
Improved Doppler Centroid Estimation 

Algorithms for Satellite SAR Data 

by 

SHU LI 

B . Eng., C i v i l Aviation University of China, 2000 

M . Sc., Beijing Institute of Technology, 2003 

A THESIS S U B M I T T E D IN P A R T I A L F U L F I L L M E N T OF 

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F 

M A S T E R OF A P P L I E D S C I E N C E 

in 

T H E F A C U L T Y OF G R A D U A T E S T U D I E S 

(Electrical and Computer Engineering) 

T H E U N I V E R S I T Y OF B R I T I S H C O L U M B I A 

December 2005 

Shu Li, 2005 



Abstract 

In high-quality SAR data processing, accurate estimation of the Doppler centroid 

frequency is essential for obtaining good image focus. However, existing Doppler 

centroid estimation algorithms cannot obtain reliable Doppler ambiguity estimates, 

especially in areas with low SNR and low contrast. This thesis presents several techniques 

for improving existing Doppler ambiguity estimators, thereby achieving more accurate 

absolute Doppler centroid estimates for high-quality SAR data processing. 

Following an introduction of the existing Doppler centroid estimation algorithms 

for baseband Doppler centroid and Doppler ambiguity estimation, we present two 

methods for improving the sensitivity of the Multi-Look Beat frequency (MLBF) Doppler 

ambiguity estimator. One method uses range cell migration correction (RCMC) to 

straighten the target trajectories before applying the beat frequency estimator. The other 

applies more accurate frequency estimators to the beat signal. We then discuss possible 

improvements to slope-based Doppler ambiguity resolvers. The method using the Radon 

transform to estimate the slope of target trajectories has been well explained and 

examined on real satellite SAR data. We propose a simpler method that uses Azimuth 

integration with RCMC to find the correct ambiguity number. Our experimental results 

show that it has a similar or better performance than the Radon Transform method. 

We have tested all of the improved Doppler ambiguity estimators using real 

satellite SAR data, RADARSAT-1 Vancouver scene. Our results show that the proposed 

methods significantly improve the performance of the existing Doppler Ambiguity 

estimators, and can achieve accurate Doppler centroid estimates in most areas, even with 

medium to low contrast scenes. 
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Chapter 1 

Introduction 

Synthetic aperture radar (SAR) is a coherent remote sensing system that can 

provide two-dimensional, high-resolution images of the earth surface. It has advantages 

over conventional optical imaging systems in that it illuminates the scene with microwave 

and can thus work under all-weather and all-day conditions. High-quality images of the 

earth produced by SAR systems are used as important sources of information for a large 

variety of applications, such as agriculture, ecology, geology, oceanography, hydrology, 

military, etc. As quality requirements for SAR imaging increase with the growth in 

applications, more advanced techniques are being explored to improve SAR processing. 

1.1 Background 

The concept of Synthetic Aperture was first proposed by Carl Wiley of Goodyear 

Aerospace in 1951, and later provided the theoretical basis of two-dimensional imaging 

of the earth's surface using radar. SAR systems are carried on a variety of airborne and 

space-borne platforms and take advantage of the Doppler effect of radar echoes generated 

by the motion of the platforms. 

In a standard implementation, large-bandwidth pulses, typically linear frequency-

modulated chirp pulses, are transmitted and processed to obtain a high resolution in the 

range direction (distance). This technique is known as "pulse compression". In the 

azimuth direction (along track), the high resolution is achieved by forming a "synthetic 

aperture" [1]. The synthetic aperture is created by coherently summing the radar echoes 

along the flight path to artificially synthesize a very long antenna. Theoretically, this long 

antenna makes fine resolution possible. 
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Due to the characteristics of the SAR signal, signal processing plays a very 

important role in achieving high-quality SAR images and has resulted in many advances. 

There are several SAR signal-processing algorithms that have been successfully 

implemented to obtain focused images. The main SAR signal-processing algorithms 

include Range and Doppler (R-D) algorithm [2] [3], Chirp-Scaling (C-S) algorithm [4], 

SPEC AN algorithm [5], and Omega-K algorithm [6]. These algorithms use reconstruction 

of the two-dimensional signal based on the known system parameters to compress targets 

in the image. 

As SAR systems take advantage of the Doppler effect to achieve high resolution 

in the azimuth direction, the Doppler centroid is an essential parameter for almost all 

SAR processing procedures. A Doppler centroid error can lead to defocusing, low signal 

to noise ratio (SNR), misregistration, and ambiguities in the image. Although several 

algorithms have been developed for Doppler centroid estimation, a number of satellite 

SAR systems tend to suffer from Doppler centroid estimation errors in a number of 

processed scenes. Hence, more reliable Doppler centroid estimation algorithms are 

required by satellite SAR systems to achieve high- quality imagery. 

1.2 State of the Art 

I n past years, numerous algorithms for Doppler centroid estimation have been 

developed through research investment. Since the azimuth data are sampled by the pulse 

repetition frequency (PRF), the Doppler centroid usually consists of two parts: baseband 

Doppler frequency and Doppler Ambiguity number. The algorithms for baseband 

Doppler estimation include the Energy balancing (AE) algorithm [7], Average Cross 

Correlation Coefficient (ACCC) algorithm [8] and "spectral fit" algorithm [9]. The 

algorithms used to resolve the Doppler ambiguity number include the Look 

misregistration Algorithm [10], Multiple PRF algorithms [11], Wavelength Diversity 

Algorithm (WDA) [12], Multi-look Cross Correlation (MLCC) algorithm and Multi-look 

Beat frequency (MLBF) algorithm [13]. 
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Among the baseband Doppler estimators, the ACCC algorithm and the "spectral 

fit" algorithm are the two most reliable methods and can obtain good baseband Doppler 

centroid estimates in most cases. Among the Doppler ambiguity resolvers, the phase-

based algorithms, such as the WDA, MLCC and MLBF algorithms, are more accurate 

than the magnitude-based algorithms, such as the Look misregistration algorithm. 

However, all the existing Doppler ambiguity resolvers would be easily affected by 

undesired factors in the real SAR data, such as low SNR, low scene contents, partially 

exposed strong targets, etc. They cannot provide reliable Doppler ambiguity numbers 

under such circumstances. Therefore, more accurate and robust Doppler ambiguity 

estimators are required to meet the quality demands of modern SAR systems. 

1.3 Research Scope and Objectives 

This thesis focuses on improving existing Doppler ambiguity estimators for 

satellite SAR systems. Its main purpose is to resolve the Doppler ambiguity number in a 

more robust and accurate way. RADARSAT-1 fine-mode real data is used to test all 

proposed algorithms. 

The objectives of the research include the following: 

• To study the principle of the existing MLBF algorithm in more detail, and 

investigate the improvements to this algorithm by applying RCMC before the beat 

frequency estimation. 

• To improve the existing MLBF algorithm by using a more accurate frequency 

estimator in the beat frequency estimation. 

• To apply the Radon Transform method to the slope estimation algorithm and 

examine its performance in the Doppler ambiguity resolution for satellite SAR. 

• To investigate a simple yet accurate method to find the correct Doppler ambiguity 

number by measuring the slope of trajectories. 
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• To develop specific quality measurements to select best estimators and reject 

more blocks with bad estimates. 

• To compare the performance of the existing and proposed algorithms using 

RADARSAT-1 real data. 

1.4 Thesis Outline 

In Chapter 2, the Doppler centroid frequency is introduced from a discussion of 

the SAR geometry model. The chapter delves further into Doppler centroid variation and 

the accuracy requirements of Doppler centroid estimation. Chapter 3 presents a critical 

review of existing Doppler centroid estimation algorithms. Two baseband Doppler 

centroid estimators and three phase-based Doppler ambiguity resolvers are discussed and 

their performance evaluated in order to provide an overview of current reliable Doppler 

centroid estimators. 

Since the MLBF algorithm is recognized as one of the most reliable Doppler 

ambiguity resolvers, we examine the principle of this algorithm in more detail in Chapter 

4 and provide a more thorough, frequency-domain explanation of it. We then discuss the 

benefits of Range Cell Migration Correction (RCMC) and propose the method of 

iteratively applying RCMC before look extraction. This method can provide a clear beat 

spectrum and improve the performance of the existing MLBF algorithm. Another method 

for improving the MLBF algorithm, which uses more accurate frequency estimators on 

the beat signal, is presented in Chapter 5. It can avoid the FFT limitations of resolution 

and quantization, especially when the signal is discontinuous in one range cell due to 

range cell migration or burst mode operation. 

In Chapter 6, we discuss the Doppler ambiguity resolvers based on measurement 

of the slope of target trajectories. We explained the method of using the Radon transform 

and examined it with satellite data. We then develop an alternate method combining the 

RCMC and Azimuth integration, and demonstrate it to be a computationally simpler and 
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more accurate algorithm. Both methods are tested by experiments on RADARSAT-1 real 

data and show significant improvements over the Doppler ambiguity estimation. 

Chapter 7 provides conclusions drawn from the results and comparative analyzes 

done in the previous chapters. Based on this work, several possible directions for future 

investigations are also put forth. 
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Chapter 2 

The Doppler Centroid Frequency 

In SAR systems, the received signal experiences a Doppler shift because of the 

relative motion between sensor and targets. The average of this Doppler shift is called the 

Doppler centroid frequency. The Doppler centroid frequency is a fundamental parameter 

for reconstructing the signal response in azimuth signal processing and thereby obtaining 

good image focus. 

2.1 Fundamentals of SAR Systems 

A SAR system is always carried by a platform (usually a satellite or an aircraft) 

that moves along orbit or flight track. Figure 2-1 shows a simple geometry model of SAR 

system [14]. In a SAR system, the antenna points a radar beam approximately 

perpendicular to the sensor's motion vector, and illuminates microwave signal to 

interested areas. The footprint of the antenna beam generates a swath on the earth's 

surface, which is the area to be imaged. 

The SAR antenna transmits phase-encoded pulses with a certain frequency, which 

is called the pulse repetition frequency (PRF), and records the echoes as they reflect off 

the Earth's surface. The properties of the received signals are determined by the system 

parameters and the characteristics of the scatters. 
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Flight Path 

Figure 2 - 1 Geometry model of SAR system 

Then, the received signal is processed in two orthogonal directions in order to 

generate an S A R image. A s denoted in Figure 2-1, one dimension is parallel to the radar 

beam, which is usually known as the range direction. A s in other radar systems, the time 

delay of received echo in this dimension is proportional to the distance between the 

antenna and the illuminated target. Therefore, the image in the range direction can be 

formed by measuring this time delay and placing the echo at the correct distance. In 
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practice, the beam is not exactly perpendicular to the sensor motion track, and the 

geometric distortion needs to be corrected. 

The other dimension of the image is along the sensor traveling track, which is 

called the azimuth direction. The image in this direction is formed according to the time 

of the echoes received and the sensors' current position. The slight variation of the slant 

range between the sensor and the reflecting target during the sensor traveling generates a 

different Doppler shift in the azimuth signal. This Doppler shift makes good resolution in 

the azimuth direction possible. Hence, in azimuth processing the knowledge of the 

Doppler history is required. Generally, there are two important Doppler parameters for 

reconstructing the Doppler history: the Doppler centroid and the Doppler FM rate [15]. 

2.2 The Signal Model for a Point Target 

To investigate the principle of SAR imaging, a signal model is established first for 

a point target. In SAR system, a frequency modulated (FM) signal is transmitted and 

pulse compression technique is applied in processing. Hence, a high resolution in range 

direction is obtained. 

In most cases, the transmitted signal has a linear FM characteristic and is given 

by: 

V (T) = W ' ^) e X P { J (2 7 1 ^ T + K Kr T 2 )} (2 -1) 

where Kr is the FM rate of the transmitted pulse, fo is the signal transmitting frequency, 

and x is referenced to the center of the pulse for convenience. 

Consider a point target at a distance, Ra, away from the radar, with a magnitude, 

A'o, which models the backscatter coefficient, ao. The signal reflected by this target will 

be received by the antenna after a time delay Ra/c, and can be expressed as: 
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S,(T) = A'0W,(T-2RJC) 

exp{/ (2 n /„ (v-2Ra/c) + xKr(r-2RJc)2+<p)} 

where c is the velocity of the transmitted signal. The scattering process may cause a phase 

change in the radar signal upon reflection from the surface, which is accounted for by the 

phase <p in the equation [15]. 

Expressing the slant range as a function of azimuth time, Equation (2.2) can be 

rewritten as: 

Sr(T,T]) = AQ Wr(T-2 R(j])/c)Wa(7J-J]a) 

exp{; (2n /„ (r - 2 R{rf) I c) + n Kr (r - 2 R(n) I c)2 + <p) } 

In (2.3), the range time, r, is "fast changing time", while azimuth time, n, is "slow 

changing time". In low squint angle cases, these two times are only slightly coupled and 

can be processed separately [16]. The separated range and azimuth signal can be 

expressed as: 

Range: 

W (T) = Ar'wr(r-2R0/c) 
( 2 \ \2A) 

expy 2n /„ r + jn Kr(t-2RJc) +<p)) 
And azimuth: 

R(*7)fo ' 
azimuth (rJ) = A'wa(TJ-r]a) exp \-j An (2.5) 

2.3 The Doppler Parameters 

The Doppler effect within one pulse is quite small and can be negligible. Over 

many subsequent pulses, the Doppler effect is the main factor that shapes the phase of the 

received signal in the azimuth direction. 

The slant range is a function of azimuth time, and can be expressed as: 
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RO?) = W+^V * *o + %=r n1 (2-6) 

where Ro is the range when the point target is closest to the antenna, and Vr is the nominal 

aircraft speed, and also equals the speed of the beam footprint along the surface. Here, the 

approximate expression is obtained by ignoring the high order components of the Taylor 

expansion. 

Using the approximate slant range equation, the azimuth signal (2.5) can be 

rewritten as: 

^ m » r t ( ' 7 ) = ^ , w F L ( 7 - 7 F L ) 

The phase of the azimuth signal is therefore given by: 

0(?7) = -47r^A-27r^-^T?

2 (2.8) 
c c R0 

Thus, the Doppler history can be expressed as: 

J . f ^ = . l ^ , (2.9) 
2n drj cR0 

Equation (2.9) shows that the azimuth signal of SAR is also a chirp signal. This 

chirp signal has two important parameters. One is its FM rate, which is called the Doppler 

rate. The Doppler rate can be derived from (2.9) as: 

Ka= d f ° { T l ) = - 2 F ' 2 / ° (2.10) 
dr) cR0 

The other important parameter is the Doppler centroid, which is defined as the 

Doppler frequency received from a given point target on the ground when the target is 

centered in the azimuth antenna beam pattern. It represents the central azimuth 

frequency, and can be expressed as: 
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U = f M ) = - ^ z

p

A r ] c (2.11) 

where rjc is the beam center crossing time relative to the time of closest approach. 

2.4 Doppler Centroid Estimation 

As the Doppler centroid is an essential parameter in azimuth processing, accurate 

Doppler centroid frequency is required for most SAR processing. Doppler centroid errors 

may affect registration and focusing, and raise the noise and ambiguity levels in the 

processed image, sometimes to the point of seriously affecting image quality [15] [17]. 

2.4.1 Overview 

In ideal circumstances, the Doppler centroid can be calculated from geometry 

model with the knowledge of system parameters. But in practice the satellite system does 

not have sufficiently accurate attitude measurements or beam pointing knowledge to 

calculate the centroid from geometry alone [18] [19]. 

To achieve relative accurate results, the Doppler centroid is usually estimated 

from the received data. Because the azimuth signal is observed in a sampled fashion, it is 

useful to consider the Doppler frequency as having two components. The sampling rate is 

the PRF, which limited the highest observable Doppler frequency between - Vz PRF to + 

Vz PRF. Frequencies outside this range are wrapped around, but still are important for 

SAR processing. Therefore, the Doppler centroid frequency is normally considered as 

having two components: the baseband Doppler centroid and the Doppler ambiguity 

number [19]. Then, the absolute Doppler centroid can be expressed as [15] [19]: 

U = f'nc+MambPRF (2.12) 

where / ' is the fractional PRF part, and Mamb is the ambiguity number. 
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Despite many advances in SAR processing, a number of satellite SAR systems 

still tend to suffer from unreliable Doppler centroid estimates in some kinds of scenes. 

Since the Doppler estimation result has a considerable dependence on the scene content, it 

is difficult to estimate the Doppler centroid accurately [19]. 

2.4.2 Variations of the Doppler centroid 

This section explains the original of the Doppler centroid variation with range and 

azimuth, and how it is affected by antenna's yaw and pitch. As the Doppler centroid is a 

function of slant range, it varies along the range cells. In the same azimuth cell, the 

Doppler centroid in near range cells is larger than that in far range cells. In satellite SAR 

systems, the relative range between the satellite and intersected earth surface is changing 

along the satellite orbit [15]. These changes make the Doppler centroid vary in azimuth 

time. 

In addition, the satellite attitude also changes from time to time, which makes the 

beam pointing direction biased. Figure 2-2 shows the definitions of the three basic 

attitude angles of a platform. Yaw angle is defined as the angle between the platform's 

longitudinal axis and its line of travel, and pitch angle is defined as the angle between the 

direction of magnetic field and a platform's spiral trajectory [20]. Yaw and pitch angles 

would make the antenna beam bias a bit and thus affect the value of the Doppler centroid 

[15] [19]. In other words, the changes in yaw and pitch angles also makes the Doppler 

centroid vary in azimuth time. In the satellite SAR systems that use yaw-steered antenna, 

such as ERS-1 and EnviSAT, the variation is typically reduced to within one PRF. 

However, in the satellite SAR system without yaw-steered antenna, such as 

RADARSAT-1, the variation may be over a significant extent in frequency. 
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Figure 2-2 Attitude angles of the platform 

In practice, the Doppler centroid should be estimated for different range blocks 

and updated in successive azimuth blocks due to its variation in range and azimuth. 

Usually, a two-dimensional global model (polynomial model or geometry model) is 

applied to provide a reliable overall estimate (See Section 3.3.3). 

2.4.3 Doppler centroid accuracy requirements 

Some functions in the signal processing chain (e.g., basic azimuth compression) 

require that only the baseband Doppler centroid be known. Other functions (e.g., RCMC 

and Second Range Compression) require that the whole absolute Doppler centroid be 

known. 

As the baseband Doppler Centroid is usually used to generate the matched filter 

for azimuth compression, it is very important for image quality. If the baseband Doppler 

centroid estimate has error, the center frequency of the azimuth matched filter moves 

away from the peak of the signal spectral energy. As a result, the signal to ambiguity ratio 

and the signal to noise ratio are reduced. 

So, the accuracy requirements for baseband Doppler centroid estimation can be 

specified by placing a limit on the allowed drop in either signal-to-ambiguity ratio or 
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SNR. A typical specification quoted for the Doppler centroid is that it should be accurate 

to ±5% of the PRF for regular beam processing. In this case, with an oversampling of 1.3, 

the signal-to-ambiguity ratio is lowered by 1.4 dB, and the SNR degradation is less than 

0.1 dB [15]. 

The Doppler ambiguity is expressed as an integer number and is the main part of 

the obsolete Doppler centroid. If the ambiguity number has error, it would lead to the 

error of the obsolete Doppler centroid as large as an integer times of the PRF. This error 

causes a focusing error in both range and azimuth, and a registration error in azimuth. 

Because the ambiguity number has a large effect on azimuth registration, it is generally 

accepted that there should be no error in this parameter [15]. 

2.5 Summary 

Because of the Doppler effect, the SAR azimuth signal is also a chirp. This chirp 

signal can be reconstructed by two Doppler parameters: the Doppler rate and the Doppler 

centroid frequency. So, the Doppler centroid frequency becomes an essential parameter 

for accurate SAR processing, especially for azimuth processing. The Doppler centroid 

errors raise the noise and ambiguity levels in the processed image, and sometimes even 

blur the image. 

Although the Doppler centroid can be derived from a SAR geometry model, this 

calculation is usually not accurate enough due to the inaccurate satellite attitude 

measurements. The Doppler centroid estimation from the received data is required in 

most high quality SAR systems. The following sections will discuss a number of different 

algorithms used to estimate both the baseband Doppler and the Doppler ambiguity 

number. 
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Chapter 3 

Existing Doppler Centroid 

Estimation Algorithms 

As described in Chapter 2, the Doppler centroid can be obtained geometrically 

from attitude measurements. But as these measurements are usually not accurate enough, 

a number of estimation algorithms based on received data are available to obtain reliable 

Doppler centroid. In this chapter, we introduce several existing Doppler centroid 

estimation algorithms that have relatively good performances. The "spectral fit" algorithm 

and the Average Cross Correlation Coefficients (ACCC) algorithm are introduced for the 

baseband Doppler centroid estimation. For the Doppler ambiguity resolution, three phase-

based algorithms are the widely used. They are the Wavelength Diversity Algorithm 

(WDA) algorithm, the Multi-Look Cross Correlation (MLCC) algorithm, and the Multi-

Look Beat Frequency (MLBF) algorithm. 

3.1 Baseband Doppler Centroid Estimation 

The baseband Doppler centroid corresponds to the fractional PRF part of the 

absolute Doppler centroid value. It can be considered as the wraparound result as the 

azimuth signal is sampled by the PRF. Since it is the "visible" part of the Doppler 

centroid in the azimuth spectrum, the baseband Doppler frequency is easier to estimate 

than the "invisible" part, the Doppler ambiguity number. 
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3.1.1 The "spectral fit" algorithm 

The "spectral fit" algorithm is a magnitude based estimation approach. Similar to 

the energy balancing method, this algorithm takes advantage of the Doppler power 

spectrum. In order to find the centre of the spectrum accurately, a certain model is 

established and used to fit the shape of the power spectrum of the azimuth signal. Then 

the estimate of the baseband Doppler centroid can be obtained directly from the 

parameters of the fit model. 

It is shown in [15] [19] that due to the effect of antenna pattern, ground 

reflectivity and system transfer function, the noisy power spectrum can be modeled as a 

sine wave on a pedestal. Hence, in this algorithm the sine wave model is chosen to fit the 

azimuth power spectrum. The spectral center can be obtained from the phase angle of the 

fitting sine wave. In implementation, this phase angle can be derived from the first 

harmonic component of the spectrum, which corresponds to the second FFT coefficient of 

the power spectrum. 

The Doppler centroid can be obtained from the estimated phase angle of the fit 

sine wave by: 

PRF 
f = L=-<b. (3.1) 

J nc ~ sin V / 

where O s i n is the phase angle of the fitting sine wave. 

In the phase angle calculation, the angle, O s i n , is wrapped around within the range 

of (-71-, n ]. Correspondingly, the Doppler estimate obtained from (3.1) only contains the 

baseband component of the Doppler centroid lying in the frequency range of 

{-PRF 12, PRF 12). So, the "spectral fit" algorithm is only suitable to the baseband 

Doppler estimation. 
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3.1.2 The ACCC algorithm 

Another baseband Doppler centroid estimation algorithm based on phase 

information was proposed by Madsen in 1989 [8]. In this method, the phase of the 

received signal is used to estimate the baseband Doppler centroid. Since the phase 

increment calculation can be instituted by correlation calculation, this method is also 

called as the Average Cross Correlation Coefficient (ACCC) algorithm. 

The principle of the ACCC algorithm can best be understood by deriving the SAR 

signal of a single point target after range compression. Ignoring the scattering magnitude 

and the range envelope, the azimuth signal can be represented by: 

^ \ .4*/o*(7)l (3.2) 

where R(n) is the slant range function, c is the velocity of the transmitted signal, f0 is the 

center frequency of the transmitted signal, nc is the time when the target is illustrated by 

the beam centre, and wa (77) is the antenna pattern function. 

To examine the time dependency of the beat signal in detail, we expand the slant 

range function, R(r/). To make the calculation simpler, the higher order components are 

ignored. Then, the slant range can be approximated by: 

R(n) = ̂ R0

2+Vr

2n2 « / ? 0 + - - ^ 7 2 (3.3) 

Using (3.3), we can rewrite the signal of (3.2) as: 

s(rj) = w a ( r j - T j c ) exp{ - j4 n 

c 2RQc j 

= Awa(rj-rjc) exp{- jnKadop n2} 

where A is a constant equal to exp<{ - j 

Doppler FM rate of the signal. 

. . W o * , 2V. 

(3.4) 

» a n d Ka dap = — f r fo i s t h e azimuth 
c I cRn 
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The Average Cross Correlation Coefficient (ACCC) is defined as the average of 

the correlation between two successive azimuth samples. By summing over azimuth time, 

the ACCC of the azimuth signal is given by [15]: 

C(rj) = YJs'(r])s(T? + Arj) 

A wa(r/-r/c)wa (r/-r/c+Ar/) 

t exp{j/rKadopr/2}exp{- jnKadop(77 + A7) 2 } 

E M ' \wa(?l-Tlct exp{-; 2K KADOPT/Ar/} 

(3.5) 

where A 7 = 1/ PRF is the time increment between two successive azimuth samples. 

Then, the ACCC angle can be expressed as: 

®ACCC =arg[C(7)j=tan-
]Tcos(-2;r Kadop j] Ar}) 

(3.6) 

Because r/ is centered at r/c and the calculation is symmetric, (3.6) can be 

simplified as: 

"sin(2;r Kadop r/c Ar/) 
®ACCC = arg|C(77) : tan cos(2;r KADOP TJC AT/) 

2n 
(3.7) 

PRF Ka,dop Vc 

According to the relationship between the Doppler centroid and the central time, 

r/c, the estimate of the Doppler Centroid can be expressed as: 

PRF 
fnc = ~ Ka,d0P le = -Z—®Accc (3-8) 

2n 

Like in the "spectral fit" algorithm, the angle OACCC is wrapped around within the 

range of (-n, n\. So, the ACCC algorithm also can only be used to estimate the 

baseband Doppler centroid. 
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3.2 The Phase Based Doppler Ambiguity Resolvers 

As the baseband Doppler centroid is wrapped around by the PRP, the integer PRF 

part, which is known as the Doppler Ambiguity number, is needed to complete the 

absolute Doppler centroid frequency. There are a number of techniques developed for the 

Doppler ambiguity resolution. 

In this section, we only discuss three Doppler ambiguity resolvers (DAR) that are 

based upon the phase information of the azimuth signal. The basic principle of phase-

based DAR is that the absolute Doppler centroid is a linear function of the radar carrier 

frequency, fo [12]. This linear coefficient is generally not wrapped, as the pulse 

bandwidth is very small compared to the carrier frequency [15]. So, the absolute Doppler 

centroid can be obtained and the Doppler ambiguity number can be resolved. 

3.2.1 The WDA algorithm 

The German Aerospace Establishment (DLR) developed the Wavelength 

Diversity algorithm (WDA) to resolve the Doppler ambiguity in 1991 [12]. This 

algorithm takes advantage of the fact that the Doppler properties of the received signal 

can be considered as a function of range wavelength. 

In the WDA, the range compressed data is transformed into the range frequency 

domain by a range FFT, and the ACCC angle is calculated for each range frequency cell. 

The slope of the ACCC angle versus range frequency is measured by using a linear fit. 

Then the absolute Doppler centroid can be derived from the measured slope. 

Like in the ACCC algorithm, the ACCC angle (3.7) can be calculated as: 

In 
K-aJop Vc ~ 

In 2V/f0 

Vc (3.9) ACCC ~ 
PRF PRF cR0 
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where f, is the nominal or average radar frequency. For a chirped radar, fi> should be 

replaced by the instantaneous range frequency, f0+fT, where fT is the baseband pulse 

frequency. Substituting the instantaneous range frequency for f in (3.9), the range 

frequency dependence of the ACCC angle is given by: 

and the slope of $>ACCC versus f can be thereby expressed as: 

k J ^ A C C C ( f ) = _ 2 ^ 2 7 ^ 

df PRF cR0

 c 

From the relationship between the Doppler Centroid and the central time, we 

have: 

f,c=-Ka,dopr?c=-^~±Vc (3-12) 
cR0 

Comparing (3.11) and (3.12), the Doppler Centroid can be estimated using the ., 

measured slope, A:, as: 

PRF 
U = ^ f A (3.13) 

2K 

Since the value of k is usually very small, it avoids the wraparound and then can 

provide the estimate of the absolute Doppler centroid frequency. 

3.2.2 The MLCC algorithm 

The Multi-Look Correlation Coefficient (MLCC) algorithm [13] [15] takes 

advantage of the frequency difference between two range looks to measure the slope k in 

the WDA algorithm. The two range looks can be generated by separating the range 

compressed image from the range spectrum. These two range looks are used to emulate 
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two SAR systems imaging the same area, but working at different center frequencies. The 

two center frequencies have slight difference and are given by: 

f l = f 0 - * £ - , and f 2 = f 0 + ^ , (3.14) 

where Afr is the look separation in the range frequency domain. 

To illustrate this algorithm clearly, we also check the point target model of (2.5) in 

Chapter 2. The two looks signal of the range-compressed image can be expressed as 

follows, 

Look 1: 

*.(7) = w f l ( 7 - 7 c ) e x p j - y ^ / 1 R(rj)\ (3.15) 

And Look 2: 

s2 (7) = ™a 07 - 7c) exp j - j ~ f2 R(ij)\ (3.16) 

The phase arguments in (3.15) and (3.16) give the azimuth phase history of the 

target, which are different between the two looks because of the frequency difference, 

Afr. Therefore, the equations (3.15) and (3.16) can be approximated by a simpler form 

as in equation (3.12), which can be expressed as follows, 

Look 1: 

s,(7) = w f l(7-7e)exp{-i> Ka]dop rj2} (3.17) 

And Look 2: 

*2(7)• = w f l(7-7c) e xp{- J ^ K a 2 , d o P V2} (3-18) 

where KaX d and Ka2 dop are the azimuth Doppler FM rate of the two looks. 

The azimuth Doppler FM rate of the two looks are given by 

Look 1: 

• _2fx d2R(rj) IV2 
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And Look 2: 

_2f2 d2R(rf) _2V2 

c dn cR0 

Applying the same concept in the WDA algorithm, the difference between the 

ACCC angles of the two range looks, divided by the frequency difference, Afr, gives the 

estimate of the same slope as in the WDA algorithm. Therefore, in the MLCC algorithm, 

we calculate the ACCC angles of the two looks separately. 

The ACCC function of Look 1 can be expressed as: 

C .W^.faWfa + A/z) (3.21) 

And the ACCC angle is given by 

2n 
= a r g [ c i ( 7 ) ] = - f - ^ / 7 c (3.22) 

PRF 

Similarly, the ACCC angle for Look2 can be calculated as: 

C2(7) = 2 >2fo)*2*07 + A7) (3.23) 

O i 2 = arg[c2(17)]= KaUop rje (3.24) 

Then, the difference between the ACCC angles of the two range looks is given by: 

AO = O i 2 - O u = ^ - ( K a 2 d o p - K a X 4 o p ) r , e (3.25) 

From (3.19) and (3.20), the difference between the Doppler FM rates of the two 

looks can be expressed as: 

2V2 

° 0 (3.26) 

cRQ fo 
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Using (3.26), (3.25) can be rewritten as: 

PRF fo 

In Afr 

f, (3.27) 

So, the absolute Doppler Centroid frequency is given by: 

f = 
PRF f0 AO (3.28) 
In Afr 

As AO is usually small enough to avoid wraparound, the MLCC algorithm can 

provide the estimate of the absolute Doppler centroid frequency, and thereby resolve the 

Doppler ambiguity number. 

3.2.3 The MLBF algorithm 

The other multilook Doppler ambiguity resolver is called Multilook Beat 

Frequency (MLBF) algorithm [13] [15]. Like in the MLCC algorithm, two range looks 

are first generated by separating the range compressed image in range spectrum. After 

that, a beat signal is obtained by multiplying one range look with the conjugate of the 

other look. The beat signal contains information concerning the phase difference between 

the two range looks. Its average frequency is called the "beat frequency". The beat 

frequency is proportional to the absolute Doppler centroid frequency, and is small enough 

to avoid the wraparound problem. 

From the equations of two range looks, (3.17) and (3.18), the beat signal sb(rj) for 

a point target can be expressed as [13]: 

(3.29) 

And the central frequency can be calculated from the phase component as: 
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(3.31) 

— i^a2,dop ^a\,dop) Vc ~ ^, 7C = ~ a,dop 
fo 

The central frequency of the beat signal is called the beat frequency, which can be 

estimated by using a FFT operation. The estimate of the beat frequency, fhea!, can be 

obtained by finding the frequency, at which the beat spectrum has its maximum value. A 

FFT operation is usually used in the beat frequency estimation. 

Then the absolute Doppler frequency is estimated by: 

In this algorithm, fbeal is usually small enough to avoid the wraparound. 

Therefore, the MLBF algorithm could be used to resolve the Doppler ambiguity number. 

3.2.4 Resolving the ambiguity number 

The Doppler estimators discussed above can provide the estimates of the absolute 

Doppler centroid. However, these estimates are usually not accurate enough in the 

baseband part due the presence of noise. Since there are quite a few algorithms that have 

reliable performances in baseband Doppler estimation, the algorithms discussed in this 

section are only used to provide the estimate of the Doppler ambiguity number. 

To resolve the Doppler ambiguity number, first the baseband Doppler centroid is 

measured by the "spectral fit" or ACCC algorithm, which are discussed in Section 3.1. 

After that, in order to obtain the estimate of an integer, the baseband Doppler centroid is 

subtracted from the estimated absolute Doppler frequency and the result is divided by the 

PPVF. Then the ambiguity estimate is obtained by a rounding operation. The whole 

calculation can be expressed as [15] [19]: 

f = -
J T}C 

beat (3.32) 
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Mamb = r 0 U n d 

J rjc J /j (3.33) 
v 

PRF 

J where / is the absolute Doppler frequency, and / ' is the baseband Doppler centroid. 

3.3 Discussion 

The "spectral fit" algorithm and the ACCC algorithm work quite well in most 

cases, but they can be biased by partially exposed targets and low values of SNR. 

However, the estimate errors can be successfully fixed using the "global fit process", 

which will be introduced in Section 3.3.3. 

Compared to the baseband Doppler estimation, the Doppler ambiguity estimation 

is more challenging, since one number error will lead to one PRF estimate error. The 

three phase-based Doppler ambiguity resolvers are derived from the same principle, and 

share some common calculation steps, such as ACCC calculation, look extraction, etc. 

For all algorithms, averaging over several range cells is usually required in the 

implementation in order to improve the performance. 

3.3.1 The offset frequency 

It is worth noting that in SAR satellite systems, the azimuth boresight angle of the 

radar beam can vary as the chirp sweeps through its frequencies [15]. This means that TJC 

in (3.17) and (3.18), may have a small dependence on the radar transmission frequency, 

/ o + fr - This leads to a shift in the azimuth envelope, wa (rj - rjc). This shift in envelope 

gives rise to an offset frequency, which is not negligible in the WDA and MLCC 

algorithms. Figure 3-1 shows the relationship of the offset frequency and the Doppler 

frequency slope [15]. As a result, in the WDA and MLCC algorithms, the estimate of the 

offset frequency is inevitable, and the unbiased Doppler centroid estimate is given by: 

OS 
(3.34) 

25 



where / is the unbiased Doppler centroid estimate, f n is the Doppler centroid ' TjC r/c 

estimate biased by the offset frequency, and fos is the offset frequency. 

Doppler frequency 

fos 

frjc 

fo 

fl 

Range frequency 

Figure 3-1 A n offset frequency in the W D A and M L C C algorithms 

The compensation for this offset frequency is important in the estimation. 

Unfortunately, it appears to be difficult to obtain a consistent value of fos for the current 

satellite radar systems [15]. Unlike the MLCC algorithm, the MLBF algorithm does not 

suffer from the offset frequency, as described in Appendix 12B of [15]. Therefore, when 

the MLCC and MLBF algorithms are used together, the difference in their estimates can 

be used to find the offset frequency. 

3.3.2 The effect of scene content 

In Section 3.2, we only use the example of single isolated target to illustrate the 

principle of the three phase-based Doppler ambiguity resolvers. In practice, the content of 

the scene has considerable effect on the estimate results. A scene can have a few isolated 

bright targets, which is referred to a high contrast scene, or can have fairly uniform 

radiometry, which is referred to a low contrast scene. Because the MLBF algorithm uses 
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the measurement of the beat frequency to estimate the Doppler centroid, which is 

different to the WDA and MLCC algorithms, the scene contrast shows different effects on 

the estimate results of the three estimators [21]. 

As described in Section 3.2, the measurements of ACCC angles are used in the 

WDA and MLCC algorithms. Since the ACCC angles are quite different between the 

beginning part and the end part of a target, the WDA and MLCC algorithms suffer from 

partially exposed bright targets. Therefore, these two algorithms have good performance 

in low contrast scenes, which have fairly uniform radiometry [15]. 

On the other hand, the MLBF algorithm benefits from the presence of bright 

discrete targets. As shown in the analysis of the point target from (3.28) to (3.30), the 

MLBF algorithm works best when there is only a single dominant target. When multiple 

targets are present in the same range cell, cross beating between the targets will destroy 

the purity of the beat frequency and lower the SNR of the beat signal. This will be 

described in more detail in Section 4.3.1. In addition, the partially exposed targets have 

little effect on the beat frequency measurement, and thus the MLBF algorithm can work 

well with the scenes of partial exposures [16]. So, the MLBF algorithm has a good 

performance in the scenes with bright isolated targets, in which the MLCC algorithm 

might fail. 

3.3.3 The global estimation procedure 

As the Doppler centroid estimates are always affected by the undesired properties 

of the received data, such as low SNR, strong partial exposure, and radiometric 

discontinuities. A global estimation procedure is required to provide reliable overall 

estimates. 

To obtain a reliable overall estimate, the concept of "spatial diversity" in Doppler 

centroid estimation was proposed in 2004 [19]. It refers to the use of data from 

representative parts of the radar scene in the estimation process. In this approach, the 
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whole scene is divided up into several blocks, the Doppler centroid estimators are applied 

to each block separately. The global Doppler centroid estimation procedure only includes 

the blocks which provide good Doppler estimates, and excludes other blocks that provide 

the noisy or biased estimates. 

To recognize the blocks with good estimates from the other "bad" blocks, 

estimator quality criteria measures are introduced. Commonly-used quality criteria 

measures include SNR, spectral distortion, azimuth gradient, and contrast [15] [19]. After 

rejecting the "bad" blocks by applying these quality criteria measures, the remaining good 

estimates are used to fit a global model. A simple global model is the polynomial model 

[22] [23], which assumes the Doppler centroid can be approximated by a polynomial 

function of range and azimuth time. A more complicated model is the geometry model, 

which uses the satellite's state vectors, the Earth's movement, the antenna attitude, and 

some other system parameters to derive the Doppler centroid. Then, the Doppler centroid 

in the rejected blocks can be calculated from fitting model based on the good estimates. In 

the end, the global Doppler centroid estimates are obtained and improved. 

3.4 Summary 

The absolute Doppler centroid frequency is composed by the baseband Doppler 

centroid and the Doppler ambiguity number. The "spectral fit" and ACCC algorithms can 

provide reliable baseband Doppler estimates in most cases. The phase-based Doppler 

ambiguity resolvers prove to have generally good performances in resolving the Doppler 

ambiguity number of the satellite SAR systems. Because the MLCC algorithm works well 

in low contrast scene while the MLBF algorithm works well in high contrast scene, the 

two algorithms can be combined with each other to improve the performance. Finally, the 

reliable global good estimate can be achieved by applying the "spatially selective 

approach". 
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Chapter 4 

RCMC in the MLBF algorithm 

The slant range, R(TJ) , is expressed as a hyperbolic function of azimuth time, n. 

This function shows that the target trajectory migrates through range cells during the 

target exposure time, which is called "range cell migration" (RCM) [15]. The existence of 

the RCM complicates the processing, and also has some noticeable effects on the beat 

spectrum in the MLBF algorithm. In this chapter, we will consider applying RCM 

Correction (RCMC) in the MLBF algorithm for improvements. 

4.1 Theoretical Background 

In Chapter 3, we take it for granted that the two range looks can simulate two 

radars that work at different central frequencies and then the Doppler centroid can be 

estimated from the differences in azimuth phase history between two range looks. In this 

section, the theory of the MLBF algorithm is explained in more detail. In order to explain 

it in a simple way, we use the signal model for a single point target for illustration. 

4.1.1 Range compressed signal 

Assuming a unit scattering magnitude, the received signal after demodulation in 

the range frequency domain can be expressed as [15]: 

S0WT>l) = Kifr) *>M-Vc) 

(4.1) 

29 



where fo is the radar transmitting centre frequency, R(rf) is the slant range function, c is 

the velocity of the transmitted signal, Wr (f ) is the envelope of the range frequency 

spectrum, and wa(n-?]c) is the azimuth envelope with respect to the beam centre 

crossing time, nc. It is worth noting that even-though the signal has been demodulated to 

baseband, the signal retains a phase term due to ( f + f ), the actual transmitted 

frequency. 

After multiplying the range matched filter, G(fT), the range compressed signal in 

the range frequency domain is given by: 

S M , V ) = S,<S„V)-G<.fr) 

where Wr' ( f ) is the envelope of the range frequency spectrum multiplied by the 

weighting function used in the range matched filter. 

As shown in (4.2), the phase of range-compressed signal constitutes of a constant 

term - An f R (n) I c and a term - An fc R (rf) I c, that is linear in the range frequency 

domain. Moreover, the slope of the phase ramp, - An R (rf) I c, is proportional to the slant 

range, R (n). Since R (rf) varies in azimuth due to the range migration, the slope of the 

phase ramp changes with time (along the azimuth direction). Figure 4-1 shows the 

magnitude and phase response of a simulated single point target after range compression 

in the range frequency domain. It can be seen that both the constant term, i.e., the phase at 

zero frequency, and the linear term, i.e., the phase ramp are changing with azimuth time 

due to the range migration. 
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Figure 4-1 Spectrum of the signal after range compression 

After converting the signal from the frequency domain to the time domain by a 

range IFFT, the range-compressed signal can be expressed as [15]: 

src(T,r1) = IFFTr{SRC(fr,T1)} 

= P,[T-2R(TJ)Ic] wa(TJ-TJC) exp{- j An f0 R(rj)Ic] 

where the linear phase range in (4,2) has been converted into a range shift of 2R (rj)lc 

second. This allows us to observe the relationship between the signal in the range time 

domain and in the range frequency domain using the Fourier Transform (FT) properties. 
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4.1.2 Phase relationship 

For convenience, we consider a range compressed pulse (target) whose peak is at 

time, T = 0. The time-domain signal at its peak can be expressed using the inverse FT of 

the frequency-domain signal as [24]: 
rfr max 

J/r ^ * " C Ur > V) e X P U Z * Jr*l <VT | T = 0 J/,m ,„ r- ( 4 4 ) 

r/"T max 

-L.S-CO-..7) ^ 

Because of the equality in (4.4), the phases of the left and right hand sides must be 

identical. Therefore, we can derive the phase of the time pulse directly from the frequency 

response by: 

Phase{src (0,7) ) = Phasei f SRC (fT, rj) dfr) (4.5) 
V rfr  m i n J 

The above equation shows that the phase of the range compressed pulse is equal to 

the phase of the integrated frequency response. It can be found that the phase 

corresponding to the large magnitude has more contribution to the final phase than the 

phase corresponding to small magnitude. This integral relationship is very important 

when analyzing the phase properties of the two range looks used in the MLBF algorithms. 

It also shows the importance of the symmetrical look extraction. 

4.1.3 The symmetrical magnitude envelope 

As discussed in Section 4.1.2, the phase properties of the time-domain signal can 

be derived from the phase of the frequency-domain signal. This section is to show that if 

the look magnitudes are symmetrical, the phase of the compressed pulse will be equal to 

the phase at the spectrum center, which will simplify the calculation in the MLBF 

algorithm considerably. 
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To better illustrate how the phase is computed, we introduce a parameter called 

"centralfrequency". The central frequency,^, is defined as the frequency at which the 

phase of the look spectrum equals the phase of integrated spectrum on the right hand side 

of (4.5), and thus equals the phase of the compressed pulse. This definition can be 

expressed as: 

Phase(sRC (fTC,v))= Phase{ f S R C <JT, rf) df ) 
V J / r ™ » J (4.6) 

= Phase{sn.(0,U)) V 

Spectrum] 
• 
1 

Magnitude envelope 
Phase response 

— ' • — • • • 

fm-2 fm-\ fm fm+\ fm+2 range frequency 

(a) Frequency response with symmetric spectrum 

Spectrum] 
L 

I 

Magnitude envelope 
\ Phase response 

! ! b. 

fm-2 fm-\ fm fm+] fm+2 range frequency 

(b) Frequency response with asymmetric spectrum 

Figure 4-2 Illustrating how asymmetrical range looks shifts the observed "central 
frequency" in the range spectrum 

Given that the phase response is linear, the magnitude of the frequency response 

must have a symmetrical shape to guarantee that the "central frequency" is located at the 
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center of the spectrum. Figure 4-2 illustrates the importance of the symmetrical 

magnitude using a simple discrete case. When the spectrum has a symmetrical shape as 

shown in Panel (a), the summation of the five frequency terms has the same phase as the 

central term. 

On the other hand, when the spectrum has an asymmetrical shape, as shown in 

Figure 4-2 (b), the phase of the summation has an offset from the phase of the central 

term. It can be seen that only when the spectrum has a symmetrical magnitude envelope, 

can the central frequency, fxc, be obtained directly from the frequency of the central term, 

/center- Otherwise, the two frequencies are not equal, frc 4- f center, and a calibration factor is 

needed to compensate the difference [25]. 

4.2 Range Look Extraction 

In the MLBF algorithm, we extract two looks from the range frequency domain. 

This section discusses two important issues in this processing. 

4.2.1 Symmetric look extraction 

As discussed in Section 4.1.3, the symmetrical magnitude spectrum is very 

important to guarantee that the phase of the range compressed signal can be derived 

directly from the phase of the central term of the frequency-domain signal. So, in the 

range look extraction, the two extracted range looks with symmetrical magnitude 

spectrums are desired. However, in range compression, weighting windows are usually 

used to reduce the side lobe effect. The weighting window makes the range spectrum 

curved and thus causes a tilted magnitude distribution when the looks are taken. 

Therefore, it is expedient to flatten the range spectrum then apply symmetrical look 

extraction filters. After applying the inverse window, the average magnitude envelope is 

flat. Figure 4-3 shows the weighted range spectrum after range compression and the flat 

range spectrum after applying the inverse window. 
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Range frequency ( MHz) 

Figure 4-3 Weighted and flattened range spectrums 

In addition, two symmetrical look extraction filters are generated to guarantee the 

symmetrical magnitude spectrums of the extracted range looks. Since the edges of the 

range spectrum may have some effect on the symmetry of the look spectra, the look 

extraction windows are tapered to minimize the edge effects. 

Pre-whitened spectrum 

Range frequency ( MHz) 

Figure 4-4 Look extraction windows and the extracted looks 
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Figure 4-4 illustrates the procedure of extracting two range looks using 

symmetrical windows. The .variable, Af and A/2, are the frequency offsets of each look, 

where A/} = - 6.47 Hz and A/2 = 6.47 Hz in this case. As we assume that the range 

spectrum has been demodulated to baseband (zero center frequency), they are also the 

actual center frequencies of each look. Moreover, as the spectra of the extracted looks are 

symmetrical, A/1 and A/2 also correspond to the "central frequency", fTC, of the two looks. 

After extraction, the range looks have a non-zero center frequency, i.e., they are 

not at baseband. As illustrated in Equation (3.33) and Figure 3.8 of [15], the non-

baseband targets have a linear phase ramp through the peak of the pulse. If the central 

frequency of the range spectrum is Af the phase ramp equals 2n Af (r - ro). According to 

this concept, the extracted looks can be expressed as follows in the range time domain, 

Look 1: 

srl _nb (T, rf) = IFFTr {SRCF (fr, 77) Wx (/r)} 

= Axpr[r-2R(r1)lc]wa(r1-rlc) (4.7) 

x exp{- j An f0 R{rj) I c] exp{- j 2 n Af (T - 2R(TJ) I c)} 

and Look 2: 

' , 2 _ * <J>V) = IFFTr {SRCF (fT,77) W2 (fT)} 

= 4 pr[t-2R{i1)lc}wa(r1-rlc) (4.8) 

x exp{- j An f0 R(rj) I c] exp{- j 2 n Af2 (r - 2^ (7 ) /c)} 

where srl nb(T,Tj) and sr2 nb(r,r/) are the signals of the range looks extracted from the 

non-baseband spectra, SRCF(fr,rj) is the flattened version of the range-compressed 

spectrum, (4.2), and W^f) and W2(fr) are the magnitudes of the range look extraction 

filters. 

The second phase terms in (4.7) and (4.8) show that the range compressed pulses 

contain phase ramps over the main lobe, 2 K Af x and 2K Af x, with a different slope, 

2z Afk for each look. However, as we are interested in the phase changes in the azimuth 

direction, these range direction phase are distracting. 
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4.2.2 Shifting to baseband 

In order for the azimuth phases of the two looks to be easily compared, the range 

center frequencies of the two looks can be moved to the same frequency. For conceptual 

simplicity, the new centers will be moved to zero (baseband), where the phases over the 

main lobe of the compressed pulses are flat [26]. 

This bandshifting is done after the range look extraction step. As the shift in the 

frequency domain corresponds to a modulation in time domain, the signal of two 

extracted looks after the spectrum shift can be expressed in the time domain as, 

Look 1: 

sri (r, 7) = IFFTr {SRCF (fT + Afx, 77) Wx (/r + Afx)} 

= 4 pr[r-2tf(77)/CK(77 - 77c) (4.9) 
xexp{- j ATV (TO +Afx)R(rj)lc} 

and Look 2: 

sjT,T,) = IFFTr{S^(Sr+Af2,r!)W2lfT + Af2)} 

= A]pr[T-2R(rj)/c]wa(rJ-rJc) (4.10) 

x exp{- j 4TT (/„ + Af2 )R(rj)/c} 

where sr] (r, 77) and sr2 (r, 77) are the signals of the range looks extracted from baseband 

spectra. It can be seen that after shifting the spectra to baseband, the z dependence of the 

phase is removed and the extracted looks are conditioned to generate the appropriate beat 

signal. 

Figure 4-5 illustrates the frequency response and the impulse response of the 

baseband extracted looks in the single target simulation. It can be seen that the two 

baseband looks have the same phase slope ramps in the frequency response, but the 

phases at the central frequency (i.e., zero frequency) are different. In addition, the phases 

at the central frequency correspond to the phase of the main lobe in the impulse response, 

which verifies the theory discussed in Section 4.1.2 and 4.1.3. 

37 



T3 

"c 
O ) 
ns 

2000 r ' 0 0 ' < s n a v e * n e same magnitude spectrunj 

1500 L a ' baseband 

1000 

500 

0 

300 

200 

100 

0 

-100 

-200 

Lookl: Phase at ce n-freq: -1:95 rads 

400 

<D 300 
T3 

H 200 
E 

K 100 

0 

*> 2 
ra 

oT o 
tn ra 

2 lo Dks have the sam e ampliti ide enve ope 

128 130 132 134 136 

Phase 

Look 1 

of main lobe: -1.95 rads / 
-20 20 128 130 132 134 136 

-20 0 20 
Range frequency (MHz) 

-5T 2 

IK 

v 
Look 2 

Phase of main lobe: 2.55 rads \ 
128 130 132 134 136 

Range time (cells) 

(a) Frequency response (b) Impulse response 

Figure 4-5 Illustrating the phase relationship between frequency and time domain after 
shifting the extracted looks to baseband 

4.2.3 Properties of the beat signal 

After the shifting, the beat signal can be derived from the two baseband-extracted 

looks, (4.9) and (4.10), by multiplying one look with the conjugate of the other: 

hem 0", V) = sr' 7) sr2 (r, 77) 

=|4 wa(rj -t]cf exp{-; 4 n AfrR(rf)lc) 
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where Afr = Af2 - A/, is the frequency difference of the two range looks. 

It can be seen from (4.11) that the phase of the beat signal varies with azimuth 

time because of the change of the slant range function, R(rj). If we expand R(rj) about the 

central illuminated time, r\c, and ignore the small higher order components, the range 

between target and radar can be given by: 

1 V 2 cos2 6 
R(rJ) = R(rJc) - ^sin^ i C (7-7 c ) + ~ r (?-7 c ) 2 (4.12) 

where Vr is the effective radar velocity and 6 r,c is the beam squint angle measured in the 

slant range plane. 

In (4.12), R(rj) has a linear and quadratic components. The linear component gives 

rise to a pure sine wave in the beat signal, whose frequency is given by: 

2Afr dR(rj) = 2Afr Vr sm9rc = _ 

dr] c /„ 

where / = -2 Vr sin 0r c IA is the Doppler centroid frequency. 

Jbeal — j „ _ _ ~ r J V \ H - l : > ) 

The quadratic component gives rise to a non-zero bandwidth in the beat signal. 

Usually the bandwidth of the beat signal is quite small compared to the PRF. Hence, the 

beat signal can be approximated by a single frequency with noise. The bandwidth of the 

beat signal will be discussed in more detail in Section 5.1. 

In summary, the beat signal has an average frequency proportional to the absolute 

Doppler centroid frequency, which we are trying to estimate. The proportionality factor is 

the fractional separation of the range looks, Afr I / „ . At this point, the requirement of the 

symmetrical magnitude spectrum is recognized. If the looks are not symmetrical, the 

average frequency calculated from the beat spectrum will not equal (4.12), and a different 

look separation Afr must be "calibrated", as illustrated in Figure 4-2. 
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4.3 Cross Beating and the Use of RCMC 

As described in the opening paragraph, as the existence of RCM in the received 

data may limit the signal duration within one range cell and reduce the sensitivity of the 

frequency estimation, there are some advantages to using RCM Correction (RCMC) in 

the MLBF algorithm. In this section, we discuss two phenomena that reduce the purity of 

the beat signal, and how range cell migration correction (RCMC) can be used to alleviate 

them. 

4.3.1 The effect of the cross beating 

The MLBF concept outlined in Section 4.2 is based on a single target in each 

range cell, which leads to the derivation of the beat signal, (4.13). However, in practice 

there is inevitably more than one target in each range cell. This leads to a cross beating 

effect that distorts the beat signal [13]. The cross beating arises when more than one 

significant target is present in a range cell, and the Lookl of one target beats with Look 2 

of other targets. The beating between different targets (cross-beating) gives rise to 

spurious frequency components in the beat spectrum. Depending on the number, strength 

and distribution of the extra targets, the cross-beating can distort the beat spectrum or add 

noise to it. 

In order to understand the effect of the cross beating, we first analyze the case of 

two targets. Consider two targets P and Q, which are in the same range cell but separated 

in azimuth, with beam center crossing times, r\p and r\Q. Then, the two range looks, 

s^rj) and s2(n), can be expressed as [13], 

Look 1: 

)K(i7-7,)J 
4/-,)*(7-7e) 

(4.14) 
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and Look 2: 

^ 2 ( V ) = SP2(T]) + SQ2(TJ) 

(4.15) 

where sn(rj), sP2(rj), and sQX(rj), sQ2(rj) are the range compressed signals of Look 1 

In (4.16), the first term represents the beat signal generated by Target P alone, the 

second term represents the beat signal generated by Target Q alone. These two auto-beat 

terms provide correct beat frequency, as in the case of single target. However, the third 

and fourth terms represent the signals generated by a target in one look beating with 

another target in the other look, a phenomenon referred to as cross beating. 

The cross beating leads to extra frequencies in the beat signal spectrum. The third 

term of (4.16) can be expanded as: 

and Look 2 for Targets P and Q individually, Ap and AQ are the amplitude of the targets 

after range compression and look extraction. 

Then, the beat signal in this case becomes: 

Sbeal

(Jl) = s\ (7) -*2 07) 

= sP '(7)• sP2(7) + sQ'(n)• sQ2(rj) 

+ sP* (7) ' sQ2 (7) + (7) • sP2 (7) 

(4.16) 

sP'(ri)-sQ2(Tj) 

Ap*AQwa(n--nc--nP)wa(r]-?]c-nQ) (4.17) 

exp jy [(/0 + A/, )R(T1-T1p)- (f0 + A/ 2 )R(TJ - rjQ)] 

Using the expansion for R(rj) of (4.12), the frequency of this cross term is: 
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J P'Q 

2 d[(f0 + A/, )R(rj - 1 7 , )-(/"<> + Af2 )R(r1 - nQ )]| 
c drj 

2{Af2 -Af)Vr s in^ c 2Vr

2 cos2 6rJ, 
1=1c 

• cR(r]c) 
(4.18) 

= fbeal 

where fbea, is the single-target beat frequency defined in (4.13), Ka is the Doppler FM 

rate of the signal, and Arj - t]Q - rjp is the separation of the two targets in azimuth time. 

Similarly, the cross frequency of the forth term of (4.16) can be expressed as: 

fro.^fbea.-K^Arj (4.19) 

The cross beating leads to these extra frequencies in the beat signal spectrum. 

Equations (4.18) and (4.19) show that the offset, ±KaArj, of the cross-beating 

frequencies from the expected beat frequency depends on the Doppler FM rate and the 

target separation, but does not depend on the look separation, Af2 - A/,. 

The amplitude of the cross-beating signals is usually less than the main beat 

signal, as one target is often smaller than the other target and because the duration of the 

overlap of the two targets is less than the exposure time of one target. Thus, the beat 

spectrum is not distorted much if \Ap\ » \AQ\ and/or if the targets are well separated in 

azimuth. However, the effect of the cross beating on the spectrum becomes noticeable 

when AQ becomes close to Ap in magnitude and there is substantial overlap between the 

targets. 
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(a) The beat spectrum of a single target 

Figure 4-6 uses a discrete-target simulation to illustrate to cross-beating effect that 

occurs when more than one target is present in the same range cell. Panel (a) shows the 

beat spectrum of single target in one range cell, and Panel (b) shows the beat spectrum of 

two overlapping targets. For simplicity, the Doppler centroid is assumed to be zero, so 

there is no range migration and the expected beat frequency is zero. 

Comparing the top two panels, it can be seen that the cross beating creates two 

extra peaks in the beat spectrum of Panel (b). The strengths of the two targets are the 

same and the azimuth target separation is 15 pulses or 0.1193 seconds. The exposure time 

of each target is 700 pulses or 0.55 seconds, the PRF is 1257 Hz, the FM rate is -1790 

Hz/s, parameters taken from the RADARSAT-1 FINE mode. With these parameters, the 

15-cell azimuth separation gives a frequency shift of ± 21.4 Hz for the cross-beat 
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components. Therefore, the frequency shift of the cross-beating components observed in 

Panel (b) agrees with the offset frequencies of (4.18) and (4.19). 

Panel (c) shows the extra distortion that occurs in the beat spectrum when there 

are many targets in the same range cell. In this simulation, there are 20 targets with a 

random separation in azimuth between 1 and 3 pulses. The target amplitudes are equal at 

one unit, and Gaussian noise is added with an RMS value of unity. The cross-beating 

components in the same range cell add coherently, which can result in spurious peaks and 

nulls in the beat spectrum. 

In general, the cross-beating increases with the density of the targets. When the 

density is too high, the beat frequency may not be detected within the ambiguity error 

limits. That is why it is more difficult to estimate the beat frequency when there are many 

targets with similar magnitude, as in homogeneous, low contrast scenes. 

4.3.2 The effect of RCM 

A significant amount of range cell migration (RCM) is often present in satellite 

SAR data. With the existence of RCM, the signal trajectory has a slope over azimuth and 

the signal energy can be spread over several range cells during the exposure time. In this 

case, each target is fragmented in each range cell. As a consequence, the fragmented 

exposure time of the target in each rang cell leads to a wider peak and less resolution in 

the beat signal spectrum. Moreover, the partial exposures that exist with RCM create a 

higher density of targets in each range cell, resulting in more cross beating. 

The effect of RCM is illustrated in Figure 4-7, which compares the trajectories of 

two targets that have a small displacement in range and azimuth. Panel (a) shows the 

locus of target energy in the range compressed data with no RCM, as in the case where 

the beam is steered to zero Doppler. When the Doppler centroid is well away from zero, 

significant RCM can be present, as shown in Panel (b). 
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(a) With No R C M (b) With significant R C M 

Figure 4-7 Distribution of the energy of two targets in range-compressed data 

Figure 4-7 illustrates the effect of RCM, which compares the trajectories of two 

targets that have a small displacement in range and azimuth. Panel (a) shows the locus of 

target energy in the range compressed data with RCM, while Panel (b) shows the locus 

without RCM. It also can be seen that with RCM the target exposure time in each cell, 

Tajeat = 1/5 Ta, is only one fifth of that without RCM, Ta_beat = Ta. In addition, the 

partial exposures that exist with RCM create a higher density of targets in each range cell, 

resulting in more cross beating. 

Two effects are noticed in Figure 4-7. First, the exposure time of each target is 

reduced by the RCM, when observed within a single range cell. In this example, the 

exposure time within a range cell has been reduced to Ta I 5 by the 5-cell RCM, where Ta 

is the full exposure time of a target. As the beat signal takes place within one range cell, 

the reduced exposure time means that the resolution of the beat signal is broadened. 

Second, while there is only one target in each range cell when there is no RCM, the RCM 

has created two targets in each cell. This creates the cross-beating effect discussed in 

Section 4.3.1, as long as the partial exposures overlap. Both of these effects reduce the 
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sensitivity of the beat frequency estimation. The cross-beating effect tends to get larger 

when a high density of targets is present, although the target overlap is reduced when the 

exposure within a cell is smaller. 

Figure 4-8 illustrates the effect of the RCM on the beat spectra using a discrete-

target simulation. RADARS AT-1 FINE parameters are used, with a PRF of 1257 Hz and 

an exposure time of 700 pulses. Three cases of RCM are shown. In the first row, the 

Doppler centroid is set to zero, so there is no linear RCM, and only a small amount of 

quadratic RCM (about half a cell). In the second row, the Doppler centroid is set to 4.7 

PRFs, giving the target(s) an RCM of 20 cells. In the third row, the Doppler centroid is 

set to 9.4 PRFs, giving the target(s) an RCM of 40 cells. 
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Figure 4-8 Illustrating the effects of R C M on the beat signal resolution - single, double and 
multiple targets case 
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The first column shows the beat spectrum in the case of single target. This allows 

the effect of limited target exposure time in one range cell to be isolated. When there is no 

RCM, the target is fully exposed in the range cell, and the beat signal resolution is the 

finest. However, when RCM is appreciable, the reduced exposure time in each range cell 

broadens the spectrum of the beat signal, and lowers the height of the peak. 

The second column shows the beat spectrum when there are two targets of the 

same strength in the same range cell, with a separation of 15 pulses, as in Figure 4-6. In 

the first row, the RCM is zero, so the exposure time is 700 pulses and the target overlap is 

685 cells. The long exposure time and overlap gives strong auto-beat and cross-beat 

components, with a fine resolution. In the second row of Column 2, the exposure in each 

range cell has been reduced to about 45 cells by the RCM, and the target overlap similarly 

reduced. The auto-beat and the cross-beat strengths have been reduced accordingly, and 

the resolution of the peaks has broadened. In the third row, the RCM has been increased 

to 40 cells, and the reduced exposure has further broadened the resolution to the point 

where the auto- and cross-beat signals are becoming mixed. 

The third column shows the results when there are multiple targets in each range 

cell. In this part of the simulation, 100 targets are randomly placed in a 30 x 30 sample 

square, with Rayleigh amplitude distribution and random phases. The cross beating is 

now much more complex, and adds noise-like components to the spectrum. In the first 

column, it is easy to see how the three values of Doppler centroid change the beat 

frequency from zero to 17 and 34 Hz. With a single target in one range cell, the correct 

beat frequency is easily estimated. Even if there were other targets with much smaller 

magnitude present, the strong target would dominate the spectrum, and the beat frequency 

would likely be estimated correctly. However, the second and third columns show that 

when there are two or more targets of comparable magnitude present, the beat frequency 

can easily become obscured, possibly leading to Doppler ambiguity estimation errors. For 

example, in Row 3 of Column 2, the beat frequency has apparently been shifted from 34 

to 20 Hz. In summary, the limited target exposure in one range cell, the smaller target 
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overlap and the cross-beating of multiple targets tend to increase the error in the 

estimation of the beat frequency as the RCM increases 

4.3.3 Benefit of applying RCMC 

In this section, we discuss the benefits of applying RCM Correction (RCMC) 

before the beat frequency is estimated. When RCMC is applied with the correct 

ambiguity number, each target is confined to one range cell, and the beat signal arising 

from a target beating with itself (auto-beating) has the finest possible resolution. 

However, there is another effect of RCMC, which may help or hinder the beat 

signal frequency estimation, depending on the distribution and strength of targets. RCMC 

may bring other targets into the same range cell, with a full exposure. The overlap with 

the existing target may be larger, giving rise to a stronger, sharper, cross-beat component. 

Figure 4-9 illustrates how RCMC can help to improve the beat frequency estimation. In 

the simulation, 100 targets are used, randomly placed within a 30 x 30 sample grid. Their 

amplitudes have a Rayleigh distribution, and their phases are random. Panel (a) shows the 

beat spectrum before RCMC, while Panel (b) shows the spectrum after RCMC. The beat 

spectrum has been averaged incoherently across range cells. 

Due to the effect of the RCM and the cross beating, the spectrum before RCMC is 

wide and noisy in Panel (a). But after RCMC in Panel (b), a much cleaner, narrower 

spectrum results from increasing the exposure time in each range cell, and reducing the 

cross beating. In this example, there is an average of three targets in each range cell. The 

narrow peak increases the accuracy of the MLBF algorithm by improving the estimation 

of the beat frequency. 
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Figure 4-9 Illustrating the effects of RCMC on the beat signal resolution 

4.3.4 Examples with real data 

In our study, the RADARSAT-1 fine mode scene of Vancouver is selected to 

illustrate the properties of Doppler estimators. The processed image of the whole scene is 

shown in Figure 4-10. There is water, farmland, city and mountains in the scene [15]. 
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Figure 4-10 R A D A R S A T - 1 scene of Vancouver used in the Doppler estimation 
experiments [15] 

The benefits of applying RCMC is further illustrated in Figure 4 - 1 1 , using the 

"ships scene" with the bright targets around Vancouver harbor. In Panel (a), cross-beating 

makes the spectrum asymmetrical and the peak occurs at an incorrect frequency. Panel (b) 

illustrates how RCMC reduces cross-beating and narrows the bandwidth of the beat 

signal. The correct ambiguity number can then be obtained from the frequency estimate. 
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The origin of the asymmetry in Panel (a) is not known — it is likely due to the coherent 

addition of the many scatters in each large ship combined with a small amount of range 

curvature in the C-band data. 
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Figure 4-11 Effects of RCMC on the beat signal resolution in the Vancouver "ships" scene 

In the example of the "ships" scene, there are only a few strong targets in each 

range cell. In lower contrast parts of the scene, a large number of similar-size, weak 

targets in one range cell can hide the peak in the spectrum. This effect is illustrated in 

Figure 4-12, where a low contrast part of the Vancouver scene in the mountains is 

selected. Although the spectral peak is quite obscure compared to the high-contrast scene, 

it can be seen that RCMC does help by revealing a small peak at the correct beat 

frequency. 
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Figure 4-12 Effects of R C M C on the beat signal resolution in the Vancouver "mountains" 

scene 

4.3.5 Why RCMC must be applied after look extraction 

As illustrated Section 4.1.2, it is the variation along azimuth of the slope of the 

phase in the range spectrum that makes the MLBF algorithm work. Therefore, if RCMC 

is to be applied in the MLBF algorithm, one must be careful not to destroy this phase 

variation. 

Case I: RCMC before look extraction 

If we apply RCMC before range look extraction, the RCMC changes the target 

range from R(rf) to *o in all range lines in (4.2), where RQ is the reference slant range for 

that target. This has the effect of removing the phase ramp along azimuth time after the 
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range FFT, so that when the two range looks are extracted, there is no phase difference 

between the two looks. 

To observe this, note that the phase ramp in the range frequency domain in (4.2) 

has been changed from - 4K fT R(rj)/c to - 4K fr R0 fc by the RCMC, so the range 

phase slope, 4KR0/C, is no longer azimuth dependent. In other words, the range-

compressed signal in the range frequency domain of (4.2) has been changed to: 

The second exponential factor shows that the slope of the phase ramp in fT is 

now the same in every range line. Note that the R(rf) dependency in the first exponential 

term still remains, because it was created by the demodulation process, and is not affected 

by the RCMC. Then, the only azimuth phase change is due to the first exponential term, 

and as this term does not depend upon fr, the azimuth phase change is the same for each 

look. Figure 4-13 illustrates the effect of RCMC on the phase response in simulation, 

which verifies the discussion above. 

Figure 4-13 The effect of R C M C on the phase response 
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Correspondingly, the two range looks extracted from the signal after RCMC can 

be expressed as, 

Lookl: 

srl'(r,rj) = Al pr[r-2RJc\wa{r1-rlc) 

x exp{- j An f0 R(JJ) I c] exp{; A n Afx RJc] 

And Look 2: 

sr2'(r,r/) = A] pr[T-2RQ/c]wa(rj-Tjc) (422) 

xexp{- j An./„ R(TJ)Ic]exp{- j An Af2RJc} 

As a result, in the case of applying the RCMC before look extraction, the beat 

signal can be expressed as: 

sbea,f(j^) = s/{r,T])sr2\T,r]) 

= \A w

a (7-7 e ) | 2 exp{-;4^ Afr RJc) 

As the phase of the beat signal is a constant in azimuth (compare (4.23) with 

(4.11)), the beat signal has zero frequency, and the information used to obtain a Doppler 

estimate has been lost, as follows: 

/ ^ ' = ^ ^ = 0 (4.24) 
c drj 

Figure 4-14 illustrates the simulation results in this case. It can be seen that the 

phases of the two looks have the same changing pattern and hence their difference is 

constant. As a consequence, the beat frequency obtained from the two looks is zero, and 

thus cannot be used to obtain a Doppler estimate. 
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Look 1 

Azimuth t ime (cells) 

Figure 4-14 Azimuth phase when R G M C before the look extraction 

Case I I : RCMC after look extraction 

On the other hand, if RCMC is applied after the baseband look extraction, the 

phases in the compressed pulses of two looks are not changed. When RCMC applied to 

the signal (4.9) and (4.10), only the range envelope is changed from pr [x- 2R(rf) /c] to 

pr [T - 2Ro /c], but the phase term (the argument of the complex exponential) is not 

affected. The two range looks in this case can be expressed as, 

Look 1: 

sH''(T,TJ) = A, pr[T-2R01c] wa(TJ-T]C) 

x exp{- j An /„ R(ij) I c] exp{/ 4 n A/, R(rj) I c) 

And Look 2: 

sr2''(T,77) = A, pr[T - 2R01c] wa(TJ-TJC) 

xexp{- j An /„ R(TJ)Ic)exp{- j An Af2 R(n)Ic] 

(4.25) 

(4.26) 
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Consequently, the azimuth phase difference of the two looks still maintains the 

correct dependence on the range migration. Figure 4-15 shows azimuth phase plots when 

RCMC is applied after the look extraction. Comparing to Figure 4-14, the phase 

difference of two looks is not constant, but changing with azimuth time. Moreover, it can 

be seen that the phase difference is almost a linear function of azimuth time, and the slope 

of the linear phase gives the value of the beat frequency. As a result, the correct Doppler 

estimate can be obtained from this phase variation. 

Look 1 

Azimuth time (cells) 

Figure 4-15 Azimuth phase when R C M C after the look extraction 

These effects are illustrated in the Panels (b) and (c) of Figure 4-9. In Panel (b), 

RCMC is applied after range look extraction, and the benefits of RCMC described in 

Section 4.3.3 are obtained. In Panel (c), however, RCMC has been applied before range 
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look extraction, the beat frequency has been shifted to zero, and the distinctive beat 

frequency, has been lost. 

In conclusion, applying RCMC after look extraction gives the same beat 

frequency as without RCMC, but applying RCMC before the look extraction shifts the 

beat frequency to zero. Therefore, the RCMC should be applied after the baseband look 

extraction in order to preserve the correct beat frequency [26]. 

4.4 Iterative Procedure Using RCMC 

The existing MLBF algorithm is not as reliable as it could be, due to the coarse 

resolution of the beat frequency and the occurrences of the cross-beating between 

multiple targets in one range cell. In this section, the implementation scheme of the 

method using RCMC is discussed and the experimental results on real satellite SAR data 

show that this method has a better performance than the existing MLBF algorithm. 

4.4.1 The iterative procedure 

RCMC can only be applied correctly if the Doppler ambiguity number is known, 

which is not available until after the current estimation procedure is completed. Hence, in 

order to take advantage of the RCMC routine in the MLBF algorithm, an iterative 

procedure is proposed — see the flowchart in Figure 4-16. 
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Figure 4-16 Flowchart of the proposed R C M C / M L B F algorithm 

In the first iteration, since we don't yet know the absolute Doppler centroid, the 

conventional MLBF algorithm can be implemented without RCMC to obtain the initial 
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estimate. In some cases, an initial estimate of the Doppler centroid from geometry can be 

used in the first iteration. In subsequent iterations, RCMC can be applied using the 

current Doppler ambiguity estimate. As the RCMC is refined, the bandwidth of the beat 

signal is reduced, and lower bandwidth will benefit the ILP frequency estimator. The 

iterations continue until the Doppler ambiguity settles down to a stable value — we have 

found that usually only two iterations are required with real data (see Section 4.4.2). Note 

that in this method, as in other ambiguity resolvers, the baseband Doppler estimates are 

obtained first and unwrapped so that a single Doppler ambiguity number applies over the 

whole scene. 

As the iterative algorithm requires applying the RCMC and the MLBF algorithm 

more than once, the computation time is a little more than the standard MLBF algorithm. 

As the RCMC is applied after range look extraction, the look extraction is only applied 

once as the RCMC is changed. We have found that the extra computation load is 

acceptable, and the iterative MLBF computation only occupies a small portion of the 

whole SAR processing time. 

4.4.2 Experimental results 

In Section 4.3.4, the Vancouver "ships" and "mountains" scenes give two 

examples of how the iterative RCMC method can improve the sensitivity of the MLBF 

algorithm. In order to test its performance on different kinds of terrain in satellite SAR 

data, we apply them to real SAR data of RADARS AT-1 find mode Vancouver scene, as 

shown in Figure 4-10. In order to take advantage of spatial averaging and avoid bad 

estimates from areas with very weak backscatter, we make use of the concept of "spatial 

diversity" [19]. In this approach, the whole scene is divided into blocks, the estimators are 

applied and specific quality measurements are calculated for each block to exclude areas 

of the scene that are likely to lead to incorrect Doppler estimates. In this experiment, we 

divide the Vancouver data set into 12 range x 19 azimuth blocks, with each of the 228 

blocks having 655 range cells and 1024 range lines. The block borders are outlined in the 

"range-compressed image" of Figure 4-17. 
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Slant range (blocks of 655 cells) 4717 m/div 

Figure 4-17 Range compressed image of Vancouver used in the Doppler estimation 
experiments [15] 
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Both the standard MLBF algorithm and the iterative MLBF algorithm using 

RCMC are implemented for each block. In this experiment, we use the frequency 

estimator based on the FFTs to estimate the beat frequency [13]. After processing all the 

blocks, the blocks with the possible bad estimates are removed using quality criteria. In 

order to compare the performances of all methods, the same quality criterion (the SNR of 

the range-compressed data larger than -1 dB) is applied in each case, so that the same 

blocks are removed. Then, a single Doppler ambiguity number is obtained for the whole 

scene using a "majority vote" or an average operation. 

The iterative RCMC method shows an even better improvement. It has the highest 

success rate of all the estimators. Because the beat spectrum is cleaner after RCMC, the 

choice of frequency estimator is not so critical, and the simple FFT estimator works well. 

200 

Ambiguity Number 

Figure 4-18 Histogram of the M L B F estimates of each block with and without R C M C 
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Table 4-1 Doppler Ambiguity estimates using Standard MLBF and the proposed method 

Doppler Ambiguity estimators Mean 
(PRFs) 

St. Dev. 
(PRFs) 

Success rate 
(%) 

Standard MLBF -5.74 1.09 62 

Iterative MLBF using the RCMC -5.92 0.73 92 

The histogram and the comparison table show that the iterative MLBF using 

RCMC has a much better performance than the existing standard MLBF. The Standard 

deviation is reduced by about 30%, and the success rate increases considerably to 92%. In 

this experiment, most of the blocks that are taken as the good estimates only need two 

iterations. Only 2% blocks with good estimates need three iterations. 

4.5 Summary 

The MLBF algorithm is the one of the most reliable methods for Doppler 

ambiguity resolution. By examining the phase of the frequency-domain signal, we found 

that the azimuth phase variation caused by range migration plays an important role in the 

generation of the beat signal. We also presented the importance of having symmetrical 

range looks. 

Then, we presented the method of applying RCMC to improve the sensitivity of 

the MLBF algorithm. The cross beating caused by multiple targets in a range cell 

introduces spurious signals into the spectrum of the beat signal. The presence of RCM 

reduces the exposure time in one range cell and thereby broadens the resolution of the 

beat signal. Then, we have shown how RCMC can alleviate these effects by increasing 

the resolution of the beat signal, and possibly reducing the cross beating. The analysis 

also shows that RCMC must be applied after the range look extraction, and that an 

iterative scheme must be used because the correct ambiguity is needed to perform RCMC 
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properly. Finally, experiments with RADARSAT-1 data are used to illustrate the 

improved estimation accuracy of the modified algorithm. 
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Chapter 5 

Improved Beat Frequency 

Estimation in the MLBF algorithm 

Among the Doppler ambiguity resolvers, the Multi-look Beat frequency (MLBF) 

algorithm proves to have good performance, especially in high contrast areas. It also 

avoids estimating the offset frequency, which is required in the WDA and MLCC 

algorithms. However, the existing MLBF algorithm has some problems. As it uses FFT 

operations to measure the central frequency of the beat signal by finding the maximum 

coefficient, it leads to quantization errors as only the energy at discrete frequencies is 

evaluated. In this method, the limited exposure in each range cell also reduces resolution 

of the spectrum. In addition, the algorithm using FFTs requires a zero-padding procedure 

when applied to burst mode data, such as ScanSAR data [13]. Therefore, more efficient 

and accurate methods are required to improve the performance of the MLBF algorithm 

In this chapter, several frequency estimators are introduced to improve the beat 

frequency estimation in the MLBF algorithm. First, the center of gravity is used to 

measure the beat frequency from the beat signal spectrum. Then five established 

frequency estimators based on phase increments are applied to measure beat frequency 

from the phase information. 

5.1 The Principle of the Beat Signal 

As described in Chapter 3 and Chapter 4, the MLBF algorithm is based on the 

fact that the Doppler Centroid frequency can be derived from the azimuth phase 

difference between two looks that are extracted from the range spectrum. By multiplying 
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the signal of one look with the conjugate of the other look, a beat signal results, which 

can be expressed as [15]: 

sbea,(j^) = sr,\r,ri)srl(T,T1) 

=\A ™a(n-Vcf e xp{-j 4 K R{rj)ic} 

where Afr - Hf2 - A/y. A/y and A/2 are the central frequencies of the two range looks 

separately, assuming the two looks have symmetrical magnitude spectra. 

To examine how the beat signal varies with azimuth time, we expand the slant 

range function R(rf) about the central illumined time nc. If the small higher order 

components are ignored, the range between target and radar can be given by: 

\V2cos29rc 

R(rj) = R(r1c)-Vr sin0 ( 7 - 7 c ) + - r'c (rj-n,)2 (5.2) 
2 R(TJC) 

where 9rc is the beam squint angle measured in the slant range plane 

As the linear component, - Vr sin Orc(n-nc) , has a much larger value than the 

quadratic component, — ^ ° ° S ^ r , c (77 -nc), the beat signal expressed by (5.2) mainly 
2 R(TJC) 

contains a single frequency with a narrow bandwidth. 

According to the phase history of (5.1), Figure 5-1 shows the Azimuth 

frequency/time history of the beat signal. It can be seen that the beat signal has an average 

(central) frequency and a bandwidth. 
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Azimuth frequency 

PRF 

ft beat 

BWhe 

Azimuth Time rj 

Figure 5-1 The frequency spread-out of the beat signal along azimuth 

The central frequency of the beat signal, feat, can be derived from the phase of 

(5.1) and the linear component of (5.2), and is given by: 

2Afr dRjrj) = 2Af Vr sin0rc = A / r 

J beat j _ y J nc c dr] c 

where fnc is the Doppler Centroid frequency and / 

fo 

2 Vr s\ndr 

(5.3) 

Similarly, the bandwidth of the beat signal, BWbeat, can be derived from the phase 

of (5.1) and the quadratic component of (5.2), which is expressed as: 

EW Wrd2R(T})_ ¥ r Vr" C O S 2 0„ 
be°'~ c dr]2 ~ cR(r]c) ( 5 4 ) 

= -^tL BW 
r '-'"azimuth 

JO 

where BWazimulh is the azimuth bandwidth of the received signal and 
V2cos26rc BW = - — 

azimuth i n / \ 
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Both the center frequency, fbeat, and the bandwidth, BWbeat, of the beat signal are 

quite small compared to the system PRF. Taking the RADARSAT-1 Vancouver scene 

data as an example, where f„c ~ -5900Hz, fbeat is about 21 Hz, the predicted BWbeal is 

about 2.5 Hz, while the PRF is 1275 Hz, as shown in Figure 5-1. The small value of fbeat 

compared to the PRF avoids unwrapping and makes this algorithm suitable for Doppler 

ambiguity estimation. (The ambiguity error limits are +/- 3.5 Hz in this case.) The narrow 

bandwidth, BWbeat, justifies that the beat signal can be approximated by a single 

frequency with noise. 

As the beat frequency is proportional to the absolute Doppler centroid in (5.3), 

the absolute Doppler centroid frequency can be estimated from the measurement of the 

beat frequency, which can be expressed as: 

' .: fnc ~, ~ fbeat (5-5) 

The above analysis is based on the existence of a single target in each range cell 

without noise. However, in implementation noises are usually inevitable. In addition, 

when there is more than one target, cross beating exists, which lowers the SNR of the beat 

signal and makes it harder to estimate the beat frequency accurately [15]. 

5.2 Single Frequency Estimation 

As discussed in Section 5.1, the beat signal can be approximated to a single 

frequency signal with noise. Therefore, single frequency estimators can be applied to the 

estimation of the beat frequency. In this section, the model for single frequency 

estimation is established and analyzed. Then, the survey results give several single 

frequency estimators and each estimator is described separately. 
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5.2.1 Introduction 

The problem of estimating the frequency of a complex exponential in additive 

white noise is a fundamental and well-studied problem in estimation theory. In particular, 

consider the Appoint received data to consist of a single complex sinusoid in complex 

white Gaussian noise, which has the form of: 

x(n) - A exp{j(con + q>)} + z(n), (5.6) 

n = 0, 1, 2, N-l 

where co,- n < co< n, is the frequency in radians/sample, and A and <p, -n <<p <n 

are unknown constants. The noise z is a zero-mean complex white Gaussian process with: 

z(ri) - zr (n) + jzt (n). Its components zr (n) and z, (ri) are real, uncorrected, zero-mean 

Gaussian random variables with variance cr212 (a2 is the variance of z(n) from the 

calculation of £[(z («) - E (z(n)) ) (z (n) - E (z(n)) )*]. ) 

According to estimation theory, the ultimate accuracy bound for frequency 

estimation is derived from the Cramer-Rao inequality, which is called the Cramer-Rao 

Bound. The Cramer-Rao Bound can be calculated as [27]: 

CRB = 6 , =— (5.7 
SNRN(N2-l) A ^ N { N 2 _ V ) 

(7 

where SNR is the Signal to Noise Ratio, and Af is the length of the signal array. 

As illustrated in Figure 5-2, our survey results show that the frequency estimators 

can be classified into two categories: algorithms based on FFTs and algorithms based on 

phase increments. In the following sections, we will be discussing seven frequency 

estimators. The methods based on FFTs include measuring the frequency of the 

maximum FFT coefficient and measuring the Center of Gravity. The methods based on 

phase increments include Kay's estimator, ACCC estimator, FCFB estimator, HLC 

estimator and ILP estimator. The contents and the organization of the following 

subsections are shown in Figure 5-2. 
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5.2, 5.2.1 

Frequency Estimators 

5.2.2, 5.2.3 

Based on Spectrum 

5.2.4-5.2.8 

Based on Phase increments 

5.2.2 
Using the max 
FFT coefficient 

5.2.3 
Using the Center 

of Gravity 

Kay's 
Estimator 

5.2.4 

ACCC 
Estimator 

5.2.5 

FCFB 
Estimator 

5.2.6 

HLC 
Estimator 

5.2.7 

ILP 
Estimator 

5.2.8 

Figure 5-2 The outline of frequency estimators 

5.2.2 Estimator based on the maximum FFT coefficient 

The frequency estimator using FFT operations is based on Maximum likelihood 

estimation (MLE) of a single frequency, which was studied by Rife and Boorstyn in [27]. 

The MLE can be derived from the periodogram, which is given by: 

co = arg max 
A M 

£ x(n)exp{-jco'n} 
n=0 

(5.8) 

whereby is the estimated frequency of MLE and the argmax returns the value of the 

element noted below that makes the function attain the maximum value, which is 

different to the function 'arg' as used later. 

Equation (5.8) is expressed as a continuous function of frequency co'. For 

calculation efficiency, it is rewritten at a set of discrete frequencies and the FFT algorithm 

can be used to obtain the periodogram. The estimation equation is given by [27]: 
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2n 
co = arg max 

NFFT OZm<NFFT-\ 

where Nfpr is the FFT length. 

FFT 

x(ri) exp{- j {InmnlNFFT)} 
n=0 

(5.9) 

It is straight-forward from equation (5.9) that the frequency can be estimated by 

finding the discrete frequency that corresponds to the maximum FFT coefficient. The 

existing MLBF algorithm uses such method in the beat frequency estimation. However, 

this method leads to quantization error because it only evaluates the energy at discrete 

frequencies. In this case, the maximum quantization error is given by: 

4/1 = A 
V r 

FFT-scale 

fo 1 PRF 
Af 2 NFFT 

(5.10) 

In the implementation of RADARSAT-1 dataset, if we apply a 1024-point FFT 

and separate the two range looks by about half of the range spectrum bandwidth, the 

maximum quantization error is about 100 Hz. Since the existence of the quantization error 

restricts the accuracy of the estimator even at high SNR, more accurate frequency 

estimators are required to improve the beat frequency estimation. 

5.2.3 Estimator based on the "center of gravity" 

Since the frequency of the signal corresponds to the peak center of the signal 

spectrum, we can measure the frequency by finding the "center of gravity" in the 

spectrum of the beat signal in order to reduce the effects of the quantization errors and 

other addictive errors [29]. Similar to Section 5.2.2, we use FFTs to obtain the spectrum 

of the signal. Then, the single frequency can be estimated by this method using: 

I>, FS, 
v = —N (5-11) 

ZZFS, 
;=1 
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where co is the estimated frequency from the "center of gravity", (Oj is the discrete 

frequency of each FFT cell, and FSt is voltage of the signal spectrum (i.e. FFT 

coefficient) at co,-. As illustrated in Figure 5-3, this method is equivalent to finding the 

frequency, co, that balances the integral of the shaded areas, /; and h, when the integral is 

taken to the left and to the right of the estimated frequency. This estimated frequency can 

be a value between two discrete frequencies, and therefore the quantization errors are 

reduced. In addition, when the spectrum curve obtained from FFTs is not symmetrical 

due to other noise, the center of gravity is a more accurate estimate than the position of 

the maximum value. 

Discrete frequency a>i 

Figure 5-3 Center of gravity in signal spectrum 

However, the frequency estimator based on the centre of gravity still has some 

limitations. Since it is also based on FFT operations, the estimation accuracy is still 

related to the FFT length. In addition, the FFT operations cannot be applied to ScanSAR 

processing directly due to the gaps between the two burst. 
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5.2.4 Kay's estimator 

The frequency estimators based on phase increments can avoid the problems and 

limitations of the estimators based on the FFT operations. Kay's estimator (proposed by 

Steven Kay in 1989 [30] ) is the basic single frequency estimator that uses phase 

increments instead of the periodogram to estimate the signal frequency. If we assume that 

the SNR, which is A21 cr2, is large, the data model of (5.6) can be rewritten by replacing 

additive noise by phase noise, which is given by: 

x(n) w A exp(y (an + cp + u(n) ) (5.12) 

n = 0,1, 2,---,N-l 

where u(n) is zero mean white Gaussian phase noise with variance a212A2. 

Therefore, the phase of the signal can be written as: 

arg( x(n)) = an + <p + u(n) (5.13) 

where arg returns the argument (phase) of a complex number. 

The differenced phase data can be given as: 

A arg( x(n)) = arg( x(n +1)) - arg( x(n)) (5.14) 

The formula can be simplified as: 

Aarg( x(n)) = a + u(n + \)-u(ri) (5.15) 

The problem now is to estimate co from a process with colored Gaussian noise, 

u(n+\) - u(ri). The MLE of co is equivalent to the minimum variance unbiased estimator. 

After some algebra, the estimate based on the weighted phase average is obtained as: 
N-2 

cv = ^ w(ri) Aarg( x(n)) (5.16) 

where w(ri) is the weighting function that guarantees that the estimator attains the 

Cramer-Rao Bound. It has the parabolic form [30]: 
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Figure 5-4 Weighting function of Kay's estimator 

Figure 5-4 shows the weighting function of Kay's estimator for a 64-point signal. 

The weighting is used to recognize the fact that the middle part of the array contains more 

information of the frequency than the edges. 

In addition, Kay also proposed four options in [30], which include weighted 

linear predictor, unweighted linear predictor, weighted phase averager and unweighted 

phase averager. The difference between linear predictor and phase average is the 

exchanged operations of taking the summation and the angle. Since arg is non-linear 

operation, when it is interchanged with the sum operation, a different result is obtained. 

5.2.5 ACCC estimator 

In the linear predictor option of Kay's estimator, the frequency estimator may 

further be written by using the equivalence: 
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A arg(x(«)) = arg( x(n +1)) - arg( x(ri)) 
= arg(jc* (n) x(n +1) ) 

(5.18) 

Therefore, the calculation of the phase increment is equivalent to the calculation 

of the Cross Correlation Coefficients (CCC) at lag one. For simplification, if we ignore 

the colored noise in (5.15), the estimator then is to calculate the average cross correlation 

coefficients (ACCC) as: 

co = arĝ  
N-2 

N-
— Z x\n)x(n + l) 
— 1 n=0 j 

(5.19) 

It is worth noting is that the use of the CCC in Baseband Doppler Centroid 

Estimation was proposed by Soren Madsen in 1989 [8], the same year in which Kay 

proposed his estimator. In that algorithm, the Baseband Doppler Centroid is measured 

using the average of CCC (ACCC) along the azimuth lines. In order to reduce the effect 

of noise, the estimate results can be further averaged along range cells. Because the CCC 

is a complex number and we implement the average before taking the argument operation 

in the complex domain, the results of ACCC algorithm are weighted by the magnitude of 

the CCC vectors. 

It is concluded in [30] that the original Kay's estimator using the weighted phase 

average gets closer to the Cramer-Rao Bound than ACCC estimator at high SNR. 

However, the accuracy of both estimators decreases dramatically when the SNR is below 

some value. Such a SNR value is called the "SNR threshold" and the SNR threshold can 

be used to evaluate the performance of the frequency estimators. The lower the SNR 

threshold is, the better results the frequency estimator can get under noisy conditions. 

5.2.6 Four channel filter banking (FCFB) estimator 

Since Kay's estimator and ACCC estimator may suffer from a relatively high 

SNR threshold, the idea of applying a filter to enhance the SNR is brought out in the four 

channel filter banking (FCFB) method [31] proposed by M. Fowler and J. Johnson in 
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1999. In this method we apply four simple filters to overlapping frequency bands that 

cover (-n, n\, as shown in Figure 5-5. The four channel filters work as band pass filters, 

which let the signal pass through while remove the noise outside the pass band. Then we 

detect which band the frequency lies in by comparing the energy in the four channels. The 

output signal with the highest energy is then processed using the ACCC estimator. 

Finally, the estimate result is adjusted to achieve the correct answer according to which 

channel is used. 

The steps of the algorithm are given as following: 

1) Digitally heterodyne x(ri) with exp{- j(nf2)n\, exp{-jOn], exp{/(;r/2)«}, and 

exp{j7rn}, respectively to generate x\(n), X2(ri), x^n), and x^(ri). 

2) Filter and decimate these signals to get a, (ri) = x, (2n -1) + x; (2ri), for 

n = \ , 2 , ... , N/2-l; 

3) Calculate the detection statistic as T, = 
(N/2)-\ 2 fl,(« + l) a*(n) /= 1,2, 3,4 

4) Select am(ri) to be the signal whose detection statistic Tm = max{r,,r2,r3,r4}; 

if two T, 's equal the maximum, either can be chosen; 
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5) Compute the fine estimate using the formula (5.19) and adjust it by 

cb = [cbf +(m- 2)n ll\ , where m is the number of the channel used. 
mod In 

Since this estimator only adds very simple filters into the basic ACCC estimator, 

its computational complexity is acceptable. The experimental results show that this 

estimator can improve the SNR threshold of the basic Kay's and ACCC estimator to some 

extent, but the improvement is not significant [33] . 

5.2.7 Higher lag correlation (HLC) estimator 

Another method for improving the basic Kay's and ACCC estimators, proposed 

by Michael P. Fitz [32] in 1994, is to use the correlation at higher lag instead of only the 

correlation at lag one in the estimation. The correlation at higher lag can provide extra 

information of the angle and therefore improve the accuracy of the estimator. 

arg(x*(«) x(n + m)) = arg(x(« + m))-arg(x(n)) ^ 
- m A arg(x(«)) + Noise 

where x\n)x(n + m) is one term in the correlation calculation at lag m. It can be seen 

from (5.20) that the angle of the correlation at higher lag can be written as the 

accumulations of the angles of the correlation at lag one with noise. 

The high lag correlation estimator is derived by taking the derivative of the 

periodogram w. r. t. (with respect to) co' as shown in (5.8), and then set it equal to zero. 

After grouping terms, the likelihood equation can be expressed as [32] : 

N 

L0\m) = \m = 0 (5.21) RN (m) Qxp(-jco'm) 
_m=\ 

where RN (m) is the correlation at high lag. And it can be expressed by: 
N 

*jv(w)= ^x(ri) x'(n-m) (5.22) 
n=m+l 

With large N, (5.21) can be approximated as: 
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-mco'\ «0 (5.23) 
m=l 

And the estimator can be derived as: 
N 6m 

4 - Z N(N + \)(2N + l) 
arg (5.24) 

With the increase of N, the computation amount increases dramatically. 

Therefore, the summation in (5.24) is truncated at indices M = J, where J is much less 

than N. A more practical estimator has the form as: 

In the selection of J, there is a trade-off between accuracy and computation 

complexity. When an optimal value of J is selected, this method is computationally 

efficient yet obtains near optimum performance at moderate SNR. 

5.2.8 Iterative linear prediction (ILP) estimator 

A more accurate estimator is proposed by Tyler Brown in 2002 [33], called the 

iterative linear prediction (ILP) method. This method takes advantages of iteration 

processing and low-pass filtering to improve the basic Kay's and ACCC estimators. 

In this algorithm, the coarse estimate of the frequency is first obtained by ACCC 

estimator. Then the original signal is shifted to a lower band, according to the initial 

frequency estimate, and then low pass filtered with a rectangular filter with coefficients 

hi••= 1 , i = 0, 1 , 2, M - 1 . (We found that using the sine filter instead of the rectangular 

filter can get better results.) The low pass filter reduces the out-of-band noise and 

enhances the SNR. Therefore, by applying ACCC estimator again, the estimated 

frequency error can be obtained with a better accuracy than the initial estimate. After that, 

co = 
m=l (5.25) 

I>2 
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the coarse frequency estimate is corrected by the estimated frequency error and the next 

iteration starts by shifting the original signal with the corrected frequency estimate. After 

each iteration, the bandwidth of the low-pass filter is reduced by two. In this way, the 

SNR is enhanced by a narrower filter bandwidth, which improves the estimation 

accuracy. Therefore, by iteratively applying the ACCC estimator, the procedure can 

reduce the error of the estimated frequency at each iteration. The iterative procedure can 

be ended when there is no significant improvements detected or the bandwidth of the low 

pass filter is smaller than the bandwidth of the beat signal. 

The iterative calculation and frequency estimate at iteration k are given by: 

xk (n) = exp(-7© t_,«) x(n) 

Mk-\ 

v*00= Z X k ( M k n + ™)> « = 0 , 1 , ... , 
N 

m=0 Mk-\ 

Am, = 
1 

-arg 
NIMk-\ 

v\(n-\)vk(n) 

(5.26) 

(5.27) 

(5.28) 

d>k=(Mk+a>k_x)'_ (5.29) 

where cbQ is the initial estimate of the basic Kay's estimator, vk (n) is the signal after low-

pass filtering, Ad>k is the estimated frequency error in the current iteration, and cbk is the 

corrected frequency estimate in the current iteration. 

As the analysis above, the ILP estimator improve the performance of the basic 

estimators by iteratively applying low-pass filters. As the bandwidth of the low-pass 

filter is reduced at each iteration, the frequency estimate is getting more and more 

accurate. Consequently, the ILP estimator has the best performance among the survey 

results of frequency estimators. 
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5.2.9 Simulations of single frequency estimators 

To test and compare the performance of the discussed frequency estimators, we 

simulate a single frequency signal with white noise and use these estimators to measure 

the frequency separately. In this experiment, we use Mean Square Error (MSE) as the 

accuracy measurement. The MSE is defined as the average of the square of the difference 

between the estimated frequency and the actual frequency, which can be calculated as: 

which is defined as 

where E[ ] is the calculation of expectation, 6> is the estimated frequency, and cotrue is the 

true frequency. 

( 5 . 3 0 ) 
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Figure 5-6 Comparison of single frequency estimators 
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Figure 5-6 shows the estimation results of all the frequency estimators for 

comparison. In Figure 5-6, it can be seen that all the estimators suffer from the SNR 

threshold. As we discussed before, the SNR threshold is defined as the SNR value, below 

which the estimate accuracy decreases dramatically. As illustrated in the figure, the SNR 

threshold of the ILP estimator is about -4 dB; the SNR thresholds of the FFTs estimators 

(including the estimator using Center of Gravity) are about -7 dB despite of the FFTs 

length; the SNR threshold of the FCFB estimator is about 6 dB; and the SNR threshold of 

the High Lag Correlation estimator is about 0 dB. In addition, the ACCC estimator does 

not appear to exhibit a sharp SNR threshold but gradually deteriorates in performance 

with decreasing SNR. The results show that the estimation algorithms based on 

periodogram have a relatively lower SNR threshold. Moreover, the estimation error of the 

estimator using the maximum FFT coefficient keeps constant beyond the SNR threshold 

due to the quantization errors. Even using the Center of Gravity, the estimate results of 

the FFT methods still cannot get an approach to the Cramer-Rao Bound as close as the 

algorithms based on phase increments. Considering the closeness to the Cramer-Rao 

Bound as well as the SNR threshold, we can come to the conclusion that the ILP 

estimator is the best algorithm for the single frequency estimation problem among all the 

estimators in this study. 

5.3 The Beat Frequency Estimation 

As discussed in Section 5.1, the beat signal can be approximated by a single-

frequency narrow-band signal. Therefore, the frequency estimators discussed in Section 

5.1 can be applied to the beat frequency estimation. However, as the existence of noise, 

the bandwidth, and the cross beating, the accuracy of the beat frequency estimation is not 

as good as in the ideal condition. 
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5.3.1 The application of the frequency estimators 

If we use the beat frequency,/^ in (5.2), to substitute the linear term in (5.1), and 

ignore the quadratic term, the beat signal with additive noise can be expressed in discrete 

time as: 

Shea, O ) ~ ^(")eXp 
f f 

j2n J^L^n \ + z(n) V PRF j 

H = 0,1,2, ...,N-\ 

(5.31) 

where n is the azimuth time index, A(n) is the azimuth envelope, and z(n) is the complex 

noise with variance a 2 . 

So, comparing the beat signal in discrete time (5.31) to the single frequency signal 

model (5.6), the frequency estimators can be applied directly to the beat signal. Using the 

basic Kay's estimator, the estimated beat frequency has the similar form as in (5.16) , 

which is given by: 

PRF ^ 
fbeat = X, ^ A "g^ t e * (")} ( 5 J 2 ) 

2n „ = 0 

where w(ri) is the same weighting function as in (5.17). 

Similarly, other phase-based frequency estimators can be applied to the beat 

frequency estimation. In those estimators, the ILP estimator is expected to have the best 

performance. The estimated beat frequency using the ILP estimator can be obtained by 

the following calculation: 

f lk)=Af {k) + f (* _ , ) (5 331 
J beat ^Jbeal ^ J beat W ' J : , i 

where) fbeJ° is the initial estimate of the basic Kay's estimator, A f b e a , ( k ) is the 

estimated frequency error in the current iteration, and fbeJk) is the frequency estimate in 

the current iteration after correction. 
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With the estimate of the beat frequency, the absolute Doppler centroid frequency 

and the Doppler ambiguity can be obtained using the same procedure as in the existing 

MLBF algorithm, described in Chapter 3. 

5.3.2 Quality criteria 

In order to avoid corruption by bad estimates from the areas with very weak 

backscatter or low contrast, quality criteria can be used to detect and remove bad 

estimates from the final absolute Doppler estimate, when the "spatial diversity" approach 

[19] is used. In addition to the data quality criteria of SNR and contrast used in [19], two 

other estimator quality criteria that are specific to the operation of the beat frequency 

estimators were examined: 

Peak to Mean Ratio (PMR) 

In the frequency estimators based on FFTs, the periodogram can be checked for 

quality. A good periodogram with a sharp and clear peak would give a good frequency 

estimate. Therefore, by checking the shape of the periodogram, we can obtain the 

measurement of how good the frequency estimate could be. A quality criterion "Peak to 

Mean Ratio (PMR)" is introduced for this purpose. As shown in Figure 5-7, the Peak to 

Mean Ratio is defined as the ratio between the global peak and the mean value of the non-

peak area in the periodogram. The peak area is the area within the 10 dB bandwidth 

downward from the peak of the main lobe, and the non-peak area is the remaining area 

other than the peak area. This ratio is usually expressed in dB units, and is given by: 

PMR = 20 log 
f P e a k

g l o b a l 

KMeannon_peak ; 

(5.34) 
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Figure 5-7 Measurement of PMR 

Phase Coherence 

In the estimators based on phase increments, the more consistent the phase 

increments are, the better estimates can be obtained. Hence, in this case the phase 

coherence is found to be the most appropriate quality measurement [34]. The phase 

coherence measures the consistency of the phase increments of the beat signal. It is 

defined as the ratio between the absolute value of the summation and the summation of 

the absolute value of the vectors that contains the phase increments, and can be expressed 

as: 

\N-2 

£ s\eal (n)sbeal 0 + 1) 

Ph coher -
N-2 (5.35) 

where sbea*(ri) sbeal (n +1) is the correlation of the beat signal, whose phase is the phase 

increments of the beat signal. 
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Figure 5-8 Illustration of the measurement for phase coherence 

As illustrated in Figure 5-8, the absolute value of the summation of three complex 

vectors is always less than or equal to the summation of their absolute values. The closer 

the phases of the three vectors, the larger value the first operation would obtain. These 

two operations can obtain equal values only when the phases of the vectors are the same. 

In this sense, the ratio between these two values indicates how consistent the phases of 

the vectors are. Consequently, the defined quality criterion, phase coherence, is within the 

range from 0 to 1. The value reaches its maximum value 1 only when the beat signal is a 

pure tone without noise. A larger value of this measurement corresponds to a better beat 

signal for estimation and thus a better Doppler estimate. 

5.4 Experiments on Real SAR Data 

To examine how the estimators behave with general scenes of Satellite SAR data, 

the RADARSAT-1 fine mode scene of Vancouver, the same as shown in Figure 4-10, is 

selected. In addition, the "spatial diversity" approach [19] is applied and the same block 

separation scheme is taken as what was done in Figure 4-17. 

In Doppler Centroid estimation procedure, the proposed estimators are applied 

into each block, and the quality criteria are measured as well. For comparison, we also 

test the performance of the existing standard MLCC algorithm and standard MLBF 

algorithm. 
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5.1.1 Examining the quality criteria 

In this experiment, SNR, PMR of the periodogram and the phase coherence are 

measured as the quality criteria of the estimators to remove the possible bad estimates. 

For the Vancouver scene, the true Doppler ambiguity number is -6. So the good quality 

criteria should keep the blocks with correct Doppler ambiguity estimates and remove the 

blocks with incorrect Doppler ambiguity estimates as many as possible. 

Table 5-1 Examining quality criteria with M L B F using I L P estimator 

Quality Criteria Number of blocks with 

Good estimate 

Number of blocks with 

Bad estimate 

SNR>-2.8dB 172 30 

SNR < -2.8 dB 7 19 

PMR> 1.5 dB 170 30 

PMR < 1.5 dB 9 19 

Phase Coherence > 0.17 175 30 

Phase Coherence < 0.17 4 19 

Table 5-1 shows how the quality criteria behave in recognizing the blocks with 

good estimates from those with the bad estimates. It can be seen that a threshold can be 

chosen that does a reasonable job of separating those blocks that yield good estimates 

from those blocks that give bad estimates. In this experiment, we adjust the thresholds so 

the number of blocks excluded is the same for each criterion. From the result, it can be 

seen that the quality criterion of the phase coherence with a threshold at 0.17 shows the 

best performance in rejecting the possible bad estimates while keeping the good 

estimates. In this case, 21 blocks out of total 228 blocks (about 10%) are rejected. 
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5.4.1 Results of Doppler ambiguity estimates 

After removing the possible bad estimates, the final Doppler ambiguity estimate 

can be obtained by an average or "majority vote" operation. The estimate results of all the 

estimators within the remaining 207 blocks are listed in Table 5-2. In this table, the 

ambiguity error before rounding, the standard deviation, and the success rate of the 

correct estimates are considered as the measurements of the estimator's performance. We 

consider the standard deviation as the best parameter to evaluate the estimator because it 

shows how the estimate results disperse around the true value and it's the most direct 

measurement of the randomness of the estimator. In addition, it is worth noting that since 

there are many bright isolated targets in the Vancouver scene, the estimate results of 

MLBF algorithm are much better than those of MLCC algorithm. 

Table 5-2 Comparison of Doppler ambiguity resolvers for the Vancouver data 

Doppler Ambiguity Resolvers Mean 
(PRFs) 

St. Dev. 
(PRFs) 

Success 
rate (%) 

Standard MLCC -5.99 1.36 41 

Standard MLBF -5.72 1.09 62 

MLBF using Center of Gravity -5.75 0.92 69 

MLBF using Kay's -5.95 0.92 55 

MLBF using ACCC -6.02 0.90 57 

MLBF using HLC -5.94 0.75 63 

MLBF using FCFB -5.88 0.83 56 

MLBF using ILP -5.89 0.43 85 

Figure 5-9 shows the histogram of the Doppler ambiguity estimates by using 

different Doppler ambiguity resolvers. It illustrates the same results as shown in Table 5-2 
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in a more visible way. The height of the peak at the correct ambiguity number 
corresponds to the success rate, and the spread of the "bars" is related to the standard 
deviation of the estimates. The symmetry of the bar chart is very important to get the 
correct average (mean). 

Standard MLCC Standard MLBF 

-10 -5 0 

MLBF using Cen-of-Grav 

MLBF Using Kay's 

i . 
-15 -10 -5 

MLBF Using High Lag Corr 

MLBF Using ACCC 

MLBF Using FCFB 

150 

100 

50 

-15 -10 

MLBF Using ILP 

-10 
Ambiguity Number Ambiguity Number 

Figure 5-9 Histogram of the Doppler ambiguity estimates by DARs 

of the 207 selected blocks 
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It can be seen in Table 5-2 as well as in Figure 5-9 that the frequency estimators 

using the phase increments have lower standard deviation than the estimators using FFTs. 

It means that the frequency estimators show better performances than the existing 

frequency estimators in the MLBF algorithm. Especially, the ILP estimator has the best 

performance among all the estimators. It has the lowest standard deviation (less than half 

of the existing estimator) as well as the highest success rate (23% higher than the existing 

estimator). So, in implementation, we recommend to apply the ILP estimator in the beat 

frequency estimation in the MLBF algorithm. 

5.5 Summary 

In this chapter, we applied improved beat frequency estimation methods to the 

MLBF algorithm for the Doppler ambiguity resolution. As the existing MLBF algorithm 

uses the maximum FFT coefficient to measure the beat frequency, the estimate accuracy 

is limited by the quantization errors and RCM segmentation. As a survey result, several 

frequency estimators are introduced to avoid such quantization errors. We first analyzed 

and examined the estimator based on the center of gravity in the periodogram. Then, we 

introduced and compared five frequency estimators that are based on phase increments. 

To improve the beat frequency estimation, we applied the frequency estimators discussed 

with better accuracy in the MLBF algorithm. The experimental results on RADARSAT-1 

real data show that the proposed method gives more consistent estimates than the existing 

MLBF algorithm. It can achieve correct Doppler ambiguity estimates in a higher 

percentage of the blocks and its estimation error is less than half that of the existing 

algorithm. 
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Chapter 6 
Improved Slope Estimation for 
Doppler Ambiguity Resolution 

The Look Misregistration algorithm proposed in 1986 [10] uses the fact that the 

average slope of the target trajectory before range cell migration correction (RCMC) is 

proportional to the beam squint angle and the Doppler centroid. Consequently, the 

Doppler centroid frequency can be estimated by measuring the slope of the target 

trajectory in range compressed image. Kong et al. have proposed to apply the Radon 

Transform in the slope estimation to estimate the Doppler centroid frequency of airborne 

SAR data in 2005 [35]. In this chapter, Kong's method is well explained and adapted for 

Doppler ambiguity resolution for satellite SAR data. In addition, a simpler method of 

combining RCMC and integration in slope estimation is presented. Through the 

experiments on real data, both the Radon method and the new method prove to have good 

performances in estimating the Doppler ambiguity number for satellite SAR data, not 

only in scenes with bright isolated targets, but also in the areas with low to medium 

contrast. 

6.1 Geometry of a SAR Target Trajectory 

As discussed in Chapter 2, the Doppler centroid can be derived from the 

geometry model of the SAR system; with an accurate knowledge of the system 

parameters such as the satellite attitude (see Appendix 12A of [15]). The geometry model 

of the SAR system is shown in Figure 6-1, where Vr the effective. SAR is forward 

velocity, and 6rc is the beam squint angle measured in the slant range plane. If we know 

the parameter values, the total Doppler centroid fnc can be expressed as: 
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f7c 
2V 

r (6.1) 

where Xc is the wavelength corresponding to the radar carrier frequency. However, as the 

attitude measurements are not accurate enough for precision processing, the Doppler 

centroid are usually estimated from the received data. 

Figure 6-1 Geometry model of SAR data acquisition in the slant range plane [15] 

A non-zero squint angle, dr<c, leads to migrated targets trajectory in the slant 

range/azimuth plane. If this slope of the average migration can be measured, the squint 

angle and thereby the Doppler centroid can be estimated. 

As a simple way to illustrate how to estimate the Doppler centroid from the slope 

measurement, the point target response after range compression is examined. Figure 6-2 

shows a single target trajectory in the slant range/azimuth plane. It is seen that the signal 
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energy can be spread over several range cells during the exposure time. The variation of 

range with time is called Range Cell Migration (RCM). As the direction of the beam 

center line is perpendicular to the target trajectory at the middle of the target exposure, the 

squint angle, dr,c, is equal to the angle of the linear component of RCM. 

Azimuth 

Satellite 
antenna 

Target 
trajectory 

Beam center line 

Slant range (satellite to target) 

Figure 6-2 Range migration of a point target in range compressed domain 

To illustrate variation of the slant range with time, the slant range equation is 

examined. We expand the equation of the slant range about the beam center crossing time 

Y]c and ignore the higher order components. Then the range from the satellite to the target 

at certain azimuth time, R(r\), can be approximated by the parabola: 

lK r

2 cos 2 0 r c 

R(r?) = R(rjc)-Vr sin6rfi (rj - 7c) + - r>c (rj-rjj2 (6.2) 

From (6.2), we see that the average RCM slope can be expressed as - Vr sin 8rc, 

in units of m/s. If the slope is positive, that is, the range increases with azimuth time, the 

antenna has a "backward" or negative squint angle - the Doppler frequency is negative, as 

is typical of ascending orbits without yaw steering. On the other hand, a negative slope 

corresponds to a forward squint angle of the antenna. 
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Therefore, if the RCM slope is measured correctly, the absolute Doppler centroid 

can be derived directly from (6.1), with the knowledge of the radar wavelength, X and 

satellite effective velocity, Vr. While there are more accurate ways of estimating the 

baseband Doppler centroid, the methods of measuring the RCM slope can provide a 

reliable estimate of the Doppler ambiguity number. 

In this chapter, we introduce two Doppler ambiguity resolvers based on the RCM 

slope estimation. One is using the Radon Transform, and the other is using RCMC and 

azimuth integration. 

6.2 Using the Radon Transform 

The Radon Transform is a well-known method of detecting linear features in an 

image, such as the slope of lines [36] [37]. Kong et al. have applied the Radon Transform 

to estimate the Doppler centroid frequency of airborne SAR data in 2005 [35]. In this 

section, we explain Kong's method in more detail and apply it to the Doppler ambiguity 

estimation for satellite SAR data. In addition, a few improvements are proposed. 

6.2.1 The Radon transform for linear feature detection 

In order to extract the information of RCM slope from the range compressed 

image, certain image processing techniques can be applied. The Radon transform is an 

effective technique in extracting the parameters of linear features, such as their slope, 

even in the presence of noise [36] [37]. Because of its advantageous property in detecting 

lines with arbitrary orientation, the Radon transform has been successfully used in the 

SAR imagery processing, such as ship wake detection [38]. This transform integrates 

intensity along every possible direction in the image and maps this information into a 

feature space parameterized by the angle with respect to the positive y-axis, 0, and its 

distance from the origin, p. 
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The angle, 6, and the distance, p, form the coordinates in the transformed 

representation of a line. The concept is that a concentrated point in the transform space 

represents a linear feature in the image. This approach is particularly suited for noisy 

images, since the integration process tends to average out intensity fluctuations due to 

noise. The Radon transform equation for the image, g(x, y), is defined as [36]: 

g(p,0) = f f g(x,y)8(p-xcosd - ysm6)dxdy (6.3) 

where 8 is the Dirac delta function and d( p - x cosd - y sinO) directs the integration 

along the angle, 6. The range of 6 is limited to 0 < 6 < n. 

To illustrate the relationship between the image coordinates, (x, y), and the 

transform parameters, (6, p), a range compressed SAR magnitude image with three point 

targets is simulated in Figure 6-3 Panel (a). A significant linear RCM is assumed, and the 

quadratic RCM is negligible. The skew angle of the target trajectories is 30 degree, and 

the Radon transform is taken over angles from 28 to 32 degrees, in steps of 0.2 degrees. 

The transform result is shown in Panel (b), where only the central part of the p axis is 

displayed. When the integration in (6.3) is taken along the true direction of the lines, the 

energy is most concentrated along the p axis. It can be seen that there are three 

concentrated areas of energy in the vicinity of 6 = 30°, which indicates the angle of the 

skewed lines in the image. 
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(a) Simulated SAR magnitude image 

(b) Radon Transform of (a) 

Figure 6-3 Simulated SAR magnitude image and its Radon transform 
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In order to investigate the results in more detail, we take vetical slices along the p 

axis of Figure 6-3 Panel (b) at several angles. Figure 6-4 shows those five slices from 26 

degree to 32 degree. It can be seen that the Radon Tranform result is highly concentrated 

at the actual skew angleof the target trajectories and increasingly dispersed at other 

angles. In this way, the RCM slope in the range-compressed SAR image can be estimated 

by finding the skew angle, 6, that gives the maximum concentration of the Radon 

Transform energy along the p axis. A detection method of the Feature Space Line 

Detector (FSLD) was proposed in [37], which it was shown that the calculation of the 

variance of the slices along the p axis is a good measurement of the concentration. 

Figure 6-4 Vertical slices through Radon transform of Figure 6-3 Panel (b) 

6.2.2 Applying the Radon transform to Doppler estimation 

Due to its ability of detecting the linear features in an image, Kong et al. applied 

the Radon transform into Doppler centroid estimation of airborne SAR data in their 

geometry Doppler estimator (GDE) [35]. However, due to the lack of bright isolated 

targets in most real SAR data, the measurements are usually not precise enough for the 

estimation of the baseband part of the Doppler centroid. Since there are several 
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algorithms that can obtain very accurate baseband Doppler estimates, we recommend that 

the estimator using the Radon transform only be used to obtain the Doppler ambiguity 

number. The detailed processing of this estimator can be stated as follows. 

First, take the magnitude or power of the range compressed image and then 

calculate the Radon transform. As the Radon transform requires an amount of computing 

time, restrict the angles to within a small range around the expected value. For example, 

we can estimate the squint angle from the geometry model of the satellite SAR system, 

with the assumption of the maximum yaw/pitch angle deviations. Otherwise, if the range 

of angles is not easy to estimate a priori, the Radon transform can be applied first using 

coarse angle increments, and later with a reduced range of angles and finer angle 

increments as the estimates are refined. In the implementation, the Radon transform is 

calculated with discrete parameter steps, and the transformed image can be expressed as: 

R(n,m) = g(p0 + nt\p,0o + mA0), 0<n<N -1 , 0 <m < M -1 (6.4) 

where n, m are the indexes of distance and angle, A p and A 6 are the step sizes of p and 

0 respectively, and po and do are the starting values of the Radon Transform 

parameters. 

In order to illustrate the principle of the estimator, we first examine it with a 

part of an image with bright targets. The "ships" scene of the RADARSAT-1 fine mode 

scene of Vancouver can provide a good example (see Figure 4-10). The ships in this 

image can be considered as isolated bright targets and appear as several near-linear 

trajectories in the range compressed image. The linear component of range migration is 

clearly seen. The quadratic term is relatively small - about half a range cell. 

The Radon transform is applied to the range-compressed image of the "ships" 

scene, using angles, 6, from 1.4 degree to 2.0 degree with an increment of 0.02 degree. 

Similar to Figure 6-4, Figure 6-5 shows three vertical slices along p in the Radon 

transform of the "ships" scene at three different angles (for clarity, the horizontal axis of 
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the figure is expanded so that only one of the ships is shown). It can be seen that the curve 

at 1.72 degree is more concentrated than the curves at the other two angles. It was found 

that the concentration of the energy dispersed for angles away from 1.72 degree, so this 

1.72 degree very close to the true squint angle. 

870 875 880 885 890 895 900 905 910 915 920 

Distance, p (samples) -> 

Figure 6-5 Slices taken from the Radon transform of the "ships" scene 

To get better sensitivity, Kong et al. calculate the differential of the transform 

slices along p to emphasize the energy concentration [35]. Figure 6-6 shows the 

differential operation results of Figure 6-5 . It can be seen that the curve close to the true 

skew angle exhibits higher variance, while the curves away from the true skew angle have 

lower variance, as the energy in the integral is more dispersed. In both Figure 6-5 and 

Figure 6-6, the slices at 1.82 degree and 1.92 degree are similar to the slices taken at 1.62 

degree and 1.52 degree. 
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Figure 6-6 The differential of the slices in Figure 6-5 

To quantify the variability of the differential curve of Figure 6-6, the variance of 

the differential is calculated over the p dimension, for each angle in the Radon transform. 

It was presented in [38] that the calculation equation at 9 = Oo + m AO can be expressed 

as: 

d(n,m) = R(n + \,m)-R(n,m) (6.5) 

Var ( H I ) = -J— X d2 (/i, m) -1-*- £ d(n, m)\ (6.6) 

where n is the index of p, m is the index of 6, and d(n,m) is the differential of the Radon 

transform, R(n,m), along the p axis. The variance curve will have a peak at the angle 

where the concentration of energy is greatest. 

6.2.3 Measuring the squint angle from the variance curve 

As discussed in the previous Section 6.2.2, the squint angle can be estimated by 

measuring the location of the peak in the variance of differential curve along the p axis. 

However, in practice the presence of noise and clutter can distort the variance curve, as it 

is not a normal case that a SAR scene has isolated point targets. Rather than simply 
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finding the peak of the variance curve, a curve fitting approach can find the central angle 

more accurately. 

Kong et al. have recommended using a Gaussian function with four unknown 

parameters to fit the variance curve and measure the peak location from the fitting 

parameters. The Gaussian function is defined as: 

G(x) = A exp 
f ( * - / Q 2 > > 

2a2 
+ C (6.7) 

where x is the independent angle variable, and the four unknown parameters are: the 

amplitude, A, the mean or peak location parameter p., the standard deviation, a, and the 

additive constant (pedestal), C. 

In the definition, a certain Gaussian function can be fully expressed by the four 

parameters: A, /u, a, and C. After finding a set of parameters that can form a Gaussian 

function with a closest shape to the actual curve, the peak location of the curve can be 

measured from the mean value \x. Figure 6-7 shows the curve fit procedure. 

Variance 

Angle 0 

Figure 6-7 Fitting a Gaussian function to the variance curve 
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Gaussian fitting needs search procedure, which is time and computation 

consuming. To avoid the complexity of curve fitting, a simpler and almost as accurate 

method of finding the location of the peak of the variance curve is to fin the "center of 

gravity" of the curve. The center of gravity is the position that can balance the integral of 

its two sides, and can be calculated using: 

YO.-Varim) 
I (6-8) 

^Far (m) 
m=l 

where 6C is the estimated "center of gravity", and Var(m) is the variance value at angle 

0m-

A s illustrated in Figure 6-8, this method is equivalent to finding the angle Gc , 

that makes the integral of the two shaded areas, I i and I2 equal, when the integral is taken 

to the left and to the right of the estimated angle. When the variance curve is not 

symmetrical because of noise and clutter, the center of gravity is a more accurate estimate 

than simply the position of the maximum value. 
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To test the performances of the two measurements, we implement them with the 

"ships" scene. In the implementation, we use MATLAB's fminsearch routine to find 

the four unknown parameters for the Gaussian fit. This routine uses the Nelder-Mead 

parameter search procedure [39]. Figure 6 -9 shows the measurement results of the 

Gaussian fit and center of gravity for the "ships" scene. Because the variance curve is 

quite symmetrical and the noise level is low in this high contrast case, the Gaussian fit 

curve is very close to the actual variance curve. The closeness of the fit curve shows that 

the Gaussian function is an appropriate fitting function for this SAR data. It is also shown 

in the figure that using Gaussian fit the measured squint angle is 1.726 degree, and using 

the center of gravity the measured squint angle is 1.731 degree. Both of the measurements 

are very close to the true squint angle of 1.720 degree. While the Gaussian fitting method 

obtains the best estimate in this case, the error of the center of gravity method is fairly 

small, well within the ambiguity error limit (the ambiguity error limit represents the range 

of angles that do not lead to a Doppler ambiguity error). In summary, the Gaussian fitting 

method can give the best squint angle measurement. The center of gravity method can be 

viewed as a simpler but still adequate way. 

1.4 1.5 1.6 1.7 1.8 1.9 

Squint Angle (degrees) -» 

Figure 6-9 Estimating the squint angle from the variance curve ("ships" scene) 
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6.2.4 Resolving the Doppler ambiguity 

However, the estimated squint angle is in the unit of range samples per azimuth 

sample and needs to be changed into unit of meters per second. So, the estimated angle is 

multiplied by c /(2Fr) to change range samples into meters and by the PRF to change 

azimuth samples into seconds. After the adjustments, the result is measured in the same 

unit of the squint angle of the radar beam and the Doppler centroid can be calculated 

directly from (6.1). 

As in other Doppler ambiguity resolvers, the baseband Doppler Centroid should 

be measured first using "spectral fit" or ACCC algorithm [15]. Then, the baseband 

Doppler centroid is subtracted from the estimated absolute Doppler frequency and the 

result is divided by the PRF. After this, the ambiguity estimate is obtained by a rounding 

operation. This reduces the ambiguity estimate to the more reliable estimate of an integer. 

The calculating procedure can be expressed as [15]: 

Mamb = round] r f _ f <\ 
J rjc J rjc 

PRF 

(6.9) 

where fvc is the absolute Doppler frequency estimate from the Radon method, fnc' is the 

accurate baseband Doppler centroid estimate, and Mamt is the estimated ambiguity 

number. 

6.2.5 Discussion 

In this subsection, two SAR signal processing procedure are discussed that would 

provide some improvements to the Radon estimation method. 

Removing Quadratic RCM 

As shown in (2.6) of Chapter 2, the RCM is not a purely linear function and the 

quadratic components of RCM cannot be ignored in some SAR system. If the quadratic 

RCM is significant, the estimated slope will vary along the target trajectory and the peak 
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of the variance curve will be further dispersed, reducing the sensitivity of the estimator. 

Therefore, in order to adjust the RCM to a straight line, it is recommended to remove the 

quadratic part from the full RCM before applying the Radon Transform. 

The quadratic RCM in meters in azimuth time domain can be expressed as: 

V2cos20rc , V2 

A ^ ( 7 ) = ' :-c(rj-rjc)2 « - _ ^ ( 7 - 7 c ) 2 (6.10) 

where the approximation is used when the squint angle, 6rx, is small enough and cos2 6r,c 

can be approximated by 1. The variable rjc is the beam center crossing time and R{rjc) is 

the slant range at the time when the target is illuminated by the beam center. 

Fortunately, for most C-Band satellite SAR systems, such as RADARSAT-1 and 

ENVISAT, the quadratic part of RCM is relatively small. For example, in the "ships" 

scene that is acquired by the F2 beam of RADARSAT-1, the maximum quadratic RCM is 

about one half a range cell. Hence, removing the quadratic RCM would not lead to a 

significant improvement in this case. But for L-band satellites data, the quadratic part of 

RCM could be as large as several cells, and removing this part will improve the estimator 

considerably. It is also worth noting that the quadratic component of RCM can only be 

efficiently removed in the azimuth frequency domain and that the Radon method can be 

adapted to operate in this domain. 

Secondary Range Compression 

Depending upon the radar system parameters and the squint angle, secondary 

range compression (SRC) may have to be applied to sharpen the focus in the range 

Doppler domain. As discussed in Chapter 6 of [15], without SRC the range-compressed 

image can be defocused in the azimuth frequency domain, even though it is well focused 

in the azimuth time domain. On the other hand, if SRC is applied with the range 

compression filter, the image is well focused in the azimuth frequency domain, but 

possibly defocused in the azimuth time domain. 
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Therefore, if we apply the Radon Transform into RCM slope detection in the 

azimuth time domain (as we do in the examples in this Chapter), SRC should be 

implemented after the estimator. Otherwise, if RCM slope is detected in the azimuth 

frequency domain, SRC should be implemented before the estimator. 

6.2.6 Quality Criteria 

In order to avoid the corruption of the bad estimates from the areas with very 

weak backscatter or low contrast, quality criteria are used to detect and remove bad 

estimates from the final estimate, when the "spatial diversity" approach [19] is applied. In 

addition to the common quality criteria of SNR and contrast used in [15], four other 

estimator quality criteria that are specific to the estimator using the Radon Transform are 

examined as following: 

Gaussian fit flag 

This flag is to indicate whether the Gaussian fit method can achieve a expected 

fitting curve. If the search for the four Gaussian fit parameters does not converge, the fit 

procedure fails and the MATLAB 1 fminsearch' routine will come out with an error 

flag (flag = 0). In addition, if the fit parameters are beyond a reasonable range, we also 

declare that the fit procedure fails and set the flag to zero. On the other hand, if the fit is 

deemed successful, the flag is set to one and the next three criteria are examined. 

Fit distortion (Fit std) 

The Fit distortion is defined as the normalized standard deviation of the difference 

between the measured variance curve and the fitting Gaussian function. This quality 

parameter is used to measure how close the shape of the variance curve to the Gaussian 

function. If the fit distortion has a fairly small value, it means that the variance curve is 

well-shaped and most possibly can provide a good estimate. On the contrary, if the fit 

distortion has a relatively large value, it means that the variance curve is distorted 

considerably and may provide a bad estimate. 
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Peak to Pedestal Ratio (PPR) 

In addition, the shape of the fitted Gaussian function can be used to measure how 

good the estimate is. The Peak to Pedestal Ratio is obtained from the Gaussian fitting 

parameters by PPR = (A+Q I C. This quality parameter is used to measure the relative 

height of the peak. The bigger the ratio, the more outstanding the peak, and consequently 

the better the estimate. 

Width of Gaussian fit 

The parameter of standard deviation, er, of the Gaussian function gives the width 

of the Gaussian fit. It is used to measure the sharpness of the variance curve. As we 

assume that sharper variance curves indicate better the estimates, it is preferred that the 

width of Gaussian fit has a smaller value. 

6.3 Using the RCMC and Integration 

The Doppler ambiguity resolver using the Radon Transform is a reliable method 

to obtain Doppler ambiguity estimates. However, the Radon Transform requires large and 

complex computations. In this section, we propose a new Doppler ambiguity resolver 

using RCMC and integration, which is based on the similar principle as the algorithm 

using the Radon transform but only requires simple calculations. Similar to the algorithm 

using the Radon Transform, this estimator cannot provide accurate baseband Doppler 

centroid frequency, but has good performance in Doppler Ambiguity estimation. 

6.3.1 RCMC and azimuth integration 

As discussed in the Section 6.2.2, the slope of the target trajectories with residual 

Range Cell Migration (RCM) is proportional to the Doppler centroid. In the proposed 

algorithm, RCMC is used to change the slope of the targets trajectories, and the azimuth 

integration is used to measure straightness of the trajectories along azimuth. 
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The absolute Doppler centroid frequency consists of baseband Doppler centroid 

part and Doppler Ambiguity part, which can be expressed by: 

where f„c is the baseband Doppler centroid frequency, Mamb is the ambiguity number. 

In this algorithm, in order to resolve the correct Doppler ambiguity number, 

correct baseband Doppler centroid estimates, fnc', are required. The coarse baseband 

Doppler estimates can be obtained by baseband Doppler estimators, such as "spectral fit" 

and ACCC algorithms. Then, the baseband Doppler is found as a function of range over 

the whole scene and unwrapped over the PRF jumps. In addition, the possible range of 

the Doppler ambiguity number is estimated from the geometry model, with the 

assumption of the maximum satellite attitude variation. As a result, a set of candidate 

absolute Doppler centroid frequencies is obtained from (6.11) according to the Doppler 

ambiguity range. 

After that, full RCMC (e.g., both the linear and quadratic parts) is applied over the 

whole range compressed image using the candidate Doppler centroid frequencies. For 

processing efficiency, RCMC is usually implemented in range time and azimuth 

frequency domain, which is also called the range Doppler domain. In our study, RCMC is 

performed by using an interpolator based on the sine function in the range Doppler 

domain. The sine kernel is truncated and weighted by Kaiser Window. This equation 

represents the target displacement as a function of azimuth frequency fn and the amount of 

RCM to correct is given by the second term in (6.10) 

where f„c is the absolute Doppler centroid used, X is the signal wavelength, and Vr is the 

radar effective velocity. 

If RCMC is applied with correct Doppler ambiguity number, the target trajectories 

should be sprightly parallel to the azimuth direction and the energy gets most 

concentrated in certain range cells. Otherwise, if RCMC is applied with Doppler 

fnc=fnc' + MambPRF (6.11) 

RCM(fn) = (6.12) 
%Vr

2 
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ambiguity errors, the target trajectories have residual migration over several range cells, 

and the energy is dispersed over those range cells. Therefore, the correct Doppler 

ambiguity can be estimated by finding the ambiguity number with which RCMC can fully 

remove the RCM and make the target trajectories exactly straight to the range direction. 

Applying azimuth integration of the data magnitude or power is found to be an 

effective way to measure the straightness of the target trajectory after RCMC. This 

operation is similar to what we do in the Radon Transform when the skew angle is zero. If 

the target trajectories are fully straight to the range direction, the energy vs. range is most 

concentrated. On the other hand, if the target trajectories have skewed slope along 

azimuth, the energy vs. range is dispersed. 

To test its performance, the RCMC with azimuth integration method is applied to 

the "ships" scene, the same as the one we used in Section 6.2.2. The results of the azimuth 

integration using several ambiguity numbers are shown in Figure 6-10. It can be seen that 

the result with the most concentrated energy is obtained when the correct ambiguity 

number, Mamb = - 6 is used. The results are dispersed, when the ambiguity numbers are 

away from the correct number, - 6. The larger the errors, the more dispersed the energy. 
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6.3.2 Finding the Doppler ambiguity 

As discussed in Section 6.2.2, the variance is a good parameter to measure the 

concentration of the curve. In this estimator, the variance of the integration curve vs. the 

Doppler Ambiguity number is calculated. The variance can be obtained by: 

Var{m) = —— £ Int2 (n, m) - ——- £ Int(n, m) (6.13) 

where m is the index of the Ambiguity number, n is the index of range cell, and Int(n,m) 

is the azimuth integration at the specific range cell and ambiguity number. 

The correct answer is even more apparent when the differential and variance are 

taken over the range variable. These results are plotted in Figure 6-11, which shows that 

the RCMC/integration results agree closely with the Radon transform results. 
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Figure 6-11 Variance curve in RCMC/Integration method 

6.3.3 Discussion 

Essentially, this method replaces the Radon transform with a simple integration of 

the image energy over one dimension (azimuth). Only one ambiguity number results in 
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RCMCed data that is aligned accurately in azimuth, and quality checks are an effective 

way of checking the accuracy of the alignment. 

The baseband centroid estimates must be unwrapped so that a single ambiguity 

number applies over the whole scene. The spatial diversity, curve fitting method is the 

most reliable way of ensuring accurate estimates that vary smoothly over the scene, and 

the unwrapping is correct [19]. 

The RCMC is best applied in the azimuth frequency domain, as in the range 

Doppler algorithm, so that the quadratic RCMC can be performed efficiently. The 

subsequent estimation can be done in this domain, which is why SRC should be applied 

with the range compression filter (i.e., using Option 3 described in Chapter 6 of [15]). 

6.3.4 Quality criteria 

As in any ambiguity estimation method, parts of each scene will likely yield bad 

estimates. These usually occur in areas of low image SNR and/or low image contrast. 

Using the "spatial diversity" approach [19] over small blocks of the scene, quality criteria 

can be used to reject the bad blocks and obtain higher confidence in the answer. In 

addition to measuring the SNR and contrast of each block, the Peak to Pedestal Ration 

(PPR) is a suitable quality parameter. 

As described in Section 6.2.4, the quality criteria are measured to remove the bad 

estimates. In this algorithm, we examine the quality measurements that are obtained from 

the shape of the variance curve. It can be found in the analysis that the sharper the curve 

of variance vs. Ambiguity number is, the more isolated targets are contained in the block 

and the more accurate estimate would be obtained. Therefore, we use the PMR and 

Normalized peak as the quality criteria. 
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Peak to Pedestal Ratio (PPR) 
Similar to the quality measurement PMR described in Section 5.3.2, this 

measurement is used to measure the height of the peak compared to the non-peak values. 

The ratio is obtained by dividing the value of the peak point by the mean value of the 

other points. 

6.4 Experiments on Real Satellite Data 

As shown in the simulations and results of "ships" scene, the estimators using the 

Radon Transform and the RCMC/integration method have good performances in the area 

with isolated bright targets, since the targets have clearly-defined linear features after 

range compression. Kong has examined this estimator using the Radon Transform on 

three sets of airborne SAR data. In this section, we examine the performances of the 

estimators on general scenes of Satellite SAR data with different kinds of terrain. For 

comparison with other Doppler Ambiguity solvers, the RADARSAT-1 Vancouver scene 

is selected, as shown in Figure 4-10. In this experiment, the "spatial diversity" approach 

[19] is applied to obtain a single ambiguity number over the whole scene and the same 

block separation scheme is taken as what was done in Figure 4-17. 

After range compression, the accurate "spectral fit" baseband Doppler estimator is 

applied and the PRF wraparound is removed. The quadratic component of RCM is 

removed. Then, the Radon and the RCMC/integration methods are applied to estimate the 

Doppler ambiguity. The quality criteria are measured for each block to test their 

effectiveness and to remove biased or noisy estimates 

6.4.1 Analysis of typical results 

Typical results are shown in Figure 6-12. This figure shows the results of the 12 

blocks in the first row of the scene. The blocks run in the range direction of the scene, and 

are numbered from left to right, starting from the top of the figure. The horizontal axis 

refers to the angle used in the Radon transform, but is expressed in units of ambiguity 
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number for compatibility with the RCMC/integration method and for visibility of the 

result in ambiguity units. The baseband centroid is removed from the estimate, so the 

answer should be an integer. The correct answer is indicated by the vertical solid line and 

equals -6, and the vertical dashed lines indicate the ambiguity error limits (exceeding 

these limits results in an ambiguity error). 

ROW: 1 DopCen Amb Solver based on slope estimation. Aver, area 1024 x 655 

-8 -6 - 4 - 8 -6 - 4 - 8 -6 - 4 - 8 -6 
Amb = -6 Amb = -6 Amb = -6 Amb = -6 A m b „ = -6 Amb = -6 A m b „ = -6 Amb _ , = -6 

-8 -6 - 4 - 8 -6 - 4 - 8 -6 - 4 - 8 -6 -4 
Ambiguity number Ambiguity number Ambiguity number Ambiguity number 

Figure 6-12 Finding the location of the peak of the variance curve by the Radon transform 

(Gaussian fit) method and by the RCMC/integration method — Vancouver scene, Row 1 

In each subfigure, the solid curve shows the variance of the difference of the 

Radon transform, referred to as the variance curve. Range compression is performed 

without SRC, and then the Radon transform is applied. The Gaussian fit to the Radon 

variance is indicated by the dash-dot line, and a quality criterion is expressed in the Peak-

to-Pedestal ratio (PPRRT). The other quality criteria discussed in Sections 6.2.6 are also 
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computed and checked, but are not shown on the plots for clarity reasons. The 

RCMC/integration results are shown by the diamonds and the connecting dashed line. 

This line is more quantized as it is only calculated at integer ambiguity numbers. Its Peak-

to-Pedestal ratio (PPRRCm) is also annotated to analogous to the PPRRT - However, the 

two ratios are not totally comparable due to the quantization of the calculations. Finally, 

the estimated ambiguity values are given at the top of each subfigure for the Radon 

transform (left) and the RCMC/integration methods (right). 

From Figure 6-12, it can be seen that the estimators can behave differently with 

different scene content, as referring to the bottom row of Figure 12.31 of [15]. Block 1 is 

half on land and half in the water. Even though the land is on a wooded island with few 

cultural features, there is enough contrast in the land to give the correct estimate with both 

methods, although the peak to pedestal ratios are quite low compared to other successful 

blocks. Similarly, Block 7 is mainly in the water, but has enough land area to give a good 

result. Blocks 2, 3, 5 and 6 are almost entirely in the water, with no bright targets and a 

low SNR because the water is not rough. The curves of variance vs. ambiguity number 

are dispersed, flat and random due to the lack of contrast. In three of these cases, the 

Radon variance curve does not have a well-defined peak and the Gaussian fit fails. In 

Block 5, the RCMC/integration method just barely gives the correct estimate. Both 

estimates are correct in Block 6, but the PPRs of both methods are low, which indicates a 

higher probability of error. 

In comparison, Blocks 8 to 12 are in a suburban/agricultural/wooded area in 

northern Washington State, with relatively high contrast. The shapes of the variance 

curves are sharper, narrower, and closer to the Gaussian function and have a larger PPR 

than the other blocks. As a result, the angle estimates are well within the ambiguity error 

limits. Block 4 is also in the water, but contains the partial exposure of a single ship. The 

Radon variance curve and its Gaussian fit have a peak just outside the ambiguity error 

limit and give an incorrect result. However, the RCMC/integration method has a well-

defined peak at Mamb - - 6, and gives the correct result. 
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The quality criteria are found to reflect the effect of the scene content on the 

accuracy of the estimates when the block has fewer bright targets, less contrast or lower 

SNR, the Peak to Pedestal Ratio and the height of the variance curve are smaller. The 

estimates of the low-SNR Blocks 1-6 have a significant randomness and should be 

removed from the estimate average by the SNR, PPR or other quality criteria. 

6.4.2 Assessments of quality criteria 

In the Vancouver scene results, we find that the performance of the estimator is 

related to the scene content. Therefore, estimator quality criteria can be used to automate 

the assessment of scene content and the estimation results, to determine the suitability of 

each part of the scene for providing robust ambiguity estimates. 

For the Radon transform method, we find that the Gaussian fitting flag is the most 

efficient quality criteria to remove most of the bad estimates. As shown in Table 6-1, for 

the whole 228 blocks, 204 block gave correct ambiguity estimates when the fit was 

deemed successful (flag =1), while only 10 blocks gave wrong estimate when the flag = 

1. When the fit was deemed unsuccessful (flag = 0), 9 blocks were indeed bad estimates, 

while 5 blocks actually had correct estimates. So, if the fitting flag = 1 were used as the 

only quality criterion to remove the possible bad estimates, the correct ambiguity would 

be obtained after an "averaging" or "majority vote" operation. 

Table 6-1 Performance of the Gaussian fit flag as a quality measure 

Quality Criteria 
Number of blocks with 

Good estimate 

Number of blocks with 

Bad estimate 

Flag = 1 209 5 

Flag = 0 2 12 
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In addition, we also assess the other quality criteria discussed in Section 6.2.6 in 

the rejection process in case the Gaussian fitting flag is not available. Table 6-2 shows the 

comparison of the performances of the SNR, fit width, fit standard deviation and PPR for 

the Radon transform method using Gaussian fit. 

Table 6-2 Performance of the other quality measures for R T method 

Quality Criteria 
Number of blocks with 

Good estimate 

Number of blocks with 

Bad estimate 

SNR > - 4.3 dB 201 
ft 

5 

SNR < - 4.3 dB 10 12 

Fit width < 0.52 196 5 

Fit width > 0.52 15 12 

Fit_std < 14.72 206 5 

Fit_std> 14.72 5 12 

PPR_RT> 1.35 202 5 

PPR_RT< 1.35 9 12 

Although the fit standard deviation shows the best performance among the quality 

criteria in the rejection process, the SNR and the PPR are the usually used in the 

implementation. These two ratios are convenient to calculate, and their performances are 

close to the optimal one. Moreover, they are applicable in the RCMC/integration method. 

Table 6 -3 shows the performances of quality criteria SNR and PPR in the RCMC/ 

Integration method. 
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Table 6-3 Performance of the quality measures for RCMC/integration method 

Quality Criteria Number of blocks with 

Good estimate 

Number of blocks with 

Bad estimate 

SNR > - 4.3 dB 202 4 

SNR < - 4.3 dB 10 12 

PPR_RCin> 1.25 203 4 

PPR_RCin< 1.25 9 12 

6 .4 .3 Comparison of the experiment results 

In this section, we examine and compare the performance of the Radon and 

RCMC/integration estimators over a consistent set of blocks of the Vancouver scene. 

Results of the standard MLCC and MLBF algorithms are included as well for 

comparison. Each estimator has different quality measures, but in order to compare the 

estimators fairly, we only use only one quality criterion in this comparison so that the 

same blocks are rejected for each estimator. The quality criterion of "SNR > -1 dB" is 

used, and 28 out of the 228 blocks are rejected. These are mainly the blocks that are 

dominated by water areas. 

Table 6-4 shows the comparison results of the performance of different estimators. 

The second and the third column give the mean value and standard deviation of the 

estimates before the rounding operation in the non-rejected blocks, while the final column 

gives the percentage of the blocks with the correct estimates after rounding operation of 

the non-rejected blocks. The first two rows assess the standard version of the MLCC and 

MLBF algorithms described in Chapter 3. The next two rows give the results of the 

iterative RCMC method and improved beat frequency estimation method described in 

Chapter 4 and Chapter 5. The last three rows assess the Radon transform method using 
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the center of gravity measurement, the Radon transform method with Gaussian fit, and 

finally the RCMC/integration method. 

Table 6-4 Comparison of Doppler ambiguity resolvers for the Vancouver data 

Doppler Ambiguity Resolvers 
Mean 

(PRFs) 

St. Dev. 

(PRFs) 

Success rate 

(%) 

Standard MLCC -5.83 1.36 41 

Standard MLBF -5.72 1.09 62 

MLBF using iterative RCMC -5.92 0.73 92 

MLBF using ILP -5.89 0.43 85 

Radon with Center of Gravity -5.99 0.16 99 

Radon with Gaussian fit -5.98 0.14 99 

RCMC with integration -6.01 0.10 99 

The mean values of results are all close enough to the correct number for all 

methods. However, the standard deviation is a more valuable assessment as it reveals the 

degree of randomness directly. It can be seen that the estimates based on the Radon 

transform and the RCMC/integration method are clearly giving estimates with less 

variability. The Gaussian fit method of estimating the slope gives better results than the 

center of gravity method, likely because it uses a more appropriate function in the fitting 

procedure. Finally, the RCMC/integration method give equal or better results than the 

Radon transform method, and may be the best one of all (note that the standard deviation 

value for the RCMC/integration method is somewhat affected by the integer-quantized 

solutions). 

The histograms of the estimates of the different Doppler ambiguity resolvers 

reveal the same comparison results as described above, as shown in Figure 6-13. 
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Figure 6-13 Histogram of Doppler ambiguity resolvers based on slope measurement 

6.5 Summary 

As the slope of target trajectories is proportional to the Doppler centroid, the 

estimate of the slope of linear features in a SAR image has proven to be an effective 

approach of resolving the Doppler ambiguity number. In this chapter, the Radon 

transform method proposed by Kong was evaluated with satellite SAR data, and some 

improvements are made. In addition, a new, simpler method based on RCMC and 

azimuth integration was presented. 
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Both the simulations and real data experiments show that the Doppler centroid 

estimators based on slope measurement are effective in resolving the Doppler ambiguity 

number. In the experiment using RADARSAT-1 data, the estimates can obtain an 

unbiased Doppler Ambiguity number and have a much smaller standard deviation than 

the current Doppler Ambiguity Estimators. It is shown that the slope estimation method 

work well in medium to high contrast scenes, even when no prominent targets are visible. 

The estimators gave correct result in almost all areas of the tested scene, except in calm 

water. 
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Chapter 7 

Conclusions 

7.1 Summary 

This thesis has focused on Doppler centroid estimation problems and 

improvements to existing Doppler Ambiguity estimators for high-quality SAR 

processing. We have presented several improvements to the existing MLBF and slope-

based estimation algorithms. In addition, experiments were conducted with the real 

satellite dataset, RADARSAT-1 Vancouver scene, in order to test the performances of the 

proposed methods. 

Background to study 

First, the Doppler centroid frequency and existing Doppler centroid estimation 

algorithms were introduced. The "spectral fit" and ACCC algorithms were chosen as 

reliable baseband Doppler estimators. The three phase-based Doppler ambiguity resolvers 

(the WDA algorithm, MLCC algorithm, and MLBF algorithm) were discussed. The 

WDA algorithm measures the slope of the centroid versus the transmission frequency 

directly in the range frequency domain. The MLCC algorithm uses two range looks to 

emulate two radars working in different transmission frequencies. The difference of the 

central frequencies of the two looks is measured by using the ACCC calculation, and the 

estimate of the absolute Doppler centroid is obtained. Like the MLCC algorithm, the 

MLBF algorithm takes advantage of the two range looks to estimate the Doppler centroid. 

These estimates can be obtained by beating the signals of the two looks and measuring 

the beat frequency from the generated beat signal. Because of their different measurement 

methods, the WDA and MLCC algorithm work well in low contrast scenes and can be 

biased by partially exposed strong targets. On the other hand, the MLBF algorithm 
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performs well in high contrast scenes and does not suffer as much from partially exposed 

bright targets as the other algorithms. In addition, the "spatial diversity" approach is used 

to provide a single ambiguity number over the whole frame of data. Areas of the scene 

that bias the estimates can be recognized using quality measures, and rejected from the 

estimation process. Then, a polynomial or geometry model can be used to fit a Doppler 

surface over the whole frame. 

Principle of the MLBF algorithm 

Since the MLBF algorithm proves to be one of the most reliable ways of 

estimating the Doppler centroid frequency of SAR signals, we mainly concentrated on 

this popular algorithm. We discussed a number of ways of improving its estimation 

sensitivity. First, we examined the principle of the MLBF algorithm in more detail, and 

gave a more thorough, frequency domain explanation of how it works. We showed how 

the phase of each range look depends on the range migration and how the phase varies in 

the range frequency domain. Based on this analysis, we highlighted the importance of 

extracting symmetrical range looks and shifting the range looks to baseband. 

The benefits of applying RCMC 

We also found that the RCMC has the effect of narrowing the bandwidth of the 

beat signal, and reducing the effect of cross beating when more than one significant target 

is present in one range cell. The noise in the beat signal due to cross beating is thereby 

reduced, allowing the FFT to obtain finer resolution because of the longer target exposure 

time in each range cell. Therefore, we considered using the RCMC to straighten the target 

trajectories before the beat frequency estimator is applied. We also demonstrated that the 

RCMC must be applied after the look extraction to preserve the phase variation, a point 

that was not obvious when the problem was first considered. If the RCMC is applied 

before the look extraction, the beat signal would have constant phase and the Doppler 

centroid could not be obtained from the measurement of the beat frequency. Based on the 

above analysis, we proposed an iterative scheme.of.applying the RCMC, since the 

ambiguity number is needed to be updated for correct RCMC. 

120 



Improved frequency estimator 
The existing MLBF algorithm uses FFT operations to estimate the beat frequency 

by finding the maximum coefficient. This method has limitations of resolution and 

quantization, especially when the signal is discontinuous in one range cell due to range 

cell migration or burst mode operation. We thereby considered using more accurate 

frequency estimation methods based on phase increments and noise rejection filters to 

improve the beat frequency estimation. In this thesis, we examined five established 

frequency estimators, including Kay's estimator, the ACCC estimator, the FCFB 

estimator, the HLC estimator, and the ILP estimator. We discussed the processing 

procedures of all the estimators and the quality measurements of the phase coherence, 

which especially for the estimator using phase increments. Since the ILP estimator is the 

most accurate frequency estimator in the literature, we replaced the conventional FFT 

estimator with the ILP estimator to improve the beat frequency estimation. Although this 

method and the iterative RCMC algorithm can be combined, the majority of the 

estimation improvement can be obtained by using one of the modifications alone, as each 

method approaches the same sensitivity problem in a different fashion. 

Improved slope estimation algorithm 

We also examined and improved the methods that estimate the Doppler centroid 

by measuring the alignment of linear features in SAR data. These methods are based on 

the same principle as the "look misregistration" algorithm. The slope estimation methods 

take advantage of the fact that Range Migration is caused by the beam squint angle and its 

slope is proportional to the Doppler centroid. Kong has proposed a method that uses the 

Radon transform to measure the slope of the target energy and obtain the absolute 

Doppler centroid for the airborne SAR data. In our study, we discussed the properties 

and application of the Radon transform in more detail, and examined Kong's method in 

the Doppler ambiguity resolution for satellite SAR data. We developed an alternative and 

computationally simpler method that uses RCMC with azimuth integration in Doppler 

ambiguity resolution. This method employs the RCMC to change the slope of targets 

trajectories, and uses azimuth integration to find which Doppler ambiguity number makes 

the trajectories vertical. Several quality measurements of the "spatial diversity" approach 
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derived from the data and from each particular estimator were used to increase the 

robustness of the algorithm. 

Experiments with RADARSAT data 

The experiments with RADARSAT-1 data showed that the improved method 

yields more consistent estimates than does the existing algorithms. The proposed iterative 

RCMC method can increase the percentage of blocks yielding the correct ambiguity 

number from 62 to 92%. The method using the ILP estimator can obtain a standard 

deviation less than half that obtained by the existing method, and a much higher 

percentage of blocks that yield the correct ambiguity number. In addition, the slope 

estimation methods work well in medium to high contrast scenes, even when no 

prominent targets are visible. They can significantly increase the percentage of blocks 

yielding the correct ambiguity number. The improved estimators work best with the high 

contrast scenes, but work surprisingly well in medium to low contrast scenes. 

7.2 Contributions 

This thesis has presented several improved techniques for estimating the Doppler 

centroid in satellite SAR data. Particularly, we have: 

• proposed a method that applies the RCMC after look extraction to reduce cross-

beating and narrow the bandwidth of the beat signal, thereby improving the 

estimate results of the MLBF algorithm; 

• proposed a method that uses more accurate frequency estimators based on phase 

increments to improve estimation of the beat frequency, which thereby improves 

the performance of the existing MLBF algorithm; 

• applied the method using the Radon transform in the Doppler ambiguity 

resolution for satellite SAR data, and proposed some minor improvements to this 

method; 
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• proposed a simpler slope measurement method for Doppler ambiguity resolution 

using RCMC and azimuth integration, which has the same or even better 

performance than Kong's method; and 

• developed several quality measurements for the proposed methods and 

implemented them in the "spatial selected" approach. 

7.3 Future Work 

The results of our research suggest the following topics for future investigation: 

• The improved MLBF algorithms and the improved slope estimation algorithms 

can be combined together to further increase the sensitivity of estimate results. 

• Better quality measurements need to be developed to remove more bad estimates 

and increase the robustness of the Doppler ambiguity resolvers. 

• More real datasets with different contents should be used to test the performance 

of the proposed algorithms, such as ENVISAT data. 

• The proposed algorithms should be applied to ScanSAR data to test their 

performance with burst mode datasets. 
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