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A B S T R A C T 

Image interpolation is an important part of digital image processing. Many approaches are 

proposed for enlarging and reducing images. Recently, most papers in image interpolation are 

focused on edge-based interpolation since sharp edges and smooth contours can give better 

impression to the human vision than others. L i & Orchard and Kimmel proposed edge-based 

interpolation approaches that can produce better image quality compared with the traditional 

methods such as bilinear and bicubic interpolations. In this thesis, a new edge-based image 

interpolation approach that uses symmetric biorthogonal wavelet transforms is proposed. 

According to wavelet multiresolution analysis theory, an image can be decomposed into a 

series of approximation sub-images and detail sub-images with horizontal, vertical, and diagonal 

edge information. Based on this theory, many wavelet-based interpolation approaches have been 

proposed. However, most of them are computationally expensive or not efficient. In this thesis, 

we set up a list of ideal step edge models, and explore the relationships between the wavelet 

approximation sub-image and the three wavelet detail sub-images of these models. Based on 

these relationships, a fast and efficient algorithm that predicts the edge information of the 

interpolated image is proposed. The results of our experiments prove that the wavelet-based 

image interpolation with our new approach has good performance compared with other state-of-

the-art image interpolation approaches. In conclusion, the 9 / 7 - M inverse wavelet transform with 

our new approach is the best solution for image interpolation. 

Keywords: edge-based image interpolation, wavelet transform. 
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1 

INTRODUCTION 

1.1 What Is Image Interpolation? 

We have all seen movies in which F B I agents enlarge and enhance an image so that faces 

can be identified and so on... well, that is rather exaggerated, but image interpolation is 

something like that. It's not going to produce features that weren't there before, but what it does 

do is to maintain features that originally existed rather than make the image blurry when it's 

scaled up. 

So, what is interpolation? One concise definition in Merriam-Webster's dictionary is 

"estimating values between two known values." A precise answer from Thevenaz et al. [16] is 

"model-based recovery of continuous data from discrete data within a known range of abscissa." 

From the mathematical point of view, interpolation seeks to define mathematical functions that 

pass through given data points. A n d image interpolation is just a two-dimensional case. 

Traditional interpolation can be expressed with the formula below: 

k 

where fk are the values of known points, and <p{x-k) is a weighting function. The formula (1.1) 

means that an interpolated value f(x) is a linear combination of the weighted values of known 

points. The constraint of the formula (1.1) is that f(k) = fk. Therefore, the traditional 

interpolating function (1.1) passes through all known points. 

Thevenaz et al. [16] provide a generalized interpolation formula: 

/ ( * ) = £ c t p ( * - * ) (1.2) 
k 

where, coefficients ck depend on fk , but generally are not equal fk . This means the 

interpolating function (1.2) no longer passes through all known points. This generalized formula 
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gives us more freedom to choose a weighting function with better properties than those available 

in the restricted classical case where ck = fk. 

1.2 The Origins of Image Interpolation 

Interpolation dates back to the Seleucid period (the last three centuries B C ) when 

ephemerides were used to predict the position of the sun, moon, and planets to plan the best dates 

for events such as planting crops [7]. Because celestial bodies were not always in position to be 

observed, linear interpolation and more complex interpolation methods were used to f i l l gaps in 

the ephemerides. 

In the early 1970s, with the advance of computer technology, digital image processing 

started to develop. Simple interpolation methods generally cannot produce a high-quality image. 

For examples, the pixel replication yields blockiness, and linear interpolation tends to blur the 

image. To get a better quality image, high-order interpolation schemes were introduced. For 

example, a very popular interpolation technique known as cubic convolution was used to 

improve satellite images. Key's cubic convolution scheme [14] was based on this technique, and 

has become a standard in the field. 

Spline interpolation for digital image interpolation was first investigated in 1978. Spline 

interpolation is based on the generalized interpolation formula (1.2). A t first, people thought that 

spline interpolation would need more computations because of the cost of determining the ck in 

the formula (1.2). In the early 1990s, Unser showed that using a digital-filtering approach, which 

can be implemented recursively, could solve a B-spline interpolation problem much more 

efficiently. In 2003, B l u et al. [15] showed that shifted linear interpolation had almost the same 

performance as cubic convolution. Also, recent studies show that spline interpolation provides 

the best cost-performance tradeoff over other conventional methods [17]. 

In the last decade, image interpolation methods based on discrete cosine transforms (DCT) 

and wavelet transforms began to emerge. These transform-based image interpolation techniques 

cause artifacts stemming from the specific properties of the transform used. Therefore, they 

didn't receive much attention. More detailed information about wavelet-based image 

interpolation wi l l be presented in chapter 5. 

Recently, published papers focusing on edge-based image interpolation are appearing. This 

is because clear edge contours give a better visual effect. Allebach and Wong present the first 
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generally recognized paper [21]. They use a sub-pixel edge estimation technique to generate a 

high resolution edge map from a low resolution image, and then use the high resolution edge 

map to guide the interpolation of the low resolution image to a final high resolution version. The 

two most famous approaches to edge-based image interpolation are Kimmel's and L i & Orchard's. 

In Kimmel's approach [22], the likelihood that each pixel belongs to an edge is calculated based 

on the directional derivatives. Then the interpolation is performed such that more weight is given 

to the pixels lined up along the edge than the pixels across the edge. L i & Orchard's approach [23, 

24] is based on the assumption that the high-resolution covariance is the same as the low-

resolution counterpart. It's called geometric duality. Muresan and Parks' approach [28, 29] is an 

extension of L i & Orchard's approach, and is based on the optimal recovery theory. Chapter 3 of 

this thesis wi l l present Kimmel's and L i & Orchard's methods in detail. 

1.3 Applications of Image Interpolation 

Image interpolation is used extensively in digital image processing. Currently, the most 

important application areas are medical imaging, computer vision, and digital photography. 

Image interpolation methods occupy an important position in medical image processing, as 

they are required for image generation as well as image post-processing. In computed 

tomography (CT) or magnetic resonance imaging (MRI) , image reconstruction uses interpolation 

techniques to approximate the discrete functions in the back-projection for inverse Radon 

transform. In modern X-ray imaging systems, such as digital subtraction angiography, 

interpolation enables the computer-assisted alignment of the current radiograph and the mask 

image. In volumetric imaging, scene-based and object-based methods are commonly used for 

slice interpolation of three-dimensional (3-D) medical data sets. The purpose of the interpolation 

is to change the level of discretization (sampling) of the input scene. Interpolation is also 

necessary in the following situations: (1) to change the nonisotropic discretization of the input 

scene to an isotropic or to a desired level of discretization; (2) to represent longitudinal scene 

acquisitions of a patient in a registered common coordinate system; (3) to represent 

multimodality scene acquisitions in a registered coordinate system; and (4) in re-slicing the given 

scene at a different slice orientation [5]. In volume rendering, it is common to interpolate a 

texture to fit the facets that compose the rendered object. In addition, volume rendering may 

require the computation of gradients, which is best done by taking an interpolation model into 

account. Moreover, zooming or rotating medical images after their acquisition is often used in 
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diagnosis and treatment, and interpolation methods are incorporated into systems for computer-

aided diagnosis, computer-assisted surgery, and picture archiving and communication systems. 

In computer vision, the computer relies on interpolation to display text and graphics 

correctly. For example, before a letter " A " shows on the screen, the computer takes dot matrix or 

TureType curves (quadratic B-splines) from the font library, reduces/enlarges the font according 

to the required size, and then shows it on the monitor screen. Image viewing/editing programs 

use interpolation when rotating, resampling, or resizing images. In the image editing programs, a 

user has some controls over the type of interpolation being used. There are a variety of 

interpolation techniques that may be used for such functions as enlarging or reducing the size of 

an image. For example, Adobe's Photoshop program allows the user to choose from one of three 

techniques: nearest neighbor, bilinear, and bicubic. 

In recent years, digital cameras have become popular. Due to the limited spatial resolution 

of the physical structure of the color C C D or C M O S sensors, one kind of interpolation algorithm, 

called demosaicing, is used to reconstruct a super-resolution image beyond the sensor's 

resolution. Meanwhile, users can choose a different resolution for the saved image that also 

needs interpolation to resample the acquired image. 

In addition to these applications, good insights into image interpolation techniques also help 

to develop better tools in such areas of image processing as image compression and image 

denoising. 

1.4 Existing Problems in Image Interpolation 

The issue of quality is particularly relevant to the medical community; for ethical reasons, it 

is a prime concern when manipulating data. A n y manipulation should result in the least amount 

of distortion or artifacts, so as not to influence the clinician's judgment. For practical reasons, 

efficiency is another prime concern. A n y processing should result in the least computational 

effort, particularly when dealing with the large amounts of data involved in volumetric medical 

imaging. Therefore, to evaluate an image interpolation scheme, it is important to assess the 

computation time of the algorithm and the quality of the interpolated image. Different 

applications wi l l have different criteria. Real-time applications may emphasize the computation 

time; and non-real-time applications may emphasize image quality more. 
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Let us examine traditional image interpolation techniques and discuss their advantages and 

shortcomings. These techniques are known as the nearest neighbor, the bilinear, and the Bicubic 

methods. 

Strictly speaking, the nearest neighbor, which is also called replication, is not an 

interpolation algorithm. The new pixel's value is made the same as that of the closest existing 

pixel. The nearest neighbor is quite a bit faster than the bilinear or bicubic methods, but it is also 

the least precise. When enlarging images, edges are more noticeably jagged. Downsizing 

produces a coarse, grainy effect. It works best when enlarging or reducing by an even number. 

Bilinear resampling is an interpolation method that uses the values from the four 

surrounding pixels that is, above, below, right, and left of the spot where the new pixel is to be 

created. The new pixel value is determined by calculating the weighted average of the four 

closest pixels (a 2x2 array) based on distance. This method tends to make an image appear softer; 

that is, the contrast is reduced because of the averaging of neighboring values. However, the 

stair-step effect apparent in the nearest neighbor approach is reduced, and the image looks 

smoother. This interpolation method appears to work better for image reduction rather than 

image enlargement. 

Bicubic interpolation determines the values of new pixels by calculating the weighted 

average of the closest 16 pixels (a 4x4 array) based on distance. Usually, a cubic B-spline 

algorithm is used. This method also produces a much smoother image than the nearest neighbor 

technique. A s with bilinear resampling, bicubic interpolation tends to make an image softer. So it 

is a good idea to apply some sharpening to the image to reduce the softness. Some bicubic 

algorithms include an extra parameter that you can use to sharpen image quality during the 

interpolation process. Although this method requires more computational time, it is the default 

image-enlargement technique in just about every image manipulation program. 

Therefore, researchers have been working hard to find better methods of image interpolation. 

Some methods do improve the quality of images, but they can be used only on specific images or 

they introduce some artifacts. No perfect solution yet exists. Especially when large 

magnifications are required, the smoothing effect is still very prominent. 

Figure 1.1 shows some common problems (or artifacts) introduced by the image 

interpolation. Chapter 2 wi l l address these artifacts in detail. 
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The wavelet transform has proven effective on image compression. For example, J P E G 

2000 uses wavelet transforms for lossy and lossless compression [6]. A l so the lifting scheme of 

the wavelet transform is very suitable for fast computation and hardware implementation [36]. 

However, image interpolation using wavelet transforms has not proven to be as successful as 

image compression. Chapter 4 wi l l address the problems in this area. 

original image replication (jagged contours) 

bilinear (blurred image) L i & Orchard (distorted texture) 

Figure 1.1 Some problems caused by the image interpolation (Note: In the experiment, the 

original image is reduced by half using an interpolation method; then the same interpolation method is 

used again to enlarge the reduced image by 2.) 

A good quality image is non-blurred and artifact-free and has sharp edges. However, the 

problem of evaluating image quality remains an open question because of the lack of an efficient 
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metric. The subjective metrics, like the subjective mean opinion score (MOS), give more 

accurate results, but are often time-consuming, expensive, and inconvenient. Objective metrics 

are easy to automate and rapid to calculate. Since they are convenient, objective metrics are still 

an active research problem. The current objective metrics, like mean square error (MSE), peak 

signal to noise ratio (PSNR), etc., do not accurately reflect the real quality of the image. 

1.5 Overview and Contribution of this Thesis 

This thesis proposes a new image interpolation method based on wavelet transforms. 

Through comparisons with traditional and state-of-the-art image interpolation methods, we show 

that the new method is very promising. Briefly, the contributions of this thesis can be outlined as 

follows: 

• Proposes a new wavelet-based image interpolation algorithm that is simple, fast, and 

effective 

• Discusses the detailed problems of image interpolation in the space and wavelet 

domains 

• Explores a new image quality measurement 

The chapter contents of this thesis are as follows: 

Chapter 1 introduces the concept, origins, and problems of image interpolation; lists the 

contributions of this thesis. 

Chapter 2 discusses some common artifacts; introduces image quality measurements 

including MSE, PSNR, SSIM, and IQ; reviews the wavelet transform theory and lifting scheme. 

Chapter 3 details two traditional image interpolation methods: bilinear and bicubic; details 

two state-of-the-art image interpolation algorithms: Kimmers and Li & Orchard's. 

Chapter 4 introduces existing image interpolation methods using wavelet transforms; details 

the problems and performances of wavelet transform for image interpolation. 

Chapter 5 introduces a new image interpolation method based on wavelet transforms; lists 

experiment results and analyzes the performance of the new method. 

Chapter 6 lists conclusions and further research. 
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PRELIMINARIES 

2.1 Introduction 

To facilitate an understanding of the contents in this thesis, this chapter reviews some 

fundamental concepts. In the first part, the concept of image quality and some image quality 

measurements are introduced since they are good tools for evaluating the performance of 

interpolation methods. It is worth mentioning that the structural similarity (SSIM) measurement 

recently proposed is better than traditional measurements such as P S N R and M S E . The last part 

of this chapter provides a tutorial on wavelet multiresolution theory and lifting scheme. These 

concepts form the basics of our new image interpolation approach. 

2.2 Review of Image Quality Measurement 

2.2.1 Introduction to Image Quality 
What about the performance of an image interpolation method? To answer this question, one 

must look into the image quality of the interpolated image. There are many factors that influence 

the quality of an image, such as contrast, sharpness, and brightness. Among these factors, 

contrast is one of the most important for image quality since human eyes are more sensitive to it. 

Therefore, most image quality measurements give contrast more weight in an overall assessment 

of image quality, as seen in the later sections of this chapter. Let , / m i n and IB as the 

maximum, minimum, and background intensities of the image, image contrast can be defined as: 

Besides these factors, one has to consider artifacts since they often come along with the 

interpolated image and degrade the image quality. Aliasing, blurring, ringing, and blocking are 

four common artifacts. 
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Digital images are susceptible to aliasing. Suppose that the highest frequency is finite and 

that the function is band-limited. The Shannon sampling theorem states that i f the function is 

sampled at a rate equal to or greater than twice its highest frequency, it is possible to recover 

completely the original function from its samples. In practice, it is impossible to meet the key 

condition of the sampling theorem for infinite highest frequency or non band-limited function. 

This limitation causes additional frequency components to be introduced into the sampled 

function and corrupted image. One way to reduce the aliasing effects on an image is to use a low 

pass filter to filter out part of the high-frequency components by blurring the image prior to 

sampling. The effect of aliased frequencies can be seen under the right conditions in the form of 

so-called Moire patterns [3]. Figure 2.1 illustrates aliasing. 

(a) (b) (c) 

Figure 2.1 Aliasing (a) Original image; (b) image with aliasing distortion in the centre; (c) image 

with less aliasing. 

Blurring is caused by the lose of many high-frequency components. The resulting image 

appears to be out of focus. Images interpolated by a low-order interpolant like bilinear 

interpolation are more easily blurred than ones interpolated by a high-order interpolant like 

bicubic interpolation. Magnified images tend to be more blurred. Figure 2.2 shows two images 

with different blurring effects. 

Ringing arises because most good synthesis functions are oscillating waves, such as wavelet 

functions and discrete cosine functions. Ringing often happens around steep edges known as the 

Gibbs phenomenon [1] where limited numbers of oscillating functions are used to approximate a 

steep edge. A n appropriate function or high sampling rate can reduce ringing effects. Figure 2.3 

shows ringing effects. 

Blocking (zigzag) arises when the support of the interpolant is finite. The best example is 

the nearest neighbor interpolation. Blocking wi l l become worse after the image is magnified 

several times with this method. Blocking is often easy to see around steep edges. Block 

transforms, like discrete cosine transform (DCT), bring another type of blocking. This type of 



Chapter 2 • Preliminaries 10 

blocking is easy to see in high compressed J P E G images. Figure 2.4 presents a typical case of 

blocking. 

(a) (b) (c) 

Figure 2.2 Blurring (a) Original image; (b) Blurred image; (c) Less blurred image. 

•J 

300 

200 
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300 

200 

100 

0 10 20 30 0 10 20 30 

(a) (b) 

Figure 2.3 Ringing (a) Original image; (b) approximated image with ringing (sharp changes in 

intensity around edges). 

(a) (b) (c) 

Figure 2.4 Blocking (a) Original image; (b) L o w quality image with zigzag edges; (c) High quality 

image with smooth edges. 
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There are two kinds of image quality measurements: objective and subjective metrics. Since 

all images are ultimately viewed by people, subjective metrics are more precise than objective 

ones. The subjective mean opinion score (MOS) is a popular method. In practice, however, 

subjective evaluation is usually too inconvenient, time-consuming, and expensive. Therefore, a 

great deal of effort has been made in recent years to develop objective image quality metrics that 

correlate with perceived quality measurement. Unfortunately, only limited success has been 

achieved [9]. Many people are thus still using traditional approaches, such as mean squared error 

(MSE) and peak signal-to-noise ratio (PSNR). Objective image quality metrics can further be 

classified according to the availability of the reference image. Most approaches are known as 

full-reference, meaning that a complete reference image is known. However, in many practical 

applications, the reference image is not available, and a blind quality assessment approach has to 

be performed. 

2.2.2 Full-Reference Image Quality Measurement 

2.2.2.1 Mean Squared E r r o r (MSE) 

Let f(x, y) represent an input image (reference image) and let f(x, y) denote an estimate or 

approximation of f(x, y), the error e(x, y) between f(x, y) and f(x, y) can be defined as 

At 

e(x,y) = f(x,y)-f(x,y) (2.2) 

Therefore, the total error between the two images is 
M-l N-i 

where the images are of size MxN. The mean squared error between f(x,y)and f(x,y) is 

then the squared error averaged over the MxN array, or 

1 M-\N-l 

M S E = T r : ; X E [/(*• y) - /(*. yrf <2-3) 
MN^oP, 

In this thesis, the root-mean-square error is used instead of the mean squared error, that is, 

RMSE -
1 M-l/V-l 

^ZI[/(*.y)-/(x.>)f 
1/2 

(2.4) 
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2.2.2.2 Peak Signal-to-Noise Ratio (PSNR) 
One problem with mean squared error is that it depends strongly on the image intensity 

range. A n M S E of 100.0 for an 8-bit image looks dreadful; but an M S E of 100.0 for a 10-bit 

image is barely noticeable. 

Peak Signal-to-Noise Ratio (PSNR) avoids this problem by scaling the M S E according to 

the image intensity range: 

P S M ? = - 1 0 1 o g I 0 ^ (2.5) 

where S is the maximum pixel value. For an 8-bit image, S is equal to 255. P S N R is measured in 

decibels (dB). The P S N R measure is also not ideal but is in common use. Its main failing is that 

the signal strength is estimated a s S 2 , rather than the actual signal strength for the image. P S N R 

is a good measure for comparing restoration results for the same image. 

2.2.2.3 Structural Similarity Index (SSIM) 
M S E and P S N R are simple to calculate and have clear physical meanings. But they are not 

very well matched to perceived visual quality. Therefore, new image quality measurements often 

take advantage of the known characteristics of the human visual system (HVS) . Structural 

SIMilarity (SSIM) based image quality assessment is one such successful approaches. It follows 

that a measure of structural information change can provide a good approximation to perceived 

image distortion. Wang et al. [12] recently demonstrated its promise through a set of intuitive 

examples, as well as a comparison to both subjective ratings and state-of-the-art objective 

methods on a database of images compressed with J P E G and JPEG2000. Figure 2.5 shows the 

S S I M measurement system. 

For an image f(x, y), the mean intensity is 

and the standard deviation is given by <Tf = 
1 M - l N - l 

(M-\)(N-1) x = 0 y = Q 

1/2 

(2.7) 

The correlation of images / , (* , y) and f2(x, y) is defined as: 
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1 1 M - l N-l 

= T T I ^ T S y ) " ^ r t - * * 1 (2.8) 
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• © -
Figure 2.5 Diagram of the structural similarity (SSEVI) measurement system. 

Suppose C, , C 2 , and C 3 are constants, for luminance comparison, Wang et al. define 

' ( / p / 2 ) = , , ..2 
(2.9) 

The contrast comparison function takes a similar form: 

2ofaf +C2 

And the structure comparison function is given by 

(2.10) 

s(A,f2) = 
° > , / , + C 3 

(JfCTf +C, 
(2.11) 

Finally, the SSIM index between images fx(x, y) and f2(x, y) is the combination of the three 

comparisons: 

SSIM(fl,f2) = [l(fl,f2)]a[c(fl,f2)]'[S(fvf2)]r (2.12) 

where a > 0, /? > 0, and y > 0 are parameters used to adjust the relative importance of the three 

components. 

In practice, the local statistics ft and a are computed within a local 8x8 square window, 

and a mean SSIM (MSSIM) index is used to evaluate the overall image quality. In addition to 
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MSSEVI, we can get a quality map. To reduce undesirable blocking artifacts in the map, a 

circular-symmetric Gaussian weight function is introduced to modify the local statistics. Figure 

2.6 shows an example of a quality map. In the quality map, white areas represent good quality, 

and dark areas represent bad quality. 

(a) (b) (c) 

Figure 2.6 Illustration of the quality map from the M S S L M measurement (a) Original image, 

(b) Restored image, (c) Quality map of restored image. 

2.2.3 Blind Image Quality Measurement 

Blind image quality measurement refers to the problem of evaluating the visual quality of an 

image without any reference. There are several reasons for the need for blind image quality 

assessment: (1) No reference image exists; (2) The emphasis is more on quality instead of 

fidelity; (3) The reference image and the interpolated image have different sizes or depths. 

Though blind image quality measurement is desirable in many areas, there are only a few 

existing approaches. N i l l et al. proposed an I Q M approach derived from the digital image power 

spectrum [10]. The measure incorporates a representation of the human visual system, a novel 

approach to account for directional differences in perspective (scale) for obliquely acquired 

scenes, and a filter developed to account for imaging system noise specifically evidenced in the 

image power spectra. The authors demonstrate a very good correlation between this objective 

quality measure and visual quality assessments through experiments. 

The two-dimensional discrete Fourier transform (DFT) of an image f(x, y) of size M x N is 

given by the equation 

1 M-lN-l 

F ^ y ) = £ £ /<*• w * > (2.13) 

The power spectrum is the square of the magnitude of the Fourier transform of the image: 
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P(u,v) = R2(u,v) + I2(u,v) (2.14) 

where R(u,v) and I(u,v) are the real and imaginary parts of F(u,v), respectively. 

It is common practice to multiply the input image b y ( - l ) J C + y before computing the Fourier 

transform so that the D C component (zero frequency) is shifted to the center of the power 

spectrum. Figure 2.7 illustrates the power spectrum of images. 

(a) (b) (c) 

Figure2.7 Power spectrum (a) Original image; (b) and (c) Distorted images. 

The power spectrum contains information on the sharpness, contrast, and detail of the 

image, and these are all components of image quality. The power spectrum H is normalized by 

its D C power (zero frequency power), resulting in image contrast having a major impact on the 

computed image quality. The polar representation of the power spectrum is given by 

\H(0,0)\ IMN 
(2.15) 

The I Q M is derived from the normalized 2-D power spectrum P(p, 6) weighted by the 

square of the modulation transfer function (MTF) of the human visual system A2 (Tp), the 

directional scale of the input image S(#,) , and the modified Wiener noise f i l te rW(p) : 

1 18U U.5 

IQM = -j— £ £ S(0l)W(p)A2(Tp)P(p,6) (2.16) 
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2.3 Review of Wavelet Transforms 
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2.3.1 Background 
In recent years, wavelets have been widely used in image processing. Unlike the Fourier 

transform, whose basis functions are sinusoids, wavelet transforms are based on small waves, 

called wavelets, of varying frequencies and limited durations. These characteristics allow them to 

provide the equivalent of a musical score for an image, revealing not only what notes (or 

frequencies) to play but also when to play them. Conventional Fourier transforms, on the other 

hand, provide only the notes or frequency information; temporal information is lost in the 

transformation process. 

Although the first wavelet, Haar transform, can be traced back to 1909, wavelets were first 

shown to be powerful tools only in the 1980s. In 1987, Stephane Mallat introduced 

multiresolution theory [1], a big step in wavelets research. Multiresolution theory incorporates 

and unifies techniques from a variety of disciplines, including subband coding from signal 

processing [4], quadrature mirror filtering from digital speech recognition, and pyramidal image 

processing [2]. It allowed researchers to construct their own family of wavelets using the criteria 

of multiresolution theory. Around 1988, Ingrid Daubechies used the idea of multiresolution 

analysis to construct Daubechies wavelets with compact support and orthogonality, and 

Daubechies wavelets have become the cornerstone of wavelet applications today. 

In 1992, Cohen, Daubechies, and Feauveau established the theory of biorthogonal wavelet 

systems [1]. This family of wavelets exhibits the property of linear phase, which is needed for 

signal and image reconstruction. Unlike the Daubechies wavelet system which has a single 

wavelet, the biorthogonal wavelet system uses two wavelets, one for decomposition and another 

for reconstruction. Thus interesting properties are derived. It is possible to construct smooth 

biorthogonal wavelets of compact support that are either symmetric or antisymmetric. This 

property is impossible for orthogonal wavelets except in the trivial case — Haar wavelet. This 

symmetry can offer significant benefits in many applications such as image compression. 

In 1995, Sweldens proposed the lifting scheme [36], a technique used to improve wavelet 

properties and construct wavelet basis over non-translation invariant domains. It also led to fast 

polyphase implementations of filter bank decompositions. Then in 1996, Calderbank, 

Daubechies, Sweldens, and Yeo proposed a systematic lifting-based technique for constructing 

reversible versions of any 2-band wavelet transform [34]. 
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Besides Haar, Daubechies, and Biorthogonal wavelets, there are many other families of 

wavelets such as Coiflets, Symlets, and Morlet. Figure 3.1 shows several different families of 

wavelets. 

.2 I . i i -1 ' ' - • ' ' 
0 1 2 3 0 2 4 6 8 

Figure 2.8 Several different families of wavelets. 

Wavelet transforms have proven to be very efficient and effective in analyzing a very wide 

class of signals and phenomena. The main reasons are (1) the number of the wavelet coefficients 

drops off rapidly with the increase of the scale of the decomposition for a large class of signals. 

This is why wavelets are so effective in signal and image compression, denoising, and detection; 

(2) the wavelet transform allows a more accurate local description and separation of signal 

characteristics in both time and frequency domains; (3) wavelets are adjustable and adaptable to 

fit individual applications; (4) The generation of wavelets and the calculation of the discrete 

wavelet transform is well matched to digital computers. 
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2.3.2 Multiresolution Analysis 
In multiresolution analysis (MRA), a scaling function <p(x) is used to create a series of 

approximations of a function or an image, each differing by a factor of 2 from its nearest 

neighbouring approximations. A wavelet function y/(x) is used to encode the difference in 

information between adjacent approximations. 

For all j,ke Z and<p(x) e L2(R), we define a set of scaling functions 

<pjk(x) = 2in<p(2ix-k) (2.17) 

Here, the location k determines the position of q>jk(x) along the x-axis, the scale j 

determines <Pj k (x) 's width, and 2i>2 controls its height. We denote the V subspace spanned over 

k for any j as 

V; = Span{<pJk(x)} 

Figure 2.9 Scaling and wavelet function spaces 

Similarly, we define a set of wavelets 

y/jk(x) = 2il2y/(2ix-k) (2.18) 

and the W subspace spanned over k for any j as 

Wj=Span{vjk(x)} 
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Since wavelet spaces reside within the spaces spanned by the next higher resolution scaling 

functions, we can now express the space of all measurable, square-integrable functions as 

L2(R) = VJo®WJo®WJQ+l®... 

where y o is an arbitrary starting scale. Therefore, any function / ( J C ) e L2 (R) can be expanded as 

a wavelet series: 

* j=j0

 k 

where cJok and djk are called the approximation coefficients and the detail coefficients, 

respectively. 

Consider the relationships between the discrete wavelet transform (DWT) coefficients of 

adjacent scales: 

Cj,k=T.cJ+Mn-2k) (2.20) 
n 

rfM=Z^+i,A(«-2*) (2.21) 
n 

where, t\ is a low-pass filter (scaling filter) and \\ is a band-pass filter (wavelet filter). It is 

equivalent that the approximation or detail coefficients in the scale j+1 become ones in the scale j 

after passing a low-pass or band-pass filter and a down sampler. Therefore, we can use the 

analysis filter bank [33] in Figure 2.10 to compute D W T coefficients at two or more successive 

scales. This is called the fast wavelet transform (FWT). Similarly, the synthesis filter bank is 

used to reconstruct the function (compute the inverse wavelet transform). For the orthogonal 

wavelet, analysis and synthesis filter banks use the same pair of filters. A n d for the biorthogonal 

wavelet, there are two pairs of filters, one for analysis and another for synthesis. Figure 

2.13-2.22 shows the filters, the scaling and wavelet functions of several biorthogonal wavelets. 
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TllA 7Zl\ 

Figure 2.10 A two-stage or two-scale F W T analysis bank and its frequency-splitting 

characteristics. 

For two-dimensional functions as in images, a two-dimensional scaling function and three 

two-dimensional wavelets are required. Each is the product of a one-dimensional scaling 

function and a corresponding wavelet (assume the wavelets are separable). 

<p(x,y) = <p(x)<p(y) (2.22) 

y/H(x,y) = y/(x)(p(y) (2.23) 

y/v(x,y) = (p(x)y/(y) 

y/D(x,y) = y/(x)y/{y) 

(2.24) 

(2.25) 

These wavelets measure intensity variations for images along different directions: y/H measures 

variations along columns, y/v responds to variations along rows, and y/D corresponds to 

variations along diagonals. The two-dimensional wavelet transform w i l l produce a set of 

approximation coefficients and three sets of detail coefficients - the horizontal, vertical, and 

diagonal details. Similar to the one-dimensional fast wavelet transform, the two-dimensional fast 

wavelet transform can be implemented by the filter bank shown in Figure 2.11 
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Figure 2.11 The two-dimensional fast wavelet transform: (a) the analysis filter bank; (b) the 

synthesis filter bank; and (c) the resulting decomposition. 
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2.3.3 Lifting Scheme 
The lifting scheme, a simple construction of second-generation wavelets, uses a simple 

relationship between all multiresolution analyses with the same scaling function. It can be used 

to custom design a wavelet for a particular application. Such wavelets can be adapted to intervals, 

domains, surfaces, weights, and irregular samples. The lifting scheme also leads to a faster, in-

place calculation of the wavelet transform [36]. 

From the transform point of view, we describe the lifting scheme as a lazy wavelet 

transform [3] followed by alternating lifting (predict) steps and dual lifting (update) steps. Figure 

2.12 shows the forward and inverse wavelet transforms using lifting. 

2i 

2i 

11K 1 * 11K 

1 1 K K 
B P 

(a) 

L P 
K 

B P 

UK 1 + 
p. UK 

Px 

IE 

2T 

2 t 

(b) 

Figure 2.12 Lifting scheme (a) The forward wavelet transform using lifting; (b) The inverse 

wavelet transform using lifting 

The forward lifting algorithm can be implemented in three stages: 

(1) Split The original signal x{n) is split into its even and odd indexed samples {lazy wavelet 

transform): 

s0(l) = x(2l) (2.26) 

d0(l) = x(2l + l) (2.27) 

(2) Predict and Update This stage is executed as m sub-steps, where the odd and even parts 

are filtered by the prediction and update filters. 
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• A predict step consists of applying a predict filter to the even samples and 

subtracting the result from the odd samples: 

d,(I) = d,_t (I) - X Pi(*)*»-, (/ - *) (2-28> 
k 

• An update step consists of applying an update filter to the odd samples and 

subtracting the result from the even samples: 

= V . ( 0 " X ",(*)<*,(/ - k) (2.29) 

(3) Normalize: 

s(l) -sm(l)lK , approximation coefficients (2.30) 

d(l) = Kdm (I), detail coefficients (2.31) 

As always, we can find the inverse transform by reversing the operations and flipping the 

signs. And the normalize step is often omitted to reduce the computational time. 

Wavelets with finite filters can always be factored into lifting steps [35]. Using lifting, one 

can build invertible wavelet transforms that map integers to integers [34]. Table 2.1 lists some 

wavelet transforms using the lifting scheme. 

• 5/3 symmetric biorthogonal transform [34, 6] 

• 9/7-M symmetric biorthogonal transform [34, 6] 

• 5/11-C symmetric biorthogonal transform [34, 6] 

• 2/10 anti-symmetric biorthogonal transform [6] 

• 9/7-F symmetric biorthogonal transform [34, 6] 

For each wavelet transform, Table 2.2 lists some parameters, such as vanishing moment, 

regularity, and filter length. These parameters directly or indirectly influence the performance of 

the wavelet transform [37]. Table 2.3 lists the computational complexity of each wavelet 

transform. Note that the set number in parentheses corresponds to the situation that all 

multiplications are converted to shift and add operations. 
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Table 2.1 Some wavelet transforms using the lifting scheme 
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Name Wavelet Transform 
Normalization 

Factor 

5/3 x(2l) + x(2l + 2) 
d(l) = x(2l + 1) 

,^,d(l-l) + d(l) 
s(l) = x(2l)+ 

4 

2 

9/7-M x(2l) + x(2l + 2) , x(2l-2) + x(2l + 4) 
d(l) = x(2l + 1) + 

16/9 16 

n, ,^.d(l-\) + d(l) 
s(l) = x(2l) + 

4 

2 

5/11-C 
4 (0=42 , + i ) - * ( 2 < ) + * ( 2 ; + 2 ) 

4 

„ I N J / J N -s(!-l) + s(!) + s(! + l)-s(l + 2) 
lb 

2 

2/10 d1(/) = jc(2i + l)-jc(2/) 

s(l) = x(2l) + dl(!)/2 

22(s(l + l)-s(l-l)) + 3(s(l-2)-s(l + 2)) 
a ( 0 - « i ( 0 • 

64 

K - ^ 
2 

9/7-F ^ (/) = JC(2Z +1) + a(x(2l) + x(2l + 2)) 

sl(l) = x(2l) + 0(dl(l-l) + dl(!)) 

d(l) = dl(l) + y(sl(l) + sl(l + l)) 

s(l) = sl(l) + 5(d(l) + d(l-l)) 

£ = 1.149604398 

a = -1.586134342 

/? = -0.052980118 

^ = 0.8829110762 

5 = 0.4435068522 
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Table 2.2 Parameters of some wavelet transforms 

Name Nd *, Rd 
Lr Ld 

5/3 2 2 0.000 1.000 3 5 

9/7-M 4 2 0.142 2.000 7 9 

5/11-C 4 2 0.000 2.142 11 5 

2/10 5 1 0.000 1.804 10 2 

9/7-F 4 4 1.034 1.701 7 9 

Parameter Definition: 

• d : number of vanishing moments of analyzing wavelet 

• ^ r : number of vanishing moments of synthesizing wavelet 

• d : regularity of analyzing scaling function [6] 

• r : regularity of synthesizing scaling function [6] 

• ^ r : The low-pass filter length in the decomposition 

• d : The low-pass filter length in the reconstruction 

Table 2.3 Computational complexity of some wavelet transforms [6] 

Name additions shifts multiplies totals 

5/3 5 2 0 7 

9/7-M 8(9) 2(3) 1(0) 11(12) 

5/11-C 10 3 0 13 

2/10 7(10) 2(6) 2(0) 11(16) 

9/7-F 12(26) 4(18) 4(0) 20(44) 
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Figure 2.13 5/3 filters 
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Figure 2.14 9/7-M filters 
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Figure 2.15 5/11-C filters 
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Figure 2.16 2/10 filters 
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Figure 2.18 5/3 scaling and wavelet functions 



Figure 2.19 9/7-M scaling and wavelet functions 
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Figure 2.20 5/11-C scaling and wavelet functions 
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Figure 2.22 9/7-F scaling and wavelet functions 
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STATE OF THE ART IN IMAGE 

INTERPOLATION 

3.1 Introduction 

The interpolation methods all work in a fundamentally similar way. In each case, to 

determine the value of an interpolated pixel, you find the point in the input image that the output 

pixel corresponds to. You then assign a value to the output pixel by computing a weighted 

average of some set of pixels in the vicinity of the point. For conventional approaches, the 

weightings are based on the distance each pixel is from the point. The methods differ in the set of 

pixels that are considered. For edge-directed approaches, the weightings are related to the 

direction of the local edge. The following sections will detail these approaches. 

3.2 Conventional Approaches 

Conventional image interpolation approaches are actually driven from polynomial 

approximation functions in one dimension. For example, the bilinear interpolation is from the 

linear interpolation, and the bicubic interpolation is from the cubic interpolation. The linear 

interpolation kernel is a low-order polynomial function, and the cubic interpolation kernel is a 

high-order polynomial function. The higher the order of the polynomial, the more neighbors will 

be considered. Therefore, for bilinear interpolation, the output pixel value is a weighted average 

of pixels in the nearest 2-by-2 neighborhood; for bicubic interpolation, the output pixel value is a 

weighted average of pixels in the nearest 4-by-4 neighborhood. The number of pixels considered 

affects the complexity of the computation. Therefore the bicubic method takes longer than the 

bilinear. However, the greater the number of pixels considered, the more accurate the effect is. 

Therefore, there is a trade-off between processing time and quality. In this thesis, we use bilinear 

and bicubic algorithms from the matlab function imresize. 
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3.2.1 Bilinear Interpolation 
As we know, bilinear interpolation comes from linear interpolation, which is a first-order 

polynomial approximation method. Its concept is very simple, and its I D interpolation kernel is 

u(s) = |i-|4 
lo, 

|s |<l 

elsewhere 
(3.1) 

where s = (x-xk)/h and h is the sampling increment. In fact, this is a triangle or hat function 

that has C° regularity (continuous but not differentiable). The triangular function u(s) 

corresponds to a modest low-pass filter in the frequency domain (Fig 3.1). W h e n ^ <x<xk+1, 

the interpolated value of x is 

g(x) = (l-s)f(xk) + sf(xk+l) (3.2) 

Figure 3.1 Linear interpolation (a) kernel; (b) Magnitude of Fourier transform. 
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Figure 3.2 Illustration of bilinear interpolation 
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Bilinear interpolation is an interpolation method that uses the values from the four 

surrounding pixels, that is, above, below, right, and left of the spot where the new pixel is to be 

created. The new pixel value is determined by calculating the weighted average of the four 

closest pixels (a 2x2 array) based on distance. Here an example shows how to use the bilinear 

interpolation in practice. Figure 3.2 is an image with input pixels '00', '01', '10' and '11'. The 

intention is to calculate the intensity of the point 'z'. First, we calculate the intensity of points 'a' 

and 'b' by using the linear interpolation (0 < Ay < 1). 

W o o + ('oi-'oo)Ay (3.3) 

W i o + ( ' n - A o ) A y (3.4) 

Therefore, the intensity of the point 'z' is the linear combination of the intensities of points 'a' and 

'b'(0<Ax<l): 

W . + C W J A x (3.5) 

The low computation expense of bilinear interpolation makes its use popular. But it tends to 

make an image softer; that is, the contrast is reduced because of averaging neighboring values. 

3.2.2 Bicubic Interpolation 
Since the low-order linear interpolation cannot approximate the given points accurately, the 

piecewise three-order polynomials are used to make the interpolation more effective. There are 

many kinds of cubic interpolation methods. In this thesis, Keys' interpolation kernel [14] is used: 

2 U 3 - 5 M 2 0<|,|<1 
21 1 2 M 

u(s) = --H3+-H2-4W + 2, 1<U<2 (3.6) 
2 I I 2

1 1 1 1 1 1 

0, 2<U 

where s = (x-xk)/h and h is the sampling increment. This kernel is smoother than that of linear 

interpolation with C 1 regularity. Sometimes, it is called cubic convolution interpolation kernel 

(Figure 3.3). Keys also gave a simple algorithm for computing the interpolated value when 

considering boundary conditions. Suppose xk < x < xk+l , the cubic convolution interpolation 

function is 



(a) (b) 

Figure 3.3 Cubic interpolation (a) kernel; (b) Magnitude of Fourier transform. 

g (x) = ck_, (-s3 + 2s2-s)l2 + ck (3s3 -5s1+ 2)12 

+ck+l (-3s3 + 4s2 +s)/2 + ck+2 (s3-s2)/2 

where s = (x-xk)/h and ck=f(xk) for k=0, 1, 2,..., N; ck_x-3f(x0)-3f(x1) + f(x2) 

andcN+1=3f(xN)-3f(xN_l) + f(xN_2). 

Bicubic interpolation, a 2-D extension of cubic interpolation, determines the values of new 

pixels by calculating the weighted average of the closest 16 pixels (a 4x4 array) based on 

distance. Figure 3.4 shows that the intensities of pixels 'a', 'b', 'c', and'd' are calculated first using 

the equation (3.7): 
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Figure 3.4 Illustration of bicubic interpolation 
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Ia = 700 (-Ay3<+ Ay 2 - Ay) / 2 + 701 (3Ay3 - 5Ay2 + 2) / 2 

+702 (-3Ay3 + 4Ay2 + Ay) / 2 + 703 (Ay3 - Ay 2) / 2 
(3.8) 

Ib = / 1 0 (-Ay 3 + Ay 2 - Ay) / 2 + 7,, (3Ay3 - 5Ay2 + 2) / 2 

+712 (-3Ay3 + 4Ay2 + Ay) / 2 + 713 (Ay3 - Ay 2 ) / 2 

Ic = I„ (-Ay 3 + Ay 2 - Ay) / 2 + 72 1 (3Ay3 - 5Ay2 + 2) / 2 

+/ 2 2(-3Ay 3 + 4Ay2 + Ay)/2 + 72 3(Ay3 -Ay2)/2 

Id = 730 (-Ay 3 + Ay 2 - Ay) / 2 + 731 (3Ay3 - 5Ay2 + 2) / 2 

+732(-3Ay3 + 4Ay2 + Ay) / 2 + 73 3(Ay3 -Ay1)12 

(3.9) 

(3.10) 

(3.11) 

where 0 < Ay < 1. The intensity of pixel 'z' is the cubic interpolation of pixels 'a', 'b', 'c', and'd' 

(0<Ax<l): 

I = I (-Ax3 +Ax2-Ax)l2 + L (3Ax3 -5Ax 2 + 2)/2 

+IC (-3 Ax3 + 4Ax2 + Ax)/2 + Id(Ax3-Ax2)/2 

Bicubic interpolation tends to make an image less blurry than bilinear interpolation. 

Although this method requires more computational time, it is the default image-enlargement 

technique in just about every image manipulation program. 

3.3 Edge-Directed Interpolation 

The idea behind Edge-directed interpolation (EDI) is to make sure that the image is not 

smooth in the directions perpendicular to edges but smooth parallel to edges. This idea coincides 

with the properties of human perception [19, 20]. The first desirable EDI algorithm was proposed 

by Allebach and Wong [21]. The Allebach method assumes knowledge of the low-pass filtering 

kernel (the sensor model) and modifies the edge-directed interpolation so that the filtered high-

resolution image fits into the low-resolution image through iterations. A newer method, from Li 

and Orchard [23, 24], gets rid of several of the disadvantages of Allebach's approach, such as 

using an edge map, the knowledge of the low-pass filter, and iterations. The approach by Li and 

Orchard is ideal for strong edges. This approach is computationally expensive and inadequate for 

the textured areas. Kimmel [22] proposed an edge-directed interpolation method with a low 

computation expense. It is more practical than the others, though it still blurs the image a little bit. 
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The detailed algorithms of Kimmel's and Li & Orchard's approaches are in section 3.31 and 

section 3.3.2. 

3.3.1 Kimmel's Approach 
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Figure 3.5 Pixel interpolation in Kimmel's approach (a) given the corner pixels (b) given the 

side pixels 

Ron Kimmel proposed a new image interpolation method for color C C D images in 1999 

[22]. In this thesis, Kimmel's approach is used for gray images. As we know, the gradient 

magnitude can be used as an edge indicator, and its direction can approximate the edge direction. 

The directional derivatives are approximated at each pixel, based on its eight nearest neighbors 

on the grid. The gradients at the pixel (i, j) (Figure 3.5), in the x, y, x-diagonal, and y-diagonal 

directions are defined as follows: 

Dx(iJ) 

DJiJ) 
A.7+1 ^/ ,7-l 

A+i,7+i h-\,]-i 

2V2 

2V2 

(3.13) 

(3.14) 

(3.15) 

(3.16) 
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With the above gradients, the weight of the neighbor in the interpolating process is defined 

as: 

Wi+kj+l=(l + D2(i,j) + D2(i + k,j + l))'l>2 (3.17) 

where D is the difference in the direction of (i + k,i + l) and kG { ± l } , / e {±1}. For example, 

W H J _ , =(l + D i ( i , ; ) + D i ( i - 2 , j-2))"" 2 (3.18) 

Notice that we used Dxd(i-2,j-2) since D x d ( i 1 ) is not known. 

Therefore, when the corner pixels are known (Figure 3.5 (a)), the intensity value of 

interpolated pixel (i, j) is 

I W + I W + I W + I W 
j _ ~ 1i+l,j-l''i+lJ-l ~ 1 ^ 1 i - l , j - V r / o J Q X 

~ w +w +w +w 

and when the side pixels are known (Figure 3.5 (b)), the intensity value of the interpolated pixel 

(ij)is 

i J w +w +w +w 
YYi+l,j ^ Yyi-lJ T YYi,j-l T 

Kimmel's method requires two passes: (1) interpolate the pixels that have known values at 

their corners and (2) interpolate the pixels that have known values at their sides. This type of 

interpolation smoothes edges and tends to introduce some patchiness around textured areas [48]. 

This thesis implements Kimmel's algorithm above. 

3.3.2 L i & Orchard's approach 
The basic idea with Li & Orchard's method is that edge directions are invariant to resolution 

— geometric duality. This means that if we were to actually solve for a curve that modells the 

edges of some image, we should basically get the same curves for the same image at any 

resolution. Of course, some small or short edges could be lost in extremely low resolution 

images. However, actually solving for edge curves is a ridiculously slow process involving 

partial differential equation (PDE) solvers. Moreover, it only tells us about the image 

characteristics and not the actual sampling information to draw from the interpolation. However, 

statistical quantities, and variances in particular will give us information about edges since high 

local variance quantities means large changes in value, that is, an edge. 
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Consider Figure 3.6 (a) where the fourth-order linear interpolation is: 

i i r _ 
2̂i+l,2;+l = XX^2t+/^2(i+*),2(;+/) = W I 

k=0 1=0 

(3.21) 

where weighting matrix W = (W0 Wl W2 W3f and the intensity matrix of the four nearest 

neighbors along the diagonal direction 7 = (llu2j hu 

I r + m I 
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Figure 3.6 Geometric duality (a) interpolate I2i+l2j+1 from 7 2 , 2 j ; (b) interpolate 

h j ( l + J - odd) from /,.>;. (i + j - even). 

A reasonable assumption made with the natural image source is that it can be modeled as a 

locally stationary Gaussian process. According to classical Wiener filtering theory, the optimal 

minimum mean squared error (MMSE) linear interpolation weights are given by 

W = R'1r (3.22) 

where/? and r are the local covariances at high resolution. They can be easily estimated from a 

local window of the low-resolution image using the classical covariance method 

R = -^rCTC, T = -^CTy 
M' AT 

(3.23) 

where M is the size of the local window,y = [yv..yk...yM2f is the data vector containing the 

MxM pixels inside the local window, and C is a 4 x M 2 data matrix whose kth column vector is 
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the four nearest neighbors of yk along the diagonal direction. Figure 3.6 shows the covariances 

R and f for i + j =even and i + j =odd. Notice that the latter case is just a 45-degree rotation of 

the former one. Therefore, the weighting matrix is given by 

W = (CTCY1(CTy) (3.24) 
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Figure 3.7 An example of Li & Orchard's algorithm. 

For example (Figure 3.7), the black-dotted pixels are the pixels from the original image. The 

pixel (i, j) is interpolated. Let M=2, then 

T = y = iIn 7 2 i hi hif 

c = 

(I 
z00 0̂2 2̂0 122 

0̂3 hi 2̂3 

ho hi ho 3̂2 

u. I» hx 733y 

W = (CTCyl(CTy) 

T — 

hj=W I 

Like Kimmel's method, Li & Orchard's approach requires two passes: (1) interpolate the 

pixels that have known values at their corners and (2) interpolate the pixels that have known 

values at their sides. In each pass, when encountering the smooth region (the local variance is 
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less than 8), bilinear interpolation is used to replace covariance-based interpolation to avoid the 

problem of solving the inverse of an ill-conditioned matrix. However, the problem still exists 

when the local window is small or for some kinds of edges. One good solution is to calculate 

first the condition number of the covariance R to detect this critical condition [25]. 

The size of the local window plays an important role in Li & Orchard's approach. A large 

window can often give stable and reliable results. Meanwhile, the computation is expensive, and 

the characteristic of the local area is lost. A large window also makes the image smoother and 

blurs the sharp edges. Therefore, it is better to choose the local window's size adaptively. 

Li & Orchard's approach works very well around edges. But it also has some serious 

problems. One problem is easy to see: a lot of time is needed to compute the inverse matrix. 

Another problem is that the interpolated image is smoothed in the textured regions. Much effort 

has gone into solving these problems [25-29]. 

This thesis implements Li & Orchard's algorithm with a 4x4 local window. 



C H A P T E R 4 

4 1 

PROBLEMS OF WAVELET-BASED 

IMAGE INTERPOLATION 

4.1 Introduction 

A wavelet transform has two noticeable properties: 

1) It can concentrate most of the image's energy into its approximation coefficients. For 

example, when the 'Cameraman' image is decomposed at one scale by the 'bior2.4' wavelet 

transform, the approximation coefficients contain over 98% of the image's energy. 

2) The detail coefficients show the image's edges in the horizontal, vertical and diagonal 

directions, and then similar patterns appear at different scales (see Figure 4.1). 

These two desirable properties make wavelet transforms attractive for use in image 

interpolation. Since it is easy to obtain reduced images from its wavelet approximation 

coefficients, we here only discuss wavelet-based image expansion. The principal objective of 

wavelet-based image expansion is to predict the high-resolution image detail (horizontal, vertical 

and diagonal coefficients). Here, the approximation coefficients of the high-resolution image are 

assumed to form the low-resolution image. 

Figure 4.1 Wavelet transform 
illustration (a) Original image; (b) One-
scale forward wavelet transform 

There are several detail coefficients predictors in the literature. Huang and Chang's approach 

uses multilayer perceptron ( M L P ) from neural networks [40]. Kinebuchi et al use Hidden 

Markov Trees ( H M T ) to predict the coefficients at finer scales [41]. Zhu et al propose a 

statistical estimation scheme [42]. Muresan et al also propose a similar method using the theory 

of optimal recovery [43]. These methods are often computationally expensive because of the 
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training process or because of the use of complex mathematical operations. According to the 

self-similarity property of wavelet coefficients across scales, Xu et al propose a hybrid approach 

by combining wavelets with fractals, which is suitable for textured images [44]. 

However, Mallat's wavelet transform modulus maxima theory [1] received more attention 

and has been used often in the literature e.g. [46, 47]. This is because of its following property: if 

a signal is represented by its low-pass approximation coefficients and the modulus maxima 

(maxima and minima) of high-pass detail coefficients from its wavelet transform, this 

representation allows an almost perfect reconstruction. Finding a minimum norm signal among 

those that have the assigned wavelet coefficients at the maxima locations can solve this 

reconstruction problem. Solving this problem tends to create a signal with modulus maxima at 

the right locations with the correct values. For discrete signals, this problem is actually an 

inverse frame problem [1], which can be solved using a conjugate gradient algorithm [1]. Mallat 

also proposed an alternate projection algorithm [45] that recovers the signal approximations from 

their wavelet maxima. 

Under the wavelet transform modulus maxima theory, a basic wavelet-based interpolation 

problem is that of predicting the extrema of the detail coefficients of the high-resolution image 

using the extrema of the detail coefficients of the two or more consecutive low-resolution images. 

This problem will be detailed in section 4.3. A 2-D separable wavelet transform is generally used 

for the two-dimension case (image). Most approaches use undecimated symmetric wavelet 

transform since it can keep the same signs and the same locations of the extrema across scales. 

Nicolier et al propose a method using decimated wavelet transform [49]. However, for this 

method, one has to figure out the signs and locations of the extrema. Figure 4.2 is a basic 

wavelet-based interpolation problem model (one-dimension). 

In the following sections, we will detail the pros and cons of wavelet transforms and the 

methods using the modulus maxima theory. 
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Figure 4.2 A wavelet-based interpolation problem model 
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4.2 Problems of Wavelet Transforms 
43 

4.2.1 Approximation Issues 

In this section, we discuss the approximation performance of the wavelet transform, and the 

associated problems when it is used for image interpolation (decompose once, and then 

reconstruct using approximation coefficients only). As we know, the wavelet transform has 

excellent approximation capability because it can concentrate most of an image's energy into its 

approximation coefficients [37]. The comparison of the approximate capabilities of the different 

wavelet transforms can be done by looking at the quality of the image reconstructed from its 

approximation coefficients only i.e. without using the detail coefficients. The steps of this 

procedure are: 

(1) Decompose the test image once using a wavelet transform, and discard its detail 

coefficients; 

(2) Reconstruct the image using the approximation coefficients only. 

(3) Compare the performance of wavelet transform based interpolations with that of 

bicubic interpolation. For the latter, bicubic interpolation is used in both the 

reduction and enlargement processes. 

A number of test images (Appendix A) with different characteristics are used. The reference 

method is the bicubic interpolation. Table 4.1 and Table 4.2 list the overall performance of 

several wavelet transforms detailed in chapter two. The reason for using these biorthogonal 

wavelet transforms is their excellent approximation performance [6, 38]. 

When the bicubic interpolation method is used as a reference, the average gains from 

different wavelet-based interpolation methods are shown in Table 4.3. According to the data 

from different measurements, wavelet transform based interpolations are superior to bicubic 

interpolation with about ldB increment. This proves that the wavelet transforms have 

outstanding approximation capabilities. Among these wavelet transforms, the 9/7-F wavelet 

transform has the best PSNR, and the 9/7-M wavelet transform has the best MMSIM. 

For a specific image such as the "cameraman" image, the reconstructed images and quality 

maps are shown in Appendix B. The reconstructed image using bicubic interpolation has more 

jaggies at some edges than those obtained using wavelet transform interpolation. If a prefilter is 
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used before downsampling, this problem is improved. However, the whole image becomes 

blurred, and the PSNR is reduced too. It is easy to see that the reconstructed images using 

wavelet transforms have some artefacts around the edges such as ringing, blurring and blocking. 

Different wavelet transforms exhibit different results. Overall, the 2/10, 9/7-M, 5/11-C and 9/7-F 

wavelet transforms are better than others. Anti-symmetric wavelet transforms such as 2/10 have 

better performance than symmetric ones for some edges such as the high-rise building in the 

"cameraman" image. However, most edges in the reconstructed image are sensitive to their 

locations in the image. That is, if the edges are shifted one line up/down or left/right, we will get 

different results. Some edges at certain locations will be lost. The reason that causes this 

phenomenon is that the wavelet transform is not shift-invariant. The downsampling operation 

during decomposition will delete different data if the edges are shifted. Actually, this 

phenomenon also happens to strong edges. But it is not as noticeable as weak edges in the image. 

Symmetric wavelet transforms used in this thesis have similar effects due to the shift-variant 

property. Interested readers could see Nosratinia's paper that details this phenomenon. In his 

paper, a method is proposed to improve the image quality of the reconstructed image using the 

shift-variant property of wavelet transforms [51]. 

Table 4.1 Performance comparison of wavelet transforms using approximation coefficients (PSNR) 

Image Bicubic 5/3 5/11-C 9/7-M 9/7-F 2/10 

cameraman 26.34 26.59 26.84 26.85 26.93 26.96 
lena 29.79 30.09 30.54 30.56 30.59 30.37 
lily 26.71 26.82 27.40 27.41 27.46 27.38 
lighthouse 25.15 25.87 25.80 25.84 25.97 25.77 
bike 26.31 26.49 26.91 26.93 26.99 26.90 
bird 37.05 37.48 38.27 38.28 38.08 37.96 
peppers 22.65 22.94 22.99 23.01 23.09 23.10 
mandrill 17.01 17.78 17.79 17.82 17.94 17.79 
text 13.58 14.63 14.49 14.52 14.64 14.44 
textl 32.57 31.75 33.64 33.61 33.49 33.53 
chestXR 32.13 33.64 33.88 33.90 33.93 34.33 
pelvisXR 31.59 32.28 32.58 32.61 32.71 33.17 
brainCT 28.23 28.29 29.43 29.43 29.47 29.71 
spineCT 29.52 29.68 30.28 30.29 30.39 30.45 
kidneyUS 30.91 31.60 32.13 32.15 32.18 31.96 
transUS 31.42 32.33 32.72 32.74 32.71 32.58 
boneMR 22.57 23.22 23.28 23.31 23.41 23.26 
cesarMR 30.69 31.96 32.37 32.39 32.43 32.37 
artery Ang 27.59 26.89 27.25 27.27 27.41 27.55 
lungAng 31.55 32.36 32.77 32.78 32.77 32.13 
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Table 4.2 Performance comparison of wavelet transforms using approximation coefficients (MSSIM) 

Image Bicubic 5/3 5/11-C 9/7-M 9/7-F 2/10 

cameraman 0.8703 0.8804 0.8831 0.8836 0.8801 0.8849 
lena 0.9089 0.9152 0.9196 0.9202 0.9179 0.9180 
lily 0.8922 0.8964 0.9067 0.9070 0.9067 0.9059 
lighthouse 0.8068 0.8278 0.8267 0.8277 0.8260 0.8242 
Bike 0.8739 0.8791 0.8875 0.8880 0.8876 0.8875 
Bird 0.9605 0.9640 0.9662 0.9665 0.9614 0.9644 
peppers 0.7278 0.7598 0.7588 0.7595 0.7588 0.7576 
mandrill 0.6545 0.6935 0.6968 0.6980 0.7019 0.6935 
text 0.5436 0.6010 0.5945 0.5966 0.6021 0.6067 
textl 0.9707 0.9707 0.9746 0.9743 0.9687 0.9732 
chestXR 0.9761 0.9785 0.9795 0.9799 0.9764 0.9785 
pelvisXR 0.9514 0.9554 0.9566 0.9574 0.9532 0.9561 
brainCT 0.9490 0.9441 0.9543 0.9544 0.9521 0.9555 
spineCT 0.9490 0.9495 0.9553 0.9554 0.9531 0.9541 
kidneyUS 0.9309 0.9459 0.9522 0.9525 0.9511 0.9511 
transUS 0.9292 0.9475 0.9522 0.9522 0.9445 0.9488 
boneMR 0.7128 0.7388 0.7396 0.7405 0.7433 0.7405 
cesarMR 0.9695 0.9731 0.9780 0.9787 0.9757 0.9780 
artery Ang 0.8917 0.8968 0.9017 0.9024 0.9007 0.9017 
lungAng 0.9330 0.9324 0.9412 0.9415 0.9390 0.9405 

Table 4.3 Average gains of wavelet transforms using approximation coefficients (reference: bicubic) 

Image Bicubic 5/3 5/11-C 9/7-M 9/7-F 2/10 

R M S E •- -0.83 -1.17 -1.21 -1.31 -1.19 

PSNR (dB) - +0.47 +0.90 +0.92 +0.96 +0.92 

MSSIM - +0.0124 +0.0162 +0.0167 +0.0149 +0.0159 

Let us look into the local strong edges of the "cameraman" image. Figure 4.3 shows the 

reconstructed images and values from some measurements. The results show that the 2/10 

wavelet transform has outstanding performance. The 5/11-C, 9/7-M and 9/7-F wavelet 

transforms are slightly better than the bicubic interpolation. The 5/3 wavelet transform is the 

worst in this case. Ringing and blocking artefacts are clearly seen in these reconstructed images. 

From the above discussion, we get the following results: 1) wavelet transform based 

interpolations are better than bicubic interpolation, and 2) wavelet transform based interpolations 

need to be improved around edges of interpolated images. 



(5/3,5/3) (5/11-C, 5/11-C) (2/10,2/10) 

(9/7-M, 9/7-M) (9/7-F, 9/7-F) (Bicubic, Bicubic) 

Name RMSE PSNR MSSIM 

5/3 8.06 30.00 0.9569 

5/11-C 7.43 30.71 0.9591 

9/7-M 7.42 30.72 0.9597 

9/7-F 7.40 30.75 0.9540 

2/10 6.61 31.72 0.9642 

Bicubic 7.62 30.49 0.9578 

Figure 4.3 Performance comparison of wavelet transforms using approximation coefficients (strong 

edges) 

4.2.2 Magnification Issues 
In this section, we examine the magnification problems in the wavelet approaches. Here, the 

intensity values of the original image are regarded as the wavelet approximation coefficients of 

the sought-after high-resolution image. The enlarged image is then reconstructed directly from 

these coefficients. We also look into the performance of different images and look at a local area 

of the "cameraman" image that has strong edges. Also , the reference method used is the bicubic 

interpolation method. Since the size of the interpolated image is not the same as that of the 

original image, the blind image quality IQ measurement along with the contrast are used to 

compare the performances of the different approaches. 

Table 4.4 and Table 4.5 show the performances of different methods when the magnification 

factor is 2x2. Appendix C also lists the interpolated images for the "cameraman" image. From 
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the results, we know that the magnified images using the 9/7-F and 2/10 wavelet transforms have 

the best IQ and contrast, followed by the ones using bicubic interpolation and the 9/7-M wavelet 

transform. The 5/11-C and 5/3 wavelet transforms give the worst performance. 

If we look into the performance of the local area that has strong edges (Figure 4.4), we find 

that the magnified images using the 9/7-F wavelet transform have the best IQ. This is followed 

by the 2/10, 9/7-M and bicubic. The 5/11-C and 5/3 wavelet transforms give the worst 

performance. From the magnified images shown in Figure 4.4, we can see different artifacts for 

the different approaches. The 9/7-F and 2/10 yield ringing and blocking artifacts though they 

have the best contrast. They also introduce some noise in the smooth area. The magnified images 

using the 5/3 wavelet transform have both blocking and blurring artifacts. The performances of 

the 9/7-M, 5/11-C and bicubic interpolation methods lie between these two extreme cases. 

Based on the above results, we can deduce that: for image enlargement, not all wavelet 

transform based interpolations are better than the bicubic interpolation though most of them can 

give images with good contrast. We also deduce that the 9/7-F and 9/7-M wavelet transforms are 

the best candidates for the purpose of image enlargement. 

Table 4.4 Image enlargement performance of wavelet transforms (IQ) 

Image bicubic 5/3 5/11-C 9 / 7 - M 9/7-F 2/10 

cameraman 0.1061 0.0977 0.0988 0.1060 0.1234 0.1263 

lena 0.1327 0.1244 0.1255 0.1319 0.1458 0.1466 

lily 0.2081 0.1982 0.1996 0.2087 0.2266 0.2256 

lighthouse 0.1557 0.1445 0.1466 0.1556 0.1855 0.1959 

bike 0.2190 0.1985 0.2012 0.2178 0.2506 0.2518 

bird 0.0387 0.0373 0.0375 0.0386 0.0407 0.0401 

peppers 0.1204 0.1140 0.1158 0.1230 0.1516 0.1661 

mandrill 0.3627 0.3238 0.3307 0.3653 0.4702 0.5112 

text 0.3288 0.2977 0.3025 0.3294 0.3863 0.4846 

textl 0.0322 0.0298 0.0299 0.0320 0.0351 0.0346 

chestXR 0.0604 0.0580 0.0582 0.0599 0.0634 0.0635 

pelvisXR 0.0994 0.0956 0.0959 0.0995 0.1071 0.1062 

brainCT 0.2335 0.2276 0.2279 0.2346 0.2438 0.2431. 

spineCT 0.1822 0.1764 0.1770 0.1826 0.1927 0.1922 

kidneyUS 0.2225 0.2145 0.2155 0.2224 0.2352 , 0.2337 

transUS 0.3428 0.3177 0.3196 0.3344 0.3667 0.3583 

boneMR 0.1038 0.0948 0.0963 0.1041 0.1250 0.1334 

cesarMR 0.1528 0.1474 0.1476 0.1519 0.1598 0.1614 

artery A n g 0.4961 0.4757 0.4762 0.4928 0.5272 0.5339 

lungAng 0.0890 0.0825 0.0833 0.0879 0.0970 0.0963 

Average - . -0.0115 -0.0101 -0.0004 0.0223 0.0309 
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Table 4.5 Image enlargement performance of wavelet transforms (Contrast) 

Image bicubic 5/3 5/11-C 9/7-M 9/7-F 2/10 

cameraman 0.5252 0.5177 0.5189 0.5222 0.5279 0.5260 
lena 0.5308 0.5233 0.5245 0.5281 0.5338 0.5300 
lily 0.5292 0.5221 0.5235 0.5284 0.5358 0.5318 
lighthouse 0.3944 0.3857 0.3874 0.3920 0.4020 0.4025 
bike 0.5648 0.5518 0.5541 0.5613 0.5727 0.5685 
bird 0.3684 0.3657 0.3662 0.3673 0.3687 0.3663 
peppers 0.5722 0.5684 0.5695 0.5722 0.5791 0.5784 
mandrill 0.5938 0.5783 0.5825 0.5932 0.6178 0.6204 
text 0.3018 0.2849 0.2891 0.3008 0.3152 0.3437 
textl 0.1707 0.1668 0.1674 0.1700 0.1734 0.1722 
chestXR 0.5510 0.5458 0.5460 0.5483 0.5498 0.5468 
pelvisXR 0.4571 0.4540 0.4544 0.4570 0.4605 0.4570 
brainCT 0.9714 0.9727 0.9732 0.9772 0.9814 0.9789 
spineCT 1.0516 1.0430 1.0438 1.0470 1.0499 1.0490 
kidneyUS 1.4166 1.3908 1.3921 1.4002 1.4092 1.3955 
transUS 1.1730 1.1255 1.1266 1.1402 1.1582 1.1439 
boneMR 0.3560 0.3499 0.3515 0.3548 0.3618 0.3621 
cesarMR 0.8249 0.8166 0.8169 0.8213 0.8245 0.8194 
artery Ang 1.0714 1.0339 1.0369 1.0516 1.0662 1.0628 
lungAng 0.5788 0.5710 0.5717 0.5751 0.5795 0.5760 
Average - -0.0118 -0.0103 -0.0047 0.0032 0.0014 

Name 
x2 x4 x8 

Name 
IQ Contrast IQ Contrast IQ Contrast 

5/3 0.616649 0.940545 0.300992 0.947662 0.133631 0.951360 
5/11-C 0.617600 0.941616 0.301547 0.949049 0.134025 0.952890 
9/7-M 0.627760 0.948154 0.309328 0.958385 0.138666 0.963310 
9/7-F 0.647212 0.956592 0.324151 0.970501 0.147536 0.976823 
2/10 0.629927 0.927282 0.310870 0.925046 0.140638 0.923212 

Bicubic 0.617994 0.931544 0.304503 0.936883 0.137615 0.942432 
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The modulus maxima (wavelet extrema) in Mallat's theory describe the local maxima or 

minima of the wavelet coefficients. Mallat pointed out that the decay of the wavelet modulus 

maximum Wj (k) across scales is related to the pointwise Lipschitz regularity a of the signal: 

\Wj(k)\<C2-m+V2) (4.1) 

where, j is the scale of the wavelet transform, and C is a constant. However, wavelet-based 

image interpolation approaches often assume that the above formula is near-equality at strong 

edges for some specific wavelets. 

Basically, symmetric wavelets are preferred since the non-symmetric wavelets cause 

incoherent in the signs or locations of the wavelet transform extrema (Table 4.7). Therefore, we 

here give an example using the symmetric biorthogonal 9/7-F wavelet transform. Figure 4.5 

shows the waveforms of the undecimated detail coefficients at scales j=l, 2 and 3 (denoted as SI, 

S2 and S3 in Figure 4.5) for five different signals. Table 4.6 shows the corresponding numeric 

values of the detail coefficients around edges. The wavelet extrema are in bold type. 

400 

0 20 40 60 80 100 120 140 
100 | 1 1 ; 1 : 1 1 1 ' 1 

Figure 4.5 The propagation of the wavelet extrema 
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We can see that the wavelet extrema have good coherences in the signs and locations across 

scales except for the fifth signal. The problem is to predict the wavelet extrema of the first scale 

using the second, third and fourth scales. For the first signal, the decay rate of the wavelet 

extrema is shown in Figure 4.6 (a). Figure 4.6 (b) also shows the decay rate of the second largest 

wavelet extrema of the third signal. The • points are the actual values, and the slope of the line 

is the Lipschitz regularity of the signal. From Figure 4.6, we know that the first situation is 

under-estimated and the second one is perfect. From Table 4.6, we find that the largest wavelet 

extrema are often under-estimated. We also notice that some locations have wavelet extrema at 

scales 2, 3, and 4, but not at the first scale. For this case, the result is often over-estimated. 

Therefore the assumption of equality of formula 4.1 needs to be adjusted. Otherwise the enlarged 

image will have more artifacts. 

Table 4.6 The wavelet extrema for different signals 

fl 0 0 0 0 0 0 0 127 254 254 254 254 254 254 254 

SI 0 0 0 0 8 11 -47 0 47 -11 -8 0 0 0 0 

S2 0 0 -3 3 18 -7 -42 0 42 7 -18 -3 3 0 0 

S3 1 -2 -5 10 21 -16 -46 0 46 16 -21 -10 5 2 -1 

S4 2 -5 -5 18 23 -24 -54 0 54 24 -23 -18 5 5 -2 

f2 254 254 254 254 254 254 240 210 150 30 0 0 0 0 0 

SI 0 0 0 -1 -2 1 -3 7 25 -32 -5 8 2 0 0 

S2 0 0 0 -1 -1 -4 -1 18 12 -22 -16 9 7 -1 -1 

S3 0 0 0 0 -2 -7 3 23 11 -24 -21 7 12 0 -3 

S4 0 0 0 0 -5 -9 8 30 12 -28 -27 6 17 2 -4 

f3 0 0 0 0 0 0 127 254 127 0 0 0 0 0 0 

SI 0 0 0 8 11 -55 -11 94 -11 -55 11 8 0 0 0 

S2 0 -3 3 21 -10 -60 7 84 7 -60 -10 21 3 -3 0 

S3 -2 -6 12 26 -26 -67 16 92 16 -67 -26 26 12 -6 -2 

S4 -6 -6 23 28 -42 -77 24 108 24 -77 -42 28 23 -6 -6 

f4 0 0 0 0 25 50 100 200 100 50 25 0 0 0 0 

SI 0 2 2 -6 8 -15 -28 73 -28 -15 8 -6 2 2 0 

S2 1 2 -1 3 -1 -27 2 44 2 -27 -1 3 -1 2 1 

S3 1 0 2 6 -11 -29 8 45 8 -29 -11 6 2 0 1 

S4 0 0 6 7 -20 -33 14 52 14 -33 -20 7 6 0 0 
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f5 0 0 0 0 0 0 0 254 254 254 254 254 254 254 254 

SI 0 0 0 0 16 6 -100 100 -6 -16 0 0 0 0 0 

S2 1 0 -6 12 25 -38 -46 46 38 -25 -12 6 0 -1 1 

S3 2 -5 -4 24 17 -49 -44 44 49 -17 -24 4 5 -2 2 

S4 0 -11 1 34 12 -61 -48 48 61 -12 -34 -1 11 0 0 

Table 4.7 The non-symmetric wavelet extrema 

fl 0 0 0 0 0 0 0 127 254 254 254 254 254 254 254 

SI 0 0 0 0 0 22 -22 -22 22 0 0 0 0 0 0 

S2 0 1 -6 0 32 -1 -52 -1 32 0 -6 1 0 0 0 

S3 5 -11 -15 42 42 -64 -64 42 42 -15 -11 5 1 -1 0 

scale 
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4.4 Summary 
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From the above analysis, we know that the problem of wavelet-based image interpolation is 

complicated. One may face several artifacts occurring together such as blurring, ringing and 

blocking. The best solution is to first choose a good wavelet transform that yields minor artifacts. 

Then we need to find ways to add detail coefficients so as to reduce the artifacts. Because of the 

symmetric filters of symmetric wavelets, the transformed coefficients are easy to process. 

Therefore symmetric wavelets are generally chosen though the anti-symmetric wavelets have 

good performance for low magnification factors. The 9/7-M and 9/7-F wavelet transforms are 

good choices overall. 

The computational time is usually high for an image interpolation approach using a wavelet 

transform. One has to use time-consuming methods such as multilayer perceptron (MLP) and 

Hidden Markov Trees (HMT) to predict the detail coefficients in the high-resolution. If we use 

Mallat's modulus maxima theory, we still need to know the undecimated detail coefficients at 

three scales or more. Beside the problem of delivering wrongly estimated wavelet extrema, this 

approach also needs high computational time to estimate the neighbours of extrema. It also takes 

more time if long-length wavelet filters are used. However, in order to get good performance, 

long-length wavelet filters such as the 9/7-F filters are often used. Therefore, we need to find a 

simple and efficient way to add edge information. 
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NEW WAVELET-BASED IMAGE 

INTERPOLATION APPROACH 

5.1 Edge Models of Images 

Digital images exhibit edges with all kinds of shapes. The step edges with different 

directions (Figure 5.1) form the fundamental class of edges. In this thesis, the first-order 

derivatives in the x and y directions (called the x-gradient and the y-gradient) are used to detect 

these edges. 

Gx=f(x,y)-f(x-l,y) 

G =f(x,y)-f(x,y-l) 
(5.1) 

0° 15° 30° 45° 60° 

90° 105° 120° 135° 150° 165° 

Figure 5.1 Ideal step edges with different directions 

Since the extrema of these gradients determine the main characteristics of edges, we should 

carefully identify the extrema along the x and y directions. If the current point is the extremum, 

the following inequalities are valid: 

\G(i)\>T and | G ( i ) | x l . l 5 > m a x { G ( i - 2 ) , G ( i - l ) , G ( i + l ) , G ( i + 2)} (5.2) 

where T is the threshold of extrema, and G(i)e {Gx(i),Gy(i)}. The value '1.15' is obtained 

experimentally. The value of the threshold T depends on the content of an image and the wavelet 

transform. The threshold also influences the computational time. A smaller threshold generally 
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means more detected edges, and more computational time. In this thesis, a value between 50 and 

70 is used as the threshold in the 8-bit gray images. 

Let us study the characteristics of the images shown in Figure 5.1. Table 5.1 shows the local 

x- and y- gradients of some of these images having ideal step edges. The extrema of gradients are 

in bold type. According to the locations of these extrema, the direction of the edge can be 

determined easily. For example, if the x-gradient and the y-gradient are extrema at a certain point, 

and the x-gradient of the right neighbor of this point is also an extremum, then there is a 30-

degree step edge at this point. 

Now, we apply a wavelet transform such as 9/7-M on these ideal step images, and study the 

characteristics of wavelet approximation coefficients. Here, we call the wavelet approximation 

coefficients as wavelet-reduced images. We use the same method as above to analyze these 

images. The results are pretty interesting. When using symmetric wavelets, we get the same 

extrema patterns of gradients (Table 5.2) like those of the original images though there are more 

non-zero gradients. When anti-symmetric wavelets are used, we get different and complicated 

extrema patterns of gradients. For this reason, we use symmetric wavelets to develop the new 

approach in this thesis. If no specific indication is given, the reported results are all obtained 

using the 9/7-M and 9/7-F wavelet transforms. Other wavelet transforms may lead to slightly 

different results. 

Let us study what happens if we shift ideal step edges one line down (for 0, 15, 30, 45, 150, 

and 165 degree edges) or one line right (for 60, 75, 90, 105, 120, and 135 degree edges). We also 

apply a wavelet transform on these shifted images. The wavelet approximation coefficients 

(wavelet-reduced images) of these shifted images have the similar extrema patterns of gradients 

at the same locations as the non-shifted versions. The gradients of wavelet approximation 

coefficients are differences between the shifted version and the non-shifted version. Here, we 

call non-shifted version as subtype I, and shifted version as subtype II. By observing the values 

of the extrema and the nearest neighbors, it is not difficult to distinguish one subtype from the 

other. For example, a 30-degree edge has two extrema in the x-gradient maps. If the left one is 

less than the right one, then it belongs to subtype I. Otherwise, it belongs to subtype II. If we 

further shift ideal step edges down or right, the subtype I and subtype II will appear repeatedly. 

Table 5.3 lists the extrema patterns of x and y gradients in the wavelet-reduced images from 

ideal step edges and the rules to distinguish the subtypes. 
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Table 5.1 Gradients of images having ideal step edges 

Gx Zero-degree step edge 
0 0 0 0 0 0 

192 192 192 192 192 192 
0 0 0 0 0 0 
0 0 0 0 0 0 

Gy_ Zero-degree step edge 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

Gx 30-degree step edge 
0 0 0 0 192 192 
0 0 192 192 0 0 

192 192 0 0 0 0 
0 0 0 0 0 0 

Gy_ 30-degree step edge 

Gx 45-degree step edge Gy 45-degree step edge 

0 0 0 0 192 0 

0 0 0 192 0 0 

0 0 192 0 0 0 

0 192 0 0 0 0 

Gx 90-degree step edge Gy_ 

0 0 0 0 0 0 0 0 192 0 0 0 

0 0 0 0 0 0 0 0 192 0 0 0 

0 0 0 0 0 0 0 0 192 0 0 0 

0 0 0 0 0 0 0 0 192 0 0 0 

90-degree step edge 

Table 5.2 Gradients of wavelet-reduced images having ideal step edges 

Gx Zero-degree step edge (I) 
24 24 24 24 24 24 
186 186 186 186 186 186 
-24 -24 -24 -24 -24 -24 
3 3 3 3 3 3 

Gv_ Zero-degree step edge (I) 

Gx Zero-degree step edge (II) 
-24 -24 -24 -24 -24 -24 
186 186 186 186 186 186 
24 24 24 24 24 24 

. 3 3 3 3 3 3 

Gy_ Zero-degree step edge (II) 

Gx 30-degree step edge (I) Gy 30-degree step edge (I) 

2 7 -23 -1 160 201 2 5 -28 27 133 68 

23 -1 160 201 53 -18 -28 27 133 68 -15 -3 

160 201 53 -18 0 3 133 68 -15 -3 3 0 

53 -18 0 3 0 0 -15 -3 3 0 0 0 

Gx 30-degree step edge (U) 

3 0 -18 52 201 160 

-18 52 201 160 0 -23 

201 160 0 -23 6 2 

0 -23 6 2 0 0 

0 0 0 0 192 0 
0 0 192 0 0 0 

192 0 0 0 0 0 
0 0 0 0 0 0 

0 0 0 0 192 0 

0 0 0 192 0 0 

0 0 192 0 0 0 

0 192 0 0 0 0 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

Gy 30-degree step edge ( n) 
2 -2 -16 68 133 27 

-16 68 133 27 -27 4 

133 27 -27 4 2 0 

-27 4 2 0 0 0 
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Table 5.3 Extrema patterns and subtypes of wavelet-reduced ideal step edges 

Edge 
direction 

Extrema of gradients Subtype 

0 degree Gx(i,j),Gx(i,j + l),Gx(i,j + 2) 

I: { Gx(i-\,j) >Gx(i+\,j) and Gx(ij)>0) or 

{ G^i-lj) <Gx(i+\J) and Gx(i,j) <0} 

II: { G,(i-lj) <Gx(i+\J) and Gx(ij)>0] or 

{ Gx(i-1 J ) >Gx(i +lj) and Gx(i,j) <0} 

15 
degrees 

Gx(i,j),Gx(i,j + l),Gx(i,j + 2) 

Gy(i,j) 

I: Gx(i,j)<Gx(i,j + 2) 

II: Gx(i,j)>Gx(i,j + 2) 

30 
degrees 

Gx(i,j),Gx(i,j + l) 

Gy(i,j) 

I: Gx(i,j)<Gx(i,j + l) 

II: Gx (i, j) > Gx (/, j +1) 

45 
degrees 

Gx(i, j),Gx(i-\, j+l),Gx(i-2, j+2) 

Gy(i,j),Gy(i-l,j+l),Gy(i-2,j+2) 

l:{OL(i-XJ) >Gx(i+\,j) and Gx(iJ)>0] or 

{Gx(i-\,J) <Gx(i+\J) and Gx(i,j) <0} 

II: {Gx(i-lj) <Gx(i+\J) and Gx(i,j)>0) or 

{Gx(i-lj)>Gx(i+\J) and Gx(i,j) <0} 

60 
degrees 

Gx(i,j) 

Gy(i,j),Gy(i + l,j) 

I: Gy(i,j)<Gy(i + l,j) 

II: Gy(i,j)>Gy(i + l,j) 

75 
degrees 

Gx(i,j) 

Gy(i,j),Gy(i + l,j),Gy(i + 2,j) 

I: Gy(i,j)<Gy(i + 2,j) 

II: Gy(i,j)>Gy(i + 2,j) 

90 
degrees 

Gy(i,j),Gy(i + l,j),Gy(i + 2J) 

I: {Gy(i,j-\)>Gy(iJ+\) andG=(U)>0}or 

{Gy(iJ-\) <Gy(iJ+\) and Gy(i,j)<0} 

II: { Gy(i,j -1) <Gy(iJ + l) and Gy(i,J) >0} or 

{Gy{iJ-\)>Gy(iJ+\) and Gy(i,j)<0} 

105 
degrees 

Gx(i,j) 

Gy(i,j+l),Gy(i+l,j+V),Gy(i+2,j+l) 

I: Gy(i,j + \)<Gy{i + 2,j + l) 

II: Gy(iJ + l)>Gy(i + 2,j + l) 

120 
degrees 

Gx(i,j) 

Gy(i,j + l),Gy(i + l,j + l) 

I: G > ( / , ; + l ) < G y ( / +1 , ; + 1) 

H : Gy(i,j + l)>Gy(i + l,j + l) 

135 
degrees 

Gx(i+l,j),Gx(i+2,j+l),Gx(i+3,j+2) 

Gy(i,j),Gy(i+lj+l),Gy(i+2,j+2) 

I: { G / i J - l ) >Gy(iJ+\) and Gy(i,J) >0} or 

{ G,(i J - l ) <G, (J J + l ) and Gy(iJ) <0) 

II: { Gy(iJ -1) <G,(i J + T) and Gy(i,j) > 0} or 

150 
degrees 

Gx(i + l,j),Gx(i + l,j + l) 

Gy(i,j) 

I: GJC0- + U )<G ; c 0- +1 , ; + 1) 
II: Gx(i + l,j)>Gx(i + l,j + l) 

165 
degrees 

Gx(i+l, j),Gx(i+\, j+\\Gx(i+\, j+2) 

Gy(i,j) 

I: Gx(i + l,j)<Gx(i + l,j + 2) 

II: Gx(i + \,j)>Gx(i + \,j + 2) 
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In the following section, we explore the relationship of the ideal step image and its wavelet-

transformed images. We take the 30-degree ideal step edge image shown in Figure 5.1 for an 

example. The intensity of the ideal edge varies from 0 to 192. Table 5.4 lists the profiles of its 

wavelet-transformed images using 9/7-M. The values in the 'ca' block are the intensity values of 

the approximation coefficients (wavelet-reduced image). The values in the 'ch', 'cv\ and 'cd' 

blocks are the wavelet horizontal, vertical and diagonal detail coefficients respectively. The 

values in the Gx and Gy blocks are the x and y gradients of the approximation coefficients (the 

'ca' block). The extrema of the x- and y- gradients are in bold type as well as the extrema of 

wavelet horizontal, vertical and diagonal detail coefficients. We always compute the extrema of 

the x-gradients and wavelet horizontal details along the x direction (in this thesis, the x direction 

is from up to down, and the y direction is from left to right). And we compute the extrema of the 

y-gradients and wavelet vertical details along the y direction. The extrema of wavelet diagonal 

details are computed along 45-degree direction for edges with orientations from 15 degrees to 75 

degrees, and computed along 135-degree direction for edges with orientations from 105 degrees 

to 165 degrees. Since Gx(j) < Gx(j+1) in Table 5.4, it is a subtype I, 30-degree edge. 

Table 5.4 The profiles of a step edge with 30-degree direction 

Ca cd J-2 j j + 1 

0 0 0 2 7 -21 0 1 -6 -8 66 -96 

0 2 7 -21 6 139 i-1 -6 -8 66 -96 42 7 

7 -21 . 6 139 207 192 i 66 -96 42 7 -6 -1 

6 139 207 192 189 192 i+1 42 7 -6 -1 0 0 

207 192 189 192 192 192 -6 -1 0 0 0 0 

189 192 192 192 192 192 0 0 0 0 0 0 

Gx i j+l ch 

0 0 0 2 7 -23 0 0 -1 9 27 -104 

0 2 7 -23 -1 160 i-1 -1 9 27 -104 82 0 

7 -23 -1 160 201 53 i 27 -104 82 0 -12 -2 

-1 160 201 53 -18 0 i+1 82 0 -12 -2 0 0 

201 53 -18 0 3 0 -12 -2 0 0 0 0 

-18 0 3 0 0 0 0 0 0 0 0 0 

Gy j cv J-2 j - l j j+1 
0 0 0 2 5 -28 0 0 -1 -2 15 -14 

0 2 5 -28 27 133 i-1 -1 -2 15 -14 -69 -34 

5 -28 27 133 68 -15 i 15 -14 -69 -34 9 2 

27 133 68 -15 -3 3 i+1 -69 -34 9 2 -1 0 
68 -15 -3 3 0 0 9 2 -1 0 0 0 

-3 3 0 0 0 0 -1 0 0 0 0 0 
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From our experiments, we have following important results: 

(1) The locations of the extrema of wavelet horizontal details 'ch' are always one line up 

compared to the locations of the extrema of the x-gradients Gx; the locations of the extrema of 

wavelet vertical details 'cv' are always one line left compared to the locations of the extrema of 

the y-gradients Gy. Combining the locations of the extrema of the wavelet horizontal and vertical 

details leads to the locations of the extrema of diagonal details 'cd'. This is due to the fact that the 

scaling and wavelet functions of the 9/7-M and 9/7-F wavelet transforms are symmetric. It 

means that the low-pass and band-pass filters of the 9/7-M and 9/7-F wavelet transforms have 

linear phases. Therefore the locations of these extrema are consistent. 

(2) Wavelet horizontal details 'ch' are controlled by the x-gradients Gx; Wavelet vertical 

details 'cv' are controlled by the y-gradients Gy; Wavelet diagonal details 'cd' are controlled by 

both the x-gradients Gx and the y-gradients Gy. This is why the zero-degree edge image has all 

zeros on wavelet vertical details 'cv', wavelet diagonal details 'cd', and y-gradients Gy; and why 

the 90-degree edge image has all zeros on wavelet horizontal details 'ch', wavelet diagonal details 

'cd', and x-gradients Gx. 

(3) If we reduce or increase the intensity of the ideal step edge image by a certain factor, all 

the coefficients will also reduce or increase by the same factor in 'ca', 'cd', 'ch', and 'cv', Gx and 

Gy blocks. This is because of the linear property of the wavelet transforms used in this thesis (the 

9/7-M and the 9/7-F). Combining with the result (2), we have: the extrema of wavelet horizontal 

detail coefficients are proportional to the extrema of x-gradients Gx; the extrema of wavelet 

vertical detail coefficients are proportional to the extrema of y-gradients Gy; the extrema of 

wavelet diagonal detail coefficients are proportional to the average extrema of x-gradients Gx 

and y-gradients Gy. For the example in Table 5.4, we have relationships: 

ch(i -1,j) / Gx (i, j) = -104/160 = -0.65 (5.3) 

ch(i -I, j + Gx (i, j +1) = 82 / 201 = 0.4080 (5.4) 

cv(i, j -l)/Gy (i, j) = -69/133 = -0.5188 (5.5) 

[Gx(i,j) + GJi,j)] 
cd(i -1,j)/ \ y = -96/(160/2 +133/2) = -0.6553 (5.6) 

Similarly, we can get the relationships between the exterma in the Gx block and the extrema's 

neighbors in the 'ch' block, between the extrema in the Gy block and the extrema's neighbors in 
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the 'cv' block, and between the extrema in the Gx and Gy blocks and the extrema's neighbors in 

the 'cd' block. 

Based on above results, if we know the wavelet approximation coefficients of an ideal step 

edge image, we can use its horizontal and vertical gradients (Gx & Gy) to predict its wavelet 

horizontal, vertical and diagonal detail coefficients easily and perfectly. We call this method as 

ideal edge model based prediction (IEMBP). 

5.2 New Image Interpolation Approach 

Original image 
(approximation 

coefficients) 

Original image 
(approximation 

coefficients) 

Edge detector 
Original image 
(approximation 

coefficients) 

Enlarged 
Inverse 

Horizontal details W o. Enlarged Horizontal details W o. 
image Wavelet orq m o 
image 

Vertical details 4-

orq m o 
Transform Vertical details lictor 

4- pr 

Diagonal details 

lictor Si Diagonal details 

Figure 5.2 Block diagram of new image interpolation approach 

According to the analysis in the last section, a new image interpolation approach is shown in 

Figure 5.2. It is suitable for two situations: (1) to restore a wavelet-reduced image (the 

approximation coefficients of the high-resolution image) to its original sizes and (2) to magnify 

an original image. 

The procedures for computing the wavelet detail coefficients from the original image are 

(1) Compute the x-gradients Gx and y- gradients Gy of the original image using equations 

(5.1); 

(2) Find the extrema of the gradients along the x and y direction using the formula (5.2); 

(3) Scan the Gx and Gy from top to bottom and left to right. If there are extrema at current 

point either in Gx block or in Gy block, determine whether it is one kind of edges listed 

in Table 5.3 or not; 

(4) If there is an edge at current point, predict the extrema of wavelet horizontal, vertical and 

diagonal detail coefficients, and their neighbors according to the edge directions and 

their subtypes using IEMBP method; 
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(5) Move to next point, and repeat (3) and (4). 

Need to mention that a threshold is used in the second step. The value of the threshold 

depends on the original image and the computational time desired. If all the edges in the original 

image are very sharp, a big threshold value is preferred. A small threshold generally means more 

edges will be detected, and thus more computational time is needed. 

For any given image, we assume that all detected edges are ideal step edges. In the step four 

of our new approach, we first initialize all detail coefficients to zeros, and then use IEMBP 

method to predict the wavelet detail coefficients. Take an example shown in Figure 5.3. 'Ca' 

block is the original image. We want to predict the 'cd', 'ch', and 'cv' blocks. At the (i, j) location, 

Gx(i,j), Gx(i,j + l), Gy(i,j) are maxima. Therefore, there is a 30-degree edge at (i, j). Since 

Gx (i, j) < Gx (i, j +1), this edge belongs to the subtype I. For a 30-degree, subtype I edge, the 

Matlab code in Figure 5.3 is used to predict the horizontal, vertical and diagonal detail 

coefficients which are corresponding to the values in Figure 5.3 labeled with '?". The floating 

numbers used to predict the extrema in the code are from the equations (5.3) ~ (5.6). 

Ca cd J-2 j - l j j+1 
X X X X X X 0 0 0 0 ? 0 

X X X X X X i-1 0 0 0 ? 0 0 

X X X X X X i 0 0 ? 0 0 0 

X X X X X X i+1 0 ? 0 0 0 0 

X X X X X X ? 0 0 0 0 0 

X X X X X X 0 0 0 0 0 0 
Gx j j+1 ch j j+1 

X X X X X X 0 0 0 ? ? 0 

X X X X X X i-1 0 0 0 9 9 0 

X X X 160 201 X i 0 0 0 ? ? 0 

X X X X X X i+1 0 0 0 0 0 0 

X X X X X X 0 0 0 0 0 0 
X X X X X X 0 0 0 0 0 0 

Gy j cv j-2 j - l j j+1 
X X X X X X 0 0 0 0 0 0 
X X X X X X i-1 0 0 0 0 0 0 

X X X 133 X X i ? ? •> 7 ? 0 

X X X X X X i+1 0 0 0 0 0 0 

X X X X X X 0 0 0 0 0 0 

X X X X X X 0 0 0 0 0 0 
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k Pred ic t the h o r i z o n t a l d e t a i l c o e f f i c i e n t s 
% extrema 
c h ( i - l , j ) = - G x ( i , j ) * 0.6500; 
c h ( i - l , j + l ) = Gx(i,j+1) * 0.4080; 
% neighbors 
c h ( i - 2 , j ) = G x ( i , j ) * 0.0562; 
ch ( i -2 , j+ l ) = Gx(i,j+1) * 0.1344; 
c h ( i , j+l) = - Gx(i,j+1) * 0.0597; 

% Predic t the v e r t i c a l d e t a i l c o e f f i c i e n t s 
% extremum 
c v ( i , j - l ) . = - G y ( i , j ) * 0.5188; 
% neighbors 
c v ( i , j - 3 ) = G y [ i , j ) * 0.1127; 
c v ( i , j - 2 ) = - G y ( i , j ) * 0.1053; 
c v ( i , j ) = - G y ( i , j ) * 0.2558; 
c v ( i , j + l ) = G y ( i , j ) * 0.0677; 

% Pred ic t the diagonal d e t a i l c o e f f i c i e n t s 
Gz = (Gx( i , j ) + G y ( i , j ) ) / 2 ; 
% extreiauio. 
c d ( i - l , j ) = - Gz * 0.6553; 
% neighbors 
cd(i+2,j-3) = - Gz * 0.0410; 
c d ( i + l , j - 2 ) = Gz * 0.0478; 
c d ( i , j - l ) = Gz * 0.2865; 
c d ( i - 2 , j + l ) = Gz * 0.4505; 
cd(i-3,j+2) = - Gz * 0.0546; 

Figure 5.3 The code snippet of the prediction for a 30-degree, subtype I edge 

In order to reduce artifacts and get better quality, several strategies are used in our new 

interpolation approach. 

(1) Using selective neighbors of the extrema. Only having the extrema of the horizontal, 

vertical and diagonal detail coefficients is not enough to produce a good quality image. We have 

to consider adding more coefficients to smooth the transitions. But how to add these coefficients 

is a tricky question. Figure 5.4 (a) is produced using all eight neighbors of the extrema. And 

Figure 5.4 (b) is produced using selective neighbors, i.e. the top and bottom neighbors from the 

extrema of horizontal detail coefficients, the left and right neighbors from the extrema of vertical 

detail coefficients, and diagonal neighbors from the extrema of diagonal detail coefficients. The 

experiment results prove that these selective neighbors can produce edges with better quality 

than all eight neighbors. Therefore, our new approach predicts selective neighbors only that are 

shown in the double boxes in Table 5.4. In addition, predicting the selective neighbors only can 

save computational time. 



(a) 8 neighbors (b) selective neighbors 

Figure 5.4 The influence of the neighbors of extrema on an image expanded by a factor 8. 

(2) Applying addition operation at the cross point of edges. We often encounter the cross 

point of two or more edges. How to handle this situation is very important in our new approach. 

Under this situation, our algorithm will find two or more differently oriented edges at one 

location. For each orientation edge, we get a set of detail coefficients. The results of our 

experiment (Figure 5.5) show that adding all sets of detail coefficients together will get better 

quality images than only using one set of detail coefficients. 

(3) Wise edge selector. Edges in images have different slopes. Some have sharp transitions, 

and some have smooth transitions. Our new approach doesn't work well for the smooth-transiting 

edges (Figure 5.6 (a)). It is better to exclude these edges. The results of our experiments show 

that we can still get very good performance even if we do not consider these smooth-transiting 

edges (Figure 5.6 (b)). We name the module, which drops out smooth-transiting edges, as 'wise 

edge selector'. 

(4) Edges Weighting. A wrong-estimated edge can damage the image quality dramatically. 

Therefore, our new approach gives a weight (0-1) to each edge based on the length of an edge. 

For example, if there are 30-degree edges at the locations (i+1, j-2), (i, j), and (i-1, j+2), i.e. 30-

degree edges appear three or more times consecutively, a higher weight will be given, or else a 

low weight will be given. The predicted detail coefficients will be the multiplication of the ideal 

detail coefficients and the weight. 
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(5) Specified subtype. Sometimes, it is difficult to identify the subtype of an edge, 

especially for the original image. In this situation, a subtype (for example, the subtype I) will be 

specified. 

(a) (b) (c) 

Figure 5.6 Wise edge selector (a) original image; (b) all edges are processed; (c) wise 

edge selector is used. 

5.3 Implementation 

In this thesis, Matlab 6.5 is used to develop and test all algorithms. In order to evaluate the 

performance of the new image interpolation approach, several programs are implemented or 

existing ones are used as shown below: 

• Implemented new image interpolation approaches using 9/7-M and 9/7-F wavelet 

transforms; 



Chapter 5 • New Wavelet-based Image Interpolation Approach 64 

• Implemented wavelet transforms 5/3, 5/11-C, 9/7-M, 9/7-F and 2/10 using the lifting 

scheme; 

• Implemented Kimmel approach [22]; 

• Implemented Li & Orchard's approach with 4x4 local window [23, 24]; 

• Bilinear and bicubic interpolation from Matlab; 

• MSSIM algorithm from Zhou Wang [13]; 

• IQM algorithm from the MITRE Corporation [11]; 

• Other code such as MSE, PSNR, Power Spectrum etc. 

5.4 The Performance of the Proposed Approach 

5.4.1 The Gain of the Proposed Approach 

In this section, we will examine the gain of our new approach in the wavelet interpolation 

method compared with the traditional method that reconstructs images without using the detail 

coefficients. 

Experiment 1: Take original image, and reduce it using 9/7-M or 9/7-F wavelet transform, 

then enlarge the reduced image using inverse wavelet transform. Table 5.5 and Table 5.6 list the 

PSNR and MSSIM performances of restoration without the detail coefficients and with the detail 

coefficients predicted by our new approach. Here, the 9/7-M inverse wavelet transform is used to 

recover the images reduced by the 9/7-M wavelet transform. The same applies to the 9/7-F 

wavelet transform. In general, the image qualities are improved when using our new approach, 

especially for images with strong edges. For the "cameraman" image, the PSNR increased by 

0.2dB. For other images with various edges, the gains are different. We also notice that the gains 

from the 9/7-M and 9/7-F wavelet transforms are similar. 

Further look into the local strong edges from "cameraman" image. Figure 5.7 shows the 

restored images with and without our new algorithm. We can see that the quality of the edges 

from our new approach is indeed much improved (2dB)! 
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Table 5.5 The performances of new approach for wavelet-reduced images (PSNR: dB) 

Image 

(9/7-F, 9/7-F) (9/7-M, 9/7-M) 

Image No details 
New 

approach No details 
New 

approach 
cameraman 26.93 27.13 26.85 27.06 
lena 30.59 30.74 30.56 30.71 
lily 27.46 27.57 27.41 27.52 
lighthouse 25.97 26.01 25.84 25.87 
bike 26.99 27.09 26.93 27.03 
bird 38.08 38.11 38.28 38.27 
peppers 23.09 23.14 23.01 23.07 
mandrill 17.94 17.93 17.82 17.82 
text 14.64 14.64 14.52 14.53 
textl 33.49 33.28 33.61 33.41 
chestXR 33.93 33.93 33.90 33.90 
pelvisXR 32.71 32.61 32.61 32.52 
brainCT 29.47 29.50 29.43 29.45 
spineCT 30.39 30.38 30.29 30.26 
kidneyUS 32.18 32.13 32.15 32.10 
transUS 32.71 32.64 32.74 32.67 
boneMR 23.41 23.40 23.31 23.31 
cesarMR 32.43 32.19 32.39 32.21 
artery Ang 27.41 27.54 27.27 27.43 
lungAng 32.77 32.77 32.78 32.79 

Table 5.6 The performances of new approach for wavelet-reduced images (MSSLM) 

Image 

(9/7-F, 9/7-F) (9/7-M, 9/7-M) 

Image No details New 
approach No details 

New 
approach 

cameraman 0.8801 0.8831 0.8836 0.8867 
lena 0.9179 0.9189 0.9202 0.9211 
lily 0.9067 0.9082 0.9070 0.9084 
lighthouse 0.8260 0.8271 0.8277 0.8286 
bike 0.8876 0.8893 0.8880 0.8895 
bird 0.9614 0.9616 0.9665 0.9666 
peppers 0.7588 0.7605 0.7595 0.7611 
mandrill 0.7019 0.7022 0.6980 0.6983 
text 0.6021 0.6026 0.5966 0.5972 
textl 0.9687 0.9683 0.9743 0.9739 
chestXR 0.9764 0.9763 0.9799 0.9799 
pelvisXR 0.9532 0.9531 0.9574 0.9574 
brainCT 0.9521 0.9527 0.9544 0.9547 
spineCT 0.9531 0.9533 0.9554 0.9555 
kidneyUS 0.9511 0.9510 0.9525 0.9525 
transUS 0.9445 0.9444 0.9522 0.9521 
boneMR 0.7433 0.7433 0.7405 0.7407 
cesarMR 0.9757 0.9746 0.9787 0.9778 
artery Ang 0.9007 0.9020 0.9024 0.9038 
lungAng 0.9390 0.9388 0.9415 0.9414 . 
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Experiment 2: Enlarge original image using inverse wavelet transform directly. Table 5.7 

and Table 5.8 list the performances of both methods: expanding the original image without the 

detail coefficients and with the detail coefficients predicted by the new approach. The IQs and 

Contrasts of all expanded images are increased by using the latter method. Figure 5.8 shows 

expanded strong edges with and without our new algorithm. Like the case of wavelet-reduced 

images, our new approach also undoubtedly improves the image qualities of enlarged strong 

edges for original images. Even magnified by the high factor, the edges are still sharp 

perpendicular to the contours. 

(9/7-M, 9/7-M + new approach) (9/7-F, 9/7-F + new approach) 

Method RMSE PSNR (db) MSSIM 

(9/7-M, 9/7-M) 6.52 31.85 0.9597 

(9/7-M, 9/7-M + new approach) 5.45 33.40 0.9676 

(9/7-F, 9/7-F) 6.54 31.82 0.9540 

(9/7-F, 9/7-F + new approach) 4.51 34.31 0.9624 

Figure 5.7 The performances of new approach for the strong edges from a wavelet-reduced 

image. (The original image is reduced by a wavelet transform, and then expanded by an inverse wavelet 

transform. The final image is magnified by a factor of two using the replication method.) 
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x2 x4 x2 x4 
9/7-M + new approach 9/7-F + new approach 

Method 
x2 x4 

Method 
IQ Contrast IQ Contrast 

9/7-M 0.627760 0.948154 0.309328 0.958385 

9/7-M + new approach 0.631540 0.948939 0.311269 0.959139 

9/7-F 0.647212 0.956592 0.324151 0.970501 

9/7-F + new approach 0.650312 0.957578 0.326862 0.971561 

Figure 5.8 The performances of new approach for the strong edges from an original image. (The 

original image is expanded once and twice by an inverse wavelet transform.) 
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Table 5.7 The performances of new approach for original images (IQ) 

68 

Image 
9/7-F 9/7-M 

Image 
No details New 

approach No details 
New 

approach 
cameraman 0.1234 0.1250 0.1060 0.1073 
lena 0.1458 0.1471 0.1319 0.1328 
lily 0.2266 0.2287 0.2087 0.2103 
lighthouse 0.1855 0.1881 0.1556 0.1575 
bike 0.2506 0.2536 0.2178 0.2197 
bird 0.0407 0.0409 0.0386 0.0387 
peppers 0.1516 0.1528 0.1230 0.1238 
mandrill 0.4702 0.4736 0.3653 0.3680 
text 0.3863 0.3872 0.3294 0.3297 
textl 0.0351 0.0355 0.0320 0.0323 
chestXR 0.0634 0.0638 0.0599 0.0602 
pelvisXR 0.1071 0.1079 0.0995 0.1000 
brainCT 0.2438 0.2466 0.2346 0.2366 
spineCT 0.1927 0.1938 0.1826 0.1831 
kidneyUS 0.2352 0.2361 0.2224 0.2228 
transUS 0.3667 0.3686 0.3344 0.3357 
boneMR 0.1250 0.1258 0.1041 0.1046 
cesarMR 0.1598 0.1608 0.1519 0.1526 
artery Ang 0.5272 0.5308 0.4928 0.4960 
lungAng 0.0970 0.0970 0.0879 0.0880 

Table 5.8 The performances of new approach for original images (Contrast) 

Image 
9/7-F 9/7-M 

Image 
No details 

New 
approach 

No details 
New 

approach 
cameraman 0.5279 0.5281 0.5222 0.5224 
lena 0.5338 0.5339 0.5281 0.5283 
lily 0.5358 0.5361 0.5284 0.5286 
lighthouse 0.4020 0.4024 0.3920 0.3922 
bike 0.5727 0.5732 0.5613 0.5616 
bird 0.3687 0.3687 0.3673 0.3673 
peppers 0.5791 0.5793 0.5722 0.5724 
mandrill 0.6178 0.6182 0.5932 0.5937 
text 0.3152 0.3155 0.3008 0.3009 
textl 0.1734 0.1735 0.1700 0.1702 
chestXR 0.5498 0.5499 0.5483 0.5483 

pelvisXR 0.4605 0.4607 0.4570 0.4571 
brainCT 0.9814 0.9819 0.9772 0.9776 
spineCT 1.0499 1.0500 1.0470 1.0470 
kidneyUS 1.4092 1.4094 1.4002 1.4002 
transUS 1.1582 1.1585 1.1402 1.1402 
boneMR 0.3618 0.3619 0.3548 0.3549 
cesarMR 0.8245 0.8245 0.8213 0.8213 
artery Ang 1.0662 1.0668 1.0516 1.0523 
lungAng 0.5795 0.5795 0.5751 0.5751 
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5.4.2 Comparison of Interpolation Approaches for Image Restoration 
We know that different wavelet transforms will result in differently reduced images, which 

will further influence the performance of the restoration. The low-pass filters in the 5/3, 9/7-M 

and 9/7-F wavelet transform are symmetric (Figure 5.9), and they play important roles in image 

interpolation. In fact, the wavelet-based image reduction is equivalent to filtering and decimating 

images. Therefore, we here do an experiment using these low-pass filters. The procedures of this 

experiment are 1) filter the original image and then downsample the filtered image by two to get 

the reduced image; 2) expand the reduced image once with different interpolation approaches 

and 3) compute the PSNR and MSSIM measurements. The purpose of this experiment is to find 

the best combination(s) of image reduction and image expansion method. 

0.8 -j 
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0.4 -
0.2 • 
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-0.2 
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-0.2 1 2 3 4 5 6 7 8 9 
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0.4 -
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1 2 3 4 5 6 7 8 9 

L(9/7-M) 0.016 0.000 -0.125 0.250 0.719 0.250 -0.125 0.000 0.016 

0.8 -, 
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0.4 
0.2 • 
A A 
u.u -
A O 

°~~ CT ~t> °~ 
-\J.ti • 1 2 3 4 5 6 7 8 9 

L(9/7-F) 0.027 -0.017 -0.078 0.267 0.603 0.267 -0.078 -0.017 0.027 

Figure 5.9 Several low-pass filters 

(L(5/3): low-pass filter of the 5/3 wavelet transform; L(9/7-M): low-pass filter of the 9/7-M wavelet 

transform; L(9/7-F): low-pass filter of the 9/7-M wavelet transform.) 

Figure 5.10 and Figure 5.11 show the performance of several interpolation approaches. The 

'None' represents no filter used (i.e. only decimation). All data are averages of the performance 

of different images. As we expect, overall, the 9/7-M and 9/7-F inverse wavelet transforms using 

file://-/J.ti
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our new approach have the best performance irrespective of which low-pass filter is used, and 

then are Kimmel and Li & Orchard's approaches, and Bicubic and Bilinear interpolations are the 

worst ones. 

ffl 

of 
Z 
in 
Q . 

E3L(9/7-F) 25.09 | 25.29 | 27.17 | 27.10 28.26 28.54 

Figure 5.10 Comparison of interpolation approaches using different low-pass filters 
(PSNR, average) 

if) 

Figure 5.11 Comparison of interpolation approaches using different low-pass filters 
(MSSIM, average) 
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For the 'cameraman' image, Figure 5.12 and Figure 5.13 show the PSNR and MSSLVI 

measurements of different interpolation methods with different downsampling filters. The best 

ones are the 9/7-M and 9/7-F inverse wavelet transforms, and then are Kimmel and Li & 

Orchard's approaches; the worst ones are Bicubic and Bilinear. 

OQ 

if) 
Q . 

28.00 
27.00 
26.00 
25.00 
24.00 
23.00 
22.00 
21.00 • 

Bilinear Bicubic 
I mm 

Kimmel 

1 

Li 

I 
9/7-M 9/7-F 

0 None 23.81 23.63 25.41 24.76 25.60 25.16 

• L(5/3) 24.42 24.25 26.26 25.48 26.95 26.56 

S L(9/7-M) 24.40 24.38 26.16 25.48 27.03 26.84 
E3L(9/7-F) j 24.28 [ 24.51 | 25.88 | 25.72 26.84 27.10 

Figure 5.12 Comparison of interpolation approaches using different low-pass filters 
(PSNR, 'Cameraman*) 
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Bilinear Bicubic Kimmel 

I 
m 

9/7-M 9/7-F 

0 None 0.7970 0.8018 0.8571 0.8408 0.8606 0.8535 

m L(5/3) 0.8167 0.8216 0.8700 0.8557 0.8867 0.8808 

S L(9/7-M) 0.8141 0.8223 0.8660 0.8533 0.8865 0.8834 

m L(9/7-F) 0.8065 0.8194 0.8535 0.8500 0.8776 0.8816 

Figure 5.13 Comparison of interpolation approaches using different low-pass filters 
(MSSDvI, 'Cameraman') 
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(a) Original image 

(c) (5/3, L i & Orchard) 

(b) (5/3, 9 /7-M + new approach) 

(d) (5/3, Kimmel) 

r 

(e) (5/3, Bicubic) 

Figure 5.14 Restored 'Cameraman' images 
using different interpolation methods, 

(reduction method, enlargement method) 
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Figure 5.14 shows restored images using different interpolation methods. In Figure 5.14 (a), 

' A ' area has strong big edges; 'B ' area has strong small edges; ' C area has weak edges; 'D' area 

has rich texture. Figure 5.15 also shows enlarged images in the ' A ' area. It is clearly seen that our 

new approach performs the best in these areas. Also, the restored images using our new approach 

always have great contrasts. The only flaw for our new approach is that it is not smooth enough 

along some edge contours. The main reason is that most of our ideal edge models are originally 

jagged. We can improve this problem by constructing better edge models. However, our new 

approach is still better than the Bicubic approach along these edge contours. L i & Orchard's 

approach has the best edge contours for these strong big edges though there is a suspicion that it 

oversmooths raw edges. Kimmel's approach has very good image quality along the strong big 

edges, but is not very good at strong small edges, weak edges and rich texture. 

Based on the above results, we can say that the 9 /7-M or 5/3 wavelet transform for image 

reduction, the 9 /7-M inverse wavelet transform with our new approach for image expansion is 

the best approaches among those image interpolation methods i f considering overall image 

quality. 

(a) Original (b) (c) (d) (e) 

Image (b) (c) (d) (e) 

Method (5/3, Bicubic) (5/3, 9/7-M + new approach) (5/3, L i & Orchard) (5/3, Kimmel) 

PSNR 28.34 dB 33.42 dB 32.39 dB 32.50 dB 

Figure 5.15 Performance comparisons of restored strong big edges 
(Images are magnified by a factor of 2 using the replication method) 

5.4.3 Comparison of Interpolation Approaches for Image Magnification 
In this section, we investigate the performance of our new interpolation approach when it is 

used to enlarge original images. Since the sizes of the original images and the final images are 

not the same, the blind image quality measurement is the only choice to evaluate the images 

besides the subjective measurement. Here I Q M measurement is used. 
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Table 5.9 The performances of several interpolation approaches for original images (IQ, x2) 

Image bilinear bicubic Kimmel's Li's 9/7-M (N) 9/7-F (N) 

cameraman 0.0889 0.1061 0.0970 0.1137 0.1073 0.1250 

lena 0.1194 0.1327 0.1260 0.1397 0.1328 0.1471 

lily 0.1907 0.2081 0.2007 0.2155 0.2103 0.2287 

lighthouse 0.1283 0.1557 0.1371 0.1833 0.1575 0.1881 

bike 0.1869 0.2190 0.1993 0.2349 0.2197 0.2536 

bird 0.0365 0.0387 0.0380 0.0397 0.0387 0.0409 

peppers 0.1012 0.1204 0.1133 0.1338 0.1238 0.1528 
mandrill 0.2739 0.3627 0.3015 0.4115 0.3680 0.4736 

text 0.2347 0.3288 0.2701 0.3551 0.3297 0.3872 

textl 0.0286 0.0322 0.0307 0.0336 0.0323 0.0355 

chestXR 0.0580 0.0604 0.0592 0.0610 0.0602 0.0638 

pelvisXR 0.0946 0.0994 0.0974 0.1008 0.1000 0.1079 

brainCT 0.2237 0.2335 0.2330 0.2407 0.2366 0.2466 

spineCT 0.1736 0.1822 0.1793 0.1874 0.1831 0.1938 

kidneyUS 0.2097 0.2225 0.2158 0.2315 0.2228 0.2361 

transUS 0.3149 0.3428 0.3220 0.3690 0.3357 0.3686 
boneMR 0.0849 0.1038 0.0886 0.1147 0.1046 0.1258 

cesarMR 0.1461 0.1528 0.1493 0.1566 0.1526 0.1608 

artery Ang 0.4680 0.4961 0.4837 0.5010 0.4960 0.5308 

lungAng 0.0810 0.0890 0.0830 0.0918 0.0880 0.0970 
Average -0.0222 0. 0000 -0.0131 0.0114 0. 0006 0.0238 

Table 5.10 The performances of several approaches for original images (Contrast, x2) 

Image bilinear bicubic Kimmel's Li's 9/7-M (N) 9/7-F (N) 

cameraman 0.5188 0.5252 0.5218 0.5253 0.5224 0.5281 
lena 0.5252 0.5308 0.5287 0.5319 0.5283 0.5339 
lily 0.5213 0.5292 0.5273 0.5308 0.5286 0.5361 
lighthouse 0.3843 0.3944 0.3863 0.4014 0.3922 0.4024 
bike 0.5525 0.5648 0.5568 0.5667 0.5616 0.5732 
bird 0.3669 0.3684 0.3681 0.3683 0.3673 0.3687 
peppers 0.5669 0.5722 0.5741 0.5745 0.5724 0.5793 
mandrill 0.5696 0.5938 0.5852 0.6040 0.5937 0.6182 
text 0.2653 0.3018 0.2562 0.3131 0.3009 0.3155 
textl 0.1663 0.1707 0.1682 0.1709 0.1702 0.1735 
chestXR 0.5498 0.5510 0.5503 0.5510 0.5483 0.5499 
pelvisXR 0.4545 0.4571 0.4579 0.4588 0.4571 0.4607 
brainCT 0.9659 0.9714 0.9776 0.9796 0.9776 0.9819 
spineCT 1.0475 1.0516 1.0499 1.0480 1.0470 1.0500 
kidneyUS 1.4086 1.4166 1.4113 1.4123 1.4002 1.4094 
transUS 1.1544 1.1730 1.1497 1.1746 1.1402 1.1585 
boneMR 0.3486 0.3560 0.3479 0.3617 0.3549 0.3619 
cesarMR 0.8214 0.8249 0.8249 0.8251 0.8213 0.8245 
artery Ang 1.0533 1.0714 1.0572 1.0554 1.0523 1.0668 
lungAng 0.5749 0.5788 0.5757 0.5792 0.5751 0.5795 
Average -0.0094 0. 0000 -0.0064 0. 0015 -0.0046 0.0034 



Chapter 5 • New Wavelet-based Image Interpolation Approach 75 

Table 5.9 and 5.10 show the performances of several interpolation approaches when the 

magnification factor is two. The 9/7-F inverse wavelet transform with our new approach 

performs the best, then Li & Orchard's, the 9/7-M, bicubic, Kimmel, and bilinear. 

In order to get more accurate evaluation, we look into the A' , 'B', ' C , and 'D' areas shown in 

Figure 5.14(a). The magnified images are shown in Figure 5.16. The 9/7-M inverse wavelet 

transform with our new approach performs the best in all areas. Bicubic method performs well in 

'B', ' C , and D' areas. Kimmel's method performs well in 'A' and 'C areas. Li & Orchard's method 

only perform well in 'A' area, and does have the best contours for strong big edges. These results 

are consistent with the results from the last section. 

How about the image quality if a high magnification factor is applied? Figure 5.17 shows 

the 16x magnified 45-degree step edge images using different interpolation approaches. We can 

see: 1) the magnified image using Bicubic approach is badly blurred; 2) Li & Orchard's approach 

has trouble with this special image; 3) Kimmel' approach does well though the magnified image 

is blurred a little bit; 4) the 9/7-M with our new approach performs the best with nice-looking 

edges. 

Overall, the 9/7-M inverse wavelet transform with our new approach has the best 

performance compared with Li & Orchard, Kimmel, bicubic and bilinear when whatever 

magnification factor is used. 

Original Bicubic 9/7-M + new approach Kimmel Li & Orchard 

Figure 5.16 Several areas from 2x Enlarged 'Cameraman' image 
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Li & Orchard 9/7-M + new approach 

Figure 5.17 16x enlarged 45-degree step edge images using different interpolation approaches 

5.5 Computation Time 

The computational time is one important measurement for image interpolation besides 

image quality. Here, we roughly compare the different approaches since the results from Matlab 

are not accurate. The test image is 'Cameraman'. We apply same image interpolation method on 

the same image repeatedly for ten times, and then do the average. The final results are shown in 

Table 5.11. 

Bilinear and Bicubic interpolation methods are fast because they use the Matlab built-in 

function 'imresize'. Li & Orchard's method is the slowest one because it has to compute the 

inverse of a matrix. Kimmel's approach has the operation of the square root. Our new approach 

only has additions and multiplications, and lots of conditional operations and iterative loops, and 

it is easy to be implemented whether software or hardware. In a word, the computation time from 

Bicubic, Kimmel, and our new approach should be very close. 
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Table 5.11 Comparison of the computation time for different interpolation methods 

Interpolation Methods Time (seconds) 

Bilinear 0.5967 (Matlab built-in function) 

Bicubic 0.8182 (Matlab built-in function) 

L i & Orchard 44.7173 

Kimmel 7.2064 

9/7-M + new approach 4.4984 (new approach) + 

4.0128 (inverse wavelet transform) 

5.6 Summary 

Comparing several image interpolation approaches, we get the following results: 

• The 9/7-M inverse wavelet transform with our new approach is the best one when it is 

used for restoring images that are reduced using the 5/3 or 9/7-M wavelet transform. 

• The 9/7-M and 9/7-F based image interpolations achieve the best overall performances. 

• The interpolated image using the 9/7-F and 9/7-M with our new approach has the best 

contrast. 
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CONCLUSIONS AND FUTURE 

RESEARCH 

6.1 Conclusions 

This thesis discusses image interpolation in the space domain and the wavelet domain. The 

traditional methods such as bilinear and bicubic are very simple but yield the interpolated images 

blurred. Therefore, edge-based interpolation approaches have been emerging recently. Kimmel's 

and L i & Orchard's methods much improve the quality of edges in the image, especially the later 

method. But L i & Orchard's method is computationally expensive, and not suitable for images 

having small edges and rich texture. Kimmel's approach is also not good for images having small 

edges and rich texture. The performance of wavelet-based interpolation method is always very 

high. However, the predicting of the detail coefficients is still an open question. In order to get 

visually nice images while still keeping a low computational effort, a new approach is proposed 

in this thesis. 

The proposed approach uses the lifting scheme that requires a low computational effort and 

is easy to implement in hardware or software. The prediction process in the new approach is 

relatively very simple requiring only additions and multiplications. Our new approach does not 

need the wavelet decomposition that is a must for most wavelet-based image interpolation 

approaches. Avoid ing the wavelet decomposition introduces two obvious benefits: 1) the 

computational time of our new approach is relatively low and 2) there is no requirement of the 

height and width of the original image for image expansion, but for the wavelet decomposition, 

the size of the image must be a power of 2. 

From the experimental results, the 9 /7-M inverse wavelet transform with our new approach 

has the best performance for image expansion. For the case of reducing the image first, and then 

expanding the reduced image to the original size, the 5/3 and 9 /7-M wavelet transform combined 

with the 9 /7-M inverse wavelet transform using our new approach all have very good 

performances compared with the Bicubic, Kimmel's and L i & Orchard's interpolation methods. 
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We know the 9/7-M wavelet transform is about 4-times faster than the 9/7-F wavelet transform, 

which is used often in the literature, and the 5/3 wavelet transform is about 2-times faster than 

the 9/7-M wavelet transform. Therefore, using the 5/3 wavelet transform for image reduction can 

save a lot of the computational time. Thus, the best solution is obtained when the 5/3 wavelet 

transform used in image reduction and the 9/7-M inverse wavelet transform used in image 

expansion with our new approach. 

6.2 Future Research 

To further improve the quality of the image or extend the application areas for our proposed 

approach, we here offer the following suggestions: 

• Find an effective way to lessen the zigzagging along the strong edges. For example, 

we can construct better step edge models. Based on our experiments, the zero-degree, 

45-degree, 90-degree, and 135-degree edge models perform very well for their nice 

edges. Other edge models are originally jagged, and perform not well. Therefore, 

these edge models need to be revised. 

• Use more powerful edge detection tools such as Canny Edge Detector which will lead 

to better edge maps. 

• Use non-separable two-dimension wavelet transform such as Contourlet. Non-

separable wavelet transform can make images with better edges. Contourlet can 

further decompose the image into more directional sub-images not only vertical, 

horizontal and diagonal ones. 

• Extend this approach to color images and video. 
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TEST IMAGES 
Table A .1 The characteristics of test images 

Image Sizes IQ Contrast Description 

cameraman 256x256 0.2223 0.5252 
Man , camera, grass, distant 
scene 

lena 256x256 0.2791 0.5302 Woman face 
l i ly 230x186 0.3973 0.5306 flower 
lighthouse 256x384 0.2694 0.4006 House, fence, tower 
bike 512x512 0.4501 0.5661 M a n & bike 
bird 256x256 0.0855 0.3671 Bird , blurred 
peppers 512x512 0.1491 0.4657 Peppers 
mandrill 512x512 0.2556 0.3303 Mandri l l face, rich texture 
text 256x256 0.4674 0.3468 C R T text 
textl 640x460 0.0632 0.1708 scanned text, blurred 
chestXR 342x288 0.1437 0.5491 X-ray, chest 
pelvisXR 320x384 0.2154 0.4575 X-ray, pelvis 
brainCT 300x384 0.5177 0.9794 C T , brain 
spineCT 410x292 0.3879 1.0524 C T , spine 
kidneyUS 432x288 0.4448 1.4024 Ultrasound, kidney 
transUS 432x288 0.6740 1.1482 Ultrasound 
boneMR 216x212 0.5887 0.6509 M R I , rich texture 
cesarMR 284x442 0.3192 0.8236 M R I 
arteryAng 386x326 0.9851 1.0691 Angiocardiography, artery 
lungAng 318x384 0.1863 0.5772 Angiocardiography, lung 

A l l images are gray, 8-bit depth. The medical images are from Br ighamRAD of Harvard 

University: http://brighamrad.harvard.edu/education/online/tcd/bwh-query-modality.html. 

http://brighamrad.harvard.edu/education/online/tcd/bwh-query-modality.html
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peppers 

MT-LEVEL 
Cspi net}/home/u/rj kroeger/vf< 
Cspinet} /home/u/r jkroeger/vf : 
Makef i le compress.c f i" 
Makef i le~ d i s p l a y . c f r< 
Cspinet} /home/u/r jkroeger/vf : 
Cspinet}/home/u/r jkroeger/vfJ 
Makef i le compress.c f i " 
Makef i le~ d i s p l a y . c fr< 
Cspi net}/home/u/rj kroeger/vf : 
Makef i le d i s p l a y . c im; 
Makefi le~ f i l e i o . c im; 
compress.c f r ac ta l ,h inv 
Cspinet} /home/u/r jkroeger/vf ; 
Cspinet} /home/u/r jkroeger/vf : 
Cspinet}/home/u/r jkroeger/vf : 
text 

mandrill 
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brainCT spineCT 
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RESTORED IMAGES (CAMERAMAN) 
(Reduction method, Enlargement method) 

Left: restored image; Right: quality map of the M S S I M measurement 

(5/11-C, 5/11-C) 
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(2/10, 2/10) 



Appendix B: Restored Images (Cameraman) 93 

(Bicubic, Bicubic) 

(Decimation, Bilinear) 

(Decimation, Bicubic) 
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(Decimation, 9/7-M + new approach) 



(Decimation, 9 / 7 - F + new approach) 

( 5 / 3 , Bilinear) 

( 5 / 3 , Bicubic) 



Appendix B; Restored Images (Cameraman) 96 

(5/3, 9/7-M + new approach) 
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(5/3, 9/7-F + new approach) 

(9/7-M, Bicubic) 
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(9/7-M, 9/7-M + new approach) 
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(9/7-F, Bicubic) 
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(9/7-F, Li & Orchard) 

(9/7-F, 9/7-M + new approach) 
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MAGNIFIED IMAGES (CAMERAMAN) 
Magnification Factor = 2 
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9/7-M 



9/7-F 
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2/10 
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9/7-M + new approach 
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Bicub ic 
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K i m m e l 
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Li & Orchard 


