A FAMILY OF PROTOCOL TESTING TECHNIQUES
by
WENDY YUEN-LING CHAN

B.A.Sc., The University of British Columbia, 1987

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in
THE FACULTY OF GRADUATE STUDIES

(DEPARTMENT OF ELECTRICAL ENGINEERING)

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
August 1989

(© Wendy Yuen-Ling Chan, 1989



In presenting this thesis in partial fulfilment of the requirements for an advanced
degree at the University of British Columbia, | agree that the Library shall make it
freely available for reference and study. | further agree that pemmission for extensive
copying of this thesis for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be aliowed without my written
permission.

Department of ELECTRICAL ENGINEERING

The University of British Columbia
Vancouver, Canada

Date 1989 AUGUST 10

DE-6 (2/88)



ABSTRACT

This thesis developed three testing technigues that are
applicable to the conformance testing of perocols: the
UIOv-method, the eUIOv-method and the hybrid‘technique.

The UIOv-method is for testing simple ©protocols
modelled by finite state machines'(FSMs). Any protocol that
passes its tests possesses an FSM skeleton that is identical
to the specified FSM. The UIOv-method is extended to the
eUIOv-method to test more complex protocols that can be
. modelled by extended FSMs (EFSMs). A data flow testing
procedure (DFTP) based on static data flow anaiysis and FSM
testing is developed in this thesis to test the flow of
parameters and variables in a protocol. This procedure is
augmented with the eUIOv—method to form the hybrid technique
which 1is directly applicable to the testing of complex
protocols implemented according to their Estelle
specifications. The technique captures protocols with
erroneous EFSM control structures that cannot be detected by

existing testing methods developed by Sarikaya and Ural.

KEYWORDS: conformance testing, protocols, Estelle, finite
state machines, unique input/outputs, extended finite state

machines, data flow, fault coverage, protocol specification.

ii



TABLE OF CONTENTS

2N 073 o o= ¥ o oA ii
Table of Contents. .. ... ...ttt nnnsan iii
List Of FigUIeS. . i i ittt it ittt ee s oeeseonnnnsesansss vi
List Of Tables. .. it ittt it ittt eseeananannens vii
Acknowledgement.........ciiiiiiiiie., et e e viii
1 IntrodUucChion. i i ittt it ittt it ettt ittt 1
1.1 Past Test Generation Effort ............ ... 3
1.2 Thesis GOAl . ...ttt iiiiietensenstnerneensoesneneens 3
1.3 Thesis Contributions ................ .. ... P 5
1.4 Thesis Organization ......... .. iiinnnnnnn 7

2 The UIOv-Method. .. ...ttt ittt ittt ittt enesneeenns 8
2.1 The Finite State Machine Model ...................... 9
2.2 FSM Testing Techniques . ... ...ttt inernnns 11
2.2.1 The T-Method......... ..ttt iiiniennennnn 11
2.2.2 The W-Method. .. ... ..ttt eennes 11
2.2.3 The D-Method.... ...ttt ittt 12
2.2.4 The U-Method. . ... .. ..ttt enns 13
2.2.5 Comments on the Four Methods................... 14
$2.2.5.1 Applicability ........ it 14
2.2.5.2 Fault Coverage ........vv ittt innneeann 15

2.3 The Shortcoming of the U-Method .................... 18
2.3.1 Assumptions. ... ... . i e e e 18
2.3.2 The UIOS Problem. ... ...ttt ninneeonsnnenes 19
2.3.3 The State Signature Problem.................... 23

2.4 The UIOv-Method ....... ...ttt inennenennens 25
2.4.1 Uniqueness. Problem Analysis................. ... 26
2 S S &~ 27
2.4.3 TO(S,K) 8. i ittt ittt e it i e e e e 28
2.4.4 Comparing the UIOv-Method with the Others...... 31

2.5 Unique Test SEQUENCES . ...ttt ittt i tnnenneeeneenn 33
2.6 FSM Testing .. ..o vttt ittt ittt et eeaeraanenons 37
2.7 Chapter SUMMATrY .. ...ttt tm it itnenneoansoenssnsensss 38

3 Testing Extended Finite State Machines.................. 41
3.1 Background .. ... i et e e e e 41
3.2 The EFSM Table .. ...ttt ittt neneeasans 42
3.3 Extension of the UIQv-Method ............ ... .. . .. .. 44
3.3.1 UIOSs Selection in an EFSM............. ... 45

iij



Table of Contents

3.3.2 Verification of TSS Variables.................. 48
3.3.2.1 Verification of N.TSSs .......iiivnn. 49
3.3.2.2 Verification of C.TSSs ... ... .. 51
3.3.2.3 UIOSS fOr PSSS v vttt it ii ittt inessnnenans 53

3.3.3 The eUIOv-Method........c i nnnn 54

3.3.4 An Example. ... ... i i i e e 57

3.3.5 Summary of the eUIOv-Method.................... 61

3.4 Fault COVELAGEe .. vttt vttt vttt neteenoeansassneasss 62
4 Data Flow Testing..... ... ittt iiiinenn 64
4.1 Static Data Flow AnalysSis ..o iit o tneenennnneens 65
4.2 Data Flow Paths .. ...ttt ittt it et ie e 66
4.3 Data Flow Testing . ... .. i ittt i it ieen 67
4.4 The Data Flow Testing Procedure ..........oeueuvvennen 70
4.5 An ExamMple .. ittt ittt e e et e e e e e e 72
4.6 Chapter SUMMAXY .. .ottt t ittt ineeernostaneeonsseos 75
4.7 Comments on the DFTP ... ...ttt it enennnas 77
5 The Hybrid Technique. ........ ittt eeeenenns 80
5.1 BacKkground . ... ii it ittt e i e 82

5.1.1 Estelle. . ... it eineinenoinenononosoenoneens 82

5.1.2 Normal Form Estelle Specifications............. 84
5.1.2.1 Example of an NFS ... ... ... i, 85

5.2 Refining the NFS ... .. ittt titiannas 87

5.2.1 Canonical Transitions............c.i i ienneen.. 87

5.2.2 Reformatting the NFS.................... e 89
5.2.2.1 Executability Problems .........ccvivun. 89
5.2.2.2 The Reformatted NFS .......................90
5.2.2.3 The Enabling Conditions ................... 91
5.2.2.4 The Def Statements ........... . .. 91
5.2.2.5 Format of the rNFS ........ ... 92

5.3 Estelle EFSM Testing ... .. .0ttt 94
5.3.1 Spontaneous Transitions.................. e e 96
5.3.2 Testing the EFSM in the COTP................... 97

5.4 Estelle Data flow Testing ........... .. .. 105
5.4.1 Data Flow Testing for the COTP................ 107

5.5 Chapter SUNMmMAry .. ..ttt ittt ttnenetoasneansssnsssss 119

6 Evaluation and Comparison of the Hybrid Technique...... 120

6.1 Evaluation ... ... ittt ittt i e e 120

6.1.1 Fault COVEraAge. .. vttt v i oot tnennnennesenneeas 120

6.1.2 Executability. .. ..ttt e 121

6.1.3 Applicability........ vt 122

6.1.4 Test Data Selection.......... ..., 123

6.1.5 Testability. .. .ottt 124

6.2 COMPATISOM « v v vttt ittt in s v snsesooeaassonoanossesns 126

T CONCLUSLOMNS . i v ittt o n et st i ot e s s s eanssnsenennensonsos 130

iv



Table of Contents

7.1 TheSis SUMMATY ..« cvvvenensoeneosneeeacnsenseceeses 130
7.2 FUture WOLK ..o vvvvton i oaeeneeess 134
Bibliography .« covvveeeesnsonannnennu e 136
Appendix A NFS OF CLASS 0 TRANSPORT PROTOCOL............ 141
rNFS OF CLASS 0 TRANSPORT PROTOCOL........... 147

Appendix B



LIST OF FIGURES

An FSM specification..............; ................... 20
A faulty IUT of the FSM in Figure 2.i ................. 21
An FSM with no UIOS for state C......... ... ... 24
A faulty implementation of the FSM in Figure 2.3...... 25
A simple FSM with an inherent UTS..................... 35

vi



LIST OF TABLES

U-method test sequence for the FSM in Figure 2.1...... 21

D-method test sequence for Figure 2.1................. 22
U-method test sequence for FSM in Figure 2.3.......... 24

UIOv-method test sequence for the FSM in Figure 2.1...28
UIOv-method test sequence for the FSM in Figure 2.3...30
An EFSM table....... . it i ittt 44
EFSM table for the Class 0 Transport Protocol......... 95

Augmented EFSM table for Class 0 Transport Protocol..109

vii



ACKNOWLEDGEMENT

I would 1like to thank Dr. Son Vuong for his guidance
and for his constant encouragements that I publish my work.
I would like to thank Dr. Mabo Ito for his careful reading
of this thesis and for his help in improving my writing

tremendously. I would like to thank Dr. Sam Chanson and
Jianping Wu for many helpful discussions and for their moral
support during difficult times. Also, a very special thank

you to Dr. Gunther Schrack, without him, I would not have
been able to become a graduate student.

I would 1like to thank the Natural Sciences and
Engineering Council of Canada and Idacom Electronics Limited
for their support in the. form of an University and Industry
Cooperative Research Grant.

Lastly, many heartfelt thanks to my parents for their
immeasurable love and understanding; and especially to my
brother, Ramsey, and my fiance, Dawson, for their
continuous moral support and their immense faith in me;
without them, this work would not have been possible.

viii



Introduction
During conformance testing, the protocol implementation
under test (IUT) is typically considered as a "black box"
‘since its source code is generally not accessible. Testing
is carried out using test sequences. A test sequence is a
sequence of input/output (I/0) pairs derived from the
protocol specification. Test inputs are applied to the IUT
via its input port. The outputs generated by the IUT are
received wvia its butput port and compéred with the
corresponding outputs in the test sequence. If they match,
the IUT is said to conform to the specification.
The ability of a test to detect non-conforming or
erroneous IUTs during testing depénds solely on the test
sequence used. Recently, test sequence generation has

received much attention from the research community; in

particular, sequences generated from the fbrmal
-gpecification of . protocols. The formal specification
language of interest in this thesis is Estelle. 1In Estelle,

the control structure of the protocol is modelled as an
extended finite state machine (EFSM) while the data flow
aspect of the protocol is described by a set of Pascal

statements.



Introduction

1.1 PAST TEST GENERATION EFFORT
Recent work on test sequence generation based on
Estelle protocol specificafions include those of Sarikaya
[Sari87] and Ural [Ural88], both of whom emphasize the data
flow aspect of protocols and both of whom work from normal
form Estelle specifications [Sari86]. Other notable test
sequence generation techniques that are applicable to
Estelle protocol specifications include those developed for
testing finite state machines (FSMs) [Kou87, Sari8z2,
Sidh89]. These include the T-method [Nait81]; the W-method
[Chow78, Sidh89], the D-method [Gone70}, and the U-method
[Sabn88, Aho88]. Their applications to protocol conformance
testing were extensively studied in [Sidh89]. These methods
examine only tﬁe control structure of protocols; they ignore
interaction primitive parameters and may face executability
problems when applied to Estelle specifications. However,
these methods are directly applicable to the testing 'of

simple protocols that can be modelled by FSMs.

1.2 THESIS GOAL

The goal of this thesis 1is to develop testing
techniques for the conformance testing of protocols such
that maximum fault coverage can be achieved. Fault coverage

is defined in this thesis according to the specifications of



Introduction
the protocols used. The following two issues are not of
primary concern in here: test sequence optimization and
test architecture.

Problems in the generation of conformance test
sequences generally fall into two categories: coverage and
optimization. While coverage deals with how to generate
test sequences to achieve a particular fault coverage,
optimization: deals with how to optimize a given test
sequence. Although optimization is necessafy‘to reduce the
cost of a test, it is secondary to coverage. Only when a
desirable fault coverage is achieved should optimization
follow. This thesis thus focuses on the more important
coverage issue in. test sequence generation. Some sample
test sequences generated in this thesis are not optimized so
that their intents may be easily followed.

In testing the IUT of a protocol that belongs to the
Open System Interconnection (0OSI) Reference Model [Zimm80],
an upper tester and a lower tester are assumed to be
available in this thesis to provide control and observation

at the upper and lower interfaces of the IUT.



Introduction
1.3 THESIS CONTRIBUTIONS

This thesis contributes to sol?ing the problem of
generating conformance test sequences for prbtocdls from
- their specifications in the following ways.

This thesis found the original U-method to Dbe
inadequate and modified it so that it 1s now capable of
detecting all I/O erroré as well as state errors [Chan89b].
Its fault detection capability is now equivalent to those of
the W- and D-method. .The D-method and W-method are abtually
special: cases - of the modified U-method (UIOv-method)
develqped in this thesis where the UIOv-method enjoys the
applicability advantage of the W-method and the length
advantage of the D-method while providing full fault
coverage.

This thesis introduced the concept of wunique  test
sequences (UTSs). These are test sequences unique to the
specified FSM from which they are generated. Any FSM that
passes a test using an  UTS possesses a FSM skeleton
identical to the specified FSM.

This thesis extended the UIOv-method to produce the
eUIOv-method for testing protocols that can be modelled by
EFSMs.

This thesis developed a data flow testing procedure

based on static data flow analysis where each definition and



Introduction
usage of a variable are exercised during testing and,
whenever possiblé, they are verified as well.

This thesis created a hybrid test sequence generation
technique by augmenting the eUIOv-method with the data flow
testing procedure. This hybrid technique is applicable to
testing the EFSM control structure of a protocol as well as
its data flow; hence, it is directly applicable to IUTs that
are implemented according to their Estelle specifications.
During testing, the IUT is checked for each transition in
its Estelle specification. Each statement in. the transition
is exercised as well as Qerified whenever possiblé.

This thesis refined and reformatted the normal form of
Estelle so that its transitions are in canonical form and
its format explicitly brings out the underlying EFSM and
data flow in an Estelle specification.

The hybrid technique was tailored for protocolé with
underlying EFSM control structures, this technique is thus
capable of detecting faplty IUTs with erroneous EFSMs that
would otherwise be missed by the techniques developed by
Ural and Sarikaya. Since the hybrid technique also iﬁcludes
data flow testing, it is capable of detecting certain types
of data flow errors in an IUT that would otherwise be missed

by FSM testing techniques.



Introduction

Test sequences generated by the hybrid technique . are

also applicable to IUTs not implemented according to their
Estelle specifications. The fault coverage achieved would
be limited to faults in the flow of data; sequencing faults

may or may not be captured.

1.4 THESIS ORGANIZATION
The remainder of this thesis is organized as follows.

Chapter 2 discusses FSM test sequence generation techniques
and presents the UIOv-method as well as the UTS concept. 1In
chapter 3, a brief introduction to EFSMs is followed by a.
discussion of extending the UIOv-method to the eUIOv-method
for the testing of protocols modelled by EFSMs. Chapter 4
provides a brief review of static data flow analysis and
shows.how the data flow testing procedure is developed from
it. In chapter 5,.the hybrid technique is discussed and
applied to Estelle using the Class 0 Transport Protocol as
an example. An evaluation and a comparison of the hybrid
technique with existing test sequence generation techniques
applicable to Estelle protocol specifications are presented
in Chapter 6. Chapter 7 concludes this thesis with a
summary of its contributions and a discussion of possible

future work in the area of conformance testing.



2 THE UIOV-METHOD

Test sequence genération techniques developed for
finite state machines (FSMs) may be used to generate
conformance test sequences for those protoceols that can be
modelled as FSMs. This chapter looks at a recent study done
by Sidhu ([Sidh89] on this approach to conformance test
generation. Four notable test generation methods were
compared in that paper: the T-method, the D-method, the W-
method and the U-method. In general, the D-method 1is
hampered by its limited applicability while the W-method is
undesirable because of the lengthy test sequences it
generates. The T-method, on the other hand, has neither one
of the above problems; however{ it generally cannot achieve
full fault coverage. The most recent method, the U-method,
is more widely applicable than the D-method and it generates
shorter test sequences than those generated by the W-method.
Fault coverage produced by the U-method was found to be full
in [{Sidh89]. The U-method thus seemed to be the best of the
four methods.

This chapter shows that the U-method does not always
achieve full fault coverage; it points out a shortcoming
with the U-method [Chan89b] that sometimes hampers its fault
detection cépability. ' The U-method is then revised with the

addition . of a verification procedure in here to form the



The UIOv-Method
UIOv-method [Chan89Db] which corrects +the problem and
produces full fault coverage each time. The resulting UIOv-
method is still more widely applicable than the D-method and
it generally produces shorter test sequences than the W-
method does.

All test sequences generated by the D-method, W-method
and UIOv-method possess a property that is responsible for
their full fault coverages. This property distinguishes
these sequences to be unique test sequences (UTSs)
[Chan89b], and it guarantees the detection of any erroheous
IUT provided that the number of states in the IUT does not
exceed that which is in the FSM specification. This concept

of UTSs is also reviewed in this chapter.

2.1 THE FINITE STATE MACHINE MODEL

A finite state machine (FSM) can be represented as
F={s,1,0,T,A} where S denotes the set of states, I denotes
the set of inputs, O denotes the set of outputs, T denotes
the state transition function which produces a new state
based on the current state and the current input, and A
denotes the action function which produces an output based
again on the current state and the current input.

An FSM can also be represented by a collectibn of

transitions each of which performs an output operation and a



The UIOv-Method
state transition provided that an input event is correctly
received at the appropriate starting state. This
representation can be presented in a tabular or graphical
format. In the tabular format, each column is labelled by a
.state‘to denote the starting state of a transition. Each
row is labelled by an input operation. Each transition is
denoted by a table entry identified by its output operation
and the next state. The graphical format is denoted by
G=(N,E), where N is a set of nodes representing the states
of the machine and E is a set of arcs representing the set
of transitions. Each arc starts at fhe starting state of
the transitioh and ends at its final state. Each arc is
identified by the input event that triggered the fransition
and the output event produced. |

The FSM models considered in this thesis are assumed to
be minimal and strongly connected Mealy machines that may or
may not be completely specified. A Mealy machine, M, is an
FSM whose set of outputs is dependent on the set of states
as wéll as the set of inputs. The'Mealy machine is minimal,
or reduced, implies it does not have equivalent states; that
is, it has the smallest number of states possible. Machine
M is completely specified if an output is specified for each

input in I for each of the states in S. A strongly

10



The UIOv-Method
connected machine possesses an input sequence which

traverses between any two states in the machine.

2.2 FSM TESTING TECHNIQUES
There are four notable test sequence generation
techniques for FSMs: the T-method, the W-method, the D-

method and the most recent method, the U-method.

2.2.1 The T-Method

The T-method. [NaitBi] is the simplest of the four
. methods. This method is applicable @ to any étrongly
connected FSM. It generates a test sequence, called a
transition tour, by applying random inputs to an FSM until
every transition is traversed at least once.

ThereAare two disadvantages to using the T-method. One
is the test sequences generated may contain redundant
inputs. The other being the test only checks for the
existence of transitions; it does not verify that the states
in each transition are correct. As a result, the T-method

may not detect state errors; it detects only output errors.
2.2.2 The W-Method

The original PW-method [Chow78] was slightly modified

in [Sidh89] to form the W-method, which is a checking

1



The UIOv-Method
experiment that uses the W-set for state identification. A
checking experiment is a test procedure which verifies that
each input specified for a state produces the' expected
output and takes the FSM to the correct next state. In the
first part of a checking experiment, each state in the FSM
is identified using a chosen characterizing I/O sequence.
In the second part of the experiment, each I/0O operation and
the final state in each transition in the FSM are verified.
The W-set is also known as the characterizaﬁion set.
It is a set of input sequences which is composed of, for
every pair of states in the FSM, at least one input sequence
that can ~ distinguish them. Every minimal, strongly
connected and completely specified FSM possesses a W-set.
Of the four methods, the W-method produces the longest test
sequences. It is capable of detecting all faults in an FSM
with a number of states not exceeding that which is in the

specified FSM.

2.2.3 The D-Method

The D-method [Gone70] is a checking experiment which
uses a set of distinguishing sequences (DSs) for state
identification. |

An DS can be thought of as a special case of a W-set

where there exists only one sequence of inputs. This

12



The UIOv-Method
sequence produces a different sequence of outputs for every
different starting state. Not every completely specified,
minimal and strongly connected FSM possesses an DS. This
method, when applieable, is also capable of detecting all
faults in an FSM with a number of states smaller than or

equal to that in the specified FSM.

2.2.4 The U-Method

The U-method [Sabn88] is also a checking experiment
with the exception. that it wuses a sequence of unique
input/outputs (UIOs) to identify the states in each
transition.

An UIO sequence (UIOS) for a state is an I/0O behavior
not exhibited by any'other state in the FSM. Not every
state in an FSM possesses an UIOS. In the absence of an
UIOS, a state signature is used which is formed by
concatenating a set of input sequences, each of which
distinguishes the state from one other state in the FSM.

An FSM does not have to be completely specified in
order to possess a set of UIOSs. In [Sidh8%], it was found
that the U-method possesses a fault detection 'capability
equivalent to those produced by the W- and D-method for
minimal, completely specified and strongly connected FSMs.

The U-method generates test sequences whose lengths are

13



The UIOv-Method
comparable to those generated by the D-method. Their
lengths are generally shorter than those produced by the W-
method.

Both the U-method and the W-method are generally
applicable to completely specified, strongly connected and
minimal FSMs, but being completely specified is a necessary
condition for the W—method while it is sufficient, but not

necessary, for the U-method [Sidh89].
2.2.5 Comments On The Four Methods

2.2.5.1 Applicability

In deciding on which test method to use, the first
factor to be considered is applicability, then comes the
achievable fault coverage, and finally, the length of the
test sequence produced. .If all T-, W-, D- and U-methods
were applicable to test a particular FSM, then any one of
the latter three methods is preferred over the T-method
because of their better fault coverages. Among the three
methods, the W-method is the most undesirable because of its
lengthy test sequences. Since UIOSs generally occur more
frequently than DSs do, the U-method seems to stand out from

among the three.

14



The UIOv-Method
In fact, DSs are special cases of UIOSs where the input
sequences for all the UIOSs are identical. In the search
algorithm presented in [Sabn88] for finding minimum UIOSs,
if the resulting UIOSs have identical input sequences, then
they would also be referred to as DSs.
Thé W-set is to DSs as the signatures are to UIOSs.
The W-set possesses the same input constraint as that in the
DSs. While signatures are used when UIOSs are absent, the
W-set should be used only when the DSs are absent because of
the lengthy test sequences that can result from using thé W-
method. From this viewpoint, the UIOSs or the signatures,
having the least restrictive constraints, occur more

frequently than the DSs or the W-set does in FSMs.

2.2.5.2 Fault Coverage

The four FSM test methods are directly applicable to
the conformance testing of those protocols that can be
modelled as FSMs. The ability of a test sequence to decide
whether a protocol implementation under test (IUT) conforms
to its specification solely relies upon the range of faults
that it can detect.

The fouf methods work by checking for the existence of
transitions and, with the exception of the T-method, by

verifying that the states in each transition are correct.

15



The UIOv-Method
In this sense, missing and erroneous states and I/Os in an
IUT can be detected, but extra states and 1I/0s cannot.
However, conformance merely requires that an IUT behaves as
according to its specification. This implies as long as an
IUT possesses a skeleton FSM that is identical to its
specification FSM, it would be a conforming IUT indepeﬁdent
of whether other states or transitions exist. As a result,
the W-, D- and U-method suffice as conformance test methods
for protocols. Their only limitation is that the IUT must
not possess a number of states that exceeds that which is in
the specified FSM since extra states no longer guarantee
"what you see is what you get" during testing.

FSMs that model protocols may not be completely
specified. Those edges that are specified are referred to
as core edges [Sabn88]. For the unspecified étate—input
pairs, a Completeness Assumption can be used where the
protocol machine is either assumed to produce a null output
and remain in its current state or it is assumed to enter an
error state following the generation of an error message.
The Completeness Assumption allows an incompletely specified
FSM to become completely specified. Conformance can thus be
defined at two levels: strong and weak. An IUT has strong
conformance to its specification if, for all tést inputs, it

generates the same outputs as those specified in its

16



The UIOv-Method
specification. An IUT? has weak conformance to its
specification if the IUT has the same I/0O behavior as its
incompletely specified FSM specification. For the non-core
edges, the IUT has wunspecified behavior. This implies
strong conformance testing can be carried out only for those
IUTs whose specification FSMs are completely specified;
otherwise, only weak conformance testing is possible.

The following summarizes the fault coverages that were
reported in [Sidh89] of the four test methods. The fault
coverage of the weak conformance test segquence for the U-
method is better than that of the T-method since the T-
method only checks the I/O operations at each transition
while the U-method verifies the states of each transition as
well. The fault coverages of the strong conformance test
.sequences, for the W-, D- and U-method are identical and are
better than that of the T-method. The latter is again based
§n the fact that the T-method does not verify the states
during testing while the other three methods do. The former
is based on all three methods ére checking experiments
except different characterizing I/O sequences afe used for
state identification. Sidhu claims that each of the three
methods can detect all 1I/0 errors as well as state
transitipn errors. This, however, is not the case as the

following section will show.

17



The UIOV—Method

In general, a test sequence generated by any one of the

four methods is not unique. The reason being an FSM has
more than one transition tour, and it may have more than one
set of UIOSs or DSs, or it may have more than one W-set.
The choice of which characterizing sequence to use depends

on the tester.

2.3 THE SHORTCOMING OF THE U-METHOD

The U-method appeared to be the ultimate test sequence
generation method for FSMs where the applicability advantage
~of the W-method is combined with the length édvantage of the
D-method, and, at the same time, it possesses full fault
detection capability. Unfortunately, this is not the case.
It was found in [Chan89b] that the fault detection
bépability of the U-method in fact depends on the set of
UIOSs chosen. This section is extracted from [Chan89b]. It
compares the U-method with the D-method and it shows why the
U-method does not have as strong fault coverage as the D-

method does.

2.3.1 Assumptions
In the following discussion, each state in an IUT is
assumed to have a reset input, r, which takes the IUT back

.to the initial idle state; no output is generated by the IUT

18



The UIOv-Method

in response to r. An arc to denote this feature would be
labelled as r/-; it would begin at a starting state and end
at the initial idle state. Each r/- arc should be treated

as a transition and exercised as well as verified d&uring
testing, but for simplicity, each arc will be assumed to be
correct in the following discussion.

Sample test sequences generated in this section are not
optimized to better illustrate the role of each subsequence.
These sequences can be optimized by eliminating those test
subsequences that are completely contained in other test

subsequences.

2.3.2 The UIOS Problem
Testing of the simple FSM extracted from [Chan89b] and
shown in Figure 2.1 shows the fault coverage for the U-

method is not always identical to that of the D-method.

19



The UIOv-Method

b/1 ) b/1

a/0 b/1

Figure 2.1: An FSM specification.

The test sequence generated by the U-method, shown in
Table 2.1, cannot detect the faulty implementation, shown in
Figure 2.2, of the FSM in Figure 2.1. The UIOSs chosen for
states 1, 2 and 3 in that test sequence are a/l, a/0.a/l1 and
b/l.a/1 respectively. The resu;ting test sequence could

not detéct the erroneous tail state for the b/1 edge.

20



Table 2.1:

. Figure 2.2:

r/- a/l
r/- a/l
r/- a/l
r/- a/l
r/- b/1
r/- a/l
r/- a/l
r/- a/l
r/- a/l

.a/0.
.b/1

.a/0.
.b/1
.a/0.
.b/1
.b/1
.b/1

a/l

.b/1

a/l

.a/l

a/l

.b/1
.a/0.
.b/1

The UIOv-Method

.a/l

.a/l

a/0.a/1

.a/l

U-method test sequence for the
FSM in Figure 2.1.

a/O_

a/0

b/1

A faulty IUT of the FSM in Figure

2.1

21



The UIOv-Method
However, the test sequence generated by the D-method
shown in Table 2.2 is capable of detecting this faulty IUT.
The DSs chosen for states 1, 2 and 3 are respectively
a/l.a/0, a/0.a/1 and a/0.a/0.
r/- a/l.a/0
r/- a/l.a/0.a/l
r/- a/l.b/1.a/0.a/0
r/- a/l.a/0.a/1
r/- b/l.a/0.a/0
r/- a/l.a/0.a/1.a/0
r/- a/l.b/l.a/0.a/0
r/- a/l.b/1.a/0.a/0.a/1
r/- a/l.b/1.b/1.a/1.a/0

Table 2.2: D-method test sequence for Figure
2.1,

The reason why the U-method test sequence could not
detect the erroneous tail state for the b/1 edge is because
the chosen set of UIOSs is unigue iﬁ the specification FSM,
but it is not unique in the faulty IUT in Figure 2.2. Both
states 1 and 3 in the faulty IUT could generate the UIOS,
b/l1.a/1l, chosen for state 3 in the test. This non-
uniqueness is not detected during the testing of the IUT.
As a result, the IUT could be in either state 1 or state 3
when b/l1.a/1 is observed during. testing. If, however,
another set of UIOSs were chosen, for instance, a/1 for
state 1, a/0.a/l for state 2 and a/O.a/O for state 3, then
the faulty IUT would be detected as these UIOSs are also

unique I/O behaviors in the faulty IUT.

22



The UIOv-Method

The problem with the U-method is thus UIOSs are used
based on the assﬁmption that they are also UIOSs in the IUT
when in fact they may not be. UIOSs are chosen based on the
FSM specification. They are capable of identifying the
states in the specification, but they cannot identify states
in the IUT unless they are also UIOSs in the IUT. In a
faulty IUT, UIOSs may not be unique. Hence, the U-method
incorrectly assumes that if UIOSs are uniqueb in the
specification, then they must also be unique'in the IUT. As
a result, an erroneous state could escape detectioﬁ if it is
capable of producing exactly the same UIOS that belongs to

another state.

2.13 The State Signature Problem

The unigueness problem may also exist for state
signatures. It may even be inherent since signatures are
not requ;red to be unique [Chan89b]. Figure 2.3 is a
duplicate of Figure 4 in [Chén89b]. It shows an FSM whose
state C has no UIOSs. A signature, 0/0.0/1.1/0, is
generated for it. Note that the signature is not unique to
state C; state B is also capable of generating this I/O

sequence.

23



The UIOv-Method

0/1 0/0 1/0 0/0

FPigure 2.3: An FSM with no UIOS for state C.
A test sequence for this FSM generated by the U-method
is shown in Table 2.3. The UIOSs chosen for states A and B
are 0/1 and 1/1 respectively.
r/- 0/1
r/- 1/0.1/1
r/- 0/1.0/0.0/1.1/0
r/- 1/0.1/1
r/- 0/1.0/0.0/1.1/0
r/- 1/0.0/0.0/1
r/- 1/0.1/1.0/0.0/1.1/0
r/- 0/1.0/0.0/1"
r/- 0/1.1/0.1/1

Table 2.3: U-method test sequence for FSM in
Figure 2.3.

This test sequence cannot detect the faulty IUT shown
in Figure 2.4. The edge 1/1 from state B incorrectly ended
at state B in the faulty IUT, but this is not detected by

the test sequence in Table 2.3. The reason is because the

24



The UIOv-Method
state signature used to verify state C is not unique. As a
result, when the state signature is observed, the state that
generated it could have been either C.or B. This problen,
unlike the UIOSs, could be inherent in state signatures;
that is, this non-uniqueness could also exist in the
specification FSM. As a result, the erroneous final state

also escapes detection during testing.

N\

0/1 0/0 1/0 0/0

D)
"

1/1

Figure 2.4: A faulty implementation of the
FSM in Figure 2.3.

2.4 THE UIOV-METHOD
This section revises the U-method with the addition of
a verification procedure to eliminate its uniqueness

problems.

25



The UIOv-Method
2.4.1 Unigueness Problem Analysis

The uniqueness problem with the U-method concerning its
UIOSs is not evident in the D-method or the W-method. The
reason is because the input sequences for the DSs and the W-
set are identical for all the states in a given FSM. During
the first state identification. procedure in a checking
experiment generated by the D- or W-method, a state that
responds with the correct output sequence implies two
things: the state possesses the correct DS or W-set as
according to .the specification; as well, the state does not
genefate an DS or W-set that belongs to another state. This
eliminates the possibility that more than one state in the
IUT may produce the same characterizing I/O sequence.

In a checking experiment generated by the U-method, the
first state identification procedure may have different
input sequences for different states. As a result, a state
which responds with the expected output sequence implies it
possesses the expected UIOS as according to its
specification, but it certainly does not imply that it
cannot produce an UIOS that belongs to another state whose

input sequence differs from that of its own UIOS.

26



The UIOv-Method
2.4.2 "Uv

The way to eliminate the uniqueness problem concerning
the UIOSs is thus to ensure that the chosen set of UIOSs for
a specified FSM is also a set of UIOSs in the IUT; that is,
the uniqueness of the UIOSs also holds in the IUT. This can
be achieved by verifying the uniqueness of the UIOSs prior
to their uses during testing [Chan89b]. This verification
procedure will be referred to as “Uv while the usual state
identification procedure in the U-method will be referred to
as Uv from now on. The U-method with the addition of “Uv
will henceforth be referred to as the UIOv-method.

“Uv is required only for those states whose UIOSs have
different input sequences; for the other states, “Uv is
implied in Uv [Chan89b]. During “Uv, a partial input
sequence may be sufficient. For instance, given two states
A and B in an FSM, if the UIOS for A is a/1.b/1.a/0 and the
response‘of B to the input sequence a.b.a is 1.0.0, then B
can be tested for the absence of a/l.b/1.a/0 by merely
observing that B generates the subsequence a/l1.b/0 since
this is enough to show that B cannot generate a/l1.b/1.a/0.
This partiality reduces the cost of the final test sequence.

In “Uv, the emphasis is on states not generating UIOSs
that belong to other states, hence, identical outputs

generated by different states in response to the same inputs

27



The UIOv-Method
are acceptable; whereas in Uv, this would not be allowed as
it implies one UIOS is generated by more than one state. An
example test sequence using the UIOv-method is produced in
Table 2.4 for the FSM in Figure 2.1. This test sequence is
equivalent to that shown in Table 2.1 with the exception
that "Uv is added. Note that at subsequence r/- b/l.a/0 the
faulty IUT in Figure 2.2 fails since state 1 displays r/-
b/l.a/1 instead; that is, state 1 generates the UIOS that
belongs to state 3.

r/- a/l

r/- a/l.a/0.a/1

r/- a/l.b/1.b/1.a/1
r/- a/l.b/1.a/0

r/- a/l.b/1.a/0.a/0
r/- b/l1.a/0 _

r/- a/l.b/1.a/0

r/- a/l.a/0.a/l

r/- b/1.b/1.a/1

r/- a/l.a/0.a/1

r/- a/l.b/1.b/1.a/1
r/- a/l.b/1l.a/0.a/0.a/1
r/- a/l.b/1.b/1l.a/1

Table 2.4: UIOv-method test sequence for the
FSM in Figure 2.1.

2.4.3 I0(S,K)s

| To correct the inherent uniqueness problem in state
signatures, [Chan89b] proposed the use of a set of IO(S,K)s
in place of a state signature. Each member in the set of

IO(S,K)s is a sequence of I/0Os that distinguishes the state,

28



The UIOv-Method
S, to which the IO(S,K)s belongs, from at least one other
state, K, in the FSM. This is somewhat similar to the W-set
with the exception that the input sequences in the I0(S,K)s
for different S states may be different and the number of
sequences in each set of IO(S,K)s may also vary depending on
state S. The size of thé set of I0(S,K)s for a state S is
the minimum required to distinguish S from all other states
in the FSM.

Each set of IO(S,K)s mﬁst be unique to state S. Each
set is treated as though it is an UIOS during testing; that
is, each is verified in the same way UIOSs are verified in
the “Uv and Uv procedures prior to their wuses during
testing. During the transition testing, Tt, portion of the
checking experiment, each I/0O operation with tail state S
will be tested a number of times equals to the number of I/0
sequences in its set of IO(S,K)s. An example is shown in

Table 2.5 for the FSM in Figure 2.3.

29



The UIOv-Method

r/- 0/1
r/- 1/0.1/1
r/- 0/1.0/0
r/- 0/1.1/0
r/- 1/0
r/- 1/0
r/- 0/1
r/- 0/1.0/0

r/- 0/1.1/0
r/- 1/0.1/1
r/- 1/0.0/0
r/- 1/0.0/0
r/- 1/0.1/1 . .|
r/- 1/0.0/0.0/1
r/- 0/1.0/0.0/1
r/- 0/1.1/0.1/1
r/- 0/1.0/0 .
r/- 0/1.1/0
r/- 1/0.1/1.0/0
‘r/- 1/0.1/1.1/0

Table 2.5: UIOv-method test sequence for the
FSM in Figure 2.3.

For state C, IO(C,A) is 0/0 and IO(C,E) is 1/0. These
two sequences are checked for their absences in states A and
B during. TUv. In state A, although 1/0 is present, 0/0 is
absent. In state B,’ 0/0 is present but 1/0 is absent.
Hence,.IO(C,A) and IO(C,B) together can be used to ﬁniquely
identify state C. Each edge that ends at C, 1/0 from A and
1/1 from B, is checked twice using 1/0 first then 0/0 the
second time. Note that +the faulty IUT in Figure 2.3
possesses the same set of UIOSs and IO(C,K)s as that in the
specified FSM. As a result, the erroneous final state for

edge 1/1 is detected by IO(C,B).

30



The UIOv-Method

While the DSs are special caées of the UIOSs, the W-

sets can be viewed as special cases of the I0(S,K)s where

the former has the additional constraints that the input

sequences must be identical for all the states and the

number of sequences in each W-set for each state must be

identical. As well, the W-set must exist for every state in
the FSM.

In the.remainder of this thesis, when UIOSs or IO(S,K)s

are referred to, it is assumed .that these are verifiable

UIOSs and verifiable IO(S,K)s,

2.4.4 Comparing The UIOv-Method With The Others

The fault coverage produced by the UIOv-method is
better than that produced by the U-method. Erroneous tail
states such as those illustrated in the previous sections
are now detectable. . The fault coverage of the UIOv-method
is now identical to those of the W- and D-method. The proof
is as follows.

First of all, the W-, D- and UIOv-method are all
checking experiments with the exception that they wuse
different characterizing I/0 sequences for state
verification. Secondly, the DSs and the W-set are special
cases of thé UIOSs and the IO(S,K)s respectively. Recall

how the “Uv procedure for a particular state is implied in

31



The UIOv-Method
its Uv procedure when the input sequences for the UIOSs
belonging to other states are‘identical to that of its own
UIOS. 1In this sense, the state identification procedures of
the checking experiments generated by the W- and D-method
accomplish what both Uv and “Uv accomplish in .the UIOv-
method. As a result, the fault coverages of the W-, D- and
UIOv-method are identical.

The length of the test sequences produced by the UIOv-
- method are obviously longer than those produced. by the U-
. method; = however,. .they. are  generally. shorter than the
sequences derived by the W-method since the latter requires
that each transition be tested a number of times equals to
the fixed number of I/0 sequences in the W-set. In
comparison to the D-method, it is more difficult as the
sequence. lengths may differ according to different FSMs.
The test subsequence corresponding to Uv and “Uv is likely
longer than that corresponding to the state identification
procedure for the D—me£hod. However, the subsequence for
the Tt portion of the test is likely shorter in the UIOv-
method because of less restrictive conditions in forming the
UIOSs, which produce UIOSs that are generally shorter than
DSs. If the UIOv- and DQmethod were both applicable to an

FSM and the DSs are shorter than the UIOSs, then the D-

32



' »The UIOv-Method
method should be used; otherwise, both methods need to be
examined.

In terms of applicability, the UIOv-method is more
widely applicable than both D- and W-methods. This is
obvious due to the added constraints in the formation of the
DSs and W-set. The likelihood that a set of DSs exists in a
given FSM is generally lower than that for a set of UIOSs or
W-set. In-geneéal,.a.minimal and. -strongly connected Méaly

machine being completely specified is a sufficient but not

necessary..condition for the  application of the D-, W- and
. UIOv-method... ' The necessary condition is that the FSM
possesses an DSs set, a W-set or an UIOSs set. The same

condition applies to incompletely specified machines: so
long as such a machine possesses a completely specified FSM
skeleton from which a set of DSs or a W-set can be produced,
or from which stems a set of UIOSs, the respective D-, W-
and UIOv-method would be applicable. Hence, all three
‘methods are applicable to any FSM independent'of whether it
is completely or incompletely specified as long as the

required characterizing I/0O sequences exist in the FSM.

2.5 UNIQUE TEST SEQUENCES
All test sequences generated by the D-, W- and UIOv-

methods achieve full fault coverage in the testing of FSMs.

33



The UIOv-Method
A property that is common among these test sequences is
captured in the concept of unique test' sequences (UTSs)
proposed in [Chan89b]. Full fault coverage in FSM testing
in this thesis implies the detection of all erroneous and
missing states and I/Os. An UTS is defined to be a test
sequence that is unique fo a specified FSM, M, if there does
not exist any other FSM with the same number of states and
~transitions. as that in M capable . of producing an I/0
.sequence that is identical to the UTS of M. An IUT thus
passes- a test that uses .an UTS. if and only if. the TIUT
possesses a FSM. skeleton identical . to the specified FSM.
This implies UTSs are capable of deteéting any faulty IUT
provided that the number of states in the IUT is no greater
than that which is in the FSM specification. This also
implies an IUT that passes such a test may possess extra
transitions in addition to those specified in the FSM
specification, provided that thé IUT has a number of states
greater than or equal to that which is in +the FSM
specification.

An UTS can be formed by using a sequence of I/0s to
accurately describe each transition in the FSM
specification; that is, each I/O operation is described as
is, their starting and final states are described by their

characterizing I/O sequences. This implies that if there

34



4

The'UIOv—Methéd
exists a program which generates FSM graphs according to a
given I/0O sequence and a given number of states, then if the
given I/0 sequence were an UTS, then there would be one and
only one graph that can be genefated from the given
sequence. An FSM may have more than one UTS depending on
which characterizing I/O sequence is selected.

It was found in [Chan89b] that test sequences produced
by the D-method and the UIOv-method. were sequences of I/0Os
that accurately described each transition specified in the
given FSM; that is, both methods produced UTSs. Since the
W-method is a special case of the D-method and the UIOv-
method, it is also capable of generating UTSs. Since the T-
method describes only the 1I/0 operations inside each
transition without any reference to its states, this method
generally does not produce UTSs in FSMs with the exception

of the following type of simple FSMs.

Figure 2.5: A simple FSM with an inherent
UTSs. :

35



The UIOv-Method
In the simple FSM, assuming that the test sequence must
begin at the initial state, state 1, the shortest transition
tourlpossible is a/l.a/2.a/3. This is not an UTS because
there exists two other completely specified FSMs, each
having three states and an input set I = {a}, that 1is
capable of <generating an I/Q0 sequence identical to
a/l.a/2.a/3. These two FSMs differ from that in Figure 2.5
by the tail state of the a/3 arc. One FSM has its a/3 arc
end at state 2; the other has its a/3 arc end at state 3.
However, the transition tour a/l.a/2.a/3.a/l1 is an UTS since
it b§unds.the tail state of a/3 to state 1, the only state
that generates a/l. |
UTSs apply to Dboth completely and incompletely
specified FSM specifications since the b—)' W- and UIOv-
method are applicable to any FSM that possesses a set of
DSs, a W-set or a set of UIOSs respectively. This implies
any IUT that possesses an FSM skeleton identical to the
specification FSM, whether it be completely or incompletely
specified, will pass a test usiné an UTS based on -the
specification.
One question that is often brought up is whether a
generated test sequence is correét; that is, whether the
test correctly represents the specification so that any IUT

that passes that test must conform to the specification.

36



The UIOv-Method
One -way to verify that a given test is correct is to
generate all possible FSMs that correspond to the given
test. If the test uses an UTS, then there would exist only
one FSM, with the same number of states and transitions as

that in the specification, that can be generated.

2.6 FSM TESTING

Much can be learnt from FSM testing. In the T—mefhod,.
transitions are only exercised during testing. This method
generally achieves a partial. fault coverage +that  1is
comparable to that produced by the branch coverage criterion
in software testing, where each branch is exercised at least
once. From the T-method, it becomes clear that merely
exercising statementﬁ, or branches, do not constitute a
sufficient test; that is, some errors may escape detection.
These errors a;é those found in elements that are not
directly observable in the I/O operations; for inétance, the
states in an FSM.. . The checking experiments for FSMs solve
this problem by verifying each state with its characterizing
I/0 seguence. This is possible because the variable STATE
takes on a finite set of possible values.' As weli, each
different wvalue can be characterized by a different I/O
sequence. This, however, may not be possible in software

testing where a set of possible values for a given variable

37



The UIOv-Method
may be infinite. As well, there may not be a sequence of
externally observable events that can differentiate among
different values of a variable. Nevertheless, FSM testing
does show that exercise along with verification gives
improved fault coverage over that produced by exercise

alone.

2.7 CHAPTER SUMMARY

In summary, checking experiments for testing FSMs are
capabie.of detecting all states and I/O errors as according
to .an FSM specification. . Before the advent of the UIOv-
method, checking experiments based on DSs were hampered by
their limited applicabi;ities while those based on W-sets
were handicapped by their lengthy test sequences.  With the
advent of the UIOv-method, checking experiments became more
applicable without the disadvantage of a lengthy test
sequence.

The UIOv-method solves the uniqueness problem in the
UIO-method with the use of a verification procedure. This
solution is independent of which UIOS is non-unique in the
IUT [Chan89c]; it solves the problem by attacking its cause.
This solution permits any minimum length UIOS to be used

provided that it is verifiable; hence, it does not

38



The UIOv-Method
considerably add to the complexity of the search algorithm
for UIOSs given in [Sabn88j}.

Checking experiments generate test sequences that are
unigque to the specified FSM. As a result, any IUT that
passes such a test possesses an FSM skeleton that is
identical to the specified FSM; however, it may have
additional transitions .that do not belong to the
spebification.

In terms of applicability, checking experiments are
generally applicable to Mealy machines that are minimal and
strongly connected. . Whether a Mealy machine is completely
or incompletely specified is not important, so long as it
has a completely specified skeleton for which a W-set or a
set of DSs can be generated, or from which stems a set of
UIOSs, a checking experiment would be applicable.

One result from FSM testing is that mere exercising of
transitions alone generally cannot wuncover all faults.
Exercise of transitions along with verification, whenever
possible, produce a better fault coverage.

In the remainder of this thesis, the "UIOv-method" will
be used to refer to the UIOv-method, the W-method, as . well
as the D-method for simplicity. This implies the term
"UIOSs" will refer to UIOSs as well as DSs. Thié is

possible since DSs are merely UIOSs whose input sequences

39



The UIOv-Method

must be identical for all the states in an FSM. Similarly,

the term "IO(S,K)s" will also refer to the W-sets since the
latter are really 1I0(S,K)s whose input sequences are
identical for all the states and whose members

must be

consistently numbered among the states in an FSM.

40



3 TESTING EXTENDED FINITE STATE MACHINES

Techniques for testing FSMs are applicable to testing
simple protocols that can be modelled by FSMs. These
models, however, are impfactical for complex protocols which
may require a very large number of states. For instance,
the use of sequence numbers in a protocol introduces a
different state for each possible value. This is known as
the state space explosion problem.

A remedy to the state space explosion problem is by
using an. extended. finite state machine (EFSM) model for the
specification of more coﬁplex protocols. When FSM testing
techniques are applied to such models, executabilities df
the resulting test sequences are no longer guaranteed. This
chapter discusses how the UIOv-method can be extended to the
testing of protocols modelled by EFSMs so that executability
of the final test sequence is guaranteed and maximum fault

coverage is achieved within the limitations of testing.

3.1 BACKGROUND

An EFSM is an FSM with the addition of minor state
variables. These variables form additional enabling
conditions in the transitions to reduce the number of states
required in the underlying FSM. As a reéult, different

transitions may occur in response to the same combination of

41



Testing Extended Finite State Machines
input event and starting state in an EFSM. A transition in

an EFSM may be triggered by three types of enabling

conditions: the input event, the current state and a
boolean expression involving minor state variables. Each
transition now consists of three operations: the output

operation, the state'transition and operations that alter
values of the minor state variables. The "state" of an EFSM
no longer . refers .to- the value belonging to the STATE
variable alone but it refers to the values belonging to the
minor state variables. as well. The "state" of an EFSM will

be referred to as its total system state (TSS) from now on.

3.2 THE EFSM TABLE

Test sequences generated from FSMs are generally done
according to their directed graphs. A similar graph can be
constructed for EFSMs; however, since minor state variables
need to be'considered as well in EFSMs to ensure the final
test sequences are executable, when these variables are
included in an EFSM directed graph, the graph can become
very cluttered and difficult to use. The tabular format is
thﬁs better suited for fepresenting EFSMs for testing
purposes and is used in here as a tool for the test sequence

generation procedure.

42



Testing Extended Finite State Machines
Columns in the EFSM table are labelled by the starting
TSSs of the EFSM transitions. Rows in thé EFSM table are
labelled by the final TSSs of the EFSM transitions. Each
table entry records a transition and can be labelled by
either the transition identifier, +t*, or the input and
output operations within the transition. The EFSM table
thus contains information on the semantics and syntax of an
.EFSM. By considering both, instead of syntax alone,
executability is taken .into consideration during the test
sequence generation process.
Table 3.1 shows a simple example of an EFSM table.
There is only one minor state variable, c,\in the examplé.
When ¢ is absent at the current TSS, C.TSS, or at the next

TSS, N.TSS, it indicates ¢ can assume any value.

43



Testing Extended Finite State Machines

C.TSS sl sl1 sl s2 s2 s2
c<2 c=2 c<2] e=2
N.TSS

sl a/o0
c:=c+1

sl b/-

82 a/3

52 . . a/_

2. AU AU T 'b/0

s1 B | b/3

Table 3.1 An EFSM table.

3.3 EXTENSION OF THE UIOV-METHOD

Tﬁe UIOv—hefhod bisb exténded inl this Vsécfiéh to be
applied to EFSM testing. An EFSM is an FSM with additional
minor.state variables, héncé, the.UIOv—Qethod is“ﬁirébfly
applicable to testing its FSM portion. The UIOSs and
preambles, .however, must be carefully selected to prevent
executability problems in the final +test sequence. In
addition, since minor state variables contribute to the TSS,
they must also be verified the same way STATE variables are

in FSM testing.

44



Testing Extended Finite State Machines
3.3.1 UIOSs Selection In An EFSM
For simplicity, those transitions in an EFSM whose

starting TSSs involve p-uses of minor state variables will

be  referred +to as ‘"e.transitions" in the subsequent
discussion. Those transitions that do not will simply be
referred to as "transitions." For example, referring to

Table 3.1, those transitions with the following I/Os are
e.transitions:  a/0, a/3, b/0 and b/3.

Executability problems may exist in the chosen UIOSs if
they contain. e.transitions and their enabling conditions are
. not. .part of. .the. UIOSs. - An . uncomplicated way to prevent
executability problems in the UIOSs chosen is to "remove"
all the e.transitions in the EFSM .table to form a table
representing a pure FSM. The search algorithm in [Sabn8g]
for  UIOSs 1is now directly applicable to the table.
E.transitions are all. the  transitions found wunder the
. columns labelled with. TSS variables consisting of minor
state variables. .. In practice,  the. e.transitions are not
physically removed but are simply ignored during the search.
Although this method may not produce minimum UIOSs, its
advantage is that executability is guaranteed within the
UIOSs. This implies no special preamble ié reqguired to
enable any UIOS. As will be seen later on, special

preambles can considerably increase the final length of the

45



Testing Extended Finite State Machines
test sequence and may be problematic in the testing of
e.transitions.

If the resulting FSM table produces only non-verifiable
UIOSs which are UIOSs whose input sequences are not
applicable to other states for verification, then “Uv must
involve e.transitions. This may require special preambles
fo permit executability’iduring “Uv. The tail states of
these preambles must be. verified using their respective
UIOSs to ensure “Uv 1is performed for the correct state.
These preambles are.. formed. only for the purpose of an
executable “Uv procedure. - The Uv -and “Uv procedures during
testing will use these special preambles.

If a state in the FSM table does not have an UIOS, then
the EFSM table has to be used to find an UIOS for that
sfate. The e.transitions in the resulting UIOS require the
following attention. If within the UIOS the p-use of the
minor state variable in an e.transition is enabled by a
transition that is also .within.the UIOS, then the UIOS is
executable by itself and does not require a special
preamble. If, however, the enabling transition, et, is not
within the UIOS, then the preamble for the state, s, to
which the UIOS belongs must include et. Two possibilities
can occur. The et may have s as its ending state. This is

a problem if there exists more than one incoming arc to s.

46



festing Extended Finite State Machines
This implies the UIOS cannot be used to verify the tail
states of the other incoming arcs because the UIOS would not
have been enabled. Another UIOS or a set of IO(s,k)s wéuld
have to be used for state s. If, however, there is only one
incoming arc to s and it enables the UIOS, then the UIOS may
be used for s. The other possibility is that the et ends at
a state other than s, in which case a partial preamble can
.be formed from the initial state of the EFSM to the et, and
def-free .paths joining this partial preamble to each of the
-starting states for  the incoming arcs to s complete the
preambles. . .The UIOS - for s can be used provided these
preambles exist for all the incoming arcs to s. Each of the
preambles must have its tail state. checked to ensure it
arrives at the correct state before it is used in the Tt
procedure.

Using special . preambles and having to verify their
ending states is a ©penalty to pay when UIOSs have
executability problems... The resulting test sequence, as
well, may not be minimal. In addition, if the transition to
be tested is an e.transition which requires an et to be
included in the preamble, then the preamble needs to enable
both the e.transition and the UIOS. Such a preamble may not
exist, in which case another UIOS has to be found. There

may perhaps be an executable set of I0(s,k)s for state s

47



Testing Extended Finite State Machines
that would reduce the number of special preambles required
aﬁd produce a shorter test sequence. An optimization
technique such as that used in [Shen89] would find the best
alternative.

For the example in Table 3.1, transitions a/- and b/-
constitute UIOSs for the states s2 and sl respectively.
Since they are not e.transitions, they do not require

.speciai preambles to enable them.

3.3.2 . Verification Of TSS Variables

The UIOv-method verifies a state in an FSM with its
UIOS. Similarly, in an EFSM, values of minor state
variables that contribute to the TSS should also be verified
so that the TSS is verified, not just the STATE variable in
the EFSM. |

-In the same way that a state is verified by the UIOS
that is unique to it, an TSS can also be verified by the I/O
sequence that is- unique. to. it... However, it may not be
possible to verify the whole TSS as a unit. For insténCe,
there may not exist a transition whose C.TSS is identical to
the N.TSS to be verified so that an I/O sequence that begins
at that C.TSS_transition can perform the verification. The
reason is as follows. The C.TSS for a particular transition

may not involve all the minor state variables that appear in

48



Testing Extended Finite State Machines
all the C.TSSs in the EFSM. Unspecified variables are
allowed to assume\any value. As a result, an N.TSS for a
transition may not be verifiable as a whole if there does
not exist a transition with an C.TSS which contains p-uses
of all the wvariables that contributed to the N.TSS. An
example would be the transition a/- in Table 3.1. This
transition cannot be used to verify the N.TSS for the
transition a/3 which has the variable ¢ reset to 0. The
C.TSS for a/- merely requires that the STATE variable be at
s2, it says nothing about the variable c¢. - Hence, exercising
- a/~- after a/3 cannot verify ¢ although it can -verify that
the final STATE is at s2. The ¢ variable thus has to be
verified separatély. For C.TSSs, each variable involved may

also have to be verified separately.

3.3.2.1 Verification of_N.TSSs

Verification of final TSSs, or N.TSSs, may bevach£eved
using I/O sequences.. Each definition of a minor state
variable that contributes to +the N.TSS as well as the
definition of the STATE variable has to be verified. The
STATE variables can be verified the same way they are
verified in the UIdv-method. For the minor state variables,
an I/0 path is used to 1lead the defined wvariable to a

transition whose C.TSS contains a predicate which uses that

49



Testing Extended Finite State Machines
variable definition. The definition of the minor state
variable can then be verified using an I/0 sequende ﬁhat
,bégins at that C.TSS.

Referring back to the final TSS for the a/3 transition
where the STATE variable is set to s2 and c¢c is reset to O.
None of the C.TSSs is identical to it; however, the C.TSS s2
AND c¢<2 can verify that ¢ is not at 2 and STATE is at s2; as
well, the sequence b/0.b/0.b/3 beginning from that C.TSS can
verify that ¢ was indeed reset to 0. Each execution of b/0
"increments ¢ by 1 and transition 5/3 is not possible unless
¢ has reached 2 after two increments. As a result, the
subsequence b/0.b/0 would have incremented ¢ to 2 if it were
at 0 to begin with, and the I/O b/3 would verify that ¢ had
been incremented to 2 correctly. Hence, the seguence can
verify that ¢ was reset to 0 correctly. Similarly for the
N.TSS s2 and c=c+1. The variable ¢ can be verified that it
is incremented correctly by initially setting it to 0, then
to 1. When it is at 0 .and STATE is at s2, the situation is
.identical to that mentioned above and the sequence
b/0.b/0.b/3 verifies that STATE is at s2 and that c¢ has. been
both set to 0 correctly and incremented correctly. When ¢
is at 1 and STATE is at 's2, the sequence b/0.b/3 verifies
that STATE is at s2 and ¢ is incremented correctly.- The b/0

transition increments ¢ to 2, and the b/3 transition checks

50



Testing Extended Finite State Machines
that ¢ is correctly at 2. Hence, ¢ must have been at 1 to

begin with.

3.3.2.2 Verification of C.TSSs

Verification of the starting TSS, or C.TSS, for a
transition requires verifying that the STATE variable 1is
correct and any predicate involving a minor state variable
is also correct. . Verification of the STATE variable is

again identical to the Uv and “Uv procedures in the UIOv-

method. . Verification ..of . the. predicate is somewhat
different. . Two things have to ‘be checked in the

verification of a predicate: effect and correctness. The
effect of the predicate has to be checkea, whenever
possible, to distinguish it from other predicates involving
the same minor state variables. This .is similar to the
STATE variables being distinguished from one another. The
distinguishing procedure. is also an identification process
that. identifies the STATE or the predicate by meéns of an
I/O0 segquence that characterizes the value of @ the STATE
variable or the presence of the predicate. For instance,
referring to the example in Table 3.1, the predicate for
transition a/0 can be distinguished from that for transition
a/3 by setting ¢ to 0 or 1 and inputting thé sequence a.a.a

or a.a respectively. The predicate for transition a/0 would

51



Testing Extended Finite State Machines
prompt the response 0.0.3 or 0.3 respectively. The
predicate for transition a/3 can be distinguished from that
for a/0 by setting ¢ to 2 and then inputting a.a.a or a.a to
the IUT. The response of the IUT would be ' 3.-.- or 3.- if
the predicate were correct. Note that both predicates have
to be verified separately the same way that all STATE values
have to be checked separately. Simply checking one does not
imply the other is correct. Checking the predicate for
transition a/3 can also employ only the I/0 sequence a/3.
The I/0 sequences used are thus UIOSs for the predicates.

The other item a predicate has to be checked for is its
correctness. For instance, 1if sl AND c¢<4 constitute an
C.TSS that enables transition x, then this implies s1 AND
c=0, sl AND c¢=1, sl AND c=2 and sl AND c=3 are all capable
of enabling x. . To check that the predicate has been
implemented correctly, one way i1is to check all these
possibilities. However, this could result in an extremely
lengthy test sequence if the predicate were c¢<100 instead of
4, Instead, the boundary-interior wvalue criterion can be
used here and the predicate ¢<4 can be checked by setting c
to 0, 1, then 3 so that the domain of the predicate can be
established. The I/0 sequence which characterizes C.TSS sl
AND c¢<4 can then be applied to verify the‘response of the

IUT in each case. Checking for the correctness of the

52



Testing Extended Finite State Machines .
predicate has to be considered here in the test sequence
generation procedure because setting the TSS variables to
particular values may require certain sequences of I/Os to
be implemented or certain values be used at the time of
input. Leaving the'verification procedure until the test
dafa selection process may be too late since the I/O

sequences have already been determined by then.

3.3.2.3 UIOSs for TSSs

.. In the same way UIOSs are used to verify states, I/O
sequences are used to verify minor state variables. If the
variables are ‘"completely specified," then these I/O
sequences must be unique, as discussed above, so that one
predicate can be distinguished from another involving the
same minor state variables. For instance, referring to
Table 3.1,. since starting TSSs s1 AND c¢<2, sl AND c=2 and sl
are all specified, if sl AND c=2 were used to verify a final
TSS, then .the I/0O sequence that begins at that TSS must not
be also producible at the TSSs sl1 AND c¢<2 and sl; otherwise;
when the I/0 sequence is observed, the ¢ variable at the IUT
could have been at 2, less than 2 or any value. The I/0
sequence used must thus be unique to the starting TSS. In
Table 3.1, this uniqueness exists fdr all TSSs; that is, at

TSS sl and c<2, a/0 is produced and it is not genérated by

53



Testing Extended Finite State Machines
any other TSS. This implies theluniqueness of a/0 should be
checked, prior to its use, the same way “Uv checks the UIOSs
for the STATE variables, to ensure its uniqueness also
exists in the IUT. If TSSs sl AND c=2 and sl did not exist,
then a/0 would not have to be checked since it does not have

to distinguish TSS sl AND c¢<2 from sl AND sl AND c=2.

3.3.3 The éUIOv—Method

The extended UIOv-method, or eUIOv-method, is the UIOv-
method taking executability and the TSS into consideration.
It consists of the following procedures.

Uv = preamble(si)@UIOS(si)

“Uv = preamble(si)@"UIOSs(si)
where preamble(si) denotes the preamble that takes the EFSM.
from . its initial state to state si; “@ denotes
concatenation; UIOS(si) is the UIOS belonging to si and

“UIOSs(si) are UIOSs that belong to other states in the FSM

which should not be producible by si. Uv and “Uv are- done
for each STATE in the EFSM. Both procedures together

determine the minimum number of STATEs in the EFSM. The
choice of preamble(si) for each si must ensure that the
subsequent UIOS(si) and “UIOSs(si) are all executable. If
no such preamble(si) exists, then either' another set of

UIOSs should be used or a set of I0(si,k)s should be used.

54



Testing Extended Finite State Machines
Uv and “Uv must both be done because of the uncertainty of
UIOSs without their verifications as discussed in Chapter 2.
If UIOSs are used for verifying TSS Variables, then their
uniquenesses must also be verified in these procedures.

The next procedure in the eUIOv-method is transition
testing, or  Tt. The testing of e.transitions will be
referred to as eTt.

Tt =.(1) t.preamble(si)@transition{(si,sf)@UIOS(sf)

+ (2) t.preamble(si)@UIOS(si)

eTt. = (1)_par.preamble(sj)@def—free path(sj,si)e@
.e.transition(si,sf)@QUIOS(sf)
+ (2) par.preamble(sj)@def-free path(sj,si)@
UIOS(si)

If t.preamble(si) is equal to preamble(si) used in Uv and
“Uv, then (2).is not required to verify its tail state to be
Si,again; otherwise, verification is required as indicéted
by (2).- Transition(si,sf) denotes a transition that begins
at si and ends at state s£.» Par.preamble(sj) is a path that
begins at the initial state and ends at state sj. Def—ffee
path(sj,si) is a path that 1leads from a transition that
starts at sj to si. That transition at sj houses the def of
the p-use appearing in e.transition. The total preamble,
which is the partial path concatenated with the def-free

path, must also have its tail state verified as indicated in

55



Testing Extended Finite State Machines
(2). This in essence is checking the starting state for
e.transition(si,sf). If the UIOSs consist of e.transitions,
then embedded within the preambles must be defs that enable
those e.transitions. This is why it is preferable to use
slightly 1longer UIOSs if they do not have e.transitions
involved. During eTt, a preamble that enables UIOS(sf) as
well as e.transition(si,sf) may not exist.
| The last procedure in the eﬁIOv—method is the
verification of minor state variables in the TSSs in each
transition
‘'msvv .=.t.preamble(si)@transition(si,sf)@
def-free path(sf,sk)@I/Os(msvf)
OR par.preamble(sj)@def-free path(sj,si)
@e.transition(si,sf)@def-free
.path(sf,sk)@QI/Os(msvf)
where I/0s(msvf) is the sequence of I/0Os to verify the

definition of one or more minor state wvariables in

. transition(si,sf) or e.transition(si,sf). The def-free

path(sf,sk) leads from sf to the e.transition starting at sk
which houses the predicate involving the definition in
transition{(si,sf) or e.transition(si,sf). If I/Os(msvf) has
to be unique, then the verification procedure identical to
Uv and “Uv has to be carried out for it to check its

uniqueness. Predicates in the C.TSSs are also verified in

56



Testing Extended Finite State Machines
this procedure using the methodology discussed in the
previous section. |

To return to the initial idle state, if the reset
feature r/- is not available, then a sequence of I/0s has to
be used to bring the machine back to the initial state.
These sequences of I/Cs should be verified prior to their
uses to. ensure they end at the initial state. Their
verification -can be. done as follows for a state si in the’
EFSM.

... . preamble(si)@postamble(si)@UIOS(idle) -

Parameter - variation methods "such as "the boundary-
interior value criterion or the most commonly used values
can be used during the test sequence genération procedure to
achieve more thorough testing, in such cases, test sequences

may be repeated to accommodate the various values selected.

3.3.4 An Example

The eUIOv-method is applied to the EFSM in Table 3.1 as
an example. The initial state is taken to be sl and the ¢
.variable is assumed to be initialized to 0 at the beginning
of each implementation. The reset feature r/- is assumed to
exist to bring each state in the EFSM back to sl. Its

verification is assumed to be correct.

57



Testing Extended Finite State Machines

The UIOSs for sl and s2 are b/- and a/- respectively.

The UIOSs for verifying c¢<2 at STATE sl starts with a/0 and
for c=2 at sl is a/3. Their uniqueness need not be verified
separately in the “Uv procedure since they share identical
inputs. The UIOSs for verifying c<2 at s2 starts at b/0 and
for ¢=2 at s2 is b/3; again, their uniqueness are already
confirmed in the Uv procedure. The UIOSs for verifying
different c.values at the same STATEs thus need be verified
only in Uv. No preamble 1is required to go to s1i. The
. preamble for. s2 is .a/0.a/0.a/3. .. Transitions a/3, b/0 and
b/3 are e.transitions = and they require the following
preambles to ensure their executabilities. The preambles
are found by traversing backwards from each e.transition to
the initial sl1 state. The predicates in the e.transition
are considered and those transitions whose N.TSSs enable

these predicates are tracked and included in the preambles.

preamble(a/3) = a/0.a/0
preamble(b/0) = a/0.a/0.a/3
preamble(b/3) = a/0.a/0.a/3.b/0.b/0

The following test subsequence constitute the Uv and “Uv
procedure for the EFSM in Table 1.
Uv: Db/-

a/0.a/0.a/3.a/-.x/-

a/0.r/-

58



Testing Extended Finite State Machines

a/0.a/0.a/3.xr/-

a/0.a/0.a/3.b/0.r/-

a/0.a/0.a/3.b/0.b/0.b/3
“Uv: a/0.r/-

a/0.a/0.a/3.b/0.xr/-

{The following verifies the special preambles.}

a/0.a/0.b/-.xr/-

.a/0.a/0.a/3.a/-.x/-

a/0.a/0.a/3.b/0.b/0.a/~-.x/-
- The following test subsequence constitutes the Tt, eTt and
msvv procedures. The, information in the ©parenthesis
indicate the N.TSS to be verified in the transition under
test. In this particular example, the msvv procedure to
verify TSSs is carried out with the eTt procedure whenever
possible to reduce the length of.the final test sequence.
Since all .the preambles used have already been verified in
the Uv and' “Uv procedure, they do not havevto be verified
here again.
Tt: b/-(sl).b/-

a/0.a/0.a/3.a/-(s2).a/-.x/-
eTt & msvv: a/0(sl AND c=1).b/~-.a/0{c=2}.

a/3.r/-
a/0.a/0.a/3(s2 AND ¢=0).a/-.b/0{c=1}.

b/0{c=2}.b/3

59



Testing Extended Finite State Méchines
a/0.a/0.a/3.b/0(s2 AND c=1).a/-.b/0{c=2}.
b/3
a/0.a/0.a/3.b/0.b/0.b/3(s1l AND c=0).b/-.
a/0{c=1}.a/0{c=2}.a/3.x/- -
'Although the UIOSs b/- and a/- for STATEs sl and s2 are
used to verify the STATEs indicated in the parentheses

above, the STATEs can also be verified at the same time the

.. ¢ variables -are verified in this particular case since the

UIOSs. for ~the c¢ variables are capable of distinguishing
~among .. different c. variables as well as among different
STATEsfu Hokever, if these UIOSs are used for this purpose,
they should first be verified in proceduré “Uv to ensure
they indeed have these capabilities. Values of the ¢
variables that have to be verifiéd are recorded in braces to
.track the verification procedure.  ~ For instance, {c=2}
tracks the ¢ variable  while ‘it is -being incremented by one.
The value of‘ the increment, in turn, is verified by the
transition that is enabled when c¢=2. Verification of the
effect of the predicates is implied in this example in the
verification of the definitions of the corresponding
variables. Domains of the predicates are also implicitly
verified in the eTt and msvv procedure above where c was set

to 0 first, then to 1.

60



Testing Extended Finite State Machines

The final test sequence may be reduced by eliminating
those test subsequences that are Acompletely contained in
other subsequences.

The conclusion one can draw from a test that uses the
test sequence generated above is that if the EFSM has only
two states, then an IUT that passes the above test possesses
an EFSM skeleton identical to the specified EFSM. The
number of states must again be restricted to be equal to
that in the specification. This again implies there méy
exist extra transitions in the IUT that are not in the EFSM

specification.

3.3.5 Summary Of The eUIOv-Method

The eUIOv-method is essentially a checking experiment
that checks an IUT for each EFSM transition given in the
specification. The Uv and “Uv procedures in the eUIOv-
method establish the minimum number of states in the EFSM
and they verify the uniqueness of the UIOSs. The Tt and eTt
procedures check eachrtrénsition specified in the EFSM by
observing its current and final STATE values as well as its
I1/0 operations. The msvv procedure checks the definitions
‘'of minor state variables that contribute to the N.TSS of a
transition. Whenever ©possible, these definitions are

verified to be correct. The minor state wvariables that

61



Testing Extended Finite State Machines
contribute to the C.TSS of a transition are also checked for
their correctness and their effects. Their effects are
checked by distinguishing predicates involving identical-
minor state variables and STATE variables from one another.
Their correctness are checked using two boundary wvalues and
an interior value to establish the domains of the predicates
whenever necessary.

The eUIOv-method requires that wvalues of minor state
variables that contribute to C.TSSs are tracked during the
test sequence generation procedure in order to ensure
executability of the final test sequence and chosen valués
for testing predicate domains are selected. The tracking
procedure may require some computations as well as pre-
selection of test data. The eUIOv-method thus couples the
test sequence selection process with the test data selection
process whenever necessary. These two processes are
traditionally carried out separately in software testing
where the test sequences generated may face executability

problems.

3.4 FAULT COVERAGE
The eUIOv-method is based on the UIOv-method; hence, it
produces a fault coverage that includes +that which is

produced by the UIOv-method. This implies the eUIOv-method

62



Testing Extended Finite State Machines
is also capable of detecting all I/O errors and STATE errors
in an EFSM provided its set of STATES is no greater than

that which is in the specification. This also implies extra

I/0s present in the IUT will not be detected. However,
referring to the term "conformance, " and given the
limitations of testing, this 1is acceptable. As for the

testing of the TSS variables, again, extra statements cannot
be detected. The effects of extra statements are discussed
in greater detail in the next chapter. If the predicates
constituting the C.TSSs involve mathematical expressions, or
if wvariables in the N.TSSs are assigned new values with
mathematical expressions, then their correctness may not be
guaranteed even though they may display correct values
during testing. This 1issue will also be discussed 1in

greater details in the next chapter.

63



4 DATA FLOW TESTING

While simple protocols can be modelled by FSMs,vthe
more complex ones require EFSMs to accurately describe their
functions and behaviors. EFSM models alone, however, cannot
detail the flow of information that often takes place from
one control phase to anothef. For instance, input
primitives often have accompanying parameters that are input
at one . control phase and étored by the IUT in the form of a
variable for usage or reference in another control phase.
Instead, the functions of these parameters and variables can
be separately described in a data flow transition embedded
within the appropriate EFSM transition. These parameters
and variables should also be checked during festing to
ensure their functions are correctly carried out and the
output primitives are accompanied by the correct parameters.
This checking process can be accomplished by means of a data
flow testing procedure. |

An overview of the data flow testing procedure gives a
process similar to the msvv procedure in the eUIOv-method,
except here, instead of a path tracking the definition of a
TSS minor state variable to its usage, each data path tracks
the definition of a parameter or a variable to its usage.
‘Each path is exercised and verified whenever possible during

testing to ensure the definition, or usage, under test is

64



Data Flow Testing
correct. Any predicate that appears in the data flow
transitions also has its effect and correctness verified the
same way they are verified in the msvv procedure. The data
flow testing technique 1is based on static data flow
analysis. It is also based on the lesson learnt from FSM
testing that transition exercising alone is not enough,
whenever it is possible, elements that are not directly

observable in each transition should be verified as well.

4.1 STATIC DATA FLOW ANALYSIS

Static data flow analysis originated in compiler
optimization [Hech77]. It was applied to software testing
in [Rapp85] and is now generally accepted as a structural
testing strategy [Weis85].

Essentially, static data flow analysis tracks each
input variable through a program until it is ultimately used
to produce output values. Associations between the
definition of, or the assignment of a value to, a variable
and the usage of that variable are identified and examined
during testing. The concept is based on each defined
variable must reach a use while each variable to be used
must have been previously defined.

The followiﬁg definitions are introduced to enhance

subsequent discussions. In static data flow analysis.

65



Data Flow Testing
terminology, the process of assigning a value to a variable
is called the definition, or def, of the wvariable. The use
of the variable in a predicate is called a p-use. The use of
the variable in determining the def of another variable is
called a c-use [Rapp85]. |

Ural [Ural88] was the first to apply static data flow
analysis to the conformance testing of protocols. The
resul£ was a\method of generating test sequences based on
rigorously-defined data flow relationships which allow
easier interpretation of test results. In comparison with
the method proposed by Sarikaya [Sari87}, this method
generates more comprehensive tests in terms of st:uctural
coverage; and in terms of functional'coverage, Sarikaya's

was more complete [Ural88].

4.2 DATA FLOW PATHS

In a protocol, a data flow path for a particular
parameter or variable refers to a sequence of data flow
transitions where the first tfansition contains a definition
of the parameter or variable and the 1last transition
contains a usage of that parameter.or variable. These two
transitions are connected by a sequence of transitions based
on the underlying EFSM modelling the control structure of

the protocol.

66



Data ?low Testing

A data flow path of length one is a path embodied
within the same data flow transition; that is, the usage of
the variable or parameter immediately follows its
definition. This type of flow path is exercised whenever
the EFSM transition is executed.

Data flow paths which extend from one EFSM transition
to another require that 'the particular sequence of
transitions be examined during testing. This sequence may
or may not already be covered during EFSM testing. This
type of flow fpath is referred to as "inter-transitional"
[Chan89a] aﬁd requires identifying the transition at which
the definition first occurs, the transition at which the
usage occurs, and connecting these two transitions with a
path based on the control structure. The path must be
executable and it must be free of any re-definition of the
variable or parameter; that is, the definition is "live" in

the connecting path.

4.3 DATA FLOW TESTING

In testing'the data flow of a ppbtocol, the variables
and parameters that appear in the data flow transitions
embedded within the EFSM transitions are tracked from the
moment they are defined until they are used either for

computational purposes or as predicateé. When computations

67



Data Flow Testing
éventually lead to the definition of an output primitive
parameter, the path is further extended to that parameter in
order that the computations may be verified to be correct.
If verification is not possible, the flow paths would only
be exercised; they stop at the usage of the vafiable or
parameter. For predicate'uses, the variable or parameter
involved may not be verifiable in terms of externally
observable events, in which case the flow path again would
only be exercised and stops at the transition containing the
predicate. If verification is possible, where the actions
enabled by different p-uses differ and are manifested in
externally observable events, then these events would be
checked to verify the p-uses. For instance, a different
value assigned fo an output parameter depending on the
predicate constitutes an externally observable event.
Usages are thus again verified according to the effects they
have on determining values for the I/0Os or the order in
which they appear. The correctness of these usages may be
verified during the test data selection procedure by
selecting appropriate values for test inputs. The boundary-
interior value criterion can again be used for the process.
However, if special pfeambles are required so that the
predicates, with selected values assigned to the variables

involved, may be enabled, then they must be considered again

68



Data Flow Tésting
during the sequence generation procedure to ensure the final
test sequence is executable.

It should be noted that in a protocol specification;
not all defs are necessarily used in which case flow paths
do not exist for those defs. An example of this type of‘def
is a def for the purpose of initializing a variable where
the initialized value is not used.

While there may be more than one def of a variable,
there may also be more than one usage of it. Each def
should be exercised and verified at least once; the same
applies for each use.

More than one usage may exist for a single def of a
Qariable; hence, some usages may not be tested if paths were
formed from the defs alone since the number of paths would
then be limited by the number of defs. .Hence, usages that
have been missed should be tfacked back fo their appropriate -
defs to form addi£ional flow paths so that they can be
verified as well.

When the usages are p-uses, they require that the defs
produce specific values corresponding to those in the p-
uses. In these cases, the search for a def of the wvariable
must take into consideration the wvalue that is assigned to
the variable. Similarly, if a p-use were to verify a def

statement, the value of the def must be considered to ensure

69



Data Flow Testing
executability. When the usages are c-uses, the values that
arise from the def statements are not critical in the test

sequence generation process.

4.4 THE DATA FLOW'TESTING.PROCEDURE
As previously mentioned, the procedure for testing data
flows (DFTP) is similar to the msvv procedure in the eUIOv-
method except all parameters.and variables are considered.
All flow paths that begin at transition(si,sf), for testing
the defs of variables in that transition, are appended to
the appropriate preambles to form a test subsequence in the
following manner. The "def-free DF path" indicates the path
fhat brings the transition, which houses the def, to the
transition that uses or verifies, if possible, the variable.
The latter transition is included in the path.
DFTP = preamble(si)@transition(si,sf)@def-free DF
path(transition)@postamble
OR
par.preamble(sj)@def-free path(sj,si)e
e.transition(si,sf)@def-free DF path
(e.transition)@postamble
The same applies to the flow paths that test the usages of
variables in transition(si,sf) or e.tiansition(si,sf). The

test subsequences they form are in the following format.

70



Data Flow Testing
DFTP = preamble(sk)@def-free DF path(sk,si)
@transition(si,sf)@postamble(sf)
OR
par.preamble(sj)@def-free path(sj,sk)@
@def-free DF path(sk,si)@e.transition(si,sf)
@postamble(sf)
The "def-free DF path" here is the def—frée path that
includes the transition housing the def of the wvariable, and
which connects the transition to the transition where the
usage is, transition(si,sf). The paths to transition(si,sf)
and e.transition(si,sf) are preferably those pfeviously used
in the Tt and eTt procédures. If new paths are used,
perhaps due to executability problems in the def-free DF
paths or due to usage requirements, then the tail states of
- these new "preambles" to transition(si,sf) or
e.transition(si,sf) must be verified to ensure they end at
the correct state so that data flow paths ﬁsed to verify
defs of variables (def-itDFPs) are spanned from fhe correct
transition, and paths used to verify uses of variables (use-
itDFPs) are verifying | uses situated at the —correct
transitions.
The EFSM table used in the eUIOv-method is augmented
with enabling conditions for the data flow transitions to

aid in determining executable flow paths between two

71



Data Flow Testing
selected data flow transitions. If the data flow transition
is preceded with a ©predicate involving minor state
variables, then their p-uses and defs would be extracted to
form new TSSs in the EFSM table. New columns or rows may
thus be added in the augmented table along with new table
entries. Those predicates that invélve input parameters
would be indicated in the appropriate ’table entries to
reflect specific values are required at the time of input

during testing.

45 AN EXAMPLE
The following is a simple example to illustrate the.
DFTP. Referring back to the EFSM table in Table 3.1, let
there be data flow transitions added to the EFSM transitions
as follows. The data flow transitions are denoted by DF and
are enclosed in a block delimited by BEGIN ... END. Each
EFSM transition is identified by a number.
transition 1: IN: a(a.addr)
C.TSS: s1 AND c<2
N.TSS: s1 AND c:=c+1
OUT: O(a.addr)
transition 2: 1IN: b(b.addr)
C.TSSs: s1

N.TSS: sl

72



Data Flow Testing
ouT: -
transition 3: IN: a(a.addr)
C.TSS: s1 AND c=2
N.TSS: s2 AND c:=0
DF: BEGIN address:=a.addr END
OUT: 3(a.addr)

transition 4: IN: a(a.addr)

C.TSS: s2
N.TSS: s2
ouT: -

transition 5: IN: b(b.addr)
C.TSS: s2 AND c«2
N.TSS: s2 AND c:=c+1
OUT: O(b.addr)
transition 6: IN: b(b.addr)
C.TSS: s2 AND c¢=2
N.TSS: sl AND c:=0 "
DF: BEGIN 3.addr:=b.addr@address END
OUT: 3(3.addr)

The flow of each a.addr and b.addr to an output
parameter in <transitions 1, 3 and 5 can be verified by
simply executing the transitions and observing that the
output parameters enclosed in parenthesis are correct during

the EFSM testing procedure. 1In transition 3, a.addr had to

73



Data Flow Testing
be remembered by the address variable so that it may be used
later in transition 6 to be appended to b.addr to form the
output parameter 3.addr. In EFSM testing, this flow of
information may have been ignored since it requires a
particular sequence of transitions to occur. The DFTP is
thus applied here to check this flow of data. A data flow
path which connects transition 3 to transition 6 is 3.5.5.6.
or, in terms of an I/O sequence, a/3.b/0.b/0.b/3. This path
tracks the def of the address variable in transition 3 to
its usage in transition 6. Since the variable is then used
to compute the output parameter 3.addr, the def of the
variable can be verified by observing the value of the
variable, 3.addr. If this data flow path were not included
in the EFSM testing process, then it would be tested
separately in the DFTP by building a preamble that brings
the EFSM from its initial sl state to the TSS that enables
t3, and concatenating the preamble to the data flow path to
form the following test subsequence.

DFTP: a/0.a/0.a/3.b/0.b/0.b/3

The above test subsequence tests the correctness of the
def of the variable address; it also tests the correctness
of its usage. In addition, from this test subsequence, it
‘can be seen that the input parameters a.addr and b.addr are

used correctly to form the output parameter 3.addr.

74



Data Flow Testing
4.6 CHAPTER SUMMARY

The data flow testing procedure is based on static data
flow analysis and the lessons learnt from FSM testing. It
is different from static data flow analysis becausé a def is
not merely traced to its_usage, but it is verified as well
whenever possible. Similarly, a usage is not just exercised
but its effect also verified whenever possible. When the
usage is a p-use, there are two things that can be checked:
its effect and its correctness. Its correctness can be
verified Dby applying parameter variation methods as
discuésed in the previous chapter to establish the domain of
the predicate/and then by observing its effects, via its
characterizing I/O sequence, to verify its existence in the
IUT. When the wusage is a c¢-use and if it involves
mathematical expressions or other parameters or variables,
then its correctness is more difficult to check. This is
discussed in greater details in the next section.

The effects -of usages are verified as follows. When a
variable is used as a c-use and it 'definés an output
primitive parameter, the parameter would be tracked and
observed to verify the correctness of the def and the c-use
of the variable. When the usage is a p-use, then the
effects among different p-uses of the same variable at the

same TSS are compared and whenever possible, these effects

75



Data Flow Testing
are tracked to verify the effect of the p-use. For
instance, if the predicate x=2 enables the assignment
statement y:=2,' and the predicate x<>2 enables the
assignment statement y:=4, then if the variable y were used
to compute an output parameter in another transition, this
output parameter would be trackéd and its wvalue checked to
ensure that y was assigned the correct value cofrespondiﬁg
to the appropriate predicate involving the variable x. if,
however, the variable y is itself used in a p-use, then the
different p-uses of y and their different effects would
again be tracked until they are externally observable or
until they are proved to be non-verifiable by looping back
to the initial p-uses for the variable x, in which case, the
p-use of x would only be exercised.

/The DFTP employs the same method of genérating test
subsequences as that used in the msvv procedure in the
eUIOv-method. The result is that a def that was not
.verified in the EFSM testing procedure is now verified in
data flow testing and the preamble ensures that it 1is
located at the expected'transition. The same applies to the
usages that were missed by the eUIOv-method. The preambles
in their test subsequences ensure that the ﬁsages are

situated at the correct transitions.

76



Data Flow Testing
4.7 COMMENTS ON THE DFTP

The DFTP can detect errors in the defs and usages of
variables provided they are externally observable or
verifiable and no extra def or usage statements exist in the
IUT. Erroneous defs or usages of variables or parameters
that cannot be externally observed and verified.may escape
detection.

The possible effects of extra def statements in an IUT
are as follows. As an example, consider a def-free path
t1.t2.t3.t4 where a def of a wvariable in t1 is to be
verified by its use in t4. According to the specification,
if the IUT were correctly implemented, then the def is
indeed in tl1 and the use in t4 indeed verifies it. However,
if t3 erroneously redefined the variable in the IUT, which
is unknown to and unexpected by the tester, the usage in t4
would have verified the def in t3 instead of the one in tl
as expected. If the verification result were positive and
if the def in tl1 were in fact erroneous, then the error
would have gone unnoticed. If the verification result were
negative, then the def in tl1 would be suspected of being
erroneous when in fact it may be correct. As a result,
extra statements may distort test results and may not be

detected.

77



Data Flow Testing

If the uses were p-uses, then it is generally assumed
that all possible conditions are considered since this only
constitutes good practice. . For instance, if x>3 appears in
an enabling condition, then x<3 and x=3, or a combination of
the two, should also be present; otherwise, testing x>y
would require that x be set to 3 and a value less than 3 as
well to ensure that the enabling condition 1is .indeed
correct. However, this would not be possible if the
specification did not specify what the IUT is to do when x<3
and x=3. If the specification did specify them, then if the
IUT erroneously missed the condition x>y altogethér so that
x could have assumed any value, then testing x<3 and x=3
would have detected the missing p-use provided the effect of
the p-uses are verifiable. Hence, the best alternative is
to specify all possibilities.

If the def stétements involved mathematical
expressions, then the value used as test input could be just
as important as the sequence of test inputs to be used. A
well known example is the expression y:=2+x. If x were
chosen to be 2, then if y were erroneously set to 2*x, the
erroneous usage of x, or the def of y, would have gone
unnoticed. For this type of defs, it seems +the most
appropriate method of selecting test data is by knowing

ahead of time what could possibly go wrong. However, this

78



Data Flow Testing
is impossible because everything "under the sun" would have
to be taken into consideration. Instead, one way to select
test data could be with the boundary-interior value method,
where extreme values and middle ranged values are used. A
more practical approach would be to select as test data all
those values that are frequentiy used in a real
implementation of the protocol. This approach cah also be
extended to apply to ~test sequence selection; that is,
select those sequences that are most likely used in a real
implementation to be tested. This, however, requires close

cooperation between the testers and the users.



5 THE HYBRiD TECHNIQUE

When the eUIOv-method is augmented with the DFTP, a
hybrid technique is formed which is essentially a checking
experiment that is applicable to testing complex protocols
that are modelled with EFSMs augmented with descriptions
detailing the functioﬁs of their parameters and variables. |

The hybrid technique is also directly applicable to the
testing of protocols that are implemented according to their
Estelle specificatibns. The EFSM portion of the protocol,
modelling its control flow, is checked using the eUIOv-
method in the hybrid technique. The Pascal statements in
the Estelle specification which describe the data flow
aspect of the profocol can be used to guide the DFTP within
the hybrid technique to exercise and verify, whenever
possible, the input and output primitive parameters in the
IUT as well as its minor state variables. The hybrid
technique is believed to be adequate for testing Estelle
specified protocols based on the following observations.

In FSM testing, the UIOv-method tests each transition
by observing its VI/O operations and verifying that its
starting and final states are correct. As a result, all
elements in an FSM transition are exercised and verified.
In EFSM testing, the eUIOv—metHod tests each transition by

observing its input and output primitives and verifying that

80



The Hybrid Technigque
its starting and final TSS variables are correct. As a
result, the eUIOv-method also exercises and Verifies.each
element in an EFSM transition. When it comes to testing an
Estelle specification, since it houses EFSM transitions and
data flow transitions, its EFSM transitions can be tested
using the eUIov-method. The data flow transitions can be
tested by exercising and verifying, whenever possible,
statements involving the input and output primitive
parameters as well as the minor state variables. Once all
these parameters and variables are also tested, all elements
in an Estelle transition would have been exercised and
verified. The hybrid technique can thus be viewed as an
" extension to the eUIOv-method where, not only minor state
" variables are examined, but all other variables as well as
parameters contributing to data flow are examined as well.
The hybrid technique is thus directly applicable in the
testing of protocols that are implemented according to their
Estelle specifications. During testing, the IUT is checked
for each transition in the Estelle specification one at a
time, exercising and verifying each statement in the
transition whenever poséible.
This chapter provides an example of how the hybrid
technique can be ﬁsed to generate a conformance test

sequence from an Estelle specification to test an IUT

81



The Hybrid Technique
generated from the specification. The Class 0 Transport

Protocol is used as the sample protocol in here.

5.1 BACKGROUND
This section provides a brief introduction to Estelle

and its normal form.

5.1.1 Estelle

Estelle is a formal description technique developed by.
ISO [Is088] for the specification of, but not limited to
[Vuon88b], communication protocols and services.

Estelle is based on an EFSM model for specifying the
control structure of a protocol and a set of Pascal
statements for specifying its déta flow. Estelle protocol
specifications are implementation oriented and compilers
have been developed to generate automatic protocol
implementations from their Estelle specifications
[Vuong88a].

Estelle defines a system using a hierarchy of modules.
Parent modules may dynamically c¢reate and destroy child
modules. Modules contain abstract message interfaces or
interaction points that can be connected to form

communication channels. Selected sets of messages or

82



The Hybrid Technique
interaction primitives may be exchanged across these
channels to facilitate communication among modules.

A protocol can be specified using one 6r more modules.
The actions of each module, corresponding to the behaviors
of the protocol, are defined by a set of EFSM transitions.
The complete "state" of the module, or the protocol machine,
is captured by the STATE variable as well as other minor
state wvariables if they exist. Each transition ih the
module is composed of a set of operations and a set of
enabling conditions. The enabling conditions may or may not
include an input event, the current state and a boolean
expression involving minor state variables or input
primitive parameters. Each of these conditions is optional
and, if absent, is assumed to be satisfied. The enabling
condition involving minor state variables generally
indicates the circumstance under which different transitions
are triggered in response to the same pair of input event
and starting state. Once the enabling conditions in a
transition are satisfied, a set of operations may be carried
out. These may include an output operation, a state
tfansition, and a set of operations, specified in Pascal,
involving minor state variables or interaction primitive
parameters. The Pascal statements may include procedure and

function calls as well as conditional and loop statements.

83



The Hybrid Technique
‘Conditional statements permit a choice of output operations

to be performed within a single transition.

5.1.2 Normal Form Estelle Specifications

An Estelle specification may be simplified to a form
that is more easily represented by directed graphs. This
simplified form of an Estelle specification is known as its
normal form specification (NFS) [Sari86].

Modules in the Estelle specification are combined using
symbolic execution to form a single module in the NFS.
States that have been grouped into state sets in the Estelle
specification are expanded into the individual states they
represent in an NFS. This is done Dby replicating the
appropriate transition a number of times equals to the
number of states in the state set. Conditional and loop
statements are also eliminated in the NFS by replicating the
transition which houses those statements a number of times
equals to the number of branches or the size of the loop;
this assumes loops do not have variable bounds. Procedure
and function calls are eliminated within transition bodies
using symbolic execution. Procedures are assumed to be non-
recursive and do not contain loops with variable bounds.

The overall appearance of an NFS is that of a giant

EFSM with Pascal assignment stateménts embodied within the .

84



The Hybrid Technique
EFSM transitions involving minor state variables and
interaction primitive parémeters. An NFS displays the two
types of flows in an Estelle specification more explicitly.
Control flow is marked by changes in the STATE variable and
the input and output operations involving the interaction
primitives. Data flow is identified by the operations,
specified in Pascal, on the minor state variables and
interaction primitive parameters.
An Estelle specification henceforth refers to the
original form of the specification in subsequent

discussions.

5.1.2.1 Example of an NFS

[Ural88] provides anvexample of an NFS of the Class 0
Transport Protocol. This NFS is polished and reproduced
here in Appendix A. All redundant assignment statements are
eliminated; details that have been left out are added back
in.

Each transition in the NFS is identified with a number.
The current state or the starting state of each transition
is denoted with FROM. The final state or the next state of
each transition is denoted with TO. The PROVIDED . clause
"expresses the enabling condition involving minor state

variables or input primitive parameters. In an Estelle

85



The Hybrid Technique
specification, the PROVIDED <clause denotes only the
conditions under which different state transitions occur for
the same combination of input event and starting state. In
an NFS, the.PROVIDED clause also houses branching conditions
responsible for branch paths within transitions. An example
of this is transitions t3 and t4. The branching conditions
"ecr.in.max.tpdu.size <> nil* and "c¢r.in.max.tpdu.size = nil™"
have been extracted from a single transition in the Estelle‘
specification; that transition was replicated twice to form
transitions t3 and t4 in the NFS. Each input interaction

primitive is preceded by the keyword WHEN. A transition may

not have an input interaction primitive. An example 1is
transition t14. This type of +transition is known as
spontaneous transitions. Each output interaction primitive

is preceded by OUT. Each output operation resides inside a
block in fhe body of the transition delimited by BEGIN
END. Operations to Dbe performed at each transition
involving minor state wvariables and interaction primifive
parameters are expressed in Pascal and are also enclosed in
the block delimited by BEGIN ... END.

The interaction primitive parameters are enclosed in
parenthesis following their respective primitives. These
parameters, when referred to inside +the transitions, are

preceded by the primitive names and either "in" or "out" to

86



The Hybrid Technique
indicate whether they belong to an input or output primitive
respectively. When .an output primitive parameter is
assigned a constant valﬁe, the constant is directly placed
.in the appropriate position in the OUT statement. " An
example is in tl, where "normal" is directly placed at the
output parameter list. When the output primitive parameter
is assigned a value identical to that of a minor state
variable, the wvariable name is directly placed in the
appropriate position at the corresponding OUT statement. An
example is in t3, where "gts.estimate" replaces the last
parameter name for +the primitive tcind. These direct

placements eliminate redundant assignment statements.

5.2 REFINING THE NFS

An Estelle specification in its normal form provides a
graphical description of a protocol in terms of an
"enriched" EFSM. The NFS is further refined and reformatted
in this section to obtain canonical transitions and to
separately bring out the underlying EFSM and data flow for

testing purposes.

5.2.1 Canonical Transitions
In order to form canonical transitions in an NFS,

expressions ORed in a PROVIDED clause should be extracted

87



The Hybrid Technique
and the transition replicated accordingly. The reason is
because OR is merely a way of combining different system
starting states which trigger the same transition when a
particular input is received. An example of this kind of
combination is the state set feature in Estelle. State sets
combined different starting STATE variables that trigger the
same transition upon receiving the same input into one set.
In forming the NFS, each state in the set would be extracted
and the transition replicated for each member in the set.
The same should thus be done for all the variables
responsible for the TSS.

For example, if transition t3 in Appendix A had OR in
its PROVIDED clause 1instead of AND, then t3 would be
replicated as follows:

'WHEN cr(...)
FROM idle
PROVIDED cr.in.max.tpdu.size <> nil
TO wftr
t3: BEGIN
remote.refer := ...;
END;
WHEN cxr(...)
FROM idle
PROVIDED cr.in.option = ok
TO wftr
t3i: BEGIN

remote.refer := ...;

END;

88



The Hybrid Technique

5.2.2 Reformatting the NFS
Since Estelle uses an EFSM to model the control
structure of a protocol and a set of Pascal statements to
describe its data flow, conformance testing of a protocol
implemented according to its Estelle specification should
have its contrpl structure checked against the specified
EFSM and itsv data flow checked against the Pascal
descriptions [Chan89a]. A test sequence generation
technique for an Estelle specification should thus consider
both its EFSM model as well as its data flow statements.
The NFS is reformatted here to separate and bring out the
underlying EFSM and data flow to aid this test sequence
generation process. Factors that contribute to
executability ©problems aré also brought: out in the

reformatted NFS.

5.2.2.1 Executability Problems

There are two types of enabling conditions in an
Estelle specification: those that contribﬁte to
executability problems and those that do not. Conditions
that involve input primitive parameters belong to the latter
'category because appropriate values can always be input at
the time of testing to permit executability. On the other

hand, conditions involving minor state variables could

89



The Hybrid Technique
contribute to the executability problem as these variables
are not directly acce§sible. Their values may depend on
previous input primitive parameters or they may require that
a particular sequence of I/Os occur before they do. The
executability problem thus surfaces if these variables are
not considered during the selection of test sequences. The
roles of these variables in the EFSM and data flow are made

explicit in the reformatted NFS to aid executability.

5.2.2.2 The Reformatted NFS

The major difference between an NFS and a reformatted
NFS is that the latter separates and brings out the EFSM and
data flow from an Estelle specification..

The following features in an Estelle specification
constitute an EFSM. Minor state variables that appear at
the PROVIDED clause together with the STATE variable
preceded by FROM constitute the current TSS in the EFSM.
The values obtained from their alterations in the body of a
transition and the new STATE variable indicated by the
keyword TO constitute the final TSS in the EFSM. Input
primitive parameters found at the PROVIDED clauses in an
Estelle specification together with their input interaction
primitives denoted by WHEN constitute the set of inputs in

the EFSM. The output set is composed of the output

90



The Hybrid Technique
primitives indicated by OUT. The remaining statements in
the Estelle specification belong to its data flow. |

An EFSM can be extracted from either an Estelle
specification or its NFS by gathering statements that
correspond to the features mentioned above. In an NFS, this
requires that some enabling conditions in the PROVIDED
clause be separated‘and some Pascal statements corresponding

to data flow be duplicated.

5.2.2.3 The Enabling Conditions

Enabling conditions in the PROVIDED ciause in an NFS
that enable different +transitions must be separated from
those branching conditions that affect different paths
within a single transition. In an Estelle specification,
the first set of conditions is expressed in the PROVIDED
clause and contributes to the EFSM; the second set of
conditions is found in the IF clause or the CASE clause
inside a transition and contributes to the flow of data.
Botﬁ types of conditions may involve minor state variables

as well as input interaction primitive parameters.

5.2.2.4 The Def Statements
The other major change required of the NFS in its

reformation is that statements with defs of wvariables that

91



The Hybrid Technique
have p-uses in the PROVIDED clause. in the Estelle
specification must be gatheréd into one block, rest of the
statements with defs of variables or parameters that have
future c-uses or p-uses responsible for paths within a
transition are gathered into another block. The first block
determines the next TSS in the EFSM. The second Dblock
brings out the data flow aspect. ' For those variables that
have uses that belong to both blocks, their def statements

are duplicated and placed in both blocks.

5.2.2.5 Format of the rNFS -

The following shows the general form of the reformatted

NFS (xNFS).

t*: WHEN i.i.p. {i.i.p.p. p-uses}
FROM c.state AND {m.s.v. p-uses}
TO n.state AND BEGIN
{m.s.v. defs}

END;

OUT o.i.p.
PROVIDED ({m.s.v. or i.i.p.p. p-uses})
BEGIN

{m.s.v. defs}
{i.i.p.p. c-uses}
{m.s.v. c-uses}
{o.i.p.p. defs}

END;

where t*: rNFS transition label
i.i.p.: input interaction primitive
i.i.p.p.: input interaction primitive parameter

92



The Hybrid Technique
c.state: current state
m.s.v.: minor state variable
n.state: next state
0.i.p.: output interaction primitive
o.i.p.p.: output interaction primitive parameters
An rNFS transition is composed of an EFSM: transition
and a data flow transition. The group of statements from
the WHEN clause to the OUT clause describes the EFSM
transition; rest of the statements starting with the
PROVIDED clause describe the data flow. All output
primitives are expressed in the OUT clause. If in the
original specification, there exists two possible choices of
output primitives within a single transition, then its
corresponding EFSM portion would be replicated and these
output primitives extracted and put into each EFSM
transition. The predicate that determines which output
primitive to use would also be extracted and put in the FROM
clause if it involves a variable; otherwise, it would be put
in the WHEN clause. Variables in the predicate are thus
treated as TSS variables. If the predicate also affects
data flow, then it would be replicated and placed at the
PROVIDED clause as well to indicate the data flow paths.
The NFS of the Class 0 Transport Protocol in Appendix A

is reformatted into an rNFS shown in Appendix B. Note that

93



; / The Hybrid Technique
when two rNFS transitions share an identical EFSM
" transition, their labeis indicate them as "tea" and "teb"
where "te" labels the rNFS transition and "a" and "b" label
its two data flow paths. This type of rNFS transition
corresponds to a single Eételle transition with two branch
paths within.

The reformatted NFS can be easily generated from an
Estelle specification by following the same procedure as
that for generating the NFS with the exception that the
enabling conditions are kept separate. As well, minor state
variables that appear in the PROVIDED clauses are identified
and their def statements are extracted and duplicated
whenever necessary. If more than one output primitive
exists in a transition, they would also be extracted as

discussed above.

5.3 ESTELLE EFSM TESTING

This section shows how an Estelle EFSM may be tested
using the eUIOv-method. Table 5.1 1is an EFSM table
representing the EFSM of the Class 0 Transport Protocol

extracted from its rNFS in Appendix B.

94



The 'Hybrid Technique

C.TSS IDLE WFCC WFTR DATA DATA DATA
0.b.<>0| 1i.b.<>0
F.TSS
WFCC tereq
(qr=0k)
/er
IDLE tereq dr/ tcres tdreqg
(gr<>ok) | ndreq, (ar>ge) | /ndreq
/tdind tdind /dar, ndind
cr tdind /tdind
(op<>ok) tdreq/ nrind
/dr dr /tdind
WFTR cr
g.e.= (op=0k)
/teind
DATA ce/
i.b.=0 tccon
0.b.=0
g.e.=...
DATA tcres
i.b.=0 (gqr<=qge)
0.b=0 /cc
DATA tdatr
0.h.<>0 /-
DATA -/dt
0.b.=0
DATA dat/-
i.b.<>0
DATA -/
i.b.=0 tdati

Table 5.1 EFSM table for the Class 0
Transport Protocol.

95




The Hybrid Technique

5.3.1 Spontaneous transitions

Spontaneous transitions are Estelle transitions that‘do
not require inputs to be enabled. These transitions are
enabled as long as their TSSs are satisfied. A spontaneous
transition thus verifies all or part of a final TSS for
another transition when it is enabled and its output is
observed during testing. In addition, -‘its absence 1is
capable of verifying all or part of a finalyTSS fof another
transition whose TSS wvalues do not equal to those of the
starting TSS for the spontaneous transition. For instance,
if a spontaneous transition has the following starting TSS
and output: |

FROM sl AND x = y
OUT ol

then when -/0l1 1is observed, it wverifies that the STATE
variable was at sl and the x variable was equal to y. When
-/ol is not observed, then either STATE was not at sl or x
wés not equal to y. Hence, the absence of a spontaneous
transition output is equally significant during testing.

In summary, the presence of a spontaneous transition
output verifies an N.TSS identical to the spontaneous
transition C.TSS. Its absence verifies an N.TSS that is

different from its C.TSS.

96



The Hybrid Technique
5.3.2 Testing the EFSM in the COTP
As an example, the eUIOv-method is applied to the EFSM
tabie in Table 5.1 for the Class 0 Transport Protocol
(COTP). The EFSM had to be completed with the Completeness
Assumption to generate a set of UIOSs in this case. The
Completeness Assumption used in the example' is that
unspecified inputs are ignored and the IUT remains in its
current state. The additional transitions arising from the
assumption are not tested in here, but they would be if they
had been part of the specification.

The UIOSs chosen for the states in the EFSM are as

follows:
UIOS(IDLE) = tcreqg{gts.req = ok)/cr
UIOS (WFCC) = dr/ndreq,tdind
UIOS(WFTR) = tdreq/dr
VUIOS(DATA) = tdreqg/ndreq

This is done by selecting I/0 sequences that are unique to
the states from the first four columns of the table. These
columns denote TSSs determined solely by the STATE
variables; hence, their transitions are not e.transitions.
Since the reset feature does not exist in the Class 0
Transport Protocol, each of the following I/0 sequences
takes a state back to the initial IDLE state:

postamble (WFCC) = dr/ndreq,tdind

97



The Hybrid Technique

postamble (WFTR) tdreq/dr

postamble (DATA)

tdreqg/ndreq

The following I/0O sequences are chosen as preambles to take
the EFSM from its initial.IDLE state to each of the other
states. No special requirement exists for the preambles
since the UIOSs are themselves executable.

preamble (WFCC)

tecreq(gts.req = ok)/cr

preamble (WFTR) cr(option = ok)/tcind

preamble (DATA)

tcreq(gts.req = ok)/cr.cc/tccon
The following test subsequences verify the postambles to
ensure they do end at the initial IDLE state. The procedure
can be shortened by verifying only those postambles that are
actually used.
tcreq(gts.req=0k) /cr.dr/ndreq, tdind.tcreqg(gts.reg=0k)
/cr.dr/ndreq,tdind (for WFCC) |
cr(option=0k)/tcind. tdreq/dr.tcreq(gts.reqg=0k) /cr.
dr/ndreq,tdind (for WFTR)
tcreq(gts.reqg=ok)/cr.cc/teccon. tdreq/ndreq.
tcreq(gts.reqg=0k) /cr.dr/ndreq,tdind (for DATA)
The following test subsequences constitute the Uv and “Uv
procedures for the EFSM.
Uv: tcreqg(gts.req=0ok)/cr dr/ndreq,tdind
tcreq(gts.reqg=0k)/cr.dr/ndreq, tdind

cr(option=0k)/tcind. tdreq/dr

98



The Hybrid Technique
tcreq(gts.reg=0k)/cr.cc/tccon. tdreq/ndreq
“Uv: dr/-
tdreq/-
tcreq(gts.reqg=ok)/cr.tecreq/-.dr/ndreq, tdind
tcreq(gts.reg=0k)/cr.tdreq/-.dr/ndreq, tdind
cr(option=0k)/tcind.tcreq/-.tdreq/dr
cr(option=ok)/tgind.dr/—.tdreq/dr
tereq(gts.reqg=0k)/cr.cc/teccon.tereq/-. tdreq/ndreq
tcreq(gts.reg=ok) /cr.cc/tccon.dr/-.tdreq/ndreq
Note that since WFTR and DATA both have an UIOS with tdreq
as input, the “Uv procedure is shortened. IDLE and WFCC
testing for tdreq/- verifies the absences of both UIOSs.
WFTR testing for tdreq/dr in Uv verifies the absence 6f
tdreg/ndreq, the UIOS for DATA. DATA testing for
tdreq/ndreq in Uv verifies the absence of tdreq/dr, the UIOS
for WFTR. Duplicated test subsequences can be eliminated to
optimize the final test sequence. |
The next procedure in the eUIOv-method is Tt; it tests
and verifies all transitions. With the exception of
e.transitions tl1l1 and t13, all the transitions or table
entries are tested in this procedure. The following test
subsequences are derived for this procedure.
Tt: tqreq(qts.req=ok)/cr.dr/ndreq,tdind

tcreg(gts.reg<>ok)/tdind. tecreq(gts.req=0k) /cr.

99



Thé Hybrid Technique
dr /ndreq,tdind
cr(option<>ok)/dr.tcreq(qts.req=ok)/cr.dr/ndreq,tdind
cr(option=ok)/tcind.tdreq/dr
tcreq(gts.req=ok) /cr.dr/ndreq, tdind.
tcreq(qts.req=ok)/cr.dr/ndreq, tdind
tcreq(gts.reqg=0ok)/cr.cc/tccon. tdreq/ndreq
cr(option=ok) /tecind.tecreq(gts.reg>gts.estimate)/
dr,tdind.tcreq(qts.reqg=0k)/cr.dr/ndreq,tdind
cr(option=0ok)/tecind. tdreq/dr.tcreqg(gts.reg=ok)/cr.
dr/ndreq,tdind
cr(option=ok) /teind. teres(gts.reg<=gts.estimate)/
cc.tdreq/ndreq.dr/ndreq, tdind
tcreqg(gts.reg=0ok)/cr.cc/tccon. tdreq/ndreq.tcreq(gts.req
=ok)/cr.dr/nﬁreq,tdind
tcreq(gts.reqg=ok)cr.cc/teccon.ndind/tdind.tcreq(gts.req
=0ok)/cr.dr/ndreq,tdind
tcreq(gts.reg=ok)cr.cc/tccon.nrind/tdind.tecreqg(gts.req
=ok) /cr.dr/ndreq,tdind
tcreq(gts.reqg=0ok)/cr.cc/tccon.tdatr/-.-/4dt.tdreq/ndreq
tcreq(gts.req=0k)/cr.cc/tccon.dt/-.~-/tdati.tdreq/ndreq
Note that the last two subsequences contain the spontaneous
transitions -/dt and -/tdati. These are included because
their TSSs are enabled follqwing tdatr/- and at/-

respectively. Their outputs should thus be observed during

100



The Hybrid Technique
testing; hence, they are included in the final sequence.
This implies tdatr/- and dt/- do not require UIOS(DATA) to
verify their final states. Their final states are
automatically verified by the presences of -/dt and -/tda£i.
This_ type of spontaneous transitions can be directly
appended to their enabling transitions to denote their lack
of inputs and when they are enabled. In this example, the
EFSM table entry for tdatr/- can be changed to tdatr/-.-/4t;
dt/- can be changed to dt/-.-/tdati. The columns and rows
for -/dt and -/tdati can be removed. The row where tdatr/-
.-/dt appears can be relabelled as data,out.buffer=0; where
dt/-.-/tdati appears can be\relabelled as data,in.buffer=0.
Concatenating the spontaneous transitions removes all the
e.transitions in this case.

The eTt procedure is not applicable here since the only
e.transitions are spontaneous transitions. However, if they
had not been spontaneous transitions, the procedure to form
their test subsequences would be as follows. Extract the
e.transition, in this example, take tll or -/dt. According
to its column label, its starting TSS is at DATA and
out.buffer <> 0. Travel down the rows ahd find the one
whose label denotes a final TSS identical to that. The
search would stop at DATA and out.buffer =

tdatr.in.tsdu.fragment, denoted as DATA, o0.b.<>0 in the

101



The Hybrid Technigque

table. Any entry at this row is an enabling condition for
t1l1. There is only one entry in this example, namely
transition t10 or tdatr/-. Hence, tdatr/- must precede -/dt
to enable the latter. To test -/dt, a preamble must be
formed which begins at IDLE and ends with tdatr/-. A

partial preamble tcreq{gts.req=0k)/cr.cc/teccon takes the
EFSM from idle to DATA, then tdatr/- is concatenated to it
to form the  complete preamble. The following test
subsequences would be used to test -/dt: ‘
eTt: (1l)tcreq(gts.reg=ok)/cr.cc/tccon.tdatr/~.tdreq/ndreq
(2)tcreq(qts.req=ok)/cr.cc/tccon.tdatr/-.—/dt.
tdreqg/ndreq
where subsequence (1) first verifies the preamble to ensure
it ends at the correct state, thus verifying the starting
state of the e.transition to be tested. Subsequence (2)
then tests the e.transition, -/dt, and verifies its final
state with tdreg/ndreq. Since -/dt is really a spontaneous
trénsition, subsequence (1) is not possible. Subsequence
(2) is identical to that for testing the transition tdatr/-,
hence, it is already included.
The last procedure is msvv to verify the starting and
final TSSs at each transition. The only two starting TSSs .
that involve minor state variables are DATA AND o0.b.<>0 and

DATA AND i.b.<>0. However, since they enable spontaneous

102



The Hybrid Technique
transitions, the effects of these predicates have already
been verified in the Tt procedure when the outputs from
these transitions are observed. The final TSSs that have to
be verified here are identified by those transitions whose
row labels include defs of minor state variables. In the
example, these are transitions t3, t5, t7, tl10, tli, tl1l2 and
t13. It should be noted that while an use must be preceded
by a def of the variable, not every def will necessarily be
used. These defs can easily be identified by comparing the
column labels with the rbw labels. For instance, the defs
in.buffer = 0 and out.buffer = 0 do not appear at the column
labels. This implies these two defs are never wused.
However, since there exists two spontaneous transitions
which are enabled when state is af DATA and in.buffer or
out.buffer are <$ 0, these defs can implicitly be verified
by observing that those two spontaneous transitions do not
occur! This also verifies that the predicates ﬁsiné i;b.
and o.b. are correct. Since the domains of these predicates
are either 0 or not 0, they do not require the boundary—
interior Valué criterion, but the criterion can be used to

select very large and very small wvalues to verify the

domains when they are not at 0. The other defs to be
verified include gts.estimate = vy out.buffer =
tdatr.in.tsdu.fragmént (0.b.<>0) and in.buffer =

103



The Hybrid Technique
dt.in.user.data (1.b.<>0). For gts.estimate =  ..,
transition t3 or cr(option=o0k)/tcind enables it. Hence, the
column labels can be searched for a p-use of gts.estimate.
None 1is found in the example, however, for state WFTR,
transition t8 requires its input parameter gts.req to be >
qts.estimafe, hence; t8 can be used to verify the def in t3.
For the second gts.estimate = ... defined in the foutth’row,
transition t5 enables it. A search of the column 1labels
again turns up transition t8. Hence, if there exists a path
that is free of a def of gts.estimate, then t8 can also be
used to verify the def in t5. From t5, the only transitions
that would exit the state DATA are tl14, tl1l5 and tl16 which
all lead to IDLE. From IDLE, transition tl leads to WFCC,
but transitions from WFCC either takes the EFSM back to IDLE
or to DATA again, the 1latter introducing a new def of
gts.estimate. The other path from IDLE that does not loop
back to IDLE is via t3 which also enables a new def of
gts.estimate. Hence, ‘it can be concluded that there is no
def-free path that would bring t5 to t8, or to any
transition generated from WFTR which contains a p-use of
gts.estimate; hence, the def of qgts.estimate could never
lead to the p-use of it in t8, or in the other transition
from WFTR, t7. The remaining defs to be verified are o.b.

<> 0 and i.b. <> 0. For both of them, the only starting

104



The Hybrid Technique
TSSs that make wuse. of them belong to spontaneous
transitions. Hence, their verifications are automatic and
implicit when those spontaneous transitions are enabled and
observed. Hence, for the msvv procedure, there is only one
test subsequence.
msvv: cr(option=o0k)})/tcind.tcres(qts.reg>gqts.estimate)/
dr, tdind
The minor state variable gts.estimate used in the
predicate (gts.req > gts.estimate) in t8 can be made more
visible by changing 1its starting TSS from WFTR to "WFTR,
gts.estimate def'd". HoWever, this 1is generally not
necessary as minor state variables are typically initialized
to some initial values at the beginning of the
specification. |
The final unoptimized test sequence for the EFSM of fhe
Class 0 Transport Protocol has 98 test inputs. If duplicate
test subsequences are removed, the optimized test sequence

has 76 test inputs.

5.4 ESTELLE DATA FLOWVTESTING‘
This section discusses how the data flow portion of an
IUT generated according to its Estelle specification can be

tested.

105



The Hybrid Technique

In testing the data flow of a protocol based on its
Estelle specification, the variables and parameters that
appear in the data flow pdrtién of the rNFS are tracked from
the moment they are defined until they are used either for
computational purposes or as predicates. Verification for
the defé, the effects of the uses as well as the correctness
of p-uses are applied whenever possible as mentioned in the
previous chapter.

Enabling conditions in spontaneous transitions that
involve minor state variables again may aid ih the process
of verification in the same way they do in the eUIOv-method;
that 1is, their absences also verify those minor state
variables whose assigned values are different from those of
their C.TSSs to be indeed different.

The EFSM table used in the eUIOv-method is aﬁgmented
with enabling conditions for the data flow transitions to
aid in determining executable flow paths between two
selected rNFS transitions. If the data flow portion in a
rNFS transition is preceded with a PROVIDED clause involving
minor state variables, then their p-uses and defs would be
extracted to form new TSSs in the EFSM table. New columns
or rows may thus be added in the augmented table along with
new table entries. Those PROVIDED clauses that involve

input parameters would be indicated in the appropriate table

106



The Hybrid Technique
entries to indicate that specific values are required at the
time of input during testing.

One of the advantages of separating the EFSM
transitions from the data flow transitiéns in an rNFS
surfaces here: during EFSM testing, replicated transitions
due to data flow paths are not unnecessarily tested twice;
whereas, if the NFS were used,.EFSM testing would contain

redundant test subsequences.

5.4.1 Data Flow Testing for the COTP

This section provides an example of data flow testing
using the rNFS of the Class 0 Transport Protocol.

The EFSM table shown in Table 5.1 is first augmented
with the necessary data flow portions to form the table
sho&n in Table 5.2. Note that iﬁ the rNFS, there are two
data flow paths in each of +transition t3, t5 and t6.
However, since their PROVIDED clauses involve only input
parameters, no rows or columns needed to be added in.

The next step 1is to identify and extract all the
transitions that span inter-transitional data flow paths
(def-itDFPs). Each transition in the rNFS is examined one
at a time. To begin with, transition t! does not have any
def—ithP.' All the definitions in that transition are used

there; hence, exercising the transition alone exercises as

107



The Hybrid Technique
well as verifies all the defs in the transition since the
usages are for defining output parameters. The same goes
for transitions t2, t4, tl14, tl15 and tl16. In transitions
t10 and t12, recall that spontaneous transitions tll and ti13
may be appended to them because their execution indicate t11
and tl13 would also be executed. As a result, the def-itDFPs
in ti10 and t12 are "automatic" and have already been
included in the Tt procedure during EFSM testing. Hence,
these two transitions do not have to be considered here

again.

108



The Hybrid Technique

C.TSS IDLE WFCC WEFTR DATA DATA DATA
0.b.<>0} i.b.<>0
F.TSS
WEFCC tereq
(gr=0k)
/cxr
IDLE tcreq dr teres tdreq
(gqr<>ok) | (dr=ui) | (qr>qge)| /ndreq
/tdind /ndreq, { /dr, ndind
cr tdind tdind /tdind
(op<>ok) | ar tdreq/ nrind
/dr (dr<>ui) | dr /tdind
/ndreq,
tdind
WEFTR cr
g.e.= (op=0k,
mts<>=0)
/teind
cr
(op=0k,
mts=0)
/tcind
DATA cc
i.b.= (mts<>0)
o.b.= /tccon
g.e.=... cc
{mts=0)
/tcecon
DATA tcres
i.b.= (gr<=qge)
0.b=0 /cc
DATA tdatr
0.b.<>0 /-
DATA -/dt
0.b.=0
DATA at/-
i.b.<>0
DATA -/
i.b.=0 tdati

Table 5.2 Augmented EFSM table for Class 0
- Transport Protocol.

109




The Hybrid Technique

Each of the remaining transitions in the rNFS contains
def-itDFPs: t3a, t3b, t5a, t5b and t7. The def statements
that span the itDFPs in these transitions are as follows.
t3a: remote.refer := cr.in.source.ref

tpdu.size := cr.in.max.tpdu.size;

(cr.in.max.tpdu.size <> nil)
t3b: remote.refer := cr.in.source.ref

tpdu.size := ...;

(Cr.in.max.tpdu.size = nil)

t5a: in.buffer := nil;
out.buffer := nil;
tpdu.size := ...;

{out.buffer.set.max.size (tpdu.size)}
(cc.in.max.tpdu.size <> nil)

t5b: in.bﬁffer

= nil;
out.buffer := nil;
tpdu.size := ...;

{out.buffer.set.max.size (tpdu.size)}
(cc.in.max.tpdu.size = nil)
t7: in.buffer := nil;
out.buffer := nil;
Transitions t7, t8 and t9 contain usages of variables or
parameters whose definitions do not reside within the same

transitions. The usages are listed as follows:

110



The Hybrid Technique
t7: cc.out.dest.refer := remote.refer
¢c.out.calling.t.addr := calling.t.addr;

cc.out.called.t.addr

called.t.addr;
cc.out.max.tpdu.size := tpdu.size;

out.buffer.set.max.size(tpdu.size)

t8: dr.out.dest.refer := remote.refer;

t9: dr.out.dest.refer := remote.refer;

tba: {tdind.out.ts.user.reason := dr.in.add.clr.reaspn;}
(dr.in.disc.reason = "user.init")

t6b: (dr.in.disc.reason <> "user.init")

In transition t6a and t6b, although both neither span
def-itDFPs nor require use-itDFPs, they contain p-uses of
the variable dr.in.disc.reason. The effects of these p-uses
can be verified by Qbserving that when the parameter is
_equal to "user.init," an additional output parameter exists
for the output primitive tdind. Both transitions té6a and
t6b must be exercised to test and verify the p-uses within.
They are thus included in the above list. The correctness
of these p-uses are automatically verified when Dboth
transitions t6a and t6b are exercised during testing since
the p-uses are completely specified. Domain testing using
boundary-interior values is not applicable here.

For each of the variables that héve been defined but

not used, a def-free data flow path (def-itDFP) has to be

111



The Hybrid Technique
generated to connect it to its usage and, if possible, to
extend it to a transition that can verify its correctness.
Similarly for the uses of those variables whose definitions
do not reside in the same transition. A def-free path has
to connect a def of each variable to its usage (use-itDFP)
and then, if possible, to a transition which can verify its
correctness. The following lists the transitions containing
the defs and uses of each variable 1listed above.  Those
variables defined without a use in the same transition are
listed with "def" first; the "use" 1list that follows is
extracted.from all the transitions in the rNFS that contain
uses of the variable. Those variables used without a def in
the same transition are listed with "use" first; the "def"
list that follows is also extracted from the entire rNFS.
The "d" in the notation (d,u) indicates that the usage is
directly preceded by a def of vthe variable in the same
transition; hence, no def-free path exists for any def of
that variable occurring in another transition. in order to
reach that use. The "u" in the notation indicates that it
is an unobservable use.

remote.refer: def - t3a, t3b
use - t7, t8, t9
tpdu.size : def - t3a, t3b, t5a, tS5b

-use - tS5a(d,u), tSb(d,u), t7

112



The Hybrid Technique
in.buffer : def - t5a, t5b, t7 | |
use - t£12.t13(d)
out.buffer : def - t5a, tSb, t7
use - t10.tl1(4)
remote.refer : use - t7, t8 t9
| def - t3a, tsb
calling.t.addr : use - t7
def - t3a,t3b
called.t.addr : use - t7
def - t3a,t3b
tpdu.size : use - t7
def ~ t3a, t3b, t5a, t5b
For the predicates, they are not included in the above list
but they are extracted and the transitions that they enable
are compared and the differences are listed as follows. By
observing the differences, when possible, the p-uses can be
verified. |

cr.in.max.tpdu.size : <> nil ->

tpdu.size cr.in.max.tpdu.size

= nil ->
tpdu.size := ...;
cc.in.max.tpdu.size : <> nil ->
tpdu.size := cc.in.max.tpdu.size
= nil ->

113



The Hybrid Technique

tpdu.size := ...;
dr.in.disc.reason : = "user.init" ->
tdind.out.ts.user.reason := dr.in.add.clr.reason

<> "user.init" ->
~“(tdind.out.ts.user.reason)

As can be seen above, the last p-use can be verified
externally while the first two are verifiable only if the
def of the variable "tpdu.size" can be verified externally.

For each of the listed variables, a def-free path has
to be formed to bring its def to a use;- Note that for the
variable remote.refer, since its unverified usagés appear
only in t7, t8 and t9 and its unverified defs appear in only
t3a and t3b, only three def-free paths are required
connecting t3a to t7, t3b to t8 and t3a to t9 in order to
verify all the defs and the uses of that wvariable. The
reason is because a use that is used to verify a def during
testing is itself verified in the process! The following
def-free Apaths are formed, based on the augmented EFSM
table, for each of the variables listed above.

remote.refer : (def- & use-itDFP) t3a.t7?

(def- & use-itDFP) t3b.t8
(use-itDFP) t3a.t9
tpdu.size : (def- & use-itDFP) t3a.t7?7

(def- & use-itDFP) t3b.t7

114



The Hybrid Technique
calling.t.addr : (use-itDFP) t3a.t7

called.t.addr : (use-itDFP) t3a.t7
For the tpdu.size variable, its defs in transitions t5a and
t5b éannot reach the use in t7 without being re-defined
first; hence, the defs in these transitions cannot be
externally observed and vefified. This also implies the
effect of the p-uses of the input parameter
cc.in.max.tpdu.size at transitions t5a and t5b also cannot
be externally observed and verified. Nevertheless, since
the variable tpdu.size. is used in the same transition that
it is defined in, its use can still be exercised during
testing by simply executing the transition. The converse is
true for the tpdu.size variabie defined in transitions t3a
and t3b. These defs can be defined by transition t7. As a
result, the p-uses - of cr.in.max.tpdu.size in these
transitions are also verified.

The defs of the variables in.buffer and out.buffer are
not used; hence, they cannot be verified. However, since
their defs assign them values that do not satisfy the
enabling conditions for the spontaneous transitions, the
absences of the Outputs produced by these spoﬁtaneous
transitions during testing indicate the defs are correct.

Whenever necessary, the def-itDFPs are selected to be

identical to the use-itDFPs so that the final test sequence

115



The Hybrid Technigue
may be reduced. The resulting itDFPs to be verified in the
data flow testing procedure are t3a.t7, t3b.t8, t3a.t9 and
t3b.t7; that is,

cr(option=0k, max.tpdu.size<>nil)/tcind.
teres(gts.reg<=gts.estimate)/cc (def- & use-itDFP) -
cr(option=0k, max.tpdu.size=nil)/tcind.
teres(gts.reg>gts.estimate) /dxr, tdind
(def- & use-itDFP)
cr(option=0k, max.tpdu.size<>nil)/tcind.
tdreq/dr (use-itDFP)
cr(option=0k, max.tpdu.size=nil)/tecind.
tecres(gts.reqg<=gts.estimate)/cc (def- & use-itDFP)
For the def-itDFPs, their data flow test subsegquences
are formed by using previously used preambles to bring the
EFSM to each of their first transitions, then a postamble is
used to bring the EFSM back to IDLE each time. If any of
the itDFPs includes transitions that are e.transitions, a
special preamble need to be formed to ensure executability.
This preamble, if not used before in the EFSM testing
procedure, should have its tail state verified prior to its
use. This is to ensure that the def-itDFP indeed originated
at the correct transition.
For the use—itDFPs, their test subsequences are formed

as follows. For each use-itDFP, the EFSM is brought to its

116



The Hybrid Technique
first transition again using a previously used preamble
whenever possible, then the use-itDFP is concatenated to it.‘
The EFSM 1is then brought back to the IDLE state using a
postamble. The path formed by the preamble and the use-
itDFP, excluding the portion that begins at the transition
housing the usage to be examined, must also have its tail
state verified to ensure the use examined indeed resides at
the correct transition.

The following data flow test subsequences are formed
from the above four itDFPs.
DFTP: cr(option=o0k, max.tpdu.size<>nil)/tecind.
tcres(gts.reg<=gts.estimate) /cc.tdreq/ndreq
cr(option=ok, max.tpdu.size<>nil)/tcind.
tcres(gts.reg<=qgts.estimate)/cc.tdreq/ndreq
cr (option=0k, max.tpdu.size=nil)/tcind.
tcres(gts.req>gqgts.estimate)/dr, tdind
cr(option=ok, max.tpdu.size=nil)/tcind.
tecres(gts.req>gts.estimate)/dr, tdind
cr(option=0k, max.tpdu.size<>nil)/tcind.
“tdreq/dr
cr(option=ok, max.tpdu.size=nil)/tcind.
teres(gts.regq<=gqts.estimate)/cc.tdreq/ndreq
cr(option=0k, max.tpdu.size=nil)/tcind.

tcres(gts.reg<=qgts.estimate)/cc.tdreq/ndreq

117



The Hybrid Technique
Since all the def-itDFPé begin at IDLE, a preamble is
not required in this example. Since the first transition at
each use-itDFP has already been used as a preamble from IDLE
to WFTR in testing the EFSM portion, their tail states need
not be verified again. Some of the sequences are duplicated
because they represent a def-itDFP as well as a use-itDFP.
All the paths end either at IDLE or DATA. For the latter
ones, the postamble tdreq/ndreq is used to bring the EFSM
from DATA back to IDLE. Added to the above test
subsequences are the following two subsequences for testing
transitions té6a and téb.
tcreg(gqts.req=0k, disc.reason="user.init")/cr.
dr/ndreq, tdind
tcreqg(gts.req=0k, disc.reason<>"user.init")/cr.
dr/ndreq,tdind
Length of the test sequence for the data flow testing
procedure is 22. After optimization in which duplicate
subsequences are removed, the length is reduced to 14 test
inputs. If these subsequences were compared to those in the
EFSM testing procedure and the duplicates were removed, the
number of teét inputs in this proceduré would be further

reduce@ to 7.

118



The Hybrid Technique
5.5 CHAPTER SUMMARY

This chapter shows how the hybrid technique can be
applied to the testing of protocols implemented according to
their Estelle specifications.

In the testing procedure, the spontaneous transitions
are appended to those input transitions that enable them.
This is possible since their spontaneity still requife that
their starting TSSs be satisfied, which in turn are enabled
by the appropriate input transitions to which they are
appended. TIf the spontaneous transitions do not have C.TSSs
that can be enabled by any input transition, then they
should not be appended to any input transition. |

For the Class 0 Transport Protocol example, the hybrid
technique would generate an optimized test sequence of
length 83, where 76 test inputs are for testing the EFSM
structure and 7 are for testing the flow of data. The
length of the final test sequence varies according to the

UIOSs chosen in the EFSM testing procedure.

119



6 EVALUATION AND COMPARISON OF THE HYBRID TECHNIQUE

The hybrid technique is a conformance test sequence
generation method that is applicable to testing protocols
implemented according to their Estelle specifications. The
principles behind the method arise from lessons learnt from
FSM testing, where mefely exercising the featureé in an IUT
according to its specification is not enough; whenever
possible, those features that are not externally observable
should be verified by other means. The interactive nature
of protocols lend themselves well to this method of testing.

This chapter provides a general evaluation of the
hybrid technique.as well as a general comparison of this

method to other notable test sequence generation techniques.
6.1 EVALUATION

6.1.1 Fault Coverage

Since the hybrid technique is a combination of two
testing methods, its fault detection capability or fault
coverage 1is also a combination of the fault coverages
produced by the two methods.

Fault coverage of the hybrid technique can be expressed
in terms of an erroneous Estelle specification. Provided no

extra STATE and statement exists in the erroneous Estelle

- 120



Evaluation and comparison
specificatién, the hybrid technique is capable of detecting
all STATE errors, I/0 primitive errors, errors in those def
and usage statements whose effects are externally observable
and verifiable, and possibly errors in those def and usage
statements whose effects are not verifiable or they contain
mathematical expressions. These errors are detectable in
all erroneous IUTs that can be described by the erroneous

Estelle specification.

6.1.2 Executability

In the hybrid approach, since enabling conditions are
taken into consideration in the process of generating test
sequences, the resulting test sequences are all executable.
Ensuring executability implieg some test data selection has
to be performed during the sequence generation procedure.
The disadvantage is that complexity is added to the process
of sequence generation and at times, computation may be
required. Executability requires that . the presentation of
the resulting sequence of test inputs be augmented by any
special input value required. Test data selection can again
be based on the boundary-interior value criterion or done by
choosing the most commonly wused values in a real

implementation.

121



Evaluation ahd comparison
6.1.3 Applicability

The test sequences generated by the hybrid technique
are tailored for detecting errors in an IUT which can be
described by an erroneous Estelle specification. The test
sequences are especially suited to IUTs implemented
according to Estelle specifications, but they can also be
applied to any IUT independent of the type of specification
from which it is generated.

For IUTs that are not implemented according to Estelle
specifications, the test sequences are still capable of
detecting errors in the data flow of the protocol. These
include flow paths that would exist within a given Estelle
transition as well as those that would be across sequences
of Estelle transitions. What the test sequences may not
detect is an erroneous sequence of I/0s executed in the IUT.
The reason is as follows. Recall that in a protocol, I/Os
not only assume certain values (data flow), they also assume
certain sequences (control flow). If the contrql structure
of an IUT had been implemented as a tree, then an erroneous
branch of the tree may not be detected by sequences
generated by the hybrid technique. The hybrid technique
takes advantage of the EFSM control structure of aiprotocol
and applies FSM-based testing techniques to check this

control structure. Checking the control structure of such

122



Evaluation and comparison
an IUT thus requires 1less work; however, it does require
knowing that the structure is modelled by an EFSM.

- An alternative to testing IUTs whose control structures
are unknown would be to span a tree according to the FSM in
the Estelle specification and test the IUT for each branch
in the tree. However, when loops are encountered or if the
FSM is of considerable size, the resulting test sequence
could be horrendously long. Hence, knowing that the control
structure is modelled by an FSM and taking advantage of it
can considerably reduce a test sequence without reducing the

fault coverage producible.

6.1.4 Test Data Selection

The test sequences generated simply indicate the
sequences of I/Os that should be considered during testing.
Any special value required for a test input is also
indicated in a test sequence generated by the hybrid
technique. During test data selection, a test subsequence
may-need to be duplicated since more than one test value may
be used in order to test the correctness of variable usages,
rather than their effects. The selection of input values
could either be based on boundary-interior values or a
chosén set of most frequently used values in a real

implementation. If the latter is not available, the former

123



Evaluation and comparison
can be used; else, the latter should take precedence. For
p-uses, since it can generally be assumed that all
possibilities are completely specified, each possibility
would already be included in the test sequence and need not
be fussed over during data selection. This also applies to
conditions with the keyword AND. If "a AND Db" were
specified, then, "NOT b" and "NOT a" wbuld also be specified
and test data selection does not have to take these

alternatives into consideration.

6.1.5 Testability

A protocol can be made more easily testable with the
addition of "status" messages [Aho88, Saris84]. The "read
state" message is an input which requires the IUT to report
the STATE that it is currently at. The addition of this
feature implies UIOSs will always exist, each of which is of
length one. In addition, if synchronizatioh were a problem
[SsariB84], then these status messages can be wused to aid
synchronization in the testing of OSI protocols by requiring
that the IUT report its'current state to both upper and
lower testers as a means of synchronizing the two.

Another way of increésing testability is by completing
an incompletely specified specifidation [Sari84] with one of

the Completeness Assumptions. A "DEFAULT" feature can be

124



Evaluation and comparison
added to Estelle similar to the "PROVIDED otherwise" feature
to specify a Completeness Assumption. For instance, if
"otherwise" is wused to group all the unspecified input
primitives together, and "ANY_ STATE" groups all the states
'togethef, then

DEFAULT:
WHEN otherwise
FROM ANY_ STATE
TO SAME
BEGIN
END;
specifies the assumption that any input not specified for a
state is ignored and the machine remains at its current
state and no output is generated. On the other hand,
DEFAULT:
WHEN otherwise
FROM ANY_ STATE
TO ERROR
BEGIN
OUTPUT inppt_error();
END;
the above default sends the protocol to the ERROR state
after it outputs a message complaining of an input error

[Sari84] upon reception of an unspecified input. At the

125



Evaluation and comparison
ERROR state, all further inputs would be ignored until a
disconnect or reset input is received, at which time the
protocol will return to the initial IDLE state. These
DEFAULT transitions are defaults and should be specified as
the last transitions in an Estelle specification, similar to
where "PROVIDED otherwise" is situated in a group of related
PROVIDED clauses. If any modification to the specification
is done so that an unspecified input becomes é specified
one, no modification would be required at the DEFAULT

transitions.

6.2 COMPARISON

The hybrid technique is compared to the FSM testing
techniques and those developed by Ural [Ural88] and Sarikaya
[Sari87] in this section. These methods are compared based
on their applications to testing IUTs implemented according
to Estelle specifications.

In comparing the hybrid technique with FSM testing
techniques, the hybrid technique is obviously more
comprehensive in terms of fault coverage because FSM testing
techniques examine only the control structure of protocols
while the hybrid technique also examines its data flow. 1In

addition, the test sequences generated by the FSM techniques

126



Evaluation and comparison
may not be executable while those generated by the hybrid
technique are.

In comparing the hybrid technique with that of Ural,
since the data flow portion of the protocol is also tested
in the hybrid technique in addition to the control structure
of +the 1IUT, the hybrid technique also .achieveé better
coverage than that produced by Ural. An example 1is as
follows using the Class 0 Transport Protocol. If the
control structure of an' erroneous implementation of the
Transport Protocol were modelled by an EFSM with only three
STATEs, for 1instance, the WFTR and WFCC states were
erroneously merged into a single STATE; thén Ural's approach
would not have been able to detect this error. The reason
is because the erroneous EFSM spans a tree part of which
contains the tree spanned by the correct EFSM. As a result,
all the data flow paths in a correct implementation of the
protocol would also be present in the erroneous IUT. Since .
Ural's approach examines only the data flow paths, it would
not have beeh able to detect the state error, but the hybrid
approach would. Merging STATEs WFCC and WFTR is an error
because, among the many extra branches the erroneous EFSM
spans, one of them implies the IO sequence c¢r/tcind.cc/tccon
is valid which is obviously incorrect. If this error were

hot detected, the IUT could go to its data transfer state.

127



Evaluation and comparison
upon receiving a connect request and a connect confirmation
one after another from the peer protocol without any
response from its user. The merged STATE is thus an error
and-should be captured.

In terms of executability, since the hybrid technique
takes executability into consideration during its sequence
generation process, the sequences it generates would be
executable while those generated by Ural may not be.

In comparing the hybrid technigue to that of Sarikaya,
the same erroneous Transport Protocol example can be used.
Sarikaya'é method again would not detect the underlying
erroneous EFSM because it spans a tree that includes the one
spanned by the correct EFSM. As a result, all the subtours
present in the correct EFSM would also be present in the
erroneous EFSM; and all the data flows present in the
corresponding correct IUT would also be present in the
erroneous IUT. Hence, the hybrid technique provides better
coverage in this sense.

In terms of test derivation complexity, the hybrid
technique is more complex than those for testiné FSMs and
that of Ural because it has to do more than any one of them
does and, as well, it has to take executability into
consideration. However, in comparison to the approach taken

by Sarikaya, the hybrid technique seems simpler because it

128



Evaluation and comparison
does not have to generate the complex data flow graphs. The
technique, however, does require taking wvalues into
consideration to ensure executability and test data may have
to be selected during the sequence generation procedure. " In
addition, in the verification of p-uses, differences among
the effects of the p-uses have to be identified so that they
may be used to verify the p-uses. Hence, the hybrid
technique demands that more attention be given to the
semantics of the specification than Sarikaya's does. In
this sense, the hybrid technique is more complex than that

of Sarikaya.

129



7 CONCLUSIONS
This section brings this thesis to a close with a
summary of its achievements and a discussion of possible

future work in the area of conformance testing.

7.1 THESIS SUMMARY

Contributions of this thesis lie in three main areas:
the development of the UIOv-method, the developments of the
eUIOv-method and the data flow testing procedure, the
formation of .the hybrid technique and its application to
Estelle.

This thesis began by examining notable FSM testing
techniques that can be applied to the conformance testing of
protocols modelled by FSMs. It found, contrary to a
previous claim [Sidh89], that the most recently developed
UIO-method (U-method) does not provide full fault coverage
in the testing of completely specified protocols. It
proposed adding a verification procedure, “Uv, to the U-
method so that the revised U-method, or UIOv-method,
achieves full fault coverage in strong conformance tests.
In weak conformance tests, it is also capable of  detecting
faulty IUTs prbvided the number of states in these IUTs do

not exceed that which is in the specified FSM. The D-method

130



Conclusions
and the W-method were found to be special cases of the UIOv-
method.

This thesis also proposed the concept of Unigque Test
Sequences (UTSs) to capture the property a test sequence
should have in order to achieve full fault coverage. An UTS
is a sequence of I/Os that is unique to the FSM from which
it is generated so that any IﬁT that passes a test using an
UTS contains a skeleton FSM that is identical to the
specified FSM. As a result, if the number of .states in the
IUT does not exceed that which is in the specification FSM,
then all faulty IUTs can be captured by tests employing
UTSs. The UIOv-method generates such tests.

This thesis.extended the UIOv-method to an eUIOv-method
to generate test sequences for testing protocols that can be
modelled by EFSMs. The generafed test sequences are
executable since the total state of the system is taken into
consideration during the generation process. The total
system state is verified the same way a state is in an FSM.
Hence, all elements in an EFSM transition are exercised and
verified, whenever possible, during testing.

This thesis developed a data flow tésting procedure
based on static data flow analysis and lessons learnt from
FSM testing. The procedure extends the basic exercisiﬁg of

def-use data flow paths ‘to verifying, whenever possible,

131



Conclusions
that each def is correct, each use is correct and each p-use
is within the correct domain.

This thesis refined and reformatted the normal form of
an Estelle specification so that its transitions are in true
normal form and its new format, the rNFS, separately brings
out the underlying EFSM and data flow from an Estelle
specification. During EFSM testing, redundant EFSM
transitions that appear in an NFS afe eliminated.

The data flow testing procedure is combined with the
eUIOv-method to form a hybrid technique that is applicable
to generating conformanqe test sequences for protocols
implemented according to their Estelle specifications. The
resulting test sequences detect faulty IUTs that either have
erroneous EFSM control structures or erroneous I0
operations. The fault coverage achieved by the hybrid
technique is a combination of those achieved by the eUIOv-
method and the data flow testing procedure.

A correct sequence of I/Os is equally important in a

protocol as its I/0O values are. Testing of a protocol
should thus consider both of these aspects. FSMs can model
the control structure of some protocols effectively. Since

these models lend themselves well to testing, this should be
taken advantage of when testing such protocols so that its

control structure as well as its data flow aspect can both

132



Conclusioﬁs
be examined during testing. The hybrid technique was
developed to do just that for this type of protocols.

The hybrid technique was tailored for protocols with
underlying EFSM control structures, this technique is thus
capable of detecting faulty IUTs with erroneous EFSMs that
would otherwise be missed by the techniques developed by
Ural and Sarikaya. Since the hybrid technique also includes
data flow tegting, it is capable of detecting certain types
of data flow errors in an'IUT.that would otherwise be missed
by FSM testing techniques.

The hybrid technique is more complex than that of Ural
and those for testing FSMs; however, it guarantees that the
resulting test sequences are executable and it is generally
less complex than that developed by Sarikaya.

Test data selection for the hybrid technique either
employs a finite set of most frequently used values for the
input parameters or, if unavailable, boundary-interior
vélues would be chosen. To ensure executability, test data
selection is sometimes combined with test sequence
selection. |

Test sequences generated by the hybrid technique are
also applicable to IUTs not.implemented according to their

Estelle specifications. The fault coverage achieved would

133



Conclusions
be limited to faults in the I/Os; sequencing faults may or

may not be captured.

7.2 FUTURE WORK

A tool is being developed in another study to impieméﬁt
the hybrid technique developed in this thesis so that it can
be easily applied to more complex Estelle protocol
specifications. Existing implementation techniques for the
UIO-method and static data flow analysis can be coupled with
symbolic execution to implement the hybrid technique.

This thesis has emphasized on the fault coverages
achieved by the test sequences; more research is required to
optimize the resulting test sequences such that their fault
detection capabilities are maintained and the UTSs remain
unique.

For test data selection, a 1list of commonly ‘used
parameter values should be compiled so that they may be used
as inputs during testing.

In the testing of OSI protocols, more than one protocol
layer may have been implemented as a single unit so that an
IUT may be embedded within a large implementation. How such
an IUT can be tested still needs to be investigated.
Perhaps the Estelle specification for each of the layers can

be combined in a manner similar to that of an NFS so that a

134



single specification exists for the
implementation. This specification may then
develop test sequences to test the

Conclusions
multi-layer
be used to

multi-layer

implementation either as a whole or one layer at a time.

135



BIBLIOGRAPHY

[Aho88] Aho, A.V., Dahbura, A.T., Lee, D. and Uyar, U.M.,
"An Optimization Technique for Protocol Conformance
Test Generation Based on UIO Sequences and Rural
Chinese Postman Tours," Proc. FEighth International
Symposium on Protocol Specification, Testing, aqd
Verification, Atlantic City, N.J., 1988.

{Chan89a] Chan, W.Y.L., Vuong, S. and Ito, M.R., "On Test
Generation for Protocols," Proc. Ninth International
Symposium on Protocol Specification, Testing and
Verification, The Netherlands, June 1989.

[Chaﬁ89b] Chan, W.Y.L., Vuong, S.T. and Ito, M.R., "An
Improved Protocol Test Generation Procedure Based on
UIOs," Proc. ACM Sigcomm '89 Symposium, Communications

Architectures and Protocols, Austin, Texas, September

1989
[Chan89¢] Chan, W.Y.L., Vuong, S.T. and Ito, M.R., "The
UIOv-Method For Protocol Testing, " Proc. Second

International Workshop on Protocol Testing, Berlin,
Germany, October 1989.

[Chow78] Chow, T., "Testing Software Design Modelled by
Finite State Machines," IEFE Transactions on Software

Engineering, vol SE-4, no. 3, 1978, pp. 178-187.

136



Bibliography

[Gone70] Gonenc, G., "A Method for the Design of Fault
Detection Experiments," IEEE Transactions on Combuters,
vol. C-19, no. 6, June 1970.

[Hech77] Hecht, M.S., Flow Analysis of Computer Programs,
New York: North-Holland, 1977.

[Is088] IsO/TC97/8C21/WG1l/Subgroup B, "Estelle ; A Formal
Description Technique Based on an Extended State
Transition Model," IS 9074, 1988.

[Kou87] Kou, T., "Conformance Testing of OSI Protocol: The
Class 0 Transport Protocol As An Example," Master
Thesis, Dept. of Computer Science, the University of
British Columbia, August 1987.

[Nait81] Naito, S. and Tsunoyama, M., "Fault Detection for
Sequential Machines by Transition Tours," Proc. of IEEE
Fault Tolerant Computing Conference, 1981.

[Rapp85] Rapps, S. and Weyuker, E.J., "Selecting Software
Test Data Using Data Flow Information," IEEE
Transactions on Software Engineering, vol. SE-11, no.

4, April 1985, pp. 367-375.

[Rayn86] Rayner, D., "Standardizing Conformance Testing for
OSI," Protocol Specification, Testing and Verification,
Vv, M.Diaz, Ed., North-Holland, Amsterdam, The

Netherlands, 1986.

137



Bibliography

[Sabn88] Sabnani, K.K. and Dahbura, A.T., "A Protocol Test
Generation Procedure," Computer Networks, vol. 15, no.
4, 1988, pp. 285-297.

[Sari82] Sarikéya, B. and Bochmann, G.v., "Some Experience
with Test Sequence Generation for Protocols," Protocol
Specification, Testing and Verification, C. Sunshine,
Ed., North-Holland, 1982, pp. 555-567.

[SariB84] Sarikaya, B. and Bochmann, G.v., "Synchronization
and Specification Issues in Protocol Testing," IEEFE
Transactions on Communications, vol. COM-32, no. 4,
April 1984, pp. 389-395.

[Ssari86] Sarikaya, B. and Bochmann, G.v., "Obtaining Normal
Form Specifications for Protocols," Computer Network
Usage: Recent Experiences, L. Csaba, K. Tarnay and T.
Szentivanyi (Eds.,), North-Holland, 1986, pp. 601-612.

[Sari87] Sarikaya, B., Bochmann, G.v., and Cerny, E., "A
Test Design Methodology for Protocol Testing," IEEE
Transactions on Software Engineering, vol. SE-13, no.
5, May 1987, pp. 518-531.

[Sidh88} Sidhu, D. and Leung, T., "Experience with Test
Generation for Real Protocols," Proc. ACM Sigcomm '88
Symposium, Communications Architectures & Protocols,

Stanford, CA., August 1988, pp. 257-261.

138



' Bibliography

[Sidh89] Sidhu, D.P. and Leung, T.K., "Formal Methods for
Protocol Testing: A Detailed Study," IEEE Transactions
on Software Engineering vol. 15, no. 4, April 1989, pp.
413-426.

[Ural88] Ural, H., Yang, B. and Probert, RLL., "A Test
Sequence Selection Method for Protocols Specified in
Estelle," Technical Report, TR-88-18, The University of
Ottawa, June 1988. |

[Vuon88a] Vuong, S.T., Chan, R.I. and Chan, W.Y.L., "An

| Estelle-C Compiler for Automatic Protocol
Implementation," Proc. FEighth International Symposium
on Protocol Specification, Ibstidg, and Verification,
Atlantic City, New Jersey, USA, June 1988.

[Vuon88b] Vuong, S.T. and Chan, W.Y.L., "Validation Of The‘
Ferry Clip Local Testing System Using An Estelle-C
Compiler," Forte '88, First International Conference on
Formal Description Techniques, the University of
Stirling, September 1988.

[Weiss85] Weiser, M.D., Gannon, J.D. and McMullin, P.R.,
"Comparison ef Structural Test Coverage Metrics," IEEE

Software, March 1985, pp. 80-85.

139



Biblidgraphy

{Zimm80] Zimmermann, H., "0OSI Reference Model - The 1ISO

Model - of Architecture for Open Systems

Interconnection," IEFE Transactions on Communication,

vol. COM-28, no. 4, April 1980.

140



APPENDIX A NFS OF CLASS 0 TRANSPORT PROTOCOL

WHEN tcreqg(to.t.addr, from t.addr, gts.req)
. FROM idle
PROVIDED tcreq.in.gts.req = ok

TO wfcc
tl: BEGIN
local.refer := ...;
tpdu.size := ...;
cr.out.calling. t addr := tcreq.in.from.t.addr;
cr.out.called.t.addr := tcreqg.in.to.t.addr;

OUT cr(local.refer, "normal", calling.t.addr,
called.t.addr, tpdu.size);
END;

WHEN tcreq(to.t.addr, from.t.addr, gts.req)
FROM idle
PROVIDED tcreq.in.gts.req <> ok

TO idle
t2: BEGIN
tdind.out.ts.disc.reason := ...;

tdind.out.ts.user.reason := ...;
QUT tdind(ts.disc.reason, ts.user.reason);
END;

WHEN cr(source.ref, option, calling.t.addr,
called.t.addr, max.tpdu.size)

FROM idle . '

PROVIDED cr.in.max.tpdu.size <> nil AND
cr.in.option = ok

TO wftr

t3: BEGIN
remote.refer := cr.in.source.ref;
tpdu.size := cr.in.max.tpdu.size;
calling.t.addr := cr.in.calling.t.addr;
called.t.addr := cr.in.called.t.addr;

gts.estimate := ..

OUT tcind(called.t. addr, calling.t.addr,
gts.estimate);

END; '

141



NFS OF CLASS 0 TRANSPORT PROTOCOL

WHEN cr(source.ref, option, calling.t.addr,
called.t.addr, max.tpdu.size)

FROM idle

PROVIDED cr.in.max.tpdu.size = nil AND
cr.in.option = ok .

TO wftr-

t4: BEGIN
remote.refer := cr.in.source.ref;
tpdu.size := ...; ,
calling.t. addr := cr.in.calling.t.addr;
called.t.addr := ¢r.in.called.t.addr;

gts.estimate := .

OUT tcind(called. t addr, calling.t.addr,
gts.estimate);

END; ,

WHEN cr(source.ref, option, calling.t.addr,
called.t.addr, max.tpdu.size)

FROM idle
PROVIDED cr.in.option <> ok
TO idle
t5: BEGIN
dr.out.dest.refer := cr.in.source.ref;

dr.out.disc.reason := ...;
OUT dr(dest.refer, disc.reason);
END;

WHEN cc(dest.ref, source.ref,calling.t.addr,
called.t.addr,max.tpdu.size)

FROM wifcc
PROVIDED cc.in.max.tpdu.size <> nil
TO data
t6: BEGIN
tpdu.size := cc.in.max.tpdu.size;
gts.estimate := ...;
in.buffer := nil;
out.buffer := nil;

out.buffer.set.max.size(tpdu.size);
OUT tccon{gts.estimate);
END;

142



NFS OF CLASS 0 TRANSPORT PROTOCOL

WHEN cc(dest.ref, source.ref, calling.t.addr,
called.t,add:,max.tpdu.size)

FROM wfcc
PROVIDED cc.in.max.tpdu.size = nil
TO data
t7: BEGIN
tpdu.size := ...;
gts.estimate := ...;
in.buffer := nil;
out.buffer := nil;

out.buffer.set.max.size(tpdu.size);
OUT tccon(gts.estimate);
END;

WHEN dr(disc.reason, add.clr.reason)

FROM wfcc

PROVIDED dr.in.disc.reason = "user.init"'

TO idle

t8: BEGIN
ndreq.out.disc.reason := dr.in.disc.reason;
tdind.out.ts.disc.reason := dr.in.disc.reason;
tdind.out.ts.user.reason := dr.in.add.clr.reason;

OUT ndreq(disc.reason);
QUT tdind(ts.user.reason, ts.disc.reason);
END;

WHEN dr(disc.reason, add.clr.reason)

FROM wfcc

PROVIDED dr.in.disc.reason <> "user.init"

TO idle

t9: BEGIN
ndreqg.out.disc.reason := dr.in.disc.reason;
tdind.out.ts.disc.reason := dr.in.disc.reason;

OUT ndreqg(disc.reason);
OUT tdind(ts.disc.reason);
END;

143



NFS OF CLASS 0 TRANSPORT PROTOCOL

WHEN tcres(gts.req)

FROM wiftr
PROVIDED tcres.in.gts.req <= gts.estimate
TO data '
t10: BEGIN

local.refer := ...;

in.buffer := nil;

out.buffer := nil;

out.buffer.set.max.size(tpdu.size);

OUT cc(remote.refer, local.refer, calling.t.addr,
called.t.addr, tpdu.size);

END; :

WHEN tcres(gts.req)

FROM wftr
PROVIDED tcres.in.gts.req > gts.estimate
TO idle
tll: BEGIN
dr.out.disc.reason := ...;

dr.out.add.clr.reason := ...;
tdind.out.ts.disc.reason := ...;

OUT dr(remote.refer; disc.reason, add.clr.reason);
OUT tdind(ts.disc.reason);

END;

WHEN tdreq(ts.user.reason)

FROM wftr

TO idle

t12: BEGIN
dr.out.disc.reason := .
dr.out.add.clr.reason := tdreq.in.ts.user.reason;
OUT dr(remote.refer, disc.reason, add.clr.reason);
END;

WHEN tdatr(tsdu.fragment)

FROM data

TO data

t13: BEGIN
insert(out.buffer, tdatr.in.tsdu.fragment);
END; .

144



NFS OF CLASS 0 TRANSPORT PROTOCOL

FROM data

PROVIDED out.buffer <> nil

TO data

tl14: BEGIN
remove (out.buffer, dt.out.user.data);
OUT dt(user.data);
END;

WHEN dt(user.data)

FROM data

TO data

t15: BEGIN
insert(in.buffer, dt.in.user.data);
END;

FROM data ‘

PROVIDED in.buffer <> nil

TO data

t16: BEGIN
remove(in.buffer, tdati.out.tsdu.fragment);
OUT tdati(tsdu.fragment);
END;

WHEN tdreq(ts.user.reason)

FROM data

TO idle

t17: BEGIN
ndreqg.out.disc.reason := tdreq.in.ts.user.reason;
OUT ndreqg(disc.reason);
END;

WHEN ndind()

FROM data

TO idle

t18: BEGIN
tdind.out.ts.disc.reason := ...;
OUT tdind(ts.disc.reason);
END;

145



NFS OF CLASS 0 TRANSPORT PROTOCOL

WHEN nrind()

FROM data

TO idle

t19: BEGIN
tdind.out.ts.disc.reason :=
OUT tdind(ts.disc.reason);
END;

146



APPENDIX B RNFS OF CLASS 0 TRANSPORT PROTOCOL

tl: WHEN tcreq(gts.reqg = ok)

FROM idle
TO wfcc
OUT cr
BEGIN
local.refer := .
cr.out.source.refer := local.refer;
cr.out.option := *"normal*;
tpdu.size := ...;
cr.out.max.tpdu.size := tpdu.size;
cr.out.calling.t.addr := tcreq.in.from.t.addr;
cr.out.called.t.addr := tcreq.in.to.t.addr;
END;

t2: WHEN tcreg(gts.req <> ok)

FROM idle

TO idle

OUT tdind

BEGIN
tdind.out.ts.disc.reason ..
tdind.out.ts.user.reason : v

END;

t3a: WHEN cr(option = ok)

FROM idle

TO wftr AND gts.estimate := ...;

OUT tcind ’

PROVIDED (cr.in.max.tpdu.size <> nil)

BEGIN
remote.refer := cr.in.source.ref;
tpdu.size := cr.in.max.tpdu.size;
calling.t.addr := cr.in.calling.t.addr;
tcind.out.from.t.addr := calling.t.addr;
called.t.addr := cr.in.called.t.addr;
tcind.out.to.t.addr := called.t.addr;
gts.estimate := ...; :
tcind.out.gts.pro := gts.estimate;

END;

147



rNFS OF CLASS 0 TRANSPORT PROTOCOL

t3b: WHEN cr(option = ok)

FROM idle

TO wftr AND gts.estimate :=

OUT tcind

PROVIDED (cr.in.max.tpdu.size = nil)

BEGIN
remote.refer := cr.in.source.ref;
tpdu.size := ...;
calling.t. addr := ¢r.in.calling.t.addr;
tcind.out.from.t.addr := calling.t.addr;
called.t.addr := cr.in.called.t.addr;
tcind.out.to.t.addr := called.t.addr;
gts.estimate := ...;
tcind.out.gts.pro := gts.estimate;

END;

t4: WHEN cr(option <> ok)

FROM idle

TO idle

OuUT dr

BEGIN :
dr.out.dest.refer := cr.in.source.ref;
dr.out.disc.reason := ...;

END;

t5a: WHEN cc

FROM wfcc
TO data AND BEGIN
in.buffer := nil;
out.buffer := nil;
gts.estimate := ...;
END;
OUT tccon
PROVIDED (cc.in.max.tpdu.size <> nil)
BEGIN
gts.estimate := ;
tccon.out.gts. estlmate := gts.estimate;
in.buffer := nil;
out.buffer := nil;
tpdu.size := cc.in.max.tpdu.size;
out.buffer.set.max.size(tpdu.size);
END;

148



rNFS OF CLASS 0 TRANSPORT PROTOCOL

WHEN cc
FROM wfcc
TO data AND BEGIN
in.buffer := nil;
out.buffer := nil;
gts.estimate := ...;
END; i
OUT tccon
PROVIDED (cc.in.max.tpdu.size = nil)
BEGIN
gts.estimate := ..;
tccon.out.qgts.res := gts.estimate;
in.buffer := nil;

out.buffer := nil;
tpdu.size := ...;
out.buffer.set.max.size (tpdu.size);
END;

WHEN dr
FROM wfcc
TO idle
OUT ndreq, tdind
PROVIDED (dr.in.disc.reason = "user.init")
BEGIN
ndreqg.out.disc.reason := dr.in.disc.reason;

tdind.out.ts.disc.reason
tdind.out.ts.user.reason
dr.in.add.clr.reason;
END;

dr.in.disc.reason;

WHEN dr

FROM wfcce

TO idle
OUT ndreq, tdind
PROVIDED (dr.in.disc.reason <> "“user.init")
BEGIN
ndreqg.out.disc.reason := dr.in.disc.reason;
tdind.out.ts.disc.reason :=
dr.in.disc.reason;
END; :

149



rNFS OF CLASS 0 TRANSPORT PROTOCOL

WHEN tcres(gts.req <= .gqts.estimate)

FROM wftr '
TO data AND BEGIN
in.buffer := nil;
out.buffer := nil;
END;
OUT cc
BEGIN
local.refer := ...;
cc.out.dest.refer := remote.refer;
cc.out.source.refer := local.refer;

cc.out.calling.t.addr := calling.t.addr;

cc.out.called.t.addr called.t.addr;

cc.out.max.tpdu.size tpdu.size;

in.buffer := nil; ‘

out.buffer := nil;

out.buffer.set.max.size (tpdu.size);
END;

WHEN tcres(gts.req > gts.estimate)

FROM wftr

TO idle

OUT dr, tdind

BEGIN
dr.out.dest.refer := remote.refer;
dr.out.disc.reason := ...;
dr.out.add.clr.reason := ...;
tdind.out.ts.disc.xreason := ...;

END;

WHEN tdreq

FROM wiftr

TO idle

OUT dr

BEGIN
dr.out.disc.reason := ...;
dr.out.add.clr.reason := tdreqg.in.user.reason;
dr.out.dest.refer := remote.refer;

END; '

150



t10:

rNFS OF CLASS 0 TRANSPORT PROTOCOL

WHEN tdatr(tsdu. fragment)
FROM data
TO data AND
1nsert(out buffer tdatr.in.tsdu.fragment)
BEGIN
insert(out.buffer,tdatr.in.tsdu.fragment);
END;

FROM data AND out.buffer <> nil
TO data AND remove(out.buffer,dt.out.user.data)
ouT dt .
BEGIN
remove (out.buffer, dt.out.user.data);
END;

WHEN dt
FROM data
TO data AND insert(in.buffer, dt.in.user.data)
BEGIN
insert(in.buffer, dt.in.user.data);
END;

FROM data AND in.buffer <> nil
TO data AND
remove(in.buffer,tdati.out.tsdu.fragment)
OUT tdati
BEGIN
remove(in.buffer, tdati.out.tsdu.fragment);
END;

WHEN tdreq
FROM data
TO idle-
OUT ndreq
BEGIN
ndreg.out.disc.reason:= tdreqg.in.ts.user.reason;
END;

151



t15:

rNFS OF CLASS 0 TRANSPORT PROTOCOL

WHEN ndind

FROM data

TO idle

OUT tdind

BEGIN
tdind.out.ts.disc.reason

END;

WHEN nrind

FROM data

TO idle

OUT tdind

BEGIN
tdind.out.ts.disc.reason

END;

152



