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Abstract 

The research programme presented in this thesis terminates the first phase in the 

development of a new and accurate model for transient analysis of induction motors in the 

phase domain. Modelling the induction machine variables in the phase domain required a 

new model which when tested in similar conditions with existing models would give 

comparable results in both transient and steady-state studies. This new model has been 

developed, and essentially it differs from traditional models in that it works directly with 

the machine variables such as currents and voltages directly in the phase domain instead of 

the dqO coordinates. This required the solution of a series of first order differential 

equations with time-varying coefficients. The solution method is based on the 

discretization of the differential equations with the use of the trapezoidal rule of 

integration. The new model has been used to develop a computer program for transient 

and steady-state analysis of induction motors. 

The new phase domain transient model (PDTM) requires a number of circuit 

parameters of the induction motor that are not normally supplied by the manufacturer. 

Consequently, modifications were performed on a computer program that calculates the 

parameters of the standard 60-Hz equivalent circuit from starting and steady-state 

characteristics of the motor to obtain the circuit parameters of the PDTM. 

The results from the P D T M compare favourably tested with those obtained from the 

electromagnetic transient program (EMTP) which uses conventional dqO coordinates to 

model the induction motor. 
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Chapter 1 

Introduction 

1.1 Background and Overview 

The discovery of the law of electromagnetic induction in 1831 by Michael Faraday, 

followed by the recognition of the rotating magnetic field principle by the Italian physicist 

G. Ferraris in 1885 set the stage for the rapid industrial and technological advancement in 

the twentieth century. Their discoveries facilitated the construction of the first commercial 

type induction machine in 1889 by the Russian Dolivo-Dobrovolsky, with the result that in 

just over one hundred years electrical machines have become the major consumer of 

energy in the power systems. It is estimated that between 60 to 70 per cent of the total 

energy supplied by power systems is consumed by induction machines [3]. Induction 

machines range from a few watts found in single phase hand powered tools to three phase 

machines with output of thousands of kilowatts that can be found in pumps and other 

large industrial drives. 

With the above in mind it may now be possible to understand why it is extremely 

important that power system engineers study the effects of induction machines on power 

system stability and particularly their effects on transient stability. However, in order to 

undertake such studies it is important that the engineer has a model which accurately 

represents the behaviour of the machine within the range of its operating capabilities. 

With this model, the engineer can be in a position to answer questions such as; the starting 

time of his machine under any given condition, the starting torque and the maximum 

torque that the machine can develop in a given situation, and the voltage levels in different 
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areas of his local system due to the starting of one or more of his machines. Therefore, 

the model developed for the induction machines must be able to accurately reflect 

transient conditions as well as steady state operation. The model must also be reliable, 

accurate, and at the same time present the user with the information for decision making. 

The new model developed represents all the machine voltages and currents as phase 

quantities. There is no need for the utilisation of any reference frame to transform the 

variables from phase quantities to dqO coordinates.' The time varying mutual inductances 

between stator and rotor circuits in the differential equation of the voltages are discretized 

to form equivalent resistances and history voltage sources in each simulated time step. The 

solution of the discretized inductances in the time-domain for both the stator and rotor 

circuit voltages gives rise to a large system of equations. The application of linear and 

matrix algebra theory reduces the system from a 9x9 matrix representation to a 3x3 

system. This system of equations is then solved to determine the motor stator and rotor 

currents, which are subsequently used to determine electromagnetic torque and rotor 

velocity. The application of this model is done through the development of the P D T M 

computer program. The program has been written in the ADA-95 programming language. 

The model has been developed in conjunction with another program that is used to 

obtain all the essential electric circuit parameters that are not normally part of the 

manufacturers data, but are necessary to use the P D T M program for transient studies. 

This program uses standard machine starting and rated load performance data supplied by 

the motor manufacturer to obtain stator and rotor resistances and inductances. 

Throughout this thesis the reader is provided with a methodological description and 

clear explanation of the principles on which the squirrel cage induction motor functions, 

the stages in the development and implementation of the new model, and finally the 

opportunity to compare the results from the new model with another transient program 

that uses traditional modelling techniques. Chapter two will describe the theory behind the 
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induction machine as well as its electrical and magnetic circuitry and essential 

characteristics which contribute to its widespread application. Towards the end of this 

chapter there is a discussion on the traditional method of modelling induction machines 

and how they differ from the current phase domain model. 

Chapter three forms the core of this thesis, and it begins by looking at the machine as 

an electrical device consisting of separate and completely independent electrical circuits. 

Subsequently, the "three" electrical circuits of the machine are considered as a complete 

interconnected and interdependent unit. This sets the stage for the circuit development 

and finally the mathematical formulation of the new model. 
. 1 ' • 

The fourth chapter begins by linking the electrical and mechanical equations of the 

machine. This is followed by a brief description of the of the procedure used to calculate 

the motor circuit parameters necessary to perform simulations with the PDTM. The 

method is based on the traditional equivalent circuit model of the induction machine. 

The fifth chapter of the thesis present test cases simulated with the new P D T M and 

compares the results with those obtained using the EMTP. 

The final chapter looks at the conclusion and recommendations that have resulted from 

the application of phase domain theory to transient analysis studies of the squirrel cage 

induction machine. 

1.2 Motivat ion for the Thesis 

In the field of electrical engineering, as in many other areas of engineering, many 

numerical and graphical transformations have been developed and used extensively for 

decades in an effort to overcome perceive mathematical difficulties in solving technical 

problems. In the realm of machine analysis, investigators have for decades used different 



reference frames to change the variables in phase coordinates to variables in a specified 

reference frame. In induction machine analysis, the mutual inductance between stator and 

rotor are a function of the rotor position and this gives rise to time-varying coefficients in 

the voltage equations. The change of variables in this case has been utilised to avoid the 

complexity that arises as a result of these time varying coefficients in the differential 

equations. 

However, within the past decade the rapid progress in the field of digital computer 

processing has opened new areas of scientific research and analytical methods. Despite 

these advances, the modelling of induction motors has continued in much the same manner 

as it did in the early 1960's with the use of analog computers. At the same time, the size 

and output of motors have increased substantially as well as their importance and effect on 

the power system. Thus, there seems to exist the need for more efficient and accurate 

techniques to model the induction motor. 

Within the past ten years electrical utilities have expanded their roles from just 

suppliers of electrical power to one where they are now concentrating more and more on 

the loads that they are called upon to supply. Electric motors form a substantial part of 

this load. At the same time online programs are being developed to assess the effect of 

these loads on the power system stability during transient and steady-state periods. It is 

envisioned that a program for transient analysis of induction motors in the phase domain 

could improve the accuracy of such programs by operating in the same domain (i.e. phase 

domain) as transmission lines and other system components. 

In this thesis the magnetic circuit of the induction machine is considered to be linear. 

However, it is known that this is not actually the case, and that the motor undergoes some 

degree of saturation which gives rise to a circuit which has non-linear characteristics. The 

modelling of saturation effects in induction motors using the conventional dqO coordinates 
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is quite complex. It is believed that a transient model of the induction machine in the 

phase domain will present a much simpler and more accurate method for representing 

saturation. 

1.3 Research objectives 

The main object of this research is to develop a phase domain transient model of the 

squirrel-cage induction motor that accurately represents the physical phenomena. The 

model must also be capable of accurately reflecting steady-state conditions in the motor. 

Within the global objective of this thesis there are smaller but not less significant 

objectives which are of overall importance to the entire project. It was recognised from an 

early stage that the proposed model for the induction machine would require data not 

normally given by machine manufacturers. Consequently, there was the task of 

developing a method that would use the information supplied by the machine 

manufacturers to obtain data suitable for transient studies with the PDTM. As part of a 

much larger objective it was established that all programming code must be done with the 

ADA-95 programming language which offers the possibility of object oriented 

programming. 

Finally, it is hoped that a successful model would lead to a generalisation of the 

applicability of phase-domain modelling to other electrical apparatus arid components of 

electrical power systems. 
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Chapter Two 

The Induction Machine 

2.1 Physical Characteristics 

The operating characteristics of most induction machines are fixed at the time they are 

designed. When construction of the machine is completed there is little that can be done 

to change its performance characteristics. Although the squirrel-cage induction motor is 

the subject of this thesis, on many occasions reference will be made to the more general 

term, induction machine. The design of the machine determines the nominal output, the 

starting and breakdown torque, the nominal slip and its general steady-state 

characteristics. These external features common to the user are set by the designer in 

accordance with his requirement for machine output power and parameters such as the 

value of the resistances in the stator and rotor windings and the leakage and mutual 

reactance of both stator and rotor windings. Other factors which determine the 

characteristics of the machine include the type of magnetic material used in its 

construction and the combination of width and length of the air gap. 

The squirrel-cage induction motor consist of copper wound stator winding to which 

the supply voltage is connected and a rotor that consist of solid bars of conducting 

material short circuited at each end and embedded in a ferromagnetic material. The short 

circuiting of the rotor bars give rise to a common ring which connect all the bars. The 
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rotor bars of the motor may be cylindrical in shape (single cage rotor), rectangular with 

greater depth than width in the ferromagnetic alloy (deep-bar rotor), or they may be two 

separate bars located one above the other with separate end rings (double-cage rotor). In 

all the above mentioned motors the rotor bars are skewed with respect to the plane of the 

axis of rotation of the rotor to reduce the magnitude of harmonic torque due to the 

harmonic content in the magnetomotive force (MMF) waves [2]. Generally, the type of 

rotor used in the machine depends on the starting and steady state running conditions that 

are required. Single-cage rotor motors usually have higher starting torques than both 

double-cage rotor and deep-bar rotors, however, they operate at lower rated velocity and 

are less efficient [6]. 

Fig. l.Squirrel-cage rotor-barcross sections, (a) single cage, (b) 
deep-bar and (c) double-cage rotors (NEMA). 

2.2 Electromagnetic features of the Induction machine 

The basic principle of operation of the induction machine is quite similar to that of a 

transformer. This is based on the theory of electromagnetic induction. When a three 
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phase voltage is applied to the stator winding (assume a two pole motor) of the induction 

machine a rotating magnetic field referred to as the magnetomotive (MMF) field is set up 

across the air-gap between the stator and the rotor. The speed of rotation (synchronous 

speed, cos ) of the M M F is dependent on the frequency (J) of the applied voltage and the 

number of poles (p) in the stator. The synchronous speed is found from the expression 

co, = Rad./sec. (2.2.1) 

The strength of the resulting magnetic field (F) is directly proportional to the effective 

turns per phase in the stator windings and rms value of the stator phase current (Is), and 

inversely proportional to the number of poles. This is expressed by 

F= ^-Amp/pole . (2.2.2) 

The rotating magnetic field created by the stator current crosses the air-gap of the 

machine and sets up a mutual flux linking the stator and rotor. This mutual flux across the 

air-gap induces a voltage in the rotor conductors. In the squirrel cage motor the rotor 

conductors are short-circuited and therefore a current flows. The current in the rotor 

conductors sets up its own magnetic field which interacts with that produced from the 

stator to give a resultant rotating M M F and a torque in the direction of the movement of 

the rotor. If we assume a two pole machine, then the combination of stator three phase 

windings will produce a north and a south pole in the stator which would be mirrored by a 

north and south pole and an equivalent three phase circuit in the rotor (fig. 2). In the 

squirrel cage induction motor there are no clearly defined rotor circuit windings. Thus, 

the effective turns ratio (K) is defined as the relationship between the effective turns per 

phase of the stator windings (N s e ) and the rotor circuit (N r e ). 
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Fig. 2. Magnetic characteristics of a loaded two pole induction 
motor. 

2.3 Induction Machine Circuits 

The induction machine can be considered as consisting of two separate electrical 

circuits (stator and rotor) electromagnetically connected across the air-gap. The stator 

circuit represents the resistance and self inductance of the phases along with the mutual 

inductance between phases. Similarly, the rotor circuit represent the resistance and self 

inductance in each phase as well as the mutual inductance between phases. The. 

magnetising inductance between stator and rotor produces the magnetic link between 

these two circuits. Although not directly considered in transient studies of the induction 

motor there are other factors such as air-gap length and width, and the magnetic 

properties of the iron core that determine the electromagnetic characteristics of the 
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machine and ultimately its electrical parameters. These are normally considered in the 

design stages of the motor. ' 

Although we are considering a linear magnetic circuit for the induction motor it is 

important to mention that saturation occurs and this affects the transient response of the 

motor. The permeability of the ferromagnetic alloy is finite, and as the current in the 

circuits increases parts of the leakage and mutual inductance saturates. Saturation of the 

magnetic circuit causes a slight reduction in the values of the leakage and mutual 

inductance. 

The electrical circuits (stator and rotor) of the wound rotor induction machine are 

clearly distinguishable and are connected in wye or delta. In normal circumstances one of 

these circuits is connected in delta [5]. The stator windings in the squirrel-cage induction 

machine is similar to that in the wound rotor machine, but their rotor windings are 

different. Nevertheless, the rotor circuit in the squirrel-cage machine like that of the 

wound rotor machine can be considered to be connected in wye or delta. In the analysis 

that follows it will be assumed that each phase of the stator and rotor circuits is made up 

of a winding of several turns and that both stator and rotor windings are connected in wye 

(fig. 3). The windings of the stator and rotor circuits in figure 3 are both sinusoidally 

distributed and displaced 120 degrees with identical phase resistance and self inductance in 

each of the respective circuits. 
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Fig. 3. A two-pole, wye-connected symmetrical induction 
motor. 

The self inductance of the stator is made up of its leakage and magnetising inductance. 

The leakage inductance usually accounts for approximately 5 to 10 percent of the total self 

inductance [2]. Both the stator (Ls) and rotor (Zr) self inductances can be represented as 

Ls^L^+Lns (2.3.1) 

Lr = Llr+Lmr (2.3.2) 

where Lu and Llr are the leakage inductances, and and Lmr are the magnetising 

inductances of the stator and rotor windings respectively. The magnetising inductance of 

the stator winding depend on the number of turns in its windings (Ns) as well as some 
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physical machine parameters and the type of magnetic material. The magnetising 

inductance of the stator is expressed as 

^ms — I - g (2.3.3) 

where | i 0 is the magnetic constant, r is the internal radius of the stator, / is the axial length 

of the air-gap and g the length of the uniform portion of the air-gap. The magnetising 

inductance of the rotor windings can also be expressed as 

L mr — 
g. 

(2.3.4) 

The mutual inductances between the respective phases of the stator and rotor windings 

are 

LMS — —^Lms 

LhdR — —^Lmr 

(2.3.5) 

(2.3.6) 

The variables LMS and are the mutual inductances of the stator and rotor windings 

respectively. From the preceding expressions the inductance matrix of the stator 

windings (L^) in a three phase induction machine is 

[LST] = 

L[s ~^~Lms 2^JMS 2^~>MS 

Lis+L 
ms <?-»-' 

2J-'ms 

21-ims 

^Lms Lis ~^~Lms 

(2.3.7) 

Similarly, the inductance matrix of the rotor windings (LRO) can be expressed as 
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[LR0] = 

mi 

-X-L 

^Lamr 

2J-'mr 2 M R 

1 
21 

2J-'mr 

Llr + Lmr 2^™? 

Lir +L„ 

(2.3.8) 

The mutual inductance between stator and rotor circuits expresses the magnetic flux 

linking these parts of the machine. This mutual inductances between stator and rotor 

windings (Lsr) vary with the position of the rotor and in the case of a three phase induction 

machine the inductance matrix (L^) can be expressed as 

i(er) c o s ( e r + f ) c o s ( e , - f " 

[LSR] = L S R 

COS 

COS ( e ^ - y ) ' cos(0r) cos(e r + f ) 

cos(e r + f ) c p s ( e r - f ) cos(0r) 

(2.3.9) 

where 0ris the electrical angular position of the rotor and L^is the amplitude of the mutual 

inductance. The amplitude of the mutual inductance between the stator and the rotor 

windings is associated to the stator magnetising inductance as shown in the following 

expression 

L ~ ^ L 
L s r ' Ns 

where A7, and Ns are the effective turns per phase in the rotor and stator windings. 

(2.3.10) 

The model that has been described thus far is representative of the single-cage 

induction motor or the wound rotor motor. The equivalent circuit for this type of motor 

(fig. 4) was developed by Charles Steinmetz and it forms the basis for all subsequent 

induction motor equivalent circuit models. This model can be used for transient studies of 

wound rotor motors and small single-cage motors where the rotor circuit phase current is 

small. 
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Fig. 4. Steinmetz single phase equivalent circuit of a three phase 
induction motor u 

In medium and large size induction machines the rotor current is relatively high and the 

rotor bar construction is either the double-cage or the deep-bar configuration. In both of 

these rotor types the effective resistance of the rotor bar changes with rotor speed due to 

the phenomena referred to as skin effect. The equivalent circuit model in figure 5 shows 

the rotor represented as two circuits. 

In the case of the deep-bar rotor and the double-cage rotor induction motors it has 

been determined that it is not sufficiently accurate to represent transient phenomena by 

one rotor circuit. Therefore, these machines should be modelled as two rotor circuits with 

their own resistances and self inductances (fig. 5). The two rotor circuits representing the 

deep-bar rotor or the double-cage rotor are connected in parallel. When the induction 

motor is modelled as two rotor circuits in the phase domain, an extension can be made to 

the general theoretical formulation made for the single cage or wound rotor machine. In 

such cases there is mutual inductance between the rotor circuits and the mutual inductance 

between the stator and rotor takes into account both rotor circuits. 
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Fig. 5. Equivalent single phase circuit of a three phase induction 
motor used in transient studies 
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Chapter Three 

The Phase Domain Model Of The Squirrel Cage Induction 
Motor 

In this chapter we will obtain the differential equations for the phase voltages of both 

stator and rotor circuits. These equations will have time varying mutual inductances 

caused by the relative motion between stator and rotor circuits. The solution method is 

based on the discretization of the first order differential equations by means of the 

trapezoidal rule of integration [10]. This method converts the time varying inductances 

and other inductances into equivalent resistances and history voltage sources. 

Consequently, the stator and rotor circuits with their phase resistances, self inductances 

and mutual inductances are converted into a similar network with only equivalent 

resistances and voltage sources. A system of equation representing the stator and rotor 

phase voltages is subsequently developed from the equivalent network of the stator and 

rotor circuits. This system of equation forms the basis for the solution of the new model 

in the phase domain 

3.1 Solution Technique 

The circuit components for the development of the new transient model in the phase 

domain of the induction motor is the resistor and the inductor. An essential part of the 

formulation of the model is the solution of the first order differential equation that 

represents the voltage in self and mutual inductances. The basic expression for the voltage 

in an inductor is as follows 
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V(t)=L^- (3.1.1) 

When the trapezoidal rule of integration is used to solve this differential equation we 

obtain 

V(f) = ̂ I(f)-^I(t-At)-V(t-At) (3.1.2) 

This expression gives the voltage in the inductor at any instant in time denoted by "t". The 

discretized equation of the voltage has a voltage component in time "t" and a history 

component (Vh(t)) shown in equation (3.1.3). Physically, equation 3.1.2 is demonstrated 

in figure 6b. 

Vh(t) = j;I(t-At) + V(t-At) (3.1.3) 

Kt) Kt) f vh(t) 

V(t) V(t) 

(a) (b) 

Fig. 6. Voltage in an inductor in (a) continuous-time 
and (b) discrete time domains. 

In the case where a resistor is connected in series with an inductor (fig. 7) it is 

sometimes desirable to use the voltage across the entire branch instead of just the 

inductor. In such cases the differential equation for the voltage across the branch is the 

following: 

V(t)=RI(t)+L^- (3.1.4) 

When this first order differential equation is solved by the trapezoidal rule of integration it 

gives the voltage in every time instant '7" across the branch by the expression (3.1.5). 
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This expression also has a history voltage component (Vhr (t)) shown in fig. 7(b), and 

whose expression is given in (3.1.6). 

V(t) = RI(t) + ^Iit) + RI(t - At) - ^I(t - At) - Vit - Ai) (3.1.5) 

Vhr(i). At. lit-At)-V{t-Ai) (3.1.6) 

I(t) R

 A A

L

A A J(tl R + A T V ) 

A A A rVYY^ . - ^ ^ s ^ - ^ y -

V(t) V(t) 

(a) (b) 

Fig. 7. Voltage across a series resistor-inductor branch in 
continuous and discrete time domains. 

The phases in the stator and rotor circuits of the induction motor model are 

represented by branches with a resistor in series with an inductor. From the preceding 

equations one can also recognise the transformation of the inductor to an equivalent 

resistance (Req), as in the following expression 

Req = % . . (3.1.7) 

where L is the inductance in Henry and At is the size of the time step used to discretize the 

inductance. 

3.2 The Stator Circuit 
The assumption is made that the stator circuit is connected in wye and that each phase 

contains a resistor connected in series with an inductor (fig. 8). In this initial analysis the 

stator circuit will be interpreted as if it were isolated from the rest of the machine. 

Consequently, the equation representing the phase voltages will reflect only the phase 
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resistance along with the self and mutual inductances between the phases of the stator. In 

reality it is known that the stator phase voltages also depend on the magnetic coupling 

between the stator and rotor windings, this effect will be incorporated to our analysis 

when we look at the entire machine. 

'aas 

r L 
'bbs cas 

ccs 

--aas 

Jbbs 

Jccs 

i as 

"'abs 

• bs 

Jbcs 

-•cs 

Fig. 8. Stator circuit showing series elements and mutual 
coupling between phases. 

The differential equations representing the voltage in the respective phases of the 

stator are as follows: 

M 0 = faaslasif) +L aas ~^~Labs ~^~Lacs 
dt dt dt 

V (f\ — r T (i\±T <M0 . j dlasit) j. dlcs(t) VbsKf) - rbbslbsKt) +Lbbs—-j- rLbas ^ hLbcs— 

V (t\ — r T (i\ 4 . T d I c s ® j . T d I b s ^ + T d I a s ® 
V cs\l) — I ccs* cs\l) "r J-,ccs ^ <J^cbs ^ 'J-'cas ^ 

(3.2.1) 

(3.2.2) 

(3.2.3) 

In matrix form the above equations are transformed to give 

M O 
M O 
M O 

Taos 0 0 

0 Tbbs 0 
0 0 rccs 

Laas Labs 

Lbas Lbbs 

Leas Lcbs 

Lacs M O 
Lbcs hs(t) (3.2.4) 

Lccs Ics(t) 

The differential equations (3.2.1 - 3.2.3) are solved in the time domain to give the 

expressions (3.2.5) to (3.2.7) for the phase voltages of the stator circuit. 
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Vas(f) — aas ^Laas^jlas(f) ^Labslbs(f) ^Lacs^ac(J) aas ^Laas^Ias 

(/-AO 

(3.2.5) 
2 2 2 ( 2 ^ 

P&sO) = 0"66.s + -£jLbbs)Ibs(t) + -£jLbasIas(t) + -^LbcJcsif) + [rbbs ~ ^^bbs Jhs(t - At) 

^Lbaslasif-At) - ^Lbcslcsif-At) - Vbsif- At) (3.2.6) 

Vcsif) — (fccs + ~£~jLccs^Ics(f) + -^jLcasIasif) + -^-jLcbslbsif) + {^TCcs ~ -Z~jLccs^ Icsif — At) 

(3.2.7) 

The matrix form of these equations is; 

^Labshsif-At) - jjLacsIcsit-Af) - Vas(t~ At) 

^Lcashsit - At) - ^tLcbsIbs(t - At) - Vcs(t - At) 

Vas{t) raas 0 0 ~^Laas ~faLabs ~AjLacs Iasit) Eashif) 

Vbs(t) = 0 rbbs 0 + "faLbas ~£}Lbbs ~^f-<bcs hs(t) + Ebsh(t) 

Vcsif) 0 0 rccs ~£fLcas ~foLcbs ~^Lccs _ Ics(t) _ Ecshif) 

(3.2.8) 

where E^ (t), Ebsh (t) and Eah (t) are the history voltage sources in phases a, b and c of the 

stator circuit. In this case 

Eash(t) = (raas - JjLcJ) hsif ~ At) - ^ L a b s I b s ( t ~ At) - ^ L a c s I c s ( t - At) - Vas(t - At) 

(3.2.9) 

Ebshif) = (rbbs-^-tLbbs)hs(t-At)-^tLbasIas(t-At)-^LbJcsd-At)- Vbsit-At) 

(3.2.10) 

Ecsh{t) = [rccs- faLccs )Ics(t - At) - -£jLCasIas{t - At) - ^Lcbshsit - A/) - Vcs{t - At) 

(3.2.11) 

In these equations the value of the phase currents in "(/-A/)" represent the history value of 

these currents in the respective phases. 

The system of equations in matrix form shown in (3.2.8) can be written in compact 

notation as 
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[Vs(t)] = [RLs][Is(t)] + [Esh(i)] (3.2.12) 

where 

[RLS] = [[RS] + [LS]] (3.2.13) 

The discretization of the differential equations for the stator voltage allows us to 

obtain the discrete-time equivalent circuit for the stator windings shown in fig. 9. The self 

and mutual inductances in the equations (3.2.1) to (3.2.3) have been all converted to 

equivalent resistances. 

Bash© 
raas+At Laas : as ( t ) 

jAt Labs 
r b b s + S L b b s / I t e(t) 

r c c s + i L c c s J I c s ( t ) 

VasO) 

Fig. 9. Discrete-time equivalent circuit of the stator windings. 

3.3 The Rotor Circuits 
Although the emphasis in this thesis has been on the development of a model for the 

deep-bar and double-cage induction machine, a program has also been developed for the 

simulation of the single-cage rotor machine. However, these machines are generally of 

small power output and therefore are not normally the focus of transient studies. In an 

effort to uncover what may not be quite evident the analysis of the rotor circuits will 

concentrate on the deep-bar rotor and then make the necessary extensions to the double 

cage rotor. 

21 



The shape of the deep-bar rotor in the squirrel-cage induction motor (fig. 10) gives 

rise to a nonuniform distribution of current in the bars during transient or changing rotor 

speed. This unequal distribution of current, coupled with the difference in reluctance 

between the magnetic material and the air in the machine air gap, causes a variation in flux 

as one moves from the outer to the inner portion of the rotor-bar. These factors combine 

to create a larger leakage inductance in the inner part of the bar than on the outer portion 

of the bar. That portion of the rotor bar referred to as the outer portion forms one rotor 

circuit while the other portion forms the inner rotor circuit (rotor circuit one and rotor 

circuit two, respectively). It is quite evident that there really is no clear physical 

separation between the two circuit as in a double-cage machine. 

In the two circuit representation of the deep-bar rotor motor the resistance of the 

outer circuit is higher than that of the inner circuit and the leakage inductance of the 

leakage inductance of the outer circuit is also small, although some researchers claim that 

its value can be between 5 to 20 percent of the value of the mutual inductance between the 

two rotor circuits. The value of this leakage inductance is closer to the upper limits of this 

range when separate end rings and different axial extensions beyond the core ends of the 

two cages are used in machine design [11]. In this thesis a general model has been 

End rings 

Fig. 10. Deep-bar rotor effects, (a) Leakage flux paths, (b) circuit 
representation showing varying inductance. 

former is so small that it is normally not considered. In the double-cage rotor machine the 
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developed which would allow for the utilisation of a value for the leakage inductance of 

the outer circuit if the analyst using the program determine that it is necessary. 

In the analysis of the rotor circuits we will first analyse one of the circuits and then 

show the interrelationship between them. It is again assumed that the rotor "windings" are 

connected in wye and are initially considered to be in open circuit (fig 11). 

n » 

(b) 

Fig. 11. Rotor equivalent circuit, (a) Two rotor circuits in 
parallel, (b) Rotor circuit one (not short-circuited). 

Rotor circuit one in fig. 11(b) is identical to that shown for the stator windings. The 

resistance and self inductance in phases a, b and c are all equal, as well as the mutual 

inductance between the phases. Consequently, the differential equations for the phase 

voltages in rotor circuit one will be as follows: 
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rr / A v j s.\ , T dian(f) , T dlbr\(f) j dlcrl(t) H 3 l ) 
VarlKt)=raar\hrlKt)+Laar\ + Labrl ^ +LaCrl ^ ( J . J . i J 

F t r l l O =r 6 6 r i /brl(0+^66rl ^ + Lbarl ^ +Lbcr\ ^ (3.3.2,) 

^ 1 ( 0 = rCCrlIcr\if) +Lccrl ^ +Lcbr\ + Lcar\ ~Jf (3.3.3) 

In equations (3.3.1) to (3.3.3) the voltage in each phase of the rotor winding depends on 

its resistance, self inductance and the mutual inductance between phases. The solution of 

the first order differential equations of the voltages can be expressed as 

raar\ 0 0 foLaarl +Labrl £jLacrl IarlW Earlhit) 

Vbrl(t) = 0 rbbr\ 0 + 2 T 2 IT 
ti^bcrl x b b n &LBCR\ I brlif) + Ebr\h(i) 

Vcrl(t) 0 0 rccrX ~foLCar\ ~faLcbrl ~^LCcr\ _ hrlit) Ecr\h(f) 

(3.3.4) 

where E a r l h (t), Ebrlh(t) and Ecrlh(t) are the history voltage sources in each phase of rotor 

circuit one. The equation form of the history voltage sources in the rotor circuit is similar 

to that shown in the expressions 3.2.9 - 3.2.11 for the stator windings. The system of 

equations in (3.3.4) can be expressed in compact form as 

[Vrl(t)] = [RLrdUrM + [ErlhH)] (3.3.5) 

with 
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[RLrl] = [[Rrl] + [Lrl] (3.3.6) 

The discretized equations in expression 3.3.4 for rotor one circuit can be represented 

by the equivalent circuit in figure 12. 

E a r l h © 
raarl+sLaarl Ia r l(t) 

E b , i h » . 

Labrl 

îV-bcrl 

Ecr lh©/ \AAA^="-

Fig. 12. Discretized equivalent circuit of the rotor windings. 

Both rotor circuits of the induction motor are identical except for the values of their 

components. Therefore, the discretize equation for the phase voltages in rotor circuit two 

can be expressed as 

f aarl 0 0 ^Labr2 
2 T Iarlif) Eafih® 

Vbrl® - 0 fbbr2 0 + ~ftLbar2 jijLbbrl 2 j + Ebr2h(t) 

Vcnit) 0 0 T ccr2 ~^Lcbr2 ~^Lccr2 _ Icrlif) _ ECr2h(t) 

(3.3.7) 

The system of equations in 3.3.7 can be expressed in compact form as 

[Vn®] = [RLrt\[Ir2(tj\ + [Erlh®] (3.3.8) 

where 

(3.3.9) 

In our analysis so far we have looked at the machine electrical circuits as completely 

independent and isolated components whose phase voltage depends only on the series 

element in each phase and the magnetic coupling between the phases. However, due to 
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the inductance of both the stator and rotor windings and the ferromagnetic material in 

which the windings are embedded there is a substantial amount of magnetic coupling 

between the circuits. Therefore, in the next section we will show how the electromagnetic 

coupling between the machine windings affect the phase voltages in the stator and rotor 

circuits. 

3.4 The Combined Stator-Rotor Circuit Analysis 

In an effort to simplify the analysis of the machine electrical circuits, the phases of the 

stator and rotor will be considered simply as coils with a determined number of turns (fig. 

13). The coils have been separated and placed at 120 degrees with respect to each other 

and are drawn in a manner to ease the visualization of a wye connection. It is important to 

bear in mind that while the windings of rotor circuit one and rotor circuit two appear 

separately, in reality these may represent a single conductor or two conductors with 

identical position relative to the stator windings. 

1 2 4 5 7 8 

3 6 9 

(a) (b) (c 

Fig. 13. The phases/windings of (a) the stator circuit, (b) rotor 
circuit one and (c) rotor circuit two. 

In the analysis which follows, stator windings 1-1', 2-2' and 3-3' represent phases a, b 

and c of the stator circuit, while windings 4-4', 5-5', and 6-6' correspond to phases A l , BI 

and CI of rotor circuit one. Similarly, windings 7-7', 8-8', and 9-9' are representative of 

phases A2, B2 and C2 of rotor circuit two. The analysis will consider one phase of each 
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the stator and rotor circuits. The results will be extended to include all three phases of the 

circuits. 

When the machine is energised and the rotor stalled, transformer theory is used to 

establish a positive sequence equivalent network of the machine (fig. 14) from its 

representation in figure 13. In equations 3.4.1 to 3.4.3, Z„ Z 4 and Z 7 represent the series 

impedance (i.e. the resistance and the self inductance of each coil) of phases a, A l and A2 

of the three machine circuits in figure 14, and the coil voltages are in effect the phase 

voltages of one phase of each circuit. The magnetising inductance between the stator and 

rotor is represented by Zm. The relative position of the rotor coils 4-4' and 7-7' with 

respect to the stator coil 1-1*.is denoted by the angle theta (0). 

Fig. 14. Positive sequence circuit of one phase of the stator and 
rotor circuits in the induction motor. 

The positive sequence voltage in the respective windings of figure 14 is determined by 

the following equations: 
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vnf =\zi+zayii+zmki4+zakr7 (3.4.1) 

F 4 4 / = kZmh + (ZA + k2Zm)l4 + k2Zm (3.4.2) 

V77>=kZmI1+k2Zmh+(Z7+k2Zm) (3.4.3) 

Where k ^ N / N ^ N / N , , with N being the number of effective turns per phase in the 

corresponding machine circuit. Also, all voltages, currents and impedances are 

represented as phasors. Expressions 3.3.1 - 3.3.3 in matrix format give 

" (Zi+Zm) kZm kZm 

+ 
n 

- k7 (Z4+k2Zm) k Zm n (3.4.4) 

kZm k Zm Zn+k2Zm I+7 

It can be seen from 3.3.4 that the positive sequence phase voltage in the respective 

circuits is a function of their series impedance (i.e. resistance and self inductance) and the 

magnetic coupling between the windings represented by Zm. 

In the same manner that an equivalent circuit is obtained for the positive sequence 

voltage it is also possible to deduce the equivalent circuits for the negative and zero 

sequences (fig. 15). These circuits are then used to obtain the voltage expressions for the 

negative and zero sequence voltage in the phases of the stator and rotor circuits. 
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R4 . i i 

Fig. 15. Negative (a) and zero (b) sequence circuits of stator and 
rotor circuits in the induction motor. 

The expression for the negative sequence voltage is identical to that of the positive 

sequence voltage. However, the zero sequence voltages in the windings is expressed by 

(3.4.5) 

The three two-port decoupled sequence network (figs. 14 & 15) can be converted by a 

matrix transformation into three two-port coupled phase-coordinates network of the 

actual physical device (fig. 16). Combining equation 3.4.4 for the positive and negative 

Z, 0 0 
0 

0 Z 4 0 

0 0 z 7 
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sequence and equation 3.4.5 for the zero sequence mode , the full three-port modal 

equation is given by 

n 
44 

[Z°] 0 0 
0 [Z +] 0 
0 0 [Z"] 

44 

TJ 

The corresponding phase-coordinates equation is obtained from 

[ Z , ] = } ( [ Z ] ° + 2 x [ Z ] + ) 

[ Z m H ] = i ( [ Z ] ° - [ Z ] + ) 

(3.4.6) 

(3.4.7) 

(3.4.8) 

4' 2' 

#4 3 • 

Fig. 16. Conversion from 0-1-2 components (zero, positive and 
negative sequence) to a-b-c components (actual windings). 
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The application of 3.4.7 and 3.4.8 to equations 3.4.4 and 3.4.5 gives us the following 

expressions for the self (Zs) and mutual (Zm u) impedance matrices 

[Z,] = 

• -^kZm ~^k2Z, 
m 

Z 7 + f*2Z„ 

[Zmu\ 

--7 --W --lc7 

--Jc7 --k27 --k27 jtiz^ni 3 / 1 i^m 3 " ' ^ » 

-lj&-7 --k2 7 --k27 

(3.4.9) 

(3.4.10) 

The introduction of the concept of self and mutual impedance matrix extends our 

analysis from the single phase scenario where there were three windings (one from the 

stator and one from each of the two rotor circuits) to the real situation with three phases 

and nine windings (fig. 17). 

Stator windings/ ^ » 
phases 

Rotor circuit one 

windings /phases 

Rotor circuit two 
windings/phases 

ZaA2 

Fig. 17. Magnetic interaction of the stator and rotor circuits of 
the induction motor. 
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With the aid of figure 17 and expressions 3.4.7 and 3.4.8 the self and mutual 

impedance matrix for the three phase network of coupled coils is defined as 

[Zs] 

[Zmu\ — 

Zaa ZQAI ZaAl 

ZA\O ZA\A\ ZA\A2 

ZAIO ZAIAI ZAIAI 

Zab ZaBl ZaBl 

ZA\b ZA\B\ ZA\B2 

ZA2b ZA2B1 ZA2B2 

(3.4.11) 

(3.4.12) 

Expressions 3.4.9 and 3.4.10 are then used to obtain the complete impedance matrix 

of the induction machine. It is now possible to show the voltage in each phase of the three 

circuits with the magnetic coupling effect included. This is shown in the following 

expression: 

VA Zaa Zab Zab ZaAl ZaBl ZaBl ZaA2 ZaB2 ZaBl la 

vb Zab Zaa Zab ZaBl ZaAl ZaBl ZaB2 ZaAl ZaB2 h 

vc Zab Zab Zaa ZaBl ZaBl ZaAl ZaBl ZaBl ZaAl h 

VAI ZA\O ZA\b ZAU ZAIAI ZAIBI ZAIBI ZAIAI ZAIBI ZA1B2 IAI 

VBI ZAlb ZAIO ZAlb ZAIBI ZAIAI ZAIBI ZA1B2 ZAIAI ZAIBI IBI 

Vex ZA\6 ZAlb ZA\a ZAIBI ZAIBI ZAIAI ZA1B2 ZAIBI ZAIAI ICI 

. VA2 ZA2O ZA2b ZA2b ZAIAI ZA2B1 ZAWI ZA2A2 ZAIBI ZAIBI IA2 

VB2 ZA2b ZA2a ZA2b ZA2B1 ZA2A1 ZA2B1 ZA2B2 ZA2A2 ZA2B2 IB2 

VC2 _ ZA2b ZA2b ZA2C ZAIBI ZA2BI ZA2A1 ZA2B2 ZA2B2 ZA2A2 _ 1C2 

(3.4.13) 

Where V„ V b , V c , V A 1 , V B 1 , V C 1 , V ^ , V B 2 and V c 2 represent the phase voltages in the 

stator, rotor circuit one, and rotor circuit two, respectively. The current vector represent 

the phase currents of the stator and rotor circuits. Expression 3.4.13 represent all machine 

parameters in phasor quantities. Matrix expression 3.4.13 is converted to compact form in 

the time domain as , 
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Vs(t) ' RLS Lsrl Lsfl 

Vrl(f) = Lrls RLr\ Lrlr2 (3.4.14) 

_ Lyis Lr2r\ RLfi In® 

where 

[K(0]> WA (OL a n d [^(Ol are the vectors of the stator and rotor phase voltages; 

IT* (OL [IA (OL and [Ir2(f)] are the vectors of the stator and rotor phase currents; 

[RLs ], [RLrJ, and [RLr2] are matrices that reflect the phase resistances as well as the self 

and mutual inductances between stator phases, rotor circuit one phases and rotor circuit 

two phases, respectively; 

[Lsr]] and [Lsr2] are the matrices that represent the mutual inductances between stator and 

rotor circuits; and 

\LAr2 ] is the matrix of the mutual inductance between the rotor circuits. Also, [Lr]s ]= 

[Lsr2 ]T, [LJr [Lsa? and [Lr2rl]= [LAt2f. 

By making an analogy between the submatrices in expression 3.4.14 and the equations 

given in section 2.3 for the self and mutual inductances of coupled windings, the terms of 

these matrices can be determined. The matrix [RLS] is as follows 

[RL,] = 
Raas 0 0 

0 Rbbs 0 
0 0 Rccs 

+ 
Lis +Lms 2 ^ m * 

Lis Lfns 2^ms 

7ljms ' ^Ln 

2J-,ms 

2

L'ms 

Lis+L m. 

(3.4.15) 

where R^, R^, and R c c sare the resistances in the a, b and c of the stator circuit, with L l s 

and being the leakage and magnetising inductance of the stator windings. Likewise, the 

elements of matrices [RLrl] and [RLr2] refer to rotor circuit one and two, respectively. 

Thus, 
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[RLrl] = 

Raarl 

0 Rt 

0 

0 0 Llrl +Lmrl 
IT 
2I-Jtnrl 

IT 
21-dmrl 

bbrl 0 + IT 
2J-ymrl Llrl ~^~Lmrl l r 

2 J-'tnrl (3.4.16) 

0 Rccrl IT 1 T 
2J-,frl Llrl +Lmrl 

and 

[RLr2\ = 

Raarl 0 0 
0 Rbbfl 0 
0 0 Roan 

Llrl +L, 

—\Lmrl 
l r 

~2~J^mr2 

IT 

•i -2
Lmr2 

Arl ^Lynfi ~jLmr2 

—\Lmrl Lm +L 

-IT 

'Li 

'mrl 

(3.4.17) 

Matrices [Lsrl] and [Z ir2] represent the mutual inductance between the stator and each 

rotor winding. Due to the physical location of the rotor windings with respect to the 

stator windings, both matrices are equal. The mutual inductance between the stator and 

the rotor windings [ L ^ J is obtained from equation 2.3.9 which gives 

[Lsrl]=L SR 

cos ( 0 r ) cos (e + f) cos (e - 2p) 

cos (e - f) COS (0 r>. COS (0 + f) 
cosfe + ̂O cosfe-^) cos(0r) . 

(3.4.18) 

in which the amplitude of the magnetising inductance is 

LSR = | K L m 
(3.4.19) 

where Lm is the magnetising inductance referred to previously as Z ^ and K is the effective 

turns ratio. 

The mutual inductance between the phases of rotor circuit one and rotor circuit two is 

obtained through the matrix [ L r ] r 2 ] . This inductance matrix describes the electromagnetic 

coupling between like phases and dissimilar phases in the rotor circuits and is given by 

[Lrlrl] -

'mr\l 

-\L mr\2 

Lmrll —\Lmrll 
IT 

~2LlrnrYl 

_l 
1 

Lmrll 

—ijLmrll ~\Lmr\2 Lmrll 

(3.4.20) 

It is important to note that |X r 2 r l ] = [LrU2]T. 
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At this point we have developed the complete voltage equations of the machine 

circuits with the constant and time varying mutual inductances. All the inductances will be 

discretized to form equivalent resistances and history voltage sources. A system of 

equations is formed from the resulting network of discretized inductances. In the next 

section the mathematical method will be formulated that solves the system of equation to 

obtain the stator and rotor currents. 

3.5 Machine Circuit Model Formulation 

The stator and rotor circuits phase voltage equations expressed in compact matrix 

form in expression 3.3.14 give a complete account of the interdependence of electrical and 

magnetic characteristics of the machine. The objective now is to discretize the differential 

equations and solve for the stator and rotor currents in the time domain. Phasor 

expression 3.3.14 in the time domain becomes 

[Vs®] =p[[RLs][Is(t)]) + />[[I ,r l ( / ) ] [ /r l (*)] ] +p[[Lsr2(tWr2(f)]] (3.5.1) 

[Vrlit)] =p[[Lrls(.tWs(t)]] +p[[RLrl][Iri(t)]] + P[[L rlra][Ia(f))] (3.5.2) 

[^(0]=P[[X^X0][/,(0]]+M[^^I1[/M(0]]+M[^^][^(0]] (3.5.3) 

The differential equations are solved, and in the case of the squirrel-cage induction 

motor the rotor phase voltages are made equal to zero. In this case the equations 3.5.1 -

3.5.3 changes to 

[VM = [RLEs][Is(t)\ + [LEsrl][Irl(t)] + [LEsra][I^i)] + [Esh(f)] (3.5.4) 

[0] = [LEruWsiM + [RLErl][Iri(t)] + [LEnralUnii)] + [Erlh(t)] (3.5.5) 

[0] = [LE*,][Uf)] + [LErtrAU*®] + [RLErAUaim + [EMW] (3.5.6) 

Where [RLEs], [RLEr}], [RLEJ, [LEJ, [LEJ, [LEr2s], [LErhl [LErXr2] and [LEM] 

are matrices of equivalent resistances. The history voltage sources in each phase of the 

machine stator and rotor circuits are represented by the vectors [Esh(t)], [Erlh(t)] and 

[Er2h(t)l Where 
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[Esh(t)] = [RLEsh][Is(t-Aty\ - [LEsrihWnit-m-

[LEsr2h][Ir2h(t-Af)] - [Vs(t-At)] (3.5.7) 

[Erik®] = [ / ^ r i r l f c l E / r l C Z - A O l - E ^ r l r t l ^ ^ - A O H i E r t ^ l t / ^ C r - A O ] (3.5.8) 

[ErihO)] = [ / ^ K W * ] [ / r t ( / - A / ) ] - [ ^ A ] [ / X / - A / ) H ^ i A ] [ / r i ( / - A / ) ] (3.5.9) 

In equations (3.5.7 - 3.5.9) the current vectors are the history current values in the 

respective phases. In these equations we can also establish that [LEsAh] = [LEsr2h] = [LEsr]], 

[LErU2h\ = [ L E r U 2 \ a n d t h a t 

[RLEsh] = 
Raas 0 0 

0 Rbbs 0 
0 0 Rccs 

Lis+L m. 
-lL 

2J-,ms 

±L 2^" 
2^n Lis ~^~Lms 21~'ms 

— 2~Lms Lls+Lms 

(3.5.10) 

The structure of the equivalent resistance matrices [RLE r l r l / l ] and [RLE r 2 r 2 J are similar to 

that shown for [RLEsh] in 3.5.10. The discretized circuit of the induction motor is shown 

in figure 18 (in an effort to avoid confusion in the drawing not all discretized inductances 

have been shown). 
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Stator Circuit Raas+ATLaas 

r,- • ̂  ^iriW R A 1 A 1 + A T L A 1 A 1 Rotor Circuit One A l r l

 >

 m 

Rotor Circuit Two 

ATLA2C2 e 

Fig. 18. Discrete-time model of the induction motor in phase 
coordinates. 

By separating terms in expressions 3.5.6 and 3.5.5 we can obtain the vector of pha 

currents in both rotor circuits. The current vectors are 
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[/*(/)] = [RLEM]'1 {-[Emit)]-[LEto][Is(t)]-[LEM)[Iri(t)]} ( 3 . 5 . 1 1 ) 

[ Z , ^ ] - [LEris]}[Ut)] - [En,} + [LE rlr2][RLE ^ [E ̂ h]} (3.5.12) 

Substituting the current vectors for both rotor circuits in 3.5.4 gives a single 

expression with all the electrical parameters of the machine. This expression establishes 

the link between the input voltage at the machine terminals and the parameters that 

determine its characteristics. Thus, after substitution and rearrangement of variables 

expression 3.5.4 becomes 

[Vs(t)] = {[RLES] + {[RLEri] - [LEn^lRLErar^LErari]}'1{[LEsrl 

{[I£rl*][Rl£rt]-l[LEr2s] - [LErls]}} - [LEsr2\[RLErl\[LEr2s]-

{{[RLEn] - [LErlrl^RLE^V^LE^rl^^iilLEsrl^RLE^y^LErlr 

{[LErin\[RLErarl[LEns\ - [££*,]»»[/,(*)] 

{{[RLErd-[mm][RI£r2r\^ 

[LErtnUnErik®] + {(-[LEsr2][RLEr2rl) + {[RLEri] - [LErlr2][RLEr2]-1 

[LE^]}-1 {{[LE„i][LE*ri][RLEa]-1} -([LEs^RLE^y1 [LE*ri][LErll2] 

[RLE^\)}}[Er2h{f)] + [Eshit) 

(3.5.13) 

In this equation V/t) is the vector of the machine terminal voltage supplied by the network 

to which it is connected. 

Upon close observation of 3.5.13 one can divide the expression into two distinct parts; 

one portion is made up of an equivalent resistance matrix multiplied by the current vector 

Is(t), while the other is an equivalent history source. Thus, expression 3.5.13 can be 

reduced to 
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[Vs(t)] = [RLeq,][Isffl + [Eeqh(fi\ (3.5.14) 

where [RLeqs] is the equivalent resistance matrix of a three phase network and [Eeqh] is a 

vector representing the history voltages in the three phases of the network. Therefore, the 

induction machine with its stator and two rotor circuits has been reduced to a simple three 

phase network of equivalent resistances with a voltage source in each phase. It is 

important to emphasise that all the physical phenomena that occurs when the machine is 

in motion are preserved in this new circuit representation. From the expression 3.5.14 the 

stator phase currents of the machine can be determined when it is energised by a source 

whose phase voltage is Vs(t). 
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Chapter Four 

Electromechanical Equations And Data Requirements For 
The New Model 

The transformation from electrical energy to mechanical energy in the induction motor 

occurs across the machine air gap. This transfer of energy across the machine air gap is 

made possible by the magnetic coupling that exists between the stator and rotor circuits. 

Therefore, the magnetic field acts as the agent for the transportation of the energy. In this 

chapter we will look at the mechanism for the development of energy in the machine 

air-gap magnetic field and its importance in the complete energy conversion process from 

electrical to mechanical energy. 

In chapter three we looked at the development of the electrical circuit model of the 

machine and it was observed that some of the data required by the P D T M are not 

normally supplied by the manufacturers of induction machines. Therefore, in this chapter 

we will briefly describe the modifications made to a computer program developed by 

Ricky Hung and H. W. Dommel [16] to obtain the necessary circuit parameters to perform 

transient simulations with the PDTM. 

4.1 Torque Production in the Induction Machine 

Generally, induction machines are considered highly efficient electrical apparatus. 

Most of the electrical energy supplied from the network is transformed to mechanical 

energy, with the remainder as losses due to winding resistance, friction and windage, and 

field losses. In utilising the energy concept to obtain an expression for the electromagnetic 
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torque in the motor it is assumed that the magnetic circuit is linear which implies that there 

can be no losses in the magnetic field. 

The production of electromagnetic torque in the induction motor is inextricably linked 

to the energy in the machine magnetic field. Therefore, we now look at the energy in the 

machine magnetic field. This energy is that which is contained in the self and mutual 

inductances of the stator, the magnetising inductance between stator and rotor, and the 

rotor self and mutual inductances. The energy in the machine coupling field (Wf) at every 

instant in time during the machine transient or steady-state operation can be determined by 

Wf{t) = ±[Is(t)f{[Ls] - [L!S]WM + Us(t)f[LSrl(t)][Irl(t)] + 

[Is(t)]T[Lsr2(t)] [/*(*)]' + ±[Irl(t)]T\ [Lrl] ~ [Llrl] 

\[Ir2{i)\T 

Url(t)Y+ 

Unit)] (4.1.1) [Lra] - [Lin] 

where; 

[Ls] is the matrix of the stator self and mutual inductance, 

[Lls] is the diagonal matrix of the stator leakage inductance, 

[LlrJ is the diagonal matrix of the rotor circuit one referred to the stator, 

[Zir2]' is the diagonal matrix of the rotor circuit two referred to the stator, 

[Zrl]' is the matrix of the rotor circuit one self and mutual inductance, 

[Zr2] is the matrix of the rotor circuit two self and mutual inductance, 

[I/t)] is the vector of the stator phase currents, 

[Irl(t)!i a n d [Ir2(t)\ are the vectors of the rotor circuits phase currents referred to the stator, 
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[LsA(t)] and [Lsr2(tJ\ are the matrices representing the mutual inductance between the 

stator and the rotor circuit one and two respectively. 

The linkage between the energy in the coupling field and the change of mechanical 

energy in the rotating machine is expressed as 

dWm = -Te(^)ddr (4.1.2) 

where dWm is the change in mechanical energy of the machine rotor, Te is the 

electromagnetic torque, p the number of poles in the machine and Qr is the electrical 

angular displacement of the rotor. 

The machine electromagnetic torque is proportional to the change of energy in the 

coupling field. However, the energy in the coupling field of the machine depends on the 

current in the circuits and the angular position of the rotor. The latter determines the 

value of the mutual inductance between the stator and rotor circuits. Therefore, we may 

express the electromagnetic torque as 

T t ( i l M . _ P f j M A (4.1.3) 

which expands to give 

TeiQr) = ?[/.(Olr -̂Uirl(er)l[/rl0]/
 + 2 1 i W J dd, 2 l i W J ddr 

[In®] (4.1.4) 

In our transient analysis of the electromagnetic torque the change in the electrical 

angular position of the rotor occurs during the time step "At", therefore, we can consider 

the torque in each time step. In effect one should consider that the mutual inductance 

between stator and rotor changes with time.. Thus, equation 4.1.4 becomes 
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Lsri(t) Urm+£uMT£r 

I 

Lsrlit) [7,2(0] (4.1.5) 

The electrical and the mechanical properties of an induction motor are combined in 

equation 4.1.6. This equation relates the electromagnetic torque developed in the machine 

with the moment of inertia and speed of the rotor. Thus, this electromagnetic torque is 

Ut)=Je^-+^TL (4.1.6) 

where Je is the moment of the rotor, TL is the load torque and © r(0 is the electrical 

angular velocity of the rotor. The discretization of this differential equation using the 

trapezoidal rule of integration gives 

cor(r) = © , ( / - AO + ^ { Te(t) + Te(t -At)}- ^{TL(t) + TL(t - At)} (4.1.7) 

This equation is used to determine the velocity of the rotor at each time step during a 

transient simulation study. 

4.2 Predicting Rotor Velocity and Angular Position 

When the P D T M is used in simulation studies the rotor position and velocity must be 

predicted at each time step. The rotor speed is predicted based on linear extrapolation. In 

this method the previous two history values are used to determine the speed at the time 

step being simulated. The error that occurs in a prediction scheme of this nature is very 

small, especially in situations where the time step is in the order of microseconds. This is 

due to the difference between the large time constant of the rotating masses compared 

with that of the electrical circuit. Therefore, the predicted rotor speed is given by 

co(0 = 2co(r-A0-co(*-2Ar) (4.2.1) 

dQ 
The angular position and rotor velocity are related by CO = ~ZT~, which, after 

discretization with the trapezoidal rule of integration gives 
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9(0 = Q(t - AO + y © ( 0 + a(f ~ AO (4,2.2) 

Here 9(0 is the rotor position as determined by the predicted speed co(0 in equation 

(4.2.1). co(f - AO is the speed of the rotor at the previous time step. 

4.3 Data for the PDTM Program 
Besides the standard data supplied by the manufacturers of squirrel cage induction 

machines, the phase domain transient model developed in this thesis requires that 

additional machine parameters be known. On rare occasions some manufacturers would 

provide machine users with a substantial amount of data relating to the equivalent circuit. 

However, it is widely acknowledged that these parameters are not sufficiently reliable to 

be used in performing transient studies [9]. Consequently, a program capable of 

calculating with greater precision the electrical parameters of the equivalent circuit of 

figure 5 was developed [16] to be used with the induction motor model in the EMTP. 

This program requires the input of basic motor starting and steady-state performance 

characteristics such as: rated voltage and efficiency, power factor at rated load, rated load, 

starting torque and maximum torque, starting current at rated voltage as well as starting 

current at reduced starting voltage. The program uses this information as a package to 

obtain the following parameters of the 60-Hz equivalent circuit: stator and rotor 

resistances, stator leakage reactance, rotor leakage reactance, stator-rotor magnetising 

reactance, and the mutual reactance between rotor circuits. However, the data required to 

perform transient simulations with the P D T M are: stator and rotor resistances, stator 

leakage inductance, stator circuit mutual inductance, rotor leakage inductance, mutual 

inductance between phases of the rotor circuits, and the mutual inductance between the 

two rotor circuits. The close similarity between the circuit parameters of the 60-Hz 

equivalent circuit and the circuit parameters required by the P D T M makes it possible to 

use the former as a base to obtain the requirements of the latter. 
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The first procedure in the modifications done to the program was to convert all per 

unit quantities to physical units. These quantities in the form of resistances and 

inductances are then used in conjunction with the procedure described in section 3.4 to 

obtain all the parameters necessary to perform transient simulations with the PDTM. In 

this analysis it is important to consider the relationship between the amplitude of the 

ststor-rotor mutual inductance [L^] and the stator mutual inductance [Lm s] with the 

stator-rotor magnetising inductance [ L J . These are expressed as follows 

LsR = ̂ KLm (4.3.1) 

The modifications made to the program developed in [16] makes it possible to obtain all 

the parameters needed by the P D T M by providing the same input data provided by the 

motor manufacturer as would be required for a transient simulation with the EMTP. 
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Chapter Five 

Transient Simulation With The Phase-Domain Transient 
Model 

In this chapter we will test the new model by performing three scenarios of startup 

transient simulations. The "cold" motor startups will be carried out with no mechanical 

load on the machine shaft, a constant mechanical load, and finally a third load that varies 

with the speed. The simulations that will be presented are just a few in a number of 

different types of studies that can be performed with the new phase-domain transient 

model. Transient simulations will be performed on a large motor pump with a nominal 

output of 11,000 Hp. The results from the P D T M program for the 11,000 Hp pump 

motor will be compared with those from the EMTP for the same motor. This comparison 

is used to assess the validity of the proposed phase-domain method of modelling the 

induction motor. 

5.1 Simulation Studies 

This section presents the results from the simulation of an 11,000 Hp pump motor. 

This is a large induction motor that can found in nuclear generating stations, pulp and 

paper manufacturing plants, and large oil and gas pumping stations in remote locations. 

Because of the size of this motor, and consequently its high starting current and large 

moment of inertia, it is important to know its starting characteristics under different load 

conditions. These starting characteristics include the starting time, the magnitude and 

form of the starting current, as well as the torque characteristics for a given supply, and 
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the speed of the rotor when it reaches steady-state conditions. These characteristics 

represent of the induction motor will be analysed in the simulations with this machine. 

The data of the motor as supplied by the manufacturer is as follows [8]: 

rated power = 11,000 Hp, 

rated voltage = 6.6 kV, 

efficiency = 98.5 %, 

power factor = 0.906, 

starting torque at rated voltage = 1.47 p.u., 

maximun torque = 3.5 p.u., 

rated slip = 0.00622, 

starting current at rated voltage = 8.0 p.u., 

reduced starting voltage = 0.785 p.u., and 

starting current at reduced starting voltage = 6.03 p.u. 

These data were supplied to the circuit parameter calculation program discussed in section 

4.4. This program calculates the circuit parameters for the standard 60-Hz double-cage 

equivalent circuit and those required by the phase-domain transient model program. The 

circuit parameters used in the P D T M program to perform the simulations with this motor 

are as follows: 

stator resistance = 0.02172 ohm, 

resistance of rotor circuit one = 0.11869 ohm, 

resistance of rotor circuit two = 0.04136 ohm, 

stator leakage inductance = 0.00080 H, 

stator magnetising inductance = 0.02591 H, 

amplitude of the mutual inductance between stator and rotor = 0.02591 H, 

leakage inductance of rotor circuit two = 0.00146 H, 

mutual inductance of rotor circuits = 0.000701 H, 

47 



For the startup simulation a reactor of 0.2 ohm is connected in series with 

limit the initial current. The following simulations were performed: 

(a) Motor startup with no load on the rotor shaft. 

0 . 5 l 1 .5 2 

Time (0.5* 10E4) ms 

2 . 5 

Fig. 19. No-load stator current (phase a) during startup. 

Torque (scale* 10E5) N.M 

0 . 5 1 1 .5 2 

Time (0.5* 10E4) ms 

Fig. 20. Torque characteristics during no-load startup. 
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Rotor speed (radVsec.) 
200 I 1 

Time (0.5* 10E4) ms 

Fig. 21. Rotor speed during no-load startup. 

(b) Motor startup with a mechanical load that varies with its rotor speed 

Current (A) 

Time (0.5* 10E4) ms 

Fig. 22. Startup stator current (phase a) with a transient 
mechanical load. 
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Current (A) 
8OOO1 

Time (0.5* 10E4) ms 

Fig.23. Outer rotor startup current (phase a) with a transient 
mechanical load. 

Current (A) 

60001 

Time (0.5* 10E4)ms 

Fig. 24. Inner rotor startup current (phase a) with a transient 
mechanical load. 
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Current (A) 
12000 

0 . 5 1 1 .5 2 
Time (0.5* 10E4)ms 

2 . 5 

Fig. 25. Total startup rotor current with a transient mechanical 
load. 
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Rotor speed (rad./sec.) 
2001 r 

Time (0.5* 10E4) ms 

Fig. 27. Rotor speed during motor startup with transient a 
mechanical load. 

(c) Motor startup with a constant mechanical load 

Current (A) 

Time (0.5* 10E4)ms 

Fig. 28. Stator current (phase a) during startup with constant 
mechanical load. 
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Torque (scale* 10E5) N.M 

5 

Time (0.5* 10E4) ms 

Fig. 29. Torque characteristics during startup with constant 
mechanical load. 

Rotor speed (rad./sec.) 
2001 1 

Time (0.5* 10E4)ms 

Fig. 30. Rotor speed during startup with constant mechanical 
load. 
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The EMTP is widely recognised as the standard tool for electromagnetic transient 

simulations in the field of power engineering. This program uses the conventional dqO 

coordinate transformation to represent the machine variables. To compare the results 

from the phase-domain model with those from the EMTP, the 11,000 Hp motor was 

simulated using both methods. The simulations were performed in both cases with a 

supply phase voltage of 5550 volts and a starting reactor of 0.2 ohm in each phase. These 

simulations were done with a mechanical load that varied with the speed of the rotor. The 

results are shown in figures 31 to 36. 

B.GQ. 
Current (scale* 10E3) A EMTP transient simulation 

6.88 

-6.80 

-8.80 

M R C H 1 
- i l 

Time (scale* 10E3) ms. 

Fig. 31. EMTP simulated stator current (phase a). 
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Current (A) 

Time (0.5* 10E4) ms 

Fig. 32. Stator current (phase a) simulated with the 
phase-domain transient model. 
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2.00. 
Torque (scale* 10E5) N.M EMTP transient simulation 

l . B B . 

0.00-

-1.00J 

-2.00. 

HACH 1 
- E L TOR 

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 
Time (scale* 10E4)) ms <c> tticroT>I»n,1992. 

Fig. 33. Motor Torque characteristics simulated with the EMTP. 

Torque (scale* 10E5) N.M 
2.0 

0 . 5 1 1 .5 2 

Time (0.5* 10E4) ms 

2 . 5 

Fig. 34. Motor torque characteristics simulated with the 
phase-domain transient model. 
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0.00 B.ZB 0.48 0.60 0.80 1.80 

Time (scale* 10E4) ms 

1.Z0 1.40 1.68 

Fig. 35. Rotor speed simulated with the EMTP. 

Rotor speed (rad./sec.) 
2001 ; • 

Time (0.5* 10E4) ms 

Fig. 36. Rotor speed simulated with the phase-domain transient 
model. 



From the results presented in the preceding figures it can be seen that the results from 

the phase phase-domain transient model program matches closely those obtained with the 

EMTP. These results demonstrate that the phase-domain transient model program can be 

used to perform transient simulations that have previously been done with the EMTP. 
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Conclusions 

In power utilities all system variables are given values in the phase-coordinate system. 

At the same time, standard measuring techniques simulate parameters such as voltages, 

currents, and impedances in phase quantities. Therefore, it would be convenient and more 

accurate in many cases if power system engineers were to possess the tools capable of 

performing transient and steady-state simulation of these systems or components of the 

system in the phase-domain. In this thesis, a philosophy and methodology have been 

presented which offers this possibility. The phase-domain transient model of the induction 

motor performs transient and steady-state analyses with the machine circuit parameters 

and variables directly in the phase-domain. 

The accuracy of the P D T M program for the induction machine compares favourably 

with that of the most established electromagnetic transient program (EMTP). This is 

confirmed by the transient simulation results presented in chapter five. The algorithm used 

in the phase-domain model is quite simple. The implementation is made easier by the 

utilisation of the high-level and extremely flexible A D A 9X programming language to 

code the model. The object code is quite simple and offers the possibility of future 

development and extension to the model. The transient induction motor program has been 

developed for use on personal computers and simplicity in the area of human-machine 

interface was given top priority in its development; 

The phase-domain transient model of the induction machine utilises a linear magnetic 

circuit. It is hoped that future work in this area would attempt to consider the 

nonlinearities in the magnetic circuit of the induction motor. This would improve the 

accuracy and flexibility of the model. 
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Induction machines of different types are extensively used in many commercial and 

industrial applications. However, this model in its present stage of development is only 

suitable for transient analysis of the squirrel-cage induction motor. It is hoped that future 

work in this area would concentrate on the development of a general model suitable for all 

types of induction machines (e.g. wound rotor motors and induction generators). 

This transient model program of the induction squirrel-cage motor has immediate 

industrial application. However, it is anticipated that if this program is used in the 

teaching of induction motors it can present students with a clearer understanding of the 

principles and operation these machines. 

Finally, it is hoped that with the presentation of this thesis a new and powerful tool has 

been initiated to further the development of online power system monitoring and 

supervision. 
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