (RTL)

, Logic Synthesis
[Logic Optimizations! ['

| Technology Mapping

Netlist of Interconnected Cells

T
^Physical Design ^

j Packing [' !:

Placement

|^, | Routing | * J

Design for download

Figure 2.8: Steps in the F P G A C A D Flow

2.2 F P G A C A D Flow

In order to implement large designs on F P G A s , C A D tools are essential. They allow

users to work at a high abstraction level, automating optimizat ion and transformation

to a low-level implementation. This section w i l l give a brief overview of the steps in the

F P G A C A D flow. Figure 2.8 illustrates the steps in the flow.

The input to the top level of the F P G A C A D flow is a behavioral description, typically

in the form of Hardware Description Language (H D L) code or a schematic that describes

what the circuit does, wi th little or no reference to its structure.

Dur ing high-level synthesis, an in i t ia l compilation of the design is done, some in i t ia l

optimizations are performed, and functional units are scheduled and assigned to the oper

ations required by the circuit [30]. The result of high-level synthesis is a Register Transfer

Level (R T L) description of the design. A n R T L description is typical ly wri t ten in H D L .

R T L code is characterized by a straightforward flow of control, wi th subcircuits that are

Chapter 2. Background and Previous Work 20

connected together in a simple way [31].

Dur ing the optimization stage of logic synthesis, technology-independent optimizations

are applied to the logic functions that the R T L describes; the result is a netlist of gates.

Dur ing the technology mapping stage of logic synthesis, this netlist of gates is mapped

to the set of cells that are available to bui ld the functions. In the case of F P G A s , these

cells are L U T s and flip-flops. The result is a structural netlist of interconnected L U T s

and flip-flops.

Physical design has three stages: (1) packing, (2) placement, and (3) routing. Dur ing

the packing stage, the L U T s and flip-flops are packed into coarser-grained cluster-based

logic blocks, wi th the goals of improving routabil i ty and optimizing circuit speed. Packing

together B L E s that share signals minimizes the number of connections between logic

blocks, thus enhancing routability. Packing together B L E s likely to be on the cr i t ical

path makes connections between them go v i a the fast local interconnect, thus opt imizing

circuit speed.

Dur ing the placement stage, the cluster-based blocks are assigned locations in the

F P G A . Goals during placement are to minimize wir ing by placing connected blocks close

together, to enhance routabil i ty by balancing the wir ing density across the F P G A , and to

maximize circuit speed by putt ing blocks likely to be on the cri t ical path close together.

F ina l ly during the routing stage, paths are found in the channels for the wires that

connect the logic blocks. The result is typically refered to as the placed and routed design.

A t that point it could be converted to a bitstream for programming an F P G A .

The widely used Versatile Place and Route (V P R) academic C A D tool for packing,

Chapter 2. Background and Previous Work 21

placement, and routing w i l l be described in Chapter 3.

2.3 Power

The formula for the instantaneous power dissipated at time t, p(t), is:

Pit) = i(t) • Vdd (2.1)

where Vdd is the supply voltage and i(t) is the instantaneous current drawn from the

supply. To obtain the average power over a time interval, we replace the instantaneous

current by the average current drawn over that interval in Equat ion 2.1. Knowing the

peak instantaneous power is useful when sizing supply lines, whereas knowing the average

power helps in the calculation of battery life and cooling requirements. In this work we

focus on average power.

Power dissipation can be broken down into dynamic and static components. Dynamic

power is dissipated when a gate is switching; it is due to: (1) the charging and discharging

of parasitic capacitances and (2) temporary short circuits between the high and low supply

voltage lines. The average dynamic power of the gate is given by the equation

P = 0.5 • aCVfj (2.2)

where a is the activity of the gate, C is the parasitic capacitance of the gate, and / is

the clock frequency. Static power is dissipated when the gate is not switching; it is due

to leakage currents. Typically, in an F P G A , the majority of power dissipated is dynamic

[22].

Chapter 2. Background and Previous Work 22

2.4 Power Estimation

It is important to distinguish between power estimation and power measurement. Power

measurement involves obtaining voltage and current values from a real physical apparatus.

Power estimation involves predicting what the power dissipation would be, based on a

number of assumptions. One reason for performing power estimation is that a physical

apparatus is not always available. Another reason is that a wider range of designs can

be considered and evaluated more quickly when we are not constrained to using physical

implementations. Performing power estimates earlier in the design flow is desirable to

help guide design decisions or identify problems in the design.

Power estimation can take place at any stage in the F P G A C A D flow (Figure 2.8).

The stages higher in the flow are at a higher abstraction level and do not involve imple

mentation details. A s we get lower in the flow, more physical details of the design have

been determined. Performing power estimates at the lower stages i n the flow w i l l generally

give more accurate estimates; however, it w i l l take more computational resources to take

into account these physical details. In our work, we w i l l be performing estimates after

placement and routing.

Power estimation can be done at different abstraction levels, as shown in Figure 2.9.

A t each stage, we need the following types of information so that we can perform the

power analysis:

1. activity estimates, so we can compute the dynamic power dissipation,

2. a description of what the design looks like - this can be either an architectural

Chapter 2. Background and Previous Work 23

Level of
Abstraction

System-level

Algorithm-level
|^onthrt:pf^circyit|

Figure 2.9: Abstract ion Levels for Power Analysis (from [4])

description or a netlist - so that we know what components are used and how they

are connected,

3. models of these components and connections

In a platform-style F P G A , the placed and routed netlist contains representations of

circuit components at multiple levels of abstraction: L U T s , flip-flops, and wires are es

sentially at the gate level, while D S P blocks and memories can be thought of as being

R T L components, and hard processors can be thought of as being system-level compo

nents. For this work, we are interested in the lower three abstraction levels in Figure

2.9: circuit-level, gate-level, and R T L . In the following subsections, we w i l l first describe

two categories into which power estimation techniques can be classified. Then we w i l l

describe a number of existing techniques at the three lower abstraction levels. F ina l ly we

Chapter 2. Background and Previous Work 24

w i l l describe some FPGA-spec i f i c power estimation tools.

2.4.1 Simulation-based vs. Probabilistic

Power estimation techniques can be divided into two categories: (1) simulation-based and

(2) probabilistic. Simulation-based techniques simulate the circuit to gather data about

the switching of circuit nodes or even determine the waveform of the current being drawn.

However, simulation-based techniques require complete and specific information about the

input signals. The accuracy of the simulation results is dependent on how realistic the in

puts are. Consequently, reference [23] calls simulation-based power estimation techniques

strongly pattern-dependent.

To avoid the problem of determining complete and specific input signal characteristics,

probabilistic techniques are based on typical input signal behaviour. They represent

the average behaviour of the inputs using probabilities. Al though the estimation is s t i l l

dependent on the probabilities provided, it is sufficient to supply typical behaviour instead

of specific behaviour. Thus [23] calls probabilistic power estimation techniques weakly

pattern-dependent. Since calculations need only be performed once on the average data,

instead of on a large number of simulation inputs, probabilistic techniques tend to require

less computational resources than simulation-based techniques; however, some accuracy

is sacrificed by of the use of averaging.

Chapter 2. Background and Previous Work 25

2.4.2 Techniques: Circuit-level

Typically, at the circuit-level users seek very precise estimates. A s a result, circuit-level

techniques tend to be simulation-based, while probabilistic techniques tend to be applied

only at the gate-level and above [32].

S P I C E

S P I C E provides very detailed, low-level simulation data for a circuit. S P I C E stands for

Simulation Program wi th Integrated Circui ts Emphasis and is a general purpose analog

circuit simulator for nonlinear D C , nonlinear transient, and linear A C analyses. It uses

mathematical models to represent the devices in the circuit , such as resistors, capacitors,

and transistors [33]. This very detailed simulation can result in high accuracy estimates,

but it requires substantial computational resources, making it unsuitable for large circuits.

S P I C E was used in the creation of the Poon power model, which is discussed in Chapter

3. However, the work in this thesis wi l l be done at higher levels of abstraction, due to

runtime and complexity constraints.

2.4.3 Techniques: Gate-level

Simulation-based gate-level analysis is very mature. The most popular type of gate-

level analysis uses event-driven logic simulation, where switching events at the inputs of

a logic gate trigger events at the output after a pre-defined delay. Probabil ist ic gate-

level techniques exist as well, to reduce the execution time of estimates. We used both

simulation-based and probabilistic gate-level techniques in this work.

Chapter 2. Background and Previous Work 26

Synopsys Pr imePower

Synopsys PrimePower is a simulation-based dynamic power analysis took for gate-level

power verification that can be used on multimillion-gate designs. It combines gate-level

simulation results wi th delay and capacitance information from technology libraries to get

detailed power information. In addit ion to average power numbers, PrimePower reports

instantaneous power consumption i n different parts of the design.

Transit ion Probabi l i ty

The Transition Probabi l i ty Technique relates the average dynamic power of nodes to the

likelihood that they wi l l switch. To use the Transi t ion Probabi l i ty Technique, we need

the signal probability and the transit ion probabil i ty of each node. The signal probability,

Psignah of a node is the average fraction of clock cycles in which the steady state value of

the node is logic high. The transition probability, Pt, of a node is the average fraction of

clock cycles in which the steady state value of the node is different from its in i t ia l value

[23].

The Transition Probabi l i ty Technique makes some simplifying assumptions: zero-

delay, spatial independence of inputs and internal nodes, and temporal independence

of signal values. The assumption of zero-delay means there is, at most, a single transition

of each signal per clock cycle; in reality, there are delays and they can cause the output

of a gate to transition multiple times before settling at its final value for the clock cycle.

The assumption of spatial independence means we assume that there is no correlation be

tween nodes, although, in reality, the value of one signal may affect the value of another

Chapter 2. Background and Previous Work 27

signal, in the same cycle. The assumption is made because calculating the correlation

between signals for a large circuit is prohibitively expensive. The assumption of temporal

independence means that we assume, for a given signal, that values in consecutive clock

cycles are independent of each other.

W i t h those assumptions, the average power can be calculated using Equat ion 2.3:

P = 0.5-Vd

2J J2 C ^ (2-3)
all nodes

where Vdd is the supply voltage, / is the clock frequency of the circuit, C , is the total

capacitance at node i, and Ptj is the transition probability at node i. Because of the zero-

delay assumption, Equat ion 2.3 only gives a lower bound on the power - unmatched delays

cause multiple transitions at gate outputs. W i t h the temporal independence assumption,

the transition probabili ty can be calculated from the signal probability using Equat ion

2.4:

Pt — 2 • PsignaliX Psignal) (2-4)

Transition Density

The Transition Density Technique is more accurate than the Transition Probabi l i ty Tech

nique and more computationally efficient than event-driven logic simulation. The advan

tage of the Transition Density Technique over the Transit ion Probabi l i ty Technique is

that it distinguishes between multiple transitions of a node in a single cycle, making i t

more accurate. Switching act ivi ty can also be thought of as transition density, D(x) (for

Chapter 2. Background and Previous Work 28

node x) , which is the average number of transitions of node x per unit time. Formally, it

is given by Equat ion 2.5,

Z ? (x) 4 l i m ! ^) (2.5)
1 —>oo 1

where T is the length of the time interval and nx(T) is the number of transitions i n the

time interval of length T.

Given the transition density of al l the nodes, the average power dissipation can be

calculated using Equat ion 2.6:

P = 0.5-Vd

2

d CiD(xi) (2.6)
all nodes

where Vdd is the supply voltage, Q is the capacitance at node i, and D{xi) is the transit ion

density of node i .

There are two important quantities in the calculation of activities for a l l nodes in

the circuit using the Transit ion Density model: static probability and transition density.

Static probabili ty is the probabili ty that the signal is high. To calculate the activity of

each node in the circuit, the transition density for each node is computed, gate-by-gate,

going from the primary inputs to the primary outputs. If we assume that a l l inputs are

uncorrelated, we can use the relationship

D(y) = . P
all input pins

where f(x) is the logic function of the gate, — f{x)\Xi~\ © f(x)\Xi=o is the boolean

df(x)
D{xi (2.7)

Chapter 2. Background and Previous Work 29

difference at the output port wi th respect to each input D(xi) is the transit ion density

at input Xi and D(y) is the transit ion density at the output, y. P (j^^J can be calculated

from the static probabilities of the inputs x{ using the relationships:

• P (X) = 1 - P (X)

• P (X Y) = P (X) • P { Y)

• P { X + Y) = P (X) + P (Y) - P (X) • P { Y)

where P (X) is P \ (X) , the static probabili ty of X .

Lag-one M o d e l

The Transition Density model assumes that there is no temporal correlation. The purpose

of using the lag-one model is to relax this assumption; the lag-one model assumes that

the current value of a signal may depend on the value immediately preceding it . Using the

lag-one model, the switching probabili ty can be calculated using Equat ion 2.8:

xiEXo

P(Xi) • ^ P(Xi>Xj)
XJ&XI

(2.8)

For a boolean function, / , Xi is the set of input states such that / (xi) = 1 V Xi € X\ and

X0 is the set of input states such that / (i j) = 0 V Xj € X0, P (X J) is the probabili ty that

the current input state is xiy and P (x,, Xj) is the probability that the input state wi l l be

Xj at the end of a clock cycle if the state was X{ at the beginning of the clock cycle. This

equation represents the summation of probabilities over al l pairs of input states xt, Xj such

that / (pa) = f (XJ), where an input state is a row of the t ruth table for / .

Chapter 2. Background and Previous Work 30

2.4.4 Techniques: RT-level

RT-level estimators are typical ly based on macro-modeling. Macro-modeling involves cre

ating power macro-models for the basic functional components in the R T L libraries and

characterizing them [4]. The user of an R T L estimator sees the macro-models as black

boxes. However, creating a macro-model of a component involves characterizing its rep

resentation at a lower level of abstraction [32]. For example, to do power characterization

for an adder, we might estimate its gate-level implementation and use information about

the gates to derive overall values for its power characteristics.

Al though power estimates at higher levels of abstraction are less accurate, they s t i l l

provide valuable information. W i t h the increase in the size and complexity of designs, it

is desirable for designers to be able to estimate the power at a high level of abstraction so

that the information can guide early architectural decisions. Another motivating factor

is that the largest power reductions often come from architectural and algorithmic modi

fications [34], which are least costly to make early in the design flow. However, although

R T L estimators are available in commercial tools, they have not yet gained widespread

acceptance in design practice. Reference [4] attributes this to the difficulty of quantifying

the accuracy gap between gate-level and R T L power estimation in an industrial setting.

Another deterrent noted by reference [4] is the fact that a large amount of characterization

must be done to make a l ibrary of macro-models; this process must be automated to be

efficient.

Chapter 2. Background and Previous Work 31

Dual Bit Type Method

The D u a l B i t Type (D B T) Method [34] is an architecture-level strategy for generating

accurate black-box models of datapath power consumption. Its creators note that, while

typical strategies quantify activity and physical capacitance for their estimates, the strate

gies do not account for the effect of signal statistics on the activity. In particular, the

authors identify the correlation between sign bits of two's complement operands as being

an important source of error when using the assumption of randomized inputs to the block

being modeled. A s an example, consider an F P G A wi th 8-bit adders and a user circuit

where a l l the operands are 5 bits wide. The lower 5 bits could be adequately represented

by uniform white noise (U W N) inputs, but the upper 3 bits would always be identical

(correlated) sign-extension values.

The creators of the D B T method propose to account for two input bi t types: (1)

correlated sign bits, and (2) U W N operand bits. Recal l Equat ion 2.2:

P = 0.5 -aCVd

2J (2.9)

To account for the two bit types, instead of using a single capacitative coefficient based

on U W N inputs, they use multiple capacitative coefficients that account for transitions

on each type of data on each input to the block. However, a two-input single-function

module requires 73 capacitive coefficients; the number increases for semi-configurable

multi-function D S P blocks that are found in F P G A s .

Chapter 2. Background and Previous Work 32

Entropy-based

In reference [35], the authors propose to characterize the average switching activity of

a module by using the average switching activity of a typical signal line in the module.

Their goal is to obtain an acceptable estimate wi th a l imited number of design details and

at a significantly lower computational cost. They derive simple closed form expressions

to approximate the switching activity in the R T L blocks using the concepts of entropy

and informational energy. However, to manage the complexity of their calculations, they

make the following simpifying assumptions:

• Simplified, uniform network structure: Each level of the circuit has the same number

of nodes and all the gates on each level are assumed to get their inputs from the

previous level.

• Asymptot ic network depth: The number of levels in the circuit is large enough to

be considered infinity.

Unfortunately, D S P and arithmetic blocks in F P G A s do not have a uniform network

structure and are not so large that we can approximate their network depth as infinite.

2.4.5 FPGA-specific Power Estimation Tools

Spreadsheets

The most accurate power estimation results for an F P G A design w i l l be after the design

has been implemented (i.e. placed, routed, and then simulated wi th accurate stimulus

vectors). However, it is valuable to understand the impact of early high-level design

Chapter 2. Background and Previous Work 33

decisions on power dissipation. Power estimation spreadsheets can be used in the pre-

implementation phase to obtain a rough idea of power dissipation for a design.

These spreadsheets contain detailed device data constants from F P G A manufacturer

datasheets. The user enters environmental conditions, voltage and clock information, logic

uti l ization, and toggle rates. Ea r ly spreadsheets only calculated total power dissipated

for voltage sources and components [36] [37]. The spreadsheets for the latest F P G A fami

lies from Al t e r a and X i l i n x are newer and calculate the static, dynamic, and total power

consumption [38] [39]. The X i l i n x Vir tex-4 spreadsheet also provides graphical represen

tations of power, voltage, and temperature relationships and power used by each type of

component.

It should be noted that these spreadsheets compute power in a device-specific manner,

based on constants. The user is expected to provide toggle activity information for each

block, but (s)he might not know what values to use at such an early stage.

C A D tools

Industrial C A D tools that offer more accuracy than spreadsheets are X i l i n x XPower and

Al t e ra PowerPlay Power Analyzer . They are used in the implementation phase, when

design details such as placement and routing have been established.

XPower requires either user supplied toggle rates, as wi th the spreadsheets, or post-

implementation simulation data to estimate the power consumed [40]. PowerPlay is sim

ilar, but also includes (for some device families) vectorless act ivi ty estimation to statisti

cally estimate the signal activity of a node using the activities of the signals feeding the

Chapter 2. Background and Previous Work 34

node and the logic function implemented by the node [41]. The l imita t ion of these tools

is that they apply only to some of the A l t e r a and X i l i n x devices.

The Poon power model is a freely available, detailed, flexible power model that has

been integrated into the Versatile Place and Route (V P R) C A D tool . It estimates the

dynamic, short-circuit, and leakage power consumed for a wide variety of user-specified

F P G A architectures. It is described i n detail in Chapter 3.

2.5 Focus and Contribution of Thesis

Section 2.1 describes the basic island-style architecture and the improvements that exist

in commercial F P G A s to improve density and speed. Unfortunately, available academic

power estimation tools only support basic island-style architecture components. The goal

of this research project is to enable fast and accurate estimation of power dissipated in

F P G A designs that include embedded multiplier and D S P blocks (for the remainder of

the thesis, both embedded multipliers and D S P blocks w i l l be referred to as D S P blocks).

Our project uses both simulation-based and probabilistic information at the gate-level to

create a Power Estimation Tool Flow that includes automated RT-level embedded D S P

block macro-model characterization.

Th i s work builds upon the Poon power model and the widely used V P R C A D Tool ,

which are described in Chapter 3.

The contributions of this thesis can be summarized as:

1. Identification of a fast and accurate technique to estimate the switching act ivi ty of

an embedded D S P block

Chapter 2. Background and Previous Work 35

2. Identification of a fast and accurate technique to estimate power dissipated by D S P

blocks

3. A tool flow for estimating embedded D S P block power in the context of F P G A

designs.

The impact of our enhanced tool flow is threefold; the existence of a freely available,

architecturally flexible F P G A C A D tool that includes power modeling for embedded D S P

blocks enables:

1. the investigation of power-aware architectures containing embedded D S P blocks

2. the investigation of power-aware C A D algorithms for F P G A circuits containing em

bedded D S P blocks

3. the incorporation of power tradeoffs in the design of user circuits.

36

Chapter 3

Framework

This chapter introduces the existing experimental C A D tool suite that forms the basis

of our work. Section 3.1 describes the flow of the framework. Section 3.2 describes the

T - V P a c k tool for packing basic logic elements into cluster-based logic blocks and the

original V P R C A D tool . Section 3.3 describes the Poon power model and the improved

activity estimation tool , A C E - 2 . 0 . Section 3.4 describes how our work fits into the existing

framework and the requirements for our work.

3.1 Overall Flow

Our work is based upon the V P R C A D tool suite, enhanced wi th the Poon power model

(together P V P R) . Frequently, " V P R " refers to the pair of tools T - V P a c k and V P R , since

they are typical ly used together. In this thesis, we w i l l do the same. Figure 3.1 illustrates

the steps in the P V P R tool flow. The left side is the original V P R flow. For the Poon

power model, activity estimation was added; this is shown to the right of the original

V P R flow.

The first input to the flow is a netlist describing the user's circuit. This netlist must be

pre-processed to generate the correct data and data format required by V P R . This pre-

Chapter 3. Framework 37

Netlist

Logic Optimization
and

Technology Mapping

J
Mapped Netlist

Parameterized
Architecture •
Description

Power Estimates

Figure 3.1: Overal l C A D Flow (from [5])

processing involves logic optimizat ion using SIS [42] and technology mapping to L U T s

and flip-flops using F l o w M a p + F l o w P a c k [43]. The result of technology mapping is a

netlist mapped to the desired F P G A architecture. This mapped netlist and input s t imuli

are inputs to the activity estimation module, A C E - 1 . 0 , which is based on the Transit ion

Density model. The output of A C E - 1 . 0 is switching activity information for each node

in the mapped netlist. The mapped netlist, switching activity information, and cluster

architecture parameters are then input to T - V P a c k , which packs the L U T s and flip-

flops into cluster-based logic blocks. The cluster-based blocks are placed using the V P R

placement engine. The connections between the placed blocks are then routed using the

V P R routing engine.

V P R generates reports of placement and routing statistics. Archi tectural investiga

tions can then be performed by varying the parameters in the parameterized architecture

Chapter 3. Framework 38

description and examining the resulting statistics. Algor i thmic investigations can also

be performed by making modifications to the packing, placement or routing engines and

examining the statistics for a set of benchmark circuits. The Poon power model adds the

generation of power statistics for the clock, logic, and interconnect to V P R . These power

statistics can be used in both architectural and algorithmic studies for basic Island-style

F P G A architectures.

3.2 Versatile Place and Route (VPR)

V P R is a freely available C A D tool that is widely used for performing F P G A architectural

studies. It is composed of a packing tool, a placement and routing engine, and a detailed

area and delay model.

3.2.1 Architectural Assumptions

There are a large number of architectural alternatives for F P G A s and not a l l are supported

by V P R . V P R targets S R A M - b a s e d Island-style F P G A s wi th cluster-based logic blocks

and perimeter I / O . Each S R A M cell is made of six minimum-sized transistors wi th gate

voltage boosting to overcome the Body effect. Four types of switch block architectures

are supported for the programmable connection of routing tracks: Disjoint [44], Universal

[45], W i l t o n [46], and Imran [47].

Chapter 3. Framework 39

3.2.2 T-VPack

T - V P a c k is a t iming-driven C A D tool; it takes a circuit netlist that has been technology

mapped to L U T s and flip-flops and packs these basic logic elements into larger cluster-

based logic blocks. Before the placement stage of V P R , the circuit netlist is processed

using the T - V P a c k tool. As described in Section 2.1.1, the use of coarse-grained logic

blocks results in faster, denser circuits, and in faster place and route runtimes.

T - V P a c k has the optimization goals of:

• M i n i m i z i n g the number of inter-cluster connections on the cri t ical path of the circuit

• Reducing the number of connections required between clusters by minimiz ing the

number of inputs to the clusters

• M i n i m i z i n g the number of clusters needed

3.2.3 Placement and Routing Engine

The placement tool assigns the cluster-based logic blocks to locations in the F P G A . The

F P G A is modeled as a set of legal locations where logic blocks or I / O pads can be placed.

A n ini t ia l random placement is constructed, then simulated annealing is used to improve

the solution. Opt imiza t ion goals involve minimizing wir ing and maximizing circuit speed.

A s w i l l be described in Section 6.1.2, we modified the placement tool to place D S P blocks

as well.

Once placement is complete, the routing tool determines which programmable switches

to turn on to make the required inter-logic block connections in the F P G A . V P R represents

Chapter 3. Framework 40

the routing architecture of the F P G A as a directed graph called the routing resource graph.

T w o routing algorithms are available: a purely routabili ty-driven algorithm and a t iming-

and routability-driven algorithm.

3.2.4 Architectural Flexibility

The reason for V P R ' s versatility is its flexible representation of architectures that the user

specifies in an architecture file. The following features can be specified:

• Logic block architecture

• Detailed routing architecture

• Channel width

• T i m i n g analysis parameters

• Process technology parameters and capacitances

3.3 Poon Power Model

3.3.1 Architectural Assumptions

A s the Poon model is incorporated into V P R , it uses the architectural assumptions made

by V P R . However, the original version of V P R assumes that the clock and other global

signals are implemented using special dedicated resources. The version of V P R enhanced

wi th the Poon model assumes an H-Tree clock distribution network and uses the total

capacitance of the clock network for power estimation.

Chapter 3. Framework 41

3.3.2 Activity Estimation

In the Poon model, the first step is to estimate the activities of the nodes in the F P G A .

The activity estimation tool for the power model is called A C E . To distinguish between

major revisions of the tool, the original wi l l be referred to as A C E - 1 . 0 and its sucessor

w i l l be referred to as A C E - 2 . 0 [48]. This section w i l l describe the techniques used for

estimation in A C E - 1 . 0 and A C E - 2 . 0 .

ACE-1.0

A C E - 1 . 0 is the original act ivi ty estimation tool for the Poon model. It estimates the

static probability (P i) , switching probabili ty (Ps), and switching activity (As) for combi

national and sequential gate-level circuits using the Transit ion Density signal model. The

original Transition Density model only handles combinational circuits, but was enhanced

to support sequential circuits. To support circuits w i th sequential feedback, an iterative

technique is used to update the switching probabilities at the output of the flip-flops,

using the expressions P^Q) = PX(D) and PS(Q) = 2 • P^D) • (1 - P i (£>)). The original

Transition Density model was also enhanced to account for logic gate inertial delays by

adding an analytical low-pass filter to filter out very short glitches.

The authors of [48] found A C E - 1 . 0 to be inaccurate for large and/or sequential circuits.

They found that A C E - 1 . 0 overestimates activities and suggest that the low-pass filter

function is insufficient for reducing glitching. They also attribute the poor sequential

circuit performance to the simple expressions used in the iterative technique for updating

the switching probabilities at the outputs of flip-flops. The next subsection describes the

Chapter 3. Framework 42

activity estimator from [48], A C E - 2 . 0 , which addresses the weaknesses of A C E - 1 . 0 .

A C E - 2 . 0

A C E - 2 . 0 is a faster and more accurate probabilistic activity estimator for the Poon power

model. It has three stages that address the weaknesses of A C E - 1 . 0 :

1. Simulation of sequential feedback loops

2. Calculat ion of P i and Ps values for nodes not in sequential feedback loops using the

Lag-one model

3. Calculat ion of As using a probabilistic technique that accounts for glitching

The first stage improves the accuracy of activity estimation in sequential circuits. Since

simulation techniques were avoided because of runtime issues, A C E - 2 . 0 only simulates the

logic in sequential feedback loops.

In the second stage, A C E - 2 . 0 obtains the Pi and Ps values using the Lag-one model for

the parts of the circuit not simulated, which produces exact switching probabilities if we

assume that inputs are not correlated [48]. A C E - 1 . 0 uses the Transition Density model,

which assumes that there is no temporal correlation. The purpose of using the lag-one

model is to relax this assumption; the lag-one model assumes that the current value of a

signal may depend on the value immediately preceding it .

The most efficient known implementation of the Lag-one model uses a B ina ry Decision

Diagram (B D D) . However, there is an exponential relationship between B D D size and the

number of inputs, making this implementation impractical for large circuits. A C E - 2 . 0

combines B D D pruning wi th a partial collapsing technique to give smaller B D D s .

Chapter 3. Framework 43

In the third stage, A C E - 2 . 0 calculates the switching activities. It uses a generalization

of the Lag-one model and accounts for glitching by incorporating the concept of a min imum

pulse width for passing glitches.

3.3.3 Power Estimation

The Poon model uses estimated capacitances at the transistor level for each component

inside the F P G A . Then, using the capacitance values and switching activity estimates,

the average power dissipation is calculated. The model was compared against H S P I C E

simulations. The Poon model dynamic power estimates were found to be wi th in 4.8% for

routing and 8.4% for logic. For leakage, average difference between the estimates and the

H S P I C E results was 13.4%.

Dynamic power is the dominant component of the total power in an F P G A . The

Poon model calculates capacitance values at the transistor level to determine the power

dissipation of L U T s , multiplexers, and buffers inside logic blocks. It also uses the metal

capacitance of each routing track and the parasitic capacitance of a l l switches attached

to the track, specified using the process technology parameters in the architecture file, to

calculate the power dissipated in the F P G A routing. The routing power is a large portion

of the dynamic power dissipated. Since the S R A M programming bits in the F P G A do not

change value after configuration, they are not included in the dynamic power calculations.

The dynamic power is calculated using the equation:

(3.1)
all nodes

Chapter 3. Framework 44

The short circuit power is modeled as 10% of the dynamic power, based on extensive

H S P I C E simulations in [5].

The leakage power has two components: reverse bias leakage and subthreshold leakage.

A s the Poon model was calibrated using a 0.18 /zm process technology, it assumes that the

reverse bias leakage is negligible. To calculate the subthreshold leakage the Poon model

uses the equation:

Fleak Idrain (weak inversion) ' ^supply (3*2)

It uses a first order analytical estimation model to estimate the subthreshold current.

3.3.4 Architectural Flexibility

Enhancements for the Poon model add support to the architecture file for the flexible

specification of:

• Supply, swing, and gate-source voltage levels

• Leakage and short circuit power parameters

• N M O S and P M O S transistor characteristics

• Clock network architecture parameters

3.4 DSP Block Power Model and Tool Flow

The D S P block power model that we propose is an extension for the P V P R flow. Section

3.4.1 discusses the requirements of the power model we have developed as part of this

work. Section 3.4.2 explains where our work fits in to the P V P R flow.

Chapter 3. Framework 45

3.4.1 Requirements

A s stated earlier, our power model must fit into an existing F P G A C A D tool flow. In order

to allow the investigation of future architectures, instead of simply existing commercial

architectures, we prefer that this C A D tool be architecturally flexible; it should be possible

to specify a wide range of logic block, routing, clock, and D S P block architectures.

In an architectural investigation, many iterations of P V P R are executed to gather

data about the impact of varying certain architectural parameters. In order to not hinder

the use of P V P R for an investigation requiring tens (or even hundreds) of iterations, our

power estimation must be fast. Furthermore, in order for the power estimates from the

investigation to be meaningful, they must be accurate.

The previous requirements pertain to the tool flow that is visible to the P V P R user.

A n important input to the tool flow in Figure 3.4.2 is the DSP block characterization data.

A s described in Section 2.4.4, a deterrent to the use of macro-modeling at the RT-level

is the fact that a large amount of characterization must be done to make a l ibrary of

macro-models; this process must be automated to be efficient. Therefore, to make our

tool flow attractive, we must minimize the effort required when adding models for new

D S P blocks and automate characterization.

3.4.2 Extending P V P R Flow

Figure 3.2 shows how our model fits into the P V P R flow. Pre-processing of the D S P

blocks in the mapped netlist is required before the activities can be generated for the

nodes in a user's circuit that contains D S P blocks. Addi t iona l characterization data

Chapter 3. Framework 46

Netlist

I
Logic Optimization

» " and
Technology Mapping

Netlisl Pre-processing
for - ; *

DSP Blocks

Mapped Netlist

j J J , Acttvfty

Input Stimuli

1
'(ACE-2 0)-_ _ _ _ _

^Switching Activity
Information

Parameterized
Architecture •
Description

',' * .£ 'Packing
^Modified T :VPACK) •

Placement
(VPR)

•
DSP Block

Characterization
Data

Power Estimation
(Implemented in VPR) j

Power Estimates

Figure 3.2: C A D Flow Enhanced to Support D S P Block Power Est imat ion

is also required in order to estimate the power of the D S P blocks in the final stage of

processing. The addition of our work to the P V P R flow expands the support of P V P R to

F P G A architectures that contain D S P blocks, thus enabling architectural and algorithmic

investigations wi th circuits that contain these blocks.

3.5 Chapter Summary

Our work modifies the widely used P V P R tool flow. P V P R is composed of the V P R en

gines and the Poon power model. The V P R engines are the T - V P a c k clustering algorithm,

the V P R placement engine, and the V P R routing engine. The Poon power model adds

activity estimation and power estimation for logic blocks, interconnect, and the clock.

Our work modifies the P V P R flow to add activity estimation for D S P blocks and power

estimation of D S P blocks using characterization information. The requirements for our

Chapter 3. Framework 47

work are:

• The D S P block power estimation must fit into an existing architecturally flexible

F P G A C A D tool flow

• The power estimation must be fast

• The power estimation must be accurate

• The characterization effort must be low and should be automated

A s mentioned in Section 1.2, the last three of these requirements are competing factors;

fast estimation and low characterization effort w i l l generally lead to less accurate results.

Thus, we must find a suitable balance between speed, characterization effort, and accuracy.

Details of how we determined accurate methods for performing activity estimation and

power estimation for D S P blocks are discussed in Chapters 4 and 5, respectively. The com

plete automated tool flow, including D S P block characterization, is described in Chapter

6.

48

Chapter 4

Activity Estimation

4.1 Motivation for developing Activity Estimation

Techniques

A n important part of estimating the power dissipated in an F P G A is estimating the ac

t iv i ty of each connection in the circuit . In the Poon power model, activities are calculated

gate-by-gate, starting from the pr imary inputs. Since each gate (L U T) is small, the Tran

sition Density or Lag-one model can be used to calculate the activity of the output of each

L U T as a function of the activity of its inputs. It is not feasible, however, to propagate

activities through a D S P block using the Transit ion Density or Lag-one model since the

computation performed using these models (and other related models) is 0(2k) where k

is the number of inputs to the block. Thus, a new technique is required. In this chapter,

two alternative techniques to estimate the activities of each D S P output p in are consid

ered. The two techniques are compared to determine which is suitable for use wi th in the

experimental C A D flow that was developed in this work.

It is important to note that the techniques described below are only being used to

estimate the activities of the output pins of each embedded block. Power estimation of

Chapter 4. Activity Estimation 49

Circuit Inputs DSP Block Technology
Circuit Verilog Description Library uutiitututt Circuit

DSP Block Tech Map A I h S,rt'li />• \ i
Quartus II Gates with DC

I I Random
Vectors for

Inputs
DSP Block |Fptten Circuit;

[^Pi;to:gates;

ACEv2 0

TTTTTTTTT
Circuit Outputs Activity Estimates

B) Gate-Level Technique Flow A) Rattened DSP Blocks for Gate-Level Technique

Figure 4.1: Gate-Level Technique

these blocks w i l l be discussed in Chapter 5.

4.2 Techniques for Activity Estimation of an

Embedded Block

This section describes two techniques for estimating the activity in circuits containing

embedded D S P and multiplier blocks. Al though Platform-style F P G A s also contain mem

ories, processors, and other features, we l imi t our experiments to circuits containing only

D S P and multiplier blocks, logic, and interconnect. This ensures that the results we

obtain are not obscured by assumptions about the other Platform-style features.

4.2.1 Gate-Level Technique

The first technique is an extension of the Poon model activity estimation method. The

embedded blocks are too large to for us to apply the Transit ion Density or Lag-one

model to them directly. To be able to use the Transit ion Density or Lag-one models, this

Chapter 4. Activity Estimation 50

technique involves representing the embedded blocks by their gate-level implementations.

The flattened circuit would then consist of L U T s (for the parts of the circuits not in the

embedded blocks) and the gates that make up each embedded block. T h e Transit ion

Density or Lag-one model can then be applied directly to this flattened netlist. This

technique wi l l be referred to as the Gate-Level Technique. Figure 4.1(A) shows the circuit

wi th the flattened D S P blocks in grey and the LUT-and-interconnect part of the circuit

in white.

Figure 4.1(B) shows a flow that employs this technique. In this flow, the D S P block

to be evaluated is described in Veri log. Synopsys Design Compiler is used to map the

block to gates, using T S M C 0.18 / i m technology l ibrary information. The parent circuit

to be considered is technology mapped using Quartus II in order to determine what gets

mapped to D S P blocks. The parent circuit is then flattened and the D S P blocks are

replaced wi th their gate-level representations. Then, activity estimation is performed.

Currently, the use of Quartus II for technology mapping restricts us to Altera-style D S P

blocks; however, Quartus II could be replaced wi th another technology mapping tool to

evaluate non-Altera-style D S P blocks.

It is important to emphasize that we do not modify the netlist that w i l l be implemented

in the F P G A . The flattened netlist is generated only during act ivi ty estimation.

The principal advantage of this technique is that it accounts for the correlation between

the input activities and output activities of the D S P blocks. Another advantage of this

technique is that it allows the use of A C E - 2 . 0 to estimate the act ivi ty for a l l the nodes in

the circuit, including the D S P block nodes.

Chapter 4. Activity Estimation 51

Circuit Inputs
Circuit

1 Circuit Pseudo-outputs
;Tech Map with
I Quartus II Jc Jc Jc

Pseudo-outputs • . . I Random Vectors
for Inputs and
Pseudo-inputs •* 4- 4-

DSP Block * Pseudo-inputs

Remove DSP:
biocks

l i
Pseudo-inputs ACEv2 0

TTTTTTTTT Circuit Outputs Activity Estimates

A) Independent Output Technique Terminology B) Independent Output Technique Flow

Figure 4.2: Independent Output Technique

The disadvantage of this technique is that it requires a gate-level implementation of

the D S P block and proprietary technology l ibrary information. Since we expect that

this technique would be used for evaluating a large number of architectures, a non-tr ivial

amount of effort would be involved in generating gate-level implementations for each D S P

block to be evaluated.

4.2.2 Independent Output Technique

The second technique that was evaluated addresses the disadvantage of the previous tech

nique. If sufficiently accurate, we would prefer to use a technique that does not require

proprietary technology or implementation details.

In this technique we propose to model the embedded blocks as if they are external to

the circuit. The remainder of the circuit is composed of L U T s and interconnect, so the

Poon model can be applied to that part.

To model the D S P blocks as external to the circuit, the inputs to the embedded block

are treated as primary outputs of the circuit and the outputs of the embedded block are

Chapter 4. Activity Estimation 52

treated as primary inputs to the circuit. We refer to the D S P block inputs and outputs as

pseudo-outputs and pseudo-inputs of the circuit, respectively, as shown in Figure 4.2(A).

In this technique, the pseudo-inputs are assigned values in the same way that the

primary inputs are assigned values by the Poon model. Random input vectors w i th a

specified average activity are applied to the inputs and pseudo-inputs. The activities are

then propagated through the circuit using A C E - 2 . 0 . W h e n the inputs to a D S P block,

pseudo-outputs, are encountered, the activities are not propagated through the D S P block.

Instead, the pseudo-outputs are treated in the same way as the primary outputs. The

activity calculations for the nodes downstream from the D S P block proceed using the

pseudo-input values.

In effect, the estimated output activities of a D S P block are then independent of the

input activities to the D S P block. This technique w i l l be referred to as the Independent

Output Technique.

Figure 4.2(B) shows a flow that employs this technique. The parent circuit is tech

nology mapped using Quartus II. The D S P blocks are removed from the netlist and the

nodes that were formerly outputs of the D S P block are represented as inputs to the circuit .

Input vectors are then applied to the inputs and pseudo-inputs and activity estimation is

performed using A C E - 2 . 0 .

The advantage of this technique is that it does not require gate-level implementation

and technology information.

The disadvantage of this technique is that inaccuracies are being introduced because,

in general, D S P block output transitions are not independent of their input transitions.

Chapter 4. Activity Estimation 53

Reference [49] found that for word-parallel or bit-serial arithmetic, the average activity

at the output of an adder can be closely approximated by the maximum of the average

activities of the two inputs, implying that there is a dependence.

4.3 Methodology and Results for Activity

Estimation

In comparing the accuracy of the two techniques, the Gate Level Technique w i l l be used as

the baseline. To determine how well the simpler Independent Output Technique correlates

wi th the more accurate Gate-Level Technique, two quantities w i l l be compared:

1. The activities at the outputs

2. The activities at the downstream nodes

In order to accurately estimate the power dissipated by the nets driven by the D S P

block, accurate activities for these nets are needed. However, if the activities of al l the

D S P output pins are similar, then using a single average value could be sufficient.

W h e n we refer to the downstream nodes of a D S P block, we mean the nodes between

the D S P block outputs and the circuit outputs. Inaccurate activity estimates at the D S P

block outputs may lead to inaccurate activity estimates for the downstream nodes due to

the iterative nature of activity estimation algorithms (the output act ivi ty of each node

is estimated based on the activities of the node inputs). Since there are typically many

more downstream nodes than there are D S P output pins, inaccuracies in these downstream

Chapter 4. Activity Estimation 54

Block Output Pin

Figure 4.3: Output P i n Activi t ies for Unregistered Mul t ip l i e r

nodes may have a larger impact on the accuracy of the estimation than would inaccuracies

in the D S P outputs.

In this section, bo th of these quantities were measured to determine whether the

Independent Output Technique provides sufficient accuracy.

4.3.1 Output Nodes of DSP Block

In this subsection, the activities at the outputs are compared. To begin the investigation,

the activity of each output pin of a 9-bit x 9-bit multiplier was examined. Random inputs

(with a known average activity) were applied to the inputs of the multiplier, and A C E - 2 . 0

was used to estimate the output activity of each pin . The results are plotted in Figure

4.3. The horizontal axis spans the set of 19 multiplier outputs (sign, L S B to M S B) and

the vertical axis is the estimated activity of each of these outputs. Each line corresponds

Chapter 4. Activity Estimation 55

O.fl -

0.5 —

i 0 4

u
<

0.3 -

Q.
9
a.
3 02

o

0 1

0 -

^ ^ i!?1 ^ <SN ^ J5 n ^ ^ ^ ^ X* 1
 A*"

^ y / 4 & & # 4 f y # # f f f
Block Output Pin

Figure 4.4: Output P i n Activit ies for Registered Mul t ip l i e r

to a different average input activity. For all values of the average input activity, the

conclusion is the same: the estimated activity differs across the output pins. The pins

that are on the far left and right of the graph (the least and most-significant bits) have

low activities, while the activities of the middle bits are large. Th i s implies that there is a

specific distr ibution for the activities of the output pins, and that choosing these activities

randomly (as is done in the Independent Output Technique) wi l l lead to inaccurate act ivi ty

estimates for these nodes.

Note that the activities reported in Figure 4.3 are large, mostly greater than one.

This is because multipliers tend to produce a large number of glitches on their outputs

[50]. Most D S P blocks, however, contain registers on their output pins, which w i l l remove

these glitches. Figure 4.4 shows the results of the same experiment i n which registers are

added at the output of each multiplier. A s the graph shows, the distr ibution is s t i l l there,

especially for the extreme least and most significant bits.

Chapter 4. Activity Estimation

Block Output Pin

Figure 4.5: Output P i n Activi t ies for Unregistered D S P Block

S 01

>
™ o
<
. £ 0.3
Q .
(—
3
Q.

o 0 2

0.3 avg input activity
-0.5 avg input activity
- 0.7 avg input activity
0.9 avg input activity

Block Output Pin

Figure 4.6: Output P i n Activi t ies for Registered D S P Block

Chapter 4. Activity Estimation 57

Figure 4.7: 18-bit x 18-bit Multipliers Combined for 36-bit x 36-bit Multiplier

Chapter 4. Activity Estimation 58

FIR Filter

Figure 4.8: F I R Fi l ter Used for A c t i v i t y Experiments

Figures 4.5 and 4.6 show the results of the same experiment on a more complicated

D S P block. The block is shown in Figure 4.7. It is similar to an Al t e ra D S P block

configuration: it combines four 18-bit x 18-bit multipliers and an adder to give a 36-bit

x 36-bit multiplier. Aga in the conclusion is the same: a single average value to represent

the activities w i l l not capture the distribution of activities at the output pins.

4.3.2 Downstream Nodes of DSP Block

The results in Section 4.3.1 were for the D S P output pins only. In this section, we

consider the nodes that lie downstream from the D S P blocks. Because A C E - 2 . 0 propagates

activities from inputs to outputs, inaccuracies in the D S P output activities wi l l lead to

inaccuracies in these downstream activities. The purpose of the remainder of this section

is to understand how inaccurate these activities w i l l be.

To perform these experiments, the F I R filter shown in Figure 4.8 was used. Th is cir

cuit contains a bank of four multipliers followed by an adder tree; registers are included

after the multipliers and wi th in the adder tree to support pipelining, and to reduce gli tch

Chapter 4. Activity Estimation 59

0.2 0.4 0.6 0.8 1 1.2
Downstream Activities (Gate Level)

Figure 4.9: A c t i v i t y Results for the F I R Fi l ter

1.4

power. The activities of al l nodes in the circuit were estimated using two methods: the

Independent Output Technique flow shown in Figure 4.2(B) and the Gate-Level Technique

flow shown in Figure 4.1(B). Figure 4.9 shows the results. In this graph, each dot corre

sponds to a node in the circuit; only nodes that are "downstream" (to the right of) the

multipliers are included, starting wi th the outputs of the multiplier output registers. The

x-coordinate of a dot is the activity predicted for the corresponding node by the Gate-Level

(more accurate) Technique, while the y-coordinate of the dot is the act ivi ty predicted for

the corresponding node by the Independent Output (less accurate) Technique.

In this plot, a straight line at y = x would indicate that there is perfect correlation

between the two estimation techniques. As the graph shows, the correlation is good; the

R2 correlation metric is 0.8091. This is surprising, since the activities of the multiplier

outputs are as shown in Figure 4.4 for the Gate-Level Technique, but random for the

Independent Output Technique. The reason has to do wi th the nature of the downstream

Chapter 4. Activity Estimation 60

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6
Downstream activities (Gate Level)

Figure 4.10: Ac t iv i t y Results for the Converter

circuit. A s mentioned in Section 4.2.2, [49] found that for word-parallel or bit-serial

arithmetic, the average act ivi ty at the output of an adder can be closely approximated

by the maximum of the average activities of the two inputs. Other adder configurations

were considered wi th similar results. The good correlation values do not hold for other

downstream circuits, however. The adder tree in Figure 4.8 was replaced wi th a signed-

magnitude to 2s complement converter, and found that P 2 =0.542 , as shown in Figure

4.10, which is not nearly as good.

4.4 Conclusions for Activity Estimation

Based on the results from the previous subsection, it was concluded that the activities

obtained using the Independent Output technique do not correlate well wi th those ob

tained using the more accurate Gate-Level technique for a l l downstream circuits. Since

Chapter 4. A c t i v i t y Estimation 61

the Power Estimation Tool Flow must work for a wide variety of D S P architectures and

downstream circuits, it was concluded that the Gate-Level technique is required for the

flow.

Note that the results in Figures.4.4 and 4.6 suggest a th i rd activity estimation tech

nique (instead of the Independent Output and the Gate-Level techniques). Rather than

generate the multiplier output activities randomly (as in the Independent Output Tech

nique), it may be possible to construct a distr ibution function, and generate activities

based on this distribution function. Whi le this would be possible, it would require a

significant amount of characterization effort each time a new embedded D S P block is to

be evaluated, since the distribution function can be significantly different for different

D S P block architectures. Given that A C E - 2 . 0 is fast and accurate [48], and the Gate-

Level Technique is easier, the extra characterization effort for this th i rd method is not

warranted.

4.5 Chapter Summary

The motivation for developing a new activity estimation technique is runtime. It is not

feasible to propagate activities through a D S P block using the Transit ion Density or

Lag-one model since the computation performed using these models (and other related

models) is 0(2k), where k is the number of inputs to the block. The Gate-Level Technique

was introduced as an extension of the Poon model activity estimation method. The

Independent Output Technique was introduced because we would prefer to use a technique

that does not require proprietary technology or implementation details. Our experiments

Chapter 4. Activity Estimation 62

showed that the more accurate Gate-Level Technique is required for our Power Estimation

Tool Flow.

63

Chapter 5

Power Estimation

Once the activity estimates for each input and output p in of the D S P block have been

obtained, the Power Estimation Tool Flow must estimate the power dissipated wi th in each

D S P block. Th is chapter describes and evaluates techniques for doing characterization-

based power estimates.

5 . 1 Techniques for Power Estimation

5.1.1 Objectives

Since one of the objectives for this flow is to allow architectural exploration and experi

mentation, power estimation must be fast. This w i l l facilitate many iterations of the flow

in architectural parameter sweeps. Al though it would be possible to create a gate-level

model and use gate-level power simulation (such as wi th PrimePower), this would be far

too slow to include in the inner loop of the Power Estimation Tool Flow. Therefore, a

method is needed to quickly estimate the power of the embedded block, without resorting

to modeling every internal node in the block.

Reduced estimation time typically comes at the cost of accuracy. In this chapter,

we compare the accuracy of three fast and relatively simple techniques for estimating

Chapter 5. Power Estimation 64

the power of an embedded DSP block against simulation results. For each technique,

offline characterization is used to obtain data that can be quickly referenced at runtime.

A limited amount of data is found once for each DSP block architecture, offline, using

PrimePower.

The following sections describe the three techniques we considered in increasing order

of modeling effort.

5.1.2 The Constant Technique

The first technique is the simplest. For this technique, the power dissipated by a DSP

block is assumed to be a constant, dependent on the DSP block type and independent

of the activities of the input and output pins. This technique will be referred to as the

Constant Technique.

The advantages of this technique are that it is simple and fast. The disadvantage of

this technique is that it may lead to inaccurate estimates, since the power dissipated in an

embedded block does depend on the input pin activities. However, this technique could

be sufficient if the dependence is weak and the deviation from the average power is small.

5.1.3 The Lookup Technique

For the second technique, we approximate the power dissipated by the embedded block as

a function of the average activity of all the DSP block inputs. The function need-not be

linear, and may be implemented as a look-up table rather than as a closed-form function.

This technique will be referred to as the Lookup Technique.

Chapter 5. Power Estimation 65

The advantage of this technique is that it is still relatively simple and fast, though it

does involve more modeling effort than the Constant Technique. The disadvantage of this

technique is that it assumes all input pins contribute equally to the power dissipated by

the block. If we consider a multiplier block, for example, it will have pins corresponding to

the multiplicand and multiplier operands. The fanout logic from the multiplicand operand

pins may be very different from the fariout logic from the multiplier operand pins; thus,

we expect that their contribution to the power dissipation will differ. However, if the

difference does not cause substantial variation in the total power dissipation from an

average over many trials, then this technique could be sufficient.

The Lookup Technique may provide inaccurate power estimates, since only the average

input activity is used to estimate the power. As mentioned in the previous section, in

reality, not all inputs pins are equal; activity on some pins may have more impact on the

power dissipation of a block than the same activity on other input pins. To take this into

we estimate, for each input pin in isolation, how much of an impact that pin has on the

overall power dissipation of the embedded block. This is quantified by calculating an

effective capacitance, Cj, for each input pin i. Then, the total power can be calculated as:

5.1.4 The PinCap Technique

account, a third technique is considered, called the PinCap Technique. For this technique

(5.1).
all-input jpins

where / is the frequency of the circuit and is the activity of pin i. Intuitively, this

Chapter 5. Power Estimation 66

Technology DSP Block
Library Verilog Description

i
Synthesize to
Gates with DC

Verilog Testbench +
Input Vectors

* r
Simulate with

Verilog-XL

Analyze Power
with PnmePower

— J —
Power Estimates

Figure 5.1: Methodology for Power Est imat ion Experiments

technique might provide accurate results, at the expense of more characterization effort.

5.2 Methodology for Power Characterization

Each of the three techniques requires some amount of offline characterization. This section

describes the characterization methodology for each technique. Figure 5.1 shows the flow

used to obtain this characterization data. A Verilog description of the D S P block was

synthesized to gates using Synopsys Design Compiler. A Verilog testbench was used to

simulate a set of input vectors applied to the gate-level description of the D S P block

in V e r i l o g - X L . The simulation data was then fed to the Synopsys PrimePower simulator

to obtain characterization information. This is done for a training set of input vectors,

according to the characterization technique used.

Chapter 5. Power Estimation 67

5.2.1 Constant Technique

For the Constant Technique, we repeated this characterization task nine times for the

given D S P block for average input activity values in the set {0.1, 0.2, 0.3, 0.4, 0:5, 0.6,

0.7, 0.8, 0.9}. For each of the 9 average activity values, a t raining set of 10 x 5000 input

vectors was simulated to get 10 power estimates. We took the average of a l l 90 results to

obtain a single value to use as the constant power value for the D S P block.

It should be noted that there is a one-to-many, relationship between the average activity

for a set of input vectors and power estimates for that average input activity. Different sets

of input vectors may differ in the individual activities of each input p in and, as described

in Section 5.1.4, different pins may contribute to the power of the block differently.

5.2.2 Lookup Technique

For the Lookup Technique, we reused the data from the Constant Technique characteri

zation. We averaged the 10 estimates for each of the 9 activity values to obtain 9 data

points. These 9 average input activities and their corresponding average power estimates

became the activity-power estimate pairs for the Lookup Technique look-up table. This

table was then included in the power model.

5.2.3 P i n C a p Technique

The input vector sets used for characterization for the PinCap Technique were different

from those used for the Constant and Lookup Technique characterization. In those vector

sets, a l l bits would toggle. For this technique, to assess the contribution of individual

Chapter 5. Power Estimation 68

Training Set of
10x5,000 vectors

at each activity

Characterization
(Section 5.2)

30 x 5,000 vectors
at each activity

Characterization
data

Estimation
(3 techniques)

PrimePower

Power
estimate

Power
estimate

Figure 5.2: Power Est imat ion Exper imental Methodology

pins, a l l other pins except the one in question were held constant; the p in in question was

then toggled wi th the given activity. The resulting power from PrimePower and Equat ion

5.1 was then used to determine the effective capacitance for pin j, Cj, because a* = 0

for al l i ^ j. Th is was repeated for each input p in to the D S P block. Once the effective

capacitance for each input p in was determined, the values were included in the power

model.

Input sets w i th average activities of 0.2 and 0.5 were used for the characterization..

Conclusions about the P i n C a p technique could be drawn from the results for these two

average input activities, so P i n C a p charaterization for the remaining activities between

0.1 and 0.9 was not necessary.

5.3 Evaluation

In this section, we evaluate the accuracy of each of the three power estimation techniques.

The experimental methodology is shown in Figure 5.2. For each technique, we performed

Chapter 5. Power Estimation 69

4.0E-03 i

5.0E-04

O.OE+00 J 1 1 1
0 0.2 0.4 0.6 0.8 1

Average Activity for Vector Set

Figure 5.3: Power Est imation Experiment Results

the characterization tasks described in Section 5.2 for a 9x9-bit mult ipl ier . We then com

pared the power estimated by each technique to that estimated by Pr imePower simulation

(which is presumably more accurate than any of our three techniques). For this experi

ment, we used 30 x 5000 randomly generated input vectors at each of the average input

act ivi ty values in the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} (this is more than was

used during the offline characterization).

Figure 5.3 shows the results for the Constant Technique and the Lookup Technique.

Each point on the graph represents the results for one set of 5000 vectors. The x-coordinate

of the point is the average activity of al l input vectors wi th in the set, and the y-coordinate

of the point is the estimated power. The triangular dots represent the estimates using the

Constant Technique, while the circular dots represent the predictions from the Lookup

Technique. For comparison, the PrimePower estimates are also plotted on the same graph;

the PrimePower estimates are shown as diamonds. A s the graph shows, the Constant

Chapter 5. Power Estimation 70

4.5E-03
—•"PrimePower

4.0E-03

3.5E-03

_ . 3.0E-03
CD

I 2.5E-03

J> 2.0E-03 o

? 1.5E-03
a.

1.0E-03

5.0E-04

0.0E+0O J J

Vector sets sorted by PrimePower power value, in increasing order

Figure 5.4: Power Est imat ion Experiment Results

Technique (in which a single power value is used, independent of the input activity)

provides poor estimates, compared to the PrimePower results. The Lookup Technique,

on the other hand, produces results that track well wi th the PrimePower results. The

average difference between the Lookup Technique and PrimePower estimates was 8%. The

experiment was repeated wi th a D S P block rather than a multiplier, and the conclusions

were the same; the average difference between the Lookup Technique and the PrimePower

results was 5%. This suggests that it is important to take the input activities into account

when estimating power of the block, but that the average of the input activities is enough

information to get reasonably accurate power estimates.

For the P i n C a p Technique, the results were not as good. Figure 5.4 shows the es

timates obtained using the P i n C a p Technique, along wi th the estimates obtained using

PrimePower. In this graph, only vector sets wi th an average input act ivi ty of 0.2 were

considered. Each point in this graph corresponds to one such set. The points are dis-

Chapter 5. Power Estimation 71

t r ibuted evenly across the x-axis, sorted by the values of the PrimePower estimate. A s the

graph shows, even for these sets, which all correspond to the same average activity, the

power estimates predicted by the P i n C a p technique vary widely, and have no correlation

to the PrimePower estimates.

The PinCap Technique always overestimates the actual power; this is because the

technique assumes that the power contribution of each input p in is independent of the

power contribution of each other input pin, when in fact, it is not. The total power is not

simply the sum of the contributions from each pin . Even if the P i n C a p results are scaled

by a constant value in an attempt to reflect this, the results do not track the simulation

results well (this is also shown in Figure 5 . 4) . Other input activities were also attempted

and no simple way was found to scale the results to take into account overlap between

the contributions of multiple input pins.

5.4 Conclusions for Power Estimation

Based on the results from the previous section, we concluded that the Lookup Technique is

most appropriate for the Power Estimation Tool Flow. Not only does it provide reasonably

accurate results, but the characterization effort is relatively simple, and the run-time of

the power estimate is small .

Chapter 5. Power Estimation 72

5.5 Chapter Summary

The objective of the power estimation experiments was to determine a fast and accurate

technique for estimating the power of D S P blocks, given input activities. We introduced

three techniques, in increasing order of complexity: (1) the Constant Technique, (2) the

Lookup Technique, and (3) the P i n C a p Technique. Power estimates using these techniques

were performed and compared against PrimePower simulations for accuracy. We found

that it is important to consider the input activities when estimating the power and that

the Lookup Technique is most suitable for our Power Estimation Tool Flow.

73

Chapter 6

Power Estimation Tool Flow

This chapter describes how we combined our Gate-Level activity estimation technique

from Chapter 4 and our Lookup power estimation technique from Chapter 5 w i th the

P V P R framework to obtain a complete power estimation C A D tool flow. Section 6.1 de

scribes the overall flow and the modifications we made to P V P R . Section 6.2 describes the

processing of two benchmark circuits through the entire flow and compares our estimates

against PrimePower simulations of the circuits.

6.1 O v e r a l l F l o w

6.1.1 Functionality

Our C A D tool flow for estimating the power dissipated in F P G A circuits containing em

bedded D S P blocks is shown in Figure 6.1. The activity estimation and power estimation

are performed as described in Chapters 4 and 5.

The steps in the box on the left correspond to activity estimation. For act ivi ty esti

mation, there are three inputs: (1) the user's circuit, (2) a Verilog description of the D S P

block, and (3) input statistics (either as vectors for the circuit inputs or the transit ion

density and static probability of each input) . To facilitate architectural investigations,

Chapter 6. Power Estimation Tool Flow 74

Parameterized
DSP Block

verilog Generator

User's Circuit

1
Tech Map with

Quartus II

DSP Block
Verilog Description

Synthesize to
Gates with DC

1__L~
Flatten Circuit
DSPs to Gates

Vectors, or
D(x) and P i

ACE-2.0

Activity Data

Technology
Library

Training Set of
Input Vector Files

i
Simulate with

Vonlog-XL

I
Analyze Power

with PrimePower

Timing charact. Power charact.
of DSP of DSP

Architecture File

Enhanced
T-VPACK/VPP.

with Poon model

Power Analysis Report for
Circuit with DSP Blocks

Figure 6.1: Power Est imat ion Tool F low

we created a parameterized D S P block generator to automate the production of Verilog

descriptions for a large number of D S P architectures. The D S P block description is syn

thesized to a gate-level netlist using Synopsys Design Compiler and a T S M C 0.18 fj,m

technology library. The H D L description of the user's circuit is technology mapped to

L U T s , flip-flops and D S P blocks using Quartus II to produce a mapped netlist of these el

ements and their connections. The mapped netlist is flattened by replacing the D S P block

instances wi th the gate-level implementation obtained from Design Compiler . A C E - 2 . 0

is then used to obtain the activity of each node in the flattened circuit, using the input

Chapter 6. Power Estimation Tool Flow 75

statistics that we provided.

The steps in the box on the right correspond to power characterization. Recal l

that, whereas the activity estimation steps must be repeated each time the user's cir

cuit changes, the power characterization steps need only be done once when the D S P

block is designed and can then be stored as l ibrary data. For power characterization,

there are two inputs: (1) the gate-level implementation of the D S P block from Design

Compiler , and (2) a training set of input vector files. The gate-level implementation is

simulated using Ver i l og -XL and the resulting power determined by PrimePower for the

training set of input vector files. The average activity and resulting power for each input

vector file in the training set is saved as an activity-power pair in the Lookup Technique

table in the P V P R architecture file. The D S P block t iming characteristics are also stored

in the P V P R architecture file.

The activity data for the circuit and the characterization data for the D S P block are

then input to P V P R for packing, placement, routing, and power analysis. Currently, the

use of Quartus II for technology mapping restricts us to Altera-style D S P blocks; however,

Quartus II could be replaced wi th another technology mapping tool to evaluate different

D S P block architectures.

6.1.2 Modifications to P V P R

Neither the original version of V P R nor P V P R support circuits wi th embedded D S P

blocks. We enhanced the B L I F netlist format [42] to allow for the specification of D S P

blocks. We modified the P V P R architecture file format [21] to include power and t iming

Chapter 6. Power Estimation Tool Flow 76

numbers for these blocks (including the power look-up table proposed in Chapter 5);

Table 6.1 describes the parameters we added. We assumed that D S P blocks are arranged

in columns, as in Al t e ra and X i l i n x devices. We modified the placement algorithm to

correctly position these blocks, modified the t iming analysis algorithm to estimate the

delay through these blocks, and use this information to calculate the cr i t ical path of an

implementation [51]. We then modified the power model to use the Lookup Technique for

D S P blocks.

Table 6.1: Parameters added to the P V P R Architecture Fi le Format

Parameter Meaning

Start Firs t column of D S P blocks
Repetition Number of columns before next column of D S P blocks
Class Nature of the D S P input and output pins
Location Locations around the D S P block where the input and output pins can

be programmably connected to the routing fabric
Leakage Leakage power dissipated by the D S P block
Activity Look-up value for activity in an activity-power pair
Energy Energy dissipated for a given Ac t iv i t y in an activity-power pair (Energy

is used to be independent of clock frequency)

6.2 Flow Demonstration and Comparison to

Gate-Level Simulation

6.2.1 Motivation

The experiments in Chapter 5 consider the D S P blocks as stand-alone elements; random

inputs are used and all bits have approximately the same average activity. W h e n a D S P

Chapter 6. Power Estimation Tool Flow 77

block exists in a larger circuit, however, it may be located downstream from other logic;

each bit in the input operands may have a different activity. This section demonstrates the

functionality of our C A D tool flow using two benchmark circuits from [52] and compares

our results w i th a more accurate method (using the same inputs) to see how much accuracy

is sacrificed to obtain fast estimates.

6.2.2 Terminology

A s this section discusses the simulation of multiple circuits, it is important to clarify the

terminology we w i l l use. The test circuits (the F I R filter and differential equation solver)

w i l l be refered to as the parent circuit or circuit. The circuit w i l l contain multiple instances

of a DSP block. The DSP block is described by the D S P Block Verilog Description in Figure

6.1. The instances w i l l be referred to as DSP block instances. Figure 6.2 shows the circuit

(in white) wi th instances (in grey) of a DSP block, which is shown to the right.

circuit
DSP block
instances

DSP block
DSP1

DSP2

Figure 6.2: Terminology

Chapter 6. Power Estimation Tool Flow 78

FIR Filter

Figure 6.3: fir_3_8_8: F I R Fi l ter Ci rcui t

6.2.3 Methodology
Demonstration of Power Estimation Tool Flow

To demonstrate the functionality of our flow, we ran it on two benchmark circuits from

[52]. The first circuit is fir_3_8_8, the F I R filter shown in Figure 6.3, which uses embedded

multipliers; it consists of 272 L U T s , 148 flip-flops, and 4 multipliers. The second circuit

is diffeq_paj_convert, a differential equation solver, shown in Figure 6.4; it consists of 850

L U T s , 193 flip-flops, and 3 D S P blocks. The differential equation solver uses a D S P block

configuration similar to one found in Al t e ra Strat ix devices. This block is shown in Figure

6.5; it combines four 18-bit multipliers wi th a dedicated adder to make a 36-bit multiplier.

For both example D S P blocks, a look-up table of activity-power pairs had been created

offline, using Lookup Technique characterization as described in Chapter 5.

For each circuit we performed the characterization part of the flow only once and ran

an iteration of the rest of the flow for each input vector file. For each act ivi ty in the set

{0.25, 0.50, 0.75}, we created five input files of 5000 vectors having that average activity,

for a total of 15 input files. Note that the wid th of these vectors is equal to the number

Chapter 6. Power Estimation Tool Flow 79

of inputs of the parent circuit . The purpose of providing vectors instead of activity and

static probability values for each bit is that A C E - 2 . 0 performs simulation for sequential

feedback loops. If only activity and static probability values are given to A C E - 2 . 0 , then

it randomly generates vectors for simulation. However, since we wanted to compare our

results against a PrimePower simulation, we needed to provide the same set of vector files

to both estimation tools.

Figure 6.4: Differential Equat ion Solver Ci rcu i t

Compar i son against P r imePower

For these experiments we compared the results from our Power Estimation Tool Flow

against PrimePower. The pseudocode for the methodology is given i n Figure 6.6 and

Chapter 6. Power Estimation Tool Flow 80

Figure 6.5: 18-bit x 18-bit multipliers combined for 36-bit x 36-bit multiplier

described below.

The same input vectors were used for both the Power Estimation Tool Flow and the

simulation approaches. We assumed that the pr imary inputs to the parent circuit were

free of glitching.

To determine the power dissipated by each DSP block instance using simulation, we

used the flow shown in Figure 6.7. To determine the power of each D S P block instance,

we had to determine the input waveforms to each D S P block instance separately. It is

incorrect to assume that the D S P block instances wi l l have identical input waveforms,

because the logic upstream of (leading up to) each D S P block instance in the parent

circuit may not be identical.

Chapter 6. Power Estimation Tool Flow 81

Synthesize Verilog description of DSP block to gates in Design Compiler
(already done for Power Estimation Tool Flow);

Create simulation model of circuit in Quartus II;

For avg_act in (0.25, 0.50, 0.75) {

For trial in (1 to 5) {
Create input vector set V of 5000 vectors with activity avg_act
and width equal to number of primary inputs in circuit;

Apply input vector set to circuit sim model using testbench_cct;
Use ModelSim to simulate and generate VCD;

For each DSP block instance i in circuit {
Parse VCD for input waveforms to this DSP instance;
Apply waveforms at DSP instance inputs using testbench_dsp_i;
Use Verilog-XL to simulate;
Use PrimePower to calculate power of DSP instance i (when
circuit is stimulated by input vector set V);

}
}

}

Figure 6.6: Simulation Flow Pseudocode

To obtain the input waveforms to each D S P block instance, we used Quartus II to

generate a simulation model of the parent circuit. Since we used Quartus II to technology

map the circuits in the Power Estimation Tool Flow, the mapped implementations for both

methods match. We used Mode lS im to simulate the circuit and generate a Value Change

D u m p (V C D) of the simulation, which is an A S C I I file that describes the waveforms for the

circuit internal nodes. We then used a V C D parser to extract the waveforms corresponding

to the inputs of each D S P block instance. To obtain the simulation power estimates for

each vector set, we used the input waveforms for each D S P block instance to simulate the

Chapter 6. Power Estimation Tool Flow 82

• — i Y
DSP[3)

DSP[2] DSP[2]
Quartus II

Input Vectors for
Parent Circuit

To Power Estimation
Tool Flow...

_ Technology Simulation
Mapped Model of
Netlist Parent Circuit

VCD
(waveforms of circuit

internal nodes)

Waveforms for
DSP[1] inputs

Waveforms for
DSP[2] inputs

Waveforms for
DSP[3] inputs

DSP Block Gate-
Level Description Verilog-XL +

PnmePower
Verilog-XL + 1

PnmePower
- •

. PnmePower
l l l l l i l l lP l t l l

Verilog-XL +
PnmePower

T r T
Simulation power Simulation power Simulation power

estlorDSP[1] esttorDSP[2J esttorDSP[3]

Figure 6.7: F low for Determining Simulation Power Est imate of Each D S P Block Instance

gate-level implementation of the DSP block using V e r i l o g - X L and PrimePower.

6.2.4 Results

Demonstration of Power Estimation Tool Flow

The results of the power analysis are shown in Table 6.2. In both circuits, the D S P blocks

dominate the power dissipation. This may be surprising because routing power generally

dominates the power dissipation in an F P G A . However, the circuits are D S P kernels and

not complete systems. Thus, they contain only a small amount of non-DSP logic and

substantial routing is internal to the D S P blocks.

Chapter 6. Power Estimation Tool Flow 83

Compar i son against P r imePower

Tables 6.3 and B . l to B.3 show the detailed results for the F I R filter circuit. Tables 6.4

and B.4 to B.6 show the detailed results for the differential equation solver circuit.

The average difference between the Power Est imat ion Tool F low and PrimePower

results for the F I R circuit was 20.4%. In the differential equation circuit, 2 of the 3 D S P

blocks had an average difference of 22-26%, however the th i rd had glitching on one input

bus and was off by 77% on average. W h e n creating the lookup table, the blocks had been

characterized only for activities 0.1 to 0.9, as it was not clear how to properly imitate

glitching. Al though we use linear interpolation to determine-the power corresponding to

average input activities that are not in the Lookup Technique table, the power relationship

is not necessarily linear wi th respect to D S P input activities. Consequently, it is not

surprising that estimates for D S P block instances having an average input act ivi ty greater

than 1 are not well represented by a linear interpolation using the points for activities 0.8

and 0.9. This indicates the importance of a lookup-table that includes data that considers

glitching.

Append ix A describes preliminary unsuccessful attempts at including glitching during

PrimePower characterizations.

Table 6.2: V P R Power Analysis Results

Power fir_3_8_8 diffeq_paj .convert

Rout ing 5.46 m W , 18.4% 8.67 m W , 10.0%
Logic Blocks 4.04 m W , 13.6% 4.68 m W , 5.6%
Clock 1.61 m W , 5.4% 2.57 m W , 2.9%
D S P 18.59 m W , 62.6% 70.82 m W , 81.5%

Total 29.71 m W 86.74 m W

Chapter 6. Power Estimation Tool Flow 84

Table 6.3: Overal l Percentage Error for F I R Fi l ter Results

Ari thmet ic
Mean

average percentage error 20.4%
average for just multiplier instance #0 21.6%
average for just multiplier instance #1 19.7%
average for just multiplier instance #2 19.6%
average for just multiplier instance #3 20.5%

Table 6.4: Overal l Percentage Error for Differential Equat ion Solver Results

Ari thmet ic
Mean

average percentage error 41.7%
average for just D S P block instance #0 76.8%
average for just D S P block instance #1 22.5%
average for just D S P block instance #2 25.8%

6.3 Chapter Summary

In this chapter we have demonstrated the functionality of our Power Estimation Tool

Flow for estimating the power of F P G A circuits containing embedded D S P blocks, which

addresses our requirements laid out in Chapter 3. We have compared our results against

simulation using PrimePower. Our fast estimates are wi th in 19% to 26% of the simulated

results, except in the case where there is significant glitching at the inputs of the D S P

blocks; the glitching case resulted in 77% error. We believe that adding characterization

of glitches on the inputs of the D S P blocks is necessary to improve the accuracy of our

method; however, it is not immediately clear how this can be done. This w i l l be discussed

Chapter 6. Power Estimation Tool Flow 8 5

as future work in Section 7.2.2.

Chapter 7. Conclusion 86

Chapter 7

Conclusion

7.1 Summary and Contributions

In this thesis we have described an experimental C A D flow that can be used to estimate

the power dissipation of F P G A circuits containing embedded D S P blocks. We identified

two technical challenges in creating such a flow: (1) estimating the activity of a l l nodes

in a circuit containing one or more D S P blocks, and (2) estimating the power dissipated

wi th in a D S P block quickly and accurately.

The first challenge arises because standard activity estimation techniques cannot prop

agate activities through these D S P blocks. We address this by replacing each D S P block

wi th a gate-level representation of the block, and using the standard act ivi ty techniques

on the resulting circuit.

The second challenge arises because it is not possible to pre-characterize the D S P block

for al l possible input patterns and activities. We have shown that reasonable estimates

can be obtained by creating a look-up table of power values. In the power model, the

look-up table is indexed using the average activity of the block input nodes.

We then combined our findings to create a Power Estimation Tool Flow based on the

P V P R framework. The impact of our enhanced tool flow is threefold; the existence of

Chapter 7. Conclusion 87

a freely available, architecturally flexible F P G A C A D tool that includes power modeling

for embedded D S P blocks enables:

1. the investigation of power-aware architectures containing embedded D S P blocks

2. the investigation of power-aware C A D algorithms for F P G A circuits containing em

bedded D S P blocks

3. the incorporation of power tradeoffs in the design of user circuits

This work is also one of a collection of projects at the University of Br i t i sh Co lumbia

System-on-Chip L a b that each take a step towards the larger goal of enabling power

estimation for platform-style F P G A architectures that contain embedded D S P blocks,

embedded memories, embedded processors, and multiple clock domains.

A poster of our contributions w i l l appear at the 2006 I E E E International Conference

on F ie ld Programmable Technology in Bangkok, Thai land .

7.2 Future Work

Given our tool flow, there are three enhancements that would be necessary before per

forming power-aware F P G A architecture studies that include embedded D S P blocks: (1)

a suite of integer benchmarks representative of D S P and arithmetic-intensive user designs,

(2) the incorporation of glitch characterization into the look-up data, and (3) board-level

verification.

Chapter 7. Conclusion 88

7.2.1 Benchmarks

A suite of integer benchmarks representative of D S P and arithmetic-intensive user de

signs is essential to be able to draw generalizable conclusions from an architectural study

targeting embedded D S P blocks. The standard benchmark suite for F P G A studies is the

collection of Microelectronics Center of Nor th Carol ina (M C N C) circuits; however, these

circuits are not very representative of D S P applications.

Freely available circuits were obtained from [52] and [53]; however, most were not

suitable for our experiments for the reasons listed below:

• Some circuits used floating point arithmetic. D S P blocks in commercial F P G A s

target integer arithmetic, so our flow does the same.

• Some circuits used very simple and small D S P blocks, which would not exercise

many of the features in D S P blocks embedded in commercial F P G A s .

• Some of the circuits were automatically generated using high-level synthesis. The

R T L signal and module names were automatically generated alphanumeric character

sequences. This h id the flow of control and data in the circuits and prevented

analysis and debugging of the circuits.

A very useful future research project would be the creation of circuits for integer D S P

and arithmetically intensive applications at the register transfer level.

Chapter 7. Conclusion 89

7.2.2 Glitch Characterization

The comparison to gate-level simulation in Section 6.2 revealed that glitching may take

place on the inputs to the D S P blocks and that it is important to include characterization

data in the power estimation look-up table for cases where the activity at the inputs to

the D S P blocks is greater than 1. When performing characterization, it was not clear how

to properly imitate glitching in our testbenches. Appendix A describes our attempts.

Reference [30] describes word-level and bit-level glitch generation and propagation

models for characterization of datapath circuits. It would be interesting to incorporate

this into our flow and evaluate its effectiveness.

7.2.3 Board-Level Verification

W h e n performing power estimation at higher levels of abstraction, as we do w i t h the

Lookup Technique, we are trading off accuracy for fast estimation. Consequently, at this

level, fidelity is what we seek to provide (i.e. relative accuracy, instead of absolute). In

order to verify that our tool flow w i l l provide consistent estimates that provide usable

trends, we must compare our results to physical measurements on ah F P G A board.

The use of board-level measurements to verify our power model is not t r iv ia l . It is

not simply a case of downloading our test circuits to boards wi th F P G A s containing the

appropriate D S P blocks and comparing the measured power to our estimates. F i rs t , it

is not feasible to create custom F P G A s for the set of D S P block architectures under

evaluation; layout and fabrication costs are excessive. Second, the power of the D S P

blocks alone cannot be measured; typically, we can only measure the total active and

Chapter 7. Conclusion 90

quiescent power of the system. Consequently, we cannot simply compare our estimates

against the results for a set of commercial F P G A boards. For example, A l t e r a Cyclone II

and X i l i n x Vir tex-II devices contain embedded 18xl8-bit multipliers, and Al t e r a Strat ix

and X i l i n x Vir tex-4 devices contain D S P blocks. One possibility is to compare our power

estimates for a set of benchmark circuits against the power estimates for four boards

containing each of these devices; however, their logic and routing architectures differ,

making it impossible to distinguish between deficiencies in the power models for the D S P

blocks, the logic blocks, and the interconnect.

A starting point for board-level verification could be to compare trends in measured

values on a particular F P G A board against trends in the power estimates using the corre

sponding architecture description file, for a set of benchmark circuits. The desired result

would be to see that the measurements and estimates both rank the power dissipation

of the benchmark circuits in the same order. A prerequisite for this verification is a

representative set of benchmark circuits, described in Section 7.2.1.

91

Bibliography
[1] V . Betz, J . Rose, and A . Marquardt , Architecture and CAD for Deep-Submicron

FPGAs. Springer, March 1999.

[2] S. J . E . W i l t o n , , S. C h i n , and K . K . W . Poon, Field-Programmable Gate Array
Architectures. Taylor and Francis, 2006.

[3] A . Ye and J . Rose, "Using M u l t i - B i t Logic Blocks and Automated Packing to Im
prove Field-Programmable Gate Array Density for Implementing Datapath Circui ts ,"
in Proceedings of the 2004 IEEE International Conference on Field-Programmable
Technology, 2004, pp. 129-136.

[4] C . Piguet, E d . , Low Power CMOS Circuits: Technology, Logic Design and CAD
Tools. New York: Taylor and Francis, 2006.

[5] K . K . Poon, "Power Est imat ion for F i e ld Programmable Gate Arrays," Master 's
thesis, University of Br i t i sh Columbia, August 2002.

[6] Acte l , Actel IGLOO Flash Freeze Technology and Low Power Modes Application
Note, 2006.

[7] C . T . Chow, L . S. M . Tsui , P. H . W . Leong, W . Luk , and S. J . E . W i l t o n ,
"Dynamic Voltage Scaling for Commercial F P G A s , " in Proceedings of the 2005 IEEE
International Conference on Field-Programmable Technology, 2005, pp. 173-180.

[8] F . L i , Y . L i n , and L . He, " F P G A Power Reduct ion Using Configurable D u a l - V d d , "
in Proceedings of the 41st Design Automation Conference, 2004, pp. 735-740.

[9] V . George, H . Zhang, and J . Rabaey, "The Design of a Low Energy F P G A , " in
Proceedings of the 1999 International Symposium on Low Power Electronics and
Design, 1999, pp. 188-193.

[10] J . H . Anderson and F . N . Najm, "Power-aware Technology Mapp ing for
LUT-based F P G A s , " in Proceedings of the 2002 IEEE International Conference on
Field-Programmable Technology, 2002, pp. 211-218.

[11] J . H . Anderson and F . N . Na jm, "Active Leakage Power Opt imizat ion for F P G A s , "
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 25, no. 3, pp. 423-437, 2006.

Bibliography 92

[12] R . Tessier, V . Betz , D . Neto, and T . Gopalsamy, "Power-aware R A M Mapp ing for
F P G A Embedded Memory Blocks," in FPGA '06: Proceedings of the International
Symposium on Field Programmable Gate Arrays. New York , N Y , U S A : A C M Press,
2006, pp. 189-198.

[13] I. K u o n and J . Rose, "Measuring the Gap Between F P G A s and A S I C s , " in
FPGA '06: Proceedings of the International Symposium on Field Programmable Gate
Arrays. New York, N Y , U S A : A C M Press, 2006, pp. 21-30.

[14] Al te ra , Cyclone II Device Handbook, 2005.

[15] Al te ra , Stratix II Device Handbook, 2005.

[16] X i l i n x , Virtex II Platform FPGAs: Complete Datasheet, 2005.

[17] UG073: XtremeDSP for Virtex-J,. User Guide, 1st ed., 2005.

[18] S. Hauck, M . M . Hosier, and T . W . Fry, "High-performance Car ry Chains for
F P G A s , " in FPGA '98: Proceedings of the 1998 ACM/SIGDA Sixth International
Symposium on Field-Programmable Gate Arrays. New York , N Y , U S A : A C M Press,
1998, pp. 223-233.

[19] S. D . Haynes, A . B . Ferrari , and P. Y . K . Cheung, "Flexible Reconfigurable
Mul t ip l ie r Blocks Suitable for Enhancing the Architecture of F P G A s , " in Proceedings
of the IEEE 1999 Custom Integrated Circuits Conference, 1999, pp. 191-194.

[20] M . J . Beauchamp, S. Hauck, K . D . Underwood, and S. K . Hemmert, "Embedded
Floating-Point Uni ts in F P G A s , " in Proceedings of the 2006 ACM/SIGDA Fourteenth
International Symposium on Field Programmable Gate Arrays., 2006, pp. 12-20.

[21] V . Betz , VPR and T-VPack User's Manual, ver 4.30, March 2000.

[22] K . K . W . Poon, S. J . E . W i l t o n , and A . Y a n , " A Detai led Power Mode l for
Field-Programmable Gate Arrays ," ACM Transactions on Design Automation of
Electronic Systems (TODAES), 2004.

[23] F . N . Najm, " A Survey of Power Est imat ion Techniques i n V L S I Circui ts ," IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol . 2, no. 4, pp.
446-455, 1994.

[24] G . Lemieux, E . Lee, M . Tom, and A . Y u , "Directional and Single-driver Wires in
F P G A Interconnect," in Proceedings of the 2004 IEEE International Conference on
Field-Programmable Technology, 2004, pp. 41-48.

[25] A . Yang , "Design Techniques to Reduce Power Consumption," XCell Journal, 2005.

[26] X i l i n x , Virtex-5 LX Platform Overview, 2006.

[27] X i l i n x , UG070: Virtex-4 User Guide, 2006.

Bibliography 93

A . Ye and J . Rose, "Using Bus-based Connections to Improve Field-Programmable
Gate Ar ray Density for Implementing Datapath Circui ts ," in Proceedings of the 2005
ACM/SIGDA Thirteenth International Symposium on Field Programmable Gate Ar
rays, 2005, pp. 3-13.

K . Leijten-Nowak and J . L . van Meerbergen, " A n F P G A Architecture w i th
Enhanced Datapath Functionality," in FPGA '03: Proceedings of the 2003
ACM/SIGDA Eleventh International Symposium on Field Programmable Gate
Arrays. New York , N Y , U S A : A C M Press, 2003, pp. 195-204.

A . Raghunathan, N . K . Jha, and S. Dey, High-level Power Analysis and
Optimization. Springer, November 1997.

S. Brown and Z. Vranesic, Fundamentals of Digital Logic with Verilog Design.
M c G r a w - H i l l Science/Engineering/Math, August 2002.

G . K . Yeap, Practical Low Power Digital VLSI Design. Springer, August 1997.

T . Quarles, D . Pederson, R . Newton, A . Sangiovanni-Vincentelli , and C . Wayne,
"Interactive S P I C E User Guide," website maintained by Jan Rabaey. [Online].
Available: h t tp : / /bwrc.eecs .berkeley.edu/Classes / IcBook/SPICE/

P. E . Landman and J . M . Rabaey, "Architectural Power Analysis: The D u a l B i t
Type Method," IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 3, no. 2, pp. 173-187, 1995.

D . Marculescu, R . Marculescu, and M . Pedram, "Information Theoretic Measures
for Power Analysis ," IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol . 15, no. 6, pp. 599-610, 1996.

X i l i n x , " X i l i n x Web Power Tools," A p r i l 2006. [Online]. Available: http:
/ / www.xi l inx.com / products / design_resources / power .central /

Al tera , PowerPlay Early Power Estimator User Guide for Stratix, Stratix GX, and
Cyclone FPGAs, October 2005.

X i l i n x , "Virtex-4 XPower - Ear ly Power Est imator v8.1," A p r i l 2006. [Online].
Available: http:/ /www.xilinx.com/ise/power_tools/l icense_virtex4.htm

Al tera , PowerPlay Early Power Estimator User Guide for Stratix II, Stratix II GX
and Hardcopy II, December 2005.

X i l i n x , Xilinx Development System Reference Guide 8.H, December 2005.

Al tera , PowerPlay Power Analyzer, October 2005.

E . M . Sentovich, K . J . Singh, L . Lavagno, C . M o o n , R . Murga i , A . Saldanha,
H . Savoj, P. R . Stephan, R . K . Brayton, and S. A . Vincentel l i , "SIS: A System for
Sequential Ci rcui t Synthesis," U C Berkeley, Tech. Rep. , 1992. [Online]. Avai lable:
http: //citeseer. ist. psu. edu/sentovich92sis. h tml

http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/
http://www.xilinx.com
http://www.xilinx.com/ise/power_tools/license_virtex4.htm

Bibliography 94

[43] J . Cong arid Y . Ding , "F lowMap: an Opt ima l Technology Mapping Algor i thm for
Delay Optimizat ion in Lookup-table Based F P G A Designs," IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 13, no. 1, pp. 1-12,
1994.

[44] G . G . F . Lemieux, S. D . Brown, and D . Vranesic, "On Two-step Rout ing for
F P G A S , " in ISPD '97: Proceedings of the 1997 International Symposium on Physical
Design. New York , N Y , U S A : A C M Press, 1997, pp. 60-66.

[45] Y . - W . Chang, D . F . Wong, and C . K . Wong, "Universal Switch Modules for F P G A
Design," ACM Transansactions on Design Automation of Electronic Systems, vol. 1,
no. 1, pp. 80-101, January 1996.

[46] S. J . E . Wi l t on , "Architectures and Algori thms for Field-Programmable Gate Arrays
wi th Embedded Memory," P h . D . dissertation, University of Toronto, 1997.

[47] I. M . Masud and S. J . E . W i l t o n , " A New Switch Block for Segmented F P G A s , "
in FPL '99: Proceedings of the 9th International Workshop on Field-Programmable
Logic and Applications. London, U K : Springer-Verlag, 1999, pp. 274-281.

[48] J . Lamoureux and S. J . E . W i l t o n , "Ac t iv i ty Es t imat ion For Field-Programmable
Gate Arrays," in International Conference on Field-Programmable Logic and Appli
cations, August 2006.

[49] A . Chatterjee and R . K . Roy, "Synthesis of Low Power Linear D S P Circui ts Using
Ac t iv i t y Metrics," in Proceedings of the Seventh International Conference on VLSI
Design, 1994, pp. 265-270.

[50] S. J . E . Wi l t on , S. S. A n g , and W . Luk , "The Impact of Pipel in ing on Energy
per Operation in Field-Programmable Gate Arrays," in International Conference on
Field-Programmable Logic and its Applications. Springer-Verlag, August 2004, pp.
719-728.

[51] S. J . E . W i l t o n , " H H V P R Manual , " Internal document, University of Br i t i sh
Columbia , Tech. Rep., Ju ly 2005.

[52] P. Jamieson and J . Rose, " A Veri log R T L Synthesis Tool for Heterogeneous F P G A s , "
in International Conference on Field Programmable Logic and Applications, 2005,
2005, pp. 305-310.

[53] C . H . Ho, P. H . W . Leong, W . Luk , S. J . E . W i l t o n , and S. Lopez-Buedo, "Vi r tua l
Embedded Blocks: A Methodology for Evaluat ing Embedded Elements in F P G A s , "
in 1 4 t h Annual IEEE Symposium on Field-Programmable Custom Computing Ma
chines, 2006.

Appendix A. Glitching Characterization Attempt 95

Appendix A

Glitching Characterization Attempt

This Appendix describes several unsuccessful attempts to account for glitches in the power

characterization scheme described in Chapter 5.

Figure A . l illustrates the flow we used for characterizing the power of the D S P blocks.

A Verilog description of the D S P block was synthesized to gates using Synopsys Design

Compiler . A Verilog testbench was used to simulate a set of input vectors applied to the

gate-level description of the D S P block in Ver i log -XL. The simulation data was then fed

to the Synopsys PrimePower simulator to obtain characterization information.

For input activities less than one, the testbench applied exactly one vector to the

inputs of the D S P block each clock cycle. The activity at each input could be controlled

by keeping the value of the bit or changing the value.

To attempt to imitate glitching, we generated testbenches where more than one vector

was applied during each clock cycle. For example, to attempt to characterize the power

for input activities of 1.5, a vector file wi th activity 0.5 (assuming 1 vector per clock cycle)

was read in and 3 vectors were applied each clock cycle.

We observed that applying the vectors for a particular clock cycle at equally spaced

intervals in the clock cycle, as shown in the testbench pseudocode in Figure A . 2 , does not

imitate glitching properly. $T_fraction is the length of the equally spaced intervals and

Appendix A. Glitching Characterization Attempt 96

Technology
Library

DSP Block
Verilog Description

Synthesize to
Gates with DC

Verilog Testbench +
Input Vectors

Simulate with
Verilog-XL

Analyze Power
with PrimePower

Power Estimates

Figure A . l : Power Characterization Flow

reg [0:$inbits_ind] test_vector_input[0:N-1];
reg [0:$inbits_ind] inputs;
task test_top;

integer i, j ;
begin

©(posedge clock);
@(negedge clock);
reset = 0;
©(posedge clock);
for (i=0; (i+$integer_multiple) <= N; i=i+$integer_multiple) begin

inputs = test_vector_input[i];
#$T_fraction;
inputs = test_vector_input[i+1];
#$T_fraction;

inputs = test_vector_input[i+($integer_multiple-1)];
#$T_fraction;
©(posedge clock);

end
end

endtask

Figure A .2: Testbench Pseudocode

Appendix A. Glitching Characterization Attempt 97

^integer.multiple is the number of vectors to apply during each clock cycle.

For example, from Figure 5.3 we would expect that using a vector file w i t h activity

0.5 (assuming 1 vector per clock cycle) and applying two vectors per cycle to achieve an

effective input activity of 1.0 would give PrimePower estimates greater than the results

for 0.9 input activity. For a D S P block where only input transitions during the high part

of the clock cycle have an effect, the PrimePower estimates were approximately equal to

the results for 0.5 input activity instead because only half the transitions had any effect.

To avoid this problem, a second method was attempted where %T.fraction was set

to half the period divided by $integer_multiple, so that a l l the vectors would be applied

during the high part of the clock cycle. Th is led to overestimates of the power because,

in reality, glitching at the inputs to the D S P block can take place in any part of the clock

cycle.

To properly imitate glitching for characterization, a more sophisticated testbench gen

erator would be required that incorporates some sort of statistical or probabilistic model

that dictates when vectors should be applied to the D S P block inputs.

Appendix B. Detailed Results from Comparison 98

Appendix B

Detailed Results from Comparison

Table B . l : F I R Fi l te r Results for 0.25 Average Input A c t i v i t y

Vector Mul t ip l ie r H H V P R PrimePower % Error
Set Energy Energy

vec_025_0_a mult_rtl_0 6.93E-11 6.31E-11 9.8%
mult_rt l_l 6.92E-11 6.01E-11 15.1%
mult_rtl_2 6.92E-11 5.87E-11 . 17.8%
mult_rtl_3 6.93E-11 6.07E-11 14.2%

vec_025_0_b mult_rtl_0 6.95E-11 6.14E-11 13.1%
mult_rt l_l 6.92E-11 6.05E-11 14.3%
mult_rtl_2 6.93E-11 5.82E-11 19.1%
mult_rtl_3 6.97E-11 6.08E-11 14.5%

vec_025.0_c mult_rtl_0 6.95E-11 6.32E-11 10.0%
mult_rt l_l 6.93E-11 5.92E-11 17.1%
mult_rtl_2 6.95E-11 5.95E-11 16.8%
mult_rtl_3 6.95E-11 6.12E-11 13.5%

vec_025_0_d mult_rtl_0 6.92E-11 6.24E-11 10.9%
mult_rt l_l 6.91E-11 5.90E-11 17.2%
mult_rtl_2 6.96E-11 5.93E-11 17.3%
mult_rtl_3 6.96E-11 6.02E-11 15.5%

vec_025_0_e mult_rtl_0 6.95E-11 ' 6.25E-11 11.2%
mult_rt l_l 6.95E-11 6.06E-11 14.7%
mult_rtl_2 6.95E-11 5.92E-11 17.3%
mult_rtl_3 6.97E-11 6.17E-11 12.9%

average percentage error 14.6%
average for just multiplier instance #0 11.0%
average for just multiplier instance #1 15.7%
average for just multiplier instance #2 17.7%
average for just multiplier instance #3 14.1%

Appendix B. Detailed Results from Comparison 99

Table B .2 : F I R Fi l ter Results for 0.50 Average Input A c t i v i t y

Vector
Set

Mul t ip l ie r H H V P R
Energy

PrimePower
Energy

% Error

vec_050_0_a mult_rtl_0 8.92E-11 1.09E-10 18.2%
mult_rtl_l 8.90E-11 1.04E-10 14.4%
mult_rtl_2 8.95E-11 1.04E-10 14.0%
mult_rtl_3 8.93E-11 1.06E-10 15.5%

vec_050_0.b mult_rtl_0 8.92E-11 1.10E-10 19.2%
mult_rtl_l 8.92E-11 1.04E-10 14.1%
mult_rtl_2 8.94E-11 1.03E-10 13.4%
mult_rtl_3 8.92E-11 1.07E-10 16.2%

vec_050_0_c mult_rtl_0 8.93E-11 1.11E-10 19.4%
mult_rtl_l 8.92E-11 1.04E-10 14.2%
mult_rtl22 8.95E-11 1.04E-10 14.2%
mult_rtl_3 8.95E-11 1.06E-10 15.4%

vec_050_0_d mult_rtl_0 8.91E-11 1.07E-10 16.8%
mult _rtl_l 8.94E-11 1.05E-10 15.0%
mult_rtl_2 8.90E-11 1.01E-10 12.3%
mult_rtl_3 8.94E-11 1.07E-10 16.2%

yec_050.0.e mult_rtl_0 8.93E-11 1.12E-10 20.6%
mult_rtl_l 8.92E-11 1.04E-10 14.5%
mult_rtl_2
mult_rtl_3

8.94E-11
8.92E-11

1.02E-10
1.06E-10

12.2%
15.7%

average percentage error 15.6%
average for just multiplier instance #0 18.9%
average for just mult iplier instance #1 14.4%
average for just multiplier instance #2 13.2%
average for just multiplier instance #3 15.8%

Appendix B. Detailed Results from Comparison 100

Table B .3 : F I R Fi l ter Results for 0.75 Average Input A c t i v i t y

Vector Mul t ip l ie r H H V P R PrimePower % Er ror
Set Energy Energy

vec_075_0_a mult_rtl_0 9.97E-11 1.52E-10 34.3%
mult_rt l_l 9.96E-11 1.42E-10 29.7%
mult_rtl_2 9.95E-11 1.38E-10 27.9%
mult_rtl_3 9.96E-11 1.44E-10 30.7%

vec_075_0_b mult_rtl_0 9.96E-11 1.52E-10 34.6%
mult_rt l_l 9.96E-11 1.41E-10 29.2%
mult_rtl_2 9.97E-11 1.38E-10 27.7%
mult_rtl_3 9.96E-11 1.43E-10 30.5%

vec_075_0_c mult_rtl_0 9.96E-11 1.49E-10 33.3%
mult_rt l_l 9.95E-11 1.41E-10 29.4%
mult_rtlJ2 9.95E-11 1.38E-10 27.7%
mult_rtl_3 9.96E-11 1.47E-10 32.4%

vec_075_0.d mult_rtl_0 9.96E-11 1.55E-10 35.8%
mult_rt l_l 9.97E-11 1.39E-10 28.3%
mult_rtl_2 9.97E-11 1.41E-10 29.4%
mult_rtl_3 9.97E-11 . 1.50E-10 33.6%

vec_075_0_e mult_rtl_0 9.96E-11 1.55E-10 35.9%
mult_rt l_l 9.96E-11 1.39E-10 28.4%
mult_rtl_2 9.97E-11 1.37E-10 27.4%
mult_rtl_3 9.96E-11 1.44E-10 30.9%

average percentage error 30.9%
average for just multiplier instance #0 34.8%
average for just multiplier instance #1 29.0%
average for just multiplier instance #2 28.0%
average for just multiplier instance #3 31.6%

Appendix B. Detailed Results from Comparison 101

Table B.4: Differential Equat ion Solver Results for 0.25 Average Input A c t i v i t y

Vector
Set

D S P
Block

P V P R
Energy

PrimePower
Energy

% Error

vec_025_0_a dspblockO 9.51E-10 4.16E-09 77.1%
dspblockl 1.01E-09 1.52E-09 33.3%
dspblock2 1.12E-09 1.65E-09 32.2%

vec.025.0_b dspblockO 9.04E-10 4.03E-09 77.6%
dspblockl 1.04E-09 1.33E-09 21.8%
dspblock2 1.23E-09 1.58E-09 22.2%

vec.025.0-c dspblockO 8.95E-10 3.88E-09 76.9%
dspblockl 1.01E-09 1.28E-09 21.2%
dspblock2 1.23E-09 1.49E-09 17.4%

vec.025.0_d dspblockO 1.05E-09 4.24E-09 75.4%
dspblockl 1.04E-09 1.31E-09 21.0%
dspblock2 1.17E-09 1.73E-09 32.1%

vec.025.0_e dspblockO 8.02E-10 3.76E-09 78.7%
dspblockl 1.00E-09 1.22E-09 17.7%
dspblock2 1.12E-09 1.27E-09 12.0%

average percentage error 41.1%
average for just D S P block instance #0 77.1%
average for just D S P block instance #1 23.0%
average for just D S P block instance #2 23.2%

http://vec.025.0_b
http://vec.025.0-c
http://vec.025.0_d
http://vec.025.0_e

Appendix B. Detailed Results from Comparison 102

Table B . 5 : Differential Equat ion Solver Results for 0.50 Average Input A c t i v i t y

Vector
Set

D S P
Block

P V P R
Energy

PrimePower
Energy

% Error

vec.050_0_a dspblockO 8.88E-10 3.79E-09 76.6%
dspblockl 1.06E-09 1.22E-09 12.9%
dspblock2 1.26E-09 1.51E-09 16.9%

vec_050_0_b dspblockO 9.24E-10 3.88E-09 76.2%
dspblockl 1.06E-09 1.36E-09 21.9%
dspblock2 1.29E-09 1.66E-09 22.5%

vec_050.0.c dspblockO 8.78E-10 4.14E-09 78.8%
dspblockl 1.05E-09 1.73E-09 39.2%
dspblock2 1.20E-09 1.75E-09 31.6%

vec.050.0_d dspblockO 9.59E-10 3.97E-09 75.9%
dspblockl 1.04E-09 1.38E-09 24.8%
dspblock2 1.28E-09 1.54E-09 16.9%

vec.050_0_e dspblockO 9.19E-10 3.87E-09 76.2%
dspblockl 1.06E-09 1.25E-09 15.1%
dspblock2 1.31E-09 1.62E-09 19.0%

average percentage error 40.3%
average for just D S P block instance #0 76.7%
average for just D S P block instance #1 22.8%
average for just D S P block instance #2 21.4%

http://vec.050.0_d

Appendix B. Detailed Results from Comparison 103

Table B.6 : Differential Equat ion Solver Results for 0.75 Average Input A c t i v i t y

Vector
Set

D S P
Block

P V P R
Energy

PrimePower
Energy

% Error

vec_075_0_a dspblockO 8.95E-10 3.89E-09 77.0%
dspblockl 1.03E-09 1.44E-09 28.4%
dspblock2 1.23E-09 1.61E-09 23.5%

vec_075_0_b dspblockO 8.70E-10 3.82E-09 77.2%
dspblockl 1.01E-09 1.25E-09 19.3%
dspblock2 1.27E-09 1.64E-09 22.7%

vec_075_0_c dspblockO 8.83E-10 3.78E-09 76.6%
dspblockl 1.01E-09 1.26E-09 19.7%
dspblock2 1.27E-09 1.62E-09 21.6%

vec_075.0_d dspblockO 9.13E-10 3.94E-09 76.8%
dspblockl 1.03E-09 1.40E-09 26.2%
dspblock2 1.24E-09 1.69E-09 26.5%

vec_075_0_e dspblockO 9.37E-10 3.84E-09 75.6%
dspblockl 1.01E-09 1.19E-09 14.9%
dspblock2 1.18E-09 3.84E-09 69.3%

average percentage error 43.7%
average for just D S P block instance #0 76.7%
average for just D S P block instance #1 21.7%
average for just D S P block instance #2 32.7%

