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Abstract 

A reliable, reconfigurable, and expandable distributed architecture supporting both bus and point-

to-point communication for robotic applications is proposed. The new architecture is based on Inmos 

T800 microprocessors interconnected through crossbar switches, where communication between nodes 

takes place via point-to-point bidirectional links. Software development is done on a host computer, 

Sun 3/280, and the executable code is downloaded to the distributed architecture via the bus. 

Based on this architecture, an operating system has been designed to provide communication 

and input/output support. The message passing communication protocol uses circuit switching and a 

centralized reconnection control strategy. The communication protocol is composed of two modules: 

A Local Bus Interface (LBI) that runs on every processing element and a Central Switch Controller 

(CSC) which executes on a bus master and reconfigures the network topology as required by the user 

program. The LBI is small, simple, and deadlock free. User reconfiguration requests are interrupt 

driven, and the CSC can support real-time reconfiguration of the topology without interfering with 

other communications. An Input/Output Controller (IOC) process runs on the host computer and 

provides standard library support to each processor in the network. 

An important feature of the circuit switching communication protocol is that it preserves syn­

chronous communication where processors do not need to store messages and no buffer management 

is required. Routing overhead occurs only when the circuit is set up, so subsequent messages may 

flow through the network with a guaranteed bandwidth and a maximum communication latency, 

which is an important consideration in real-time systems. 

The routing mechanism is adaptive where communication hot spots may be detected and 

bypassed. The centralized reconfiguration control strategy and the adaptive routing mechanism 

provides a basis for a reliable architecture. In the case of a link or processor failure, the routing 

mechanism is capable of bypassing a faulty component without affecting the application program, 

and can also redirect messages to a backup processor. Knowledge of the faulty component is required 
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at the CSC only, in contrast to most routing algorithms where either the local or global state of the 

network is essential at every node. 

The performance of this communication protocol is compared with Helminen's store-and-forward 

model [1] running on the FPS T-series hypercube. The results show that the centralized circuit 

switching protocol provides better performance when a message crosses multiple hops, large message 

length, and when the algorithm contains temporal locality properties. Dynamic protocols, however, 

are less desirable for short messages due to the initial connection latency. 
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Chapter 1: Introduction 

Chapter 1 

Introduction 

Advancement in technology has led to many novel robotic applications. For example, robots 

are now found in military sites, hospitals, nuclear power plants, and, in the near future, the space 

station. Simpler teach-playback robots with no more than six degrees of freedom are being superceded 

by high-performance robots incorporating recent advances in vision, optimal and adaptive controls, 

and artificial intelligence. Since sophisticated robots will be used in hazardous and uristractured 

environments, highly complex sensor-based control problems must be solved in real-time. 

Figure 1.1: Computational Demand Of Advanced Robots 

As illustrated in Figure 1.1, robotic algorithms will require high computational power that is 

beyond the capabilities of modern conventional computers. To illustrate the computational effort 

needed, consider processing of a 512 x 512 pixel image. On a conventional computer such as the 

VAX 11/780, which is capable of lMillion Instructions Per Second (MIPS), processing time will 

vary from 100 seconds at 100 operations per pixel to 2.78 hours at 10,000 operations per pixel for 

every frame [2], 
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Chapter I: Introduction 

To support adaptive control algorithms, sensor information may have to be sampled at rates up 

to 5 KHz [3]. The necessary arithmetic operations for these computer intensive adaptive control 

equations must be performed at a throughput of approximately 30 MFLOPS to meet a real-time 

deadline of 200 us [4] [5]. 

The demand for computing power coupled with the continuing advances in hardware technology 

have motivated researchers to investigate highly parallel computing to attain acceptable real-time 

performance. 

1.1 Highly Parallel Computing 

The two driving forces in the field of parallel computing are the recent advances in VLSI 

technology and the improvements in the state of computer architectures. 

Improvements in VLSI technology such as the advances in semiconductor materials and fabri­

cation techniques have increased the density of wafer-scale integration Today's supercomputers as 

the CRAY X-MP and Fujitsu VP-200 [6] are limited in its performance by off-chip delays. The use 

of higher density packaging may reduce the propagation delays, but is limited by power dissipation 

requirements. Researchers, however, have overcome this limitation by improving the performance 

of computer architectures. 

The conventional single processor is characterized by the Von Newmann model of a serial 

processor. The main performance limitation of the Von Newman architecture is the memory access 

time. To overcome this limitation, the Von Newmann architecture was enhanced with pipeline 

techniques in instruction units and vector processing as used in the Cray X-MP [6]. A pipeline 

divides operations into a sequence of simpler operations called stages. Operations at each stage are 

performed by individual hardware units which act in similar fashion to an assembly line. A K stage 

pipeline should theoretically improve the system throughput by a factor of K. But the number of 

stages is limited to the number of partitions that a given operation requires, and hence this defines the 

task parallelization limit Also, the performance of the pipeline is dependent on keeping the pipeline 

full, data dependencies between stages will limit the propagation of data at the speed of the slowest 

stage. A vector processor will execute an instruction on a vector of data. If a computation cannot be 
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Chapter 1: Introduction 

vectorized, the performance of a vector computer is rapidly reduced to its scalar equivalent Therefore, 

pipelining and vector processing can only be applied to a subset of the overall application domain. 

A more general approach to pipeline and vector processing is to subdivide the application program 

into several parallel jobs. Each job is executed on separate processors which are combined to form 

a parallel architecture. In the spectrum of parallel architectures, there are three primary divisions 

which are based on the number and complexity of the processing elements [7]. Parallel architectures 

may be designed with: 

1. Very large number of simple processors: 

The processing elements are very simple and comparable to bit serial processors. Each processing 

element is useless by itself but the computing power may be large when many are coupled together. 

Reeds [7] compares this type of architecture to a large colony of termites devouring a log. A 

representative example of this approach is the TWnking Machine which uses 65,536 1-bit processing 

elements [8]. 

2. Small number of powerful processors: 

Each processing element is very complex and use the fastest available VLSI technology. The 

processors are equipped with pipeline and vector processing units. To pursue Reed's analogy, this 

design is similar to four woodsmen with chain saws. As an example, the Cray 3 architecture is 

composed of 16 processors designed with Gallium Arsenide technology and processes data at a speed 

greater than 10 GFLOPS [9]. 

3. Large number of microprocessors : 

This approach is an intermediate between the extremes described above. This is similar to a small 

number of hungry beavers. The development of this type of architecture was led by the advent 

of fast microprocessors and inexpensive memory. In many of these systems, each node contains a 

processor with some locally addressable memory and a small number of links to connect to other 

nodes. Examples of such systems are the FPS T-series [10], the iPSC hypercube [11], and the NCube 

[7]. This category also includes architectures such as Condor [12] where several microprocessors 

communicate via a shared bus. Parallel architectures with a number of microprocessors greater than 
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Chapter 1: Introduction 

two that are sharing the computational load of an application will be referred in this thesis as a 

distributed system. 

12 Levels of Parallelism 

Increasing the computational power with parallel architectures involves parallel execution of the 

problem. The granularity of a parallel architecture defines the size of the processes which constitute 

a parallel computation. The difficult question is where to extract the parallelism? Parallelism may 

be found at the following levels : 

1. job or program level (large grain) 

2. task or procedure level (medium grain) 

3. instruction level (fine grain) 

The granularity of a system is closely interrelated with the complexity and the number of 

processing elements which form a parallel architecture. A problem that is parallelized at the instruction 

level usually requires a very large number of simple processing elements. At the other extreme, if 

the level of parallelization of a problem is at the program level, a few powerful processors would 

be best suited for this type of application. 

There are compromises between the extremes of granularity. Fine grain architectures involve 

overhead to support communication between small processes and a too large a process size will reduce 

the scope of parallelism. The extraction of parallelism, however, greatly depends on the problem to 

be solved and the most efficient solution may not be unique. 

Amdahl concluded that the speedup is limited by the amount of parallelism inherent in the 

algorithm [13]. Speedup (S) is defined as the ratio between the execution time using a single 

processor and the execution time using multiple processors. The maximum Speedup Smax of P 

processors executing an algorithm is expressed by: 

Smax = P/(fP+l-f) 
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where factor f represents the fraction of the computation that cannot be parallelized. Note that when 

f=l> SmM=l which indicates that the problem cannot be partitioned. On the other hand if the problem 

is completely parallelizable (f=0), the speedup Smax=P. 

Amdahl defined the effectiveness of a parallel architecture E by: E = S/P. This last equation 

shows that the efficiency of a parallel architecture is limited by the fraction of the computation that 

cannot be parallelized. 

The level of parallelism that best fits the problem cannot be selected without a careful examination 

of the application. The following section presents a computational analysis of various robotic 

algorithms. 

13 Computational Analysis of Robotic Algorithms 

This section briefly examines areas of robotic application such as control, vision, sensing and 

planning. An overview of proposed parallel architectures, necessary to solve these functions is also 

presented. 

13.1 Algorithms for Control 

Today's industrial robots are usually limited to position and velocity control. Tomorrow's state-

of-the-art robots will interact with the environment through vision or other external sensors. More 

complex control algorithms based on position and force are constantly being developed. A typical 

control system must calculate computationally intensive algorithms for the inverse kinematics and 

the forward and inverse dynamics. 

Inverse kinematic equations are dependent on the manipulator position. These equations involve 

many trigonometric calculations. Given an end effector position in environment coordinates (usually 

Cartesian), the required joint angles to achieve this position must be determined. This relationship is 

a one to many mapping which uses a Jacobian between Cartesian and rotational coordinates. 

Dynamic equations are tightly coupled and non-linear. Forward dynamic equations calculate the 

position of the end effector given a set of joint forces or torques. The inverse dynamics, however, 
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Chapter 1: Introduction 

finds the joint forces or torques which produce the desired trajectory of the end effector. The Newton-

Euler equations are generally regarded as the most efficient method for the evaluation of dynamics 

[3]. Various levels of parallelism have been proposed in this area. 

Nigam and Lee [14] have developed an algorithm which extracts parallelism at the job level 

based on a multiprocessor robot controller. A multiprocessor architecture is composed of processors 

connected to memory boards via a common bus. 

Medium grain parallelism has been explored by Wang [3] where independent parts of the Newton-

Euler equations are processed concurrently. A similar approach has been proposed by the Oak Ridge 

Laboratory where the Newton-Euler inverse dynamic equations are computed on a distributed system 

configured in a hypercube network [15]. Each processing element in a hypercube network has local 

memory and they are connected in a binary n-dimensional cube topology using external links. The 

hypercube architecture is described in more detail in the next chapter. 

Geffin [16] proposed to extract parallelism of the Newton-Euler state space formulation at the 

instruction level. The concurrent processes would execute on a dataflow architecture which, in 

this case, consists of 2000 processing elements. The Dataflow computer is usually labelled as a 

non-Von Newmann architecture. An instruction is executed only when all operands are ready within 

an operation. When many operations of a program are ready for execution, they are assigned to 

individual processing units for execution. A good survey of dataflow computing is given by Dennis 

[17]. The main disadvantage of this architecture is that the overhead, needed to distribute the tasks to 

the processing elements, is too demanding when the computer contains a thousand or more processing 

elements. In addition, the fine granularity of the computation implies that many processing elements 

are needed to achieve speedup. 

Lee and Chang [18] [19] have derive algorithms for forward and inverse dynamic to be 

implemented on an S T M D computer. In an SIMD parallel model, a single instruction is executed in 

parallel by several processing elements in lock-step. Multiple arithmetic units operate in parallel and 

perform the same operation on a different sets of data. The Thinking Machine [8], for example, is 

classified as a SIMD architecture. The main drawback of the SIMD architecture is that the system 

can only execute one instruction stream at any time. If a program does not have enough data streams, 
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Chapter 1: Introduction 

some processing elements in the system remain idle, and hence, may lead to severe degradation of 

the system performance. 

\32 Algorithms for Vision and Sensing 

The main task of robotic vision is to provide information about the position of objects in space 

for path planning and control. The task of a robot extends over time, consequently a sequence of 

images must be sampled at a rate greater than external events. The robot must also capture the 

spatial occupancy of objects in its environment in order to avoid collisions. Mudge [2], highlights 

robot vision algorithms and classifies them into three categories: low, intermediate and high level 

processing. 

In low level processing, the image is enhanced and features of the image are detected. De­

terministic operations are applied to each pixel in the image, whereby the value of each pixel is 

dependent of the values of the surrounding pixels. When the image is subdivided into equal areas, 

each area requires the same processing time. Low level vision processing is well suited for fine grain 

computations where each processing element computes a small area of the image. 

Systolic arrays and array processors are special purpose arcWtectures well suited to low level 

processing algorithms. Systolic and array processors are processors which precede the host computer. 

Array processors are commercially available and are generally high speed processors which are 

optimized for vector and array operations. A Systolic Array is a parallel architecture where all 

processing elements are interconnected in a two-dimensional grid, and the output results of the 

computation are passed to one or more neighbouring processors. All processing elements execute 

synchronously. Kung presents an overview of systolic arrays [20]. The major drawback of a systolic 

array is that an adequate amount of data from the outside world must be fed into the array in order 

to achieve a high computational bandwidth. When implemented in hardware, the I/O of a Systolic 

array limits its performance. 

The intermediate level processing extracts features from the enhanced low level image. 

Algorithms in this category extract the edges and organize them in connected segments. The last 

stage, high level processing, involves algorithms for object recognition. 
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The data representation of the image is not uniform. Edges and objects to be extracted from 

the image and may be found at any part of the frame. Array processors and systolic arrays are 

not efficient for this type of problem due to the uneven workload. Mudge [2] and Jones [21] 

extracted parallelism at the job and procedure level and distributed the jobs to a small number of 

microprocessors connected in a hypercube topology. 

The University of Pennsylvania REPLICA project investigated the performance of a special-

purpose computer for sensing applications [22]. Eva Ma concluded that the best solution to parallelize 

the problem is not unique. Consequently, a dynamically reconfigurable and partitionable computer 

system called REPLICA was designed. When a problem similar to low level vision processing 

involves the execution of a sequence of similar operations on different subsets of input data points, 

the processing elements are partitioned into an SIMD computer. To perform edge detection or object 

recognition algorithms, the REPLICA architecture can be reconfigured as a distributed system. A 

distributed system is more efficient than SIMD architectures for processing non-uniform workloads. 

The operating system overhead to partition REPLICA architecture dynamically is high, and hence its 

use in real-time application is not feasible at the moment 
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Chapter 1: Introduction 

133 Algorithms for Path Planning 

The workspace of a robot may contain obstacles. The robot must avoid these obstacles when 

executing a task. The path planner ensures that the robot takes a collision free path when moving from 

a starting position to a target position. Poon [23] proposed to extract parallelism of the path planner 

at the procedure level. The path planner program is represented by a coordinator process and a set of 

collision detector processes. Each collision process knows the position of a subset of obstacles and 

subset of robot surfaces. Each time the the robot must move, the collision processor must check if the 

path is collision-free with its subset of objects. The structure of the computer architecture proposed 

by Poon is a distributed system where each processing element has local memory and communicates 

via communication links. 

From the above computational analysis of various robotic applications, researchers have extracted 

the parallelism of robotic algorithms at all three levels: program, procedure and instruction. In light 

of the above, we can see that there is not a unique solution to the problem of mapping robotic 

algorithms to a parallel architecture. However, it seems that a distributed system is the most suitable 

architecture, at least for program and procedural level of parallelism. 

A very high speed parallel architecture with a small number of of powerful processors is not a 

feasible cost effective solution since they are extremely expensive to buy and maintain. Also, real­

time computing is not necessarily equivalent to fast computing [24]. Supercomputers, for example, 

may have difficulty to respond to many external events or I/O operations and still meet the real-time 

constraints of a robotic system. 

Ajchitectures which extract parallelism at the instruction level have also major drawbacks. 

Dataflow architectures suffer large performance degradations when there are many processing el­

ements. The formulation of robotic algorithms which deal with matrix computation appear to be 

favorable for Systolic Arrays, however, the I/O of the Systolic Array severely limits its performance. 

The fact that all processing elements of a SIMD architecture can only execute the same instruction 
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in lock-step is clearly limited to a small subset of the application domain. Consequently, a very large 

number of simple processors is not suitable for general robotic applications. 

Powerful distributed systems may be built with low cost microprocessors. They are simple to 

implement and easy to maintain. A distributed system efficiently maps algorithms that are parallelized 

at the procedural and program levels. For fine grain computation, a distributed system may simulate 

an SIMD architecture where each processing element has an identical program running in parallel. 

As an example, Mudge [2] developed an algorithm which calculates low level vision problems with 

a distributed system programmed as a SIMD architecture. The performance results were comparable 

to an array processor. 

1.4 Distributed Architecture: A Definition 

A distributed architecture consists of: 

1. a large number of microprocessors connected in a given topology, 

2. processing elements which are programmable and can execute their own programs asyn­

chronously, 

3. a parallel architecture well suited for medium grain computation, 

4. processing elements which communicate either via shared memory or message passing. 

Currently, application programs must be manually decomposed in concurrently executing tasks. 

There is a large spectrum of distributed architectures. Distributed architectures may be classified in 

two main categories depending on how the data is exchanged between microprocessors. Processors 

may communicate either via message-passing or shared-memory. 

Shared-Memory 

In a shared-memory architecture, the entire information is directly accessible by every processor. 

A shared-memory distributed system contains typically less then ten processing elements connected 

to shared memory via a high speed bus such as VME or Multibus. 

Communication over shared-memory provides an excellent medium for broadcasting information. 

This simple architecture, however, is efficient only for small numbers of processing elements. 
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Memory contention becomes a significant bottleneck as the number of processing elements increase. 

To alleviate the memory contention problem, the single bus is replaced by multiple busses or a high 

speed interconnection network. But, these enhancements increase greatly the cost and the complexity 

of the architecture. In robotics, shared-memory distributed systems were used by [12] and [3]. 

Because of these limitations, a shared-memory system was not considered in the present study. 

Message-Passing 

Each node of a message-passing architecture contains some locally addressable memory, a 

communication controller capable of routing messages without delaying the processor, and a small 

number of connections to other nodes. Asynchronous tasks executing on different nodes communicate 

via message passing. The message is transferred via a communication network. The complete 

message is transferred explicitly from one processor to another. Notice that, unlike the shared memory 

technique, the message-passing mechanism does not require arbitration or synchronization scheme 

to ensure the validity of the data. Examples of message-passing architectures used in robotics may 

be found in [15], [2], and [21]. 

A message-passing architecture has the important advantage of not being limited by the number 

of processors that can be added to the system. As the number of processing element increases, the 

communication bandwidth of the system also increases. Expandability is a desirable feature for an 

architecture designed for robotic applications. 

The computing power required to control next generation robots is still unknown. For instance, 

the original version of the architecture for the Utah-MIT hand consisted of six Motorola 68000 based 

technology linked via a tightly-coupled Multibus. Narassimhan [25] stated that the architecture was 

already saturated with low level hand servo calculations. Hence a second version of the system 

called Condor, was based on Motorola 68020 processors, which resides on a VME bus and has 

floating point support [12]. This architecture has also reached its limit and the architecture will 

be expanded with microprocessor nodes that will communicate with Condor via a message passing 

protocol called Ganglia. 

Although shared-memory bus based systems are attractive for their simplicity, problems arise in 
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Chapter 1: Introduction 

the form of limited scalability, contention for accessing shared-memory, and rising cost for overall 

speed gain. Since the absolute computational requirements for newly developed robotic applications 

are still uncertain, a message-passing distributed architecture represents a better cost-performance 

parallel system. A processor of a message-passing architecture may also be directly connected with 

external sensors. This arrangement decreases communication latency between the I/O boards and the 

processors which process the I/O data. Message-passing distributed systems have other important 

advantages which are reconfigurability and fault-tolerance. These issues will be discussed in greater 

detail in the following chapter. 

1.5 Interconnection Network 

An important component of a message-passing distributed system is the interconnection network 

which supports communication among the processing elements. Since the interconnection network 

determines the communication delays among the processing elements, it directly affects the system 

performance. Maximum system throughput is achieved if each processor receives the data it requires 

with minimum delay. The interconnection network also plays an important role in system reliability. 

The architecture of an interconnection network is categorized by the network topology, the control 

strategy and the switching method [26]. 

A network topology may be- either static or dynamic. In a static structure, links between two 

processors are permanent Therefore, a message may have to be routed through intermediate nodes if 

a processor needs to communicate with another processor not directly connected. Alternatively, some 

systems may allow the topology to be reconfigured to provide direct connection. A dynamic topology 

is implemented by connecting communication links to switching elements. A dynamic topology is 

clearly the more powerful topology. 

The setting of the switches may be either centralized or distributed. If control-setting of the 

switches is executed by a centralized controller, the control strategy is centralized. A fully distributed 

control strategy is where the setting of the switches is made by the individual switching elements. 

The two major switching methodologies are circuit switching and packet switching. In circuit 

switching, a physical path is established between the sender and the receiver. In packet switching, 
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no physical path is established in advance between the sender and the receiver. Instead, the message 

is divided in packets, and routed to its destination via intermediate nodes. Thus, a circuit switching 

strategy is attractive to real-time systems since it provides a maximum communication latency and 

guarantees a minimum bandwidth once the circuit is established. 

1.6 Scope of the Thesis 

This thesis investigates the design options for the hardware and software of a distributed system 

for robotics and automation and evaluates the performance of an implementation. 

1.7 Thesis Overview 

Chapter 2 discusses design objectives, such as predictability, rehability, reconfigurability, ex­

pandability and development support, to be achieved in an implementation of a message-passing 

distributed system for robotics. A discussion on the various hardware and software design options 

to meet these objectives is then presented. Hardware issues such as interconnection networks, node 

architectures, and reconfigurability are discussed. An overview of the software design options is also 

presented. These options are: synchronous versus asynchronous communication, centralized versus 

a distributed control strategy, packet switching versus circuit switching, reconfiguration modes, ad­

dressing modes and finally software support to achieve reliability. This chapter concludes with an 

outline of the desirable hardware and software design options selected for an implementation of a 

distributed architecture. 

In Chapter 3, hardware and software implementations of a message passing distributed archi­

tecture is presented. The hardware architecture is based on transputer modules interconnected via a 

reconfigurable topology. The interconnection network is composed of both bus and point-to-point 

communication links. Inter-node messages are routed via point-to-point communication links and the 

bus architecture is mostly used for operating system functions and reliability. The implementation 

of an operating system which provides communication and input/output support is presented. The 

operating system communication protocol is synchronous, the selected switching mechanism is circuit 

switching and the reconfiguration control strategy is centralized. 
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The communication performance of the architecture is evaluated in Chapter 4. Performance 

tests which isolate hardware and software overhead are presented and the results are compared with 

Helminen's store and forward model [1]. Helminen's communication protocol is asynchronous and 

runs on the FPS-T series hypercube, which is a transputer-based distributed system. 

Chapter 5 concludes the thesis with a summary of results and suggestions for future areas of 

research. 
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Chapter 2 
Design Requirements of a Message-Passing Distributed System for Robotics 

There are various requirements on the design of an architecture for robotic control. The 

previous chapter discussed the need for substantial computing power and proposed a message-passing 

distributed architecture as a suitable cost-performance solution. A distributed architecture, however, 

should also includes the following features: 

1. Predictability; 

2. Reliability; 

3. Reconfigurability; 

4. Expandability, and 

5. Development support. 

This chapter will discuss the above architectural design objectives and will evaluate various 

hardware and software approaches to meet these objectives. For the remainder of this thesis, the term 

distributed system: will refer to a message-passing distributed system. 

2.1 Design Objectives 

2.1.1 Predictability 

The objective of real-time computing is to meet the individual timing requirements of each task. 

A real-time system must be predictable, that is, the liming behavior of concurrent processes must be 

deterministic [24]. The predictability of a system is determined by, the algorithm, the architecture, 

and the operating system. 

An algorithm is difficult to trace when it is parallelized into concurrent processes that interact 

with external events. A parallel architecture provides a higher throughput than today's sequential 

computers, but this does not guarantee that the timing comtraints will be met. Other factors such 

as interrupt latencies, communication delays and input/output support must also be considered. The 

operating system of a parallel architecture should also provide fast and deterministic scheduling 
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support. Fast scheduling requires efficient context switching capabilities. A context switch occurs 

when a running process is descheduled to allocate the cpu resource to another concurrent process. A 

scheduling algorithm is deterministic when it guarantees that tasks are scheduled within a maximum 

time delay. 

2.12 Reliability 

Robots may have to execute tasks in hazardous environments. Failure to meet the real-time 

constraint can result in dangerous situations where massive loss of equipment or even human life 

may occur. The architecture must provide capabilities for fault detection and recovery or shut down 

of the system in a controlled, fail-safe manner. 

2.13 Reconfigurability 

In the previous chapter, various algorithms to parallelize robotic applications such as control, 

vision and path planning were presented. The algorithms require different interconnection networks 

to support efficiently their communication pattern requirements. To achieve efficient mapping of 

the communication pattern of an application to an interconnection network, it is desirable that the 

interconnection network be reconfigurable. A reconfigurable system can be matched to the problem 

to be solved. 

Reconfigurability is also important for fault tolerant computing. The failure of a component in an 

interconnection network can bring down the entire system or cause severe performance degradation 

unless sufficient measures such as redundant communication paths or reconfiguration are provided. 

2.1.4 Expandability 

Adaptive control, development of flexible joint robots, vision, and artificial intelligence are active 

research areas in robotics and automation. For applications such as these, a parallel architecture should 

be easily expandable in order to support an increased demand in computing power. 
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2.1.5 Development Support 

A good development environment is necessary for efficient software design, implementation and 

testing. The development environment of a distributed system should provide: 

1. access to high level languages and debugging tools; 

2. concurrent execution of programs from multiple users; 

3. an easy to use programmer's library for inter-process communication; and 

4. concurrent input/output capabilities where each processing element may directly access secondary 

storage and be connected to a terminal. 
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22 Survey of Multiprocessor Hardware 

There are two major hardware issues in the design of a distributed system. The first is the 

design of the node architecture which supports communication among the processing elements and 

the second is the design of the interconnection network architecture. This section will begin with 

a description of a node architecture followed an overview of static and dynamic interconnection 

networks. The architecture must be resilient to failures, and hence techniques and hardware 

enhancements for achieving fault-tolerance in distributed systems will be presented. Following this 

discussion, the node organization and interconnection network of existing distributed systems will be 

described and advantages and disadvantages of the various designs will be discussed. 

2.2.1 Node Architecture 

A typical node in a distributed system contains: 

1. a microprocessor, 

2. locally addressable memory, 

3. a communication controller to support routing of messages; 

4. communication links connected to other nodes; and 

5. optional hardware such as a vector processing unit or a floating point co-processor. 

There are two main approaches to the design of a node for a distributed system. The first 

approach is to use an existing microprocessor such as a Motorola 68020 as in the Mark HI hypercube 

[27], or an Intel 80286 as in the iPSC hypercube [11], and then enhance the processor with additional 

logic to manage communication. The second approach is to integrate communication capabilities in 

the design of the microprocessor as in the Jumos Transputer [28] and the NCube [7]. For example, 

the T800 Inmos transputer is a single chip microprocessor containing 4k bytes of memory, a 32 bit 

external memory interface, four full duplex communication ports, and a 1.5 MFLOPS floating-point 

co-processor. 

18 



Chapter 2: Design Requirements of a Message-Passing Distributed System for Robotics 

A detailed description of the node architecture of distributed systems with each node design 

approach is presented in section 2.2.4. It will be shown, that the main advantages of a processor with 

integrated communication facilities is the simplicity of the node design and the compactness. 

222 Interconnection Networks 

222.1 Static Topology 

In a static topology, links between processors are fixed. Static topologies are classified according 

to the dimension of the network [26]. One of the simplest two-dimensional interconnection schemes 

is a ring in which each node is connected to two others in a circular topology. Other two-dimensional 

topologies include star, tree, and near neighbor mesh as presented in Figure 2.2(a)(b) and (c). 

The main drawback of these simple topologies is that the network diameter is relatively large. 

The network diameter is the maximum number of links that must be traversed to transmit a message 

to any node along a shortest path. For example, a message routed on a network of P processors 

connected in a ring topology may have to traverse P/2 hops before reaching its destination. Each hop 

crossed by a message involves some intervention by the processor at that node and this consequently 

decreases the throughput of the system and increases communication delays. 

To decrease the network diameter, a n-dimensional network topology known as n-cube or 

hypercube has been developed. The dimension of a hypercube determines the number of nodes 

in the network, the network diameter, and the number of communication links connected to each 

node. A hypercube of dimension d has a network diameter d, and is composed of 2d nodes, where 

each node has d connection links. A three dimensional hypercube is presented in Figure 2.2(d). 

Examples of commercial hypercube distributed systems are the Intel iPSC [11], the Amteck System/14 

[7], the FPS-T Series [1], and the NCube/ten [7]. The hypercube topology, however, has one major 

drawback: the number of connections required at each node grows with the the hypercube dimension. 

Consequently, the expansion of a distributed system connected in a hypercube is limited by VLSI 

packaging technology. 
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2.2.2.2 Dynamic Topology 

(d) 3 dimensional hypercube 

Figure 22: Static topologies 

A reconfigurable network is composed of communication links connected to switching elements. 

A switching network may be either blocking or non-blocking. A communication network is called 

blocking when messages contend for communication resources. A non-blocking network provides 

the resources to handle all possible connections between any node pairs with no conflicting path. 

A crossbar network is an example of a non-blocking reconfigurable network. In a crossbar 

network, all communication links are connected to a switch and a non-blocking path between any 

pair of nodes may be created with a maximum of one switch delay. The hardware cost, however, 

grows as 0(N2) for a system with N inputs and N outputs. Examples of architectures using crossbar 

networks are the Supernode [29] and Parsifal [30] computers. 

In order to reduce the switching complexity, communication links among the processors can be 

shared. The penalty for this reduction in complexity is that the network becomes blocking. A blocking 

network suffers longer communication delays than a non-blocking network as a result of contention 
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for link resources. There are two main approaches in the design of blocking interconnection networks. 

The first approach is to design a multistage network composed of a large number of simple 2x2 

switches. Multistage networks provide interconnection of N devices at a cost of switching circuitry 

that grows as 0(Nlog2N)- The Star architecture developed at the University of Texas is an example 

of an architecture design with a baseline multistage network [31]. A baseline multistage network 

is illustrated in Figure 2.3(a). 

A second method of reducing the switching cost of a crossbar network is to design a distributed 

crossbar communication structure as illustrated in Figure 2.3(b). Distributed crossbar networks 

support non-blocking communication when there is no inter-cluster communication and become 

blocking when messages are sent between clusters. This interconnection scheme was used by the 

Connection Machine. In the Connection Machine, a cluster is composed of 16 processors connected 

to a switch. Each switch has twelve connections for inter-cluster communication and the switches 

are interconnected in a 12 dimensional hypercube. This distributed cluster interconnection network 

can support communication among 65,536 processors [8]. 

A distributed crossbar network is well suited to applications such as robotics where the problem 

can be subdivided into functions and the majority of interprocess communication messages are within 

processes of the same function. In robotics, functions such as sensing and vision, control and path 

planning may be executed on a cluster of processors where each cluster will be interconnected in a 

distributed crossbar configuration. With the high communication locality pattern within each function, 

the majority of messages will not contend for shared resources. 

The main disadvantage of a dynamic topology over static topology is the switching hardware 

complexity. A dynamic topology, however, has the following advantages. 

Increased performance: 

A dynamically reconfigurable topology may efficiently support communication patterns which 

are either local or non-local. A communication pattern is said to be local if most messages are sent 

between neighbor processors. 

If the communication pattern becomes non-local in a static topology, a message will have to 

traverse many hops, prior to reaching its destination which increases communication latency. Also, 

21 



Chapter 2: Design Requirements of a Message-Passing Distributed System for Robotics 

(a) 8 x 8 Baseline Network 

(b) Crossbar Network 

Figure 2J: Blocking interconnection networks 

as the anti-local message traffic increases, the nodes which are in the path of the messages would 

tend to work primarily for message routing at the cost of all other local processes. 
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In a dynamic topology, however, the communication network may be reconfigured to provide a 

route for any messages without requiring any processing support of other nodes in the network. 

Design flexibility: 

If the interconnection network is static, programmers must develop algorithms where the com­

munication pattern maps into the interconnection network. This limitation decreases design flexibility 

[32]. A flexible interconnection topology, however, will alleviate such problems by matching the 

topology to the communication pattern of the algorithm. 

Message-passing flexibility: 

A reconfigurable network can provide a direct communication path between any node pairs. 

If a message has to traverse many hops to reach its destination, a dynamic topology provides the 

flexibility to either reconfigure the network to create a direct connection or to simply forward the 

message through other nodes as in a static network. 

Fault-tolerance: 

If a link or a node fails, a dynamic topology provides fault recovery through physical recon­

figuration of the network. 

2.2.3 Hardware Organization for Fault-Tolerant Architecture 

In this section, a review of techniques for achieving a desirable level of hardware fault-tolerance 

in a distributed system is presented. Fault masking and being able to detect, diagnose and recover 

from a failure are two methods currently used to attain fault-tolerant hardware designs [33]. The 

efficiency of some techniques will depend on the interconnection network characteristics. 

223.1 Masking 

Masking is a method which achieves hardware fault-tolerance by adding either hardware or 

software redundancy to the system. Masking is an active form of redundancy where a faulty system 

is transparent to the user. To mask a fault, a n-modular redundancy technique based on a voting 

scheme is widely used. The redundancy may be implemented at the hardware level with the use of 

redundant nodes or at the application level where processes are replicated. 
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The main advantage of this technique is that a fault may be corrected with minimal disruption 

of the system. It is well suited for a static interconnection network. On the other hand, masking 

introduces a large overhead if used in a large multicomputer network. For example, to design a 

fault-tolerant network at the node level with a 3-modular hardware redundancy technique, each node 

must be replicated 3 times. The overhead is not only hardware, but also a large number of messages 

must be replicated which increases the communication load. Masking techniques may become very 

complex and costly for large systems. They require a large amount of resources during fault-free 

operation in order to ensure minimal disruption of the system if a fault occurs. 

2.2.3.2 Detection, Diagnosis and Recovery 

To achieve a greater cost efficiency, the amount of resources dedicated to fault-tolerance activities 

could be reduced and a larger overhead after the occurrence of a fault could be accepted. This option 

is called fault detection, diagnosis and recovery. Using this scheme, a failure must be detectable. 

Once detected, the fault is located, the system is repaired and recovery procedures take place. 

The detection of a failure may be either internal or external to the system. The internal detection 

scheme places the failure detection mechanism for each node within that node. For example, a node 

may contain hardware for memory error detection and correction Using internal detection techniques 

to detect all possible failures would greatly increase the node complexity since processing elements 

are complex entities, with a large number of internal states and many potential failure modes. 

The alternative approach, external detection, implies that a facility external to the node is 

responsible for detecting a node failure. One method is to have each processor communicate with 

a neighbor processor which performs testing and status monitoring. Although this method does not 

require any additional hardware, it has one major disadvantage. In a real-time system, it is crucial 

that a fault be detected rapidly to prevent the fault from propagating through the system and creating a 

disastrous situation. Consequently, a node must execute fault-detection checking at frequent intervals. 

This will decrease the throughput of the distributed system. 

Another method of implementing external fault detection was proposed by Wong [34]. The 

interconnection network would be enhanced with a global bus which would provide access to 
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each processor's memory. A central diagnostic processor would be able to test network processors 

independently from the application processor. Ideally, each application processor should be designed 

with dual-ported memory to allow the testing to be completely transparent to the application node. 

The main disadvantage of this fault detection approach is the increased complexity of the hardware. 

This option, however, is well suited to a distributed real-time system where fault detection algorithms 

may be executed independently of the application program. 

Also, the central diagnostic processor with a shared bus has complete knowledge of the overall 

state of the system which will allow it to compute a single, centralized diagnosis for the system. 

Diagnosis refers to the process of determining the cause and location of the fault The maintenance 

processor may directly access any node in the network which increases the confidence in the testing 

information. If testing data had to traverse a faulty intermediate node, it is highly probable that the 

testing information would be corrupted. This effect greatly increases the complexity of the diagnosis 

algorithm[33]. 

Recovery from a failure may be performed either by hardware reconfiguration or logical 

reconfiguration. Logical reconfiguration of the system implies that each fault-free processor is aware 

of the faulty processor, switch or link and avoids interaction with the faulty component This method 

is usually used for static interconnection networks and involves broadcasting information about the 

faulty component to a large number of nodes. The broadcasting algorithm must ensure that all 

destination nodes received the message properly which increases the reconfiguration latency time 

[35]. 

Hardware reconfiguration involves reconfiguration of the interconnection network to bypass faulty 

components. A good survey of various reconfiguration strategies has been written by Yala [31]. A 

centralized hardware reconfiguration strategy is able to reconfigure the network efficiently without 

any broadcasting of data in order to recover from a fault Consequently, hardware reconfiguration 

is attractive for use in real-time systems. 

In summary, the above discussion shows that dynamic reconfiguration of an interconnection 

network provides various advantages ranging from increased performance through design flexibility 

and programming ease to greater fault-tolerance. 
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Achieving fault-tolerance using masking techniques is the most efficient recovery technique 

but the hardware cost is too high when applied to a distributed system. Minimizing the resource 

redundancy in the design of a hardware fault-tolerant architecture induces a longer recovery period. It 

can be seen that a distributed crossbar network enhanced with a bus, a central maintenance diagnostic 

controller, and a centralized reconfiguration strategy represents an efficient approach for fast error 

detection, diagnosis and recovery as required in real-time systems. 

2.2.4 Research and Commercial Distributed System Architectures 

22.4.1 NCube/Ten 

The commercial NCube/Ten [7] is a ten-dimensional hypercube architecture which contains a 

microprocessor designed expressly for distributed systems. Each node consist of an NCube micro­

processor with 256K byte of memory, and eleven communication channels. The main advantages of 

this architecture is the simplicity and compactness of the node design which make the system easily 

expandable. The main disadvantages of this architecture, however, are: 

1. The interconnection network topology is not reconfigurable. 

2. Due to the pin limitations, NCube only supports 17-bit physical address space. Also, 32 bit 

data must be accessed as 16-bit half words. The maximum speed and accuracy at which a 

robot can move is highly dependent of the speed and word width of the computer architecture. 

Wang [3] emphasised the importance of microprocessors with 32-bit data width for robot control 

computers. 

3. A maximum of 256K of memory is available at each node. In robotics, there are applications 

where this small amount of memory may not be sufficient For example, in a path planning 

algorithm, a processor may have to store object positions that are part of the robot environment 

If the environment is complex, the memory required to store all the information is likely to 

exceed 256K. 
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2.2.4.2 JPL Mark-in 

Mark IH is a research hypercube architecture developed at Caltech [27], The Mark IH node 

architecture uses a standard MC68020 microprocessor and enhances it with communication links. 

The node arcWtecture is illustrated in Figure 2.4. Each node utilizes two Motorola MC68020 

microprocessors, a MC68882 scalar floating-point co-processor and a Weitek 8000 floating point 

chip. One MC68020 serves as the application processor and the other MC68020 is dedicated to 

communication. 

The main problem of this architecture is the complexity of the node design. Each node is 

composed of three circuit boards. Distributed architectures with special microprocessors with on-

chip communication capabilities like NCube and Transputer can package multiple nodes on each 

board. The Mark III topology is also static and is limited to 128 nodes. 

22.4.3 Supemode 

The Supemode [29] is a research architecture which consists of 16 Inmos T800's where each 

node is connected to a bus and to a switch. All four links of each node are connected to a 72x72 

crossbar switch, and the switch is controlled by an additional transputer. The shared bus is currently 

used as a debugging facility. A program running on the switch controller transputer can set up 

any interconnection network in a non-blocking mode for all links. Each transputer has 256 Kbyte of 

external memory and each Supemode also contains a transputer with 16 Mbytes of memory which can 

be used as a host processor for storage and distribution of data and code. The Supemode architecture 

is illustrated in Figure 2.5. 

A block diagram of the Inmos T800 transputer is shown in Figure 2.6. The T800 includes 4K 

bytes of on-chip static RAM, a hardware timer, a floating point unit conforming to IEEE standards 

and four link interfaces. The link interfaces use direct-memory-access controlled, and can operate 

up to 20 megabits per second. 

The notions of concurrency and processes are supported by the transputer instruction set. The 

scheduler is a hardware facility that supports two levels of process priorities. The micro-coded 
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scheduler can execute a context switch in 1 to 2.5 microseconds [36]. For comparison, the Unix 

operating system has a context switching time of few milliseconds. The transputer also provides 
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features which enhance the predictability of real-time systems. Scheduling delays may be calculated 

as follows: 

1. An upper bound delay of 40 processor cycles is specified before a low priority process reaches 

a point where it can be suspended. 

2. The maximum time it takes to execute a context switch from a low priority process to a high 

priority process is 18 cycles [37]. 

The above figures give a measure of the maximum delay expected when servicing an interrupt In 

real-time systems, it is important that the operating system be expressive enough to prescribe certain 

timing behaviors. For example, Stankovic [24] reported that the language Ada is troublesome for 

real-time applications since upper bound timing delays cannot be guaranteed. 

Supernode architecture is flexible and the control bus is important in the design of a fault-tolerant 

architecture. T800 microprocessors are powerful and well suited to real-time applications. However, 

the Supernode architecture has the following disadvantages: 

1. each node has 256 Kbyte of external memory. When accessing the 10 MByte memory bank of 

the host transputer, large memory latency times are incurred; 
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2. the system supports only one user per Supernode; and 

3. all software development must be done on the host transputer. Operating system facilities such 

as those available under Unix or VMS cannot be used. 

2.2.4.4 FPS T-Series 

Each FPS T-Series module contains eight nodes interconnected in a hypercube topology, a 

system board and a system disk [1]. A link bus provides communication between the system board 

and the processors. All the modules are interconnected in a ring. The ring network and the link bus 

provides the connection between the transputers and the host computer. The host machine is a DEC 

Micro VAX U. The architecture is presented in Figure 2.7. 

/HA 

/ / 
/ / 

SB: System Board 
D: Disk 

Figure 2.7: Architecture of the FPS T-Series hypercube 

Each node of the FPS architecture contains a 32 bit Inmos T414 control processor, a 64-bit 

floating point vector processor, 1 MByte of dual-ported memory and four hardware communication 

links. Each link is multiplexed four ways and is used to connect to adjacent nodes. 
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The control processor is an Inmos T414 transputer which is similar to the architecture of the 

T800 without the floating point co-processor. The floating point vector processing unit incorporates 

a pipeline adder and a pipeline multiplier. All the memory on each node is divided into groups 

of 256 words called a slice. Four shift registers which can hold one slice of memory are used to 

transfer data to and from the vector unit The contents of these shift registers becomes unreliable 

after approximately 20 microseconds. 

There are two major drawbacks in the vector processing unit the volatility of the shift registers 

and the absence of scalar floating point support The volatility of the shift register implies that 

a process which executes vector operations cannot be context switched. If a process was context 

switched while using the vector processing unit the result of the operation may become invalid by 

the time the process is rescheduled. 

Because the T414 transputer supports only integer arithmetic, the vector floating point unit 

processes scalar as single element vectors. Unfortunately, the overhead for scalar floating point 

operations is as large as for vector operations due to the fact that a shift register can only manipulate 

256 word blocks of data. The result of any vector operation destroys the previous contents of an 

entire 256 word block of memory, even if the specified vector is shorter than 256 words. 

The four physical links of each node are each multiplexed four ways to create sixteen logical 

links. The logical links are mapped to physical links such that logical link L corresponds to physical 

link L mod 4. Consequently two logical links LI and L2, where LI mod 4 = L2 mod 4 cannot be 

used simultaneously. One physical link is reserved for input/output with the host processor. The host 

processor is a DEC Micro VAX II computer. The connection control for the reminder 12 logical links 

is done through software and are used for hypercube connections. 

A major disadvantage of this system is that I/O routines or disk transfer routines destroy all 

established connections between nodes. Software connection calls must be executed by the user to 

reestablished the connections before continuing inter-node communication. 

223 Hardware utilized in the project 

The Transputer with its excellent support of concurrency and inter-process communication 
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enhanced with a deterministic hardware scheduler represents a useful design of a distributed system. 

The discussion of software design options in the next section assumes that the system hardware 

contains: 

1. a distributed crossbar interconnection network; 

2. a global bus which provides the capability to communicate directly with any processors; and 

3. a node architecture composed of a Transputer with locally addressable memory. 
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23 Software Design Options 

Optimizing distributed system performance requires a judicious combination of node computation 

speed, message transmission latency, and operating system software [7]. The Transputer has an 

efficient communication engine as a result of built-in support for inter-process communication 

and direct-memory-access link interfaces that can transmit data at a speed of 20MBits/sec. This 

communication engine, however, does not support communication between transputers that are not 

directly connected and assumes that the interconnection network is static. 

This section begins by describing the built-in communication support and the communication 

limitations of the Transputer. Following this description, design options in the development of an 

operating system to enhance the transputer communication facility are examined. These design 

options are: 

1. communication protocol (synchronous versus asynchronous): 

2. control strategy (centralized versus distributed); 

3. switching methodology (packet switching versus circuit switching); 

4. reconfiguration mode (off-line, breakpoint or on-line); 

5. addressing mode (broadcasting versus direct-addressing); and 

6. rehability. 

2.3.1 Transputer Communication Support 

The Transputer's instruction set provides operations for inputting and outputting messages. 

Processes exchange messages over channels. In this thesis, a channel will refer to a communication 

connection between processes. There is a distinction between the implementation of channels within 

a single transputer, called soft channels, and channels for communication between two transputers, 

called hard channels. 

23.1.1 Soft Channels 

A soft channel allows two processes running on the same transputer to communicate. Figure 2.8 

illustrates communication of processes A and B over a soft channel A memory word is allocated 

33 



Chapter 2: Design Requirements of a Message-Passing Distributed System for Robotics 

at compile time (Figure 2.8 a). Assume that Process A is ready to communicate first. The channel 

word is empty, and therefore process A must wait. A pointer to the workspace of process A is 

stored in the channel word by the transputer micro-coded scheduler (Figure 2.8 b) and process A 

becomes suspended. Once process B is ready to communicate, the channel word, which already 

contains the address of process A, indicates that process A is also ready to communicate. Process B 

initiates the communication (Figure 2.8 c), and the message is transferred directly from process A to 

process B. Once the message transfer is completed, process A becomes ready and process B continues 

its execution. Notice that when a process must wait to communicate, the transputer's micro-coded 

scheduler suspends it and performs a context switch automatically. 

Processor 1 Processor 1 Processor 1 

channel 

(a) (b> (c) 

Figure 2.8: Processes communicating over a soft channel 

channel channel 

2.3.1.2 Hard Channels 

A hard channel allows two processes running on different transputers to communicate. If the 

address of a channel is mapped to an external link, the processor delegates the responsibility for the 

communication to an autonomous link interface. As presented in Figure 2.9, when communication 

takes place, Process A and Process B are suspended and the two link interfaces are exchanging data. 

Each link interfaces has three registers that are initialized prior the start of a communication. 

These registers contain a pointer to the workspace of the communicating process, a pointer to 

the message and a count of the number of bytes to be transferred. The link interface stores by 

Direct Memory Access (DMA) an incoming message in the workspace of the destination process and 

reschedules the suspended process once the communication has completed. These last two actions 

are executed independently of the processor. 
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The use of DMA by the link interface is reliable only if the memory locations used by the DMA 

link interface are accessed by only one process. If concurrent processes need to communicate over 

a single hard channel, arbitration is required. 

Processor 1 Processor 2 

Figure 2.9: Hard channel communication 

2.3.1.3 Communication Limitations 

A transputer link supports two autonomous half duplex channels, one in each direction. As 

discussed above, only two processes, a sender and a receiver, can share a half duplex channel. 

Consequently, hard channel resources can supports no more than eight communicating processes. 

A deadlock will occur if more than one process access the same hard channel concurrently. The 

communication mechanism of the transputer has a static nature where soft and hard channels must 

be declared at compilation time. Also there is a maximum number of four hard channels that can 

be created since the number of hard channels is limited by the number of communication links. 

Consequently a transputer cannot communicate with more than four other neighbors. 

The communication facility of the transputer should be enhanced with operating system primitives 

which support routing of messages between any node and multiplexing of the hard channels. 

Multiplexing hard channels represents an important advantage for input/output operation when only 

one transputer link may be connected to the host computer. 
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232 Communication Protocol 

The communication protocol used by an operating system can be classified as synchronous or 

asynchronous. In a synchronous communication protocol, the process that reaches the communication 

point first must wait for the other process before it can continue. Prior to starting the communication, 

the transmitter requires an acknowledgement from the receiver as an indication that both processes 

have reached the communication point The transmitter then sends the message. On receipt of 

this message, the receiver will issue an acknowledgement The communication terminates when 

the transmitter receives the end of message acknowledgement Both processes can then continue 

autonomously. In this manner, process synchronization is enforced through communication. This 

type of communication is used in CSP [38], Occam [37], and Parallel C [39]. 

Asynchronous communication does not require any acknowledgement The transmitter issues 

an initiating message and then continues its operations. Since synchronization is not enforced by 

communication, buffering capabilities must exist at the destination node in case the receiver is not 

ready to accept the message. The CrOS-UI operating system for the Mark-Hi hypercube supports 

asynchronous communication [27]. 

The main disadvantage of a synchronous communication protocol is a decrease in process con­

currency. A transmitter process is always blocked while waiting for a receiver. In an asynchronous 

communication protocol, a transmitter is not blocked and can continue its task autonomously even 

if the receiver is not ready. Also, a receiver process may not have to wait for the transmission of a 

message if the message has already arrived and is stored at the destination node. Synchronous commu­

nications, however, has many advantages. The following sections will discuss these advantages and 

will demonstrate the importance of a synchronous communication protocol for real-time applications. 

No Buffer Requirements 

One advantage of a synchronous communication protocol is its bufferless property. Prior to 

sending a message, a transmitter must wait for the receiver to become ready. The message is sent 

directly from the transmitter to the receiver process. Consequently, the message does not need to 
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be buffered at the destination node. 

An asynchronous communication protocol, however, requires buffers at the receiver and inter­

mediate nodes. Complex algorithms must be designed for allocating and managing buffers in order 

to avoid deadlocks. A deadlock occurs when no message can advance toward its destination because 

the buffers are full. Consider the example shown in Figure 2.10. The communication pattern forms 

a cycle. The buffer of each node is filled with messages destined for the opposite node. No message 

can advance toward its destination; thus the cycle is deadlocked. 

Buffer 
Node 4 

Buffer 
Node 3 

Buffer 
Nodel 

Buffer 
Node 2 

Figure 2.10: Example of a deadlock 

Deadlock-free message-passing algorithms have been developed [40] and [41]. Designing an 

algorithm which prevent deadlocks greatly increases the complexity of the communication algorithm 

and also increases the communication transmission time. To prevent deadlocks, a transmitter may 

have to wait prior to ttansmitting its message or a message may have to be routed via a longer path. 

Some deadlock-free algorithms also limit the size of messages by requiring messages to be broken 

down into packets prior to transmission. This scheme introduces an overhead of reconstructing the 

message at the destination. 
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Some asynchronous message-passing protocols may also require buffers at all the intermediate 

nodes where messages may temporarily be stored prior reaching their destination The allocation of 

buffers and the copying of the message from one node to another creates delays. 

Deterministic Communication Delays 

A synchronized communication protocol provides the advantage of more determinism in commu­

nication delays. Synchronized communication requires that a direct communication path be created 

between the sender and the receiver. Therefore an initial delay exists to create a communication 

path. The delay is stochastic and depends on the availability of resources. Once the path is created, 

however, all subsequent communication are deterministic. 

In an asynchronous communication protocol the message latency time is irdeterminate for every 

transmission. Message delays vary with: 

1. The network traffic: If the network traffic is high, a message may wait at an intermediate node 

until communication resources become available. 

2. The computational load of intermediate nodes: Routing messages may not.be the highest process 

priority of a node, therefore a message may have to wait at an intermediate which is busy 

processing another task. 

3. The availability of buffers: A message may be blocked if the destination node has no buffering 

space to store the incoming message. 

Greater Process Traceability 

In a synchronous communication protocol, a sender cannot continue autonomously until the 

message has been received by the receiver process. The receiver can assert that the state of the 

sending process is consistent with the message just received. 

In an asynchronous communication protocol, a sender process will be able to proceed arbitrarily 

far ahead of the receiver. A message received at the destination node, therefore, may not reflect the 
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current state of the sending process. The following example will show that determinism in message 

transmission as well as traceability of the system state are critical for real-time control. 

An autonomous robot which performs its task in a hazardous environment is controlled by a dis­

tributed system connected in a hypercube topology as discussed by Einstein [42]. The communication 

protocol of this distributed system is asynchronous. Due to the indeterminate communication delays, 

the path planner must send command messages to the end effector task in advance of the times at 

which these commands are to be carried out to allow for maximum possible delays. This planning 

ahead scheme will probably create queues of input messages at the end effector task. When unpre­

dictable changes take place in the environment, the sensor task communicates the new information 

to the planner, which may have to change its previous plan. 

As a result of the planning ahead method, there is a high probability that messages based 

on the old plan have already been sent to end effector tasks. These old messages must now be 

eliminated from the system. The Time Warp operating system has been developed by Einstein 

[42] to provide emergency messages and cancellation of old queued messages. The performance 

of Time Warp in real-time robotics application is under investigation. Einstein suggested that Time 

Warp poses difficult theoretical and practical problems which are still unsolved. Therefore, the use 

of asynchronous communication protocols leads to difficulties in robotic systems requiring rapid 

response to unpredictable events. 

Temporal Ordering of Message Arrival 

In synchronous communication, messages always arrive in temporal order. A message is not 

sent unless the receiver is ready to accept it The receiver process controls the temporal arrival 

of messages. In a real-time environment it is important that messages that are sent to a node are 

processed in a specific order. The order in which the messages arrive at destination is not necessarily 

similar to the order in which they must be processed. In asynchronous communication, messages 

may arrive out of sequence for the following reasons: 

1. The network load may not be equally distributed. Messages routed through busy network 
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channels may suffer longer delays than others. 

2. In a real-time application, the processing load placed on each node depends greatly on external 

events. The transmission of a message may be delayed depending on the processor load. 

3. In a real-time application, various processes may execute at different frequencies and may also 

transmit messages at different rates making it unlikely that the messages will arrive strictly in 

order of generation 

4. If a fault occurs, error recovery may induce considerable message delays. 

Therefore, the overhead of time stamping every message becomes necessary in a real-time 

application. If a message is broken into packets, the message header of every packet should include 

both a sequence number and a timestamp. None of these overheads are necessary if the communication 

protocol is synchronous. 

Capability to Emulate Asynchronous Communication 

When required, a synchronous communication protocol can emulate an asynchronous communi­

cation protocol. Buffering processes can be created and interposed between communicating processes. 

To increase process concurrency, it may be advantageous to create a bounded buffer where the sender 

can proceed ahead of the receiver but become blocked if the buffer becomes full. 

From the previous discussion, we conclude that a synchronous communication protocol has many 

important advantages particularly in the area of red-time control. 

233 Reconfiguration Mode 

There are three reconfiguration modes that can be implemented in a dynamic topology. In an 

off-line reconfiguration mode, the interconnection network is configured prior the start of a program 

and remains static during program execution. Programs are written for a fixed topology that matches 

the algorithm. The setting of the switches may be defined by the user or derived automatically by 

software tools. Software tools have been developed to automatically extract the communication graph 

of a program and creates a configuration table for the switch setting. The efficiency of this mode 
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depends on the flexibility of the architecture. An architecture may be capable to map only a small 

subset of communication graph. The Supernode architecture supports this mode of operation. 

The second reconfiguration mode is called breakpoint. The topology may be changed at predeter­

mined synchronization points. When a synchronization point is reached, all network communication 

is stopped and the topology is reconfigured. This mode of operation may be well suited for image pro­

cessing applications. The architecture may be configured in a mesh topology for low-level processing 

of the data such as convolution. After the completion of the low-level operations, the architecture 

may be reconfigured in a tree topology for pattern recognition algorithms. The CHIP architecture 

developed by Snyder [43] supports breakpoint reconfiguration. This reconfiguration mode is efficient 

only if multiple nodes require reconfiguration at the same time. The overhead of interrupting all 

communication in the network becomes significant if only a minority of nodes require reconnection. 

The last mode, on-line reconfiguration, is the most flexible approach. Using on-line reconfig­

uration, any link can be connected to any other link at any time during program execution if the 

communication resources are available. On-line reconfiguration involves greater software overhead 

than the other two reconfiguration modes, but provides important benefits in flexibility and fault-

tolerance. Any communication patterns may be mapped to the architecture. On-line reconfiguration 

also provides the capability of reconfiguring the system to bypass a failed component when a failure 

occurs during program execution. 

In summary, communication software for a real-time distributed system should support on-line 

reconfigurability to achieve greater flexibility and fault-tolerance. 

2-3.4 Control Strategy 

The control of the interconnection network switches may be either centralized or distributed. 

If all switches are set by a central controller processor, the. control strategy is centralized. The 

main disadvantage of a centralized control strategy is a the possibility of a bottleneck in the switch 

controller. A bottleneck occurs if the rate of reconfiguration requests is high or if many processors 

request reconfiguration simultaneously. 
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To prevent a bottleneck at the switch controller, a distributed control strategy may be used 

where the task of reconfiguring the switches is shared by multiple controllers. For example, 

in a distributed cluster interconnection network, a fully distributed control strategy would utilize 

one crossbar controller for each cluster. All controllers must be connected together to handle 

topology reconfigurations which involve setting of multiple crossbar switches. The efficiency of 

a distributed controller depends on the volume of inter-cluster communications. If a large number of 

messages are sent between processors in different clusters, the overhead due to controller to controller 

communication may be greater than for a central controller. 

In order to provide fault-tolerance and reliability, redundancy at the switch controller must 

exist The failure of a switch controller may lead to a catastrophic situation in system using 

either either breakpoint or on-line reconfiguration where communication between processors relies on 

reconfiguration. Therefore, a distributed system with a distributed crossbar interconnection network 

designed for real-time applications should have the following characteristics: 

1. The control software should be capable of supporting either a centralized or distributed control 

strategy: 

The efficiency of the control strategy depends on the size of the network and the communication 

pattern. The control strategy should be flexible and capable of adapting to various communication 

requirements. 

2. A minimum of two crossbar controllers: 

Redundancy in crossbar controllers provides two important advantages. The first advantage is fault-

tolerance since the reconfiguration task may be supported by a redundant controller in case the primary 

controller fails. The second advantage is flexibility, since either a centralized or distributed control 

strategy may be implemented. 

2.3.5 Switching Methodology 

The two main switching methodologies are circuit switching and packet switching. 

Circuit Switching 
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In circuit switching a physical circuit between the source and the destination node is established. 

The end-to-end path must be set up before any data is sent and is held for the duration of the 

transmission. Circuit switching has the following advantages: 

1. it allows the system to operate synchronously or asynchronously; 

2. messages are not routed through intermediate nodes, they are always sent directly from the 

transmitter to the receiver, and 

3. the network appears to be fully connected from the user's stand point which greatly simplifies 

the mapping of applications. 

The disadvantages of circuit switcliing, however, are that if a circuit is allocated and not used, the 

bandwidth is wasted. Also, the overhead cost of creating a connection path for small messages is high. 

Circuit switching may be implemented either in hardware or in software. An example of a 

hardware circuit switehing implementation is the Direct-Connect Router [44] developed by Intel 

Scientific Computers for the iPSC hypercube. The Direct-Connect Router is a hardware module 

which communicates with each node over two unidirectional parallel busses. The communication 

protocol is asynchronous and the reconfiguration mode is distributed. Hardware circuit switching is 

fast but the major drawbacks are: 

1. the hardware complexity of the system is increased; 

2. the Router is based on a e-cube routing algorithm and cannot support any other routing schemes; 

and 

3. the Direct-Connect Router does not support re-routing of messages if a hardware module fails. 

The Supernode architecture is an example of a circuit switching software implementation [29]. 

Packet Switching 

Packet switching does not create a direct path between the sender and the receiver. Instead, 

when the sender is ready to transmit, a block of data is sent to an intermediate node. When the entire 

block has been received at the intermediate node, it is forwarded to the next node in the path until it 

reaches the destination node. This is also called store-and-forward message passing. Messages may 

also be broken into multiple packets to decrease the buffering requirements at each node. 
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The main advantage of this switching methodology is that circuit are never dedicated to a 

sender/receiver pair. The bandwidth may be utilized by packets from unrelated sources going to un­

related destinations. Packet switching is efficient for short message transmission. The disadvantages, 

however, are: 

1. only asynchronous operation is possible; 

2. a sudden burst of input traffic may cause the buffer capacity to be exceeded which could cause 

either deadlocks or loss of packets; 

3. the arbitration overhead to design a deadlock free system is significant; and 

4. packets may be delivered in the wrong order. 

Packet switching have been implemented on a transputer network by Roscoe [41] and by 

Helminen [1], This message passing mechanism is also supported by many operating systems such 

as Helius, Trolius, and Vertex. 

Hybrid switching schemes implemented with a mixture of circuit and packet switching properties 

have also been developed. Some examples of hybrid protocols are: whormhole [40], stagged [45], and 

Virtual Cut-Through [46]. These hybrid switching schemes are implemented with an asynchronous 

communication protocol. 

The importance of a synchronous communication protocol for real-time control have been 

discussed. Synchronous communication protocol, however, may be implemented only with a circuit 

switching methodology. A hardware implementation of circuit switching may be very efficient but 

a software implementation is more flexible. Therefore, an implementation of a software circuit 

switching methodology is well suited to support communication in a real-time environment. 

2.3.6 Addressing Mode 

The four main addressing modes used in communication protocols are direct naming, mailbox, 

port, and broadcast mode [30]. 
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Direct naming is the technique used in the CSP and Occam models. It is very simple and 

efficient but it is not as flexible as the other protocols. This technique explicitly identifies the sender 

and receiver processes. The resulting map of logical process interconnection is expected to be static. 

Direct naming requires that every communication channel which might be required must be declared 

at compile time. 

The mailbox addressing mode is the most flexible. Mailboxes allow messages to be sent by any 

number of processes to any number of processes. The versatility of mailboxes is achieved at the cost 

of a significant arbitration overhead. For example, if multiple receivers are waiting for a message at 

the same mailbox, arbitration among the receivers is required. 

The remaining two modes represent compromises between direct naming and mailboxes. The 

port mode maps multiple senders to one receiver and the broadcasting protocol maps one sender 

to multiple receivers. 

The transputer instruction set provides extensive support for the direct naming mode of address­

ing. The transputer provides operations based on direct naming for inputting and outputting messages 

with a synchronous communication protocol. Broadcast, port and mailbox addressing modes must be 

implemented with some form of broadcasting, which would create considerable overheads in a trans­

puter environment If possible, the communication protocol should preserve the message passing 

engine of the transputer. 

2.3.7 Reliability 

From the standpoint of fault-tolerance and reliability, robustness and reconfigurability are two 

important properties required in the communication software [33]. System communication software 

is robust if it is able to maintain reliable communication between processors in the presence of 

failed nodes, links, busses or switches. Robust communication software should use redundant 

communication paths provided by the interconnection network to minimize the effect of a failure. 

The Direct-Connect Router designed by Intel does not have the property of robustness. 

If the software overhead due to routing of messages is low with and without the presence of 

failures, the communication software is said to be reconfigurable. 
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Reconfigurability and robustness are two important properties in the design of reliable distributed 

system communication software. 

2.4 Summary 

A distributed crossbar interconnection network enhanced with a shared bus is well suited to 

robotic applications. A distributed crossbar interconnection network is expandable and reconfigurable 

(Section 2.2.2). The global bus provides a communication link to each node which is an important 

feature for fault detection, diagnosis and recovery (Section 2.2.3). The global bus also provide the 

capability of having an efficient multi-user system where the code of a program may be downloaded 

to a transputer without affecting programs running on other nodes. In addition, the bus is a valuable 

communication media between the host computer and the network nodes for input/output support. 

The node architecture is based on Inmos T800 transputers which are simple and compact 

compared to the Mark III hypercube node design (Section 2.2), and have on-chip floating point 

support The hardware scheduler of the transputer supports fast context switching and permits the 

prediction of an upper bound in scheduling delays. Scheduling predictability is important in real-time 

system designs. 

From the standpoint of software, me communication protocol should be synchronous. Syn­

chronous communication increases the system trace ability and avoids buffer requirements (Section 

2.3.2). The switch controller should support on-line reconfiguration. On-line reconfiguration pro­

vides two functions: faulty components can be bypassed and any two network nodes which need to 

communicate can be connected. It is proposed that the switching strategy be circuit-switched. Circuit 

switching guarantees a certain bandwidth and maximum communication latency once the connection 

is established which is important for real-time environments. 

Currently high level languages such as Occam, Parallel C and Parallel Prolog cross-compilers are 

available for transputers where the software may be developed on a host computer and downloaded to 

the network. Also debugging tools similar to Unix DBX are commercially available. Consequently, 

good support for software development exists for transputer architectures. 
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Chapter 3 

Implementation of a Real-Time Distributed System 

This chapter describes the design of a real-time distributed system which was assembled to 

implement the objectives denned in the previous chapter. 

3.1 Hardware Organization 

The hardware used to realize the real-time distributed system resides in two VMEbus card 

cages. The first, the distributed architecture, contains eight transputer cluster module boards, and 

two transputer bus master modules. The modules communicate with each other via a point-to-point 

interconnection network or via the VMEbus. This card cage is connected to a second card cage 

through a VME to VME bus extender card. The second VME card cage contains a Sun 3/280 

computer which functions as a host 

3.1.1 Overview of System Architecture 

Details of the hardware are shown in Figure 3.11. The host computer is a Sun 3/280 68020 

based cpu equipped with a terminal board, an ethemet interface, and a disk storage subsystem. The 

distributed system is consists, of the following modules: 

Bus Masters (Parsytec-BBKV2) 

A transputer bus master is composed of one T800 transputer with 2 MBytes of dual-ported 

memory which is asynchronously accessible by the transputer and the VMEbus. Three transputer 

links are hardwired to external serial ports which can be accessed from the interconnection network. 

The last transputer link is connected to the VMEbus via a link adapter. The link adapter, an IMS 

C012 chip, transforms data received serially from a transputer link to a 8 bit wide parallel data 

word that can be read from the VMEbus. The bus master also performs automatic conversion of 

data format allowing compatible messages to be exchanged efficiently with the host computer. This 

module is a commercial BBK-V2 board procured from Parsytec [47]. 

Clusters (Parsytec-VMTM) 
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Each cluster module consists of four Inmos T800 transputers each with 1 MByte of local memory, 

nine external serial ports, a 32x32 crossbar switch, and four link adapters for interfacing a transputer 

connection link the a VMEbus. Each transputer is a VMEbus slave processor. A slave processor 

cannot initiate a data transfer on the VMEbus. A data transfer must be initiated by a bus master 

which is capable of acquiring the bus and transferring data between itself and a slave processor [48]. 

A VMTM cluster module was also purchased from Parsytec [49]. 

Interrupt requester board (UBC-DPIRB) 

This functional module can generate an interrupt on the bus. This board has been designed 

at UBC to provide efficient communication between transputers on the cluster modules and the 

transputer bus masters. Communications between a slave processor and a bus master can be initiated 

either via polling or interrupt handling. With the use of polling, the communication delay would 

quickly reach an unacceptable level as the number of nodes in the network increased. Therefore, 

the interrupt requester board has been designed to provide interrupt driven communication between 

master and slave processors. 

When a slave transputer transmits a byte to a link connected to a link adapter, a hardware signal 

is generated. This signal is sent to the interrupt board via a user defined connection available on 

the VMEbus backplane. The interrupt requester then, generates a VMEbus interrupt The interrupt 

is handled by a bus master which takes appropriate actions. The schematics of the board may be 

found in Appendix A. 

I/O boards (UBC-DPIO) 

The architecture can be equipped with special I/O boards which may be directly connected to the 

node that processes the data. Robot control involves interaction with serial and parallel ports, a/d and 

d/a converters, and various sensor devices. With this architecture, interaction between the control 

processor and these devices may be performed either via the VMEbus or a communication link. 

The bus structure allows commercial VMEbus boards to be easily added to the system. Direct I/O 

channels between sensors/actuators and controllers provide an efficient I/O handling scheme without 

causing bus saturation. 
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VMEbus repeater 

The VMEbus repeater links the two card cages so that bus masters, slaves, interrupt handlers 

and interrupters located in the host and the distributed architecture card cages functionally appear 

to be on the same bus. In addition, it provides both hardware and software switches which can be 

used to isolate the host from the distributed architecture. With this isolation capability, boards may 

be removed from or added to the card cage without affecting the host computer. Specifications of 

the card may be found in [50] 

The system is presently configured in an integration mode where the distributed system and the 

host share the same bus. The integration mode is an excellent software development environment since 

software can be designed on the Sun 3-280 running Unix, cross-compiled for T800 transputers, and 

downloaded directly to the various transputer boards via the VMEbus. Once the software development 

is completed for a particular application, the distributed system can be isolated from the host and 

all transputers booted from EPROM. 
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Figure 3.11: System Architecture Overview 
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3.12 Cluster Communication Architecture 

A cluster module is composed of four transputers. Each cluster has 29 software reconfigurable 

channels connected to crossbar switch.The crossbar switch, an IMS C004/B, is a 32x32 multiplexer 

with the following features: 

1. The crossbar switch is centralized which means that the switch is programmable from a single 

source. 

2. The crossbar switch is controlled via a configuration link in order to modify the crossbar 

connections. The configuration link may be connected to a transputer link or a C012 link 

interface. 

3. The crossbar may be programmed without interrupting existing communications. 

4. The status of the crossbar connections may be read from the configuration link. 

The 29 software reconfigurable channels are illustrated in Figure 3.12. All 16 transputer links 

are hard-wired to the crossbar switch. Four link adapters are available to implement communication 

channels between a transputer and the VMEbus. Furthermore, a cluster module may be integrated 

into a transputer network via 9 external channels which are brought out to the front panel of the 

module. For example, Figure 3.14 shows five cluster modules interconnected into a ring topology. 

3.1.3 Interconnection Network 

In order to support dynamic reconfiguration, some cluster connections of Figure 3.12 are set at 

initialization and remain fixed for the duration of the user program. As illustrated in Figure 3.13, the 

configuration link of the switch and link zero of three transputers are connected to link adapters. With 

this arrangement, one or more bus masters may control all of the network switches and reconfigure 

the network dynamically. A bus master may also communicate directly with each cluster transputer 

via the VMEbus. Due to the limitation of having only four link adapters available on each cluster 

module, one transputer on each cluster will not be connected to the bus and its link connections will 

not be reconfigured. A detailed description of the switch controller process is presented Section 3.2.4. 

On-line dynamic reconfiguration can allocate a communication path between any two transputers. 

In order to support synchronous communication between processors, a circuit switching communi-

51 



Chapter 3: Implementation of a Real-Time Distributed System 
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Figure 3.12: Cluster Architecture 

cation strategy is implemented. Creation of a circuit switch requires resources such as transputer 

links and inter-board cables. As illustrated in Figure 3.14, the interconnection network created by the 

ribbon cables is fixed. The switches, however, may be programmed by a switch controller to connect 

a cluster transputer link to any external port. Consequently, a circuit switch may be created between 

any nodes as long as the interconnection network created by the inter-board cables provides a path 

between any two clusters. For example, the ring network of Figure 3.14 provides a route between 

any two boards. In this project three types of interconnection networks have been used, which are 

a tree, a ring and an hypercube configuration. 

One major disadvantage of globally accessing the crossbar switches via a shared bus is that a 

failure of the bus may disable all network reconfigurability. This single point of failure could be 

avoided if the control of each crossbar was distributed [34]. A distributed switch is designed with 

more than one configuration link. Redundant configuration links allow programming of the crossbar 

from two different sources. It is intended to enhance the existing architecture with distributed switches 

where each switch point could be configured from the bus as well as from a point-to-point connection. 
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Figure 3.14: VMTM boards interconnected into a ring topology 

For the purpose of fault-tolerance, one link of each transputer in the network may be connected 
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to a link adapter to create a direct connection path to each processor from the bus. An autonomous 

diagnostic/maintenance processor may then access transputer data for on-line fault detection, diag­

nostics and recovery. 

Also, cluster modules and bus master modules are designed with a reset line parallel to each 

transputer link. This line provides the capability of resetting individually any transputer in the 

network from the bus is case of an error. When a transputer is in a reset mode, its local memory is 

still be accessible via the bus. This allows a maintenance processor to examine the memory for fault 

diagnosis and reload new program code before restarting the processor. The maintenance processor 

function has not yet been implemented and is beyond the scope of this thesis. 

One disadvantage of the design of the cluster module is that all four transputer links are hardwired 

to the crossbar switch (Fig. 3.12). A failure of a switch would create a cluster failure. The cluster 

boards should be modified to provide a hardwired connection directly from a transputer to a link 

adapter. Doing so, the global bus could be used as a communication link to access the processors 

connected to the failed switch. 

This architecture represents an excellent software development environment. Programs may 

be developed under the Unix environment and downloaded to any transputer in the network. Each 

transputer may be allocated to a different user and booted from the bus without interfering with 

other users. Each transputer may be connected to a terminal and have access to external storage 

via the global bus. 

The architecture is expandable by adding new clusters, hi order to avoid bus saturation, 

communication over the bus should occur mostly for operating system functions and fault-tolerance 

activities. All inter-transputer apphcation messages should be sent via point-to-point communication 

links. 
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3.2 Software Organization 

Two software versions of an operating system shell which includes communication an in­

put/output primitives have been developed as part of this research. The first version was written 

in Occam [37] with the support of the Transputer Development System (TDS) tools and a folding 

editor developed by Inmos. The parallel structure of Occam provides a powerful and efficient tool 

for designing distributed system software. The main disadvantage of Occam, however, is its static 

nature. No dynamic memory allocation or process creation is provided. Also the input/output libraries 

provided by the TDS environment are less developed than those provided by high level languages 

such as "C". In addition, the source code of the compiler was not available which made it difficult 

to interface the developed software with the host operating system. 

Consequently, the second version was written in Logical System's Parallel C [39]. This will be 

the version referred to in this thesis. The software developed may be divided into four major sections: 

1. Operating System Primitives: These user system calls provide operating system support for 

communication between arbitrary processes. System primitives have also been developed to 

provide communication between any transputer process and the host computer for input/output 

functions. 

2. Central Switch Controller process (CSC): This programs runs on a transputer bus master and 

reconfigures the network topology as required by the application. The switch controller process 

that has been implemented is centralized. 

3. Local Bus Interface process (LBI): This process is an operating system process that runs in 

parallel with a user's program. This processes represents an interface between the user processes 

and the Central Switch Controller. This process must be linked with all user programs that make 

calls to the operating system primitives. 

4. Input/Output Controller (IOC): This software package runs on the host computer and com­

municates with the user programs to provides input/output support. 

Figure 3.15 illustrates the communication channels between the user processes, the LBI, the CSC 

and the IOC. Each cluster transputer has multiple user processes running concurrently with the LBI. 
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Connection requests called by the user processes are first transmitted to the LBI and forwarded to 

the CSC via the VMEbus. The CSC will then create a circuit switch and send a reply back to the 

user via the LBI. 

There are two categories of connection requests. The first will create a circuit switch between two 

user processes so that they can exchange messages. Operating system primitives of this category are: 

FixLink, ReleaseLink, OpenChannel, CloseChannel, and ChanAlt. The second category of connection 

request, ConnectHost and ReleaseHost, creates a communication channel between the host computer 

(Sun 3/280) and a user process for input/output support Operating system calls are described in 

details in Section 3.2.2. 

Figure 3.16 shows the interactions between user processes (Process A and Process B), the LBI 

processes and the CSC when a circuit switch need to be created. In this example, both processes are 

running on different transputers. When Process A or Process B reaches the communication point, 

it requests a communication channel by making an operating system call FixLink. This connection 

requests is received by a LBI process running on the same transputer. The LBI process tries to 

communicate with the switch controller by loading a byte into a link adapter interfaced to the bus. 

The interrupt requester board catches a hardware signal caused by loading the link adapter and 

interrupts the CSC. The CSC retrieves the connection request message from the link adapters, and 

creates a circuit switch by configuring the switching elements. Note, that both processes must be 

ready to communicate before a circuit switch is created. The communication protocol is synchronous. 

Once the circuit switch is created, the CSC sends a hardware link address to the user process 

via the LBI. At the reception of the CSC reply, the user processes may then communicate using 

standard communication primitives supported by the Parallel C Language1. At the completion of the 

communication, a user process frees the circuit switch by calling ReleaseLink. All communications 

from the LBI to the CSC are initiated by a hardware interrupt 

1 Parallel C Compiler designed by Logical System provides the following communication primitives: ChanOut, Chanln, ChanOutlnt, 
ChanTnTnt, ChanOutChar, and ChanlnChar. 
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Figure 3.15: Communication channels between user processes and operating system processes 

The communication channel, illustrated in Figure 3.15, between the CSC and the IOC process is 

only used when a host connection request is received. An input/output scenario is illustrated in Figure 

3.17. A connection with the host computer is initiated from the user process by calling ConnectHost. 

The message is transmitted from the LBI to the CSC. At this point, the LBI stops sending messages 

to the CSC. The CSC must then reply with a start 10 signal to advise the user process that I/O calls 

may be executed and to block the LBI from receiving messages from the bus. Then, the IOC process 
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• ReleaseLink 

Figure 3.16: Scenario of the creation of a circuit switch 
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running on the host computer is started and executes I/O requests from the user process2. 

The LBI must stop receiving and sending messages to the bus in order to dedicate the transputer 

link connected to the bus for I/O operations only. Once the LBI has freed the VMEbus channel, 

the user process and the IOC may communicate directly. The IOC starts polling the transputer link 

adapter and executes the user request until it receives a ReleaseHost message. Once the IOC has 

stopped, the LBI restarts communicating with the CSC. 

The CSC and IOC processes are both running on bus master processors. Conflicts may occur 

between the two masters if both processes try to access the same VMEbus address simultaneously. 

Consequently, the interrupt mode is disabled at the transputer that has requested an I/O connection, 

until the IOC receives a ReleaseLink message. 

The Parallel C compiler support all standard C input/output system calls 
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32.1 Allocation of Process Identification Numbers 

A unique Process lDentification (PID) number must be allocated to each user process. Even 

processes runriing on different transputers cannot have the same PID number. The PIDs are explicitly 

allocated by the programmer and defined in a Network Information File (NIF) before program 

execution. The configuration file describes the transputer hardware addresses related to each PID 

number which is read by the CSC at initialization. For example, the configuration file would include 

information like: transputer 0 of VMTM board 0 runs processes with PID 0,12. Note that, transputer 

0 of VMTM 0 maps to a unique VMEbus address. 

Since synchronous communication involves a direct connection between two processes, PIDs 

must be defined at compilation time. The CSC must know where the processes are located, if the 

processes exists and if both processes are ready to communicate when receiving a connection request. 

Only the CSC needs to know the hardware address of the processes. User processes only are only 

required to know the PID of the processes that they need to communicate with. 

322 Operating System Primitives 

The operating system supports the following operations: 

StartDynamicO 

This function must be called at the start of a program running on a transputer. StartDynamic 

creates the Local Bus Interface process and starts it concurrently with the user program. 

EndDynamicO 

EndDynamic kills the LBI process previously created by StartDynamic. This function advises 

the CSC and the host that all communication channels with this transputer can be closed. 

ConnectHost(my_pid) 

ConnectHost creates a communication channel between the calling process myjpid and 

the host computer. After this call, the user process has access to the host computer for 

input/output operations. The user process signals the completion of I/O by executing the 
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procedure ReleaseHost. Multiple processes running on a transputer may concurrently call 

ConnectHost but the host channel will be allocated to only one process at a time. 

ReleaseHost(my_pid) 

ReleaseHost destroys the communication channel that was created by a previous call to 

ConnectHost. 

virtual_channel = OpenChannel(my_pid, source_pid, destination_pid) 

This function creates a communication channel between two processes source_pid and 

destination_pid, and returns a virtualjchannel number to the calling process my_pid. This 

function must be called by two process and the returned virtual channel to both callers is 

identical3. 

QoseChannel(my_pid, channel) 

CloseChannel destroys the virtual channel created by OpenChannel. 

hard_channel = FixLink(my_pid, virtual_channel) 

FixLink will initiate the creation of a circuit switch between the two processes sharing the vir­

tualjchannel. This function returns only when the two processes sharing the virtualjchannel 

have executed FixLink and the path between the two processes have been created. The return 

value, a pointer to a hard channel, is sent to the calling process. Both processes may then 

exclusively communicate over hard_channel by using the basic communication primitives 

supported by the transputer instruction set 

ReleaseLink(my_pid, virtual_channel) 

ReleaseLink frees the circuit switch that was previously created by the function FixLink. 

This function is called by only one of the two processes that are sharing the virtualjchannel. 

This operating system call is similar to ChanAUocQ of the Logical Parallel C compiler 
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SendMail(my_pid, mail, pidl, pid2, pid3, -1) 

SendMail distributes a mail message to all the PIDs pidl, pidl, pid3 .... This routine takes a 

-1 terminated code as a parameter. The mail message is an integer and is broadcasted to the 

destination pid mailboxes via the bus. The function SendMailList has also been implemented 

where the address of an array containing PID numbers may be sent as a parameter. 

mail_status = GetMail(my_pid, mail) 

GetMail reads the mail message stored in the mailbox of the process my_pid. A mail_status 

is returned indicating if the mailbox was empty or full. The mailbox is located on the same 

transputer as the calling process. 

hard_channel = ChanAlt(my_pid, virtual_channel, chanl, chan2, chan3, .... -1) 

ChanAlt cause the calling process to block until one of the channels in the argument list is 

ready to communicate, and the circuit switch is created. The channel may be either an input 

or an output. This function returns a pointer to a hardjchannel where the message may be 

sent or received and the virtualjchannel number. This routine takes a -1 terminated code as 

a parameter. The function ChanAltList has also been implemented where the address of an 

array containing channel numbers may be sent as a parameter. 

FixLink and ReleaseLink system calls are referred to as static connection calls. In static calls, 

the circuit switch is created and released under the control of user processes. Automatic system 

calls have also been designed to provide communication primitives where FixLink and ReleaseLink 

are called by the LBI process rather than a user process. Automatic calls are: 

LinkOut(my_pid, virtual_channel, buffer_address, len, release_flag) 

LinkOut initiates the transmission of a message between the two processes which share the 

virtualjchannel. Execution of this routine causes the calling process to be blocked until the 

message has been received by the destination process. Parameters to this procedure include 

the process identification number of the originator,myjpid, the virtualjchannel, the address 

of the buffer, the length of the message in byte, and a release Jlag indicating if the circuit 
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switched is released by the caller. If the release_flag is set, this routine is equivalent to the 

following three system calls : 

channel = FixLink(my_pid, virtual_channel) 

ChanOut(channel, buffer_address, len) 

ReleaseLink(my_pid, virtual_channel) 

Linkln(my_pid, virtual_channel, buffer_address, len, release_flag) 

Linkln initiates the reception of a message between the two processes which share the 

virtual_channel. Execution of this routine causes the calling process to be blocked until the 

message has been received. Parameters to this procedure include the process identification 

number of the originator, the virtual channel, the buffer address for the incoming message, 

the length of the message in bytes, and the release flag. This routine is equivalent to the 

following three system calls : 

channel = FixLink(my_pid,virtual_channel) 

aianln(channel, buffer_address, len) 

ReleaseLink(myjid,virtual_channel) 

Other similar automatic operating system calls have been implemented for inputting and out-

putting integers and bytes. These functions are : LinkOutlnt, LinkOutChar, Linklnlnt, and Link-

InChar. 

To obtain maximum utilization of communication resources, static function calls should only 

be used when the communication pattern between two processes manifests high temporal locality. 

If the probability that all communications in an interval of time t will be isolated between two 

processes is high, the communication pattern exhibits a high temporal locality. These processes are 

not necessarily executing on transputers near one another in the network. On the other hand, if 

the behavior of communicating processes has low temporal locality, the probability that a process 

receives two consecutive messages from the same process in the same interval t is low. 
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Misuse of static calls may prevent processes from communicating with other nodes by tying up 

external links and cables. A transputer may communicate in parallel with no more than three different 

neighbours (one link is statically connected to the bus). If three concurrent processes running on a 

transputer have established communication using static calls, no other processes on that transputer can 

initiate communication until a communicating process releases the resources by calling ReleaseLink. 

Automatic calls, however, reserve communication resources for one message only. The link and 

cables resources are released by the operating system after the message is transmitted. 

323 The Local Bus Interface 

An application program is parallelized into multiple transputer programs each of which is 

executed on a transputer. A transputer program that uses the operating system primitives defined 

earlier is composed of at least two concurrent processes: the user process and the LBI process. The 

LBI process is started by the function call StartDynamic, and is scheduled as a high priority process. 

The LBI is inactive unless a user process makes an operating system call. One link on each transputer 

is under the control of the LBI process. This communication link is connected to the bus and is used 

to send to or receive messages from the CSC. The role of the LBI is : 

1. To receive user communication requests and forward them to the CSC process 

2. To ensure that all user requests are handled fairly 

3. To receive CSC commands and forward them to the appropriate user process 

The LBI is composed of three parallel processes: one buffer process and two link controller 

processes. As shown in Figure 3.18 the link controller processes communicate with the user processes 

via a pair of soft channels. 

The linkjzontroller out process gathers requests from user processes, encodes the message, and 

sends them to the output buffer process, bufferjout. The link jzontroller_in process reads incoming 

data from the VMEbus, decodes the messages and distributes them to user processes. The buffer 

process ensures that the link controllers never become blocked while waiting to communicate with the 

CSC. Consequently, the linkjzontrollerjn process is still available to execute user requests while the 
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. interconnection 
network 

VMEbus 

Figure 3.18: LBI process 

buffer process handles the bus communication. When the CSC reads the LBI messages, all messages 

contained in the buffer are read. 

The message format is illustrated in Figure 3.19. The first message field specifies the PID 

number. The REQUEST tag specifies the action to be taken. If the REQUEST tag indicates that 

parameters must be passed, the number of parameters is specified by MSG_LEN. The parameters are 

given in the OS_DATA field. Most messages are short and contain an average of two parameters. 

The link_controller_out process must execute the user requests fairly and without deadlocks. 

Alternative primitives are available with languages such as Occam [37], CSP [38], or Parallel C [39], 
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PK) REQUEST MSG_LEN OS_DATA 

2 1 1 0-255 

Figure 3.19: Message format 

which cause the calling process to block until one of the channels in its argument list is ready. Each 

user process tries to communicate with the LBI via a soft channel. 

The LBI executes an Alternative call to connect with a user process that made an operating 

system call. The Alternative, however, is not fair. The function call scans the channel list starting 

from the top to bottom and the first ready channel found gets connected. If the top channel, used 

by user process 0, is always ready, only this user process will be capable of communicating with 

the LBI. The Alternative primitives have been modified to provide fairness. The library routines are 

listed in Appendix B. 

The interaction between the LBI, user processes, and the CSC is presented in Figure 3.20. In 

this Figure, the application program consists of three user processes with PIDs 1,2,3, and distributed 

between two transputers. Process 1 needs to send an integer to process 2. Before any messages may 

be sent, a virtual channel must be created between process 1 and 2. The system OpenChannel call is 

executed by both processes. The user processes are interfaced with the LBI via this system call. The 

LBI encodes the request and sends it to the CSC through link 0 (in this example, link 0 is reserved 

for the VMEbus interface). Process 1 and 2 are blocked while waiting for a virtual channel number 

(v) returned from the CSC via the LBI. 

Once a virtual channel has been allocated, both processes may then request the allocation of 

a circuit switch by calling FixLink. FixLink requests must also be forwarded to the CSC via the 

LBI. The CSC creates a circuit switch only when the FixLink request have been received from both 

LBIs. Once the circuit switch has been established between the two transputers, the LBI receives 

a hardware link address from the CSC and forwards it to the user process. In this example, the 

hard channel addresses were link 2 and link 3. At the reception of the hardware addresses both 

processes may then communicate synchronously using the communication primitives supported by 

the transputer instruction set. During communication, the LBI is inactive (Only system calls a,b, 
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and d required action from the LBI). The circuit switch will stay allocated until process 1 requests 

a disconnection (ReleaseLink). 
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Figure 320: Interaction between user processes, the LBI, and the CSC 

32.4 The Central Switch Controller 

The Central Switch Controller is composed of seven parallel processes: the Crossbar Controller, 

the Interrupt Handler, the Receiver, the Transmitter, the Host Interface, and the Monitor. All processes 

are scheduled with low priority except for the Interrupt Handler. Figure 3.21 (a) shows a block 
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diagram of the interaction between the CSC processes when a circuit switch is created. The numbers 

printed besides the arrows indicate the flow of actions taken by the CSC as soon as a VMEbus 

interrupt is created: 

1. The Interrupt Handler reads the interrupt source register of the interrupter board and decodes the 

addresses of the transputers that are waiting to send a message to the CSC. 

2. The Interrupt Handler sends the decoded addresses to the Receiver. 

3. The Receiver retrieves the user's requests at each node. 

4. The Receiver transmits the messages to the Crossbar Controller for processing. 

5. The Crossbar Controller creates a circuit switch and reconfigures the network topology, if the 

user requests require creation of a new communication path. 

6. The Crossbar Controller sends reply messages to the Transmitter. 

7. The transmitter sends the Crossbar Controller reply messages to the LBIs. 

Figure 3.21 (b) illustrates the flow of actions created when a user process requests a connection 

with the host computer for input/output. The first four steps are similar to the previous example. 

Once the I/O Interface process receives the message from the receiver, the I/O Interface process sends 

a start I/O message to the user process via the Transmitter. It then wakes up a process rurming on 

the host computer, which will communicate directly with the user and provides input/output support. 
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Figure 321: Central Switch Controller 
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32.4.1 The Interrupt Handler 

As shown in Figure 3.22, the Interrupt Handler process is composed of two main modules: the 

Event Handler and the Buffer. The Event Handler is scheduled in response to an interrupt on the 

VMEbus. Its task is to read the interrupt source register of the interrupter board, to decode all the 

node addresses that have pending reconfiguration messages, to disable the interrupt for all decoded 

node addresses, and to send the adapter address from where the interrupt was created to the Receiver 

process. The 32-bit interrupt source register is accessible from the VMEbus. Each bit of the register 

is directly associated with a link adapter of a cluster module; each link adapter is connected to a 

transputer link. 

Welch [51] has shown that if a high priority process tries to communicate with a lower priority 

process, the transputer micro-coded scheduler schedules the high priority process only when the lower 

priority process executes. The transputer does not support dynamic priority allocation in which a 

low priority process dynamically acquires the priority of its caller. In order to prevent the event 

handler from becoming blocked while trying to communicate with the Receiver, high priority Buffer-

Prompter processes have been created. There is one Buffer-Prompter processor for each transputer. 

The Buffer-Prompter processes, each having only two lines of code, receive the adapter address from 

the Event Handler and send it to the Receiver. With this design, the Event Handler is never blocked. 

Only the Buffer-Prompter process may become blocked waiting for the Receiver to be scheduled. 

71 



Chapter 3: Implementation of a Real-Time Distributed System 



Chapter 3: Implementation of a Real-Time Distributed System 

32.4.2 The Receiver 

As presented in Figure 3.22, the Receiver process is composed of multiple parallel Get processes. 

The Get processes are awakened by a Buffer-Prompter message which contains the address of a 

node requesting communication Once scheduled, a Get process will read all messages that have 

accumulated at the LBI interface, buffer the data to make it accessible to the Crossbar Controller, 

and re-enable the interrupt at this particular node. Using multiple Get processes provides a fair 

environment. 

A fair environment will guarantee that any communication requests will be serviced equally. If 

there are n nodes in the network with pending communication messages to be sent to the CSC, 1/n 

of the bandwidth will be allocated to each node. For example, consider a network composed of 8 

transputers where 4 nodes initiate communication requests simultaneously. The interrupt handler will 

decode 4 node addresses and select 4 Get processes from the ready pool. If one node has a greater 

amount of communication requests, starvation will not occur. All Get processes run at low priority 

and are scheduled in round-robin where an equal processing time is allocated to each process. If a 

new interrupt occurs while some Get processes are still active, another Get process is scheduled and 

runs concurrently with other running processes. A fair Alternative function is used at the Crossbar 

Controller and the I/O Interface to ensure that each Get process is provided with an equal amount 

of communication bandwidth. 

32.4.3 The I/O Interface 

The I/O Interface is composed of two processes: the Start I/O and End I/O processes. The I/O 

Interface communicates with the IOC process running on the host computer. The communication 

between the I/O Interface and the host computer is memory mapped, since the bus master transputer 

module is equipped with dual-ported memory. 

When the Receiver process receives a ConnectHost message, the Receiver sets a word in memory 

indicating the address of the transputer requesting I/O. The Start I/O process is scheduled periodically 

and reads this shared memory location If I/O requests are pending, the Start I/O process sends a 

message to the IOC which takes appropriate actions. 
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The End I/O process periodically polls a memory location which is memory mapped with the 

IOC. When a user process terminates I/O, the IOC sends a message to the End I/O process. The 

End VO process advises the Transmitter that the bus link of the transputer that just completed I/O 

is now free. 

32.4.4 The Transmitter 

As shown in Figure 3.22, the Transmitter process sends Crossbar Controller and Start I/O 

messages to the LB Is. The Transmitter gives priority to the message coming from the Crossbar 

Controller since a user process is waiting for the Crossbar Controller reply before it can initiate 

communication. Inter-processes communication are prioritized over communication with the host. 

If a message arrives from the Crossbar Controller for a transputer which is communicating with 

the host computer, the message is queued until the input/output calls terminate. The transputer link 

connected to the bus is not free. When the I/O calls are completed at the node, a message indicating 

I/O completion is sent from the End I/O process to the Transmitter. The Transmitter will then send 

all queued messages for this particular transputer to the LBI. 

32.4.5 The Monitor 

The Monitor communicates with the Receiver, the Crossbar Controller, the Interrupt Handler, 

the I/O Interface, and the Transmitter processes via an array of soft channels. If a system error is 

detected by one of these processes, an error message is sent to the Monitor. The Monitor will then 

output an error message to the user. The monitor may also abort the CSC process in the case of 

a fatal system error. 

32.4.6 The Crossbar Controller 

The Crossbar Controller performs operations on user requests read by the Receiver process. When 

a OpenChannel message is received at the Crossbar Controller, memory is allocated (approximately 

30 bytes) where the following channel data is stored: 

1. PIDs of the two processes that are sharing the channel; 
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2. the hardware address of the processes sharing the channel; 

3. communication status ie. processes are communicating, one process reached the communication 

point, or both processes are not ready to communicate; and 

4. the latest configuration message that was sent to the crossbar(s) if a circuit switch was created. 

The FixLink operating system call initiates the creation of a circuit switch which may involve 

on-line reconfiguration of the interconnection network. At the reception of FixLink requests from 

sender/receiver processes, the Crossbar Controller will check the following conditions. If one of 

the conditions (C) is met, the Controller executes the operation (O) and exits the list, otherwise it 

continues to the next item. 

(C) If a circuit switch already exists between the two processes 

(O) The circuit switch is reserved and the network does not need to be reconfigured 

(C) If a circuit switch was created for other processes running on the same nodes as the 

calling processes, and the circuit switch is presently unused 

(O) The circuit switch is reserved, and the network does not need to be reconfigured 

(C) If the resources required to create a circuit switch are unavailable 

(O) The connection request is queued 

(O) A circuit switch is created and the network is reconfigured 

The Crossbar Controller requires link and cable resources to create a circuit switch. The resources 

are stored in link and cable stacks. A link stack is created for each network node and contains the link 

addresses which are available for dynamic reconfiguration. A link stack holds a maximum of three 

links, as one link is permanently connected to the bus. A cable stack contains a list of cables used 

to interconnect two cluster modules. The maximum number of resources in a cable stack equates the 

number of external ports on a cluster module. 
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Figure 3.23 represents a network of three cluster modules with the corresponding resource stacks. 

For instance, the cable stack (cluster 0 / cluster 1) contains one cable entry indicating the connection 

between cluster 0, port 7 (P7) and cluster 1, port 1 (PI). The link stack of each node, however, 

consists of three link entries LI, L2, and L3 (link 0 is connected to the bus). 
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Figure 323: Resource stacks and route table 

The number of resources required to create a circuit switch is determined by the direction in 
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which the messages are forwarded. To route messages through each cluster module, a channel 

entering a board (input port) must be linked to a channel leaving the board (output port). The 

Crossbar Controller maintains a lookup table called routing table to perform this function The 

routing table is static where the table is created off-line, read by the Controller before the transputer 

network is loaded, and not changed thereafter. 

An entry in the routing table gives a maximum of three possible routes in order of priority. The 

priority of a route decreases as the number of hops increases ie. shorter routes have high priority. 

In Figure 3.23 for example, a three hop circuit switch that interconnects a transputer on cluster 0 

to a transputer on cluster 1 will route messages via the switches on clusters 0,2, and 1. One route, 

however, may contain many paths if clusters are interconnected with multiple cables. A message 

may be forwarded directly from cluster 0 to cluster 2 via three paths since the cable stack for Cluster 

0-2 contains three cables. 

To create a circuit switch, the Crossbar Controller extracts in a round-robin fashion the required 

resources from their respective stack, and creates a message to be sent to the crossbar switches. If 

one of the stacks is empty, the request is queued. The Controller, however, will try to connect a 

path via three different routes prior to queueing a request. The number of routes has been limited 

to three to save memory and to avoid lengthy searches. The request will stay in a queue until the 

needed resources become available as a result of a ReleaseLink system call. 

Figure 3.24 illustrates the creation of a circuit switch between a transmitter (TI) to a receiver 

(T12). In this example, we assume that the selected route from cluster 0 to cluster 2 is via cluster 

1. The inter-board connections are the same as Figure 3.23. Two links and two cables are extracted 

form the stacks and are used to create a connection message to be sent to the respective switches 

(XB 0, 1, and 2). 

The routing algorithm is adaptive. An adaptive algorithm readjusts with the traffic load of the 

network. An increased of network traffic is detected when a cable stack is found empty. An empty 

stack will force the creation of a circuit switch which consists of multiple hops that circumvents the 

traffic load. The cost of routing messages, however, increases as the number of hops increases. 
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Figure 324: Resource allocation 

For the standpoint of fault-tolerance, the routing algorithm is categorized as robust and recon­

figurable. The robustness is achieved when the algorithm is capable of selecting a redundant path 

to bypass a failure. A faulty component may be bypassed by deleting the resources related to the 

faulty component from the stacks. In Figure 3.24 for example, if link 1 of node Tl becomes faulty, 

the crossbar controller deletes link 1 from the link stack which will imply that no more connections 

will be established with the faulty link. 
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The software overhead attributed in routing message around a faulty component is equivalent 

to bypassing a communication hot spot. Once the faulty resources are removed from the stacks, 

the routing algorithm processes the connection requests exactly as if the system was fault-free. The 

communication scheme is reconfigurable. 

3.2.5 The I/O Controller 

The I/O Controller process (IOC) runs on the host computer and executes input/output commands 

received be the user processes. As shown in Figure 3.25, the IOC is composed of UNIX processes 

which are: a Master process, Slave processes and I/O Servers. 

The Master process communicates with the I/O interface process of the CSC. Four registers have 

been created for communications which are input status, input data, output status, and output data. 

A user process on node 1 for example requests a connection with the host The Stan I/O process of 

the I/O Interface process will set the first bit of the input data word and set the input status register 

to valid. The master process is polling the input status register until the value becomes valid. When 

the status register becomes valid, the Master sends a message to a Slave process which forwards it to 

a Server process. The Server process starts polling the transputer bus adapter which requested I/O, 

hence communicates directly with the user process that requested I/O. 

The original version of the Server process was written by Logical Systems [39], where the server 

processes were continuously polling all the transputer adapters at the fastest speed for the duration 

of the transputer program execution This version was modified to ensure that the server processes 

are only polling the VMEbus when an I/O request is pending. This new version, decreases the 

VMEbus traffic and permits multiplexed accessing of the transputer bus links between the CSC and 

the IOC processes. 

When the Server process receives a ReleaseHost request, a message is sent for the Server to the 

Master. The master then indicates the I/O completion to the End I/O process of the I/O Interface 

by setting the status and data output registers. Figure 3.25 shows that the Server process 8 has 

completed I/O. 
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Figure 3.25: I/O Controller process 
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Chapter 4 

Performance Analysis 

Communication protocol performance is a critical measurement for a multiprocessing architecture. 

It is important that the time needed to establish a communication be small relative to the total 

communication time. In this chapter, test programs were developed to evaluate the efficiency of 

the communication hardware and the reconfiguration overhead using communication patterns ranging 

from one to several hops. The performance of the operating system design is also tested by running 

processes that exhibit temporal and spatial communication patterns. 

In addition, the synchronous communication protocol is compared with the FPS-T Series hyper­

cube, which is running a Store-And-Forward model developed by Helminen [1]. 

4.1 Communication Time 

The communication time may be subdivided in two parts: initialization overhead and transport 

overhead. In a circuit switching strategy, the initialization overhead represents the time to create a 

circuit switch. The transport overhead represents the time to transmit a message once a circuit is 

established. Tests programs were design to calculate the total communication time of the system. 

4.1.1 Initialization Time Overhead 

In order to derive the upper and lower bounds of the reconfiguration overhead when a circuit 

switched is created, the following communication pattern was modeled. The processors formed a 

ring topology. Each node must send two consecutive messages to every other node in the network 

where the distances vary from one to eight hops. 

The topology reconfiguration to send the first message creates an upper bound delay. When a 

sender and a receiver process initially call FixLink, all crossbar switches along the path are configured. 

The second message to be sent will not change the topology configuration, as the first communication 

topology will still be valid. The overhead created by the second transmission will then represent the 

lower bound. The length of both messages was set to 256 bytes but it is irrelevant for this test. 

Statistics were gathered from the LBI and the CSC. 

81 



Chapter 4: Performance Analysis 

The total reconfiguration time is a function of the network diameter (D) and is given by the 

following expression: 

Tg — TIM + Tcac 

where: 

Tg represents the Total Software reconfiguration time; 

Tibi is the Time delay created at the Local Bus Interface; 

T c s c is the overhead of the Central Switch Controller. 

In the present case, the network diameter (D) is equivalent to the number of hops traversed by 

a message. 

The communication delay, Tcsc. will depend on whether the connection request causes the creation 

of a completely new path (delay upper bound) or if a path from a previous request had already been 

created and is still valid (lower bound). The creation of a new path causes the switch controller to 

do the following actions: 

1. Interrupt handling; 

2. Creation of the reconfiguration path message to be sent to the crossbars; 

3. Crossbar reconnecu'ons; 

4. Transmission of a reply to the user process. 

Steps two and three are expensive as the number of hops increases. As shown in Figure 4.26, up 

to 40% of the total reconfiguration time may be spent sending configuration messages to the various 

switches. The lower bound delay , Figure 4.26, was found to be independent of the path. If the path 

is already valid, step 2 computation is very short and step 3 is completely eliminated. 

For a circuit switching protocol, a routing mechanism which minimizes the number of hops will, 

in addition to minimizing the communication delays, also minimize the reconfiguration delays. 
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Figure 426: Initialization time overhead 

4.12 Transport Time Overhead 

A test program was designed to investigate the transmission speed of the communication 

hardware. A single link unidirectional communication pattern was chosen in order to achieve the 

optimum link speed. The link capacity of each transputer was set to 20MBits/sec. Messages ranging 

from 4 bytes to 8K bytes were sent across the link. The transfer was repeated 1024 times for each 

message length and for paths varying from zero to eight hops. An input/output process was executed 

' at high priority in order to obtain a better clock granularity (1 tick = 1 microsecond). The results 

are presented in Figure 4.27. 

The communication throughput (mean link speed in Kbytes/sec) is degraded significantly as the 

number of hops increases. The throughput degradation is due to a signal delay occurring at each 

crossbar switch for clock ̂ synchronization in order to avoid signal skews. This effect is magnified 

by the fact that the communication protocol of the transputer expects an acknowledgement for each 

byte sent and the transmitter is blocked until an acknowledgement is received. 

Consequently, for a circuit switching protocol, the bandwidth allocated to a communication 

channel will depend on the number of switches that the signal must traverse. The crossbar network 
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Figure 427 Transport Time Overhead 

should be connected to minimize the number of hops and the routing algorithm should be designed 

such that the selected path between the transmitter and the receiver nodes also crosses a minimum 

number of hops. 

42 Synthetic Communication Benchmark 

42.1 Temporal versus Spatial Locality 

In order to study the communication protocol under various network loads and communication 

patterns, a synthetic benchmark program based on the work done by Grunwald and Reed [52] has 

been developed. This model attempts to replicate a variety of global communication patterns that are 

representative of actual applications. Each node of the network executes a copy of the model and 

generates network traffic that reflects both spatial and temporal locality. 

Temporal locality defines the pattern of intemode communication in time. If an application 

exhibits a high temporal locality, the probability that all communications will be isolated between 
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a subset of nodes in an interval of time t is high. These nodes are not necessarily physically near 

one another in the network. On the other hand, if the behavior of the application has low temporal 

locality, the probability that a node receives two consecutive messages in the same interval t is low. 

The implementation of temporal locality is based on the Least Recently Used Stack Model 

(LRUSM) developed by Denning [17]. This model was developed to study virtual memory paging 

algorithms. In the adaptation of LRUSM made by Grunwald and Reed, a destination node in a 

network is analogous to pages in address space of a process in a memory management context 

Each node has its own stack containing the n nodes that were most recently sent messages. For 

any time t, the stack distance d(t) associated with communication c(t) is the position of c(t) in the 

stack defined just after communication c(t-l) occurs. These distances are assumed to be independent 
n 

random variables with the probability [d(t) = i] = b; for all t. In this model, ']£ < n, which implies 

that a stack miss can occur (d(t) > n). For example, if bi = 0.5, there is a 50 percent probability 

that the next destination node will be the same as the previous transmission When a stack miss 

occurs, a new node is added to the top of the stack. The selection of the new node is based on 

the spatial locality model. 

Spatial locality defines the communication pattern based on physical proximity. Two types of 

spatial models have been derived: uniform and sphere of locality. In the uniform model, any node 

can be chosen to be the destination with equal probability. This distribution makes no assumption 

about the communication pattern. It will presumably give the upper bound of the mean intemode 

distance since most application programs manifest some measure of locality. 

In the second spatial model, sphere of locality, each node is considered to be the center of a 

sphere of of radius L. There is a probability </> of transmitting a message to a node inside the sphere, 

and a probability 1 - <f> of transmitting a message to a node outside the sphere. 

422 Test environment 

The benchmark program is divided into two parts. The first part is executed by the host computer 

and generates a sequence of messages, depending on the benchmark model parameters, that will be 

sent by each node. 
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The second part is executed by a simulation program running on each transputer. This program 

consists of a Controller process, a Receiver process, and a Transmitter process. The Controller 

process reads the message file created by the host and waits for a start command from a master 

transputer node. At the reception of the start command, the Controller distributes messages to each 

Sender and Transmitter process. When the test is completed, the Controller process sends the time 

to the host computer for analysis. 

423 Results and discussion 

The first test evaluated the effects of varying temporal locality parameters of the model. The 

interconnection network was connected in a three dimensional hypercube to minimize the number 

of hops. Each node sent 300 messages with a message length taken from a negative exponential 

distribution with a mean message length of 8192 bytes. The temporal stack size was set to one entry 

and the probability bo was varied between 0 and 1. The results are shown in Figure 428. 
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Figure 4.28: Temporal Locality Model 

The throughput increases by 40% as the temporal locality parameter increases from zero, 

indicating a uniform communication pattern, to one, indicating a communication pattern with a high 
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temporal locality. This throughput increase is due to the circuit switching algorithm which allows 

multiple messages to be sent with only one network reconfiguration overhead being incurred at the 

start of the communication. 

The second test program was designed to evaluate the influence of spatial locality. Each node sent 

300 messages for each run. The message length for each run varied from 8 bytes to 8 Kbytes. The 

spatial locality parameter was set to 0.5 (<f> - 0.5). The curves obtained are presented in Figure 4.29. 

For comparison, the results obtained using a communication pattern exhibiting temporal locality (bo 

•= 0.5) are also shown in Figure 4.29. 
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Figure 429: Spatial Locality Models 

From Figure 4.29, it is shown that the spatial locality of a communication pattern does not 

improve the throughput of this network beyond that obtained using a uniform communication pattern. 

Temporal locality, on the other hand, does improve the throughput. Therefore, a circuit switching 

communication protocol is well suited to applications that exhibit temporal locality. 

43 Comparison with FPS-T Series 

The tests described in Section 4.1, 4.1, and 4.2 are functionally similar to the tests run by 
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Helminen [1] to evaluate the performance of the FPS T-Series hypercube. The FPS T-Series, as 

described in Section 2.2.4, is a transputer-based architecture. The communication protocol package 

used on the FPS T-Series is an asynchronous store-and-forward model. 

Helminen [1] approximated the transport time overhead (Tn) of the FPS T-Series with the 

following linear model: 

Th = Tstart + NTt 

where T^n is the start up time or latency of the communication, T t is the transmission time per 

byte, and N is the number of bytes sent. The linear model obtained by Helminen was calculated with 

a zero hop path (no switch between the sender and receiver) and with the transmission link capacity 

set to lOMBits/sec. The linear model, expressed in microseconds, is given by:Th = 8.3 + .1.44JV 

Table 4.1 was derived using regression analysis of the results obtained from the hardware tests 

described in Section 4.1 where the link capacity was set to 20 MB its/sec. The last column represents 

the maximum throughput obtained during the test. Since the link capacity of our network is two 

times greater than the FPS T-Series hypercube, the coefficient of the linear term in our regression 

results is approximately double. 

hops Tstart (usee) Tt (usee) MBits/sec 

0 8.07 0.62 122 

1 5.07 0.76 10.0 

2 4.75 0.97 7.90 

3 4.84 1.20 6.34 

4 4.90 1.43 5.33 

5 4.84 1.67 4.58 

6 4.85 1.90 4.02 

7 4.93 2.12 3.60 

8 4.94 2.36 3.24 

Table 4.1 Transport time overhead regression analysis results of the synchronous communication protocol 
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An equation which represents the total communication overhead (Ttotai) was also derived by 

Helminen which represents the time (in microseconds) for a message of length N to be sent between 

two nodes a distance D apart on the FPS T-Series hypercube: 

Ttotai = 788.23 + 268.6D + 1A5ND 

The first term is attributed to initialization overhead, the second term to routing overhead and the 

last term to the asymptotic communication rate. 

For our circuit switching protocol, results of Section 4.1 and 4.1 were combined, and the following 

equation, which gives the total communication time, was derived: 

Ttotai = (Tstart + T,bi) + (TtN + Tcsc) 

Figure 4.30 represents the total communication time that a fixed message length (512 bytes) takes 

to cross a variable network diameter (1 to 8 hops). The lower bound corresponds to the situation where 

all circuit switches are already established and the upper bound represents the situation where each 

message transmission requires reconfiguration of the network in order to establish a circuit switch. 

For a route traversing four or less hops, the upper bound of the communication time using 

a synchronous communication protocol is comparable to the communication time using the asyn­

chronous communication protocol of the FPS-T series. For routes traversing more hops, synchronous 

communication using circuit switching provides better communication time. Figure 4.31 represents 

the comparison between the two models if the network diameter is kept constant (D = 4) and the 

message size varies from 0 to 8K bytes. It is shown that for messages greater then 512 bytes, the 

circuit switching mechanism provides better performance. 

For circuit switching, the initialization overhead is high compared to the store-and-forward 

model. The transport time, however, is relatively small for circuit switching. Because of this, 

circuit switching performs better for longer messages and longer routes where the transport time 

dominates the communication time. 
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Chapter 5 

Conclusions 

A distributed system for real-time robotic control has been investigated. The hardware architec­

ture is composed of Inmos T800 transputer nodes connected to a hybrid reconfigurable interconnection 

network which consists of point-to-point link connections and a global bus. An operating system has 

been designed to provide inter-node synchronous communication and input/output support. In this 

chapter, a summary of the results is presented and suggestions for further research are outlined. 

5.1 Summary 

A transputer-based distributed architecture, consisting of a novel hybrid interconnection network, 

was evaluated for applications in robotics and its related areas. The hardware used to implement a 

distributed system resides in two VMEbus card cages and consists of a host computer, two transputer 

bus masters and cluster modules. The transputers of the cluster modules communicate via point-to-

point connection links. The point-to-point connection links are connected to switches and form a 

distributed crossbar interconnection network. The reconfigurability of the interconnection network 

provides important advantages ranging from increased performance, through design flexibility to 

greater fault-tolerance. 

Each node in the network is directly accessible from the shared bus. This bus may be used for 

error checking and broadcasting of information. In addition, the bus is also an efficient communication 

medium with the host computer for software development and input/output support. 

On-line reconfiguration has been implemented for fault-tolerance and flexibility in circuit-

switched applications. 

An operating system has been designed to support inter-node communication and node-to-

host communication. A synchronous communication protocol has been implemented with a circuit 

switching strategy. The synchronous communication protocol is deadlock free where processors do 

not need to store messages and no buffer management is required. A circuit switching strategy is 
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attractive to real-time systems since a maximum communication latency and a minimum bandwidth 

are guaranteed when the circuit is established. 

The circuit switch is created by a central switch controller which ensures that each node has 

fair access to the network communication resources. The routing algorithm is adaptive where 

communication hot spots may be detected and bypassed. From the standpoint of fault-tolerance, 

the routing algorithm is robust and reconfigurable where the algorithm can use redundant paths in 

case of failure and can keep the communication overhead low with or without the presence of a fault. 

The input/output functions supported by the operating system provide arbitration between con­

current processes requesting I/O operation on the same node. Most parallel systems, such as those 

using Occam or Parallel C, support input and output for only one process per node. 

The communication time to send a message from a source to a destination may be divided 

into two parts: the initialization time and the transport time. In the present implementation of a 

circuit switching protocol, the initialization time is the software overhead time required to create a 

circuit switch. The transport time is the time required by the hardware to transmit a message once a 

circuit switch has been established. The initialization overhead and the transport time have both been 

calculated and are found to increase with the number of hops over which the message must travel. 

A simulation program has been developed to measure the performance of the communication 

protocol with various temporal and spatial communication patterns. The results of the simulations 

show that for longer message lengths or greater temporal locality, an increase in throughput is 

observed. 

The circuit switching protocol was compared to the store-and-forward model developed by 

Helminen's [1] for the FPS T-Series hypercube. At its worst case, the communication time of 

the synchronous communication protocol is comparable to the asynchronous communication protocol 

of the FPS T-Series and that as the network diameter or as the message length increases, a 2-5 fold 

increase in speed is observed. 
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52 Contributions 

The following is an outline of contributions accomplished in this thesis: 

• A complete library of driver routines was written in Occam and Parallel C for the BBK-V2 bus 

master transputers. 

• An operating system shell supporting synchronous communication was designed. The modularity 

of the design will ease future software enhancements. It is probable that the majority of the 

software enhancement will be directed to the CSC Crossbar Controller process. The Receiver, 

Transmitter, Interrupt Handler, Monitor and input/output support may be integrated with a new 

crossbar controller with minimal modifications which makes the operating system an efficient 

development environment. 

• Experience using both Occam and Parallel C have been acquired. The Occam language with 

its guarded communication primitives, its communication protocol definition and its compact 

syntax for representing processes provides an attractive parallel processing environment. Occam, 

however, does not support dynamic memory allocation. In contrast, Parallel C provides all the 

C language dynamic memory allocation features. Dynamic memory allocation is essential for 

the implementation of task migration which is an important feature for reliable systems. 

• A Fair Alternative routine, as listed in Appendix B, has been added to the Parallel C Library. 

These routines provide each process a fair access to communication resources. 

• The I/O server process received from Logical Systems polls the VMEbus at the fastest possible 

rate. If multiple I/O servers are executing concurrently, the VMEbus traffic is greatly increased. 

The VO server was modified to provide an adaptive polling rate which is dependent on the 

frequency of I/O requests. 

53 Future Areas of Research 

This following is a list of possible extensions to the work that has been done in this thesis: 

• The operating system should support task migration for fault-tolerance purposes. 
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• The number of VMEbus link adapters available on each cluster board is presently four and 

one is reserved to connect the crossbar configuration link. Therefore, three link adapters must 

be shared by four processors. The design of the operating system currently limits the number 

of dynamically reconfigurable transputers to three. A hardware board should be designed with 

multiple IMS C012 link adapters where the configuration link of each switch could be connected. 

• A distributed switch controller should be implemented in order to avoid a switch controller 

bottleneck as the number of processors in the system grows. 

• The communication protocol should prioritize the communication requests and support resource 

preemption. Prioritized communication would increase the system predictability which is an 

important feature for real-time systems. 
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Appendix A 

Interrupt Board Schematics 
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Appendix B 

Fair Alternative Library 



F a i r A l t e r n a t i v e L i b r a r i e s 

/* Author: B. Vachon 
* Date: July 14th, 1989 

•define f a l s e 0 
fdefine true 1 

•include <stdio.h> 
•include "conch" 

•define FAIRALTSLOT 10 
•define MAXCHAN 100 
•define SLOTUKUSED -1 
• define ALT_NOT_DYNAMIC -2 
•define ALT_NO_MORE_ROOM -3 
•define ALT_MEMORY_ALLOC ERROR -4 
•define ALT UNKNOWN ERROR -5 

typedef i n t AltHandle; 

AltHandle AllocFairAlt(Channel * * c l i s t ) ; 
i n t DeallocFairAlt(AltHandle A l t ) ; 
i n t FairProcAltList(AltHandle A l t ) ; 
i n t FairProcSkipList (AltHandle Alt) ; 
i n t F airProcTimerAltList(int time, AltHandle Ait) ; 

typedef Channel *ChanP; 

/* global variables */ 
s t a t i c ChanP A l t S l o t [FAIRALTSLOT] [MAXCHAN] ; 
s t a t i c i n t SlotStatus[FAIRALTSLOT]; 
s t a t i c i n t SlotNumChan [FAIRALTSLOT]; 
s t a t i c i n t I n i t F a i r A l t - false ; 

/* l o c a l functions */ 
s t a t i c i n t I n i t F a i r ( v o i d ) ; 
s t a t i c i n t FindSlot(void); 
s t a t i c i n t CountChannel(Channel * * c l i s t ) ; 
s t a t i c i n t NumChan; 

A l l o c F a i r A l t 

i n t AllocFairAlt(Channel * * c l i s t ) 
( 

i n t i , s l o t ; 

i f ('.InitFairAlt) 
( 

i f ( I n i t F a i r O — -1) /* can't i n i t i a l i z e Fair A l t */ 
return(-1); 

I 
i f ( (slot-FindSlotO ) — -1) /* no more s l o t l e f t */ 

r e t u r n ( - l ) ; 

NumChan - CountChannel( c l i s t ); 
SlotNumChan[slot] ™ NumChan; 

/* Copy the Channel Over */ 
f o r ( i - 0 ; KNunChan; i++) 

A l t S l o t [ s l o t ] [ i ] - AltSlot[slot][i+NumChan] - c l i s t [ i ] ; 
AltSlot[slot][2*NumChan] - NOLL; 

/* successful a l l o c a t i o n */ 
r e t u r n ( s l o t ) ; 

) 

s t a t i c i n t I n i t F a i r ( v o i d ) 
( 

r e g i s t e r i n t i ; 

/* double i n i t i a l i z e */ 
i f ( I n i t F a i r A l t — true) return(-1); 
f o r ( i - 0 ; KFAIRALTSLOT; i++) 
( 

S l o t S t a t u s [ i ] , - SLOTONUSED; 
SlotNumChan[i] - 0; ) 

I n i t F a i r A i t - true; 
return(1); 

s t a t i c i n t FindSlot(void) 
( 

r e g i s t e r i n t i - 0; 

/* look f o r endsignal */ 
for (i-0; (KFAIRALTSLOT) «S (SlotStatus [i] !- SLOTONOSED); i++) ; 

i f ( i !- FAIRALTSLOT) 
( 

SlotSt a t u s [ i ] - 0; 
r e t u r n ( i ) ; 

) 
return(-1); 

) 
D e a l l o c F a i r A l t 

i n t D e a l l o c F a i r A l t ( i n t s l o t ) 
( 

i f (SlotStatus[slot] — SLOTONUSED) 
return(-1); 

/* mark s l o t as unused and reset s l o t status */ 
SlotStatus[slot] - SLOTUNUSED; 
SlotNumChan[slot] - 0; 



r e t u r n ( s l o t ) ; 
) 
s t a t i c i n t ChangeList(int slot) 
( 

i f (SlotStatus[slotJ — SLOTUNOSED) 
AltSlot[slot][SlotStatus[slot]+SlotNumChan[alot]] - NOLL; 
return(0); 

) 

s t a t i c void F i x L i s t ( i n t slot) 
( 

AltSlot[slot][SlotStatus[slot]+SlotNumChan[slot]] -
A l t S l o t [ s l o t l [SlotStatustslot]],-

/* readjust pointer */ 
i f (++SlotStatus[slot] — SlotHumChan[slot]) 

S l o t S t a t u s t s l o t ] - 0; 
) 
s t a t i c i n t CountChannel(Channel * * c l i s t ) 
( 

r e g i s t e r i n t i-0; 

f o r ( i - 0 ; ( c l i s t t i ] !- (Channel *)0) SS (KMAXCHAN); i++) 
i f (i>=MAXCHAN/2) 

r e t u r n ( - l ) ; /* too many channels */ 

r e t u r n ( i ) ; 
) 

F a i r P r o c A l t L i s t 

i n t F a i r P r o c A l t L i s t (int A l t Handle) 
( 

i n t r e s u l t ; 

i f (ChangeList (AltHandle) ~ -1) 
return(-1); 

r e s u l t - ProcAltList(SAltSlot[AltHandle][SlotStatus[AltHandle]]) + 
SlotStatus[AltHandle]; 

i f (result >— NumChan) result — NumChan; 
FixLis t ( A l t H a n d l e ) ; 
r e t u r n ( r e s u l t ) ; 

F a i r P r o c S k i p L i s t 

i n t F a i r P r o c S k i p L i s t ( i n t AltHandle) 

i n t r e s u l t : 

i f (ChangeList(AltHandle) — -1) 
return(-1) ; 

i f (result >— HumChan) r e s u l t — NumChan; 
FixList(AltHandle); 
r e t u r n ( r e s u l t ) ; 

F a i r P r o c T i m e r A l t L i s t 

i n t FairProcTimerAltList (int time, i n t AltHandle) 
( 

i n t r e s u l t ; 

i f (ChangeList(AltHandle) 1) 
return(-1); 

r e s u l t - ProcTimerAltList(time,SAltSlot[AltHandle] 
[SlotStatus[AltHandle]]+ SlotStatus[AltHandle] ); 

i f (result >— NumChan) r e s u l t — NumChan; 
FixLis t ( A l t H a n d l e ) ; 
r e t u r n ( r e s u l t ) ; 


