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Abstract 

A comprehensive, one-dimensional, analytical model of the graded-base A l G a A s / G a A s 

heterojunction bipolar transistor is presented, and used to examine the influence of base 

grading on the current gain and the high frequency performance of a device with a 

conventional pyramidal structure. Grading is achieved by varying the A l mole fraction x 

linearly across the base to a value of zero at the base-collector boundary. Recombination 

in the space-charge and neutral regions of the device is modeled by considering Shockley-

Read-Hal l , Auger and radiative processes. Owing to the different dependencies on base 

grading of the currents associated with these recombination mechanisms, the base current 

is minimized, and hence the gain reaches a maximum value, at a moderate level of base 

grading (x = 0.1 at the base-emitter boundary). The maximum improvement in gain, 

with respect to the ungraded base case, is about four-fold. It is shown that the reduction 

in base transit time due to increased base grading leads to a 60 % improvement in fx, in 

the most pronounced case of base grading studied (x = 0.3 at the base-emitter boundary). 

The implications this has for improving / I n a x v ia increases in base width and base doping 

density are also examined. Final ly , comparisons between predictions of the model and 

experimental data from fabricated devices reported in the literature are made. 
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Chapter 1 

Introduction 

1.1 Background 

A Heterojunction Bipolar Transistor (HBT) is a bipolar transistor in which the emitter 

and the base are semiconductors having different bandgaps. It has long been rec

ognized that HBTs have a number of potential advantages over conventional bipolar 

transistors [1,2,3]. The wider-bandgap emitter creates a potential barrier that greatly 

suppresses the reverse injection of charge from base to emitter, resulting in near unity 

injection efficiencies and thus very high gains. Experimental AlGaAs/GaAs HBTs with 

common-emitter current gains in excess of 1000 have been recorded [4,5,6]. Since the 

high injection efficiency is achieved independently of the base and emitter dopings, one 

can make the doping density of the base very high and that of the emitter low to de

crease the base spreading resistance and the emitter-base capacitance, thus improving 

the high frequency properties of the transistor. Early HBTs were developed mostly for 

the Ge-GaAs system [2,7] and, because of the immaturity of the technology, had very 

little practical use. With the emergence of epitaxial growth technologies for III-V com

pounds, development of HBTs has advanced rapidly. In the last ten years, the majority 

of HBTs have been based on the AlGaAs/GaAs system and fabricated using molecular 

beam epitaxy (MBE) or metal-organic chemical vapor deposition (MOCVD). The high 

electron mobility and the large bandgap of GaAs and AlGaAs make HBTs fabricated 

from these materials specially attractive for device applications at high frequency and 

1 
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high temperature. 

The recent improvement in HBT performance has been very rapid. In 1985, a typical 

HBT had a short-circuit, unity current gain, cutoff frequency fx — 11 GHz and a unit 

power gain cutoff frequency / m a x = 7 GHz [8]. Within a few years, fx and / m a x values 

of over 100 GHz were reported [9,10]. Much of the improvement in the high frequency 

operation can be attributed to the use of proton or oxygen implantation in the external 

collector regions of the transistor to reduce the collector capacitance, and to the use of 

base grading, that is, varying the Al composition in the AL-Ga^As base [9],[ll]-[14]. 

Recent investigations into novel collector structures [10] and nonalloyed ohmic contacts 

[15,16] promise even further improvements in the high frequency performance of HBTs. 

These rapid advances in experimental HBT performance increase the need for HBT 

models, particularly ones that are useful for circuit and device design. Many of the 

recent HBT models require extensive computations. These include one-dimensional 

[17,18,19] and two-dimensional [20] numerical models, and one-dimensional Monte 

Carlo simulation [21], all of which are based on carrier transport by drift and diffusion. 

There are also less complex analytical models based on the charge-control relations 

[22,23,24]. The models, however, which are best suited for circuit design or for relating 

I-V characteristics to device and material parameters, are Ebers-Moll models. Some 

very simple Ebers-Moll model formulations have been used to relate the theoretical and 

measured offset voltages and potential energy spikes in AlGaAs/GaAs HBTs [25,26,27]. 

The over simplification of these models, however, limits their usefulness. Only two more 

comprehensive Ebers-Moll model formulations have been reported, one by Grinberg et 

al. [28] and another one by Lundstrom [29]. Except for Lundstrom's Ebers-Moll model, 

none of the above models deal with base grading, which is employed more and more 

frequently in today's HBTs. Even Lundstrom's treatment of base grading was simple 
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since he assumed no base recombination. Furthermore, no detailed analysis of the ef

fect of base grading on HBT performances have been reported. In this thesis, we will 

present a more comprehensive Ebers-Moll model that incorporates base grading and 

various recombination processes, and use this to give a detailed analysis of the effect 

of base grading on the DC current gain and on the high frequency response of n-p-n 

AlGaAs/GaAs HBTs. 

1.2 Advantages of Base G r a d i n g 

As first pointed out by Kroemer [30], the base region of a HBT can be graded to 

introduce a strong quasi-electric field into the base to aid the minority carrier transport, 

and thus improve the base transit time rB. Generally, only a small degree of base 

grading is needed to reduce the base transit time to a small fraction of the total signal 

propagation delay. Hence, a larger drift field in the base obtainable by a greater degree 

of base grading will not further improve the cutoff frequency fr significantly. However, 

a small base transit time can be traded off for a much thicker base region, which would 

have a much lower base resistance. A reduction in the base resistance in turn increases 

the unity power cutoff frequency / m t t X . 

Another advantage of base grading is that the quasi-electric field created by grading 

of the base sweeps the minority carriers rapidly across the base, reducing the amount 

of recombination in the external base region and around the periphery of the emitter. 

Since carrier recombination in these regions is known to cause the emitter size effect 

(degradation of current gain as emitter size is scaled down) [31,32], base grading sup

presses this effect [33]. 
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Figure 1.1: The profile of the Al mole fraction (i.e., x in Al,;Gai_,;As). The four cases 
of base grading are referred to as Xbt = 0.3, 0.2, 0.1, 0, where x^ is the Al mole fraction 
at the base-emitter metallurgical boundary. 

1.3 M a i n Features of the M o d e l 

The main feature of our model is, of course, the inclusion of base grading in an Ebers-

Moll representation of the H B T . The base composition profiles which are considered 

are illustrated in Figure 1.1. Note that the variation of Al mole fraction in the base 

is assumed to be linear, hence the amount of base grading is determined by the Al 

mole fraction in the base at the emitter-base interface. The possibility of grading the 

emitter conduction-band spike is also allowed for. The derivations of the emitter and 

collector currents are based on the thermionic and tunneling current representation 

of Grinberg et al. [28], but extended to incorporate base grading. In computing the 

other currents in the device, particular attention is paid to recombination in both the 

quasi-neutral base region and the emitter-base space charge region, and to generation 
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in the collector-base space charge region. Inclusion of these current components in the 

model allows a useful extension of Lundstrom's [29] Ebers-Moll formulation for HBTs 

to be realized. Three processes of recombination-generation in the space charge and 

quasi-neutral regions of the device are considered, namely: Shockley-Read-Hall, Auger, 

and radiative. Many of the material parameters for A l I G a i _ I A s are taken from the 

device analysis program S E D A N III [34], and Fermi-Dirac statistics are used. 

1.4 Overview of the Thesis 

In Chapter 1, we have briefly described the progress in performance of Heterojunction 

Bipolar Transistors in recent years. The advantages of HBTs, specially those gained 

from base grading, are outlined. The main features of our new model for the H B T are 

also summarized. In Chapter 2, the model is presented in detail. In Chapter 3, current 

gain, I-V characteristics, and the high frequency figures-of-merit computed from our 

model are analyzed and the results are discussed. In Chapter 4, experimental data 

taken from the literature are compared with the theoretical values calculated from our 

model. Finally, conclusions and recommendations are presented in Chapter 5. 



Chapter 2 

M o d e l Development 

2.1 Ideal A b r u p t Heterojunction E n e r g y - B a n d M o d e l 

Two very important parameters used in our analytical model are the built-in potential 

and the depletion-layer width of the emitter-base heterojunction. For an ideal abrupt 

heterojunction, these two parameters are designated respectively by the total energy-

band bending, qV^ = qV^n + qV^, and total depletion-layer width, WT, as shown in 

the energy-band diagram in Figure 2.1. The subscripts 1 and 2 represent, respectively, 

the wide-gap and narrow-gap semiconductors, or, in a n-p-n HBT, the emitter and 

the base. Anderson [7] has shown that for an abrupt heterojunction the depletion-

layer width and capacitance can be obtained by solving Poisson's equation for the step 

junction on either side of the interface, with the full depletion assumption (n = p ~ 0): 

d2V qND 

dx2 ti 

d2V qNA 

for -dn < x < 0 (2.1) 

for 0 < x < dp (2.2) 
dx2 6 2 

For a graded-base or a graded-junction HBT, however, the above treatment is com-

plicated by the Al composition dependency of the dielectric constant. The base side 

depletion-layer width of a typical HBT is very small because of the usually high base 

doping level, thus the change in dielectric constant at the base side due to base grading 

is negligible. In any case, the dielectric constant of Al^Ga^a-As changes, according to 

our calculation, by less than 10% as the Al mole fraction varies from 0.1 to 0.3. For 

6 
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1 1 1 • X 

-<L 0 0% 

WT J 

Figure 2.1: Energy-band diagram of an ideal abrupt n-p heterojunction at thermal 
equilibrium. 

simplicity, the dielectric constants of the emitter and the base are assumed constant in 

the derivation of the depletion-layer width and capacitance. 

Accordingly, integrating Eqs. (2.1) and (2.2) twice and applying the boundary con

ditions that at x = —dn and x — dv the electric field E = —dVjdx = 0 and that at 

x = 0 the potential V is continuous and equal to 0, we obtain 

qND fx2 \ 
V = - ^ - ~ \ — + dnx\ for -dn<x<0 (2.3) 
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for 0 < x < dr, (2.4) 
f2 \ 2 

The parameter VV is defined as the total potential across the p-n heterojunction in 

nonequi l ibr ium, i.e., 

VT = Vbi-Va = VT1 + VT2 

= V(-dn)-V(dp) 

+ q (NDd2

n . NAdV 

2 V «, ; , 2 ' 5 ) 

where VBI is the bui l t - in potential , VA the applied voltage across the p-n junct ion, and 

Vj-i and VT2 are the port ion of Vj supported by semiconductors 1 and 2 respectively. 

Another boundary condit ion is the continuity of electric displacement at x = 0, that is 

ti Ei = t-iE-i. This yields the relationship ND dn = NA dp which can be combined wi th 

E q . (2.5) to give 

2 VT ei €2 NA dn = 

dp = 

q ND (€l ND + e2 NA) 

2 VT ex e2 ND 

1/2 

1/2 

The total depletion-layer w id th is 

WT = dn + d p 

g ^ A ( e 1 i V I , + € 2^A) 

2 V T e i e2 (iVA + Wc)2 1/2 

(2.6) 

(2.7) 

(2.8) 
q NA ND (ei ND + e2 NA) 

The depletion-layer capacitance or junct ion capacitance (per unit area), Cj, can be 

easily derived from the following capacitance formula: 

dn dv . 
— + — 2.9 
ei e2 

C[ and C 2 are the depletion-layer capacitances of semiconductors 1 and 2 respectively. 

Subst i tut ing Eqs. (2.6) and (2.7) into E q . (2.9) yields 

— - — + — 
Cj C[ C 2 

qet e2 NA ND 

-,1/2 

2VT ND + e2 NA) 
(2.10) 



Chapter 2. Model Development 9 

Emitter-base junction grading and, to a lesser extent, base grading cause the E-B 

junction to behave more like a GaAs homojunction. Consequently the emitter-base 

junction built-in potential should decrease as argued by Hayes et al. [35] However, it 

is unclear how different types of grading affect the junction built-in potential. For sim

plicity we derive the built-in potential for the ideal abrupt heterojunction and assume 

that it is valid also for the cases of junction grading and base grading. From Figure 2.1, 

the built-in potential is equal to 

qVht = Et2 + A E c - q (V„ + Vp) (2.11) 

where Etz is the energy bandgap of the narrow-gap semiconductor, AEc = X2 — Xi> '-e-i 

the difference of electron affinities, and Vn and Vp are the separations of the electron and 

hole quasi-Fermi levels from, respectively, the conduction band in the emitter and the 

valence band in the base. and Vp are related to the electron and hole equilibrium 

concentrations and effective densities of states1 by [36, p. 27] 

qVn = fcrin(^) (2.12) 

qVp = kT ln (^y^j (2.13) 

where n n o and ppo are the equilibrium majority carrier concentrations in the emitter and 

base respectively. At equilibrium the intrinsic carrier concentration of semiconductor 2 

is given by nf2 = Nc2 A V 2 e*p(—Eg 2/kT), hence 

qVu , , r ^ ^ ) + ( X j . , l ) + t r i n ( S _ ) 

_ ^ 1 ^ T ( + «• - ( £ ) 

'In order to incorporate Fermi-Dirac statistics into these formulations, a "new1' effective density of 
states for conduction band and valence band should be used instead; see Subsection 2.6.1 for more 
details. 
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Note that for a homojunction, Nc2 = Nci a n d X2 = Xi> and Eq. (2.14) reduces to the 

usual expression for a homojunction. For the graded-base HBT, X2, ̂ 2) and NC2 are 

calculated from the parameters of the base at the emitter-base interface. 

2.2 Thermionic-Diffusion M o d e l 

In this section, we will derive the basic static Ebers-Moll current-voltage relationship for 

the HBT. Our model is based on the "Thermionic-Field-Diffusion" model of Grinberg 

et al. [28] but extended to include surface recombination velocities of the contacts, 

base grading, and a more accurate formulation of space charge region recombination-

generation currents. The effects due to series resistance, high-level injection and hot-

electrons are neglected. 

Following the traditional practice in Ebers-Moll formulation, we derive separately 

the hole currents at the two junctions, the electron diffusion current in the base, and the 

space charge region recombination-generation currents. Emitter-base junction grading 

and field-emission tunneling are described in later sections. Without loss of generality, 

only n-p-n HBTs are considered, so that N&, for example, refers implicitly to the doping 

concentration in the base. 

2.2.1 Electron and Hole Thermionic-Emiss ion Currents at the E - B Junc

tion 

« 

The carrier transport across the abrupt emitter-base junction can be treated with a 

simple thermionic-emission model. Consider the n-p emitter-base heterojunction shown 

in Figure 2.2. Note that the conduction band in the base has a pronounced maximum 

near the emitter-base junction due to grading of the base. It is assumed thai the 

amount of conduction band lowering at the depletion edge x — 0 is negligible so that 
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Figure 2.2: Energy-band diagram of the n-p emitter-base heterojunction under forward 
bias. 

the potential drop across the base depletion region, Vp*, remains the same as if there 

were no base grading. The net electron thermionic-emission current density injected 

from the emitter to the base can be described as the difference of two oppositing electron 

fluxes over the conduction-band spike [29]: 

Jm = -q vTnB [n(xE) e-«v^kT - n(0) e~^kT} (2.15) 

where qVTi and AEn are the electron potential energy barriers shown in Figure 2.2, 

n(xE) and n(0) are the electron carrier concentrations at the depletion edges, and v T l l E , 

the average i-direction electron thermal velocity in the emitter, is given by 

kT 
(2-16) 

2nmnE 

with m*nE being the electron effective mass in the emitter. 
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Assuming low-level injection, the electron carrier concentration at x = xE is ap

proximated by 

n{xE) c± n{xE) = nB0 exp[{qVhi - AEc)/kT] (2.17) 

The bar indicates the equi l ibr ium condition and nB0 is the equi l ibr ium electron con

centrat ion in the base at i = 0. Referring to Figure 2.2, one can write 

qVTi = q{Vbi-VBE-VT2) 

= q{Vbi-VBE)- AEC + AEn (2.18) 

where VBE is the applied potential across the emitter-base junct ion . A l so by defining 

n(0) = rJB0 + n(0) (2.19) 

where denotes excess carrier concentration, E q . (2.15) becomes 

JT„ = - q v T n E e - * E " ? k T [ n B o e ^ - A E ° » k T e ^ ^ 

= - 9 v T n J s e - A J S - / t r [ W B 0 ( e ' v " / t r - l ) - M 0 ) ] (2-20) 

Not al l of the electron carriers transported across the heterojunction is due to 

thermionic-emission; a port ion of it is due to field-emission tunneling through the 

conduction-band spike. This effect can be accounted for by replacing vTnE w i th vTnB In 

in E q . (2.15), 7„ being the tunneling factor [28]. The derivation of 7„ , which is always 

greater than or equal to 1, is described in another section. Hence, E q . (2.20) becomes 

Jm = -q vTnB 7» e-*EnlkT [nBQ (e<v°°'kT - 1) - n(0)] (2.21) 

The hole thermionic-emission current injected from the base to the emitter can be 

derived in a similar fashion except that no tunneling factor is required. The net hole 

flux across the emitter-base junction is given by 

JTP = q vTrS (p(0) e-<v™lkT - p(xE) e^'kT\ (2.22) 
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where qVT2 and AEP are the hole potential energy barriers defined in Figure 2.2, p(0) 

and P(XE) are the hole carrier concentrations at the depletion edges, and 

VTpE — (2.23) 
\ |27rm; E 

is the average x-direction hole thermal velocity in the emitter, with m*pE being the hole 

effective mass in the emitter. Using the following equations 

p(0) ^ p{0) = p-Eexp[{qVbi-rAEv)/kT} (2.24) 

AEP = qVT1 + AEv 

= q (V« - VBE - VT7) + AEV (2.25) 

P{XE) = PE + PM (2.26) 

where pE is the equilibrium hole concentration in the emitter, Eq. (2.22) becomes 

JTP = q v T p B e ^ k T W E e { q W E v ) / k T e ^ ^ ^ 

= q vTpB e*E>?kT \pE ( c < W * r _ 1 } _ p { x E ) ] ( 2 2 7 ) 

2.2.2 Emit ter and Collector Hole Currents 

Hole carrier transport across the emitter is governed by the diffusion process and the 

proper boundary conditions at the emitter contact and depletion edge. For simplicity, 

in deriving the hole diffusion current in the emitter we neglect the effect of grading of 

the emitter junction and contact. 

Under the static, time-independent, field-free condition, the continuity equation 

1 dJ„(x) p(x) 
2.28 

q dx T

PE 
and the equation for the hole diffusion current in the emitter 

Jp(x) = - q D p E ^ - (2.29) 
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combine to give the differential equation 

d2p{x) p(x) 
dx2 

LpE 
= o (2.30) 

where p(x) is the excess hole concentration at position x in the emitter, and LpE — 

\jDPE TpE is the hole minor i ty carrier diffusion length, DPE and rpE being the minori ty 

carrier diffusion coefficient and lifetime, respectively, in the emitter. 

The general solution of E q . (2.30) is 

I x \ I x 
p(x) = ki exp --— ) + k2 exp j , . - r . j , (2-31) 

\ ^pE) \ LipE J 

which is substituted into E q . (2.29) to give the following equations for the hole diffu

sion current density evaluated at the emitter boundaries x — xE and i = WEE (see 

Figure 2.2): 

MXE) = 

JP(WEE) = 

qDpE 
LpE s'mh(WE/LpE) 

<lDpE 

p(xE) cosh 
LpE ) 

P(XE) - P{WEE) cosh 

P{WEE) 

'WEX 
jpE , 

(2.32) 

(2.33) 
L p E s\nh(WE/LPE) [ 

The approximat ion WEE — xE ~ WE was made in obtaining Eqs . (2.32) and (2.33). 

Tak ing the surface recombination velocity for minori ty carriers, SpE, to be finite, the 

boundary condi t ion at the emitter contact is 

JP{WEE) = qSpEp{WEE) (2.34) 

Equa t ing E q . (2.34) to E q . (2.33) gives an expression for p{WEE) which can be sub-
* 

st i tued into E q . (2.32) so that Jp{xE) can be expressed as a function of p(xE) only. The 

hole thermionic-emission current density given by E q . (2.27) should be equal to this 

expression at Jp{xE). After el iminating the hole excess carrier concentration p{xE), the 

result ing hole current density at x — xE becomes 

(2.35) 
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Figure 2.3: Energy-band diagram of the p-n base-collector junct ion under reverse bias, 

where 

q DpE pE 

JpE — 
LpE SpE/DPE + ianh(WE/LpE) 

LpE swh{WE/LpE) [LpE SPEIDPE + 1/ tanh{WE/LpE) 

j? * , JPE ( A E P \ u(] 

RE = l + F—— exp ( — — f cosh -
qvTpEpE \ kT J \ , 

and p~E = n 2
E/NDE, niE and NDE being, respectively, the intrinsic carrier concentration 

and the N- type doping concentration in the emitter. 

The collector-base junct ion, shown in Figure 2.3, is essentially a G a A s homojunc

t ion , so it is reasonable to assume that the collector hole current is governed by a 

simple diffusion process. As before, we begin w i th the continuity equation and the 

hole diffusion current equation in the collector (Eqs. (2.28) and (2.29)), and arrive at 

the following equations for the hole diffusion current density evaluated at the collector 
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depletion edge x — xc and contact boundary x = Wcc, assuming Wcc — xc — Wc: 

JPixc) = 

JP(Wcc) = 

qDpc 
Lpc smh(Wc/Lpc) 

qDpc 
Lpc sinh(W c/Lpc) 

p(xc) cosh 
Wr 

JPC , 
- P(WCC) 

p{xc) - p{WCc) cosh 
rV, c 

(2.36) 

(2.37) 

where p(x) is the excess carrier concentration (holes) in the collector evaluated at 

position x, and Lpc = yDpC TPC is the minority carrier diffusion length in the collector, 

Dpc and rpC being the minority carrier diffusion coefficient and lifetime, respectively, 

in the collector. The boundary conditions are 

P{xc) = Fc ( « ' W f c r - 1) 
Jp(WCC) = <jSpcp(Wcc) 

(2.38) 

(2.39) 

where pc — n2

c /NDC is the equilibrium hole concentration in the collector, n,o and N^c 

being, repectively, the intrinsic carrier concentration and N-type doping concentration 

in the collector, and SPE is the hole surface recombination velocity at the collector 

contact. Eqs. (2.36) to (2.39) are combined to eliminate the excess carrier concentration 

variables. The resulting collector hole current density evaluated at x = XQ is 

Jp(xc) = JPc {eqVBclkT ~ 1) cosh (2.40) 

where 

IpC 
9 Dpc Pc 

yLpC sinh(W c/L p C) 
Lpc Spc/Dpc + tanh(W c /L p C ) 

LpC Spc/DpC + l / t anh(rV c /L p C - ) . 

Eqs. (2.35) and (2.40) represent the hole current components of the total DC emitter 

and collector currents (in the case of no space charge recombination and generation). 

To find the electron current components, one needs to solve for the electron diffusion 

current in the graded b described in the next subsection. 
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2 . 2 . 3 Electron Diffusion Current in the Base 

In the base of a good homostructure transistor, the hole current is small compared to 

the electron current. Kroemer [37] has argued that this is an even better approximation 

for HBTs because of their typically higher current gains. In general, the electron and 

hole current densities across the base region of an n-p-n transistor are related to the 

two quasi-Fermi levels <pn and 4>p for electrons and holes by 

Jn = -qpnnV<t>n (2.41) 

JP = -<7MPpV0 p (2.42) 

where pn and pp are the electron and hole drift mobilities in the base, and n and p are 

the base electron and hole carrier concentrations. Based on Kroemer's approximation 

that V^p ~ 0, Eq. (2.41) can be rewritten as 

Jn = qpnnV{<j>p-(j>n) (2.43) 

For the nondegenerate case, the pn product is given by 

(2.44) pn = n] exp 

where n, is the intrinsic carrier concentration in the base and is position-dependent due 

to base grading. Taking the gradient of Eq. (2.44) and substituting it into Eq. (2.43), 

we obtain the following expression for the base electron current density [37]: 

NA dx\ n ? ( i ) / 

Here, we have assumed that p ~ NA in the P-type heavily doped base, and used 

the nondegenerate Einstein relation D„B — kT pn/q. The electron diffusion coefficient 

in the base, DNB, is assumed constant at a value appropriate to material of the Al mole 
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fraction as exists in the center of the base. The base grading is taken to be linear, so 

the bandgap is given by 
AE 

Eg{x) = Eg0-—±x (2.46) 

where Eg0 is the bandgap at x = 0, that is, at the emitter-base depletion edge on the 

base side (see Figure 2.3), XB is the total base width, and AEg is the difference in 

Eg between the values at the two metallurgical junctions which define the base. The 

intrinsic carrier concentration can be expressed as 

n]{x) = Nc{x)Nv{x)e- Eo^l k T  

= ae f x (2.47) 

where 

n*0Nc{x)Nv{x) 
a = Nco Nvo 

f " A 

qAEg 

kT XB 

In the above equation, Nc and Ny denote the effective densities of states in the con

duction and valence band respectively, and the subscript zero refers to conditions at 

x — 0. It is safe to assume that "a" changes much more slowly than e-̂ 1, or more 

precisely, |± ^ | <C | / | , thus when Eq. (2.47) is substituted into Eq. (2.45), the latter 

becomes 

J„(x) = qDnBe
f x^{ne- f x) 

ax 

= qDnB l ^ - f n ^ j (2.48) 

The electron carrier concentration can be written as the sum of the excess and 

equilibrium electron carrier concentrations: 

n(x) = h(x) + nB{x) 
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= FTW + ̂ E " (2-49) 

When E q . (2.49) is substituted into E q . (2.48), the latter becomes 

Jn{x) = qDnB ( ^ - f b j ( 2- 5 0) 

which , when substituted into the following continuity equation for minori ty carrier 

electrons 
1 dJn(x) h[x) p-i- ^ = o (2.51) 
q dx rnB 

yields 
d 2h , dh h , 

i*~!T*-WB

=0 (2-52) 

where the electron minori ty carrier diffusion length LnB = \/DnB TnB, TnB being the 

minor i ty carrier lifetime in the base evaluated at the center of the base region. The 

solution for h(x) in the second order differential equation (2.52) is 

h{x) = C1e
r i t + C2e

r a X (2.53) 

where 

r x = 5 + t r2 = s — t 

f , y/P L 2

nB + 4 
s = - t = 

2 2L nB 
_ h{W) - n(0) e r* w _ h{0) e r i W - h{W) 

In the above, x = 0 and x = W mark the two boundaries of the quasi-neutral base as 

shown in Figure 2.3. Substi tut ing E q . (2.53) into E q . (2.48) produces 

Jn{x) = qDnB \{rx - f) d e r i * + (r 2 - / ) C2 e
r* x] (2.54) 
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The emitter electron current density is simply Jn(0) and the collector electron cur

rent density is Jn(W). To evaluate these two current densities exactly, it is necessary 

to obtain expressions for n(0) and n(W). The latter is simply given by 

h(W) = nBW ( e ' W * r _ ̂  ( 2 > 5 5) 

where nBW is the electron equilibrium concentration in the base at x = W. For n(0) one 

must match J„(0) with the electron thermionic-emission current density of Eq. (2.21) 

which is rewritten here as 

JTn = -zn \nB0 (e* v™/ k T - 1) - n(0)| (2.56) 

where 

zn - qvTnE in e "i 

When evaluated at x — 0, Eq. (2.54) reduces to 

Jn{0)=yn[2th(W)-anh{0)} (2.57) 

where 

qDnB 

"n = (rx-f)e r* W -(r2-f)e n W 

Equating the current densities of Eqs. (2.56) and (2.57) and solving for h(0) gives 

m =*y.W)+ -1) (2M) 

zn + anyn 

Substituting Eqs. (2.55) and (2.58) into Eq. (2.57) yields the following expression for 

the emitter electron current density: 

UO) = - ( ""y" / ) nm (e^kT - 1) - —— TxBw (e*V^kT - 1) \1 + anyn/znJ ar, 
(2.59) 
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Figure 2.4: Schematic of charge flows in a heterojunction bipolar transistor. 

Similarly the collector electron current density can be found by evaluating Eq. (2.54) 

at x = W: 

Jn{W) = yn [bn h(W) - 2t e u w n(0)] (2.60) 

where 

k = ( r ! - / ) e ' ' * - ( » • , - / ) f w 

Finally, replacing h(W) and n(0) in Eq. (2.60) by their known equivalents in Eqs. (2.55) 

and (2.58) leads to 

Jn{W) = -
1 + a n yn/zni 

\nB0(e" v^ k T-l) 
6„ + ( a n bn-4t 2 e 2> w)yn/zn 

2t e 2fW nBW{z'v*clkT -1)J (2.61) 
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The main electron and hole current components formulated so far are shown schem

atically in Figure 2.4. What we call the emitter and collector electron current densities, 

Jn(0) and JN{W), are actually electron current densities entering the quasi-neutral base 

and the base-collector depletion region respectively. JP{XE) is the hole current density 

back-injected into the quasi-neutral emitter and —Jp{xc) is the hole current density 

entering the base-collector depletion region from the collector. The latter current den

sity is shown with a negative sign because in our derivation the positive sense is from 

the P material to the N material. The term |J„(0) — Jn(W)| represents the part of 

the base current density due to recombination in the quasi-neutral base. JR is the re

combination current density in the base-emitter depletion region for the forward-biased 

base-emitter junction and JQ is the space charge region generation current density for 

the reverse-biased collector-base junction. The total DC emitter and collector current 

densities, Jg and Jc, are drawn with arrows indicating the direction of charge flow 

under normal operating conditions. From Figure 2.4 we may write 

Substituting Eqs. (2.35), (2.40), (2.59) and (2.61) into Eqs. (2.62) and (2.63) leads to 

the following Ebers-Moll expressions: 

JE = -Jn(0) + Jp{xE) + JR 

(2.62) 

Jc = -Jn{W) - Jp{xc) + JG 
(2.63) 

Jc = A 2 1 ( e ^ k T -

1) + An (e«
v^/* T -

1) + A22 (e" v^ k T -

1) + JR 

1) + JG 

(2.64) 

(2.65) 

where 
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122 
bn + (anbn-4t 2e 2° w)yn/zn 

Vn nBW — JpC cosh 
•>pC, 1 + O n Vn/Zn 

All the symbols used have been defined earlier. The equilibrium carrier concentrations 

nB0 and nBw can be calculated from the intrinsic carrier concentration and the base 

doping density: nB0 — U2

Q/NA, ™ B W = n2

W/NA. The base current density is simply the 

difference of the emitter and collector current densities, i.e., JE — Jc-

It is instructional to show that the Ebers-Moll equations (2.64) and (2.65) do reduce 

to those predicted by the conventional diffusion model for the case of a simple homo-

junction transistor. This would require that the electron energy barrier AEn < 0 and 

l A ^ I » kT (see Figure 2.2). For the hole energy barrier, the inequality AEP » kT 

should still apply for homojunction transistors. Assuming also that the contacts are 

perfectly ohmic, i.e., SPE — Spc —• oo, we would have the simplied expressions 

9 DpE VE 
RE = l J, 

zn —> OO Jpc 

p E LpE smh{WE/LpE) 

9 Dpc Pc 
LpC s inh (Wc /LpC) 

Of course, no compositional grading is possible with a homostructure transistor so 

many of the earlier expressions are also simplified: / = 0, nB0 = nBw = nB, s = 0, 

t = l/LnB, 

2 i . ( w \ , <lDnB an = bn = -— cosh (-—) and yn 

L>nB \ ^nB / nBJ * 2 smh{W/LnB) 

Inserting these equations into the Ebers-Moll coefficients of Eqs. (2.64) and (2.65) and 

making the reasonable assumption that WE » LpE and Wc ^> Lpc, the emitter and 

collector current densities reduce to 

, qDpEpE 

JE = 
q DnB nB / W 

- coth 
LnB VL„£) 

9 DnB n B 

qVBE/kT 

LnB smh.{W[LnB) 

LpE 

1) 

(2.66) 
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Jc = 
q DnB nB ,qVBB/kT 

1) LnB s'mh(W/LnB) 

qDnBnB 

— coth 
q DpC pc 

Lpc 
1) + JG (2.67) 

which are the normal diffusion-model Ebers-Moll current density equations [38, p. 260). 

2.3 Emitter-Base Junction Grading 

The presence of the conduction-band spike in the emitter-base junction of an HBT 

is usually regarded as an undesirable feature. For example, it is known that such an 

electron-blocking barrier can cause a substantial drop of emitter injection efficiency 

[22]. Another disadvantage is that the potential notch accompanying the barrier at 

the base side tends to confine injected electrons and therefore enhances recombination 

losses [3]. The conduction-band spike also creates a high emitter-base turn-on voltage 

in HBTs [3]. 

In light of these drawbacks, it makes sense to utilize some form of grading of Al 

composition in the emitter-base junction to reduce the conduction-band spike. In fact, 

a number of modeling schemes for emitter grading have been published already. Many 

of these are simple models in which the expressions for the electron and hole currents 

are slightly modified according to the amount of emitter grading [28,39,40]. Cheung et 

al. [41] developed a simplified version of the generalized model of Oldham and Milnes 

[42] and used it to calculate the conduction-band profiles of a p-n heterojunction for 

different grading widths. In still other models, extensive numerical simulations were 

employed [43,44] to investigate the effects of emitter grading on HBT characteristics. 

It has been found that, in the case of graded emitters, not only were the current gain 

increased and the turn-on voltage reduced but the cutoff frequency, fr, was also higher. 

Hayes et al. [35], using the model of Cheung et al. [41], also found that emitter-graded 
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Figure 2.5: Energy-band diagram of the graded emitter-base junction. 

H B T s exhibited lower offset voltages (possibly due to lower emitter turn-on voltages). 

On the other hand, the conduction-band barrier may act as a "ballistic launching 

ramp", injecting into the base electrons with a high kinetic energy [3,39,45]. Provided 

that most of the electrons remain in the lower conduction-band valley, the average 

electron will speed across the base with a very high velocity. However, the recent trend 

of experimental HBTs [46,47,48] appears to lean towards the use of emitter grading. 

In our model, we follow the simple linear grading scheme of Grinberg et al. [28]. 

The basic idea is to modify the electron energy barrier parameter AEn which appears 

in Eq. (2.21). Consider the band diagram of a graded emitter-base junction shown in 

Figure 2.5. The grading is linear and it applies only to the emitter conduction band. 

Since the valence band is assumed to be unaffected by grading, the hole energy barrier 
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AEP can be simply expressed as 

AEP = qVT1 + AEV (2.68) 

where VJI is the potential drop across the emitter depletion layer of a non-graded 

junction and AEy is the valence-band energy difference of the emitter and base. 

If Wg is the emitter grading width, then the amount of conduction band lowering 

can be found by evaluating Eq. (2.3) at x = —Wg: 

qvT1 = — — [-f-yygdn\ 

q 2ND 

[{dn - W,)> - dl] (2.69) 
26! 

Since gV^ = qVT1 - qV^ (see Figure 2.5) and gVT1 = q 2NDd
2

n/2e1 (from Eq. (2.5)), 

we have 

qv^ = K - w*)* (2-7°) 

The electron energy barrier parameter can be written as 

AEn = AEc-qVT2-qV^ 

= AEC - {qVT - gVT1) - qV% 

= AEc-qVr + qV^ (2.71) 

where qVT is equal to q {Vbi — VBE). Note that Eq. (2.70) does not apply when the 

grading width is greater than the depletion width dn. If Wg > dn, the barrier qVjr 

* 

should become zero. In general then we can write 

AEn = AEc + q (VBE - Vbi + VLX) (2.72) 

where £J±{dn-Wgy for W,<dn 

0 for W, > dn 
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E = Ex i 

E 

E = E' 
I qVn2 

AEn 

f ' <tVBE qVnX

 X E 

Efp 

EMITTER B A S E 

Figure 2.6: Direction of thermionic-emission and tunneling current components in the 
conduction band of the emitter-base junction. 

Notice that AEn may become negative under the condition of small forward bias or 

small AEc- In this case, the electron current is governed more strongly by the diffusion 

process as in a conventional homojunction transistor. When AEc < 0 no conduction-

band spike exists. That means V"^ should not be reduced by any junction grading; in 

this case, VTi replaces VT1 in Eq. (2.72) or alternately Wg is set to zero. 

2.4 Emit ter -Base Tunnel ing Current 

In Subsection 2.2.1 we adopted a tunneling factor 7„ in the electron thermionic-emission 

current equation to account for the tunneling of electrons through the conduction-

band spike. To see how this formulation is justified, consider the energy-band diagram 

for the conduction band shown in Figure 2.6. The two opposing thermionic-emission 

current densities are represented by Jxi and Jxi, and the two opposing field-emission 
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(tunneling) current densities are represented by Jf i and JE2. If TT and JF are the 

net thermionic- and field-emission current densities, respectively, then the net electron 

current density across the abrupt junction is 

TOT = JT + JF 

(2.73) 

Comparing this equation with Eqs. (2.20) and (2.21), we see that the tunneling factor 

is given by 

In = 1 + T- (2-74) 

Following Chang and Sze [49], the thermionic-emission current density injected from 

the base to the emitter, JT2, is obtained by integrating, in the base, over the range of 

energies above the conduction-band spike: 

JTI — 
A\ T 

k 

A'2T 

AEn + qVn2 + £ 
f exj 
Jo 

( qVn2\ ( AEn\ 
e X V\-kT)  e X P\-kf-)  k T  

(2.75) 

where A\ is the effective Richardson constant in the base. Similarly the thermionic-

emission current density injected from the emitter to the base is given by 

JTI — 
A\T 

k 

A\T 

qVT1 + <7V n l + ( 
d£ j exj 

(2.76) 

where A\ is the effective Richardson constant in the emitter. 

Incidently, since the electron densities at the depletion edges are given by n(0) = 

NC2 exp(-c/Vr
n2//(:r) and n{xE) = NCi exp(-qVnl/kT), and the effective Richardson 

constants are related to the thermal velocities by A*2 T
2 — qNC2vTnE and A\T 2 = 
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qNCiVTnB [36, p. 261], the thermionic-emission current densities given by Eqs. (2.75) 

and (2.76) reduce to 

JT2 = qn(0) vTnB exp ^ — 

JTI = qn{xE) vTnE exp I — — 

(2.77) 

(2.78) 

These two expressions were used earlier to obtain the net electron thermionic-emission 

current density given by Eq. (2.15). 

Using Eqs. (2.75) and (2.76) instead, the net thermionic-emission current density is 

Jr JTi — JT2 

A\T 
k 

A\T 

(kT) |exp 

(kT) exp 

g ( V n +Vm) 
kT 

g ( V r i + Vni) 

kT 

— /3 exp ̂ — 

1 — (3 exp I — 

AEn + qVnj 
kT 

kT 
(2.79) 

where j3 = A*JA\. 

For the field-emission component, the forward tunneling current density through 

the barrier, Jpi, is proportional to the barrier transparency D(E) multiplied by the 

occupation probability in the emitter and the vacancy probability in the base [49], i.e., 

A\T fEn A I T r^ri 
JFI = -J- D{E)h{E)\\- f2{E)\dE 

K J E' 

(2.80) 

where f\{E) and f7{E) are the Fermi-Dirac distribution functions for the emitter and 

base respectively, ETI = qVxi, and E* — qVxi — AEc- Similarly, the backward tunneling 

current density is given by 

A\T r Er, 
JF2 = - J - / " D[E) f3(E) [1 - h[E)]dE 

k JE* 

The net field-emission current density is thus 

(2.81) 

JF = JFl — JF2 
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= ^jff^D(E)\f1(E)-0f2(E)}dE 

A\T r En 

l + exp[{E + qVnl)/kT] 

0 dE (2.82) 
l + exp\{E + qVn2)/kT} 

In general, E + qVn2 » kT and E + qVnl » fcT if the emitter is not too heavily doped; 

therefore one may apply the Boltzmann approximation to Eq. (2.82): 

E + qVnl\ a ( E + qVn2 A* T r^ri r / 
J* = -TL D { E ) h ( - kT 

A'iT f E r i nttr\ ( E + VVm\ 

) - 0 exp (-

- 0 exp ^-

kT 

kT . 

01 dE 

dE (2.83) 
IE- - \ kT 

Substituting Eqs. (2.83) and (2.79) into Eq. (2.74), the tunneling factor becomes 

JE

E T lD(E) e x p ( - ^ u ) dE  

l n  1 + kTexp\-q{VT1 + Vnl)/kT) 

exp fEn / E\ 

For a graded junction, one must replace qVn by qVT1, the latter is denned in 

Section 2.3. Furthermore, two cases are possible: (i) for small and moderate junction 

grading, i.e., En > E*, the integration limits appeared in Eq. (2.84) are ETI = qV^i 

and E* = qVn — AEc\ (ii) for large junction grading, i.e., ETI < E*, no tunneling is 

possible, hence in = 1 (or set ETI — E*). It may also be possible that the potential 

notch (see Figure 2.6) falls below the energy level of the conduction band in the quasi-

neutral emitter, i.e., E* < 0. In this case, we set E* = 0 because no tunneling can 

occur below the reference energy level E = 0. 

In order to solve for the integral in Eq. (2.84) one needs to know the equation for the 

barrier transparency D{E). Although Grinberg et al. [28] had already published their 

result for D(E) (derivation not given), our own derivation shows a slightly different 
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Figure 2.7: Tunneling through the conduction-band spike of the abrupt emitter-base 
junction. 

expression for D{E) in the case of a graded emitter junction. In the following subsection 

we will show in detail the derivation of the barrier transparency based on the work of 

Stratton and Padovani [50,51,52]. 

2.4.1 Barr i er Transparency 

A. Abrupt Junction 

Consider first the abrupt heterojunction shown in Figure 2.7. In general, the expres

sion for barrier transparency for an arbitrary potential barrier shape is given by [50] 

where a — 2 y/2m{/h, ml being the effective electron mass in the emitter and h being 

the reduced Planck constant. The barrier potential energy <f>(x) is given by 

(2.85) 

4>{x) (dn - X ) 2 (2.86) 
2ci 
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From Figure 2.7 we see that the tunneling electrons leave the barrier at x = 0 but 

enter it at some arbitrary position x 2 in the emitter depending on the energy of the 

electrons. Thus the lower integration limit in' Eq. (2.85) is zero. 

Before solving for the integral in Eq. (2.85), it is useful to know the solution of the 

following integral: 

jja{dn-x) 2-b\^ 2dx = ^ = {-y/i~{dn-x)^/a(dn-x) 2-b + 

b ln y/a (4 - x) + ^/a{dn-x) 2-b] ) ' (2.87) 
J J o 

Comparing the integrals in Eqs. (2.85) and (2.87), we see that a = q 2 Nu/2e-l and b = E. 

Also we know that an arbitrary tunneling energy level is related to x 2 by E = a(dn — x 2 ) 2 

and that the energy barrier is given by ETI = adn. Therefore Eq. (2.85) becomes 

- \nD{E) = | [ E \n^E + y/Er~i\/ET1 -E-E ln \[E~T~\ + \J En - E j 
(2.88) 

Defining an energy 
2q ND hq / ND 

a f 2ti 2 V ci m i 
and a dimensionless variable X = E/ETI, the barrier transparency given by Eq. (2.88) 
can be rewritten as 

D(E) = D{X) = exp ( En 

Eoo 
X - X In 

. Vx t ]) (2.89) 

B. Graded Junction 

For a linearly graded junction such as the one shown in Figure 2.8, the barrier may 

be divided into two parts: a normal potential barrier between x = dn and x = Wg, and 
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Figure 2.8: Tunneling through the conduction-band spike of the graded emitter-base 
junction. 

a graded barrier between x = Wg and x = 0. To solve for the barrier transparency, the 

integral in Eq. (2.85) must be integrated from x = z 3 to x — x2. The integration is done 

separately for the two divided barriers. For the first potential barrier (i.e., barrier I in 

Figure 2.8) we have the integral 

Again using Eq. (2.87) and noting the relationships a = g 2 Np/2ei , b = E, E = 

a (dn — x 2 ) 2 , and ETI = a(dn — Wg)7, the above integral is readily solved. The solution 

turns out to be exactly the same as Eq. (2.89), i.e., 

For the graded barrier (i.e., barrier II), the barrier potential energy is given by 

(2.90) 
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— (dn-x) + — X - ± E C (2.91) 

The integral in Eq. (2.85), integrating from x = £ 3 to Wg, is 

J X 

q ND , , AJ^C 
* 3 I 

1/2 

dx 

J X X3 
» , / . * ^ l - 6 2d 

where 

2]j q2ND Wg 

dn 

1/2 

dx (2.92) 

Eq. (2.92) can be changed to a form similar to that of Eq. (2.87) by rewriting the 

integrand as \(dn - y)2 - 6]1 / 2. This leads to -dy = yjq2 ND/2e1 dx, and Eq. (2.92) 

becomes 

} (dn -y)+ yj{dn - y ) 2 - b 
x=x3 

x=W„ 
(2.93) 

The above integral can be solved with the help of Eq. (2.87). Noting also that 

' 1 a / 2 C l 

2 V q2 ND oo 

V K - y ) 2 - 6 | x=x3 
y/E-E - 0 

V(d„ -y)2-b = y/Er^E 

Eq. (2.93) reduces to 

- i - (ft ln Vb + \ j E T l - E + b yjETl - E - b ln L/£ri - E + b + J ETi - E 

In W . ' + 1 + W7 . _ " > (2.94 
E-

E 
VT^XyJl -X + b/ETl E- b/E b/E Tl 

j (2.94 
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where X — E / ETI- The term is a function of X : 
E 

+ 
€tAEl 

En ETi 2NDq
2WgETl ETl 

2 / . \ 2 

AEc (dn - 1 

dn 

1 /AEC 

2 V jE'n 

( i r ) ' 
- 1 

- 1 

(2.95) 

In deriving E q . (2.95) we have used the relationship ETI — q 2 ND {dn — W /

5 ) 2 / 2 e 1 . 

To obtain the barrier transparency for a graded junct ion, we simply sum the solu

tions of the two integrals in E q . (2.90) and (2.92). In summary, the barrier transparency 

for a graded junct ion is given by 

ETI D(E) = D(X) = exp { - - £ [I(X) + I I (X) ]} (2.96) 

where 

1(X) = 
V r a - X l n [ * ± 3 F ] X > 0 

X = 0 

I I ( X ) 
y/l-X + f[X) + ̂ A=Y f(X) + o 

f(X) = 0 

VT=Xjl-X+f{X)-f(X) ln 

1 - X 

For an abrupt junct ion , i.e., Wg = 0, I I ( X ) = 0. In Append ix A the tunneling fac

tor given by E q . (2.84), which contains the expression for the barrier transparency 

(Eq . (2.96)), is reorganized in a form appropriate for coding. 

2.5 Recombinat ion and Generation Currents 

The emitter-base space charge region recombination current Jp in Eq. (2.64) and the 

collector-base space charge region generation current Jg in Eq. (2.65) are computed 

from 

JR -G = q I 
J SCR 

Udx (2.97) 
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where U is the net recombination rate which, in general, consists of several recombina

tion rates from different recombination processes. Three major types of recombination 

process are considered here: Shockley-Read-Hall (SRH), radiative, and Auger. While 

SRH recombination is usually the dominant process in Si bipolar transistors, it may not 

be so for GaAs/AlGaAs HBTs. Radiative recombination is known to be important in 

most III-V compounds with direct energy gaps (i.e., GaAs), and Auger recombination 

is important in materials with high doping concentrations (such as the base region of 

an HBT). We will model all three recombination processes. 

2.5.1 Shockley-Read-Hall Recombination Process 

The basic SRH recombination process normally assumes one trapping energy level in 

the bandgap [53,54,55]. The single-level recombination rate is given by 

Us** = — T — t,._J^~n\ , / „ . _ „ . M (2-98) 
n + m exp (^p 1 )] + rno [p + n, exp 

where rpo and rno are, respectively, the minority carrier lifetime in highly extrinsic N-

type and P-type material, due to single-level recombination, Et is the energy level of 

the recombination-generation centers, and = qtjj is the intrinsic Fermi level. Note 

that the intrinsic carrier concentration n, in Eq. (2.98) is position-dependent since the 

materials in the emitter and in the base are different. From now on it is implicit that 

rii — rii(x). Equation (2.98) may be written in terms of various electrostatic potentials 

with the use of the following expressions: 

pn = n, exp \ -j^r j (2-99) 

n — n, exp 

p = n, exp 

(2.100) 

(2.101) 
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Figure 2.9: Energy-band and potential diagram of the emitter-base junction at forward 
bias, with a linearly varying intrinsic Fermi level in the emitter-base depletion region. 

Here, xp is the intrinsic Fermi potential, <f>n and <f>p are, respectively, the electron and 

hole quasi-Fermi potentials, and VBE = <f>p — 4>n is the applied emitter-base voltage. 

Thus 

USRH = 

^exp - *i±±)] + ^ e x p [& ( * ± * t - * ) ] + 2exp ( - ^ ) cosh + In 

(2.102) 

Following an approach similar to that of Choo [56], ip(x) is assumed to vary linearly 

across the forward biased emitter-base heterojunction depletion region. In Figure 2.9, 

the intrinsic Fermi potential and the electron and hole quasi-Fermi potentials are drawn. 

The intrinsic Fermi potentials in the quasi-neutral emitter (i < — dn) and in the quasi-

neutral base (x > dp) are denoted by ipn and ipp respectively. Without loss of generality, 
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we set ipn — 0 as a potential reference. Therefore 

— [x + dn) 
WBE

 K  T  n> 
(2.103) 

where WBE refers to the total emitte-base depletion width. In the quasi-neutral regions, 

we may approximate 

ND ~n = n,i exp I ^ (ipn - <f>n) 

NA~p = ni2 exp ^ [<f>p - V>P) 

The subscripts 1 and 2 refer to the emitter and base respectively. We define 

(2.104) 

(2.105) 

0 = ^ r b k - i M 
/ tin i t 2_ \ g^BJS (2.106) 

which is derived from Eqs. (2.104) and (2.105) and the relationship VBE = <f>p — </>r 

Substituting Eq. (2.106) into Eq. (2.103), the latter becomes 

Since tpn = 0, Eq. (2.104) leads to 

Q A. l U i l 

(2.107) 

(2.108) 

As a result, 

J L f _ ^ L ± A 
fcrA 2 

^ / , , x , n « l QVBE 
— (x + dn)-ln— - — 

e 
™BE 

(2.109) 

where 

a — dn + ln 
AT D BE 

BE f i i i 2kT 
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Note also that dn/WBE = NA/(NA + ND). 

After Eq. (2.109) is substituted into Eq. (2.102), the latter is used in Eq. (2.97) to 

solve for the SRH recombination current density. The integration must be performed 

separately for the emitter and the base because the minority carrier lifetimes and the 

intrinsic carrier concentrations are different in the two regions: 

2qWBE sinh ["„,., fx=o dz ni2 r x = d" dz 
J SRH 

R 

where 

nn r«=o dz r*=* 
Ti Jx=-dn Z2 + 2z6j -f 1 T2 Jx=0 z 2 + 2z&2 + l 

(2.110) 

Tl = y/Tpoi Tnol 

?2 = y/Tpo2 Tno2 

, / qVBE\ u(Et-Et 

bx = exp ( — n t ^ ) cosh | — — h ln 

62 - exp 

In Eq. (2.110), the substitution 

z = 

2kT 

<1VBE 
2kT 

kT 

c o s h ( ^ r ^ + l n ' 

'pol 
'nol. 

!Tpo2 

1~no2, 

'pol 
exp 

e 
v w - \WBE 

was made for the first integral, and the substitution 

x + a 

exp 
V Tno2 ' \WBE 

was made for the second integral. 

The solution of'Eq. (2.110) is 

2qWBE sinh J SRH 
R — — f{bi) + —g(b2) 

T\ T2 

where 

f(h) = ^ 
tan" 

( z 0 1 - z i ) v / | l - ^ | 
] + 2 1 Z o i + t l ( Z i + Z o , ) 

Zl+1 201 + 1 

b\ # 1 

b\ = l 

(2.111) 
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g(b2) = 1-^1 
tan - l («3-«na) y/ll-tjl 

l + « 2 * 0 2 + * 2 ( 2 2 + Z 0 2 ) 

1 
2(12 + 1 Z 2 + 1 *1 = 1 

anc 

2 l = 

^01 

z 2 = 

z 02 — 

9 
exp ^~ 

exp(a) 
Tpol 

Tnol 

dn + a 

exp(a) lTpo2 

T~no2 

Note that dp/WBE = 1 - = ND/{NA + ND). 

Due to a lack of experimental data we let Et — Ei (the effect of this is to produce 

a maximum recombination rate), TVO\ — rpo2, and rno\ = r n 0 2 . Under these conditions 

oi = o2 = - ( ̂ / — + ) exp 
' po 2kT 

2.5.2 Radiative Recombination Process 

Under low injection conditions, the rate by which radiative recombination exceeds 

thermal generation is given by [57] 

Urad = B{np- n]) (2.112) 

where B is the radiative constant. The non-equilibrium pn product for the emitter-base 

junction is related to the emitter-base voltage by Eq. (2.99) which is substituted into 

Eq. (2.112). The latter is then used in Eq. (2.97) to solve for the recombination current 

density due to the radiative process. The result is 

JR" = q (e" v^ k T - 1) (dn B, n]x + dp B2 n 2

i2) (2 .113) 
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The subscripts 1 and 2 again denote the emitter and the base, respectively, while dn 

i 

and dp are the depletion-layer widths as shown in Figure 2.9. 

2.5.3 Auger Recombination Process 

Two Auger recombination processes for Al IGa 1_ IAs are usually recognized [58]. The 

first process, known as the CHSH process, occurs when a conduction-band (CB) elec

tron recombines with a heavy-hole-band (HB) hole. The subsequent release of energy 

causes a light hole in the spin-splitoff band (SB) to transfer to the heavy-hole band. 

Since this process involves two holes and one electron, its recombination rate under low 

injection conditions is given by 

Rp = Cpnp 2 (2.114) 

where Cv is the Auger coefficient for the CHSH process. The second process, known 

as the CHCC process, is similar to the CHSH process except that the energy released 

from the electron-hole recombination is given to an electron in the conduction band. 

In this case, the recombination rate is 

Rn = Cnn
2p (2.115) 

where Cn is the Auger coefficient for the CHCC process. 

In thermal equilibrium, Auger recombination is balanced exactly by the converse 

process of generation of electron-hole pairs by electrons and light holes. For the CHCC 

process, the generation rate is proportional to the electron concentration, n, since it 

depends only on the number of electrons present [59, p. 271], thus 

Gn = C„npn (2.116) 
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Similarly the generation rate for the CHSH process is proportional to the hole concen

tration, p, since it depends only on the number of light holes present: 

Gp = Cpnpp (2.117) 

In non-equilibrium, the net Auger recombination rate is given by 

UAug = (Rn + Rp)-(Gn + Gp) 

- (Cnn + Cpp){np-np) (2.118) 

Substituting the expression np = n\ and those in Eqs. (2.99) to (2.101) into Eq. (2.118), 

the latter becomes 

UAug = n? (e«v"/*r - 1) {C n exp 

<t>p + <l>n \ 

cD 

exp 

exp 
q ( <t>p + <t>n 

kT \ 2 
rp 

+ 

(2.119) 

The relationship VBE = <pp — <f>n was used in the above equation. As in Subsection 2.5.1, 

we assume that t/>(i) varies linearly across the forward biased emitter-base junction. 

Letting 

z = exp 
q , <f>P + <f>n 

kT V 2 exp 
0 

WBE 

{x + a) 

and c — \JCn Cp, where 6 and a are defined in Eqs. (2.106) and (2.109), and substituting 

Eq. (2.119) into Eq. (2.97), yields 

TAug q £ nf e V W » r ( e , v „ / * r _ 1 ) e ^ + l j W B B d z 

2qWBE e" v^f k T sinh ( ^ ) 
0z 

2qWBE z*vB*l k T s i n h ( ^ ) 

[*" 3 ci (1 + — | dz + / ni2 

(nfj ci ( Z 0 J - 2 X ) - ( — - ) 

c2 1 + —A dz 

+ 

nf2
 c 2 (z2 - 202) - ( — — 

Zl ZQ2 

(2.120) 
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where Ci = \JCn\ Cpi, c2 = yJCn2 Cp2, 

21 = ^expVvVB-E

dn + aj 

zoi = exp(a) 

9 1 = V ? e x p f e d p + a ! 
2 0 2 = y~ exp (a) 

The total emitter-base space charge region recombination current density is the sum of 

Eqs. (2.111), (2.113) and (2.120). 

2.5.4 Generat ion Process 

In the reverse-biased collector-base junction, the most dominant generation process 

is of the SRH type. To illustrate this, we assume that under large reverse bias the 

applied junction voltage, VBc, is negative and its magnitude is at least several kTjq 

inside the space charge layer. For the SRH process, this means that in the denominator 

of Eq. (2.102) the first two terms are small compared with the last term. Assuming 

Et — Ei, Eq. (2.102) can be approximated by 

USRH * — ^ — ( e « v » ° / f c r - 1) (2.121) 
rno -r rpo 

The SRH generation current density over the entire collector-base depletion region is 

JgRH
 — —q I USRH dx 

JC-B SCR 

^nc ^pc 

q ni WBC 

~ — — — (2.122) 
'"no Tpo 
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where WBC is the collector-base depletion-layer width. In deriving Eq. (2.122) we 

have assumed that the collector-base junction is essentially a homojunction, i.e., n, ~ 

constant, and that under the normal range of reverse bias qVBC/kT <C 0. 

Under large reverse-bias, np «C n 2 , so the radiative generation rate as given by 

Eq. (2.112) reduces to Urad — —Bn}. The radiative generation current density is 

therefore given by 

(2.123) JG

a d^qBn}WBC 

For the Auger process, the generation current density, under the homojunction 

assumption, can be easily deduced from Eq. (2.120): 

2qWBC t* V B Cl ^ M { ^ [ ( , - . ) + (i_J.)]} „ » , 

Since 

In 
NAND\ gVBC 

n? ) + kT 

Z l = V ^ e x p v w j > > x 

*2 

\Cn n, 
Cp NA 

exp 
2kT J 

and 2 sinh(gVBc/2itr) ~ - exp(-qVBC/2kT), Eq. (2.124) reduces to 

JG — 
q e l V B O / 2 k T W B c 

ln(^p) + 
<}\VBC\ 

kT 

qn 2WBC(CnND + CpNA) 

I n ( ^ ) ~ kT 

(2.125) 

To see how the three generation current density components compare with one 

another, we need some typical values for some of the parameters. For GaAs, rno ~ 

10 - 9 
s, rp0 

10~8s, n, ~ 10 6 cm - 3 , Cn Cp < 10 - 3 0 cm 6 /s and B 10~ 9cm 3/s are 
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used. Typical values for the collector and base doping concentrations are 1016 and 

1019cm~3 respectively. Comparing the Auger generation current density with the SRH 

generation current density, we note that 

JG U 9

 = ni{CnND + CpNA){Tno + Tpo) 

< m cp NA TPO 

< (106) (1(T30) (1019) (10~8) 

< 1(T13 

A similar comparison between the radiative and the SRH generation current densities 

shows 

Trad 
JG 
rSRH 

JG 
= ri, B (r n o + Tpo) 

< TliB Tpo 

< (io 6) (10- 9)(io-8) 

< i o - 1 1 

Both the Auger and the radiative generation current densities are many orders 

of magnitude lower than the SRH generation current density. Therefore the total 

generation current density in the collector-base depletion region is approximately 

JTOT „ JSRH = { n w ̂  + n.c d c ) [ l _ tqVBClkT) ( 2 1 2 6 ) 

t Tn0 T T p 0 

where n,£ and n,c are, respectively, the base and collector intrinsic carrier concentra

tions, which are different because of base grading, and dg and dc are, respectively, 

the base and collector depletion-layer widths obtained using the usual depletion ap

proximation. By restricting JC to suitably low values (see Chapter 3), base widening 

due to donor neutralization by electrons entering the collector (Kirk Effect) need not 
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be considered. The collector-base voltage, VBC, must be less than or equal to zero. 

Note that under injection conditions, Eq. (2.126) is no longer valid, but the fact that 

it overestimates the generation current is of no consequence as Jc <C Jn(W). 

2.6 Parameters for G a A s and A l , ; G a i _ r A s 

The various models used to describe the physical parameters of GaAs and Al a :Ga 1_ : rAs 

are presented in this section. Some of these models, for physical parameters such as 

bandgap, mobility, dielectric constant, effective masses, and effective density of states, 

are taken from the material device analysis program SEDAN III [34]. Other physi

cal parameters such as some of the recombination lifetimes are modeled based on a 

collection of data from the literature. In general, these physical parameters are both 

composition and doping dependent. Temperature is assumed to be, in most cases, at 

300 K. 

2.6.1 Effective Density of States 

Under the approximation of parabolic band structure, the carrier concentration is re

lated to the respective Fermi energy through Fermi-Dirac statistics given by 

where Nc and Ny are the effective densities of states for conduction and valence bands 

respectively, Ec and Ey are the conduction and valence band edges, Epn and EFV are 

the electron and hole Fermi energies, and Fi/2(r?) is the Fermi-Dirac integral of order 

one half defined as 

n 

P 

(2.127) 

(2.128) 

(2.129) 
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In non-degenerate semiconductors, Boltzmann statistics apply, that is, when the Fermi 

energy is several kT below Ec in N-type material or above Ev in P-type material, 

the Fermi-Dirac integral function reduces to an exponential function. Since many of 

the earlier derivations assumed Boltzmann statistics it would be convenient to put 

Eqs. (2.127) and (2.128) in a form compatible with this assumption, that is 

n = Nc(r,n) exp(r?n) (2.130) 

p = ^ (T7p) exp(T? P ) (2.131) 

where 

EFH-EC A T t ( , A r F1/2{rin) 

E V ~ EFp AT*(n \ AJ  FV*M 
p  = kf N v M = N v ^ M 

We call Nc and Nv the "new effective densities of states" for conduction and valence 

bands respectively. In Appendix B, they are computed and related to doping con

centration. Note that Nc and Nv are also functions of the effective masses since the 

effective densites of states are given by 

N c = 2 {—7$~) (2'132) 

N v = 2 [ h> ) ( 2 , 1 3 3 ) 

where m* and m* are the effective masses for electrons and holes respectively, and h is 

the Planck's constant. The new effective densities of states should replace the effective 
* 

densities of states in all the formulations unless stated otherwise. 

The intrinsic carrier concentration can be computed from the pn product at thermal 

equilibrium under which the Fermi level is constant, i.e., Epn = Epp, hence 

m = y/np = y/NcNy exp{-Eg/2k,T) (2.134) 

where the bandgap Eg = Ec — Ey • 
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Figure 2.10: Band structure of GaAs with the energy E plotted as a function of mo
mentum wave vector k along the [100] and [111] directions [34]. 

2.6.2 B a n d g a p and Electron Affinity 

The energy band structure of GaAs with the electron energy plotted as a function 

of momentum wave vector k is shown in Figure 2.10. The figure shows three local 

conduction-band minima ( r 6 , X$) located at k = 0 and the zone boundaries along 

the two crystal momentum directions, and a global valence-band maximum (r8 lo

cated at k = 0. Three interband energy gaps, defined as the difference between the 

local conduction-band minimum and the global valence-band maximum (i.e., Tg), are 

identified and designated appropriately as T, X, and L. The bandgap, on the other 

hand, is defined as the difference between the lowest conduction-band minimum and 

the highest valence-band maximum. In GaAs, a direct bandgap material, both the 

global conduction-band minimum and the global valence-band maximum occur at the 

same value of k (k = 0) . In other words, the bandgap of GaAs is the same as its T 
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Figure 2.11: Compositional dependence of the T, X, and L interband energy gaps [34]. 

interband energy gap. However, in A l x G a 1 _ I A s , the conduction band varies so that 

when the Al mole fraction x > 0.45 the X conduction-band minimum at the [100] zone 

boundary drops below the T conduction-band minimum at the zone center. In this 

case, AlsGa^xAs becomes an indirect bandgap material and the bandgap is given by 

the X interband energy gap. Figure 2.11 shows the variation of the three interband 

energy gaps with composition. The equations that describe these energy gaps, in (eV), 

as a function of composition, are as follows [60] 

f 1.424 + 1.247 x 0 < i < 0.45 
ET

g(x) = ~ ~ (2.135) 
{ 1.424 + 1.247i + 1.147 (i - 0.45)2 0.45 < x < 1.0 

E$(x) = 1.708 + 0.642 x (2.136) 
E?(x) = 1.900 + 0.1251 + 0.143 x2 (2.137) 
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Obviously from Figure 2.11, the bandgap of A ^ G a ^ A s , Eg(x), is equal to either Eg(x) 

or Ef(x), whichever one is smaller. 

The above equations for energy gap are formulated for high-purity GaAs and 

AlsGax-sAs at 297 K. Bandgap, however, is known to shrink with doping concen

tration. Casey and Stern [61] have measured the doping dependence of bandgap in 

p-GaAs and arrived at the following empirical expression: 

Eg (eV) = 1.424 - 1.6 x 1 0 - V / 3 (2.138) 

where p is the P-type doping concentration in cm - 3 . For lack of better data, we assume 

this formula is applicable also to A ^ G a ^ A s of both P-type and N-type doping. The 

general formula for Eg in A^Ga^^As is therefore 

Eg{x,N) = m i n ( £ [ ( x ) , £ f (x)) - 1.6 x 1 0 - 8 N1?3 (2.139) 

where TV is the net doping concentration in c m - 3 , min( ) means "the minimum of", 

and Eg is in eV. 

According to Anderson's model [7], the difference in electron affinities between GaAs 

and Alj;Gai_xAs equals the difference of conduction bands in the respective materials, 

i.e., A x = AEc- The electron affinity for GaAs is about 4.07 [36]. Acknowledging that 

electron affinity decreases as Al mole fraction increases, we can express the dependence 

of the electron affinity on composition as 

X{x) = 4.07 - AEc{x) (2.140) 

The conduction-band offset is generally assumed to be linearly proportional to the 

difference of energy gaps: 

AEC = Qt AEg (2.141) 

The constant Qe was determined by Dingle for x = 0.2 to be about 0.85 [62, p. 21.]. 

This value was accepted and confirmed by a few early papers [63,64]. However, in 
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1984, Miller et al. [65] found that the energy gap discontinuity AEg divides more 

equally between the conduction and valence band offsets. Subsequently a large number 

of workers remeasured AEc and AEv using a variety of techniques and found that Qe 

was indeed smaller than previously expected. The majority of recent works indicates 

that Qe is between 0.60 and 0.67 for x < 0.45 [66]-(76|. When x > 0.45, AljGa^As 

becomes an indirect material and Eq. (2.141) no longer holds. In this case it is more 

meaningful to measure AEy and express it as a function of the gamma energy gap 

offset [77,78]: 

AEV = Qv AE T

g (2.142) 

where Qv is a constant. However there is also evidence that the valence-band offset is 

linearly proportional to the Al mole fraction [74,79]. 

Assuming that Eq. (2.142) is valid and Qv = 0.36 (equivalently Qe = 0.64 for 

x < 0.45, a value used in SEDAN III [34]), we can derive the conduction-band offset 

AEc as a function of composition using the method proposed by Hill and Ladbrooke 

[78]. The energy gap discontinuity must divide between the conduction and valence 

band offsets, hence 

AEC = AEg - AEV 

= AEg-QvAE] 

= [Et(x) - 1.424] -QV\E]- 1.424] (2.143) 

In obtaining Eq. (2.143), we have used 1.424 eV for the energy gap of GaAs. For 

x < 0.45, Eg{x) = £[(x) , thus Eq. (2.143) becomes 

AEC = ( 1 ( x ) - 1.424] 

= Q e (1-247 x) 

= 0.7981 x for 0 < x < 0.45 (2.144) 
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The formula for E v

9(x) is given by Eq. (2.135). For x > 0.45, Eg(x) = Ef(x)\ therefore 

substituting Eqs. (2.135) and (2.137) into Eq. (2.143) yields 

AEC = 0.392 + 0.048 x - 0.27 x 2 for 0.45 < x < 1.0 (2.145) 

2.6.3 Effective Mass 

For GaAs and A ^ G a ^ A s there is an electron effective mass associated with each of 

the three conduction band valleys. These electron effective masses are also-known as 

the density of states effective masses and are given by [60] 

m T

n = (0.067 + 0.083 x) mo (2.146) 

m\\ = (0.55+ 0.12 x) m 0 (2.147) 

m * = (0.85 -0.07 x) mo (2.148) 

where mo is the electron rest mass and x is the Al mole fraction. The above equations 

are formulated based on a linear extrapolation of the density of states effective masses 

of GaAs and AlAs. 

The overall electron effective mass is derived from the assumption that the total 

electron concentration is equal to the sum of the electron concentrations in the three 

conduction-band valleys [80], that is 

n = n r + nL + nx (2.149) 

4 

For x < 0.45, the T valley is the lowest in energy among the three conduction-band 

valleys, T, L, X, and Eq. (2.149) can be written as 

" c e x p ( ^ £ ) = AG exp ( ^ ^ ) + N$ exp 

+ N$ exp 

EF — Ec\ ,rr IEp — Ec , , 
- I + 1\X exn 

kT 

EF - [Ec + AE?-rY 
kT 

EF - {Ec + AEj;-*) 1* 

(2.150) 
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where AEjf~r = E\ - Ev

g and AEf~r = Ex -ET

g. Since the effective density of states 

for the conduction band is in general given by 

Nc = 2 
2nmnkT\ 

h2 
(2.151) 

Eq. (2.150) reduces to 

K ) 3 / 2 + « ) 3 / * exp ( - ^ - ) + {mX

n)Z'2 exp ( - A E ? ~ ^ ] 

kT kT 

2/3 

x < 0.45 

(2.152) 

where mn is the overall electron effective mass. For x > 0.45, the X valley is the lowest 

in energy. Thus, the overall electron effective mass is 

K ) > / ! exp M ^ ) + exp L^L) + 

1 2/3 

x > 0.45 

(2.153) 

where AET

g~x = ET

g - Ef and AEL

g~x = EL

g - Ef. 

The hole effective mass for A l i G a i ^ A s is taken as [60] 

m* - (0.48 + 0.31 x) m 0 (2.154) 

2.6.4 Dielectric Constant 

The dielectric constant of AlxGaj.a-As can be calculated by assuming that the dipoles 

in the alloy are divided into a fraction x of type-1 dipoles and a fraction 1 — x of type-2 

dipoles where x is the A l mole fraction and 1, 2 refer to AlAs and GaAs respectively [81]. 

The dipoles are characterized by polarizability a. In order to take into account any 

change in a due to changing equilibrium interatomic spacing, it is assumed that a is 

proportional to the volume of the unit cell. Therefore, representing a, ai and Q 2 as the 

polarizabilities of the alloy, AlAs and GaAs, respectively, we can write 

oc = x ai — + (1 - i ) a 2 — (2.155) 
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Table 2.1: Dielectric constants for GaAs and AlAs. 

material ei 
GaAs 10.9 13.1 
AlAs 8.12 10.06 

where V,Vi, and V2 are the unit cell volumes of the alloy, AlAs, and GaAs, respectively. 

The dielectric constant e is related to polarizability by the Clausius-Mossotti equation 

[82, p. 382] 
f — 1 4-7T 

(2.156) 
c - 1 4TT „ 

= — > Nidi 
c + 2 3 ^ 

where is the number per unit volume of type-i dipoles having polarizability a,. In a 

pure type-1 compound, its dielectric constant ej is related to Qj by Eq. (2.156) but with 

the summation sign dropped. A similar relationship exists between e2 and a2. These 

relationships are substituted into Eq. (2.155) to give 

e - 1 NV / c i - l \ , NV 

where e and N are the dielectric constant and the number of dipoles per unit volume for 

the alloy. Clearly all the N V products cancel out. Hence, solving for e, 

, '+2[*teO + (i-*>(fm)l ,2158, 

which applies to both high and low frequency. The values for £x (AlAs) and e2 (GaAs) 

for both high and low frequencies are listed in Table 2.1 [34]. 
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2.6 . 5 M o b i l i t y and Diffusion Coefficient 

The mobility p for electrons or holes is, in general, related to the effective mass m* and 

the relaxation time r by [38, p. 25] 

q r 
M = " ~ (2.159) 

In III-V semiconductors, r is primarily dominated by polar optical phonon scattering 

which has the form [80] 

" ~ ^ ( i - i ) 
where and e/ are the high and low frequency dielectric constants for A l x G a i _ x A s ob

tainable from Eq. (2.158). Substituting Eq. (2.160) into Eq. (2.159) yields 

M oc (mT 3 / 2 f - - - ) " 1 (2.161) 

For AljjGax-jcAs, the mobility of holes is simply [80] 

T oc / . -v- (2.160) 

Vp{NT,x) 
* ? ( * ) - < r l { x ) < 2- 1 6 2) 

where Mp,GaAa(-Wr) is the doping-dependent hole mobility in GaAs with NT being the 

total doping concentration. 

The expression for the electron mobility of AlxGax-jAs is more complicated because 

it depends on the number of carriers in the direct and indirect conduction-band valleys. 

According to [80], the effective electron mobility can be calculated by weighting the 

direct and indirect mobilities by their respective electron populations: 

pn{NT,x) = rdpd + (1 - rd)m (2.163) 

where d and i refer to, respectively, direct and indirect, and rd is the fraction of elec

tron concentration in the direct valley (i.e., T valley) as opposed to the total electron 
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concentration and is given by 

rid + rt{ 

Mr + TIL + rix 
1 

l + (nL + nx)/nr 

exp kT 
^ ' e x p f - ^ 

kT 
(2.164) 

In obtaining Eq. (2.164), the expressions for the various electron concentrations de

rived in Subsection 2.6.3 were used. The direct (GaAs) and indirect (AlAs) elec

tron mobilities, pd and Pi, can be derived from Eq. (2.161). For the direct valley, 

the electron effective mass is simply the electron effective mass of the T valley, i.e., 

m*ni = mjj. The electron effective mass for the indirect valleys may be approximated 

by (m;,) 3/ 2 ~ ( m £ ) 3 / 2 + (m*) 3 / 2 . The formulations are 

Pi = 
< ( g = o) 

3/2 

Pn<GaA*{NT) 

\m L

n(x = l)] 3 / 2 + [m*(z = l ) ] 3 ' 2 -1 
VnMAa 

(2.165) 

(2.166) 
+ [m*(x)]3/2 ^ ( x j - e f ^ x ) 

where /in,GaA«(^r) is the doping-dependent electron mobility in GaAs, and pn,AiAs is 

the electron mobility of AlAs which takes on a contant value of 294 c m 2 / V s [34] since 

no reliable doping-dependent data are available. 

Due to an increase in the number of scattering centers, mobility decreases as doping 

concentration increases. Measured GaAs electron and hole low-field mobilities can be 

fitted into an empirical formula given by [83] 

p(NT) = Mo (2.167) 1 + (NT/Nre{)° 

where the parameters p0, iV r e f and a for electrons and holes are listed in Table 2.2 [34]. 
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Table 2.2: Parameters of low-field mobilities for GaAs as used in Eq. (2.167). 

parameters Mo Nre{ a 
electrons 8100 1.69 x IO17 0.436 

holes 408.7 2.75 x 1017 0.395 

The carrier diffustion coefficient, in thermal equilibrium, is given by [59, pp. 172-

175] 

D = kritpM_ (2.168) 

where ^1/2(17) is defined in Eq. (2.129) and 

= -7= / 7 7 d x 

y/n Jo 1 + exp(x - 77) 

is the Fermi-Dirac integral of order —1/2.2 For electrons, D = Dn, fi = fin, and 77 = 

T}n = (EF — Ec)/kT; similarly for holes, D = Dp, p, — pp, and n = np = (Ev — EF)/kT. 

For minority carriers, n <C 0 and both Fi^r}) and F_i/2(n) approach asymptotically 

to exp(n), thus Eq. (2.168) reduces to the Einstein equation 

kT 
D = — p (2.169) 

9 

For majority carriers and under degenerate conditions, Eq. (2.168) must be used in

stead. An approximation scheme for calculating the ratio i r i / 2 ( " ) / i 7 ' _ i / 2 ( " ) is presented 

in Appendix C. 
» 

2.6.6 M i n o r i t y Carr ier Lifetimes 

The minority carrier lifetime is an important parameter because it determines directly 

the amount of carrier recombination in the neutral and space charge regions of the tran

sistor. In the present model, the effective minority carrier lifetime for either electrons 
2Note that in reference [59] -fi/2( r?) a n < i F-i/2(v) 3 X 6 defined differently than here. 
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or holes is composed of four separate lifetimes as follows: 

1 1 1 1 1 , „ , 
— = + — + — + (2.170) 
Teft  rsrtH  T R TA T1NT 

1 1 , 
= - + (2.171) 

where TSRH, TR, and rA are the carrier lifetimes associated with the SRH, radiative, 

and Auger recombination process respectively, and TINT is the carrier lifetime due to 

interface traps that exist as a result of lattice mismatch at the emitter-base interface. 

We have also defined a lifetime r 0 due exclusively to the first three recombination 

processes. In general, reff is a function of both doping density and Al mole fraction. 

The SRH lifetime, rSRH, is derived by considering the capture and emission rates of 

electrons and holes due to a single trap level, and is given, at low injection levels, by 

[59, p. 275] 
TZ + Tlx P + Pi , 

rSRH = rpo — - 1 + rno 2.172 
n + p n + p 

where rpo and r n o , as defined in Subsection 2.5.1, are the minority carrier lifetimes 

in highly extrinsic N-type and P-type material respectively, n and p are the equi

librium electron and hole carrier concentrations, and nx = n, exp[(Et — E{)/kT], 

Pi = n, exp[(£', — Et)/kT] are the electron and hole concentrations when the Fermi 

level falls on the trap level Et. Assuming Et = Ei (i.e., a deep level) and using the 

identity np — n,2 we obtain, for a P-type material with doping concentration NA, 

n?/JYA + n,- NA + n,-
, rSRH- T p o n 2 / N A + N A + T n o n 2 / N A + N A (2.17J) 

and for a N-type material with doping concentration No 

ND + Uj n2/ND + m 

ND + n2/ND

 T n o ND + n2/ND 

Clearly when NA » n 2 , TSRH ~ rno, and when ND » n 2, TSRH ~ rpo. It can be shown 

using Eqs. (2.173) and (2.174) that, for GaAs, the SRH lifetime is relatively constant 
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for doping densities > 1014 c m - 3 . For simplicity, we let Tsrh = rno for P-type GaAs 

and TSRH — rpo for N-type GaAs. 

The actual values of r n o and TPO are very process dependent. From a collection of 

published data on majority carrier diffusion length of GaAs [84]-[88], we calculated the 

corresponding electron and hole carrier lifetimes at various doping densities, as shown 

in Figure 2.12. Note that only data at relatively low doping concentrations are used 

because at higher doping concentrations radiative and Auger recombinations cause the 

effective minority carrier lifetime to go down. From Figure 2.12, we estimated for GaAs 

that TPO ~ 2 x 10 - 8 s and rno ~ 5.5 x 10"9 s. These two values are assumed applicable 

to A ^ G a i . j A s since there is not enough reliable data to show how the SRH lifetime 

actually varies with A l composition. 

Under low-level injection conditions, the radiative lifetime TR is given by [57] 

= WW) (2175) 

where B is the radiative constant as introduced in Subsection 2.5.2. If the minority 

carrier density is neglected, then 
T-aTH (2176) 

where TV = NA or TV = TVp depending on whether the material is P or N type, respec

tively. 

In Figure 2.13, a collection of experimental data for TR for GaAs is plotted as a 

function of doping'density. These data are obtained from experimentally measured 

radiative lifetimes and radiative constants [60],[89]-[94]. A least squares fit of the 

TR data produces a dependence of r R on TV slightly different from that predicted by 

Eq. (2.176). However, Eq. (2.176) can still hold if we assume that the radiative constant 

(cm 3/s) has a small dependence on the doping density given as follows: 

B{N) = 1.204706 x KT 7 TV"0 1 6 7 7 5 6 1 7 (2.177) 
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• [84] Casey et al. 

O [85] Wright et al. 

A [86] Aukerman et al. 

• [87] Hwang 

• [88] Ashley & Biard 

~ 20 ns 

O "° 
O 

r-o ~ 5.5 ns 
• 

, , i i i i i i i i I i i i i i i i 11 i i i I I I I 

10" 10'6 10" 1018 

N-type or P-type Doping Density (cm" 5) 

Figure 2.12: Collection of experimental minority carrier lifetime data of GaAs for 
electrons (open symbols) and holes (solid symbols) at low doping densities. 
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Net Doping Density (cm - 3 ) 

Figure 2.13: Collection of experimental radiative lifetime data of GaAs for various 
doping concentrations and a corresponding least squares fit. 
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It is also assumed that B is independent of the type of dopant. 

Moss et al. had also shown that the radiative lifetime for direct-bandgap materials 

can be expressed as a function of bandgap, dielectric constant, and effective masses of 

electrons and holes, all of which vary with Al composition [95, p. 205]. Since the radiative 

constant is related to the radiative lifetime by Eq. (2.175), the following expression is 

obtained: 

N P 

Using mn ~ 0.067 m 0 , m* ~ 0.48 m 0 , Eg s 1.424 eV, and er ~ 13.1, for GaAs, the 

following expression for B as a function of composition is produced. 

€ (xYl* E (xY 

B(x, N) = 3.0367 x H T 3 '-±L B(N) (2.179) 
"io L mo J 

where B(N) is the doping-dependent radiative constant for GaAs given by Eq. (2.177). 

For AUGai-xAs , the radiative constant decreases with Al composition because the 

increase in effective masses is greater than the increase in bandgap. 

The computation of the Auger lifetime depends on which of the two Auger recombi

nation processes, C H S H or C H C C (see Subsection 2.5.3), is in effect. Since the CHSH 

process is dominant in P-type material and the C H C C process in N-type material, the 

Auger lifetime can be expressed, at low injection levels, as [96, p. 557] 

T a ~ n m N-type material (2.180) 
Cn ND 

r — ——j in P-type material (2.181) 
CPNA 

Analytic expressions for the Auger coefficients, in cm6/s, as a function of Al mole 

fraction are given by Takeshima as follows [58] 

Cn = Cn0 exp(a„ T + bn T 2) (2.182) 

Cp = C p 0 exp(apr + 6 p T 2 ) (2.183) 
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where 

C n 0 = (1.960 - 11.361 + 31.37 i J ) x 10_ 

a n = (0.8714 + 0.88 x - 6.36 x 2) x 10 

bn = (-0.03655 - 0.0638 x + 0.562 x 2) x 10 

C p 0 = (9.786 - 36.35 x + 111.6 x 2) x 10" 

a p = (1.045 - 0.408 x - 1.64 x2) x 10 

bp = (-0.0774 + 0.0371 x + 0.127 x2) x 10 

-32 

-32 

- 2 

- 2 

-4 

(cm 6/s) 

(K- 2 ) 

(cm6/s) 

IK" 1) 

( K - 2 ) 

and the temperature T is set to 300 K. Takeshima's equations were made to fit theoret

ically calculated Cn and Cp for A ^ G a ^ A s in the Al mole fraction range 0 < x < 0.2. 

Uncertain as to whether Eqs. (2.182) and (2.183) are applicable to x > 0.2, we assume 

that under this condition Cn and Cp take on the values computed at x = 0.2. 

The effect of the presence of interface traps due to lattice mismatch at the emitter-

base interface is to reduce the bulk lifetime in the active layer. For a single-heterojunction 

bipolar transistor, this may be represented by [97] 

where T0 is the bulk lifetime and is the same as that defined in Eq. (2.171), d is the 

thickness of the active layer, and fx = S,NTL/D, SINT being the interface recombina

tion velocity and D, L being the diffusion coefficient and diffusion length respectively. 

Letting L = \Ab D, Eq. (2.184) can be expressed as 

1 
(2.184) T — 

1 + 6/tanh(d/L) 

T T0 y/r0 D tanh(d/y/T0 D) 
(2.185) 

Comparing this to Eq. (2.171), we see that 

TINT — (2.186) 
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where den — \/T0 D tanh(d/y/T0 D) is the effective active layer width. 

The interface recombination velocity is given by [98] 

Nsao (2.187) 

where vTH is the average thermal velocity, Nsg is the interface trap density, and o 

is the interface traps' capture cross section. The density of interface traps can be 

calculated by assuming that each atom terminating an edge dislocation constitutes a 

recombination center and is given by [99] 

N„ = 4 * 2 2.188 
a\a\ 

where a\ and a2 are the lattice constants of Alj;Gai_j;As and GaAs respectively (ax can 

be interpolated from agaAs = 5.6533 A and CLMAS = 5.6605 A, the lattice constants of 

GaAs and AlAs respectively). 

Nelson found that for Alo.5Gao.5As, Nss ~ 1.6 x 1012 cm - 2 and S,NT ~ 500 cm/s 

[98]. Because of this, we can rewrite Eq. (2.187) in terms of the lattice constants in A 
as 

2 2 
SINT = 1.26 x 107 C l ~ ° 2 (cm/s) (2.189) 

The resulting S,NT is less than 1000 cm/s for the AlGaAs/GaAs heterojunction inter

face. 

2.7 H i g h Frequency Performance of H B T s 

Because of the high electron mobility of III-V materials and the typical low base re

sistance, the Heterojunction Bipolar Transistor, especially of N-P-N design, can po

tentially operate at very high frequencies, making it very attractive for high speed 

microwave applications. In this section, we shall describe in detail the calculations of 

http://Alo.5Gao.5As
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two widely used ngures-of-merit that characterize the high frequency performance of 

an HBT: (i) the cutoff frequency, fa, and (ii) the maximum frequency of oscillation, 

/ m a x - The computations of fa and / m a x depend on the device structure and physical 

parameters. In the derivations that follow, we shall concentrate specifically on the 

pyramidal HBT structure shown in Figure 2.14 whose geometrical and doping density 

parameters are given in Table 2.3. These values pertain to the prototype HBT device 

being developed at Bell-Northern Research, Ottawa. The parameters Wg and xbt shown 

in Table 2.3 are the emitter junction grading width and the Al mole fraction at the 

base-emitter junction respectively. 

2.7.1 Cutoff Frequency 

The cutoff frequency /r , also known as the gain-bandwidth product, is defined as the 

frequency at which the common-emitter short-circuit current gain is unity. The cutoff 

frequency is usually evaluated from the total emitter-to-collector transit time, rec, using 

the expression 

Sr = - i - (2.190) 
2TTTEC 

For microwave transistors, this total transit time consits of four delay times [100]: 

Tec =TB + TB + TSCR + Tc (2.191) 

where 

rE = emitter charging time 

rB = base transit time 

TSCR — collector space charge region transit time 

rc — collector charging time 
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5£ = 2̂ m 

Figure 2.14: The pyramidal heterojunction transistor structure. 

Table 2.3: Parameters for the pyramidal heterojunction bipolar transistor. 

Layer # Material Thickness 
(A) 

Doping 
(cm"3) 

Al or In composition 
X 

emitter cap 
1 n + - I n I G a i _ I A s 300 1 x 1 0 1 9 0.6 

emitter cap • 2 n + -In a ; Ga 1 _j ; As 300 1 x 1 0 i y 0.6-0 linear emitter cap 
3 n + -GaAs 1000 3 x 1 0 1 8 0 

emitter grading 4 n-AlxGax-j-As 500 5 x 1 0 1 7 0-0.3 linear 
emitter 5 n - A l I G a x _ I A s 1500 - Wg 5 x 1 0 1 7 0.3 

emitter grading 6 n - A l z G a ^ A s wg 5 x 1 0 1 7 0 . 3 - X ( , E linear 
base 7 p+'AlxGai-jAs 1000 3 x 1 0 1 9 £( , , . -0 linear 
collector 8 n-GaAs 4000 5 x 1 0 1 6 0 

collector buffer 9 n + -GaAs 4000 3 x 1 0 1 8 0 
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Figure 2.15: A simplified hybrid n circuit model for a transistor, with the emitter and 
collector terminals short-circuited. 

A. Emitter Charging Time 

The emitter charging time, rB, is really a time constant representing the delay in 

the input of a common-emitter circuit. Consider the simplified hybrid ir model with 

the collector and emitter short-circuited shown in Figure 2.15. Here, Miller's Theorem 

has been applied so that the effective capacitance C is the sum of the emitter and the 

collector junction capacitances, i.e., C = CEJ + CQJ. The other important elements 

shown are the base spreading resistance rw», the transconductance gm, the emitter 
* 

differential resistance r e, and the dc common-base short-circuit gain a 0. The common-

emitter short-circuit current gain, /?, is simply the ratio of the currents ic and ib. Since 

gm — a0/re and the dc current gain f30 = a 0/(l - a0) > 1, the current gain, derived 

from Figure 2.15, can be written as follows: 

0 = ~ = 
ic gmrt/(l-a0) 
H 1 + j wCr e / ( l - a0) 
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Po 

l+jtore (A> + 1)C 

l + i w r e / ? 0 C 
Putting u> = wE and |/?| = 1 gives 

(2.192) 

' E — 
OJr. 

~ reC = re{CEj + Ccj) (2.193) 

To be more accurate, the emitter series resistance should also be included, thus the 

emitter charging time becomes (refer to Appendix D) 

rE = re {CEj + CCj) + {REC + REX + REI) CCj (2.194) 

The emitter series resistance has three components: the contact resistance and the bulk 

resistance of the extrinsic (cap) and intrinsic layers. With reference to Figure 2.16, the 

emitter contact resistance is given by 

REC = ^ f - (2-195) 

J E LiE 

where pcE is the specific contact resistivity of the emitter. For non-alloyed N-type 

contacts using graded InGaAs, pcE ~ 5 x 10~8 $7 cm2 (n+ = 1.5 x 1019 cm - 3) [15]. 

The extrinsic emitter resistance, REx, refers to the resistance of the emitter cap 

which is composed of three layers: a top n + Ino.6Gao.4As layer, a n + GaAs layer, and 

a graded layer in between. Using the subscript notations for the layers in Figure 2.16 

and denoting N for doping density and W for layer thickness, we can write 

REX — (Pcapl ^capl + P c a p l 2 ^ c a p H + Pcxxp2 Wcap2)/SE LE (2.196) 

where 

http://Ino.6Gao.4As
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Figure 2.16: Equivalent circuit resistances for the emitter layers and emitter-base junc
tion. 
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1 
P c a p l 2 — 

<? J * c a p l 2 M n c a p l 2 

1 
Pcap2 — 7 7 

Q - ' v cap2 M n c a p 2 

and /Xncapi, M n c a p i 2 > M n c a p 2 are the electron mobilities of In0.eGa0.4As, Ino.3Gao.7As, and 

G a A s , respectively. Note that a constant value is used for the electron mobil i ty of 

the graded layer. The first two electron mobilities are calculated by linearly interpo

lating between the intrinsic electron mobil i ty of InAs and G a A s (33000 c m 2 / V s and 

8500 c m 2 / V s respectively) and assuming that the mobi l i ty of I n I G a i _ I A s has the same 

doping dependence as G a A s . 

The intrinsic emitter resistance, REI, is equal to the sum of the resistances of the 

Alo.3Gao.7As intrinsic emitter (layer #5) and the graded layer immediately above it 

(layer #4), i.e., 

REI = [PEI WEI + PE2 {WE - XE)}/SE LE (2.197) 

where 

1 

PEI = —rT  

1 
PE2 = — 7 7 

q NE2 P*nE2 

and p,nEi, P-nE2 are the electron mobilities of Alo.15Gao.85As and Alo.3Gao.7As respec

tively, and XE is the depletion-layer w id th in the emitter (obtainable using E q . (2.6)). 

The emitter junct ion differential resistance, r e , is defined as 
1 dVBE 

dVBE 

re = vBB

 SELe dJE 

(2.198) 
V B B 

dIE 

The differentiation of VBE w i th respective to JE can be performed from E q . (2.64) using 

the method of finite difference calculus. 

The emitter and collector junct ion capacitances, derived from E q . (2.9), are 

CE, = F

 S ' L ' ' " ' (2.199) 
(•E 1 €B A B E 

http://In0.eGa0.4As
http://Ino.3Gao.7As
http://Alo.3Gao.7As
http://Alo.15Gao.85As
http://Alo.3Gao.7As
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Cc, = (2.200) 
Ac + Aflc 

where XBE and XBC are the base depletion-layer width next to the base-emitter and 

base-collector interface respectively, and Xc is the depletion-layer width in the collector. 

The dimensions LB and SCD a r e defined in Figure 2.14. 

In deriving the emitter charging time in Eq. (2.193), we have omitted the emitter 

diffusion capacitance, CD, which normally should be part of the effective capacitance 

C shown in Figure 2.15. It can be shown, however, that the time delay due to r e and 

Co is essentially equivalent to the base transit time rB [38, p. 188]. By definition, the 

emitter diffusion capacitance is 

C° = §TE <2-201> 
The excess minority charge in the base, QB, is equal to rBIN(W), where / n (W) is the 

electron diffusion current at the edge of the quasi-neutral base near the collector. For 

thin-base transistors, IN{W) ^ IE, the emitter current. Thus, Eq. (2.201) becomes 

C ^ r B - ^ = ^ (2.202) 
dVBE re 

or r e CD ~ rB. 

B. Base Transit Time 

The time for electrons to cross the quasi-neutral base region can be calculated from 

the known distribution of base excess electron density and the collector electron current 

density. By definition, 

(2.203) 
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where W is the quasi-neutral base width, and h(x) and «/„(W) are obtainable from 

Eqs. (2.53) and (2.54). The result of the integration is 

TB ~ DnB \{ri-f)^"-\rt-f)Ce*») (2-2°4) 

where C = -C2jCx ~ e2tW and Cu C2, ru r 2 , t are denned in Eq. (2.53). When 

the amount of base grading is large (f2 ~> 4/LnB), Eq. (2.204) reduces to Kroemer's 

expression [37], i.e., (W2/2DnB) x (2kT/AE3). When there is no base grading (/ = 0) 

and WjLnB < 1, Eq. (2.204) reduces to the usual expression W2/2DnB. 

The above expression for rB is only an estimate; it becomes inaccurate under extreme 

conditions. First, under high-current conditions, the effective base width increases due 

to the Kirk effect [102], causing Eq. (2.204) to underestimate the base transit time. 

Second, when the built-in field due to base grading is high enough, the velocity of the 

carriers saturates, which may place a lower limit on rB if ballistic effects do not occur. 

Third, ballistic transport of carriers can occur in a very thin base. Accurate modeling 

of the latter two effects would require more sophisticated modeling schemes, an exam

ple being Monte-Carlo simulation [103]. 

C. Collector Space Charge Region Transit Time 

The time delay for transport through the base-collector space charge layer is given 

by ihe usual expression [104, p. 35] 

TSCR = (2.205) 

where WBc is the width of the base-collector space charge region and v„ is the saturation 

velocity for electrons in GaAs. The factor 1/2 in Eq. (2.205) is due to the inclusion of 

an additional delay between ac collector current and ac emitter current [105, pp. 321-

336]. In Eq. (2.205) it is assumed that the electrons traverse the collector depletion 
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region at a constant saturated velocity. In reality, electron velocity is not constant 

throughout the collector depletion region and a transiently high electron velocity can 

exist near the base side of the collector depletion region [21,106]. When electrons with 

unsaturated velocities enter the collector depletion region, the high electric field they 

experience causes their velocities to overshoot. As the electrons pick up more energy 

from the electric field, they transfer from the T valley to the low-velocity L valley and 

eventually their velocities saturate. Normally the velocity overshoot region occupies 

only a fraction of the total collector depletion region and therefore Eq. (2.205) should 

provide a reasonable estimate of r s c n , although new collector structures have been 

proposed to increase the velocity overshoot region, thereby reducing the effective rSOR 

[10,107]. 

The electron drift velocity in GaAs is a slowly decreasing function of electric field 

when the electric field exceeds ~ 100 kV/cm. Using the doping density parameters 

for the base and collector listed in Table 2.3 and assuming a reverse-biased voltage of 

— 3 V, we estimated that the average electric field in the collector depletion region is 

about 120 kV/cm which corresponds to a t/, ̂  7.5 x 106 cm/s [108]. 

D. Collector Charging Time 

This is the time delay caused by charging the collector junction capacitance through 

the collector series resistance and is given by 

rc = {Rec + RCB + Rei) CCj (2.206) 

where Rec RCB, RCI are the resistances of the collector contacts, n + buffer layer, 

and intrinsic n layer, respectively, and CCj is given by Eq. (2.200). With reference to 
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Figure 2.17: Equivalent circuit resistances for the intrinsic and buffer regions of the 
collector. 

Figure 2.17, the collector contact resistance is [109] 

is the sheet resistance of the n + collector buffer layer, pnbuf being the electron mobility 

of the buffer layer, and pcc is the collector specific contact resistivity. In general, the 

specific contact resistivity of both N-type and P-type GaAs is a function of doping 

concentration and the type of contact metal used. For simplicity, we leave the specific 

contact resistivity (base or collector) as a device input parameter. Measured contact 

resistivities of good Au/Ni /Au-Ge alloyed ohmic contacts to heavily doped N-type 

GaAs can be as low as 1 x 10 - 6 f l cm 2 [110]. 

The lateral resistance of the buffer layer is given by [ i l l , p. 217] 

(2.207) 

where 
1 

q NbuS pnbxl{wbu{ 

RCB — R'cB + CB 
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Rsbuf ScD Rsbuf &BC , 
— 1 yz.zuo) 

12 Lc 2 Lc 

The first term in Eq. (2.208) corresponds to the part of the buffer layer immediately 

underneath the intrinsic collector. The second term corresponds to the two small buffer 

strips between the collector electrode and the edge of the intrinsic collector layer, which 

are connected in parallel as far as the collector current is concerned. 

The resistance of the vertical intrinsic collector is given by 

Re, = "C {™C' 7 X C ) (2.209) 

where 
1 

Pc 
q NCI PnC 

[inC and Xc are the electron mobility and depletion width in the intrinsic collector 

layer, and Nci and WCi are the doping density and thickness of the intrinsic collector 

layer. 

2.7.2 M a x i m u m Frequency of Oscillation 

The maximum oscillation frequency, / m a x , is the frequency at which the unilateral gain 

becomes unity. The following simple approximation for / m a x is often used [36, p. 164]: 

=i^kc, <2-2io> 
where fx is the cutoff frequency, Rb is the base resistance, and Cc is the collector 

capacitance. Due to the distributed nature of the actual base resistance and collec

tor capacitance, a more accurate result can be obtained by considering an effective 

Ri, Cc product [2,101,109]. Assuming the base resistance and collector capacitance are 

distributed in the way shown in Figure 2.18, the effective Rb Cc is 

(Rt Cc)eff = Cci (RBI + RBX + RBC) + Ccx ^Bc^j + CCc RBC (2.211) 
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BASE-

COLLECTOR 
n + n -

2RBC> 2RBx 2RBi 2RBX <2RBC 

•>cc Ccx j CCi | Ccx | Cgc 

7 
1 

Figure 2.18: Equivalent circuit resistances and capacitances for the base and 
base-collector junction. 

where RBI, RBX, RBC are, respectively, the intrinsic, extrinsic, and contact resistance 

of the base, and Cci, Ccx, Ccc are the collector-base junction capacitances underneath 

the intrinsic, extrinsic, and contact regions of the base. 

The lateral base resistances of the intrinsic and extrinsic regions are given by [ i l l , 

p. 217] 

R'sB $E 
RBI — 

RBX = 

12 LB 

RsB SEB 

2 LB 

(2.212) 

(2.213) 

where 

R'SB 

RSB 

q NB UpB [WB - XBc - XBE) 
1 

qNBpPB {wB - xBC) 
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are the sheet resistance of the intrinsic and extrinsic bases, NB is the base doping 

density, WB is the thickness of the base layer, and p,PB is the base hole mobility taken 

as a constant at a value appropriate to material of the Al mole fraction as exists in the 

center of the base. 

The expression for the base contact resistance is similar to that of Eq. (2.207), 

namely 

where a value of 3 x 10 - 6 fl cm2 is used for the base specific contact reistivity, pC£ 

[112]. This value of pCB for a 3 x 1019 cm - 3 doped base layer is also consistent with the 

theoretical value calculated using the Schottky-barrier tunneling model [13]. 

The three distributed collector capacitances are calculated as follows, assuming a 

base-collector homojunction: 

Cc, = (2.215) 

2 SEB Lb ec tooi^ 
C c x ~ ~ y T1T~ (2.216) 

Ccc = (2.217) 

Note that the sum of the above three capacitances equals the total collector junction 

capacitance as given by Eq. (2.200). 

2.7.3 Modif ied Collector Structures 

All the formulations described in this section so far are based on a simple transistor 

structure shown in Figure 2.14. Newer and more practical HBTs often have implant-

damage external collector regions for reducing the base-collector capacitance. Others 

may have only a single collector contact. It turns out that only minor modifications to 

some of the earlier equations are needed to take in account these two cases. 
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Figure 2.19: Heterojunction transistor structure with an implant-damaged external 
collector. 
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The external regions of the intrinsic collector layer, that is, the hatched regions 

shown in Figure 2.19, can be made highly resistive or intrinsic wi th either proton 

or oxygen implantat ion [11,113]. More importantly, the base-collector capacitance in 

these regions is reduced and independent of applied voltage. It has been shown that an 

oxygen fluence of 8 x 1 0 1 3 c m - 2 [113] or a proton fluence of 5 x 10 1 2 c m - 2 [11] would 

produce an external base-collector capacitance of 0.2 fF/^um 2 . 

W i t h reference to Figure 2.19, SCD is n o w defined as the intrinsic n collector layer 

wid th excluding the implanted isolation regions; in this case, SCD — &E- The total n 

collector layer w id th is denoted by a new variable: 

SET = SE + 2 (SEB + SB) (2.218) 

The expression for the resistance of the buffer collector layer, i.e., E q . (2.208), must 

now be changed to 

R c b = Rs^S^ + i W + SBT - SCD^ ( 2 2 i 9 ) 

The distr ibuted capacitances Ccx and Ccc-, as a result of proton or oxygen implan

tat ion, become 

C c c = 2 SB LB (2 x 10~ 8 F / c m 2 ) (2.220) 

C c x = 2 SEB LB (2 x 1 0 - 8 F / c m 2 ) (2.221) 

The total collector junct ion capacitance originally given by E q . (2.200) must now be 

calculated from the distr ibuted collector capacitances, i.e., 

Ccj — Ccc + Ccx + Cci (2.222) 

For a single collector electrode structure, only the expressions for the collector con

tact resistance Rcc a n d the collector buffer resistance RcB are needed to be modified. 
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For Rcc, Eq. (2.207) is changed to 

= VPcC flsbuf c Q t h / ̂  / W | ( 2 2 2 3 ) 

£c V V Pec / 
and for RCB, Eq. (2.219) is changed to 

Res = + i W ( s*c + S"T-S<»>) ( 2. 2 24) 
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Results and Discussion 

In this thesis, we have favored simplicity in employing a one-dimensional model for 

the derivation of the H B T current equations and a quasi-two-dimensional model for 

the formulation of the high frequency figures-of-merit. One reason for using a simple 

model is that we want to obtain some reasonable estimates of the device performance 

without resorting to the use of extensive computations like those required by two-

dimensional and Monte Carlo models. More importantly, we want to investigate the 

qualitative effects of base grading and various intrinsic recombination mechanisms on 

the device performance of HBTs. Before we present the results in this chapter, two 

limitations about the present model should be clarified. 

First, the present model does not include any of the effects that occur at high 

injection levels, namely, base push-out due to the Kirk effect [102] and emitter and base 

resistance voltage drops. To avoid complications due to the Kirk effect, Jc is restricted 

to values below the transition current density Ji, which, from numerical analysis, is 

identified as being the threshold for a sudden increase in r e c , and corresponding drop in 

fx [114]. This critical current density is given by 

where NCi is the doping density of the intrinsic collector (5 x \0 l b cm 3) and vm is the 

drift velocity in the collector space charge region under the field Em, which is given by 

Ji - qNciv. (3-1) 

VW + IVBCI 
WCI 

(3.2) 

81 
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where Vbi is the base-collector junction built-in voltage (~ 1.4 V) and WCi is the 

width of the intrinsic collector layer (4000 A). The results presented in this chapter are 

computed for the H B T structure parameters shown in Table 2.3 and for VBC = —3 V , 

which yields Em = 1 x 105 V /cm. At such fields the carrier velocity will saturate, 

giving vm — vs ~ 107 cm/s, although velocity overshoot effects may take vm as high as 

1.5 x 107 cm/s [12]. Thus, a reasonable value for J\ would appear to be 105 A / c m 2 . 

As the effects of base push-out occur within a very narrow collector current range 

about Ji [114], the results presented here should be valid for Jc ~ 5 x 104 A / c m 2 . 

It is significant that a number of experimental results for AlGaAs/GaAs HBTs with 

Nci = 5x 1016 c m - 3 give no indication of base push-out occuring at collector current 

densities as high as 4-5 x 104 A / c m 2 [9,12,115] and 1.5 x 105 A / c m 2 [14]. 

The second limitation of the present model is that only intrinsic recombination 

mechanisms are modeled, that is, recombinations at the surface of the emitter periphery 

and in the external base are neglected. The surface recombination around the emitter 

periphery can make a significant contribution to the base current [116] and cause the 

emitter size effect (degradation of current gain as emitter size is scaled down) [31] in 

non-graded-base HBTs. Unfortunately, this surface recombination, because of its two-

dimensional nature, is very difficult to incorporate into our model. However, in newer 

HBTs with better passivated surfaces [117] and graded bases [33], surface recombination 

is often suppressed. 

Unless specifed- otherwise, all the calculations presented in this chapter are based 

on the pyramidal H B T structure shown in Figure 2.14 whose geometrical and doping 

parameters are given in Table 2.3. The surface recombination velocities at all contacts 

are taken to be infinite and the actual base-emitter junction is taken to be ungraded. 

The base-collector reverse biased voltage is set to —3 V . 
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3.1 Emi t t er and Collector Currents 

Recalling from Eqs. (2.64) and (2.65), the emitter and collector current densities for 

the H B T are 

JE = ^ n ( e ? W * r - l ) + ^ i 2 K B c / f c r - l ) + JR (3.3) 

Jc = Atl (e^ k T - 1) + A22 (e< v°°' k T - 1) + JG (3.4) 

It is worth noting that the coefficients An and A2X are not exactly equal. This is beacuse 

in the derivation of the electron diffusion current in the base in Subsection 2.2.3, an 

approximation was made in assuming that the variable "a" in n,(x) = a e ' z is constant. 

However, the difference in An and A2i is very small so that in essence the reciprocity 

rule still holds.3 

The dependence of the collector current density on the base-emitter voltage for 

different amounts of Al mole fraction is illustrated in Figure 3.1. The solid lines are 

drawn for JG = 0; these curves converge to A22 at VBE = 0, which has a magnitude 

of about 3 x 10~18 A / c m 2 and is nearly indepenedent of the A l mole fraction at the 

base-emitter metallurgical boundary, i j e . The flat broken line at 5.4 x 10 - 1 0 A / c m 2 is 

the value of Jc; the solid lines would converge to for VBC = — 3 V . The magnitude of 

the collector current density decreases as the amount of base grading increases. This 

is directly attributable to a smaller saturation current density, i.e., A2X, for a larger 

xi,e. The saturation current density can be obtained by extrapolating the solid lines 

in Figure 3.1 to VBE = 0. For examples, A2l ~ 3 x 10 - 2 0 A / c m 2 for i(,e = 0 and 

A2\ ~ 2 x 10 - 2 4 A / c m 2 for i(,e = 0.3. The variation of A2X with xbe depends, in a 

complicated way, on the changes in n,o, / , and A.£7n; however, the major contribution 

to the decrease of A2X with increasing is the exponential decline of the intrinsic 

3If the assumption of constancy of "a" is applied in the actual calculation of ni(x), then it follows 
that new — " B o e 2 , V V

 a n ^ thus, as reciprocity demands, AX2 — —A2i-
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Figure 3.1: Dependence of collector current density on base-emitter voltage for different 
amounts of base grading, with VBC = -3 V (broken lines) and JG = 0 (solid lines). 

carrier concentration, n, 0 , which is about 1000 times smaller for Alo.3Gao.7As than that 

for GaAs. 

It can be seen from Figure 3.1 that the slopes of the JC-VBE curves are different for 

different amounts of base grading. A measure of these slopes shows that the ideality 

factors are 1.08, 1.05, 1.02, and 1.01 for xhe = 0, 0.1, 0.2, and 0.3, respectively. The 

deviation from unity ideality factors is a direct result of the heterostructural nature 

of the emitter-base junction. For a heterojunction, the electron energy barrier AEn is 

http://Alo.3Gao.7As
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6-1 

Base-Emitter Voltage (V) 

Figure 3.2: Dependence of emitter current density on base-emitter voltage for different 
amounts of base grading. 

positive and it increases as the applied junction voltage rises. The effect of increasing 

AEn is to reduce -the rate at which Jc varies with VBE-, and thus the ideality factor. 

For a more heterostructural junction (i.e., xie = 0), the magnitude of AEn is larger and 

is therefore a stronger function of VBE\ thus the resulting ideality factor is also larger. 

When x&e = 0.3, AEn is negative and it will not affect Jc- In this case, the emitter-base 

junction behaves like a homojunction and the ideality factor is almost one. 
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The dependence of the emitter current density on the base-emitter voltage for dif

ferent amounts of A l mole fraction is shown in Figure 3.2. At the high current end, JE 

is essentially equal to Jc- At lower current densities, JE becomes basically indepen

dent of Al mole fraction and changes more slowly with VBE- In this current density 

range, the ideality factor is about 2, which suggests the emitter current is dominated 

by SRH recombination in the emitter-base depletion region. The fact that the current 

is independent of base grading at low current levels indicates that much of the SRH 

recombination occurs in the depletion layer of the emitter where the A l composition is 

constant. 

3.2 Base Current Components 

The base current density can be obtained by simply subtracting Jc from JE using the 

expressions given by Eqs. (3.3) and (3.4), i.e., JB = JE — Jc- The base current density 

is composed primarily of five components: the neutral base recombination current 

density represented by |./n(0) ~ "^n(W)|i the hole current density back-injected into the 

emitter, Jp(xE); the Shockley-Read-Hall, radiative, and Auger recombination current 

densities in the emitter-base depletion region denoted, respectively, by JRRH, JR*, 

and JftUa. The dependence of the various base current density components on VBE 

for the case of xbe = 0.1 is shown in Figure 3.3. As indicated in the previous section, 

SRH recombination current is the strongest base current component at low biases. 

Above VBE 1.2 V , the neutral base recombination current and the back-injected hole 

current surpass the SRH recombination current. At still higher base-emitter biases, 

back injection of holes into the emitter dominates. Both the radiative and Auger 

recombination currents also exceed the SRH recombination current at the high end 

of the bias range. Incidently, the neutral base recombination is due primarily to the 
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Figure 3.3: Dependence of base current components on base-emitter voltage for the 
case of xbe = 0.1. 

radiative recombination process since the radiative lifetime is smaller than the Auger 

and SRH lifetimes.for the given base doping level of 3 x 10 1 9 c m - 3 . 

The variation of the base current density components with A l mole fraction is 

shown in Figure 3.4 for Jc = 103 A / c m 2 and in Figure 3.5 for Jc — 10 4 A / c m 2 . If the 

space-charge currents were independent of base grading, one would expect JRRH , JT

R

ad 

and J^U9 to increase with xbe because, in order to maintain Jc constant, VBE must 

increase with xbe as well. This is not seen except for the SRH recombination current in 
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Figure 3.4: Dependence of base current components on Al mole fraction for 
Jc = 103 A / c m 2 . 

the case of small collector current density (Figure 3.5). In fact, for both high and low 

collector current densities, the space-charge currents in general decrease with increasing 

Al mole fraction except for xbt > 0.2. In the latter case, the exponential dependence 

on voltage of the space-charge currents causes them to eventually increase with xbe. 

The large reduction of the radiative and Auger recombination currents with increasing 

Al mole fraction for xbe < 0.2 indicates that these two recombination processes occur 

mostly in the base side of the emitter-base depletion region where the bandgap increases 
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Al Mole Fraction 

Figure 3.5: Dependence of base current components on A l mole fraction for 
Jc = IO"4 A / c m 2 . 

with base grading. On the other hand, at low collector currents, SRH recombination 

occurs mostly in the emitter side of the emitter-base depletion region; at high collector 

currents, however, the contribution from the base side of the emitter-base depletion 

region becomes significant. 

From Figure 3.4 and Figure 3.5, the Auger recombination current is in general 

always less than the radiative recombination current even for a base doping density as 

high as 3 x 10 1 9 c m - 3 . At low collector currents, SRH recombination is the dominant 
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space-charge recombination process for all degrees of base grading. At high collector 

currents, radiative recombination is the strongest space-charge recombination process 

for xbe < 0.1. For higher xbe, the large base bandgap at the emitter-base interface 

causes both Jr

R

ad and to drop below J | H H . 

Base grading is also seen to be effective in reducing the neutral base recombination 

current. This is, however, overshadowed by the large increase of back-injected flow of 

holes to the emitter due to the increasingly homojunction-like nature of the emitter-

base junction. In fact, at high collector currents, the total base current is due mostly 

to this hole current for xbe > 0.1. 

3.3 D C Current G a i n 

The computation of the D C current gain is done using the expression 

The D C current gain as a function of collector current density and base grading is 

shown in Figure 3.6. All four curves show a relatively flat j3 for a wide range of high 

collector current densities. At low collector current densities, the contribution of the 

recombination current in the base-emitter depletion region is usually larger than the 

useful diffusion current of minority carriers across the base. The current gain may be 

written as [36, p. 143] 

Jc exp(qVBE/kT) 
P — ~T 0 C JB exp(qVBE/mkT) 

= exp qVjBE 

kT V m 
oc 41

 ™) (3.6) 

where m is a constant that determines the rate of exponential increase of the recombi-

1 /2 
nation current with bias. For SRH recombination, m ~ 2 and (3 oc Jj by Eq. (3.6). 
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Figure 3.6: Dependence of D C current gain on collector current density for different 
amounts of base grading. 

But, for radiative recombination, m ~ 1 and /? is independent of Jc- In Figure 3.6, the 

1/2 

current gain for xbe = 0.1 and 0.2 exhibits the Jc' dependence for Jc ~ 0.01 A / c m 2 . 

For xbt = 0.3, a similar trend for the current gain can be seen for Jc ~ 0.001 A / c m 2 . 

SRH recombination is clearly an important process at low collector currents for the 

graded-base devices. Since /? remains relatively constant down to a collector current 

density as low as 10 - 4 A / c m 2 for the non-graded base case, the base current must be 

composed mostly of space-charge radiative recombination current for Jc > 10~4 A / c m 2 . 
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We know that this is true for Jc = 103 A / c m 2 from Figure 3.4. For Jc ~ l O - 4 A / c m 2 , 

base current comes mainly from SRH recombination in the base-emitter depletion re

gion as is evident in Figure 3.5. 

As bias increases, the barrier that blocks the flow of holes into the emitter decreases. 

The resulting increase in the back-injected hole current raises the overall base current 

and thus reduces the current gain. When xbe = 0.3, the back-injected hole current is so 

much larger than the other base current components that the current gain is essentially 

given by 

Jp{XE) 

But both Jc and Jp(xE) vary as exp(qVBE/kT), so /? is essentially independent of Jc 

as indicated in Figure 3.6. For xbe = 0, the fall in /? with increasing Jc cannot be due 

to the increase in the back-injected hole current as it contributes only a fraction of the 

total base current even at a strong bias (see Figure 3.4). It is due, rather, to a slight 

increase of the energy barrier AEn as VBE rises since current gain is proportional to 

exp(-AEJkT) [3]. 

It can be seen in Figure 3.6 that the current gain reaches a maximum value of 

around 180 when the A l mole fraction is 0.1. This is directly related to the total 

base current curve shown in Figure 3.4 where a minimum base current is seen when 

Xbe = 0.1. As the amount of base grading is increased, various recombination currents 

go down as a result of widening of the base bandgap, causing the current gain to rise. 

Further increase in the amount of base grading renders the emitter-base junction more 

homojunction-like and allows the back-injected flow of holes to increase. The result is 

a diminution of the emitter injection efficiency and, correspondingly, the current gain. 

The current gain values shown in Figure 3.6 are not very high because we have 

not employed any emitter-base junction grading. If junction grading were applied, the 

* 
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Figure 3.7: Dependence of D C current gain on emitter junction grading width for 
different amounts of base grading, with Jc = 103 A / c m 2 . 

electron flow to the base should increase substantially, thereby increasing the emitter 

injection efficiency %and thus the current gain. In Figure 3.7, we have plotted the current 

gain as a function of emitter-base junction grading width WG and Al mole fraction. The 

collector current density is held at 103 A / c m 2 which produces a depletion-layer width in 

the emitter of 200-250 A depending on the degree of base grading. As expected, current 

gain increases with WG but levels off at WG ~ 100 A, about half of the total depletion-

layer width in the emitter. The current gain is independent of junction grading for 
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Xf,e = 0.3 because, in this case, there is no conduction-band spike to begin with. The 

increase of current gain is about 4-5 fold when Wg > 100 A. 

3.4 Transit T i m e Components 

In experimental H B T research, great efforts are being made to reduce various parasitic 

resistances and capacitances of an H B T in order to increase its high frequency per

formance. Two examples are the use of non-alloyed ohmic contacts to reduce contact 

resistances [15,16] and the use of oxygen and proton implantations to reduce the ex

ternal base-emitter capacitance [11,113]. Most of the parasitic resistances, calculated 

using the equations in Section 2.7 and the physical parameters listed in Table 2.3, are 

bias-independent, i.e., 

i ? £ C = 0.50 n REX = 0.13O 

RBC = 37.49 fl RBx = 7.00 O RBi = 15.62 fl 

R C C = 5.38 fl R C B = 6.89 fl R C I = 0.21 fl 

These resistances are computed for the case of maximum base grading. The three base 

resistances are not completely independent of bias, but only change by a few tens of 

milliohms as VBE changes from 0.1 to 1.7 V . The collector capacitances, computed for 

VBE = — 3 V in the case of maximum base grading, are 

C c c = 9.51fF C C x = 0.48fF Cc,i = 3.17fF 

totaling 13.16 fF. The remaining components, REI, re and CEJ, depend on the base-

emitter bias voltage. The intrinsic emitter resistance changes from 1.07 fl to 1.55 fl 

over the VBE range of 0.1 to 1.7 V . The other two components vary more substantially 

with bias: re changes from 2.6 kfl to 1.3 fl and C'Ej changes from 42 fF to 107 fF in 

the VBE range of 1.55 to 1.75 V , assuming again maximum base grading. At the most 
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Figure 3.8: Dependence of fr and / m a x on collector current density for different amounts 
of base grading. 

ideal bias, the total emitter resistance is quite.small (no more than 4 fl) due largely 

to a very small emitter ohmic resistance that results from the use of a non-alloyed 

emitter ohmic contact. Although CEJ increases significantly with V B E , the overall 

emitter charging time should decrease with bias unless VBE approaches very close to 

the built-in emitter-base potential. The large base contact resistance compared to the 

other two base resistive components implies that the quality of the base contact can 

strongly affect the highest achievable / m a x of an H B T . 
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Figure 3.9: Dependence of transit time components on collector current density for 
xht = 0.3. 

We have plotted /V, / m a x and the transit time components as functions of the 

collector current density in Figure 3.8 and Figure 3.9. Although the transit time plot 

of Figure 3.9 is for the case of maximum base grading only (i.e.,xie = 0.3), the variations 

of the transit time components shown are quite representative of all degrees of base 

grading. In Figure 3.8 the increasing trend of fa and / m a x with Jc up to a collector 

current density of 104 A / c m 2 is due principally to the reduction in the base-emitter 

differential resistance with increasing VBE. This results in a rapid decrease in the 
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Figure 3.10: Dependence of transit time components on Al mole fraction at base-emitter 
junction for Jc = 2 x 104 A / c m 2 . 

emitter charging time re as indicated in Figure 3.9. As the other time delay components 

are essentially independent of VBE, IT and thus / m a x reach their maximum values at the 

point of the minimum value of rE. The emitter charging time will eventually increase at 

higher VBE because of the increase in the base-emitter junction capacitance, CEj. The 

cutoff frequency, fx, appears in the expression for / m a x (Eq. (2.210)) as a square root 

term. This fact, coupled with the independence of the effective base-collector Ri, Cc 

time constant on VBE, causes / m a x to be less dependent than fx on Jc-
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Figure 3.8 also shows that fx and / m a x improve with base grading. A plot of the 

transit time components as a function of Al mole fraction at the base-emitter junction 

for Jc = 2 x 104 A / c m 2 (see Figure 3.10) shows that this is due almostly entirely to 

the reduction of base transit time with base grading. This is in turn due, of course, to 

the aiding field in the base and, to a very small extent because of the thin base, the 

associated decrease in neutral base recombination shown in Figure 3.4. Note that the 

reduction in TB is about 6 times, corresponding roughly to a decrease from W 2/2DB in 

the non-graded base case to (W 2/2 DB) x (2kT/ AEG) in the highly graded base case (see 

Subsecton 2.7.1). The actual increase in fx is only about 60 % because the collector-

base depletion region transit time TSNR, remains high. Judging from Figure 3.10, even 

a small degree of base grading (i.e., xbe = 0.1) is sufficient to significantly reduce the 

total transit time and leave TSCR the principal intrinsic limitation to attainment of high 

fx. 

3.5 Effects of Base W i d t h and Base Doping on fT and / m a x 

Base grading not only creates a quasi-neutral electric field that accelerates minority 

carriers through the base but also in the process reduces the chances of neutral base 

recombination. This effect can be seen in Figure 3.11 where fx and fmax are plotted 

against base width for Jc = 2 x 104 A / c m 2 in the case of xbe — 0 and 0.3. The rapid 

decline in fx as the base widens is due to the increase in the base transit time rB. Since 

neutral base recombination further increases the base transit time, the decline in fx is 

more pronounced when there is no base grading. The effect on / m a x is lessened by the 

reductions in intrinsic and external base resistance. In fact, at base widths less than 

about 1500 A, where the influence of rB on TCC is slight, the reduction in base resistance 

actually leads to an increase in / m a x with WB (see Eq. (2.210)). 

* 
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Figure 3.11: Dependence of fT and / m a x on base width for Jc — 2 x 104 A / c m 2 . 

The effect of base doping density NB on fx and / m a x is illustrated in Figure 3.12. 

Here, the decline in fT with NB is mostly due to a decrease in diffusion coefficient of 

the base, DB, and'correspondingly an increase in rB. However, when the base doping 

density is very high ( 1020 c m - 3 ) , the increase in neutral base recombination, notably 

in the non-graded base case, further raises rB. As a result, a steeper decline in fx is 

seen at very high doping densities when there is no base grading. The increase in 

neutral base recombination with NB arises from the strong doping density dependence 

of radiative and Auger recombinations. The peculiar structure shown in the fx curve 
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Figure 3.12: Dependence of fT and / m a x on base doping concentration for 
Jc = 2 x 104 A/cm 2 . 

for Xbe — 0.3 is due to the fact that, at Jc = 2 x 104 A/cm 2 , rE is still significant 

at the lower base doping densities, and its decline with NB counteracts the increase 

of rB with NB- In contrast to the case of / m a x versus the base width in Figure 3.11, 

the diminution in fx with NB is not sufficient to bring about an associated decrease 

in /max- The reduction in base resistance is the dominant effect here, resulting in the 

increase of / m a x with NB as depicted in Figure 3.12. 



Chapter 4 

Comparison with Experimental Data 

In this chapter, our graded-base H B T model is put to the test of predicting the per

formance of real devices. We have selected from the recent literature two papers (both 

from the N T T group) where experimental results for fabricated HBTs were presented. 

The first paper [118], published in 1985, was mainly a study of the effects of base grad

ing and base width on current gain. The variation of current gain cutoff frequency, fr, 

with collector current was also presented. In the more recent second paper [13], HBTs 

of different sizes were fabricated using a proton-implanted external collector layer and 

high frequency measurements were made. 

4.1 Case I: Current Gain and Cutoff Frequency 

The epitaxial layer structure parameters for the fabricated HBTs are shown in 

Table 4.1 [118]. For the current gain measurements, the HBTs used have a relatively 

large emitter area (48 x 48/zm2). Although no other horizontal dimensions for the 

fabricated HBTs were given, they are, in this case, not required since the model we use 

to calculate the current gain is one-dimensional. Note that in Table 4.1 the emitter-

base junction was graded parabolically from x = x\,e to x — 0.3 over a distance of 300 A 

to provide a smooth conduction band edge at the interface. The contact side of the 

emitter layer was similarly graded. In our model, however, grading on both sides of 

the emitter is linear. 

Two sets of HBTs were used to study the effects of base grading and base width 

101 
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Table 4.1: Epitaxial layer structure parameters for fabricated HBTs (Case I). 

Layer Material Thickness 
(A) 

Doping 
(cm"3) 

Al composition 
X 

emitter cap n + -GaAs 1500 5 x 1018 0 
emitter grading n - A l x G a 1 _ I A s 300 5 x 1017 0-0.3 parabolic 
emitter n - A l I G a 1 _ I A s 900 5 x 1017 0.3 
emitter grading n - A l I G a 1 _ I A s 300 5 x 1017 0.3-ij,e parabolic 
base p + - A l I G a 1 _ I A s wB 1 x 1019 Xbe-0 linear 
collector n-GaAs 3000 5 x 1016 0 
collector buffer n + -GaAs 5000 3 x 1018 0 

Table 4.2: Structural parameters for the base layer (Case I). 

H B T Set #1 H B T Set #2 
WB (A) 1000 1000, 1500, 2200, 3000 
Xbe 0, 0.025, 0.067, 0.1 0.067, 0.1, 0.147, 0.2 
EBF (kV/cm) 0, 3, 8, 12 8 

on current gain. The first set of HBTs has a fixed base width of 1000 A but different 

amounts of base grading so that each device has a specific built-in field, EM, in the base. 

The second set of HBTs has both different base widths and degrees of base grading but a 

constant built-in field of 8 kV/cm. The structure parameters for the base layer for both 

sets of devices are summarized in Table 4.2. The results of current gain vs. built-in field 

and inverse base thickness for Ic = 6 x 10 - 2 A are shown, respectively, in Figure 4.1 and 

Figure 4.2. The open circles indicate esperimental values. The solid lines are generated 

from a computer program based on our model. The theoretical current gain values are 

also calculated for a collector current Ic = Jc x (emitter area) = 6 x 10 - 2 A . The 

emitter area is used because of the one-dimensinal nature of our model. However, the 

exact current level is not important in this case as we have found that the theoretical 
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Figure 4.1: Dependence of experimental and calculated current gain on base built-in 
field for / c = 6x 10"2 A and a base thickness of 1000 A. 

current gain values remain almost the same for at least two orders of magnitude about 

lc = 6 x 10 - 2 A. In the original paper, it was estimated that the minority (electron) 

lifetime in the base was about 105 ps and was nearly independent of Al composition. 

This value of electron lifetime in the base was used in our program. 

The experimental and calculated values of current gain are quite similar, indicating 

that our model does predict at least the correct order of magnitude of current gain. 

More importantly, our model also predicted the increasing trend of current gain in 
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Figure 4.2: Dependence of experimental and calculated current gain on base thickness 
for Ic = 6 x 10_J A and a base built-in field of 8 kV/cm. 

response to a increasing built-in field and a decreasing base thickness. The effects on 

current gain of base grading and base thickness were explained, in the original paper, 

by the base transport factor dependence on the built-in field and base thickness. This 

explanation is consistent with the analyses done in Chapter 3. As the built-in field 

increases or the base width decreases, the amount of quasi-neutral base recombination 

is reduced. In Figure 3.4 of Chapter 3, we see that indeed the quasi-neutral base 

recombination current component, |̂ n(0) — «/n(W)|, constitutes a significant portion of 
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the total base current for Al mole fractions of 0-0.1. A decrease in quasi-neutral base 

recombination is equivalent to an increase in the base transport factor, both leading to 

a rise in current gain. However, our analyses earlier had shown that other base current 

components were also responsible for changes in the current gain. For example, as 

shown in Figure 3.4, the radiative recombination current in the emitter-base depletion 

region is actually the dominant base current component for very small x\,t. Therefore, 

in Figure 4.1, the increase in current gain for built-in field from 0 k V / c m to 3 kV/cm 

(corresponding to xbe = 0 to xie = 0.025) is due mostly likely to a reduction of emitter-

base junction radiative recombination. In Table 4.2, we also see that the HBTs with 

the two largest base thickness have a relatively large xbe (•> 0.1) and thus a large back-

injected flow of holes from the base to emitter. This suggests that the small current 

gains at large base widths shown in Figure 4.2 are the result of this large back-injected 

hole current. 

A much smaller H B T was fabricated for the cutoff frequency measurement. The 

transistor used in this experiment had two emitter fingers, each 4.5 pm wide and 10 pm 

long. A base width of 3000 A and a base-grading parameter xbe = 0.2 were used to 

give a built-in field of 8 kV/cm. Since not enough device structure information was 

given in the paper for the calculation of fx, we have made some educated guesses: 

SE — 9 ^ni, LE = 10 pm (i.e., an effective emitter area of 90 pm2), SB = Sc = 5 /zm, 

LB — LC = 10 /urn, SEB — 0.5 pm, and SBC = 1 M m - The meaning of these dimensions 

are described in Figure 2.17 and Figure 2.18. The emitter and collector ohmic metals 

used for the N-type layers were both A u G e / N i / T i / A u , i.e., an alloyed ohmic metal. 

Since the doping densities of the emitter and the collector ohmic contact layers are 

about the same, we estimated that pCE ~ pcc — 1 x 10~6 fl cm 2 (110). For the base 

ohmic contact, we arbitrarily chose pcB = 5 x 10 - 5 f lcm 2 , but the calculation of fx 

would not be affected by it. 
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Figure 4.3: Dependence of cutoff frequency on collector current for VCE = 2 V. 

The collector current dependence of cutoff frequency for VCE = 2 V is shown in 

Figure 4.3. The open circles are the experimental data and the solid line corresponds 

to the calculated values. The experimental and theoretical values match surprisingly 

well given that rough estimates were made for many of the device structure parameters. 

Both the experimental and theoretical fr values vary at about the same rate in the 

low IC region and converge to around 20 GHz in the high IC region. The observed 

cutoff frequency of 20 GHz corresponds to a emitter-to-collector transit time, rec, of 

8 ps. From our program, we also found that the base transit time r B , is about 3.4 ps, 
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S.I. 

Figure 4.4: Schematic structure of an HBT with a proton-implanted external collector 
layer and a single collector electrode. 

which constitutes still a significant portion of the total transit time. Part of the reason 

for this is that the base layer of this particular transistor is quite thick (WB = 3000 A) 
and, even with a base-grading parameter x\,t as high as 0.2, the resulting built-in field 

is only 8 kV/cm. In Table 4.2, an E^ of 8 kV/cm corresponds to, for WB = 1000 A, a 

base-grading parameter Xj, e of only 0.067. Another reason for the relatively large rB is 

that the collector space charge region transit time, which normally constitutes a very 

large portion of the total transit time, is reduced because of the use of a constant V C £ . 

4.2 Case II: H i g h Frequency Characteristics 

The HBTs used for experimental comparison in this section were fabricated using a 

proton-implanted external collector layer and a single collector electrode [13]. A cross 

section of the fabricated HBT is illustrated schematically in Figure 4.4. The Si0 2 
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Table 4.3: Epitaxial layer structure parameters for fabricated HBTs (Case II). 

Layer Material Thickness 

(A) 
Doping 
(cm"3) 

Al composition 
x 

emitter cap n + -GaAs 2000 5 x 10 1 8 0 
emitter grading n - A l I G a 1 _ I A s 300 5 x 101 7 0-0.3 parabolic 
emitter n-AljGai-rAs 900 5 x 10 1 7 0.3 
emitter grading n-AljGax-jjAs 300 5 x 10 1 7 0.3-0.1 parabolic 
base p + - A l I G a i _ a ; A s 1000 4 x 10 1 9 0.1-0 linear 
collector n-GaAs 6000 5 x 10 1 6 0 
collector buffer n + -GaAs 5000 3 x 10 1 8 0 

Table 4.4: Fabricated device dimensions (Case II). 

ABB 
(Mm2) 

ABc 

(Mm2) 
A-BCJA-EB PEB/AEB 

(Mm"1) 

Tr 1 1 x 10 3 x 12 3.60 2.2 
Tr 2 2 x 5 4 x 7 2.80 1.4 
Tr 3 2 x 10 4 x 12 2.40 1.2 
Tr 4 5 x 10 7 x 12 1.68 0.6 

sidewall that separates the base electrode and the emitter is less than 0.2 pm; in our 

program, a value of 0.2 pm for SEB w a s used. As a result of proton implantation, the 

base-collector capacitance for the implanted regions is about 0.2 fF//zm 2 (see Subsec

tion 2.7.3). The epitaxial film structure for the devices is shown in Table 4.3. Note that 

both junction and base grading were employed. Four HBTs of different emitter-base and 

base-collector areas (AEB and ABC, respectively) were made and their dimensions are 

shown in Table 4.4. The four transistors are numbered in order of decreasing collector to 

emitter junction area ratio [ABC/AEB) and emitter perimeter to area ratio [PEB/AEB]-

All four devices have a fixed base electrode width of about 0.8 pm. Dimensions of the 
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Table 4.5: Measured and calculated fx and / m a x (Case II). 

Experimental Calculated 
(Implanted) (Implanted) (Unimplanted) 

fT (GHz) / m « (GHz) h (GHz) / m « (GHz) IT ( G H Z T /max (GHz) 
Tr 1 35 70 41.2 89.0 39.2 72.0 
Tr 2 45 70 41.0 67.2 39.6 58.9 
Tr 3 50 70 41.2 67.5 39.9 59.1 
Tr 4 40 42 39.3 39.9 38.4 37.7 

collector electrode and the spacing between the collector electrode and the intrinsic 

collector were not given; we guessed they were about 1 pm and 5 pm respectively. The 

emitter and collector ohmic contacts were alloyed types; their contact resistivities were 

both assumed, as in the previous section, to have a value of 1 x 10 - 6 f lcm 2 . The base 

contact resistivity was given in the original paper as 2.5 x 10~6 f lcm 2 . 

Measured and calculated fx and / m a x values at VCE = 2 V and Jc = 4 x 104 A / c m 2 

for the four HBTs are shown in Table 4.5. Also included in Table 4.5 are the calculated 

fx and / m a x values for the unimplanted HBTs. The measured fx and / m a x values for 

the proton-implanted HBTs are quite consistent with the calculated values, with the 

exception of the measured / m a x value for transistor Tr 1. In contrast to the somewhat 

scattered measured fx data, the calculated fx values for the proton-implanted HBTs 

are more or less independent of device size. An analysis of the calculated transit times 

shows that only the collector charging time, r c , changes substantially among the HBTs, 

ranging from r c = 0.17 ps for transistor Tr 1 to rc = 0.43 ps for transistor Tr 4. The 

increase in r c with device size is due mainly to an increase in the collector junction 

capacitance. However, since TQ amounts to less than 15 % of the total transit time, 
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the resulting fx values change very l i t t le . The calculated / n i a x values for the proton-

implanted H B T s match very closely to the measured ones for transistors T r 2, T r 3 

and Tr 4. The low / m a x value for transistor T r 4 is due understandably to a large 

collector junct ion capacitance resulting from a large base-collector junct ion area and 

a large base spreading resistance resulting from a large base current path. Since the 

cross section for base charge flow is twice as large for transistor T r 3 as for transistor 

Tr 2, the base spreading resistance of transistor T r 3 is half that of transistor Tr 2. O n 

the other hand, the collector junct ion capacitance of transistor Tr 3 is about twice that 

of transistor T r 2 because transistor T r 3 has about twice the base-collector junct ion 

area of that of transistor T r 2. A s a result, both transistors T r 2 and Tr 3 have about 

the same effective R/, Cc product and thus / m a x - Using the same arguments as above, 

transistor T r 1 should produce a significantly larger / m a x than the other transistors, 

as indicated by the calculated / m a x values in Table 4.5. It is unclear why this is not 

seen in the measured / m a x of transistor T r 1. The improvement gained in / m a x as a 

result of proton implantat ion is obvious when comparing the calculated / m a x values 

for the implanted and umimplanted cases in Table 4.5. The improvement seen in / m a x 

increases as the collector to emitter junct ion areas ratio increases. Th i s is reflective of 

the fact that a larger collector to emitter junct ion area ratio means a larger por t ion of 

the base-collector junct ion area may be subjected to proton implantat ion. 

The dependence of fx on the collector-emitter voltage VCE at Jc — 4 x 10 4 A / c m 2 

for a proton-implanted 2 pm x 5 emitter H B T (transistor T r 2) is shown in F i g 

ure 4.5. The solid line indicates the calculated fx and the open circles correspond to 

the experimental values. As in the case of transistor T r 2 in Table 4.5, the calculated fx 

values shown in Figure 4.5 are consistently lower than the measured values by ^ 4 G H z . 

B o t h the measured and the calculated fx decrease w i th increasing VCE, implying that 
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Figure 4.5: Dependence of fT on collector-emitter voltage for Jc = 4 x 10 4 A / c m 2 . 

the collector space charge region transit time presents a strong influence on / j . 



Chapter 5 

Summary 

5.1 Conclusions 

In this thesis the current gain characteristics of the graded-base AlGaAs/GaAs n-p-n 

Heterojunction Bipolar Transistor have been examined in detail using a comprehensive 

one-dimensional analytical model. The HBT's high frequency characteristics have also 

been studied through a quasi-two-dimensional model for pyramid-structured devices. 

The following conclusions can be drawn for this work: 

1. Base grading, by increasing the bandgap in the base, reduces the Shockley-Read-

Hall, radiative and Auger recombinations in the neutral base region as well as in 

the emitter-base depletion region. But, as the Al mole fraction on the base side of 

the base-emitter junction increases, the hole-blocking property of the junction is 

lost and the back-injection current increases. This leads to an optimum value of 

base grading at which current gain may be maximized. In the device considered 

here, maximum gain occurred with an A l mole fraction of 0.1 at the base-emitter 

junction. The improvement in gain with respect to the ungraded case was about 

four-fold. 

2. Base grading improves the values of fT and / m a x by reducing the base transit 

time. In the device considered here, the use of maximum base grading, i.e., the 

Al mole fraction at the base-emitter junction being 0.3, increases fT by about 

60 % and / m a x by about 20 %. If the transistor is operated at a sufficiently high 

112 



Chapter 5. Summary 113 

current level (Jc ^ 2 x 104 A/cm 2 ) , an increase in fr of about 30 % and in / m a x 

of about 15 % can be obtained utilizing only an Al mole fraction of 0.1 at the 

base-emitter junction. 

3. Base grading also mitigates the reduction in fr that occurs when either the 

base width or the base doping density is increased. The former is particularly 

significant because it allows the use of a thicker base layer to reduce the base 

spreading resistance without too much degradation in jr. 

4. Once rD is reduced by base grading, the major contributor to the overall delay 

time, and hence / r , is the transit time through the base-collector space charge 

region. 

5.2 Considerations for Future Work 

There are two obvious areas in which the present model needs to be improved. First, 

to make the model valid for very high current densities, the Kirk effect and emitter 

and base resistance voltage drops should be considered. Second, modeling of surface 

recombination around the emitter periphery and bulk recombination in the external 

base region is needed to give better estimates of current gain. This would, however, 

require a two-dimensional extension of the present model. 

One of the conclusions drawn from the analyses of Chapter 4 is that the collector 

space charge region transit time is a major contributor to the overall delay time. The

oretically, however, rSOR could be reduced by exploiting the overshoot effect. Further 

investigations into this phenomenon are needed. It will also be interesting to investi

gate the effects on the base transit time of the "hot electrons" created by the emitter 

conduction-band spike. One of the main goals for developing the present model is 
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the hope that this model will be incorporated into a circuit analysis program such as 

SPICE. More work is required to bring this to fruition. 
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Appendix A 

C o d i n g Scheme for the Tunnel ing Factor 

Since the barrier transparency (Eq. (2.96)) is expressed as a function of the dimen-

sionless variable X — E/EJI, a similar change of variable for the tunneling factor of 

Eq. (2.84) is made: 

(A.l) 

The barrier transparency, of Eq. (2.96) can be written in a shorter form, such as 

D(X)=exp{-^g(X)) (A.2) 

where g(X) = I(X) + II(X). Letting a = ET1/kT and r = E*/ET1, Eq. (A.l) becomes 

kT 
l n = 1 + exp 

oo 
ag{X) -aX dX (A.3) 

A further simplification can be made by letting 

& = — = —— (A 4) 
E00 100 hq V ND

 { ' ' 

Since ti and ND are usually expressed in cm units, the factor 1/100 in Eq. (A.4) is 

required to make b dimensionless. The final form for the tunneling factor is 

l n = 1 + a J\xp{-a[bg{X) + X- 1}} dX (A.5) 

Since 

ETI = qVTl = q 
'qND 

130 
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and 

E* =qVT1- AEC = q y 

the lower integration limit r may be written as 

qNpdj 

2ci 
- AEC 

2 
n (A.6) 

dn- 9 

which must be between zero and one. If r < 0 (i.e., E* < 0), then r is set to zero (i.e., set 

E* = 0). On the other hand, 7„ is set to one, that is, no tunneling current, if junction 

grading is large enough to make ETI = 0 or WG > dn, or if r > 1. When AEc < 0, 

tunneling is not possible because no conduction-band spike exists, and junction grading 

should not affect the barrier energy q V r i . At the end of Section 2.3, it was stated that 

if AEc < 0, VT1 should be replaced by Vj-i- This is no longer necessary as r will be 

greater than one according to Eq. (A.6) and consequently the tunneling factor will be 

equal to one. 



Appendix B 

New Effective Densities of States 

It was defined in Eqs. (2.127)-(2.128) and Eqs. (2.130)-(2.13l) that 

n = NcFl/2{r,n) = Nc exp(r?n) (B.l) 

P = Nv F1/2(Vp) = Nv exp(Vp) (B.2) 

The new effective densities of states can be rearranged so that they are functions of 

carrier concentrations only: 

N ° = IxpJ^) = explF-^n/Nc)) ( R 3 ) 

K = e ^ f o j = exp[Fj2(p/Nv)} { B A ) 

For a N-type semiconductor, N£ is computed from Eq. (B.3) using n c± Np, and 

Nv ~ Ny. The latter approximation is made because for a N-type semiconductor 

r/p <c 0 and Fi/2(rjp) ~ exp(r7p). Similarly, for a P-type semiconductor, Nv is computed 

from Eq. (B.4) using p NA, and Nc z± NC-

In order to calculate Nc and Ny, we need to evaluate the inverse Fermi-Dirac 

integral function, F^\(z). An inexpensive and yet quite accurate method of computing 

Fy\(z) is the use of two approximations to cover two wide ranges of z. Blakemore [119] 

gave the following asymptotic expression of F\f2(rj) for large 77: 

4 / 7 T 2 \ 3 / 4 

F1/2{r,) = J J = ( n2 + —J for 77 > 5 (B.5) 
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At rj = 5, Eq. (B.5) gives Fi/2 ^ 8.82 and a relative error of about 0.25 % which 

decreases as r\ increases. Since F i / 2 ( r7 ) is an increasing function, the following approx

imation for Fy}2(z) can be made: 

\M~4 ) " T f o r ^ > 9 (B.6) 

For z = FI/2(T7) < 9, the following Joyce-Dixon series approximation [120] is used: 

n = ln(z) + az + b z2 + czs + dz4 (B.7) 

where 

a ~ 0.35355391 

6 ~ -4 .9500897 x 10~ 3 

c ~ 1.483857 x I O - 4 

d ~ - 4 . 4 2 5 6 8 X I O - 6 

Our calculations indicate that Eq. (B.7) produces a relative error £ 0.1 % for z < 9. 

The independent variable z may be expressed as a function of doping density using 

Eqs. (B.l) and (B.2): z = n/Nc ~ ND/NC and z = p/Nv ~ NA/NV for N-type and 

P-type semiconductors, respectively. 



Appendix C 

Fermi-Dirac Integral Rat io Fi/2(y)/F- 1 / 2 ( 7 ? ) 

One of the properties of Fermi-Dirac integrals is that 

Fi-M = ^jFi(ri) (CI) 

or more specifically, F_i/ 2(»7) = dFi/2(rj)/dri. From Eq. (B.7) of Appendix B, one can 

infer that 

F_ 1 / 2(r?) = + a + 2bz + 3cz 2 + 4dz3^J (C.2) 

where z = Fi/2{n). Thus, the Fermi-Dirac integral ratio is given by 

5 1 / 2^l = l + az + 2bz 2 + 3 c z 3 + 4dz 4 (C.3) 

and z ^ Np/Nc, N^/Ny for N-type and P-type semiconductors, respectively. Eq. (C.3) 

is valid for rj < 4 where the relative error is less than 0.1 %. For 17 < —10, both Fi/2(n) 

and F_i/ 2(r/) approach exp(r/) and therefore Fi/2(r])/F_x/2(r)) ~ 1. 

For n > 4, an asymptotic expression for F_i/2(»7) exists [34]: 

F _ 1 / t ( „ = + ( c . 4 ) 

which has a relative error less than 0.7 %. In this range of rf, 
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Appendix D 

Derivat ion of Transit T i m e Delays from the Hybrid-7r Equivalent Circuit 

The hybrid-7T model of the transistor is shown in Figure D . l . Many of the circuit 

elements have already appeared in Figure 2.15 which is essentially a simplified ver

sion of the circuit shown here. While we have included the emitter-to-base diffusion 

capacitance, Cp, in the hybrid-7r circuit of Figure D . l , the collector-to-base diffusion 

capacitance is neglected since it is much smaller than the collector junction capacitance 

under the normal bias conditions. The resistive elements Rc and RE are, respectively, 

the collector and the emitter series resistance which include bulk and contact resis

tances. 

From Figure D . l , 

*i = l 2 + * 3 

= jU){CD + CEj)Vb,e,+juCCj[VVe'-Ve>e>) (D.l) 

and 

Vc,e, = -{ieRE + icRc) 

• - -ic [RE + RC) = -{gm V W - t s ) {RE + Rc) 

-9m V W {RE + Rc) (D.2) 

Eq. (D.2) is obtained by applying the approximations: ie ~ ic and t 3 <C ic. Substituting 

Eq. (D.2) into Eq. (D.l) yields 

ti = 3 w VW {{CD + CEi) + [1 + gm (RE + Rc)} CCj) (D.3) 

135 



Appendix D. Derivation of Transit Time Delays from the Hybrid-ir Equivalent Circuitl36 

b t'» r w b' * i 

r w v v v — ? — * — r 

Figure D . l : Hybrid-TT circuit model of the transistor with short-circuited emitter and 
collector terminals. 

Since the base current is given by 

ib = ii + *4 = »i + Vi 1 - a0 
b't' (D.4) 

and the collector current by 

ie = 9m Vav - t 3 ~ gm Vb<e, (D.5) 

the current gain can be expressed as 
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Here, the identities gm — a0/re and /?0 = c*o/(l ~ <*o) were used. Finally, substituting 

Eq. (D.3) into Eq. (D.6), we have 

/? = , • T (D.7) 
1 + J w A> (CD + CEi) + % CCj + (RE + Rc) Ccj] 

The frequency where |/?| = 1 is the cutoff frequency, fT, and can by obtained from 

Eq. (D.7) by noting that a 0 ^ 1 and that the second term in the denominator of 

Eq. (D.7) is much greater than one. Thus, 

1 _ 1 
U)j> 2 7T ff 

= re(CEj + CCj) + RECCj + reCD + Rc CCj (D.8) 

= Te + rB + rc (D.9) 

On the right hand side of Eq. (D.8), the sum of the first two terms corresponds to 

the emitter charging time r B , the third term corresponds to the base transit time rD, 

and the last term corresponds to the collector charging time (compare to Eqs. (2.194), 

(2.202) arid (2.206), respectively). The collector space charge region transit time, which 

is not included in the derivation here, should also be part of the total transit time. 


