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Abstract

A study of localized waves and their potential for application to medical ultrasound

imaging is conducted using analytical and numerical simulation techniques. Simulated

focused ultrasound fields representing approximations to the focus wave modes and mod

ified power spectrum pulses are generated from synthesized, two-dimensional arrays. The

results in terms of attenuation and diffraction are compared with previously published

data for continuous waves and X waves, which are another localized wave solution.

Through the course of simulations different array sizes and source element densities

are examined to determine the consequent effects on the generated localized waves. Array

size determines the distance to which the wave will propagate while source element density

affects the smoothness or amount of error in the reconstruction. In addition, the effect of

‘folding’ is examined and found to reduce attenuation but to have little effect on beam

waist width within the depth of interest for medical ultrasound imaging (up to O.4m).

Introducing folding terms increases substantially the complexity and magnitude of the

required source waveforms.

Pure focus wave mode beams are found to differ insignificantly from the modified

power spectrum pulse when generated by a finite array. Simulations show that for a

square source array as small as nine by nine elements with element spacing 5.5mm, the

lateral beam half-width (at the 1/e point) at 30cm depth penetration in water is only

10mm, and the depth of field, defined as the distance where the wave falls to half its orig

inal magnitude, is 405mm. This is a substantial improvement over continuous waves—on

the order of 23% for the beam half-width—and is comparable to results reported for X

waves launched from a circular array with the same area.
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Chapter 1

Introduction

Ultrasound imaging is used in many areas. In industry it is used to perform non

destructive testing, geologists use it to examine subterranean structures, but probably

the most widely-known use is in medicine. Over the past few years, medical applications

have expanded considerably. A major advantage ultrasound has over many other types

of medical imaging is that it does not use ionizing radiation, which is believed to make it

relatively safe. So far, exposure to ultrasound at diagnostic levels has not been linked to

any harmful effects (Hykes et al., 1992, p. 204). Diagnostic, as opposed to therapeutic,

uses of ultrasound include obstetrics, cardiac imaging, detection of mid-line shift follow

ing head trauma, localization of foreign bodies in the eye, and evaluation of abdominal

masses.

In the most common ultrasound modes’, the image is composed of reflected rather

than transmitted waveforms. The incident wave is reflected back to the transducer at

reflective interfaces. The intensity of the reflected wave is a measure of the reflectivity of

the interface, and the time required for the round trip is a measure of the depth of the

interface. Soft tissue interfaces are weakly reflective, so the amplitude of the returning

waves is small. Also, waves are attenuated due to divergence, absorption, diffraction,

scattering, and refraction. Diffractive spreading is responsible for a major reduction

in resolution, making it one of the most limiting factors in attaining a high quality

1The different configurations used in ultrasound imaging are referred to as ‘modes’. For a description
of these modes see Ultrasound Physics and Instrumentation (Ilykes et al., 1992) or Medical Imaging
Systems (Macovski, 1983).

1



Chapter 1. Introduction 2

image. Attempts have been made to compensate for diffraction, such as mechanically

or electronically focusing the wave, but these measures bring a different set of problems.

The poor image quality, especially the problem with resolution, means that ultrasound

is restricted to qualitative use. The introduction of a more suitable, robust wave which

does not suffer diffractive spreading would alleviate some of the image quality problems.

Specifically, if resolution can be improved, it may be possible to use ultrasound for

quantitative analysis, thereby making it a more powerful diagnostic tool.

There have been attempts made to use transmitted rather than reflected waves in

ultrasound imaging, where the transmitting and receiving transducers rotate around the

patient opposite each other, much like x-ray computed tomography (CT) scanning. The

image is reconstructed using the same techniques as for CT scans. For imaging in many

areas of the body, this type of scanning is not feasible, since highly reflective interfaces

such as tissue-bone or tissue-gas result in a transmitted wave with very low intensity,

which causes detection problems. In bodily structures that are more uniform, such as

in the detection of breast cancer, tomographic ultrasound could be useful (Hykes et al.,

1992, p. 78). It is with this type of ultrasound imaging that the greatest success with

quantitative imaging has been experienced (Greenleaf, 1983).

In designing an ultrasound wave, desirable qualities are that the wave be unidirec

tional, uniform in intensity, and of limited spatial dimensions for good spatial resolution.

Over the past decade, new solutions to the scalar wave equation have been reported

which suggest the existence of highly focused waves. These waves retain their compact,

focused shape over great distances, that is, they don’t suffer diffractive spreading like the

continuous waves now used. They exhibit an extended depth of field, which makes them

ideal for ultrasound imaging (Lu and Greenleaf, 1992b; Fatemi and Arad, 1992). They

can be created using a two-dimensional array of transducers, with each element in the

array being independently addressable. The size of the array and the spacing between
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the array elements are critical in the generation of these waves. If an array of suitable

size and element spacing, with independently addressable elements, can be manufac

tured, localized waves could be launched and applied to ultrasound imaging, potentially

producing a better, higher resolution image than is currently available.

The focus of this work will be to study localized waves and their potential appli

cation to medical ultrasound imaging. Attention will be focused on two versions of

localized waves, the original focus wave mode (FWM) introduced by Brittingham, (Brit

tingham, 1983), and the modified power spectrum (MPS) pulse proposed by Ziolkowski,

(Ziolkowski, 1985). The FWM has finite energy density but infinite energy, and will

propagate to infinity without decay. It was believed that the infinite energy nature of

the FWM was a barrier to launching these waves, so researchers set out to find finite

energy variations of this solution. The MPS pulse is a finite energy pulse derived from

the FWM which has the addition of a multiplicative term that causes 1/r decay after an

extended period of propagation.

Ziolkowski later proposed a method to launch the MPS pulse using a two-dimensional

array of transducers (Ziolkowski, 1989). This launching scheme is based on an integral

formulation over an infinite surface, so to create a perfect pulse using this method, an

array of infinite size with infinitely fine (effectively continuous) element spacing is re

quired, although approximations to the pulse can be launched from a finite array with

discrete elements. With the introduction of the array launching scheme came research

into overcoming shortcomings produced by truncating the array and discretizing the ele

ments. Ziolkowski introduced a mapping which ‘folded’ points in the source plane which

are outside the array to points inside the array (Ziolkowski, 1989). When the elements

are excited with the folded source function, the array should behave like one which is

larger.

The characteristics and limitations of localized waves generated from a finite, discrete
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array of transducers will be examined through computer simulation. The effects of dif

ferent array properties will be examined, including array size and element spacing. It

is expected that a large, dense array will produce a better approximation to a localized

wave than a smaller, sparse array. A description of exactly how truncation and sampling

rate affect the reconstruction is sought. The use of Ziolkowski’s folding scheme will be

investigated. Although folding makes the array act like one which is larger, the effec

tive element spacing between the folded elements increases, which will exaggerate the

detrimental effects of a non-continuous sampling rate. Both the benefits and the cost of

incorporating this scheme will be explored.

The FWM and MPS pulses will be used in these simulations. The same array launch

ing method proposed to generate the MPS pulse will be applied to the FWM formulation.

The infinite energy nature of the FWM should not be a problem, because it is being

launched from a finite array. The waves generated by a finite, discrete array are only

approximations to the intended wave, and it is the array which determines the energy

and propagation characteristics. The finiteness of the array should override the infinite

energy nature of the FWM pulse. Since the array probably determines the propagation

characteristics, it seems sensible to start with the ‘perfect’ FWM rather than the MPS

pulse which has its own decay behavior built in. There are limitations caused by the

array, so there should be no need to have limitations in the wave function.

Comparisons will be made between the localized waves discussed in this paper and

the currently used continuous wave, as well as another limited diffraction beam, the X

wave. The localized waves should perform better than the continuous waves, in that they

should propagate farther without diffracting, and comparably to the X waves.



Chapter 2

Background

2.1 Localized Waves

Focus wave modes (FWM) were first proposed by Brittingham (Brittingham, 1983).

He was searching for electromagnetic pulses which were solutions to the homogeneous

Maxwell’s equations, continuous and non-singular with a three-dimensional pulse struc

ture, and nondispersive for all time. They also were to move at light velocity in straight

lines and carry finite energy. His solutions met all these criteria but the last. Although

they had finite energy density, they carried infinite energy. Brittingham’s work spurred

activity in finding packet-like solutions, resulting in theories for nondiffracting beams

(Durnin et al., 1987; Durnin, 1987), electromagnetic missiles (Wu, 1985; Wu et al.,

1987), focus wave modes (Hillion, 1986), X waves (Lu and Greenleaf, 1992a; Lu et aL,

1993), and the modified power spectrum pulse (Ziolkowski, 1985; Ziolkowski, 1989).

An elegant relation between the original FWM’s and solutions of the homogeneous,

free-space wave equation, bh was put forth by Palmer and Donnelly (Palmer and Don

nelly, 1993), and will be reiterated here. The governing wave equation is:

1 a2(V2
—

= (2.1)

where c is the wave propagation speed. Assuming the direction of propagation is along

the z axis, and substituting the characteristic variables u = z — ct and v = z + ct, gives

5
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the following form for Equation (2.1):

+
= 0 (2.2)

where V is the transverse differential operator, in this case02/0x2+92/0y2. A class of

functions which solve Equation (2.2) is given by:

U0
( + P2) (2.3)

where f is an arbitrary twice differentiable function, p is the transverse distance, and

no is an arbitrary constant. Consider the case f() = where k is a real constant.

Substituting into Equation( 2.3) yields:

=
(2.4)

Setting the constant u0 = iz0, where z0 is real gives, except for a multiplicative constant,

the FWM solution introduced by Ziolkowski which represents a modulated, moving Gaus

sian pulse (Ziolkowski, 1985).

1 1 k2 1 _k2

= = . eei = . eikt)ezo+(_ct (2.5)
47r 4’n(zo+zu) 4rz[zo+z(z—ct)]

The value of kz0 must be positive, in order for the solutions to be bounded as p —* oc.

The FWM with parameters ZO = 4.5 x 104m and k 2m’ is shown in Figure 2.1.

At the pulse center, that is, for z = d, the intensity of the Gaussian pulse-like FWM

decreases with the distance from the axis of propagation as So, the parameters

k and z0 determine the localization to the z axis. Small values of k/zo produce pulses

which look like transverse plane waves while large values yield highly localized particle-like

solutions. The pulse is also localized along the axis of propagation, as away from the pulse

center on this axis its amplitude decays as 1/(z + (z — ct)2). As with Brittingham’s

solutions, these pulses have finite energy density but infinite energy. They will propagate

without decay at the pulse center infinitely, oscillating with period ir/k.
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I

Figure 2.1: The FWM at the origin for parameters z0 = 4.5 x 1Om and k = 2m’.

It was thought that in order to be useful, these theoretical pulses must be made

physically realizable and therefore of finite energy. The infinite energy solutions of Equa

tion( 2.5) can be used as a basis to construct finite energy solutions (Ziolkowski, 1985).

The following function is a superposition over k with weighting function F(k), so it also

solves the wave equation.

f(,t) = W(k)dk

= . J F(k)e_c8dk (2.6)47rz[zo-f-z(z—ct)J o

where

s = s(p,z,t)
= zO+iz— Ct)

—i(z+ct) (2.7)
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This superposition will produce a finite energy solution if F(k) satisfies:

j F(k)Idk < 00 (2.8)

as shown in (Ziolkowski, 1989).

The function f(i, t) in Equation( 2.6) has the form of a Laplace transform, leading

to the conclusion that further interesting solutions can be found by consulting a table of

Laplace transforms. In this way, Ziolkowski’s modified power spectrum (MPS) pulse was

developed. It is so named because the chosen spectrum is a scaled and truncated version

of the power spectrum,F5(k) =

(/3k — b)_le_a(_b) b
4irz/3 k>—

Fmps(k) = F(a) /3
b (2.9)

0 0k<-1

The form of the MPS pulse is:

f(,t) = . e (2.10)z0 + z(z — Ct) (s/3 + a)a

where .s = s(p, z, t) is given in Equation( 2.7). Figure 2.2 shows the MPS pulse at the

origin for parameters a = 1.Om, a = 1.0, b = 600m’, 3 = 300, and z0 = 4.5 x 10m.

The speed of sound in water is c = 1.5 x 103m/s.

The values of the parameters a, b, a, /3, and z0 can be altered to produce a wave

with the desired characteristics. For example, if z0 is decreased, the center frequency of

the pulse is increased, but the localization to the z-axis is decreased. The decrease in

localization can be countered by increasing the value of b or decreasing /3 since all three

parameters affect the degree of localization.

To examine the behavior of the wave along the direction of propagation, , at the

pulse center, consider the case where a = 1, /9>> 1 (1//3z0 << 1), p = 0, and z = ct. The
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Figure 2.2: The MPS pulse at the origin for parameters a = 1.Om, o = 1.0, b = 600m’,
= 300, and z0 = 4.5 x 104m.

real part of the MPS pulse is given by:

J?{f(p = 0,z = ct)}
= —

+ ()2 (cos () — sin (v)) (2.11)

In the region where z <</3/2b and z <a3/2, the value of the function at the pulse center

is constant at 1/azo. When z > /3/2b and z < a/3/2, the cos(2bz//3) term dominates,

so the pulse becomes oscillatory with period of oscillation 7r/3/b. When z > a/3/2, the

function decays as 1/z. By choosing a very large value for /3, this decay behavior can

be made to occur arbitrarily far from the origin. The behavior of the pulse along the

direction of propagation is illustrated in Figure 2.3.

The MPS pulse is like the FWM but with the addition of the term which brings about

the 1/z decay, so, in the range z < a/3/2 at least, the localization properties for the two
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(a) (b)

(c) (d)
Figure 2.3: The MPS pulse at distances (a) 7r/3/b, (b) 5r/3/4b, (c) 3irj9/2b, and (d)
it a13 (/3/b)
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are the same.

2.1.1 Launching

Part of the appeal of the MPS pulse is that a two-dimensional array launching scheme

has already been proposed (Ziolkowski, 1989) and implemented (Ziolkowski and Lewis,

1990). Through use of Huygen’s representation, a scalar field, such as the MPS pulse,

can be defined at an observation point ‘ within a closed surface as (Jones, 1964):

r .-. lôf -.01?f(r,t) = I g(r,r’) -ç-- + —-— g(r,r’)-—
JS Ofl (,t_) C at (?,t_.a) Ofl

- f (,t
- ) -g(,,’)] ds’ (2.12)

where n’ is the inward pointing normal to the surface, S, ? represents the source coordi

nates on S, and 1? is the distance from the observation point to the source coordinates,

1?
— .

The function g(, i) is the propagator 1/4irR. So, the value of the function

f(, t) can be determined at any point within the surface as long as the function and its

derivatives are known over all points of the surface.

Consider the surface to be a hemisphere connected to an x’y’ plane centered at z’,

with the radius of the hemisphere —* cc. In this case, every observation point with

z > z’ is contained within the surface. Assuming no contribution from the hemisphere,

the integral over the surface becomes a double integral over the x’y’ plane, with inward

pointing normal —z’. If the driving functions on the x’y’ plane are defined as:

— = az’L,_)
— z

_RZ
0ct(?,t_)

— Z_Z’f
(?,t — (2.13)

then the function can be expressed as:

R 1
‘ = —L f (r’, t — —) —dx’dy’ (2.14)
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Unfortunately, a continuous source over an infinite plane is not feasible so some ap

proximations must be made. In Ziolkowski’s proposed launching scheme (Ziolkowski,

1989), the integral is expressed as a summation over an (2N + 1) x (2M + 1) array of

transducers as:

N M D 1f(,t) = — (n/x,mzy,z’,t_ -ui)
R

(2.15)
n——Nm=—M C nm

where Zx and zy are the element spacings in the x’ and y’ directions, and Rnm
[(x — n/x)2 + (y — my)2+ (z — zl)2}h/2.

The array of transducers is both finite and discrete, so errors due to truncation and

discretization are inevitable. The errors manifest themselves as a decrease in smoothness

of the pulse and a decrease in the distance to which the pulse can be reconstructed, as

will be demonstrated in Section 3.1.1.

Efforts have been made to minimize errors due to truncation and sampling while still

maintaining a realistic array. One way to make a small array (radius rma) act like a

larger array is to ‘fold’ exterior points (p’ > rmax) onto interior points using the conformal

map p’ i—* rax/p’ (Ziolkowski, 1989).

For the planar array considered previously, all points x’2 + y’2 > rax will be mapped

so that x’ ‘—p [rax/(x’2+y’2)]x’ and y’ i—* [rax/(x’2+y’2)]y’ . The Huygen’s

representation then becomes:

f(, t) = — f L i’ (x’, y’, z’, t
— ) —----dx’dy’

C 4’rRfXmax fYmax / R\ 1
= —j j ‘I’ (x’,y’,z’,t — —) —dx’dy’Xmam Ymax \ C J 4irR

Xmax Ymax r2 2 R 1
— LXmax Lmax (c22) (c z’,t — )4Rfd (2.16)

where Cf = C[rL/(C2+2)J, i1j = [r/( +q2)], and Rf = [(x
— Cf)2 + (y — 77f)2 +

(z — zI)2]h/2.
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Because the propagator term (1/4irR) has the folded value for the distance from

the source to the reconstruction point, Rf, rather than the actual distance from the

transducer to the point, R, this is still an infinite array representation. To overcome

this, Ziolkowski approximates the distance Rf by R, and introduces the appropriate time

offsets for the retarded time in the folded term driving functions. The array now acts as

a larger array, however the signals required by the sources are much more complicated.

The folded portion is responsible for recreating the pulse at great distances from the

array, while the non-folded term causes the reconstruction close to the array.

A potential problem arises in that the driving functions, ‘Jt(i, t — R/c), contain R

and z in the multiplicative terms (z — z’)/R and (z — z’)/R2,which implies that the pulse

can only be created at one point. This problem can be overcome with some assumptions.

If the reconstruction point is relatively far from the generating array, relatively large

compared to the size of the array, and close to the z—axis, then (z—z’) R and 1/R —* 0.

In this case, the driving functions can be approximated by ‘I! 28f (Ziolkowski, 1991),

or equally well by ‘I’ 28’f.

Experiments have been conducted to verify the production of localized waves, and

comparisons have been made with conventional continuous waves (Ziolkowski et al., 1989;

Ziolkowski and Lewis, 1990). They have concluded that, using a two-dimensional array,

localized waves can be launched which outperform their conventional counterparts in

both beam quality and energy efficiency.

2.2 Ultrasound

Ultrasound1is widely used for non-invasive imaging of soft tissue. Over the past few years,

the medical applications for this imaging modality have grown considerably. Reasons for

‘Most of the information about ultrasound beams and imaging presented in this section is taken from
Ulfrasound Physics and Insfrumenaiion, (Hykes et al., 1992)
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this growth include the apparent harmlessness of ultrasound as well as advances in real

time instrumentation. So far, use of ultrasound has mainly been qualitative. Quantitative

analysis capabilities would significantly enhance the diagnostic uses of the instrument.

The ideal ultrasonic beam would be unidirectional, uniform in intensity, and of limited

dimensions for good spatial resolution. Both lateral and axial resolution are important,

so the beam should be localized in both directions. Diffractive spreading is a serious

problem with ultrasonic waves because the beams diverge at an angle proportional to

their wavelength, and ultrasonic waves have a relatively large wavelength. It is the

limiting factor in determining the resolution limits of this imaging modality.

It is possible to improve resolution through use of focusing techniques. Both mechan

ical and electronic methods of focusing are used. An acoustic lens or acoustic mirror

can be used to mechanically focus the lens, however the most common technique of me

chanical focusing for frequencies less than five MHz is to use a curved transducer crystal.

Electronic focusing is accomplished by superimposing ultrasound waves from linear or

matrix arrays of transducers. The signal from each transducer in the array is offset by

an appropriate time delay so that the generated wave front arrives at a specific point at

the same time, in phase. The result of this is a focused beam at that point.

Unfortunately, these methods of focusing have a very limited depth of field. To

compensate for this, dynamic focusing and multiple pulses which are focused at different

depths are employed. This, in turn, leads to low frame rates and unclear images for

moving objects.

There are problems associated with using arrays of transducers and electronic focus

ing. Secondary lobes of ultrasonic energy are formed which cause artifacts to appear in

the image. These lobes come in two varieties, side and grating. Side lobes are present

with all transducers, but are reduced when the density of similar elements is increased.

Grating lobes present a larger problem. They are caused by the regular, periodic spacing
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of elements in the array and are especially prominent at strong interfaces.

Beams which have an extended depth of field, that is they will propagate without

diffracting thereby not suffering loss of resolution, would be ideal for ultrasonic imaging.

Both the FWM and MPS pulse fall into this category. Reduced resolution due to diffrac

tive spreading is no longer an issue, and they don’t suffer from limited depth of field

or low frame rates like mechanically or electronically focused continuous waves. On the

downside, the dense, independently addressable element arrays required to launch these

waves could cause an increase in equipment cost.

Over the past few years, some emphasis has been placed on developing two dimen

sional arrays in order to improve further the diagnostic capabilities of ultrasound imaging.

(Goldberg et al., 1992; Smith and Light, 1992). These arrays are being developed to im

prove launching and reception of continuous waves, however it is possible that they could

be configured to launch localized waves.



Chapter 3

Localized Wave Performance

This chapter contains a study of the characteristics and limitations of localized waves

generated from a finite, discrete array of transducers. The study is conducted through

computer simulations of the array launching procedure proposed by Ziolkowski, (Zi

olkowski, 1989), described in Section 2.1.1. The effects of array size and element spacing

will be explored, along with the use of folding to expand an array. The possibility of

generating a FWM pulse is considered, and the FWM is compared to the MPS pulse.

Finally, research into development of two-dimensional arrays will be considered in order

to decide what array dimensions may be considered for realistic application to launching

localized ultrasound waves.

3.1 Launching Localized Waves: The MPS Pulse

For the purposes of illustration, dimensionless coordinates will be introduced, along with

the characteristic variables u z — ci and v = z + ci. To non-dimensionalize the variables

in the equation describing the MPS pulse, (2.10), they will be multiplied by b//3. The

new coordinates will be (pt, u1,v1) = b/,8(p, z — ci, z + ci) where, as before, p2 = x2 +y2.

Using these coordinates, along with the new parameters z = bzo//3 and a1 = ab, and

assigning a = 1, the form of the MPS pulse is:

b2 1 1 b2f(pi,ui,vi) = — . e 1 = —fi(pi,ui,vi) (3.17)3z0+zu151+ai /3

16
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where

si si(pi,ui,vi) =
, .

— iv1 (3.18)
zo + mi

The source functions for the following simulations will use the approximation ‘I,

29f, as the results are virtually identical to those when the full function (Equation (2.13))

is used. Using the dimensionless coordinates and parameters, and ignoring the multi

plicative constant because it can be adjusted later, the source functions are:

S(p,u+Ri,v—Ri)= + (3.19)u1
(p ,u’ +Ri ,v—R1) V1 (p ,u’1 +Ri ,v—R1)

where
f1 ‘9fi —i / 1 ‘ los1 Os’

+
= z + iu — i\5 + ai

+ } + fi (3.20)

and
Os1 Os

.
p2

+ —z
! ! 2 + 1 (3.21)

9U1 8v1 (zo+ mu1)

R1 is the distance from the source to the reconstruction point. For an array of N

transducers, the reconstructed value of the function fi is:
nrrN 1fi(pi,ui,vi) = — S(p,u +R1,v

— Rl)A dA (3.22)
n1

where p’1 is the distance from the origin to the th source in the source plane, and dA is

the area represented by that source. For an evenly spaced square array, dA = Zx1Ly1,

where Lx1 and Ly1 are the element spacings in the x and y directions.

For the simulations that follow, the summation over the sources given by Equa

tion (3.22) was calculated using original C code. The real part of the reconstructed wave

is displayed using Xmath software.

3.1.1 Array Considerations

There are many considerations when deciding upon an optimal array, such as the shape

of the array, size, element spacing, and whether to utilize the folded array scheme. Of
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these factors, array shape is probably the least important. Although it makes sense to use

a circular array in that the magnitudes of the driving functions decrease radially from

the origin, it is easier to construct and manipulate an evenly spaced square array. It

seems that the arrays that are actually being developed are of the square or rectangular

variety (Smith and Light, 1992), so that is what will be used here. The rest of the factors

deserve further, in depth consideration and will be discussed in the following sections.

Array Size and Element Spacing

Array size and element spacing both greatly affect the quality of the reconstructed pulse.

Element spacing seems to have its greatest effect on the smoothness of the reconstructed

pulse, especially in the trailing wake. Array size determines the distance to which the

pulse can be reconstructed. These effects are demonstrated in Figure 3.4 for the MPS

pulse at v1 = 2K with parameters a1 600 and z = 9.0 x 1O. The first waveform,

Figure 3.4a, is the MPS pulse. Next, Figure 3.4b, is the MPS pulse as reconstructed from

a 21 x 21 square array, with element spacing zx = = 0.02. The next reconstruction,

Figure 3.4c, is from a 21 x 21 square array which is made twice as large by doubling the

element spacing to zx = 0.04. The reconstruction appears to be more accurate,

in that the fundamental shape of the pulse is more like that of Figure 3.4b. The larger

array has produced the leading wake which was missing in the reconstruction from the

smaller array. The courser element spacing, however, has increased the choppiness in the

trailing wake. Finally, Figure 3.4d is a reconstruction from an array which was doubled

in size (compared to Figure 3.4b) by increasing the number of elements to 41 x 41 and

leaving the spacing at /x’1 = = 0.02. In this pulse, the reconstruction error caused

by the course spacing has been smoothed significantly. In all cases, the pulses have been

normalized to their maximum values at p = 0 and u1 = 0.

The above discussion is of a qualitative nature, and while it can be used to get an
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Figure 3.4: The MPS pulse and reconstructions for parameters a1 = 600 and
z = 9.0 x 10; a) the MPS pulse at v1 = 2ir; b) reconstruction from a 21 x 21
array with spacing /x’1 = = 0.02; c) reconstruction from a 21 x 21 array with
spacing /x’1 = = 0.04; and d) reconstruction from a 41 x 41 array with spacing
zx = zy = 0.02.
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idea as the effects of array size and element spacing, a quantitative description of these

effects would be more informative. Following is an attempt to separate and quantify the

effects of these two factors.

Array Size The maximum distance to which the pulse can be reconstructed is com

pletely determined by array size. This can be seen through examination of either the

driving functions for different values of v1, which is representative of twice the recon

struction distance, or the reconstruction at the pulse center for different array sizes as a

function of v1. The driving functions will be investigated first.

Since the driving functions are circularly symmetric, any line through the origin is

representative of their evolution. For u1 = 0 and varying values of v1, the required source

function, as given in Equation (3.19) is charted as a function of p’1. As v1 is increased, the

distance from the origin at which there are significant contributions also increases. The

increase in required array size varies approximately linearly with reconstruction distance,

as illustrated in Figure 3.5. Figure 3.5a is the source function for v1 = 2ir and Figure 3.5b

is for v1 = 20K. The value of p’1 to which the driving function has significant amplitude

is approximately ten times greater for the reconstruction at v1 = 207r than for v1 = 2ir.

The values of the other parameters are a1 600 and 4 = 9 x iO.

Reinforcing the observation that array size determines reconstruction distance is the

investigation of the reconstruction at the pulse center as a function of array size. As the

array size increases, the distance to which the pulse can be reconstructed also increases.

The evolution of the pulse at the pulse center is the same for a given array size, regardless

of the number of elements in the array, as illustrated in Figures 3.6 and 3.7. Figure 3.6

shows the evolution of the reconstructed pulse at the pulse center (ui = 0, p = 0) as a

function of v1 for three different arrays, all of the same size but with different numbers

of elements. The total array size is 1.6 x 1.6 for all three cases, but in the first, the
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Figure 3.5: The driving functions as a function of p’1 for (a) v1 27r and (b) vi = 20ir

array is 21 x 21 elements with element spacing 0.08, the second is from a 41 x 41 array

with element spacing 0.04, and the third features an 81 x 81 array with element spacing

0.02. The distance to which the pulse can be reconstructed does not improve with the

increase in source elements and accompanying decrease in element spacing. Figure 3.7

shows the evolution of the reconstructed pulse at the pulse center as a function of vi for

arrays which are ten times the size of those in Figure 3.6. The first plot is from a 21 x 21,

array with element spacing 0.80, next is from a 41 x 41 array with element spacing 0.40,

and the third demonstrates the reconstruction due to an 81 x 81 array with element

spacing 0.20. As before, the number of elements, and therefore element spacing, does
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Figure 3.6: Evolution of reconstructed pulse at the pulse center as a function of ii1 for
an array of size 1.6 x 1.6 with a) 21 x 21, b) 41 x 41, and c) 81 x 81 elements.
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Figure 3.7: Evolution of reconstructed pulse at the pulse center as a function of v1 for
an array of size 16 x 16 with a) 21 x 21, b) 41 x 41, and c) 81 x 81 elements.
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not affect the maximum reconstruction distance. However, in this case, the propagation

distance before the decay behavior is observed is approximately ten times that for the

arrays which are ten times smaller. As before, the values of the other parameters are

a1 =600 and z.=9 x 1O.

Element Spacing Analysis of the driving functions, as a function of p’1 for different

values of reconstruction distance, v1, also yields information about the effects of element

spacing. Through application of a Fourier transform, the spectrum of a function can

be found. If the transform is approximately zero for frequencies greater than a cut-off

frequency, f, then the function is bandlimited. If a bandlimited function is sampled at

intervals less than or equal to 1/2f, it can be accurately reconstructed from the samples.

Sampling at larger intervals results in aliasing, which degrades the reconstruction. So,

the required array element spacing can be determined by taking the spatial Fourier trans

form of the driving functions. To investigate this, the evolution of the required source

function, given in Equation (3.19), as a function of x, with y = 0, was used. The spatial

Fourier transform of the source function was found numerically for different values of v1.

The resulting spectra for v1 = 2r and v1 = 20’r are illustrated in Figure 3.8. In the

figure, the transforms are normalized to their maximum values. Although increasing the

reconstruction distance increases the distance from the origin at which there are signifi

cant contributions by the driving functions, the spectrum remains mostly unchanged. If

a cut-off frequency is defined as the frequency after which the spectrum does not rise to

above one per cent of it’s maximum value, then the cut-off frequency for both values of

v1 are similar. For v1 = 27r, the cut-off frequency is around 35, while for v1 = 207r it is

about 25. There is a slight decrease, but both are of the same order of magnitude. This

means that the spacing required to produce a good reconstruction does not change. In

short, to increase the distance to which the pulse can be reconstructed, the array needs to
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Figure 3.8: Normalized spectra of driving functions for v1 2ir and v1 = 2Oir.

be made larger. To accomplish this, the number of elements should be increased rather

than simply increasing the element spacing.

The Folded Array Configuration

Whether or not to use the folded array configuration is another important consideration.

The driving functions for the folded array can produce a reconstructed pulse at further

distances from the generating array, but they are much more complicated and are of

greater amplitude than the non-folded driving functions. These factors may be important

in terms of transducer limitations.



Chapter 3. Localized Wave Performance 26

For comparison purposes, reconstructions using both the regular and the folded source

functions from the same array were simulated. The value of the reconstructed pulse as a

function of propagation distance is compared, as well as the driving functions required.

The source functions used to drive the elements in the folded array configuration

consist of the regular, non-folded term (S, as given in Equation (3.19)) along with a

second term representing the folded elements. For an array in which the farthest element

from the origin is at p’1 Tma, folded coordinates can be defined as = x [r/p}

and = y [r,/p]. Using these folded coordinates, the folded portion of the source

functions is:

Sf = ()S(x1,y1,u+Rf,v — Rf) (3.23)

where Rf = [(x1 — z4f)2 + (yi —
y’)2 + (z1 — z)2]h/2 is the distance from the folded

coordinates to the reconstruction point. Adding this folded term to the non-folded term

makes the source element at (xi, y, z) behave like it is also at Yf z). When

the folded term is incorporated into the summation formulation for the value of the

reconstructed function, Equation (3.22), the value for R used in the propagator (1/4irR)

is R1 rather than Rf, since the distance to the reconstruction point is really R1. The

function, then, is given by:

n=N 1fi(pi,ui,vi)=— (S+Sf) dA (3.24)
n=1 47rRi

Figure 3.9 shows the evolution of the reconstructed MPS pulse at the pulse center as a

function of v1 for source functions both with and without the folded term. The generating

array in both cases has 21 x 21 elements with element spacing 0.01, making the array

size 0.2 x 0.2. The values of the other parameters are a1 = 600 and z = 9 x iO,

as in the preceding sections. When very close to the array, the two reconstructions

are indistinguishable, but the pulse generated without the folded term decays quickly,

while the pulse generated by the folded array appears to propagate at least an order of
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Figure 3.9: Evolution of the reconstructed MPS pulse as a function of v1 from a 21 x 21
element array of size 0.2 x 0.2 for source functions (a) without and (b) with the folded
term.

magnitude farther, experiencing only a slight drop where the non-folded pulse decays

before recovering. This drop is probably because the folding is intended for a round

array, so when incorporated for a square array that fits inside the corresponding round

array, there are gaps that will be most noticeable at the point where the folded term first

starts to dominate.

The graph depicting the evolution at the pulse center for the folded array looks

encouraging, but this may be deceiving. The reconstruction error due to element spacing

must be considered as well. The effective spacing for the folded elements increases as the
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square of the distance from the origin to the represented point. So, the effective element

spacing becomes very course for the distant folded elements. Since these elements are

responsible for recreating the pulse at greater distances from the array, it is worthwhile to

examine the actual pulse reconstructions for some different values of the reconstruction

distance that are due to the folded term.

Figure 3.10 shows the reconstructed pulse at distances of v1 = 27r, 6ir, 107r, and 20?r

for the same pulse as in the preceding figure. Comparing these reconstruction distances

to the plot of the evolution of pulse center, Figure 3.9, shows that at v1 = 27r, the folded

term is starting to dominate, while for the greater distances the reconstruction is due

entirely to the folded term. At v1 = 2ir, the reconstruction is not bad, with the pulse

being easily distinguishable from the surrounding noise, but it deteriorates as the distance

increases, with the pulse being virtually indistinguishable from the reconstruction error

at v1 = 207r. This deterioration is due to the increased effective spacing. So, although

the pulse has not yet decayed to half its maximum value, the quality of the reconstructed

pulse is such that it is of not much use. This means that although the folded source

functions can produce a pulse to a greater distance, this distance is not nearly as great

as the evolution at the pulse center seems to promise.

While application of the folded source functions can generate a reconstructed pulse

at greater distances from the array, there is a cost involved. Figure 3.11 shows the time

(actually (b//3)ct) evolution of the source function required of a transducer located at a

distance of p’1 = 0.04 from the origin in the source plane, for an array of size 0.2 x 0.2.

The source function is divided into the non-folded and folded terms. The folded term is

much more complicated than the non-folded component, and three orders of magnitude

larger. Also, the folded term grows increasingly more complicated as the element involved

approaches the center of the array. The driving function considered in the figure is close

to the center, but for an array with the element spacing considered earlier, it is not the
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Figure 3.11: The time evolution of the non-folded (top) and folded (bottom) terms of
the driving function at p = 0.04 in an array of size 0.2 x 0.2.

closest, therefore not the most complicated.

3.2 The Focus Wave Mode

The expected propagation characteristics for the MPS pulse are never achieved in a

reconstruction from a finite array. For v1 < a1, the pulse is supposed to oscillate but not

decay, which does not occur. Rather, as is apparent in Figures 3.6 and 3.7, the height of

the pulse at the pulse center starts to decay almost immediately. This leads to a couple
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of points which require further investigation.
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The first point is that although the source functions used to drive the array determine

the pulse shape, it seems that the array actually determines the propagation distance.

It was previously thought that in order for a pulse to be launched, it had to be of finite

energy. For this reason, the MPS pulse was introduced, rather than trying to launch the

original FWM. The MPS pulse has a term which causes the pulse to decay as 1/v1 in the

region v1 a1, whereas if the FWM is charted, it never decays. If, however, the decay

behavior caused by the array limitations overrides the natural propagation characteristics

of the wave in question, there is no longer a problem. The fact that the pulse is launched

from a finite array guarantees that it is of finite energy.

The difference between the waves can be seen most easily through examining the

expressions for both pulses at their pulse centers, Pi = 0 and u1 = 0. The real part of

the MPS pulse evolves as:

1 1 / V1. ‘\
= 0,u1 = 0,v1)} = 2 jcosv1 — s1nVi) (3.25)
a1zo1+Y a1

while the real part of the FWM evolves as:

= O,u1 = 0,vi)} =4cosv1 (3.26)

In the region where v1 <a1, the value ofv1/a1 is insignificant, making the MPS evolution

cos vi/(a1z), which is the same as for the FWM. At great distances from the array,

v1 > a1, the value of vi/ai grows significant and the MPS pulses behavior becomes

sinv1/(zvi)

The previous paragraph establishes the main difference between the two waveforms as

the multiplicative term which causes the MPS pulse to decay as 1/v1 in the region v1 > a1.

The fact that decay due to the finite size of the array occurs long before this region makes

that term of limited importance. For this reason, it may be interesting to try to launch

a FWM pulse using the same method as described for producing the MPS pulse, that
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is, try driving an array of transducers using source functions2Oz(P, U + R, V —

where describes the FWM solution of the wave equation, as given in (2.5).

The second point is that the effect of the premature decay behavior on the localization

of the pulse needs to be investigated. It is important to know if the decay is accompanied

by spreading of the pulse. The decay is a problem, in that it decreases the strength of

the signal, but spreading is a greater problem because it causes a decrease in resolution.

3.2.1 Launching FWM Pulses

The equation describing the FWM, (2.5), is non-dimensionalized by multiplying the

variable by the parameter k. As with the MPS pulse earlier, the characteristic variables

u = z — ct and v = z + et will also be used. Using the variables (pi, u1,v1) = k(p, u, v)

and the parameter z = kz0, Equation (2.5) is:

k 1 k
(pi, u1,v1) —

. ezo+A e” = —qi(pi, u1, vi) (3.27)
47rzz0+zu1 47rz

The same launching method and approximations to the driving functions as described

for the MPS pulse will be used to create a FWM pulse. The source functions are:

SFWM(P’1,U’1+R1,v — R1)
= + (3.28)

(p1 ,u1 +Ri ,v1—R1) (p1 ,u1 +R, ,v1—Ri)

where

+q= [Z)2
+-

z+iuç]
(3.29)

These source functions are used to excite an array of transducers, as with the MPS pulse,

thereby launching a FWM pulse.

To compare the FWM results with the MPS results, both pulses were simulated using

the same value for the parameter z, arrays of the same size and number of elements,

and at the same distances from the generating array. The results for both pulse types

are remarkably similar, as will be demonstrated.
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Comparison to MPS Pulse

When the evolution of the reconstructed FWM pulse at the pulse center is examined, it

appears exactly the same as that for the MPS pulse. Figure 3.12 shows the evolution

of both reconstructed pulses, normalized to their maximum values at v1 2ir, and the

difference between them for a 41 x 41 element array with element spacing LI 0.04. The

reconstructed MPS, Figure 3.12b, is the same as that from Figure 3.6b. Both the FWM,

Figure 3.12a, and the MPS pulse appear to decay at the same rate, which reinforces the

opinion that it is actually the array that determines propagation distance. The difference

between the two, Figure 3.12c, is two orders of magnitude smaller than the pulse height,

so although it exists, it is not immediately evident.

Both pulses look the same when reconstructions in an area around the pulse center are

examined. Figure 3.13 shows reconstructions of the FWM pulse at v1 27r and v1 = 4ir,

Figures 3.13a and 3.13b, and reconstructions of the MPS pulse at the same distances,

Figures 3.13c and 3.13d, for the same parameters and array given earlier. As in the case

of the evolution at the pulse center, they look exactly the same. Small differences, two

orders of magnitude smaller than the peak height, become apparent when the normalized

pulses are subtracted, as shown in Figure 3.14. The waveforms in this figure result from

subtracting the normalized MPS pulse from the normalized FWM pulse at v1 2r,

Figure 3.14a, and at v1 = 4ir, Figure 3.14b. At both distances, the difference between

the two pulses is small, however it increases at the greater distance.

It is not surprising that the reconstructions of the two different pulses are so similar.

Close to the array (for v1 <ai), they should both have the same behavior, as evidenced

by Equations (3.25) and (3.26). It is only when the pulse has propagated a distance away

from the array, so that the term which causes the decay in the MPS pulse (1/(1 +v/a))

has some effect, that any differences are expected. The comparisons between the two
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Figure 3.13: Reconstructions of the FWM at a) v1 = 2K and b) v1 = 4K, and the MPS
pulse at c) v1 = 2K and d) v1 = 4K
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Figure 3.14: The difference between the normalized FWM and MPS pulse at a) v1 = 27r
and b) v1 = 47r

show that the slight differences between the two reconstructed pulses increase as the

propagation distance, which is consistent with the expected behavior.

3.2.2 Pulse Behavior as it Decays

Now, the effects of the premature decay brought on by the array launching will be

examined. A FWM pulse, reconstructed from an array of size 1.6 x 1.6 with 41 x 41

elements will be examined at distances of v1 = 2ir, 4ir, 6ir, and 8ir. According to the graph

showing the evolution at the pulse center as a function of v1, Figure 3.12a, significant

(a) (b)
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decay occurs through this region. Figure 3.15 depicts the pulse shape as a function of u1

at Pi = 0 at these values of v1, while Figure 3.16 shows the pulse as a function of P1 at

ui = 0. In all cases, the pulses have been normalized to their maximum values for ease

of comparison.

The figures show that, although the array launching causes the pulse to decay before

it is expected to, the decay is not immediately accompanied by spreading. The recon

struction error increases slightly, but the pulse is still easily distinguishable. Since the

focused nature of the pulse is retained, the decrease in intensity of the pulse should cause

no resolution problems.

3.3 Current Arrays

An important consideration when deciding upon an array to use is the dimensions which

can realistically be attained.

Development of two-dimensional arrays has become an important part of ultrasound

research. A 16 x 16 element transducer array with 0.6mm element spacing, expanded

to a 16 x 16 array of connector pins at a standard spacing of 2.5mm has been reported

(Smith and Light, 1992; Goldberg et al., 1992). This shows that very dense spacing is

possible, and the value of 0.6mm will be used as a lower bound on element spacing. Since

the presence of a transducer at the origin is important, in order to maintain a symmetric

array 17 >< 17 will be used as an upper bound on the number of array elements.

To summarize the results of this chapter, the size of the array determines the distance

to which the pulse can be reconstructed, and the element spacing is responsible for the

smoothness of the reconstruction. For course element spacing, there is reconstruction

error which manifests itself in a roughness in the trailing wake. Although a larger array

is required to generate a pulse at greater distances from the source, the required element
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Figure 3.16: FWM normalized pulse as a function of p at u = 0 for pulse centers a)
v1 = 27r, b) v1 = 47r, c) v1 = 67r, and d) v1 = 8ir
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spacing does not increase. This means that the array must be made larger by increasing

the number of elements rather than increasing the distance between the elements.

The folded array configuration will cause the pulse to propagate farther than the

non-folded, but not as far as anticipated while maintaining a smooth reconstruction.

The effective course element spacing makes the pulse indistinguishable from reconstruc

tion error after an unexpectedly short distance. The source functions are much more

complicated, making the folded array configuration of little practical importance, since

the gains are not worth the cost.

The array determines the propagation distance, overriding the expected propagation

characteristics of either the MPS pulse or FWM. For this reason, the FWM can be

reconstructed as effectively as the MPS pulse. When normalized reconstructions of each

pulse are compared, the difference is two orders of magnitude smaller than the peak

height. For computer simulations, the FWM is better to work with because it has a

simpler form, and fewer calculations are required. For this reason, the FWM will be used

in the next chapter for comparisons to other waves.



Chapter 4

Comparison With Other Waves

Having established the possibility of launching localized waves from a finite array, the

next step is to compare these waves to others. The FWM will be compared to continuous

waves as well as to X waves. The FWM pulse should propagate without diffracting farther

than the continuous waves, which would give them increased resolution when used for

ultrasound imaging. The question is how far a FWM will propagate when generated

from a realistic array, since the propagation distance is dependent on array size. The

propagation characteristics of the FWM should be similar those of the X waves, as they

are both localized waves, or limited diffraction beams.

To make the comparisons, the variables and parameters for the FWM must have

dimensions reintroduced. In the interest of making a fair comparison, comparable con

tinuous waves and X waves must be chosen.

4.1 Continuous Waves

4.1.1 Making a Fair Comparison

Continuous waves are defined by their wavelength, so in order to compare localized waves

to continuous waves, a comparable value for the wavelength of the continuous wave must

be chosen. This is somewhat nontrivial, as the localized waves are not sharply defined

by a single wavelength. Rather, they have a broad spectrum, which must be measured

somehow and converted to a wavelength.

41
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Figure 4.17: FWM spectrum for parameters = 9 x iO and k 2.5m’.

Focus Wave Mode Spectrum

The temporal Fourier transform of the focus wave mode at the origin is given by:
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Figure 4.17 shows the spectrum for the FWM with parameters z = 9 x i0 and

k = 2.5m’. The speed of sound in water, c, is 1.5 x 103m/s.

The spectrum of the FWM can be used to select a comparable continuous wave, as

well as the parameter k to dimensionalize the pulse and array discussed previously. If

a cut-off frequency, c., is defined as the frequency before which the fraction p of the
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spectrum is contained, that is:

then w, is calculated as:

Figure 4.18: w, vs k for p 0.95

i: ?= O,w)dw

1: (r= O,w)dw
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Figure 4.18 shows the variation of cut-off frequency, w,, as a function of k. The values

of z and c are as given previously.

Conversely, if the cut-off frequency and the fraction of the integral of the spectrum

defining that frequency are determined, then the parameter k can be found and used to
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give dimensions to the array and the FWM pulse as follows:

4 (433)
C \zo—ln(1—p)J

Having developed a method to select a comparable wavelength for the continuous

wave, as well as a way to dimensionalize the FWM, the two can be compared.

4.1.2 Results

The behavior of a Gaussian beam propagating in free space in the z direction is as follows:

if w0 is the initial beam waist (at the 1/e point), and ) is the wavelength, then along the

line of propagation, the amplitude varies as 1/[1 + (\z/rw)2]hu1’2. The beam half-width

is also a function of z, and is expressed as (Arnaud, 1976):

2’/

w(z) = WO [1+ (;)] (4.34)

The distance to the boundary between the near and far fields, that is the Rayleigh

length, where the beam begins to decay as 1/z is reached when z irw/,\. At that

point, the amplitude has fallen to i// times it’s original value, and its radius has

increased to /w0. in the region z > 7rwg/,\, the beam diverges at an angle which can

be approximated by 0 /(irwo). The radius of the beam, therefore, increases as Oz.

If the frequency of the Gaussian beam is chosen so that f = w/2ir, then, inserting

Equation (4.32) into the relation ). = c/f gives the following expression for the wave

length:
2ir4

435k(4-ln(l-p))

For the FWM, the value at the pulse center (u = 0) is given by:

-Z eIklJ
= 0,v = 2z) = e ZO (4.36)zo
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which defines the waist as w0 (z/k2)1/2.Using this value for the initial waist of the

Gaussian beam gives a Rayleigh length of:

L
irwgz—ln(1—p)

2k

Inserting this relation into the equation describing the waist of a Gaussian beam gives:

2 1/2

= + ( , 2kz
(4.38)k \zo—lfl(l—p)J

Both w and z can easily be nondimensionalized in the same way as the coordinates

used in the localized wave investigation through multiplication by k, making the the new

coordinates w1 = kw and z1 = kz. With these coordinates, the beam waist is described

by:
2 1/2

(4.39)

Also, with these coordinates, the Rayleigh length is LR1 = kLR [z — ln(1
—
p)]/2. For

= 9 x iO and p = 0.95, the dimensionless Rayleigh length evaluates to 1.5. This

corresponds to a value for v1 of 2LR1 = 3.0. For the FWM created from the array studied

in Section 3.2.2, there is no sign of diffractive spreading well past this point. In fact, out

to v1 8ir there is no spreading. For a distance of z1 vi/2 = 47r, the waist of the

Gaussian beam would have increased to over eight times its original size.

Results Using Realistic Arrays Using arrays of the size discussed previously, it is

certainly possible to produce a localized wave that will outperform a Gaussian beam.

What must now be considered are the results using smaller, more realistic arrays. To

do this, dimensions must be reintroduced. Consider a Gaussian beam with a frequency

of f = 2 MHz, which is within the ultrasound range of 1 — —15MHz. For this cut-off

frequency and a value for p of 0.95, k is calculated to be 2.5m. As before, z = 9 x iO,

making the initial waist w0 = 12mm.
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Figure 4.1.9: Half-width as a function of propagation distance for a Gaussian beam (solid
line), and FWM beams generated from a 44mm x 44mm array with 9 x 9 elements (*),
66mm x 66mm array with 13 x 13 elements (o), and 88mm x 88mm array with 17 x 17
elements (x).

Three arrays of varying sizes are chosen to generate FWM pulses to compare with a

Gaussian beam. In all three arrays, the element spacing is 5.5mm, which is well above

the lower bound for spacing set out in Section 3.3. The number of elements for each

array is 9 x 9, 13 x 13, and 17 x 17, making the physical dimensions 44mm x 44mm,

66mm x 66mm, and 88mm x 88mm.

Figure 4.19 shows the theoretical half-width (at the 1/c point) as a function of propa

gation distance for a Gaussian beam as well as for q produced by the three arrays. The

value q was chosen rather than simply charting the real part of the FWM in order to

counter effects of the oscillatory nature of beam. As is expected, the larger array gives
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Figure 4.20: Half-width as a function of propagation distance for a Gaussian beam (solid
line), and FWM beams generated from a 44mm x 44mm array with 9 x 9 elements with
(x) and without (o) the folded term

the best results, showing much less diffraction than the Gaussian beam. For all arrays,

the FWM beams show limited diffraction up to a distance of approximately ten times

the array side dimension. For ultrasound use, the waves likely will not have to travel

farther than 0.4m, and all the FWM beams showed limited diffraction to that distance.

For the smallest array (44mm x 44mm), the half-width of as produced using source

functions including the folded term was found as a function of propagation distance.

Figure 4.20 shows that evolution compared with the half-width for the Gaussian beam

and the FWM from the same array without the folded term. The beam generated by

the folded array appears to propagate farther before spreading, but closer inspection of

the reconstruction shows that the folded array also seems to cause a lot of reconstruction
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error. Figure 4.21 shows the lateral and axial plots of the reconstructed beam at O.2m and

0.3m for both the folded and non-folded arrays. These are distances that an ultrasound

beam will likely have to travel, and this plot shows the beam from the non-folded array

to have much less reconstruction error. The folded array has a great deal of interference

which shows up especially well in the lateral beam plot. Through the important range for

ultrasound imaging, up to 0.4m, the reconstruction from the non-folded array actually

has a narrower beam half-width. This coupled with the smoother reconstruction makes

the non-folded source functions a better choice than the folded configuration.

At z = 0.3m, the half-width of the Gaussian beam has expanded to 13mm, as calcu

lated using Equation (4.34). For the two smallest arrays considered, the beam half-width

of the FWM, taken from Figure 4.19, is 10mm. This is a reduction of 23%, which should

translate to a significant increase in resolution.

4.2 X Waves

Lu and Greenleaf have investigated the possibility of launching X waves using a finite

aperture radiator (Lu and Greenleaf, 1992a). Like the focus wave mode solutions, the X

waves will travel to infinite distance without spreading if they are produced by an infinite

aperture. They found that even when produced by a finite aperture, the X waves will

propagate large distances without spreading. They used the depth of field, the distance

in the direction of propagation where the beam fell to half of its original value, to describe

how far the beam produced from a finite aperture would travel without spreading. They

found that the depth of field was a function of the size of the radiator, as is the case with

the FWM results. They developed an expression for the depth of field, Zmax, as follows

(Lu and Greenleaf, 1992a):

Zmax = cot( (4.40)
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Figure 4.21: Lateral and axial plots of the reconstructed FWM at O.2m (left) and O.3m
(right) from a 9 x 9 element 44mm x 44mm array with (solid line) and without (dashed
line) the folded term.
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Figure 4.22: Evolution of for FWM beams generated from a 44mm x 44mm array
with 9 x 9 elements (dotted line), 66mm x 66mm array with 13 x 13 elements (dashed
line), and 88mm x 88mm array with 17 x 17 elements (solid line).

where D is the diameter of the radiator, and is the Axicon angle, which is a parameter

affecting the lateral resolution. The X waves differ from the FWM in that the X wave

peak value does not oscillate, but rather remains constant.

To evaluate the FWM pulses using the same criterion as the X waves, the value of Ic
as a function of the z was charted for the arrays of the previous section (44mm x 44mm

with 9 x 9 elements, 66mm x 66mm with 13 x 13 elements, and 88mm x 88mm with

17 x 17 elements) in Figure 4.22. For the 44mm x 44mm array, the depth of field, as

defined in the previous paragraph, was found to be 405mm, for the 66mm x 66mm array

a value of 573mm was found, and 744mm for the 88mm x 88mm array.

For a full description of the X waves and their behavior when launched from a finite

aperture, the reader is referred to (Lu and Greenleaf, 1992a). Their results for a 50mm
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diameter radiator, and an Axicon angle of 4° will be quoted here.

For a 50mm diameter radiator, Lu and Greenleaf found a depth of field of 358mm,

which is very close to the theoretical value of 357.6mm calculated from Equation (4.40).

A 50mm diameter round radiator has the same area as the square 44mm x 44mm array,

making the two radiators comparable. The FWM has a depth of field of 405mm, which

is slightly better than that for the X-wave, but it is of the same order of magnitude,

making the FWM is comparable behavior to the X wave.

If there were no cost or technological limits placed on the size of the generating array,

a FWM beam could be generated that would handily outperform continuous waves of

a comparable wavelength. Even with an array of currently realizable size and element

spacing, the FWM generated will propagate through the important range for medical

ultrasound imaging (up to about 0.4m) with less diffractive spreading than continuous

waves. This reduction in spreading is important in terms of image resolution. The

propagation characteristics of the FWM are similar to another limited diffraction beam,

X waves, in terms of propagation distance before the pulse falls to half its maximum

value.



Chapter 5

Conclusions and Future Directions

In order to launch an exact replication of a localized wave, theory dictates that an infinite

aperture is required. It is possible to generate a reasonable approximation using a finite

array of discrete sources. The waves launched from a finite array do not exhibit the

same propagation characteristics as those from an infinite aperture in that they will not

propagate to infinity without experiencing decay or diffraction. They do, however, travel

an extended distance before diffraction occurs.

The size of the generating array determines the length of this diffraction-limited pe

riod. The element spacing affects the smoothness in the area around the pulse center

of the reconstructed wave, especially the trailing wake. The distance to which the wave

will propagate varies linearly with the size of the array, so a square array who’s side

dimension is increased ten times (increasing the area one hundred times) will cause the

wave to propagate ten times farther. The required element spacing does not change with

reconstruction distance. This means that in order to generate beams which propagate

greater distances, the array must be made larger by adding elements rather than by

increasing the element spacing.

Since it is the array size that limits propagation distance, it is desirable to have a

large array. A ‘folding’ scheme has been proposed to make a small array act like a larger

array (Ziolkowski, 1989). Localized waves generated using this folded array do travel

farther than their non-folded counterparts, but as the distance from the array increases,

the quality of the wave decreases. There is greater reconstruction error in the area
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surrounding the pulse center of the beam. Also, the source functions required for the

folded term are much more complicated and three orders of magnitude larger than for

the non-folded term. This, coupled with the fact that ultrasound waves are not required

to travel great distances, diminishes the importance of the folded array configuration for

this application.

It was previously thought that the infinite energy of the original FWM made it im

possible to launch, and that finite energy variations on this wave must be found. Since

the size of the generating array determines propagation limits rather than the waveform

applied, the FWM can be launched from an array with the same success as its finite

energy derivatives such as the MPS pulse. The difference between the normalized FWM

and MPS pulse is two orders of magnitude smaller than the peak height. The FWM has

a simpler formulation, which makes it preferable to work with over the MPS pulse, at

least for simulations.

In a comparison with a traditional Gaussian beam using beam half-width at the l/e

point as a figure of merit, FWM beams generated by realistic arrays showed superior

propagation characteristics through the area of interest (up to 0.4m). This is an impor

tant measure of the wave in that it relates to the resolution of the resulting image. At a

distance of 0.3m from the source array, the FWM has a beam half-width of 10mm, while

that of a comparable Gaussian beam is 13mm. This is a reduction of 23% for the FWM.

Compared to X waves, another limited diffraction beam, the FWM showed similar

propagation characteristics. The criterion used in this comparison was the distance the

beam traveled before falling to half its original magnitude. When generated from arrays

of the same area, the FWM traveled slightly farther than the X wave, 405mm as opposed

to 358mm.
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Future Directions Real transducer behavior and how it might limit the source func

tions was not considered. An investigation into this could yield important information.

The simulations showed that there was little difference between the reconstructed FWM

and MPS pulse, however an analysis of the source functions for both could help determine

which waveform should be used. The folded source functions could also be analyzed.

The application of windowing techniques could be studied. The effect of applying

a Hanning or Hamming window the size of the array was examined, but this type of

window just made the array act like a smaller one. The use of temporal windows, or

spatial windows the size of the individual elements could be investigated.

All of the results obtained here were through computer simulations. The next step

would be to test these findings using a real transducer array. An entire array does not

have to be built to accomplish this. Rather, a single transducer could be used, moving

it to each location in the array, measuring the resulting signal, and adding the signals.
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