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A b s t r a c t 

Battery-powered applications and the scaling of process technologies and clock frequencies 

have made power dissipation a first class concern among F P G A vendors. One approach 

to reduce power dissipation in F P G A s is to embed coarse-grained fixed-function blocks 

that implement certain types of functions very efficiently. Commercial F P G A s contain 

embedded multipliers and "Digi ta l Signal Processing (DSP) blocks" to improve the per

formance and area efficiency of arithmetic-intensive applications. In order to evaluate the 

power saved by using these blocks, a power model and tool flow are required. 

This thesis describes our development and evaluation of methods to estimate the ac

t iv i ty and the power dissipation of F P G A circuits containing embedded multiplier and 

D S P blocks. Our goal was to find a suitable balance between estimation time, modeling 

effort, and accuracy. We incorporated our findings to create a power model and C A D tool 

flow for these circuits. Our tool flow builds upon the Poon power model, and the Versa

tile Place and Route ( V P R ) C A D tool, which are both standard academic experimental 

infrastructure. 
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Chapter 1 

Introduction 

1.1 M o t i v a t i o n 

Power dissipation has become increasingly important in the electronics industry. There 

are two reasons for this: 

1. There is a growing number of portable electronic applications, which have battery 

life constraints 

2. Process technologies in the nanometer scale and clock frequencies in the gigahertz 

range result in very hot chips and increased cooling costs. 

These issues are relevant to both Application-Specific Integrated Circui ts (ASICs) and 

to Field-Programmable Gate Arrays ( F P G A s ) . W i t h increasing mask costs for A S I C s , 

F P G A s have become an attractive implementation alternative for low and medium volume 

production. However, F P G A s lag behind A S I C s significantly in their power efficiency. The 

additional transistors required for programmability result in higher power dissipation per 

function. Leakage power is also dissipated in both the used and unused parts of F P G A s , 

and most commercial F P G A s do not have a sleep mode to reduce power in unused parts 

(The Ac te l I G L O O flash-based F P G A is an exception [6]). 
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Figure 1.1: 18-bit x 18-bit multipliers combined for 36-bit x 36-bit multiplier 

Over the past few years, significant advances have been made at the circuit level [7] [8], 

architecture level [9], and C A D tool level [10] [11] [12]. S t i l l , current F P G A s have been 

found to be, on average, 12 times less power efficient than A S I C s [13]. 

A basic F P G A is composed of programmable logic elements (called Look-up Tables or 

LUTs), wire segments, and programmable connections/switches that are typical ly laid out 

in a regular pattern. The L U T s in F P G A s typical ly have 4 to 6 inputs and can implement 

any boolean function of these inputs. B y configuring each L U T and connecting them 

together using the programmable interconnect, users can implement vir tual ly any digi tal 

circuit. To reduce area and improve circuit speed, larger logic blocks are used (typically 

composed of a collection of 4-10 L U T s ) ; they are called clusters. 
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One promising approach to reducing power in F P G A s at the architectural-level is 

to embed coarse-grained fixed-function blocks that implement certain types of functions 

very efficiently. Commercial F P G A s contain embedded multipliers and embedded "Dig

ital Signal Processing (DSP) blocks" to improve the performance and area efficiency of 

arithmetic-intensive applications, such as DSP applications [14] [15] [16] [17]. A simplified 

example of a DSP block is shown in Figure 1.1; in this diagram, four 18xl8-bit multipli

ers are programmably connected to create a 36x36-bit multiplier, with optional registers 

at the multiplier inputs, outputs, and adder stage outputs. Other examples of DSP 

block configurations are adder/subtractors, multiply-accumulators, and multiply-adders. 

Arithmetic-intensive applications can be implemented in LUTs, but even if LUTs are en

hanced with dedicated interconnect for fast carry chains [18] and arithmetic chains [15], 

significant performance, density, and power improvements can be obtained by implement

ing the arithmetic parts of the applications in the embedded blocks [19]. Reference [20] 

found that an average area savings of 55% and an average increase in clock rate of 40.7% 

could be obtained for floating point applications by embedding floating point DSP blocks. 

There are several disadvantages of including DSP blocks in an F P G A fabric. If the 

blocks are not used (1) the area is wasted, and (2) the blocks will still dissipate leakage 

power. This makes it important to try to optimize the size and quantity of embedded 

resources included. However, it is difficult to determine what proportion of the F P G A area 

should be devoted to embedded blocks because it is difficult to determine what typical 

usage is for a device that can implement almost any digital circuit. 
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In order to meaningfully evaluate the power savings that can be obtained by using 

these blocks, an experimental flow that can estimate the power dissipated by F P G A s 

containing embedded DSP blocks is required. Commercial tools from F P G A vendors 

provide power estimation that includes these blocks; however, these tools are tailored 

for specific devices, and do not provide the flexibility needed to investigate alternative 

embedded block architectures. 

The Versatile Place and Route (VPR) tool suite [ 2 1 ] with the Poon power model 

[ 2 2 ] has become standard experimental infrastructure to study F P G A architecture, C A D , 

and power issues (we will refer to the combination of V P R and the Poon power model 

as PVPR). The estimates from the power model can be used by F P G A architects to 

evaluate architectures for power efficiency, by F P G A users to make power-aware design 

decisions, and by F P G A C A D tool developers to create power-aware C A D algorithms. 

However, P V P R only supports homogeneous F P G A architectures containing LUTs and 

a routing fabric, and thus is not sufficient to examine architectures containing embedded 

DSP blocks. 

1.2 Research Goals 

The objective of this research is to create an enhanced F P G A C A D flow that can be used 

to evaluate the power dissipation of FPGAs containing embedded DSP and arithmetic 

blocks. We have imposed the following requirements: 

• As P V P R is standard experimental infrastructure for academic F P G A architecture, 

C A D , and power studies, our power estimation of the DSP and multiplier blocks 
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must be compatible wi th the P V P R flow. 

• A s P V P R results are frequently used to perform architectural evaluations, our power 

estimation must be fast, to facilitate iterations over tens or hundreds of architectural 

alternatives and benchmark circuits. 

• To facilitate iterations over many architectural alternatives, our method should aim 

to minimize the modeling effort required when introducing a new architecture for 

evaluation. 

• In order for the power estimates to be meaningful, our method should a im to be as 

accurate as possible, wi th in the constraints imposed by the previous requirements. 

Fast power estimation techniques make use of average quantities, such as probabil

ities, to reduce runtime. Details are lost during this averaging, resulting in a runtime 

versus accuracy tradeoff. Similarly, reducing characterization effort typically results in 

the capturing of fewer details, again resulting in an effort versus accuracy tradeoff. A s the 

requirements that we have set for our flow involve both fast estimation and low charac

terization effort, we expect that we w i l l be sacrificing some accuracy. Therefore, we must 

find a suitable balance between speed, characterization effort, and accuracy. 

.1.3 Research Approach 

A s w i l l be explained in Chapter 2, power estimation involves two steps: (1) activity 

estimation, and (2) power estimation using the activities. 
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Dynamic power dissipation is proportional to how often nodes in a circuit switch values 

(from logic-0 to logic-1, or logic-1 to logic-0). A c t i v i t y estimation is the calculation of 

how much switching is expected at each node in the circuit. In implementing the act ivi ty 

estimation for F P G A architectures containing embedded D S P blocks, we came across 

the following challenge: it is not clear how to propagate activity calculations through a 

D S P block. Tradit ional activity estimation techniques propagate activities through small 

gates ( L U T s ) using transition probabili ty or transition density models [23]; however, these 

approaches do not scale well to embedded blocks wi th tens (or even hundreds) of inputs. 

The next step is to estimate the power dissipated by the F P G A implementing a user's 

circuit . In implementing algorithms to perform this estimation, we identified the following 

challenge: once the p in activities of each embedded D S P block are known, it is s t i l l not 

clear how to use them to estimate the power dissipated by the embedded D S P block. There 

are many possibilities, each providing a different trade-off between power estimation time, 

modeling effort when a new block is to be investigated, and accuracy. The second technical 

challenge is to choose a power estimation technique that provides the best balance between 

these factors. 

In this thesis we treat each of these two challenges as a separate problem. For each 

problem, we develop and evaluate solutions. Then, we use the best of our solutions to 

each problem to create our experimental C A D flow for evaluating F P G A architectures 

containing D S P blocks. 
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1.4 Organization of Thesis 

This thesis is organized as follows. Chapter 2 provides an overview of F P G A architectures, 

the F P G A C A D flow, power, and power estimation. It also describes previous work 

related to power estimation. Chapter 3 describes the existing P V P R C A D flow and how 

our D S P and arithmetic block power model fits into this framework. Chapter 4 describes 

our solutions and their evaluation for the problem of activity estimation. Chapter 5 

describes our solutions and their evaluation for the problem of power estimation. Chapter 

6 describes how we integrated our solutions from Chapters 4 and 5 to create a Power 

Estimation Tool Flow for evaluating F P G A architectures containing D S P blocks, presents 

results for two benchmark circuits, and compares the results to those obtained using gate-

level simulation. Final ly , Chapter 7 summarizes the conclusions and provides suggestions 

for future work. 
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Chapter 2 

Background and Previous Work 

2.1 F P G A Architectures 

The most basic building blocks of F P G A s are programmable logic blocks, wire segments, 

and programmable connections/switches that are typically la id out in a regular pattern. 

B y programming basic functions into each block and connecting them together using the 

programmable interconnect, users can implement vir tual ly any digital circuit. 

A number of architectures have been developed to optimize for criteria such as routabil

ity, area efficiency, and t iming. Architectures are frequently classified based on their rout

ing architecture because most of the area in an F P G A is devoted to routing. Reference [1] 

lists the three main categories of commercial F P G A architectures that were available when 

that book was written: island-style, row-based, and hierarchical. Today, platform-style 

F P G A s are available, which include coarse-grained embedded components. 

Th is thesis w i l l focus on F P G A s based on island-style architectures. Section 2.1.1 w i l l 

introduce basic island-style architecture components, Section 2.1.2 w i l l describe modern 

enhancements to the basic components, and Section 2.1.3 w i l l describe platform-style 

F P G A s . The framework that we bui ld upon is described in Chapter 3. 
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Programmable routing switch 

Figure 2 . 1 : Island-style Architecture (from [1]) 

2.1.1 Island-style Architectures 

Figure 2 .1 shows an island-style architecture, where programmable logic blocks are "is

lands" in a "sea" of programmable routing fabric [5]. In the tradit ional island-style ar

chitecture, the logic blocks are clusters of look-up tables ( L U T s ) . The routing fabric is 

composed of wires, programmable connection blocks, and programmable switch blocks. 

Look-up Tables 

Look-up tables ( L U T s ) are the most basic elements for implementing logic in an F P G A . 

Figure 2 .2 shows a 2-input L U T . A K- inpu t L U T ( K - L U T ) is a memory wi th 2K bits, K 
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Inputs 
»> 

Inputs 

SRAM 
cells 

0 0 
0 0 
0 0 
1 1 

00 
01 
10 
11 

Output 

Figure 2.2: 2-input L U T (from [2]) 

Select bit P 

4-input LUT 

Clock 
D Flip-flop 

Figure 2.3: L U T wi th Flip-flop (from [2]) 

Output 

address inputs, and one output port. B y setting the memory bits, this structure can be 

used to implement any combinational function of K inputs. Typica l values for K are 4-6. 

To implement sequential logic, a L U T is typical ly paired wi th a flip-flop to form a 

Basic Logic Element (BLE), as shown in Figure 2.3. The output of the B L E is selected 

from either the registered or the un-registered version of the L U T output, depending on 

the select bit of the output multiplexer. 
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Inputs 

Figure 2.4: Cluster-based logic block 

Cluster-based Logic Blocks 

The use of larger logic blocks helps to increase circuit speed and reduces circuit area and 

C A D tool processing time. Unfortunately, L U T complexity grows exponentially wi th the 

number of inputs. The use of cluster-based logic blocks addresses this problem. Clusters 

are typically composed of a number of B L E s , internal cluster routing, and possibly spe

cialized internal cluster connections, such as carry chains. W i t h i n a cluster, B L E inputs 

are typically connected to the cluster inputs and B L E outputs by a multiplexer-based 

crossbar [2]. 

A n example of a cluster-based logic block is shown in Figure 2.4. It has 8 inputs, 

contains 4 B L E s , and has 4 outputs. The L U T inputs can be connected to either the 

cluster inputs or the B L E outputs v i a the internal routing. B y grouping B L E s that 

share signals, placement and routing processing time is reduced because the number of 

inter-block connections is reduced. This internal routing is also shorter and faster than 
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inter-block connections, reducing circuit delay. 

Routing 

Logic blocks are connected together and to I / O resources using a routing "fabric" that is 

composed of: 

• pre-fabricated metal tracks 

• programmable switch blocks 

• programmable connection blocks 

Figure 2.1 shows the components of the routing fabric. The tracks are arranged in 

channels, typical ly horizontally and vertically, to form a grid pattern. Wires run along 

these tracks. The connection blocks connect the wires to the inputs and outputs of logic 

blocks adjacent to the channel. The switch blocks connect the horizontal and vertical 

wires together to form longer wires and make turns. It should be noted that, although we 

consider the switch blocks and connection blocks as separate entities, they are often not 

separate in the F P G A circuit layout. 

The programmable switches in the switch blocks and connection blocks can be either 

buffered or unbuffered. Typica l ly they are buffered to reduce delays in long connections; 

however, this increases routing area. Buffered switches can be either unidirectional or 

bidirectional. Modern F P G A s use unidirectional switches to get better delay opt imizat ion 

and a denser routing fabric [24]. Figure 2.5 shows examples of switches typical ly found in 

F P G A s : (a) unbuffered, (b) buffered unidirectional, and (c) buffered bidirectional. 
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P 

(a) Unbuffered (b) Buffered unidirectional (c) Buffered bidirectional 

Figure 2.5: Programmable Switches 

The routing wires inside an F P G A can be categorized as either (a) segmented local 

routing for connections between logic blocks, or (b) dedicated routing for global networks, 

such as clocks or reset/preset lines. The local routing segments can span a single logic 

block or multiple blocks; typically, not a l l segments are of the same length. The dedicated 

routing tracks are designed to ensure low-skew transmission. Commercial F P G A s typical ly 

also include phase-locked loops ( P L L s ) and delay-locked loops ( D L L s ) for clock de-skew 

on these dedicated lines. They also may include clock multiplexers and clock management 

circuitry to reduce power consumption by disabling unused parts of the clock network [25]. 

2 . 1 . 2 Enhanced L U T Architectures and Carry Chains 

Commercia l F P G A s contain improvements to the basic clustered K - L U T and interconnect 

F P G A s described in Section 2.1.1. 
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Adaptive Logic M o d u l e ( A L M ) 

The Al te ra Adaptive Logic Module (ALM) is a B L E that can implement a single function 

of six inputs or two functions that share four inputs [15]. It is based on research that 

found that 6 - L U T s have better area-delay performance than the typical 4 - L U T , but can 

result in wasted resources if many of the logic functions do not require six inputs. 

Configurable Logic Block ( C L B ) 

The X i l i n x Vir tex-5 C L B is a B L E based on a 6 - L U T wi th two outputs so that it can 

either implement a single function of six inputs or two functions of five (out of the same 

six) inputs [26]. A s wi th the A L M , it is based on research showing that 6 - L U T s have 

better performance, but may waste resources. 

C a r r y chains 

Carry chains are dedicated connections between logic blocks that aid in the efficient imple

mentation of arithmetic operations. They also can be used in the efficient implementation 

of logical operations, such as parity and comparison. Fast carry chains are important be

cause the cri t ical path for these operations is often through the carry. 

Figure 2.6 shows a simple carry chain architecture. Each 4 - L U T in a B L E can be 

fractured to implement two 3 - L U T s ; this is sufficient to implement both the sum and 

carry, given two input bits (a and b) and a carry input. The carry out signal from 

one B L E would typical ly be connected to the carry in of an adjacent B L E using a fast 

dedicated connection. The Z input is used to break the carry chain before the first bit of 
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a 

b 

2-LUT 2-LUT 2-LUT 2-LUT 

P 

Carry in 

- 7 -
3-LUT 

*~T' 
3-LUT Carry out S u m out 

Figure 2.6: Carry C h a i n Connections to a 4 - L U T 

an addition. 

More complex carry schemes have been published. In [18], carry chains based on carry 

select, variable block, and Brent -Kung schemes are described; the Bren t -Kung scheme 

is shown to be 3.8 times faster than the simple ripple carry adder in Figure 2.6. The 

selection of a carry scheme by the F P G A architect involves weighing the area cost of a 

faster more complex carry chain against the performance benefits, because they are only 

beneficial when used. A c t e l and X i l i n x devices include support for carry-lookahead and 

Al t e ra devices include support for carry select capabilities. 

2.1.3 Platform-style Architectures 

W i t h Moore 's Law and the increase in the possible number of transistors on a die, F P G A 

manufacturers could afford to sacrifice some silicon area to application-specific circuits. 

In 2000, to increase the efficiency and density of designs containing components such as 

processors, large memories, and complex arithmetic circuits, F P G A manufacturers began 

to release Platform-style F P G A s containing dedicated circuitry for these parts. 
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In the context of F P G A s , Intellectual Property (IP) cores are typical ly reusable circuit 

modules or high-level bui lding blocks that can be combined to create a system. These cores 

can be soft or hard. Soft cores are implemented in L U T s and hard cores are implemented 

as embedded A S I C blocks in the F P G A . Platform F P G A s contain hard IP cores, such 

as processors, large memory blocks, fast multipliers, and Digital Signal Processing (DSP) 

blocks. They also contain dedicated interconnect for fast communication between certain 

types of adjacent cores. 

DSP blocks 

To improve the density and address the performance requirements of D S P and other 

arithmetic-intensive applications, F P G A manufacturers typical ly include dedicated hard

ware multipliers in their devices. A l t e ra Cyclone II and X i l i n x Vir tex- I I / - I I P ro devices 

contain embedded 18xl8-bit multipliers, which can be split into 9x9-bit multipliers [27]. 

The Vir tex-I I / - I I P ro devices are further optimized wi th direct connections to the X i l i n x 

block R A M resources for fast access to input operands. Higher-end F P G A s include D S P 

blocks, which are more complex dedicated hardware blocks optimized for a wider range 

of D S P applications. A l t e r a Strat ix and Strat ix II D S P blocks support pipelining, shift 

registers, and can be configured to implement 9x9-bit, 18xl8-bit , or 36x36-bit multipliers 

that can optionally feed a dedicated adder/subtractor or accumulator [15]. X i l i n x Vir tex-4 

X t r e m e D S P slices contain a dedicated 18xl8-bit 2's complement signed multiplier, adder 

logic, 48-bit accumulator, and pipeline registers. They also have dedicated connections 

for cascading D S P slices, wi th an optional wire-shift, without having to use the slower 
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general routing fabric [27]. 

This inclusion of dedicated multipliers or D S P blocks to complement the general logic 

resources results in a heterogeneous F P G A architecture. Research has considered what 

could be gained from tuning F P G A architectures to specific application domains, i n par

ticular datapaths and D S P . 

The work in [28] and [3] is tuned for datapath (arithmetic) circuits. Datapath circuits 

are often composed of regularly structured components, called bit-slices. The authors 

propose a multi-bit logic block that uses configuration memory sharing to exploit this 

regularity and save area. In typically-sized cluster-based logic blocks (containing 4 to 10 

B L E s ) , configuration S R A M cells consume 39% to 48% of the total cluster area. If each 

cluster is used to implement a single bit-slice of the datapath circuit and adjacent clusters 

are used to implement adjacent bit-slices, the configuration memory for corresponding 

B L E s in the adjacent slices can be shared. A mult i-bi t logic block is illustrated in Figure 

2.7, indicating resources that can share configuration memory. The authors also propose 

bus-based connections to exploit this regularity to achieve 14% routing area reduction 

for implementing datapath circuits. A disadvantage of multi-bit architectures is that if 

implementation circuits require a different bi t -width, some resources may be wasted. 

The work in [29] deliberately avoids creating a heterogeneous architecture because the 

authors found that D S P applications contain both arithmetic and random logic, but that 

a suitable ratio between arithmetic and random logic is difficult to determine. Instead 

they develop two "mixed-grain" logic blocks that are suitable for implementing both arith

metic and random logic by looking at properties of arithmetic operations and properties 
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Figure 2.7: Mul t i -b i t Logic Block (from [3]) 

of the 4 - L U T . Their logic blocks are coarse-grained: each block can implement up to 

4-bit addition/subtraction, 4 bits of an array multiplier, a 4-bit 2:1 multiplexer, or wide 

Boolean functions. Each logic block can, alternatively, implement single output random 

logic functions like a normal L U T . Their architecture reduces configuration memory re

quirements by a factor of four, which is good for embedded systems or those wi th dynamic 

reconfiguration. Compared to arithmetic-optimized F P G A architectures, it offers efficient 

support of a wider range of D S P applications that vary in the amount of random logic 

they contain. However, the cost of this flexibility is additional area overhead. 

If applications wi th very litt le arithmetic are implemented, further area penalties are 

incurred in the case of al l of these architectures wi th specialized arithmetic support, 

because most of the arithmetic support logic is left unused. 



Chapter 2. Background and Previous Work 19 

Behavioral Description 

Hii/i-L'wrl tVil-w.is 

Register Transfer Level (RTL) 

, Logic Synthesis 
[ Logic Optimizations! [ ' 

| Technology Mapping 

Netlist of Interconnected Cells 

T 
^Physical Design ^ 

j Packing [' !: 

Placement 

|^, | Routing | * J 

Design for download 

Figure 2.8: Steps in the F P G A C A D Flow 

2.2 F P G A C A D Flow 

In order to implement large designs on F P G A s , C A D tools are essential. They allow 

users to work at a high abstraction level, automating optimizat ion and transformation 

to a low-level implementation. This section w i l l give a brief overview of the steps in the 

F P G A C A D flow. Figure 2.8 illustrates the steps in the flow. 

The input to the top level of the F P G A C A D flow is a behavioral description, typically 

in the form of Hardware Description Language ( H D L ) code or a schematic that describes 

what the circuit does, wi th little or no reference to its structure. 

Dur ing high-level synthesis, an in i t ia l compilation of the design is done, some in i t ia l 

optimizations are performed, and functional units are scheduled and assigned to the oper

ations required by the circuit [30]. The result of high-level synthesis is a Register Transfer 

Level ( R T L ) description of the design. A n R T L description is typical ly wri t ten in H D L . 

R T L code is characterized by a straightforward flow of control, wi th subcircuits that are 
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connected together in a simple way [31]. 

Dur ing the optimization stage of logic synthesis, technology-independent optimizations 

are applied to the logic functions that the R T L describes; the result is a netlist of gates. 

Dur ing the technology mapping stage of logic synthesis, this netlist of gates is mapped 

to the set of cells that are available to bui ld the functions. In the case of F P G A s , these 

cells are L U T s and flip-flops. The result is a structural netlist of interconnected L U T s 

and flip-flops. 

Physical design has three stages: (1) packing, (2) placement, and (3) routing. Dur ing 

the packing stage, the L U T s and flip-flops are packed into coarser-grained cluster-based 

logic blocks, wi th the goals of improving routabil i ty and optimizing circuit speed. Packing 

together B L E s that share signals minimizes the number of connections between logic 

blocks, thus enhancing routability. Packing together B L E s likely to be on the cr i t ical 

path makes connections between them go v i a the fast local interconnect, thus opt imizing 

circuit speed. 

Dur ing the placement stage, the cluster-based blocks are assigned locations in the 

F P G A . Goals during placement are to minimize wir ing by placing connected blocks close 

together, to enhance routabil i ty by balancing the wir ing density across the F P G A , and to 

maximize circuit speed by putt ing blocks likely to be on the cri t ical path close together. 

F ina l ly during the routing stage, paths are found in the channels for the wires that 

connect the logic blocks. The result is typically refered to as the placed and routed design. 

A t that point it could be converted to a bitstream for programming an F P G A . 

The widely used Versatile Place and Route ( V P R ) academic C A D tool for packing, 
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placement, and routing w i l l be described in Chapter 3. 

2.3 Power 

The formula for the instantaneous power dissipated at time t, p(t), is: 

Pit) = i(t) • Vdd (2.1) 

where Vdd is the supply voltage and i(t) is the instantaneous current drawn from the 

supply. To obtain the average power over a time interval, we replace the instantaneous 

current by the average current drawn over that interval in Equat ion 2.1. Knowing the 

peak instantaneous power is useful when sizing supply lines, whereas knowing the average 

power helps in the calculation of battery life and cooling requirements. In this work we 

focus on average power. 

Power dissipation can be broken down into dynamic and static components. Dynamic 

power is dissipated when a gate is switching; it is due to: (1) the charging and discharging 

of parasitic capacitances and (2) temporary short circuits between the high and low supply 

voltage lines. The average dynamic power of the gate is given by the equation 

P = 0.5 • aCVfj (2.2) 

where a is the activity of the gate, C is the parasitic capacitance of the gate, and / is 

the clock frequency. Static power is dissipated when the gate is not switching; it is due 

to leakage currents. Typically, in an F P G A , the majority of power dissipated is dynamic 

[22]. 
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2.4 Power Estimation 

It is important to distinguish between power estimation and power measurement. Power 

measurement involves obtaining voltage and current values from a real physical apparatus. 

Power estimation involves predicting what the power dissipation would be, based on a 

number of assumptions. One reason for performing power estimation is that a physical 

apparatus is not always available. Another reason is that a wider range of designs can 

be considered and evaluated more quickly when we are not constrained to using physical 

implementations. Performing power estimates earlier in the design flow is desirable to 

help guide design decisions or identify problems in the design. 

Power estimation can take place at any stage in the F P G A C A D flow (Figure 2.8). 

The stages higher in the flow are at a higher abstraction level and do not involve imple

mentation details. A s we get lower in the flow, more physical details of the design have 

been determined. Performing power estimates at the lower stages i n the flow w i l l generally 

give more accurate estimates; however, it w i l l take more computational resources to take 

into account these physical details. In our work, we w i l l be performing estimates after 

placement and routing. 

Power estimation can be done at different abstraction levels, as shown in Figure 2.9. 

A t each stage, we need the following types of information so that we can perform the 

power analysis: 

1. activity estimates, so we can compute the dynamic power dissipation, 

2. a description of what the design looks like - this can be either an architectural 
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Figure 2.9: Abstract ion Levels for Power Analysis (from [4]) 

description or a netlist - so that we know what components are used and how they 

are connected, 

3. models of these components and connections 

In a platform-style F P G A , the placed and routed netlist contains representations of 

circuit components at multiple levels of abstraction: L U T s , flip-flops, and wires are es

sentially at the gate level, while D S P blocks and memories can be thought of as being 

R T L components, and hard processors can be thought of as being system-level compo

nents. For this work, we are interested in the lower three abstraction levels in Figure 

2.9: circuit-level, gate-level, and R T L . In the following subsections, we w i l l first describe 

two categories into which power estimation techniques can be classified. Then we w i l l 

describe a number of existing techniques at the three lower abstraction levels. F ina l ly we 
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w i l l describe some FPGA-spec i f i c power estimation tools. 

2.4.1 Simulation-based vs. Probabilistic 

Power estimation techniques can be divided into two categories: (1) simulation-based and 

(2) probabilistic. Simulation-based techniques simulate the circuit to gather data about 

the switching of circuit nodes or even determine the waveform of the current being drawn. 

However, simulation-based techniques require complete and specific information about the 

input signals. The accuracy of the simulation results is dependent on how realistic the in

puts are. Consequently, reference [23] calls simulation-based power estimation techniques 

strongly pattern-dependent. 

To avoid the problem of determining complete and specific input signal characteristics, 

probabilistic techniques are based on typical input signal behaviour. They represent 

the average behaviour of the inputs using probabilities. Al though the estimation is s t i l l 

dependent on the probabilities provided, it is sufficient to supply typical behaviour instead 

of specific behaviour. Thus [23] calls probabilistic power estimation techniques weakly 

pattern-dependent. Since calculations need only be performed once on the average data, 

instead of on a large number of simulation inputs, probabilistic techniques tend to require 

less computational resources than simulation-based techniques; however, some accuracy 

is sacrificed by of the use of averaging. 
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2.4.2 Techniques: Circuit-level 

Typically, at the circuit-level users seek very precise estimates. A s a result, circuit-level 

techniques tend to be simulation-based, while probabilistic techniques tend to be applied 

only at the gate-level and above [32]. 

S P I C E 

S P I C E provides very detailed, low-level simulation data for a circuit. S P I C E stands for 

Simulation Program wi th Integrated Circui ts Emphasis and is a general purpose analog 

circuit simulator for nonlinear D C , nonlinear transient, and linear A C analyses. It uses 

mathematical models to represent the devices in the circuit , such as resistors, capacitors, 

and transistors [33]. This very detailed simulation can result in high accuracy estimates, 

but it requires substantial computational resources, making it unsuitable for large circuits. 

S P I C E was used in the creation of the Poon power model, which is discussed in Chapter 

3. However, the work in this thesis wi l l be done at higher levels of abstraction, due to 

runtime and complexity constraints. 

2.4.3 Techniques: Gate-level 

Simulation-based gate-level analysis is very mature. The most popular type of gate-

level analysis uses event-driven logic simulation, where switching events at the inputs of 

a logic gate trigger events at the output after a pre-defined delay. Probabil ist ic gate-

level techniques exist as well, to reduce the execution time of estimates. We used both 

simulation-based and probabilistic gate-level techniques in this work. 
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Synopsys Pr imePower 

Synopsys PrimePower is a simulation-based dynamic power analysis took for gate-level 

power verification that can be used on multimillion-gate designs. It combines gate-level 

simulation results wi th delay and capacitance information from technology libraries to get 

detailed power information. In addit ion to average power numbers, PrimePower reports 

instantaneous power consumption i n different parts of the design. 

Transit ion Probabi l i ty 

The Transition Probabi l i ty Technique relates the average dynamic power of nodes to the 

likelihood that they wi l l switch. To use the Transi t ion Probabi l i ty Technique, we need 

the signal probability and the transit ion probabil i ty of each node. The signal probability, 

Psignah of a node is the average fraction of clock cycles in which the steady state value of 

the node is logic high. The transition probability, Pt, of a node is the average fraction of 

clock cycles in which the steady state value of the node is different from its in i t ia l value 

[23]. 

The Transition Probabi l i ty Technique makes some simplifying assumptions: zero-

delay, spatial independence of inputs and internal nodes, and temporal independence 

of signal values. The assumption of zero-delay means there is, at most, a single transition 

of each signal per clock cycle; in reality, there are delays and they can cause the output 

of a gate to transition multiple times before settling at its final value for the clock cycle. 

The assumption of spatial independence means we assume that there is no correlation be

tween nodes, although, in reality, the value of one signal may affect the value of another 
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signal, in the same cycle. The assumption is made because calculating the correlation 

between signals for a large circuit is prohibitively expensive. The assumption of temporal 

independence means that we assume, for a given signal, that values in consecutive clock 

cycles are independent of each other. 

W i t h those assumptions, the average power can be calculated using Equat ion 2.3: 

P = 0.5-Vd

2J J2 C ^ (2-3) 
all nodes 

where Vdd is the supply voltage, / is the clock frequency of the circuit, C , is the total 

capacitance at node i, and Ptj is the transition probability at node i. Because of the zero-

delay assumption, Equat ion 2.3 only gives a lower bound on the power - unmatched delays 

cause multiple transitions at gate outputs. W i t h the temporal independence assumption, 

the transition probabili ty can be calculated from the signal probability using Equat ion 

2.4: 

Pt — 2 • PsignaliX Psignal) (2-4) 

Transition Density 

The Transition Density Technique is more accurate than the Transition Probabi l i ty Tech

nique and more computationally efficient than event-driven logic simulation. The advan

tage of the Transition Density Technique over the Transit ion Probabi l i ty Technique is 

that it distinguishes between multiple transitions of a node in a single cycle, making i t 

more accurate. Switching act ivi ty can also be thought of as transition density, D(x) (for 
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node x) , which is the average number of transitions of node x per unit time. Formally, it 

is given by Equat ion 2.5, 

Z ? ( x ) 4 l i m ! ^ ) (2.5) 
1 —>oo 1 

where T is the length of the time interval and nx(T) is the number of transitions i n the 

time interval of length T. 

Given the transition density of al l the nodes, the average power dissipation can be 

calculated using Equat ion 2.6: 

P = 0.5-Vd

2

d CiD(xi) (2.6) 
all nodes 

where Vdd is the supply voltage, Q is the capacitance at node i, and D{xi) is the transit ion 

density of node i . 

There are two important quantities in the calculation of activities for a l l nodes in 

the circuit using the Transit ion Density model: static probability and transition density. 

Static probabili ty is the probabili ty that the signal is high. To calculate the activity of 

each node in the circuit, the transition density for each node is computed, gate-by-gate, 

going from the primary inputs to the primary outputs. If we assume that a l l inputs are 

uncorrelated, we can use the relationship 

D(y) = . P 
all input pins 

where f(x) is the logic function of the gate, — f{x)\Xi~\ © f(x)\Xi=o is the boolean 

df(x) 
D{xi (2.7) 
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difference at the output port wi th respect to each input D(xi) is the transit ion density 

at input Xi and D(y) is the transit ion density at the output, y. P (j^^J can be calculated 

from the static probabilities of the inputs x{ using the relationships: 

• P ( X ) = 1 - P ( X ) 

• P ( X Y ) = P ( X ) • P { Y ) 

• P { X + Y ) = P ( X ) + P ( Y ) - P ( X ) • P { Y ) 

where P ( X ) is P \ ( X ) , the static probabili ty of X . 

Lag-one M o d e l 

The Transition Density model assumes that there is no temporal correlation. The purpose 

of using the lag-one model is to relax this assumption; the lag-one model assumes that 

the current value of a signal may depend on the value immediately preceding it . Using the 

lag-one model, the switching probabili ty can be calculated using Equat ion 2.8: 

xiEXo 

P(Xi) • ^ P(Xi>Xj) 
XJ&XI 

(2.8) 

For a boolean function, / , Xi is the set of input states such that / (xi) = 1 V Xi € X\ and 

X0 is the set of input states such that / ( i j ) = 0 V Xj € X0, P ( X J ) is the probabili ty that 

the current input state is xiy and P (x,, Xj) is the probability that the input state wi l l be 

Xj at the end of a clock cycle if the state was X{ at the beginning of the clock cycle. This 

equation represents the summation of probabilities over al l pairs of input states xt, Xj such 

that / (pa) = f (XJ), where an input state is a row of the t ruth table for / . 
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2.4.4 Techniques: RT-level 

RT-level estimators are typical ly based on macro-modeling. Macro-modeling involves cre

ating power macro-models for the basic functional components in the R T L libraries and 

characterizing them [4]. The user of an R T L estimator sees the macro-models as black 

boxes. However, creating a macro-model of a component involves characterizing its rep

resentation at a lower level of abstraction [32]. For example, to do power characterization 

for an adder, we might estimate its gate-level implementation and use information about 

the gates to derive overall values for its power characteristics. 

Al though power estimates at higher levels of abstraction are less accurate, they s t i l l 

provide valuable information. W i t h the increase in the size and complexity of designs, it 

is desirable for designers to be able to estimate the power at a high level of abstraction so 

that the information can guide early architectural decisions. Another motivating factor 

is that the largest power reductions often come from architectural and algorithmic modi

fications [34], which are least costly to make early in the design flow. However, although 

R T L estimators are available in commercial tools, they have not yet gained widespread 

acceptance in design practice. Reference [4] attributes this to the difficulty of quantifying 

the accuracy gap between gate-level and R T L power estimation in an industrial setting. 

Another deterrent noted by reference [4] is the fact that a large amount of characterization 

must be done to make a l ibrary of macro-models; this process must be automated to be 

efficient. 
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Dual Bit Type Method 

The D u a l B i t Type ( D B T ) Method [34] is an architecture-level strategy for generating 

accurate black-box models of datapath power consumption. Its creators note that, while 

typical strategies quantify activity and physical capacitance for their estimates, the strate

gies do not account for the effect of signal statistics on the activity. In particular, the 

authors identify the correlation between sign bits of two's complement operands as being 

an important source of error when using the assumption of randomized inputs to the block 

being modeled. A s an example, consider an F P G A wi th 8-bit adders and a user circuit 

where a l l the operands are 5 bits wide. The lower 5 bits could be adequately represented 

by uniform white noise ( U W N ) inputs, but the upper 3 bits would always be identical 

(correlated) sign-extension values. 

The creators of the D B T method propose to account for two input bi t types: (1) 

correlated sign bits, and (2) U W N operand bits. Recal l Equat ion 2.2: 

P = 0.5 -aCVd

2J (2.9) 

To account for the two bit types, instead of using a single capacitative coefficient based 

on U W N inputs, they use multiple capacitative coefficients that account for transitions 

on each type of data on each input to the block. However, a two-input single-function 

module requires 73 capacitive coefficients; the number increases for semi-configurable 

multi-function D S P blocks that are found in F P G A s . 
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Entropy-based 

In reference [35], the authors propose to characterize the average switching activity of 

a module by using the average switching activity of a typical signal line in the module. 

Their goal is to obtain an acceptable estimate wi th a l imited number of design details and 

at a significantly lower computational cost. They derive simple closed form expressions 

to approximate the switching activity in the R T L blocks using the concepts of entropy 

and informational energy. However, to manage the complexity of their calculations, they 

make the following simpifying assumptions: 

• Simplified, uniform network structure: Each level of the circuit has the same number 

of nodes and all the gates on each level are assumed to get their inputs from the 

previous level. 

• Asymptot ic network depth: The number of levels in the circuit is large enough to 

be considered infinity. 

Unfortunately, D S P and arithmetic blocks in F P G A s do not have a uniform network 

structure and are not so large that we can approximate their network depth as infinite. 

2.4.5 FPGA-specific Power Estimation Tools 

Spreadsheets 

The most accurate power estimation results for an F P G A design w i l l be after the design 

has been implemented (i.e. placed, routed, and then simulated wi th accurate stimulus 

vectors). However, it is valuable to understand the impact of early high-level design 
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decisions on power dissipation. Power estimation spreadsheets can be used in the pre-

implementation phase to obtain a rough idea of power dissipation for a design. 

These spreadsheets contain detailed device data constants from F P G A manufacturer 

datasheets. The user enters environmental conditions, voltage and clock information, logic 

uti l ization, and toggle rates. Ea r ly spreadsheets only calculated total power dissipated 

for voltage sources and components [36] [37]. The spreadsheets for the latest F P G A fami

lies from Al t e r a and X i l i n x are newer and calculate the static, dynamic, and total power 

consumption [38] [39]. The X i l i n x Vir tex-4 spreadsheet also provides graphical represen

tations of power, voltage, and temperature relationships and power used by each type of 

component. 

It should be noted that these spreadsheets compute power in a device-specific manner, 

based on constants. The user is expected to provide toggle activity information for each 

block, but (s)he might not know what values to use at such an early stage. 

C A D tools 

Industrial C A D tools that offer more accuracy than spreadsheets are X i l i n x XPower and 

Al t e ra PowerPlay Power Analyzer . They are used in the implementation phase, when 

design details such as placement and routing have been established. 

XPower requires either user supplied toggle rates, as wi th the spreadsheets, or post-

implementation simulation data to estimate the power consumed [40]. PowerPlay is sim

ilar, but also includes (for some device families) vectorless act ivi ty estimation to statisti

cally estimate the signal activity of a node using the activities of the signals feeding the 
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node and the logic function implemented by the node [41]. The l imita t ion of these tools 

is that they apply only to some of the A l t e r a and X i l i n x devices. 

The Poon power model is a freely available, detailed, flexible power model that has 

been integrated into the Versatile Place and Route ( V P R ) C A D tool . It estimates the 

dynamic, short-circuit, and leakage power consumed for a wide variety of user-specified 

F P G A architectures. It is described i n detail in Chapter 3. 

2.5 Focus and Contribution of Thesis 

Section 2.1 describes the basic island-style architecture and the improvements that exist 

in commercial F P G A s to improve density and speed. Unfortunately, available academic 

power estimation tools only support basic island-style architecture components. The goal 

of this research project is to enable fast and accurate estimation of power dissipated in 

F P G A designs that include embedded multiplier and D S P blocks (for the remainder of 

the thesis, both embedded multipliers and D S P blocks w i l l be referred to as D S P blocks). 

Our project uses both simulation-based and probabilistic information at the gate-level to 

create a Power Estimation Tool Flow that includes automated RT-level embedded D S P 

block macro-model characterization. 

Th i s work builds upon the Poon power model and the widely used V P R C A D Tool , 

which are described in Chapter 3. 

The contributions of this thesis can be summarized as: 

1. Identification of a fast and accurate technique to estimate the switching act ivi ty of 

an embedded D S P block 
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2. Identification of a fast and accurate technique to estimate power dissipated by D S P 

blocks 

3. A tool flow for estimating embedded D S P block power in the context of F P G A 

designs. 

The impact of our enhanced tool flow is threefold; the existence of a freely available, 

architecturally flexible F P G A C A D tool that includes power modeling for embedded D S P 

blocks enables: 

1. the investigation of power-aware architectures containing embedded D S P blocks 

2. the investigation of power-aware C A D algorithms for F P G A circuits containing em

bedded D S P blocks 

3. the incorporation of power tradeoffs in the design of user circuits. 
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Chapter 3 

Framework 

This chapter introduces the existing experimental C A D tool suite that forms the basis 

of our work. Section 3.1 describes the flow of the framework. Section 3.2 describes the 

T - V P a c k tool for packing basic logic elements into cluster-based logic blocks and the 

original V P R C A D tool . Section 3.3 describes the Poon power model and the improved 

activity estimation tool , A C E - 2 . 0 . Section 3.4 describes how our work fits into the existing 

framework and the requirements for our work. 

3.1 Overall Flow 

Our work is based upon the V P R C A D tool suite, enhanced wi th the Poon power model 

(together P V P R ) . Frequently, " V P R " refers to the pair of tools T - V P a c k and V P R , since 

they are typical ly used together. In this thesis, we w i l l do the same. Figure 3.1 illustrates 

the steps in the P V P R tool flow. The left side is the original V P R flow. For the Poon 

power model, activity estimation was added; this is shown to the right of the original 

V P R flow. 

The first input to the flow is a netlist describing the user's circuit. This netlist must be 

pre-processed to generate the correct data and data format required by V P R . This pre-
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Figure 3.1: Overal l C A D Flow (from [5]) 

processing involves logic optimizat ion using SIS [42] and technology mapping to L U T s 

and flip-flops using F l o w M a p + F l o w P a c k [43]. The result of technology mapping is a 

netlist mapped to the desired F P G A architecture. This mapped netlist and input s t imuli 

are inputs to the activity estimation module, A C E - 1 . 0 , which is based on the Transit ion 

Density model. The output of A C E - 1 . 0 is switching activity information for each node 

in the mapped netlist. The mapped netlist, switching activity information, and cluster 

architecture parameters are then input to T - V P a c k , which packs the L U T s and flip-

flops into cluster-based logic blocks. The cluster-based blocks are placed using the V P R 

placement engine. The connections between the placed blocks are then routed using the 

V P R routing engine. 

V P R generates reports of placement and routing statistics. Archi tectural investiga

tions can then be performed by varying the parameters in the parameterized architecture 
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description and examining the resulting statistics. Algor i thmic investigations can also 

be performed by making modifications to the packing, placement or routing engines and 

examining the statistics for a set of benchmark circuits. The Poon power model adds the 

generation of power statistics for the clock, logic, and interconnect to V P R . These power 

statistics can be used in both architectural and algorithmic studies for basic Island-style 

F P G A architectures. 

3.2 Versatile Place and Route (VPR) 

V P R is a freely available C A D tool that is widely used for performing F P G A architectural 

studies. It is composed of a packing tool, a placement and routing engine, and a detailed 

area and delay model. 

3.2.1 Architectural Assumptions 

There are a large number of architectural alternatives for F P G A s and not a l l are supported 

by V P R . V P R targets S R A M - b a s e d Island-style F P G A s wi th cluster-based logic blocks 

and perimeter I / O . Each S R A M cell is made of six minimum-sized transistors wi th gate 

voltage boosting to overcome the Body effect. Four types of switch block architectures 

are supported for the programmable connection of routing tracks: Disjoint [44], Universal 

[45], W i l t o n [46], and Imran [47]. 
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3.2.2 T-VPack 

T - V P a c k is a t iming-driven C A D tool; it takes a circuit netlist that has been technology 

mapped to L U T s and flip-flops and packs these basic logic elements into larger cluster-

based logic blocks. Before the placement stage of V P R , the circuit netlist is processed 

using the T - V P a c k tool. As described in Section 2.1.1, the use of coarse-grained logic 

blocks results in faster, denser circuits, and in faster place and route runtimes. 

T - V P a c k has the optimization goals of: 

• M i n i m i z i n g the number of inter-cluster connections on the cri t ical path of the circuit 

• Reducing the number of connections required between clusters by minimiz ing the 

number of inputs to the clusters 

• M i n i m i z i n g the number of clusters needed 

3.2.3 Placement and Routing Engine 

The placement tool assigns the cluster-based logic blocks to locations in the F P G A . The 

F P G A is modeled as a set of legal locations where logic blocks or I / O pads can be placed. 

A n ini t ia l random placement is constructed, then simulated annealing is used to improve 

the solution. Opt imiza t ion goals involve minimizing wir ing and maximizing circuit speed. 

A s w i l l be described in Section 6.1.2, we modified the placement tool to place D S P blocks 

as well. 

Once placement is complete, the routing tool determines which programmable switches 

to turn on to make the required inter-logic block connections in the F P G A . V P R represents 
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the routing architecture of the F P G A as a directed graph called the routing resource graph. 

T w o routing algorithms are available: a purely routabili ty-driven algorithm and a t iming-

and routability-driven algorithm. 

3.2.4 Architectural Flexibility 

The reason for V P R ' s versatility is its flexible representation of architectures that the user 

specifies in an architecture file. The following features can be specified: 

• Logic block architecture 

• Detailed routing architecture 

• Channel width 

• T i m i n g analysis parameters 

• Process technology parameters and capacitances 

3.3 Poon Power Model 

3.3.1 Architectural Assumptions 

A s the Poon model is incorporated into V P R , it uses the architectural assumptions made 

by V P R . However, the original version of V P R assumes that the clock and other global 

signals are implemented using special dedicated resources. The version of V P R enhanced 

wi th the Poon model assumes an H-Tree clock distribution network and uses the total 

capacitance of the clock network for power estimation. 
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3.3.2 Activity Estimation 

In the Poon model, the first step is to estimate the activities of the nodes in the F P G A . 

The activity estimation tool for the power model is called A C E . To distinguish between 

major revisions of the tool, the original wi l l be referred to as A C E - 1 . 0 and its sucessor 

w i l l be referred to as A C E - 2 . 0 [48]. This section w i l l describe the techniques used for 

estimation in A C E - 1 . 0 and A C E - 2 . 0 . 

ACE-1.0 

A C E - 1 . 0 is the original act ivi ty estimation tool for the Poon model. It estimates the 

static probability (P i ) , switching probabili ty (Ps), and switching activity (As) for combi

national and sequential gate-level circuits using the Transit ion Density signal model. The 

original Transition Density model only handles combinational circuits, but was enhanced 

to support sequential circuits. To support circuits w i th sequential feedback, an iterative 

technique is used to update the switching probabilities at the output of the flip-flops, 

using the expressions P^Q) = PX(D) and PS(Q) = 2 • P^D) • (1 - P i (£>)). The original 

Transition Density model was also enhanced to account for logic gate inertial delays by 

adding an analytical low-pass filter to filter out very short glitches. 

The authors of [48] found A C E - 1 . 0 to be inaccurate for large and/or sequential circuits. 

They found that A C E - 1 . 0 overestimates activities and suggest that the low-pass filter 

function is insufficient for reducing glitching. They also attribute the poor sequential 

circuit performance to the simple expressions used in the iterative technique for updating 

the switching probabilities at the outputs of flip-flops. The next subsection describes the 
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activity estimator from [48], A C E - 2 . 0 , which addresses the weaknesses of A C E - 1 . 0 . 

A C E - 2 . 0 

A C E - 2 . 0 is a faster and more accurate probabilistic activity estimator for the Poon power 

model. It has three stages that address the weaknesses of A C E - 1 . 0 : 

1. Simulation of sequential feedback loops 

2. Calculat ion of P i and Ps values for nodes not in sequential feedback loops using the 

Lag-one model 

3. Calculat ion of As using a probabilistic technique that accounts for glitching 

The first stage improves the accuracy of activity estimation in sequential circuits. Since 

simulation techniques were avoided because of runtime issues, A C E - 2 . 0 only simulates the 

logic in sequential feedback loops. 

In the second stage, A C E - 2 . 0 obtains the Pi and Ps values using the Lag-one model for 

the parts of the circuit not simulated, which produces exact switching probabilities if we 

assume that inputs are not correlated [48]. A C E - 1 . 0 uses the Transition Density model, 

which assumes that there is no temporal correlation. The purpose of using the lag-one 

model is to relax this assumption; the lag-one model assumes that the current value of a 

signal may depend on the value immediately preceding it . 

The most efficient known implementation of the Lag-one model uses a B ina ry Decision 

Diagram ( B D D ) . However, there is an exponential relationship between B D D size and the 

number of inputs, making this implementation impractical for large circuits. A C E - 2 . 0 

combines B D D pruning wi th a partial collapsing technique to give smaller B D D s . 
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In the third stage, A C E - 2 . 0 calculates the switching activities. It uses a generalization 

of the Lag-one model and accounts for glitching by incorporating the concept of a min imum 

pulse width for passing glitches. 

3.3.3 Power Estimation 

The Poon model uses estimated capacitances at the transistor level for each component 

inside the F P G A . Then, using the capacitance values and switching activity estimates, 

the average power dissipation is calculated. The model was compared against H S P I C E 

simulations. The Poon model dynamic power estimates were found to be wi th in 4.8% for 

routing and 8.4% for logic. For leakage, average difference between the estimates and the 

H S P I C E results was 13.4%. 

Dynamic power is the dominant component of the total power in an F P G A . The 

Poon model calculates capacitance values at the transistor level to determine the power 

dissipation of L U T s , multiplexers, and buffers inside logic blocks. It also uses the metal 

capacitance of each routing track and the parasitic capacitance of a l l switches attached 

to the track, specified using the process technology parameters in the architecture file, to 

calculate the power dissipated in the F P G A routing. The routing power is a large portion 

of the dynamic power dissipated. Since the S R A M programming bits in the F P G A do not 

change value after configuration, they are not included in the dynamic power calculations. 

The dynamic power is calculated using the equation: 

(3.1) 
all nodes 
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The short circuit power is modeled as 10% of the dynamic power, based on extensive 

H S P I C E simulations in [5]. 

The leakage power has two components: reverse bias leakage and subthreshold leakage. 

A s the Poon model was calibrated using a 0.18 /zm process technology, it assumes that the 

reverse bias leakage is negligible. To calculate the subthreshold leakage the Poon model 

uses the equation: 

Fleak Idrain (weak inversion) ' ^supply (3*2) 

It uses a first order analytical estimation model to estimate the subthreshold current. 

3.3.4 Architectural Flexibility 

Enhancements for the Poon model add support to the architecture file for the flexible 

specification of: 

• Supply, swing, and gate-source voltage levels 

• Leakage and short circuit power parameters 

• N M O S and P M O S transistor characteristics 

• Clock network architecture parameters 

3.4 DSP Block Power Model and Tool Flow 

The D S P block power model that we propose is an extension for the P V P R flow. Section 

3.4.1 discusses the requirements of the power model we have developed as part of this 

work. Section 3.4.2 explains where our work fits in to the P V P R flow. 
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3.4.1 Requirements 

A s stated earlier, our power model must fit into an existing F P G A C A D tool flow. In order 

to allow the investigation of future architectures, instead of simply existing commercial 

architectures, we prefer that this C A D tool be architecturally flexible; it should be possible 

to specify a wide range of logic block, routing, clock, and D S P block architectures. 

In an architectural investigation, many iterations of P V P R are executed to gather 

data about the impact of varying certain architectural parameters. In order to not hinder 

the use of P V P R for an investigation requiring tens (or even hundreds) of iterations, our 

power estimation must be fast. Furthermore, in order for the power estimates from the 

investigation to be meaningful, they must be accurate. 

The previous requirements pertain to the tool flow that is visible to the P V P R user. 

A n important input to the tool flow in Figure 3.4.2 is the DSP block characterization data. 

A s described in Section 2.4.4, a deterrent to the use of macro-modeling at the RT-level 

is the fact that a large amount of characterization must be done to make a l ibrary of 

macro-models; this process must be automated to be efficient. Therefore, to make our 

tool flow attractive, we must minimize the effort required when adding models for new 

D S P blocks and automate characterization. 

3.4.2 Extending P V P R Flow 

Figure 3.2 shows how our model fits into the P V P R flow. Pre-processing of the D S P 

blocks in the mapped netlist is required before the activities can be generated for the 

nodes in a user's circuit that contains D S P blocks. Addi t iona l characterization data 
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Figure 3.2: C A D Flow Enhanced to Support D S P Block Power Est imat ion 

is also required in order to estimate the power of the D S P blocks in the final stage of 

processing. The addition of our work to the P V P R flow expands the support of P V P R to 

F P G A architectures that contain D S P blocks, thus enabling architectural and algorithmic 

investigations wi th circuits that contain these blocks. 

3.5 Chapter Summary 

Our work modifies the widely used P V P R tool flow. P V P R is composed of the V P R en

gines and the Poon power model. The V P R engines are the T - V P a c k clustering algorithm, 

the V P R placement engine, and the V P R routing engine. The Poon power model adds 

activity estimation and power estimation for logic blocks, interconnect, and the clock. 

Our work modifies the P V P R flow to add activity estimation for D S P blocks and power 

estimation of D S P blocks using characterization information. The requirements for our 
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work are: 

• The D S P block power estimation must fit into an existing architecturally flexible 

F P G A C A D tool flow 

• The power estimation must be fast 

• The power estimation must be accurate 

• The characterization effort must be low and should be automated 

A s mentioned in Section 1.2, the last three of these requirements are competing factors; 

fast estimation and low characterization effort w i l l generally lead to less accurate results. 

Thus, we must find a suitable balance between speed, characterization effort, and accuracy. 

Details of how we determined accurate methods for performing activity estimation and 

power estimation for D S P blocks are discussed in Chapters 4 and 5, respectively. The com

plete automated tool flow, including D S P block characterization, is described in Chapter 

6. 
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Chapter 4 

Activity Estimation 

4.1 Motivation for developing Activity Estimation 

Techniques 

A n important part of estimating the power dissipated in an F P G A is estimating the ac

t iv i ty of each connection in the circuit . In the Poon power model, activities are calculated 

gate-by-gate, starting from the pr imary inputs. Since each gate ( L U T ) is small, the Tran

sition Density or Lag-one model can be used to calculate the activity of the output of each 

L U T as a function of the activity of its inputs. It is not feasible, however, to propagate 

activities through a D S P block using the Transit ion Density or Lag-one model since the 

computation performed using these models (and other related models) is 0(2k) where k 

is the number of inputs to the block. Thus, a new technique is required. In this chapter, 

two alternative techniques to estimate the activities of each D S P output p in are consid

ered. The two techniques are compared to determine which is suitable for use wi th in the 

experimental C A D flow that was developed in this work. 

It is important to note that the techniques described below are only being used to 

estimate the activities of the output pins of each embedded block. Power estimation of 
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these blocks w i l l be discussed in Chapter 5. 

4.2 Techniques for Activity Estimation of an 

Embedded Block 

This section describes two techniques for estimating the activity in circuits containing 

embedded D S P and multiplier blocks. Al though Platform-style F P G A s also contain mem

ories, processors, and other features, we l imi t our experiments to circuits containing only 

D S P and multiplier blocks, logic, and interconnect. This ensures that the results we 

obtain are not obscured by assumptions about the other Platform-style features. 

4.2.1 Gate-Level Technique 

The first technique is an extension of the Poon model activity estimation method. The 

embedded blocks are too large to for us to apply the Transit ion Density or Lag-one 

model to them directly. To be able to use the Transit ion Density or Lag-one models, this 
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technique involves representing the embedded blocks by their gate-level implementations. 

The flattened circuit would then consist of L U T s (for the parts of the circuits not in the 

embedded blocks) and the gates that make up each embedded block. T h e Transit ion 

Density or Lag-one model can then be applied directly to this flattened netlist. This 

technique wi l l be referred to as the Gate-Level Technique. Figure 4.1(A) shows the circuit 

wi th the flattened D S P blocks in grey and the LUT-and-interconnect part of the circuit 

in white. 

Figure 4.1(B) shows a flow that employs this technique. In this flow, the D S P block 

to be evaluated is described in Veri log. Synopsys Design Compiler is used to map the 

block to gates, using T S M C 0.18 / i m technology l ibrary information. The parent circuit 

to be considered is technology mapped using Quartus II in order to determine what gets 

mapped to D S P blocks. The parent circuit is then flattened and the D S P blocks are 

replaced wi th their gate-level representations. Then, activity estimation is performed. 

Currently, the use of Quartus II for technology mapping restricts us to Altera-style D S P 

blocks; however, Quartus II could be replaced wi th another technology mapping tool to 

evaluate non-Altera-style D S P blocks. 

It is important to emphasize that we do not modify the netlist that w i l l be implemented 

in the F P G A . The flattened netlist is generated only during act ivi ty estimation. 

The principal advantage of this technique is that it accounts for the correlation between 

the input activities and output activities of the D S P blocks. Another advantage of this 

technique is that it allows the use of A C E - 2 . 0 to estimate the act ivi ty for a l l the nodes in 

the circuit, including the D S P block nodes. 
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The disadvantage of this technique is that it requires a gate-level implementation of 

the D S P block and proprietary technology l ibrary information. Since we expect that 

this technique would be used for evaluating a large number of architectures, a non-tr ivial 

amount of effort would be involved in generating gate-level implementations for each D S P 

block to be evaluated. 

4.2.2 Independent Output Technique 

The second technique that was evaluated addresses the disadvantage of the previous tech

nique. If sufficiently accurate, we would prefer to use a technique that does not require 

proprietary technology or implementation details. 

In this technique we propose to model the embedded blocks as if they are external to 

the circuit. The remainder of the circuit is composed of L U T s and interconnect, so the 

Poon model can be applied to that part. 

To model the D S P blocks as external to the circuit, the inputs to the embedded block 

are treated as primary outputs of the circuit and the outputs of the embedded block are 
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treated as primary inputs to the circuit. We refer to the D S P block inputs and outputs as 

pseudo-outputs and pseudo-inputs of the circuit, respectively, as shown in Figure 4.2(A). 

In this technique, the pseudo-inputs are assigned values in the same way that the 

primary inputs are assigned values by the Poon model. Random input vectors w i th a 

specified average activity are applied to the inputs and pseudo-inputs. The activities are 

then propagated through the circuit using A C E - 2 . 0 . W h e n the inputs to a D S P block, 

pseudo-outputs, are encountered, the activities are not propagated through the D S P block. 

Instead, the pseudo-outputs are treated in the same way as the primary outputs. The 

activity calculations for the nodes downstream from the D S P block proceed using the 

pseudo-input values. 

In effect, the estimated output activities of a D S P block are then independent of the 

input activities to the D S P block. This technique w i l l be referred to as the Independent 

Output Technique. 

Figure 4.2(B) shows a flow that employs this technique. The parent circuit is tech

nology mapped using Quartus II. The D S P blocks are removed from the netlist and the 

nodes that were formerly outputs of the D S P block are represented as inputs to the circuit . 

Input vectors are then applied to the inputs and pseudo-inputs and activity estimation is 

performed using A C E - 2 . 0 . 

The advantage of this technique is that it does not require gate-level implementation 

and technology information. 

The disadvantage of this technique is that inaccuracies are being introduced because, 

in general, D S P block output transitions are not independent of their input transitions. 
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Reference [49] found that for word-parallel or bit-serial arithmetic, the average activity 

at the output of an adder can be closely approximated by the maximum of the average 

activities of the two inputs, implying that there is a dependence. 

4.3 Methodology and Results for Activity 

Estimation 

In comparing the accuracy of the two techniques, the Gate Level Technique w i l l be used as 

the baseline. To determine how well the simpler Independent Output Technique correlates 

wi th the more accurate Gate-Level Technique, two quantities w i l l be compared: 

1. The activities at the outputs 

2. The activities at the downstream nodes 

In order to accurately estimate the power dissipated by the nets driven by the D S P 

block, accurate activities for these nets are needed. However, if the activities of al l the 

D S P output pins are similar, then using a single average value could be sufficient. 

W h e n we refer to the downstream nodes of a D S P block, we mean the nodes between 

the D S P block outputs and the circuit outputs. Inaccurate activity estimates at the D S P 

block outputs may lead to inaccurate activity estimates for the downstream nodes due to 

the iterative nature of activity estimation algorithms (the output act ivi ty of each node 

is estimated based on the activities of the node inputs). Since there are typically many 

more downstream nodes than there are D S P output pins, inaccuracies in these downstream 
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Block Output Pin 

Figure 4.3: Output P i n Activi t ies for Unregistered Mul t ip l i e r 

nodes may have a larger impact on the accuracy of the estimation than would inaccuracies 

in the D S P outputs. 

In this section, bo th of these quantities were measured to determine whether the 

Independent Output Technique provides sufficient accuracy. 

4.3.1 Output Nodes of DSP Block 

In this subsection, the activities at the outputs are compared. To begin the investigation, 

the activity of each output pin of a 9-bit x 9-bit multiplier was examined. Random inputs 

(with a known average activity) were applied to the inputs of the multiplier, and A C E - 2 . 0 

was used to estimate the output activity of each pin . The results are plotted in Figure 

4.3. The horizontal axis spans the set of 19 multiplier outputs (sign, L S B to M S B ) and 

the vertical axis is the estimated activity of each of these outputs. Each line corresponds 
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Figure 4.4: Output P i n Activit ies for Registered Mul t ip l i e r 

to a different average input activity. For all values of the average input activity, the 

conclusion is the same: the estimated activity differs across the output pins. The pins 

that are on the far left and right of the graph (the least and most-significant bits) have 

low activities, while the activities of the middle bits are large. Th i s implies that there is a 

specific distr ibution for the activities of the output pins, and that choosing these activities 

randomly (as is done in the Independent Output Technique) wi l l lead to inaccurate act ivi ty 

estimates for these nodes. 

Note that the activities reported in Figure 4.3 are large, mostly greater than one. 

This is because multipliers tend to produce a large number of glitches on their outputs 

[50]. Most D S P blocks, however, contain registers on their output pins, which w i l l remove 

these glitches. Figure 4.4 shows the results of the same experiment i n which registers are 

added at the output of each multiplier. A s the graph shows, the distr ibution is s t i l l there, 

especially for the extreme least and most significant bits. 
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Figure 4.7: 18-bit x 18-bit Multipliers Combined for 36-bit x 36-bit Multiplier 
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FIR Filter 

Figure 4.8: F I R Fi l ter Used for A c t i v i t y Experiments 

Figures 4.5 and 4.6 show the results of the same experiment on a more complicated 

D S P block. The block is shown in Figure 4.7. It is similar to an Al t e ra D S P block 

configuration: it combines four 18-bit x 18-bit multipliers and an adder to give a 36-bit 

x 36-bit multiplier. Aga in the conclusion is the same: a single average value to represent 

the activities w i l l not capture the distribution of activities at the output pins. 

4.3.2 Downstream Nodes of DSP Block 

The results in Section 4.3.1 were for the D S P output pins only. In this section, we 

consider the nodes that lie downstream from the D S P blocks. Because A C E - 2 . 0 propagates 

activities from inputs to outputs, inaccuracies in the D S P output activities wi l l lead to 

inaccuracies in these downstream activities. The purpose of the remainder of this section 

is to understand how inaccurate these activities w i l l be. 

To perform these experiments, the F I R filter shown in Figure 4.8 was used. Th is cir

cuit contains a bank of four multipliers followed by an adder tree; registers are included 

after the multipliers and wi th in the adder tree to support pipelining, and to reduce gli tch 
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1.4 

power. The activities of al l nodes in the circuit were estimated using two methods: the 

Independent Output Technique flow shown in Figure 4.2(B) and the Gate-Level Technique 

flow shown in Figure 4.1(B). Figure 4.9 shows the results. In this graph, each dot corre

sponds to a node in the circuit; only nodes that are "downstream" (to the right of) the 

multipliers are included, starting wi th the outputs of the multiplier output registers. The 

x-coordinate of a dot is the activity predicted for the corresponding node by the Gate-Level 

(more accurate) Technique, while the y-coordinate of the dot is the act ivi ty predicted for 

the corresponding node by the Independent Output (less accurate) Technique. 

In this plot, a straight line at y = x would indicate that there is perfect correlation 

between the two estimation techniques. As the graph shows, the correlation is good; the 

R2 correlation metric is 0.8091. This is surprising, since the activities of the multiplier 

outputs are as shown in Figure 4.4 for the Gate-Level Technique, but random for the 

Independent Output Technique. The reason has to do wi th the nature of the downstream 
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circuit. A s mentioned in Section 4.2.2, [49] found that for word-parallel or bit-serial 

arithmetic, the average act ivi ty at the output of an adder can be closely approximated 

by the maximum of the average activities of the two inputs. Other adder configurations 

were considered wi th similar results. The good correlation values do not hold for other 

downstream circuits, however. The adder tree in Figure 4.8 was replaced wi th a signed-

magnitude to 2s complement converter, and found that P 2 =0.542 , as shown in Figure 

4.10, which is not nearly as good. 

4.4 Conclusions for Activity Estimation 

Based on the results from the previous subsection, it was concluded that the activities 

obtained using the Independent Output technique do not correlate well wi th those ob

tained using the more accurate Gate-Level technique for a l l downstream circuits. Since 
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the Power Estimation Tool Flow must work for a wide variety of D S P architectures and 

downstream circuits, it was concluded that the Gate-Level technique is required for the 

flow. 

Note that the results in Figures.4.4 and 4.6 suggest a th i rd activity estimation tech

nique (instead of the Independent Output and the Gate-Level techniques). Rather than 

generate the multiplier output activities randomly (as in the Independent Output Tech

nique), it may be possible to construct a distr ibution function, and generate activities 

based on this distribution function. Whi le this would be possible, it would require a 

significant amount of characterization effort each time a new embedded D S P block is to 

be evaluated, since the distribution function can be significantly different for different 

D S P block architectures. Given that A C E - 2 . 0 is fast and accurate [48], and the Gate-

Level Technique is easier, the extra characterization effort for this th i rd method is not 

warranted. 

4.5 Chapter Summary 

The motivation for developing a new activity estimation technique is runtime. It is not 

feasible to propagate activities through a D S P block using the Transit ion Density or 

Lag-one model since the computation performed using these models (and other related 

models) is 0(2k), where k is the number of inputs to the block. The Gate-Level Technique 

was introduced as an extension of the Poon model activity estimation method. The 

Independent Output Technique was introduced because we would prefer to use a technique 

that does not require proprietary technology or implementation details. Our experiments 
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showed that the more accurate Gate-Level Technique is required for our Power Estimation 

Tool Flow. 
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Chapter 5 

Power Estimation 

Once the activity estimates for each input and output p in of the D S P block have been 

obtained, the Power Estimation Tool Flow must estimate the power dissipated wi th in each 

D S P block. Th is chapter describes and evaluates techniques for doing characterization-

based power estimates. 

5 . 1 Techniques for Power Estimation 

5.1.1 Objectives 

Since one of the objectives for this flow is to allow architectural exploration and experi

mentation, power estimation must be fast. This w i l l facilitate many iterations of the flow 

in architectural parameter sweeps. Al though it would be possible to create a gate-level 

model and use gate-level power simulation (such as wi th PrimePower), this would be far 

too slow to include in the inner loop of the Power Estimation Tool Flow. Therefore, a 

method is needed to quickly estimate the power of the embedded block, without resorting 

to modeling every internal node in the block. 

Reduced estimation time typically comes at the cost of accuracy. In this chapter, 

we compare the accuracy of three fast and relatively simple techniques for estimating 



Chapter 5. Power Estimation 64 

the power of an embedded DSP block against simulation results. For each technique, 

offline characterization is used to obtain data that can be quickly referenced at runtime. 

A limited amount of data is found once for each DSP block architecture, offline, using 

PrimePower. 

The following sections describe the three techniques we considered in increasing order 

of modeling effort. 

5.1.2 The Constant Technique 

The first technique is the simplest. For this technique, the power dissipated by a DSP 

block is assumed to be a constant, dependent on the DSP block type and independent 

of the activities of the input and output pins. This technique will be referred to as the 

Constant Technique. 

The advantages of this technique are that it is simple and fast. The disadvantage of 

this technique is that it may lead to inaccurate estimates, since the power dissipated in an 

embedded block does depend on the input pin activities. However, this technique could 

be sufficient if the dependence is weak and the deviation from the average power is small. 

5.1.3 The Lookup Technique 

For the second technique, we approximate the power dissipated by the embedded block as 

a function of the average activity of all the DSP block inputs. The function need-not be 

linear, and may be implemented as a look-up table rather than as a closed-form function. 

This technique will be referred to as the Lookup Technique. 
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The advantage of this technique is that it is still relatively simple and fast, though it 

does involve more modeling effort than the Constant Technique. The disadvantage of this 

technique is that it assumes all input pins contribute equally to the power dissipated by 

the block. If we consider a multiplier block, for example, it will have pins corresponding to 

the multiplicand and multiplier operands. The fanout logic from the multiplicand operand 

pins may be very different from the fariout logic from the multiplier operand pins; thus, 

we expect that their contribution to the power dissipation will differ. However, if the 

difference does not cause substantial variation in the total power dissipation from an 

average over many trials, then this technique could be sufficient. 

The Lookup Technique may provide inaccurate power estimates, since only the average 

input activity is used to estimate the power. As mentioned in the previous section, in 

reality, not all inputs pins are equal; activity on some pins may have more impact on the 

power dissipation of a block than the same activity on other input pins. To take this into 

we estimate, for each input pin in isolation, how much of an impact that pin has on the 

overall power dissipation of the embedded block. This is quantified by calculating an 

effective capacitance, Cj, for each input pin i. Then, the total power can be calculated as: 

5.1.4 The PinCap Technique 

account, a third technique is considered, called the PinCap Technique. For this technique 

(5.1). 
all-input jpins 

where / is the frequency of the circuit and is the activity of pin i. Intuitively, this 
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Figure 5.1: Methodology for Power Est imat ion Experiments 

technique might provide accurate results, at the expense of more characterization effort. 

5.2 Methodology for Power Characterization 

Each of the three techniques requires some amount of offline characterization. This section 

describes the characterization methodology for each technique. Figure 5.1 shows the flow 

used to obtain this characterization data. A Verilog description of the D S P block was 

synthesized to gates using Synopsys Design Compiler. A Verilog testbench was used to 

simulate a set of input vectors applied to the gate-level description of the D S P block 

in V e r i l o g - X L . The simulation data was then fed to the Synopsys PrimePower simulator 

to obtain characterization information. This is done for a training set of input vectors, 

according to the characterization technique used. 
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5.2.1 Constant Technique 

For the Constant Technique, we repeated this characterization task nine times for the 

given D S P block for average input activity values in the set {0.1, 0.2, 0.3, 0.4, 0:5, 0.6, 

0.7, 0.8, 0.9}. For each of the 9 average activity values, a t raining set of 10 x 5000 input 

vectors was simulated to get 10 power estimates. We took the average of a l l 90 results to 

obtain a single value to use as the constant power value for the D S P block. 

It should be noted that there is a one-to-many, relationship between the average activity 

for a set of input vectors and power estimates for that average input activity. Different sets 

of input vectors may differ in the individual activities of each input p in and, as described 

in Section 5.1.4, different pins may contribute to the power of the block differently. 

5.2.2 Lookup Technique 

For the Lookup Technique, we reused the data from the Constant Technique characteri

zation. We averaged the 10 estimates for each of the 9 activity values to obtain 9 data 

points. These 9 average input activities and their corresponding average power estimates 

became the activity-power estimate pairs for the Lookup Technique look-up table. This 

table was then included in the power model. 

5.2.3 P i n C a p Technique 

The input vector sets used for characterization for the PinCap Technique were different 

from those used for the Constant and Lookup Technique characterization. In those vector 

sets, a l l bits would toggle. For this technique, to assess the contribution of individual 
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Figure 5.2: Power Est imat ion Exper imental Methodology 

pins, a l l other pins except the one in question were held constant; the p in in question was 

then toggled wi th the given activity. The resulting power from PrimePower and Equat ion 

5.1 was then used to determine the effective capacitance for pin j, Cj, because a* = 0 

for al l i ^ j. Th is was repeated for each input p in to the D S P block. Once the effective 

capacitance for each input p in was determined, the values were included in the power 

model. 

Input sets w i th average activities of 0.2 and 0.5 were used for the characterization.. 

Conclusions about the P i n C a p technique could be drawn from the results for these two 

average input activities, so P i n C a p charaterization for the remaining activities between 

0.1 and 0.9 was not necessary. 

5.3 Evaluation 

In this section, we evaluate the accuracy of each of the three power estimation techniques. 

The experimental methodology is shown in Figure 5.2. For each technique, we performed 
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Figure 5.3: Power Est imation Experiment Results 

the characterization tasks described in Section 5.2 for a 9x9-bit mult ipl ier . We then com

pared the power estimated by each technique to that estimated by Pr imePower simulation 

(which is presumably more accurate than any of our three techniques). For this experi

ment, we used 30 x 5000 randomly generated input vectors at each of the average input 

act ivi ty values in the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} (this is more than was 

used during the offline characterization). 

Figure 5.3 shows the results for the Constant Technique and the Lookup Technique. 

Each point on the graph represents the results for one set of 5000 vectors. The x-coordinate 

of the point is the average activity of al l input vectors wi th in the set, and the y-coordinate 

of the point is the estimated power. The triangular dots represent the estimates using the 

Constant Technique, while the circular dots represent the predictions from the Lookup 

Technique. For comparison, the PrimePower estimates are also plotted on the same graph; 

the PrimePower estimates are shown as diamonds. A s the graph shows, the Constant 
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Figure 5.4: Power Est imat ion Experiment Results 

Technique (in which a single power value is used, independent of the input activity) 

provides poor estimates, compared to the PrimePower results. The Lookup Technique, 

on the other hand, produces results that track well wi th the PrimePower results. The 

average difference between the Lookup Technique and PrimePower estimates was 8%. The 

experiment was repeated wi th a D S P block rather than a multiplier, and the conclusions 

were the same; the average difference between the Lookup Technique and the PrimePower 

results was 5%. This suggests that it is important to take the input activities into account 

when estimating power of the block, but that the average of the input activities is enough 

information to get reasonably accurate power estimates. 

For the P i n C a p Technique, the results were not as good. Figure 5.4 shows the es

timates obtained using the P i n C a p Technique, along wi th the estimates obtained using 

PrimePower. In this graph, only vector sets wi th an average input act ivi ty of 0.2 were 

considered. Each point in this graph corresponds to one such set. The points are dis-
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t r ibuted evenly across the x-axis, sorted by the values of the PrimePower estimate. A s the 

graph shows, even for these sets, which all correspond to the same average activity, the 

power estimates predicted by the P i n C a p technique vary widely, and have no correlation 

to the PrimePower estimates. 

The PinCap Technique always overestimates the actual power; this is because the 

technique assumes that the power contribution of each input p in is independent of the 

power contribution of each other input pin, when in fact, it is not. The total power is not 

simply the sum of the contributions from each pin . Even if the P i n C a p results are scaled 

by a constant value in an attempt to reflect this, the results do not track the simulation 

results well (this is also shown in Figure 5 . 4 ) . Other input activities were also attempted 

and no simple way was found to scale the results to take into account overlap between 

the contributions of multiple input pins. 

5.4 Conclusions for Power Estimation 

Based on the results from the previous section, we concluded that the Lookup Technique is 

most appropriate for the Power Estimation Tool Flow. Not only does it provide reasonably 

accurate results, but the characterization effort is relatively simple, and the run-time of 

the power estimate is small . 
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5.5 Chapter Summary 

The objective of the power estimation experiments was to determine a fast and accurate 

technique for estimating the power of D S P blocks, given input activities. We introduced 

three techniques, in increasing order of complexity: (1) the Constant Technique, (2) the 

Lookup Technique, and (3) the P i n C a p Technique. Power estimates using these techniques 

were performed and compared against PrimePower simulations for accuracy. We found 

that it is important to consider the input activities when estimating the power and that 

the Lookup Technique is most suitable for our Power Estimation Tool Flow. 
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Chapter 6 

Power Estimation Tool Flow 

This chapter describes how we combined our Gate-Level activity estimation technique 

from Chapter 4 and our Lookup power estimation technique from Chapter 5 w i th the 

P V P R framework to obtain a complete power estimation C A D tool flow. Section 6.1 de

scribes the overall flow and the modifications we made to P V P R . Section 6.2 describes the 

processing of two benchmark circuits through the entire flow and compares our estimates 

against PrimePower simulations of the circuits. 

6.1 O v e r a l l F l o w 

6.1.1 Functionality 

Our C A D tool flow for estimating the power dissipated in F P G A circuits containing em

bedded D S P blocks is shown in Figure 6.1. The activity estimation and power estimation 

are performed as described in Chapters 4 and 5. 

The steps in the box on the left correspond to activity estimation. For act ivi ty esti

mation, there are three inputs: (1) the user's circuit, (2) a Verilog description of the D S P 

block, and (3) input statistics (either as vectors for the circuit inputs or the transit ion 

density and static probability of each input) . To facilitate architectural investigations, 
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Figure 6.1: Power Est imat ion Tool F low 

we created a parameterized D S P block generator to automate the production of Verilog 

descriptions for a large number of D S P architectures. The D S P block description is syn

thesized to a gate-level netlist using Synopsys Design Compiler and a T S M C 0.18 fj,m 

technology library. The H D L description of the user's circuit is technology mapped to 

L U T s , flip-flops and D S P blocks using Quartus II to produce a mapped netlist of these el

ements and their connections. The mapped netlist is flattened by replacing the D S P block 

instances wi th the gate-level implementation obtained from Design Compiler . A C E - 2 . 0 

is then used to obtain the activity of each node in the flattened circuit, using the input 
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statistics that we provided. 

The steps in the box on the right correspond to power characterization. Recal l 

that, whereas the activity estimation steps must be repeated each time the user's cir

cuit changes, the power characterization steps need only be done once when the D S P 

block is designed and can then be stored as l ibrary data. For power characterization, 

there are two inputs: (1) the gate-level implementation of the D S P block from Design 

Compiler , and (2) a training set of input vector files. The gate-level implementation is 

simulated using Ver i l og -XL and the resulting power determined by PrimePower for the 

training set of input vector files. The average activity and resulting power for each input 

vector file in the training set is saved as an activity-power pair in the Lookup Technique 

table in the P V P R architecture file. The D S P block t iming characteristics are also stored 

in the P V P R architecture file. 

The activity data for the circuit and the characterization data for the D S P block are 

then input to P V P R for packing, placement, routing, and power analysis. Currently, the 

use of Quartus II for technology mapping restricts us to Altera-style D S P blocks; however, 

Quartus II could be replaced wi th another technology mapping tool to evaluate different 

D S P block architectures. 

6.1.2 Modifications to P V P R 

Neither the original version of V P R nor P V P R support circuits wi th embedded D S P 

blocks. We enhanced the B L I F netlist format [42] to allow for the specification of D S P 

blocks. We modified the P V P R architecture file format [21] to include power and t iming 
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numbers for these blocks (including the power look-up table proposed in Chapter 5); 

Table 6.1 describes the parameters we added. We assumed that D S P blocks are arranged 

in columns, as in Al t e ra and X i l i n x devices. We modified the placement algorithm to 

correctly position these blocks, modified the t iming analysis algorithm to estimate the 

delay through these blocks, and use this information to calculate the cr i t ical path of an 

implementation [51]. We then modified the power model to use the Lookup Technique for 

D S P blocks. 

Table 6.1: Parameters added to the P V P R Architecture Fi le Format 

Parameter Meaning 

Start Firs t column of D S P blocks 
Repetition Number of columns before next column of D S P blocks 
Class Nature of the D S P input and output pins 
Location Locations around the D S P block where the input and output pins can 

be programmably connected to the routing fabric 
Leakage Leakage power dissipated by the D S P block 
Activity Look-up value for activity in an activity-power pair 
Energy Energy dissipated for a given Ac t iv i t y in an activity-power pair (Energy 

is used to be independent of clock frequency) 

6.2 Flow Demonstration and Comparison to 

Gate-Level Simulation 

6.2.1 Motivation 

The experiments in Chapter 5 consider the D S P blocks as stand-alone elements; random 

inputs are used and all bits have approximately the same average activity. W h e n a D S P 
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block exists in a larger circuit, however, it may be located downstream from other logic; 

each bit in the input operands may have a different activity. This section demonstrates the 

functionality of our C A D tool flow using two benchmark circuits from [52] and compares 

our results w i th a more accurate method (using the same inputs) to see how much accuracy 

is sacrificed to obtain fast estimates. 

6.2.2 Terminology 

A s this section discusses the simulation of multiple circuits, it is important to clarify the 

terminology we w i l l use. The test circuits (the F I R filter and differential equation solver) 

w i l l be refered to as the parent circuit or circuit. The circuit w i l l contain multiple instances 

of a DSP block. The DSP block is described by the D S P Block Verilog Description in Figure 

6.1. The instances w i l l be referred to as DSP block instances. Figure 6.2 shows the circuit 

(in white) wi th instances (in grey) of a DSP block, which is shown to the right. 

circuit 
DSP block 
instances 

DSP block 
DSP1 

DSP2 

Figure 6.2: Terminology 
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FIR Filter 

Figure 6.3: fir_3_8_8: F I R Fi l ter Ci rcui t 

6.2.3 Methodology 
Demonstration of Power Estimation Tool Flow 

To demonstrate the functionality of our flow, we ran it on two benchmark circuits from 

[52]. The first circuit is fir_3_8_8, the F I R filter shown in Figure 6.3, which uses embedded 

multipliers; it consists of 272 L U T s , 148 flip-flops, and 4 multipliers. The second circuit 

is diffeq_paj_convert, a differential equation solver, shown in Figure 6.4; it consists of 850 

L U T s , 193 flip-flops, and 3 D S P blocks. The differential equation solver uses a D S P block 

configuration similar to one found in Al t e ra Strat ix devices. This block is shown in Figure 

6.5; it combines four 18-bit multipliers wi th a dedicated adder to make a 36-bit multiplier. 

For both example D S P blocks, a look-up table of activity-power pairs had been created 

offline, using Lookup Technique characterization as described in Chapter 5. 

For each circuit we performed the characterization part of the flow only once and ran 

an iteration of the rest of the flow for each input vector file. For each act ivi ty in the set 

{0.25, 0.50, 0.75}, we created five input files of 5000 vectors having that average activity, 

for a total of 15 input files. Note that the wid th of these vectors is equal to the number 
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of inputs of the parent circuit . The purpose of providing vectors instead of activity and 

static probability values for each bit is that A C E - 2 . 0 performs simulation for sequential 

feedback loops. If only activity and static probability values are given to A C E - 2 . 0 , then 

it randomly generates vectors for simulation. However, since we wanted to compare our 

results against a PrimePower simulation, we needed to provide the same set of vector files 

to both estimation tools. 

Figure 6.4: Differential Equat ion Solver Ci rcu i t 

Compar i son against P r imePower 

For these experiments we compared the results from our Power Estimation Tool Flow 

against PrimePower. The pseudocode for the methodology is given i n Figure 6.6 and 
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Figure 6.5: 18-bit x 18-bit multipliers combined for 36-bit x 36-bit multiplier 

described below. 

The same input vectors were used for both the Power Estimation Tool Flow and the 

simulation approaches. We assumed that the pr imary inputs to the parent circuit were 

free of glitching. 

To determine the power dissipated by each DSP block instance using simulation, we 

used the flow shown in Figure 6.7. To determine the power of each D S P block instance, 

we had to determine the input waveforms to each D S P block instance separately. It is 

incorrect to assume that the D S P block instances wi l l have identical input waveforms, 

because the logic upstream of (leading up to) each D S P block instance in the parent 

circuit may not be identical. 
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Synthesize Verilog description of DSP block to gates in Design Compiler 
(already done for Power Estimation Tool Flow); 

Create simulation model of circuit in Quartus II; 

For avg_act in (0.25, 0.50, 0.75) { 

For trial in (1 to 5) { 
Create input vector set V of 5000 vectors with activity avg_act 
and width equal to number of primary inputs in circuit; 

Apply input vector set to circuit sim model using testbench_cct; 
Use ModelSim to simulate and generate VCD; 

For each DSP block instance i in circuit { 
Parse VCD for input waveforms to this DSP instance; 
Apply waveforms at DSP instance inputs using testbench_dsp_i; 
Use Verilog-XL to simulate; 
Use PrimePower to calculate power of DSP instance i (when 
circuit is stimulated by input vector set V); 

} 
} 

} 

Figure 6.6: Simulation Flow Pseudocode 

To obtain the input waveforms to each D S P block instance, we used Quartus II to 

generate a simulation model of the parent circuit. Since we used Quartus II to technology 

map the circuits in the Power Estimation Tool Flow, the mapped implementations for both 

methods match. We used Mode lS im to simulate the circuit and generate a Value Change 

D u m p ( V C D ) of the simulation, which is an A S C I I file that describes the waveforms for the 

circuit internal nodes. We then used a V C D parser to extract the waveforms corresponding 

to the inputs of each D S P block instance. To obtain the simulation power estimates for 

each vector set, we used the input waveforms for each D S P block instance to simulate the 
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Figure 6.7: F low for Determining Simulation Power Est imate of Each D S P Block Instance 

gate-level implementation of the DSP block using V e r i l o g - X L and PrimePower. 

6.2.4 Results 

Demonstration of Power Estimation Tool Flow 

The results of the power analysis are shown in Table 6.2. In both circuits, the D S P blocks 

dominate the power dissipation. This may be surprising because routing power generally 

dominates the power dissipation in an F P G A . However, the circuits are D S P kernels and 

not complete systems. Thus, they contain only a small amount of non-DSP logic and 

substantial routing is internal to the D S P blocks. 
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Compar i son against P r imePower 

Tables 6.3 and B . l to B.3 show the detailed results for the F I R filter circuit. Tables 6.4 

and B.4 to B.6 show the detailed results for the differential equation solver circuit. 

The average difference between the Power Est imat ion Tool F low and PrimePower 

results for the F I R circuit was 20.4%. In the differential equation circuit, 2 of the 3 D S P 

blocks had an average difference of 22-26%, however the th i rd had glitching on one input 

bus and was off by 77% on average. W h e n creating the lookup table, the blocks had been 

characterized only for activities 0.1 to 0.9, as it was not clear how to properly imitate 

glitching. Al though we use linear interpolation to determine-the power corresponding to 

average input activities that are not in the Lookup Technique table, the power relationship 

is not necessarily linear wi th respect to D S P input activities. Consequently, it is not 

surprising that estimates for D S P block instances having an average input act ivi ty greater 

than 1 are not well represented by a linear interpolation using the points for activities 0.8 

and 0.9. This indicates the importance of a lookup-table that includes data that considers 

glitching. 

Append ix A describes preliminary unsuccessful attempts at including glitching during 

PrimePower characterizations. 

Table 6.2: V P R Power Analysis Results 

Power fir_3_8_8 diffeq_paj .convert 

Rout ing 5.46 m W , 18.4% 8.67 m W , 10.0% 
Logic Blocks 4.04 m W , 13.6% 4.68 m W , 5.6% 
Clock 1.61 m W , 5.4% 2.57 m W , 2.9% 
D S P 18.59 m W , 62.6% 70.82 m W , 81.5% 

Total 29.71 m W 86.74 m W 
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Table 6.3: Overal l Percentage Error for F I R Fi l ter Results 

Ari thmet ic 
Mean 

average percentage error 20.4% 
average for just multiplier instance #0 21.6% 
average for just multiplier instance #1 19.7% 
average for just multiplier instance #2 19.6% 
average for just multiplier instance #3 20.5% 

Table 6.4: Overal l Percentage Error for Differential Equat ion Solver Results 

Ari thmet ic 
Mean 

average percentage error 41.7% 
average for just D S P block instance #0 76.8% 
average for just D S P block instance #1 22.5% 
average for just D S P block instance #2 25.8% 

6.3 Chapter Summary 

In this chapter we have demonstrated the functionality of our Power Estimation Tool 

Flow for estimating the power of F P G A circuits containing embedded D S P blocks, which 

addresses our requirements laid out in Chapter 3. We have compared our results against 

simulation using PrimePower. Our fast estimates are wi th in 19% to 26% of the simulated 

results, except in the case where there is significant glitching at the inputs of the D S P 

blocks; the glitching case resulted in 77% error. We believe that adding characterization 

of glitches on the inputs of the D S P blocks is necessary to improve the accuracy of our 

method; however, it is not immediately clear how this can be done. This w i l l be discussed 
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as future work in Section 7.2.2. 
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Chapter 7 

Conclusion 

7.1 Summary and Contributions 

In this thesis we have described an experimental C A D flow that can be used to estimate 

the power dissipation of F P G A circuits containing embedded D S P blocks. We identified 

two technical challenges in creating such a flow: (1) estimating the activity of a l l nodes 

in a circuit containing one or more D S P blocks, and (2) estimating the power dissipated 

wi th in a D S P block quickly and accurately. 

The first challenge arises because standard activity estimation techniques cannot prop

agate activities through these D S P blocks. We address this by replacing each D S P block 

wi th a gate-level representation of the block, and using the standard act ivi ty techniques 

on the resulting circuit. 

The second challenge arises because it is not possible to pre-characterize the D S P block 

for al l possible input patterns and activities. We have shown that reasonable estimates 

can be obtained by creating a look-up table of power values. In the power model, the 

look-up table is indexed using the average activity of the block input nodes. 

We then combined our findings to create a Power Estimation Tool Flow based on the 

P V P R framework. The impact of our enhanced tool flow is threefold; the existence of 
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a freely available, architecturally flexible F P G A C A D tool that includes power modeling 

for embedded D S P blocks enables: 

1. the investigation of power-aware architectures containing embedded D S P blocks 

2. the investigation of power-aware C A D algorithms for F P G A circuits containing em

bedded D S P blocks 

3. the incorporation of power tradeoffs in the design of user circuits 

This work is also one of a collection of projects at the University of Br i t i sh Co lumbia 

System-on-Chip L a b that each take a step towards the larger goal of enabling power 

estimation for platform-style F P G A architectures that contain embedded D S P blocks, 

embedded memories, embedded processors, and multiple clock domains. 

A poster of our contributions w i l l appear at the 2006 I E E E International Conference 

on F ie ld Programmable Technology in Bangkok, Thai land . 

7.2 Future Work 

Given our tool flow, there are three enhancements that would be necessary before per

forming power-aware F P G A architecture studies that include embedded D S P blocks: (1) 

a suite of integer benchmarks representative of D S P and arithmetic-intensive user designs, 

(2) the incorporation of glitch characterization into the look-up data, and (3) board-level 

verification. 
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7.2.1 Benchmarks 

A suite of integer benchmarks representative of D S P and arithmetic-intensive user de

signs is essential to be able to draw generalizable conclusions from an architectural study 

targeting embedded D S P blocks. The standard benchmark suite for F P G A studies is the 

collection of Microelectronics Center of Nor th Carol ina ( M C N C ) circuits; however, these 

circuits are not very representative of D S P applications. 

Freely available circuits were obtained from [52] and [53]; however, most were not 

suitable for our experiments for the reasons listed below: 

• Some circuits used floating point arithmetic. D S P blocks in commercial F P G A s 

target integer arithmetic, so our flow does the same. 

• Some circuits used very simple and small D S P blocks, which would not exercise 

many of the features in D S P blocks embedded in commercial F P G A s . 

• Some of the circuits were automatically generated using high-level synthesis. The 

R T L signal and module names were automatically generated alphanumeric character 

sequences. This h id the flow of control and data in the circuits and prevented 

analysis and debugging of the circuits. 

A very useful future research project would be the creation of circuits for integer D S P 

and arithmetically intensive applications at the register transfer level. 
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7.2.2 Glitch Characterization 

The comparison to gate-level simulation in Section 6.2 revealed that glitching may take 

place on the inputs to the D S P blocks and that it is important to include characterization 

data in the power estimation look-up table for cases where the activity at the inputs to 

the D S P blocks is greater than 1. When performing characterization, it was not clear how 

to properly imitate glitching in our testbenches. Appendix A describes our attempts. 

Reference [30] describes word-level and bit-level glitch generation and propagation 

models for characterization of datapath circuits. It would be interesting to incorporate 

this into our flow and evaluate its effectiveness. 

7.2.3 Board-Level Verification 

W h e n performing power estimation at higher levels of abstraction, as we do w i t h the 

Lookup Technique, we are trading off accuracy for fast estimation. Consequently, at this 

level, fidelity is what we seek to provide (i.e. relative accuracy, instead of absolute). In 

order to verify that our tool flow w i l l provide consistent estimates that provide usable 

trends, we must compare our results to physical measurements on ah F P G A board. 

The use of board-level measurements to verify our power model is not t r iv ia l . It is 

not simply a case of downloading our test circuits to boards wi th F P G A s containing the 

appropriate D S P blocks and comparing the measured power to our estimates. F i rs t , it 

is not feasible to create custom F P G A s for the set of D S P block architectures under 

evaluation; layout and fabrication costs are excessive. Second, the power of the D S P 

blocks alone cannot be measured; typically, we can only measure the total active and 
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quiescent power of the system. Consequently, we cannot simply compare our estimates 

against the results for a set of commercial F P G A boards. For example, A l t e r a Cyclone II 

and X i l i n x Vir tex-II devices contain embedded 18xl8-bit multipliers, and Al t e r a Strat ix 

and X i l i n x Vir tex-4 devices contain D S P blocks. One possibility is to compare our power 

estimates for a set of benchmark circuits against the power estimates for four boards 

containing each of these devices; however, their logic and routing architectures differ, 

making it impossible to distinguish between deficiencies in the power models for the D S P 

blocks, the logic blocks, and the interconnect. 

A starting point for board-level verification could be to compare trends in measured 

values on a particular F P G A board against trends in the power estimates using the corre

sponding architecture description file, for a set of benchmark circuits. The desired result 

would be to see that the measurements and estimates both rank the power dissipation 

of the benchmark circuits in the same order. A prerequisite for this verification is a 

representative set of benchmark circuits, described in Section 7.2.1. 
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Appendix A 

Glitching Characterization Attempt 

This Appendix describes several unsuccessful attempts to account for glitches in the power 

characterization scheme described in Chapter 5. 

Figure A . l illustrates the flow we used for characterizing the power of the D S P blocks. 

A Verilog description of the D S P block was synthesized to gates using Synopsys Design 

Compiler . A Verilog testbench was used to simulate a set of input vectors applied to the 

gate-level description of the D S P block in Ver i log -XL. The simulation data was then fed 

to the Synopsys PrimePower simulator to obtain characterization information. 

For input activities less than one, the testbench applied exactly one vector to the 

inputs of the D S P block each clock cycle. The activity at each input could be controlled 

by keeping the value of the bit or changing the value. 

To attempt to imitate glitching, we generated testbenches where more than one vector 

was applied during each clock cycle. For example, to attempt to characterize the power 

for input activities of 1.5, a vector file wi th activity 0.5 (assuming 1 vector per clock cycle) 

was read in and 3 vectors were applied each clock cycle. 

We observed that applying the vectors for a particular clock cycle at equally spaced 

intervals in the clock cycle, as shown in the testbench pseudocode in Figure A . 2 , does not 

imitate glitching properly. $T_fraction is the length of the equally spaced intervals and 
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Figure A . l : Power Characterization Flow 

reg [0:$inbits_ind] test_vector_input[0:N-1]; 
reg [0:$inbits_ind] inputs; 
task test_top; 

integer i, j ; 
begin 

©(posedge clock); 
@(negedge clock); 
reset = 0; 
©(posedge clock); 
for (i=0; (i+$integer_multiple) <= N; i=i+$integer_multiple) begin 

inputs = test_vector_input[i]; 
#$T_fraction; 
inputs = test_vector_input[i+1]; 
#$T_fraction; 

inputs = test_vector_input[i+($integer_multiple-1)]; 
#$T_fraction; 
©(posedge clock); 

end 
end 

endtask 

Figure A .2: Testbench Pseudocode 
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^integer.multiple is the number of vectors to apply during each clock cycle. 

For example, from Figure 5.3 we would expect that using a vector file w i t h activity 

0.5 (assuming 1 vector per clock cycle) and applying two vectors per cycle to achieve an 

effective input activity of 1.0 would give PrimePower estimates greater than the results 

for 0.9 input activity. For a D S P block where only input transitions during the high part 

of the clock cycle have an effect, the PrimePower estimates were approximately equal to 

the results for 0.5 input activity instead because only half the transitions had any effect. 

To avoid this problem, a second method was attempted where %T.fraction was set 

to half the period divided by $integer_multiple, so that a l l the vectors would be applied 

during the high part of the clock cycle. Th is led to overestimates of the power because, 

in reality, glitching at the inputs to the D S P block can take place in any part of the clock 

cycle. 

To properly imitate glitching for characterization, a more sophisticated testbench gen

erator would be required that incorporates some sort of statistical or probabilistic model 

that dictates when vectors should be applied to the D S P block inputs. 
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Appendix B 

Detailed Results from Comparison 

Table B . l : F I R Fi l te r Results for 0.25 Average Input A c t i v i t y 

Vector Mul t ip l ie r H H V P R PrimePower % Error 
Set Energy Energy 

vec_025_0_a mult_rtl_0 6.93E-11 6.31E-11 9.8% 
mult_rt l_l 6.92E-11 6.01E-11 15.1% 
mult_rtl_2 6.92E-11 5.87E-11 . 17.8% 
mult_rtl_3 6.93E-11 6.07E-11 14.2% 

vec_025_0_b mult_rtl_0 6.95E-11 6.14E-11 13.1% 
mult_rt l_l 6.92E-11 6.05E-11 14.3% 
mult_rtl_2 6.93E-11 5.82E-11 19.1% 
mult_rtl_3 6.97E-11 6.08E-11 14.5% 

vec_025.0_c mult_rtl_0 6.95E-11 6.32E-11 10.0% 
mult_rt l_l 6.93E-11 5.92E-11 17.1% 
mult_rtl_2 6.95E-11 5.95E-11 16.8% 
mult_rtl_3 6.95E-11 6.12E-11 13.5% 

vec_025_0_d mult_rtl_0 6.92E-11 6.24E-11 10.9% 
mult_rt l_l 6.91E-11 5.90E-11 17.2% 
mult_rtl_2 6.96E-11 5.93E-11 17.3% 
mult_rtl_3 6.96E-11 6.02E-11 15.5% 

vec_025_0_e mult_rtl_0 6.95E-11 ' 6.25E-11 11.2% 
mult_rt l_l 6.95E-11 6.06E-11 14.7% 
mult_rtl_2 6.95E-11 5.92E-11 17.3% 
mult_rtl_3 6.97E-11 6.17E-11 12.9% 

average percentage error 14.6% 
average for just multiplier instance #0 11.0% 
average for just multiplier instance #1 15.7% 
average for just multiplier instance #2 17.7% 
average for just multiplier instance #3 14.1% 
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Table B .2 : F I R Fi l ter Results for 0.50 Average Input A c t i v i t y 

Vector 
Set 

Mul t ip l ie r H H V P R 
Energy 

PrimePower 
Energy 

% Error 

vec_050_0_a mult_rtl_0 8.92E-11 1.09E-10 18.2% 
mult_rtl_l 8.90E-11 1.04E-10 14.4% 
mult_rtl_2 8.95E-11 1.04E-10 14.0% 
mult_rtl_3 8.93E-11 1.06E-10 15.5% 

vec_050_0.b mult_rtl_0 8.92E-11 1.10E-10 19.2% 
mult_rtl_l 8.92E-11 1.04E-10 14.1% 
mult_rtl_2 8.94E-11 1.03E-10 13.4% 
mult_rtl_3 8.92E-11 1.07E-10 16.2% 

vec_050_0_c mult_rtl_0 8.93E-11 1.11E-10 19.4% 
mult_rtl_l 8.92E-11 1.04E-10 14.2% 
mult_rtl22 8.95E-11 1.04E-10 14.2% 
mult_rtl_3 8.95E-11 1.06E-10 15.4% 

vec_050_0_d mult_rtl_0 8.91E-11 1.07E-10 16.8% 
mult _rtl_l 8.94E-11 1.05E-10 15.0% 
mult_rtl_2 8.90E-11 1.01E-10 12.3% 
mult_rtl_3 8.94E-11 1.07E-10 16.2% 

yec_050.0.e mult_rtl_0 8.93E-11 1.12E-10 20.6% 
mult_rtl_l 8.92E-11 1.04E-10 14.5% 
mult_rtl_2 
mult_rtl_3 

8.94E-11 
8.92E-11 

1.02E-10 
1.06E-10 

12.2% 
15.7% 

average percentage error 15.6% 
average for just multiplier instance #0 18.9% 
average for just mult iplier instance #1 14.4% 
average for just multiplier instance #2 13.2% 
average for just multiplier instance #3 15.8% 
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Table B .3 : F I R Fi l ter Results for 0.75 Average Input A c t i v i t y 

Vector Mul t ip l ie r H H V P R PrimePower % Er ror 
Set Energy Energy 

vec_075_0_a mult_rtl_0 9.97E-11 1.52E-10 34.3% 
mult_rt l_l 9.96E-11 1.42E-10 29.7% 
mult_rtl_2 9.95E-11 1.38E-10 27.9% 
mult_rtl_3 9.96E-11 1.44E-10 30.7% 

vec_075_0_b mult_rtl_0 9.96E-11 1.52E-10 34.6% 
mult_rt l_l 9.96E-11 1.41E-10 29.2% 
mult_rtl_2 9.97E-11 1.38E-10 27.7% 
mult_rtl_3 9.96E-11 1.43E-10 30.5% 

vec_075_0_c mult_rtl_0 9.96E-11 1.49E-10 33.3% 
mult_rt l_l 9.95E-11 1.41E-10 29.4% 
mult_rtlJ2 9.95E-11 1.38E-10 27.7% 
mult_rtl_3 9.96E-11 1.47E-10 32.4% 

vec_075_0.d mult_rtl_0 9.96E-11 1.55E-10 35.8% 
mult_rt l_l 9.97E-11 1.39E-10 28.3% 
mult_rtl_2 9.97E-11 1.41E-10 29.4% 
mult_rtl_3 9.97E-11 . 1.50E-10 33.6% 

vec_075_0_e mult_rtl_0 9.96E-11 1.55E-10 35.9% 
mult_rt l_l 9.96E-11 1.39E-10 28.4% 
mult_rtl_2 9.97E-11 1.37E-10 27.4% 
mult_rtl_3 9.96E-11 1.44E-10 30.9% 

average percentage error 30.9% 
average for just multiplier instance #0 34.8% 
average for just multiplier instance #1 29.0% 
average for just multiplier instance #2 28.0% 
average for just multiplier instance #3 31.6% 
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Table B.4: Differential Equat ion Solver Results for 0.25 Average Input A c t i v i t y 

Vector 
Set 

D S P 
Block 

P V P R 
Energy 

PrimePower 
Energy 

% Error 

vec_025_0_a dspblockO 9.51E-10 4.16E-09 77.1% 
dspblockl 1.01E-09 1.52E-09 33.3% 
dspblock2 1.12E-09 1.65E-09 32.2% 

vec.025.0_b dspblockO 9.04E-10 4.03E-09 77.6% 
dspblockl 1.04E-09 1.33E-09 21.8% 
dspblock2 1.23E-09 1.58E-09 22.2% 

vec.025.0-c dspblockO 8.95E-10 3.88E-09 76.9% 
dspblockl 1.01E-09 1.28E-09 21.2% 
dspblock2 1.23E-09 1.49E-09 17.4% 

vec.025.0_d dspblockO 1.05E-09 4.24E-09 75.4% 
dspblockl 1.04E-09 1.31E-09 21.0% 
dspblock2 1.17E-09 1.73E-09 32.1% 

vec.025.0_e dspblockO 8.02E-10 3.76E-09 78.7% 
dspblockl 1.00E-09 1.22E-09 17.7% 
dspblock2 1.12E-09 1.27E-09 12.0% 

average percentage error 41.1% 
average for just D S P block instance #0 77.1% 
average for just D S P block instance #1 23.0% 
average for just D S P block instance #2 23.2% 

http://vec.025.0_b
http://vec.025.0-c
http://vec.025.0_d
http://vec.025.0_e
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Table B . 5 : Differential Equat ion Solver Results for 0.50 Average Input A c t i v i t y 

Vector 
Set 

D S P 
Block 

P V P R 
Energy 

PrimePower 
Energy 

% Error 

vec.050_0_a dspblockO 8.88E-10 3.79E-09 76.6% 
dspblockl 1.06E-09 1.22E-09 12.9% 
dspblock2 1.26E-09 1.51E-09 16.9% 

vec_050_0_b dspblockO 9.24E-10 3.88E-09 76.2% 
dspblockl 1.06E-09 1.36E-09 21.9% 
dspblock2 1.29E-09 1.66E-09 22.5% 

vec_050.0.c dspblockO 8.78E-10 4.14E-09 78.8% 
dspblockl 1.05E-09 1.73E-09 39.2% 
dspblock2 1.20E-09 1.75E-09 31.6% 

vec.050.0_d dspblockO 9.59E-10 3.97E-09 75.9% 
dspblockl 1.04E-09 1.38E-09 24.8% 
dspblock2 1.28E-09 1.54E-09 16.9% 

vec.050_0_e dspblockO 9.19E-10 3.87E-09 76.2% 
dspblockl 1.06E-09 1.25E-09 15.1% 
dspblock2 1.31E-09 1.62E-09 19.0% 

average percentage error 40.3% 
average for just D S P block instance #0 76.7% 
average for just D S P block instance #1 22.8% 
average for just D S P block instance #2 21.4% 

http://vec.050.0_d
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Table B.6 : Differential Equat ion Solver Results for 0.75 Average Input A c t i v i t y 

Vector 
Set 

D S P 
Block 

P V P R 
Energy 

PrimePower 
Energy 

% Error 

vec_075_0_a dspblockO 8.95E-10 3.89E-09 77.0% 
dspblockl 1.03E-09 1.44E-09 28.4% 
dspblock2 1.23E-09 1.61E-09 23.5% 

vec_075_0_b dspblockO 8.70E-10 3.82E-09 77.2% 
dspblockl 1.01E-09 1.25E-09 19.3% 
dspblock2 1.27E-09 1.64E-09 22.7% 

vec_075_0_c dspblockO 8.83E-10 3.78E-09 76.6% 
dspblockl 1.01E-09 1.26E-09 19.7% 
dspblock2 1.27E-09 1.62E-09 21.6% 

vec_075.0_d dspblockO 9.13E-10 3.94E-09 76.8% 
dspblockl 1.03E-09 1.40E-09 26.2% 
dspblock2 1.24E-09 1.69E-09 26.5% 

vec_075_0_e dspblockO 9.37E-10 3.84E-09 75.6% 
dspblockl 1.01E-09 1.19E-09 14.9% 
dspblock2 1.18E-09 3.84E-09 69.3% 

average percentage error 43.7% 
average for just D S P block instance #0 76.7% 
average for just D S P block instance #1 21.7% 
average for just D S P block instance #2 32.7% 


