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Abstract

The analysis of the different types of cells in blood is routinely used
in today's medical practice to give an indication of a person’s state of
health. Many imaging systems aﬁd algorithms.havé been developed over
the last 30 years in an attempt to automate this brocess. Some of these
systems can now distinguish the difference between nofmal and abnormal
cells but the differentiation among the vérious types of abnormal cells

is still undergoing active research.

A new system, the Cell Analyzer Imaging System, has been developed to
acquire and process images from a microscope. In this work, some new
algorithms have been developed using this system to detect and segment
nucleated cells in Wright's stained blood smears for classification and
sub-classification of the normal and abnormal cell types} The initial
steps are to obtain high quality images by greatly reducing noise as
well as by correcting distortions, aberrations and 'sﬁading effects
present in the acquired images. Spectral information from the images is
then utilized to detect and segment nucleated cells from the rest of the
scene (non-nucleated cells and background). All nucleated cells as well
as those which are just touching are selected and éeparated into
individual cells. The resulting single cells are fﬁrther segmenéed into
the regions of nucleus and cytoplasm. Simple features are then
extracted from the segmented cells and these features are compared to
determine if  any clustering of a particﬁlaf class of cell exists.

Results show that these algorithms can detect, segment and classify
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different types of normal and abnormal nucleated blood cells. The major
érrors in segmentation accounts for approximately 6% of the cells

analyzed.
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Chapter 1

Introduction

One of the most useful indicators of a person’'s state of health in
today's medical practice is the examination of blood cells. The reason
is that the production of the various types of blood cells
(erythrocytes, leukocytes and platelets) in the body is highly sensitive
to stress, injuries, diseases, poisons, ionizing radiation and other
noxious stimuli (Zucker-Franklin et al., 1988; Begemann and Rastetter,
1979). The erythrocytes, commonly known as red blood cells, synthesize
hemoglobin which is responsible for transporting oxygen and carbon
dioxide to and from wvarious parts of the body. The leukocytes or white
blood cells are responsible for destroying and inactivating infective
cells as well as for producing antibodies and other agents for the
body’s immune system. The platelets prevent bleeding by acting as
agents to clot the blood on the surface of the wound. Thus the
abnormality in the number of each type of cell in the blood sample as
well as the irregularity in the morphology of the cells are important
indications of the 1ill conditions under which they were produced
(Zucker-Franklin et al., 1988; Begemann and Rastetter, 1979). This
thesis is a study which leads to the development of algorithms for
detecting and segmenting the various types of blood cells in single
layer deposits of blood taken from patients. It is thought that the
composition of the mixture éf the blood cells is linked with the health

of the patient.
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A common technique of analysis is to visually examine the cells in a
blood smear through a microscope (Figure 1). The smear is produced by
spreading a thin film of blood over a glass slide which is then stained
such that wvarious features of the cell are enhanced for visual
interpretation under the magnified field bf_a ndc;oscepe. Wright's
stain, developed in the 1800s, has become the stendafd stain for blood
smear analysis (Zucker-Franklin et al., 1988; Begemaﬁn and Rastetter,
1979). The erythrocytes have no nucleus and when using Wright'’s stain,
appear as light red in colour. The leukocytes have both nucleus and
cytoplasm and are stained dark and light blue respectively. The

platelets have only cytoplasm material and are stained light blue.

The +visual interpretation and classification of these smears are
subjective, tedious, time-consuming and susceptible to human error. In
the diagnosis and classification of leukemia, there have been attempts
made by the French-American-British (FAB) ceoperative groue.(Bennett et
al., 1976; Miller et al., 1981) to standardize the ériﬁeria for the
division of the myeloid and lymphoid types as well as sub-classification
within these types such that appropriate treatment can be prescribed.
Although there is general acceptance of the classification scheme, the
expense of this manual analysis and the inconsistencies in
classification by observefs among different institutions, as well as
those in the same institution warrant some form of objective evaluation
which can be used for diagnosis. This can be achieved by quantitative
measurements of these cells using a semi or fully automated procedure.

Since a large number of cells is generally measured, a fully automated



Figure 1

TYPICAL WRIGHT'S STAINED BLOOD SMEAR

A typical blood smear contains a) red blood cells, b) white blood cells,
c) platelets, and d) debris. This photograph was taken at 40x

microscope magnification.
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system must eventually be developed if this approach is to be

practically implemented.

The major deficiency of the commercially available cell analysis systems
is their inability to differentiate the various types of abnormal cells.
These commercial imaging systems were designed over the last ten to
twenty years, and lack the quality of the transducers and optical
components as well as the processing power which becaﬁé available in the
late eighties. In addition, the algorithms which involve the detection,
segmentation, feature extraction and cell élassification of different

types of cells are still undergoing research.

The most difficult and also the most crucial step in an aufomated blood
smear classification algorithm is that of correctly segmenting the image
into its main components. These are the nucleus and the cytoplasm of
the nucleated cells, the cytoplasm of the non-nucleated cells, and the
background. Because of neurological processing which occurs in the eye,
a human observer can easily determine and outline the various parts
(nucleus and cytoplasm) of the cell in the image. A machine, however,
has to resort to digital processing techniques to relate the set of
pixels which make up the image, into distinct regions. Nonetheless, a
machine can quantitatively describe the features extracted from these
defined regions, a task which the human can only estimate wusing
qualitative means. Any errors introduced in segmentation will propagate
to feature extraction, object classification and will possibly lead to a

misinterpretation of the cells in the scene. Therefore, correct
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segmentation is of a paramount importance. However, the development of
techniques for accurate and consistent segmentation of cells is not a

trivial task.

This thesis is concerned with the software development of new algorithms
for recognition, segmentation, feature extraction, and analysis of
nucleated blood cells using a new image cytometry system, the Cell
Analyzer which was designed and assembled to measure the properties of
cells based on their images. These algorithms are computationally less
expensive and match if not supercede the accuracy of those developed for
other cytometry systems. The body of the thesis begins with the
discussion of the characteristics of image cytometry systems in Chapter
two. This section evaluates the systems currently used for analyzing
blood cells and describes the system which is used to analyze the blood
cells in this thesis. The discussion of some existing segmentation
techniques 1is outlined in Chapter three. This section gives an
indication of the different methods used by other researchers to segment
the cells in the image. Parts of these methods are incorporated into
the algorithms presented in Chapter four. New approaches for analyzing
nucleated blood cells, such as the manipulation of the spectral
information in segmenting nucleated cells, the separation of touching
cells using the object chain code information and the angle of the
tangent to the object boundary, and the filtering of the image using an
edge enhancing average filter, are introduced in this chapter. The

performance of these algorithms is examined in Chapter five.



Chapter 2
Automated Blood Analyzer

2.1 Image Cytometry Systems

The necessity for automation has led to the application of machine
vision and robotics to microscopy in the early .19505 with the
introduction of the blood cell analyzeré (Young and Roberts, 1951;
Walton, 1952). Since then, attempts have been made tp'automate other
areas of medicine such as the screening of cervical cells (eg. Bengtsson
et al., 1979; Tucker et al., 1979; Shoemakef et alf,'l982) and the
analysis of chromosomes (eg. Philip and Lundsteen, 1985; Preston, 1976).
All these systems incorporate some type of a sensor for transforming the
microscopic scene into a digital image, some robotics for bringing the
area of interest on the microscope slide to the sensor’s view, and a
computer for analyzing the data and supervising thé enﬁire process.
This technology has brought accuracy, uniformity, reproducibility, and a

control level of quality to the performance of the screening programs.

The success of these automated cytometry systems can be seen by the
commercial production of leukocyte analyzers by five different companies
(three from the United States and two from Japan) in ﬁhe last two
decades (Preston, 1987; Imgram and Preston, 1970; Megla, 1973; Norgren,
Kulkarni and Graham, 1981). These analyzers (eg. Hematrak by Smith
Kline Beckman, LARC by Corning Glass Works, and diff3 by Coulter

Electronics) have superior performance over humans in classifying the



slides as normal or abnormal but lack the —capabilities in
differentiating the different types of abnormal cells. Because of this
deficiency and economical reasons, the three companies in the United
States have stopped their production by 1986. Despite the 1lack of
industrial interest, there is still active research in automating the
analysis of abnormal blood cells by groups such as Palcic and Jaggi
(1989) in Canada, Bacus and Grace (1987) in the United States, Aqs et al
(1986) and Haussmann and Liedtke (1984) in Germany, and Landeweerd et al

(1983) in the Netherlands.
2.2 Flow Cytometry Systems

The analysis of cells using the fluid-flow technology (Fﬁlwyler, 1965,
Tyrer and Pressman, 1987) started in the 1960s. Fluid suspension is
made into tiny droplets and cells in the droplets are passed through an
interrogation orifice at high speeds (5000 cells/s). A cell can be
examined while it passes through a field of view in approximately four
microseconds. Laser light is shone at the droplets, which may contain
the cell, and the transmittance and fluorescence at various wavelengths
of light are measured. The data 1is transferred to a computer and
processed. These systems presently are not capable of differentiating
as many types of white blood cells as good image cytometry systems.
However, the development of new immunologically based biochemical
reagents, which tag the different classes of blood cells, may overcome
this problem. With these new markers, the flow systems could be ideal

for screening samples quickly and recognizing the rare abnormal cells
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accurately. Since they do not allow visual observation of the cells
detected, a blood smear must be made when an abnormal sample is detected

for verification purposes.
2.3 General Imaging System Design

Although many image cytometry systems have been developed, they are very
similar in design and operation. The basic systém' consists of an
illumination source, microscope optics, motorized mechanical stage,
camera, digitizing circuitry, image memory, display monitor, and
processors (Figure 2). The stage which holds the samples is capable of
moving objects in the X and Y direction to the detectors field of view.
Z direction is provided for focussing purposes. Light is>transmitted
from the illumination source throughvthe sample to the camera detector.
The detected image 1is transformed into a digital image by the
interfacing circuitry. The resulting digital image is stored in the
computer memory from where it can be displayed on the mqnitor and/or

processed and analyzed by the computer.

The major difference among these imaging systems 1is the transducer
employed and the method used in scanning. Most systems ‘use a two
dimensional detector such as those found in tube cameras bor a two
dimensional array charge coupled device (CCD) cameras (eg. Jaggi et al.,
1988; Tucker, 1979). The image is captured by the detector while the
stage scans the slide by moving the sample from one frame to the next.

Very few systems use a linear detectors such as diode or CCD arrays (eg.
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Figure 2

BLOCK DIAGRAM OF A TYPICAL IMAGE CYTOMETRY SYSTEM

A typical system consists of an illumination source, microscope,
motorized stage, digitizing circuitry, image memory, display monitor and

processors.
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Jaggi and Palcic, 1985; Bengtsson et al., 1979; Tucker et al., 1987).
In these systems, an image is obtained by moving the sample across the
sensor and piecing together the image lines. The advantage of linear
scanners is that they have more sensor elements than either a row or a
column of the two dimensional counterpart a;1d hence pfovide a wider
field of wview. Also, the elements of the sensor .are digitized and
stored as digital data, and not in a video (analogﬁe) format which
requires re-sampling to convert to a 'digital form. The major
disadvantage is that a precise mechanical scanning is required for high
resolution of the two-dimensional images. There are systems which use a
combination of the linear and matrix (video) detectors (eg. Graham and
Norgen, 1980). Objects detected By the linear array are moved into the
field of view of the two dimensional detector for high resolution image
acquisition. There are also systems which use a one element detector
such as a photomultiplier or photodiode (eg. Ingram and Presﬁon, 1970;
Shoemaker et al., 1982). A rotating polygon is used to def1ect the
laser spot to scan the object in one dimension while thé.étage'is moved

to scan the image in the other dimension.

The quality of the input image in imaging is dependgnt not only on the
type of transducers used but also on the optical domponents and
elegtronic (digitizing) circuitry. The most important component in the
optical system is the objective lens of the microscope which determines
the magnification of the sample and hence governs the sampling density
of the image. These lenses are not perfect and generally introduce

distortions, aberrations, and shading effects. Most cameras today are
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built for the television broadcast community where the detected image on
the transducer is converted to an analog signal. This signal is later
digitized for machine analysis resulting in a loss of information due to
resampling and quantization errors. Cameras which directly digitize the
sensor image into digital data for machine analysis ére expensive and do
not conform to a fixed standard of data transmission which results in
the dependancy on a particular manufacturer for future wupgrades.
Distortions introduced by the optics, transducer and digitizing

circuitry must be compensated for before the image can be analyzed.
2.4  Cell Analyzer Imaging System

The Cell Analyzer Imaging System was used to develop and test algorithms
used for segmenting the blood smears described in this thesis. The Cell
Analyzer was originally designed at the British Columbia Cancer Research
Centre for the measurement of live, unstained cells to study their
properties as a function of time and/or treatments (Palcic, Jaggi and
Nordin, 1987). The description of this initial design is described
elsewhere (Jaggi and Palcic, 1985; Jaggi, Poon and Palcic, 1986). A
block diagram of the current system is shown in Figure 3 and 4. A two-
dimensional CCD camera, frame grabbing and image processing board, and
colour display monitor was added to the original system for measurements
of stained cells (Jaggi et al., 1988). In addition to 1live cell
experiments, this system is currently being used for the development of

automatic segmentation and feature extraction algorithms of stained
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LAYOUT OF CELL ANALYZER IMAGE SYSTEM

The layout of the major components of the Cell Analyzer Imaging System
consists of a microscope, camera, camera control unit, RGB monitor,
computer, computer monitor, keyboard, and a rack containing the power

supply for the light source and the controllers to move the stage in the

X,y and z positionms.
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BLOCK DIAGRAM OF THE CELL ANALYZER IMAGING SYSTEM

The major components»of the system are the stabilized light source for
illuminating the sample, a stage to move the object into the microscopes
field of view, the microscope optics to magnify the image, the camera to
acquire the images, diéitizing circuitry to transform the video signal
into digital format which can be stored into image memory and displayed

on an RGB monitor or manipulated by a computer.
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blood and cervical cells as well as experiments of other cells and

tissues which require an interactive use of an imaging system.

The Cell Analyzer system is particularly useful for developmental work.
Since many stained slides contain multi-spécgral information, a 3-chip
CCD camera (Sony DXC-3000A) is employed to capture iﬁages in 'the three
primary colours of the spectrums: red, green and blue. A frame grabbing
and imaging board (Matrox MVP-AT) is used to digitize, store, process
and display the image. This board accepts three input qhannels, one for
each spectrum, and stores each image in one of ‘the four 512x512x8 frame
buffers. The hardware processing features of this board include
histogram processor, 3x3 convolutions, and 3x3 morphological operators.
Other processing and analysis functions are performed by the host IBM

PC/AT computer.

For blood smear analysis, an objective lens‘(Plan Apochromét_40x with a
0.95 numerical aperture, air) is used in conjunctioﬁ-with a matched
condenser lens and a TV relay lens (1lx) giving a spatial resolution of
0.33 microns in both x and y directions. All three colour images of the
camera are used, each of which has a photometric resplution of 8 bits or

256 grey levels.
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Chapter 3 |

Segmentation Techniques
3.1 Overviewv

Many segmentation techniques have been developed over the past several
decades (eg. Fu and Mui, 1981; Davis, 1975). These methods can be
categorized into three different classes: i) characteristic feature
thresholding or clustering, ii) edge detection, and >iii) region
extraction. A single algorithm generally cannot segment a particular
scene and hence a combination of segmentation processes is often used.
Generally these processes perform well in some applications but may fail
in others. Detailed descriptions of the different classes of known

segmentation algorithms are discussed in the following sections.
3.2 Thresholding or Clustering

Thresholding is a common technique used in segmenting regions in a
scene. The process assigns distinct labels to areas based on some
properties of the image. A property may be a characteristic feature
such as the image gray levels or may be of local nature such as the
gradient or Laplacian of the gray levels. In all cases, a specified
range of values of a given property is used to define the pixels in the
image which belong to the same region. Oftén, a histogram of an image

property is used to determine the thresholds for each region. These
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histograms are generally smoothed to remove noise. Care must be taken,

however, to avoid smoothing out small but valid minima or maxima.

A thresholding technique which can be applied to gray level histograms
is the mode method. This type of histogram givgs an indication of the
number of pixels which have the same gray level in the image (Figure 5).
Thus, each peak (mode) of the histogram represents areas of similar
intensity level. A boundary is placed at the valley'between peaks to
separate the regions,. The rationale for choosing such points is to
minimize the probability of misclassifyingl each region. Since the
number of pixels at the valley compared to the peaks is relatively
small, misplacement of the threshold from the exact 1location has
relatively little effect on the resulting image. For examﬁle, Wermser,
Haussmann and Liedke (1984) used this technique to segment the blood

cells from the background of the image.

A different technique is used for thresholding gradient histograms.
Since these histograms represent the sum of the magnitude of gradients
at a given gray level, the boundary is placed at the highest point in
the histogram. This point signifies the location of the largest
differences (the edges) of the image. This method works well with some
images but fails in others. For images where there are many simiiar
intensity pixels with a small gradient, their sum may overmask the sum
generated at the edge of rare objects and hence generate a wrong

threshold level.
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SELECTING A THRESHOLD IN A BI-MODAL HISTOGRAM

The threshold boundary is placed at a valley between the peaks. The
error in misplacing the boundary is less at the valley (x;) than at

other points (x2).



18
Clustering extends the technique of thresholding to the multi-
dimensional space. This technique is used when poor discrimination
exists employing a single feature but distinct regions can be detected
using histograms of two or more characteristic»features (Figure 6). Any
feature which is useful for segmenting a regién, such as. the gray levels
of images seen through different spectral filtegs, gradientsg texture
features, etc., can be used. Haussmann and Liedtke (1984) use the green
and blue image components of the image to‘separate the nucleated cells
from the red blood cells. Algorithms for cluster anglysis have been
available for locating the decision boundary between regions in a multi-
dimensional space (Amadasun and King, 1988; Umesh, 1988). To reduce the
amount of computations required in the analysis, the smallest number of

features which can discriminate the regions is employed.

Thresholding and clustering techniques are global operatorsvwhich use
some aggregate properties of different features. These~features are
very dependent on the type of regions which are segmented'in the image.
Although the segmented regions are closed, some images may require
smoothing to eliminate the noisy boundaries. Since. no spatial
information is used in the selection of the thréshold, the resulting

regions may not be contiguous.
3.3 Edge Detection

Edge detection algorithms use the information of edge points to

determine the boundary between objects. The edge points are located
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USE OF CLUSTERING IN OBJECT DISCRIMINATION

Objects in group A can be easily separated from those invgroup B in the
.two-dimensional (x,y) feature plot. This is not the case in either of

the one-dimensional feature plots.
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where there is an abrupt change in gray levels in the image. 1In this
technique, the elements which are candidates to belong to an edge are

first extracted and then combined to form the boundary.

The extraction of edge pixels requires a measure which corresponds to
the change in gray value of the pixel with its surrounding. Various
methods, such ‘as the gradient, Sobel, Kirsch, and Prewitt operators
(Rosenfeld and Kak, 1982; Young and Fu, 1986), have Béen developed for
this purpose. These operators can be implemented as a series of image

convolutions where the weights in the convolution kernel is different

for each filter. The resulting value gives an indication of the
strength of the changes around each pixel. The edge points are then
extracted by thresholding the processed image. Marr (1982) has

developed a Laplacian of a Gaussian edge filter. In this method, the
zero-crossings of the filter correspond to the edges of the structures
which have a space constant greater than (or a lower spatial frequency

than) a selected value used in the Gaussian blurring process.

There are séveral problems with edge detection techniques. This 1is
because the transition from one region of the image to the other
sometimes occurs over several pixels and is then not abrupt enough. The
contours produced from.thresholding edge information are generally more
than one pixel wide and not necessarily closed. Hence, some post-
processing using thinning and contour-closing algorithm is required.
Another problem is that the texture of some regions are significant

enough to be thresholded as edge points resulting in erroneous image
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segmentation. Nevertheless, the results from the edge detection
techniques can be used in conjunction with other methods in determining

particular regions.
3.4 Region Extraction

Another approach to segmentatién is to group pixels with similar
properties, such as gray levels, texture, color information, etc., into
regions. These region extraction techniques can be separated into three
categories: region merging, region splitting, and a combination of

region merging and splitting.

In region merging or growing techniques, the image is initially divided
into many small regions such as a pixel or a small neighbourhood of
pixels. Various properties that reflect the characteristics of the
object are computed for each region. The characteristics of each region‘
are compared with its neighbouring regions. If the properties of the
adjacent regions are similar, these regions are combined or merged into
one. This process is iterated by recomputing the objeét membership
properties for each enlarged region and merging the regions which have
similar characteristics. The segmentation 1is completed when all
adjacent regions have significantly different properties such that no

merge can further be made.

The region splitting or dividing techniques begin with the entire image

instead of many small regions. A predicate describing the wvarious
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properties of the objéct is evaluated from the entire region. An
example is to determine if all pixels in the region have gray levels
which do not differ by a certain amount. If the predicate is not
satisfied, the region is divided into smaller regions and the predicate
for each of the sub-regions is recomputed. 'Tﬁe précess,continues until

the predicates for all regions are satisfied.

The split and merge technique uses a combination of region merging and
splitting to obtain regions of similar properties. Regions are merged
when adjacent regions have similar propertieé:and are split when the
predicate describing the property is not satisfied.. Liedtke et al,
(1987) used this technique on blood cells to extract the primitives used

in his segmentation method.

Region extraction techniques utilize the local properties of the image
directly. Although they produce closed and contiguous .regions, the

drawback is that these algorithms are computationally intensive.
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Chapter 4
Blood Cell Analysis Algorithms

4.1 Overview

A program was designed and written to incorporate the algorithms which
are developed to automatically segment nucleated blood cells. The
approach for analyzing these cells involves the following seven steps:
i) acquisition of images, 1ii) pre-processing the acquired images, iii)
detection of possible cells in the scene, iv) segmentation of the cells
in the scene, v) post-processing the segmented regions, vi) extraction
of features, and vii) classification of the object (Figure 7). The
first two steps, acquiring and pre-processing the images, are critical
since high quality input images will simplify and reduce the amount of
processing required in the 1later stages of the anaiysis. The
manipulation of spectral information is used in the following step to
detect the cells in the scene. All nucleated cells are selected from
the background and non-nucleated red blood cells. Once the cell
locations are found, all single cells are accounted for and also any
cells which are just touching are separated and the boundary of each
isolated cell is determined. The next step is to segment the isolated
cells into two regions: nucleus and cytoplasm. Post-processing of the
defined regions is required to fine-tune the mask of each region.
Features are then calculated based on the defined region boundaries.
The cells in the scene are then classified based on the values of the

features.
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BLOCK DIAGRAM OF THE PROCEDURES TO ANALYZE BLOOD CELLS

Algorithms are employed in the acquisition and prg-processing sections
to ensure that the images used in the analysis: are corfected for.
Errors in the detection and segmentation sections should be minimized to
limit their propagation to the later parts of the analysis. Features
are extracted from the segmented regions énd the cléssification of the

object is made based on the feature values.
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The most difficult portion of the analysis is to define the regions of
the cell. Unlike feature extraction where only mathematical algorithms
will suffice, segmentation also requires prior knowledge of the
geometrical, morphological, and topological properties of the cells in
the scene as well as a heuristic approach for analyzing the problem.
Since object classification is based on feature values which are derived
from the segmented regions, the segmentation is crucial for the correct

interpretation of the cells in the scene.

4.2 Image Acquisition

Since each region of the blood cell is stained a different colour and
multi-spectral analysis is used, two or more images taken with different

colour filters must be obtained.

Camera calibration must be performed at the beginning of each experiment
to ensure correct colour registration of the image. This is
accomplished by adjusting the gain and offset of the amplifiers for each
colour component (red, green and blue) such that a similar light level
is observed at the output of each channel when only the background light

is measured.

Light source and frame grabber calibration is also executed before the
experiment begins. In order to utilize the full photometric range of
the digitizer (8 bits or 256 grey levels), the voltage level of the

light source and the gain and offset of the analogue to digital
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converter of the frame grabbe;' board are adjusted accordingly. The
level of the background, which is the brightest part of the image, is
set to approximately five percent below the maximum vto' avoid image
saturation. The darkest stained nucleus in the image is set to

approximately five percent above the minimum detectable level.

In the analysis, images from each of the red, green; and blue colour
spectrum are acquired. Since the scene'is static, an average of a
number of images from each spectrum is taken‘beforehandi This averaging
has the effect of reducing the random noise 'introduced by the light
‘source, detector and digitizer. Since each detected image Ii(x,y), can
be represented as a sum of a stationary part S(x,y), and a part

containing random noise Ni(x,y), i.e.

I;(x,y) = S(x,y) + N;j(x,y) - (1)
the average of M images is of the form

M

Ly(y) = & (S0 + Ny 2)

If the noise is assumed to be uncorrelated with the image, then it can

be shown that the power spectrum of the noise (Syy), is reduced by a

factor of M (Castleman, 1979; Pratt, 1979), i.e.

(Sywav = 3 (S (3)
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where (Syy),, 1s the power spectrum of the noise in the averaged image.
If the noise is assumed to have a Gaussian distribution, then the
standard deviation o, of the random noise is reduced by the square root

of the number of frames averaged, i.e.

oav = T o1 (4)

where o,,, is the standard deviation of the noise in the averaged image.
Due to the quantization limit, the standard deviation of the averaged
image is chosen to be at most a half of a grey level (g,, < 0.5).
Achieving this average noise level implies that the number of frames

required for each sample (i.e. the number of frames to be averaged)

should at least be four times the variance of the detected random noise,
M >4 0,2 ' : (5)
The standard deviation of the grey level of the random noise in the
acquired spectral images ranges from 2 to 3. Hence, M, the number of
frames averaged for each image analyzed, is chosen to be 36 (Figure 8).

4.3 Image Calibration

Although random noise can be reduced by averaging, fixed pattern noise

must be corrected by using other means. These noise patterns are
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NOISE REDUCTION DUE TO IMAGE AVERAGING

The variation in background intensity in the original image and its
histogram (top) can readily be seen. The color mapping table is
adjusted to highlight small changes in intensity levels. The same image
was captured 36 times and averaged (bottom) to reduce the noise

variations.
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produced by various components in the imaging system. Unequal
sensitivity between elements of the detector results in different gray
level values among pixels that have received the same illumination.
Some camera control circuitries generate evenly spaced vertical bars
with slightly wvarying intensities. Shading and aberration effects
caused by the optics also produce uneven illumination at the detector
resulting in a brighter spot near the centre of the image which fades to

the edges.

Decalibration is one method which is used to correct the fixed pattern
noise. Each pixel in the image I(x,y) is transformed into a new image
C(x,y), using an equation involving the bright background image B(x,y),

a dark image D(x,y), and a constant scaling factor k:

Ix.y) - D(x.v) (6)
B(x,y) - D(x,y)

C(x,y) =k

This formula represents the transmittance of the image where each pixel
is corrected for by the values of the calibration images. A range of
bright and dark images is used to linearly map the detected image to a
scale of 0 to k. Because division is used, truncation error is likely
to distort the distribution of gray levels. In bright field microscopy,
the dark image usually has a gray level of O and the bright image has a
intensity ranging from 200 to 220. Hence, up to 10% improvement is seen

using the decalibrated instead of the raw image.
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Background subtraction of optical densities can be used instead to
achieve a similar result. This method is based on the conversion of the
transmittance to optical density by taking logarithm of the pixel

values; the dark image is assumed to be zero in this case.
log C(x,y) = log I(x,y) - log B(x,y) +K o (7)

where(the background is subtracted from the original optical image and a
constant value of K is added to offset the intensity distribution.
Taking logarithms on a discrete image wiil produce gaps in the
distribution of the optical density profile which adds complications

later in the analysis of the images.

A third approach to correct images is to subtract the bright image and

then add an offset equal to an average value of thebbright image, i.e.
C(x,y) = I(x,y) - B(x,y) + K. R (8)

This approach was used to analyze white blood cells in this work (Figure
9). The method adjusts each pixel by adding an offset such that a
bright background image appears to have equal gray level value for all
pixels. Most of the image consisting of background pixels is correctly
adjusted for. The advantage of this method is that no truncation error
is introduced since only subtraction of integers is involved. Although
the approach is not as good as the first two methods, it does serve as a

good approximation for image correction. The error in the correction
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NOISE REDUCTION USING BACKGROUND SUBRACTION

The aberration and shading effects in the original image and its
histogram (top) can readily be seen. The color mapping table is
adjusted to highlight small changes in the intensity levels. Background
subtraction (the third method as described in the text) was then applied

to the image (bottom) to remove this shading effect.
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does increase in the darker regions where the stained cells lie, but the
change in the error is gradual and insignificant in affecting the

segmentation algorithms.
4.4  Recognition of Nucleated Cell

The first step in the analysis is to determine if there are any
nucleated cells of interest in the image. Since éolour is used for
visual detection of nucleated cells, red, green, and: blue spectral
information was used. To illustrate this point, two colour histograms
with colour information on each of its two axis, and the frequency of
occurrence of a particular colour pair on the third axis was generated
as shown in Figure 10. It can be seen that no single thré;hold can be
used in any of the 1individual colour histograms to separate the
nucleated cells from the rest of the image. However, the regions of the
nucleus and the cytoplasm of the nucleated cells, the red blood cells,

and the background form clusters in the two colour histograms.

Wermser, Haussmann and Liedke (1984) proposed a method for analysis of
a one dimensional histogram on Pappenheim stained peripheral blood
smears instead of the more time consuming multidimensional cluster
analysis. 1In this approach, characteristic feature X(x,y), is generated

from a linear combination of the green G(x,y), and blue B(x,y), images:

X(x,y) = a G(x,y) + b B(x,y) _ ' (9)
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CLUSTER PLOTS OF SPECTRAL IMAGES OF BLOOD CELLS

A photograph of the intensity variations of each of the spectral images
(left): red, green, and blue (from top to bottom), and cluster plots of
each of the two colours (right): red-blue, red-green, and green-blue
(from top to bottom), are shown. Clustering of the (A) background, (B)

red blood cells, (C) cytoplasm, and (D) nucleus areas can be seen.
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where a and b are constants using values of a=0.390 and b=0.546. A
histogram of the new image is generated and a simple threshold at the
valley of the histogram of this characteristic feature is used to

separate the red blood cells from the cytoplasm of nucleated cells,

A similar approach can be employed with the Wright'’s stained cells used
in this work. The characteristic feature uses the fed, R(x,y), and

blue, B(x,y), images in a formula:

X(x,y) = R(x,y) - B(x,y) + 128 E (10)

This method involves simple subtraction of the images. No floating
point arithmetic is involved which would introduce truncation errors.
The constant value of 128 is added to shift the origin such that values

from -128 to 127 are mapped to the values 0 to 255.

To extract the nucleated cells in the image, threéhdlding on the
histogram of the smoothed subtracted image is performed. The subtracted
image is first averaged to remove speckled noise at the edges of the red
blood éells. This filter consists of convoluting the image with a 3x3
kernel of weights equal to 1's and dividing the result by a factor of 9.
A histogram of this filtered image is produced (Figure 11). The
threshold T, near the valley is found by selecting the first point to
the left of the peak where pixels belonging to the red blood cells and
background are represented in the histogram H(T), and which has a

gradient less than 2% of the maximum peak value P i.e.

max’
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SEGMENTATION OF NUCLEATED CELLS

The photograph of the blue image subtracted from the red image is shown
at the top. Because of the noise in the image, a filtered version of
the image histogram is used to determine the location of the threshold

(bottom) .
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H(T) - H(T-1) < 2% B (11)

All pixels below this threshold are set to a gray level of 255 (the cell
mask) and all other pixels are set to 0. The 2% Pmax gradiént threshold
is selected experimentally to optimally encompass not. only the nucleated
cells but also several pixels belonging to the red blood cells. If a

higher gradient threshold is selected (greater than 2% P more red

max)
blood cells will be included in the cell mask. If a lower gradient
value is chosen, some of cytoplasm of the nﬁcleated cells will be lost
to the background region. A 3x3 median filter is applied on the cell
mask to fill the holes in the white blood cells and to remove the
unwanted points in the red blood cells and background. Thig filter acts
as a low pass filter removing any high spatial frequencies from the
image. Because a binary image is used as the input, the filter can be
implemented as a local 3x3 average operation on each pixelland then the
result is thresholded at the 128 level to generate the new binary mask.
A single dilation followed by two erosions using‘ a 3x3 window are
applied to this binary image to fill the larger holes and smooth the
contour of the ﬁucleated cell mask (Figure 12). In the dilation
process, a pixel is included in the new cell mask’ if any of its eight
adjacent neighbours belong in the cell mask. 1In the erosion process, a

pixel is removed from the cell mask if any of its eight adjacent

neighbours does not belong to the mask.
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Figure 12

SMOOTHING THE NUCLEATED CELL MASK

The process of the operations used to smooth the nucleated cell mask is
shown. The original nucleated cell mask is shown in the top left. A
low pass filter is first applied to the mask (top right), followed by a
dilation (bottom left) and two erosions (bottom right). Jagged edges
are smoothed, holes are filled, and small fragments are removed by these

processes.
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4.5 Boundary Detection of Single Cells

Some of the nucleated cells extracted from the mask may be useful for
further analysis. Because of the complexity and the high error rate in
segmentation, certain arrangements of cells cén noﬁ be ahalyzed. These
include overlapping nucleated cells or cells .whiéh are too close
together that even a human observer would have a hard time segmenting
them properly. Hence, only nucleated cells which are standing alone or

are just touching were used for further analysis.

To extract these cells, the nucleated cell mask is sgarched until the
boundary of a cell is encountered. A boundary chain codé starting at
this point is then generated. The chain code is a boundary numbering
scheme that labels each boundary point with the direction code (Figure
13) of one of its eight possible neighbours as the next boundéry point.
Henée, a consecutive list of these points defines the bouﬁdary of the

object.

3 2 1

4 centre 0

5 6 7
Figure 13

BOUNDARY DIRECTION CODES.
This coding scheme is used to label the boundary points of the mnext

point relative to the centre location in the boundary chain code.
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An algorithm has been developed to separate touching cells based on this
boundary information. The location of the boundary pixels can be
calculated from the boundary chain code. This information is used to
find the angle of the tangent line to each point on the object boundary.
The least square fit is used to determine the slope of the tangent line

based on the nine points centered at the point of interest, i.e.

8
dx(i) = = [x(j+1-4) - x(i-4)] (12)
j=0
8 .
dy(i) = 2 [y(j+i-4) - y(i-4)] (13)
j=0

where dx(i) and dy(i) are the total variations over the nine points in
the x and y directions respectively. The angle of this line 6(i),

relative to the x-axis is then calculated, i.e.

iy dy(i)
8(i) = arctan ax (1) (14)

By taking the difference of angles d8(i), between points which are four

boundary points away, i.e.

de(i) = 8(i-2) - 8(i+2) ' (15)
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a noticeable peak is seen at the corresponding location of where the two
cells touch (Figure 14). A value of 2x is added or subtracted from the

difference angle to ensure that the result is within -m and «.

A line segment is produced by joining the peaks to separate the touching
cells. The values of this line are set to the background mask level of
zero, thus separating the two cells. A smoothing operation is applied
to each of the separated object to smooth any corners intréduced by the

separation of the touching cells.

After the touching cells are separated, all objects (cells) which are
within a prescribed size are used for further analysis. This eliminates
the unnecessary need to analyze objects which are too small or too large

to truly represent a cell.
4.6 Nucleus and Cytoplasm Segmentation

The next step in the segmentation process is to determine the different
regions of a nucleated cell: the ﬁucleus and the cytoplasm.. The mask of
each single cell is overlaid on the green spectral image using the
logical AND function of the mask with the image. A histogram of this
masked image is generated. This histogram is generally very noisy and
has more than two distinct peaks (Figure 15). Hence, an additional
operation utilizing the edge information is performed to help define
each region more readily and to smooth the intensity level variations in

each region,
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SEPARATION OF TOUCHING CELLS
The outline of a single and two touching cells (top) are shown. The

plots of the difference of the angles of the tangent along the boundary
of the single cell and the two touching cells (bottom) are shown. The
two peaks in the angle difference plot correspond to the indentations

found at the boundary of the two touching cells.
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HISTOGRAM OF THE SEGMENTED NUCLEATED CELLS

The original image in the green spectrum (top left) and the nucleated
cell mask (top left) are shown. The mask is overlaid on the original
image (bottom right) to show only the nucleated cell. The histogram of

the green image is generated (bottom right).
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This additional operation 1is the conditional mean filter. In this
filter, the sample mean M(P), and the sample variance Var(P), of the

gray levels in a local 3x3 window at each pixel P(x,y), are calculated,

1 1 1
M(P(x,y)) = 9 z z P(x+i, y+j) (16)
i=-1 j=-1
1 L L 2
Var(P(x,y)) = 5 z z {(P(x+i, y+i) - M(P(x,y))) (17)
i=-1 j=-1

If the variance is below a pre-defined "conditional" 1limit, the pixel
value is replaced by the mean value. Otherwise, the value of the pixel
is examined and adjusted. If the value is greater‘than or equal to the
mean then it is replaced by the sum of the mean and standard deviation.
Otherwise, it 1is replaced by the difference of the mean and standard

deviation.

The histogram of the resulting image is used to determine the boundary
between the nucleus and the cytoplasm (Figure 16). This histogram H(T),
is smoothed by a 9x1 median filter to remove noisy spikes. The point T,
to the right of the first dark peak where the gradient is less than 5%

of the maximum peak P is chosen as the threshold level, i.e.

max’

H(T) - H(T+1) < 5% P (18)
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PROCESS TO SEGMENT NUCLEUS AND CYTOPLASM

A filter is applied to the masked image (top left) and its histogram is
generated (top right). A threshold is determined on the histogram and
the resulting nucleus mask is formed (bottom left). This mask is then

smoothed (bottom right).



45

The gradient threshold of 5% P .. 1s experimentally chosen to be the

X
optimal for generating the cytoplasm and nuclear mask. If the threshold
is greater, the less dense (lighter stained parts) of the'nucleus will
be classified as cytoplasm. If the threshold is lower, the more dense
(darker stained parts) of the cytoplasm 'will be 1included in the
cytoplasm mask. A median filter and dilation and erosion operations are

performed on the resulting mask to fill the holes ‘and smooth the

boundary of the nuclear mask.
4.7 Simple Feature Extraction

Features can be extracted from the regions once their boundaries are
known. Several features are implemented to help verify the segmentation
algorithm and to evaluate the feasibility of classifying different types
of blood cells. These features include size, intensity, and shape

measurements as well as ratios of these measurements.

Size features give an indication of how large each region of the éell
is. These measurements include the area and perimeter of the cell, the
cytoplasm, and the nucleus. The area measurement is obtained by
determining the number of points in the specific region (cell, nucleus
or cytoplasm) as defined by its image mask M(x,y), in a 64 pixel by 64

pixel matrix, i.e.

63 63 :
Area = £ I M(x,y) (19)
x=0 y=0
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where M(x,y) 1s the cell mask and has a value of 1 in the object and O

elsewhere.

The perimeter measurement is obtained using the information from the
chain code. The chain code, described in Chapter 4.5, qontains odd,
even and corner elements of the edge. A weighted sum of the number of
these elements is used to determine the perimeter. ‘This method will
give a more accurate perimeter value for circularly shaped objects since
it compensates for edges which do not align with the square image grid.
The formula developed by Young (1988) is used since it is optimized for

the perimeter of circular objects, i.e.

Perimeter = 1.406 Nygq + 0.980 Noyop - 0.091 Negopop + 2/2 (20)
The ratio of areas of the nucleus to the cytoplasm is used to give an

indication of the proportion of the different regions in the cell.

Intensity features give an indication of the amount of stain that is
associated with the nucleus of the cell. The measurements used are the

sample mean intensity I and the sample variance of intensity I,

mean’ r

in each of the three colour spectrums (red, green, and blue), i.e.

63 63

I(x,y) M(x.y)
Ipean = % 2 Area : (21)
x=0 y=0
63 63 [I1(X,y) - Ipganl” M(x,¥)
Iyyp= = —— | (22)

x=0 y=0
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Shape features give an indication of how the nucleus of the cell looks

like. One such measurement is circularity, i.e.

Perimeter2

Circularity = 4r Area

(23)
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Chapter 5

Discussion and Results
5.1 Data Collection

In order to test the blood cell analysis algorithm, approximately 1000
cells from 10 slides of blood smears were.used. These slides were
obtained from the Children’s Hospital of British Columbia in Vancouver
and éontained typical variations which can be expected in blood smear
preparations. The classification of these slides was known since they
had been prepared at least one year ago and the history and progress of

each patient are known to-date.

To collect the cells, randomly chosen areas on the slide were brought to
the microscope field of view, using the motorized x,y stage of the
device. E;ch field was manually focussed to obtain the greatest
contrast in the image as seen on the monitor. Spectral images were then
acquired and the system was programmed to. automatically find the
nucleated célls and to perform the segmentation. The resulting
boundaries were overlaid on the cell images and‘displayed on the monitor
for wvisual 1inspection. The spectral imageé (each 64 pixels by 64
pixels), the nucleus and cytopxasm masks, an%wthe location of the cell
g A
on the slide were storéd fégﬁﬁater observaiion. At the end of the

search, each of the detected cells was manually classified by a

pathologist into 19 groups (Appendix A). The cell classification was



49
used in conjunction with the values of the calculated features to

determine if a correlation exists.

Slides 1, 3, 4, 5, 6, and 8 came from patients with acute lymphoblastic
leukemia (ALL) and contain a large number of lymphoblast cells amongst
the nucleated cell population. All these slides have 1ymphoblast cells
of the classification of L1 type with the exception of slide 5 which has
both the L1 and L2 sub-classification types. Slides 2 and 7 were from
patients with acute myelogenous leukemia (AML) and they contain a large
population of myeloblast cells. Slides 9 and 10 were from patients who
had been treated for ALL and hence they contain a mixture of the 15
different classes of normal nucleated cells as well as some abnormal

cells.
5.2 Detection Accuracies

An important aspect of blood cell analyzers 1is .their ability to
correctly detect all nucleated cells in a given field and eliminate all
other debris. Any nucleated cells which are left undetected, especially
those of a specific class, may generate results which indicate that the
slide is normal where in fact it is not. Debris which are not
eliminated from the analysis may produce results that indicate
abnormality in the slide. Although this is not as serious an error as
not detecting cells (false negatives), these slides will have to be

manually examined to verify its normality.
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All nucleated cells were correctly detected in the selected frames.
Most debris have equal intensity in all colour spectra and hence were
easily eliminated by the subtraction of the blue image from the red.
Although there are many regions in the image which belong to parts of
red blood cells, platelets, and other debris, these were generally very
small and were eliminated by the erosion process and the size criteria
imposed on each isolated object. Objects which are too large (such as
clumps of cells) were also eliminated by the size criterion. Cells
which were touching the borders of the image were not included in the

data since there was not enough information to classify a fraction of a

cell.

Of the 1078 detected nucleated cells, 781 were‘individual, single cells
and 297 were two or three cells that were just touching each another.
Of these touching cells, 271 were correctly divided into individual
cells, 18 had minor errors in the position of the boundary, and 8
experienced major errors where the 1location of the boundary was

misplaced (Figure 17).

Minor errors in separating touching cells is largely due to the boundary
smoothing operation applied to the nucleated cell mask; This smoothing
operation is performed to collect and merge any scattered pieces which
belongs to the cytoplasm after the thresholding operation. As a result,
the locatioﬁ where two cells touch is blurred. Hence, the touching cell
separating algorithm can chooSe.points which are upto 3 pixels away from

the actual boundary position. This error can be corrected by
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Figure 17

MINOR AND MAJOR ERRORS IN SEPARATING TOUCHING CELLS

The minor (top) and major (bottom) errors in separating touching cells
is shown. The separating line produced by the algorithm is shown in
black and the actual boundary location is shown in white. This line is
slightly shifted in the case of the minor errors. Major errors includes

those which are not separated or incorrectly separated.
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introducing an algorithm which will search in the neighbourhood of the
coarsely chosen cell separation point, using the intensities of the

image and other criteria, to locate the exact dividing point.

Major errors are due to irregularly shaped (not elliptic) cells or cells
which are mnear platelets or fragmented pieces of cytopiasm. The
algorithm will either split the single cell into pieces or include
fragments which do not belong to the cell into the nucleated cell mask.
Some of these errors can be corrected for by analyzing the features of

these objects.
5.3 Segmentation Accuracies

Another important criterion in analyzing blood cell images is the
accuracy in defining the regions of the cell. The correctness of
segmentation is crucial since the rest of the analysis is based on the
defined regions. The results of the cells analyzed are tabuléted in
Tables 1 to V. Minor cytoplasm errors (Figure 18) are those errors
where small fragments of the cytoplasm of the cell are not included in
the region or too much of othef areas, such as cytoplasm of another cell
and background, are included in the defined cytoplasmic region. Minor
nucleus errors (Figure 19) are those errors where parts of the cytoplasm
are included or parts of the nucleus are not included in the nuclear
region. The major reason for the large number of minor nucleus errors
is the smoothing process which smooths out sharp concavities‘present in

certain types of white blood cells.
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Major cytoplasm errors (Figure 20) arise when cells are irregularly
shaped or when the cytoplasm of some nucleated cells possess a colour
very similar to that of the red blood cells and thus is eliminated from
the cell mask. Major nucleus errors (Figure Zi) are contfibuted to the
uneven stain wuptake in the cells. The cytoplasm of some cells
incorporates too much sﬁain resulting in a larger ségmented nuclear
region. Some nuclei have very dark stained regions and thus the
algorithm assigns the lighter parts of the nucleus to the cytoplasm

area.

The accuracy of the segmentation also depends on how well the cells are
focussed. The focussing range is in the order of five microns at the
chosen microscope setup. As the focus is changed, the transition of
intensity levels at the nucleus and cytoplasm boundary 1is not abrupt
enough and may result in errors in defining the nucleus region. The
cytoplasm of the nucleated cells can also blend into thé rest of the

background causing cytoplasm segmentation errors.

As shown in the Tables I to V, the error rates in segmentation vary from
slide to slide. This is due to the type of cells on the slide as well
as the way the slide was prepared. In slides 9 and 10 which contain a
mixture of the cell types in the blood, more cytoplasm related errors
are present because there is a greater probability of finding cells
which have a cytoplasm colour similar to the red blood cells compared to

the other eight slides. The percentage of correct segmentation ranges
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Figure 18

MINOR CYTOPLASM ERRORS

Examples of minor cytoplasm errors are shown. The algorithms either
include small fragments of the background or other cells into the

cytoplasm or exclude parts of its own cytoplasm.
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Figure 19

MINOR NUCLEUS ERRORS

Examples of minor nucleus errors are shown. The algorithms include

parts of the cyotplasm into the nucleus region.
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Figure 20

MAJOR CYTOPLASM ERRORS

Examples of major cytoplasm errors are shown. The algorithms exclude a

major portion the cytoplasm of the cell from the cytoplasm region.



Figure 21

MAJOR NUCLEUS ERRORS

Examples of major nucleus errors are shown.

major portion of the nucleus.

The algorithms

exclude

9l



Table I

SEGMENTATION ERRORS IN NON-TOUCHING NUCLEATED CELLS.

Slide Correct Minor Minor Major Major Major Total

Number Seg. Nucleus Cyto. Nucleus Cyto. . N &C
1 82 7 2 5 2 2 100
2 93 10 0 0 0 0 103
3 63 2 2 0 2 0 69
4 72 6 0 0 0 0 78
5 68 2 3 11 0 0 84
6 67 2 1 0 0 0 70
7 58 7 1 8 0 0 74
8 59 2 3 2 0 0 66
9 56 1 1 2 5 1 66
10 58 0 4 2 7 0 71

Total 676 39 17 30 16 3 781

Table II

PERCENTAGE ERRORS IN NON-TOUCHING NUCLEATED CELLS.

(Table I represented as percentages)

Slide Correct Minor Minor Correct Major Major Major
Number Seg. Nucleus Cyto. & Minor Nucleus Cyto. N &C
1 82.0 7.0 2.0 91.0 5.0 2.0 2.0
2 90.3 9.7 0 100.0 0 ' 0 0
3 91.3 2.9 2.9 97.1 0 2.9 0
4 92.3 7.7 0 100.0 0 0 0
5 81.0 2.4 3.6 87.0 13.1 0 0
6 95.7 2.8 1.4 100.0 0 0 0
7 78.4 9.4 1.4 89.2 10.8 0 0
8 89.4 3.0 4.6 97.0 3.0 0 0
9 84.8 1.5 1.5 87.8 3.0 7.6 1.5
10 81.7 0 5.6 87.3 2.8 10.0 0

&~

Total 86. 5.0 2.2 93.6 3.8 2.0 0.4



SEGMENTATION. ERRORS IN TOUCHING NUCLEATED CELLS.

Table III
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Slide Correct Minor Minor Major Major Major Total
Number Seg. Nucleus Cyto. Nucleus Cyto. N &C
1 8 0 1 1 0 0 10
2 3 0 0 0 0 0 3
3 35 0 0 1 3 0 39
4 23 0 2 1 0 0 26
5 24 1 0 3 0 0 28
6 29 2 2 0 0 0 33
7 30 5 0 0 0 0 35
8 35 8 3 1 0 0 47
9 31 0 5 1 2 0 39
10 29 0 5 0 3 0 37
Total 247 16 18 8 8 0 297
Table 1V
PERCENTAGE ERRORS IN TOUCHING NUCLEATED CELLS.
(Table III represented as percentages)
/

Slide Correct Minor Minor Correct Major Major Major
Number Seg. Nucleus Cyto. & Minor Nucleus Cyto. N&C
1 80.0 0 10.0 90.0 10.0 0 0
2 100.0 0 0 100.0 0 0 0
3 89.7 0 0 89.7 2.6 7.7 0
4 88.5 0 7.7 96.2 3.8 0 0
5 85.7 3.6 0 89.3 10.7 0 0
6 87.9 6.1 6.1 100.0 0 0 0
7 85.7 14.3 0 100..0 0 0 0
8 74.5 17.0 6.4 87.9 2.1 0 0
9 79.5 0 12.8 92.3 2.6 5.1 0
10 78.4 0 13.5 91.9 0 8.1 0

Total 83.2 5.4 6.1 94.6 2.7 2.7 0



PERCENTAGE SEGMENTATION ERRORS IN NUCLEATED CELLS.

Table V
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(Tables I and III combined and represented as percentages)

Slide Correct Minor Minor Correct Major Major Major
Number Seg. Nucleus Cyto. & Minor Nucleus Cyto. N &C
1 81.8 6.4 2.7 90.9 5.5 1.8 1.8
2 90.6 9.4 0 100.0 0 0 0
3 90.7 1.9 1.9 94.5 0.9 4.6 0
4 91.3 5.8 1.9 99.0 1.0 0 0
3 82.1 2.7 2.7 87.5 12.5 0 0
6 93.2 3.9 2.9 100.0 0 0 0
7 80.7 11.0 1.0 92.7 7.3 0 0
8 83.2 8.8 5.3 97.3 2.7 0 0
9 82.9 0.9 5.7 89.5 2.9 6.4 0.9
10 80.6 0 8.3 88.9 1.9 9.2 0
Total 85.4 5.1 3.2 94.0 3.5 2.2 0.3
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from 80.6% to 93.2%. The range of percentages for minor errors in the
nucleus is 0% to 11.0%, minor error in the cytoplasm is 0% to 8.3%,
major errors in the nucleus is 0% to 12.5%, and major errors in the

cytoplasm is 0% to 1.8%.
5.4 Feature Calculation Accuracies

Features are calculated from the regioné defined by the segmenfation
process. Even if there were no errors in the segmentgtion, there will
be errors introduced in tessellating the image to a square-pixel grid,
and errors introduced in the method used to calculate a feature. To
illustrate these errors, a test image consisting of a circle is
tessellated at different resolutions and the area feature is calculated.
The circle image is generated by assigning all points in the grid which
satisfies the equation to a value of 1 and all other piXeis.to a value
of zero, i.e. |
)2

(x - xc)2 + (y - Ye < square radius of circle (24)

where x, and y, are the coordinates of the centre of the circle and x

and y are the location in the grid.

The area feature is calculated by counting the number of 1’s in the
image. Since the position of a cell can lie anywhere in the image, the
position of the circle is allowed to randomly vary within a pixel

spacing. A plot of the percentage error from the actual value is shown
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Figure 22

FEATURE CALCULATION ACCURACIES:

The percentage errors in calculating the area of a circle using
different number of pixels to represent the circle is shown. It can be

seen that the error decreases as more pixels are used to represent the

circle.
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in Figure 22. It can be seen that if the diameter of the circle spans
more than ten pixels in width, an error of less than two percent in the

area calculation can be obtained.

Although there are errors in the calculation of features, as long as
their distribution for a certain class of cell does not conflict with

other classes, the error will not be significant in classifying the cell

type.
5.5 Cell Classification
The nucleated cells, which were detected and segmented, were classified

by an experienced pathologist into approximately 20 groups. Simple

features were calculated from these cells and are used to determine the

classification of certain types of cells. Some cell types which are
identified based on their colour information, such . as the
polychromatophilic normoblast and basophilic normoblast, can be

separated using the mean intensities of the cytoplasm in the red and
green spectrums (Figure 23). Other types of cells, such as the
lymphoblast and myeloblast, can be separated using the perimeter of the
nucleus and the ratio of the nucleus to cell area features (Figure 24) .
It is evident from plots of‘the calculated features (Figurés 23 and 24)
that clusters of certain classes are present. This verifies that the
methods used to segment the regions and the calculations of the feature
values for these classes are sufficient in determining the correct

classification of some types of nucleated cell. Although more features
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CLUSTER PLOT OF THE PERIMETER AND RATIO OF AREAS

A cluster plot displaying the perimeter of the nucleus and the ratio of
the nucleus to cell area of images of two classes of malignant blood

cells: lymphoblast and myeloblast.
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and multi-dimensional cluster analysis algorithms are required to
separate the different classes of cells, it is unnecessary to add

additional algorithms to fine tune the boundaries of the segmented

regions.
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Chapter 6

Conclusion and Future Suggestions
6.1 Overview

The algorithms to i) capture and calibrate the image, ii) detect and
segment the cells in the image, 1iii) generate features from the
segmented regions, and 1iv) classify the cells based on the feature
values, have been shown to be useful in the analysis of nucleated blood
cells. Techniques of image averaging and background subtraction are
first employed to improve the quality of the input image. The new
method of subtracting spectral images is shown to be very useful in
generating bi-modal grey level histogram of the resulting image where
smoothing and threshold detection techniques are subsequentially
employed to separate the nucleated cells from the rest of the image.
The new metﬁod of using the difference in angles along the boundary of
the binary image to separate touching cells has allowed more cells to be
analyzed from the chosen areas of the slide. The conditional mean
filter has produced images where the nucleus and cytoplasm boundary is
more readily defined. Finally, erosion and dilation operations were
found to adequately fill the holes in the regions and smooth the region
boundaries. Once, the regions are defined, various features can be
calculated. These feature values are then compared to determine if

there are any groupings amongst the different classes of cells.
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It is evident from the survey of cytometry systems that blood cell
analysis is important in medical practice and that all of these systems
have difficulty in classifying abnormal blood cells. Hence, the Cell
Analyzer Imaging System was used as the tool to develop and test the
algorithms discussed in this thesis. The survey of segmentation
algorithms employed to segment blood cells confirmed that no particular
single algorithm will work on all images. However, combining several
different algorithms may perform well; the algoritﬁms‘which work are

those which are tailored to a particular type of images one obtains.
6.2 System Performance

The algorithms perform well in analyzing the types of cellg in a blood
smear. Of the 1078 cells chosen, SZ of the 297 touching cells were not
properly separated due to the odd cell shape. Although the boundary for
6% of these touching cells is slightly misplaced, these cells were still
properly classified based on their feature values. 6% of the 781 single
cells were incorrectly segmented and 7% have slighf errors. Aithough
there are minor errors in the segmentation, the distribution of features
extracted indicates that different classes of blood cells can be

distinguished.
6.3 Future Plans

The algorithms developed in this thesis permit classification of several

types of different white blood cells. To discriminate between more
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classes and subclasses of blood cells, more features, based on the
segmented areas, would have to be developed and incorporated in the
algorithm. Features such as the mean and variance of intensity levels
at different wavelengths and their ratios may be used. Texture features
which give an indication of how intensity levels are varying in a region

are also good features to incorporate.

Once a collection of more than 20 features are calculated for each cell,
a criterion must be developed to interpret the feature wvalues and use it
to classify the cells on the slide (Poon, Jaggi and Palcic, 1987). A
linear stepwise discriminant function analysis should be perform on the
feature values to select the features which would best.separate the
different classes of cells. Experimentation in the removal of those
features, which are computationally expensive, from the analysis should
be investigated to determine its effects on the classification errors.
Algorithms should also be developed to detect and discard cells that are

not segmented properly based on these feature values.

Since the sharpness and contrast of the images are dependent on the
focus, an important feature that must be developéd is autofocus (Poon et
al., 1989). An autofocussing system will produce an objective and
consistent level of focus from one image to the next based on some pre-
determined criteria, whereas a subjective ievel of focus (which might
vary from image to image) would be chosen if human intervention is
involved. A criterion, such as the sum of the absolute intensity

gradients in the image can be used to give an indication of the focus
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level. A high wvalue for the sum will indicate that there is large
variations in intensity (details) in the image which is characteristic
of a focussed image. Thus, the system will determine the optimum focus
level based on the feature values obtained at different focus levels,
and instruct the stepping motors to adjust the focus before the cell

detection and segmentation algorithms are initiated.

Using these additional algorithms, a fully automated blood cell
analyzing system can be developed to classify the blood célls on the
slide. The system should include a motorized x,y stage to scan the
slide and a mechanism and algorithm to automatically focus the cells on
the slide. An automatic slide loader should also be incorporated to
place the slide on the motorized stage and to place those slides which
are suspected of being abnormal in a different place for future manual
observation and verification of the machine classification. This system
would allow hospitals to scan a large number of slides.quickly with

little human interaction, as well as generating a- - standard in

classifying abnormal slides.
6.4 Summary of Author’s Contributions

The Cell Analyzer Imaging System has been built to analyze stained
cells, under the supervision of Branko Palcic and Bruno Jaggi. The
author of this thesis has played a major role in the development of this
system, including hardware, device drivers, and software (Jaggi, Poon

and Palcic, 1986; Poon, Jaggi and Palcic, 1987; Palcic et al., 1988;
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Jaggi et al., 1988; Poon et al., 1989; Poulin et al., 1989; Spadinger,
Poon and Palcic, 1989a; and Spadinger, Poon and Palcic, 1989b). The
development of the system was designed to allow work to be performed as

presented in this thesis.

Using this system, a procedure containing algorithms for automatic
segmentation of nucleated blood cells was developed by the author. This
included the methods of image acquisition, corrections, and subtraction,
and binary mask processing which were modified and adapted into the cell
analysis procedure. New methods, using the difference angles to
separate touching cells and the conditional mean filter to reduce
intensity variations while preserving edges, were introduced and also
incorporated into the procedure. A test data set of over 1000 cells was

used to evaluate the segmentation algorithms.

The main contribution to new knowledge in this field, apart from
introducing several new algorithms, is to combine the hardware and
algorithms into a working system which allows scientists in the medical
field related to leukemia diseases to study this disease in much greater

detail than was possible before.
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Appendix A

The nucleated blood cells are classified into the groups with the
following codes. Objects with codes ‘0’ to ‘9’ and 'a’ to 'c’ belong to
the normal blood cells and objects with codes 'f’, 'g’, And"h’ belong

to the malignant blood cells.

Code Cell Classification

dead cell

ignore (too difficult to classify)
neutophil

band

metamyelocyte

myelocyte

promyelocyte

blast

orthochronic normoblast
polychromatophilic normoblast
basophilic normoblast
pronormoblast

lymphocyte

monocyte

plasma cell

megakaryocyte

macrophage

lymphoblast L1

lymphoblast L2

myeloblast
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Refer to Zucker-Franklin et al. (1988) and Begemann and Rastetter (1979)

for examples and a description of these different cell types.
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